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Abstract

Comparative Studies on Sample Complexity Bounds in
Multi-Agent Reinforcement Learning

by

Jiaqi Yang

Master of Science in Computer Science

University of California, Berkeley

In this report, we survey on the existing sample complexity bounds from multi-agent rein-
forcement learning (MARL) literature and those from game theory literature. Along the way,
we give unified notations for game theory and MARL, and summarize different definitions
of equilibria in game theory and MARL.

By comparative studies on the existing bounds, we identify several interesting open gaps in
MARL, and we take preliminary steps towards answering these open questions. This report
can serve as a starting point for future studies in MARL theory.
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Chapter 1

Introduction

1.1 Overview
Recently, multi-agent reinforcement learning (MARL) has become a prominent paradigm
for solving complex multi-agent systems. MARL has achieved impressive success in many
practical applications: it could learn human-level artificial intelligence (AI) agents in video
games such as StarCraft II [Vinyals et al., 2019], Dota 2 [Berner et al., 2019], Football [Kurach
et al., 2020]. Moreover, MARL has demonstrated the ability of learning complex behaviors
that signals intelligence [Bansal et al., 2018; Baker et al., 2020; Open Ended Learning Team
et al., 2021], showing the hope of learning artificial general intelligence.

In contrast to the empirical success of MARL, our theoretical understanding towards
MARL is rather limited. The theory of MARL is usually studied under the framework of
Markov game [Shapley, 1953; Littman, 1994], which is an extension of Markov decision
process (MDP) [Sutton and Barto, 2018; Agarwal et al., 2019], the standard formulation in
RL theory, and (normal-form) game [Nisan et al., 2007], the standard formulation in game
theory. A central problem in MARL theory is the sample complexity, which is the amount of
samples needed by an algorithm to find an approximate equilibrium. (Formally definitions are
in Chapter 2.) For this problem, we observe a huge gap between our understanding towards
(single-agent) reinforcement learning (RL) theory and MARL theory. For single-agent RL,
the sample complexity has been well-understood: matching lower and upper bounds have
been proved in the tabular case [Jaksch et al., 2010; Li et al., 2021], and preliminary results
for various function approximation cases have also been shown [Zhang et al., 2021; Dong
et al., 2021; Huang et al., 2021]. However, for MARL, even the simplest tabular case has
yet to be fully understood, and the lower bounds have yet to match the upper bounds [Jin
et al., 2022; Liu et al., 2021; Song et al., 2022; Ding et al., 2022].

Moreover, we observe a bigger gap between our understanding towards MARL theory
and game theory. There are quite a few literature that studies the query complexity in learn-
ing game equilibria, showing lower and upper bounds [Fearnley et al., 2015; Fearnley and
Savani, 2016; Babichenko and Rubinstein, 2020; Babichenko, 2020; Babichenko and Rubin-
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stein, 2021]. Because that game is a special case of Markov game and that sample complexity
is a simplified version of query complexity,1 ideally we should be able to recover the query
complexity bounds in game theory from the sample complexity bounds in MARL theory.
This is unfortunately not the case. As we will see later in this report, there are gaps between
MARL and game that are not well-understood. Furthermore, certain equilibria concepts are
closely related to optimization problems, such as no-regret online learning [Vishnoi, 2021;
Daskalakis et al., 2021; Anagnostides et al., 2022] and min-max optimization [Ouyang and
Xu, 2019]. However, these connections are not well-understood, and there are gaps between
MARL theory and optimization theory.

In this report, we take preliminary steps to narrow the gaps between current MARL
theory and both game and optimization theory. We perform comparative studies on the
results of MARL, game theory, and optimization theory, to reveal several gaps therein.
Then we resolve some open questions in MARL with existing bounds in game theory and
optimization theory.

1.2 Organization
The remaining parts of this report is organized as follows. In Chapter 2, we systematically
introduce notions in game theory and MARL theory. In Chapter 3, we survey on existing
results, and come up with some open questions. In Chapter 4, we give preliminary results
on the questions we give. In Chapter 5, we discuss about our questions and our results.

1Sample complexity counts the number of samples, and query complexity counts the number of queries.
Samples are usually assumed to be noisy. When samples are noiseless, the sample complexity should be the
same as the query complexity.
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Chapter 2

Methodology

2.1 Notations and Definitions
For any integer n ∈ N, we denote JnK = {1, · · · , n}. For any set X , we use ∆X = {x ∈ RX :

x ≥ 0 and ‖x‖1 = 1} to denote the set of all probability distributions over X . We use Õ(·)
and Ω̃(·) to omit logarithmic factors in complexity bounds.

In this report, query complexity refers to sample complexity for noiseless samples.

2.2 Game Theory
In this section, we formally define the most common concepts in game theory, including game
and equilibria. The definitions are from various papers, mainly [Nisan et al., 2007; Lattimore
and Szepesvári, 2020].

Definition 1 (Game). An n-player game is defined by a tuple (n, {Ai}ni=1, {Ri : A1 × · · · ×
An → R}ni=1). Here, n is the number of players (or agents).1 For each agent i ∈ JnK, the set Ai
is the set of all actions that agent i can choose, and Ri is its payoff function that it wants to
maximize by cleverly choosing its action. We define A = A1×· · ·×An, a = (a1, · · · , an) ∈ A.
Usually, we assume Ri ∈ [0, 1].

For each agent i ∈ JnK, its strategy πi ∈ ∆Ai is a distribution over its action set. When
πi is a singleton distribution (i.e., |supp πi| = 1), we say πi is a pure strategy. In general, we
say it is a mixed strategy.

Collectively, we call π = (π1, · · · , πn) as a strategy profile. For convenience, we define
π−i = (π1, · · · , πi−1, πi+1, · · · , πn) to be the strategy profile excluding agent i. The payoff of
a strategy profile π is

Ri(π) = Ri(π1, · · · , πn) = E
ai∼πi

Ri(a) = E
ai∼πi

Ri(a1, · · · , an). (2.1)

1Throughout this report, we use “player” and “agent” interchangeably.
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Definition 2 (Nash equilibrium). Let π be a strategy profile in an n-player game. We say
π is a Nash equilibrium (NE), if each agent chooses its best response against other agents.
Formally, the best response of agent i against π−i is a strategy

π†i ∈ arg max
πi

Ri(πi, π−i). (2.2)

We say π is an ε-approximate NE (or ε-NE in short) if

max
1≤i≤n

Ri(π
†
i , π−i)−Ri(π) ≤ ε. (2.3)

In particular, when ε = 0, we say π is an NE.

Definition 3 (Coarse correlated equilibrium). Let σ ∈ ∆A be a distribution over joint
actions, which can be seen as a coordinator that suggests actions to each agent according
to some distribution. We say σ is a coarse correlated equilibrium (CCE), if for every agent,
detouring from the coordination is always no better than following it. Formally, let Ri(σ) =

Ea∼σ Ri(a). We say σ is an ε-approximate CCE (or ε-CCE), if

max
1≤i≤n

max
a′i∈Ai

E
a∼σ

Ri(a
′
i, a−i)−Ri(σ) ≤ ε. (2.4)

We say σ is a CCE when ε = 0.

Definition 4 (Correlated equilibrium). We say σ is a correlated equilibrium (CE), if for
every agent, exploiting the coordination is always no better than following it, where by
exploiting we mean the agent could choose better action based on the action suggested by
σ. Formally, we say σ is an ε-approximate CE (or ε-CE), if

max
1≤i≤n

max
φ:Ai→Ai

E
a∼σ

Ri(φ(ai), a−i)−Ri(σ) ≤ ε, (2.5)

and we say σ is a CE when ε = 0.

Definition 5 (Potential game). An n-player game (n, {Ai}ni=1, {Ri}ni=1) is a potential game,
if there exists a potential function Φ : A → R that simultaneously captures the incentive of
changing actions for all agents, such that for any agent i and any actions ai, a′i ∈ Ai, a−i ∈
A−i,

Ri(ai, a−i)−Ri(a
′
i, a−i) = Φ(ai, a−i)− Φ(a′i, a−i). (2.6)

A cooperative game is an n-player game with R1 = · · · = Rn, which implicitly requires
A1 = · · · = An. Note that a cooperative game is a potential game with Φ = Ri. We assume
|Φ| ≤ Φmax.

Definition 6 (Zero-sum game). A zero-sum game is a 2-player game with R1 = −R2. In
this case, we write R = R2 and denote the game by (−R,R). Usually, we assume |R| ≤ 1,
which implies −1 ≤ R1, R2 ≤ 1.



2.3. MARKOV GAMES 5

2.3 Markov Games
In this section, we formally define the most common concepts in MARL, including Markov
games and equilibria. The definitions are merged from various papers, mainly [Nisan et al.,
2007; Lattimore and Szepesvári, 2020; Shapley, 1953; Littman, 1994; Jin et al., 2022; Song
et al., 2022; Daskalakis et al., 2022]. We unify the notations from them, which allows us to
compare their results much more easily.

Definition 7 (Markov game, finite-horizon). An n-agent finite-horizon Markov game is de-
fined by a tuple (n,H,S, {Ai}i∈JnK, {rh,i : S ×A → [0, 1]}h∈JHK

i∈JnK
, {Ph : S ×A → ∆S}h∈JHK, s1),

where S is the state space, Ai is agent i’s action space, rh,i : S × A → [0, 1] is agent i’s
(deterministic) reward function at step h, Ph(·|s, a) ∈ ∆S is the transition dynamics, and
s1 ∈ S is the start state.

There are two types of policies being studied in finite-horizon Markov game: Markovian
and non-Markovian.

• A (Markov) policy is a collection of maps from states to distributions over actions:
π = {πh : S → ∆A}h∈JHK, where πh(a|s) is the probability of the agents choosing
joint action a at step h when they are at state s. It rolls out a trajectory by ah ∼
πh(·|sh), sh+1 ∼ Ph(·|sh, ah).

• A non-Markov policy is a collection π = {πh : (S × A × R)h−1 × S → ∆A}, which
means the policy πh at step h could depend on the history (states, actions, rewards)
from step 1 through step (h− 1), plus the current state sh. It rolls out a trajectory by
ah ∼ πh(·|{(sh′ , ah′ , rh′)}h′∈Jh−1K, sh), sh+1 ∼ Ph(·|sh, ah).

A trajectory is denoted by τ = (s1, a1, s2, · · · , sH , aH). We say a Markov policy π is a product
policy, if πh(·|s) is a product measure, πh(·|s) ∈ ∆A1 × · · · ×∆An for every s ∈ S, h ∈ JHK.

For any policy π, we define its value function and quality value function (Q-function) by

V π
h,i(s) = E

τ∼π

[
H∑

h′=h

rh,i(sh′ , ah′) | sh = s

]
, (2.7)

Qπ
h,i(s, a) = E

τ∼π

[
H∑

h′=h

rh,i(sh′ , ah′) | sh = s, ah = a

]
, (2.8)

where Eτ [· | sh = s] means the trajectory τ is rolled out by starting at sh = s, and similarly
Eτ [· | sh = s, ah = a] means τ is rolled out by starting with sh = s and ah = a. To unify
notations with Definition 8, we denote V π

i = V π
1,i and Qπ

i = Qπ
1,i.

Definition 8 (Markov game, infinite-horizon). An n-agent infinite-horizon (discounted)
Markov game is defined by a tuple (n, γ,S, {Ai}i∈JnK, {ri : S ×A → [0, 1]}i∈JnK, P : S ×A →
∆S , s1), where γ ∈ (0, 1) is the discount factor, S is the state space, Ai is agent i’s action
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space, ri : S × A → [0, 1] is agent i’s (deterministic) reward function, P (·|s, a) ∈ ∆S is the
transition dynamics, and s1 ∈ S is the start state.

There are three types of policies being studied in infinite-horizon Markov game: stationary
Markovian, nonstationary Markovian, non-Markovian.

• A stationary Markov policy is a map from states to distributions over actions, π : S →
∆A, where π(a|s) is the probability of the agents choosing joint action a when they are
at state s. It rolls out a trajectory by ah ∼ π(·|sh), sh+1 ∼ P (·|sh, ah).

• A nonstationary Markov policy is a collection of maps, π = {πh : S → ∆A}h∈N, which
rolls out by ah ∼ πh(·|sh), sh+1 ∼ P (·|sh, ah).

• A non-Markov policy is a collection π = {πh : (S × A × R)h−1 × S → ∆A}h∈N, which
rolls out a trajectory by ah ∼ πh(·|{(sh′ , ah′ , rh′)}h′∈Jh−1K, sh), sh+1 ∼ Ph(·|sh, ah).

A trajectory is denoted by τ = (s1, a1, s2, · · · ). We say a stationary Markov policy π is a
product policy if π(·|s) ∈ ∆A1 × · · · ×∆An , and we say a nonstationary Markov policy π is
a product policy if πh(·|s) ∈ ∆A1 × · · · ×∆An for every s ∈ S, h ∈ N.

For any policy π, we define its value function and quality value function (Q-function) by

V π
i (s) = E

τ∼π

[
∞∑
h=0

γhri(sh, ah) | s1 = s

]
, (2.9)

Qπ
i (s, a) = E

τ∼π

[
∞∑
h=0

γhri(sh, ah) | s1 = s, a1 = a

]
, (2.10)

where Eτ [· | s1 = s] means the trajectory τ is rolled out by starting at sh = s, and similarly
Eτ [· | s1 = s, a1 = a] means τ is rolled out by starting with s1 = s and a1 = a.

Definition 9 (Nash equilibrium). In a finite-horizon Markov game, we say a Markov product
policy π is an ε-approximate NE (ε-NE) if

max
1≤i≤n

max
πi∈Πi

V
πi,π−i
i (s1)− V π

i (s1) ≤ ε, (2.11)

where Πi = {{πh,i : S → Ai}h∈JHK}.
In an infinite-horizon Markov game, we say a stationary Markov product policy π is an

ε-NE if (2.11) holds with Πi = {π : S → Ai}; we say a nonstationary Markov product policy
π is an ε-NE if (2.11) holds with Πi = {{πh,i : S → Ai}h∈N}.

In all the cases above, when ε = 0, we say π is an NE.

There are various definitions of CCE in Markov game.

Definition 10 (Coarse correlated equilibria). In general, in a Markov game, we say a policy
π is an ε-approximate CCE (ε-CCE) if

max
1≤i≤n

{max
πi∈Πi

V
πi,π−i
i (s1)− V π

i (s1)}, (2.12)
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with different choices of Πi’s for different types of CCE.
Daskalakis et al. [2022] defines two types of CCE in an infinite-horizon Markov game:2

• a stationary Markov policy π is an ε-approximate stationary Markov CCE (ε-stationary
Markov CCE) if it satisfies (2.12) with Πi = {π : S → Ai};

• a nonstationary Markov policy π is an ε-approximate nonstationary Markov CCE (ε-
nonstationary Markov CCE) if it satisfies (2.12) with Πi = {{πh,i : S → Ai}h∈N}.

Song et al. [2022] defines a type of CCE in a finite-horizon Markov game:

• A non-Markov policy π is an ε-CCE if it satisfies (2.12) with Πi = {{πh : (S × A ×
R)h−1 × S → ∆Ai}h∈JHK}.

Liu et al. [2021] defines a type of CCE in a finite-horizon Markov game:

• A Markov policy π is an ε-CCE if it satisfies (2.12) with Πi = {{πh,i : S → Ai}h∈JHK}.

In all cases above, when ε = 0, we omit the prefix “ε-” and “ε-approximate” when de-
scribing the CCE.

Definition 11 (Correlated equilibria). In a finite-horizon Markov game, a Markov policy
[Liu et al., 2021], or non-Markov policy [Song et al., 2022], π, is an ε-approximate CE (ε-CE)
if

max
1≤i≤n

max
ψi∈Ψi

V ψ�π
i (s1)− V π

i (s1) ≤ ε, (2.13)

where Ψi = {{φh,s : Ai → Ai}h∈JHK
s∈S
} and ψ�π(·|·) is a distribution induced by first generating

a ∼ π(·|·), then choosing (ψ(ai), a−i).

Definition 12 (Markov potential game). In [Ding et al., 2022], an infinite-horizon Markov
game is a Markov potential game if there exists a potential function Φπ(s) : Π×S → R such
that

V
πi,π−i
i (s1)− V π′i,π−i

i (s1) = Φπi,π−i(s)− Φπ′i,π−i(s) (2.14)

for any πi, π′i ∈ Πi, π−i ∈ Π−i, where Πi = {πi : S → Ai} and Π−i = {π−i : S → A−i}.
In [Song et al., 2022], a finite-horizon Markov game is a Markov potential game if there

exists a potential function Φ(π) : Π→ R such that

V
πi,π−i
i (s1)− V π′i,π−i

i (s1) = Φ(πi, π−i)− Φ(π′i, π−i) (2.15)

for any πi, π′i ∈ Πi, π−i ∈ Π−i, where Πi = {{πh,i : S → Ai}h∈JHK} and Π−i = {{π−i : S →
A−i}h∈JHK}. We assume |Φ| ≤ Φmax.

A (finite- or infinite-horizon) Markov cooperative game is an n-agent Markov game with
R1 = · · · = Rn. Similar to cooperative game, this implicitly requires A1 = · · · = An, and
that a Markov cooperative game is a Markov potential potential game with Φ = Vi.

2Actually, they defined three types, but we only present two here.
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Definition 13 (Zero-sumMarkov game). A two-agent infinite-horizon Markov game is called
zero-sum if r1 = −r2. A two-agent finite-horizon Markov game is called zero-sum if rh,1 =
−rh,2 for every h ∈ JHK.

2.4 Sample Complexity
Definition 14 (Bandit, Semi-bandit). We study the minimum number of queries required
to learn an approximate equilibrium (can be ε-Nash, ε-CCE, ε-CE) in game. Formally, we
define two interactive protocols, bandit learning and semi-bandit learning, with two query
constraints, pure and mixed query, and two noise levels, noisy and noiseless. In particular,
for the noisy cases, we assume the noise has variance σ2. We begin with the definition in the
noisy mixed bandit learning case.

For each round t = 1, · · · , T , the algorithm queries a strategy profile π(t) = (π
(t)
1 , · · · , π(t)

n )
and sees the outcome Ea∼π(t) Ri(a)+N (0, σ2). We study two goals. The first is to minimize the
cumulative regret, defined as the cumulative suboptimality gap, summing over π(1), · · · , π(t).
The definition of suboptimality gap is the left-hand side of (2.3), (2.4), or (4) if we are
studying Nash, CCE, or CE, respectively. The second goal is to minimize the number of
samples required for a given ε. Formally, the goal is to find the minimum T such that there
exists an algorithm that finds an ε-approximate equilibrium with constant probability.

Next, we define the noiseless, pure, semi-bandit cases. For noiseless cases, we assume
σ = 0. For pure query cases, we require that every π(t)

i is a pure strategy. For semi-bandit
cases, the algorithm can observe Ea∼π(t) Ri(ai, a−i) +N (0, σ2) for every ai ∈ Ai.
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Chapter 3

Survey on Existing Results

3.1 General Games
In this section, we survey on existing sample complexity bounds for Markov games. By
“general”, we refers to that we consider n agents in general. In the next section, we will
specifically narrow down to the n = 2 agents case.

To save space, we only present the state-of-the-art bounds.

Learning Approximate Nash Equilibrium

We begin with a survey on learning ε-Nash equilibrium using MARL. The main existing
results are presented in Table 3.1.

We find that learning approximate Nash equilibrium in Markov games can be very hard,
as Song et al. [2022] shows an exponential lower bound on sample complexity. This indeed
matches the hardness result in game theory [Rubinstein, 2016]. Albeit this, polynomial sam-
ple complexity bounds do exist for the two-agent case [Liu et al., 2021; Daskalakis et al.,
2020]. We emphasize that there is no contradiction between their results and the exponential
lower bound, because their bound scales with the product of the action spaces of two agents,
which is at best exponential in the number of agents.

We highlight that polynomial sample complexity bounds do exist for an important special
class of Markov games, namely the Markov potential games, as we see in the table [Song et al.,
2022; Ding et al., 2022]. However, there is a huge unexplained gap between these polynomial
bounds and the exponential lower bounds in Markov game: these polynomial bounds has the
dependency on Φmax, which, at a first glance, seems unrelated to the statistical complexity

1κρ, D denotes the distribution shift (or distribution mismatch) coefficients. Please see the references for
the exact definitions. These constants are typical for the theoretical analysis for policy gradient algorithms
[Agarwal et al., 2021; Xiao, 2022].

2Exact bounds are not presented in their paper.
3This bound only holds for cooperative Markov game, which is a special case of Markov potential game

with same rewards for all agents.
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Table 3.1: Summary on Sample Complexity Bounds for Learning ε-Nash Equilibrium in
Markov Games and Markov Potential Games.

Value-Based MARL Policy Gradient1

Markov Game

Ω(en)
[Song et al., 2022]

Õ(H
3

ε2
|S|

2∏
i=1

|Ai|)

Õ(H
4

ε2
|S|2

n∏
i=1

|Ai|)

[Liu et al., 2021]

Two-player case:
Polynomial sample complexity2

[Daskalakis et al., 2020]

Markov
Potential Game

Õ(H3Φmax( |S|
ε3

+ |S|2
ε2

)
n∑
i=1

|Ai|)

[Song et al., 2022]

O(
κ2
ρn

2Φmax

(1−γ)9ε4
max
1≤i≤n

|Ai|2

O(
κ4
ρnΦmax

(1−γ)6ε2
max
1≤i≤n

|Ai|)
O( κρn

(1−γ)4ε2
max
1≤i≤n

|Ai|)3

[Ding et al., 2022]
O(γD

2nΦmax|S|
(1−γ)5ε2

max
1≤i≤n

|Ai|)
[Leonardos et al., 2022]

of the problem, because the rewards are assumed to be 1-subgaussian. Meanwhile, sample
complexity bounds independent of Φmax would instead scale exponentially with the number
of agents [Liu et al., 2021].

We will partly explain this gap in Section 4.1, where we will show the surprising result
that these polynomial bounds are indeed pseudo-polynomial bounds,4 and that the best of
Liu et al. [2021] and Song et al. [2022] is what we can hope. Formally, we will show that the
sample complexity would inevitably scale with 2Ω(min{n,log Φmax

ε
}). Note that for cooperative

Markov games, we have Φmax ≤ O( 1
1−γ ), so this novel lower bound would not contradict

[Ding et al., 2022]. We leave a full explanation for this gap as an open question.

Learning Approximate CCE

Next, we survey on learning ε-CCE. Table 3.2 presents main existing results.
We find that there are many acceptable definitions of CCE for Markov games, and dif-

ferent definitions lead to different results. Specifically, Daskalakis et al. [2022] shows that
finding ε-stationary Markov CCE is PPAD-hard, which implies that any algorithm requires
at least 2Ω(poly(n)) time to find it [Fearnley et al., 2020]. This is however, not a statistical

4Pseudo-polynomial means that the bounds scale with the magnitude of the input. Here, we mean that
Φmax dependency is inevitable for bounds that are polynomial in the number of agents.
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Table 3.2: Summary on Sample Complexity Bounds for Learning ε-CCE in Markov Games.

ε-stationary Markov ε-nonstationary Markov ε-non-Markov

Value-Based
MARL PPAD-hard

[Daskalakis et al., 2022]

Õ(H
4

ε2
|S|2

n∏
i=1

|Ai|)

[Liu et al., 2021]
Õ(H

10

ε3
|S|3 max

1≤i≤n
|Ai|)

[Daskalakis et al., 2022]

Õ(H
5

ε2
|S| max

1≤i≤n
|Ai|)

[Song et al., 2022]

Policy
Gradient N/A

Table 3.3: Summary on Sample Complexity Bounds for Learning ε-CE in Markov Games.

ε-nonstationary Markov ε-non-Markov

Value-Based
MARL

Õ(H
4

ε2
|S|2

n∏
i=1

|Ai|)

[Liu et al., 2021]

Õ(H
6

ε2
|S| max

1≤i≤n
|Ai|2)

[Song et al., 2022]
Policy

Gradient N/A

lower bound, and there could still exist algorithms that finds the ε-stationary Markov CCE
with polynomial sample complexity.

For finding ε-nonstationary Markov CCE, there are two algorithms [Liu et al., 2021;
Daskalakis et al., 2022]. Here, similar to the case of ε-Nash, the sample complexity of the
first algorithm [Liu et al., 2021] scales with ε−2 but is exponential in the number of actions.
That of the second algorithm [Daskalakis et al., 2022] is linear in n but scales with ε−3. It is
therefore interesting to ask if we could show if it is inevitable to have either ε−3 or 2n. We
leave this as an open question.

For finding ε-non-Markov CCE, we are only aware of the result in [Song et al., 2022]. We
note that for this CCE definition, we could get both ε−2 and polynomial dependency on n. A
second open question would be to see if there is a separation between it and nonstationary
Markovian CCE.

Learning Approximate CE

Finally, we survey on learning ε-CE in Table 3.2. We do not find many results in MARL for
learning ε-CE. Song et al. [2022] shows an Õ(H

6

ε2
|S| max

1≤i≤n
|Ai|2) sample complexity bound,

which they claims to improve upon the Õ(H
4

ε2
|S|2

n∏
i=1

|Ai|) obtained by Liu et al. [2021].

However, we note, that the result in [Song et al., 2022] is for ε-non-Markov CE, while the one
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Table 3.4: Summary on Sample Complexity Bounds for Learning ε-Nash Equilibrium in
Two-Player Zero-Sum Games.

Noiseless Noisy

Pure Query
O(N2)6

Ω(N2) when ε < 1
4N

[Fearnley and Savani, 2016] Θ̃(N
ε2

)7

Mixed Query
O(N2)

Õ(N
ε

) [Daskalakis et al., 2011]

in [Liu et al., 2021] is for ε-Markov CE, so it is hard to say if this is indeed an improvement.
We note that all results are studying the finite-horizon case, so an open question would be
showing similar results for CE.

3.2 Two-Player Games
In previous section, we study the sample complexity for Markov game in the most general
case, where our focus is to see if it is possible to simultaneously obtain ε−2 and poly(n) for
the sample complexity. In this section, our main issue is to see how the sample complexity
would scale with the action set size. This requires a fine-grained examination on the sample
complexity. In this section, we will fix n = 2, and we denote N = max{|A1|, |A2|}. Recall
that |A| = |A1||A2|. We will study the model in Definition 14.

General-Sum Games

The sample complexity bounds for general sum games has a rather complete picture. Göös
and Rubinstein [0] shows the Ω(N2−o(1)) lower bound on sample complexity for noiseless
query, which almost matches the O(N2) upper bound obtained by querying every pair of
pure strategies.

For noisy query, the MARL result [Liu et al., 2021] sugests an Õ(N
2

ε2
) upper bound when

we reduce from Markov game to game. It is open whether there could be a matching lower
bound, and the noiseless query lower bound strongly suggests that the answer is yes.5

Zero-sum Games

The results in zero-sum games are summarized in Table 3.4.
5Our guess is based on that the statistical hardness is decoupled from the game theoretical hardness.
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We found that the sample complexity has been settled in the noisy query model [Latti-
more and Szepesvári, 2020; Jin et al., 2022], but it is not well-understood in the noiseless
query model. Moreover, the bounds in Table 3.4 are proved using very different methods.
The O(N2) upper bound is simple. Fearnley and Savani [2016] studied the noiseless pure
query model, and proved an Ω(N2) lower bound when ε is small using combinatorial argu-
ments. For the noiseless mixed query model, Daskalakis et al. [2011] gave an algorithm based
on the excessive gap technique [Nesterov, 2005], which is from the optimization theory. In
contrast, the lower bounds in the noisy query models are proved using statistical arguments
based on Fano’s inequality [e.g., Cover and Thomas, 2005; Wainwright, 2019; Lattimore
and Szepesvári, 2020]. It is then interesting to study how the Nesterov gap technique would
change as the noise level transits from σ = 0 to σ = 1. Formally, we ask the following
question.

Problem 1 (Noise transition). For σ = [0, 1), what are the lower and upper bounds for the
bandit query models in Definition 14 for zero-sum games?

In this report, we take an initial step by answering this question for σ = 0.

6This is obtained by querying all pairs of pure strategies.
7This is easily proved from standard lower bounds for bandits [Lattimore and Szepesvári, 2020], because

finding ε-Nash is at least as hard as finding the best arm for N -armed bandits. This is also recovered by
sample complexity bounds in MARL [Jin et al., 2022].
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Chapter 4

Results

4.1 Pseudo-Polynomial Lower Bound for Finding
Approximate Nash Equilibrium in Potential Game

We present a novel lower bound for potential games, showing that finding an ε-Nash equilib-
rium in n-player potential games is at least 2Ω(min{n,log Φmax

ε
}). Our result suggests that finding

an ε-Nash is at best pseudo-polynomial or exponential, which negatively answers an open
problem raised in [Song et al., 2022].

Problem 2. Find an ε-Nash equilibrium (Definition 2) in potential games (Definition 5)
using noiseless pure query (Definition 14).

Proposition 1 (Babichenko and Rubinstein [2020], Corollary 2). For any algorithm O, there
exists an instance I of Problem 2 with 2(n+ 1) players and ε = 0, such that O needs at least
2Ω(n) queries to solve I with constant probability.

Remark 1. Although Babichenko and Rubinstein [2020] did not point out that the algorithm
can be randomized, they actually allow it, because their result was based on a reduction to
the lower bound in [Hubáček and Yogev, 2020], which was about the randomized query
complexity.

Remark 2. We have the following observations on the instance I constructed in the proof
[Babichenko and Rubinstein, 2020, Section 4.2] of Proposition 1. Let Φ be the potential
function of I. We have the following two claims.

• Im Φ ⊆ Z;

• |Φ| ≤ Φmax = Cn302n for some numeric constant C > 0.
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Proof. In their construction, the instance I has 2(n + 1) players and Ai = {0, · · · , 29} for
each player i ∈ JnK. In their Section 4.2, the potential function is defined by

Φ(a) = −
n+1∑
i=1

(ai − ai+n+1)2n − 2φ(a1:(n+1))− 2φ(a(n+2):(2n+2)), (4.1)

where φ : {0, · · · , 29}n+1 → N is defined their Section 3.2. We note that |φ| ≤ 88 · (2T + 1) +
|d1|+ 58, where T = 2n/2 and d1 ≤ n · 30, so we conclude that |φ| ≤ O(T ) and thus by (4.1),
we conclude that Φmax ≤ C · n · 302n for some numeric constant C > 0.

Corollary 2. For any algorithm O, there exists an instance I of Problem 2 with 2(n +
1) players and ε < 1

30
, such that O needs at least 2Ω(n) queries to solve I with constant

probability.

Proof. Let I be the instance constructed in Proposition 1. Let π = (π1, · · · , πn) be the
strategy profile given byO when taking I as input. Note that by Proposition 3 in [Babichenko
and Rubinstein, 2020, Section 4.2], the instance I has a unique (among pure and mixed)
Nash equilibrium. Let a? be the Nash equilibrium, ai = arg maxai∈Ai πi(ai). We claim that
a?i = ai. Then the lower bound in Proposition 1 implies our Corollary 2.

We proceed to prove a?i = ai by contradiction. By the proof in their Lemma 2 and
Proposition 3 in Section 4.2, for any i ∈ JnK such that ai 6= a?i , there exists a′i ∈ Ai, such
that

Ri(a
′
i, π−i) ≥ Ri(ai, π

?
−i) + 1, (4.2)

so if we define

π′i(αi) =


πi(a

′
i) + πi(ai), αi = a′i,

0, αi = ai,

πi(αi), otherwise,
(4.3)

then

Ri(π
′
i, π−i) ≥ Ri(πi, π−i) + πi(ai) ≥ Ri(πi, π−i) +

1

|Ai|
> Ri(πi, π−i) + ε, (4.4)

which contradicts to the supposition that π is an ε-Nash equilibrium.

By taking Φmax into consideration, we prove the following lower bound.

Theorem 3. Let Φmax be the upper bound of the potential function in the potential game.
We have the following lower bounds on the sample complexity of Problem 2. Let C > 0 be
some numeric constant.

• If Φmax

ε
> 30Cn302n, then the sample complexity is at least 2Ω(n).
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• If Φmax

ε
≤ 30Cn302n, then it is at least 2Ω(log Φmax

ε
).

Proof. We note that the approximate Nash equilibrium is homogeneous. Formally, for any
factor c > 0, an ε-Nash equilibrium in a game with reward R and potential Φ is an cε-Nash
equilibrium in the game with reward cR and potential cΦ.

Next, let C be the numeric constant given by Remark 2. If Φmax

ε
> 30Cn302n, then we

rescale the problem by c = 1
30ε

. The new problem would have ε = 1
30

and Φmax ≥ Cn302n.
Therefore, we conclude the sample complexity lower bound by Corollary 2.

If Φmax

ε
≤ 30Cn302n, we can shrink the problem size by reducing the number of agents to

n′ = Ω(log Φmax

ε
), so that Φmax

ε
> 30Cn′302n′ . Then we conclude by the previous proof.

Theorem 3 can be interpreted as an 2Ω(min{n,log Φmax
ε
}) lower bound on the sample com-

plexity for learning ε-Nash equilibrium in Markov potential games. This partly answers the
open question raised in [Song et al., 2022], and most importantly, it suggests that one could
not significantly improve upon [Liu et al., 2021] and [Song et al., 2022].

There are still two gaps between Theorem 3 and the open question in [Song et al., 2022].
The first is ε dependency: as pointed out in Section 3.1, the upper bound in [Song et al., 2022]
scales with ε−3 while Theorem 3 scales with poly(ε−1). The second is action-set dependency:
Theorem 3 does not show Ω(|A|) but just 2Ω(n). However, we shall note that the second gap
is not yet resolved even in games, let alone in Markov games; and the first gap is not as
important as we might thought. This is because Φmax

ε3
= O(2log Φmax

ε3 ) = 2O(log Φmax
ε

), and the
difference between the two bounds is significant only when ε−1 ≥ 2Ω(n), which is not the
typical regime of interest for the parameters. Moreover, an Ω(2n) lower bound is not proved
even in games. Would it be proved in the future, our method could be used to improve it to
take Φmax into consideration.

4.2 Query Complexity Lower Bound in Two-Player
Zero-Sum Games

In this section, we initialize the study of Problem 1 in by proving an Ω(N) lower bound.

Theorem 4. For the σ = 0 case in Problem 1, the sample complexity of any algorithm is at
least Ω(N), for any ε ∈ [0, 1

2
).

Proof. LetNi = |Ai| for i ∈ J2K. Let ei be the unit vector in RN1 or RN2 (which should be clear
from context) such that ei = (· · · , 0, 1, 0, · · · ) is the identity vector in the i-th dimension.
Without loss of generality, we assume that 2 ≤ N1 ≤ N2 = N . Let O be any algorithm. We
also assume that O returns the last strategy profile it queried as the ε-Nash equilibrium it
claims to have found. The proof idea is to note that finding an ε-Nash equilibrium is at least
as hard as computing the best response.

Formally, we construct the hard instance class with payoff matrix in the form of uvᵀ,
where u = (1, · · · , 1) ∈ RN1 and v ∈ RN2 . Let (xi, yi) be the strategy profile queried by O for



4.2. QUERY COMPLEXITY LOWER BOUND IN TWO-PLAYER ZERO-SUM GAMES17

i ∈ JNK. We consider the adversary that always outputs xᵀiRyi = 0 for i ≤ N − 2. Because
xi ∈ ∆N1 , we have xᵀi u = 1 and thus

xᵀiRyi = xᵀi uv
ᵀyi = vᵀyi. (4.5)

Define Y = {y1, · · · , yN−1}. Note that

Y ⊥ = {v ∈ RN2 : vᵀyi = 0 for 1 ≤ i ≤ N − 1} 6= ∅, (4.6)

so we can take γ ∈ Y ⊥ such that γ 6= 0. Let k = arg maxi∈JN2K γ
ᵀei. We assume ‖γ‖∞ =

γᵀek = 1. Otherwise we consider ± γ
‖γ‖∞

, respectively. Let R = uγᵀ. Then xᵀiRyi = xᵀi uα
ᵀyi =

0 for every i ∈ JN − 1K, but

max
y∈∆N

xᵀiRy − x
ᵀ
iRyi ≥ xᵀi uα

ᵀek − 0 = 1, (4.7)

so (xi, yi) cannot be an ε-Nash. Note that in (4.7) we get ε = 1, but we stated the theorem
for ε < 1

2
. This is because for zero-sum people usually take R1 = −R and R2 = R, and

assume |R| ≤ 1. However, Definition 1 requires that 0 ≤ Ri ≤ 1, so we need to offset by
R1 = 1−R

2
, R2 = 1+R

2
and multiply ε by 1

2
.
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Chapter 5

Discussion

5.1 Conclusion
In this report, we summarize and unify the definitions in MARL from various paper, and
we survey on existing results in game theory and MARL theory. By comparing the results,
we find various gaps inside the study of MARL theory, and between the game theory and
MARL theory. We believe this report could serve as a good start point for future studies in
MARL theory.

5.2 Open Problems
For better indexing, we list all open problems raised in this report. We came up with four
open question in Section 3.1: one for ε-Nash, two for ε-CCE, and one for ε-CE. We came up
with one open question in Section 3.2, which is Problem 1.
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