
Robust Imitation Learning for Risk-Aware Behavior

and Sim2Real Transfer

Zaynah Javed

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-48

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-48.html

May 10, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Robust Imitation Learning for Risk-Aware Behavior and Sim2Real Transfer

by

Zaynah Badr Javed

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Anca Dragan

Spring 2022

Robust Imitation Learning for Risk-Aware Behavior and Sim2Real
Transfer

by Zaynah Badr Javed

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Ken Goldberg
Research Advisor

(Date)

* * * * * * *

Professor Anca Dragan
Second Reader

(Date)

10 May 2022

5/9/2022

Robust Imitation Learning for Risk-Aware Behavior and Sim2Real Transfer

Copyright 2022
by

Zaynah Badr Javed

1

Abstract

Robust Imitation Learning for Risk-Aware Behavior and Sim2Real Transfer

by

Zaynah Badr Javed

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Learning from demonstrations circumvents the di�cult and error-prone task of
manually specifying a reward function. However, there are many issues that can arise.
In some cases, not enough demonstration data exists. This can lead to ambiguous,
imperfect demonstrations where the data gives rise to uncertainty over the true
goal. There can be many di↵erent reward functions that explain this data, giving
uncertainty over the true reward function that should be learned from the data. Most
policy optimization approaches handle this uncertainty by optimizing for expected
performance, but many applications demand risk-averse behavior. We derive a novel
policy gradient-style robust optimization approach, PG-BROIL, that optimizes a
soft-robust objective that balances expected performance and risk. To the best of
our knowledge, PG-BROIL is the first policy optimization algorithm robust to a
distribution of reward hypotheses which can scale to continuous MDPs. Another issue
that may arise with demonstrations is sim2real transfer, where demonstrations and
training may be done via simulation, but the robot exists in the real world. Sim2Real
transfer has emerged as a successful method to train robotic control policies for a wide
variety of tasks, however it is often challenging to determine when policies trained in
simulation are ready to be transferred to the physical world. Deploying policies which
have been trained with very little simulation data can result in unreliable behaviors
on real world hardware. On the other hand, excessive training in simulation can
cause policies to overfit to the dynamics and visual appearance of the simulator. We
study strategies to automatically determine when imitation learning policies trained
in simulation can be reliably transferred to a physical robot. We study these ideas
in the context of a robotic fabric manipulation task, in which successful sim2real
transfer is challenging due to the di�culties of precisely modeling fabric.

i

To my grandparents.

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1

2 Related Work 4
2.1 Reinforcement Learning . 4
2.2 Imitation Learning . 4
2.3 Sim2Real Transfer in Robot Learning 5
2.4 Model Predictive Control . 6

3 Preliminaries 7
3.1 Markov Decision Processes . 7
3.2 Distributions over Reward Functions 8
3.3 Risk Measures . 9

4 Policy Gradient Bayesian Robust Optimization for Imitation Learn-
ing (PG-BROIL) 11
4.1 BROIL Objective . 11
4.2 BROIL Policy Gradient . 11
4.3 BROIL Policy Gradient with Entropic Risk Measure 16
4.4 Trust Region PG-BROIL (PPO) . 18

5 PG-BROIL Experiments 20
5.1 Prior over Reward Functions . 20
5.2 Learning From Human and Artificial Demonstrations 23

6 BROIL with Cross Entropy Method and Model Predictive Control
(MPC-BROIL) 29

iii

6.1 Algorithm . 29

7 MPC-BROIL Experiments 31
7.1 Prior Distribution over Rewards and Known Dynamics 31

8 Switching Criteria for Imitation Learning 33
8.1 Algorithm Description . 33
8.2 Switching Metrics . 34
8.3 Stopping Conditions . 35

9 Sim2Real Switching Criteria Experiments 38
9.1 Experimental Setup . 38
9.2 Evaluation Metrics . 40
9.3 Results . 43

10 Limitations 46
10.1 Limitations with PG-BROIL and MPC-BROIL 46
10.2 Limitations with Sim2Real Switching Criteria 47

11 Conclusions and Future Work 49
11.1 PG-BROIL and MPC-BROIL . 49
11.2 Sim2Real Switching Criteria . 50

Bibliography 52

iv

List of Figures

3.1 The pdf f(X) of a random variable X. VaR↵ measures the (1�↵)-quantile
outcome. CVaR↵ measures the expectation given that we only consider
values less than the VaR↵. 9

5.1 Prior over Reward Functions: Domains and Results. We study (a)
CartPole in which the reward is an unknown linear function of the cart’s
position, (b) Pointmass Navigation with gray regions of uncertain costs,
and (c) Reacher with a red region of uncertain cost. For the CartPole and
Pointmass Navigation domains, we find that as � is decreased, the learned
policy optimizes more for being robust to tail risk and thus achieves more
robust performance (in terms of CVaR) at the expense of expected return
in panels (d) and (e). In panel (f), we find that the reacher arm enters
the riskier red region less often with decreasing � as expected. 22

5.2 TrashBot environment: Each time the robot picks up a piece of trash
(by moving close to a black dot), a new one appears at a randomly in the
white region. We give pairwise preferences over human demos that aim to
teach the robot that picking up trash is good (left), going into the gray
region is undesirable (center), and less time in the gray region and picking
up more trash is preferred (right). 24

5.3 Reward distribution generated by Bayesian REX of each feature weight in
posterior for seed 0. 26

5.4 Reacher environment during demonstration time (a) and policy training
time (b). During demonstrations, the uncertain region (red) is far from
the robot arm and the goal (yellow), but during policy optimization the
goal position is randomized and sometimes the uncertain cost region is in
the way forcing the agent to either go around or through it. 27

v

5.5 Atari Boxing: We evaluate PG-BROIL against baseline imitation
learning algorithms when learning from preferences over demonstrations.
Results are averages (± one st. dev.) over 3 random seeds and 100 test
episodes. For PG-BROIL, we set ↵ = 0.9 and report results for the best �
(� = 0.3). The game score is the number of hits the trained agent (white)
scored minus the number of times the agent gets hit by the opponent (black). 28

7.1 MPC-BROIL in Pointmass Navigation: We evaluate MPC-BROIL
on a Pointmass environment. An oracle dynamics model was used with a
planning horizon of 20. 32

8.1 System Overview. At each step, our algorithm pipeline collects a new
batch of simulation data, performs a model update epoch, and then checks
whether a switching condition is satisfied. If the switching criterion is met,
then the model is ready to be deployed in real. Otherwise, we continue
collecting simulation data for further updating the model. We test four
switching criteria, which utilize metrics based on a) reward when evaluated
in simulation and b) epistemic uncertainty as estimated via an ensemble
of policy networks, paired with each of two stopping conditions based on
1) absolute thresholding or values, and 2) gradients. 37

9.1 Example Rollouts in Simulation and Physical Experiments. The
top row (left to right) depicts a sample trajectory in simulation, while the
bottom row similarly depicts a sample physical robot trajectory. 39

9.2 Four reset positions used in physical experiments. Each position is reset
manually by the human at the start of every trajectory in order to make
comparisons between di↵erent switching criteria as fair as possible. . . . 40

9.3 Physical experiment and simulator setup. We study sim-to-real
switching in a fabric smoothing task, in an environment consisting of an
ABB YuMi robot with a single tweezer gripper. An overhead Photoneo
Phoxi Camera captures grayscale images. The manipulation workspace
border is marked with blue tape, and the fabric is located within the
workspace border. The physical workspace is designed to visually emulate
the GymCloth simulator, as shown on the left; the top two lefthand images
show example starting and ending configurations from an oracle smoothing
policy, while the bottom two images show the same observations, processed
to resemble the grayscale images taken by the Photoneo Phoxi Camera. . 41

vi

9.4 Determining Stopping Points for Various Switching Criteria. On
all graphs, the dark blue curves are splines fit to the data to mitigate
noise when approximating the gradient and determining if the value-based
threshold has been met. Left Two Graphs: The simulation reward
comes from evaluating the policy in the GymCloth simulation environment
and determining the fabric coverage of the final configuration; curves are
averaged over 5 episode rollouts in GymCloth. For comparison with real,
the orange points correspond to mean performance in real of the BC policy
selected at that iteration. The error bars correspond to the standard error
across four runs. The stopping points (red point) are determined to be
at iteration 124 for reward value and 116 for the reward gradient. Right
Two graphs: The epistemic uncertainty is calculated at each iteration
over a holdout set of 200 demonstration episodes and with five ensemble
members. The confidence value determines the stopping point be 111,
while the confidence gradient determines it to be 117. 42

9.5 Performance of learned policies in physical fabric smoothing
experiments at various stopping points. Left: Final physical fabric
coverage achieved for each of the four stopping conditions. Right: Com-
paring the final physical fabric coverage for the confidence value stopping
condition to various checkpoints. We see that the stopping conditions are
largely competitive with 200 iterations (the maximum iteration number
considered), but require significantly less training. Plots show mean ±
standard err over 4 episodes. Note that to plot episodes that reach the tar-
get coverage of 92% in fewer than 10 actions, we repeat the final achieved
coverage for the remainder of the 10-action budget. 45

10.1 The left and middle images show trajectories for PG-BROIL with � = 0.8
while the right image shows a failure case for � = 0.1. 46

10.2 We evaluate MPC-BROIL on a Pointmass environment. An oracle dy-
namics model was used with a planning horizon of 20. 47

vii

List of Tables

5.1 TrashBot: We evaluate PG-BROIL against 5 other imitation learning
algorithms when learning from ambiguous preferences over demonstrations
(Figure 5.2). Results are averages (± one st. dev.) over 10 random seeds
and 100 test episodes each with a horizon of 100 steps per episode. For
PG-BROIL, we set ↵ = 0.95 and report results for the best � (� = 0.8). 25

5.2 Reacher from Demos: We evaluate PG-BROIL and baseline imitation
learning algorithms when learning from preferences over demonstrations.
Results are averages (± one st. dev.) over 3 seeds and 100 test episodes
with a horizon of 200 steps per episode. For PG-BROIL, we set ↵ = 0.9
and report results for � = 0.15. 27

9.1 Physical Experiment Results: We report the final fabric coverage and
improvement ratio (final / initial coverage) achieved in physical fabric
smoothing experiments by the various switching policies: reward value
(rew val), reward gradient (rew grad), confidence value (conf val), and
confidence gradient (conf grad). Results are mean ± standard error over
4 episodes in each case, and the initial coverage averaged 0.481 (± 0.023
standard error) over all cases reported in the table. We also report the
average number of actions (where each trajectory terminates upon reaching
10 actions or 92% coverage, whichever occurs first). 44

viii

Acknowledgments

Doing research for the last two years has been a transformative and incredible
experience. I am forever grateful to my advisor Professor Ken Goldberg for taking
me in at a time when he couldn’t even meet me in person. He taught me how to
challenge existing work, think ahead in research, and present with pride. I will never
understand how he advises so many students, yet makes each one feel special.

I am beyond lucky to have been mentored by Daniel Brown. Working with
Daniel has excited me about research in ways that words cannot describe. He has
an incredible power to do top tier research and give the best support to newcomers.
I know he will make a brilliant professor and can’t wait to see what he does. I am
also fortunate to have been guided by Ashwin Balakrishna. He genuinely seems to be
able to do everything.

I have also been lucky to work closely with Satvik Sharma, Jerry Zhu, Ellen
Novoseller, Vainavi Viswanath, Rishi Parikh, Albert Wilcox, and Ryan Hoque. They
are all spectacular researchers and even better company. I also thank all members of
the AUTOLab for being such an amazing intellectual community; I am constantly
learning and improving because of all of you. There’s never a dull moment in the lab.

I also would like to thank Professor Anca Dragan for being my second reader on
this thesis and for providing insightful feedback on the original PG-BROIL paper.

I also want to thank Professor Ani Adhikari for being one of my favorite teachers
of all time, and for giving me the invaluable opportunity to teach for Stat 140.

I am so lucky to have a close friend, Eric, doing this program with me. Thanks
for being an amazing friend to go through this whole program with. As if carrying
me for undergrad wasn’t enough. I also want to thank all my friends I’ve made at
Berkeley for filling the past 5 years on this campus with the best memories. Amy,
Ashwin, Roop, Rania, Adeel, and Talha are just a few! I also want to especially thank
my boyfriend Sajal for always supporting and believing in me.

I want to thank my family for all of their unconditional love and support. My
parents for always being there and supportive of anything I choose to do. My sister,
Nabiha, for always bringing fun into my life. My grandparents for always being in
support of higher education. My aunts, uncles, and cousins for being second homes.

My largest takeaway from this past year isn’t academic at all. It may surprise you
(and concern my advisor) that during this past school year, school has been the least
of my priorities. All the painful losses, di�cult moments, and huge life changes over
these last few months have taught me that life is too short to let it pass by. There
is more to life than just your academic achievements (although those are significant
too!). Live a life you want to remember, and a life that people will remember you by.

1

Chapter 1

Introduction

Imitation learning has seen wide success in real world applications [8, 71, 61, 28].
However the robustness of imitation learning is still challenged. Transferring learned
policies to the real world proves to be di�cult, since simulators are never perfect. As
a result, learning algorithms must overcome a domain shift between the dynamics
and visual appearance of simulations and the physical world. There has been a large
body of prior work addressing di↵erent methods to enable robust domain adaptation
of policies trained in simulation to physical experiments [87, 38, 73, 102, 46, 32].
However, less attention has been given to the critical challenge of determining when
a policy trained in simulation is ready for physical deployment. While deploying
imitation learning policies trained with a small amount of simulation data can lead
to low performance on the physical system, policies that are trained excessively in
simulation risk overfitting to artifacts in the simulator. This motivates principled
methods to determine when policies trained in simulation are likely to be ready for
physical deployment.

Determining when a policy is ready for physical deployment requires reasoning
about its expected performance in physical trials when the policy has only been
trained in simulation. One common way to achieve this is to periodically evaluate
learned policies in the physical world during simulated training to determine when
su�cient performance has been achieved [21, 43, 52]. However, this poses a number of
practical challenges, as performing physical rollouts during training costs significant
time and engineering e↵ort. This motivates using policy rollouts only from simulation
to determine when to deploy policies on a physical robot. While this setting is
more practical, it is also significantly more di�cult, since it is challenging to gain
information about expected performance in physical trials at deployment time without
access to the physical system prior to deployment. A key insight is that the problem of
determining when to transfer robotic control policies from simulation to reality bears

CHAPTER 1. INTRODUCTION 2

a number of similarities to the problem of early-stopping, a well-known technique
for reducing overfitting in machine learning [62, 50, 99]. For instance, Prechelt et
al. 1999 [62] investigates 14 di↵erent early stopping criteria with cross validation,
which assesses generalization by measuring performance on a validation dataset
unseen by the learner. Meanwhile, other approaches do not rely on the existence of a
validation set: Mahsereci et al. 2017 [50] derive an early stopping rule based on local
gradient statistics and Yao et al. 2007 [99] propose a rule based on the bias-variance
tradeo↵. While early stopping is well-studied, however, few have explored applying
the technique to sim2real transfer.

We perform a detailed empirical study of which metrics are predictive of robust
policy transfer from simulation to the physical world and evaluate the proposed
method for transferring fabric smoothing policies from simulation to deployment on
a physical robot.

Reward function ambiguity is also a key problem in imitation learning [37, 58], in
which an agent seeks to learn a policy from demonstrations without access to the
reward function that motivated the demonstrations. While many imitation learning
approaches either sidestep learning a reward function and directly seek to imitate
demonstrations [60, 94] or take a maximum likelihood [14, 11] or maximum entropy
approach to learning a reward function [103, 25], we believe that an imitation learning
agent should explicitly reason about uncertainty over the true reward function to
avoid misalignment with the demonstrator’s objectives [29, 12]. Bayesian inverse
reinforcement learning (IRL) methods [64] seek a posterior distribution over likely
reward functions given demonstrations, but often perform policy optimization using
the expected reward function or MAP reward function [64, 14, 66, 12]. However, in
many real world settings such as robotics, finance, and healthcare, we desire a policy
which is robust to uncertainty over the true reward function.

Prior work on risk-averse and robust policy optimization in reinforcement learning
has mainly focused on robustness to uncertainty over the true dynamics of the
environment, but assumes a known reward function [27, 84, 86, 19, 48, 91]. Some
work addresses robust policy optimization under reward function uncertainty by
taking a maxmin approach and optimizing a policy that is robust under the worst-
case reward function [82, 67, 29, 36]. However, these approaches are limited to tabular
domains, and maxmin approaches have been shown to sometimes lead to incorrect and
overly pessimistic policy evaluations [13]. As an alternative to maxmin approaches,
Bayesian Robust Optimization for Imitation Learning (BROIL), an approach that
seeks to balance risk-aversion (in terms of Conditional Value at Risk [68]) and expected
performance, was proposed. This approach supports a family of solutions depending
on the risk-sensitivity of the application domain. However, as their approach is built
on linear programming, it cannot be applied in MDPs with continuous state and

CHAPTER 1. INTRODUCTION 3

action spaces and unknown dynamics.
For this, we introduce a novel policy optimization approach that enables varying

degrees of risk-sensitivity by reasoning about reward uncertainity while scaling to
continuous MDPs with unknown dynamics. As in [10], we present an approach
which reasons simultaneously about risk-aversion (in terms of Conditional Value at
Risk [68]) and expected performance and balances the two. However, to enable such
reasoning in continuous spaces, we make a key observation: the Conditional Value at
Risk objective supports e�cient computation of an approximate subgradient, which
can then be used in a policy gradient method. This makes it possible to use any
policy gradient algorithm, such as TRPO [78] or PPO [77] to learn policies which
are robust to reward uncertainity, resulting in an e�cient and scalable algorithm. To
the best of our knowledge, our proposed algorithm, Policy Gradient Bayesian Robust
Optimization for Imitation Learning (PG-BROIL), is the first policy optimization
algorithm robust to a distribution of reward hypotheses that can scale to complex
MDPs with continuous state and action spaces. In addition, we also derive an MPC
formulation (MPC-BROIL) for model-based policy optimization.

We leverage prior work on Bayesian reward inference [12] to infer a posterior
distribution over reward functions from human preferences over demonstrated tra-
jectories. While other approaches which do not reason about reward uncertainty
can sometimes overfit to a single reward function hypothesis, we demonstrate that
optimizing the BROIL objective results in policies that hedge against multiple reward
function hypotheses, leading to more robust performance. In particular, when there
is high reward function ambiguity due to limited human feedback, we find that our
approach results in significant performance improvements over other state-of-the-art
imitation learning methods.

To evaluate PG-BROIL and MPC-BROIL, we consider settings where there is
uncertainty over the true reward function. We first examine the setting where we
have an a priori distribution over reward functions and find that our algorithms are
able to optimize policies that e↵ectively trade-o↵ between expected and worst-case
performance. Then, we leverage recent advances in e�cient Bayesian reward infer-
ence [12] to infer a posterior over reward functions from preferences over demonstrated
trajectories, and show that our algorithms perform best over these distributions as
opposed to other algorithms (which may only consider the mean or MAP reward).
While other approaches which do not reason about reward uncertainty overfit to a
single reward function hypothesis, PG-BROIL and MPC-BROIL optimize a policy
that hedges against multiple reward function hypotheses. When there is high reward
function ambiguity due to limited demonstrations, we find that our algorithms result
in significant performance improvements over other state-of-the-art imitation learning
methods.

4

Chapter 2

Related Work

2.1 Reinforcement Learning

There has been significant recent interest in safe and robust reinforcement learning [27];
however, most approaches are only robust with respect to noise in transition dynamics
and only consider optimizing a policy with respect to a single reward function. Existing
approaches reason about risk measures with respect to a single task rewards [30, 80,
83, 85], establish convergence to safe regions of the MDP [92, 90], or optimize a policy
to avoid constraint violations [3, 23, 91].

We wish to develop a reinforcement learning algorithm which reasons about risk
with respect to a belief distribution over the task reward function. We focus on being
robust to tail risk by optimizing for conditional value at risk [68]. However, unlike
prior work [30, 80, 83, 84, 85, 101], which focuses on risk with respect to a known
reward function and stochastic transitions, we consider policy optimization when
there is epistemic uncertainty over the reward function itself.

2.2 Imitation Learning

Imitation learning approaches vary widely in reasoning about reward uncertainty.
Behavioral cloning approaches simply learn to imitate the actions of the demonstrator,
resulting in quadratic regret [69]. DAgger [70] achieves sublinear regret by repeatedly
soliciting human action labels in an online fashion. While there has been work on
safe variants of DAgger [100, 33], these methods only enable robust policy learning
by asymptotically converging to the policy of the demonstrator, and always assume
access to an expert human supervisor.

CHAPTER 2. RELATED WORK 5

Inverse reinforcement learning (IRL) methods are another way of performing
imitation learning [4], where the learning agent seeks to achieve better sample
e�ciency and generalization by learning a reward function which is then optimized to
obtain a policy. However, most inverse reinforcement learning methods only result in
a point-estimate of the demonstrator’s reward function [1, 103, 25, 11]. Risk-sensitive
IRL methods [44, 51, 75] assume risk-averse experts and focus on optimizing policies
that match the risk-aversion of the demonstrator; however, these methods focus on
the aleatoric risk induced by transition probabilities and there is no clear way to adapt
risk-averse IRL to the Bayesian robust setting, where the objective is to be robust to
epistemic risk over reward hypotheses rather than risk with respect to stochasticity
in the dynamics. Bayesian IRL approaches explicitly learn a distribution over reward
functions conditioned on the demonstrations, but usually only optimize a policy for
the expected reward function or MAP reward function under this distribution [64,
14, 12].

2.3 Sim2Real Transfer in Robot Learning

There is significant prior work on learning policies in simulation and facilitating transfer
to physical experiments. The most common approach is domain randomization [49,
93], which varies dynamical and/or visual properties such as friction, lighting, camera
angle, colors, and textures in simulation to enable zero-shot transfer to the physical
world. Valassakis et al. [95] investigate dynamics domain randomization via injecting
random forces into simulations. Domain randomization has achieved transfer in a
variety of applications such as robot legged locomotion [46], fabric manipulation [35],
and robotic grasping [49, 93]. Recent work has also explored adaptive methods and
curricula for domain randomization, such as automatic domain randomization for
dexterous manipulation of a Rubik’s cube [57] and active domain randomization [54].
Other proposed approaches for crossing the reality gap include learning a canonical
intermediate representation [39], domain adaptation via a small amount of real data
[88], and “real2sim2real” tuning of simulation parameters based on real data [47,
65, 20]. Despite the significant body of work on simulated training procedures to
enable physical deployment, there has been very little research on automatically
determining precisely when to stop training in simulation and deploy learned policies
in the physical world without any real evaluation. The closest prior work to ours
may be Muratore et al. 2021 [55], who propose early stopping in simulation based
on an upper confidence bound on the optimality gap during domain randomization.
However, while this work is specific to the reinforcement learning paradigm, we
apply our approach to the imitation learning setting, in which algorithms learn from

CHAPTER 2. RELATED WORK 6

demonstrations.

2.4 Model Predictive Control

Model predictive control (MPC) and model-based reinforcement learning methods
(MBRL) have seen success in robotics [53]. MPC iteratively exploits a model of a
system to make predictions of future states of the system in order to plan actions to
maximize reward.

Chua et al. 2018 [16] is a MBRL method which uses the cross-entropy method
(CEM) to sample actions close to other previous actions which yielded high rewards
and MPC for planning and optimizing trajectories.

While many safety-focused and constraint-aware versions of CEM and MPC have
been studied [90, 45, 97, 96], none focus on planning safely when there is epistemic
uncertainty over the reward function. Most of the prior work is robust to noise, with
none being robust to uncertainty over the true reward to optimize for. Serving as
one example, Wen et al. 2018 [97] impose polytopic constraints on states and actions.
However, the constraints must be engineered for each scenario and explicit constraints
may not always be precisely known. This gives a similar problem to human-defined
reward functions, since the human must create constraints they believe explain what
they desire the system to do.

7

Chapter 3

Preliminaries

3.1 Markov Decision Processes

We model the environment as a Markov Decision Process (MDP) [63]. An MDP
is a tuple (S,A, r, P, �, p

0

), with state space S, action space A , reward function
r : S ⇥A! R, transition dynamics P : S ⇥A⇥S ! [0, 1], discount factor � 2 [0, 1),
and initial state distribution p

0

. We consider stochastic policies ⇡ : S ⇥A! [0, 1]
which output a distribution over A conditioned on a state s 2 S. We denote the
expected return of a policy ⇡ under reward function r as ⇢(⇡, r) = E⌧⇠⇡✓

[r(⌧)].
For our study on stopping conditions for sim2real transfer, we consider learning

a policy ⇡ for some task given access only to a computational simulation, which
we model as a Partially Observable Markov Decision Process (POMDP) [40] M�

sim

parametrized by simulation parameters � which captures the parameters of the
POMDP (eg. visual appearance and dynamics of the simulation). The objective is
then to achieve high performance at this task when this policy is deployed in the
physical world, which we model as MDP M

real

.
More formally, we assume that both M

sim

and M
real

have shared state space S,
observation space O, action space A, reward function R : O ⇥A! R, initial state
distribution µ, and time horizon H, but may have di↵erent mappings from states
s 2 S to observations o 2 O. In this work, we consider grayscale image observations
(O = RH⇥W⇥C , C = 1), but consider settings (as is typical in practice) where
observations corresponding to a specific state may have di↵erent visual appearance
between simulation (M

sim

) and reality (M
real

). We additionally consider settings
in which the state transition dynamics associated with M

sim

, denoted by P
sim

:
S ⇥ A ⇥ S ! [0, 1] may be di↵erent from that associated with M

real

, denoted by
P
real

: S⇥A⇥ S ! [0, 1]. This reflects the inability of computational simulations to

CHAPTER 3. PRELIMINARIES 8

precisely model the dynamics of the physical world.
We consider a setup where robot policy ⇡ : S ! A is first learned with some

policy search algorithm using T
sim

total transitions in simulated environment M
sim

to
optimize the following objective based on the attained rewards in simulation, where
� denotes the parameters of the simulation:

J�
sim

(⇡) = E⇡,M�
sim

HX

t=1

R(ot, at) (3.1)

where the expectation is with respect to observation-action trajectories sampled from
policy ⇡ in MDP M�

sim

. The objective in this work is to identify the optimal stopping
time T

sim

such that when policy ⇡ is evaluated in the physical world, it maximizes
the following objective based on the attained rewards in physical trials:

J
real

(⇡) = E⇡,Mreal

HX

t=1

R(ot, at) (3.2)

where analogously, the expectation is with respect to observation-action trajectories
sampled from policy ⇡ in MDP M

real

.

3.2 Distributions over Reward Functions

We are interested in solving MDPs when there is epistemic uncertainty over the true
reward function. When we refer to the reward function as a random variable we will
use R, and will use r to denote a specific model of the reward function. Reward
functions are often parameterized as a linear combination of known features [1, 103,
74] or as a deep neural network [31, 25]. Thus, we can model uncertainty in the
reward function as a distribution over R, or, equivalently, as a distribution over the
reward function parameters. This distribution could be a prior distribution P(R)
that the agent learns from previous tasks [98]. Alternatively, the distribution could
be the posterior distribution P(R |D) learned via Bayesian inverse reinforcement
learning [64] given demonstrations D, the posterior distribution P(R | P , D) given
preferences P over demonstrations [74, 12], or the posterior distribution P(R | r0)
learned via inverse reward design given a human-specified proxy reward r0 [29, 66].
This distribution is typically only available via sampling techniques such as Markov
chain Monte Carlo (MCMC) sampling [64, 29, 12].

CHAPTER 3. PRELIMINARIES 9

Figure 3.1: The pdf f(X) of a random variable X. VaR↵ measures the (1�↵)-quantile
outcome. CVaR↵ measures the expectation given that we only consider values less
than the VaR↵.

3.3 Risk Measures

We are interested in robust policy optimization with respect to a distribution over the
performance of the policy induced by a distribution over possible reward functions.
Consider a policy ⇡ and a reward distribution P(R). Together, ⇡ and P(R) induce
a distribution over the expected return of the policy, ⇢(⇡, R), R ⇠ P(R). We seek a
robust policy that minimizes tail risk, given some risk measure, under the induced
distribution ⇢. Figure 3.1 visualizes two common risk measures: value at risk (VaR)
and conditional value at risk (CVaR), for a general random variable X. In our setting,
X corresponds to the expected return, ⇢(⇡, R), of a policy ⇡ under the reward function
random variable R, and the objective is to minimize the tail risk (visualized in red).

Value at Risk

Given a risk-aversion parameter ↵ 2 [0, 1], the VaR↵ of a random variable X is the
(1� ↵)-quantile outcome:

VaR↵[X] = sup{x : P(X � x) � ↵}, (3.3)

where it is common to have ↵ 2 [0.9, 1].
Despite the popularity of VaR, optimizing a policy for VaR has several problems:

(1) optimizing for VaR results in an NP hard optimization problem [17], (2) VaR
ignores risk in the tail that occurs with probability less than (1 � ↵) which is
problematic for domains where there are rare but potentially catastrophic outcomes,
and (3) VaR is not a coherent risk measure [5].

CHAPTER 3. PRELIMINARIES 10

Conditional Value at Risk

CVaR is a coherent risk measure [18], also known as average value at risk, expected
tail risk, or expected shortfall. For continuous distributions

CVaR↵[X] = Ef(X)

[X | X  VaR↵[X]] . (3.4)

In addition to being coherent, CVaR can be maximized via convex optimization, does
not ignore the tail of the distribution, and is a lower bound on VaR. Because of
these desirable properties, we would like to use CVaR as our risk measure. However,
because posterior distributions obtained via Bayesian IRL are often discrete [64, 74,
29, 13], we cannot directly optimize for CVaR using the definition in Equation (3.4)
since this definition only works for atomless distributions. Instead, we make use of
the following definition of CVaR, proposed by Rockafellar et al. [68], that works for
any distribution:

CVaR↵[X] = max
�

✓
� � 1

1� ↵E[(� �X)
+

]

◆
, (3.5)

where (x)
+

= max(0, x) and � roughly corresponds to the VaR↵. To gain intuition
for this formula, note that if we define � = VaR↵[X] we can rewrite CVaR↵ as

CVaR↵[X] = Ef(X)

[X |X  �] (3.6)

= � � Ef(X)

[� �X |X  �] (3.7)

= � � Ef(X)

[1X� · (� �X)]

P (X  �)
(3.8)

= � � 1

1� ↵Ef(X)

[(� �X)
+

] (3.9)

where 1x = 1 is the indicator function that evaluates to 1 if x is True and 0
otherwise, and where we used the linearity of expectation, the definition of conditional
expectation, and the definitions of VaR↵[X], and (x)

+

. Taking the maximum over
� 2 R, gives us the definition in Equation (3.5).

11

Chapter 4

Policy Gradient Bayesian Robust
Optimization for Imitation
Learning (PG-BROIL)

Work done with Daniel Brown, Satvik Sharma, Jerry Zhu, and Ashwin Balakrishna.

4.1 BROIL Objective

Rather than seeking a purely risk-sensitive or purely risk-neutral approach, we seek
to optimize a soft-robust objective that balances the expected and probabilistic
worst-case performance of a policy. Given some performance metric (⇡✓, R) where
R ⇠ P(R), [10] recently proposed Bayesian Robust Optimization for Imitation
Learning (BROIL) which seeks to optimize the following:

max
⇡✓

� · EP(R)

[(⇡✓, R)] + (1� �) · CVaR↵

⇥
 (⇡✓, R)

⇤
(4.1)

For MDPs with discrete states and actions and known dynamics, Brown et al. 2020
[10] showed that this problem can be formulated as a linear program which can be
solved in polynomial time. However, many MDPs of interest involve continuous states
and actions and unknown dynamics.

4.2 BROIL Policy Gradient

We now derive a policy gradient objective for BROIL that allows us to extend
BROIL to continuous states and actions and unknown transition dynamics, enabling

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 12

robust policy learning in a wide variety of practical settings. Given a parameterized
policy ⇡✓ and N possible reward hypotheses, there are many possible choices for the
performance metric (⇡✓, R). Brown et al. 2020 [12] considered two common metrics:
(1) expected value, i.e., (⇡✓, R) = ⇢(⇡, R) = E⌧⇠⇡✓

[R(⌧)] and (2) baseline regret, i.e.,
 (⇡✓, R) = ⇢(⇡✓, R)� ⇢(⇡E, R) where ⇡E denotes an expert policy (usually estimated
from demonstrations). For simplicity, we let (⇡✓, R) = ⇢(⇡, R) (expected return)
hereafter.

To find the policy that maximizes Equation (4.1) we need the gradient with
respect to the policy parameters ✓. For the first term in Equation (4.1), we have

r✓EP(R)

[⇢(⇡✓, R)] ⇡
NX

i=1

P(ri)r✓E⌧⇠⇡✓
[ri(⌧)]. (4.2)

Next, we consider the gradient of the CVaR term. CVaR is not di↵erentiable
everywhere so we derive a sub-gradient. Given a finite number of samples from the
reward function posterior, we can write this sub-gradient as

r✓ max
�

⇣
� � 1

1� ↵
NX

i=1

P(ri)
�
� � E⌧⇠⇡✓

[ri(⌧)]
�
+

⌘
(4.3)

where (x)
+

= max(0, x). To solve for the sub-gradient of this term, note that given a
fixed policy ⇡✓, we can solve for � via a line search: since the objective is piece-wise
linear we only need to check the value at each point ⇢(⇡, ri), for each reward function
sample from the posterior since these are the endpoints of each linear segment. If we
let ⇢i = ⇢(⇡, ri) then we can quickly iterate over all reward function hypotheses and
solve for � as

�⇤ = argmax
�2{⇢1,...,⇢N}

⇣
� � 1

1� ↵
NX

i=1

P(ri)
⇥
� � ⇢i

⇤
+

⌘
. (4.4)

Solving for �⇤ requires estimating ⇢i by collecting a set T of on-policy trajectories
⌧ ⇠ ⇡✓ where ⌧ = (s

0

, a
0

, s
1

, a
1

, . . . , sT , aT):

⇢i ⇡ 1

|T |
X

⌧2T

TX

t=0

ri(st, at). (4.5)

Solving for �⇤ does not require additional data collection beyond what is required for
standard policy gradient approaches. We simply evaluate the set of rollouts T from
⇡✓ under each reward function hypothesis, ri and then solve the optimization problem

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 13

above to find �⇤. While this requires more computation than a standard policy
gradient approach—we have to evaluate each rollout under N reward functions—this
does not increase the online data collection, which is often the bottleneck in RL
algorithms.

Given the solution �⇤ found by solving the optimization problem in (4.4), we
perform a step of policy gradient optimization by following the sub-gradient of CVaR
with respect to the policy parameters ✓:

r✓ CVaR↵ =
1

1� ↵
NX

i=1

P(ri)1�⇤�⇢(⇡✓,ri)r✓⇢(⇡✓, ri) (4.6)

where 1x is the indicator function that evaluates to 1 if x is True and 0 otherwise.
Given the sub-gradient of the BROIL objective (4.6), the only thing remaining to
compute is the standard policy gradient. Note that in standard RL, we write the
policy gradient as [81]:

r✓E⌧⇠⇡✓
[R(⌧)] = E⌧⇠⇡✓

"
TX

t=0

r✓ log ⇡✓(at | st)�t(⌧)

#
(4.7)

where �t is a measure of the performance of trajectory ⌧ starting at time t. One of
the most common forms of �t(⌧) is the on-policy advantage function [76] with respect
to some single reward function:

�t(⌧) = A⇡✓(st, at) = Q⇡✓(st, at)� V ⇡✓(st). (4.8)

We define �ri
t as some measure of the quality of the policy in terms of a particular

reward function ri. Common choices include the return of a trajectory: �ri
t = ri(⌧), the

reward-to-go from time t:
PT

t0=t ri(st0 , at0), the reward-to-go with a state-dependent
baseline:

PT
t0=t ri(st0 , at0)� b(st), the on-policy action-value function Q⇡✓(st, at), or

the on-policy advantage function (the most popular choice) [76]:

�ri
t = A⇡✓(st, at) = Q⇡✓(st, at)� V ⇡✓(st). (4.9)

Any of these formulations of the policy gradient can be used for the above BROIL
policy gradient as follows where we approximate the expectation using a set T of
on-policy trajectories ⌧ ⇠ ⇡✓:

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 14

r✓BROIL =
X

i

P(ri)r✓E⌧⇠⇡✓
[ri(⌧)]

✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆
(4.10)

=
X

i

P(ri)
✓
E⌧⇠⇡✓

"
TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#◆✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆

(4.11)

⇡
X

i

P(ri)
✓

1

|T |
X

⌧2T

"
TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#◆✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆

(4.12)

=
1

|T |
X

i

P(ri)
✓X

⌧2T

"
TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#◆✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆

(4.13)

=
1

|T |
X

i

X

⌧2T

P(ri)
"

TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆

(4.14)

=
1

|T |
X

⌧2T

X

i

P(ri)
"

TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆

(4.15)

=
1

|T |
X

⌧2T

X

i

TX

t=0

P(ri)r✓ log ⇡✓(at | st)�ri
t

✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆
(4.16)

=
1

|T |
X

⌧2T

TX

t=0

X

i

P(ri)r✓ log ⇡✓(at | st)�ri
t

✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆
(4.17)

=
1

|T |
X

⌧2T

TX

t=0

r✓ log ⇡✓(at | st)
✓X

i

P(ri)�ri
t (⌧)

�
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

�◆

(4.18)

=
1

|T |
X

⌧2T

TX

t=0

r✓ log ⇡✓(at | st)wt (4.19)

where

wt(⌧) =
NX

i=1

P(ri)�ri
t (⌧)

✓
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

◆
(4.20)

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 15

Algorithm 1 Policy Gradient BROIL

1: Input: initial policy parameters ✓
0

, samples from reward function posterior
r
1

, . . . , rN and associated probabilities, P(r
1

), . . . ,P(rN).
2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories Tk = {⌧i} by running policy ⇡✓k in the environment.
4: Estimate expected return of ⇡✓k under each reward function hypothesis rj

using Eq. (4.5).
5: Solve for �⇤ using Eq. (4.4)
6: Estimate policy gradient using Eq. (4.19) and Eq. (4.20).
7: Update ✓ using gradient ascent.
8: end for

is the weight associated with each state-action pair (st, at) in the set of trajectory
rollouts T .

If � = 1, then

wt(⌧) =
NX

i=1

P(Ri)�
Ri
t (⌧) = �

¯R
t (⌧) (4.21)

where R̄ is the expected reward under the posterior. Thus, � = 1 is equivalent to
standard policy gradient optimization under the mean reward function and gradient
ascent will focus on increasing the likelihood of actions that look good in expectation
over the reward function distribution P(R). Alternatively, if � = 0, then

wt(⌧) =
1

1� ↵
NX

i=1

1�⇤�⇢(⇡,Ri)P(Ri)�
Ri
t (⌧) (4.22)

and gradient ascent will increase the likelihood of actions that look good under reward
functions that the current policy ⇡✓ performs poorly under, i.e., policy gradient
updates will focus on improving performance under all Ri such that ⇢(⇡, Ri)  �⇤,
weighting the gradient according to the likelihood of these worst-case reward functions.
The update rule also multiplies by 1/(1� ↵) which acts to normalize the magnitude
of the gradient: as ↵! 1 we update on reward functions further into the tail, which
have smaller probability mass. Thus, � 2 [0, 1] allows us to blend between maximizing
policy performance in expectation versus worst-case and ↵ 2 [0, 1) determines how
far into the tail of the distribution to focus the worst-case updates.

The PG-BROIL algorithm is shown in Algorithm 1.

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 16

4.3 BROIL Policy Gradient with Entropic Risk
Measure

Another common risk metric, Entropic Risk Measure (ERM) [24], is also amenable
to policy gradient optimization within the BROIL framework. One benefit of ERM is
that it is di↵erentiable everywhere unlike CVaR. ERM has been considered recently
under the settings of risk-averse policy search under a known reward function [56]
and soft-robust optimization with respect to model uncertainty [72].

Entropic Risk Measure

The entropic risk measure [24] is another form of tail risk that has the benefit of
being everywhere di↵erentiable, eliminating the need for subgradients as we saw in
the derivation for CVaR. The entropic risk measure (ERM) of a random variable X
is defined as:

ERM = � 1

↵
logE[e�↵X] (4.23)

where ↵ 2 (0,1) represents the risk sensitivity (higher is more risk-sensitive) and
where larger values of ERM indicate lower risk.

We start with the objective:

maximize
⇡✓

� · E[(⇡✓, R)] + (1� �) · ERM↵


 (⇡✓, R)

�
(4.24)

We assume that our performance metric is expected value, i.e., (⇡u, R) =
⇢(⇡, R) = E⌧⇠⇡✓

[R(⌧)].
We need to find the gradient wrt ✓. The first term is the same as in the previous

section:

r✓ · EP(R)

[E⌧⇠⇡✓
[R(⌧)]] =

X

i

P(ri)r✓E⌧⇠⇡✓
[ri(⌧)]. (4.25)

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 17

Now consider the gradient of the entropic risk term. We have

r✓ERM↵[⇢(⇡, R)] =�r✓
1

↵
log

X

i

P(ri)e�↵⇢(⇡✓,ri)

!
(4.26)

=� 1

↵

1P
j P(Rj)e�↵⇢(⇡✓,Rj)

X

i

P(ri)r✓e
�↵⇢(⇡✓,ri) (4.27)

=� 1

↵

1P
j P(Rj)e�↵⇢(⇡✓,Rj)

X

i

P(ri)e�↵⇢(⇡✓,ri)r✓(�↵⇢(⇡✓, ri))

(4.28)

=
X

i

P(ri)e�↵⇢(⇡✓,ri)

P
j P(Rj)e�↵⇢(⇡✓,Rj)

r✓⇢(⇡✓, ri) (4.29)

As before we will be estimating the on-policy expected return for each reward
hypothesis which can be done by collecting a set T of trajectories ⌧ ⇠ ⇡✓:

⇢(⇡✓, Rj) = E⌧⇠⇡✓
[rij(⌧)] ⇡ 1

|T |
X

⌧2T

Rj(⌧) =
1

|T |
X

⌧2T

TX

t=0

Rj(st, at). (4.30)

Now we can formulate the full BROIL policy gradient update step by blending
the policy gradient over the expectation with the policy gradient over the ERM:

r✓BROIL =�
X

i

P(ri)r✓⇢(⇡✓, ri) + (1� �)
X

i

P(ri)e�↵⇢(⇡✓,ri)

P
j P(Rj)e�↵⇢(⇡✓,Rj)

r✓⇢(⇡✓, ri)

(4.31)

=
X

i

P(ri)r✓⇢(⇡✓, ri)

✓
�+ (1� �) e�↵⇢(⇡✓,ri)

EP(R)

[e�↵⇢(⇡✓,R)]

◆
(4.32)

As before we can write the policy gradient as

r✓⇢(⇡✓, ri) = r✓E⌧⇠⇡✓
[ri(⌧)] = E⌧⇠⇡✓

"
TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#
. (4.33)

Defining �ri
t in terms of a particular reward function hypothesis ri and approxi-

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 18

mating expectations with a set T of on-policy trajectories ⌧ ⇠ ⇡✓ gives:

r✓BROIL ⇡
X

i

P(ri)
✓

1

|T |
X

⌧2T

"
TX

t=0

r✓ log ⇡✓(at | st)�ri
t

#◆✓
�+ (1� �) e�↵⇢(⇡✓,ri)

ER[e�↵⇢(⇡✓,R)]

◆

(4.34)

=
1

|T |
X

⌧2T

TX

t=0

X

i

P(ri)r✓ log ⇡✓(at | st)�ri
t

✓
�+ (1� �) e�↵⇢(⇡✓,ri)

ER[e�↵⇢(⇡✓,R)]

◆

(4.35)

=
1

|T |
X

⌧2T

TX

t=0

r✓ log ⇡✓(at | st)
✓X

i

P(ri)�ri
t (⌧)

✓
�+ (1� �) e�↵⇢(⇡✓,ri)

ER[e�↵⇢(⇡✓,R)]

◆◆

(4.36)

=
1

|T |
X

⌧2T

TX

t=0

r✓ log ⇡✓(at | st)wt (4.37)

where

wt =
X

i

P(ri)�ri
t (⌧)

✓
�+ (1� �) e�↵⇢(⇡✓,ri)

ER[e�↵⇢(⇡✓,R)]

◆
(4.38)

is the weight associated with each state-action pair.
Intuitively, if � = 1, then we just focus on increasing the likelihood of actions

that look good in expectation. If � = 0, then we focus on increasing the likelihood of
actions that look good under reward functions that the current policy ⇡✓ performs
poorly under. In particular, the policy gradient for the ERM term is given by a
weighted sum of policy gradients for each reward function in the posterior. The
weights are softmax probabilities which will concentrate the probability around the
reward function ri for which ⇢(⇡✓, ri) is lowest. Intuitively, this will encourage policy
updates that improve the performance under the reward functions for which ⇡✓
performs the worst. As ↵ ! 1, the softmax probabilities will concentrate on the
absolute worst-case reward in the distribution, but for ↵! 0, this probability will be
distributed according to the reward function probabilities P(ri) resulting in a policy
gradient that seeks to maximize return under the expected reward function.

4.4 Trust Region PG-BROIL (PPO)

We also derive a version of the Proximal Policy Optimization (PPO) [77] algorithm
for optimizing the BROIL objective. We specifically consider the PPO-clip objective,

CHAPTER 4. POLICY GRADIENT BAYESIAN ROBUST OPTIMIZATION FOR
IMITATION LEARNING (PG-BROIL) 19

which adjusts the advantage function to encourage controlled updates of the policy
at each epoch. Precisely, let the policy parameters at epoch k be given by ✓k. Then
PPO-clip implements the following update:

✓k+1

= argmax
✓

E
(s,a)⇠⇡✓k

[L(a, s, ✓k, ✓)] (4.39)

where

L(a, s, ✓k, ✓) = min

✓
⇡✓(a|s)
⇡✓k(a|s)

A⇡✓k (s, a), g(✏, A⇡✓k (s, a))

◆
(4.40)

and

g(✏, A⇡✓k (s, a)) =

(
(1 + ✏)A⇡✓k (s, a) A⇡✓k (s, a) � 0

(1� ✏)A⇡✓k (s, a) A⇡✓k (s, a) < 0
(4.41)

To implement a PPO-style gradient clipping for PG-BROIL, we replace A⇡✓k(s, a)
with the BROIL Policy Gradient weights:

wt =
X

i

P(ri)�ri
t (⌧)

�
�+

1� �
1� ↵1�⇤�⇢(⇡,ri)

�
(4.42)

where wt is the weight associated with each state-action pair.
The PPO-clip BROIL algorithm is written in Algorithm 2.

Algorithm 2 PPO-clip BROIL

1: Input: initial policy parameters ✓
0

, samples from reward function posterior
R

1

, . . . , RN and associated probabilities, P(R
1

), . . . ,P(RN), and any form for
policy gradient weights �t

2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories Tk = {⌧i} by running policy ⇡✓ in the environment.
4: Estimate expected return of ⇡✓ under each reward function hypothesis rj

using Eq. (4.5).
5: Solve for �⇤ using Eq. (4.4)
6: Update ✓ with stochastic gradient ascent by maximizing the PPO-clip objective:

✓k+1

= argmax
✓

1

|T |
X

⌧2T


1

T

TX

t=0

min

✓
⇡✓(a|s)
⇡✓k(a|s)

wt, g(✏, wt)

◆�

using Eq. (4.42) for wt.
7: end for

20

Chapter 5

PG-BROIL Experiments

5.1 Prior over Reward Functions

We first consider an RL agent with a priori uncertainty over the true reward function.
This setting allows us to initially avoid the di�culties of inferring a posterior distribu-
tion over reward functions and carefully examine whether PG-BROIL can trade-o↵
expected performance and robustness (CVaR) under epistemic uncertainty over the
true reward function. We study 3 domains: the classical CartPole benchmark [9], a
pointmass navigation task inspired by [92] and a robotic reaching task from the from
the DM Control Suite [89]. All domains are characterized by an agent navigating in
an environment where some states have uncertain costs. All domains have unknown
transition dynamics and continuous states and actions (except CartPole which has
discrete actions). We implement PG-BROIL on top of OpenAI Spinning Up [2]. For
CartPole we implement PG-BROIL on top of REINFORCE [59], using Algorithm 1
and for remaining domains we implement PG-BROIL on top of PPO [77], using
Algorithm 2.

Experimental Domains

CartPole: We consider a risk-sensitive version of the classic CartPole benchmark
[9]. The reward function is R(s) = b · sx, where sx is the position of the cart on the
track, and there is uncertainty over b. Our prior over b is distributed uniformly in the
range [-1, 0.2]. The center of the track is sx = 0. We sample values of b between -1
and 0.2 across even intervals of 0.2 width to form a discrete posterior distribution for
PG-BROIL. The reward distribution is visualized in Figure 5.1a. Based on our prior
distribution over reward functions, the left side of the track (sx < 0) is associated
with a higher expected reward but a worse worst case scenario (the potential for

CHAPTER 5. PG-BROIL EXPERIMENTS 21

negative rewards). By contrast, the robust solution is to stay in the middle of the
track in order to perform well across all possible reward functions since the center of
the track has less risk of a significantly negative reward than the left or right sides of
the track.

Pointmass Navigation: We next consider a risk-sensitive continuous 2-D
navigation task inspired by Thananjayen et al. 2020 [92]. Here the objective is
to control a pointmass robot towards a known goal location with forces in cardinal
directions in a system with linear Gaussian dynamics and drag. There are gray
regions of uncertain cost that can either be traversed or avoided as illustrated in
Figure 5.1b. For example, these regions could represent grassy areas which are likely
easy to navigate, but where the grass may occlude mud or holes which would impede
progress and potentially cause damage or undue wear and tear on the robot. The
robot has prior knowledge that it needs to reach the goal location g = (0, 0) on the
map, depicted by the red star. We represent this prior with a nominal cost for each
step that is the distance to the goal from the robot’s position. We add a penalty
term of uncertain cost for going through the gray region giving the following reward
function posterior:

R(s) = � �ksx,y � gk2
2

+ b · 1gray

�
, b ⇠ P(b), (5.1)

where 1gray is an indicator for entering a gray region, and where the distribution P(b)
over the penalty b is given as

b -500 -40 0 40 50
P(b) 0.05 0.05 0.2 0.3 0.4

On average it is favorable to go through the gray region (E[b] = +5), but there is
some probability that going through the gray region is highly unfavorable.

Reacher: We design a modified version of the Reacher environment from the
DeepMind Control Suite [89] (Figure 5.1c), which is a 2 link planar arm where the
robot can apply joint torques to each of the 2 joints to guide the end e↵ector of the
arm to a goal position on the plane. We modify the original environment by including
an area of uncertainty (large red circle). When outside the uncertain region, the
robot receives a reward which penalizes the distance between the end e↵ector and
the goal (small yellow circle). Thus, the robot is normally incentivized to guide the
end e↵ector to the goal as quickly as possible. When the end e↵ector is inside the
uncertain region, the robot has an 80% chance of receiving a +2 bonus, a 10% chance
of receiving a -2 penalty, and a 10% chance of neither happening (receiving rewards
as if it were outside the uncertain region). The large red circle can be interpreted as a
region on the table that has a small chance of causing harm to the robot or breaking

CHAPTER 5. PG-BROIL EXPERIMENTS 22

Figure 5.1: Prior over Reward Functions: Domains and Results. We study (a)
CartPole in which the reward is an unknown linear function of the cart’s position, (b)
Pointmass Navigation with gray regions of uncertain costs, and (c) Reacher with a
red region of uncertain cost. For the CartPole and Pointmass Navigation domains, we
find that as � is decreased, the learned policy optimizes more for being robust to tail
risk and thus achieves more robust performance (in terms of CVaR) at the expense
of expected return in panels (d) and (e). In panel (f), we find that the reacher arm
enters the riskier red region less often with decreasing � as expected.

an object on the table. However, in expectation the robot believes it is good to enter
the red region (e.g., assuming that objects in this region are not fragile).

Results

PG-BROIL consistently exhibits more risk-averse behaviors with decreasing � across
all domains. For CartPole and Pointmass Navigation, we see that as � is decreased,
the learned policy becomes more robust to tail risk at the expense of lower expected
return in Figures 5.1d and 5.1e respectively. Figure 5.1e indicates that values of �
close to 0 can lead to unstable policy optimization due to excessive focus on tail
risk—the policy for � = 0 is Pareto dominated by the policy for � = 0.2. We
visualize the learned behaviors for di↵erent values of � for the Pointmass Navigation
environment in Figure 5.1b. For high values of �, the robot cuts straight through
the uncertain terrain, for intermediate values (eg. � = 0.45), the robot somewhat

CHAPTER 5. PG-BROIL EXPERIMENTS 23

avoids the uncertain terrain, while for low values of �, the robot almost entirely
avoids the uncertain terrain at the expense of a longer path. Finally, for the Reacher
environment, we find that the percentage of episodes where the arm enters the red
region decreases as � decreases as expected (Figure 5.1f).

5.2 Learning From Human and Artificial
Demonstrations

We now consider the imitation learning setting, where an agent infers a reward function
from demonstrated examples. Given such input, there are typically many reward
functions that are consistent with it; however, many reward inference algorithms [25,
22, 11] will output only one of them—not necessarily the true reward. There has
been some work on Bayesian algorithms such as Bayesian IRL [64] which estimates a
posterior distribution instead of a single reward and Bayesian REX [12] which makes
it possible to e�ciently learn this posterior from preferences over high dimensional
demonstrated examples of varying qualities. However, prior work on Bayesian reward
learning often only optimizes policies for the expected or MAP reward estimate
over the learned posterior [64, 14, 12]. Our hypothesis is that for imitation learning
problems with high uncertainty about the true reward function, taking a robust
optimization approach via PG-BROIL will lead to better performance by producing
policies that do well in expectation, but also avoid low reward under any of the
su�ciently probable reward functions in the learned posterior.

TrashBot from Human Demonstrations

We first consider a continuous control TrashBot domain (Figure 5.2), where aim
to teach a robot to pick up pieces of trash (black dots) while avoiding the gray
boundary regions. The state-space, dynamics and actions are the same as for the
Pointmass Navigation environment and we provide human demonstrations via a simple
teleoperation interface. The robot constructs its reward function hypotheses as linear
combinations of three binary features which correspond to: (1) being in the gray region
(GRAY), (2) being in the white region (WHITE), and (3) picking up a piece of trash
(TRASH). We give three pairwise preferences over human teleoperated trajectories
(generated by one of the contributors to PG-BROIL) as shown in Figure 5.2. However,
the small number of preferences makes it challenging for the robot to ascertain the
true reward function parameters as there are many reward function weights that
would lead to the same human preferences. Furthermore, the most salient feature is
WHITE and this feature is highly correlated, but not causal, with the preferences.

CHAPTER 5. PG-BROIL EXPERIMENTS 24

Thus, this domain can easily lead to reward hacking/gaming behaviors [42]. We
hypothesize that PG-BROIL will hedge against uncertainty and learn to pick up
trash while avoiding the gray region.

Figure 5.2: TrashBot environment: Each time the robot picks up a piece of
trash (by moving close to a black dot), a new one appears at a randomly in the white
region. We give pairwise preferences over human demos that aim to teach the robot
that picking up trash is good (left), going into the gray region is undesirable (center),
and less time in the gray region and picking up more trash is preferred (right).

We compare against behavioral cloning (BC), GAIL [31], and Risk-Averse Im-
itation Learning (RAIL) [75], which estimates CVaR over trajectories to create a
risk-averse version of the GAIL algorithm. To facilitate a fairer comparison, we only
give BC, GAIL, and RAIL the better ranked demonstration from each preference
pair. We also compare with Preference-based RL (PBRL) [15] in the o✏ine demon-
stration setting [11] which optimizes an MLE estimate of the reward weights, and
Bayesian REX [12], which optimizes the mean reward function under the posterior
distribution given the preferences. PG-BROIL also uses Bayesian REX [12] to infer a

CHAPTER 5. PG-BROIL EXPERIMENTS 25

Table 5.1: TrashBot: We evaluate PG-BROIL against 5 other imitation learning al-
gorithms when learning from ambiguous preferences over demonstrations (Figure 5.2).
Results are averages (± one st. dev.) over 10 random seeds and 100 test episodes
each with a horizon of 100 steps per episode. For PG-BROIL, we set ↵ = 0.95 and
report results for the best � (� = 0.8).

Algorithm

Avg. Trash

Collected

Avg. Steps in

Gray Region

BC 3.4 ± 1.8 2.7 ± 6.2

GAIL 2.2 ± 1.5 3.7 ± 9.9

RAIL 1.1 ± 1.2 2.2 ± 6.9

PBRL 2.6 ± 1.5 1.2 ± 2.7

Bayesian REX 1.6 ± 1.3 1.2 ± 1.7

PG-BROIL 8.4 ± 0.5 0.1 ± 0.1

reward function posterior distribution given the preferences over demonstrations, but
optimizes the BROIL objective.

Table 5.1 compares the performance of each baseline imitation learning algorithm
when given the 3 pairs of demonstrations shown in Figure 5.2. We find that PG-
BROIL outperforms BC and GAIL [31] by not directly seeking to imitate the states
and actions in the demonstrations, but by explicitly reasoning about uncertainty in
the true reward function. We also find that PG-BROIL significantly outperforms
RAIL. This is because RAIL only focuses on minimizing aleatoric uncertainty under
stochastic transition dynamics for a single reward function (the discriminator), not
epistemic uncertainty over the true reward function. We find that PG-BROIL also
outperforms PBRL and Bayesian REX, which overfit to staying in the white region,
not realizing the importance of picking trash.

Figure 5.3 shows the distribution of the weights for each feature for PG-BROIL.
PG-BROIL exploits the fact that some reward functions have a negative weight for
the WHITE feature to recognize that simply staying in the white region without
going for trash is a highly suboptimal strategy. This allows PG-BROIL to outperform
PBRL and Bayesian REX, which fall into a local maxima by simply mining rewards
by staying in the white region. Amongst the 20 reward functions generated on seed
0, the WHITE and TRASH features have a Pearson correlation coe�cient of -0.46.
This implies that if a reward function places high weight on the WHITE feature,
it is likely to place a smaller or more negative weight on the TRASH feature and

CHAPTER 5. PG-BROIL EXPERIMENTS 26

Figure 5.3: Reward distribution generated by Bayesian REX of each feature weight
in posterior for seed 0.

vice-versa. This helps create the causal confusion we see in this experiment since it is
unclear whether the agent should be rewarded more for the WHITE feature or the
TRASH feature.

Reacher from Demonstrations with Domain Shift

For this experiment, we use the same Reacher environment described above. We
give the agent five pairwise preferences over demonstrations of varying quality in a
training domain where the uncertain reward region is never close to the goal and
where none of the demonstrations show the reacher arm entering the uncertain region.
We then introduce domain shift by both optimizing and testing policies in reacher
environments unseen in the demonstrations, where the goal location is randomized
and sometimes the uncertain reward region is in between the the reacher arm and
the goal. The environment before and after the domain shift is shown in Figure 5.4a
The inferred reward function is a linear combination of 2 features: TARGET and
UNCERTAIN REGION which are simply binary indicators which identify whether the
agent is in the target location or in the uncertain region respectively. In the posterior
generated using Bayesian REX, we find that the weight learned for the TARGET
feature is strongly positive over all reward functions. UNCERTAIN REGION, having
no information from any of the demonstrations, has a wide variety of possible values
from -1 to +1 (reward weights are normalized to have unit L2-norm). Both the
mean and MLE reward functions assign a positive weight to both the TARGET and
UNCERTAIN REGION features, resulting in Bayesian REX and PBRL frequently
entering the uncertain region as shown in Table 5.2. By contrast, PG-BROIL hedges
against its uncertainty over the quality of the uncertain region and avoids it.

CHAPTER 5. PG-BROIL EXPERIMENTS 27

(a) (b)

Figure 5.4: Reacher environment during demonstration time (a) and policy training
time (b). During demonstrations, the uncertain region (red) is far from the robot arm
and the goal (yellow), but during policy optimization the goal position is randomized
and sometimes the uncertain cost region is in the way forcing the agent to either go
around or through it.

Table 5.2: Reacher from Demos: We evaluate PG-BROIL and baseline imitation
learning algorithms when learning from preferences over demonstrations. Results are
averages (± one st. dev.) over 3 seeds and 100 test episodes with a horizon of 200
steps per episode. For PG-BROIL, we set ↵ = 0.9 and report results for � = 0.15.

algorithm

Avg. Steps in

Uncertain Region

Avg. Steps in

Target Region

BC 11.3 ± 27.4 39.9 ± 62.3

GAIL 2.3 ± 1.7 5.1 ± 13.0

RAIL 2.1 ± 1.2 4.6 ± 27.0

PBRL 28.4 ± 37.7 16.8 ± 30.4

Bayesian REX 13.5 ± 35.0 94.5 ± 70.1

PG-BROIL 1.7 ± 7.2 102.0 ± 60.5

CHAPTER 5. PG-BROIL EXPERIMENTS 28

(a)

Algorithm Game Score

BC 1.7 ± 5.3

GAIL -0.2 ± 5.8

RAIL 0.5 ± 4.9

PBRL -15.0 ± 8.2

Bayesian REX 1.6 ± 4.7

PG-BROIL 23.9 ± 13.5

(b)

Figure 5.5: Atari Boxing: We evaluate PG-BROIL against baseline imitation
learning algorithms when learning from preferences over demonstrations. Results are
averages (± one st. dev.) over 3 random seeds and 100 test episodes. For PG-BROIL,
we set ↵ = 0.9 and report results for the best � (� = 0.3). The game score is the
number of hits the trained agent (white) scored minus the number of times the agent
gets hit by the opponent (black).

Atari Boxing from Demonstrations

For this experiment, we give the agent 3 preferences over suboptimal demos of the
Atari Boxing game [6]. We use Bayesian REX to infer a reward function posterior
where each inferred reward functions is a linear combinations of 3 binary indicator
features identifying whether the agent hit its opponent, got hit, or stayed away from
the opponent. The mean and MLE reward functions both assign a high weight
to hitting the opponent, ignoring the risk of getting hit by the opponent due to
always staying close to the opponent in order to score hits on it. PG-BROIL tries to
satisfy multiple reward functions by both trying to avoid getting hit and scoring hits,
resulting in better performance under the true reward as shown in Table 5.5b.

29

Chapter 6

BROIL with Cross Entropy
Method and Model Predictive
Control (MPC-BROIL)

Work done with Daniel Brown, Satvik Sharma, and Rishi Parikh.

6.1 Algorithm

This method maximizes the soft robust BROIL objective within a CEM and MPC
approach for model-based planning. In model-based planning, CEM is

The main change from the normal CEM and MPC procedure lies in the CEM
portion. At each iteration of CEM, after randomly picking action samples from a
Gaussian fit to the elites, the dynamics model is used to determine the rewards under
each reward function. Then, Tbest is created according to Equation 6.1 and this set
updates the elites for the next iteration of CEM. After CEM has completed, the
next action, a

0

from the best action trajectory ⌧max is selected and executed in the
environment.

Tbest := {⌧i | 8i 2 [1...Nelite]} (6.1)

Where ⌧i is determined by:

⌧i = argmaxi
⌧2Tc

� · E[(⌧, R)] + (1� �) · CVaR↵[(⌧, R)]} (6.2)

and argmaxi
⌧2Tc

is the ⌧ corresponding to the ith largest value.

The full MPC-BROIL algorithm is written in detail in Algorithm 3.

CHAPTER 6. BROIL WITH CROSS ENTROPY METHOD AND MODEL
PREDICTIVE CONTROL (MPC-BROIL) 30

Algorithm 3 MPC-BROIL

1: Input: reward function posterior r
1

, . . . , rN and associated probabilities,
P(r

1

), . . . ,P(rN), horizon h, the number of elites Nelite, the number of CEM
iterations NCEM , dynamics model parameters ✓,

2: for k = 0, 1, 2, . . . do
3: for c = 0, 1, 2, . . . NCEM do
4: if k == 0 then then
5: Collect trajectories T

0

= {⌧i} by randomly selecting actions from the action
space.

6: else
7: Collect trajectories Tc = {⌧i} by randomly selecting actions from a multi-

variate normal distribution with mean µh and a diagonal covariance matrix
⌃h⇥h.

8: for each candidate trajectory i do
9: With the dynamics model ✓ rollout ⌧i under each reward function rj to

calculate the reward estimate Ri

10: Calculate the Cvari and �i values using Ri and P(r
1

), . . . ,P(rN)
11: Calculate Bi using Eq. 17
12: end for
13: end if
14: Select the best Nelite trajectories Tbest = {⌧i} using the corresponding values

of Bi

15: Use Tbest to update µh and ⌃h⇥h.
16: end for
17: Return first action from best ⌧max in TNCEM

18: end for

31

Chapter 7

MPC-BROIL Experiments

7.1 Prior Distribution over Rewards and Known
Dynamics

We test whether we can still get a family of di↵erent behaviors by optimizing the
BROIL objective via MPC. To test this out we first simplify the problem by assuming
a perfect dynamics model to reduce the noise from a learned dynamics model and
also assume a prior distribution over costs, avoiding the need to learn a distribution
over reward functions.

We test using a simple Pointmass environment. This is the exact same environment
as used in the PG-BROIL experiment described in Section 5.1. We also use the exact
same reward function posterior.

The results are shown in Figure 7.1. We see that for di↵erent values of � we get
di↵erent qualitative behavior. For � = 1 the agent goes almost directly to the goal,
and for � = 0 the agent avoids the gray areas. For 0 < � < 1 we see behavior that
partially avoids the gray area, hedging against the possibly high costs of the gray
region with the known cost of distance to the goal.

As we saw with PG-BROIL, we see that MPC-BROIL also leads to a range of
di↵erent behaviors based o↵ of di↵erent values for the hyperparameter �.

CHAPTER 7. MPC-BROIL EXPERIMENTS 32

Figure 7.1: MPC-BROIL in Pointmass Navigation: We evaluate MPC-BROIL
on a Pointmass environment. An oracle dynamics model was used with a planning
horizon of 20.

33

Chapter 8

Switching Criteria for Imitation
Learning

Work done with Ellen Novoseller, Satvik Sharma, Vainavi Viswanath, Rishi Parikh,
Ryan Hoque, Ashwin Balakrishna, and Daniel Brown.

8.1 Algorithm Description

We consider switching from simulation to real in the case of imitation learning, in
which an algorithm learns a policy from sequentially-collected demonstrations. We
propose four criteria to determine when to switch from simulated training to physical
deployment. Specifically, we will describe two evaluation metrics for switching (reward
in simulation and epistemic uncertainty) and two stopping conditions for choosing
when to switch (absolute threshold and gradient-based). Pairing the two evaluation
metrics and two stopping conditions results in four possible switching criteria, each a
combination of a particular switching metric and stopping condition.

To study when to switch from learning in simulation to deploying policies in
physical experiments, we learn a switching criterion : ⇡ ! {0, 1}. If (⇡) = 1, we
terminate simulated training and deploy ⇡ in physical experiments, while otherwise,
we continue training ⇡. The switching function identifies a switching time T

sim

as
a function of the evolving robot policy ⇡.

In the imitation learning setting, the objective is to learn a robot policy ⇡ that
emulates task demonstrations collected in simulation from some demonstration policy
⇡D. In principle, ⇡D could be a human controlling the robot in simulation via
teleoperation or an algorithmic controller defined using privileged state information
present only in simulation; we consider the latter. We train ⇡ in simulation with

CHAPTER 8. SWITCHING CRITERIA FOR IMITATION LEARNING 34

behavior cloning, in which the objective is to minimize the following loss function to
encourage the robot’s policy ⇡ : S ! A to match that of the demonstrator (⇡D) on a
set of trajectories D collected from the demonstrator:

JBC(⇡) = E
(st,⇡D(st))⇠D [L(⇡(st), ⇡D(st))] (8.1)

where L(⇡(s), ⇡D(s)) is an action discrepancy measure between ⇡(s) and ⇡D(s) (e.g.,
the squared loss or 0-1 loss; our experiments use the squared loss).

The key objective is to determine how many training iterations in simulation
are required to train ⇡ before it should be deployed on a physical system. To this
end, we train ⇡ to minimize the loss in Equation (8.1) in simulation on trajectories
in D and compute a stopping criterion : ⇡ ! {0, 1}. If (⇡) = 1, we terminate
simulated training and deploy ⇡ in physical experiments. Otherwise, we query ⇡D for
an additional task demonstration in simulation, aggregate this demonstration into D,
and continue.

Algorithm 4 fully describes the process. The procedure alternates between collect-
ing a batch of demonstrations from the demonstration policy ⇡D and appending the
demonstrations to the dataset D, performing a model update epoch to minimize the
loss function JBC(⇡), and checking whether the switching criterion (⇡) is satisfied.
If it is, then the process is halted and the final learned policy ⇡ is deployed on
the physical robot system. In practice, our experiments collect a batch of K = 10
demonstrations per iteration, where we use K = 10 to obtain su�cient granularity of
information for determining the switching point. Each model update epoch performs
400 gradient steps on the loss function JBC(⇡) with a minibatch size of 64. We
optimize with Adam [41], with a learning rate of 2.5 ⇤ 10�4 and L2 regularization of
10�5.

8.2 Switching Metrics

We propose two switching metrics, which are computed after every model update
step in Algorithm 4.

Simulation Reward: Here we evaluate ⇡ in simulation and compute the average
total reward over L rollouts to approximate J

sim

(⇡) from Equation (3.1). We also
use this dataset to tune our switching conditions via cross-validation in simulation,
as detailed below, and denote it as Dcross. In practice, our experiments use L = 5,
which we found to provide a set of rewards with su�ciently small standard error.
Intuitively, performing well in simulation suggests that the policy may transfer well
to real.

CHAPTER 8. SWITCHING CRITERIA FOR IMITATION LEARNING 35

Algorithm 4 Learned Switching Criteria for Sim2Real

1: Input: Maximum number of episodes N ; number of demonstrations K collected
between each model update and calculation of the stopping criterion (⇡); demon-
stration policy ⇡D; initialized bu↵er for demonstration data D ;; randomly
initialized robot policy ⇡

2: for i 2 {1, . . . N} do
3: Collect ⌧demo

j = ((st, at)Tt=1

), j 2 {1, . . . , K} from ⇡D
4: D = D [⌧demo

1

[. . . [⌧demo

K

5: ⇡ argmin⇡ E(st,⇡D(st))⇠D [L(⇡R(st), ⇡D(st))]
6: if (⇡) then
7: Terminate learning and deploy on physical system
8: end if
9: end for

Epistemic Uncertainty: Here we approximate the epistemic uncertainty of ⇡ to
characterize the policy’s confidence in the actions that it predicts. We estimate epis-
temic uncertainty by training an ensemble of E policies on bootstrapped minibatches
of the training data in D. We then estimate the epistemic uncertainty over a holdout
set D

test

, which is not present during model training. Intuitively, the more consistent
(low-variance) the policy’s predictions on D

test

are across ensemble members, the
higher the probability that the policy has converged. Let {⇡i}Ei=1

denote the policy
ensemble and {ais}Ei=1

2 RM denote the corresponding actions when each ensemble
member is queried at observation s. Further, let aij denote the jth component of the
action predicted by ensemble member i. The epistemic uncertainty is estimated via:

Es2Dtest

"
1

M

X

j

Vari(aij)

#
, (8.2)

where Vari(aij) denotes the variance over ensemble members i 2 {1, 2, . . . E} in action
component j, and the expectation is taken over the observation-action pairs in D

test

.

8.3 Stopping Conditions

Here, we discuss two stopping conditions based on the metrics in the previous section
for determining when to switch from simulation to real.

Value-Based: The first stopping condition is an absolute threshold, A. The
cross-validation set, Dcross, is used to tune A: for simulation reward, A is set to
approximately the maximum reward attained in Dcross (on average over the L rollouts

CHAPTER 8. SWITCHING CRITERIA FOR IMITATION LEARNING 36

in Dcross), while for epistemic uncertainty, it is highest epistemic uncertainty that
corresponds with the earliest reward peak in Dcross. Specific values of A are provided
in the supplemental website. At each evaluation episode i, a spline f(x) is fit to the
previous i� 1 data points. We use a spline—rather than raw data—to mitigate the
noise in the switching criteria. Then, the spline is evaluated at the current episode
and checked against the predefined absolute threshold A to determine whether the
algorithm should stop training at the current episode and deploy the policy in real or
continue to learn in simulation.

Gradient-Based: The second stopping condition is gradient-based, and de-
termines when the change over time in an evaluation metric falls below a threshold.
Similar to the absolute threshold, we identify the threshold by fitting a spline to the
previous i� 1 data points. Then, finite di↵erences are taken for two points evaluated
on the spline to approximate the current gradient. If the gradient is within the range
[�✏, ✏] (tuned for each switching metric as described below), the gradient is considered
to be su�ciently close to zero and two counters are potentially incremented: wconsec

keeps track of the number of consecutive episodes with a su�ciently-small gradient,
while wtotal keeps track of the total number of episodes with a below-threshold gradi-
ent. The stopping condition is triggered if either wconsec > U or wtotal > V , where
U is the maximum limit of continuous evaluation episodes before stopping and V is
the maximum limit of noncontinuous evaluation episodes. The parameter V allows
training to stop even if there are some aberrations which would reset wconsec to zero.
Furthermore, the V condition alone is insu�cient, since if the gradient frequently
oscillates near zero due to noise in the switching metric, then the check for V would
trigger even though we may not have converged to acceptable performance, indicating
that the policy can still learn and should not yet be deployed in real.

Fig 8.1 illustrates this process. In practice, the parameters (✏, U, V) of the stopping
conditions are tuned via cross-validation in simulation, using the dataset Dcross. In
particular, ✏ is empirically set to the largest value such that the range [�✏, ✏] does not
classify many earlier iterations (which have comparatively larger gradients) as having
a su�ciently-small gradient. U and V are tuned in conjunction so that the stopping
condition is triggered as early as possible but not too early (i.e., for an overly-low
simulation reward).

CHAPTER 8. SWITCHING CRITERIA FOR IMITATION LEARNING 37

Figure 8.1: System Overview. At each step, our algorithm pipeline collects a new
batch of simulation data, performs a model update epoch, and then checks whether a
switching condition is satisfied. If the switching criterion is met, then the model is
ready to be deployed in real. Otherwise, we continue collecting simulation data for
further updating the model. We test four switching criteria, which utilize metrics
based on a) reward when evaluated in simulation and b) epistemic uncertainty as
estimated via an ensemble of policy networks, paired with each of two stopping
conditions based on 1) absolute thresholding or values, and 2) gradients.

38

Chapter 9

Sim2Real Switching Criteria
Experiments

9.1 Experimental Setup

Problem Statement

We consider the specific manipulation task of sequential fabric smoothing, a challenging
open problem in robotics that has received significant recent interest [79, 34, 26]. As
described in prior work [79], the objective in sequential fabric smoothing is to find a
sequence of robot actions to maximally smooth a fabric from an initially crumpled
configuration. We consider a square crop of fabric with initial configuration (state) s

0

and configuration st at time t. In both simulation and real, the robot can access only
top-down grayscale image observations of the workspace, ot 2 O = RH⇥W , where
H and W are the image height and width respectively. Following prior work [33],
we assume that each side of the fabric is monochromatic and that the two sides are
colored di↵erently, where the colors are distinguishable in grayscale (see supplement).
At each timestep t, the robot executes a 4D pick-and-place action at parameterized by
(xt, yt,�xt,�yt), where (xt, yt) is the pick point in pixel space and (xt+�xt, yt+�yt)
is the place point. Through a known pixel-to-world transform, the robot picks and
lifts the top layer of fabric at (xt, yt), translates by (�xt,�yt), and releases. The
robot seeks to learn a policy ⇡ : O ! A that maximizes R(sT), where T denotes
the final step of a fabric smoothing episode and R(·) gives the coverage or 2D area
covered by the fabric. Following prior work [79], we assume that each smoothing
episode terminates when the fabric reaches a coverage threshold of at least 92% or a
limit of 10 actions (whichever happens first).

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 39

Figure 9.1: Example Rollouts in Simulation and Physical Experiments. The
top row (left to right) depicts a sample trajectory in simulation, while the bottom
row similarly depicts a sample physical robot trajectory.

Simulation Environment Setup

To collect demonstrations, we use the oracle corner-pulling policy in the Gym-Cloth
simulator [79], which is ideal for fabric manipulation tasks. Gym-Cloth is an OpenAI-
Gym style fabric manipulation environment, which simulates the cloth using structural,
shear, and flexion springs. We use this simulator to collect data for training and
testing our policies in simulation before switching to deployment in real. The cloth is
represented as a 25x25 grid of point masses and is double-sided, with one side light
blue and the other side dark blue. The images generated for learning are 224x224 px,
of which a completely smooth cloth would occupy 164x164 px. This ratio is reflected
in our physical set up. Lastly, when using the Gym-Cloth-simulated data to train
fabric smoothing policies, we perform color shifts and augmentations. Specifically, the
background color and the color of the two sides of the cloth are darkened, converted
to gray scale, and blurred by a constant amount to match the images in real. Rollouts
in sim and real in Fig 9.1 show the sim images converted to closely resemble real
images. We collect a dataset D of 2,000 episodes of the oracle corner-pulling policies
in Gym-Cloth for training behavior cloning policies.

Physical Environment Setup

The workspace contains a bimanual ABB YuMi robot with a single tweezer gripper
on its left arm (the right arm is unused). Tweezer grippers are ideal for grasping the
cloth as they are able to apply fine point pressure, which many standard grippers
cannot do [79]. The manipulation surface is white and foam-padded to prevent end
e↵ector damage during collisions with the workspace. The experimental workspace is

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 40

Figure 9.2: Four reset positions used in physical experiments. Each position is reset
manually by the human at the start of every trajectory in order to make comparisons
between di↵erent switching criteria as fair as possible.

marked with blue tape, so that the size of the manipulation workspace with respect
to the size of the cloth resembles the set up in the Gym-Cloth simulator. We use a
double sided 25 cm x 25 cm cloth where one side is light brown while the other side is
dark brown. The workspace has an overhead PhotoNeo Phoxi Camera that captures
grayscale images of resolution 732 x 1142 px, which are later cropped to specifically
display the manipulation workspace, marked o↵ by the blue tape. To ease cloth
perception, we also normalize the images based on a constant a�ne transformation
to create greater contrast between the cloth and background. We further blur the
image to remove noise, making it more closely resemble the smooth images seen in
the Gym-Cloth simulator. The entire workspace setup is depicted in Fig 9.3.

Our physical experiments evaluate four repetitions of each policy, which for
repeatability of results, utilize a set of four initial fabric configurations, depicted in
Fig 9.2.

During physical experiments, we project pick points onto a color-segmented
mask of the fabric, and project place points within the workspace. Similarly, when
evaluating learned policies in the simulator, we project pick points onto a mask of
the fabric; however, in simulation, episodes are terminated early if the fabric leaves
the workspace.

9.2 Evaluation Metrics

Our experiments evaluate the following switching criteria introduced in Chapter 7 to
determine when the BC policy should stop training and be deployed in real:

1. (Reward value) Simulation reward with a value-based stopping condition,

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 41

Figure 9.3: Physical experiment and simulator setup. We study sim-to-real
switching in a fabric smoothing task, in an environment consisting of an ABB YuMi
robot with a single tweezer gripper. An overhead Photoneo Phoxi Camera captures
grayscale images. The manipulation workspace border is marked with blue tape,
and the fabric is located within the workspace border. The physical workspace is
designed to visually emulate the GymCloth simulator, as shown on the left; the top
two lefthand images show example starting and ending configurations from an oracle
smoothing policy, while the bottom two images show the same observations, processed
to resemble the grayscale images taken by the Photoneo Phoxi Camera.

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 42

Figure 9.4: Determining Stopping Points for Various Switching Criteria. On
all graphs, the dark blue curves are splines fit to the data to mitigate noise when
approximating the gradient and determining if the value-based threshold has been
met. Left Two Graphs: The simulation reward comes from evaluating the policy
in the GymCloth simulation environment and determining the fabric coverage of
the final configuration; curves are averaged over 5 episode rollouts in GymCloth.
For comparison with real, the orange points correspond to mean performance in
real of the BC policy selected at that iteration. The error bars correspond to the
standard error across four runs. The stopping points (red point) are determined to
be at iteration 124 for reward value and 116 for the reward gradient. Right Two
graphs: The epistemic uncertainty is calculated at each iteration over a holdout set
of 200 demonstration episodes and with five ensemble members. The confidence value
determines the stopping point be 111, while the confidence gradient determines it to
be 117.

2. (Reward gradient) Simulation reward with a gradient-based stopping condition,

3. (Confidence value) Epistemic uncertainty with a value-based stopping condition,
and

4. (Confidence gradient) Epistemic uncertainty with a gradient-based stopping
condition.

We evaluate the performance of these switching criteria via the following metrics,
calculated during deployment in physical experiments after switching (averaged over
4 episodes in each case):

1. Final coverage

2. Improvement ratio (final coverage / initial coverage)

3. Number of actions per episode.

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 43

9.3 Results

The switching calculation is illustrated for each metric in Fig. 9.4, which displays
the metrics and stopping point for each method. In each case, the stopping point
is between 100 and 125 iterations out of a maximum of 200 learning iterations; the
values are relatively close because all stopping condition parameters were tuned via
cross-validation in simulation.

Table 9.1 summarizes the experimental results. We see the average final coverage
achieved across all four stopping criteria is 88.05%, which is larger than the average
initial coverage by a factor of 1.82. Thus, all four switching conditions are well-
correlated with performance in real. We also plot fabric coverage over time in
Figure 9.5, in which we see that 200 learning iterations—the maximum number
considered—are not necessary to achieve competitive performance. Rather, our
switching criteria identify an earlier stopping time that results in similar final coverage
to the 200-iteration comparison, which does not allow early stopping.

Comparing the four stopping conditions, we see that the epistemic uncertainty
metric yields higher final coverage than the simulation reward for both the value-
based and gradient-based stopping conditions. Similarly, the value-based stopping
condition showed higher performance than the gradient stopping condition for both
the epistemic uncertainty and simulation reward metrics. However, because the
stopping condition iterations are close together (see Table 9.1), it is possible that
these discrepancies partially reflect noise in the behavior cloning training process,
rather than an inherent di↵erence between the switching criteria.

In terms of other pros and cons of the methods, in Figure 9.4, we see that the
epistemic uncertainty exhibits less iteration-to-iteration noise than the simulation
performance, while simulation performance is easier to tune and interpret and only
requires training a single behavior cloning policy (rather than a policy ensemble).
Meanwhile, the value-based stopping condition is easier to tune than the gradient-
based method. However, because it looks at a time-based trend rather than individual
values, we believe that the gradient-based stopping condition may yield more stable
values and improved generalization compared to the value-based stopping condition.
Testing generalizability of the stopping conditions is an interesting direction for future
work.

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 44

Method (iters) Imp. ratio Final Actions

Rew val (124) 1.925 ± 0.070 0.909 ± 0.030 8.50 ± 1.30
Rew grad (116) 1.611 ± 0.091 0.804 ± 0.065 8.75 ± 1.08
Conf val (111) 1.964 ± 0.070 0.937 ± 0.004 6.00 ± 1.27
Conf grad (117) 1.819 ± 0.103 0.872 ± 0.032 8.75 ± 1.08
Final (200) 1.858 ± 0.040 0.880 ± 0.048 7.50 ± 1.30

Table 9.1: Physical Experiment Results: We report the final fabric coverage and
improvement ratio (final / initial coverage) achieved in physical fabric smoothing
experiments by the various switching policies: reward value (rew val), reward gradient
(rew grad), confidence value (conf val), and confidence gradient (conf grad). Results
are mean ± standard error over 4 episodes in each case, and the initial coverage
averaged 0.481 (± 0.023 standard error) over all cases reported in the table. We
also report the average number of actions (where each trajectory terminates upon
reaching 10 actions or 92% coverage, whichever occurs first).

CHAPTER 9. SIM2REAL SWITCHING CRITERIA EXPERIMENTS 45

Figure 9.5: Performance of learned policies in physical fabric smoothing
experiments at various stopping points. Left: Final physical fabric coverage
achieved for each of the four stopping conditions. Right: Comparing the final physical
fabric coverage for the confidence value stopping condition to various checkpoints.
We see that the stopping conditions are largely competitive with 200 iterations (the
maximum iteration number considered), but require significantly less training. Plots
show mean ± standard err over 4 episodes. Note that to plot episodes that reach the
target coverage of 92% in fewer than 10 actions, we repeat the final achieved coverage
for the remainder of the 10-action budget.

46

Chapter 10

Limitations

10.1 Limitations with PG-BROIL and
MPC-BROIL

We found that PG-BROIL can sometimes become unstable for values of lambda
close to zero—likely due to the indicator function in the CVaR policy gradient. We
experimented with entropic risk measure [24], a continuously di↵erentiable alternative
to CVaR, but obtained similar results to CVaR. This would be a good limitation of
PG-BROIL to better understand.

As an example of a limitation with PG-BROIL we show the same TrashBot
environment as detailed in Section 5.2, where the agent’s objective is to simultaneously
collect pieces of trash while avoiding the gray region.

In the rightmost trajectory, we often found for extremely low values of � that the
agent would run o↵ into a corner (as opposed to staying in the intended main region).

Figure 10.1: The left and middle images show trajectories for PG-BROIL with � = 0.8
while the right image shows a failure case for � = 0.1.

CHAPTER 10. LIMITATIONS 47

This is interesting behavior that we wish to understand the reasoning behind.
In the middle trajectory, we see the agent remaining in the white region but

not collecting the piece of trash next to it. Although this is a relatively high value
of � = 0.8, we still see unintended behavior (this value of lambda is expected to
additionally pick up trash as well as stay in the white region). This is also behavior
we wish to better understand, especially since the leftmost trajectory shows this same
� value displaying intended behavior.

For MPC-BROIL, we also notice a small range of � values that result in di↵erent
behaviors. This is the same example as shown before in Section 7.1. We noticed that
values ranging between � = 1 and � = 0.93 were almost identical to one another,
having di�culties in seeing any di↵erences in behavior between them. We also noticed
that the trajectories between � = 0.92 and � = 0 only have very subtle di↵erences.
This could be because of the environment we used; perhaps another environment or
task could better display a range of di↵erent behaviors for various values of �.

Figure 10.2: We evaluate MPC-BROIL on a Pointmass environment. An oracle
dynamics model was used with a planning horizon of 20.

10.2 Limitations with Sim2Real Switching
Criteria

The switching criteria which we evaluated were only tested for the case of behavior
cloning. There are many other algorithms that are used for robotics and sim2real
transfer, such as model-based planning and model-free reinforcement learning, and

CHAPTER 10. LIMITATIONS 48

even other imitation learning methods (such as GAIL). Therefore, our study on
switching criteria isn’t entirely inclusive as it only studies it for behavior cloning. It
would be interesting to try to generalize and evaluate these criteria across several
other types of algorithms, to test if they work just as well as they did in our behavior
cloning example.

49

Chapter 11

Conclusions and Future Work

11.1 PG-BROIL and MPC-BROIL

We derived a policy gradient-style robust optimization approach, PG-BROIL, to allow
for robust policy optimization in continuous MDPs. We also presented a sample-
e�cient, model predictive control approach, MPC-BROIL, which uses a learned
dynamics model to optimize robust policies over distributions of reward functions.
From both of these approaches, we saw that robust optimization can be scalable to
large, continuous MDPs.

We tested on challenging domains, however one regret is having been unable to
have ample time to test the algorithms on a real world robot. Real world domains are
much more challening, and we believe that these algorithms can perform very well in
real-world robotics contexts where there is uncertainty about the true objective. One
example we thought about was navigating a robot arm around an uncertain region
(perhaps of clutter) to a goal point. This would warrant the risk-averse behavior that
our algorithms are capable of producing, since navigating directly through the clutter
could result in damage to the robot arm. Bringing PG-BROIL and MPC-BROIL to
the real world is an interesting project we would encourage future students to take
on.

Future work also includes taking advantage of recent research on e�cient non-
linear Bayesian reward learning via Gaussian processes [7] and deep neural networks
[12] to see if we can learn using more complex reward functions (as opposed to simple
linear ones). It would be interesting to see how these rewards do compared to our
linear ones. We also found that PG-BROIL can sometimes become unstable for values
of lambda close to zero—likely due to the indicator function in the CVaR policy
gradient. Examining reasons for this instability and potential fixes would also be a

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 50

good direction for future work.
We also began work on learning rewards from latent features (in the case of

MPC-BROIL). For this work, we got very close to getting it to work, however faced
some issues. To learn the reward, we experimented with both Trajectory-ranked
Reward EXtrapolation (T-REX) [11] and Bayesian Reward Extrapolation (B-REX)
[10]. We were only able to get T-REX to properly work, however this gives us a
single reward function as opposed to estimating a distribution, which we need for
MPC-BROIL. This is also a great direction for future students to work on, since
learning from the latent space would allow us to scale up to much more complex
tasks (including robotic tasks).

Code for PG-BROIL can be found at https://github.com/zaynahjaved/pg-broil.
Code for MPC-BROIL is not yet public since it is still underway.

11.2 Sim2Real Switching Criteria

We proposed and evaluated strategies for determining when to switch from training
a learning algorithm in simulation to deploying it on a real physical system. We
considered metrics based on performance in simulation performance and epistemic
uncertainty. We tested two stopping conditions based on absolute thresholds and
gradient tracking. We applied the switching criteria to a fabric smoothing task,
where we studied sim2real transfer for behavior cloning. We found that the proposed
switching criteria helped to save training time via early stopping. This can importantly
save compute and energy resources and help to deploy policies onto robots in the real
world more quickly.

While we focused on a single simulator and a single robot task, studying these
switching criteria across multiple simulators and robot tasks would be useful to
determine the generalizability of what we found. It could also be interesting future
work to consider switching to real based on the learned policies’ performance when
transferring across simulators. Switching to real in other algorithmic contexts, outside
of imitation learning, could also be studied, such as model-based planning and
model-free reinforcement learning. It could also be interesting to observe two-way
switching between learning in simulation and in physical experiments and whether
this additionally accelerates the learning process.

Code for Sim2Real Switching Criteria can be found at https://github.com/

ernovoseller/BC_switching_criteria.

https://github.com/zaynahjaved/pg-broil
https://github.com/ernovoseller/BC_switching_criteria
https://github.com/ernovoseller/BC_switching_criteria

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 51

Ending Notes

The 5th year master’s program has been an invaluable experience that I highly
recommend. I once again want to thank my advisor for giving me the chance to do
this. I have learned a great deal about imiation learning as well as how to perform
quality research. There are still some directions for future work on these projects
that I would love to see or be a part of. I hope to continue research in the future,
but for now I’m excited to begin a job at Meta!

52

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse rein-
forcement learning”. In: Proceedings of the twenty-first international conference
on Machine learning. 2004, p. 1.

[2] Joshua Achiam. “Spinning Up in Deep Reinforcement Learning”. In: (2018).
url: https://spinningup.openai.com/.

[3] Joshua Achiam et al. “Constrained policy optimization”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 22–31.

[4] Saurabh Arora and Prashant Doshi. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: arXiv preprint arXiv:1806.06877
(2018).

[5] Philippe Artzner et al. “Coherent measures of risk”. In: Mathematical finance
9.3 (1999), pp. 203–228.

[6] Marc G Bellemare et al. “The arcade learning environment: An evaluation
platform for general agents”. In: Journal of Artificial Intelligence Research 47
(2013), pp. 253–279.

[7] Erdem Biyik et al. “Active Preference-Based Gaussian Process Regression for
Reward Learning”. In: Proceedings of Robotics: Science and Systems (RSS).
July 2020.

[8] Mariusz Bojarski et al. End to End Learning for Self-Driving Cars. 2016. doi:
10.48550/ARXIV.1604.07316. url: https://arxiv.org/abs/1604.07316.

[9] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[10] Daniel Brown, Scott Niekum, and Petrik Marek. “Bayesian Robust Opti-
mization for Imitation Learning”. In: Neural Information Processing Systems
(NeurIPS). 2020.

[11] Daniel Brown et al. “Extrapolating beyond suboptimal demonstrations via
inverse reinforcement learning from observations”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 783–792.

https://spinningup.openai.com/
https://doi.org/10.48550/ARXIV.1604.07316
https://arxiv.org/abs/1604.07316
arXiv:1606.01540

BIBLIOGRAPHY 53

[12] Daniel Brown et al. “Safe Imitation Learning via Fast Bayesian Reward
Inference from Preferences”. In: International Conference on Machine Learning.
2020.

[13] Daniel S Brown and Scott Niekum. “E�cient probabilistic performance bounds
for inverse reinforcement learning”. In: Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

[14] Jaedeug Choi and Kee-Eung Kim. “Map inference for bayesian inverse rein-
forcement learning”. In: Advances in Neural Information Processing Systems.
2011, pp. 1989–1997.

[15] Paul Christiano et al. “Deep reinforcement learning from human preferences”.
In: arXiv preprint arXiv:1706.03741 (2017).

[16] Kurtland Chua et al. Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models. 2018. arXiv: 1805.12114 [cs.LG].

[17] Erick Delage and Shie Mannor. “Percentile optimization for Markov decision
processes with parameter uncertainty”. In: Operations research 58.1 (2010),
pp. 203–213.

[18] Freddy Delbaen. “Coherent risk measures on general probability spaces”. In:
Advances in finance and stochastics. Springer, 2002, pp. 1–37.

[19] Esther Derman et al. “Soft-robust actor-critic policy-gradient”. In: arXiv
preprint arXiv:1803.04848 (2018).

[20] Yuqing Du et al. “Auto-Tuned Sim-to-Real Transfer”. In: 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA) (2021), pp. 1290–
1296.

[21] Benjamin Eysenbach et al. “O↵-Dynamics Reinforcement Learning: Training
for Transfer with Domain Classifiers”. In: ICLR (2021).

[22] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost learning: Deep
inverse optimal control via policy optimization”. In: International conference
on machine learning. PMLR. 2016, pp. 49–58.

[23] Jaime F. Fisac et al. “A General Safety Framework for Learning-Based Control
in Uncertain Robotic Systems”. In: IEEE Transactions on Automatic Control.
2018.

[24] Hans Föllmer and Thomas Knispel. “Entropic risk measures: Coherence vs.
convexity, model ambiguity and robust large deviations”. In: Stochastics and
Dynamics 11.02n03 (2011), pp. 333–351.

https://arxiv.org/abs/1805.12114

BIBLIOGRAPHY 54

[25] Justin Fu, Katie Luo, and Sergey Levine. “Learning robust rewards with ad-
versarial inverse reinforcement learning”. In: arXiv preprint arXiv:1710.11248
(2017).

[26] Aditya Ganapathi et al. “Learning to Smooth and Fold Real Fabric Using
Dense Object Descriptors Trained on Synthetic Color Images”. In: International
Conference on Robotics and Automation (ICRA). IEEE. 2020.

[27] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe
reinforcement learning”. In: Journal of Machine Learning Research 16.1 (2015),
pp. 1437–1480.

[28] Alessandro Giusti et al. “A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots”. In: IEEE Robotics and Automation Letters
(2016).

[29] Dylan Hadfield-Menell et al. “Inverse reward design”. In: Advances in neural
information processing systems. 2017, pp. 6765–6774.

[30] M. Heger. “Consideration of risk in reinforcement learning”. In: Machine
Learning Proceedings. 1994.

[31] Jonathan Ho and Stefan Ermon. “Generative Adversarial Imitation Learning”.
In: Advances in Neural Information Processing Systems. 2016, pp. 7461–7472.

[32] Sebastian Höfer et al. “Sim2Real in robotics and automation: Applications
and challenges”. In: IEEE transactions on automation science and engineering
18.2 (2021), pp. 398–400.

[33] Ryan Hoque et al. “LazyDAgger: Reducing Context Switching in Interactive
Imitation Learning”. In: arXiv preprint arXiv:2104.00053 (2021).

[34] Ryan Hoque et al. “VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric
Manipulation”. In: Robotics: Science and Systems (2020).

[35] Ryan* Hoque et al. “VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric
Manipulation”. In: Robotics Science and Systems. 2020.

[36] Jessie Huang et al. “Learning safe policies with expert guidance”. In: Advances
in Neural Information Processing Systems. 2018, pp. 9105–9114.

[37] Ahmed Hussein et al. “Imitation learning: A survey of learning methods”. In:
ACM Computing Surveys (CSUR) 50.2 (2017), pp. 1–35.

[38] Stephen James et al. “RMA: Rapid Motor Adaptation for Legged Robots”. In:
Conference on Computer Vision and Pattern Recognition (CVPR. IEEE. 2019.

BIBLIOGRAPHY 55

[39] Stephen James et al. “Sim-To-Real via Sim-To-Sim: Data-E�cient Robotic
Grasping via Randomized-To-Canonical Adaptation Networks”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019), pp. 12619–12629.

[40] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Plan-
ning and acting in partially observable stochastic domains”. In: Artificial
intelligence 101.1-2 (1998), pp. 99–134.

[41] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[42] Victoria Krakovna et al. “Specification gaming examples in AI”. In: DeepMind
Blog (2020).

[43] Aviral Kumar et al. “A Workflow for O✏ine Model-Free Robotic Reinforcement
Learning”. In: (2021).

[44] Jonathan Lacotte et al. “Risk-sensitive generative adversarial imitation learn-
ing”. In: arXiv preprint arXiv:1808.04468 (2018).

[45] Shuo Li and Osbert Bastani. “Robust Model Predictive Shielding for Safe
Reinforcement Learning with Stochastic Dynamics”. In: 2020.

[46] Zhongyu Li et al. “Reinforcement Learning for Robust Parameterized Loco-
motion Control of Bipedal Robots”. In: International Conference on Robotics
and Automation (ICRA). 2021.

[47] Vincent Lim et al. “Planar Robot Casting with Real2Sim2Real Self-Supervised
Learning”. In: (2021).

[48] Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik. “Soft-Robust Al-
gorithms for Handling Model Misspecification”. In: arXiv preprint arXiv:2011.14495
(2020).

[49] Je↵rey Mahler et al. “Dex-Net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics”. In: Robotics Science and
Systems. 2017.

[50] Maren Mahsereci et al. “Early Stopping without a Validation Set”. In: ArXiv
abs/1703.09580 (2017).

[51] Anirudha Majumdar et al. “Risk-sensitive Inverse Reinforcement Learning via
Coherent Risk Models.” In: Robotics: Science and Systems. 2017.

[52] Ajay Mandlekar et al. “What Matters in Learning from O✏ine Human Demon-
strations for Robot Manipulation”. In: (2021).

BIBLIOGRAPHY 56

[53] D.Q. Mayne. “Model predictive control: Recent developments and future
promise”. In: Automatica 50 (Nov. 2014). doi: 10.1016/j.automatica.2014.
10.128.

[54] Bhairav Mehta et al. “Active Domain Randomization”. In: Conference on
Robot Learning (CoRL). 2019.

[55] Fabio Muratore, Michael Gienger, and Jan Peters. “Assessing Transferability
From Simulation to Reality for Reinforcement Learning”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 43 (2021), pp. 1172–
1183.

[56] David Nass, Boris Belousov, and Jan Peters. “Entropic Risk Measure in Policy
Search”. In: arXiv preprint arXiv:1906.09090 (2019).

[57] OpenAI et al. Solving Rubik’s Cube with a Robot Hand. 2019. arXiv: 1910.
07113 [cs.LG].

[58] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In:
arXiv preprint arXiv:1811.06711 (2018).

[59] J Peters and S Schaal. “Reinforcement Learning of Motor Skills with Policy
Gradients”. In: Neural Networks 21.4 (2008), pp. 682–697.

[60] Dean A Pomerleau. “E�cient training of artificial neural networks for au-
tonomous navigation”. In: Neural computation 3.1 (1991), pp. 88–97.

[61] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural
Network”. In: Advances in Neural Information Processing Systems. Ed. by D.
Touretzky. Vol. 1. Morgan-Kaufmann, 1988. url: https://proceedings.
neurips . cc / paper / 1988 / file / 812b4ba287f5ee0bc9d43bbf5bbe87fb -

Paper.pdf.

[62] Lutz Prechelt. “Automatic early stopping using cross validation: quantifying
the criteria”. In: Neural Networks 11.4 (1998), pp. 761–767. issn: 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(98)00010-0. url: https:
//www.sciencedirect.com/science/article/pii/S0893608098000100.

[63] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic
programming. Wiley-Interscience, 2005.

[64] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse Reinforcement
Learning.” In: IJCAI. Vol. 7. 2007, pp. 2586–2591.

[65] Fabio Tozeto Ramos, Rafael Possas, and Dieter Fox. “BayesSim: adaptive
domain randomization via probabilistic inference for robotics simulators”. In:
(2019).

https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1016/j.automatica.2014.10.128
https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1910.07113
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://doi.org/https://doi.org/10.1016/S0893-6080(98)00010-0
https://www.sciencedirect.com/science/article/pii/S0893608098000100
https://www.sciencedirect.com/science/article/pii/S0893608098000100

BIBLIOGRAPHY 57

[66] E Ratner, D Hadfield-Mennell, and A Dragan. “Simplifying Reward Design
through Divide-and-Conquer”. In: Robotics: Science and Systems. 2018.

[67] Kevin Regan and Craig Boutilier. “Regret-based reward elicitation for Markov
decision processes”. In: Conference on Uncertainty in Artificial Intelligence
(UAI). 2009, pp. 444–451. isbn: 978-0-9749039-5-8. arXiv: 1205.2619.

[68] R Tyrrell Rockafellar, Stanislav Uryasev, et al. “Optimization of conditional
value-at-risk”. In: Journal of risk 2 (2000), pp. 21–42.

[69] Stéphane Ross and Drew Bagnell. “E�cient reductions for imitation learn-
ing”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings. 2010,
pp. 661–668.

[70] Stéphane Ross, Geo↵rey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 627–635.

[71] Stéphane Ross, Geo↵rey J. Gordon, and J. Andrew Bagnell. “No-Regret
Reductions for Imitation Learning and Structured Prediction”. In: CoRR
abs/1011.0686 (2010). arXiv: 1011.0686. url: http://arxiv.org/abs/1011.
0686.

[72] Reazul Hasan Russel, Bahram Behzadian, and Marek Petrik. “Entropic Risk
Constrained Soft-Robust Policy Optimization”. In: arXiv preprint arXiv:2006.11679
(2020).

[73] Andrei A Rusu et al. “Sim-to-real robot learning from pixels with progressive
nets”. In: Conference on Robot Learning. PMLR. 2017, pp. 262–270.

[74] Dorsa Sadigh et al. “Active Preference-Based Learning of Reward Functions.”
In: Robotics: Science and Systems. 2017.

[75] Anirban Santara et al. “RAIL : Risk-Averse Imitation Learning Extended
Abstract”. In: arXiv:1707.06658 (2018).

[76] John Schulman et al. “High-dimensional continuous control using generalized
advantage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[77] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv
preprint arXiv:1707.06347 (2017).

[78] John Schulman et al. “Trust Region Policy Optimization”. In: arXiv preprint
arXiv:1707.06347 (2017).

https://arxiv.org/abs/1205.2619
https://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686

BIBLIOGRAPHY 58

[79] Daniel Seita et al. “Deep imitation learning of sequential fabric smoothing
from an algorithmic supervisor”. In: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 9651–9658.

[80] Yun Shen et al. “Risk-sensitive Reinforcement Learning”. In: Neural Compu-
tation. Vol. 26. 2014.

[81] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[82] Umar Syed, Michael Bowling, and Robert E Schapire. “Apprenticeship learning
using linear programming”. In: Proceedings of the 25th international conference
on Machine learning. 2008, pp. 1032–1039.

[83] A. Tamar, Y. Glassner, and S. Mannor. “Policy Gradients Beyond Expectations:
Conditional value-at-risk”. In: CoRR. 2014.

[84] Aviv Tamar, Yonatan Glassner, and Shie Mannor. “Optimizing the CVaR
via sampling”. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015.

[85] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. “Worst Cases
Policy Gradients”. In: Conf. on Robot Learning (CoRL) (2019).

[86] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. “Worst Cases
Policy Gradients”. In: Proceedings of the Conference on Robot Learning. Ed. by
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura. Vol. 100. Proceed-
ings of Machine Learning Research. PMLR, 30 Oct–01 Nov 2020, pp. 1078–
1093. url: http://proceedings.mlr.press/v100/tang20a.html.

[87] Ajay Tanwani. “DIRL: Domain-Invariant Representation Learning for Sim-to-
Real Transfer”. In: Conf. on Robot Learning (CoRL). IEEE. 2020.

[88] Ajay Kumar Tanwani. “DIRL: Domain-Invariant Representation Learning for
Sim-to-Real Transfer”. In: Conference on Robot Learning (CoRL). 2020.

[89] Yuval Tassa et al. dm control: Software and Tasks for Continuous Control.
2020. arXiv: 2006.12983 [cs.RO].

[90] Brijen Thananjeyan et al. “ABC-LMPC: Safe Sample-Based Learning MPC
for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Con-
ditions”. In: Workshop on the Algorithmic Foundations of Robotics. 2020.

[91] Brijen Thananjeyan et al. “Recovery RL: Safe Reinforcement Learning with
Learned Recovery Zones”. In: Robotics and Automation Letters (RA-L). IEEE.
2021.

http://proceedings.mlr.press/v100/tang20a.html
https://arxiv.org/abs/2006.12983

BIBLIOGRAPHY 59

[92] Brijen Thananjeyan et al. “Safety Augmented Value Estimation from Demon-
strations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic
Tasks”. In: Robotics and Automation Letters (RAL) (2020).

[93] Josh Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[94] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral cloning from
observation”. In: Proceedings of the 27th International Joint Conference on
Artificial Intelligence. 2018, pp. 4950–4957.

[95] Eugene Valassakis, Zihan Ding, and Edward Johns. “Crossing the gap: A
deep dive into zero-shot sim-to-real transfer for dynamics”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2020, pp. 5372–5379.

[96] Kim P. Wabersich, Raamadaas Krishnadas, and Melanie N. Zeilinger. “A Soft
Constrained MPC Formulation Enabling Learning From Trajectories With
Constraint Violations”. In: IEEE Control Systems Letters 6 (2022), pp. 980–
985. doi: 10.1109/LCSYS.2021.3087968.

[97] Min Wen and Ufuk Topcu. “Constrained Cross-Entropy Method for Safe Rein-
forcement Learning”. In: Advances in Neural Information Processing Systems.
Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url: https://
proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-

Paper.pdf.

[98] Kelvin Xu et al. “Learning a prior over intent via meta-inverse reinforcement
learning”. In: International Conference on Machine Learning (2019).

[99] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On Early Stopping
in Gradient Descent Learning”. In: Constructive Approximation 26.2 (Aug.
2007), pp. 289–315. issn: 1432-0940.

[100] Jiakai Zhang and Kyunghyun Cho. “Query-e�cient imitation learning for
end-to-end autonomous driving”. In: arXiv preprint arXiv:1605.06450 (2016).

[101] Shangtong Zhang, Bo Liu, and Shimon Whiteson. “Mean-Variance Policy
Iteration for Risk-Averse Reinforcement Learning”. In: Conference on Artificial
Intelligence (AAAI). 2021.

[102] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-real
transfer in deep reinforcement learning for robotics: a survey”. In: 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE. 2020, pp. 737–
744.

https://doi.org/10.1109/LCSYS.2021.3087968
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/34ffeb359a192eb8174b6854643cc046-Paper.pdf

BIBLIOGRAPHY 60

[103] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In:
Aaai. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

	List of Figures
	List of Tables
	Introduction
	Related Work
	Reinforcement Learning
	Imitation Learning
	Sim2Real Transfer in Robot Learning
	Model Predictive Control

	Preliminaries
	Markov Decision Processes
	Distributions over Reward Functions
	Risk Measures

	Policy Gradient Bayesian Robust Optimization for Imitation Learning (PG-BROIL)
	BROIL Objective
	BROIL Policy Gradient
	BROIL Policy Gradient with Entropic Risk Measure
	Trust Region PG-BROIL (PPO)

	PG-BROIL Experiments
	Prior over Reward Functions
	Learning From Human and Artificial Demonstrations

	BROIL with Cross Entropy Method and Model Predictive Control (MPC-BROIL)
	Algorithm

	MPC-BROIL Experiments
	Prior Distribution over Rewards and Known Dynamics

	Switching Criteria for Imitation Learning
	Algorithm Description
	Switching Metrics
	Stopping Conditions

	Sim2Real Switching Criteria Experiments
	Experimental Setup
	Evaluation Metrics
	Results

	Limitations
	Limitations with PG-BROIL and MPC-BROIL
	Limitations with Sim2Real Switching Criteria

	Conclusions and Future Work
	PG-BROIL and MPC-BROIL
	Sim2Real Switching Criteria

	Bibliography

