
Tuning Doubly Randomized Block Kaczmarz Method

Rahul Jain

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-52

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-52.html

May 10, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work would not have been possible without the endless and constant
support of so many people. I would like to thank my advisor Professor Jim
Demmel for his overall guidance, mentorship and his kind words of
encouragement. I would like to thank my postdoctoral fellow Riley Murray,
Hengrui Luo, Younghyun Cho, Xiaoye Sherry. Li, Yang Liu, and the rest of
the GPTune team for their supervision. I learned so much from the
numerous and countless feedback that was given to me. I would also like to
thank Professor Mahoney for his valuable editorial feedback as my second
thesis reader.
This would not have been possible without my mom and dad and my sister
for their unconditional support. I would also like to thank my friends for
being a constant source of encouragement for me.

8 May 2022

Tuning Doubly Randomized Block Kaczmarz Method

by

Rahul Jain

A thesis submitted in partial satisfaction of the

requirements for the degree of

5th Years

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jim Demmel, Chair
Professor Michael Mahoney

Spring 2022

1

Abstract

Tuning Doubly Randomized Block Kaczmarz Method

by

Rahul Jain

5th Years in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jim Demmel, Chair

In the past, algorithms for solving linear systems of equations have focused on finding a
solution that is not only stable with respect to small changes to the input, but with a very
small error with respect to the analytical solution. However, this comes at the cost of an
increased runtime. There has been an increased need to find a solution to linear system
in a small amount of time, requiring modest accuracy. Randomized algorithms are quite
beneficial in this aspect in that they can have a smaller runtime than their deterministic
counterparts. In this thesis, we explore and then modify Randomized Block Kaczmarz, a
randomized algorithm for solving overdetermined linear systems of equations, to see how
practically effective it can be.

i

Contents

Contents i

1 Introduction 1
1.1 Contribution . 1

2 Kaczmarz Method 3
2.1 Simple Kaczmarz Method . 3
2.2 Block Kaczmarz Method . 4

3 Randomized Linear Algebra 7
3.1 Introduction . 7
3.2 Preliminaries/Notation . 7
3.3 Subspace Embeddings . 8
3.4 Sketch and Precondition . 10

4 Iterative Refinement 11
4.1 Setup . 11
4.2 Iterative Improvement . 13

5 Doubly Randomized Block Kaczmarz Method 16
5.1 Preliminaries . 16
5.2 Algorithm . 16
5.3 Numerical Experiments . 18

6 Tuning Experiments 20
6.1 Using Auto-tuners . 20
6.2 Numerical Experiments . 21

7 Related Work 25
7.1 Clustered Kaczmarz Method . 25
7.2 Applications of Block Kaczmarz . 26

8 Conclusion 28

ii

Bibliography 29

iii

Acknowledgments

This work would not have been possible without the endless and constant support of so many
people. First and foremost, I would like to thank my advisor Professor Jim Demmel for his
overall guidance, mentorship and his kind words of encouragement. I would like to thank my
postdoctoral fellow Riley Murray, Hengrui Luo, Younghyun Cho, Xiaoye Sherry. Li, Yang
Liu, and the rest of the GPTune team for their supervision and always being there to help
me out and always dealing with my questions as I worked through this thesis. I learned so
much from the numerous and countless feedback that was given to me. I would also like to
thank Professor Mahoney for his valuable editorial feedback as my second thesis reader. I
am ever so grateful to have worked with such an amazing team here at Berkeley.

This would not have been possible without my mom and dad and my sister for their
unconditional support throughout my entire time here at Berkeley. I would also like to
thank my friends for being a constant source of encouragement for me as I worked through
this thesis and for celebrating with me every accomplishment along the way.

1

Chapter 1

Introduction

Linear systems of equations play a fundamental role in numerical linear algebra as they
are used to model various problems in fields ranging from economics to physics to computer
science to statistics. Furthermore, linear systems are used as they tend to be more simple and
interpretable than other modeling techniques. These systems of equations can be represented
in matrix form, Kz = h 1, where K ∈ Rm,n is the coefficient matrix and h ∈ Rm is called the
response vector and z ∈ Rn is the vector of unknowns that one is trying to solve for. There has
been much research done into developing computational algorithms to solve linear systems
of equations. These algorithms range from direct algorithms such as Gaussian elimination in
cases when m = n and QR factorization in cases when m ≥ n to iterative algorithms, which
generate a sequence of approximate answers. Examples of common iterative algorithms
to solve linear systems are Conjugate Gradient method, Jacobi method, Gauss-Seidel, and
successive over-relaxation [7]. There is an increasing need to make these computational
algorithms as efficient as possible with regards to runtime and accuracy of the solution.
For the most part, many traditional algorithms for solving linear systems of equations have
focused on finding a solution that is as accurate as can be. However, in many fields, a
highly accurate answer is not the priority but rather the time it takes to get a solution. As
a result, there has been a rise in the development of scientific algorithms that incorporate
randomization.

1.1 Contribution

In this thesis, the focus is primarily on modifying Randomized Block Kaczmarz method, a
randomized iterative solver, to solve overdetermined linear systems of equations and eval-
uating its performance. In particular, we want to see if we can make Randomized Block
Kaczmarz practically effective as it has previously not demonstrated practical performance.
In Chapter 2, we will go over a variety of Kaczmarz methods and their convergence rates
to understand the various aspects of the methods. Then Chapter 3 will focus on providing

1We will refer to the more common Ax = b for underdetermined systems later on.

CHAPTER 1. INTRODUCTION 2

background into randomized linear algebra and the essentials that will be necessary for fur-
ther understanding. Chapter 4 and Chapter 5 will focus on the development of the modified
algorithm, which will be called Doubly Randomized Block Kaczmarz method. In particu-
lar, we will also look at its convergence rate as well. Furthermore, the algorithm that we
develop has multiple tuning parameters that affect the convergence rate and runtime of the
algorithm. To automate this process in a quick manner, we will use auto-tuners to find the
optimal tuning parameters to optimize for the runtime of our algorithm. Chapter 6 will pro-
vide a background for tuning and will present the results of the auto-tuners run on Doubly
Randomized Block Kaczmarz method. In Chapter 7, we will present a variety of different
variants of Kaczmarz methods as well as practical applications.

3

Chapter 2

Kaczmarz Method

Kaczmarz method [13] is an iterative solver for solving overdetermined systems of equations.
More specifically, given K ∈ Rm,n and h ∈ Rm where m > n, rank(K) = n, the goal is to
minimize the following objective function.1 Find z∗ ∈ Rn such that

z∗ = argmin
z∈Rn

||Kz − h||22

This problem is commonly referred to as the “Least Squares” problem. This commonly arises
when one wants to fit a model to a set of data points to extract a pattern. Furthermore, let
zj ∈ Rn be the value of z found at the jth iteration.

2.1 Simple Kaczmarz Method

Let us use the same setup as above. Additionally, let Kt denote the tth row of K and let
ht be the tth entry of h. The simple Kaczmarz method works by generating a sequence
of guesses to the solution (z0, z1,, zk) where k is the number of iterations for which the
method runs. First, we pick a row index t = f(k), then

zk+1 = zk +
ht −Ktz

k

||Kt||22
KT

t , k ≥ 0

f(k) is referred to as the control strategy that determines which row is chosen at the kth

iteration. This is repeated until the maximum number of iterations has been completed or a
convergence tolerance is met. This can be seen as projecting zk onto the hyperplane defined
by B = {x | Ktx = ht | x ∈ Rn}.

Row selection

The classic strategy simply cycles through all rows in a sequential manner. However, in
many cases, the convergence with this control strategy can be quite slow. In practice, the

1Can also be within Cm,n, Cm. Without loss of generality, we will work in R.

CHAPTER 2. KACZMARZ METHOD 4

most common strategy is to randomly select a row Kt with probability
||Kt||22
||K||2F

. The reasoning

behind this can be seen as emphasizing rows/equations with a larger norm.

Convergence

Without loss of generality, let’s assume that each row of K is standardized with respect to
the ℓ2. norm

2 Let us also assume that the control strategy is sampling rows with probability
proportional to their norm. Since all the norms are the same, this is equivalent to sampling
each row with probability 1

m
. Thus, the convergence of the Simple Kaczmarz method is

presented in Needell [19]:

E||zk − z∗||22 ≤
[
1− σ2

min(K)

m

]k
||z0 − z∗||22 +

m||Kz∗ − h||2∞
σ2
min(K)

There are some observations that can be made from the formula for the convergence. First,
we can see that the rate of convergence is exponential and is dependent on the smallest
singular value of K, but there does not appear to be a dependence on σmax(K). This is
mainly because each row has unit norm, so 1 ≤ σmax(K) ≤

√
m, so we should not expect to

see σmax(K) in the convergence bound. It also seems that as σmin(K) increases, the rate of
convergence increases as both terms on the right side decrease. The second observation is
that the second term on the right side is independent of k. Thus, as k → ∞, the first term
on the right side becomes zero while the second term remains, thus

lim
k→∞

E||zk − z∗||22 ≤
m||Kz∗ − h||2∞

σ2
min(K)

This implies that zk from Kaczmarz converges to a fixed ball around z∗ with radius m||Kz∗−h||2∞
σ2
min(K)

.

2.2 Block Kaczmarz Method

As we can see from the simple Kaczmarz method, we can easily extend this simple idea of
projecting z onto the solution space of a single equation to the solution space of multiple
equations at a time. This introduces the idea behind the Block Kaczmarz method. Before
we go into the algorithm, let us define some important terms. The number of equations that
we decide to project z onto is referred to as the “block size” which we will refer to as b. Let
τ = {τ1, τ2,, τr} be a partition of the row indices of K where r = ⌊m

b
⌋ where |τi| = b for

1 ≤ i ≤ r. 3 What this means is that when i ̸= j, τi ∩ τj = ∅ and ∪r
k=1τk = [1, 2, 3,,m].

Furthermore, we will let Kτ be the rows of K indexed by τ , hτ be the values of h indexed

2We can always scale each equation t of the system to make the matrix K standardized.
3When b does not perfectly divide m, the last block will contain ≤ b rows. Without loss of generality,

we assume b divides m.

CHAPTER 2. KACZMARZ METHOD 5

by τ , and K†
τ denote the Moore-Penrose pseudoinverse. For simplicity sake, we will choose

τ1 the first b rows of K and τ2 to be the next b rows and so on. This will be a valid partition
according to the above definition.

Algorithm 1 Block Kaczmarz Method

Require: K ∈ Rm,n, h ∈ Rm, b (Block Size), z0 ∈ Rm, ϵ ≥ 0, epochs,f Control Strategy
1: r = ⌊m

b
⌋

2: τ = {τ1, τ2,, τr} ▷ τ1 contains the first b rows of K, τ2 contains the next b rows, etc
3: i = 0
4: while i ≤ epochs and ||Kzi − h||2 > ϵ do
5: Pick τ = f(i)
6: wi = 0m

7: zi+1 = zi +K†
τ (hτ −Kτz

i)
8: i = i+ 1
9: end while

We can see that the expensive part of Block Kaczmarz method occurs on line 7, where we
have to compute K†

τ . Always, instead of computing K†
τ (hτ −Kτz

i) directly as in line 7, it is
preferred to solveKτw

i = hτ−Kτz
i for wi ∈ Rb. The reason for this is because computingK†

τ

directly and applying it directly to hτ −Kτz
i is not as accurate as solving Kτw

i = hτ −Kτz
i

for wi ∈ Rb. Furthermore, computing K†
τ directly can also result in numerically unstable

results. When b = 1 (one row at a time), Block Kaczmarz reduces to the simple Kaczmarz
method and when b = m (all of the rows), you are projecting zi onto the solution space
of the matrix. In this paper, we assume that b (the block size) is a fraction of the number
of columns; thus we can see here that Kτw

i = hτ −Kτz
i is an underdetermined system of

equations. This is the bottleneck in randomized Block Kaczmarz as one needs to repeatedly
solve an underdetermined linear system of equations per iteration. We view any algorithm
that solves this underdetermined system of equations as a black-box algorithm.

Randomized Block Kaczmarz Method

In similar fashion to simple Kaczmarz method, there are multiple random control strategies
for choosing the block τk to project zk onto [19]. The one which we will focus on is the one
that will randomly permute the rows of of K per iteration and then will choose the blocks
in a sequential manner. This process is repeated per iteration.

Convergence of Randomized Block Kaczmarz

Here we will analyze the convergence rate of Randomized Block Kaczmarz method where
one samples a block from τ uniformly at random. Before we introduce the convergence rate,
it will be helpful to introduce some definitions that were introduced in [19].

CHAPTER 2. KACZMARZ METHOD 6

Definitions

A (r, α, β) row paving of the matrix K is a partition τ = {τ1, τ2,, τr} such that

α ≤ λmin(KτK
T
τ) and λmax(KτK

T
τ) ≤ β for all τk ∈ τ

Here we can see that
λmax(KτK

T
τ)

λmin(KτKT
τ)

≤ β

α

Thus we can see β
α
is an upper bound on the condition number of every block of the partition

τ of K.

Convergence Rate

The convergence rate [19] is as follows : Given a (r, α, β) row paving τ ,

E||zk − z∗||22 ≤
[
1− σ2

min(K)

βr

]k
||z0 − z∗||22 +

β

α
∗ ||Kz∗ − h||2

σ2
min(K)

There are a few observations that we can make. First, there still seems to be a dependence on
σ2
min(K) and no dependence on σ2

max(K). We also still see an exponential rate of convergence
as shown by the first term on the right side of the inequality. Furthermore, when the system
of equations is consistent, the second term on the right disappears (as ||Kz∗ − h||22 = 0) and
our convergence rate is only dependent on β and σ2

min(K) . In general we hope for β
α
to be

close to 1.

7

Chapter 3

Randomized Linear Algebra

3.1 Introduction

In the past, work in numerical linear algebra has been concerned with finding the correct
answer with an error close to the machine epsilon, ϵ, in a reasonable amount of time. Al-
though there has been success in finding fast algorithms that accomplish this goal, there are
still many algorithms for which finding an answer with error ϵ takes a long time and requires
many computational resources. Often, in many disciplines dealing with big data, it suffices
to find a solution that is correct with an error much larger than ϵ in a reasonable amount of
time. Sometimes, many fewer digits of accuracy suffice in many cases. As a result, there has
been an emergence of randomized matrix algorithms, especially in large-scale machine learn-
ing and big data analysis. The advantages that randomization presents are that it leads to
simpler and faster algorithms. There is still research being done on constructing randomized
linear algebra algorithms with theoretical guarantees on the error. In this thesis, the goal
is to evaluate our doubly Randomized Block Kaczmarz method and see if it is competitive
against traditional iterative solvers for linear systems.

3.2 Preliminaries/Notation

Unless noted, we can assume that || · || refers to the ℓ2 norm when the quantity inside
is a vector and the operator norm when the quantity inside is a matrix. Furthermore,
a Rademacher random variable is defined as a random variable with values {-1, 1} with
probability 1

2
or {z ∈ C : |z| = 1} with uniform probability. Without loss of generality, we

will focus on space R in this chapter.

CHAPTER 3. RANDOMIZED LINEAR ALGEBRA 8

3.3 Subspace Embeddings

In the context of randomized linear algebra, it is common to project an entire matrix onto
a much lower dimensional space. There are multiple reasons for this. The first one is that
projecting onto a lower dimensional space results in a smaller representation of the data
which can then be used in any algorithms down the line. This can be used to decrease the
runtime of the algorithm where the matrix is very large, which commonly arises in big data
analysis. Furthermore, many matrices tend to be of low rank, containing many redundancies.

These projections are done by applying a subspace embedding S, a sketching operator,
to the input matrix. A sketching operator is simply a random linear operator that is used
to apply to a matrix. More specifically, a subspace embedding S ∈ Rd,m for A ∈ Rm,n is
defined as an sketching operator that when applying S to A, it condenses the range of A
from the dimension m to d ≪ m [1]. The resulting matrix is SA ∈ Rd,n which is referred to
as the sketch of the matrix A. The main property of interest is that we want to ensure that
SA still contains the same information as A to a certain level of accuracy. This motivates
the following definition.

Definition 1 ([1]). S ∈ Rd,m is a η−embedding for the range(A) if

(1− η)||Ax||2 ≤ ||SAx||2 ≤ (1 + η)||Ax||2

η is referred to as the distortion factor, and ideally we would like it to be close to 0.

Gaussian Sketching Operator

The Gaussian sketching operator is one of the most used sketching operators due to its
simplicity. A Gaussian sketching operator S ∈ Rd,m is constructed as follows. Let S̃ ∈ Rd,m

be a matrix such that each entry is drawn independently from a N (0, 1) distribution. Often,
it is common to scale S̃ such that E[STS] = Im, as E[STS] is the covariance matrix of
S. However, this is not always required. However, we get S = 1√

d
S̃ ∈ Rd,m. One of the

disadvantages is that constructing a Gaussian requires one to generate md i.i.d. samples
from a N (0, 1) distribution, which is costly in higher dimensions [26]. However, this is much
cheaper to construct than an orthonormal sketching operator, as we will see below.

Orthonormal Sketching Operator

An orthonormal sketching operator S ∈ Rd,m is constructed as follows [18].

1. Construct a Gaussian sketching operator S̃ ∈ Rm,d

2. Construct the QR factorization of S̃ = QR where Q ∈ Rm,d and R ∈ Rd,d.

3. S = (Q ∗ sign(diag(R)))T ∈ Rd,m where diag(R) ∈ Rd contains the diagonal entries of
R in a vector. Furthermore, sign(diag(R)) ∈ Rd is a vector where sign(diag(R))i = 1
if diag(R)i ≥ 0 and -1 otherwise.

CHAPTER 3. RANDOMIZED LINEAR ALGEBRA 9

One of the key advantages of using an orthonormal sketching operator is that it is numerically
stable, thus providing less room for errors. However, one of the main disadvantages is that
it is quite expensive to construct, as one needs to not only construct a Gaussian sketching
operator but also compute the QR factorization of the resulting sketch operator.

Sparse Sketching Operator based on Sparse
Johnson-Lindenstrauss Transform (SJLT)

While there is not a standardized version of what a sparse sketching operator is, we will go
over one particular definition. A sparse sketching operator based on SJLT is constructed as
follows. Given 2 parameters, v, k ≤ d, each column vi of S ∈ Rd,m is constructed by selecting
k out of the d total coordinates uniformly at random and setting the components to be v
with probability 1

2
or −v with probability 1

2
[17]. The rest of the entries in the vector are set

to 0. One can use the Hanson-Wright inequality to bound the probability that the distortion
factor is within a factor ϵ [6].

Sparse Sign Sketching Operator

A sparse sign sketching operator S ∈ Rd,m is constructed as follows. Given a parameter
2 ≤ k ≤ d , referred to as the “sparsity” of the sketch, we construct v1, v2,vm ∈ Rd such
that each vi ∈ Rd contains k i.i.d Rademacher variables in k uniformly random coordinates
[17]. Then S is constructed as follows

S =

√
m

k

 | | . . . |
v1 v2 . . . vm
| | . . . |

 (3.1)

In practice, it was shown in Tropp, Turtsever, Udell, and Cevher [27], that k = min{d, 8}
works, however there is still much work to be done. It is shown that matrix-vector multipli-
cation with S takes O(km). One of the main disadvantages of this operator is that it is quite
difficult to implement, as one must take advantage of the sparsity structure of S to achieve
good performance. However, there are highly optimized sparse matrix-vector multiplication
methods available in widely available libraries ranging from Intel MKL [12] to the Harwell
Subroutine library [24].

Subsampled Randomized Fast Trigonometric Transform (SRTT)

A subsampled randomized fast trigonometric transform sketching operator S ∈ Rd,m is
constructed as follows.

S =

√
m

d
∗R ∗ T ∗ F ∗ Π

where R, T, F,Π are as follows.

CHAPTER 3. RANDOMIZED LINEAR ALGEBRA 10

• Π ∈ Rm,m - random permutation matrix (optional)

• F ∈ Rm,m - diagonal matrix of Rademacher variables

• T ∈ Rm,m - fast trigonometric transform. The choice of trigonometric transform can
be DTFT (Discrete Time Fourier Transform) [20], DCT (Discrete Cosine Transform)
[20], Walsh Hadamard Transform [25], or the discrete Hartley Transform [11].

• R ∈ Rd,m- A matrix that randomly samples d entries from the Rm vector.

It can be shown that a matrix-vector multiplication with S would take O(m log d) [27].
However, while these do perform very well in practice as they are very cheap to store and
because they can rapidly be multiplied by matrices to form sketches. However, they are very
hard to implement in practice [1], although there are many highly tuned libraries available
that implement SRTT that one can use.

3.4 Sketch and Precondition

The sketch and precondition framework is one where one obtains a sketch of the matrix (ie,
given A, calculates SA where S is a sketching operator) to use for iterative solvers regarding
A. The sketch of the problem data is used to compute a “Preconditioner” [1] .The motivation
is that by “preconditioning” the matrix, the condition number of the resulting problem
hopefully becomes small, as to accelerate convergence of any iterative solvers used on the
problem.The QR factorization is just one of many ways to find appropriate preconditioners
that can be used for overdetermined linear systems. Other factorizations of SA can be used
to find appropriate preconditioners [1].

11

Chapter 4

Iterative Refinement

4.1 Setup

In Randomized Block Kaczmarz method, each iterate includes a subproblem which is to
solve an underdetermined system of equations (wide matrix). In this case, there are multiple
solutions to the system. In this project, we would like to choose the one with minimum
norm. This is written as 1

min ||x||22 subject to Ax = b

We would like to explore the extent to which iterative refinement can improve upon an initial
solution for this problem, which is found using a Sketch and Precondition solver from the
Parla library [18], a library containing algorithms for randomized linear algebra. Iterative
refinement is the process of correcting an initial approximation to the solution of a system of
equations Ax = b where A, x, b have appropriate dimensions. This is typically done in due
part to decrease the relative error between the computed x (the numerical solution computed
by the computer) and x∗ (the true value). The classic algorithm for iterative refinement in
the case of square matrices follows this.

Algorithm 2 Iterative Refinement for Square Matrices

Require: A ∈ Rn,n, b ∈ Rn, x0 ∈ Rn, iterates ≥ 1
for m = 1,2,3....iterates do

rm = Axm − b ▷ this is the residual
Approximately solve Aδm = rm ▷ δm represents the correction
xm+1 = xm − δm ▷ The correction is added to xm

end for
return x̂ = xiterates+1

1For notational convenience, we will refer to Kz = h as the original overdetermined problem, and Ax = b
as the underdetermined system that we will be solving per iteration.

CHAPTER 4. ITERATIVE REFINEMENT 12

The intuition behind iterative refinement is that even if x0 may not be numerically
accurate or have high precision, calculating the residual is numerically accurate, and thus we
hope that the correction will change the current iterate of the solution in the right direction.
As a result, it was initially believed that the residual should be calculated with a higher
precision than the correction δm. However, it was shown that calculating both the residual
and correction δm with the same precision would result in more numerically stable results
[3] .

If we want to run iterative refinement on an underdetermined system to find the solution
with minimum norm, we will use an algorithm that maintains the same precision throughout
the algorithm. This algorithm was given in Bjorck’s “Numerical Methods for Least Squares”
[3].

Algorithm 3 Iterative Refinement via Fixed Precision for Underdetermined Systems

Require: A ∈ Rr,n, b ∈ Rr, x0 ∈ Rn, y0 ∈ Rr, iterates ≥ 1
1: for m = 1,2,3....iterates do
2: gm = b− Axm ▷ This is the residual
3: Approximately solve AAT δym = −gm ▷ δym represents the correction
4: ym+1 = ym + δym ▷ The correction is added to ym

5: xm+1 = xm − AT δym ▷ This corrects the solution xm

6: end for
7: return x̂ = xiterates

Oftentimes, x0, y0 are taken to be 0, 0 respectively. Let k() refer to the ℓ2 condition
number of the quantity inside the parentheses and let ϵ be the machine-dependent epsilon
and c be a constant. It is shown in [4], [5], [3] that the rate of improvement of the solution
to Ax− b where x∗ is the optimal value can be formulated as

||xs − x∗||2
||xs−1 − x∗||2

≤ cεmin
D≻0

k(AD).

We will formulate the problem in line 3 as an augmented system to solve δym, which will
look like [

I AT

A 0

] [
x

δym

]
=

[
0
gm

]
(4.1)

The equations in the augmented system can be reduced to

x+ AT δym = 0 (4.2)

Ax = gm. (4.3)

When plugging in x = −AT δym, we get AAT δym = −gm, which is equivalent to the equation
on line 3.

CHAPTER 4. ITERATIVE REFINEMENT 13

4.2 Iterative Improvement

While iterative refinement does improve the accuracy of our solution, it comes at a cost of
solving multiple systems of equations. This can oftentimes affect the overall performance of
our algorithm, making it slower. This is not what we want from a randomized algorithm,
as we hope to get faster performance than the deterministic counterparts. Furthermore,
when solving linear systems, the condition number of the matrix can strongly impact the
problem at hand. Thus, it would be wise to see how well “iterative refinement” improves
the initial solution for a variety of matrices differing in condition number. By doing so, we
can hope to gain more insight on whether to incorporate iterative refinement via a solver for
the augmented system in Equation 4.1 into our modified Kaczmarz algorithm.

Experiment Setup

If we let xm represent the solution found at the mth iterate of iterative refinement, the “error
improvement ratio” at the kth iteration is calculated as follows:

log(||x0 − x∗||22)− log(||xj − x∗||22)

where j = argmin0≤i≤k ||xi − x∗||22 and x0 is the initial guess to the solution and x∗ is the
actual solution. In a numerical sense, this is equivalent to seeing how many extra correct
digits of accuracy one gets after running Iterative Refinement after j iterates of iterative
refinement.

In order to explore how well the randomized solver for our augemented system performed
iterative refinement on an underdetermined system, we plot the “error improvement ratio” as
a function of the row-to-column ratio of our matrix for 5 iterates of iterative refinement. The
smaller the row-to-column ratio is, the more “underdetermined” the system is. Furthermore,
we decided to have multiple plots, each for different condition numbers.

Let p represent the row-to-column ratio and let r ≥ 1 represent the specified condition
number. We tested with a fixed number of columns at 5000. Let K ′ be the matrix for which
we want to see the effects of the error improvement ratio. Since we want to see the effects of
iterative refinement for very “under-determined” systems, as it is often the case in Kaczmarz
methods the range of values we considered for the row-to-column ratio ranged from 0.01 to
0.2.

1. Define K ∈ R⌊5000p⌋,5000, where Ki,j ∼ N (0, 1).

2. Find the SVD of K = UΣV T .

3. Construct Σ
′
such that (Σ

′
)i,i = (1

r
)

i−1
⌊5000p⌋−1 for 1 ≤ i ≤ ⌊5000p⌋. 2

4. K ′ = UΣ
′
V T ∈ R⌊5000p⌋,5000.

2This is a geometric sequence ranging from 1 to 1
r .

CHAPTER 4. ITERATIVE REFINEMENT 14

The reason for Step 3 is we would like the condition number of our matrix to be approximately
r and the condition number of matrix K ′ is defined as k(K ′) = σ1

σn
= 1

1
r

= r. Thus, we choose

the singular values to follow a geometric sequence from 1 to 1
r
.

Graphs

Figure 4.1: These results were generated using 5 iterations of iterative refinement, repeated
10 times for stability. The results of all the runs are shown in the background, with the
mean being the dotted line

Takeaways

There are a couple key takeaways from these two plots. For one, we can see that as the
condition number of the matrix increases, the average “error improvement ratio” seems to

CHAPTER 4. ITERATIVE REFINEMENT 15

decrease. This is in line with what is expected as the condition number of the matrix K ′

should give a bound on how “poorly” the solution to a linear system involving K ′ will be.
However, this trend does not follow throughout as we see that the error improvement ratio
seems to be much higher for the matrices with condition number 105 than that of the 104

and 103 as the aspect ratio increases. What is interesting is that from condition number 105

to 106, the average error improvement ratio seems to decrease as the condition number of
the matrix increases. However, from condition number 106 onwards, the error improvement
ratio seems to decrease as the condition number of the problem increases, which is what we
expect. Future work can include further investigation to understand why the trend does not
follow at 105. Thus it should make sense that with an ill-conditioned matrix (a matrix with
a high condition number), iterative refinement will not improve the accuracy of the solution
by too much because the initial solution and the corrections will oftentimes not be calculated
accurately as well.

Furthermore, from the first and second graphs we can see that for well-conditioned ma-
trices (matrices with a low condition number), the “error improvement ratio” is quite high,
reaching up to 5 or 6 extra digits of accuracy. However, it is quite interesting that as the
matrices become more ill-conditioned, the drop-off in extra digits of accuracy gained is quite
sharp as noted in the second graph. Nevertheless, here we can see that for matrices with
condition number 105, the “error improvement ratio” value is quite high, however, for the
graph corresponding to condition number 106 and above, the improvement sharply decreases
to close to 1 approximately. For matrices with condition numbers 1011, 1012, the average
“error improvement ratio” is close to 0, indicating close to no significant improvement in
accuracy.

It is also quite interesting to see that as the “aspect ratio” of the matrix increases from
0.01 to 0.2, the improvement does not seem to change much for matrices with small condition
numbers. However, we can see that for condition numbers 106 to 1012, as the aspect ratio
increases, the error improvement ratio also seems to increase as well. However, it does not
span a large range of values as the error improvement ratio seems to be primarily between
0 and 2 for matrices with condition number 106 to 1010. We also see this as well with
matrices with condition number 1011 and 1012 where the range of error improvement ratio is
even smaller, ranging from 0.05 to at most 0.15. This seems to suggest that using Iterative
Refinement with the same precision throughout to solve a underdetermined linear system
does not seem to be very dependent on how “underdetermined” the system is. This proves
to be quite helpful in the context of Randomized Block Kaczmarz, where the choice of block
size determines how “under-determined” the linear system is. As we saw in the first chapter,
the choice of the block size can massively impact the convergence of Randomized Block
Kaczmarz.

16

Chapter 5

Doubly Randomized Block Kaczmarz
Method

Randomized Block Kaczmarz method does not seem to demonstrate practical performance.
The main expense within Randomized Block Kaczmarz is that within each iteration of the
algorithm, one is solving an underdetermined linear system. This can often take a long time
per iteration. Here, we can hope to see if a randomized algorithm can give faster results than
traditional algorithms. As mentioned in the previous chapter, we can hope to use iterative
refinement to improve the accuracy of the answer to our underdetermined linear system that
needs to be solved per iteration. In this chapter, we will introduce our new algorithm, called
Doubly Randomized Block Kaczmarz method, which will be similar to Randomized Block
Kaczmarz method while incorporating a solver for our augmented system alongside iterative
refinement to solve each underdetermined linear system.

5.1 Preliminaries

To review, the question that we want to solve is the following: z∗ = argminz∈Rn ||Kz − h||22
where K ∈ Rm,n, h ∈ Rm,m ≥ n. Next, the underdetermined system that we need to solve
is Kτw

i = hτ − Kτz
i where Kτ is the subset of rows of the original matrix K with rows

indexed by τ and hτ is the response vector to the original problem, but only containing
elements indexed by τ . Furthermore, let zi be the value of z found after processing the ith

block in our own randomized Block Kaczmarz algorithm.

5.2 Algorithm

Our algorithm will be a modification of Randomized Block Kaczmarz method. The main
difference is that rather than solve each “underdetermined” linear system in an exact manner,
we will attempt to use a saddle point solver alongside iterative refinement. The saddle
point solver that we employed is an instance of sketch and precondition. How this works

CHAPTER 5. DOUBLY RANDOMIZED BLOCK KACZMARZ METHOD 17

is we apply S, an arbitrary sketching operator which can be chosen by the user, to KT
τ to

get SKT
τ . Then, we compute a right preconditioner for KT

τ , which is equivalent to a left
preconditioner for Kτ . This is done by computing the SVD of SKT

τ = UΣV T and setting
the right preconditioner for KT

τ to be M where the ith row of M is equal to the ith row of
V divided by its corresponding singular value (σi). The “ambient dimension” of S is chosen
by setting it to be a fraction of the number of rows of Kτ , known as the sampling factor.
This parameter is chosen by the user. Once this is done, preconditioned conjugate gradient
algorithm [7] is called on the resulting system to get our initial answer. Afterwards, we
run iterative refinement using the saddle point system solver, as to improve the accuracy
of the initial solution found. The number of iterations during which we run an iterative
refinement will be called itref . Furthermore, ϵ2 ≥ 0 will represent the termination criteria
of saddle point solver + iterative refinement. Furthermore, if the ℓ2 norm of the solution
returned by the saddle solver is below ϵ3, we terminate. For simplicity’s sake, we will refer
to this entire process of solving the underdetermined system as a black box method called
saddle solver(Kτ , hτ −Kτz

i, S, sampling factor, itref , ϵ2).

Pseudocode

Algorithm 4 Doubly Randomized Block Kaczmarz Method (DRBK)

Require: K ∈ Rm,n, h ∈ Rm, b (Block Size), x0 ∈ Rm, ϵ, ϵ2, ϵ3 ≥ 0, epochs, sampling factor
v, sketch type S, it (number of iterations of iterative refinement)

1: r = ⌊m
b
⌋

2: i = 0
3: while i ≤ epochs and ||Kzi − h||2/||h||2 > ϵ do
4: Randomly permute the order of all of the rows of K and permute the entries of h

correspondingly. Call these K̃ and h̃ respectively.
5: for p = 1.....r do
6: Let K̃p contain the (p− 1)b to min(m, pb) rows of K̃

7: Let h̃p contain the (p− 1)b to min(m, pb) entries of h̃

8: wi = saddle solver(K̃p, h̃p − K̃pz
i, S, v, it, ϵ2)

9: if ||wi||2 ≤ ϵ3 then
10: return zi

11: end if
12: zi+1 = zi + wi

13: i = i+ 1
14: end for
15: end while
16: return zi

CHAPTER 5. DOUBLY RANDOMIZED BLOCK KACZMARZ METHOD 18

5.3 Numerical Experiments

Here we will show plots displaying the convergence of our doubly Randomized Block Kacz-
marz method. We plot pairs (i, ||Kzi−h||2/||h||2) where i represents the iteration count and
zi is the solution found by our algorithm at the ith iteration. For our experiments below,
we chose S to be a sparse sketching operator based on the Sparse Johnson-Lindenstrauss
Transform and the sampling factor to be 3. Furthermore, we chose the block size to be
b = ⌊0.2∗n⌋ where n is the number of columns. The number of iterations we run of iterative
refinement is 2 and ϵ1 is 10−8. Furthermore, ϵ2, ϵ3 are both chosen to be 10−14. We allowed
a maximum of 60 epochs to be run. If we recall from Algorithm 4, each epoch goes through
⌊m

b
⌋ iterations. In the plot below, each dot represents the progress at every 10 epochs.

Convergence Plots

Figure 5.1: Each of the 3 matrices was generated with iid N (0, 1) entries, as well as the
response vector h and then each row of the matrix is standardized.

CHAPTER 5. DOUBLY RANDOMIZED BLOCK KACZMARZ METHOD 19

Analysis

An observation that we see is that DRBK reaches the same error, even as the size of the
matrix grows larger. It seems to be the case that DRBK seems to follow the same convergence
rate as well. This may be a result of each of the matrices being generated in a similiar
fashion. Further work may warrant testing this out for different types of matrices as well.
Nevertheless, we see that our algorithm does perform considerably well in terms of minimizing
the relative residual error.

20

Chapter 6

Tuning Experiments

Oftentimes, an algorithm will have a set of input parameters that have varying purposes.
Some of the input parameters serve as ways to provide data for the problem at hand, while
others can serve to affect the performance of the algorithm on the problem. In general,
“performance” refers to the runtime of the application, but any quantitative value can be
used(e.g., minimizing memory usage, minimizing words moved from fast memory to slow
memory). These latter parameters are called tuning parameters, and choosing the correct
values for these tuning parameters that result in optimal performance is the subject of
considerable research. One can mathematically formulate this problem as follows. Let t be
a vector of tuning parameters, and let T represent the space of all possible tuning parameter
configurations. Furthermore, let f(x; t) represent the performance metric of the algorithm
with the tuning parameters t and the problem data x. Then the problem reduces to

For a specific x, find t∗ such that t∗ = min
t∈T

f(x; t)

How does one find the optimal tuning parameters for a particular algorithm for optimal
performance? In practice, the naive way is to try all possible configurations of the tuning
parameter space; however, that becomes harder to do when the number of tuning parameters
grows large. Furthermore, the choice of computer architecture on which the program is being
executed can also massively impact performance. Considerable research has been done on
the process of “tuning parameter selection,” and how one can find the optimal set of tuning
parameters for a particular hardware in a reasonable amount of time. There are many
sophisticated “auto-tuners” 1 that have been developed and used in practice.

6.1 Using Auto-tuners

We will discuss six auto-tuners in particular: hybridM [16], skoptDummy [21], skoptForest
[22], skoptGP [23], SMAC [15], TPE [2]. skoptDummy performs a random search within

1An auto-tuner is software that attempts to find the “optimal” tuning parameter configuration using an
algorithm.

CHAPTER 6. TUNING EXPERIMENTS 21

the bounds of the parameter values through uniform sampling. SkoptForest, skoptGP, TPE,
SMAC, and hybridM attempt to model the function f(x; t) by a simpler model function.
We call these surrogate models for f . The choice of surrogate models is a topic of research
and oftentimes is what differentiates one auto-tuner from another. The next sample is
chosen via maximizing an acquisition function, which is typically an inexpensive function
and much cheaper than f(x; t) [10]. In our case, the acquisition function we choose is
the expected improvement function. This can be mathematically written as E[u(x; t)] =
Et[max(0, fmin − f(x; t))] where fmin is the minimum value found by f so far [10]. From
here, the smaller f(x; t) is than fmin, the larger the reward, which is what we want. After
finding the point that maximizes this acquisition function, the surrogate model is updated
accordingly.

In the Doubly Randomized Block Kaczmarz algorithm, there are many tuning parame-
ters in the algorithm. Such tuning parameters include the block size, the choice of sketching
operator, and the oversampling factor (which decides the ambient dimension d of the sketch).
Thus, it would be prudent to use these tuners to see if such a configuration of tuning param-
eters exists for a particular problem such that the runtime of our algorithm is minimized. If
so, we may hope to gather more insight into the particular values or ranges that the tuning
parameters take on. Thus, we will run an experiment that will consist of trying out a multi-
tude of different auto-tuners and comparing results. First, a setup of the experiment and a
short description of how the auto-tuners work will be introduced. Then we will go into the
results of the tuning experiment and analyze the results of our experiment.

6.2 Numerical Experiments

Tuning Variables

• K ∈ Rm,n, h ∈ Rm, z0 ∈ Rm

• ϵ (termination criteria for DRBK2), r (number of iterations of iterative refinement),
ϵ2 (termination criteria of iterative refinement), ϵ3 (termination criteria regarding the
norm of the solution to the underdetermined system) and epochs.

• Block size b, sampling factor v, sketch type S.

As we can see, K,h, z0 are all parameters that define the input problem for our algorithm.
Furthermore, the second set of parameters dictates how long the algorithm can run for at
most and the accuracy desired by the solution. We get to the third set of parameters, which
are our tuning parameters for this experiment. These parameters are interesting because
for one we know that the choice of the block size can strongly impact the performance of
Kaczmarz methods and thus it would be interesting to see how this changes when using
a randomized solver within DRBK. Furthermore, the sampling factor and sketch type are

2DRBK refers to Doubly Randomized Block Kaczmarz method as referred to in Chapter 5.

CHAPTER 6. TUNING EXPERIMENTS 22

quite interesting, because these are tuning parameters that are used within the solver used
for the augmented system.

Results

Experiment Setup

We plot the cumulative minimum per tuner over 100 samples (chosen according to the tuner)
averaged over 5 repeats. Each sample corresponds to a different tuning configuration, and all
5 repeats per sample use the same tuning configuration. The repetitions are done to account
for the randomness in the tuning process. By doing so, we hope to see how well each tuner
does in finding a tuning configuration that results in optimal runtime. Let f(x; t) be the
runtime of Doubly Randomized Block Kaczmarz with the tuning configuration t on problem
instance x. For a single tuner s, we have: {(X1, y1), (X2, y2), (X3, y3), (X4, y4), (X5, y5)}
where Xi is a list containing 100 samples on the ith repeat and yi is a list such that (yi)j =
f(x; (Xi)j). This will be our setup for Figure 6.1 and Table 6.1. In Figure 6.1, for a single
tuner s, we compute yi,best ∈ R100 such that (yi,best)j = min

1≤k≤j
(yi)k. This can be seen as

computing a “running-minimum” of the runtimes in the ith repeat. We then plot the point-
wise average: ybest =

1
5

∑5
j=1 yj,best. We compute this for every tuner s. For our experiment,

the values of the non-tuning parameters are listed below:

• K ∈ R5000,1000, Ki,j ∼ N (0, 1), h ∈ R5000, hi ∼ N (0, 1), z0 = 01000

• ϵ = 10−8, r = 5, ϵ2 = 10−14, ϵ3 = 10−14, epochs=10

Furthermore, the range of possible values that the auto-tuners will consider for the tuning
parameters will be listed below

• Block Size: [100, 300]

• Sampling Factor: (1,5)

• Sketch Type: Orthonormal Sketching Operator, Gaussian Sketching Operator, Sparse
Sketching Operator based on SJLT, SRTT Sketching Operator (DCT-II)

In Table 6.1, for a single tuner, we calculate ymin,i = argmin1≤k≤100(yi)k. We calculate this
for i = 1, 2, 3, 4, 5. We then calculate ỹmin = argmedian1≤i≤5{ymin,i}.3 γ = ỹmin can be
seen as the index of the batch corresponding to the median of the minimum runtimes out
of the 5 batches. We then calculate X∗ = (Xγ)ymin,γ

, which is the corresponding tuning
configuration. In Table 6.1, we show X∗ as well as the runtime for that particular tuning
configuration: f(x;X∗) where f(x; t) is the runtime of DRBK on tuning configuration t on
problem x. We also show the total time it took for each tuner to converge to X∗ within

3The median is chosen by sorting all 5 elements in ascending order and picking the third element .

CHAPTER 6. TUNING EXPERIMENTS 23

batch γ and how many samples the tuner went through. The reason we do this is to get an
idea of what tuning parameters each tuner picked so as to minimize the runtime.

Figure 6.1: A total of 6 auto-tuners were tested. A total of 100 samples were chosen for each
auto-tuner repeated 5 times. Here, the cumulative minimum taken for each of the 5 repeats,
and then we plot the point-wise mean to get a single curve.

Model Block Size Sketch Sampling Factor Attained Minimum Runtime (s) Total Time to Converge (s) Samples

hybridM 212 SRTT 5 4.001 153.867 12
skoptDummy 253 SRTT 4.894 4.619 77.579 6
skoptForest 253 SRTT 4.894 4.566 77.485 6
skoptGP 240 SRTT 5 4.296 1057.454 70
SMAC 250 SRTT 4.15 4.466 669.020 63
TPE 257 SRTT 4.89 4.615 1003.011 68

Table 6.1: The tuning configuration as well as the attained minimum runtime over 5 batches
per auto-tuner.

CHAPTER 6. TUNING EXPERIMENTS 24

Analysis

From Figure 6.1, we can see that the hybridM model finds the tuning configuration resulting
in the smallest minimum runtime. Furthermore, from what we can see, it seems that by
around sample 70, all of the auto-tuners besides skoptGP, TPE, and hybridM stop finding
better tuning configurations. This may indicate that, for larger matrices, one might want
to limit the sampling size to 60-80 to take less time. However, we should take these results
with a grain of salt as the runtimes reported may differ on a different computer architecture.

Furthermore, from analyzing Table 6.1, we can see that the SRTT based on DCT II seems
to be the best sketch operator for all 6 tuners. This may suggest that for future problems we
can reasonably use SRTT. However, more research should be done into whether this holds
for larger problems, such as matrices with dimensions (2∗105, 1∗105). Furthermore, another
observation is that while skoptGP has the second minimum runtime, it took the most time
(1057.454 seconds) to find that value. This is relevant as one might prefer an auto-tuner
that finds their minimum runtime in a quicker amount of time.

25

Chapter 7

Related Work

There have been many variants and extensions of Block Kaczmarz as well as a simple Kacz-
marz method, that vary in application and usage. For instance, one can incorporate random-
ness into choosing the blocks, as we covered in Chapter 1. Here we will go over extensions
of Kaczmarz. By doing so, we can hope to analyze how well Kaczmarz performs in practice
and tricks that people have used to make it work for them.

7.1 Clustered Kaczmarz Method

A variant of Kaczmarz that was used was introduced in “Accelerating Random Kaczmarz
Algorithm Based on Clustering Information.” This paper improves upon “Acceleration of
Randomized Kaczmarz Method via the Johnson-Lindenstrauss Lemma” [14] [9] in that it
uses the algorithm mentioned as a benchmark. The new algorithm is as follows: rather
than looking through all the rows Ki of K or f(Ki) where f is the projection operator as
noted in [9] and selecting the one that maximizes ||zk+1 − zk||2, the rows of the matrix K
are instead clustered into p clusters via K-means clustering. Then the algorithm chooses a
representative vector Kcl for each cluster cl and proceed. The intuition is that since the goal
is to maximize the distance ||zk+1−zk||2, we want to consider hyerplanes that are furthest in
distance to our current iterate, which likely lie in the cluster furthest from the current iterate
rather than looking at other clusters. Other than that, the algorithm proceeds in the same
way as RBK-JL. This paper also improves on [9] in that it extends this for Block Kaczmarz
method. Here, the blocks are chosen by randomly picking one row from each cluster c and
aggregating it into one block Kτi and repeating the process for however many blocks are
needed, which is up to the user. The corresponding values in h are given by hτi . After this
is done, the Randomized Block Kaczmarz is run with this partition of blocks. As we have
seen in Chapter 1, the convergence rate of Randomized Block Kaczmarz is highly dependent
on the row paving β

α
which essentially acts as a “condition number” for the blocks. The

smaller this number, the faster the convergence. The reason why this is important is that
the paper provides a proof which states that the constructing the blocks via extracting rows

CHAPTER 7. RELATED WORK 26

from each cluster results in each block being well-conditioned with a small spectral norm
[14]. However, the theoretical analysis conducted in the paper is done under the assumption
that the data are somewhat “Gaussian.” Numerical experiments show that this modified
Kaczmarz with clustering outperforms RBK-JL while also being more robust to noise that
is added to K.

7.2 Applications of Block Kaczmarz

As we analyze the randomized Block Kaczmarz method and the practicality that it may
prove, it is important to look into current applications of Block Kaczmarz method and
how people are using the method for their particular project or study. The reason why
this is important is because solving tall-and-skinny systems of equations comes up in many
fields of study, ranging from physics to chemistry to machine learning to computational
statistics. This will prove to be important because by looking into the practical applications
of Block Kaczmarz to solve tall systems of equations, it may help us recognize some inherent
advantages of Block Kaczmarz and whether or not it can be used to solve big systems in a
practical time period. We might be able to gather more insight into different row sampling
schemes using the Block Kaczmarz method.

For example, Block Kaczmarz methods can be used to help solve the matrix low-rank
factorization problem. This is shown in “On Application of Block Kaczmarz Methods in
Matrix Factorization” [8]. This problem arises quite often in many machine learning appli-
cations such as recommendation systems, collaborative filtering, and topic modeling. The
low-rank matrix factorization problem is defined below.

Given a data matrix X ∈ Rm,n, find A, S = argmin
A,S

||X − AS||2F

where A ∈ Rm,k and S ∈ Rk,n. An explicit solution to the problem can be found using the
SVD of X. A common approach to computationally solving matrix factorization problems is
to utilize some notion of an “alternating scheme” where different least squares problems are
solved each iteration. Because we have two matrices under which we are optimizing over, this
works by “updating” one matrix while holding the other one constant and then alternating
with the other matrix. However, solving a system of equations each time becomes more
costly as the size of the matrix increases. Furthermore, oftentimes in matrix factorization
problems, there is some level of sparsity that can be exploited to achieve faster convergence
rates.

How the alternating scheme works with Randomized Block Kaczmarz is that it samples a
column index i ∈ [n]. Then it solves As = X:,i for s ∈ Rk using Randomized Block Kaczmarz.
Then the ith column of S is replaced by s. Then, we sample a row index j ∈ [m] and then
solve STa = XT

j,: using Randomized Block Kaczmarz. Then the jth row of A is replaced by a.
This is repeated for how many iterations need be. Initially, the original algorithm attempts
to directly solve for a, s. In [8], multiple experiments were run, comparing using alternating

CHAPTER 7. RELATED WORK 27

least squares with randomized Block Kaczmarz to the current method of alternating least
squares and the results showed that for big matrices where the true rank k is known, X,
randomized Block Kaczmarz method outperforms the previous alternating least squares in
wall clock time, however, requiring more iterations to achieve the same relative error. This
relative error is defined as:

||X − AS||2F
||X||2F

Another key observation that was made was that although Randomized Block Kaczmarz
required more iterations to converge to a solution, it required much less memory since only a
block needed to be loaded into memory each iteration. This is interesting because it presents
the question of whether Block Kaczmarz methods can be used in scenarios when the data
matrix is too big to fit into memory.

Another scenario where we see a similar variant of Kaczmarz methods being used in
practice is in tomography. The method used is called “Algebraic Reconstruction Techinque”
which is an iterative solver to solve Kz = h . The algorithm is defined as

zk+1 = zk + λk
ht −Ktz

k

||Kt||22
KT

t , k ≥ 0

where Kt is the t
th row of K, ht is the t

th value of h, and zk is the answer found at iteration
k. As we can see, this is the same as Kaczmarz method other than the λk parameter, which
is used as an “relaxation parameter” to control the rate of convergence. This is used in the
medical field for “image reconstruction.”

These practical applications of Block Kaczmarz give us insight into how we might be
better able to analyze certain tuning parameters, such as the block size. For instance, in
[8], it was shown that a larger block size resulted in a trade-off of faster convergence with
increasing runtime. From its usage in tomography, we can look into this λk relaxation
parameter as a potential tuning parameter in the future. By tuning the Randomized Block
Kaczmarz and looking into some of the tuning parameters, we hope to see more usage of
Block Kaczmarz in practice.

28

Chapter 8

Conclusion

As we can see, the beauty of Kaczmarz lies in its simplicity. From the simple algorithm of
projecting onto a solution space of a block of equations, one can derive the block Kaczmarz
algorithm and then derive the randomized block Kaczmarz algorithm and then more vari-
ants. Furthermore, by only having to solve an under-determined linear system of equations
per iteration, one simply needs to load in one block of the matrix into memory at a time,
which may be advantageous in the case where the entire matrix is too big to fit into mem-
ory. In this thesis, we went over Kaczmarz methods and the basics of randomized linear
algebra to understand the motivation behind our new algorithm, Doubly Randomized Block
Kaczmarz method. This primarily focused on incorporating a randomized solver to solve
the under-determined linear system that needed to be solved per iteration. Furthermore, to
improve the accuracy of our solution found by the randomized solver, we went over using
Iterative Refinement, a common technique for improving the solution to a linear system
of equations. Afterwards, we ran a tuning experiment to see how practically effective our
Doubly Randomized Block Kaczmarz method can be.

Through this thesis, we aimed to evaluate how efficient and practical Kaczmarz methods
can be in finding a solution for an over-determined linear system of equations. Future work
may focus on choosing a different termination criteria within our Doubly Randomized Block
Kaczmarz algorithm and running it through a bunch of auto-tuners and seeing if the tuning
parameters change. We hope that our work serves as a reference in the development of
randomized algorithms for solving linear systems of equations through Kaczmarz.

29

Bibliography

[1] BALLISTIC. “Prospectus for a Randomized BLAS and LAPACK”. Preliminary ver-
sion, not for circulation. Nov. 2021.

[2] James Bergstra, Dan Yamins, and David D. Cox. “Making a Science of Model Search”.
In: CoRR abs/1209.5111 (2012). arXiv: 1209.5111. url: http://arxiv.org/abs/
1209.5111.

[3] Ake Bjorck. “Iterative Refinement”. In: Numerical Methods for Least Squares. SIAM,
1996, pp. 120–124.

[4] Ake Bjorck. “Iterative Refinement of Linear Least Squares Solution I”. In: BIT 7
(1967), pp. 257–258.

[5] Ake Bjorck. “Iterative Refinement of Linear Least Squares Solution II”. In: BIT 8
(1968), pp. 8–30.

[6] Michael Cohen, T S Jayram, and Jelani Nelson. Simple analyses of the sparse Johnson-
Lindenstrauss transform. Jan. 2018. url: https : / / drops . dagstuhl . de / opus /
volltexte/2018/8305/.

[7] James W. Demmel. Applied Numerical Linear Algebra. Siam, 1997.

[8] Jamie Haddock Edwin Chau. “ON APPLICATION OF BLOCK KACZMARZ METH-
ODS IN MATRIX FACTORIZATION”. In: arXiv preprint arXiv:2010.10635 (2020).
arXiv: 2010.10635.

[9] Yonina C. Eldar and Deanna Needell. Acceleration of Randomized Kaczmarz Method
via the Johnson-Lindenstrauss Lemma. 2010. doi: 10.48550/ARXIV.1008.4397. url:
https://arxiv.org/abs/1008.4397.

[10] Roman Garnett. Bayesian optimization. 2015. url: https://www.cse.wustl.edu/

~garnett/cse515t/spring_2015/files/lecture_notes/12.pdf.

[11] R.V.L. Hartley. “A More Symmetrical Fourier Analysis Applied to Transmission Prob-
lems”. In: Proceedings of the IRE 30.3 (1942), pp. 144–150. doi: 10.1109/JRPROC.
1942.234333.

[12] Intel Math Kernel Library. Reference Manual. Santa Clara, USA. ISBN 630813-054US.
Intel Corporation, 2009.

BIBLIOGRAPHY 30

[13] Stefan Kaczmarz. “Angenäherte Auflösung von Systemen linearer Gleichungen”. In:
Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe des
Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35 (1937),
pp. 355–357.

[14] Yujun Li, Kaichun Mo, and Haishan Ye. Accelerating Random Kaczmarz Algorithm
Based on Clustering Information. 2015. doi: 10.48550/ARXIV.1511.05362. url:
https://arxiv.org/abs/1511.05362.

[15] Marius Lindauer et al. SMAC3: A Versatile Bayesian Optimization Package for Hy-
perparameter Optimization. 2021. arXiv: 2109.09831 [cs.LG].

[16] Hengrui Luo et al. “Hybrid Models for Mixed Variables in Bayesian Optimization”. In:
(2022+).

[17] Per-Gunnar Martinsson and Joel Tropp. Randomized Numerical Linear Algebra: Foun-
dations amp; Algorithms. 2020. doi: 10.48550/ARXIV.2002.01387. url: https:
//arxiv.org/abs/2002.01387.

[18] Riley Murray. BALLISTICLA/Parla: Python algorithms for randomized linear algebra.
Aug. 2021. url: https://github.com/BallisticLA/parla.

[19] Deanna Needell and Joel A. Tropp. “Paved with good intentions: Analysis of a ran-
domized block Kaczmarz method”. In: Linear Algebra and its Applications 441 (Jan.
2014), pp. 199–221. doi: 10.1016/j.laa.2012.12.022. url: https://doi.org/10.
1016%2Fj.laa.2012.12.022.

[20] Alan V Oppenheim, Ronald W Schafer, and John R Buck. Discrete-Time Signal Pro-
cessing. Prentice Hall, 1999.

[21] Skopt.dummy minimize¶. url: https://scikit- optimize.github.io/stable/
modules/generated/skopt.dummy_minimize.html.

[22] Skopt.forest minimize¶. url: https : / / scikit - optimize . github . io / stable /

modules/generated/skopt.forest_minimize.html.

[23] Skopt.gp minimize¶. url: https://scikit-optimize.github.io/stable/modules/
generated/skopt.gp_minimize.html.

[24] The HSL Mathematical Software Library. url: https://www.hsl.rl.ac.uk/.

[25] Joel A Tropp. “IMPROVED ANALYSIS OF THE SUBSAMPLED RANDOMIZED
HADAMARDTRANSFORM”. In: Advances in Adaptive Data Analysis 3.1 (), pp. 115–
126.

[26] Joel A Tropp. Randomized Algorithms for Matrix Computations. 2020. url: https://
authors.library.caltech.edu/108783/1/Tro20-Randomized-Matrix-Computations-

LN.pdf.

[27] Joel A. Tropp et al. “Streaming Low-Rank Matrix Approximation with an Application
to Scientific Simulation”. In: CoRR abs/1902.08651 (2019). arXiv: 1902.08651. url:
http://arxiv.org/abs/1902.08651.

