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Abstract

Improved Algorithms and Upper Bounds in Differential Privacy

by

Arun Ganesh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish Rao, Chair

Differential privacy is the now de facto industry standard for ensuring privacy while publicly
releasing statistics about a sensitive database. At a high level, differentially private algo-
rithms add noise to the statistics they compute, so an adversary cannot with high confidence
guess if any individual is in the database as any individual’s effect on the statistics can be
replicated by the noise.

The fundamental paradigm in differential privacy is the privacy-accuracy trade-off : A dif-
ferentially private algorithm’s output can be made more accurate by reducing the amount
of noise added, but in doing so the privacy guarantee decays. Current state-of-the-art algo-
rithms often require practitioners to choose between a large drop in accuracy compared to
non-private algorithms, or very weak privacy guarantees. Improving the trade-off between
privacy, accuracy, would ideally allow practitioners to get the “best of both worlds.” Some-
times, efficiency is also traded off with privacy and accuracy. That is, despite differential
privacy being an information-theoretic guarantee, an inefficient (and thus impractical to im-
plement) algorithm may still obtain a better privacy-accuracy trade-off than the best known
efficient algorithm. Designing efficient algorithms that match the privacy-accuracy trade-off
of known inefficient algorithms thus is also of practical importance.

In this thesis, we consider counting queries, private log-strongly concave sampling, and pri-
vate convex optimization, all fundamental problems in sampling and optimization, and give
algorithms for each problem improving the privacy-accuracy trade-off or efficiency when com-
pared to the previous state of the art algorithms. For counting queries, we show that adding
noise from a “Generalized Gaussian” gives better worst-case accuracy compared to Gaus-
sian noise. For private log-strongly concave sampling, we show that the discrete Langevin
dynamics allows one to efficiently approximately sample from a target distribution while
preserving privacy, a commonly needed primitive in private optimization. For private con-
vex optimization, we show that in some settings (including e.g. private linear regression), if
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we are given a sufficient amount of public data, we can obtain a better dependence on the
dimensionality of the problem than differentially private gradient descent.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Most questions in data analysis can be formulated as instantiations of the following question:
Given a database D, output some statistic f(D) about the database. For example, in an
election, D may be a database of votes, and f(D) might be the number of votes for a given
individual. This framework also captures much more complicated problems. For example,
D may be a database of labelled examples for a classification problem, and f(D) might be
the neural network achieving the highest accuracy or lowest loss on D.

Unfortunately, even if f is a very complicated function of D, publicly releasing f(D)
may leak sensitive information contained in the dataset D. A recent infamous example of
[21] demonstrates an attack that can extract sensitive information such as phone numbers
from GPT-2, one of OpenAI’s generative text models. Another classic example is the attack
of [68] on the Netflix Prize dataset, which uses public IMDB ratings to uniquely identify
individuals’ appearances (and thus their private Netflix ratings) in the Netflix Prize dataset,
despite the fact that this dataset was anonymized.

In light of these attacks, differential privacy, originally proposed by [33], has become the
industry standard for performing data analysis while preserving privacy of individuals whose
data appears in the database D. Let D be a database, and let D′ be an “adjacent” database,
i.e. the same database but with one individual’s data changed arbitrarily (say, we flip every
bit in some representation of that individual’s data). Informally, differential privacy adds
noise to the statistics computed, such that an adversary trying to learn sensitive information
about this individual in D cannot be sure if we used D or D′ to compute our statistics, since
the noise could replicate the effects on the statistic of changing from D to D′ or vice-versa.
In particular, the simplest notion of differential privacy, ϵ-differential privacy, roughly says
that someone with no prior information on whether we used D or D′ cannot guess which we
used with probability higher than eϵ

eϵ+1
. As we add more noise, ϵ gets closer to 0, and we

approach “perfect privacy.”
Note that as the noise we add increases, the noise dominates the signal of the true statis-
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tic and in turn the privacy guarantee strengthens but the accuracy of our noisy statistic de-
creases. This is known as the privacy-accuracy trade-off. This trade-off is a central paradigm
in differential privacy, and many algorithmic results in the differential privacy literature can
be viewed as attempting to optimize this trade-off for a given problem, i.e. give an algorithm
with the best possible accuracy that achieves a specific level of privacy or vice-versa. This is
an important practical problem, as practitioners may be hesitant to utilize differential pri-
vacy if it requires a large sacrifice in accuracy. For example, for the CIFAR-10 benchmark for
image classification, there is an abundance of non-private models that achieve 99% accuracy
(see e.g. [28]). However, the best models trained using ϵ-differential privacy for reasonable
values of ϵ obtain accuracy closer to 70% (see e.g. [72]). For this reason, practitioners often
use “unreasonable” values of ϵ in training machine learning models. For example [80] states
that Apple performs data analysis with ϵ = 16t, where t is the number of days since data
collection on a user began. For this setting of ϵ, even for t = 1 we have eϵ

eϵ+1
≈ .99999988,

i.e. the privacy guarantee is somewhat vacuous. By finding ways to improve the privacy-
accuracy tradeoff for fundamental problems, we can incentivize practitioners to use more
reasonable values of ϵ in practice and give more meaningful privacy guarantees to their user
base.

Of course, efficiency of these algorithms is also an important concern; there are some set-
tings where the algorithm with the best privacy-accuracy trade-off is much less efficient than
another algorithm with a worse privacy-accuracy trade-off. For example, a fundamental tool
in differential privacy is the exponential mechanism of [62]. The exponential mechanism says
that if the loss out of outputting the statistic x is ℓ(x), we output x with probability/density
proportional to e−cℓ(x), where c is a constant depending on ϵ and the “sensitivity” of the loss
function to the database. The exponential mechanism is used in a wide variety of theoretical
results in the differential privacy literature, due to its general nature and ease of analysis.
However, in the worst case, implementing the exponential mechanism requires computing
ℓ(x) for every possible statistic we could output, or if the statistics are real-valued, comput-
ing a complex integral over all statistics that could be output. In turn, many of the results
using the exponential mechanism as a building block are impractical unless they show the
exponential mechanism can be implemented efficiently. So for practical purposes, it is not
just important to improve privacy-accuracy trade-offs, but also pursue efficient algorithms
obtaining the best possible privacy-accuracy trade-off, or close to it.

In this thesis, we improve the privacy-accuracy trade-off and/or efficiency of algorithms
for consider several fundamental problems in the differential privacy literature.

1.2 Differential Privacy and Basic Mechanisms

To formally define differential privacy, we will view a database D ∈ D∗ as a (multi-)set of
data points in D, one per individual, and we will say that two databases D,D′ are adjacent
if they differ by at most one individual’s data point (that is, |D \D′|, |D′ \D| ≤ 1). We will
denote adjacency by D ∼ D′. We let M : D∗ → X be a randomized algorithm that takes
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a dataset D and outputs a point in the space of statistics X . We will useM(D) to denote
the random variable ofM’s output when given database D as input.

The simplest notion of differential privacy is pure differential privacy.

Definition 1 (Pure Differential Privacy [33]). A randomized algorithmM is ϵ-differentially
private if for any two adjacent databases D,D′, and any (measurable) subset S ⊆ X , of the
range ofM, we have:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S].

Arguably the simplest example of a pure differentially private algorithm is the Laplace
Mechanism:

Example 2 (Laplace Mechanism [33]). Suppose we have a vector function ϕ : D → Rk,
and we want to compute

∑
d∈D ϕ(d), which we will denote ϕ(D) for brevity. Suppose we

additionally have the guarantee that

max
D∼D′

||ϕ(D)− ϕ(D′)||1 ≤ ∆1.

The multivariate Laplace distribution (with mean zero) on Rk with scale λ, denoted
Lap(λ), has density function p(x) ∝ exp(− ||x||1 /λ). The Laplace mechanism for privately
computing ϕ(D) samples x ∼ Lap(∆1/ϵ), and outputs ϕ(D) + x.

The following is now well-known:

Fact 3 ([33]). The Laplace Mechanism is ϵ-differentially private. Furthermore, if the output

of the Laplace Mechanism is ϕ̃, we have E
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
1
/k
]

= ∆1/ϵ, i.e. the average

amount of noise added to each coordinate of ϕ(D), is ∆1/ϵ.

The Laplace mechanism cleanly illustrates the privacy-accuracy trade-off, a core paradigm
in differential privacy. As ϵ increases, our privacy guarantee worsens, but our accuracy
guarantee improves, and the opposite is true as ϵ decreases. The privacy-accuracy trade-off
is well-demonstrated by the settings of ϵ = 0,∞. When ϵ = 0, we have a perfect privacy
guarantee, i.e. an adversary can learn nothing about our database. However, as ϵ approaches
0, the Laplace mechanism approaches a “uniform distribution over the reals,” i.e. the statistic
we output is independent of the database, and thus not useful. When ϵ = ∞, we have no
privacy guarantee, i.e. we might as well just publish the database. However, the statistic we
publish has perfect accuracy. In turn, the goal in designing differentially private algorithms is
to optimize this trade-off. In other words, for a fixed ϵ we want to provide an algorithm with
as good as possible an accuracy guarantee, or equivalently for a fixed accuracy guarantee we
want to provide that guarantee using the smallest ϵ possible. Improving this trade-off is an
important practical question, as often in practice we need to set ϵ to be quite large to see
the desired level of accuracy.
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For many problems, ϵ-differential privacy is a strong constraint, and slightly relaxing this
constraint allows us to obtain much better results in terms of accuracy. A common relaxation
that we will use in all results in this thesis is approximate differential privacy:

Definition 4 (Approximate Differential Privacy [33]). A randomized algorithmM is (ϵ, δ)-
differentially private if for any two adjacent databases D,D′, and any (measurable) subset
S ⊆ X , of the range ofM, we have:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

When δ is sufficiently small, (ϵ, 0)- and (ϵ, δ)-differential privacy are nearly identical in
terms of their privacy guarantee. However, even with small δ theoretical upper bounds under
approximate differential privacy often improve substantially over upper bounds under pure
differential privacy.

The simplest approximate differentially private mechanism is the Gaussian mechanism.

Example 5 (Gaussian Mechanism [33]). Consider the problem of privately computing ϕ(D)
as defined in Example 2, but instead we have the guarantee that

max
D∼D′

||ϕ(D)− ϕ(D′)||2 ≤ ∆2.

The Gaussian mechanism outputs ϕ̃ sampled from N(ϕ(D), σ2 · I) for σ =
∆2

√
2 ln(1.25/δ)

ϵ
.

Fact 6 ([33]). The Gaussian mechanism is (ϵ, δ)-differentially private and

E


∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
2√

k

 = O(∆2

√
ln(1/δ)/ϵ).

The Laplace and Gaussian mechanisms can both be viewed as instances of the much
more general exponential mechanism.

Example 7 (Exponential Mechanism [62]). Suppose we want to privately output the element
in X that minimizes some loss function ℓ(x;D) depending on the database D. Suppose that
for all x ∈ X :

max
D∼D′

|ℓ(x;D)− ℓ(x;D′)| ≤ ∆.

The exponential mechanism outputs x̃ from X with probability (or density) proportional

to exp(−2ϵℓ(x;D)
∆

).

Theorem 8 ([62]). The exponential mechanism is ϵ-differentially private. Furthermore, let
G be any subset of X . Then if X is finite and x is the (random) output of the exponential
mechanism:
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E

[
ℓ(x;D)−max

x∈G
ℓ(x;D)

]
= O

∆ log
(

|X |
|G|

)
ϵ

 .

If instead X ,G are subsets of Rk, then the above claim holds with log(|X |/|G|) replaced
with log(Vol(X )/Vol(G)).

Many mechanisms in differential privacy can be viewed as instantiations of the expo-
nential mechanism, and/or use the exponential mechanism as a black box. For example, in
Example 2, we can set ℓ(x;D) = ||x− ϕ(D)||1, retrieving the Laplace mechanism (up to a
factor of 2).

1.3 Properties of Differential Privacy

Differential privacy has several properties that are convenient for designing and analyzing
differentially private algorithms. A widely used property is the post-processing property; it
follows from the data processing inequality in information theory.

Theorem 9 (Post-Processing). Let M(D) be an (ϵ, δ)-differentially private algorithm out-
putting a (random) element in X . Let f be an arbitrary randomized function from X to X ′,
that is independent of the database D. LetM′ be the mechanism that takes x =M(D) and
outputs f(x). ThenM′ is (ϵ, δ)-differentially private.

For a proof reference, see [32, Proposition 2.1]. As an example, if we are using the
Laplace mechanism to compute the number of users who satisfy a certain predicate, the only
possible answers to this question are non-negative integers, whereas the Laplace mechanism
can output any real. The post-processing property says that if after running the Laplace
mechanism, we round all negative numbers to 0, and round all positive reals to the nearest
integer, we do not violate differential privacy. Intuitively, an adversary trying to learn our
dataset could have performed the rounding on their own since it does not require access to
the dataset, so by performing this step for them, they gain no information about the dataset.

Another important property is composition, which allows us to analyze the privacy of a
chain of mechanisms, each of which is private.

Theorem 10 (Adaptive Composition [33]). Let M1,M2 be two mechanisms, where M1

takes elements of D as input and outputs elements in X1, andM2 takes elements of X1×D
and outputs elements in X2. SupposeM1 is (ϵ1, δ1)-differentially private, andM2 is (ϵ2, δ2)-
differentially private. LetM be the mechanism that samples x1 fromM1(D), then samples
x2 fromM2(x1, D), and outputs (x1, x2). ThenM is (ϵ1 + ϵ2, δ1 + δ2)-differentially private.

The above theorem can be composed multiple times to analyze a chain of mechanisms
of arbitrary length rather than length 2. As an example, we can view Example 2 when
every coordinate has the same sensitivity to the database ∆, we have ∆1 = k∆. Then,
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we can view the Laplace mechanism as the composition of k mechanisms each outputting
a single real ϕ̃i with ϵ/k-differential privacy, rather than a single mechanism outputting a
k-dimensional vector ϕ̃. Theorem 10 shows that k ϵ/k-differentially private mechanisms are
collectively ϵ-differentially private, giving an alternate proof for the privacy of the Laplace
mechanism. Of course, here the mechanisms are non-adaptive, i.e. can be run in parallel,
whereas Theorem 10 allows for adaptive/sequential mechanisms.

1.4 Differentially Private Stochastic Convex

Optimization

Definition 11 (Stochastic Optimization). Stochastic optimization is the following problem:
Given a set of models C ⊆ Rk and a data universe D, we have a loss function ℓ : C×D → R.
There is an unknown distribution τ over the data universe D, and we are given n samples D,
each i.i.d sampled from τ . Using this samples, our goal is to find a point θ (approximately)
minimizing the population loss L∗(θ) := Ed∼τ [ℓ(θ; d)].

Here, the stochasticity lies in the distribution τ over the samples we receive. Let θ∗ =
argminθ∈C L∗(θ) be the true minimizer of L∗. θ∗ is often referred to as the population
minimizer. Since we only have access to samples from τ , we cannot hope to exactly compute
θ∗, so the strategy is to instead (approximately) compute the empirical minimizer, i.e. the
minimizer θemp of the empirical loss ℓ(θ;D) := 1

|D|
∑

d∈D ℓ(θ; d), and then argue that the

generalization error L∗(θemp)− L∗(θ∗) is not too large.
Stochastic optimization as a general framework captures the problem of training deep

learning models, as the weights of a deep learning model can be viewed as a high-dimensional
vector, and deep learning models are trained by minimizing the average per-example loss on
a training set. As the aforementioned attack of [21] demonstrates, in practice, many deep
learning models are trained on data sets containing sensitive data, and thus publishing these
models may violate the privacy of users. In turn, we can instead solve differentially private
stochastic optimization.

Definition 12 (Differentially Private Stochastic Optimization). Differentially private stochas-
tic optimization is the same as stochastic optimization as defined in Definition 11, but instead
we output a random θ, and our algorithm’s distribution over θ must satisfy differential pri-
vacy with respect to the dataset D.

Most algorithms for stochastic optimization only access D via a gradient oracle for the
empirical loss, i.e. an oracle that computes 1

|D|∇
∑

d∈D ℓ(θ; d) for a given θ
1. In turn, in order

for a stochastic optimization algorithm to be differentially private, by the post-processing

1In theory and practice, for various reasons we may not actually want our oracle to compute the “full
gradient” on D, but instead on a (random) subset of examples in D. For brevity, we will only consider
algorithms that only compute full gradients in this thesis.



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

property it suffices if it uses a differentially private gradient oracle. Since differential privacy
requires some sort of bounded sensitivity, we will usually assume ℓ(θ; d) is L-Lipschitz with
respect to the ℓ2-norm, i.e. ||∇ℓ(θ; d)||2 ≤ L for all θ, d2. Given this assumption, we can
simply use the Gaussian mechanism to compute a single gradient with differential privacy,
giving the desired private gradient oracle.

The simplest and most ubiquitous example of a differentially private stochastic optimiza-
tion algorithm is differentially private gradient descent (DP-GD). DP-GD is nearly the same
as gradient descent, which repeatedly performs the update θt+1 = ΠC(θt−ηtgt), where ηt is a
learning rate function, gt is the gradient at θt, and ΠC is the Euclidean projection into C. The
only difference is that, as per the previous discussion of the Gaussian mechanism, DP-GD
uses the noisy gradient gt+bt in place of gt, where bt is sampled from a Gaussian distribu-
tion. By post-processing, the privacy guarantee of each iteration of DP-GD is the same as
the privacy guarantee of the Gaussian mechanism used to compute the noisy gradient. We
could use Theorem 10 to get a privacy guarantee for the entirety of DP-GD from the privacy
guarantee for a single iteration. However, it turns out this gives a sub-optimal analysis. In
the next section, we discuss Rènyi-divergences, which can be used to give a better privacy
analysis for DP-GD. Note that convexity is not necessarily for the privacy guarantee, so
DP-GD is still applicable for non-convex model training problems. When the loss function is
convex as well as L-Lipschitz, it’s known that DP-GD with appropriate parameter settings

has empirical loss within O(L||C||
√
k

ϵn
) of the optimal solution for the empirical loss minimiza-

tion problem. The generalization error can be shown to be at most O(L ||C|| /
√
n), giving

an overall population loss within O(L ||C|| (
√
k
ϵn

+ 1√
n
)) of θ∗.

1.5 Rènyi-Divergences

Rènyi-divergences, defined by [74], are a generalization of other divergences such as the
KL-divergence and max-divergence.

Definition 13 (Rènyi-Divergence [74]). Let P and Q be two distributions. For simplicity,
we will assume supp(P ) = supp(Q) ⊆ Rk. The α-Rènyi-divergence between P and Q for
α > 0, α ̸= 1 is defined as:

Rα(P ||Q) =
1

α− 1

∫
supp(Q)

P (x)α

Q(x)α−1
dx =

1

α− 1
Ex∼P

[
P (x)α−1

Q(x)α−1

]
=

1

α− 1
Ex∼Q

[
P (x)α

Q(x)α

]
For α = 1,∞, the α-Rènyi-divergence is defined by taking the limit of Rα(P ||Q) as α

approaches 1,∞ respectively, and are equal to the KL-divergence and max-divergence respec-
tively.

2In practice, one can enforce this assumption by “clipping” the gradients, i.e. rescaling any per-sample
gradients that have ℓ2-norm larger than L so they have ℓ2-norm exactly L; since this is more of a practical
rather than theoretical concern, we will largely ignore it here.
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Rènyi-divergences can be used to give privacy guarantees due to the following theorem:

Theorem 14 (Proposition 3 of [66]). Let M be a mechanism taking inputs in D and out-
putting random elements of X such that for some α, ϵ:

max
D∼D′

Rα(M(D)||M(D′)) ≤ ϵ.

Then for any 0 < δ ≤ 1,M is (ϵ+ ln(1/δ)
α−1

, δ)-differentially private.

In other words, to show (ϵ, δ)-differential privacy of a mechanismM it suffices to bound

the α-Rènyi-divergence ofM(D) andM(D′) by ϵ/2 for α = 1+ 2 ln(1/δ)
ϵ

. Rènyi-divergences in
combination with the above theorem provide another way to analyze the Gaussian mechanism
due to the following well-known fact:

Fact 15 (Example 3 of [36]).

Rα(N(0, σ2Ik)||N(x, σ2Ik)) ≤
α ||x||22
2σ2

.

Furthermore, Rènyi-divergences satisfy an adaptive composition theorem similar to The-
orem 10, which e.g., [1] used to provide a tighter analysis for the privacy of DP-GD.

Theorem 16 (Proposition 1 of [66]). Let M1,M2 be two mechanisms, where M1 takes
elements of D as input and outputs elements in X1, andM2 takes elements of X1 ×D and
outputs elements in X2. Suppose M1 satisfies Rα(M1(D)||M1(D

′)) ≤ ϵ1 for all D ∼ D′,
and M2 satisfies Rα(M2(x,D)||M2(x,D

′)) ≤ ϵ2 for all x ∈ X1, D ∼ D′. Let M be the
mechanism that samples x1 from M1(D), then samples x2 from M2(x1, D), and outputs
(x1, x2). ThenM satisfies Rα(M(D)||M(D′)) ≤ ϵ1 + ϵ2 for all D ∼ D′.

In particular, since in DP-GD the full gradients on D and D′ differ by at most L/n
in ℓ2-norm by the Lipschitz assumption, if we sample gt from N(σ2Ik) in DP-GD and run
DP-GD for T iterations, we get that DP-GD satisfies

Rα(M(D)||M(D′)) ≤ TαL2

2σ2n2
.

Then, by setting σ2 = O
(
TL2 ln(1/δ)

ϵ2n2

)
, for α = 1 + 2 ln(1/δ)

ϵ
we get that the α-Rènyi-

divergence is at most ϵ/2 as desired. This saves logarithmic factors over analyses based on
other standard composition theorems. Rènyi-divergences satisfy a number of other properties
that will be useful for the results in Chapter 3; we defer discussing those properties to that
chapter.
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1.6 Our Results and Organization

Chapter 2 [Generalized Gaussians and The Counting Queries Problem]: We con-
sider the counting queries problem, one of the simplest yet most fundamental problems in
differential privacy. In this problem, we wish to answer k questions about the database D,
each of the form “how many users in D satisfy a predicate ϕi?” Since each user can affect the
answers to these questions by at most 1, this is equivalent to outputting a vector ϕ(D) under
differential privacy with the guarantee that ||ϕ(D)− ϕ(D′)||∞ ≤ 1 for any adjacent D,D′.
Our goal is to minimize the maximum absolute error over the answers to the questions. For
approximate differential privacy, the simplest mechanism for this problem is the Gaussian
mechanism. The average error of the Gaussian mechanism is proportional to

√
k, but the

maximum error is proportional to
√
k log k, since the largest coordinate of a k-dimensional

Gaussian is
√
log k times larger than the average coordinate. We show that using Generalized

Gaussians, whose density is proportional to e−||x||pp rather than e−||x||22 , we can improve the
dependence on k to

√
k log log k. Furthermore, by composing with the sparse vector mecha-

nism, which roughly speaking trims the largest coordinates of a vector, we can improve the
dependence to

√
k log log log k. This chapter is based on results previously appearing in [41].

Chapter 3 [Efficient Private Log-Strongly Concave Sampling]: We next consider
finding settings in which one can efficiently implement the exponential mechanism. In par-
ticular, we consider when the loss function ℓ has support over Rk and is strongly convex
and smooth, i.e. we want to sample from the distribution with density p proportional to
e−ℓ(x). While exactly sampling from this distribution may not be efficient, we can approx-
imately sample by using a finite-time solution for a stochastic differential equation called
the Langevin dynamics whose stationary distribution is p. It is still non-obvious how to
efficiently exactly solve the stochastic differential equation even in finite-time, but we can
consider a discretization whose solution can be found efficiently given a gradient oracle for
ℓ. However, the notion of approximate sampling needs to be chosen carefully; if, e.g. we
have a sampler for a distribution that is close to p in a metric such as total variation dis-
tance or K-L divergence, using the approximate sampler in place of an exact sampler for
our exponential mechanism may violate privacy. We show that using a number of gradient
oracle calls near-linear in k, the discrete finite-time solution converges to within a small
Rènyi-divergence of p, which implies an efficient sampler for log-strongly concave densities
that preserves privacy when used in place of an exact sampler. This chapter is based on
results previously appearing in [40].

Chapter 4 [Public Data-Augmented Stochastic Optimization]: In the last chapter,
we consider how we can use a small amount of public data, i.e. data whose privacy we do
not need to preserve, to improve private learning, using private stochastic optimization as a
proxy for the learning problem. The go-to algorithm for private optimization is DP-GD. We
propose an alternative algorithm based on mirror descent. Mirror descent takes a function
Ψ that is strictly convex (such that ∇Ψ is a bijective map), and uses the update equation
∇Ψ(xt+1) = ∇Ψ(xt) − ηtgt. At a high level, mirror descent adapts gradient descent to
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the geometry of Ψ by reshaping the gradient to be smaller in directions where Ψ has large
convexity, and larger in directions where Ψ has small convexity. Our algorithm, PDA-DPMD,
chooses Ψ to be the loss function on the public data. We show that given enough public data,
PDA-DPMD has excess loss with a better dependence on the dimension than DP-GD. As an
example, for private linear regression, the excess loss of DP-GD depends on the minimum
eigenvalue of the Hessian of the loss function, whereas we show that with enough public
data PDA-DPMD’s excess loss depends on the average eigenvalue of the Hessian of the loss
function, i.e. PDA-DPMD outperforms DP-GD in non-isotropic settings. This chapter is
based on results previous appearing in [4].
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Chapter 2

Generalized Gaussians and The
Counting Queries Problem

2.1 Introduction and Problem Definition

The counting queries problem is a special case of the problem of outputting ϕ(D) as defined
in Example 2. In the counting queries problem, the vector function ϕ can only take on values
in [0, 1]k. It is called the counting queries problem as in the special case where ϕ can only
take on values in {0, 1}k we can view each coordinate of ϕ(d) as being equal to 1 if d satisfies
some predicate, and 0 if d does not satisfy this predicate. In turn, the entries of ϕ(D) are
answers to counting queries, i.e. queries of the form “how many individuals in D satisfy the
predicate ϕi?” The counting queries problem is a fundamental problem in data analysis. For
example, the counting queries problem captures the powerful statistical query model of [54].

The goal of the counting queries problem is to find a mechanism M(D) that outputs
ϕ̃, a noisy version ϕ(D) while minimizing some function of the error ϕ̃ − ϕ(D). A well-

studied notion of error is the expected average error, i.e. Eϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
1
/k
]
. For

ϵ-differential privacy, the Laplace mechanism of [33] achieves expected average error O(k/ϵ),
and there is a matching lower bound due to [46]. For (ϵ, δ)-differential privacy, the Gaussian
mechanism of [33] achieves expected average error O(

√
k log(1/δ)/ϵ), and again there is a

matching lower bound due to [78].
A more challenging notion of error is the expected maximum error, i.e.

Eϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
∞

]
.

This notion of error is more challenging in the sense that for any vector x, we have ||x||1 /k ≤
||x||∞, since the average absolute coordinate is clearly smaller than the largest absolute
coordinate. So of course, the expected maximum error of any mechanism is at least its
expected average error. For this notion of error, the Laplace and Gaussian mechanisms
are not optimal. For example, the expected maximum error of the Laplace mechanism
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is O(k log k/ϵ), as the largest coordinate of a random vector sampled from the Laplace
distribution has absolute value that is in expectation log k times larger than the average
coordinate. On the other hand, if one uses the exponential mechanism with loss function

ℓ(ϕ̃) =
∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
, the expected maximum error is O(k/ϵ), matching the best possible

expected average error [78].
For approximate differential privacy, on the other hand, until recently it was not known

whether one could get expected maximum error of O(
√
k log(1/δ)/ϵ), also matching the best

possible expected average error. The Gaussian mechanism here achieves expected maximum
error O(

√
k log k log(1/δ)/ϵ), as a multivariate Gaussian’s largest coordinate has absolute

value
√
log k times larger than its average coordinate. Prior to the results in this section,

the best known expected maximum error was O(
√
k log log k log(1/δ)/ϵ), due to [78]. The

mechanism achieving this result starts with the Gaussian mechanism, and then uses the
sparse vector mechanism to correct coordinates with large error.

2.2 Our Results and Technical Overview

Our first result is as follows:

Theorem 17. For all 1 ≤ p ≤ log k, ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k], there exists a (ϵ, δ)-
differentially private mechanism M that takes in a database D and counting queries ϕ and
outputs a random ϕ̃ ∈ Rk such that for some sufficiently large constant c, and all t ≥ 0:

Pr
ϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥
ct
√
kp log1/p k

√
log(1/δ)

ϵ

]
≤ e−t

p log k

In particular, this implies:

Eϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
∞

]
= O

(√
kp log1/p k

√
log(1/δ)

ϵ

)
.

We also have for all 1 ≤ q ≤ p:

Eϕ̃∼M(D)


∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
q

k1/q

 = O

(√
kp log(1/δ)

ϵ

)
.

We note that the lower bound on δ in Theorem 17 can easily be removed: if δ is smaller
than 2−O(k/p), we can instead use the exponential mechanism achieving average maximum
error O(k/ϵ), which matches the error guarantees of Theorem 17 in this range of δ. The
mechanism is simply to add noise from a Generalized Gaussian with shape p and an appro-
priate scale parameter σ, i.e. with density proportional to exp(−(||x||p /σ)p). In our analysis,
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we arrive at the bounds c ≤ 2094 and σ ≤ 262 ·
√
kp log(1/δ)

ϵ
, although we did not attempt

to optimize the constants in favor of a simpler analysis and presentation. We believe the
multiplicative constants in both bounds can be substantially improved with a more careful
analysis.

Setting p = Θ(log log k), this result matches the asymptotic error bound of [78]. However,
this result improves on [78] qualitatively. Although the mechanism of [78] is already not too
complex, the Generalized Gaussian mechanism we use is even simpler, just adding noise from
a well-known distribution. Notably, Generalized Gaussian mechanisms retain the property
of the Gaussian mechanism that the noise added to each entry of ϕ(D) is independent (unlike
the mechanism of [78], which uses dependent noise), and that the noise has a known closed-
form distribution that is easy to sample from1. To the best of our knowledge, this is the
first analysis giving privacy guarantees for Generalized Gaussian mechanisms besides that
in [57]. Even then, [57] does not give any closed-form bounds on the value of σ needed
for privacy. This analysis may be of independent interest for other applications where one
would normally use the Gaussian mechanism, but may want to use a Generalized Gaussian
mechanism with p > 2 to trade average-case error guarantees for better worst-case error
guarantees.

We give a summary of our analysis here. We first need to determine what value of σ
causes the Generalized Gaussian mechanism to be private. Viewing the Generalized Gaussian
mechanism as an instance of the exponential mechanism of [62], this reduces to deriving a
tail bound on ||x+ 1||pp − ||x||

p
p for x sampled from the noise distribution. If p is even this

is roughly equal to p
∑k

j=1 x
p−1
j . By a Chernoff bound on the signs of each random variable

in the sum, this is roughly tail bounded by the sum of
√
k log(1/δ) of the xp−1

j random
variables. These variables are distributed according to a Generalized Gamma distribution,
which we prove is sub-gamma. This gives us the desired tail bound, and thus an upper
bound on the σ needed to ensure (ϵ, δ)-differential privacy. To prove the error guarantees,
we derive tail bounds on the ℓp-norm of x sampled from Generalized Gaussian distributions,
as well as on the coordinates of points sampled from unit-radius ℓp-spheres, the latter of
which is done by upper bounding the volume of “sphere caps” of these spheres.

Building on this result, we improve the previous best-known ℓ∞ error for answering
counting queries with (ϵ, δ)-differential privacy:

Theorem 18. For all ϵ ≤ O(1), δ ∈ [2−O(k/ log log log k), 1/k], t ∈ [0, O( log k
log log k

)], there exists a

(ϵ, δ)-differentially private mechanismM that takes in a database D and counting queries ϕ
and outputs a random ϕ̃ ∈ Rk such that for a sufficiently large constant c:

Pr
ϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥
ct
√
k log log log k log(1/δ)

ϵ

]
≤ e− logt k.

In particular, if we choose e.g. t = 2 we get:

1see e.g. https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function.

https://sccn.ucsd.edu/wiki/Generalized_Gaussian_Probability_Density_Function
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Eϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
∞

]
= O

(√
k log log log k log(1/δ)

ϵ

)
.

Again, the lower bound on δ can easily be removed. We arrive at this result by improving
upon Generalized Gaussian mechanisms in the same manner [78] improves upon the Gaussian
mechanism: After sampling x from a Generalized Gaussian, we apply the sparse vector
mechanism to x to get x̃ which satisfies ||x− x̃||∞ ≪ ||x||∞. We then just output ϕ̃ =
ϕ(D) + x − x̃. Similarly to [78], the major technical component is showing that at least
k/ logΩ(1) k entries of x are small with high probability, which we do by deriving tail bounds
on ℓp-spheres. This is necessary for the sparse vector mechanism to satisfy that ||x− x̃||∞ is,

roughly speaking, the (k/ logΩ(1) k)-th largest entry of x rather than the largest entry with
high probability.

2.3 Other Related Work

Following our work, [25] and [42] independently gave mechanisms with optimal expected ℓ∞-
error O(

√
k log(1/δ)/ϵ), quantitatively improving our results. Since in practice

√
log log k

is unlikely to be much larger than the constants hidden by the asymptotic notation (e.g.,
using the natural log,

√
log log k = 2 for k ≈ 5 · 1023), the qualitative differences between

our results and these two results make our results still of interest to e.g. practitioners; we
highlight those differences here.

The result of [25] remarkably uses a bounded noise distribution, and in turn the maximum
error is unconditionally bounded, rather than the average maximum error being bounded,
in contrast with Generalized Gaussian mechanisms whose maximum error can be arbitrarily
large. However, a bounded noise distribution cannot e.g. satisfy group differential privacy
for all group sizes simultaneously, whereas Generalized Gaussian mechanisms can. Also,
while both results simply add noise, Generalized Gaussians are more well-studied than the
noise distribution of [25] and can be sampled by simplying powering and rescaling samples
from Gamma random variables, which should make them easier to implement in practice.

The result of [42] at a high level adds noise and then repeatedly applies the sparse vector
mechanism to correct entries with large noise, in contrast to just adding noise. In addition,
their result uses arguably even simpler sampling primitives than ours (it only needs to
sample Laplace distributions and permutations of lists), but their overall mechanism needs
a somewhat more involved iterative approach rather than a one-shot sample. Finally, as
presented the resulting noise distribution from their overall mechanism does not have e.g. a
closed-form or independent entries which may be desirable.
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2.4 Preliminaries

Our main idea is to add noise drawn from a Generalized Gaussian distribution, defined as
follows:

Definition 19 (Generalized Gaussian). The (multivariate) Generalized Gaussian distribu-
tion with shape p and scale σ, denoted GGauss(p, σ), is the distribution over x ∈ Rk with
density function proportional to exp(−(||x||p /σ)p).

Note that when p = 1, this is just the Laplace distribution, and when p = 2, this is just
the Gaussian distribution.

Sub-Gamma Random Variables

The following facts about sub-gamma random variables will be useful in our analysis:

Definition 20 (Sub-Gamma Random Variable). A random variable X is sub-gamma to the
right with variance v and scale c if:

∀λ ∈ (0, 1/c) : E[exp(λ(X − E[X]))] ≤ exp

(
λ2v

2(1− cλ)

)
.

Here, we use the convention 1/c = ∞ if c = 0. We denote the class of such random
variables Γ+(v, c). Similarly, a random variable X is sub-gamma to the left with variance v
and scale c, if −X ∈ Γ+(v, c), i.e.:

∀λ ∈ (0, 1/c) : E[exp(λ(E[X]−X))] ≤ exp

(
λ2v

2(1− cλ)

)
.

We denote the class of such random variables Γ−(v, c).

We refer the reader to [20] for a textbook reference for this definition and proofs of the
following facts.

Fact 21. If for i ∈ [n] we have a random variable Xi ∈ Γ+(vi, ci), then X =
∑

i∈[n]Xi

satisfies X ∈ Γ+(
∑

i∈[n] vi,maxi∈[n] ci) (and the same relation holds for Γ−(v, c)).

Lemma 22. If X ∈ Γ+(v, c) then for all t > 0:

Pr[X > E[X] +
√
2vt+ ct] ≤ e−t.

Similarly, if X ∈ Γ−(v, c) then for all t > 0:

Pr[X < E[X]−
√
2vt− ct] ≤ e−t.

Fact 23. Let X ∼ Gamma(a), i.e. X has pdf satisfying:

p(x) ∝ xa−1e−x.

Then X satisfies X ∈ Γ+(a, 1) and X ∈ Γ−(a, 0).
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Other Probability Facts

We will use the following standard fact to relate distributions of variables to the distributions
of their powers:

Fact 24 (Change of Variables for Powers). Let X be distributed over (0,∞) with pdf pro-
portional to f(x). Let Y be the random variable Xc for c > 0. Then Y has pdf proportional

to y
1
c
−1f(y

1
c ).

Finally, we’ll use the following standard tail bounds:

Lemma 25 (Laplace Tail Bound). Let X be a Laplace random variable with scale b, Lap(b).
That is, X has pdf proportional to exp(−|x|/b). Then we have Pr[|x| ≥ tb] ≤ e−t.

Lemma 26 (Chernoff Bound). Let X1, X2, . . . Xk be independent Bernoulli random vari-

ables. Let µ = E
[∑

i∈[k]Xi

]
. Then for t ∈ [0, 1], we have:

Pr

∑
i∈[k]

Xi ≥ (1 + t)µ

 ≤ exp

(
−t

2µ

3

)
.

2.5 The Generalized Gaussian Mechanism

In this section, we analyze the Generalized Gaussian mechanism that given database D,
samples x ∼ GGauss(p, σ) and outputs ϕ̃ = ϕ(D) + x. We denote this mechanism Mp

σ.
When p = 1 this is the Laplace mechanism, and when p = 2 this is the Gaussian mechanism.

Privacy Guarantees

We first determine what σ is needed to make this mechanism private. We start with the fol-

lowing lemma, which gives a tail bound on the change in the “utility” function
∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣p
p

if ϕ(D) changes by ∆ ∈ [−1, 1]k:

Lemma 27. Let x ∈ Rk be sampled from GGauss(p, σ). Then for 4 ≤ p ≤ log k that is an
even integer, δ ∈ [2−O(k/p), 1/k], and any ∆ ∈ [−1, 1]k we have with probability 1− δ:

||x−∆||pp − ||x||
p
p ≤ 32pk1/p−1/2

√
p log(1/δ) ||x||p−1

p + 2k
p
2 p2

We remark that the requirement that p be an even integer can be dropped by generalizing
the proofs in this section appropriately. However, we can reduce proving Theorem 17 for
all p to proving it for only even p by rounding p up to the nearest even integer (at the
loss of a multiplicative constant of at most

√
2), and only considering even p simplifies the

presentation. So, we stick to considering only even p.
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Proof. By symmetry of GGauss(p, σ) we can assume ∆ has all negative entries. Then we
have:

||x−∆||pp − ||x||
p
p =

k∑
i=1

((xi −∆i)
p − xpi )

=
k∑
i=1

∫ xi−∆

xi

pyp−1dy ≤
k∑
i=1

∫ xi−∆

xi

p(xi −∆i)
p−1dy ≤ p

k∑
i=1

(xi −∆i)
p−1 ≤ p

k∑
i=1

(xi + 1)p−1.

We want to replace the terms (xi + 1)p−1 with terms xp−1
i since the latter’s distribution

is more easily analyzed. To do so, we use the following observation:

Fact 28. If p ≤
√
k/2:

• If xi >
√
k, then we have (xi + 1)p−1 ≤

(
1 + 1√

k

)p−1

xp−1
j ≤

(
1 + 2p√

k

)
xp−1
j .

• If |xi| ≤
√
k, then we have (xi + 1)p−1 − xp−1

i ≤ (
√
k + 1)p−1 −

√
k
p−1 ≤ 2k

p
2
−1p.

• If xi < −
√
k, then we have (xi + 1)p−1 ≤

(
1− 1√

k

)p−1

xp−1
j ≤

(
1− 2p√

k

)
xp−1
j .

Fact 28 gives:

k∑
i=1

(xi + 1)p−1 ≤
(
1− 2p√

k

) ∑
i:xi<0

xp−1
i +

(
1 +

2p√
k

) ∑
i:xi≥0

xp−1
i + 2k

p
2 p.

It now suffices to show that:

−
(
1− 2p√

k

) ∑
i:xi<0

|xi|p−1 +

(
1 +

2p√
k

) ∑
i:xi≥0

|xi|p−1 ≤ 32k1/p−1/2
√
p log(1/δ) ||x||p−1

p , (2.1)

with probability at least 1 − δ. Note that each xi is sampled independently with prob-
ability proportional to exp(−(|xi|/σ)p). Since multiplying x by a constant rescales both
sides of (2.1) by the same multiplicative factor, it suffices to show (2.1) when each xi is
independently sampled with probability proportional to exp(−|xi|p), i.e. when σ = 1. By
change of variables, yi = |xi|p−1 is sampled from the distribution with pdf proportional

to y
1

p−1
−1

i exp(−y
p

p−1

i ). This is the Generalized Gamma random variable with parameters
( 1
p−1

, p
p−1

), which we denote GGamma( 1
p−1

, p
p−1

). We show the following property of this
random variable in Section 2.7:

Lemma 29. For any p ≥ 4, let Y be the random variable GGamma( 1
p−1

, p
p−1

), let µ = E[Y ].

Then µ ∈ [1/p, 1.2/p), Y ∈ Γ+(µ, 1), and Y ∈ Γ−(µ, 3/2).
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Let k′ be the number of positive coordinates in x. A Chernoff bound gives that k′ ≤
k
2
+ 3
√
k log 1

δ
with probability 1 − δ/3. By Lemma 29 and Fact 21

∑
i:xi<0 |xi|p−1 is in

Γ−((k − k′)µ, 3/2) and
∑

i:xi≥0 |xi|p−1 is in Γ+(k′µ, 1) for µ as defined in Lemma 29. We

now apply Lemma 22 with t = log(6/δ) to each sum. Since δ ≥ 2−O(k/
√
p), log(6/δ) =

O(
√
k log(1/δ)/p), i.e. we are still in the range of δ for which the square-root term in the

tail bound of Lemma 22 is the linear term ct. So Lemma 22 gives that:

Pr

[∑
i:xi<0

|xi|p−1 < (k − k′)µ− 2
√

2kµ log(1/δ)

]
≤ δ/6,

Pr

[∑
i:xi≥0

|xi|p−1 > k′µ+ 2
√
2kµ log(1/δ)

]
≤ δ/6.

Combined with the Chernoff bound, this gives that with probability 1− 2δ/3:

−
(
1− 2p√

k

) ∑
i:xi<0

|xi|p−1 +

(
1 +

2p√
k

) ∑
i:xi≥0

|xi|p−1

≤−
(
1− 2p√

k

)(
(k − k′)µ− (2

√
2)
√
kµ log(1/δ)

)
(2.2)

+

(
1 +

2p√
k

)(
k′µ+ (2

√
2)
√
kµ log(1/δ)

)
≤(2k′ − k)µ+ (2

√
kp)µ+ (4

√
2)
√
kµ log(1/δ)

≤6µ
√
k log(1/δ) + (2

√
kp)µ+ (5

√
2)µ
√
kp log(1/δ)

≤16kµ ·
√
p log(1/δ)√

k
. (2.3)

In the last step, we use that p ≤ log k ≤ log(1/δ) for the range of p, δ we consider. On
the other hand, by Fact 21

∑
i∈[k] |xi|p−1 = ||x||p−1

p−1 is sampled from a random variable in

Γ−(kµ, 3/2) and thus by Lemma 29 and Lemma 22 is at least kµ/2 with probability at least
1 − δ/3, i.e. kµ ≤ 2 ||x||p−1

p−1 with probability at least 1 − δ/3. Combined with (2.3) by a
union bound we get with probability 1− δ:

−
(
1− 2p√

k

) ∑
i:xi<0

|xi|p−1 +

(
1 +

2p√
k

) ∑
i:xi≥0

|xi|p−1 ≤ 32

√
p log(1/δ)√

k
· ||x||p−1

p−1

Finally, by the Cauchy-Schwarz inequality for any a ≤ b and k-dimensional x we have
||x||a ≤ k1/a−1/b ||x||b. So, ||x||p−1

p−1 ≤ k1/p ||x||p−1
p , giving (2.1) with probability 1 − δ as

desired.
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Given Lemma 27, determining the value of σ that makes Mp
σ private is fairly straight-

forward:

Lemma 30. Let Mp
σ be the mechanism such that Mp

σ(D) samples x ∈ Rk from x ∼
GGauss(p, σ) and outputs ϕ̃ = ϕ(D) + x. For 4 ≤ p ≤ log k that is an even integer,
ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k], and

σ = Θ

(√
kp log(1/δ)

ϵ

)
,

Mp
σ is (ϵ, δ)-differentially private.

Proof. It suffices to show that for any D,D′, letting ∆ = ϕ(D′)− ϕ(D):

Pr
ϕ̃∼Mp

σ(D)

[
log

(
Pr[Mp

σ(D) = ϕ̃]

Pr[Mp
σ(D′) = ϕ̃]

)
≤ ϵ

]
= Pr

ϕ̃∼Mp
σ(D)

[
||x−∆||pp − ||x||

p
p

σp
≤ ϵ

]
≥ 1− δ.

Here, we abuse notation by letting Pr also denote a likelihood function. By Lemma 27
we now have with probability 1− δ/2:

||x−∆||pp − ||x||
p
p ≤ 64pk1/p−1/2

√
p log(1/δ) ||x||p−1

p + 2p2k
p
2 .

The pdf of the rescaled norm r = ||x||p /σ is proportional to rk−1 exp(−rp) over (0,∞)

(the rk−1 appears because the (k − 1)-dimensional surface area of the ℓp-sphere of radius r

is proportional to rk−1). Letting R denote rp, the pdf of R is proportional to R
k
p
−1 exp(−R)

by change of variables, i.e. R is the random variable Gamma(k
p
). Then by the Gamma tail

bound, with probability at least 1− e−.001k/p > 1− δ/2, R is contained in [ k
2p
, 2k
p
], so ||x||p is

contained in [σ
(
k
2p

)1/p
, σ
(

2k
p

)1/p
]. Then by a union bound, with probability 1− δ:

||x−∆||pp − ||x||
p
p

σp
≤

128p1/p
√
kp log(1/δ)

σ
+

4p2k
p
2

σp
.

Noting that n1/n is contained within [1, e1/e] for all n ≥ 1, letting

σ = 185 ·
√
kp log(1/δ)

ϵ
,

we get that
||x−∆||pp−||x||pp

σp ≤ ϵ with probability 1− δ as desired.
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Error Guarantees

In this section, we analyze the ℓ∞ error ofMp
σ, for a given choice of δ in the range specified in

Lemma 30. We give an expected error bound, and also a tail bound on the error. The error
analysis follows almost immediately from the following lemma, which bounds the fraction of
a sphere cap’s volume with a large first coordinate:

Lemma 31. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with
arbitrary radius, i.e. the set of points with ||x||p = R for some R, for p ≥ 1. Then we have:

Pr[|x1| ≥ r ||x||p] ≤ (1− rp)(k−1)/p ≤ exp

(
−(k − 1)rp

p

)
This lemma or one providing a similar bound likely already exists in the literature, but

we are unaware of a reference for it. So, for completeness we give a full proof here. To prove
this lemma we’ll need the following lemma about convex bodies.

Lemma 32. Let A ⊆ B ⊂ Rk be two compact convex bodies with A contained in B, and
A′, B′ be their respective boundaries. Then Volk−1(A

′) ≤ Volk−1(B
′), where Volk−1 denotes

the (k − 1)-dimensional volume.

Proof. For any compact convex body S and its boundary S ′, the (k−1)-dimensional volume
of S ′ satisfies:

Volk−1(S
′) ∝

∫
Sk
Volk−1(πθ⊤S)dθ,

Where Sk is the k-dimensional unit sphere and πθ⊤S is the orthogonal projection of S
onto the subspace of Rk orthogonal to θ (see e.g. Section 5.5 of [55] for a proof of this
fact). Since A ⊆ B it follows that for all θ we have Volk−1(πθ⊤A) ≤ Volk−1(πθ⊤B) and so
Volk−1(A

′) ≤ Volk−1(B
′).

The idea behind the proof of Lemma 31 is to show that the region of the ℓp-ball with large
positive first coordinate is contained within a smaller ℓp-ball, and then apply Lemma 32:

Proof of Lemma 31. By rescaling, we can assume ||x||p = 1 and instead show:

Pr[|x1| ≥ r] ≤ (1− rp)(k−1)/p

Pr[|x1| ≥ r] =
Volk−1

(
{x : |x1| ≥ r, ||x||p = 1}

)
Volk−1

(
x : ||x||p = 1

) =
Volk−1

(
{x : x1 ≥ r, ||x||p = 1}

)
Volk−1

(
{x : x1 ≥ 0, ||x||p = 1}

) ,
Where Volk−1 denotes the (k− 1)-dimensional volume. To bound this ratio, let v be the

vector (r, 0, 0, . . . , 0), and consider the (compact, convex) body B1 = {x : x1 ≥ r, ||x− v||p ≤



CHAPTER 2. GENERALIZED GAUSSIANS AND THE COUNTING QUERIES
PROBLEM 21

Figure 2.1: A picture of the bodies in the proof of Lemma 31 for p = 2, k = 2. B2 has stripes
that are the same color as B1 \B2 to emphasize that B1 contains B2.

(1 − rp)1/p}. We have rp + (1 − r)p ≤ 1 for 0 ≤ r ≤ 1, so B1 contains the (also compact,
convex) body B2 = {x : x1 ≥ r, ||x||p ≤ 1}. Then by Lemma 32 the (k − 1)-dimensional
surface area of B1 is larger than that of B2. The boundary of B1 is the union of the bodies
B1,a := {x : x1 = r, ||x− v||p ≤ (1− rp)1/p} and B1,b := {x : x1 ≥ r, ||x− v||p = (1− rp)1/p},
whose intersection has (k − 1)-dimensional volume 0. Similarly, the boundary of B2 is the
union of the bodies B2,a := {x : x1 = r, ||x||p ≤ 1} and B2,b := {x : x1 ≥ r, ||x||p = 1}, whose
intersection has (k− 1)-dimensional volume 0. See Figure 2.1 for an example of a picture of
all of these bodies.

Nothing that B1,a = B2,a, we conclude that Volk−1(B1,b) ≥ Volk−1(B2,b). Now we have:

Volk−1

(
{x : x1 ≥ r, ||x||p = 1}

)
Volk−1

(
{x : x1 ≥ 0, ||x||p = 1}

) ≤ Volk−1({x : x1 ≥ r, ||x− v||p = (1− rp)1/p})

Volk−1

(
{x : x1 ≥ 0, ||x||p = 1}

) .

The body in the numerator of the final expression is the body in the denominator, but
shifted by v and rescaled by (1 − rp)1/p in every dimension. So, the final ratio is at most
(1− rp)(k−1)/p.

Corollary 33. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with
arbitrary radius for p ≥ 1. Then we have:

Pr[||x||∞ ≥ r ||x||p] ≤ k · exp
(
−(k − 1)rp

p

)
Proof. This follows from Lemma 31 and a union bound over all k coordinates (which have
identical marginal distributions).
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Combining this corollary with Lemma 30, it is fairly straightforward to prove our first
main result:

Theorem 34. LetMp
σ be the mechanism that takes in database D and counting queries ϕ,

samples x ∈ Rk from GGauss(p, σ), and outputs ϕ̃ = ϕ(D) + x. For 4 ≤ p ≤ log k that is
an even integer, For ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k], and

σ = 185 ·
√
kp log(1/δ)

ϵ
,

Mp
σ is (ϵ, δ)-differentially private and for some sufficiently large constant c, and all t ≥ 0:

Pr
ϕ̃∼Mp

σ(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥ 1480t ·

√
kp log1/p k

√
log(1/δ)

ϵ

]
≤ e−t

p log k + e−.001k/p

Proof. The privacy guarantee follows from Lemma 30.

For the tail bound, if
∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
> 1480t ·

√
k log1/p k

√
p log(1/δ)

ϵ
we have either ||x||p ≥

370 · k
1/2+1/p

√
p log(1/δ)

ϵ
or ||x||∞ > 4t log1/p k

k1/p
||x||p. Recall that (||x||p /σ)p is distributed accord-

ing to a Gamma(k
p
) random variable, and thus by a Gamma tail bound exceeds 2k/p with

probability at most e−.001k/p. In turn, ||x||p ≥ 370 · k
1/2+1/p

√
p log(1/δ)

ϵ
≥
(

2k
p

)1/p
σ with at

most this probability. Then it follows by setting r = 4t log1/p k
k1/p

in Corollary 33 and a union
bound that:

Pr

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥ 1480t ·

√
k log1/p k

√
p log(1/δ)

ϵ

]
≤ Pr

[
||x||∞ ≥

4t log1/p k

k1/p
||x||p

]

+e−.001k/p ≤ exp

(
−(k − 1)4ptp log k

kp

)
+ e−.001k/p ≤ e−t

p log k + e−.001k/p.

This proves Theorem 17, up to some details. We first need the following corollary of
Lemma 31:

Corollary 35. Let x be chosen uniformly at random from a k-dimensional ℓp-sphere with
arbitrary radius for p ≥ 1. Then we have:

E[||x||∞] ≤ 5 log1/p k

k1/p
||x||p
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Proof. Since ||x||∞ / ||x||p takes values in [0, 1], by Lemma 31 we have:

E[||x||∞ / ||x||p] =
∫ 1

0

Pr[||x||∞ / ||x||p ≥ r]dr

≤
∫ 21+1/p log1/p k

k1/p

0

1dr +

∫ 1

21+1/p log1/p k

k1/p

k · exp
(
−(k − 1)rp

p

)
dr

≤ 21+1/p log1/p k

k1/p
+

∫ 1

21+1/p log1/p k

k1/p

k · exp
(
−(k − 1)2p+1 log k

kp

)
dr

≤ 21+1/p log1/p k

k1/p
+

∫ 1

21+1/p log1/p k

k1/p

k · exp (−2 log k) dr

≤ 21+1/p log1/p k

k1/p
+

1

k

≤ 5 log1/p k

k1/p
.

Here we use that 2p ≥ p for all p ≥ 1 and that (1− c
n
)n ≤ e−c for all c ≥ 0.

Proof of Theorem 17. We use Theorem 34 after rounding p up to the nearest even integer
(this loses at most a multiplicative constant in the resulting error bounds). If the constant
hidden in Θ(log log k) is a sufficiently large function of c1, this gives the desired tail bound,
up to the additive e−.001k/p in the probability bound (which may be larger than the e−t

p log k

term for large values of p). To remove the additive e−.001k/p: if the less than e−.001k/p ≤ δ
probability event that (||x||p /σ)p exceeds 2k/p occurs, we can instead just output d̃ = d, i.e.
instead set x = 0. This gives an (ϵ, 2δ)-private mechanism that always satisfies (||x||p /σ)p ≤
2k/p, and then we can rescale our choice of δ appropriately. The tail bound can now be
derived as in the proof of Theorem 34. Similarly, since we always have (||x||p /σ)p ≤ 2k/p,
the expectation of ||x||∞ follows from Corollary 35. Finally, the expectation of ||x||q for
1 ≤ q ≤ p follows by using Jensen’s inequality twice and the unconditional upper bound on
||x||pp:

E[||x||q] ≤ E[||x||
q
q]
1/q = k1/qE[|x1|q]1/q ≤ k1/qE[|x1|p]1/p = k1/q−1/pE[||x||pp]

≤ k1/q−1/p · (2k/p)1/pσ = O(k1/qσ).

2.6 Composition with Sparse Vector

In this section, we generalize the mechanism of [78], which is a composition of the Gaussian
mechanism and sparse vector mechanism of [34], by analyzing a composition ofMp

σ and the
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sparse vector mechanism instead2. The guarantees given by sparse vector can be given in
the following form that we will use:

Theorem 36 (Sparse Vector). For every k ≥ 1, cSV ≤ k, ϵSV , δSV , βSV > 0, and

αSV ≥ O

(√
cSV log(1/δSV ) log(k/βSV )

ϵSV

)
,

there exists a mechanism SV that takes as input a dataset D and counting queries ϕ and
outputs ϕ̃ ∈ Rk such that:

• Letting x ∼ x′ if ||x− x′||∞ ≤ 1, SV is (ϵSV , δSV )-differentially private.

• If at most cSV entries of ϕ(D) have absolute value strictly greater than αSV /2, then:

Pr
ϕ̃∼SV (D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
∞
≥ αSV

]
≤ βSV .

• Regardless of the value of ϕ̃ we have for all t ≥ 0:

Pr
ϕ̃∼SV (x)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣ ≥ max

{
||ϕ(D)||∞ , t

√
k log(1/δSV )/ϵSV

}]
≤ ke−Ω(t).

Proof. The mechanism is given by modifying the NumericSparse algorithm given as Algo-
rithm 3 in [32] by outputting 0 instead of ⊥ or 0 for all remaining queries instead of halting
prematurely. The first two properties follow from the associated proofs in that text.

The third property follows because for all entries of ϕ̃ that SV does not output as 0 (for
which the error, i.e. corresponding entry of ϕ̃ − ϕ(D), is of course bounded by ||ϕ(D)||∞),

the error is drawn from Lap(b) where b = O(
√
k log(1/δSV )/ϵSV ). So the maximum error for

these (at most cSV ≤ k) entries is stochastically dominated by the maximum of the absolute
value of k of these Laplace random variables, which is at most tb with probability ke−t.

We now prove Theorem 37, from which Theorem 18 follows up to some minor details:

Theorem 37. For any 4 ≤ p ≤ log k that is an even integer, ϵ ≤ O(1), δ ∈ [2−O(k/p), 1/k],
and t ∈ [0, O( log k

log log k
)], there exists a (ϵ, δ)-differentially private mechanismM that takes in a

database D and counting queries ϕ and outputs a random ϕ̃ ∈ Rk such that for a sufficiently
large constant c:

Pr
ϕ̃∼M(D)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥
ct
√
kp log(1/δ)(log log k)1/p

ϵ

]
≤ e− logt k.

2Unlike its preprint, the journal version of [78] uses a slightly different mechanism based on the expo-
nential mechanism in place of the sparse vector mechanism. A similar change can likely be made to the
mechanism given in this section; we stick to using the sparse vector mechanism for a slightly simpler proof.
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Proof. The mechanism is as follows: We sample x ∼ GGauss(p, σ) for

σ = Θ

(√
kp log(1/δ)

ϵ

)
,

If ||x||pp > 2kσp/p, we output ϕ(D). Otherwise, we instantiate SV from Theorem 36 with
parameters:

αSV = 12t(log log k)1/pσ ≤
ct
√
kp log(1/δ)(log log k)1/p

ϵ
, cSV = 4k/ log2+2t k,

ϵSV = ϵ/2, δSV = δ/3, βSV = exp(− logt k)/2.

We create an arbitrary database Dsynth and set of counting queries ϕsynth such that
ϕsynth(Dsynth) = x, and let x̃ be the output of SV on Dsynth, ϕsynth. We then output ϕ̃ =
d+ x− x̂.

First, note that:

√
cSV log(1/δSV ) log(k/βSV )

ϵSV
≤

√
16k

log2+2t k
log(1/δ)(log k + logt k)

ϵ
≤

4
√
k log(1/δ)

ϵ
,

i.e. α satisfies the requirements of Theorem 36 as long as the constant hidden in the Θ(·)
notation in the choice of σ is sufficiently large.

To analyze the privacy guarantee, this is the composition of:

• The mechanism of Theorem 34, which if the constant hidden in the Θ(·) in the expres-
sion for σ is sufficiently large, is (ϵ/2, δ/3)-differentially private.

• The SV mechanism of Theorem 36, with parameters set so it is (ϵ/2, δ/3)-differentially
private.

• The event that ||x||pp > 2kσp/p, causing us to release the database, which we recall

from the Proof of Theorem 34 happens with probability at most 2−Ω(k/p) ≤ δ/3.

By composition, we get that the mechanism is (ϵ, δ)-differentially private as desired.
To show the tail bound on ℓ∞-error: If ||x||pp > 2kσp/p, then we have ϕ̃ = ϕ(D), so

trivially the tail bound is satisfied. So, it suffices to show that conditional on ||x||pp ≤ 2kσp/p
occurring, we have the tail bound. By a union bound, the guarantees of Theorem 36 give that∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞

= ||x− x̂||∞ ≤ αSV (i.e the tail bound is satisfied) if at most 4k/ log2+2t k

entries of x have absolute value greater than αSV /2 with probability less than, say, e−2 logt k.

Using r = 3t (log log k)
1/p

k1/p
in Lemma 31 and a union bound with the 1− δ/3 probability event

that ||x||p ≤ (2k/p)1/pσ, for each coordinate xi of x we have:
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|xi| ≥ αSV /2 = 6t(log log k)1/pσ = 2rk1/pσ ≥ r ||x||p ,

with probability at most 1
log2+2t k

+ 2−Ω(k/p) ≤ 2
log2+2t k

. Since we sample x with probabil-

ity proportional to exp(−
∑

i∈[k] |xi|p/σp), each coordinate’s distribution is independent, so

using a Chernoff bound we conclude that with probability e−Ω(k/ log2+2t k) ≤ e−2 logt k at most
4k/ log2+2t k coordinates have absolute value greater than αSV as desired.

Proof of Theorem 18. The tail bound in Theorem 18 follows immediately from Theorem 37
by choosing p to be an even integer satisfying p = Θ(log log log k).

For the expectation, we use the tail bound of Theorem 18. We have:

Ed̃∼M(d)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣
∞

]
=

∫ ∞

0

Pr
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
≥ s
]
ds

=

∫ a

0

Pr
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
≥ s
]
ds+

∫ b

a

Pr
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
≥ s
]
ds+

∫ ∞

b

Pr
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
≥ s
]
ds.

We choose a =
2c
√
k log log log k log(1/δ)

ϵ
, b =

k
√

log(1/δ)

ϵ
. The integral over [0, a] is of course

bounded by a. By Theorem 37, the integral over [a, b] is bounded by b·e− log2 k ≤
√

log(1/δ)

ϵ
≤ a.

Finally, to bound the third term, recall that the mechanism of Theorem 37 outputs ϕ(D)
(i.e. effectively chooses x, x̂ = 0 instead) if ||x||p is too large. So, unconditionally we have:

||x||∞ ≤ ||x||p ≤ (2k/p)1/pσ ≤
2c
√
k log log log k log(1/δ)

ϵ
≤ b.

So by the third property in Theorem 36 we have for s ∈ [b,∞):

Pr
d̃∼M(d)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞
≥ s
]
= Pr

x,x̂
[||x− x̂||∞ ≥ s] ≤ ke−Ω(s/(

√
k log(1/δ)/ϵ)).

And so by change of variables, with s′ = s/(
√
k log(1/δ)/ϵ):∫ ∞

b

Pr
[∣∣∣∣∣∣ϕ̃− ϕ(D)

∣∣∣∣∣∣
∞
≥ s
]
ds ≤

√
k log(1/δ)

ϵ

∫ ∞

√
k

ke−Ω(s′)ds′ ≤
k1.5
√
log(1/δ)

ϵ
·e−Ω(

√
k) ≤ a.

So we conclude

Ed̃∼M(d)

[∣∣∣∣∣∣ϕ̃− ϕ(D)
∣∣∣∣∣∣

∞

]
≤ 3a = O

(√
k log log log k log(1/δ)

ϵ

)
,

as desired.
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2.7 Concentration of Generalized Gammas

In this section we consider the Generalized Gamma random variable GGamma(a, b) param-
eterized by a, b with pdf:

p(x) =
bxa−1e−x

b

Γ(a/b)
, x ∈ (0,∞).

Where the Gamma function Γ(x) is defined over the positive reals as

Γ(z) =

∫ ∞

0

xz−1e−xdx.

We recall that Γ(z) is a continuous analog of the factorial in that it satisfies Γ(x+ 1) =
x · Γ(x). When b = 1, GGamma(a, b) is exactly the Gamma random variable Gamma(a)
(we will use Gamma to denote the random variable and Γ to denote the function to avoid
ambiguous notation).

We want to show that sums of GGamma( 1
p−1

, p
p−1

) random variables concentrate nicely.
To do this, we will show that they are sub-gamma:

To show that GGamma( 1
p−1

, p
p−1

) are sub-gamma, we will relate the moment-generating

function of GGamma( 1
p−1

, p
p−1

) to that of the Gamma random variable with the same mean
using the following facts:

Fact 38. For a Generalized Gamma random variable X ∼ GGamma(a, b) the moments

are E[Xr] = Γ((a+r)/b)
Γ(a/b)

. In particular, for a Gamma random variable X ∼ Gamma(a) the

moments are E[Xr] = Γ(a+r)
Γ(a)

.

See e.g. Section 17.8.7 of [49] for a derivation of this fact. Note here that GGamma( 1
p−1

,
p
p−1

) has mean µ = 1/Γ(1/p). To relate the moments of Generalized Gamma random vari-
ables to Gamma random variables’ we note the following about µ:

Fact 39. For all p ≥ 2, we have 1
p
≤ 1

Γ(1/p)
≤ 1.2

p
.

Putting it all together, we get the following lemmas, which combined with Fact 39 give
us Lemma 29:

Lemma 40. Let Y = GGamma( 1
p−1

, p
p−1

) for p ≥ 2. Then, for µ = E[Y ] = 1
Γ(1/p)

, we have

Y ∈ Γ+(µ, 1).

Proof. We compare the moment-generating function of (the centered version of) Y to that
of X = Gamma(µ) where µ = E[Y ]. X is in Γ(µ, 1) so it suffices to show Y ’s moment
generating function is smaller than X’s. First, looking at the moment generating function
of Y , we have:
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E[eλY ] = 1 + λµ+
∞∑
r=2

[
λr

r!
E[Y r]

]

= 1 + λµ+
∞∑
r=2

[
λr

r!

Γ(1
p
+ r(p−1)

p
)

Γ(1
p
)

]
(a)

≤ 1 + λµ+
∞∑
r=2

[
λr

r!

Γ(1
p
+ r)

Γ(1
p
)

]
(b)

≤ 1 + λµ+
∞∑
r=2

[
λr

r!

Γ(µ+ r)

Γ(µ)

]
= E[eλX ].

(a) follows because the Gamma function is monotonically increasing in the range [1.5,∞).

(b) follows because µ = 1
Γ(1/p)

≥ 1/p for p ≥ 1, and because for positive integers r, Γ(x+r)
Γ(x)

=∏r−1
i=0 (x + i) is monotonically increasing in x. Since X ∈ Γ+(µ, 1) and X, Y have the same

mean, we have that Y ∈ Γ+(µ, 1) as well.

Lemma 41. Let Y = GGamma( 1
p−1

, p
p−1

) for p ≥ 3. Then, for µ = E[Y ] = 1
Γ(1/p)

, we have

Y ∈ Γ−(µ, 3/2).

Proof. Similarly to the previous lemma, we have for all 0 ≤ λ ≤ 2/3:

E[e−λY ]

= 1− λµ+
∞∑
r=2

[
(−λ)r

r!

Γ(1
p
+ r(p−1)

p
)

Γ(1
p
)

]

= 1− λµ+
∞∑
r=1

[
λ2r

(2r)!
·
Γ(1

p
+ 2r p−1

p
)

Γ(1
p
)

(
1− λ

2r + 1
·
Γ(1

p
+ (2r + 1)p−1

p
)

Γ(1
p
+ 2r p−1

p
)

)]

= 1− λµ+
∞∑
r=1

[
λ2r

(2r)!
·
Γ(1

p
+ 2r)

Γ(1
p
)

(
Γ(1

p
+ 2r p−1

p
)

Γ(1
p
+ 2r)

− λ

2r + 1
·
Γ(1

p
+ (2r + 1)p−1

p
)

Γ(1
p
+ 2r)

)]
(c)

≤ 1− λµ+
∞∑
r=1

[
λ2r

(2r)!
·
Γ(1

p
+ 2r)

Γ(1
p
)

(
1− λ

2r + 1
·
Γ(1

p
+ 2r + 1)

Γ(1
p
+ 2r)

)]
(d)

≤ 1− λµ+
∞∑
r=1

[
λ2r

(2r)!
· Γ(µ+ 2r)

Γ(µ)

(
1− λ

2r + 1
· Γ(µ+ 2r + 1)

Γ(µ+ 2r)

)]
= 1− λµ+

∞∑
r=2

[
(−λ)r

r!
· Γ(µ+ r)

Γ(µ)

]
= E[e−λX ].
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Which, up to proving (c), (d) hold, shows that Y ∈ Γ−(µ, 3/2) since X and Y have the
same mean and X ∈ Γ−(µ, 0) ⊂ Γ−(µ, 3/2). (c) follows because the change in each term in
the sum is

λ2r

(2r)!

1

Γ
(

1
p

) ·
[
Γ

(
1

p
+ 2r

)
− Γ

(
1

p
+ 2r

p− 1

p

)
− λ

2r + 1

(
Γ

(
1

p
+ 2r + 1

)
− Γ

(
1

p
+ (2r + 1)

p− 1

p

))]
.

To show this expression is non-negative, it suffices to show that just the term in the
brackets is positive, or equivalently, for all r ≥ 2, p ≥ 3:

Γ

(
1

p
+ 2r

)1−
Γ
(

1
p
+ 2r (p−1)

p

)
Γ
(

1
p
+ 2r

)
 ≥

λ

2r + 1
Γ

(
1

p
+ 2r + 1

)1−
Γ
(

1
p
+ (2r + 1)p−1

p

)
Γ
(

1
p
+ 2r + 1

)
 .

Since we have Γ
(

1
p
+ 2r + 1

)
= (1

p
+2r)Γ

(
1
p
+ 2r

)
≤ (2r+1)(1

p
+2r), it further suffices

to just show:

f(r, p) :=

(
1− Γ( 1

p
+2r

(p−1)
p

)

Γ( 1
p
+2r)

)
(
1− Γ( 1

p
+(2r+1) p−1

p
)

Γ( 1
p
+2r+1)

) ≥ λ.

For any fixed r ≥ 2, one can verify analytically that f(r, p) is monotonically decreasing

in p over p ∈ [1,∞) and the limit as p goes to infinity is g(r) := 2rψ(2r)
(2r+1)ψ(2r+1)

where ψ is the

digamma function ψ(x) =
d
dx

Γ(x)

Γ(x)
. One can also verify analytically that g(r) is monotonically

increasing, and g(2) ≈ .6672. So, for all r ≥ 2, p ≥ 3 we have f(r, p) > 2/3 and thus for
λ ∈ [0, 2/3], the inequality (c) is satisfied.

(d) follows by looking at the function

z(x) =
Γ(x+ r)

Γ(x)

(
1− λ

r + 1
· Γ(x+ r + 1)

Γ(x+ r)

)
=

(
1− λ(x+ r)

r + 1

) r−1∏
i=0

(x+ i).

For r ≥ 2, λ ≤ 1, one can verify analytically that z(x) is monotonically increasing in the
interval (0, 1/2] ⊇ (0, 1.2

p
] ⊇ (0, µ]. Since µ ≥ 1

p
, this gives that each term in the right-hand-

side of (d) is larger than the corresponding term on the left-hand-side.
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Chapter 3

Efficient Private Log-Strongly
Concave Sampling

3.1 Introduction and Problem Definition

There is a large class of mechanisms in the differential privacy literature that use the ex-
ponential mechanism (Example 7) with appropriate score functions, use it as a subroutine,
or sample from exp(−f) for some function f . This includes differentially private mecha-
nisms for several important problems, such as PCA [23, 53], functional PCA [9], answering
counting queries [47], robust regression [6], some combinatorial optimization problems [43],
k-means clustering [37], optimization of dispersed functions [11], convex optimization [13,
64], Bayesian data analysis [65, 27, 86, 87, 39], linear and quantile regression [73], etc.

When the range of outputs X is finite and small, this sampling is straightforward. Several
differentially private mechanisms instantiate the exponential mechanism where X = Rk, in
which case this sampling is not straightforward. Such sampling problems are not new and
often occur in statistics and machine learning settings. The common practical approach
is to use heuristic MCMC samplers such as Gibbs sampling, which often works well in
problems arising in practice. However, given that convergence is not guaranteed, the resulting
algorithms may not be differentially private. Indeed one can construct simple score functions
on the hypercube for which the natural Metropolis chain run for any polynomial time leads to
a non-private algorithm. There are also well-known complexity-theoretic barriers in exactly
sampling from exp(−f) if f is not required to be convex.

Several applications however involve convex functions f , which is the focus of this chapter.
This is the problem of sampling from a log-concave distribution, which has attracted a lot
of interest. Here, there are two broad lines of work. The classical results in this line of
work (e.g. [5, 60]) show that given an oracle for computing the function, one can sample
from a distribution that is δ-close to the target distribution in time polynomial in k and
log 1

δ
. Here the closeness is measured in statistical distance. By itself, this does not suffice

to give a differentially private algorithm, as differential privacy requires closeness in more
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stringent notions of distance. The fact that the time complexity is logarithmic in 1
δ
however

allows for an exponentially small statistical distance in polynomial time. This immediately
yields (ϵ, δ)-differentially private algorithms, and with some additional work can also yield
ϵ-differentially private algorithms [47]. Techniques from this line of work can also sometimes
apply to non-convex f of interest. Indeed [53] designed a polynomial time algorithm for the
case of f being a Rayleigh quotient to allow for efficient private PCA.

The runtime of these log-concave sampling algorithms however involves large polynomials.
A beautiful line of work has reduced the dependence (of the number of function oracle calls)
on the dimension from roughly k10 in [5] to k3 in [59, 60]. Nevertheless, the algorithms still
fall short of being efficient enough to be implementable in practice for large k. A second,
more recent, line of work [26, 30] have shown that “first order” Markov Chain Monte
Carlo (MCMC) algorithms such as Langevin MCMC and Hamiltonian MCMC enjoy fast
convergence, and have better dependence on the dimension. These algorithms are typically
simpler and more practical but have polynomial dependence on the closeness parameter ϵ.
This polynomial dependence on ϵ makes the choice of distance more important. Indeed these
algorithms have been analyzed for various measures of distance between distributions such
as statistical distance, KL-divergence and Wasserstein distance.

These notions of distance however do not lead to efficient differentially private algorithms.
This motivates the question of establishing rapid mixing in Rènyi-divergence for these algo-
rithms. This is the question we address in this work, and show that when f is smooth and
strongly convex, discretized Langevin dynamics converge in iteration complexity near-linear
in the dimension. This gives more efficient differentially private algorithms for sampling for
such f .

[82] recently studied this question, partly for similar reasons. They considered the Un-
adjusted (i.e., overdamped) Langevin Algorithm and showed that when the (discretized)
Markov chain satisfies suitable mixing properties (e.g. Log Sobolev inequality), then the
discrete process converges in Rènyi-divergence to a stationary distribution. However this
stationary distribution of the discretized chain is different from the target distribution.
The Rènyi-divergence between the stationary distribution and exp(−f) is not very well-
understood [75, 88], and it is conceivable that the stationary distribution of the discrete
process is not close in Rènyi-divergence to the target distribution and thus may not be
differentially private. Thus the question of designing fast algorithms that sample from a
distribution close to the distribution exp(−f) in Rènyi-divergence was left open.

In this work we use a novel approach to address these questions of fast sampling from
exp(−f) using the discretized Langevin Algorithm. Interestingly, we borrow tools commonly
used in differential privacy, though applied in a way that is not very intuitive from a privacy
point of view. We upper bound the Rènyi-divergence between the output of the discrete
Langevin Algorithm run for T steps, and the output of the continuous process run for time
Tη. The continuous process is known [82] to converge very quickly in Rènyi-divergence
to the target distribution. This allows us to assert closeness (in Rènyi-divergence) of the
output of the discrete algorithm to the target distribution. This bypasses the question of
the bias of the stationary distribution of the discrete process. Moreover, this gives us a
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differentially private algorithm with iteration complexity near-linear in the dimension. Our
result applies to log-smooth and strongly log-concave distributions. While results of this form
may also be provable using methods from optimal transport, we believe that our techniques
are simpler and more approachable to the differential privacy community, and may be more
easily adaptable to other functions f of interest.

Our approach is general and simple. We show that it can be extended to the underdamped
Langevin dynamics which have a better dependence on dimension, modulo proving fast
mixing for the continuous process. As a specific application, we show how our results lead
to faster algorithms for implementing the mechanisms in [64].

3.2 Our Results and Technical Overview

Properties of f Process η

1-strongly convex, M -smooth Overdamped Õ
(

1
τM4 ln2 α

· ϵ2
k

)
(Theorem 52)

L-Lipschitz, M -smooth Overdamped Õ
(

1
τM4 ln2 α

· ϵ2

L2+k

)
(Theorem 56)

1-strongly convex, M -smooth Underdamped Õ
(

1
τM lnα

· ϵ√
k

)
(Theorem 65)

Table 3.1: Summary of results. For each family of functions and process (either overdamped
or underdamped Langevin dynamics), an upper bound is listed on the timestep length η
needed to ensure the α-Rényi-divergence between the discrete and continuous processes is
at most ϵ after time τ .

Our results are summarized in Table 3.1. Combined with results from [82] on the con-
vergence of the continuous process, the first result gives the following algorithmic guarantee,
our main result:

Theorem 42. Fix any α ≥ 1. Let S be a distribution satisfying S(x) ∝ e−f(x) for 1-strongly
convex and M-smooth f with global minimum at 0. Let P be the distribution arrived at by
running discretized overdamped Langevin dynamics using f with step size η = Õ( 1

τM4 ln2 α
· ϵ2
k
)

for continuous time τ = O(α ln k lnM
ϵ

) (i.e. for Õ(α
2M4k
ϵ2

) steps) from initial distribution
N(0, Ik). Then we have Rα(P ||S), Rα(S||P ) ≤ ϵ.

This is the first algorithmic result for sampling from log-smooth and strongly log-concave
distributions with low error in Rényi-divergence without additional assumptions. In partic-
ular, if for α = 1 + 2 log(1/δ)/ϵ we have Rα(P ||S), Rα(S||P ) ≤ ϵ/2, then by Theorem 14 we
have that P, S satisfy divergence bounds corresponding to (ϵ, δ)-differential privacy. In turn,
given any mechanism that outputs S, S ′ on adjacent databases satisfying (ϵ, δ)-differential
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privacy and the strong convexity and smoothness conditions, Theorem 42 and standard com-
position theorems gives a mechanism that outputs P, P ′ for these databases such that the
mechanism satisfies (3ϵ, 3δ)-differential privacy, P, P ′ are possible to efficiently sample from,
and P, P ′ obtain utility guarantees comparable to those of S, S ′.

All results in Figure 3.1 are achieved using a similar analysis, which we describe here.
Instead of directly bounding the divergence between the discrete and continuous processes,
we instead bound the divergence between the discrete processes using step sizes η, η/c. Our
resulting bound does not depend on c, so we can take the limit as c goes to infinity and
the latter approaches the continuous process. Suppose within each step of size η, neither
process moves more than r away from the position at the start of this step. Then by
smoothness, in each interval of length η/c the distance between the gradient steps between
the two processes is upper bounded by Lr η

c
. Our divergence bound thus worsens by at most

Rα(N(0, 2η
c
)||N(x, 2η

c
)) where x is a vector with ||x||2 ≤ Mr η

c
. The divergence between

shifted Gaussians is given by Fact 15, giving us a divergence bound.
Of course, since the movement due to Brownian motion can be arbitrarily large, there is

no unconditional bound on r. Instead, we derive tail bounds for r, giving a divergence bound
(depending on δ) between the two processes conditioned on a probability 1−δ event for every
δ. We then show a simple lemma which says that conditional upper bounds on the larger
moments of a random variable give an unconditional upper bound on the expectation of that
random variable. By the definition of Rényi-divergence, exp((α′−1)Rα′(P ||Q)) is a moment
of exp((α − 1)Rα(P ||Q)) for α′ > α, so we can apply this lemma to our conditional bound
on α′-Rényi-divergence to get an unconditional bound on α-Rényi-divergence via Jensen’s
inequality.

Finally, since our analysis only needs smoothness, the radius tail bound, and the fact
that the process is a composition of gradient steps with Gaussian noise, our analysis easily
extends to sampling from Lipschitz rather than strongly convex functions and analyzing the
underdamped Langevin dynamics.

As an immediate application, we recall the work of [64], who give a (ϵ, δ)-differentially
private mechanism that (approximately) samples from a Gibbs posterior with a strongly
log-concave prior, for applications such as mean estimation and logistic regression. Their
iteration complexity of Õ(k3/δ2) proved in Proposition 13 of [64] gets improved to Õ(k/ϵ4)
using our main result. We note that the privacy parameters in (ϵ, δ)-differential privacy that
one typically aims for are ϵ being constant, and δ being negligible.

3.3 Other Related Work

Following our work, [35] improved the dependence of the iteration complexity needed to
converge to within Rènyi-divergence ϵ of the stationary distribution from 1/ϵ2 to 1/ϵ, using
a weaker assumption called strong dissipativity, which can be viewed as a strong convexity
condition holding only for pairs of points that are sufficiently far away. Also following our
work, [24] showed that for two instances of the discrete Langevin dynamics on different loss
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functions, as long as the two loss functions’ gradients differ by a bounded amount, they can
derive a bound on the Rènyi-divergence between the two instances’ final values that does
not go to infinity as time goes to infinity. This is in contrast with our divergence bounds,
which effectively bound the divergence between two entire chains rather than a single value
in the chains, and which do go to infinity as the number of iterations goes to infinity. While
both these results improve upon ours quantitatively in the setting of Theorem 42, we remark
that qualitatively our analysis remains relatively simple compared to both these papers, and
as previously mentioned our analysis is arguably much more general and applicable to other
settings.

3.4 Preliminaries

Langevin Dynamics and Basic Assumptions

For the majority of the chapter we focus on the overdamped Langevin dynamics in Rk, given
by the following stochastic differential equation (SDE):

dxt = −∇f(xt)dt+
√
2dBt,

Where Bt is a standard k-dimensional Brownian motion. Under mild assumptions (such
as strong convexity of f), it is known that the stationary distribution of the SDE is the
distribution p satisfying p(x) ∝ e−f(x). Algorithmically, it is easier to use the following
discretization with steps of size η:

dxt = −∇f(x⌊ t
η
⌋η)dt+

√
2dBt,

i.e., we only update the gradient used in the SDE at the beginning of each step. Restricted
to the position at times that are multiples of η, equivalently:

x(i+1)η = xiη − η∇f(xiη) + ξi.

Where ξi ∼ N(0, 2ηId) are independent samples. Throughout the chapter, when we refer to
the result of running a Langevin dynamics for continuous time t, we mean the distribution
xt, not the distribution xtη. When the iteration complexity (i.e. number of steps) is of
interest, we may refer to running a Langevin dynamics for continuous time Tη equivalently
as the result of running it for T steps (of size η).

A similarly defined second order process is the underdamped Langevin dynamics, given
by the following SDE (parameterized by γ, µ > 0):

dvt = −γvtdt− µ∇f(xt)dt+
√

2γµdBt, dxt = vtdt.

Again, under mild assumptions it is known that the stationary distribution of this SDE is
the distribution p satisfying p(x) ∝ e−(f(x)+||v||22/2µ), so that the marginal on x is as desired.
Algorithmically, it is easier to use the following discretization:

dvt = −γvtdt− µ∇f(x⌊ t
η
⌋η)dt+

√
2γµdBt, dxt = vtdt. (3.1)
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In the majority of the chapter we consider sampling from distributions given by m-strongly
convex, M -smooth functions f . To simplify the presentation, we also assume f is twice-
differentiable, so these conditions on f can be expressed as: for all x, mIk ≼ ∇2f(x) ≼MIk.
We make two additional simplifying assumptions: The first is that the minimum point of f
is at 0, as if f ’s true minimum is x∗ ̸= 0, we can sample from g(x) := f(x − x∗) and then
shift our sample by x∗ to get a sample from f instead (x∗ can be found using e.g. gradient
descent). The second is that m = 1, as if m ̸= 1, we can sample from g(x) = f( 1√

m
x) and

rescale our sample by
√
m instead.

Rényi-divergences

We state here additional facts about Rényi-divergences needed in this chapter that are not
covered in Chapter 1.

Definition 43 (Negative Rényi-divergence). The definition of α-Rényi-divergence can be
extended to negative α using the identity R1−α(P ||Q) = 1−α

α
Rα(Q||P ).

Fact 44 (Monotonicity, Theorem 3 of [36]). For any distributions P,Q and α1 ≤ α2 we have
Rα1(P ||Q) ≤ Rα2(P ||Q).

Fact 45 (Post-Processing, Theorem 9 of [36]). For any sample spaces X ,Y, distributions
X1, X2 over X , and any function f : X → Y we have Rα(f(X1)||f(X2)) ≤ Rα(X1||X2).

Fact 46 (Weak Triangle Inequality, Proposition 11 of [66]). For any α > 1, p, q > 1 satisfying
1/p+ 1/q = 1 and distributions P,Q,R with the same support:

Rα(P ||R) ≤
α− 1/p

α− 1
Rpα(P ||Q) +Rq(α−1/p)(Q||R).

3.5 Langevin Dynamics with Bounded Movements

As a first step, we analyze the divergence between the discrete and continuous processes
conditioned on the event Er that throughout each step of size η they stay within a ball of
radius r around their location at the start of the step. We will actually analyze the divergence
between two discrete processes with steps of size η and η/c respectively, and obtain a bound
on their divergence independent of c. The former is exactly the discrete Langevin dynamics
with step size η. Then taking the limit of the latter, as c goes to infinity, the former is exactly
the discrete Langevin dynamics with step size η and the latter is the continuous Langevin
dynamics. Thus, and so the same bound applies to the divergence between the discrete and
continuous processes. We set up discretized overdamped Langevin dynamics with step sizes
η, η/c as random processes which record the position at each time that is a multiple of η/c.

Let xt denote the position of the chain using step size η at continuous time t, and x′
t

denote the position of the chain using step size η/c at time t. If Er does not hold at time t∗
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(more formally, if maxt∈[0,t∗]
∣∣∣∣xt − x⌊t/η⌋η

∣∣∣∣
2
> r), we will instead let xt = ⊥ for all t ≥ t∗.

We want to bound the divergence after T steps of size η, i.e. the divergence between the
distributions of xTη and x′

Tη. Let X0:j denote the distribution of {xiη/c}0≤i≤j, and define
X ′

0:j analogously. By post-processing , it suffices to bound the divergence between X0:Tc and
X ′

0:Tc. Note that we can sample from X0:Tc (resp X
′
0:Tc) by starting with a sample {x0} (resp

{x′
0}) from the distribution X0 from which we start the Langevin dynamics, and applying

the following randomized update Tc times:

• To draw a sample from X0:Tc, given a sample {xiη/c}0≤i≤j from X0:j:

– If xjη/c = ⊥ append x(j+1)η/c = ⊥ to {xiη/c}0≤i≤j to get a sample from X0:j+1.

– Otherwise, append x(j+1)η/c = xjη/c− η
c
∇f(x⌊j/c⌋η)+ ξj, where ξj ∼ N(0, 2η

c
Id) to

get a sample from X0:j+1. Then if
∣∣∣∣x(j+1)η/c − x⌊(j+1)/c⌋η

∣∣∣∣
2
> r (i.e. Er no longer

holds) replace x(j+1)η/c with ⊥.

We will denote this update by ψ. More formally, ψ is the map from distributions over
to distributions such that X0:j+1 = ψ(X0:j).

• To draw a sample from X ′
0:Tc, we instead use the update ψ′ that is identical to ψ except

ψ′ uses the gradient at x′
jη/c instead of x′

⌊j/c⌋η.

We now have X0:Tc = ψ◦Tc(X0) and X
′
0:Tc = (ψ′)◦Tc(X0), allowing us to use Theorem 16

to bound the divergence between the two distributions:

Lemma 47. For any M-smooth f , any initial distribution X0 over x0,x
′
0, and the distribu-

tions over tuples X0:Tc, X
′
0:Tc as defined above, we have:

Rα(X0:Tc||X ′
0:Tc), Rα(X

′
0:Tc||X0:Tc) ≤

TαM2r2η

4
.

Proof. We prove the bound for Rα(X0:Tc||X ′
0:Tc), the bound for Rα(X

′
0:Tc||X0:Tc) follows

similarly. Let a tuple {xiη/c}0≤i≤j be good if for 0 ≤ i ≤ j either (i)
∣∣∣∣xiη/c − x⌊i/c⌋η

∣∣∣∣
2
≤ r

(i.e., Er) or (ii) {xℓη/c}i≤ℓ≤j are all⊥. We claim that for each j, for any point mass distribution
X0:j over good (j + 1)-tuples:

Rα(ψ(X0:j), ψ
′(X0:j)) ≤

α(Mrη
c
)2

2 · 2η
c

. (3.2)

By Fact 45, we can instead bound the divergence between ψ̃(X0:j), ψ̃
′(X0:j) which are

defined equivalently to ψ, ψ′ except without the deterministic step of replacing the last
entry with ⊥ if Er is violated. If X0:j is a point mass on a good tuple containing ⊥, then
Rα(ψ̃(X0:j)||ψ̃′(X0:j)) = 0. For X0:j that is a point mass on a good tuple not containing
⊥, Rα(ψ̃(X0:j)||ψ̃′(X0:j)) is just the divergence between the final values of ψ̃(X0:j), ψ̃

′(X0:j).
The distance between the final values in ψ̃(X0:j), ψ̃

′(X0:j) prior to the addition of Gaussian
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noise in ψ̃, ψ̃′ is the value of η
c

∣∣∣∣∇f(xjη/c)−∇f(x⌊j/c⌋η)
∣∣∣∣
2
for the single tuple in the support

of X0:j, which is at most Mrη
c

by smoothness and because Er holds for all good tuples not
containing ⊥. (3.2) now follows by Fact 15.

Then, X0:Tc, X
′
0:Tc are arrived at by a composition of Tc applications of ψ, ψ′ to the

same initial distribution X0. Note that X0 and the distributions arrived at by applying ψ
or ψ′ any number of times to X0 have support only including good tuples. Then combining
Theorem 16 (with the sample spaces being good tuples) and (3.2) we have:

Rα(X0:Tc||X ′
0:Tc) ≤ Tc ·

α
(
Mrη
c

)2
2 · 2η

c

=
TαM2r2η

4
.

By taking the limit as c goes to infinity and applying Fact 45 we get:

Corollary 48. For any M-smooth f and η > 0, and any initial distribution X0 let Xt be
the distribution over positions xt arrived at by running the discretized overdamped Langevin
dynamics with step size η on f from X0 for continuous time t, except that Xt = ⊥ if Er
does not hold at time t for this chain. Let X ′

t be the same but for the continuous overdamped
Langevin dynamics. Then for any integer T ≥ 0:

Rα(XTη||X ′
Tη), Rα(X

′
Tη||XTη) ≤

TαM2r2η

4
.

Note that if we are running the process for continuous time τ , then T = τ/η. r will end
up being roughly proportional to

√
η, so the above bound is then roughly proportional to

η.

3.6 Removing the Bounded Movement Restriction

In this section, we will prove the following “one-sided” version of Theorem 42:

Theorem 49. Fix any α ≥ 1. Let S be a distribution satisfying S(x) ∝ e−f(x) for 1-strongly
convex and M-smooth f with global minimum at 0. Let P be the distribution arrived at by
running discretized overdamped Langevin dynamics using f with step size η = Õ( 1

τM4 ln2 α
·

ϵ2

k
) for continuous time τ = α ln k lnM

ϵ
(i.e. for Õ(α

2M4k
ϵ2

) steps) from initial distribution
N(0, 1

M
Ik). Then we have Rα(P ||S) ≤ ϵ.

To remove the assumption that the process never moves more than r away from its
original position within each step of size η, we give a tail bound on the maximum value r
that the process moves within one of these steps.
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Lemma 50. Let c be a sufficiently large constant. Let η ≤ 2
M+1

and let X0 be an initial

distribution over Rk satisfying that for all δ > 0,

Pr
x∼X0

[
||x||2 ≤

c

2
√
η

(√
k +

√
ln(T/δ)

)]
≥ 1− δ

4(T + 1)
. (3.3)

Let xt be the random variable given by running the discretized overdamped Langevin dynamics
starting from X0 for continuous time t. Then with probability at least 1 − δ over the path
{xt : t ∈ [0, T η]}:

∀t ≤ Tη :
∣∣∣∣xt − x⌊t/η⌋η

∣∣∣∣
2
≤ cM

(√
k +

√
ln(T/δ)

)√
η.

Similarly, let x′
t be the random variable given by running the continuous overdamped Langevin

dynamics starting from X0 for continuous time t. Then with probability at least 1 − δ over
the path {x′

t : t ∈ [0, T η]}:

∀t ≤ Tη :
∣∣∣∣x′

t − x′
⌊t/η⌋η

∣∣∣∣
2
≤ cM

(√
k +

√
ln(T/δ)

)√
η.

The proof is deferred to Section 3.9. Intuitively, the
√
η accounts for movement due

to Brownian motion, which dominates the movement due to the gradient, and cM(
√
k +√

ln(T/δ)) is a tail bound on norm of the gradient by smoothness. This gives us a bound
on the Rényi-divergence between the continuous and discrete processes conditioned on a
probability 1 − δ event for all 0 < δ < 1. By absorbing the failure probability of this event
into the probability of large privacy loss in the definition of (ϵ, δ)-differential privacy we
can prove iteration complexity bounds matching those in Figure 3.1 for running discretized
overdamped Langevin dynamics with (ϵ, δ)-differential privacy without using the tools we
develop in the rest of this section. Since these bounds do not improve on those in the ones
derived from our final (unconditional) divergence bounds, we omit the proof here.

To prove a Rényi divergence bound, we need to remove the conditioning. We start with
the following lemma, which takes bounds on conditional moments and gives an unconditional
bound on expectation:

Lemma 51. Let Y be a random variable distributed over R≥0 that has the following property
(parameterized by positive parameters β, γ < 1, θ > 1 + γ): For every 0 < δ < 1/2, there is
a probability at least 1− δ event Eδ such that E

[
Y θ|Eδ

]
≤ β

δγ
. Then we have:

E[Y ] ≤ β
1
θ

(
γ

1
1+γ + γ−

γ
1+γ

) 1+γ
θ

(
θ(1 + γ)

θ(1 + γ)− 1

)
≤ β1/θ22/θ

θ

θ − 1
.

Proof. Let z be an arbitrary parameter, η : [z,∞)→ (0, 1/2) be an arbitrary map, and Eδ be
the event specified in the lemma statement for δ ∈ (0, 1). Using the definition of expectation
and the property of Y in the lemma statement, we have:
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E[Y ] =

∫ ∞

0

Pr[Y ≥ y]dy

≤
∫ z

0

1 dy +

∫ ∞

z

Pr[Y ≥ y]dy

≤ z +

∫ ∞

z

η(y) + (1− η(y)) Pr[Y ≥ y|Eη(y)]dy

≤ z +

∫ ∞

z

η(y) + Pr[Y ≥ y|Eη(y)]dy

= z +

∫ ∞

z

η(y) + Pr[Y θ ≥ yθ|Eη(y)]dy

≤ z +

∫ ∞

z

η(y) +
E[Y θ|Eη(y)]

yθ
dy

≤ z +

∫ ∞

z

η(y) +
β

η(y)γyθ
dy.

We now choose η(y) =
(
γβ
yθ

) 1
1+γ

to minimize the value of the expression in the integral.

We will eventually choose z such that 0 < η(y) < 1/2 for all y ≥ z as promised. Plugging in
this choice of η gives the upper bound:

E[Y ] ≤ z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

∫ ∞

z

y−
θ

1+γ dy

= z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

(
1

θ
1+γ
− 1

)[
y1−

θ
1+γ

]z
∞

= z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

(
1

θ
1+γ
− 1

)
z1−

θ
1+γ .

We finish by choosing z = β
1
θ

(
γ

1
1+γ + γ−

γ
1+γ

) 1+γ
θ
. This gives the upper bound on E[Y ]

in the lemma statement. We also verify that η(y) is a map to (0, 1/2): η(y) ∝ y−
θ

1+γ , giving
that η(y) > 0. For all y ≥ z, since γ < 1 we have η(y) ≤ η(z) = γ

γ+1
< 1/2.

Putting it all together, we get the following theorem:

Theorem 52. For any 1-strongly convex, M-smooth f , let P be the distribution of states
for discretized overdamped Langevin dynamics with step size η and Q be the distribution of
states for continuous overdamped Langevin dynamics, both run from any initial distribution
X0 satisfying (3.3) for continuous time τ that is a multiple of η (i.e. for τ/η steps). Then
for α > 1, ϵ > 0, if η = Õ( 1

τM4 ln2 α
· ϵ2
k
) we have Rα(P ||Q), Rα(Q||P ) ≤ ϵ.
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We provide some high level intuition for the proof here. Plugging Lemma 50 into
Lemma 47 gives a bound on roughly the α′-Rényi divergence between P conditioned on
some probability 1− δ1 event and Q conditioned on some probability 1− δ2 event for every
δ1, δ2. We apply Lemma 51 once for P and once for Q to remove the conditioning, giving
a bound of ≈ lnα′

α′−1
on the actual α′-Rényi divergence between P,Q if η is sufficiently small

(as a function of α′). Using Jensen’s inequality, we can turn this into a bound of ϵ on the
α-Rényi divergence between P,Q for any α if α′ is large enough (which in turn requires η to
be small enough).

Proof of Theorem 52. We prove the bound on Rα(P ||Q). Since Corollary 48 provides a
“bi-directional” divergence bound, the same proof can be used to bound Rα(Q||P ).

For arbitrary δ1, δ2, plugging in r = cM(
√
k +

√
ln(T/δ1) +

√
ln(T/δ2))

√
η into Corol-

lary 48 (where c is the constant specified in Lemma 50) and using the definition T = τ/η we
get that

Rα′(XTη||X ′
Tη) ≤

3τα′M4c2(k + ln( τ
ηδ1

) + ln( τ
ηδ2

))η

4
for XTη, X

′
Tη as defined in Corollary 48. Using the definition of Rényi divergence, this

gives:

∫
Rk

XTη(x)
α′

X ′
Tη(x)

α′−1
dx ≤

∫
Rk

XTη(x)
α′

X ′
Tη(x)

α′−1
dx+

Prx∼XTη
[x = ⊥]α′

Prx∼X′
Tη
[x = ⊥]α′−1

≤ c1(α
′)

δ1
c2(α′)δ

c3(α′)
2

,

where:

c1(α
′) = exp

(
3τα′(α′ − 1)M4c2(k + 2 ln( τ

η
))η

4

)
,

c2(α
′) = c3(α

′) =
3τα′(α′ − 1)M4c2η

4
.

Removing the conditioning on the continuous chain: Let Eδ1 denote the (at least
probability 1− δ1) event that the conditions in Lemma 50 are satisfied for the discrete chain
and Eδ2 denote the (at least probability 1 − δ2) event that the conditions in Lemma 50
are satisfied for the continuous chain. By Lemma 50, we have Q(x) ≥ X ′

Tη(x), Q(x|Eδ2) ≤
1

1−δ2X
′
Tη(x). Then for δ2 < 1/2:

Ex∼Q

[
XTη(x)

α′

Q(x)α′

∣∣∣∣Eδ2] = ∫
Rk

Q(x|Eδ2)
XTη(x)

α′

Q(x)α′ dx

≤ 1

1− δ2

∫
Rk

XTη(x)
α′

X ′
Tη(x)

α′−1
dx

≤ 2 · c1(α′)

δ1
c2(α′)δ

c3(α′)
2

.
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This statement holds independent of δ2. We will eventually choose α′ such that for
the choice of η specified in the lemma statement, c1(α

′) < 2, c3(α
′) < 1. Then applying

Lemma 51 with Y =
XTη(x)

α′/2

Q(x)α
′/2 θ = 2, β = 2c1(α′)

δ
c2(α

′)
1

, γ = c3(α
′), we get:

Ex∼Q

[
XTη(x)

α′/2

Q(x)α′/2

]
≤ 8

δ
c2(α′)/2
1

.

Removing the conditioning on the discrete chain: We now turn to removing the
conditioning on Eδ1 . Here we need to be a bit more careful since unlike with X ′

Tη(x), XTη(x)
is in the numerator and so the inequality XTη(x) ≤ P (x) is facing the wrong way. Since
P,Q have the same support, we note that:

Ex∼Q

[
XTη(x)

α′/2

Q(x)α′/2

]
= Ex∼P

[
XTη(x)

α′/2−1

Q(x)α′/2−1
· XTη(x)

P (x)

]
(⋆)
=
α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα

′/2−1

Q(x)α′/2−1
· I [y ≤ XTη(x)]

]
=
α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα

′/2−1

Q(x)α′/2−1

∣∣∣∣y ≤ XTη(x)

]
· Pr
x∼P,y∼Unif(0,P (x))

[y ≤ XTη(x)]

=
α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα

′/2−1

Q(x)α′/2−1

∣∣∣∣Eδ1] · (1− δ1).
(⋆) follows as for any given x, we have:

XTη(x)
α′/2−1 =

1

XTη(x)
XTη(x)

α′/2

=

∫ XTη(x)

0

1

XTη(x)

α′

2
yα

′/2−1dy

=
P (x)

XTη(x)

∫ XTη(x)

0

1

P (x)

α′

2
yα

′/2−1dy

=
P (x)

XTη(x)

∫ P (x)

0

1

P (x)

α′

2
yα

′/2−1 · I [y ≤ XTη(x)] dy

=
P (x)

XTη(x)

α′

2
Ey∼Unif(0,P (x))

[
yα

′/2−1 · I [y ≤ XTη(x)]
]
.

In turn, for all δ1 < 1/2, we have

Ex∼P,y∼Unif(0,P (x))

[
yα

′/2−1

Q(x)α′/2−1

∣∣∣∣Eδ1] ≤ 32

α′δ
c2(α′)/2
1

.
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If c2(α
′)/2 < 1/2 (which is equivalent to c2(α

′) = c3(α
′) < 1), by applying Lemma 51 for

θ = 2 with X = yα
′/4−1/2

Q(x)α
′/4−1/2 , β = 32

α′ , γ = c2(α
′)/2 we get:

Ex∼P,y∼Unif(0,P (x))

[
yα

′/4−1/2

Q(x)α′/4−1/2

]
≤ 19√

α′
=⇒

Ex∼Q

[
P (x)α

′/4+1/2

Q(x)α′/4+1/2

]
=

(
α′

4
+

1

2

)
Ex∼P,y∼Unif(0,P (x))

[
yα

′/4−1/2

Q(x)α′/4−1/2

]
≤ 19(α′/4 + 1/2)√

α′

≤ 15
√
α′.

From moderate α′-Rényi divergence to small α-Rényi divergence: If ϵ ≥ 3 lnα
α−1

,
without loss of generality we can assume e.g. α ≥ 4 (by monotonocity of Rényi divergences,
if α < 4 it suffices to bound the 4-Rényi divergence instead of the α-Rényi divergence at the
loss of a constant in the bound for η). Then for α′ = 4α− 2 the preceding inequality lets us

conclude the lemma holds. Otherwise, for 1 < κ < α′/4 + 1/2, for α = α′/4+1/2
κ

, by Jensen’s
inequality we get:

1

α− 1
lnEx∼Q

[
P (x)α

Q(x)α

]
≤ 1

α− 1
ln

(
Ex∼Q

[
P (x)ακ

Q(x)ακ

]1/κ)
≤

ln 15 + 1
2
lnα + 1

2
lnκ

(α− 1)κ
.

Choosing κ = 3 lnα·ln 1/ϵ
(α−1)ϵ

then gives Rα(P ||Q) ≤ ϵ as desired (note that for ϵ < 3 lnα
α−1

we

have κ > 1 as is required). Now, we just need to verify that c1(α
′) < 2, c2(α

′) = c3(α
′) < 1

holds for α′ = 12α lnα·ln 1/ϵ
(α−1)ϵ

− 2. Since c2(α
′) = c3(α

′) < ln(c1(α
′))/k, it just suffices to show

c1(α
′) < 2. This holds if:

3τα′(α′ − 1)M4c2(k + 2 ln( τ
η
))η

4
< ln 2,

which is given by choosing η = Õ( 1
τM4 ln2 α

· ϵ2
k
) with a sufficiently small constant hidden

in Õ.

We now apply results from [82] and the weak triangle inequality for Rényi divergence to
get a bound on the number of iterations of discrete overdamped Langevin dynamics needed
to achieve α-Rényi divergence ϵ:

Lemma 53. If R(x) = e−f(x) is a probability distribution over Rk with mode 0 and f is
1-strongly convex and L-smooth, then for all α ≥ 1 we have:

Rα

(
N

(
0,

1

L
Ik

)
||S
)
≤ k

2
lnM.
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Proof. This follows from Lemma 4 in [82], which gives the bound Rα(N(0, 1
M
Ik)||S) ≤

f(0) + d
2
ln M

2π
. We then note that the 1-strongly convex, M -smooth f with the maximum

f(0) is given when R is N(0, Ik), which has density R(x) = e−(
k
2
ln(2π)+ 1

2
x⊤x).

It is well-known that 1-strong convexity of f implies that S ∝ e−f satisfies log-Sobolev
inequality with constant 1 (see e.g. [10]). We then get:

Lemma 54 (Theorem 2, [82]). Fix any f that is 1-strongly convex. Let Qt be the distribution
arrived at by running overdamped Langevin dynamics using f for continuous time t from
initial distribution Q0. Then for the distribution S satisfying S(x) ∝ e−f(x) and any α ≥ 1:

Rα(Qt||S) ≤ e−2t/αRα(Q0||S).

Proof of Theorem 49. We will prove the bound for α ≥ 3/2 - the bound for 1 ≤ α < 3/2
follows by just applying monotonicity to the bound for α = 3/2, at the loss of a multiplicative
constant on τ, η, and the iteration complexity.

Let R be the distribution arrived at by running continuous overdamped Langevin dynam-
ics using f for time τ from initial distribution N(0, 1

M
Ik). N(0, 1

M
Ik) satisfies (3.3), so from

Theorem 52 we have R2α(P ||Q) ≤ ϵ/3. From Lemmas 53 and 54 we have R2α(Q||S) ≤ ϵ/3.
Then, we use the weak triangle inequality of Rényi divergence (Fact 46) with p, q = 2 to
conclude that Rα(P ||S) ≤ ϵ.

With only a minor modification to the analysis of the strongly convex and smooth case,
we can also give a discretization error bound when f is L-Lipschitz instead of strongly convex
(while still M -smooth). We have the following radius tail bound analogous to Lemma 50:

Lemma 55. For all η ≤ 1 and any L-Lipschitz, M-smooth f , let xt be the random variable
given by running the discretized overdamped Langevin dynamics starting from an arbitrary
initial distribution for continuous time t. Then with probability 1− δ over {xt : t ∈ [0, T η]},
for all t ≤ Tη and for a sufficiently large constant c:∣∣∣∣xt − x⌊t/η⌋η

∣∣∣∣
2
≤ c(L+

√
k +

√
ln(T/δ))

√
η).

Similarly, if x′
t is the random variable given by running continuous overdamped Langevin

dynamics starting from an arbitrary initial distribution for time t, with probability 1− δ over
x′
t for all t ≤ Tη: ∣∣∣∣x′t − x′⌊t/η⌋η∣∣∣∣2 ≤ c(L+

√
k +

√
ln(T/δ))

√
η).

The proof is deferred to Section 3.9. This gives:

Theorem 56. For any L-Lipschitz, M-smooth function f , let P be the distribution of states
for discretized overdamped Langevin dynamics with step size η and Q be the distribution
of states for continuous overdamped Langevin dynamics, both run from arbitrary initial
distribution for continuous time τ that is a multiple of η. Then for α > 1, ϵ > 0, if
η = Õ( 1

τM4 ln2 α
· ϵ2

L2+k
) we have Dα(P ||Q), Dα(Q||P ) ≤ ϵ.
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The proof of Theorem 56 follows identically to Theorem 52, except using Lemma 55
instead of Lemma 50.

3.7 Making the Bound Bi-Directional

In this section, we show that with slight modifications to the proof of Theorem 49, Rα(P ||S)
and Rα(S||P ) can be simultaneously bounded, proving Theorem 42.

Note that Theorem 52 provides bounds on both Rα(P ||Q) and Rα(Q||P ) for Q that is the
finite time distribution of the continuous chain. So, we just need to show that the following
claim holds: for an appropriate choice of initial distribution, Rα(Q||S), Rα(S||Q) are both
small after sufficiently many iterations. To show this claim, we use the following results,
all of which are slight modifications of the results in [82]. For completeness, we provide
the proofs of these claims at the end of the section. We first need a lemma analogous to
Lemma 54 to show that Rα(S||Q) decays exponentially:

Lemma 57. Fix any f that is 1-strongly convex. Let Qt be the distribution arrived at by
running overdamped Langevin dynamics using f for continuous time t from initial distri-
bution Q0 such that − logQ0 is 1-strongly convex. Then for the distribution R satisfying
S(x) ∝ e−f(x), any α > 1, and any t:

Rα(S||Qt) ≤ e−t/αRα(S||Q0).

This proof follows similarly to Lemma 2 in [82]. If Rα(S||Q0) and Rα(Q0||S) were both
initially not too large, Lemma 57 along with Lemma 54 would be enough to arrive at The-
orem 42. However, for any initial distribution Q0, there is some S satisfying the conditions
of Lemma 57 such that for sufficiently large α one of Rα(S||Q0) and Rα(Q0||S) is infinite.
The following hypercontractivity property of the Langevin dynamics gives that as long as
Rα(Q0||S) is finite for some small α, it will become finite for larger α after a short amount
of time:

Lemma 58 (Lemma 14, [82]). Fix any f that is 1-strongly convex. Let Qt be the distribution
arrived at by running overdamped Langevin dynamics using f for continuous time t from
initial distribution Q0. Fix any α0 > 1, and let αt = 1+e2t(α0−1). Then for the distribution
R satisfying S(x) ∝ e−f(x):

Rαt(Qt||S) ≤
1− 1/α0

1− 1/αt
Rα0(Q0||S).

Given this lemma, we can now settle for an initial distribution where Rα(S||Q0) is not
too large for all α, and Rα(Q0||S) is not too large for α slightly larger than 1. Lemma 58
then says that Rα(Q0||S) will be eventually be not too large after time O(logα), at which
point we can apply Lemmas 54 and 57. We now just need to show that our choice of initial
distribution N(0, Ik) satisfies these conditions:
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Lemma 59. Let Q0 = N(0, Ik). If S(x) = e−f(x) is a probability distribution over Rk with
mode 0 and f is 1-strongly convex and M-smooth, then for all α ≥ 1 we have:

Rα(S||Q0) ≤ k logM.

In addition:

R1+1/L(Q0||S) ≤
kM logM

2
.

Putting it all together, we can now prove Theorem 42.

Proof of Theorem 42. Let Qt be the distribution of the continuous overdamped Langevin
dynamics using f run from initial distribution N(0, Ik) for time t. Assume without loss of
generality that α ≥ 2, since if α ≤ 2 we can use monotonicity of Rényi-divergences to bound
e.g. Rα(P ||S) by R2(P ||S).

If τ is at least a sufficiently large constant times α ln k lnM
ϵ

, Lemma 59 and Lemma 57
give that R2α(S||Qτ ) ≤ ϵ/3. Theorem 52 gives that R2α(Qτ ||P ) ≤ ϵ/3. Fact 46 with p, q = 2
gives that Rα(S||P ) ≤ ϵ.

Lemma 58 and Lemma 59 give that at time t = 1
2
log((2α− 1)M), R2α(Qt||S) ≤ k logM .

Then Lemma 54 gives that, R2α(Qτ ||S) ≤ ϵ/3. Theorem 52 gives that R2α(P ||Qτ ) ≤ ϵ/3.
Fact 46 with p, q = 2 again gives that Rα(P ||S) ≤ ϵ.

Proof of Lemma 57

To prove Lemma 57, we modify the proofs of Lemma 4 and 5 of [82]. To describe the
modifications, we reintroduce the following definitions from that paper:

Definition 60. We say that a distribution Q has LSI constant κ if for all smooth functions
g : Rn → R for which Ex∼Q[g(x)

2] <∞:

Ex∼Q
[
g(x)2 log

(
g(x)2

)]
− Ex∼Q

[
g(x)2

]
log
(
Ex∼Q

[
g(x)2

])
≤ 2

κ
Ex∼Q

[
||∇g(x)||2

]
.

Definition 61. We define for α ̸= 0, 1:

Fα(Q||S) = Ex∼R

[
Q(x)α

S(x)α

]
,

Gα(Q||S) = Ex∼R

[
Q(x)α

S(x)α

∣∣∣∣∣∣∣∣∇ log
Q(x)

S(x)

∣∣∣∣∣∣∣∣2
2

]
=

4

α2
Ex∼R

∣∣∣∣∣
∣∣∣∣∣∇
(
Q(x)

S(x)

)α/2∣∣∣∣∣
∣∣∣∣∣
2

2

 .
For α = 0, 1 these quantities are defined as their limit as α goes to 0, 1 respectively.

Unlike [82], we extend this definition to negative values of α, which allows us to swap the
arguments Q,R:



CHAPTER 3. EFFICIENT PRIVATE LOG-STRONGLY CONCAVE SAMPLING 46

Fact 62. F1−α(Q||S) = Fα(S||Q), G1−α(Q||S) = Gα(S||Q).We also recall that R1−α(Q||S) =
1−α
α
Rα(S||Q).

Proof of Lemma 57. [10] shows that since the initial distribution satisfies that − logQ0 is 1-
strongly convex, Q0 has LSI constant 1. Consider instead running the discrete overdamped
Langevin dynamics with step size η starting withQ0. In one step, we apply a gradient descent
step that is (1 − η/2)-Lipschitz (see e.g. Lemma 3.7 of [45]), and then add Gaussian noise
N(0, 2ηIk). Lemma 16 in [82] shows that applying a (1−η/2)-Lipschitz map to a distribution
with LSI constant c results in a distribution with LSI constant at least c/(1− η/2)2. Adding
Gaussian noise N(0, 2ηIk) to a distribution with LSI constant c results in a distribution with
LSI constant at least 1

1/c+2η
(see e.g. Proposition 1.1 of [84]). Putting it together, we get

that after one step of the discrete dynamics, the LSI constant of the distribution goes from
c to at least:

1
(1−η/2)2

c
+ 2η

=
c

1− (1− 2c)η + η2/4
.

Then, we have that 1− (1−2c)η+η2/4 ≤ 1, i.e. the LSI constant does not decrease after
one step, as long as η ≤ 4(1 − 2c). Taking the limit as η goes to 0, we conclude that Qt’s
LSI constant can never decrease past 1/2, i.e. Qt has LSI constant at least 1/2 for all t ≥ 0.

Now, since Qt has LSI constant at least 1/2, we can repeat the proof of Lemma 5 in

[82] with the distributions swapped to show that Gα(S||Qt)
Fα(S||Qt)

≥ 1
α2Rα(S||Qt). Applying Fact 62

to the proof of Lemma 6 in [82], we can show that d
dt
Rα(S||Qt) = −αGα(S||Qt)

Fα(S||Qt)
. Combining

these two inequalities and integrating gives the lemma.

Proof of Lemma 59

The proof of Lemma 59 follows similarly to that of Lemma 53.

Proof of Lemma 59. Since f is 1-strongly convex and M -smooth, we have:

f(0) +
1

2
||x||22 ≤ f(x) ≤ f(0) +

M

2
||x||22 .

Then:
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exp((α− 1)Rα(S||Q0)) =

∫
Rk

S(x)α

Q0(x)α−1
dx

= (2π)k(α−1)/2

∫
Rk

exp

(
−αf(x) + α− 1

2
||x||22

)
dx

≤ (2π)k(α−1)/2

eαf(0)

∫
Rk

exp

(
−1

2
||x||22

)
dx

=
(2π)kα/2

eαf(0)
.

Taking logs and using that the M -smooth f that minimizes f(0) is N(0, 1
M
Ik) with

density exp(−k
2
log(2π/M)−M ||x||22):

Rα(S||Q0) ≤
α

α− 1
·
(
k

2
log 2π − f(0)

)
≤ α

α− 1
· k
2
logM.

For α ≥ 2, the above bound is thus at most k logM as desired, and for 1 ≤ α ≤ 2 we
can just use monotonicity of Rényi-divergences to bound Rα(S||Q0) by R2(S||Q0).

Similarly:

exp((1/M)R1+1/M(Q0||S)) =
∫
Rk

Q0(x)
1+1/M

S(x)1/M
dx

= (2π)−k(1+1/M)/2

∫
Rk

exp

(
−1 + 1/M

2
||x||22 + f(x)/M

)
dx

≤ ef(0)/M

(2π)k(1+1/M)/2

∫
Rk

exp

(
− 1

2M
||x||22

)
dx

=
ef(0)/MMk/2

(2π)k/2M
.

Taking logs, and using that the 1-strongly convex f that maximizes f(0) is N(0, Ik) with
density exp(−k

2
log(2π)− ||x||22):

R1+1/M(Q0||S) ≤M

[
f(0)/M +

k

2
logM − k

2M
log(2π)

]
≤ kM logM

2
.

3.8 Underdamped Langevin Dynamics

Our approach can also be used to show a bound on the discretization error of underdamped
Langevin dynamics. We again start by bounding the divergence between two discrete pro-
cesses with step sizes η and η/c, whose limits as c goes to infinity are the discretized and
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continuous underdamped Langevin dynamics. Again let xt denote the position of the chain
using step size η at continuous time t, and x′

t denote the position of the chain using step
size η/c. Let vt,v

′
t denote the same but for velocity instead of position. If e.g. for the first

chain we ever have
∣∣∣∣xt∗ − x⌊t∗/η⌋η

∣∣∣∣
2
> r we will let (xt,vt) equal ⊥ for all t ≥ t∗. We want

to bound the divergence between the distributions X0:Tc over {(xiη/c,viη/c)}0≤i≤Tc and X ′
0:Tc

over {(x′
iη/c,v

′
iη/c)}0≤i≤Tc. A sample from X0:Tc or X

′
0:Tc can be constructed by applying the

following operations Tc times to {(x0,v0)} sampled from an initial distribution X0:

• To construct a sample from X0:Tc, given a sample {(xiη/c,viη/c)}0≤i≤j from X0:j:

– If (xjη/c,vjη/c) = ⊥ append (xiη/c,viη/c) = ⊥ to {(xiη/c,viη/c)}0≤i≤j.
– Otherwise, append (x(j+1)η/c,v(j+1)η/c) where:

v(j+1)η/c = (1− γ η
c
)vjη/c − µ

η

c
∇f(x⌊j/c⌋η) + ξj,

x(j+1)η/c = xjη/c +
η

c
v(j+1)η/c,

and ξj ∼ N(0, 2γµη
c
Ik). Then if

∣∣∣∣x(j+1)η/c − x⌊(j+1)/c⌋η
∣∣∣∣
2
> r (i.e. Er no longer

holds) replace (x(j+1)η/c,v(j+1)η/c) with ⊥.

Let ψ denote this update, i.e. X0:j+1 = ψ(X0:j).

• To construct a sample from X ′
0:Tc, the update (which we denote ψ′) is identical to ψ

except we use the gradient at x′
jη/k instead of x′

⌊j/k⌋η to compute v(j+1)η/c.

We remark that unlike in our analysis of the overdamped Langevin dynamics, for finite
c, X0:Tc, X

′
0:Tc do not actually correspond to the SDE (3.1) with step size η, η/c. However,

we still have the property that the limit of X0:Tc (resp. X
′
0:Tc) as c goes to infinity follows a

discretized (resp. continuous) underdamped Langevin dynamics, which is all that is needed
for our analysis. Similarly to the overdamped Langevin dynamics we have:

Lemma 63. For any M-smooth f and X0:Tc, X
′
0:Tc as defined above, we have:

Rα(X0:Tc||X ′
0:Tc), Rα(X

′
0:Tc||X0:Tc) ≤

TαM2r2η

4
· µ
γ
.

The proof follows almost exactly as did the proof of Lemma 47: we note that the updates
to position are deterministic, and so by Fact 45 we just need to control the divergence between
velocities, which can be done using the same analysis as in Lemma 47. The multiplicative
factor of µ/γ appears because the ratio of the Gaussian’s standard deviation in any direction
to the gradient step’s multiplier is

√
γ/µ times what it was in the overdamped Langevin

dynamics. Next, similar to Lemma 50, we have the following tail bound on r:



CHAPTER 3. EFFICIENT PRIVATE LOG-STRONGLY CONCAVE SAMPLING 49

Lemma 64. Fix any γ ≥ 2, and define

vmax := c
√
γµ
(√

τk +
√

ln(1/δ)
)
.

Fix any η ≤ γ
µL

, and any distribution over x0,v0 satisfying that

Pr

[
µf(x0) +

||v0||22
2
≤ 1

2
v2
max

]
≥ 1− δ, (3.4)

let xt,vt be the random variable given by running the discretized underdamped Langevin
dynamics starting from x0,v0 drawn from this distribution for time t. Then with probability
1 − δ over {(xt,vt) : t ∈ [0, τ ]}, for all t ≤ τ that are multiples of η and for a sufficiently
large constant c:

||xt+η − xt||2 ≤ vmaxη.

Similarly, if xt is the random variable given by running continuous underdamped Langevin
dynamics starting from x0,v0 drawn from this distribution for time t, with probability 1− δ
over {(x′

t, v
′
t) : t ∈ [0, τ ]} for all t ≤ τ :∣∣∣∣xt − x⌊t/η⌋η

∣∣∣∣
2
≤ vmaxη.

The proof is deferred to Section 3.9. We note that the correct tail bound likely has a log-
arithmic dependence on τ and not a polynomial one. However, based on similar convergence
bounds (e.g. [82, 61]), we conjecture that the time τ needed for continuous underdamped
Langevin dynamics to converge in Rényi-divergence has a logarithmic dependence on k, 1/ϵ.
So, improving the dependence on τ in this tail bound will likely not improve the final it-
eration complexity’s dependence on k, 1/ϵ by more than logarithmic factors. In addition,
settling for a polynomial dependence on τ makes the proof rather straightforward. Putting
it all together, we get:

Theorem 65. For any 1-strongly convex, M-smooth function f , let P be the distribution of
states for discretized underdamped Langevin dynamics with step size η and Q be the distri-
bution of states for continuous underdamped Langevin dynamics, both run from any initial
distribution on x0,v0 satisfying (3.4), for continuous time τ that is a multiple of η. Then
for α > 1, ϵ > 0, if η = Õ(min{ 1

Mτµ lnα
· ϵ√

k
, γ
µL
}) we have Rα(P ||Q), Rα(Q||P ) ≤ ϵ.

Proof. The proof follows similarly to that of Theorem 52. From Lemma 63, plugging in the
tail bound of Lemma 64 for r (which holds since we assume η ≤ γ

µL
) we get the divergence

bound:

Rα′(XT,k, X
′
T,k) ≤

3µτα′M2c2(τk + ln( 1
δ1
) + ln( 1

δ2
))η2

4

We can then just follow the proof of Theorem 52 as long as:
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c1(α
′) = exp

(
3µτ 2kα′(α′ − 1)M2c2η2

4

)
< 2,

For α′ = 12α lnα ln 1/ϵ
(α−1)ϵ

− 2. This follows if η = Õ( 1
Mτµ lnα

· ϵ√
k
) as assumed in the lemma

statement.

We give here some intuition for why the proof achieves an iteration complexity for un-
derdamped Langevin dynamics with a quadratically improved dependence on k, ϵ compared
to overdamped Langevin dynamics. The tail bound on the maximum movement within each
step of size η (and in turn the norm of the discretization error due to the gradient) has a
quadratically stronger dependence on η in the underdamped case than in the overdamped
case. In turn, in underdamped Langevin dynamics the “privacy loss” of hiding this error
with Brownian motion also improves quadratically as a function of η.

3.9 Proofs of Tail Bounds on Movements

In this section we give the proofs of Lemmas 50, 55, and 64, which provide tail bounds for
the maximum movement within each step of the Langevin dynamics in the three settings
we consider. We first recall some facts about Gaussians, Brownian motion, and gradient
descent:

Fact 66 (Univariate Gaussian Tail Bound). For x ∼ N(0, σ2) and any c ≥ 0, we have

Pr[x ≥ c] = Pr[x ≤ −c] ≤ exp

(
− c2

2σ2

)
.

Fact 67 (Isotropic Multivariate Normal Tail Bound). For x ∼ N(0, Ik) and any c ≥ 0, we
have

Pr[||x||2 ≥
√
k + c] ≤ exp

(
−c

2

2

)
.

Fact 68 (Univariate Brownian Motion Tail Bound). Let Bt be a standard (one-dimensional)
Brownian motion. For any 0 ≤ a ≤ b and c ≥ 0 we have:

Pr

[
sup
t∈[a,b]

[Bt −Ba] ≥ c

]
= 2 · Pr[N(0, b− a) ≥ c] ≤ 2 exp

(
− c2

2(b− a)

)
The preceding fact is also known as the reflection principle.

Fact 69 (Multivariate Brownian Motion Tail Bound). Let Bt be a standard k-dimensional
Brownian motion. For any 0 ≤ a ≤ b, c ≥ 0, we have:

Pr

[
sup
t∈[a,b]

||Bt −Ba||2 ≥
√
b− a

(√
k + c

)]
≤ 2 exp(−c2/4).
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Fact 70 (Discrete Gradient Descent Contracts). Let f : Rk → R be a 1-strongly convex,
M-smooth function. Then for η ≤ 2

M+1
, we have ||x− η∇f(x)− x′ + η∇f(x′)||2 ≤ (1 −

ηM
M+1

) ||x− x′||2 ≤ (1− η
2
) ||x− x′||2 for any x,x′ ∈ Rk.

See e.g. Lemma 3.7 of [45] for a proof of this fact. Since we assume f ’s global minimum
is at 0 (and thus ∇f(0) = 0), as a corollary we have ||x− η∇f(x)||2 ≤ (1− η/2) ||x||2. We
also have as a corollary:

Fact 71 (Continuous Gradient Descent Contracts). Let f : Rk → R be a 1-strongly convex,
M-smooth function. Then for any x0,x

′
0 ∈ Rk and xt,x

′
t that are solutions to the differential

equation dxt = −∇f(xt)dt we have ||xt − x′
t||2 ≤ e−t/2 ||x0 − x′

0||2.

Proof. This follows by noting that the xt is the limit as integer c goes to ∞ of applying c
discrete gradient descent steps to x0 with η = t/c. So, the contractivity bound we get for xt
is ||xt − x′

t||2 ≤ limc→∞(1− t/2c)c ||x0 − x′
0||2 = e−t/2 ||x0 − x′

0||2.

Proof of Lemma 50

Proof. We consider the discrete chain first. For each timestep starting at t that is a multiple
of η, using smoothness we have:

max
t′∈[t,t+η)

||xt′ − xt||2 = max
t′∈[t,t+η)

∣∣∣∣∣
∣∣∣∣∣−(t′ − t)∇f(xt) +√2

∫ t′

t

dBs

∣∣∣∣∣
∣∣∣∣∣
2

≤ η ||∇f(xt)||2 +
√
2 max
t′∈[t,t+η)

∣∣∣∣∣
∣∣∣∣∣
∫ t′

t

dBs

∣∣∣∣∣
∣∣∣∣∣
2

≤ ηM ||xt||2 +
√
2 max
t′∈[t,t+η)

∣∣∣∣∣
∣∣∣∣∣
∫ t′

t

dBs

∣∣∣∣∣
∣∣∣∣∣
2

.

Using the tail bound for multivariate Brownian motion, maxt′∈[t,t+η)

∣∣∣∣∣∣∫ t′t dBs

∣∣∣∣∣∣
2
is at

most c
2
√
2

(√
k +

√
ln(T/δ)

)√
η with probability at least 1 − δ

2T
for each timestep. So

it suffices to show that with probability at least 1 − δ
2
, for all 0 ≤ t < Tη that are

multiples of η, ||xt||2 ≤
c

2
√
η

(√
k +

√
ln(T/δ)

)
. From (3.3), with probability 1 − δ

T+1
,

||x0||2 ≤
c

2
√
η

(√
k +

√
ln(T/δ)

)
. We will show that if ||xt||2 ≤

c
2
√
η

(√
k +

√
ln(T/δ)

)
then with probability 1 − δ

T+1
we have ||xt+η||2 ≤

c
2
√
η

(√
k +

√
ln(T/δ)

)
, completing the

proof for the discrete case by a union bound. This follows because by Fact 70 the gra-
dient descent step is (1 − η/2)-Lipschitz for the range of η we consider. This gives that
after the gradient descent step but before adding Gaussian noise, xt+η has norm at most
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(1− η/2) ||xt||2 ≤ (1− η/2) c
2
√
η

(√
k +

√
ln(T/δ)

)
. Then, ||xt+η||2 >

c
2
√
η

(√
k +

√
ln(T/δ)

)
only if

√
2
∣∣∣∣∣∣∫ t+ηt

dBs

∣∣∣∣∣∣
2
is larger than c

√
η
(√

k +
√
ln(T/δ)

)
, which happens with proba-

bility at most δ
T+1

by the multivariate Gaussian tail bound.
We now consider the continuous chain. For all t that are multiples of η:

max
u∈[t,t+η)

||x′
u − x′

t||2 = max
u∈[t,t+η)

∣∣∣∣∣∣∣∣∫ u

t

−∇f(x′
s)ds+

√
2dBs

∣∣∣∣∣∣∣∣
2

≤ ηL max
u∈[t,t+η)

||x′
u||2 + max

u∈[t,t+η)

∣∣∣∣∣∣∣∣√2 ∫ u

t

dBs

∣∣∣∣∣∣∣∣
2

.

As with the discrete chain, the multivariate Brownian motion tail bound gives that

max
u∈[t,t+η)

∣∣∣∣∣∣∣∣√2 ∫ u

t

dBs

∣∣∣∣∣∣∣∣
2

≤ c

2

(√
k +

√
ln(T/δ)

)√
η,

with probability at least 1 − δ
2T
. So it suffices to show that at all times between 0 and

Tη, ||x′
u||2 ≤

c
2
√
η

(√
k +

√
ln(T/δ)

)
with probability at least 1− δ

2
. We first claim that with

probability at least 1 − δ
4
, for all t that are multiples of η, ||x′

t||2 ≤
c

4
√
η

(√
k +

√
ln(T/δ)

)
.

This is true for x′
0 with probability at least 1− δ

4(T+1)
by (3.3). By contractivity of continuous

gradient descent, x′
t+η is equal to Ax

′
t +
√
2
∫ t+η
t

A′
sdBs for some A which has eigenvalues in

[−e−η/2, e−η/2] and a set of matrices {A′
s|s ∈ [0, η]} with eigenvalues in [−e−(η−s)/2, e−(η−s)/2]1.

Then conditioning on the claim holding for x′
t,
∣∣∣∣x′

t+η

∣∣∣∣
2
exceeds c

4
√
η

(√
k +

√
ln(T/δ)

)
only

if the norm of
√
2
∫ t+η
t

A′
sdBs exceeds

c(1− e−η/2)
4
√
η

(√
k +

√
ln(T/δ)

)
≥
c(1− e−.5))√η

4

(√
k +

√
ln(T/δ)

)
.

Since Brownian motion is rotationally symmetric, and all A′
s have eigenvalues in [−1, 1], this

occurs with probability upper bounded by the probability
√
2
∫ t+η
t

dBs exceeds this bound,
which is at most δ

4(T+1)
by the Brownian motion tail bound. The claim follows by taking a

union bound over all t that are multiples of η.
Then, conditioning on the event in the claim, for each corresponding interval [t, t + η)

since gradient descent contracts we have

1In particular, recalling the proof of Facts 70 and 71, we can write A explicitly as limk→∞
∏k−1

j=0 (Id −
η
k∇

2f(zj)), where zj is some point on the path from 0 to x′
t+ jη

k

. Each As can be written similarly, except

only considering the gradient descent process from time t+ s to t+ η.
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max
u∈[t,t+η)

||x′
u||2 ≤ ||x

′
t||2 + max

u∈[t,t+η)

∣∣∣∣∣∣∣∣√2∫ u

t

dBs

∣∣∣∣∣∣∣∣
2

≤ c

4
√
η

(√
k +

√
ln(T/δ)

)
+ max

u∈[t,t+η)

∣∣∣∣∣∣∣∣√2 ∫ u

t

dBs

∣∣∣∣∣∣∣∣
2

.

We conclude by using the multivariate Brownian motion tail bound to observe that

max
u∈[t,t+η)

∣∣∣∣∣∣∣∣√2 ∫ u

t

dBs

∣∣∣∣∣∣∣∣
2

≤ c

4
√
η

(√
k +

√
ln(T/δ)

)
,

with probability at least 1− δ
4T
, and then taking a union bound over all intervals.

Proof of Lemma 55

Proof. By L-Lipschitzness of f , the movement in any interval of length η due to the gradient
step in both the discrete and continuous case is at most 2Lη. By the multivariate Brownian
motion tail bound, in both the discrete and continuous cases the maximum movement due
to the addition of Gaussian noise is at most c(

√
k +

√
ln(T/δ))

√
η with probability at least

1− δ
T
in each interval of length η, and then the lemma follows by a union bound and triangle

inequality.

Proof of Lemma 64

Proof. We can assume δ < 1/2, at a loss of a multiplicative constant. We first focus on the
continuous chain. It suffices to show the maximum norm of the velocity over [0, τ) is vmax

with the desired probability. We will instead focus on bounding the Hamiltonian, defined as
follows:

ϕt = µf(x′
t) + ||v′

t||
2
2 /2.

Analyzing the rate of change, by Ito’s lemma we get

dϕt =
∂ϕt
∂x′

t

· dx′
t +

∂ϕt
∂v′

t

· dv′
t +

1

2

∑
i,j∈[k]

∂2ϕt
∂(v′

t)i∂(v
′
t)j

d(v′
t)i

dBt

d(v′
t)j

dBt

 dt

= µ∇f(x′
t) · v′

tdt+ v′
t · (−µ∇f(x′

t)dt− γv′
tdt+

√
2γµdBt) + 2γµk · dt

= γ(2µk − ||v′
t||

2
2)dt+

√
2γµ(v′

t · dBt).

So, we can write the Hamiltonian at any time as a function of the initial Hamiltonian ϕ0

and the random variables Bt and v′
t as:
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ϕt = ϕ0 − γ
∫ t

0

||v′
s||

2
2 ds+

√
2γµ

∫ t

0

||v′
s||2

v′
s

||v′
s||2
· dBs + 2γµkt.

Let Vt denote
∫ t
0
||v′

s||
2
2 ds. By scalability of Brownian motion, we can define a Brownian

motion B′
t jointly distributed with Bt such that dBt =

1
||v′

t||2
d
dt

∫ Vt
0

dB′
s. Then, we have:

ϕt = ϕ0 − γVt +
√

2γµ

∫ Vt

0

v′
g(s)∣∣∣∣∣∣v′
g(s)

∣∣∣∣∣∣
2

· dB′
s + 2γµkt,

Where g(r) is the value r′ such that
∫ r′
0
||v′

s||
2
2 ds = r. We can then use the rotational

symmetry of Brownian motion to define another Brownian motion B′′
t jointly distributed

with B′
t such that u · dB′′

t =
v′
g(t)∣∣∣∣∣∣v′
g(t)

∣∣∣∣∣∣
2

· dB′
t for a fixed unit vector u, giving:

ϕt = ϕ0 − γVt +
√
2γµ

∫ Vt

0

u · dB′′
s + 2γµkt.

We will show that with probability at least 1 − δ over B′′
t , the maximum of ϕ′(V ) :=

ϕ0 − γV +
√
2γµ

∫ V
0
u · dB′′

s over V ∈ [0,∞) is at most 1
4
v2
max. Under this event, if c is

sufficiently large then for all t ∈ [0, τ) we have ϕt ≤ 1
4
v2
max + 2γµkτ ≤ 1

2
v2
max, giving the

desired velocity bound.
We first claim that with probability at at least 1− δ

2
. for all non-negative integers q, we

have ϕ′(qv2
max) ≤ −

(q−1)v2
max

2
. For sufficiently large c, this holds for q = 0 with probability at

least 1− δ
4
by (3.4). Conditioning on this event, for q > 0 if ϕ′(qv2

max) ≥ −
(q−1)v2

max

2
, then:

√
2γµ

∫ qv2
max

0

u · dB′′
s = N(0, 2qγµv2

max) ≥ −
(q − 1)v2

max

2
− ϕ0 + qγv2

max ≥ (γ − 1)qv2
max,

Which occurs with probability at most exp(− (γ−1)2q2v4
max

4qγµv2
max

) ≤ exp(− qv2
max

8µ
). If the constant

c in vmax is sufficiently large, then this is less than δq+2

2
. Taking a union bound over all q,

we get the claim. Next, we claim that in each interval [qv2
max, (q + 1)v2

max), the maximum
increase of ϕ′(V ) is more than ( q+1

2
)v2

max with probability at most δq+2

2
. Taking a union

bound over all intervals, this claim along with the previous claim this gives the desired
bound on ϕ′(V ) with probability 1− δ. This claim follows by observing that in the interval

[qv2
max, (q+1)v2

max), ϕ
′(V ) increases more than maxV ∈[qv2

max,(q+1)v2
max)

[∫ V
qv2

max
u · dB′′

s

]
, which

is at most ( q+1
2
)v2

max with probability at most exp(− ( q+1
2

)2v4
max

8v2
max

) ≤ δq+1

2
.
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The discrete chain is analyzed similarly. We have:

dϕt =
∂ϕt
∂xt
· dxt +

∂ϕt
∂vt
· dvt +

1

2

∑
i,j∈[k]

∂2ϕt
d(vt)id(vt)j

d(vt)i
dBt

d(vt)j
dBt

 dt

= µ∇f(xt) · vtdt+ vt · (−µ∇f(x⌊ t
η
⌋η)dt− γvtdt+

√
2γµdBt) + 2γµk · dt

= µ(∇f(xt)−∇f(x0)) · vtdt− γ ||vt||22 dt+
√

2γµ(v · dBt) + 2γµk · dt

≤ µM
∣∣∣∣∣∣xt − x⌊ t

η
⌋η

∣∣∣∣∣∣
2
||vt||2 dt− γ ||vt||

2
2 dt+

√
2γµ(v · dBt) + 2γµk · dt

= µM

∣∣∣∣∣
∣∣∣∣∣
∫ t

⌊ t
η
⌋η
vsds

∣∣∣∣∣
∣∣∣∣∣
2

||vt||2 dt− γ ||vt||
2
2 dt+

√
2γµ(v · dBt) + 2γµk · dt

≤ µM

(∫ t

⌊ t
η
⌋η
||vs||2 ||vt||2 ds

)
dt− γ ||vt||22 dt+

√
2γµ(v · dBt) + 2γµk · dt

≤ µM

2

(∫ t

⌊ t
η
⌋η
||vs||22 + ||vt||

2
2 ds

)
dt− γ ||vt||22 dt+

√
2γµ(v · dBt) + 2γµk · dt.

Integrating, we get:

ϕt ≤ ϕ0 − (γ − µMη

2
)

∫ t

0

||vs||22 ds+
√

2γµ

∫ t

0

||vs||2
vs
||vs||2

· dBs + 2γµkt

≤ ϕ0 −
γ

2

∫ t

0

||vs||22 ds+
√
2γµ

∫ t

0

||vs||2
vs
||vs||2

· dBs + 2γµkt.

At this point we repeat the analysis from the continuous case (only losing a multiplicative
constant due to the γ/2 multiplier not being γ).
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Chapter 4

Public Data-Augmented Stochastic
Optimization

4.1 Introduction and Problem Definition

Differentially Private Gradient Descent (DP-GD) [76, 13, 1]1, and its variants [52] have be-
come the de facto standard algorithms for training machine learning models with differential
privacy. While DP-GD is known to be optimal in terms of obtaining both optimal excess
empirical risk [13], and excess population risk [18] for convex losses, the obtained error guar-
antees suffer from an explicit polynomial dependence on the model dimension (k). This
polynomial dependence significantly impacts the privacy/utility trade-off when k ≥ npriv,
where npriv is the number of private training samples. Even empirically, when DP-GD is
used to train large deep learning models, there is a significant drop in accuracy compared to
the non-private counterpart [72].

In this chapter, we revisit the problem of using public data (i.e., data without privacy
concerns) to improve the privacy/utility trade-offs for differentially private model training.
Specifically, we design differentially private variants of mirror descent [69] that use the loss
function generated by the public data as the mirror map and differentially private gradients
on the private data as the linear term. For linear regression as well as a class of more
general convex optimization settings, we show that the excess population risk asymptotically
improves over the best known bounds under differential privacy (without access to public
data samples) [13, 17] when npub is sufficiently large (i.e., a small polynomial in k), and
the public and private feature vectors are drawn from the same non-isotropic sub-Gaussian
distribution. Here, npub is the number of public data samples. Even if npub is small, our
algorithm generalizes DP-GD, so it never performs worse than DP-GD. Furthermore, we
show empirically that our differentially private variant of mirror descent, assisted with public

1Again, we recall that the popular algorithm is stochastic gradient descent, i.e. we subsample examples
to get an estimate of the gradient, and not gradient descent, which uses all examples. To simplify the
presentation, in this chapter we ignore the distinction between the two consider only gradient descent.
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data, can improve the privacy-utility trade-offs by effectively reducing the variance in the
noise added to the gradients in differentially private model training.

Learning Geometry with Mirror Maps: Common to most differentially private model
training algorithms, including DP-GD, DP-FTRL [52], and our algorithm, is a differentially
private estimator of the gradient of the loss ∇θL(θt;Dpriv) =

∑
d∈Dpriv

∇θℓ(θt; d) generated
by the private dataset Dpriv at a given model state θt ∈ Rp. This estimator adds isotropic
Gaussian noise N(0, σ2Ik) to ∇θL(θt;Dpriv), where σ depends on the privacy parameters
(ϵ, δ) and the maximum allowable value of ||∇θℓ(θt; d)||2 (a.k.a. the clipping norm [1]). It
is well known that for most learning tasks, the set of gradients for L(θt;Dpriv) is seldom
isotropic [44, 2]. Hence, it is natural to wonder if the Gaussian noise in the differentially
private estimator can be made to respect the geometry of the gradients.

Prior works [90, 7, 50] have used public data (Dpub) to explicitly learn this geometry,
mostly in the form of preconditioner matrices [29] to be multiplied to the estimated noisy
gradients. In this chapter, we take an implicit approach towards respecting this geometry, by
using the loss L(θ;Dpub) generated by the public data as the mirror map in classical mirror
descent. As a first order approximation, one can view it as doing DP-GD on L(θ;Dpriv)
while using L(θ;Dpub) as a regularizer. This approach has the following advantages: (i) The
information of the geometry is “free”, i.e., one does not need to learn the preconditioner
explicitly from the public data, (ii) Unlike prior works [90, 50], one does not need to assume
that the gradients of L(θ;Dpriv) lie in a low rank subspace, and (iii) It is easier to implement
since it does not need to maintain an additional data structure for the preconditioner due
to the geometry being implicitly defined.

We note that differentially private mirror descent has been considered before by [79, 83].
Their results are not directly comparable to ours because (i) they do not have access to in-
distribution public data, (ii) as shown in [13], without public data, it is impossible to achieve
the bounds we achieve, and (iii) in our experiments, we solve unconstrained optimization
problems whereas those works choose the mirror map based on the constraint set rather than
the dataset. The utility bounds we prove in this chapter also apply to a public data-assisted
variant of accelerated mirror descent in [83].

In-distribution vs. Out-of-distribution Public Data: Prior works have considered
settings where the public data comes from the same distribution as the private data (a.k.a. in-
distribution) [14, 90, 50, 7, 85], and where they can be different (a.k.a. out-of-distribution) [1,
71, 70, 56, 58, 89].

In the in-distribution setting, it is typical that there are fewer public data samples avail-
able than private data samples – i.e., npub ≪ npriv – as it is harder to obtain public datasets
than ones with privacy constraints attached. In-distribution public data could come from
either altruistic opt-in users [63, 8] or from users who are incentivized to provide such data
(e.g., mechanical turks). Out-of-distribution (OOD) public data may be easier to obtain
but can have various degrees of freedom; e.g., the domains of private and public data may
not be identical, the representation of some classes may vary, the distributions can be mean
shifted, etc. It is usually hard to quantify these degrees of freedom to the extent that we
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can provide precise guarantees. Hence, we leave this aspect for future exploration, and work
with the (idealized) assumption that the public data comes from the same distribution as
the private data, or, at least, that the differences between these two distributions are not
material. It worth emphasizing that although our utility results are for the in-distribution
case, our algorithm can be used as is in out-of-distribution settings. In a restricted set of
experiments, we do compare with one of the SoTA [7] for training with OOD public data,
and demonstrate improvements in privacy/utility trade-off.

Choice of Empirical Benchmark: Mirror descent as a first step optimizes the mirror
map function. In our setting, this corresponds to pre-training on the public loss function
L(θ;Dpub) before running the differentially private optimization procedure on L(θ;Dpriv).
Since pre-training on public data is intuitive and easy, we always compare to DP-GD (and
its variants) that have been pre-trained to convergence with the public loss. We show that
our algorithm outperforms even pre-trained DP-GD. To our knowledge, ours is the first
empirical work that compares to this strong (but fair) benchmark.

Other Uses of Public Data in Differentially Private Learning: The use of in-
distribution public data has been extensively explored both theoretically and empirically.
On the theoretical side, it has been shown [3, 16] that a combination of private and pub-
lic data samples can yield asymptotically better worst-case PAC learning guarantees than
either on their own. Another line of work [71, 70, 15, 31, 67] considers public data that is
unlabelled, but otherwise comes from the same distribution as the private data; the primary
goal is to use the private data to generate labels for the public data, which can then be used
arbitrarily. Additionally, [38] showed that for convex ERMs, using ≈ k in-distribution public
data samples, one can obtain dimension independent population risk guarantees. However,
the main tool used to prove differential privacy (i.e., privacy amplification by iteration)
heavily relies on convexity. As a result, their algorithm is inapplicable to the deep learning
problems we consider in this chapter.

Prior to our work only two papers considered out-of-distribution data from a theory
standpoint. [12] assume that whether a data record is public or private depends on its label;
e.g., the public data may contain many negative examples, but few positive examples. They
show that halfspaces can be learned in this model. [58] consider synthetic data generation
and provide guarantees that depend on the Rényi divergences between the public and private
distributions. [1, 81] provided techniques to effectively use out-of-distribution public data for
pre-training for DP-GD. However, they did not consider techniques to improve a pre-trained
model using private and public data, which is the focus of our work. A recent work [89] uses
public data to dynamically adjust the privacy budget and clipping norm. Our technique
crucially uses the public data to learn the geometry of the gradients; [89] is complementary
to ours and can be utilized for potential additional gains from using the public data after
pre-training.
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Problem Formulation

For convenience we restate the classic differentially private stochastic convex optimization
(DP-SCO) [22, 13, 17, 18] setting. Let τ be a distribution over a fixed domain D. Given
a dataset D ∈ D∗ drawn i.i.d. from τ , and a convex loss function ℓpriv : Rp × D → R,
the objective is to approximately solve argminθ∈C Ed∼τ [ℓpriv(θ; d)], while preserving DP.
Here, C ⊆ Rp is the constraint set. Usually one solves the SCO problem via empirical risk
minimization (ERM), i.e., θpriv ∈ argminθ∈C L(θ;D), where L(θ;D) = 1

|D|
∑

d∈D ℓpriv(θ; d),
and then uses θpriv as a proxy. Up to a dependence on dimensionality k, in the differentially
private setting, a direct translation from ERM to the SCO setting provides optimal rates [13,
17, 18].

We consider the DP-SCO setting with heterogeneous data, where there are two datasets
Dpriv (with npriv samples) and Dpub (with npub samples) drawn i.i.d. from the same distri-
bution. The private dataset Dpriv requires privacy protection, whereas the public dataset
Dpub does not. Our algorithm allows the usage of a separate public loss function ℓpub. For
example, we give a theoretical analysis where ℓpriv and ℓpub both correspond to the linear
regression loss 1

2
(y − ⟨x, θ⟩)2. In practice too, one will likely choose ℓpriv = ℓpub, but we

may clip the gradients of ℓpriv for privacy. In general, ℓpub can be arbitrary, and we give a
theoretical analysis for this more general setting as well.

4.2 Our Results and Technical Overview

We first analyze our algorithm for public-data augmented DP-SCO, PDA-DPMD, in the
special case of linear regression, obtaining the following result:

Theorem 72 (Informal Statement of Theorem 76). Consider the problem of minimizing the
mean-squared error in linear regression of a model θ, given samples di = (xi, yi). Suppose
||x||2 ≤ 1 for all samples, and |y − ⟨θ∗,x⟩| ≤ 1 for the optimal model θ∗. Let H̄ be the

Hessian of the empirical loss function, and assume npriv ≥ npub and npub = Ω( log(k/δ)
λmin(H̄)

). Let

χ = max

{
1

λmin(H̄)
, λmax(H̄)npub

}
·
∑
i

min

{
1,

log(1/δ)

λi(H̄)2npub

}
.

Then, PDA-DPMD is (ϵ, δ)-DP and we have the following guarantee on L(θ) := Ed∼τ [ℓ(θ; d)]:

E [L(θpriv)− L(θ∗)] ≤ Õ

(
χ log(1/δ)

ϵ2n2
priv

+
1

λmin(H̄)npriv

)
.

We note that in this setting, DP-GD obtains an error of roughly p
λmin(H̄)ϵ2n2

priv
+ 1
λmin(H̄)npriv

.

If we use PDA-DPMD instead, we can show that given a sufficient number of public samples,
the first term depends on the average rather than the minimum eigenvalue. For example,
if H̄ has one eigenvalue being 1/k1.5 and the remaining eigenvalues being 1/p, then with
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npub = Ω̃(k2.5) public samples, PDA-DPMD obtains an error of k2

ϵ2n2
priv

+ k1.5

npriv
, whereas DP-

GD gets k2.5

ϵ2n2
priv

+ k1.5

npriv
. Since PDA-DPMD generalizes DP-GD, unsurprisingly, it still recovers

the error bound of DP-GD in the isotropic case.
To prove Theorem 76, we show that the public sample Hessian, private sample Hessian,

and population Hessian are all good approximations of each other. This lets us argue the
following: for an ellipsoid that is approximately the same shape as C, we can bound the
strong convexity parameter of Ψ with respect to this ellipsoid’s Minkowski norm. Then,
by the concentration of the public sample Hessian, the strong convexity parameters of the
population loss and private sample loss with respect to this ellipsoid’s Minkowski norm are
within a constant factor of the public loss’ strong convexity parameter. This lets us use the
framework of [79] to obtain the desired excess empirical loss bound, which gives a population
loss bound as well by uniform stability.

Theorem 73 (Informal Statement of Theorem 86). Suppose the private loss is convex and
L-Lipschitz, the public loss is 1-strongly convex and 1-strongly convex with respect to the
Minkowski norm of a convex body Q with Gaussian width GQ, the public gradients have
“variance” V 2, and the private and public losses share a minimizer. Then PDA-DPMD has
excess empirical loss:

O

(
V LGQ

√
log(1/δ)

ϵnpriv
√
npub

)

Note that in contrast with the excess empirical loss for DP-GD of
L||C||2

√
k log(1/δ)

ϵnpriv
, (i) We

have a dependence on the variance V instead of ||C||2, (ii) We replace
√
k with GQ, and

(iii) Our loss is further decreased by 1/
√
npub. In particular, GQ is at most

√
k, but can be

constant if e.g. the public loss functions have a much larger strong convexity parameter in
all but a constant number of basis directions. Note that if we have npub = G2

Q ≤ k public
samples, then the dependences on npub andGQ cancel out, i.e. this error bound has no explicit
dependence on dimension. Using standard techniques, we can turn this into a dimension-
independent excess population loss bound (see Theorem 86), again assuming npub ≥ G2

Q. To
the best of our knowledge, ours is the first work on augmenting private training with public
data to show a theoretical improvement over DP-SGD (here the dependence 1√

npub
) due to

pre-training on public data. In particular, we show pre-training improves the standard DP-
SGD bounds even under a totally isotropic geometry. We again use the framework of [79],
which shows that the excess empirical loss is a function of the Bregman divergence (defined
in the following section) between the initial model θ0, which we choose to be the minimize
of the public loss, and the optimal solution θ∗. By using the bounded variance of the public
gradients, we are able to bound this initial Bregman divergence, giving our result.
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4.3 Preliminaries

Mirror Maps: A mirror map is a differentiable function Ψ : Rk → R that is strictly convex.
Since Ψ is strictly convex and differentiable, ∇Ψ : Rk → Rk provides a bijection from Rk

to itself. One can view θ as lying in a primal space and ∇Ψ(θ) as lying in a dual space. In
turn, we could now consider optimizing over the value ∇Ψ(θ) in the dual space instead of
optimizing over θ in the primal space. Mirror descent does exactly that, performing gradient
descent in the dual space by computing the gradient gt = ∇ℓ(θt) (where θt lies in the primal
space), taking a step in the opposite direction in the dual space, and then using the inverse
of the mirror map to determine θt+1. Mirror descent is essentially motivated as minimiz-
ing a (linearized) loss plus a Bregman divergence (induced by Ψ) as the regularizer [69].
More formally, similar to proximal gradient descent, mirror descent is equivalent to taking
the gradient gt and performing the update θt+1 = argminθ∈C[η⟨gt, θ⟩ + BΨ(θ, θt)] where
BΨ(θ1, θ2) = Ψ(θ1)− Ψ(θ2)− ⟨∇Ψ(θ2), θ1 − θ2⟩ is the Bregman divergence generated by Ψ.
Note that, if Ψ(θ) = ∥θ∥22, then the Bregman divergence is simply BΨ(θ1, θ2) = ∥θ1 − θ2∥22
and mirror descent is equivalent to the usual gradient descent.

Gaussian Width: Given a bounded set Q ⊂ Rk, the Gaussian width of Q, GQ, is a measure
of how isotropic the set is. GQ is defined as Eg∼N(0,Ik) maxx∈Q⟨g,x⟩. Although the Gaussian
width is well-defined for any bounded set, to gain intuition it suffices to consider defining the
Gaussian width of convex sets containing the origin such that maxx∈Q ||x||2 = 1; rescaling
any such set by a constant changes the Gaussian width by the same constant. If Q is just the
unit ℓ2-ball, the “most isotropic” set satisfying this condition, then we have GQ = Θ(

√
k);

in particular, since every set Q satisfying maxx∈Q ||x||2 = 1 is contained in the ℓ2-ball, this
is the maximum Gaussian width of any such set. On the other hand, if Q is just the line
from the origin to a single unit vector, we have GQ = Θ(1). More generally, for any ellipsoid
centered at the origin whose axes have radii 0 ≤ ri ≤ 1, 1 ≤ i ≤ k, we have that the Gaussian

width of this ellipsoid is Θ(
√∑k

i=1 r
2
i ). As other examples, the Gaussian width of the ℓ1-ball

of radius 1 is roughly log k, and the Gaussian width of the ℓ∞ ball of radius 1/
√
k is roughly√

k.

4.4 Algorithm Description

In this section, we present our algorithm Public Data-Assisted Differentially Private Mirror
Descent (PDA-DPMD). Given in Algorithm 1, it is a variant of mirror descent using noisy
gradients, but we also pre-train on public data and use the public loss as our mirror map Ψ.

Note that Line 5 of PDA-DPMD is equivalent to the following: Choose θt+1/2 to be the
point such that ∇Ψ(θt+1/2) = ∇Ψ(θt) − η(gt + bt), and then use the Bregman projection
θt+1 = argminθ∈C BΨ(θ, θt+1/2). Intuitively, PDA-DPMD is similar to DP-GD, with the
main difference being we apply the gradient steps to ∇Ψ(θ) rather than to θ itself. Note
that PDA-DPMD reshapes the gradient and noise automatically given ℓpub and Dpub. In



CHAPTER 4. PUBLIC DATA-AUGMENTED STOCHASTIC OPTIMIZATION 62

Algorithm 1 Public Data-Assisted Differentially Private Mirror Descent (PDA-DPMD)

Input: Public/private datasets Dpub, Dpriv of sizes npub, npriv, private/public loss functions
ℓpriv, ℓpub, privacy parameters (ϵ, δ), number of iterations T , learning rate η : {0, 1, . . . , T −
1} → R+, constraint set: C, clipping norm L: an upper bound on maxθ∈C ||∇ℓpriv(θ)||2
1: Ψ(θ) := 1

npub

∑
d∈Dpub

ℓpub(θ; d)

2: θ0 ← argminθ∈C Ψ(θ), σ2 ← 8L2T log(1/δ)
(ϵnpriv)2

3: for t = 0, . . . , T − 1 do

4: gt ← 1
npriv

∑
d∈Dpriv

clip (∇ℓpriv(θ; d), L), where clip (v, L) = v ·min
{
1, L

||v||2

}
5: θt+1 ← argminθ∈C [ηt⟨gt + bt, θ⟩+BΨ(θ, θt)], where bt ∼ N (0, σ2 · Ik)
6: end for

7: return θpriv :=
1
T

T∑
t=1

θt

contrast, e.g., private AdaGrad implementations [51, 7] assume knowledge of the geometry
of the loss function has already been learned prior to running their algorithms. Also, for an
appropriate choice of Ψ, one can recover an algorithm that projects the private gradients to
a low-dimensional subspace as in the algorithms of [90] and [51]. From Fact 15, Theorem 16,
and Theorem 14 we have the privacy guarantee for Algorithm 1:

Theorem 74. Algorithm 1 (PDA-DPMD) is (ϵ, δ)-DP with respect to the private dataset
Dpriv.

4.5 Error Bounds for Linear Regression

In this section, we apply Algorithm 1 (PDA-DPMD) to linear regression – an important
example that is still amenable to theoretical analysis. We prove utility guarantees, with
supporting simulation.

Problem setup: Given a data sample di = (xi, yi), the loss of a model θ is defined as
ℓ(θ; di) :=

1
2
(yi − ⟨θ,xi⟩)2. Consider two datasets drawn i.i.d. from a fixed distribution τ : i)

The public dataset Dpub with npub data samples, and ii) The private dataset Dpriv with npriv
data samples. In this section, we will denote both the public and private loss functions (ℓpub
and ℓpriv respectively in Algorithm 1) by ℓ.

Assumption 75. We assume that we are given an initial constraint set2 C0 = {θ : ||θ||2 ≤ r}
with r = O(1) that contains the population minimizer, i.e., θ∗ = argminθ∈Rk Ed∼τℓ(θ; d) ∈
C0. We further assume that for each feature vector ||x||2 ≤ 1, and for each response |y −
⟨θ∗,x⟩| ≤ 1. Let H̄ be the Hessian of the loss function Ed∼τ [ℓ(θ; d)]. In terms of data set

sizes, we assume that npriv ≥ npub and npub = Ω
(

log(k/δ)

λmin(H̄)

)
.

2The assumption that C0 is centered at the origin is without loss of generality.
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Excess population risk guarantees: In Theorem 76 we first provide the excess population
risk guarantee for Algorithm 1 (PDA-DPMD) under Assumption 75. Furtheremore, in some
regimes we demonstrate asymptotic improvement over standard privacy/utility trade-offs for
algorithms without access to public data samples.

Theorem 76. Consider Assumption 75. We run Algorithm 1 (PDA-DPMD) using L =

O(1), constraint set C =
{
θ ∈ C0 : ||∇Ψ(θ)||2 = O

(√
log(1/δ)
npub

)}
, and an appropriate choice

of ηt and T . Let

χ = max

{
1

λmin(H̄)
, λmax(H̄)npub

}
·
∑
i

min

{
1,

log(1/δ)

λi(H̄)2npub

}
.

Then, Algorithm 1 is (ϵ, δ)-DP and we have the following guarantee on L(θ) := Ed∼τ [ℓ(θ; d)]:

E [L(θpriv)− L(θ∗)] ≤ Õ

(
χ log(1/δ)

ϵ2n2
priv

+
1

λmin(H̄)npriv

)
.

The expectation is over Dpub, Dpriv, and the algorithm. Õ(·) hides polylog factors in npriv, npub
and λmin(H̄).

We note that the idea of using public data to shrink the constraint set C is similar to
the idea used by [19] for mean estimation, though their result iteratively uses each private
mean estimate to shrink the constraint set before re-estimating the mean, as opposed to our
one-shot approach to shrinking the constraint set using public data.

To interpret χ in Theorem 76, note that a natural setting of parameters to consider
would be where the feature vectors (i.e., the x’s) are coming from a mean-zero truncated

Gaussian distribution with covariance 1
k
·I. In this case, all λi are 1/k. If npub = Ω̃(p), then χ

evaluates to k2, and so we get a bound of Õ
(

k2

ϵ2n2
priv

+ k
npriv

)
, matching the excess population

risk of DP-GD. Note that one can still recover DP-GD’s loss bound with Algorithm 1 even
if npub = O(1) by instead setting Ψ to be 1

2
||θ||22 and C = C0.

One can also consider a non-isotropic setting, where λmin(H̄) is 1/k1.5 instead of 1/k, but
all other eigenvalues remain roughly 1/k. In this setting, DP-GD would give an error bound

of Õ
(

k2.5

ϵ2n2
priv

+ k1.5

npriv

)
. If npub = Ω̃(k3/2), we again match the DP-GD bound. If instead we

have npub = Ω̃(kc) for 2 ≤ c ≤ 2.5, then χ in our loss bound becomes k4.5−c, and our loss

bound becomes Õ
(
k4.5−c

ϵ2n2
priv

+ k1.5

npriv

)
. Once c = 2.5, the first term becomes k2

ϵ2n2
priv

, matching the

corresponding term for the isotropic setting. This shows that PDA-DPMD asymptotically
improves over DP-GD under a non-isotropic geometry when given sufficiently many public
data samples, with the improvement increasing as the number of public samples increases.

We now prove Theorem 76. We first show that the set C contains θ∗ with high probability.
To do this, we need a bound on the gradients of ℓ at θ∗.

Lemma 77. Under Assumption 75, for all d ∈ supp(τ) we have ||∇ℓ(θ∗; d)||2 ≤ 1.
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Proof. The loss function for the pair d = (x, y) is ||x||22-smooth, and minimized (i.e. has

gradient 0) at the point θ∗ + y−⟨θ∗,x⟩
||x||22

x. In turn, by smoothness and Assumption 75 we have:

||∇ℓ(θ∗; d)||2 =

∣∣∣∣∣
∣∣∣∣∣∇ℓ(θ∗; d)−∇ℓ(θ∗ + y − ⟨θ∗,x⟩

||x||22
x; d)

∣∣∣∣∣
∣∣∣∣∣
2

≤ ||x||22 ·

∣∣∣∣∣y − ⟨θ∗,x⟩||x||22

∣∣∣∣∣ · ||x||2 ≤ 1.

We can now show that the gradient of the public loss evaluated at θ∗ is bounded with
high probability, implying it is in C.

Lemma 78. With probability at least 1 − δ, for Ψ as defined in Algorithm 1, we have

||∇Ψ(θ∗)||2 ≤ O(

√
log(1/δ)
√
npub

).

Proof. Since θ∗ is the population minimizer of ℓ inRp, and Ed∼τ [ℓ(θ; d)] is strongly convex, we
have Ed∼τ [∇ℓ(θ∗; d)] = 0. The lemma now follows from a vector Azuma inequality (see e.g.
[48]) applied to the vector sum ∇Ψ(θ∗), and Lemma 77, which gives that ||∇ℓ(θ∗; d)||2 ≤ 1
for all d ∈ supp(τ).

We can also use the bound on the gradients ∇ℓ(θ∗; d) to show every loss function is
Lipschitz within the constraint set.

Lemma 79. For all d, ℓ(θ; d) is L-Lipschitz within C0 for L = O(1).

Proof. Each ℓ(θ; d) is 1-smooth, we have θ∗ ∈ C. In turn, by smoothness and Lemma 77,
each ℓ(θ; d) is L-Lipschitz for L = 1 + 2 ||C0||2, which is O(1) under Assumption 75, giving
the lemma.

We now show that the sample Hessian approximates the population Hessian for both
Dpriv and Dpub, i.e. the geometry of Ψ matches the population loss’ geometry and the
private sample loss’ geometry.

Lemma 80. Let Ĥpub be the Hessian of the public loss function Ψ, and Ĥpriv be the Hessian
of the private loss function 1

npriv

∑
d∈Dpriv

ℓ(θ; d). Then under Assumption 75 with probability

1− δ, we have

1

2
H̄ ≼ H̄ − λmin(H̄)

2
I ≼ Ĥpub ≼ H̄ +

λmin(H̄)

2
I ≼ 2H̄,

1

2
H̄ ≼ H̄ − λmin(H̄)

2
I ≼ Ĥpriv ≼ H̄ +

λmin(H̄)

2
I ≼ 2H̄.
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Proof. The outer inequalities 1
2
H̄ ≼ H̄ − λmin(H̄)

2
I and H̄ + λmin(H̄)

2
I ≼ 2H̄ follow from the

λmin(H̄)-strong convexity of the population loss, i.e. λmin(H̄)I ≼ H̄. So it suffices to prove
the inner inequalities.

Let Hd be the Hessian of ℓ(θ; d). By 1-smoothness of H and λmin(H̄)-strong convexity of
H̄, we have:

0 ≼ Hd ≼ I ∀d,

0 ≼ H̄ ≼ I.

And so:

−I ≼ Hd − H̄ ≼ I ∀d.

The inner inequalities now follow from a matrix Bernstein inequality, and the sample
complexity lower bounds given in Assumption 75.

We can now prove our main result.

Proof of Theorem 76. Algorithm 1 is (ϵ, δ)-DP by Theorem 74.
For the utility guarantee, with probability at most 3δ, one of the high probability events

described in Lemmas 78 and 79 fails to hold. In this case, by e.g., Lemma 79 we can use
a naive bound of O(||C0||2) on the loss. Since δ is negligible, the contribution of this case
to the expected excess loss is negligible, so we ignore it here. We now wish to follow the
analysis of Theorem A.1 in [79]. To do so, we need to calculate various parameters in that
theorem statement:

• By λmin(H̄)-strong convexity of Ψ, ||C||2 = O(min{1,
√

log(1/δ)

λmin(H̄)
√
npub
}).

• We can assume without loss of generality that ||θ||2 ≤ r/2. This is because if we
replace r with 2r in the definition of C0, the parameters of the problem do not change
asymptotically, but this condition is now enforced. Under this assumption, any line
passing through θ∗ has an intersection with C0 of length Ω(1). Now, by strong convexity
and the definition of C, this implies C is contained within an ellipsoid Q̃ whose axes are

the eigenvectors of Ĥpub, and whose axis lengths are Θ(min{1,
√

log(1/δ)

λi
√
npub
}). Furthermore,

C contains Q̃ rescaled in all dimensions by a constant. This means the symmetric
convex hull Q of C is also contained in Q̃, and contains Q̃ rescaled by a constant. So
the strong convexity of Ψ with respect to the Q-norm is within a constant factor of
the strong convexity of Ψ with respect to the Q̃-norm.

Now, let ||·||Q̃ be the Minkowski Q̃-norm ||x||Q̃ = min{a ∈ R≥0 : x ∈ aQ̃}. In the

direction of the ith eigenvector, Ψ is 1

λi(Ĥpub)
-strongly convex with respect to the norm
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||·||Q′ for the set Q′ = {θ ∈ Rp : ||∇Ψ(θ)||2 ≤ 1}, so it is Θ(
min{λi(Ĥpub)

2,log(1/δ)/npub}
λi(Ĥpub)

)-

strongly convex with respect to the Q̃-norm, and thus the Q-norm, in this direction.
So ∆, the strong convexity parameter of Ψ with respect to the Q-norm is:

∆ = Θ

(
min
i

{
min{λi(Ĥpub)

2, log(1/δ)/npub}
λi(Ĥpub)

})
=

Θ

(
min

{
λmin(Ĥpub),

log(1/δ)

λmax(Ĥpub)npub

})
.

By Lemma 80, conditioned on the event in that lemma ∆ is

Θ

(
min

{
λmin(H̄),

log(1/δ)

λmax(H̄)npub

})
.

• By a similar argument to the previous item, we get that the squared Gaussian width
G2

C is at most G2
Q̃
, which is

O

(∑
i

min

{
1,

log(1/δ)

λi(H̄)2npub

})

• By Lemma 80, conditioned on the event in that lemma, the Hessians of the public
sample loss, private sample loss, and population loss are constant-approximations of
each other.. From the definition of strong convexity with respect to a function (see
Section 2.2 of [79]), any quadratic function is 1-strongly convex with respect to itself,
and in turn Θ(1)-strongly convex with respect to another quadratic function whose
Hessian is within a constant factor of its own, since this implies the Bregman diver-
gences induced by the two functions are also within a constant factor. So the sample
private loss 1

npriv

∑
d∈Dpriv

ℓ(θ; d) is Θ(1)-strongly convex with respect to Ψ.

We will view Algorithm 1 as equivalently using Ψ′ = 1
∆
Ψ in place of Ψ, and η′t = ∆ηt in

place of ηt. Ψ
′ is 1-strongly convex with respect to the Q-norm, and the sample private loss

is now Θ(∆)-strongly convex with respect to Ψ′. Now, following the proof of Theorem A.1

in [79], setting η′t = 1/∆t and T =
||C||22(ϵnpriv)

2

||C||22+G2
C

, conditioned on the high probability events

we get an excess empirical loss bound of:

Õ

 log(1/δ)max{ 1
λmin(H̄)

, λmax(H̄)npub} ·
∑

imin
{
1, log(1/δ)

λi(H̄)2npub

}
ϵ2n2

priv

 .

For an excess population loss bound, we need to show uniform stability. Note that
since the Hessian of Ψ, H̄pub, is fixed everywhere then PDA-DPMD just applies H̄−1

pub ≼
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O(1/λmin(H̄)) · Ik to the noisy gradients. This implies that each step of PDA-DPMD is
contractive, and thus that the uniform stability parameter of PDA-DPMD is O(1/λmin(H̄))
times that of DP-GD using the same settings of ηt, T . The uniform stability of DP-GD on

a convex L-Lipschitz loss is O(
L2

∑
t ηt

n
) (see e.g. Appendix A of [17] for a proof). Plugging

in the parameters for our setting, this is O(log(ϵnpriv)npriv), so PDA-DPMD has uniform
stability parameter O(log(ϵnpriv)/(λmin(H̄)npriv)). The expected excess population loss is
at most the uniform stability parameter plus the expected excess empirical loss, giving the
theorem.

Local Stability Properties: Since in linear regression the public loss function has the
same Hessian Ĥpub everywhere, mirror descent effectively is DP-GD, but applying Ĥ−1

pub to
the noisy gradient. This allows us to readily characterize the effective noise being added,
and show that the noise causes each iterate θt to be moved by an amount proportional to
1/λv in a direction where the strong convexity parameter is λv:

Theorem 81. Let the Hessian of Ψ be Ĥpub =
∑

i λiviv
⊤
i , where vi are the unit eigenvectors

of Ĥpub. Fix an iteration t as well as starting point θt and private gradient gt in PDA-DPMD.
Let θ̄ be the value of θt+1 after performing the mirror descent update with bt = 0 at iteration
t, and let where θ̂ be the value of the next iterate θt+1 if noise is added. Then for any (unit)
direction v =

∑
i aivi,

E
[
|⟨θ̂ − θ̄,v⟩|

]
= ησ

√√√√ 2

π
·
∑
i

(
ai
λi

)2

.

In contrast, for DP-GD, E
[
|⟨θ̂ − θ̄,v⟩|

]
= ησ

√
2
π
for all v.

Proof of Theorem 81. Let bt be the noise added for privacy. Without noise, mirror descent
would set θ∗ to be such that:

−ηgt = ∇Ψ(θ∗)−∇Ψ(θt).

Similarly, given the noisy gradient gt + bt, mirror descent would set θ̂ to be such that:

−η(gt + bt) = ∇Ψ(θ̂)−∇Ψ(θt).

We then have:

−ηbt = ∇Ψ(θ̂)−∇Ψ(θ∗).

In turn, recalling that Ψ has a fixed Hessian we have:

θ̂ − θ∗ = −ηH̄−1
pubbt

We can now directly prove the theorem:
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E
[
|⟨θ̂ − θ∗,v⟩|

]
= ηE

[
|⟨H̄−1

pubbt,v⟩|
]

= ηE

[
|⟨(
∑
i

1

λi
viv

⊤
i )bt,v⟩|

]
= ηE

[
|
∑
i

ai
λi
⟨bt,vi⟩|

]

= ηE

[
|
∑
i

N(0, (ai/λi)
2)|

]
= ηE

[
|N(0,

∑
i

(ai/λi)
2)|

]
=

√
2

π
· ησ

√√√√∑
i

(
ai
λi

)2

.

Simulation Results: To corroborate our theoretical results with empirical validation, we
run PDA-DPMD on synthetic data for the linear regression problem with mean squared
error loss. We vary the dimensionality of the problem k from 500 to 6000. For each k, we
generate 10,000 private samples and 1.5k public samples. The optimal θ∗ is sampled from
N (0, Ik). To introduce a non-isotropic geometry, we sample the feature vector xi such that
40 of the first k/5 features and 80 of the last 4k/5 features, chosen uniformly at random,
are set to 0.05, and the rest of the features are set to 0. In this way, the expected ℓ2-norm
of each feature vector (and in turn each gradient) is O(1), and thus the effects of clipping
should not vary with k. The predicted variable yi is sampled from N (θ∗ · xi, 0.01) so that
the population mean squared error loss is always 0.01, i.e. independent of dimension. We
set ϵ = 1, δ = 10−5.

We consider three algorithms: (i) DP-GD with a “cold start”, i.e. using a random
initialization, (ii) DP-GD with a “warm start” on the model pre-trained with public data,
and (iii) PDA-DPMD after pre-training on public data. Note that the exact optimum on
the public data can be computed exactly as θ∗pub = (X⊤X)−1X⊤y. The mirror descent step

can also be solved exactly by applying the inverse of the Hessian X⊤X to the gradient,
since the Hessian is the same everywhere. For numerical stability, we add a small constant
times the identity matrix to the Hessian before computing its inverse. We also normalize
the Hessian of the loss function so its inverse (which is applied to the gradient before taking
a step in PDA-DPMD) has maximum eigenvalue of one. This ensures that if the Hessian
were a multiple of the identity matrix, DP-GD and PDA-DPMD would behave exactly the
same for the same hyperparameter choice.

We perform a grid search over the learning rate, clipping norm, and number of epochs used
and report the best empirical loss. We perform 20 trials for each algorithm and dimension.

Figure 4.1a shows the empirical loss of cold- and warm-start DP-GD. Our results show
that pre-training with a number of public samples linear in the dimension allows DP-GD
to achieve nearly dimension-independent error. Figure 4.1b compares warm-start DP-GD
and PDA-DPMD. The loss of PDA-DPMD is never worse than that of warm-start DP-GD,
and can be substantially lower for smaller dimensions. We observed that the ratio of the
maximum and minimum eigenvalues of the Hessian X⊤X decreases as p increases, which
means that the Hessian has poorly-concentrated eigenvalues at small k but gets closer to
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(a) Cold start DP-GD vs. warm start DP-
GD.
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(b) Warm start DP-GD vs. PDA-DPMD.

Figure 4.1: The empirical loss on synthetic linear regression data. The mean and error bars
for a 95% confidence interval over 20 runs are plotted. The optimal population loss is 0.01.

the identity matrix as k increases. Since PDA-DPMD recovers warm start DP-GD when the
Hessian is the identity, we can expect that PDA-DPMD obtains less of an advantage over
DP-GD as the Hessian gets closer to the identity.

4.6 Error Bounds for General Convex Optimization

In this section, we give excess loss bounds for a more general class of loss functions.
We will use the following “bounded variance” assumption on the distribution of the

datasets and the public loss function:

Assumption 82. For some minimizer θ∗ ∈ argminθ∈C Ed∼τ [ℓpriv(θ; d)] we have that θ∗ is
also the minimizer of Ed∼τ [ℓpub(θ; d)] in C and Ed∼τ

[
||∇ℓpub(θ∗; d)− Ed∼τ [∇ℓpub(θ∗; d)]||22

]
≤

V 2. In particular, this implies

ED∼τnpub

[∣∣∣∣∣∣ 1
npub

∑
d∈D∇ℓpub(θ∗; d)− Ed∼τ [∇ℓpub(θ∗; d)]

∣∣∣∣∣∣2
2

]
= O

(
V 2

npub

)
.

We note that while Assumption 82 to capture the most general setting under which
our analysis holds, and thus captures scenarios where ℓpub and ℓpriv could potentially be
very different loss functions, the reader can think of them as differing only slightly. Indeed,
Assumption 82 captures several scenarios we might see in practice, such as (i) ℓpub = ℓpriv
(which can occur if ||C||2 is small), (ii) ℓpriv is the clipped version of ℓpub (see e.g., [77] for
a discussion on the effects of clipping on the loss function), and (iii) ℓpub is ℓpriv but with a
regularizer added.

We first bound the excess empirical loss on the public loss function ℓpub, compared to
the private population minimizer θ∗ rather than the empirical minimizer. This is because
the empirical minimizer θemp of the private loss function could be far away from θ∗, and in
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turn ∇Ψ(θemp) could have much larger norm in expectation than ∇Ψ(θ∗). Our PDA-DPMD
excess empirical loss bound will be in terms of ∇Ψ(θ), where θ is the point we are comparing
to, so it is preferable to use θ = θ∗ for this reason. Our empirical loss bound now follows
by using the bounded variance assumption to control the Bregman divergence between the
initial iterate and the population minimizer:

Theorem 83. Suppose the private loss function L := 1
npriv

∑
d∈Dpriv

ℓpriv(θ; d) is L-Lipschitz

and convex. Suppose ℓpub is m-strongly convex, and let Q be the minimal convex body contain-
ing the origin such that each ℓpub(θ; d) is 1-strongly convex with respect to the Minkowski norm
||·||Q (defined as ||x||Q = min{c ∈ R≥0|x ∈ cQ}). Then PDA-DPMD is (ϵ, δ)-differentially
private with respect to the private database Dpriv and choosing ηt = η for all t we have:

EDpub∼τ
npub [L(θpriv)]− L(θ∗) ≤

V 2

2mηTnpub
+ η ·O(L2 ||Q||22 + σ2(G2

Q + ||Q||22)).

Proof. The privacy guarantee follows as before. Following the analysis of Theorem 3.2 of
[79], we have:

E[L(θpriv)]− L(θ∗) ≤
BΨ(θ

∗, θ0)

ηT
+ η ·O(L2 ||Q||22 + σ2(G2

Q + ||Q||22), (4.1)

Let θ∗ in particular be the minimizer satisfying Assumption 82. By m-strong convexity,
we have:

BΨ(θ
∗, θ0) = Ψ(θ∗)−Ψ(θ0)−∇Ψ(θ0) · (θ∗ − θ0) ≤

1

2m
||∇Ψ(θ∗)−∇Ψ(θ0)||22 .

Plugging this into Eq. (4.1) and noting that any Ψ we sample is 1-strongly convex with
respect to ||·||Q, we get:

E[L(θpriv)]− L(θ∗) ≤
E
[
||∇Ψ(θ∗)−∇Ψ(θ0)||22

]
2mηT

+ η ·O(L2 ||Q||22 + σ2(G2
Q + ||Q||22)

We will show that without loss of generality, we can assume

∇Ψ(θ0) = 0,Ed∼τ [∇ℓpub(θ∗; d)] = 0.

Once we have this assumption, Assumption 82 completes the proof.
The assumption follows since by convexity of C we have

⟨∇Ψ(θ0), θ0 − θ∗⟩ ≤ 0, ⟨Ed∼τ [∇ℓpub(θ∗; d)], θ∗ − θ0⟩ ≤ 0 (4.2)

Then for any choice of Ψ and C where either θ0 or θ∗ is on the boundary of C, suppose we
extend C infinitesmally along the line {θ0 + c(θ∗ − θ)|c ∈ R} (i.e., take a point on this line
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infinitesmally outside of C and update C to be the convex hull of itself and this point). Then
by (4.2) we have that θ∗, θ0, defined as the minimizers in C, move apart from each other
along this line and in turn by strong convexity the quantity ||∇Ψ(θ∗)−∇Ψ(θ0)||22 cannot
decrease. This implies that for any fixed ℓpub and τ , the quantity E

[
||∇Ψ(θ∗)−∇Ψ(θ0)||22

]
is maximized for a choice of C such that ∇Ψ(θ0) = 0 and Ed∼τ [∇ℓpub(θ∗; d)] = 0.

The above bound is scale-invariant, so to simplify the presentation of this section, we
assume, without loss of generality, that m = 1 (this also implies Q is contained within the
unit ℓ2-ball, i.e. ||Q||2 ≤ 1). By rescaling Ψ and η appropriately, we do not affect the
behavior of PDA-DPMD, but get that Ψ is 1-strongly convex.

By chaining the following lemma with Theorem 83, we get an excess empirical loss bound
with respect to the sample minimizer rather than the population minimizer as desired.

Lemma 84. Let τ be a distribution over D, ℓ : C×D → R be a function such that ℓ(θ; d) is L-
Lipschitz and convex in θ for any fixed d ∈ supp(τ). Let θ∗ be the minimizer of Ed∼τ [ℓ(θ; d)].

Then, we have ED∼τn [L(θ∗;D)−minθ∈C L(θ;D)] ≤ L||C||2√
n

.

Proof. By convexity, for all θ ∈ C we have L(θ;D) ≥ L(θ∗;D) + ⟨∇L(θ∗;D), θ − θ∗⟩. Note
that by optimality of θ∗ and convexity, for all θ ∈ C we have ⟨Ed∼τ [∇ℓ(θ∗; d)], θ − θ∗⟩ ≥ 0.
In turn, by the Cauchy-Schwarz inequality we can conclude that L(θ∗;D)−minθ∈C L(θ;D)
is always upper bounded by ||C||2 · ||∇L(θ∗;D)− Ed∼τ [∇ℓ(θ∗; d)]||2. By L-Lipschitzness of
each ℓ(θ; d) we have:

ED∼τn [||∇L(θ∗;D)− Ed∼τ [∇ℓ(θ∗; d)]||2] ≤
L√
n
,

Which completes the proof.

Excess Population Risk of PDA-DPMD: We now translate our excess empirical loss
bound to a excess population loss. We use Lemma F.5 of [13], restated in Lemma 85 for
convenience, which provides a black-box translation from empirical loss to population loss:

Lemma 85. For any (ϵ, δ)-DP algorithm for minimizing 1
npriv

∑
d∈Dpriv

ℓ(θ; d) over C, the
expected excess population loss exceeds the expected excess empirical loss by O(L ||C||2 ϵ +
||C||22 δ).

Given this lemma, it is straightforward to derive excess population loss bounds:

Theorem 86. For η = V

L
√
Tnpub

, T =
ϵ2n2

priv

G2
Q log(1/δ)

, and setting ϵ =

√
V GQ log1/4(1/δ)

√
nprivn

1/4
pub||C||2

, the expected

population loss of PDA-DPMD is

O

(
L
√
V ||C||2

√
GQ log1/4(1/δ)

√
nprivn

1/4
pub

+
L ||C||2√
npriv

+ ||C||22 δ

)
.
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Theorem 86 follows immediately from Theorem 83, Lemma 84, and Lemma 85. Note
that if npub ≥ G2

Q, which is at most k, then the above bound has no explicit dependence
on dimension. For comparison, if we were to only train on public data, the standard non-
private excess population loss bound has dependence O(1/

√
npub) (and no dependence on

dimension). So in the regime where npub ≈ G2
Q and npriv ≫ npub, our bound is asymptotically

much better than the baseline of training only on public examples.

Local Stability Properties of PDA-DPMD: If the public loss function has a Hessian
everywhere that has the same eigenvectors regardless of location (but perhaps different eigen-
values), we can generalize Theorem 81:

Theorem 87. Suppose for the public loss function Ψ, its Hessian is defined everywhere, and
for a fixed orthonormal basis {vi}i, the Hessian at every point can be written as

∑
iwi(θ)viv

⊤
i

for scalar functions wi : R
k → R+ such that for all i, θ, we have wi(θ) ≥ m. Fix an iteration

t as well as private gradient gt in PDA-DPMD. Let θ∗ be the value of θt+1 after performing
the mirror descent update with bt = 0 at iteration t, and let {w̃i}i, c ≥ 0 be such that for
each i the smallest value of wi(θ) in the ellipsoid E := (

∑
i

1
w̃i
viv

⊤
i )BR (where BR is the ℓ2

ball of radius R := η(1+ c)
√
kσ), centered at θ∗, is at least w̃i. Then for any (unit) direction

v =
∑

i aivi,

E
[
|⟨θ̂ − θ∗,v⟩|

]
≤ ησ

√ 2

π
·

√√√√∑
i

(
ai
w̃i

)2

+
3(1 + c)2

2m
· e−c2k/2

 ,
where θ̂ is the value of the next iterate θt+1 if noise is added.

Proof. Let bt be the noise added for privacy. Without noise, mirror descent would set θ∗ to
be such that:

−ηgt = ∇Ψ(θ∗)−∇Ψ(θt).

Similarly, given the noisy gradient gt + bt, mirror descent would set θ̂ to be such that:

−η(gt + bt) = ∇Ψ(θ̂)−∇Ψ(θt).

We then have:

−ηbt = ∇Ψ(θ̂)−∇Ψ(θ∗).

Since we assume the Hessian of Ψ is defined everywhere, we have that ∇Ψ(θ̂)−∇Ψ(θ∗) =
∇2Ψ(θ̃)(θ̂ − θ∗) for some θ̃ on the line between θ̂ and θ∗. In turn, we have:

θ̂ − θ∗ = −η(∇2Ψ(θ̃))−1bt

The norm x of bt sampled from N(0, σ2Ik) has the chi distribution, i.e. pdf proportional
to (x/σ)k−1e−(x/σ)2/2. In particular, this gives the following standard tail bound:
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Pr[||X||2 > (1 + c)
√
kσ] ≤ exp(−c2p/2).

So with probability at least 1 − e−c
2k/2, we have the event E that ||bt||2 is at most

(1 + c)
√
kσ. Conditioned on this event, we have that θ̂, and thus θ̃, is in E, i.e. the lower

bounds w̃i apply to ∇2Ψ(θ̃). Since conditioning on E only decreases the expectation of
|⟨θ̂ − θ∗,v⟩|, we have:

E
[
η|⟨θ̂ − θ∗,v⟩||E

]
· Pr[E ] = ηE

[
|⟨(∇2Ψ(θ̃))−1bt,v⟩||E

]
· Pr[E ]

≤ ηE

[
|⟨(
∑
i

1

w̃i
viv

⊤
i )bt,v⟩||E ]

]
·Pr[E ] ≤ ηE

[
|⟨(
∑
i

1

w̃i
viv

⊤
i )bt,v⟩|

]
= E

[
|
∑
i

ai
w̃i
⟨bt,vi⟩|

]

= ηE

[
|
∑
i

N(0, (ai/w̃i)
2)|

]
= ηE

[
|N(0,

∑
i

(ai/w̃i)
2)|

]
=

√
2

π
· ησ

√√√√∑
i

(
ai
w̃i

)2

.

When E does not happen, we have wi(θ) ≥ m everywhere. So we have:

E
[
η|⟨θ̂ − θ∗, v⟩||¬E

]
· Pr[¬E ] = ηE

[
|⟨(∇2Ψ(θ̃))−1b, v⟩||¬E

]
· Pr[¬E ]

≤ η · 1
m
E [|⟨b, v⟩||¬E ] · e−c2k/2

To determine E [|⟨bt,v⟩||¬E ], note that the distribution of ⟨bt,v⟩ conditioned on ¬E is
equivalent to the distribution of the first coordinate of bt conditioned on ¬E . We can sample
bt by first sampling its norm ||bt||2 conditioned on ¬E , and then sampling a point on the
sphere with radius ||bt||2 (no conditioning is required here). The expected absolute value of
any coordinate (bt)i given ||bt||2 can be bounded as:

E [|(bt)i|] ≤
√
E [(bt)2i ] = ||bt||2 /

√
k.

The inequality is Jensen’s inequality, and the equality uses the fact that the coordinates
bi on the sphere are identically distributed, and so we have:

p · E
[
(bt)

2
i

]
= E

[∑
i

(bt)
2
i

]
= ||bt||22 .

We now just need to bound the expectation of ||bt||2, given that it is at least R. Since

the distribution of ||bt||2 /σ has pdf proportional to xk−1e−x
2/2, this expectation is σ times:∫∞

(1+c)
√
k
xke−x

2/2∫∞
(1+c)

√
k
xk−1e−x2/2

=
Γ((k + 1)/2)(1− P ((k + 1)/2, (1 + c)2k/2))√

2Γ(k/2)(1− P (k/2, (1 + c)2k/2))
.
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Where Γ is the gamma function and P is the regularized gamma function. Analytically,

we can verify that Γ((k+1)/2)
Γ(k/2)

≤
√
k/2 for all k ≥ 1, and (1−P ((k+1)/2,(1+c)2k/2))

(1−P (k/2,(1+c)2k/2))
≤ 3(1 + c)2 for

all k ≥ 1. So we get:

E [||bt||2 |¬E ] ≤
3(1 + c)2

2

√
kσ

Putting it all together, we get:

E
[
η|⟨θ̂ − θ∗, v⟩||¬E

]
· Pr[¬E ] ≤ η · 1

m
· 3(1 + c)2

2
· e−c2k/2 · σ

Now applying the law of total expectation gives the theorem statement.

Note that the condition wi(θ) ≥ m can be enforced by adding an ℓ2-regularizer to the
public loss function (since mirror descent only cares about differences in the gradients of the
public loss function, the private training phase of PDA-DPMD behaves the same regardless
of where this regularizer is centered).
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