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Abstract. Recent trends in self-supervised representation learning have
focused on removing inductive biases from the training process. How-
ever, inductive biases can be useful in certain settings, such as medical
imaging, where domain expertise can help define a prior over semantic
structure. We present Medical DINO (MeDINO), a method that takes
advantage of consistent spatial and semantic structure in unlabeled med-
ical imaging datasets to guide vision transformer attention. MeDINO op-
erates by regularizing attention masks from separate transformer heads
to follow various priors over semantic regions. These priors can be de-
rived from data statistics or are provided via a single labeled sample
from a domain expert. Using chest X-ray radiographs as a primary case
study, we show that the resulting attention masks are more interpretable
than those resulting from domain-agnostic pretraining, producing a 58.7
mAP improvement for lung and heart segmentation following the self-
supervised pretraining. Additionally, our method yields a 2.2 mAUC im-
provement compared to domain-agnostic pretraining when transferring
the pretrained model to a downstream chest disease classification task.

Keywords: self-supervised; interpretable; medical imaging

1 Introduction

Recent works in unsupervised learning have largely focused on removing induc-
tive biases from the training process: transformer-based methods have success-
fully removed the scale-and-shift invariance from CNNs [17] and autoencoders
have successfully removed the hardcoded augmentation-based invariances from
contrastive learning methods [23]. However, inductive biases can capture knowl-
edge that would otherwise be di�cult to infer strictly from observed data and
are particularly beneficial when there is not enough data to allow for generaliza-
tion to unseen scenarios [4, 8, 34] or when domain-specific knowledge can provide
information that can be used to model the underlying data distribution [36, 16].
For example, in a medical imaging application, the human anatomy can provide
information about the expected positioning of the elements within the image [9].

Medical imaging is one instance where data are expensive to acquire and
store, require exhaustive labeling procedures by experts, and acquisition of data
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Fig. 1. Self-attention from a Vision Transformer on chest X-rays, where the

attentions heads with the largest IOU overlap with the lungs/heart are

shown. Existing self-supervised training methods for Vision Transformers, such as
DINO, learn scattered attention maps that do not necessarily attend to the constituent
objects within the image. MeDINO, on the other hand, uses prior knowledge to guide
the attention to such regions, as shown by the attention weights constrained to the left
lung, heart, and right lung. As indicated in the bar plot on the right, constraining the
attention to these semantic components leads to better performing representations as
determined by a linear probe, multi-label classification experiment on the CheXpert
dataset [26] – see Section 4 for details.

is challenging due to privacy or regulatory concerns [28]. While medical im-
ages are often limited in availability, they share a common underlying anatom-
ical structure that is well understood. This underlying structure can provide a
strong inductive bias that a model might not be able to learn from data alone.
For instance, the anatomy informs about the presence and relative positioning
of organs and the type of image (i.e. X-ray, CT, MRI) reveals information about
the characteristics about the pixel intensities. So while one thread of research
seeks to remove such inductive biases and learn directly from data, a comple-
mentary thread can seek useful inductive biases to guide the training process,
specifically in structured domains such as medical imaging. In this work, we in-
vestigate an intersection of these two threads for medical imaging applications
where we leverage both a self-supervised transformer learning framework as well
as anatomical knowledge to guide the training.

We present a framework called Medical DINO (MeDINO) that is built upon
the DINO self-supervised vision transformer framework [11] and leads to more
interpretable attention heads that perform better on downstream tasks – see Fig-
ure 1. MeDINO incorporates prior knowledge into self-supervised training of vi-
sion transformers by regularizing a subset of attention heads in the multi-headed
self-attention module so that the attention weights are constrained to be within
boundaries corresponding to objects of interest. In other words, a subset of the
attention heads are regularized to the objects in the image throughout training.
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Instead of relying on annotations of these images to determine the boundaries,
MeDINO uses anatomical relationships to define a template of object boundaries
(organs), aligns and registers each image to this template, transforms the ob-
ject boundaries accordingly, and then uses these object boundaries to regularize
the attention heads throughout training – Figure 2 provides an overview of this
process which is detailed in Section 3.

Compared to DINO, MeDINO leads to better transfer performance to other
datasets and tasks, and more interpretable attention weights. SpecificallyMeDINO

improves the interpretability of learned representations by 58.7 mAP and yields
2.2 mAUC improve compared to domain-agnostic pre-training. We summarize
our contributions as follows:

1. We present a novel knowledge guided-attention regularization framework
in self-supervised Vision Transformers that leverages the inherent attention
heads to learn disentangled and meaningful representations for medical ra-
diographs.

2. We establish a range of procedures that incorporate medical prior knowledge
and inductive biases into templates when annotated data are sparse or these
priors reveal information that cannot be learned from the data alone.

3. We find that encoding prior knowledge using attention regularization in-
creases the interpretability of representations by 58.7 mAP compared to
domain-agnostic pretraining. This leads to a 2.2 mAUC increase in down-
stream disease classification tasks.

2 Related Works

MeDINO incorporates domain knowledge to improve the performance and in-
terpretability of self-supervised pretraining for medical images. MeDINO builds
upon works in self-supervised learning, knowledge-guided and interpretable meth-
ods, and image registration and alignment, which we detail below.

Self-Supervised Learning The performance of machine learning models is
heavily contingent on the choice of features and representations from which they
learn. Representation learning aims to reveal these intrinsic qualities of data such
that they are informative and e↵ective for a desired task [6], such as image classi-
fication or object detection. Contemporary methods involve contrastive learning
based approaches [24, 13], clustering-based techniques [10], and self-distillation
[21, 11]. DINO [11] is an example of a self-supervised learning framework that
uses self-distillation, yielding state-of-the-art downstream performance using the
Vision Transformer (ViT) architecture [17]. We focus on this framework for two
reasons: (i) the attention modules in ViT allow for greater interpretability than
CNN-based approaches that require external tools such as Grad-CAM [47] to ex-
tract pixel-level saliency relationships, (ii) in self-supervised training, the DINO
attention maps have a demonstrated ability to segment salient foreground ob-
jects [11], which, as we show, provide a strong mechanism to regularize salient
objects in MeDINO.
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Most existing self-supervised algorithms are benchmarked based on their per-
formance following pretraining on generic, object-centric image datasets, such as
ImageNet, which potentially leads to poor results in domains where the data are
dissimilar to these datasets [49, 38]. Furthermore, medical applications of ma-
chine learning can benefit from self-supervised pretraining due to the cost and
expertise needed to accurately annotate data [45, 19, 2, 1]. Medical data may
also be di�cult to obtain due to privacy and regulatory issues. For instance,
MoCo-CXR [45] adapts MoCo [24] pretraining to chest X-ray data by designing
new data augmentations suitable for recognizing subtle di↵erences between X-
ray images. We use MoCo-CXR’s data augmentations as it uses similar X-ray
images as our work. IDEAL [31] focuses on self-supervision and interpretability.
However, they use saliency reconstruction to find informative samples for active
learning and do not focus purely on learning discriminative and interpretable
representations. Finally, many medical applications have adopted a ViT-based
self-supervised learning approach for their performance and attention modules
with modifications to the attention modules or encoders [40, 48, 46, 20]. MeDINO

does not require any architectural changes to the backbone and o↵er a nonin-
vasive method, as we leverage the attention heads that are inherent to Vision
Transformers.

Knowledge-Guided Learning seeks to incorporate prior knowledge in
such a way that it leads to better performance, e�ciency, or interpretability for
the learned model. Several papers have incorporated first order logic rules [25,
39, 53] as well as anatomical constraints for pose estimation [35, 7, 7]. Neural
networks have also been combined with physics-based models to capture and
enforce the relationship between variables through an additional loss [15], which
is similar to our work in that it also captures the alignment between the guided
attention mechanism and domain knowledge via an attention-based loss mecha-
nism. Di↵erent from these works, MeDINO uses attention-based regularization
in transformer models to enforce such constraints, rather than external architec-
tural or optimization mechanisms.

Furthermore, attention based approaches have been used to improve the ex-
plainability of computer vision models through visualizations of attention maps
to indicate important regions [51]. Convolutional neural networks use tools such
as CAM [55] and GradCAM [47] to create attention maps by looking at the hid-
den layer activations. Another approach is the Attention Branch Network [18]
that generates an attention map based on the extracted features and then uses
it to mask out irrelevant features. These attention maps are evaluated through
visual checks or against segmentation datasets which are limited in the medical
domain. As discussed in Section 3, our paper instead uses image registration to
align the attention maps with an inductive bias corresponding to a salient region
so only a single representative sample is required.

Image Registration is the task of projecting one image onto the coordi-
nate system of another image with similar content [22]. This classical challenge
is particularly relevant in medicine as it facilitates the development of atlases,
and allows transfer of information across patients. Here, we are particularly
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interested in using a specific type of image registration, deformable image reg-
istration. This is useful as di↵erences in morphological structure of organs in
di↵erent humans can be modeled using deformable transformations [44]. Tradi-
tionally popular techniques to solve this alignment problem involved congealing,
optical flow or b-Spline registration. Least squares congealing focuses on obtain-
ing an alignment by iteratively minimizing a misalignment loss function using
least squares [14]. Optical flow completes this registration task by looking for
possible displacements and solving a minimum energy functional [29]. b-Spline
registration operates by modeling the deformation field as B-spline curves where
each pixel that maps each voxel in the source image to the target image. [41].
More recently, neural networks have become increasingly popular in performing
image registration in lieu of the traditional methods [3, 33, 43]. While powerful
and increasingly accurate, we opted to use the traditional b-Spline registration
over neural-based methods due to simplicity and e�ciency. b-Spline registra-
tion does not require more than one data example nor does it necessitate any
training or GPU compute resources. Mansilla et. al. [32] embeds prior knowl-
edge in the form of anatomical constraints to improve image registration tasks
in the form of global constraints. Our work di↵ers as we aim to improve self-
supervised pretraining methods using deformable transformation as a means to
create anatomically plausible representations rather than an end.

3 Incorporating Knowledge into Self-Supervised Vision
Transformers

The goal of MeDINO is to incorporate domain knowledge to improve the per-
formance and interpretability of self-supervised pretraining for medical images.
To do so, MeDINO regularizes transformer attention heads to follow inductive
biases on a semantic structure that is common to most images in the dataset,
as seen in Figure 2. For example, we can incorporate the inductive bias that
chest radiographs have expected anatomical relationships between the relative
positions of the lungs and heart. In the following, we detail a means of e↵ec-
tively incorporating semantic knowledge, in the form of simple spatial heuristics
or even a single instance of ground truth knowledge, into the DINO pretraining
of Vision Transformers.

3.1 Self-Supervised Vision Transformers with Knowledge
Distillation

Caron et al. [11] present a transformer-based knowledge distillation technique,
DINO, that we build upon for MeDINO. In DINO, a student model g✓s is trained
to match the output of a teacher model g✓t (parameterized by ✓s and ✓t re-
spectively). This distillation objective is reframed as a representation learning
objective where representations are learned for each of n di↵erent views of orig-
inal image X, {X1, ..., Xn}, obtained via a set of data augmentations V . The



8 K. Miao et al.

'HIRUPDEOH
7UDQVIRUPDWLRQ

9L7
�',12�

5HJLVWUDWLRQ
.QRZOHGJH�*XLGHG�$WWHQWLRQ�5HJXODUL]DWLRQ

0XOWLKHDGHG�6HOI�$WWHQWLRQ

$WWHQWLRQ
+HDGV

5
HJ
XO
DU
L]
HG
�+
HD
GV

8
QF
RQ
VW
UD
LQ
HG
�+
HD
GV

Fig. 2. The MeDINO framework.MeDINO first registers each image to an exemplar
template with known segmentations, the registration outputs a deformable transfor-
mation that is applied to the template. During self-supervised pretraining with a ViT
model, each component of the template then regularizes an indiviudal attention head in
the multiheaded self-attention modules (Regularized Heads). A subset of the attention
heads are also unconstrained (Unconstrained Heads).

DINO objective encourages the student model to learn “local-to-global” corre-
spondences. This happens by passing in local and global crops of an image to
the student and tasking the student model to predict the teacher’s representa-
tion. The teacher is only given global crops denoted X

g
1 and X

g
2 . To train the

student network, the authors begin by defining probability distributions Pm for
the student and teacher model

Pm(X) = softmax

✓
g✓m(X)

⌧m

◆

where ⌧m is the model-specific temperature. The overall DINO objective, given
below, is the cross-entropy loss H(p, q) = �p log q over the probability distribu-
tions Ps(X) and Pt(X).

L(X1, X2) = H(Pt(X1), Ps(X2))

argmin
✓s

X

x2{Xg
1 ,X

g
2 }

X

X02V

L(X,X
0)

While the original DINO augmentations can be powerful for learning repre-
sentations from a dataset such as ImageNet, they can fail in domains where local
structure is critical to scene understanding. [50] In particular, our preliminary
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empirical findings (see 4.3 and 4.4) suggest that local crops harm the performance
of self-supervised learning on chest radiographs. Following this, we instead use
a set of domain-specific augmentations which replace DINO’s local crops with
other task-relevant data augmentations (see the Appendix for details).

Attention Vision Transformers are perform well on a wide variety of vision
tasks and allow for pixel-level relationship introspection due to their built-in
attention modules [17]. As input, Vision Transformers take in a sequence of P
image patches with fixed size (p = 16) which is prepended by a [CLS]-token.
The [CLS] token enables a corresponding output that allows for downstream
tasks such as classification.

Self-attention modules are the key component to Transformer networks. Given
embeddings q, k, v calculated from a sequence of inputs, the attention matrix A

measures the pairwise similarity between qi, query value of patch i, in relation-
ship with kj , key value of patch j. Formally,

A = softmax

✓
qk

|
p
Dh

◆

where Dh is defined as the dimensionality of the heads and A 2 RP⇥P . When
probing self-attention, we extract the attention values of each patch with respect
to the [CLS] token of the last layer of each of nh heads and exclude the atten-
tion value for the [CLS] token with itself. This tensor is then upsampled via
nearest-neighbor interpolation into the shape of the original image resulting in
an attention map As 2 Rw⇥h⇥nh where w and h are the dimensions of X.

3.2 Knowledge-Guided Regularization

The Vision Transformer’s attention module allows us to guide a model given
any arbitrary knowledge map K by back-propagating through the model. If
K 2 {0, 1}w⇥h, where Kij is 1 if the patch at location i, j is considered a useful
bias and 0 otherwise, the central idea is to add a penalty when a model’s self-

attention map A
(✓t)
s attends outside salient regions and a negative penalty for

attending at the salient regions. This yields the following regularization terms
that are combined with the DINO objective:

– Inclusion Loss: Linclusion(A,K) = �1
P

i

P
j a

(✓t)
ij kij

– Exclusion Loss: Lexclusion(A,K) = ��2
P

i

P
j a

(✓t)
ij (1� kij)

where hyperparameters �1,�2 denote the respective regularization strengths.
Experimentally, we find that both regularizers are needed in order to prevent
mode collapse in the attention maps.

Disentanglement As vision transformers have multiple independent atten-
tion heads, we can disentangle them to attend to di↵erent discrete entities in
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Original Spatial Heuristic 
(Triangular)

Predicted Global 
Template

Deformable 
Registration (DR)

Fig. 3. Example templates for encoding spatial and semantic information. 1st
image: a randomly sampled image from the CheXpert dataset. 2nd image: a template
based on spatial heuristics. 3rd image: a global prediction-based template. These masks
are computed by averaging the predictions made from an external segmentation model.
4th image: deformable registration template. Given an exemplar image with ground-
truth segmentation mask, the template is obtained by warping the segmentation using
deformable image registration.

X using di↵erent knowledge maps K 2 {0, 1}w⇥h⇥n. This disentanglement al-
lows for task-specificity and functions as a sca↵old for interpretability through
which failure cases can be deconstructed into explainable task specific entities.
Knowledge maps representing a specific task can be assigned arbitrarily to any
attention head. Unassigned heads become general attention heads and remain
unregularized.

3.3 Encoding Prior Knowledge

Embedding knowledge within the knowledge-guided regularization module above
comes in many varieties. Our regularization procedure allows for any type of in-
ductive bias that can be translated into knowledge map K. We identified two
useful types of inductive biases that are useful in guiding medical vision mod-
els: (1) spatial and (2) semantic. These categories are then used to embed prior
knowledge, such as anatomical constraints or other assumptions, into a knowl-
edge map K. Intuitively, the goal is to not only assist a model to look at task-
relevant features but also to specialize the individual heads. To this end, we
assign specific heads n 2 N to discretely identified entities of interest. The re-
mainder of the attention heads remain unassigned and hence, are able to attend
the whole image X. We use the following three knowledge encoding procedures
for MeDINO which are depicted in Figure 3:

Spatial Heuristic As a baseline, we explore a simple spatial heuristic that
approximately segments the constant relative positioning of organs in the thorax
into a knowledge map K. We encode our knowledge as a tripartite mask with
triangular parts corresponding to the left lung, right lung, and the heart.
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Predicted Global Template Instead of relying on generic spatial regions for
attention supervision, we calculate a global average of the predicted locations
of relevant organs from a pretrained model. We trained a segmentation model
(DeepLabv3-ResNet101 [12]) on a held-out subset of the JSRT segmentation data
(separate from the interpretability validation data) (n = 200). We average the
model’s inference segmentations over all images in the pretraining image dataset
to obtain a single predicted global template. These knowledge maps provide a
more robust spatial bias signal than the spatial heuristic.

Semantic Deformable Image Registration To test the impact of increas-
ingly accurate knowledge templates, we use a single ground-truth segmentation
from a di↵erent dataset which is adapted to our dataset via deformable image
registration. Given a single annotated exemplar pair of image Xe and its ground-
truth segmentation S

e, canonical deformable image registration [44] is performed
to learn a parameterization � that deforms exemplar image Xe to training image
X

i. This learned � is then used to create a deformable knowledge map K, as
an estimate to true Si, by applying � on Se. In our paper, we use SimpleElastix
wrappers [30, 52, 5] that are based on b-Spline deformation models. As seen in
Figure 3, this procedure results in the most accurate results due to combining
both spatial and semantic information.

4 Experiments

In the following experiments, we compare the qualitative and quantitative per-
formance of MeDINO with self-supervised vision transformers. The di↵erent ex-
periments focus on interpretability and downstream classification performance.
The quantitative and qualitative interpretability analyses reveal that MeDINO

leads to more interpretable representations, and the second set of experiments
show the increased downstream classification performance.

4.1 Setup

Dataset We pretrain our models using CheXpert, a medical X-ray dataset with
220k images and 14 disease classes collected from 65,240 unique patients. [26] We
exclude the lateral images, as no high-quality lateral image priors are available.
This reduces the dataset to 190k images. To validate the learned representations,
we evaluate them against two ground-truth segmentation datasets, JSRT [42]
and Montgomery [27, 37]. These two datasets are smaller in size and contain 247
and 138 images respectively. JSRT provides segmentation masks for both lungs
and the heart. Montgomery only has annotations for the lungs.

Data Augmentations In our experiments, we di↵erentiate between domain-
agnostic and domain-specific data augmentations. Domain-agnostic data aug-
mentations are based on the default DINO and BYOL augmentations. They
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Table 1. Interpretability scores of attention heads. The evaluation metrics in-
cluded pixel-wise mAP on external validation sets where groundtruth segmentation
masks were available. Due to the lack of heart segmentations in the Montgomery
dataset, results of heart interpretability have not been reported. The results indicate
that MeDINO improves the interpretability over DINO baselines.

Metric Part Regimen JSRT Montgomery

AP Heart DINO 19.1
DINO (Chexpert) 5.7
DINO (Chexpert Augmentations) 26.4
MeDINO (Triangular) 54.5
MeDINO (Global Average) 71.6
MeDINO (Deformable) 89.9

Left Lung DINO 30.1 43.2
DINO (Chexpert) 22.0 16.5
DINO (Chexpert Augmentations) 25.1 40.7
MeDINO (Triangular) 59.2 40.0
MeDINO (Global Average) 71.3 84.1
MeDINO (Deformable) 88.3 90.0

Right Lung DINO 46.3 35.0
DINO (Chexpert) 27.0 15.8
DINO (Chexpert Augmentations) 36.5 27.6
MeDINO (Triangular) 45.6 54.8
MeDINO (Global Average) 82.5 50.3
MeDINO (Deformable) 87.3 88.4

contain global crops, local crops, color jittering, Gaussian blur and solarization.
These augmentations are solely implemented in baseline runs. MeDINO incorpo-
rates domain-specific data augmentations, in particular chest X-ray specific data
augmentations, are inspired from ChX-MoCo, a framework for Momentum Con-
trasting in X-rays. These augmentations only perform global crops in addition
to translations, rotations, brightness, contrast and sharpness.

Training and Finetuning Vision transformer architecture configurations are
based on the PyTorch Image Models Library. ViTs have di↵erent pre-set config-
urations with respect to their hidden size; there exist ‘Large’, ‘Base’ and ‘Small’
vision transformers. In our experiments, we fixed the backbone of our models to
be the small Vision Transformer (ViT-S, 21M parameters) with patch size 16.

Self-supervised pretraining is performed on 8 GPUs (NVIDIA Tesla V100).
We train Imagenet pretrained (800 epochs) ViTs using an Adam optimizer,
batch size 28, base learning rate of 10�3 for 30 epochs. Other hyperparameters
are directly implemented from DINO. The best attention regularization hyper-
parameters �1 and �2 are chosen using a sweep for values between [10�2

, 10�6].
For downstream classification tasks, we train a linear layer on top of the frozen
learned representations without any sort of data augmentations for 100 epochs.
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Fig. 4. Visualized attention maps from di↵erently pretrained models. We
analyze the visualized attention maps by probing the heads of the respective models
and choosing the map with the highest IOU overlap with the ground truth for each
model. These maps show that as the prior for attention becomes more specific, the mAP
and specialization of attention heads increases. Additionally, they show the inability of
DINO to learn interpretable representations without chest-specific augmentations.

4.2 Attention Head Interpretability

Performance In Table 1, we compare the di↵erent models’ attention maps
against the ground truth segmentations for the lungs and heart. The Mont-
gomery dataset does not contain ground truth segmentation maps for the heart
and hence these results have been omitted. The interpretability results are evalu-
ated using pixel-wise mAP scores that calculate the average precision at di↵erent
thresholds. For the MeDINO trained models, we use the attention maps at the
assigned head for evaluation. In DINO tasks where no head was assigned to a
specific part, the score represents the maximum across the di↵erent heads.

The interpretability results show higher mAP scores in MeDINO models
compared to DINO pretrained models for all thoracic parts. MeDINO with tri-
angular spatial heuristics sees a 30 mAP increase in performance over the DINO
baseline pretrained using chest specific augmentations. This further improves
with the templates acquired from global average masks, specifically in the right
lung. As the templates become more specific, the deformable semantic masks
acquired further performance gains yielding 88.5 mAP on average in JSRT. This
is a 58.7 mAP increase over the baseline (DINO with chest augmentations).
The key trend we observe is that the more specific information that
is encoded in masks, the more higher the interpretability scores. The
results also corroborate that semantic and spatial information ultimately attain
the highest performance outcomes, as the deformable parts based mask model
gained the highest performance. In general, any attention based model seems to
outperform a non-guided model.
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The baseline DINO pretrained with domain-agnostic augmentations on X-
ray scans has the lowest scores across all body parts. Interestingly, a pretrained
model that was not pretrained on chest images outperforms this setup. This
suggests that DINO domain-agnostic augmentations (such as the global and
local crops) have a large negative impact on pretraining on non-object-centric
tasks where semantics and spatial relationships reveal essential information. This
negative performance is restored through the removal of local crops and the
addition of domain-specific augmentations. The same patterns hold for both
datasets. An additional analysis using an alternate metric, the pointing game,
used for interpretability assessment can be found in the appendix.

Qualitative Assessment In Figure 4, we visualize the attention maps resulting
from the di↵erent models. Figure 4 shows that DINO pretrained Vision Trans-
formers are unable to learn salient representations from X-ray images. DINO
even leads to collapse with worse representations than a DINO model not pre-
trained on chest X-rays at all, though removal of global-local crops and inclusion
of medical imaging specific augmentations mitigates this performance drop. Fig-
ure 4 also shows that MeDINO improves the alignment with the segmented
regions and also disentangles the constituent attention maps across the heads.

Table 2. Linear disease classification trained on frozen pretrained features.

The pretrained models are used as feature extractors in the CheXpert classification task
whereby a linear layer is fine-tuned to predict the presence of six diseases: Atelectasis,
Pleural E↵usion, Consolidation, Cardiomegaly, No Finding and Edema. The mAUC
over all diseases are reported. MeDINO outperforms DINO pretraining methods for
all di↵erent attention priors. DINO pretraining decreases the accuracy performance,
which is then restored with the addition of chest-specific augmentations.

Regimen mAUC

Random 69.9
DINO 83.8
DINO (Chexpert) 60.4
DINO (Chexpert Augmentations) 84.3

Ours MeDINO (Triangular) 84.8
MeDINO (Global Average) 86.2
MeDINO (Deformable) 86.5

4.3 Downstream Disease Classification

Classification performances are assessed using the mean receiver operating area
under the curve (mAUC) score averaged over the 6 disease classes in the CheX-
pert classification challenge using a hold-out test set of 200 images: Atelecta-
sis, Edema, Pleural E↵usion, Cardiomegaly, Consolidation and No Finding. The
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linear classifier is trained on top of the frozen pretrained representations. The
results in Table 2 show that MeDINO has stronger multi-label classifica-
tion performance compared to all baseline DINO variants. Specifically,
MeDINO with the deformable image registration templates attains the high-
est mAUC score followed by the predicted global templates and the triangu-
lar spatial heuristics. This indicates that the more interpretable representations
from MeDINO also lead to higher downstream performance as well. In line with
the results of Section 4.2, DINO pretrained on ImageNet and CheXpert with
domain-agnostic representations attains the lowest classification score. DINO
only pretrained on ImageNet performs equally as DINO pretrained on ImageNet
and CheXpert with domain-specific augmentations.

5 Conclusion

We presented MeDINO: a framework for knowledge-based self-supervised Vi-
sion Transformers, which incorporates useful inductive biases into the training
processes that learn more interpretable representations and lead to better perfor-
mance on downstream classification tasks Medical DINO (MeDINO), a method
that takes advantage of consistent spatial and semantic structure in unlabeled
medical imaging datasets to guide vision transformer attention. Using chest X-
ray radiographs as a primary case study, we show that the resulting attention
masks are more interpretable than those resulting from domain-agnostic pre-
training, producing a 58.7 mAP improvement for lung and heart segmentation
following the self-supervised pretraining. Additionally, MeDINO yields a 2.2
mAUC improvement compared to domain-agnostic pretraining when transfer-
ring the pretrained model to a downstream chest disease classification task. Our
results indicate that the attention heads in self-supervised Vision Transformer
can be specialized to attend to di↵erent objects and learn more semantically
and meaning representations underlying the data by embedding prior knowl-
edge using our attention regularization framework. Follow-up work could focus
on generalizing this framework to expand beyond thoracic X-rays or even the
medical domain, and exploring incorporating di↵erent forms of prior knowledge.
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A Appendix

A.1 Notations and Definitions

Notation Definition

g✓s Student model
g✓t Teacher model
X Input image
w Image width
h Image height
nh The number of attention heads
n The number of regularized attention heads
p Patch size
P The total number of patches
V The set of data augmentations to apply to each

image
{X1, ..., Xn} The set of augmented images acquired resulting

from applying V on X

X
g Global crop

P (x) Output probability distribution
⌧ Temperataure
H Cross-entropy
A Attention matrix
As Self-attention map
K Knowledge map
�1, �2 Magnitude for inclusion and exclusion regulariza-

tion
X

e Exemplar image
X

i Training image
S

e Ground-truth segmentation for exemplar
S

i Ground-truth segmentation for training sample
� Deformable transformation

A.2 Data Augmentation Details

DINO augmentations pretrained on chest images result in worse representations,
as observed in Table 1. Therefore, we follow the radiograph-specific data augmen-
tations proposed by Sowrirajan et al. [45]. These augmentations refrain from us-
ing local crops, color jittering and randomized grayscaling. Such augmentations
do not apply well to gray-scale chest radiographs and are eliminated from the
pretraining procedure. The remaining augmentations are rotations, translations,
and random global crops. We expanded them by adding brightness, sharpness
and contrast. Each augmentation is applied with a random probability. When
applied, the strength of the augmentation is sampled uniformly at random from
the range of values specified in Table 3.

For the classification tasks, we do not apply any data augmentations. Pre-
trained self-supervised Vision Transformers are able to generalize well without
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Table 3. Data augmentations and their respective parameters.

Data augmentation Probability Range [min, max]

Rotation 0.2 [-30, 30]
Contrast 0.1 [0, 0.2]
Brightness 0.1 [0, 0.2]
Sharpness 0.1 [0, 0.2]
Random Crop 1 224 x 224

augmentations when used as a feature extractor for linear classification evalua-
tion. [11] We only normalize the images prior to training.

A.3 Training and Experiment Details

The hyperparameters for training follow the defaults from DINO [11] where
possible. Pretraining is performed on the subset of frontal CheXpert images.
Validation CheXpert images are used for saliency map evaluations. Additionally,
JSRT and Montgomery validation images are used to score the interpretability of
attention heads. For pretraining, all CheXpert images are rescaled to (224, 224).
Their original sizes vary between 300-400 pixels. During inference, we rescale
the image to (480, 480). All MeDINO models are pretrained for 30 epochs.
The batch size is kept constant at 28. The default learning rate for DINO is
0.0005⇤batchsize/256. However, we found that trainingMeDINO with a learning
rate of 0.0001 created slightly better representations. � values are found via grid-
search on a log-scale. The � values leading to the highest interpretability scores
are chosen.

A.4 Additional Results

Interpretability The pointing game is a metric that measures the interpretabil-
ity of attention maps compared to a groundtruth segmentation or bounding
boxes. [54] It evaluates whether the maximum entry of a saliency map falls
within the region of interest, also called a hit. The metric is calculated as fol-
lows:

PointingGame =
#hits

#hits+#misses

Table 4 shows that all MeDINO pretrained models outperform DINO by a large
margin for both heart (80+%) and lung (60+%) interpretability. The results
from the Montgomery dataset follow the same patterns from Table 1 where the
increasingly specific templates in MeDINO allowed for better performance. This
is generally the case for the JSRT results as well, but the results between the
global average templates outperform the deformable model for the left lung and
ties for the interpretability of the heart.
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Table 4. Additional interpretability scores for the attention heads with highest overlap.
In this additional analysis, we included the pointing game evaluation scores, another
metric for interpretability of attention maps. The figure shows that MeDINO outper-
forms all variants of DINO pre-training.

Metric Part Regimen JSRT Montgomery

Pointing Heart DINO 9.2
DINO (Chexpert) 0
DINO (Chexpert Augmentations) 10.7
MeDINO (Triangular) 62.0
MeDINO (Global Average) 98.0
MeDINO (Deformable) 99.0

Left Lung DINO 26.9 57.97
DINO (Chexpert) 0 0
DINO (Chexpert Augmentations) 38.1 67.4
MeDINO (Triangular) 96.4 35.0
MeDINO (Global Average) 97.9 100
MeDINO (Deformable) 97.5 99.3

Right Lung DINO 65.9 39.3
DINO (Chexpert) 0 0
DINO (Chexpert Augmentations) 34.5 43.5
MeDINO (Triangular) 79.7 69.0
MeDINO (Global Average) 100.0 90.58
MeDINO (Deformable) 100.0 98.6
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Fig. 5. Collapse in the absence of either regularization terms. This graphic
shows the e↵ect of the absence of either regularization terms. As can be seen, all the
mass of the attention maps reside in one pixel when one regularization term is included.

Regularization & Collapse In this experiment, we investigate the e↵ect of
excluding the inclusion or the exclusion regularization loss terms. The results in
Table 5 show that in the absence of either terms the pretrained models perform
worse. Closer inspection of these attention heads in Figure 5 reveals empirically
that pretraining collapses when either term is absent. This issue is mitigated
when both loss terms are present.

Table 5. Decreased interpretability in the absence of either regularization

terms. The mAP scores show that the presence of both the inclusion and exclusion loss
terms contribute to the interpretability of the representations. When either is absent,
the representations are lower. This analysis is performed using attention maps from
MeDINO (Triangular) with JSRT scans as input.

Regularization Term Heart Left Lung Right Lung

Exclusion Only 34.7 21.1 13.0
Inclusion Only 14.9 52.0 41.1
Both 54.5 59.2 45.6

A.5 Self-Attention Visualizations

We sample two validation images from the CheXpert dataset and provide the
attention maps over all 6 attention heads in Figure 6. The Figure shows that the
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Fig. 6. Visualized self-attention over all heads. This Figure shows the attention
maps from MeDINO given two samples from the CheXpert validation set. The reg-
ularized heads attend to regions and semantics. The unregularized heads also learn
emergent, interpretable representations.

unregularized heads become more interpretable as the quality of the representa-
tions in the regularized heads increase. We even observe emergent properties in
unregularized heads as a result of this.


