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Abstract

Voicing Silent Speech

by

David Gaddy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

This thesis concerns the task of turning silently mouthed words into audible
speech. By using sensors that measure electrical signals from muscle movement
(electromyography or EMG), it is possible to capture articulatory information
from the face and neck that pertains to speech. Using these signals, we aim
to train a machine learning model to generate audio in the original speaker’s
voice that corresponds to words that were silently mouthed. We call this task
voicing silent speech.

Voicing silent speech has a wide array of potential real-world applications. For
example, it could be used to allow phone or video conversations where other
people around the person speaking can’t hear anything they say, or it could be
useful in some clinical applications for people who can’t speak normally but
still have use of most of their speech articulators.

There have been several papers in the past that have looked at the problem
of converting EMG signals to speech. However, these prior EMG-to-speech
works have focused on the artificial task of recovering audio from EMG that
was recorded during normal vocalized speech. In this work, we will instead
generate speech from recordings where no actual sound was produced. Models
trained only on vocalized speech perform poorly when applied to silent speech
due to signal differences between the two modes. Our work is the first to train
a model on EMG from silent speech, allowing us to overcome these signal
differences.
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Training with EMG from silent speech is more challenging than with EMG
from vocalized speech, because when training on vocalized EMG data we have
time-aligned speech targets but when training on silent EMG data there is
no simultaneous audio. Our solution is to adopt a target-transfer approach,
where audio output targets are transferred from vocalized recordings to silent
recordings of the same utterances. To do this cross-modal training, we need
to account for the fact that the two recordings are not time-aligned, so a core
component of our work concerns finding the best way to align the vocalized
speech targets with the silent utterances.

To enable development on this task, we collect and release a dataset of nearly
twenty hours of EMG speech recordings, nearly ten times larger than previous
publicly available datasets. We then demonstrate a method for training a
speech synthesis model on silent EMG and propose a range of other modeling
improvements to make the synthesized outputs more intelligible. We validate
our methods with both human and automatic metrics, demonstrating major
improvements in intelligibility of generated outputs.
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Chapter 1

Background

This thesis is about voicing silent speech, where silently mouthed words are
turned into an audible voice based on sensor readings captured from muscles
of the face. This chapter will give some background on silent speech to set the
stage for the remainder of the thesis. We first discuss in more detail what silent
speech is, then talk about possible applications of silent speech technologies.
Next, we talk about the input sensors we use to capture silent speech, and
finally give a summary of other work on understanding it.

1.1 What is Silent Speech?
In this thesis, the term silent speech refers to a mode of speaking where words
are mouthed while suppressing normal speech sounds like voicing and frica-
tion. This means that air is not forced through the articulators as in normal
speech, but the articulators are still moved. Silent speech may not actually be
completely silent, since just the movement of the lips and tongue can create
some sound, but it will be much quieter than normal speech volumes.

To better define silent speech, let us compare it to alternate modes of speak-
ing. These modes of speaking fall along a spectrum based on how pronounced
the speech is. Each category can cover a range of speaking behavior and the
boundaries may not always be clear, but we can roughly divide the spectrum
into four different modes of interest: vocalized speech, whisper, silent speech,
and subvocal speech.

Vocalized speaking is the “normal” speech mode used to communicate in
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everyday situations. The source of sounds in vocalized speaking come from
both voicing, caused by activation of the vocal cords, and from other restric-
tions of airflow in the vocal tract such as frication and bursts (Ladefoged and
Johnson, 2014).

The next mode, whisper, differs from vocalized speaking by a lack of voicing
(Lim, 2011). In whispered speech, air is forced through the vocal tract but
the vocal cords are no longer activated. The volume of whispered speech can
vary depending on how forcefully air is pushed through, but is generally loud
enough to be heard by other people who are nearby. The quietest end of the
whisper spectrum is sometimes referred to as non-audible murmur (Nakajima
et al., 2003). Despite the name, non-audible murmur does usually have enough
airflow to produce some sound, but it is generally not loud enough for others
to understand and must be picked up with a special stethoscopic microphone.
In non-audible murmur, the airflow is very low and may be little more than
the flow resulting from normal breathing.

Silent speech is when airflow is reduced to the point where the airflow
itself does not cause any sound, but the speech articulators are still moved as
if speaking. Producing silent speech may require controlling breathing to keep
airflow below levels that cause sound. We have observed that when people are
asked to produce silent speech, they will sometimes produce a quiet whisper
or non-audible murmur instead, but can usually correct to silent speech when
it is brought to their attention that they are doing so.

One final mode of speaking is subvocal speech, the internal occurrence
of words in the mind when reading or thinking (Jorgensen et al., 2003). In
subvocal speech, the speaker does not consciously make any attempt to move
the speech articulators. However, this internal speech is often accompanied
by small amounts of activation of the speech muscles which the speaker is not
aware of (Edfeldt, 1959). This sometimes includes perceptible movements of
the lips, but can also range to more subtle muscle activation that cannot be
seen visibly. In some cases, the terms silent speech and subvocal speech have
been used in the place of each other, for example when Edfeldt (1959) use the
term silent for behavior we call subvocal or when Meltzner et al. (2018) use
both terms interchangeably for behavior we call silent speech. Our definition
here is based on the most common use of the terms.

Out of this range of speaking modes, this thesis will focus on the silent
speech variety to balance between privacy and the availability of necessary
signals. Because silent speech intends to mime normal speech as closely as
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possible without sound, it is more likely than subvocal speech to contain all
the necessary signals needed to fully decode the speech. As progress is made
towards decoding speech from each mode, we hope that future work can shed
more light on the information available in subvocal and silent speech. Finally,
we note that although our data and experiments pertain specifically to silent
speech, most of our methods could easily be applied to other speaking modes.

1.2 Applications
There are many different applications where silent speech could be useful.
Three broad categories of applications we will discuss here are private com-
munication, communication with some forms of reduced speaking ability, and
interaction with devices.

The first application area aims to allow people to have private conversations
that can’t be heard by others around them. For example, silent speech could
be used for holding phone or video conversations where the people around
you can’t hear anything you say but the person on the other end of the line
hears your voice normally. In this case, the silent speech could be translated
into audio of the speaker’s voice and played on the other end of the call as the
speaking occurs. This could be useful for holding phone conversations in public
or open-office settings with more privacy and less disruption to others without
requiring physical separation like conference rooms. Since the silent speech
input device does not rely on audio, it has the added advantage that noise
in the environment is not picked up, making it useful for noisy environments
as well. The conversation does not necessarily need to be between remote
participants - it could also be useful for holding conversations between two
people in close proximity where the sound is played through headphones to
the other participant.

Another potential use case for silent speech could be clinical applications
for people who are no longer able to produce normal audible speech but still
have use of most of their speech muscles. For example, it could be beneficial
for patients who have undergone a laryngectomy, where the larynx has been
removed due to trauma or disease (Meltzner et al., 2017). It may also be useful
for patients with some types of diseases affecting the nerves or muscles (Kapur
et al., 2020). Of course, the effectiveness in these cases will depend on how
much of the speech muscles are intact and on the availability of training data
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of a similar character.
One final application area of silent speech is as an input for computers,

phones, or other devices. Speech can be a very effective method for interaction
with devices, both through the use of virtual assistants and for dictation of
text. It is generally much faster than other word input methods like keyboards,
and can be particularly useful for mobile devices that do not have full-sized
keyboards. However, users may find vocalized speech to be inappropriate in
some settings due to privacy concerns and a desire to avoid disturbing others,
and silent speech could be used to alleviate these problems.

Based on the different use cases, there are two possible outputs we might
want from a silent speech system. For applications where one person is talk-
ing to another, an output of synthesized audio is often ideal so that the other
person can quickly understand what is being said. On the other hand, for
applications where a person is talking to a device a text output may be more
appropriate, similar to the output of an audio-based automatic speech recog-
nition system. In this thesis, we will denote the tasks of outputting text and
audio as recognition and voicing, respectively. Our focus will be on the task of
voicing silent speech, but we will also briefly discuss some work we have done
on silent speech recognition near the end.

While one could perform voicing indirectly by first doing text recognition
and then synthesizing audio with a text-to-speech system, voicing the speech
directly has several advantages over this approach. First, a direct voicing
approach is more suited for real-time streaming, where audio is generated im-
mediately after the corresponding speech movement, which would allow more
fluid conversation with silent speech communication devices. Second, an in-
termediate text step could introduce unnatural errors that may be harder for
a human to interpret. When a voicing system cannot correctly distinguish a
sound, it may make an ambiguous output or generate a phonetically related
sound, which could allow the human listener to fill in or correct based on con-
text. When a recognition system makes an error, it is more likely to substitute
an incorrect word which does not closely match the intended word, and it does
not have a natural way to indicate ambiguity that a human can resolve.
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Figure 1.1: Electromyography (EMG) electrodes placed on the face can detect
muscle movements from speech articulators.

1.3 Electromyography
In this work, the inputs we use to capture speech information come from
surface electromyography, or EMG. Surface EMG uses electrodes placed on top
of the skin to measure electrical potentials caused by nearby muscle activity.1
By placing electrodes around the face and neck, we can capture signals from
muscles that are important for speech, which may include the jaw, tongue,
lips, larynx, and soft palate. Figure 1.1 shows the EMG electrodes used to
capture signals.

The electrical signals captured by EMG originate from the process by which
muscle cells are activated, which we will briefly describe here (Scanlon and
Sanders, 2018, Chapter 7). Prior to firing, muscle cells have an electrical
potential across their outer membrane from an imbalance of charged ions.
When a nerve signal tells the muscle to activate, ion channels open to let ions
flow into the cell, which trigger the chemical process that causes the muscle to
contract. Afterwards, ion pumps move the ions back across the cell membrane

1Another form of EMG uses needle electrodes that are inserted into muscles, but all
EMG in this work refers to the surface EMG variety, sometimes called sEMG.
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Figure 1.2: The electrical pulse from a single motor unit action potential.

Figure 1.3: A signal captured by a single EMG channel.

to recharge. This movement of charged ions into and out of the cell causes an
electrical pulse to propagate out, and these pulses are what the EMG sensors
will capture.

The pulse from a single activation is shown in Figure 1.2. This pulse comes
from a group of muscle cells called a motor unit which are all triggered by a
single motor neuron, and the resulting pulse is called a motor unit action
potential (Rodriguez-Carreno et al., 2012). The particular shape of the action
potential can vary based on various properties of the cells involved. To increase
the strength of a contraction, the frequency of firings for a unit can increase and
more units can be activated. The signals captured by our surface electrodes
are the combination of a large number of different action potentials, resulting
in signals like the one shown in Figure 1.3.

When placed on different locations, EMG electrodes will tend to capture
signals from different muscles that are nearby. In this work, we collect sig-
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nals from eight different electrodes, as shown in Figure 1.1, resulting in eight
channels of signal to use as inputs.

1.4 History of EMG for Speech
The idea of using EMG for speech has been around for some time. Some of the
first work with EMG and speech was performed by Edfeldt (1959), who used
electromyography for a scientific study of subvocal speech. His work showed
that subvocal speech led to muscle activation of the larynx that could be mea-
sured with sub-surface electrodes, and investigated how various factors such
as reading ability affected the amount of detectable subvocal speech. In the
1980’s, several attempts were made to differentiate sounds from electromyogra-
phy during vocalized speech using simple data-analysis and pattern-matching
techniques. Sugie and Tsunoda (1985) and Morse and O’Brien (1986) used
EMG to discriminate between small sets of sounds, with classification accura-
cies ranging from 35% for 17 word sets to 97% for two word sets.

In the early 2000’s, people began applying automatic speech recognition
systems based on hidden Markov models to EMG-based speech, including on
silent and subvocal speech. Initially these works operated over vocabularies of
approximately 10 words (Chan et al., 2002; Jorgensen et al., 2003; Maier-Hein
et al., 2005), but over time vocabulary size improved to recognize approxi-
mately 100 words with word error rates as low as 10-20% (Jou et al., 2006;
Schultz and Wand, 2010; Wand and Schultz, 2011). Since then, other works
have continued to study the task of recognizing text from EMG (Wand et al.,
2014b; Meltzner et al., 2018; Kapur et al., 2018), but these have still been lim-
ited to fairly restricted vocabulary sizes. While recognizing text from EMG
is not the primary task we will focus on in this thesis, Chapter 6 will discuss
some of our work on recognizing text, where we move to a large open vocabu-
lary and apply some of the more recent techniques from the speech recognition
literature.

In addition to the recognition (speech-to-text) work described so far, there
were also several attempts to convert EMG speech to audio prior to our
work. Toth et al. (2009) considered the use of voice conversion tools based
on Gaussian mixture models (GMM) for EMG-to-speech conversion. They
trained their system on vocalized speech and tested on both vocalized and
silent speech, finding results on vocalized speech to be fairly intelligible but on
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silent speech to be mostly unintelligible. Note that while testing on vocalized
speech is useful for evaluating progress, it represents an artificial setup since
the speech already has audio and so does not need for it to be reconstructed
from EMG. Diener et al. (2015) introduced the use of neural networks for
EMG-to-speech synthesis, showing substantial improvements over the GMM-
based approach, and later work by many of the same authors continued to
improve models for this task (Janke and Diener, 2017; Diener et al., 2018).
However, these works focused just on synthesis from vocalized speech, train-
ing and testing only on that speech mode. Our work is the first to instead
train on silent speech signals, allowing us to achieve more intelligible speech
synthesis from silent EMG.

1.5 Alterative Input Sensors
While the focus of this work will be on using EMG as an input for silent
speech, it is not the only possible way to capture speech that does not rely on
audio. Several alternatives include visual inputs, electromagnetic articulogra-
phy, ultrasound, or brain signals from EEG, ECoG, or fMRI. We will briefly
discuss some of the tradeoffs of these inputs.

One alternative method for capturing silent speech is to use video to visu-
ally read the lips of speakers (Petridis and Pantic, 2016; Chung et al., 2017; Shi
et al., 2022). A recent model from Shi et al. (2022) using this input achieved
a word error rate of 27% in a multi-speaker setting. Some advantages of this
method are the ease of capturing inputs and the large amount of speaking
video data available that can be used for training. One potential downside
is that only the outside of the face can be seen, which may mean important
information is missing. While humans may be able to perform lip reading well
when given sufficient contextual clues, some tests have shown that even profes-
sional human lip readers have error rates of over 70% from visual signals alone
(Chung et al., 2017). There are also trade-offs for ease of use, since EMG may
be more convenient when walking around but video more convenient when
sitting in front of a computer.

Another possible sensor for silent speech input is electromagnetic articu-
lography, or EMA, which uses magnets attached to the lips and tongue to
track their movement (Wrench and Richmond, 2000). While EMA has very
accurate information about movement of the speech articulators, making it
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great for use in the lab, its need for attaching items to the tongue makes it
too invasive for many uses as an everyday communication device.

Ultrasound imaging of the inside of the mouth is another possible input for
capturing silent speech (Hueber et al., 2010; Kimura et al., 2019). Ultrasound
has the advantage of being able to see the tongue without placing sensors
inside the mouth. It may be less effective at capturing the lips and so is
sometimes combined with visual inputs to capture that information (Hueber
et al., 2010). Another downside is that current ultrasound sensors are often
be more expensive and bulky than EMG or video.

Finally, there are several possible inputs based on reading signals from the
brain. For example, EEG sensors can read electrical signals from the brain off
the surface of the skin, just as EMG sensors do for muscles (D’Zmura et al.,
2009). However, due to signal attenuation by the skull, these sensors may have
too low a resolution to capture enough information for decoding speech. ECoG
sensors implanted inside the skull can capture more fine-grained information
(Anumanchipalli et al., 2019), though they require surgery to implant. Imaging
techiques such as fMRI can also be used to capture speech information from
the brain (Price, 2012), but the large size and cost of these machines make
them impractical for many use cases.
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Chapter 2

Data Collection

To enable our work on voicing silent speech, we collect and release a dataset of
EMG signals and time-aligned audio during both silent and vocalized speech.
The dataset contains nearly 20 hours of facial EMG signals from a single
speaker. To our knowledge, the largest public EMG-speech dataset previously
available contains just 2 hours of data (Wand et al., 2014a), and many papers
continue to use private datasets for EMG-speech tasks. We hope that our
public release will encourage development on these tasks and allow for fair
comparisons between methods.

In this chapter, we first describe the equipment used to record signals and
then the structure of our dataset.

2.1 Recording Equipment and Setup
To record EMG signals we use the Cyton Biosensing Board (OpenBCI, 2014),
a device designed for measurement of biopotentials – the small voltages gen-
erated by the body. The primary electrical function of the board is to amplify
voltages and convert them to digital values with an analog-to-digital converter
(ADC). These values are then streamed to a computer over Wi-Fi, where they
are saved. With an amplifier gain of 24 and an 24-bit ADC, the board is
theoretically capable of measuring voltages with a resolution of approximately
.01 microvolts, though the electrical components have a typical noise level of
.3 microvolts, making that the practical resolution (Texas Instruments, 2012).
The board is capable of recording eight channels simultaneously, and we record
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at a rate of 1000 samples per second.
The voltage measurements of the Cyton board are made with respect to a

reference electrode placed at a different location. In our data we use a single
reference electrode that is shared across all recording channels, which is known
as a monopolar configuration (Jamal, 2012). We place this reference behind
one ear. When each channel uses it’s own reference electrode it is known as
a bipolar configuration, and two electrodes are needed for each channel. We
choose a monopolar configuration over a bipolar one to reduce the number of
electrodes that need to be placed and because a bipolar configuration requires
more care in choosing locations to get the right signals.

The Cyton board also has circuitry to help maintain a steady base voltage
across electrodes by using an additional “bias” electrode where the voltage is
driven by the board. This base voltage is known as the common mode voltage,
since it appears across all measurement electrodes. Reducing the common
mode voltage can help reduce some types of noise in the measurements. The
circuitry used to cancel the common mode voltage is sometimes called a driven
right leg circuit, since for measurement of electrocardiography (ECG) signals
the driven electrode is often placed on the leg. We place a driven electrode
behind the opposite ear as our reference electrode.

The electrodes themselves are simply a metal cup attached to the data
collection board with a wire, as shown in Figure 2.1. The surface of the
electrodes are gold plated, which can affect signal quality based on how the
surface material interacts chemically and electrically with the skin. Ten20
conductive electrode paste is placed within the cup of the electrodes prior to
placement. This paste helps create a better electrical connection between the
electrodes and the skin. Although not explored in this work, dry electrodes
that do not require electrode paste are also possible with additional circuitry.1
In some cases, this additional circuitry may be placed on or near the electrodes
themselves, in which case they are called active electrodes. In contrast, the
electrodes we use are called passive electrodes.

The electrodes are individually attached to the face and neck with tape.
The locations where we place the electrodes are described in Table 2.1, and
can also be seen visually in Figure 1.1. These locations were chosen to be
close to many of the primary speech articulators and to have some similarity

1One important property for dry electrode circuitry is an amplifier with high input
impedance.
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Figure 2.1: Gold-plated cup electrodes used for capturing EMG.

to locations used by prior work such as Wand et al. (2014a) and Kapur et al.
(2018). We did not carefully optimize electrode locations and expect there is
room for improvement in these location choices.

The EMG signals we aim to capture can have magnitudes up to several
millivolts, but the intensity can also be much lower depending on the strength
of muscle activation and distance from the electrodes. When attached to a
speaker at rest, we typically observe 10 to 20 microvolts of background signal.

Before using the collected signals, several filters are used to reduce noise
and normalize the signals. First, a series of IIR notch filters at integer multiples
of 60 Hz are used to reduce noise from AC electrical mains, which shows up
significantly in the signals prior to filtering, often with magnitudes higher
than the signals we aim to capture. Next, a high pass Butterworth filter
with cutoff 2 Hz is used to remove constant offset and slow-moving drift from
the collected signals, since offsets can vary widely and do not generally contain
useful information. For both filters, forward-backward filtering is used to avoid
phase shifts.

Audio is recorded from a built-in laptop microphone at 16 kHz. Prior
to use, background noise is reduced in the audio using a spectral gating al-
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Location

1 left cheek just above mouth
2 left corner of chin
3 below chin back 3 cm
4 throat 3 cm left from Adam’s apple
5 mid-jaw right
6 right cheek just below mouth
7 right cheek 2 cm from nose
8 back of right cheek, 4 cm in front of ear
ref below left ear
bias below right ear

Table 2.1: Electrode locations.

gorithm,2 which uses a sample of silence recorded at the beginning of each
session to identify thresholds below which inputs should be considered noise
across different frequency bands. We also normalize the volume of the audio
across different examples so that the peak volume of each example is approx-
imately constant. We measure volume with the root-mean-square value of
30 ms windows of sound, take a max over all windows in an example, smooth
these peak values across nearby examples, and then scale each example’s vol-
ume based on these values.

2.2 Dataset Structure
Our data comes from a single male speaker, the author of this work. All models
in this thesis will focus on a single-speaker setup using this data, and so will
only need to understand EMG from that speaker and output a single voice.
The vast majority of other work on decoding EMG speech has also used a
similar speaker-dependent setup, though Wand and Schultz (2009) did perform
some cross-speaker experiments for EMG speech recognition. Extending the
task of voicing silent speech to multiple speakers is an important direction for
future work.

2https://pypi.org/project/noisereduce/
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Recording of the dataset was broken down into sessions of approximately
one hour in length. Electrodes were reattached for each session and so may
have minor changes in position between different sessions. Within a session
the electrodes remained in place, though signal differences could still occur
as electrodes became more settled or more loose over time. Each session was
recorded on a different day to avoid strain from excessive talking.

During data collection, text prompts consisting of a single sentence to
be read were displayed on a computer screen at a time. After reading the
sentence, the subject pressed a key to advance to the next sentence. If they
were unhappy with a recording, they could press another key to re-record an
utterance. A real-time display of EMG signals was used to monitor for any
excessive noise during recording. Such noise often comes from loose electrodes
and could generally be corrected by pressing the electrodes back into contact.

The primary portion of the dataset consists of parallel silent and vocalized
data, where the same utterances are recorded using both speaking modes.
This parallel data is used by our methods for training on silent EMG, which
will be discussed in a later chapter. The parallel examples can be viewed as
tuples (ES, EV , AV , T ) of silent EMG, vocalized EMG, vocalized audio, and the
text prompt, where EV and AV are time-aligned. Although we also recorded
audio during the silent speech, these recordings generally do not contain useful
information and are ignored. Figure 2.2 shows an example from the parallel
data collected. Both speaking modes of an utterance were collected within a
single session to ensure that electrode placement is consistent between them.
First the full set of vocalized utterances for the session were collected, then
the same utterances were recorded with silent speaking.

Another set of sessions in the dataset contain only vocalized speaking. We
refer to these instances as non-parallel data, and represent them with the tuple
(EV , AV , T ).

2.3 Domains
For comparison, we recorded data from two domains: one with an open vo-
cabulary and one with a closed vocabulary. We describe each of these domains
below.
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AV - audio from vocalized speech

EV - EMG from vocalized speech ES - EMG from silent speech

Figure 2.2: An example of signals collected during a parallel session. The
vocalized speech signals AV and EV are collected simultaneously and so are
time-aligned, while the silent signal ES is a separate recording of the same
utterance without vocalization. Colors represent different electrodes in the
EMG data. Not pictured, but also included in our data are the utterance
texts, in this case: “It is possible that the infusoria under the microscope do
the same.” (from H.G. Well’s The War of the Worlds).

2.3.1 Open-Vocabulary Condition

The majority of our data was collected with sentences read from books. This
data is open-vocabulary, meaning we do not restrict the vocabulary in any
way, and the development and test sets contain words that were never seen
in the training set. The text that was read came from two public domain
books from Project Gutenberg: The Adventures of Sherlock Holmes by Arthur
Conan Doyle and The War of the Worlds by H. G. Wells.3 We collected 17
total sessions in this condition: 7 sessions with parallel silent and vocalized
utterances, and 10 non-parallel sessions with only vocalized utterances. A
summary of dataset features is shown in Table 2.2. We select a validation
and test set randomly from the silent parallel EMG data, with 200 and 100
utterances respectively. Note that during testing, we use only the silent EMG
recordings ES, so the vocalized recordings of the test utterances are unused.

3https://www.gutenberg.org/
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Open-Vocabulary Condition

Parallel Silent / Vocalized Speech
(ES, EV , AV , T )

3.6 hours silent / 3.9 hours vocalized
Average session has 30 min. of each mode
1588 utterances

Non-parallel Vocalized Speech
(EV , AV , T )

11.2 hours
Average session length 67 minutes
5477 utterances

Total
18.6 hours
Average of 16 words per utterance
9828 words in vocabulary

Table 2.2: Open-vocabulary data summary

2.3.2 Closed-Vocabulary Condition

In our second data condition, we use a restricted domain with words from a
closed, or limited, vocabulary. Restricting the vocabulary makes it easier for
our models to generate clear audio because it reduces the possible outputs
a model must choose from. Even if the model can’t distinguish every sound
individually, with a restricted vocabulary it may be able to identify the rest of
the word and use that to determine what to output. In addition, using a closed
vocabulary reduces the number of different contexts where each phoneme could
occur, which may make identification easier if phonemes appear differently in
different contexts as they do in audio-based speech.

To create a closed-vocabulary data condition, we generate a set of date
and time expressions for reading. These expressions come from a small set
of templates such as “<day-of-week> <month> <day-of-month>” which are
filled in with randomly selected values. Over 50,000 unique utterances are
possible from this scheme. We collected a single session of this date and time
data, and Table 2.3 summarizes the properties of the data collected in this



CHAPTER 2. DATA COLLECTION 17

Closed-Vocabulary Condition

Parallel Silent / Vocalized Speech
(ES, EV , AV , T )

26 minutes silent / 30 minutes vocalized
Single session
500 utterances
Average of 4 words per utterance
67 words in vocabulary

Table 2.3: Closed-vocabulary data summary

condition. A validation set of 30 utterances and a test set of 100 utterances
are selected randomly, leaving 370 utterances for training.
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Chapter 3

Methods

This chapter will discuss our methods for the task of voicing silent speech,
where we aim to translate EMG signals into speech audio.

Instead of training a model that goes directly from EMG to audio wave-
forms, we break down the model into two main parts. First, we predict a set
of audio features with a model that we will call the transduction model, then
we use a separate vocoder model to turn those audio features into a raw wave-
form. This breakdown is commonly used in the speech synthesis literature
(Shen et al., 2018; Ping et al., 2018; Li et al., 2019) and is often more effec-
tive since it allows the initial model to focus on the high-level structure of the
sound while letting the vocoder handle the details of generating waveforms.

Conceptually, our neural transduction model will translate from a sequence
of EMG signals E to a time-aligned sequence of audio A. By time-aligned, we
mean that for every frame (small chunk) of input EMG, we will output a frame
of audio that directly corresponds to the sound being expressed in the EMG
at that point in time. The initial components of our model extract features for
the EMG at each frame, so there is a one-to-one correspondence between EMG
feature frames and audio feature frames on the input and output. Figure 3.1
illustrates this correspondence. Using a time-aligned model structure has the
advantages of giving the model more inductive bias and allowing real-time
streaming into audio with only a few minor extensions, as discussed later in
Section 4.3.4.

When training solely on vocalized EMG data (as was done by prior work)
training the model is straightforward, because for every frame of EMG the
simultaneously recorded audio gives us a target output to regress towards.
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Figure 3.1: The core of our neural transduction model goes from a sequence
of EMG features (bottom) to a sequence of time-aligned audio features (top).

However, our experiments in Chapter 4 show that training on vocalized EMG
alone leads to poor performance when testing on silent EMG because of dif-
ferences between the two speaking modes. A core contribution of our work is
a method for training the transduction model on silent EMG signals, which
no longer have time-aligned audio to use as training targets. Using the set
of parallel utterances that we recorded in both silent and vocalized speaking
modes, we find alignments between the two recordings and use them to asso-
ciate speech features from the vocalized instance with the silent EMG frames.

Our work also introduces several other modeling improvements compared
to prior work. We improve the EMG feature extraction by using learned
rather than manual features, the model architecture by using Transformers in
the place of LSTMs, and the learning signal by adding an auxiliary loss to
predict phoneme labels.

We will break down the discussion of our model into several parts. First
we will describe how features can be extracted from the raw EMG signals,
and we’ll describe the core transduction model which translates EMG features
to audio features. Next, we’ll introduce our methods for training on silent
speech by aligning to a parallel vocalized utterance and describe our auxiliary
phoneme loss. Finally, we’ll discuss the vocoder model which synthesizes the
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final audio waveforms from the audio features.

3.1 Input Features
The first step of our model is to turn the raw EMG into features. The features
will operate at a more coarse temporal level than the raw signals, and each
feature vector will summarize a small section of the EMG input. The stride
of the EMG feature frames is chosen to be the same as the stride used by the
audio features output by the transduction model so that inputs and outputs
line up. A stride of 11.6 ms is used to be compatible with the audio features
used by many recent vocoders.

Prior to feature extraction, AC electrical noise is removed from the EMG
signals using band stop filters at harmonics of 60 Hz, and DC offset and drift
are removed with a 2 Hz high-pass filter. We also perform soft de-spiking to
remove very large values by feeding the input through a scaled tanh function
(ν tanh x

ν
) with the maximum scale ν set to 1 mV.

Our work has explored two different methods for extracting features. First
we consider manually defined features like those used in prior EMG-speech
work, and then try a new feature extraction method based on learning features
from raw EMG signals. We describe each of these two feature extraction
methods in more detail below.

3.1.1 Manual Features

For our manual feature set, the primary features we use are the time domain
features from Jou et al. (2006), which are commonly used in the past EMG-
speech literature (Schultz and Wand, 2010; Diener et al., 2015). After splitting
the signal from each channel into low and high-frequency components (xlow and
xhigh) using a triangular filter with cutoff 115 Hz, the signal is windowed with
a frame length of 31 ms and stride of 11.6 ms. For each frame, a set of five
features are used describe major properties of the signal, as follows:[

1

n

∑
i

(xlow[i])
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1
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where ZCR is the zero-crossing rate, the number of times the signal’s sign
changes from one sample to the next. To implement these features in a similar
manner as prior work, we first re-sample our EMG to 516.8 Hz. This is scaled
from the 600 Hz used by Jou et al. (2006) because we use a different frame
stride of 11.6 instead of 10 ms. We perform low-pass filtering for xlow with two
passes of averaging with windows of 9 values, and then subtract this from the
original signal to get xhigh. The features are then calculated over 16-sample
windows with a stride of 6.

Some other work on EMG processing has used frequency-domain features
(Kapur et al., 2018) based on a short-time Fourier transform (STFT), where
small windows of signal are converted to the frequency domain. In our initial
exploration, these were not as effective as the above time-domain features
when used alone, but did provide some additional improvement when used in
combination. For each 31 ms window with 16 samples, we calculate a 16-point
STFT to append to our feature set, which gives us 9 additional features.

The two representations result in a total of 112 features to represent the 8
EMG channels. The features are normalized to approximately zero mean and
unit variance before use.

3.1.2 Learned Feature Extraction

As an alternative to using manual features like in prior work, our work also
investigated whether features could be learned from raw EMG signals with
minimal preprocessing. To learn the features, we add a set of convolutional
neural network layers to the beginning of the transduction model to act as
feature extractors. These layers are trained along with the rest of the trans-
duction model, and give the model the ability to learn its own features. This
variant follows recent work in speech processing from raw waveforms like Col-
lobert et al. (2016) and Schneider et al. (2019).

Our convolutional architecture uses a stack of 3 residual convolution blocks
inspired by ResNet (He et al., 2016), but modified to use 1-dimensional con-
volutions. The architecture used for each convolution block is shown in Fig-
ure 3.2. Along the primary computation path, two convolution layers with a
width of 3 over the sequence are used with a rectified linear activation (ReLU)
in between, and along the other “shortcut” path a single width-1 convolution
(linear transformation with no sequence aggregation) is performed. The final
output of the block is then the sum of the two path outputs followed by a
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Figure 3.2: The convolution block architecture used to extract learned features
from raw EMG signals.

ReLU activation. Each convolution is followed by a batch normalization op-
eration (Ioffe and Szegedy, 2015) (BN in figure). The strides at the beginning
of the block are set to 2, so that each block downsamples by 2 for a total
length reduction of 8 over the three layers. EMG signals are resampled from
1000 Hz to 689 Hz before being fed into the convolution layers, so that after
this downsampling the stride of frames will be 11.6 ms. All convolutions have
channel dimension 768.

Before feeding EMG signals into the convolution layers, we re-scale them
so that a unit value corresponds to 20 µV. During training, we randomly shift
the EMG signals by up to 8 samples, so that the convolutional layers will see
slightly different views of the inputs.

3.2 EMG to Speech Feature Transduction
After features are extracted, the transduction model is the component that
translates the sequence of EMG features into a sequence of audio features.
We will denote the featurized version of the signals used by the transduction
model E ′

S/V and A′
V for EMG and audio respectively. Both feature types use

the same frame rate, so when signals are time-aligned the frames E ′[i] and
A′[i] will match up.
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Figure 3.3: A mel-spectrogram representation of audio.

The EMG features that are input to the transduction model are projected
up to the model dimension with a linear layer and fed into the main model
layers at every time-step. We also explored including an embedding of the
session index with each time-step to allow the model to account for differences
in electrode placement, but this embedding did not substantially improve per-
formance so was not used in our final experiments.

For audio feature outputs, we predict an 80-band mel-spectrogram. A
mel-spectrogram is a frequency-domain representation where a STFT output
is bucketed along the frequency dimension with 80 triangular windows scaled
according to the Mel scale, which uses larger windows for higher frequencies.
Figure 3.3 illustrates a mel-spectrogram for an audio sample of a voice. The
spectrogram parameters were chosen to match those of our vocoder: sample
rate 22050 (audio is resampled to match this rate), FFT and window size
1024, and hop 256. In earlier versions of our model, we also explored using
Mel-frequency cepstral coefficients (MFCCs) as our audio features and were
able to achieve similar results with those as well. The output features were
scaled to have a mean of zero and a standard deviation of 0.25. We found that
this scaling improved stability of the model compared to larger ranges.

Our training loss for the transduction model is the Euclidean distance be-
tween the predicted mel-spectrogram features and the aligned target features
at each time-step. We use this as our loss to match the distance used for align-
ment in Section 3.3.2 below and because we found it to work well empirically.
Compared to a mean squared error loss, our loss puts less emphasis on large
prediction errors. This property makes it more similar to a loss based on ℓ1
distance, which has been used by other work with spectrogram predictions like
Wang et al. (2017).

We explored two different neural architectures for our transduction model:
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LSTMs and Transformers. Both of these architectures propagate information
across time, but do so in different ways. LSTMs have been explored in past
work for EMG-to-speech by Janke and Diener (2017), but we are the first
to explore the use of Transformers for this task. We describe each neural
architecture below.

3.2.1 LSTM

One possible architecture for the transduction model is a recurrent Long Short-
term Memory network, or LSTM (Hochreiter and Schmidhuber, 1997). An
LSTM is a type of recurrent neural network, meaning it passes information
one step at a time across adjacent positions from time-step t− 1 to t. To help
remember information across longer horizons, LSTMs use a cell state to pass
information and a set of gates to control how information flows into and out
of the cell at each position. The equations of the LSTM with input xt and
output ht are as follows:

it = σ(Wiixt + bii +Whiht−1 + bhi)
ft = σ(Wifxt + bif +Whfht−1 + bhf )
gt = tanh(Wigxt + big +Whght−1 + bhg)
ot = σ(Wioxt + bio +Whoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh(ct)

Our model uses a bidirectional LSTM, allowing information to propagate
forwards and backwards in time by using one LSTM in each direction for
each layer of the model (Schuster and Paliwal, 1997). Based on validation-set
tuning, we use a model with 3 bidirectional LSTM layers of 1024 hidden units,
followed by a linear projection to the speech feature dimension. Dropout 0.5
is used between all LSTM layers (Srivastava et al., 2014), as well as before the
first layer and after the last LSTM layer.

3.2.2 Transformer

As an alternative to the LSTM, we also explore using the more recent Trans-
former architecture (Vaswani et al., 2017), which can access distant informa-
tion more directly through the use of an attention mechanism. In the Trans-
former architecture, each layer of the model consists of a self-attention mech-
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anism followed by a feed-forward sub-layer, where self-attention aggregates
information across the sequence and feed-forward sub-layers process informa-
tion at each position.

The self-attention mechanism is made up of multiple attention heads, where
each head attends to other positions in the sequence, choosing which locations
to pull information from. In particular, for each position i of the sequence,
an attention head forms a weighted sum of values across all other positions j.
Weights are computed using a softmax over scaled dot products from projec-
tions of the input x:

aij = softmax
(
(WKxj)

⊤(WQxi)√
d

)
where WK and WQ are learned matrices that project down to dimension d and
the softmax is over positions j. Values to be aggregated come from a projection
to dimension d by another learned matrix WV , resulting in an output

hi =
∑
j

aij (WV xj)

The feed-forward component of each layer consists of an up-projection, non-
linearity, then down-projection back to the original size. Both the attention
and feed-forward sub-layers are separately wrapped with a residual connection
and normalization: layernorm (x+ sublayer(x))

We use six of these Transformer layers, with 8 heads, model dimension
768, query dimension d of 96, and feed-forward dimension 3072. Dropout 0.2
is used after the feed-forward non-linearity and on the attention values. The
output of the last Transformer layer is passed through a final linear projection
down to 80 dimensions to give the audio feature predictions output by the
model.

To capture the time-invariant nature of our task, we encode position using
relative position embeddings as described by Shaw et al. (2018) rather than the
more common absolute position embeddings. In this variant, a learned vector
p that depends on the relative distance between the query and key positions
is added to the key vectors when computing attention weights. Thus, the
attention weights are computed with

aij = softmax
(
(WKxj + pij)

⊤(WQxi)√
d

)
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where pij is an embedding lookup with index i− j, up to a maximum distance
k in each direction. For our model we use k = 100, giving each layer approx-
imately 1 second of view in each direction, and set all attention weights with
distance greater than k to zero.

3.3 Training on Silent Speech
To train the EMG-to-speech feature transduction model, we need speech fea-
tures that are time-aligned with the model outputs to use as training tar-
gets. However, when training with EMG from silent speech, simultaneously-
collected audio recordings do not have any audible speech to use as targets. In
this section we describe how parallel utterances, as described in Section 2.2,
can be used to associate audio feature labels from a vocalized recording with
a silent one. More concretely, given a tuple (E ′

V , A
′
V , E

′
S, Â

′
S) of features from

vocalized speech EMG, vocalized speech audio, silent speech EMG, and pre-
dicted silent speech audio, we estimate a warped set of predicted audio features
Ã′

S from Â′
S that time-align with A′

V .
We consider several different ways of performing the alignment by using

different features to align: EMG features, CCA-projected EMG features, or
audio features. We will start by describing the alignment with EMG features,
which is the simplest method.

All of our alignments will make use of dynamic time warping (DTW)
(Rabiner and Juang, 1993), a dynamic programming algorithm for finding a
minimum-cost monotonic alignment between two sequences s1 and s2. DTW
builds a table d[i, j] of the minimum cost of alignment between the first i items
in s1 and the first j items in s2. The recursive step used to fill this table is

d[i, j] = δ[i, j] + min (d[i− 1, j], d[i, j − 1], d[i− 1, j − 1])

where δ[i, j] is the local cost of aligning s1[i] with s2[j]. After the dynamic
program, we can follow backpointers through the table to find a path of (i, j)
pairs representing an alignment.

For our silent training, we apply DTW as described above between the vo-
calized and silent sequences for each example. The different alignment variants
we explore vary by how they define the cost δ used by DTW. For our EMG-
based alignment, this cost is simply the Euclidean distance between EMG
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feature vectors:
δEMG[i, j] = ∥E ′

S[i]− E ′
V [j]∥

When using EMG features for alignment we use the manual features described
in Section 3.1.1, even if learned features are used for the model itself.

Although the path of (i, j) pairs returned by DTW is monotonic, a single
position i in the vocalized sequence may repeat several times with increasing
values of j in the silent one (and vice-versa). We take the first pair from any
such sequence to form a mapping aV S[i] → j from every position i in E ′

V

and A′
V to a position j in E ′

S. Using this alignment, we can create a warped
sequence of predicted audio features Ã′

S that aligns with A′
V using Ã′

S[i] =
Â′

S[aV S[i]]. During training of the EMG to audio transduction model, we can
then compare Ã′

S to A′
V when calculating a loss.1 Figure 3.4 illustrates how

an alignment is used to associate each vocalized frame with a corresponding
silent frame.

In addition to training the transduction model on silent examples using
this alignment, we find that also training on the vocalized signals (E ′

V to
A′

V ) improves performance. Since the EMG and audio targets are recorded
simultaneously for these vocalized examples, we can calculate the loss directly
without any dynamic time warping. Each training batch contains samples
from both modes mixed together. For the open vocabulary setting, the full set
of examples to sample from has 3 sources: (ES, AV ) from parallel utterances,
(EV , AV ) from the vocalized recording of the parallel utterances, and (EV , AV )
from the non-parallel vocalized recordings.

3.3.1 CCA

While directly aligning EMG features E ′
S and E ′

V can give us a rough align-
ment between the signals, doing so ignores the differences between the two
signals that lead us to want to train on the silent signals in the first place. To
better capture correspondences between the signals, we use canonical correla-
tion analysis (CCA) (Hotelling, 1936) to find components of the two signals
which are more highly correlated. Given a number of paired vectors (v1, v2),

1We also tried a variant of the alignment described here where the directionality is re-
versed, choosing the best vocalized frame for every silent frame instead of vice-versa. Choos-
ing the best silent frame for each vocalized performed slightly better in our experiments,
perhaps because it ensures no target sounds are skipped over in the alignment.
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Figure 3.4: An illustration of how alignment between EMG sequences is used
to find vocalized audio targets to use for training. The dark blue line represents
an alignment between the two sequences. Raw EMG signals are used here for
illustration, but EMG comparisons are done in the EMG manual feature space.

CCA finds linear projections P1 and P2 that maximize correlation between
corresponding dimensions of P1v1 and P2v2.

To get the initial pairings required by CCA, we use alignments found by
DTW with the raw EMG feature distance δEMG. We aggregate aligned E ′

S

and E ′
V features over the entire dataset and feed these to a CCA algorithm

to get projections PS and PV . CCA allows us to choose the dimensionality of
the space we are projecting to, and we use 15 dimensions for all experiments
based on validation-set tuning. Using the projections from CCA, we define a
new cost for DTW

δCCA[i, j] = ∥PSE
′
S[i]− PVE

′
V [j]∥

Our use of CCA for DTW is similar to Zhou and Torre (2009), which
combined the two methods for use in aligning human pose data, but we found
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their iterative approach did not improve performance compared to a single
application of CCA in our setting.

3.3.2 Alignment with Predicted Audio

So far, our alignments between the silent and vocalized recordings have relied
on distances between EMG features. In this section, we will use audio features
instead. Although the silent recordings have no useful audio signal, once we
start to train a transduction model from E ′

S to audio features, we can align
using the predicted audio features Â′

S. Our alignment will then be between
predicted features Â′

S and vocalized audio features A′
V .

Training with predicted audio alignment works as follows: For each batch
of training, we first run a forward pass of the model to get audio feature
predictions Â′

S. Next, we run DTW with cost

δaudio[i, j] =
∥∥∥Â′

S[i]− A′
V [j]

∥∥∥
to align predictions with target audio feaures. We then treat those alignments
as fixed and backpropagate errors from features paired by the alignment, just
as we do for EMG. Because our training loss is also an ℓ2 distance in the audio
feature space, this alignment has the appealing property that the same metric
δ is used for both the alignment and loss.

As training progresses and our predictions improve, our alignments will also
improve, giving the model better learning signal. Training on the vocalized
examples helps to bootstrap the process, since those examples already have
aligned outputs, and we train on the two speaking modes simultaneously.

This audio-based alignment could also be mixed together with the EMG-
based alignment using a weighted combination like δCCA+audio[i, j] = δCCA[i, j]+
γδaudio[i, j], where γ is a hyperparameter to control the relative weight of the
two terms. However, this combined alignment variant did not outperform the
individual alignment variants in our experiments so is not included in our
results.

3.3.3 Other Training Information

To perform batching across sequences of different lengths during training, we
concatenate a batch of EMG signals across time then slice (reshape) them into
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a batch of fixed-length sequences before feeding into the network. Thus if the
fixed batch-sequence-length is l, the sum of sample lengths across the batch is
NS, and the signal has c channels, we reshape the inputs to size (⌈NS/l⌉ , l, c)
after zero-padding the concatenated signal to a multiple of l. After running the
network to get predicted audio features, we do the reverse of this process to get
a set of variable-length sequences to feed into the alignment and loss described
above. When using raw EMG inputs (§ 3.1.2), the input sequence length l will
be 8 times the output sequence length to account for the downsampling from
raw signals to frames. We use a sequence length l of approximately 2 seconds
(lraw = 1600, lframe = 200) and select batches dynamically up to a total length
of 256 seconds. This batching strategy has the advantage of being compute-
efficient since it requires minimal amounts of padding and keeps sequences
short for the Transformer’s l2 compute scaling. It can also act as a form of
regularization, since some context will not be available after slicing and data
samples will be sliced in different ways each time they appear in a batch.

We train our model for 80 epochs using the AdamW optimizer (Loshchilov
and Hutter, 2017). The peak learning rate is 10−3 with a linear warm-up of
500 batches, and the learning rate is decayed by half after 5 consecutive epochs
of no improvement in validation loss. Weight decay 10−7 is used for additional
regularization. Training a model takes approximately 12 hours on a single
NVIDIA Quadro RTX 6000 GPU.

3.4 Auxiliary Phoneme Loss
One other improvement that we introduce to our EMG-to-speech model is
an auxiliary phoneme prediction loss. For this loss, we predict a phoneme
label for every time-step in addition to predicting the audio feature vectors
at the output of the model. The relatively small data sizes available for this
task creates a challenging learning problem, so the auxiliary loss is useful
for providing additional guidance during training and regularizing the learned
representations. Our use of an auxiliary phoneme loss for EMG-to-speech
follows prior work that found phonemic prediction useful for related tasks
like generating speech from ultrasound and ECoG sensors (Tóth et al., 2018;
Anumanchipalli et al., 2019).

To get phoneme labels for each feature frame of the vocalized audio, we use
the Montreal Forced Aligner (McAuliffe et al., 2017). The forced aligner uses
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the reference text from our dataset along with a phonemic dictionary to deter-
mine likely phoneme sequences for each example. It then aligns the phoneme
sequence with the example’s audio by running a Viterbi decode through the
sequence using an acoustic model for scoring. The accoustic model is a Gaus-
sian mixture model associating phonemes with MFCCs that is pre-trained on
the LibriSpeech dataset.

To predict a distribution over phonemes, we add an additional linear pre-
diction layer and softmax on top of the transduction model encoder. For train-
ing, we modify the training loss by appending a term for phoneme negative
log likelihood with a weight λ:

L =
∑
i

∥∥∥A′[i]− Ã′[i]
∥∥∥− λP [i]⊤ log P̃ [i]

for audio feature targets Ã′, aligned audio feature predictions Ã′, one-hot
phoneme target vector P , and aligned predicted phoneme probability vector
P̃ . We select λ = .5 for the phoneme loss weight by searching among values
{5, 1, .5, .1, .05, .01} and comparing validation performance. After training,
the phoneme prediction layer is discarded.

We also found it useful to take phoneme predictions into account as part
of the alignment when using the predicted-audio alignment. Just as the loss
and the alignment costs δ[i, j] are identical for vanilla predicted-audio align-
ment, we can include the phoneme loss into δ when using our auxiliary loss to
maintain the symmetry:

δaudio+phoneme[i, j] =
∥∥∥A′

V [i]− Â′
S[j]

∥∥∥− λPV [i]
⊤ log P̂S[j]

3.5 Vocoding
The final component of our system is the vocoder model, which turns the
audio features predicted by the rest of the model into raw audio waveforms
that can be played through a speaker. The vocoder we use in our work is
the HiFi-GAN vocoder (Kong et al., 2020), a neural model that is trained to
predict audio waveforms on samples of voices. The HiFi-GAN generator model
is a convolutional neural network model that generates all the audio samples
in parallel, in contrast to autoregressive models like WaveNet (van den Oord
et al., 2016) which generate one sample at a time.
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As indicated by it’s name, HiFi-GAN training is based primarily on a
generative adversarial loss (Goodfellow et al., 2014), where a set of trained
discriminators attempt to distinguish generated samples from real ones and
the generator model is trained to try to fool the discriminators. HiFi-GAN
uses a group of eight different discriminators that operate over different peri-
ods and scales to capture different views of the generated audio, making sure
each of these views appear similar to real audio. HiFi-GAN also uses a com-
bination of several other losses to improve the stability of training, including
a discriminator feature matching loss and a spectrogram reconstruction loss.

To get high-quality outputs for the speaker in our data, we use a model
pre-trained on many different speakers and then fine-tune on the vocalized
examples from our own dataset. The pre-trained model was trained by the
HiFi-GAN authors on a combination of the Librispeech (Panayotov et al.,
2015), VCTK (Yamagishi et al., 2012), and LJSpeech (Ito and Johnson, 2017)
datasets, which together contain over 1000 total hours of audio and thousands
of different speakers. When fine-tuning, we use mel-spectrograms predicted by
our transduction model as inputs rather than mel-spectrogram features from
the true audio of the example. This use of predicted features lets the vocoder
learn to overcome some artifacts in our predictions. Fine-tuning was run for
75 thousand steps using the default training hyperparameters and V 1 model
configuration from the HiFi-GAN paper.

We also explored several other vocoders such as WORLD (Morise et al.,
2016) and WaveNet (van den Oord et al., 2016), but found that HiFi-GAN gen-
erated the most natural-sounding speech audio. In addition, running inference
with HiFi-GAN is much faster than with WaveNet, since the autoregressive
WaveNet model must generate one sample at a time.
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Chapter 4

Evaluation

In this chapter, we will describe our experiments to measure the quality of au-
dio outputs generated by our model from silent EMG signals. We will compare
different variants of our model to understand which model configuration works
best and compare our methods to prior work on EMG-to-speech synthesis.

The primary trait we aim to measure is intelligibiliy, or the number of
words that can be understood from the generated audio. One way to measure
intelligibility is to have humans write down what they hear in a sample and
compare that to the reference text that was read during the creation of the
dataset. We compare the evaluator’s transcriptions and the reference with a
word error rate metric (WER), which is computed as follows:

WER =
substitutions + insertions + deletions

reference length

Lower WER values indicate better models. Prior to computing WER, text
from the transcriptions and reference are normalized by removing punctuation
and capitalization. We also perform a variant of this evaluation automatically
by replacing the human transcription with the text predicted by an off-the-
shelf automatic speech recognition system.

First, we will discuss our results using the automatic metric. Because this
automatic metric can be run more quickly and consistently, we will use this
evaluation to assess the various modeling decisions we have made. Then, we
will look at results from a human evaluation. For the human evaluation, we will
look at results in both an open-vocabulary domain from books and a closed-
vocabulary domain of date and time expressions. Finally, we will talk about
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a few other experiments exploring other questions such as the effect of data
size, different electrode locations, cross-session generalization, and real-time
streaming.

4.1 Automatic Evaluation
We will start our experiments with an automatic evaluation, which will allow
us to easily compare a variety of model choices. The idea behind the automatic
evaluation is to use an off-the-shelf automatic speech recognition (ASR) system
as a proxy for humans listening to our samples. Although this evaluation will
not perfectly capture the intelligibility to actual humans, improvements in the
automatic metric do appear to be fairly correlated with human metrics, and
we will validate our main results with human evaluators in Section 4.2 below.
Our automatic evaluation is similar to the ASR evaluation used by Janke and
Diener (2017), but with an off-the-shelf large-vocabulary ASR system instead
of a limited-vocabulary system trained specifically on audio synthesized from
EMG.

The ASR system we use for this evaluation is an open source implementa-
tion of DeepSpeech from Mozilla1 (Hannun et al., 2014). The DeepSpeech sys-
tem uses an acoustic model that predicts characters by training with the con-
nectionist temporal classification (CTC) loss, and then combines this acoustic
model with a language model during inference. The pre-trained models pro-
vided with this implementation were trained on several thousand hours of
audio from a range of different domains. Running the recognizer on the orig-
inal vocalized audio recordings from our test set results in a WER of 9.5%,
which represents an approximate lower bound for this evaluation.

Test and validation examples used for evaluation were selected randomly
from among the silent utterances, with 100 and 200 examples respectively in
the open-vocabulary setting. The testing and validation examples use different
utterances from those seen during training, and the vocalized examples with
the same utterances are not used to avoid biasing the model.

One other thing to keep in mind when interpreting results is the variance
in model performance across different training runs with different random ini-
tializations of model parameters. We found that results could vary by one or

1https://github.com/mozilla/DeepSpeech
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two percentage points across different runs, so results should only be consid-
ered accurate to that degree. All of the important results here have differences
much greater than the range attributable to this variation. For the most part,
results are reported based on a single training run, but for the final test result
of our full model we select the model with the best validation performance
from among three runs with different initializations.

We will first compare different alignment costs for training on silent speech,
then evaluate our other model improvements, and finally compare our best
model to baselines representative of prior work. Our experiments in this section
will focus on the open-vocabulary domain data, but we will look at closed-
vocabulary results as part of the human evaluations below.

4.1.1 Comparing Alignment Methods for Silent Speech
Training

In our first experiment, we aim to compare the different alignment methods
described in Section 3.3, which allow us to train on silent speech by matching
silent utterance frames with vocalized utterance frames. Each of our four
methods use different information to form the alignment, resulting in different
alignment costs δ. The four types of alignment we test are: EMG alignment
(§ 3.3), EMG alignment with CCA (§ 3.3.1), audio alignment (§ 3.3.2), and
audio-with-phoneme alignment (§ 3.4). The model we use for this experiment
uses learned features (§ 3.1.2), a Transformer architecture (§ 3.2.2), and an
auxiliary phoneme loss (§ 3.4).

Table 4.1 shows the validation error rates for each of the four alignment
methods. We see that the audio-based alignment methods perform better than
EMG-based alignment. Using the combination of audio feature and phoneme
outputs for alignment performs the best, so this method will be used in all of
the following experiments that train on silent utterances.

4.1.2 Evaluating Model Components

Our next experiment will evaluate three other major model components that
we improved over prior work: the input features, model type, and auxiliary
phoneme loss. Starting with our best model, which uses learned features, a
Transformer model, and an auxiliary phoneme loss, we ablate each component
one at a time to measure its effect on performance. We ablate the learned
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Alignment Method WER

EMG 58.5
EMG with CCA 48.7
Audio 40.0
Audio with phoneme 36.2

Table 4.1: Results with different alignment methods on the open-vocabulary
validation set. Lower WER is better.

Model WER

Full model 36.2
Ablation: Replace learned features with hand-designed features 44.4
Ablation: Replace Transformer with LSTM 44.4
Ablation: Remove auxiliary phoneme loss 46.0

Table 4.2: Ablations of model components. Results are open-vocabulary vali-
dation word error rates from an automatic intelligibility evaluation.

feature extraction by replacing the convolutional feature-extraction layers with
hand-designed features, and we ablate the Transformer layers by replacing
with LSTM layers. To ablate the phoneme loss, we simply set its weight in
the overall loss to zero, including its weight in the alignment cost δ.

Table 4.2 shows the validation error rates for each of these ablations. All
three ablations show an impact on our model’s results, validating the usefulness
of our model changes.

4.1.3 Comparing to Prior Work

Now that we have established which of our model variants perform best, let us
compare our full model to methods used by prior work to see the full extent
of our improvements.

As a baseline for this experiment, we use a model representative of the prior
EMG-to-speech work by Janke and Diener (2017). Janke and Diener (2017)
is the most recent prior EMG-speech-synthesis paper we are aware of with
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the exception of Diener et al. (2018), whose methods are tailored specifically
towards a different style of electrode setup with electrode arrays. Since prior
work in this space reported numbers on private data and didn’t release code,
we can’t directly compare to their implementations, so we will instead compare
to our own implementation of a model that is broadly similar. At a high level
the model in this past work follows a similar setup as ours, with a neural model
that predicts time-aligned speech features from EMG features, followed by a
vocoder to synthesize audio waveforms. In general, we try to err on the side
of using stronger models with hyperparameters tuned on our own data rather
than directly using the model sizes from past work. Because our dataset size
is larger, the hyperparameters they used are often suboptimal in our setting.

The most important difference between prior work and ours is that the past
work is trained only on EMG from vocalized speech. While one might hope
that a model trained in this way could directly transfer to silent EMG, our
results show that such an approach performs quite poorly due to differences
between the two speaking modes. Most prior papers on EMG-to-speech only
evaluated on vocalized data, but Toth et al. (2009) did attempt testing on silent
speech and also observed a substantial degradation in quality after training
only on vocalized data.

The model itself for our baseline uses the manual features described in
Section 3.1.1, which come primarily from the same time-domain features used
by Janke and Diener (2017). We also include features from a STFT in our
baseline, which only improved performance in our experiments. For the neural
network converting EMG features to speech features, we use an LSTM-based
model in our baseline. Janke and Diener (2017) explored both LSTMs and
feedfoward (multi-layer perceptron) networks in their experiments, and while
they found the feed-forward network to work better on their data, we found
LSTMs to work much better than feed-forward with our larger data size. We
also use a much larger layer size for the LSTM, which we tuned on our valida-
tion set. One final difference between the baseline and our full model is that it
does not include our auxiliary phoneme loss, since we are the first to use this
type of loss for the EMG-to-speech task.

For our experiments, we use the same HiFi-GAN vocoder model for both
the baseline and our full approach, though this is actually a much more recent
vocoder than the MLSA vocoder used by Janke and Diener (2017) and other
prior EMG-to-speech work. The largest difference in output between the HiFi-
GAN vocoder and older vocoders like MLSA is in improved naturalness rather
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Model WER

Baseline model with vocalized training 88.3

Our full model 36.1

Silent training, without other improvements 67.8
Vocalized training, with other improvements 84.4

Table 4.3: Results comparing our full model with a baseline representative of
prior work. Values come from the test set of the open-vocabulary data with
an automatic intelligibility evaluation. Lower WER is better.

than intelligibility, but it may also improve intelligibility somewhat.
The test-set results comparing the baseline system with our full model are

shown in Table 4.3. We see that this baseline trained on vocalized data does
not perform well when tested on silent speech, with an error rate of 88.3%.
For comparison, this same baseline model gets an error rate of 44.9% when
tested on vocalized speech, showing the importance of considering differences
between the two speaking modes. Overall, our methods improved error rates
from 88.3% to 36.1%. This table also gives results with our silent training
and other model improvements separately applied to the baseline to show
the contribution of each component. Vocalized training continues to perform
quite poorly even with our other model improvements, but the other model
improvements do make a substantial difference when using silent training.

One other relevant result for comparison is that when both training and
testing on vocalized speech, our best model reaches an error rate of 23.3%
(using learned features, a Transformer, and an auxiliary phoneme loss). This
result tells us that even with our silent speech training, we are still not able to
reach the same level of accuracy on silent speech as vocalized speech. However,
it is unclear whether this difference comes from the difficulty in training on
silent speech, indicating there is more room for methodological improvements,
or if there is less information available in silent speech inputs.
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4.2 Human Evaluation
While the automatic evaluations we have run so far are useful for running ex-
periments quickly and for ensuring consistent evaluation, they might not be an
entirely accurate measure of intelligibility to humans. To validate our results
further, we also run an intelligibility test with human evaluators. We perform
this human evaluation on both the open-vocabulary and closed-vocabulary
settings.

4.2.1 Open-Vocabulary Condition

In the open-vocabulary condition, we evaluate both our full model and the
baseline model with vocalized training described in Section 4.1.3 above. Two
human evaluators without prior knowledge of the text were each asked to listen
to synthesized samples and write down the words they heard. We then com-
pared these transcriptions to the ground-truth reference with a WER metric.
The evaluators were each given 40 samples from our full model and 7 samples
from the baseline. The text instructions given to the evaluators are as follows:

Please listen to each of the attached sound files and write down
what you hear. There are 40 files, each of which will contain a
sentence in English. Write your transcriptions into a spreadsheet
such as Excel or Google sheets so that the row numbers match the
numbers in the file names. Many of the clips may be difficult to
hear. If this is the case, write whatever words you are able to make
out, even if it does not form a complete expression. If you are not
entirely sure about a word but can make a strong guess, you may
include it in your transcription, but only do so if you believe it is
more likely than not to be the correct word. If you cannot make
out any words, leave the corresponding row blank.

The results of this evaluation were a word error rate of 95.1% for the
baseline model and 32.3% for our best approach. Thus, the evaluators were
only able to make out a small number of words for the baseline but could hear
much more in our model outputs.

One observation from this and other human evaluations we performed is
that humans did worse than the automatic transcription on poor-performance



CHAPTER 4. EVALUATION 40

models but better than the automatic transcription for more intelligible mod-
els. On the baseline where humans scored 95.1% WER the automatic metric
scored 88.3% WER, but on our best model where humans scored 32.3% WER
the automatic transcription got 36.2% WER.

Another observation from this evaluation was a large variance in transcrip-
tion error rates across different human evaluators. Even though the evaluators
were listening to the exact same audio samples, the resulting error rates were
very different for each evaluator: 36.1% and 28.5%. This large human variance
suggests that the automatic metric may be more appropriate for establishing
consistent evaluations, and we recommend that the automatic metric is used
as the primary evaluation in comparisons by future work.

4.2.2 Closed-Vocabulary Condition

In the open-vocabulary results we’ve seen so far, the outputs still have a sub-
stantial number of words that cannot be understood. In this section, we’ll look
at how well our model can perform if we make the task easier by restricting
the utterances to a closed-vocabulary domain of date and time expressions.
Although we do not explicitly enforce any constraints on the model, by train-
ing on utterances from the closed-vocabulary data the model is able to learn
to predict within this constrained set of outputs. The transduction model
was trained on open-vocabulary data before being fine-tuned on the closed-
vocabulary training set, and the vocoder model was trained only on open-
vocabulary data. All other model architecture and training hyperparmeters
were the same as our open-vocabulary model.

To asses intelligibility, a single human evaluator was given a set of 20 audio
output files from our model and was asked to write out in words what they
heard. The evaluator was told that the examples will contain dates and times,
but was not given any further information about what types of expressions
may occur. The text instructions given to the evaluator were as follows:

Please listen to each of the attached sound files and write down
what you hear as best you can. There are 20 files, each of which
will contain an expression of some date or time. Write your tran-
scriptions into a spreadsheet such as Excel or Google sheets so that
the row numbers match the numbers in the file names. Although
many of the clips will contain numbers, please write out what you
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hear as words. For example, you might write something like: five
oh two pm on Thursday.2 Some of the clips may be difficult to
hear. If this is the case, write whatever words you are able to make
out, even if it does not form a complete expression. For example:
five two pm on. If you cannot make out any words, leave the
corresponding row blank.

On model outputs from our best model, the word error rate of the hu-
man transcriptions was just 3.6%. This indicates that that vast majority of
words can be understood in the audio synthesized for this closed-vocabulary
condition.

4.3 Additional Experiments
In this section, we perform a few additional experiments exploring questions
such as the effect of data size, different electrode locations, cross-session gener-
alization, and real-time streaming. These experiments are all evaluated using
the open-vocabulary automatic transcription method described in Section 4.1.

4.3.1 Data Size

In this section we explore the effect of dataset size on model performance.
We train the EMG-to-speech transduction model on various-sized fractions of
the dataset, from 10% to 100%, and plot the resulting WER. We select from
the parallel (silent and vocalized) and non-parallel (vocalized only) portions
proportionally here, but will re-visit the difference below. Although data size
also affects the vocoder quality, we use a single vocoder trained on the full
dataset for all evaluations to focus on EMG-specific data needs.

Figure 4.1 shows the resulting intelligibility measurements for each data
size. As would be expected, there is a large improvement with small data sizes
and the improvements slow down with more data. There continue to be some
improvements for over 10 hours of data, though.

We also train a model without the non-parallel vocalized data. A model
trained without this data has a WER of 44.4%, a loss of 8 absolute percentage

2We intentionally used an example that does not match a pattern in our generation
procedure to avoid biasing the evaluator.
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Figure 4.1: Effect of data amount on intelligibility.

points. This confirms that non-parallel vocalized data can be useful for silent
speech even though it contains only data from the vocalized speaking mode.
However, if we compare this result to a model where the same amount of data is
removed proportionally from the two data types (parallel and non-parallel), we
see that removing a mixture of both types leads to a much larger performance
decrease to approximately 50% WER. This indicates that the non-parallel data
is less important to the performance of our model, and suggests that future
data collection efforts should focus on collecting parallel utterances of silent
and vocalized speech rather than non-parallel utterances of vocalized speech.

4.3.2 Electrode Importance

In this section, we experiment with models that operate on a reduced set of
electrodes to gain information about which electrodes are most important and
assess their impact on performance. We perform a random search to try to
find a subset of four electrodes that works well. More specifically, we sample
35 random combinations of four electrodes to use (out of 70 possible combina-
tions) and train a model that only uses the selected subset. We then compare
the models using their word error rate on the validation set. The motivation
for using this form of analysis where multiple electrodes are dropped at a time
is that electrodes may contain redundant information with each other and
removing just a single electrode may be overly affected by this redundancy.
Removing a single electrode often does not have enough effect on performance
to distinguish from model initialization noise.
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Electrodes Used WER

1, 2, 3, 8 45.1
2, 3, 4, 7 46.0
1, 2, 3, 7 46.6
1, 2, 4, 5 47.1
2, 3, 6, 7 47.3
2, 3, 4, 6 47.6

Location

1 left cheek just above mouth
2 left corner of chin
3 below chin back 3 cm
4 throat left of Adam’s apple
5 mid-jaw right
6 right cheek just below mouth
7 right cheek 2 cm from nose
8 back of right cheek

Table 4.4: The best-performing size-four subsets of electrodes found in our
random search. Word error rate is reported from the validation set.

Model performance with different four-electrode subsets ranged from around
45% to 54% WER – 9 to 18 points worse than the model with all electrodes.
The best-performing models from this experiment are shown in Table 4.4.
Many of the differences between these best results are within the range of dif-
ference attributable to random noise, so we shouldn’t infer too much from the
precise ranking. However, we can see some clear patterns of electrodes that
appear in many of these top-ranked selections. If we order electrodes by the
number of times they appear in a top-ranked selection, we get the following
order: 2, 3, 1, 7, 4, 6, 8, 5. From this, we might infer that the two electrodes
on and below the chin are the most important. These electrodes could be
picking up tongue movement, which is one of most critical features of speech.
The electrodes on the outside of the jaw and at the far back of the cheek seem
to be least important, showing up just once on the list (though oddly the back
cheek is included in the best model combination).

4.3.3 Cross-Session Results

For the test set used in the primary results above, examples are selected ran-
domly from among the silent set of utterances. This means that these test
examples will come from the same sessions with identical electrode placements
as examples that were used for training. To assess the robustness of our model
to small changes in electrode placement across sessions, here we run an evalua-
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tion with a different test split where the test set comes from a separate session
that is never trained on. We evaluate with four different test sessions, training
a new model for each with all other sessions used for training. We use the
entire held-out session as the test set, and randomly select 50 examples from
among the other sessions as the validation set used for learning rate schedul-
ing (where we decay the learning rate after a plateau in validation loss). The
experiment is otherwise identical to the full model results above using the au-
tomatic evaluation. The resulting error rates on the new sessions are 41.3%,
41.8%, 43.6%, and 47.3%, ranging from approximately five to eleven points
worse than results with in-session training. This drop in accuracy shows the
importance of considering methods to improve robustness or adapt quickly to
session differences, a direction which some other work has begun to explore
on the related EMG-to-text task (Maier-Hein et al., 2005; Wand et al., 2018;
Proroković et al., 2019).

4.3.4 Real-Time Streaming

Many use cases for voicing of silent speech would be best served by models that
operate in a real-time streaming mode, where audio is generated for each sound
immediately after the corresponding mouth movement is detected. However,
the models we have seen so far have operated in an offline mode, where a
complete utterance is processed after the user has finished speaking. These
models aren’t quite compatible with a real-time streaming mode because model
decisions in the middle of the utterance have access to information from inputs
later in the sequence, which we will not have seen yet when streaming.

To adapt our models to work in a real-time streaming mode, several changes
must be made so that the models only rely on information prior to the time-
step being processed. First, we must adapt the signal filtering from a forward-
backward filter to a left-to-right filter. Then, we modify the convolution layers
in both the transduction and vocoder models to use causal convolutions, which
are shifted to only look at a window up to the current time-step rather than
both directions. Finally, we mask the Transformer attention in a similar way,
so that only the current and past time-steps can be attended to. After making
these changes, our model’s intelligibility was reduced by approximately twelve
percentage points to a WER of 47.8%.

We also made an initial prototype where this streaming model is applied
in real-time as signals are captured. The model was able to generate speech



CHAPTER 4. EVALUATION 45

when used in this way, showing that this mode of operation is viable. How-
ever, the latency of our prototype was quite large and it took over a second for
sounds to be produced after being mouthed. Further work would be needed to
optimize the latency, which could require delay reduction in each step of the
processing pipeline, including the streaming of signals from the data-collection
board, the model processing, and the audio playback. A total mouth-to-ear
latency of 150 to 200 ms is considered acceptable for phone calls (International
Telecommunication Union, 2003), so to be useful in a phone application the
system delay plus telecommunication delay would need to be below that range.
To be played back to the speaker a delay below 50 ms would be more accept-
able, since delays over that amount are known to cause changes in speaking
behavior (Stuart et al., 2002).
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Chapter 5

Phoneme Error Analysis

In this chapter, we perform an analysis of what our models have learned. To
do this analysis, we will look at the outputs of our auxiliary phoneme pre-
diction task, since these outputs provide an interpretable view of what the
model knows. Although the phoneme predictions are not directly part of the
audio synthesis process, we have observed that mistakes in audio and phoneme
prediction are often correlated. To analyze the phoneme predictions for silent
utterances, we align each frame of the parallel vocalized utterance with a
silent frame using the predicted audio and phonemes, as described in Sec-
tions 3.3.2 and 3.4. Then, we compare phonemes for paired frames to perform
two types of analysis: understanding which phoneme pairs get confused and
evaluating accuracies along particular articulatory feature dimensions.

5.1 Confusion
For our first analysis, we look at the confusion between each pair of phonemes,
or how often one phoneme is predicted in the place of another. We use a
symmetric frequency-normalized metric for confusion.

Confusion: (ep1,p2 + ep2,p1)/(fp1 + fp2)

where ep1,p2 is the number of times p2 was predicted when the aligned label
was p1, and fp1 is the number of times phoneme p1 appears as a target label.
Figure 5.1 illustrates this measure of confusion for each pair of phonemes using
the darkness of lines drawn between them, and Table 5.1 lists the values of
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Figure 5.1: Phoneme confusability. Darker lines indicate more confusion, and
the maximum darkness represents 13% confusion.

the most confused pairs. The table also includes a measure of the accuracy for
each pair to give an idea of how often those phonemes are mistaken in general
rather than just with each other.

Accuracy: (ep1,p1 + ep2,p2)/(fp1 + fp2)

We observe that many of the confusions are between pairs of consonants
that differ only in voicing. This is consistent with observations we have made
on the signals themselves where the throat electrode is much more active during
vocalized speaking than silent speaking, suggesting that voicing signals are
subdued or missing in silent speech.1 Another finding is that nasals and stops
are often confused. This distinction is challenging due to the role of the velum
(soft palate) and its relatively large distance from the surface electrodes, as
has been noted in prior work (Freitas et al., 2014). Other confusions are also
shown in the figure but are generally a bit harder to interpret.

1Given that Edfeldt (1959) found some vocal cord activation during subvocal speech
when measuring with needle electrodes inserted into the larnyx, it seems likely there is still
some activation during silent speech, but it may be too small to be easily picked up by our
surface electrodes.
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Phonemes Confusion (%) Accuracy (%)

Ã Ù 13.2 49.4
v f 10.4 72.0
p b 10.3 64.3
m b 9.3 74.3
k g 8.9 77.2
S Ù 8.3 59.8
p m 8.1 73.0
t d 7.2 64.0
z s 6.6 80.0
I E 6.5 60.6
t n 6.3 67.1
n d 6.0 66.8
I 2 6.0 65.8
ô Ä 5.7 78.2
t s 5.5 72.8

Table 5.1: Numerical values for confusion and accuracy of the most commonly
confused phoneme pairs.

5.2 Articulatory Feature Accuracy
To better understand how well different consonant articulatory features are
captured by our model, we perform a second type of analysis where we ask the
model to choose between sets of phonemes that differ along a particular feature
dimension. For this analysis, we define a confusion set for an articulatory
feature as a set of English phonemes that are identical across all other features.
For example, one of the confusion sets for the place feature is {p, t, k}, since
these phonemes differ in place of articulation but are the same along other axes
like manner and voicing. For each feature of interest, we calculate a forced-
choice accuracy within the confusion sets for that feature. More specifically, we
first run our model on the silent input and align to a vocalized target, then find
all time-steps in the target sequence with labels belonging in a confusion set
for the feature being analyzed. For each predicted distribution aligned to one
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Feature Confusion Sets

Place {p,t,k} {b,d,g} {m,n,N}
{f,T,s,S,h} {v,D,z,Z}

Oral manner {t,s} {d,z,l,r} {S,Ù} {Z,Ã}
Nasality {b,m} {d,n} {g,N}
Voicing {p,b} {t,d} {k,g} {f,v}

{T,D} {s,z} {S,Z} {Ù,Ã}

Figure 5.2: Phoneme confusion sets used for our articulatory feature analysis.
The phonemes in each confusion set share the same articulatory feature values
for all features except the one being tested.

of these time-steps, we select the highest-scoring phoneme label from within
the corresponding confusion set. Using these new labels, we then compute an
accuracy across all those positions that have a confusion set. Table 5.2 lists
all confusion sets used for this analysis.

As a point of comparison for this analysis, we also run a baseline to try to
determine how much of the feature accuracies can be attributed to information
from phonemic context rather than information extracted from the EMG sig-
nals. This baseline measures a similar forced-choice accuracy across features,
but using a model that is trained to make decisions based on nearby phonemes
to try to capture phonotactic and language modeling constraints. In the place
of EMG feature inputs, the baseline model is given a sequence of phonemes,
but with information about the specific feature being tested removed by col-
lapsing phonemes in each of its confusion sets to a single symbol. Figure 5.3
illustrates the inputs and output choices for this baseline on an example. The
input phonemes come from the predictions of the full EMG-based model on
silent examples, but after alignment to the parallel vocalized target sequence.
We use predicted phonemes instead of gold phonemes as inputs because this
represents information the model already knows about nearby phonemes. Be-
cause the input phonemes are pre-aligned to the vocalized targets, the baseline
model and its loss do not need any additional alignment during training. The
model itself uses a Transformer architecture with dimensions identical to our
primary EMG-based model, but is fed phoneme embeddings of dimension 768
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Figure 5.3: An example of the input tokens and output choices for the feature
analysis phoneme-context baseline. In this example the feature of voicing is
being tested, so phonemes like p and b that differ only by voicing are repre-
sented with the same token at the input, and the output is asked to choose
between them. In this example it would be hard for the baseline model to
predict which phoneme is correct given just the phonemic context, since pat,
bat, pad, and bad are all valid words. If the full model with EMG input is able
to distinguish such cases better than the baseline, that indicates it may be
getting useful information about the feature from the EMG rather than just
context.

in the place of the EMG features output from the convolutional layers. The
model is trained with a cross-entropy loss over the full set of phonemes, but
choices are restricted during evaluation in the same way as for the EMG-model
analysis. We train a separate baseline model for each of the four articulatory
feature types to account for different collapsed sets in the input. Other training
hyperparameters are the same between this baseline and the main model.

The results of this articulatory feature analysis are shown in Figure 5.4. In
addition to the full EMG-based model and the phoneme-context baseline, we
also include a majority-class baseline for comparison, which simply uses the
most common phoneme from each confusion set as the prediction for that set.
By comparing the gap in accuracy between the full model and the phoneme-
context baseline, we observe similar trends to those we saw in our confusion
analysis. While place and oral manner features can be predicted much better
by our EMG model than from phonemic context alone, nasality and voicing are
more challenging and have a smaller improvement over the contextual baseline.
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Figure 5.4: Accuracy of selecting phonemes along articulatory feature dimen-
sions. We compare our full EMG model (full context) with a majority-class
baseline and a model given only phoneme context as input.

More analysis is going to be needed to figure out exactly how much we can
pick up from the larynx and soft palate, but we do see some improvement over
the contextual baseline, which may indicate we are picking up at least some
useful information for these features from EMG.
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Chapter 6

EMG Speech Recognition

So far, this thesis has focused on the problem of voicing, or directly synthesizing
audio from silent EMG. In this chapter, we will take a brief look at the related
problem of EMG speech recognition, where our output will instead be text of
what was said. This speech recognition task is useful for a slightly different set
of applications like talking to a computer or phone, whereas voicing is more
useful when talking to other people, as discussed in Section 1.2.

While our evaluation from Section 4.1 did end up extracting text from our
outputs, that extraction was intended as a proxy for human listeners when
evaluating the audio outputs, and our end goal was to improve intelligibility
to humans. In this chapter, we will explore how we might get text more
directly when text is the output of interest. This direct text prediction will
be more efficient and also slightly more accurate than getting text indirectly
through audio synthesis and audio-based ASR.

While there has been a substantial body of prior work on EMG speech
recognition in the past, that work used older HMM-based recognition tech-
niques and operated over limited vocabulary sizes (Wand and Schultz, 2011;
Meltzner et al., 2018) (see Section 1.4). Our work instead uses state-of-the art
neural methods like Transformers and a CTC loss, and operates over a large
open vocabulary.
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6.1 Methods
Our model for speech recognition will be a character-prediction model trained
with a connectionist temporal classification (CTC) loss (Graves et al., 2006).
The model predicts a character output for each frame of the input, then col-
lapses the output sequence according to the rules defined by CTC, as described
below. The majority of the neural architecture for the model will be the same
as for our transduction model in Section 3.2, with convolutional feature ex-
tractors followed by a sequence of Transformer layers. The only difference will
be at the final model layer, which will now be a softmax over the character
vocabulary instead of a linear projection to speech features. We normalize all
text by lowercasing and removing punctuation, so the vocabulary will contain
the 26 lowercase English letters, 10 digits, and a space character.

CTC collapses from the frame-level outputs of the model to the final output
sequence by collapsing any contiguous sequences of repeated characters. In
addition, it also introduces a special blank character representing no output,
which is included as an option for the softmax of the model at each frame. To
output two of the same character in a row, the model must include a blank
character between them in the frame-level output.

The training loss for CTC is the sum of the probability of all frame-level
output sequences that collapse to the correct label sequence, which can be
computed efficiently with a dynamic program. During inference, beam search
is used to search for the output sequence with the highest probability when
summed over possible paths. A language model is also integrated during in-
ference by multiplying language model probabilities with the character prob-
abilities output from the model. We use the same language model as the
DeepSpeech ASR system we used in our automatic evaluation (§ 4.1), which
is a 5-gram language model with modified Kneser-Ney smoothing (Chen and
Goodman, 1999) trained on the combination of several popular ASR datasets.

The model size hyperparameters are kept the same as for the voicing task,
but we modify the training hyperparameters somewhat based on validation
set tuning. We run training for 200 epochs and do not use weight decay
regularization. The learning rate is warmed-up linearly over the first 1000
steps to 3e-4, then decreased by half at epochs 125, 150, and 175. We do not
use the auxiliary phoneme prediction task during training.
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6.2 Results
To evaluate the model, we use a WER comparison of outputs with the refer-
ence text from our dataset. It is generally the same as our evaluation from
Section 4.1, except that now the text output comes directly from our model
rather than from an external ASR system. On this evaluation, our model
achieves a validation WER of 28.8%.

To put this result into context, we can compare to our best result from
synthesizing audio and then using an external ASR system as in Section 4.1,
which achieved a WER of 36.2% on the same examples. This comparison
indicates it may be better for accuracy to directly predict text when that is
the desired output, though there are several factors that could be affecting the
comparison. One factor is that the DeepSpeech audio-based ASR system used
in our cascaded system uses a slightly older LSTM-based architecture than
our Transformer-based model. In addition, the cascaded model performance
could likely be improved by fine-tuning on the outputs of our system, letting
it adapt to the types of errors made by our synthesis model.

To get a better idea of the quality of EMG compared to audio as an input
for speech recognition, we also train a recognition model on our data with audio
as input. For this test, we replace the EMG feature inputs to our recognition
model with mel-spectrogram audio features, but keep the same Transformer
architecture for the body of the model. We train the model on the vocalized
data from our dataset, which has both spoken audio and associated text.
Although the 15.1 hours of data used for this training doesn’t exactly match
the 18.7 hours for the EMG-model training, it is roughly comparable. The
audio-based model reaches a validation WER of 11.3%, compared to 28.8%
with EMG inputs. Thus, it is still more challenging to decode speech from
EMG than from audio.
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Chapter 7

Conclusion

This thesis investigated methods for the task of voicing silent speech, where
silently mouthed words are converted to audible speech based on electromyo-
graphic signals. This task has many potential real-world applications, from
private phone conversations to restoring speech in some clinical settings.

Our work has made several contributions toward generating intelligible
speech from silent EMG signals. First, we collected and publicly released
a dataset for the task, which we hope will provide a consistent benchmark
for future development. Next, we introduced a method for training on EMG
signals from silent speech, allowing our model to better adapt to the particular
features of that speaking mode. We also improved several other aspects of the
model, such as better feature extraction, an improved model architecture, and
additional learning signal. Finally, we performed experiments and analysis on
our model to understand what it has learned and give more insights into its
behaviors.

There are still many important areas for future work on the task of voicing
silent speech. One important area is to extend to multi-speaker models, rather
than focusing on a single speaker as we did in our work. For most real-world
use cases, the model must work with little to no data for a new speaker and
will likely need to generalize from a large dataset containing many different
speakers. One other related area of work is to improve generalization across
different sessions. Since each use of a model will occur with new electrode
placements, it will be important to have methods for increasing robustness
and adapting quickly to new locations. Another area for improvement is in the
choice of where electrodes are placed. Choosing good locations is important for
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optimizing signal quality and for integrating the electrodes into a streamlined
device that can easily be put on and taken off. One last area for future work is
in improving the input sensors and signal quality. Improving the input signals
has the potential to greatly improve results on the task, and exploring different
sensors or combinations of sensors could result in better ways of capturing
silent speech. These are just a few of the many potential future directions for
improving this technology and making it viable for real-world use.
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