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Abstract

A Study of Generalization Metrics for Natural Language Processing:
Correlational Analysis and a Simpson’s Paradox

by

Raguvir Kunani

Master’s of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph Gonzalez, Chair

A predictive model’s utility lies in its ability to generalize to data it has not seen.
Unfortunately, it is difficult to reliably measure a model’s ability to generalize to unseen
data since it requires reasoning about the model’s interactions with unknown
environments. Generalization of deep learning models has been the subject of extensive
study for years, but there has been a recent increase in the exploration of generalization
metrics to predict the generalization of deep learning models.

While prior work in generalization metrics has been dominated by computer vision, in this
work, we conduct one of the first analyses of generalization metrics in natural language
processing (NLP). We study 36 generalization metrics spanning various
motivations/theories with the goal of understanding the degree to which each metric is
appropriate for use in predicting the generalization of models common in NLP. We
particularly focus on shape metrics (generalization metrics derived from the shape of the
empirical distribution of eigenvalues of weight correlation matrices) and are among the first
to consider out-of-distribution generalization when evaluating the effectiveness
generalization metrics.

We find that shape metrics are a promising category of generalization metrics, as they are the
best metrics among those we consider at predicting generalization performance throughout
training and show characteristics of being “ideal” generalization metrics. Interestingly, many
of the generalization metrics we consider exhibit a behavior reminiscent of the Simpson’s
paradox when related to generalization performance. Moreover, the generalization metrics
we consider are generally robust to changes in data distribution. However, there are signs
this robustness is limited.
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Chapter 1

Introduction

The goal of machine learning – like all predictive models – is to develop a model that
generalizes from training data to new data. A model that is not able to make predictions
on new data is of little use. Yet, although generalization is the core goal of machine
learning, the current understanding of generalization in deep learning models is limited.
Despite a vast body of literature on the topic, generalization in deep learning is still not
well understood due to the inherent complexity of the problem.

Understanding the generalization of models is fundamentally difficult since it requires
reasoning about the model’s interactions with unknown environments. When one adds the
complexity introduced by deep learning, understanding generalization becomes significantly
more subtle. Traditionally, generalization was quantified by deriving bounds based on
assumptions about the model and data (e.g. VC theory). However, such generalization
bounds are not easily derived for deep neural networks [8]. As the scale and intricacies of
deep learning models and the data used to train them continually change, it is increasingly
harder to formulate a comprehensive set of assumptions to inform a practical generalization
bound. Moreover, the prevalence of pre-trained models being used on tasks they were not
specifically trained for adds yet another dimension to generalization (out-of-distribution
generalization) that theories of generalization in deep learning must handle. Despite the
generalization of deep learning models not being well understood, the ubiquity of deep
learning models in applications that affect our daily lives continues to grow. Therefore, it is
imperative to continue the search for a satisfying theory of generalization in deep learning
to prevent unwanted consequences of deep learning models.

One approach to understanding generalization is through the framework of generalization
metrics, which aim to predict how well a model will generalize to new data. While there
has been a recent rise in studying generalization metrics for deep learning, these works
overwhelmingly focus on computer vision (CV). This work is among the first to instead
examine generalization metrics for NLP. Additionally, our work is among the first to use
generalization metrics to predict out-of-distribution generalization.
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Chapter 2

Background and Prior Work

2.1 Natural Language Processing
Natural language processing (NLP) refers to the set of statistical techniques and methods
used for automatic analysis of natural language (i.e. human language). Modern NLP is
dominated by neural models that learn representations of natural language used for
downstream tasks such as sentiment classification, machine translation, and question
answering.

The evolution of modern NLP techniques can be understood from analyzing machine
translation as a motivating example. In contrast to other areas of deep learning, machine
translation presents the challenge of handling variable-length inputs since not all sentences
are the same length. To address this issue, machine translation was cast as a
sequence-to-sequence problem, where recurrent neural networks [45] are commonly used.
However, recurrent neural networks struggle with long input sequences [30] due to
vanishing/exploding gradients. This was a major problem for translation which often spans
multiple sentences. As a response, long short-term memory (LSTM) models were designed
to handle longer input sequences [15]. LSTMs were a breakthrough in sequence-to-sequence
modeling and are still used in practice today for non-NLP sequence-to-sequence
applications.

As more languages were demanded from translation systems, it became impractical to
implement pairwise translation between languages. Encoder-decoder architectures were
designed to address this problem by condensing all necessary information from the input
(in the case of translation, a sentence in the source language) into a fixed-size vector, which
in principle can be decoded into any target language. However, this fixed-size vector turned
out to be an information bottleneck for natural language sentences, even when it was
generated from an LSTM model. This lead to the development of attention-based decoders
[2] and finally the foundation for current state-of-the-art NLP models, the Transformer
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Figure 2.1: Transformer architecture

[42]. Intuitively, attention mechanisms allow decoders to “pay attention” to certain parts of
the input sequence when decoding each step of the output sequence, which aligns well with
the idea that certain words in a target language sentence correspond more to some words
in a source language sentence than other words. The Transformer utilizes attention in an
architecture (Figure 2.1) that empirically performs extremely well on many NLP tasks.

Modern state-of-the-art NLP models used in practice such as BERT [7] and RoBERTa [21]
build on the Transformer architecture and design various training techniques to further
extract performance. These models have a massive number of parameters and therefore
require a large amount of training data (often web-scale) to learn language representations.
As a result, training modern NLP models from scratch is inaccessible to most practitioners
due to limited compute resources. Moreover, labeled data for each potential NLP task is
scarce, rendering traditional supervised learning impractical. Therefore, modern NLP models
are pre-trained on large, diverse corpora of unlabeled text using self-supervised learning [14];
these pre-trained models are used as foundational building blocks in NLP systems that
achieve state-of-the-art performance on a wide variety of downstream tasks.

2.2 Generalization and Generalization Metrics
Generalization refers to a model’s ability to generalize from the training data distribution
to an unseen data distribution. A model is said to generalize if its performance on data
from an unseen distribution is similar to its performance on data from training data
distribution. Concretely, if we consider the canonical supervised learning setup in which a
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model M is trained on a dataset Dtrain sampled from a data distribution P , then the
model’s generalization refers to its tendency to perform well on P despite only being
trained on Dtrain. In addition to this type of generalization – known as in-distribution
generalization – there is also out-of-distribution generalization, which characterizes a
model’s ability to perform well on a distribution P ′ ̸= P . Out-of-distribution generalization
has received increasing attention recently due to the prevalence of pre-trained models as
building blocks to be used on tasks they were not specifically trained for. Although
in-distribution and out-of-distribution generalization are similar, out-of-distribution is
considered separately because good in-distribution generalization does not guarantee
out-of-distribution generalization [13].

While the generalization of statistical models is explained by VC theory and related methods
[41, 12], it has been commonly observed that these methods are not fit for understanding
the generalization of deep neural networks [28]. As a result, researchers have explored many
new theories to explain generalization in deep learning [33, 3, 32, 11, 1, 31, 43, 22]. At
the core of understanding generalization is the notion of a generalization metric (sometimes
also called a generalization/complexity measure), a quantity that is designed to possess a
monotonic relationship with generalization. Informally, this means an “ideal” generalization
metric should order the models with respect to their ability to generalize. Formally, an
“ideal” generalization metric µ should satisfy

∀m1, m2 ∈ M, G(m1) > G(m2) =⇒ µ(m1) > µ(m2)

where M is a set of models and G represents the generalization of a model. Note that since
the requirement for µ to be “ideal” is it must have a monotonic relationship with
generalization, the signs in the equation above can be flipped. In addition, it is possible
(and common) for µ to have access to more than just the model.

Generalization metrics are a great tool in studying generalization because they can both
validate the theory behind the metric and be used in practice as a predictive tool. As such,
there is interest to focus on using generalization metrics to predict the generalization of deep
learning models [19].

2.3 Heavy-Tailed Self-Regularization Theory
Heavy-Tailed Self-Regularization (HT-SR) theory involves analyzing the empirical spectral
densities of the correlation matrices of a deep neural network’s weight matrices (henceforth
referred to as ESDs). The ESD is a histogram of the eigenvalues of a correlation matrix of
a weight matrix. Concretely, if W is a weight matrix, then X = W⊤W is the
corresponding correlation matrix. The ESD of X is the histogram of its eigenvalues.
HT-SR theory is motivated by (1) the empirical observation that the weight matrices of
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well-trained deep neural networks have spectral densities that are heavy-tailed1 [24, 29, 23]
and (2) the common practice within statistical physics of modeling strongly-correlated
systems with heavy-tailed distributions [39].

HT-SR theory asserts that the ESDs organically follow a heavy-tailed distribution as an
artifact of the optimization process [24]. Moreover, it claims that the shape of the ESDs
holds information about the quality of the model [27]. In order to extract the shape of
the ESDs, one has to fit a particular distribution (specified a priori) to the ESDs and use
information from the shape of the fitted distribution as a proxy for the true shape of the
ESDs. However, there are a few challenges with fitting a heavy-tailed distribution to the
ESDs:

1. It is hard to know a priori which distribution to fit to the ESDs. Some commonly used
distributions are shown in Figure 2.2.

2. It is numerically difficult to fit heavy-tailed distributions to the ESDs [25, 6, 26].
Thankfully, the Transformer-based models common in modern NLP have many large
linear layers, enabling more accurate fitting [46].

3. The ability of the fitted distribution to extract useful information about the shape of
the ESDs is sensitive to the choice of fitted distribution and the quality of the fit [46].

Overcoming these challenges is the subject of current work (including this one).

(a) Power law distribution p(x) ∝ x−α (b) Truncated power law distribution p(x) ∝
x−α exp(−λx) with α = 2

Figure 2.2: Examples of common distributions fitted to the ESDs.

1Heavy-tailed distributions are probability distributions with a relatively large amount of probability
mass very far from the mean.
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Chapter 3

Approach

We compare various generalization metrics based on

• their ability to predict generalization performance throughout the training process
(Section 4.3)

• their ability to predict trends in the generalization performance of fully trained models
(Section 4.4)

The first scenario is interesting to consider because it captures the idea that loss
landscapes in NLP are particularly complex and therefore understanding the quality of the
training process is desirable [47]. The second scenario more closely resembles common ways
of evaluating generalization metrics [20], but we are among the first to study generalization
metrics for NLP.

There are many experimental design choices when evaluating generalization metrics,
including:

• What type of generalization is considered?

• What quantity is the generalization metric predicting?

• What information does the generalization metric have access to?

In the following sections, we discuss where our approach falls within each of the above
questions.

3.1 In-Distribution Generalization vs.
Out-of-Distribution Generalization

As discussed in Chapter 2, generalization can take on different forms. Whereas
in-distribution generalization refers to a model’s ability to generalize from training data to
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test data drawn from the same distribution (in expectation), out-of-distribution
generalization refers to a model’s ability to generalize to data drawn from a different
distribution than the training data distribution. In-distribution generalization has been the
focus of prior work in generalization metrics, and although generalization metrics for
in-distribution generalization is still an ongoing open research area, we highlight the
importance of also studying generalization metrics for out-of-distribution generalization
given the dominance of pre-trained models in today’s NLP landscape (Chapter 2).

Thus, we consider both in-distribution and out-of-distribution generalization in our
analysis. To our knowledge, we are among the first to study generalization metrics for
out-of-distribution generalization within NLP.

3.2 Generalization Performance vs. Generalization
Gap

Prior work in generalization metrics, which has been dominated by computer vision, has
focused on using generalization metrics to predict the generalization gap. In NLP,
predicting the generalization gap may not be appropriate because it is nearly impossible to
train modern NLP models to convergence due to the massive size of the training data and
the inherent noisiness present in natural language. Therefore, the generalization gap does
not carry the same meaning in NLP as in other areas of deep learning because NLP models
often do not even fully learn the training data (i.e. the gap between training error and test
error cannot be attributed to differences in the test data alone since there are still portions
of the training data the model has yet to learn).

There is also a practical reason to prefer predicting generalization performance over the
generalization gap. Imagine a scenario in which one needs to choose between 2 models for a
task. Suppose it is known that Model A has 2% training error, Model B has 5% training
error, and an ideal generalization metric predicts that Model B has a lower generalization
gap than Model A. Despite having full knowledge of the training performance of both
models and having an ideal generalization metric, this is still not enough information to
know which is the better model [46]. The core issue is that a generalization metric’s value
can only be interpreted in a relative context, so if one wants to choose between 2 models
based on which model has a better generalization performance, the generalization metric
must predict generalization performance rather than generalization gap.

Thus, we predict generalization performance directly as opposed to generalization gap in our
analysis.
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3.3 Data-Dependent Generalization Metrics vs.
Data-Independent Generalization Metrics

Compared to other domains, the training data used for modern NLP models is often
inaccessible to users due to the scale of the data. Therefore, it is preferable to study
generalization metrics which predict generalization without needing access to data. While
we include data-dependent generalization metrics in our study, we pay special attention to
the data-independent generalization metrics due to their relative ease of application
compared to data-dependent generalization metrics. While one may expect that access to
data is crucial to predicting generalization, recent work suggests that access to data is not
needed [27].

3.4 Focus on Shape Metrics
While we compare many generalization metrics in our analysis, we pay special attention to
shape metrics derived from HT-SR theory for a few reasons.

1. Shape metrics are data-independent, which allows them to more easily be applied in
practice (Section 3.3).

2. HT-SR Theory has been shown to be effective in measuring the quality of the training
process [16, 17]. Gaining insight into the quality of the training process is particularly
important in NLP, where the loss landscapes are uniquely complex [47].

3. Shape metrics are computed by fitting heavy-tail distributions to ESDs. This idea
seems to be a natural fit for NLP, where actual data often follow heavy-tail distributions
[10].



9

Chapter 4

Experiments and Results

4.1 Overview of Generalization Metrics
We study 36 generalization metrics spanning various motivations/theories (presented in
Chapter 2) with the goal of understanding the degree to which each metric is appropriate
for use in predicting the generalization of models common in NLP. A summary of all
metrics we study is captured in Table 4.1.

4.2 Datasets and Models
We use the following datasets commonly used as benchmarks for neural machine translation
[35, 42, 38, 9] for our experiments:

• IWSLT [5]: A dataset of TED talk transcripts in multiple languages. We utilize
IWSLT for machine translation on English-German sentence pairs (around 200K pairs).

• WMT14 [4]: A dataset of news articles in multiple languages. We utilize WMT14 for
machine translation on English-German sentence pairs (around 4.5 million pairs). We
henceforth refer to this dataset as WMT.

We measure generalization performance in terms of BLEU [36] – the most commonly used
metric to evaluate machine translation performance.

We study the generalization of Transformer [42] models, a foundational model in modern
NLP. We use an open-source implementation1 of the Transformer model which reproduces
the results from the Transformer paper and follow the training setup from the Transformer
paper. See Appendix B for details of the model.

1https://github.com/gordicaleksa/pytorch-original-transformer

https://github.com/gordicaleksa/pytorch-original-transformer
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Table 4.1: Overview of the generalization metrics we consider. See [46] for the formal
definitions of these metrics.

Metric Name Proposed by Scale/Shape Data Requirements
l2 - Scale Data-independent

l2 dist - Scale Data-independent
param norm [18] Scale Data-independent
fro dist [18] Scale Data-independent
log norm [24] Scale Data-independent

log sum of fro [18] Scale Data-independent
log spectral norm [25] Scale Data-independent

dist spec init [18] Scale Data-independent
log prod of fro [18] Scale Data-independent
log sum of spec [18] Scale Data-independent
log prod of spec [18] Scale Data-independent

path norm [33] Scale Data-independent
mp softrank [24] Shape Data-independent
stable rank [24] Shape Data-independent

alpha [24] Shape Data-independent
exponent [44] Shape Data-independent

ks distance [24] Shape Data-independent
tail mean vec entropy [44] Shape Data-independent
bulk mean vec entropy [44] Shape Data-independent

entropy [24] Shape Data-independent
rand distance [44] Shape Data-independent
alpha weighted [24] Hybrid Data-independent
log alpha norm [25] Hybrid Data-independent
inverse margin [18] Scale Data-dependent

log prod of spec over margin [3, 37] Scale Data-dependent
log sum of spec over margin [3, 37] Scale Data-dependent
log prod of fro over margin [3, 37] Scale Data-dependent
log sum of fro over margin [3, 37] Scale Data-dependent

path norm over margin [33] Scale Data-dependent
pacbayes init [34] Scale Data-dependent
pacbayes orig [34] Scale Data-dependent

pacbayes flatness [34] Scale Data-dependent
pacbayes mag init [18] Scale Data-dependent
pacbayes mag orig [18] Scale Data-dependent

pacbayes mag flatness [18] Scale Data-dependent
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4.3 Predicting Generalization Performance
throughout the Training Process

In this experiment, our goal is to evaluate the generalization metrics’ ability to predict
generalization performance throughout the training process. As discussed in Chapter 3, we
consider 2 types of generalization: in-distribution (ID) generalization and out-of-distribution
(OOD) generalization; generalization performance refers to both of these types. We will
distinguish between the types of generalization when appropriate.

Experimental Setup
We train Transformer models in 50 different settings by varying the dataset, number of
samples used for training, network depth, learning rate, and dropout. We choose these
variables to vary to study the effectiveness of generalization metrics in the face of changes
to the data (varied dataset and number of samples), the model size (varied depth), and the
optimization process (varied learning rate and dropout). A summary of all settings is
provided in Table B.1. We train 3 Transformer models per setting (3 different seeds). This
is the same experimental setup as [46].

We utilize Spearman’s rank correlation coefficient [40] (henceforth referred to as rank
correlation) to measure how well a generalization metric predicts a model’s generalization
performance. Rank correlation (rs) is defined as the Pearson correlation coefficient (ρ)
between the rank variables. Formally,

rs(X, Y ) = ρ(R(X), R(Y )) = cov(R(X), R(Y ))
σR(X)σR(Y )

As the name suggests, the rank variable R(X) transforms X into ranks (relative position of
each value of X). Intuitively, rank correlation measures how well the relationship between
two variables can be described by a monotonic function. In our experiments, X is the
generalization performance of a model at each epoch and Y is the value of a generalization
metric of a model at each epoch. See Figure 4.1 for a visual depiction. A high (in magnitude)
rank correlation means that the generalization metric is useful in predicting generalization
performance throughout training, whereas a low rank correlation means that the metric is
not.

Results
Shape metrics outperform other metrics

Overall, shape metrics are the best generalization metrics among the metrics we consider
at predicting the generalization performance throughout training (Figure 4.2). There are a
few “scale” metrics (norm-based metrics) that also seem to predict generalization
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Figure 4.1: To assess how well a generalization metric predicts generalization performance
throughout training, we compute the rank correlation between the metric curve (red) and
the generalization performance (orange) at each epoch. Which generalization performance
curve we use differs if we are considering ID generalization or OOD generalization.

performance relatively well (namely inverse margin), but shape metrics dominate the
metrics that perform well. A careful reader might notice that many of the scale metrics
near the bottom of Figure 4.2 have a higher (in magnitude) median rank correlation than
the shape metrics, which could indicate that those metrics are better at predicting
generalization performance than the shape metrics. While it is true that some scale metrics
have a higher median rank correlation than the shape metrics, this interpretation ignores
an important part of the distribution of rank correlation: the width. A generalization
metric which produces a rank correlation distribution of low width demonstrates the metric
is often well-correlated with generalization performance despite differences in the training
settings, indicating the generalization metric is indeed predicting generalization
performance and not some other confounding variable. When the width of the rank
correlation distribution is wide, we cannot be sure the metric is predicting generalization
performance. Since the width of the rank correlation distributions is lower for the shape
metrics, we say that the shape metrics are better at predicting generalization performance.

Another interesting observation is that PL alpha (A.1) predicts generalization performance
much better than TPL alpha (A.2), yet exponent predicts generalization performance
better than PL alpha (Figure 4.2). This is a great example of the delicate nature of fitting
distributions to the ESDs (Section 2). This result suggests that a exponential distribution
could be a good candidate to fit to the ESDs, which we leave for future work (Chapter 5).
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Figure 4.2: Shape metrics outperform other types of metrics at predicting generalization
performance throughout training. Each boxplot is a distribution of the rank correlation
between in-distribution BLEU score and the corresponding generalization metric over 150
Transformer models. The shape metrics (except PL alpha) are computed by fitting a
truncated power law distribution (Appendix A) to the ESDs.

In-Distribution vs. Out-of-Distribution Generalization

Like in-distribution generalization, shape metrics are the best generalization metrics among
those we consider at predicting out-of-distribution generalization performance throughout
training (Figure 4.3), which is an encouraging result as it suggests the relative performance
of these generalization metrics is robust to changes in data distribution. However, the rank
correlations themselves are noticeably lower (in magnitude) for OOD generalization than
ID generalization which indicates the robustness of the generalization metrics to changes in
data distribution is limited. It is worth noting that the difference in rank correlation from
ID to OOD generalization is less for data-independent metrics, which may be a sign that
they are more robust than the data-dependent metrics.
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(a) Distribution of rank correlation between ID
BLEU score and each generalization metric

(b) Distribution of rank correlation between
OOD BLEU score and each generalization metric

Figure 4.3: Shape metrics outperform other metrics at predicting out-of-distribution
generalization throughout training.
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4.4 Predicting Trends in Generalization Performance
In this experiment, our goal is to evaluate the generalization metrics’ ability to predict trends
in the generalization performance of fully trained models. As in Section 4.3, generalization
performance refers to both in-distribution (ID) and out-of-distribution (OOD) generalization
and we will distinguish between ID and OOD when appropriate.

Experimental Setup
We train Transformer models in 125 different settings by varying the number of samples used
for training, network depth, and learning rate. We choose these variables to vary to study
the effectiveness of generalization metrics in the face of changes to the data (varied number
of samples), the model size (varied depth), and the optimization process (varied learning
rate). A summary of all settings is provided in Appendix B. For each model, we evaluate its
BLEU score on a test set from the dataset it was trained on – called in the in distribution
(ID) dataset – and its BLEU score on a dataset which it was not trained on – called the out
of distribution (OOD) dataset. In our experiments, the ID dataset is IWSLT and the OOD
dataset is WMT. We consider the same metrics as in Section 4.3.

Results
“Ideal” Generalization Metrics

There are some metrics which exhibit characteristics of “ideal” generalization metrics. We
show TPL alpha as an example of such a metric in Figure 4.4 below. An “ideal”
generalization metric ranks models in the same order as their generalization performance
(see Section 2) for more discussion on “ideal” generalization metrics), which would manifest
in Figure 4.4 as a linear trend between the best performing models within each group.

While it is promising that TPL alpha exhibits characteristics of an “ideal” generalization
metrics, it is important to keep in mind that shape metrics are sensitive to the distribution
used to fit the ESDs. In comparison to TPL alpha, PL alpha does not show as strong of a
correlation with generalization performance (Figure 4.5). Moreover, the overall trend
between alpha and generalization performance is the opposite for TPL alpha and PL alpha
(Figure 4.6).
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(a) There is a strong linear association between
TPL alpha and in-distribution test BLEU score.
Each point on this scatter plot represents the
best performing model with each group, where
each group consists of all models trained with a
specific number of samples (meaning the depth
and learning rate are varied within each group).

(b) This scatter plot shows TPL alpha vs. in-
distribution test BLEU score for all 125 models,
colored by the number of samples each model was
trained on. Generally, as the number of samples
increases, so does the BLEU score. The best-
performing points from the figure to the left are
chosen from this scatter plot.

Figure 4.4: TPL alpha exhibits characteristics of an “ideal” generalization metric.

(a) TPL alpha (b) PL alpha

Figure 4.5: TPL alpha behaves closer to an “ideal” generalization metric than PL alpha.
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(a) TPL alpha (b) PL alpha

Figure 4.6: The overall alpha vs. generalization performance trend is opposite for TPL alpha
compared to PL alpha.
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Simpson’s Paradox in Well-Trained vs. Poorly-Trained Models

When models are categorized by the learning rate used during training, we observe
significant differences in the linear association between each metric and generalization
performance. Figure 4.7, shows examples of the main types of trends we observe. In many
cases, these trends are reminiscent of a Simpson’s paradox. We are yet to explore what
causes these differences, but observe that the well-trained models (models achieving
relatively high generalization performance) follow the same trend while the poorly-trained
models follow the opposite (or otherwise different) trend. One hypothesis is there is a true
trend between each generalization metric and generalization performance, but this true
trend only holds for well-trained models. This hypothesis is reasonable because poorly
trained models can search vastly different parts of the loss landscape in comparison to
well-trained models (especially in NLP where the loss landscape is known to be particularly
complex [47]), thus making it hard for generalization metrics to capture their behavior.
With this hypothesis, we can interpret the different subgroups trends in Figure 4.7 as
different “stages” of model quality, where the generalization metric becomes better
calibrated (i.e. approaches its true relationship with generalization performance) as the
model is more well-trained. We leave exploration of this hypothesis to future work.

(a) log spectral norm
is overall negatively
associated with generalization
performance. However,
log spectral norm is positively
associated with generalization
performance for models with
high generalization performance.

(b) exponent is overall
positively associated with
generalization performance.
However, exponent is negatively
associated with generalization
performance for models with
high generalization performance.

(c) TPL alpha is overall
negatively associated with
in-distribution test BLEU score,
and the negative association
holds within each subgroup.

Figure 4.7: When categorized by the learning rate used for training, there are significant
differences in the trends between each metric and generalization performance.
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In-Distribution vs. Out-of-Distribution Generalization

For all metrics considered, the observed trends do not differ from ID to OOD
generalization (see Figure 4.8 for an example). The only change is OOD generalization
performance is generally lower than ID generalization performance, which is not surprising
as the distribution of OOD data is more different than the distribution of ID test data to
the distribution of training data. This is an encouraging result, as it indicates that the
generalization metrics we consider are robust to changes in data distribution.

(a) In-Distribution Generalization (b) Out-of-Distribution Generalization

Figure 4.8: The same trend exists for both in-distribution and out-of-distribution
generalization.

Effect of Network Depth

This section briefly discusses an observation that is not particularly relevant to our analysis
but is interesting to point out. Overall, network depth does not seem to affect
generalization performance much. However, some generalization metrics – especially those
involving products – are sensitive to network depth/number of parameters (see Figure 4.9
for an example), indicating “engineering issues” can arise from improper applications of
such metrics.
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Figure 4.9: log prod of fro increases as a function of depth, but the generalization
performance does not change.
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Chapter 5

Conclusion and Future Work

As deep neural networks become increasingly common in applications affecting our
everyday lives, it is important we gain a deeper understanding of the properties that allow
these models to perform as well as they do. While there are many ways to understand the
behavior of deep neural networks, the framework of generalization metrics is a particularly
useful way of dissecting deep neural network behavior since a generalization metric can
validate the theory behind the metrics and can be used as a predictive tool in practice.

In this thesis, we build on prior work in generalization metrics to conduct one of the first
analyses of generalization metrics for NLP models. We consider both in-distribution and
out-of-distribution generalization and also pay special attention to shape metrics, or those
metrics derived from fitting heavy-tail distributions to the ESDs of weight matrices of deep
neural networks. Our main findings are:

1. Shape metrics are a promising category of generalization metrics. They are the best
metrics among those we consider at predicting generalization performance throughout
training (Figure 4.2) and show characteristics of being “ideal” generalization metrics
(Figure 4.4). This is an encouraging result since shape metrics have many benefits
(Section 3.4).

2. The generalization metrics we consider are generally robust to changes in data
distribution. The trends between generalization metrics and generalization
performance hold for both in-distribution and out-of-distribution generalization
(Figure 4.8). However, there are signs that this robustness is limited, which we
encourage future work to examine.

3. The practicality of generalization metrics may be dependent on the quality of the
model in consideration. Although our results are preliminary, we observe signs that
generalization metrics tend to show different trends with generalization performance in
well-trained versus poorly-trained models (Section 4.4). These trends are reminiscent
of a Simpson’s paradox.
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There are several interesting opportunities for future work, in addition to extending our
analysis with more models/NLP tasks:

• Fitting different distributions to the ESDs: As mentioned throughout our work,
shape metrics are sensitive to the choice of distribution fit to the ESDs. In our work
we saw that fitting a power law vs. a truncated power law both yield promising results,
but there are signs that other distributions might be even better (Section 4.3). For
example, there has already been work exploring fitting an exponential distribution
p(x) ∝ exp(−λx) to the ESDs [46].

• Modeling OOD transforms: Our work explores the relationship between
generalization metrics and OOD generalization performance by training a model on
one dataset and measuring OOD generalization performance on another dataset with
the same task. However, this is a simplistic way of modeling OOD transforms. There
is a vast space of opportunity for more thorough experimental setup to explore OOD
generalization. For example, one idea we considered (but ultimately did not pursue
due to compute restrictions) is to create a spectrum of OOD datasets with varying
amounts of OOD data to examine how generalization metrics’ performance change as
a function of “dataset dissimilarity”.

• Design of experimental setup: Designing a way to measure the effectiveness of
a generalization metric is as important as designing the generalization metric itself.
It is not a straightforward problem since the goal is to establish causality between
generalization metrics and generalization performance. Prior work has explored setups
towards capturing causal relationships [18], but more work is needed.
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Appendix A

Generalization Metrics Details

We use the same definitions and follow the same method of calculating each metric as in
[46]. The only difference is that this work explores multiple ways of computing alpha:

• PL alpha: The value of alpha when computed by fitting a power law (PL) distribution
to the ESDs.

p(x) ∝ x−α, xmin < x < xmax (A.1)

• TPL alpha: The value of alpha when computed by fitting a truncated power law (TPL)
distribution to the ESDs.

p(x) ∝ x−α exp(−λx), xmin < x < xmax (A.2)
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Appendix B

Experimental Setup Details

For all experiments, we use a Transformer model with 8 attention heads and an embedding
dimension of 512. We train with the inverse square-root learning rate and 10% label
smoothing. We train each model for 20 epochs. When calculating the ESDs of the weight
matrices, we treat the query, key and value matrices as separate weight matrices.

Given the embedding dimension de, step number t, number of warm-up steps tw, the formula
for the inverse square-root learning rate schedule is the following.

Learning Rate = d−0.5
e · min(t−0.5, t · t−1.5

w ).

In our experiments, we multiply this learning rate by a constant factor, shown in the
“Learning rate” column of Table B.1.
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Table B.1: Models trained for Section 4.3. This is the same experimental
setup as [46].

Dataset
Number of

samples Learning rate
Network

depth Dropout
Number of

training epochs
IWSLT 10K 1 6 0.1 20
IWSLT 10K 1 6 0.0 20
IWSLT 20K 1 6 0.1 20
IWSLT 20K 1 6 0.0 20
IWSLT 40K 1 6 0.1 20
IWSLT 40K 1 6 0.0 20
IWSLT 80K 1 6 0.1 20
IWSLT 80K 1 6 0.0 20
IWSLT 160K 1 6 0.1 20
IWSLT 160K 1 6 0.0 20
IWSLT 160K 0.75 6 0.1 20
IWSLT 160K 0.75 6 0.0 20
IWSLT 160K 0.5 6 0.1 20
IWSLT 160K 0.5 6 0.0 20
IWSLT 160K 0.375 6 0.1 20
IWSLT 160K 0.375 6 0.0 20
IWSLT 160K 0.25 6 0.1 20
IWSLT 160K 0.25 6 0.0 20
IWSLT 160K 1 5 0.1 20
IWSLT 160K 1 5 0.0 20
IWSLT 160K 1 4 0.1 20
IWSLT 160K 1 4 0.0 20
IWSLT 160K 1 3 0.1 20
IWSLT 160K 1 3 0.0 20
IWSLT 160K 1 2 0.1 20
IWSLT 160K 1 2 0.0 20
WMT 160K 1 6 0.1 20
WMT 160K 1 6 0.0 20
WMT 320K 1 6 0.1 20
WMT 320K 1 6 0.0 20
WMT 640K 1 6 0.1 20
WMT 640K 1 6 0.0 20
WMT 1.28M 1 6 0.1 20
WMT 1.28M 1 6 0.0 20
WMT 1.28M 0.75 6 0.1 20
WMT 1.28M 0.75 6 0.0 20
WMT 1.28M 0.5 6 0.1 20
WMT 1.28M 0.5 6 0.0 20
WMT 1.28M 0.375 6 0.1 20
WMT 1.28M 0.375 6 0.0 20
WMT 1.28M 0.25 6 0.1 20
WMT 1.28M 0.25 6 0.0 20
WMT 1.28M 1 5 0.1 20
WMT 1.28M 1 5 0.0 20
WMT 1.28M 1 4 0.1 20
WMT 1.28M 1 4 0.0 20
WMT 1.28M 1 3 0.1 20
WMT 1.28M 1 3 0.0 20
WMT 1.28M 1 2 0.1 20
WMT 1.28M 1 2 0.0 20
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For the experiments in Section 4.4, we vary the following hyperparameters to create 125
settings:

• Number of Samples: takes on values {40K, 80K, 120K, 160K, 200K}

• Network Depth: takes on values {4, 5, 6, 7, 8}. These values correspond to the
number of Transformer encoder/decoder layers.

• Learning Rate: takes on values {0.5, 0.75, 1.0, 1.5, 2.0}. These values correspond
to the constant factor multiplying the learning rate used for training (see discussion of
learning rate above).

All models are trained with dropout 0.1 on IWSLT. The OOD dataset is WMT.
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