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Abstract

Incorporating Intent, Impact, and Context for Beneficial Machine Learning

by

Esther Grace Rolf

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Benjamin Recht, Co-chair

Professor Michael I. Jordan, Co-chair

Advancements in machine learning hold unprecedented potential to help humans understand
and shape our world, from deriving data-driven policies with global prediction systems to
combating long-standing prejudice in social decision-making. However, in practice, machine
learning is not achieving its potential. Algorithmic systems that are theoretically well mo-
tivated fail to live up to anticipated performance in the real world, and all too often, they
exacerbate inequality rather than relieve it. In order to translate potential into real benefit,
machine learning systems need to address the context of the domain they’re applied in to
better interface with system intent and system impact.

In this thesis, we present research on the context-aware design of machine learning systems
that interface with individuals, our environment, and our societies. We emphasize the core
themes of intent, impact, and context through three interweaving threads: (i) contrast-
ing algorithmic impact with desired intent, (ii) contextualizing learning algorithms through
structures in input data, and (iii) advancing machine learning with remotely sensed data
as precise applications of intent- and context-aware design in practice. We conclude with
overarching lessons learned that carry into constructive opportunities for future research.
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Chapter 1

Introduction

Recent advancements in how machine learning models are designed and trained have spurred
immense interest in using these models for the benefit of society. Increasingly large-scale
datasets contain key high-dimensional patterns that sophisticated predictive algorithms can
uncover. As a consequence, machine learning holds unprecedented potential to help people
understand and shape our world, from deriving data-driven policies with global prediction
systems to combating long-standing prejudice in social decision-making. However, in prac-
tice, machine learning is not achieving its potential. Algorithmic systems that are theoreti-
cally well motivated fail to live up to anticipated performance in the real world, and all too
often, they exacerbate inequality rather than relieve it. This thesis aims in the direction of
achieving this illusive potential for benefit with data-driven algorithms by addressing key
concepts of intent, impact, and context, and presenting methods by which to integrate them
in statistical machine learning frameworks and models.

The aspiration of global benefit is founded: machine learning can translate vast amounts
of data into inferences that help people make more informed decisions. As an example,
the United Nations released discussion of how data science and analytics can contribute to
their 17 sustainable development goals (SDGs) [34], ranging from eliminating poverty and
hunger to taking climate action. Examples already in evidence include generating predicted
measures of poverty with satellite imagery and computer vision [145], extracting information
from call data records and machine learning to target humanitarian assistance to those who
need it most [6], and monitoring ecological change like deforestation with satellite imagery
and computer vision [46, 85, 215]. The potential of achieving societal benefit with machine
learning extends to applications in the domains of healthcare [235], climate change [248],
and wildlife conservation [277].

At the same time, there is increasing evidence of deployed machine learning systems
exacerbating existing social problems, and potentially generating new ones. For example,
learned classification systems have been shown to amplify gender discrimination in resume
reading tools [83]. Data-driven risk assessment tools used in bail decisions have resulted in
higher likelihood of falsely predicting black defendants would re-offend, compared to white
defendants [8]. In a potentially more subtle failure mode, systems that work well in one
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context or simulated environment can fail to generalize to new application settings. Audits
have exposed commercial facial recognition software exhibiting accuracy disparities across
intersectional subgroupings of race and gender [49], presumably in part due to training data
that was unrepresentative of the full diversity of human faces. Despite best efforts, a majority
of machine learning models put forth in academic literature to diagnose or prognosticate
COVID-19 cases have been assessed to have little, if any, clinical value [240, 295].

In each of these examples, some part of the machine learning prediction system (Fig-
ure 1.1) – from dataset design and collection, to model architecture and training, to per-
formance objective definition, evaluation, and monitoring – missed the mark. One way to
explain this is that these systems failed to address the full context of the domain that they
were deployed in, resulting in a discrepancy between a desired intent (presumably, benefit)
and their realized impact. While context is clearly integral to producing functioning (effi-
cient and fair) learning systems, integrating context in general machine learning frameworks
remains difficult, precisely because context entails something different in each application
domain (Section 1.1). Much work remains to make existing machine learning algorithms and
frameworks amenable to modeling diverse notions of context. In this thesis, we emphasize
data as a mathematical formalizer by which to clarify and unify domain-specific consider-
ations, in the service of reaching precisely delineated, but possibly multi-faceted learning
objectives. Alongside this study of context in statistical learning frameworks, we anchor
these findings with key applications combining remote sensing and machine learning.

Aligning progress in machine learning with the potential for real-world benefit will require
deep collaboration across disciplinary boundaries. The research featured in the chapters of
this thesis integrates theory, practice, and human values in collaboration with development
economists (Chapter 3), roboticists (Chapter 7) and policy researchers (Chapter 8). These
chapters thread a balance between application-driven instances of domain context and gen-
eral notions of intent, impact, and context that apply across learning paradigms. Parts I
and II situate recurring themes from these interdisciplinary viewpoints within more overarch-
ing statistical machine learning frameworks. Looking forward, the research presented in this
thesis is inspired by, and provides evidence to the idea that multi-disciplinary and context-
centric perspectives can drive novel machine learning insights, and are essential factor for
designing and implementing algorithms with positive social benefit.

1.1 Intent, Impact, and Context
As discussed above, the line of research presented in thesis integrates the concepts of in-
tent, impact, and context with statistical machine learning frameworks (Figure 1.1), toward
understanding failure points and designing explicitly for specific intents.

In considering the consequences of data-driven algorithms, it is natural to think about
the impact of machine learning systems, namely the ways in which these algorithms interact
with society, its individuals, and our environment. This realized impact is distinct from the
desired intent of the system. While intent can and should be defined during the conceptu-
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algorithm

impact: the ways in which algorithms 
interact with society, its individuals, 

and our environment

intent: the scope of an algorithm, 
including system objectives 
and use cases

dataset design, 
collection, processing 

downstream uses 
     (e.g. policy decisions,
           prediction-derived 
                      inferences)

model,
predictions

data,
formulation

structures in data provide a form of context for algorithm design

machine learning system

Figure 1.1: Depiction of the algorithmic system. The machine learning algorithm is sur-
rounded within the larger machine learning system – the frameworks we develop and study
in this thesis will generally incorporate algorithmic innovations within specific constraints
of a larger system, bookended by design, collection, and processing of the input data and
eventual downstream use cases of the model or predictions output by the algorithm. The
themes of intent and impact are part of a larger context surrounding the algorithmic system.
In this thesis, we consider structures in input data as one way to formalize key aspects of
this broader context.

alization and design of a learning system, impact is measured or audited once a system is
in use. Intent can be delineated by specifying the scope of an algorithmic system, including
for example system objectives, constraints, requirements, and valid use cases.

Harm can arise from algorithmic systems when intent and impact of machine learning sys-
tems are not aligned.1 While the intent of learning models designed for COVID-19 diagnosis
and prognosis was to aid doctors toward better clinical decision-making, the overall impact
of the models was minimal if not detrimental, as as some over-estimated their effectiveness
for clinical decision-making [240, 295]. In a different example, concern has been raised that
complex machine learning models designed to help combat climate change actually require
a substantial amount of energy to train and deploy [78]. To aid intentional design and use

1Harm can also arise from algorithmic systems when the intent of those systems is not clearly specified,
as we discuss further in Chapter 2.
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of machine learning models, Mitchell et al. [201] develop model cards, a framework that
systematizes transparent documentation of key aspects of what this thesis terms intent and
impact, including benchmarking performance across salient subgroups and providing context
of intended use.

Aligning intent and impact requires understanding the broader scientific and societal
context in which algorithms are situated. Blumenstock [37] warns that in applying machine
learning to development domains, these “next-generation solutions must be designed and
produced by people who understand the problems and context — not just by those who
understand the algorithms.” This sentiment is reinforced by Bondi et al. [40] and Kshirsagar
et al. [170] in discussions of the importance of participation, inclusion, and communication
across diverse stakeholders and contributors in “machine learning for social good” endeavors.
Chen et al. [62] discuss unique concerns and opportunities in utilizing machine learning
methodologies in medical contexts. The importance of context extends far beyond algorithm
design; Abebe et al. [2] discuss the importance of understanding social and political context
for designing and enforcing data sharing practices.

As illustrated by the examples and references above, the ways intent, impact and context
manifest with machine learning systems is inherently domain-dependent. Recognizing this,
we do not aim here to define the terms intent, impact and context in their relationship
to machine learning in any absolute sense. Rather, we instantiate these themes through
targeted mathematical and statistical characterizations, and present methods by which to
integrate these characterizations in both general machine learning frameworks and applied
to specific problem settings.

Intent, impact, and context enter machine learning frameworks at many levels of abstrac-
tion. Figure 1.1 differentiates between a machine learning algorithm and a machine learning
system, a broader unit of inquiry including all procedural steps of instantiating that model.
Here we consider a machine learning system to include steps of dataset design, collection,
and processing, as well as steps taken after predictions are made, including downstream
decisions, tasks, or inferences based on algorithmic outputs.

To illustrate this distinction, consider a machine learning system used to target humani-
tarian aid based on predicted poverty measures from satellite imagery. Key aspects of this
broader algorithmic system would include questions of dataset formulation: how poverty
is measured, at what resolution and in what regions labeled data is acquired for training
and evaluation, and which sources of satellite imagery are matched with these labels. The
learning system also includes the procedures by which predictions of poverty are used in the
downstream allocation of aid: whether aid is allocated to individuals or groups, how the
amount of aid given to each individual unit is determined as a result of predicted poverty
measures, etc.

An algorithm, on the other hand, is generally scoped to either abstract away these broader
questions or to incorporate them as fixed constraints on the structure of the problem at
hand. In the aid targeting example, the algorithmic component comprises the definition
and training of a machine learning model that outputs predicted poverty measures from
satellite imagery outputs. Depending on the specification of the larger learning system, the
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algorithm might be designed to output predictions at pixel-resolution or image-resolution;
the training objective might prioritize average accuracy over the entire training region, or it
might optimize the worst-case accuracy of any given region.

Such abstractions are necessary to formulating a precise problem statement amenable to
standard machine learning techniques; for example delineating an objective function which
can be optimized with respect to parameters of a predictive model. At the same time,
focusing only on solving the abstracted problem neglects the broader context of the learning
system [256]. Thus, it is important to develop techniques and analysis that center between
these levels. Throughout this thesis we both center algorithm-level innovations within larger
system constraints and characterize system-level frameworks in terms of key properties of
the underlying learning algorithms. These perspectives complement each other to shed light
on how context intersects across algorithm and system levels of abstraction, described in
Section 1.3 and synthesized in the conclusion of this document in Part IV.

1.2 Remote Sensing and Machine Learning
Applications combining machine learning with remote sensing will anchor the somewhat
abstract themes of intent and context discussed in the previous section. We focus on ap-
plications to remote sensing for several reasons. First, there is a clear potential for benefit,
ranging from monitoring and addressing climate change, to informing and evaluating data-
driven policies across the globe. Second, the scale and high-dimensional nature in remotely
sensed data are particularly amenable to machine learning analysis, whereas they could
quickly become a bottleneck for manual analysis. At the same time, structures in data
acquisition patterns and sensor measurements provide an opportunity to tailor algorithmic
techniques, evidencing the value of incorporating domain context through data structures
and specific intents; in this sense these application areas can anchor the themes of intent,
impact, and context in specific examples of machine learning systems.

Remotely sensed data, for example from satellite imagery or robots enabled with mobile
sensors, can shed light on remote or difficult to measure regions of the world where send-
ing humans to collect data could be prohibitively costly or dangerous. Combining machine
learning and remote sensing can thus help researchers monitor environmental and social
change and policymakers develop more comprehensive data-driven decisions. Examples in-
clude robotic localization during safety-critical search and rescue missions [133], weather
forecasting with sensor data [140], and ample opportunities in combining satellite imagery
and machine learning to address the United Nation’s Sustainable Development Goals [51].

However, remotely sensed data presents challenges for traditional learning paradigms,
such as immense scale of image data [186, 245] and sparsity, quality or resolution issues
of labeled data [38, 188]. With these challenges come opportunities to leverage structures
specific to remotely sensed data. Delineating precise knowledge of sensor structures enables
adaptation of established statistical learning frameworks to new real-world settings, as exem-
plified by our approach to the problem of radioactive source localization in Chapter 7. In a
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second example, invariances in scale, rotation, and translation in satellite imagery prediction
tasks can guide algorithmic simplifications, as discussed in Chapter 8.

It is important to address unique issues of fairness, responsibility, and ethics of the
emerging field intersecting machine learning, remote sensing, and policy. Addressing unique
issues of social context including potential harms that could arise from combining remote
sensing and machine learning will be critical to ensuring that progress in emerging field aligns
with intendended benefits; we return to this point in Section 9.2.

1.3 Document Overview
The body of this thesis is organized in three parts: (I) contrasting impact and intent of
algorithmic classification systems, (II) utilizing structures in training data as mathematical
form of context in statistical machine learning frameworks, and (III) anchoring these lessons
to applications combining remote sensing and machine learning. Each part considers a
different depth of generality in the design and use of learning systems, starting from in some
sense the most general.

In Part I, we consider algorithmic decision rules at large – classification decisions that
are often based on learned models, but need not be. In Chapter 2, we discuss several ex-
amples where deployed machine learning systems exhibit social harm or bias. Often these
harms are unintentional; in Chapter 2 we go on to define and discuss notions of fairness in
machine learning that aim to mitigate potential harms resulting from algorithmic systems.
In Chapter 3, we present an alternative framework for delineating welfare goals explicitly via
multi-objective optimization, drawing connections with the approaches described in Chap-
ter 2. Contrasting the intents and impacts of algorithmic decisions leads us to study how to
achieve diverse objectives when decisions are in fact based on learned models.

In Part II, we ground our study of context in data-driven learning by focusing on two key
elements of structure in training data: how data instances are collected across different sub-
populations and data sources and what information different features of a dataset convey.
In Chapter 4, we incorporate dataset collection as a design step in the learning procedure.
This enables us to assess and leverage the importance of different data allocations toward
reaching high group and population accuracies. In Chapter 5, we consider structures in
data from another angle: utilizing the full information associated with each data instance.
We show that “side information” like time or location metadata generally encode different
structures than traditional “feature” representations, yet can still amplify predictive signal
when utilized correctly. We propose a post-processing procedure as a natural and effective
way to utilize this structure, and show it is robust to different tasks, predictors, and sampling
patterns.

Together, Chapters 4 and 5 build an understanding of fundamental dataset characteristics
and qualities that apply across machine learning paradigms. We underscore that data is
a useful, but notably incomplete notion of context in Chapter 6, where we highlight key
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limitations of viewing data as context and expose opportunities for expanding this line of
study.

Part III anchors the ideas from Parts I and II with two applications combining remote
sensing and machine learning. In Chapter 7, we develop statistically-efficient trajectory
planning methods for sensor-equipped robots to localize sources of environmental radiation
as quickly as possible. In Chapter 8, we detail a large scale project that combines machine
learning and satellite imagery, where structures in the imagery data and downstream use
cases guide algorithmic innovations that increase accessibility and computational efficiency
of this technology. While each chapter in Part III incorporates both the themes of delineating
intent during design and viewing data as a form of context, the structure within Part III
largely echoes that of the first two parts. In line with the themes of Part I, our approach in
Chapter 7 frames the precise intent of the source identification task in the decision-making
problem. This allows us to leverage a multi-armed bandit inspired sampling approach, which
we modify to apply to problem settings with physical sensing constraints. In Chapter 8, we
tailor computer vision techniques to the unique structures of satellite imagery as a data
source, in line with the overall themes of Part II.

Chapter 9 in Part IV concludes this thesis with connections, conclusions, and overarching
perspectives. Organized into three distinct parts based on their focuses, Chapters 2 through 8
all involve the themes of intent and impact, data as context, and application-driven design to
some degree. As these themes interweave, so to do threads of interdisciplinary perspectives
which both inspire novel learning frameworks and targeted algorithmic innovations. The
result is a broad set of results surrounding incorporating intent, impact, and context in
statistical machine learning, with evidenced potential for societal benefit.
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Part I

Contrasting Intent & Impact of
Algorithmic Selection Rules

And because the upsides are so obvious, it’s particularly important to step back and ask
ourselves, what are the possible downsides? ... How do we get the benefits of this while

mitigating the risk?

— Emily M. Bender, quoted in Hao, “We read the paper that forced Timnit
Gebru out of Google. Here’s what it says,” 2020 [124]

In Part I of this thesis, we contrast the social impacts of machine learning systems with
their intended benefit. In Chapter 2, we discuss several examples where deployed machine
learning systems exhibit social harm or bias. Often these harms are unintentional; in
Chapter 2 we go on to define and discuss notions of fairness in machine learning that aim
to mitigate potential harms resulting from algorithmic systems. In Chapter 3, we present
an alternative approach of explicitly delineating and designing for social welfare as a
desired intent. This alternative framing encompasses several existing fairness notions
(Section 3.5) and handles more general settings applicable when individual notions of
welfare can be measured, approximated, or predicted.

The themes of intent and impact of algorithmic systems that are the focus of Part I
interweave throughout the latter parts of this thesis. We further discuss connections and
implications of these themes to Parts II and III in Part IV.
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Chapter 2

Background: Un-Intended Impacts of
Learned Algorithmic Policies.

As discussed in Chapter 1, harm can arise from algorithmic systems when the intent of a
system is not clearly specified, or when it does not incorporate the full relevant context in
which the algorithm will be used.1 This chapter provides a short introduction to how and
when unintended harms can arise in classification systems.

In Section 2.1, we organize several examples of unintended bias and harm resulting from
use of machine learning algorithms. The variety of examples highlight different manifesta-
tions of un-intended impacts across different contexts. There is also a line of work developing
more general frames of thought surrounding how and when issues of fairness, bias, or harm
arise in algorithmic systems [25, 214, 269]. Suresh and Guttag [269] discuss the ways in
which bias can enter specific processes within the machine learning system life cycle. Baro-
cas et al. [25] and Crawford [80] distinguish between allocative and representational harms.
Allocative harms include unfair dispersion of resources or benefits. Representational harms,
on the other hand, surround the establishment, codification, or reinforcement of negative
associations with identities and group categories.

In Section 2.2, we present two key notions of group or demographic fairness that address
largely allocative harms. In Section 2.3, we discuss limitations of demographic fairness
constraints as a mitigation strategy, setting the stage for Chapter 3. We briefly discuss
alternative approaches, noting that achieving fairness or benefit is never a “one size fits all”
solution – strategies to mitigate harms must also incorporate context. Selbst et al. [256],
for example, argue that overemphasis on abstraction and modular design – foundations of
modern computing and machine learning – can create a mismatch between the intent of
“fair” algorithms and interventions and their actual suitability to real contexts. The authors
suggest avenues by which to broaden boundaries of abstraction to include relevant social
context.

1Harm can also arise when system intent is specified and realized, but that specified intent causes harm.
While this of real concern, such systems fall outside the scope of this chapter.
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2.1 Examples of Bias in Machine Learning Systems
Examining critical examples of bias in learning systems sheds light on the complex interplay
between the different sources and forms of harm that one might hope to characterize. For
example, take the distinction between allocative and representative harms discussed above.
When Sweeney [270] identified that online search engine ads suggested arrest records at
higher rates for queries of black identifying first names than white identifying first names,
she exposed a representational harm: something in the depths of the algorithmic system
caused substantially more negative content to be delivered when the queries were names
associated with certain race groups. This representational harm results in the witnessed
allocative harm. For example, when a potential employer searches for a candidates name
and the search engine returns suggestions of prior arrest, this can decrease the chance of that
candidate receiving the job opportunity. Another study found that women were less likely
to be shown ads for high paying jobs than men [84], yet another example of allocative harm.

Biased representations and outcomes are key concerns across diverse fields of machine
learning, from computer vision to natural language processing. Gender bias has been ad-
dressed in models across computer vision tasks from image captioning to classification [131,
290]. Audits of facial recognition models have exposed significant accuracy and efficacy gaps
across intersectional and non-binary demographic identities [49, 253]. In the field of natural
language processing, numerous works have exposed bias in word embeddings across demo-
graphic and social groups [39, 53, 271, 302]. While much scholarship aims to debias word
embeddings, there is concern these proposed corrections may mask, rather than remedy, the
deep-seated mechanisms by which such biases arise [110]. Bender et al. [32] warn that these
concerns are likely to be amplified as language models become larger, increasingly relying
on big data at the expense of carefully curated and documented data.

It can be tempting to blame such harms on the data on which algorithmic systems
are trained. After all, any collected data encodes a context of its time and measurement,
and is susceptible to containing historical biases or personal prejudices as a result. For
example, algorithmically generated credit scores estimate “creditworthiness” as a function
of an individuals previous repayment of loans, which are inseparable from the historical
systems through which loan terms and decisions were made [27]. Obermeyer et al. [212]
show that using available medical expenditure data as a proxy for medical need results
in underestimation of medical need for black patients, who historically have lower medical
costs on average than white patients due to a variety of factors. Similar concerns over uses
of observational data have been raised in recidivism prediction [8] and child welfare analytics
[67]. These domains exhibit the added challenge of what the machine learning community
has termed a selective labels problem [10, 163, 171]: the subset of all possible observations
that makes up the observational dataset is a function of prior (usually human) judgement.
Lum and Isaac [185] discuss the dangers of hidden feedback loops that can occur when
predictive policing algorithms over-predict crime in historically over-surveilled areas.

While quality and quantity of training data is integral to building effective machine
learning systems (as is the focus of Chapter 4), they are by no means sufficient to achieving
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benefit, or even avoiding harm. As Wang et al. [290] show, representational biases can
persist despite best efforts to balance datasets across groups. Biases can arise throughout
the learning process [269], and it is imperative to understand how the large-scale use of
algorithmic predictions in consequential settings can serve to exacerbate social biases or
reinforce existing structures of power [33, 211]. The field of fairness in machine learning is
one that aims to identify, characterize, and mitigate potential harms of learning systems.

2.2 Group Fairness
At a high level, group fairness techniques address scenarios where unmitigated classification
decisions would result in unequal in treatment or impact across groups, or sub-populations
of a larger target population. The mitigation strategies are often encoded as a constraint
on the classification or selection rule, enforcing equality of a carefully defined statistic, or
demographic fairness criteria2, across groups. While the landscape of group fairness criteria
and methodologies to satisfy them are broad [26], we focus in this section on two commonly
studied fairness criteria. This will serve to give a flavor of demographic fairness criteria and
to establish relevant background and definitions for Section 2.3 and Chapter 3.

The group fairness settings we discuss here assume that the population is made up of
disjoint groups G, where each individual in the population belongs to one of g ∈ G. Each
individual instance has associated with them a vector of features x ∈ X used as input to the
classification policy πg : X → [0, 1] which outputs probabilities of selection. Each individual
might also have a label y denoting the desired prediction or true value for each individual.
In this chapter we take the labels to be binary variables, i.e. y ∈ {0, 1}. Let {Demp

g }g∈G
denote the empirical distribution of features and labels for each group, so that drawing
(X, Y ) ∼ Demp

g puts equal probability mass on the (feature, label) pairs corresponding to
each individual in group g.

A demographic parity (also referred to as statistical parity) constraint [96] requires that
the same fraction of each group is selected (classified as a positive instance). In terms of the
setting and notation developed above:

Definition 2.1 (Demographic parity). The (exact) demographic parity constraint requires
that selection rates are equal across groups:

E(X,Y )∼Demp
g

[πg(X)] = E(X,Y )∼Demp
g′

[πg′(X)] ∀g, g′ ∈ G .

While intuitive, demographic parity only requires that the same fraction of each group is
selected; it does not put constraints on which individuals in each group should be selected.
In other words, it ignores the outcomes or true labels y. A concern is that the selection
policy for one group might correctly classify or select β fraction of individuals from group

2We use the terms group fairness constraints and demographic fairness criteria interchangeably, noting
that in the past group fairness has been used to refer to demographic parity (Definition 2.1).
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g, but choose completely at random β fraction of individuals from group g′. An alternative
constraint, equality of opportunity [125], requires parity of true positive rates across groups.

Definition 2.2 (Equality of opportunity). The equal opportunity (equalized odds) con-
straint requires that true positive rates are equal across groups:

E(X,Y )∼Demp
g

[πg(X)|Y = 1] = E(X,Y )∼Demp
g′

[πg′(X)|Y = 1] ∀g, g′ ∈ G .

The equality of opportunity constraint is a statement on conditional expectations – of the
individuals in each group whose true labels are 1, the selection rates must be equal between
groups. A related constraint, equalized odds [125], additionally requires selection rates be
equal among individuals in each group whose true labels are 0.

Definitions 2.1 and 2.2 state the fairness criteria in terms of probabilistic selection or
classification policies πg(x). In some cases it might be more convenient to consider the output
of a learning algorithm to be a predicted score ŷ ∈ R rather than probability of selection
directly. Liu et al. [179] discuss a correspondence between these settings: informally, when
higher scores ŷ correspond to higher expected values of both the main metric (e.g. higher
probability that y = 1) and outcomes for individuals as a result of selection, optimal policies
subject to demographic parity and equal opportunity constraints correspond to selecting
individuals with scores ŷ above some group-dependent thresholds.

2.3 Limitations and Alternatives to Group Fairness
While group fairness metrics and criteria can encode rich and meaningful notions, scholarship
has also exposed key limitations of group-based fairness metrics. Alternative frameworks for
describing fairness expand the the set of outcomes that can be identified and achieved with
algorithmic systems. However, some issues with existing fairness notions may be inherent to
classification or prediction systems at their root. In such cases, it is important to critically
consider the value of deploying learned algorithmic systems alongside their potential for
harm.

Limitations of Group Fairness

Even within the problem framing described in Section 2.2, there are limitations to demo-
graphic fairness notions. Formative works prove the impossibility of satisfying multiple group
fairness criteria simultaneously in general problem settings [66, 164]. It has also been shown
that applying fairness notions can lead to harmful “delayed impacts,” as over- or under-
selecting of individuals from certain groups to satisfy fairness conditions can leave those
groups worse off than had no fairness constraint been applied [179].

The focus on fixed, categorical group labels has also received scrutiny, as demographic
identities such as race or gender, are more complex than a reduction to a fixed number of
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categories can capture [143, 253]. A number of alternative frameworks do not rely strictly
on such groupings, as we describe next.

Alternative Framings of Fairness

One way to avoid assigning explicit demographic groups for fairness interventions is to ask
that such fairness hold for all possible groupings of instances, usually up to some computa-
tional limits on group size or identifiability [128, 162]. In a different vein, individual fairness
posits that instances that are similar in factors relevant to prediction should have similar
predicted values [96, 301]. Several works have exposed tensions between jointly achieving
individual and group fairness [96] or achieving individual fairness and accuracy [306]. Binns
[35] discusses that understanding the normative or empirical assumptions underlying how
disparities might arise can contextualize whether individual or group fairness would be more
suitable.

Returning to Intent and Impact

Fairness has become a sub-field in machine learning largely in the service of mitigating un-
intented harmful impacts of learned algorithmic systems. To understand the impacts of
imposing fairness criteria on classification systems, Liu et al. [179] posit a model of how
individuals will fair as a result of classification. If such a model of individual welfare is
available, could we conceivably encode welfare directly as an intent? The next chapter in
this thesis directly addresses that question, encoding welfare as one objective in a multi-
objective optimization problem.

Before diving in to another solution-oriented view in Chapter 3, it is worth taking a
moment to reflect on the larger nature of aligning intent and impact of algorithmic systems.
Here is a natural point to consider whether machine learning or computing-based solutions
can and will confer the impact the designer intends.3 An unavoidable answer is that some
machine learning systems will pose more threat of harm than potential benefit (and thus
should not be deployed or require major modification) [24]. Understanding how and when
bias and harm might arise is key to assessing algorithmic systems within their context of
intended and eventual use. While machine learning and computing more broadly do have
roles to play toward increasing societal well-being [3, 248], realizing the potential for these
technologies may mean reimagining their scopes and modes of deployment.

3A starting point is to delineate and publicize the intent of machine learning systems, an idea central to
the process of “model cards for model reporting” [201].
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Chapter 3

Delineating Intent with Multiple
Objectives: Welfare-Aware Optimization

This chapter is based on the paper “Balancing competing objectives with noisy data: Score-
based classifiers for welfare-aware machine learning” [246], written in collaboration with Max
Simchowitz, Sarah Dean, Lydia T. Liu, Daniel Björkegren, Moritz Hardt, and Joshua Blu-
menstock.

While real-world decisions involve many competing objectives, algorithmic decisions are
often evaluated with a single objective function. In this chapter, we study algorithmic policies
which explicitly trade off between a private objective (such as profit) and a public objective
(such as social welfare). We analyze a natural class of policies which trace an empirical
Pareto frontier based on learned scores, and focus on how such decisions can be made in
noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in
this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence
between optimal strategies and a rich class of fairness-constrained profit-maximizing policies.
We then present empirical results in two different contexts — online content recommendation
and sustainable abalone fisheries — to underscore the applicability of our approach to a wide
range of practical decisions. Taken together, these results shed light on inherent trade-offs
in using machine learning for decisions that impact social welfare.

3.1 Background
From medical diagnosis and criminal justice to financial loans and humanitarian aid, conse-
quential decisions increasingly rely on data-driven algorithms. Machine learning algorithms
used in these contexts are mostly trained to optimize a single metric of performance. As
a result, the decisions made by such algorithms can have unintended adverse side effects:
profit-maximizing loans can have detrimental effects on borrowers [264] and fake news can
undermine democratic institutions [223].
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As discussed in Chapter 2, the field of fair machine learning proposes algorithmic ap-
proaches that mitigate the adverse effects of single objective maximization. Thus far it has
predominantly done so by defining various fairness criteria that an algorithm ought to satisfy
(see e.g., [26], and references therein). However, a growing literature highlights the inability
of any one fairness definition to solve more general concerns of social equity [75]. The impos-
sibility of satisfying all desirable criteria [164] and the unintended consequences of enforcing
parity constraints based on sensitive attributes [158] indicate that existing fairness solutions
are not a panacea for these adverse effects. Recent work [136, 179] contend that while social
welfare is of primary concern in many applications, common fairness constraints may be at
odds with the relevant notion of welfare.

In this chapter, we consider welfare-aware machine learning as an inherently multi-
objective problem that requires explicitly balancing multiple objectives and outcomes. A
central challenge is that certain objectives, like welfare, may be harder to measure than
others. Building on the traditional notion of Pareto optimality, which provides a charac-
terization of optimal policies under complete information, we develop methods to balance
multiple objectives when those objectives are measured or predicted with error.

We study a natural class of selection policies that balance multiple objectives (e.g., private
profit and public welfare) when each individual has predicted scores for each objective (e.g.,
their predicted contribution to total welfare and profit). We show that this class of score-
based policies has a natural connection to statistical parity constrained classifiers and their
ϵ-fair analogs. In the likely case where scores are imperfect predictors, we bound the sub-
optimality of the multi-objective utility as a function of the estimator errors. Simulation
experiments highlight characteristics of problem settings (e.g. correlation of the true scores)
that affect the extent to which we can jointly maximize multiple objectives.

We apply the multi-objective framework to data from two diverse decision-making set-
tings. We first consider an ecological setting of sustainable fishing, where we study score
degradation to mimic certain dimensions being costly or impossible to measure. In our second
empirical study, we use existing data on the popularity and “social health” of roughly 40,000
videos promoted by YouTube’s recommendation algorithm. We show that multi-objective
optimization could produce substantial increases in average video quality for almost negligi-
ble reductions in user engagement.

This chapter provides a characterization, theoretical analysis, and empirical study of a
score-based multi-objective optimization framework for learning welfare-aware policies. We
hope that our framework may help decouple the complex problem of defining and measuring
welfare, which has been studied at length in the social sciences, e.g. [87], from a machine
toolkit geared towards optimizing it.

Fair and Welfare-Aware Machine Learning

The growing subfield of fairness in machine learning has investigated the implementation
and implications of machine learning algorithms that satisfy definitions of fairness [26, 27,
96]. Machine learning systems in general cannot satisfy multiple definitions of group fairness
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[66, 164], and there are inherent limitations to using observational criteria [160]. Alternative
notions of fairness more directly encode specific trade-offs between separate objectives, such
as per-group accuracies [162] and overall accuracy versus a continuous fairness score [314].
These fairness strategies represent trade-offs with domain specific implications, for example
in tax policy [104] or targeted poverty prediction [210].

An emerging line of work is concerned with the long-term impact of algorithmic deci-
sions on societal welfare and fairness [100, 137, 181, 206]. Liu et al. [179] investigated
the potentially harmful delayed impact that a fairness-satisfying decision policy has on the
well-being of different subpopulations. In a similar spirit, Hu and Chen [136] showed that
always preferring “more fair” classifiers does not abide by the Pareto Principle (the principle
that a policy must be preferable for at least one of multiple groups) in terms of welfare.
Motivated by these findings, our framework acknowledges that algorithmic policies affect
individuals and institutions in many dimensions, and explicitly encodes these dimensions in
policy optimization.

We will show that fairness constrained policies that result in per-group score thresholds
and their ϵ-fair equivalent soft-constrained analogs [99] can be cast as specific instances of the
Pareto framework that we study. Analyzing the limitations of this optimization regime with
imperfect scores therefore connects to a recent literature on achieving group fairness with
noisy or missing group class labels [14, 172], including using proxies of group status [63]. The
explicit welfare effects of selection in our model also complement the notion of utilization in
fair allocation problems [92, 99].

Multi-Objective Machine Learning

We consider two simultaneous goals of a learned classifier: achieving high profit value of
the classification policy, while improving a measure of social welfare. This relates to an
existing literature on multi-objective optimization in machine learning [148, 149], where
many algorithms exist for finding or approximating global optima under different problem
formulations [89, 91, 165].

This chapter studies the Pareto solutions that arise from learned score functions, a prob-
lem space related to, but distinct from a large literature on learning Pareto frontiers directly.
Evolutionary strategies are a popular class of approaches to estimating a Pareto frontier
from empirical data, as they refine a class of several policies at once [89, 161]. Many of
these strategies use surrogate convex loss functions to afford better convergence to solutions.
Surrogate functions can be defined over each dimension independently [165], or as a single
function over both objective dimensions [183]. While surrogate loss functions play an im-
portant role in a direct optimization of non-convex utility functions, our framework provides
an alternative approach, so long as scores functions can be reliably estimated.

Another class of methods explicitly incorporates models of uncertainty in dual-objective
optimization [219, 221]. For sequential decision-making, there has been recent work on find-
ing Pareto-optimal policies for reinforcement learning settings [178, 242, 283]. To promote
applicability of our results to a variety of real-world domains where noise sources are diverse
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and the effects of single policy enactments complex, we first develop a methodology under a
noise-free setting, then extend to reasonable forms of error in provided estimates.

Measures of Social Welfare

The definition and measurement of welfare is a complex problem that has received consider-
able attention in the social science literature (cf. [87, 88, 267]). There, a standard approach
is to sum up individual measures of welfare, to obtain an aggregate measure of societal wel-
fare. The separability assumption (independent individual scores) is a standard simplifying
assumption (e.g. [105]) that appears in the foundational work of Pigou [224], as well as many
others [9, 50, 252, 257]. Future work may explore alternative social welfare function (cf. [69]).
Our focus is on bringing machine learning to the most common notion of welfare.

3.2 Problem Setting: Pareto-Optimal Policies
In this chapter we consider a setting in which a centralized policymaker has two simultaneous
objectives: to maximize some private return (such as revenue or user engagement), which we
generically refer to as profit ; and to improve a public objective (such as social welfare or user
health), which we refer to as welfare. The policymaker makes decisions about individuals,
who are specified by feature vectors x ∈ Rd. Decision policies are functions that output a
randomized decision π(x) ∈ [0, 1] corresponding to the probability that an individual with
features x is selected. To each individual we associate a value p representing the expected
profit to be garnered from approving this individual and w encoding the change in welfare.
The profit and welfare objectives are thus expectations over the joint distribution of (w, p, x):

UW(π) = E[w · π(x)] and UP(π) = E[p · π(x)] . (3.1)

This aggregate measure of societal welfare is defined as a sum of individual measures of
welfare; this is a standard approach in the social science literature (see Section 3.1). While
this induces limitations on the form of the welfare function, it affords flexibility when focusing
instead on the resulting binary decision, a point we expand on in Section 3.5.

Given two objectives, one can no longer define a unique optimal policy π. Instead, we
focus on policies π which are Pareto-optimal [218], in the sense that they are not strictly
dominated by any alternative policy, i.e. there is no π′ such that both UP and UW are strictly
larger under π′.

For a general set of policy classes (defined in Proposition 3.5)1, it is equivalent to consider
policies that maximize a weighted combination of both objectives. We can thus parametrize
the Pareto-optimal policies by η ∈ [0, 1]:

1For clarity of exposition, some formal results are defered to Section 3.A.
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Figure 3.1: Illustration of a Pareto curve (left) and the decision boundaries induced by
three different trade-off parameters η. Colored (darker in gray scale) points indicate selected
individuals.

Definition 3.1 (Pareto-optimal policies). For policy class Π, an η-Pareto-optimal policy
(for η ∈ [0, 1]) satisfies:

π⋆
η ∈ argmax

π∈Π
Uη(π),

Uη(π) := (1− η)UP(π) + ηUW(π).

The Pareto frontier (curve) of a policy class is the set of all profit-welfare utilities (p, w)
obtained by Pareto-optimal policies:

P(Π) := {(p, w) = (UP(π),UW(π)) ∈ R2 : π is η-Pareto-optimal for Π and some η ∈ [0, 1]}.

In instantiating Definition 3.1 above, a natural choice might be to take Π to be class of
randomized policies π(x) → [0, 1]. We next show that when features x can exactly encode
scores, the optimal policy is a threshold function of the scores.

Optimal Policies with Exact Scores

We briefly consider an idealized setting where the welfare and profit contributions w and p can
be directly determined from the features x via exact score functions, fW(x) = w, fP(x) = p.
These exact score functions can be thought of as sufficient statistics for the decision: the
expected weighted contribution from accepted individuals is described by ((1 − η)p + ηw).
Therefore, one can show (Proposition 3.6) that the optimal policy is given by thresholding
this composite:

π⋆
η(p, w) = I((1− η)p+ ηw ≥ 0). (3.2)

Though they are all Pareto-optimal, the policies π⋆
η induce different trade-offs between the

two objectives. The parameter η determines this trade-off, tracing the Pareto frontier:

Pexact := {(UP(π⋆
η),UW(π⋆

η)) : η ∈ [0, 1]}.
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Figure 3.1 plots an example of this curve (bottom-left panel) and the corresponding decision
rules for three points along it. We note the concave shape of this curve, a manifestation of
diminishing marginal returns : as a decision policy forgoes profit to increase total welfare, less
welfare is gained for the same amount of profit forgone. The notion of diminishing returns
is formalized in Theorem 3.3.

3.3 Pareto Frontiers with Inexact Scores
In many settings, we typically do not know the profit score p or welfare score w — or the score
functions fP and fW — for all individuals a priori. Instead, we might estimate score functions
f̂P(x) and f̂W(x) from data in the hope that these models can provide good predictions on
future examples. We study the class of score-based policies that act on the predicted scores:

Definition 3.2 (Score-based policy class).

Πemp := { π : (f̂P(X), f̂W(X)) 7→ [0, 1] }

Focusing on this class of policies allows us to characterize optimal policies within this
class, derive diagnosable bounds the utility of suboptimal policies, and relate our results to
common fairness criteria. We summarize additional benefits as well as potential limitations
of restricting our study to this policy class in Section 3.6.

Pareto-Optimality for Learned Scores

To characterize Pareto-optimal policies over Πemp, we define the following conditional expec-
tations over the distribution D of (x, p, w):

µP(f̂P(x), f̂W(x)) := ED[p | f̂P(x), f̂W(x)] ,

µW(f̂P(x), f̂W(x)) := ED[w | f̂P(x), f̂W(x)] .

Intuitively, these values represent our best guesses of p and w, given the predicted scores.
We define πopt

η as the threshold policy on the composite of these predictions:

πopt
η := I((1− η) · µP + η · µW ≥ 0).

Theorem 3.1 (Pareto frontier in inexact knowledge case). Given any population distribution
D over (x, p, w) and empirical score functions f̂W and f̂P,

(i) The policies πopt
η are Pareto optimal over the class Πemp, with πopt

η ∈ argmaxπ∈Πemp
Uη(π).

(ii) The Pareto frontier P(Πemp) is given by {(UP(πopt
η ),UW(πopt

η ) : η ∈ [0, 1]}. The asso-
ciated function mapping supπ∈Πemp

{UW(π) : UP(π) = p} is concave and non-increasing
in p.
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(iii) The empirical frontier Pemp is dominated by the exact frontier Pexact. That is, if
(p, wexact) ∈ Pexact and (p, wemp) ∈ Pemp, then wemp ≤ wexact.

Theorem 3.1 says that an optimal empirical-score based policy can also be realized as
a threshold policy (this time of the conditional expectations µP and µW), and it obeys the
same diminishing-returns phenomenon as in the exact score case. One example of score
predictors that achieves this optimality is the Bayes optimal estimators i.e., f̂P(x) = E[p | x]
and f̂W(x) = E[w | x].
Proof of Theorem 3.1. For the theorem, we assume that both policies based on empirical
scores and those based on exact scores are well-behaved in the sense defined in Assump-
tion 3.1. We first establish part (i), namely that

πopt
η ∈ argmax

π∈Πemp

E
[
Uη(π(f̂W, f̂P))

]
.

Recall that πopt
η := (1− η) · µP + η · µW. We have that

Uη(π) = E[((1− η)p+ ηw) π(f̂P, f̂W)]

= E[
(
(1− η)E[p | f̂P, f̂W] + ηE[w | f̂P, f̂W]

)
· π(f̂P, f̂W)]

:= E[
(
(1− η)µP(f̂P, f̂W) + ηµW(f̂P, f̂W)

)
· π(f̂P, f̂W)]

≤ E
[
max

{
(1− η)µP(f̂P, f̂W) + ηµW(f̂P, f̂W), 0

}]
= Uη(πopt

η ).

We obtain the Pareto optimality of πopt
η by Proposition 3.5 (proved in Section 3.A), which

establishes the correspondence between Pareto optimal policies optimizers of a composite
objective given in Definition 3.1.

Part (ii) is a direct consequence of Lemma 3.2 (see Section 3.A) and the assumption that
our policy class is well behaved. For part (iii), empirical policies are dominated by those
induced by the true score functions because, as established, the Pareto optimal policies based
on the true score functions are in fact Pareto optimal over all policies that are induced by a
function of the features x.

Plug-In Policies

In general, we may have access to score predictions or the ability to learn them from data,
but not a guarantee that the predictions are Bayes optimal. In the hopes that the predicted
scores will suffice, a natural selection rule is based on η-defined plug-in threshold policies :

Definition 3.3 (Plug-in policy). For η ∈ [0, 1] and score predictions f̂P(x), f̂W(x), the η-
plug-in policy is:

πplug
η (x) = I

(
(1− η)f̂P(x) + ηf̂W(x) ≥ 0

)
. (3.3)
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Since πopt
η requires computing conditional expectations over the distribution D, it will in

general will differ from the plug-in policy. The following corollary of Theorem 3.1 gives a
condition in which πopt

η and πplug
η coincide.

Corollary 3.1. The plug-in policies πplug
η are optimal in the class Πemp as long as the pre-

dicted score functions are well-calibrated, in the sense that E[p | f̂P(x), f̂W(x)] = f̂P(x) and
E[w | f̂P(x), f̂W(x)] = f̂W(x).

Proof of Corollary 3.1. In this case, µ̄p = f̂P(x) and µ̄w = f̂W(x), so we may invoke Theo-
rem 3.1.

Under typical conditions [180], this form of calibration can be achieved by empirical risk
minimization.

In Proposition 3.1, we bound the error in the plug-in policies by the error by the individual
errors in each score. In Section 3.4, simulation experiments detail the use of the plug in policy
under controlled degradations of learned score accuracy and real-data experiments provide
further insight into using the plug-in policy for welfare-aware optimization in practice.

Bounding Pareto Inefficiencies

Even when plug-in policies are not optimal, the sub-optimality of the resulting classifier in
terms of the utility function Uη is bounded by the η-weighted sum of ℓ1 errors in the profit
and welfare scores.

Proposition 3.1 (Sub-optimality bound). For any score prediction functions f̂P(x), f̂W(x)

and η ∈ [0, 1], the gap in η-utility from applying the plug-in policy (3.3) with f̂P(x), f̂W(x)
versus applying the optimal policy (3.2) with true scores fP, fW, is bounded above by

Uη(π⋆
η)− Uη(πplug

η ) ≤ (1− η)E[|f̂P(x)− fP(x)|] + ηE[|f̂W(x)− fW(x)|]. (3.4)

Proof of Proposition 3.1. We compute

Uη(πplug
η )− Uη(πη) = E[((1− η)p+ ηw)

(
πplug
η − πη

)
] .

Define the functions Y (x) = (1− η)fP(x)+ ηfW(x), and let E(x) = (1− η)(f̂P(x)− fP(x))+

η(f̂W(x) − fW(x)). Then, πplug
η (x) − π⋆

η = I(Y (x) + E(x) ≥ 0) − I(Y (x) ≥ 0). We see that
this difference is at most 1 in magnitude, and is 0 unless possibly if |Y (x)| ≤ |E(x)|. Hence,

|Y (x)| · |πplug
η (x)− π⋆

η(x)| ≤ |E(x)| .
Therefore

|Uη(πplug
η )− Uη(π⋆

η)| = |E[Y (x)(πplug
η (x)− π⋆

η(x))]|
≤ E[|Y (x)| · |πplug

η (x)− π⋆
η(x)|]

≤ E[|E(x)|] = E[|(1− η)(f̂P(x)− fP(x)) + η(f̂W(x)− fW(x))|]
≤ (1− η)E[|f̂P(x)− fP(x)|] + ηE[|f̂W(x)− fW(x))|].
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Note that by definition of π⋆
η, Uη(π⋆

η)−Uη(πplug
η ) ≥ 0. Proposition 3.1 provides a general

bound on the η-performance of the plug-in policy which holds for any distribution on scores
and estimator errors.2 To provide further insight, we consider a specific distributional setting:

Example 3.1. Suppose that individuals’ true scores are distributed as:

(wi, pi) ∼i.i.d. N
([

0
0

]
,

[
σ2
w ρσwσp

ρσwσp σ2
p

])
(3.5)

Let the prediction errors εpi := p̂i − pi and εwi
:= ŵi − wi be independent of the true scores

pi, wi, zero-mean, and sub-Gaussian with parameters σεp and σεw , respectively. ♢

This example elucidates how correlation between profit and welfare scores affects the
empirical Pareto frontier.

Proposition 3.2. In the setting of Example 3.1 with −1 ≤ ρ ≤ 1, E[Uη(π⋆
η)] =

σy√
2π

and the
expected η-utility of the plug in policy is at least:3

E[Uη(πplug
η )] ≥ E[Uη(π⋆

η)]

(
1− 2 · σ̃2

σ̃2 + σ2
y

)
(3.6)

where σ2
y = η2σ2

w + (1− η)2σ2
p + 2ρη(1− η)σwσp and σ̃2 = 4(η2σ2

εw + (1− η)2σ2
εp).

The proof of Proposition 3.2 is given in Section 3.B. This lower bound is in terms of both
the optimal η-utility and a discount factor. Because σ2

y is increasing in ρ for any η ∈ (0, 1),
both of these terms are increasing in ρ. Thus, the expected η-utility of the plug in policy is
higher for correlated scores, not only because the optimal η-utility is higher, but also because
the discount factor is closer to 1.

Figure 3.2 shows the lower bound on expected η-utility with noisy scores as a function
of possible score correlations ρ and trade-off parameters η, for a fixed setting of predictor
noise in Example 3.1. For comparatively small error in profit scores and moderate welfare
error, the lower bound on the η-utility increases as the correlation (ρ) between the scores
increases. This captures how the low-noise profit score indirectly improves decisions about
the high-noise welfare. The lower bound is decreasing in η for positive ρ, which reflects the
higher variance introduced by placing more weight on the noisier welfare score.

2We remark that in general, optimizing arbitrary loss functions for function value states (e.g. estimating
η-utilities for all η directly from features) requires a prohibitively large sample [20]. The structures of the
combined learning problems and η-utility in our setting allow us to circumvent this lower bound.

3The constant on σ̃2 can be reduced to 1 when prediction errors are independent, εw |= εp.
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Figure 3.2: Lower bound on expected η-utility as a function of η and correlation in the true
scores, from Proposition 3.2, with σw = σp = 1; σεw = 0.5; σεp = 0.1.

3.4 Experiments
This section presents three sets of empirical results. We first corroborate our theoretical
results under different simulated distributions on scores and prediction errors. Our second
experiment studies empirical Pareto frontiers from learned scores with realistic degradation
of training data, in the context of sustainable abalone collection. Our third experiment shows
how our methods facilitate trading off between user engagement with predicted quality of
content in a corpus of YouTube videos, using pre-learned scores.

Simulation Experiments

Our first set of simulations shows the performance of the plug-in policy when scores are per-
turbed by additive noise of varying degrees in each dimension (Figure 3.3a). We instantiate
true scores wi and pi as in Eq. (3.5) with ρ = 0 and σ2

w = σ2
p = 1, and instantiate predicted

scores as:

f̂W(xi) = wi + εwi
εwi
∼ N (0, σ2

εw), (3.7)

f̂P(xi) = pi + εpi εpi ∼ N (0, σ2
εp).

These score predictions satisfy the well-calibrated condition of Corollary 3.1. The results
for different pairs (σ2

εw , σ
2
εp) are shown in Figure 3.3a. As the noise in scores increases, the

empirical Pareto frontiers recede from the exact frontier Pexact. Additionally, higher noise in
the predicted scores imposes a wider distribution of empirical Pareto frontiers.

Next, we study the effect of noise in predictions when scores are correlated (Figure 3.3b).
We draw wi and pi according to Eq. (3.5) with σw = σp = 1 and correlation parameter ρ.
We then add random noise as in Eq. (3.7) with parameters σεw = σεp = 1.0. Note that in
this setting, scores are in general not calibrated due to the correlation between wi and pi.
For positive values of ρ, the exact and empirical utilities are greatest at η = 0.5, since the
correlation in the scores allows us to overcome some of the noise in each individual parameter,
as explained by Proposition 3.2.
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1.
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Figure 3.3: Simulated experiments corresponding to the setting in Example 3.1 (fixing σw =
σp = 1). Empirical frontiers P(Πemp) for 100 random trials with n = 5, 000 each are shown
as overlaid translucent curves. Exact frontiers Pexact are shown as dashed curves.

Lastly, we study the space of empirical and exact frontiers with degraded noise when
scores are correlated and prediction error is higher in the welfare the score, with σεp = 0.5
whereas σεw = 2.0 (Figure 3.3c). While the optimal Pareto frontiers are the same as in
Figure 3.3b, we see a stark change in the empirical Pareto frontiers. Compared to the case
of no correlation, the empirical Pareto frontier is expanded when ρ > 0 and when ρ < 0 the
frontier recedes. Additionally, we see evidence that due to the correlation, πplug

η is no longer
guaranteed to be optimal, as welfare utility decreases for large enough η when ρ = 0.5.

Learned Scores with Imperfect Data: Abalone

Our next example is motivated by the domain of ecologically sustainable selection, where the
goal is to select profitable mollusks to catch and keep, while having minimal impact on the
natural development of the mollusks’ ecosystem. We learn scores for the age and profitability
of each abalone from data, and perform experiments to test the degradation of the empirical
Pareto frontiers under realistic degradations of the data. While our characterization of
the problem is highly simplified, the main focus of this experiment is to demonstrate the
instantiation of Pareto curves for different predictor function classes and different regimes of
data availability.
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(a) Ridge regression model.
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Figure 3.4: Abalone empirical frontiers as training set size increases.

The welfare measure we use is an increasing function of age,4 encoding that it is more
sustainable to harvest older abalones. We define the profit score of each abalone as a linear
function of meat weight and shell area. We use the features (sex, total weight, height,
width, and diameter) to train score predictors. We derive these measures from physical data
collected by Nash et al. [208] (accessed via the UCI data repository [94]). The correlation
of the profit and welfare scores is 0.56.

In this setting, we study the effectiveness of two models — ridge regression and random
forests — to learn scores with which to instantiate the plug-in policy. To assess how the
empirical Pareto frontiers degrade under realistic notions of imperfect data, we subsample
training instances to reflect a hypothetical regime were data is sparse and we subsample
features to reflect a hypothetical regime where entire measurements were not recorded in the
original dataset.

Figure 3.4 shows the empirical Pareto frontiers reached as we change the size of the
training data set from which learn the profit and welfare scores. Even with 33 training
samples (1% of the original training set), the set of plug-in policies traces a meaningful
trade-off over η. For severely degraded scores (16 training samples - just 0.5% of the original

4Specifically, we instantiate scores as:

p := meat_price_per_gram · (200 · shucked_weight) + shell_price_by_cm2 · (20 · length) · (20 · diameter)
w := c · log((rings+ 1.5)/10)

where meat_price_per_gram = 0.25 and shell_price_per_cm2 = 0.32, and the constant factors of 20 and
200 match units of the original data with units of these prices. We add 1.5 to the ring count to get age,
and divide by 10 before taking the logarithm to encode that harvesting abalone less than 10 years of age has
negative welfare. We scale the welfare weights by constant c so that the distribution of welfare and profit
have the same standard deviation.
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Figure 3.5: Abalone empirical frontiers for different feature sets.

training sets), the error on the welfare score predictions is so high that instantiating a plug-in
policy with η > 0 actually decreases welfare overall.

Figure 3.5 shows the empirical Pareto frontiers reached as we change the features used
to train the model, using just length, just weight, or all seven features as in Figure 3.4. The
mean average error of welfare scores is substantially greater than the mean average error of
profit scores for most prediction settings, thus the empirical frontiers are farther from Pexact

in the welfare dimension than the profit dimension.
Altogether, the empirical Pareto frontiers are relatively robust to small data regimes, as

well as to missing predictors. However, when predictions have very high error (diagnosable
by cross-validation or holdout set error), empirical Pareto frontiers degrade quickly.

Balancing User Engagement and Health

We now illustrate how the multi-objective framework can be used to balance the desire
to promote high quality content with the need for profit. We work with a dataset that
contains measures of content quality and content engagement for 39,817 YouTube videos,
which was constructed as part of an independent effort to automatically ascertain the quality
and truthfulness of YouTube videos [103].

The measure of quality f̂W we use is a function of the “conspiracy score” developed by
Faddoul, Chaslot, and Farid [103], which estimates the probability that the video promotes a
debunked conspiracy theory. From this score sconspiracy ∈ [0, 1] we derive a predicted “quality
score” as (0.95− sconspiracy).

We instantiate the profit score fP[i] for video i as log((1+# views[i])/100, 000). Dividing
by a large constant represents that videos with low view counts may not be profitable due to
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Figure 3.6: Distribution of YouTube data predicted quality scores unlabeled videos (gray),
and hand labeled conspiracy (red) and non-conspiracy (purple) videos.
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Figure 3.7: Balancing user engagement and health of hosted YouTube videos.

storage and hosting costs. The resulting distribution over fP and f̂W is shown in Figure 3.6
(gray dots), where dotted lines denote 0-utility thresholds in each score.

Using these scores and predictions, we estimate a Pareto frontier using the optimal policies
πplug
η for learned scores from Eq. (3.3). The resulting estimated Pareto curve is shown in

Figure 3.7a. The curve is concave, demonstrating the phenomenon of diminishing returns
in the trade-off between total user engagement and average video quality. While there is
always some quality to gain by sacrificing some total engagement, these relative gains are
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greatest when the starting point is close to an engagement-maximizing policy. Specifically,
at the maximum-engagement end of the spectrum (lower right star), we can gain a 1.1%
increase in average video quality for a 0.1% loss in total engagement. However, for a policy
with trade-off rate η = 0.8 (upper left star), to obtain an increase of 0.3% in welfare, a larger
loss of 5.2% in user engagement is required.

Next, we assess the validity of this estimated Pareto curve using the small set of 541
hand-labeled training set instances from which sconspiracy was learned. This assessment is
likely optimistic due to the fact that the score predictor functions were trained on this same
data; nonetheless, this is an important check to perform on the estimated Pareto frontier.

In Figure 3.7b we plot the optimal-in-hindsight Pareto frontier (dashed gray line) had
we known the labels a priori and applied thresholds according to Eq. (3.2). We also plot the
performance of our estimated policy πplug

η on the labeled instances (black line). The stars
on each curve correspond to decision thresholds with η = 0 and η = 0.8, and illustrate the
alignment of the curves.

Relating back to Theorem 3.1, we see that performance of the learned scores (black line)
is dominated by that of the optimal classifier, as is the predicted Pareto curve (thick blue
line). Here the predicted Pareto curve under-predicts the actual performance; in general it is
possible for the opposite to be true. Encouragingly, we observe that the curves representing
the predicted and actual performance show similar qualitative trade-offs.

3.5 Connections to Fairness Constraints
Having shown our main results on learning Pareto-optimal policies with limited data, we now
illustrate connections between our framework and approaches based on fair machine learning
that constrain classification decisions to satisfy certain criteria (see Chapter 2). For example,
in the setting of hiring or admissions, one might require that the same proportion of male
and female candidates are admitted, i.e. demographic parity. We demonstrate that profit
maximization with group fairness constraints corresponds to multi-objective optimization
over profit and welfare for an induced definition of welfare. This connection illustrates
that even though we consider a welfare function defined from individual welfare scores, our
framework can encode more collective conceptions of welfare, like those arising from group
fairness constraints.

Consider a population partitioned into subgroups g ∈ G and a classifier which has access
to the profit score p of each individual. In this case, we decompose policies over groups such
that π = (πg)g∈G and the fairness-constrained profit maximization is given as

πϵ
fair ∈ argmax

π,β
UP(π) s.t. E[πg(p) | in group g ∩ C] = βg, |βg′ − βg| ≤ ϵ for all g, g′ ∈ G

(3.8)

where the choice of C encodes particular fairness criteria. For a large class of fairness criteria
including demographic parity (Definition 2.1) and equal opportunity (Definition 2.2), we can
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restrict our attention to threshold policies πg(p) = I(p ≥ tg) where tg are group-dependent
thresholds [179]. Notice that due to the definition of profit utility (3.1), the unconstrained
solution would simply be πMaxUtil(p) = I(p ≥ 0) for all groups. For this reason, we refer to
groups with tg < 0 as comparatively disadvantaged (since their threshold increases in the
absence of fairness constraints) and tg > 0 as advantaged.

In this setting, there exist fixed welfare scores w which achieve the same solution policy
for any population.

Proposition 3.3. Any fairness-constrained threshold policy giving rise to thresholds {t⋆g}g∈G
is equivalent to a set of η-Pareto policies for η ∈ (0, 1) in (3.2) with welfare scores fixed
within each group and defined as

wg = −
1− η

η
t⋆g .

In particular, wg and t⋆g have opposite signs for all settings of η ∈ (0, 1), and any relative
scale between them achieved by some choice of η.

Proof of Proposition 3.3. The equivalence follows by comparing the policies

πη(w, p) = I(ηw + (1− η)p ≥ 0) and πϵ
fair,g(p) = I(p ≥ t⋆g) .

Restricting the choice to a fixed score within each group yields the expression

wg = −
1− η

η
t⋆g =: −ct⋆g .

Thus we have that wg ∝ −t∗g for all g ∈ G. Further, notice that for any c > 0 there exists
some η ∈ (0, 1) achieving that c with η = 1

1+c
.

Trade-Offs between Profit and Fairness.

While the result presented above is valid for even inexact fairness constraints, it does not
shed light on the trade-off between profit and fairness as the parameter ϵ varies. We now
show how this trade-off in the fairness setting is reflected in an induced problem setting in
the multi-objective framework. For simplicity, we restrict our attention to the setting of two
groups and criteria of demographic parity. We note that with additional mild assumptions,
our arguments extend naturally to other criteria, including equal opportunity (analogously
to Section 6.2 of [179]).

Define the two groups as A and B. Assume that the distribution of the profit score p
has continuous support within these populations. The following proposition shows that the
solution to the constrained profit maximization problem in Eq. (3.8) changes monotonically
with the fairness parameter ϵ.
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Proposition 3.4. Suppose that the unconstrained selection rate in group A is less than or
equal to the unconstrained selection rate in group B. Then the policies πϵ

A, π
ϵ
B that opti-

mize Eq. (3.8) with the demographic parity constraint are equivalent to randomized group-
dependent threshold policies with thresholds tϵA and tϵB satisfying the following:

• tϵA ≤ 0 for all ϵ ≥ 0 and tϵA is increasing in ϵ,

• tϵB ≥ 0 for all ϵ ≥ 0 and tϵB is decreasing in ϵ.

Notice that the unconstrained selection rate in group A being less than the unconstrained
selection rate in group B is equivalent to A being disadvantaged compared with B. Thus we
see that as ϵ increases, the group-dependent optimal thresholds shrink toward the uncon-
strained profit maximizing solution, where tA = tB = 0. For clarity of exposition, we present
the proof of this result in Section 3.C.

We define the map ϵA(p) := ϵ s.t. tϵA = p for p ∈ [t0A, 0]. By Proposition 3.4, ϵA(p) in
increasing in p. Using this ingredients, we define a policy based on welfare scores which is
equivalent to a fair policy.

Theorem 3.2. Under the conditions of Proposition 3.4, the family of policies πϵ
fair parametrized

by ϵ corresponds to a family of η-Pareto policies solutions for a fixed choice of group-
dependent welfare weightings. In particular, denoting the associated thresholds as tϵA and
tϵB and defining for each individual in A with profit score p,

wA =

{
− p

t
ϵA(p)

B

t0A ≤ p ≤ 0

0 otherwise
,

and for all individuals in B,

wB =

{
−1 0 ≤ p ≤ t0B
0 otherwise

,

then for each πϵ
fair there exists an equivalent ηϵ-Pareto policy πηϵ where the trade-off parameter

ηϵ decreases in ϵ.

Proof of Theorem 3.2. By Proposition 3.4, the policy πϵ is equivalent to a threshold policy
with group dependent thresholds denoted tϵA and tϵB. The group dependent threshold policy
I(p ≥ tϵg) is equivalent to an η-Pareto optimal policy (for some definition of welfare score w)
if and only if for all values of p:

I
(
p ≥ tϵg

)
= I (ηϵw + (1− ηϵ)p ≥ 0) .

It is sufficient to restrict our attention to welfare scores w that depend on profit score
and group membership, which we denote as wp

g . Starting with group B, we have that for
0 ≤ p ≤ t0B, wp

B = −1, so

πηϵ = I (−ηϵ + (1− ηϵ) p ≥ 0) = I
(
p ≥ ηϵ

1− ηϵ

)
.
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Thus, equivalence is achieved for this case if ηϵ

1−ηϵ
= tϵB, or equivalently,

ηϵ =
tϵB

1 + tϵB
. (3.9)

We will use this definition for ηϵ moving forward, and verify that the proposed welfare score
definitions work.

We now turn to group A in the case that t0A ≤ p ≤ 0. We have wp
A = p

t
ϵA(p)

B

, so

πηϵ = I

(
− tϵB

t
ϵA(p)
B

p

1 + tϵB
+

p

1 + tϵB
≥ 0

)
.

Because 1 + tϵB ≥ 0 and p ≤ 0, the indicator will be one if and only if tϵB ≥ t
ϵA(p)
B . By

Proposition 3.4, this is true if and only if ϵ ≤ ϵA(p), which is true if any only if tϵA ≤ t
ϵA(p)
A = p.

This is exactly the condition for πϵ
fair,A, as desired.

Then finally we consider the remaining cases. In the case that p ≤ t0A in A or p ≤ 0 in
B, we have that πϵ

fair,g = 0 for all ϵ by Proposition 3.4. Then as desired, 0 + (1− ηϵ)p ≤ 0 in
this case. In the case that p ≥ 0 in A or p ≥ t0B in B, we have that πϵ

fair,g = 1 for all ϵ. Then
as desired, 0 + (1− ηϵ)p ≥ 0 in this case.

Finally, we remark on the form of ηϵ. By Proposition 3.4, tϵB ≥ 0 and is decreasing in ϵ,
so ηϵ is decreasing in ϵ.

This correspondence between any ϵ-fair setting and its corresponding welfare-aware set-
ting is synthesized in the statement of Corollary 3.2, which follows from Theorem 3.2.

Corollary 3.2. It is possible to define fixed welfare scores such that the family of inexact fair
policies parameterized by any ϵ ≥ 0 in Eq. (3.8) corresponds to a family of Pareto-optimal
policies parameterized by η(ϵ). The group-dependent welfare scores are such that w ≥ 0 for
all individuals in the disadvantaged group and w ≤ 0 in the advantaged group. Furthermore,
the induced trade-off parameter η(ϵ) increases as ϵ decreases.

Fairness constraints can be seen as encoding implicit group-dependent welfare scores for
individuals, where members of disadvantaged groups are assigned positive welfare weights
and members of advantaged groups are assigned negative weights. Figure 3.8 illustrates this
result applied to data from a credit lending scenario from Barocas, Hardt, and Narayanan
[26]5, where welfare scores are induced for individuals depending on their race and likelihood
of repayment. This correspondence is related to the analysis of welfare weights by Hu

5More specifically, we estimate a distribution of profit scores using repayment information from a sample
of 301,536 TransUnion TransRisk scores from 2003 published by US Federal Reserve [282], preprocessed by
Hardt, Price, and Srebro [125], and accessible at https://fairmlbook.org/ [26]. In this demonstration, we
define the profit score as the expected gain from lending to an individual, p = u+ ·ρ+u− · (1−ρ) , where ρ is
the individual’s probability of repayment. For results in Figure 3.8, we set u+ = 1 and u− = −4, indicating
that a default is more costly than a repayment.
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Figure 3.8: Trade-offs between profit and fairness in lending can be equivalently encoded by
a multi-objective framework.

and Chen [137], however, our perspective focuses on trade-offs between welfare and profit
objectives, in contrast to pure welfare maximization.

In the case that group membership is believed to correspond to the welfare impact of
selection, Corollary 3.2 connects our results in Section 3.3 with a body of work on achieving
fairness when group labels are approximate or estimated [153]. While some applications may
directly call for statistical parity as a criterion, Corollary 3.2 emphasizes the inevitability
of fairness constraints as trade-offs between multiple objectives, and frames these trade-offs
explicitly in terms of welfare measures.

3.6 Conclusions
In this chapter we presented a methodology for developing welfare-aware policies that jointly
optimize a private return (such as profit) with a public objective (such as social welfare).
Taking care to consider data-limited regimes, we develop theory around the optimality of
using learned predictors to make decisions. Experiments corroborate our theoretical results,
showing that thresholding on predicted scores can approach a Pareto-optimal policy.

This score-based approach to balancing competing objectives with noisy data is attractive
for several reasons:
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• Score-based policies can trade off multiple objectives with scalar predictions, with error
bounded by a weighted sum of the errors in the learned scores.

• The plug-in policy is a learned decision rule that is easily explained and diagnosed —
in line with the desire for transparent classification rules in practice.

• It provides a crisp and interpretable connection to fair-constrained profit maximization,
but reframes the problem as one of multi-objective optimization (see Section 3.5).

While separating the problem of instantiating learned policies from the problem of learn-
ing scores has desirable benefits, we note the limitations of this approach as well. First, the
plug-in policy is not guaranteed to be the optimal policy learned from data. Thus, when fur-
ther assumptions on the problem structure are appropriate, it may be worthwhile to consider
more general policy classes learned from data. Second, the score-based approach shifts much
of the difficulty of welfare-aware machine learning toward defining and predicting welfare,
which is an area of active academic and policy debate [114, 152].

When welfare utilities are estimable, the ability to trade off context-sensitive measures
with general policies can improve upon the status quo of applying machine learning policies
in welfare-sensitive domains. Further, a multi-objective framework could allow communities
to understand the trade-offs between competing definitions of welfare or fairness in data
constrained situations.

Taken together, these results help illustrate how machine learning can be used to design
policies that prioritize the social impact of an algorithmic decision from the outset, rather
than as an afterthought. By elucidating the possible trade-offs between competing objectives,
and by illustrating the importance of measurement and prediction error in multi-objective
optimization, we hope this work encourages new ways of thinking about welfare-aware ma-
chine learning.

3.A Proofs for Characterization of Pareto Curves

Pareto Policies Optimize Weighted Combination of Utilities

Proposition 3.5 (Pareto optimal policies optimize a composite objective). Let Π be a set
of policies which is convex, and compact in a topology in which π 7→ UP(π) and UW(π) are
continuous.6 Then, a policy π⋆ ∈ Π is Pareto optimal if and only if there exists an η ∈ [0, 1]
for which

π⋆ ∈ argmax
π∈Π

Uη(π)

Uη(π) := (1− η)UP(π) + ηUW(π).

6The convexity of Π means that Π is closed under the randomized combination of policies. In the simplest
case, compactness is achieved when the space of features is finite (e.g. features x can only take a values in a
discrete, finite subset of Rd).



CHAPTER 3. DELINEATING INTENT WITH MULTIPLE OBJECTIVES:
WELFARE-AWARE OPTIMIZATION 34

Proof of Proposition 3.5. First, we prove that if π⋆ ∈ argmaxπ Uη(π) := (1 − η)UP(π) +
ηUW(π), then π⋆ is Pareto optimal. Suppose that there exists an η for which the policy
π⋆ ∈ argmaxπ Uη(π). If η ∈ {0, 1}, then π⋆ maximizes either UW(·) or UP(·), and is therefore
Pareto optimal by definition. Otherwise, if η ∈ (0, 1), suppose for the sake of contradiction
that π⋆ is not Pareto optimal. Then there exists a policy π for which UW(π⋆) ≤ UW(π)
and UP(π⋆) ≤ UP(π), where one of these inequalities is strict. We can then check that
Uη(π⋆) < Uη(π), contradicting the assumption that π⋆ ∈ argmaxπ Uη(π).

To show the other direction, suppose that π⋆ is Pareto optimal. If π⋆ maximizes either
profit or welfare, then π⋆ ∈ argmaxπ Uη(π) for either η = 1 or η = 0. Otherwise, let
W = UW(π⋆). Then, by Pareto optimality,

π⋆ ∈ argmax{UP(π) : UW(π) ≥ UW(π⋆), π ∈ Π}

= argmax
π∈Π

(
UP(π) + min

t≥0
t(UW(π)− UW(π⋆))

)

= argmax
π∈Π

min
t≥0

(UP(π) + t (UW(π)− UW(π⋆))) .

The map UP(π) and UW(π) are both linear functions in π. Hence, if Π is a a convex, and
compact in a topology in which π 7→ UP(π) and UW(π) are continuous, Sion’s minimax
theorem [166] ensures that strong duality holds, which means that we can switch order of
the minimization over t and maximization over π. Thus, for some t ≥ 0,

π⋆ ∈ argmax
π

(UP(π) + t · UW(π)− t · UW(π⋆)) = argmax
π

(UP(π) + t · UW(π))

= argmax
π

(
1

1 + t
UP(π) +

t

1 + t
UW(π)

)
= argmax

π

(
Ut/(1+t)(π)

)
,

as needed.

Optimal Policies under Exact Information

Here we verify the optimality of threshold policies under exact information:

Proposition 3.6 (Pareto optimal policies on exact scores are threshold policies). For the
weighted utility Uη, the optimal policy π⋆

η over the unrestricted class Π⋆ is a threshold on a
weighted combination of w and p, namely7,

π⋆
η(p, w) = I(ηw + (1− η)p ≥ 0). (3.10)

Proof of Proposition 3.6. Consider the reward of an arbitrary policy π. Recall that π(x) ∈
[0, 1] denotes the probability that π classifies an individual with features x as a 1. Since
π(x) · z ≤ z · I(z ≥ 0) for π(x) ∈ [0, 1] and z ∈ R, we can bound Uη(π) = Ex[π(x) · (ηw(x) +
(1− η)p(x))] ≤ Ex[max{0, ηw(x) + (1− η)p(x)}]. We can directly check that the threshold
policy π⋆

η(p, w) = I(ηw + (1− η)p ≥ 0) saturates this bound.
7When the distribution over (w, p) is sufficiently smooth, we can ignore the case where ηw+(1−η)p = 0.
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Well-Behaved Pareto Curves

In this section, we establish that under mild regularity conditions, the Pareto frontier takes
of the form of a continuous curve. The following assumption stipulates these conditions:

Assumption 3.1 (Well-behaved policy class). Let Π be a policy class, and let Pmax :=
supπ∈Π UP(π), Wmax := supπ UW(π), let Pmin := supπ∈Π{UP(π) : UW(π) = Wmax}. A policy
class Π is said to be well-behaved if:

(a) {p : (p, w) ∈ P(Π) for some w ∈ R} = [Pmin,Pmax]

(b) For any p ∈ [Pmin,Pmax], argmaxπ∈Π{UW(π) : UP(π) = p} is achieved.

The following lemma shows that the above assumptions are reasonable, in that we
shouldn’t expect Pareto optimal policies with p /∈ [Pmax,Pmin].

Lemma 3.1. Suppose that Π is any policy class such that there exists πW attaining UW(πW) =
Wmax. Then, for any (p, w) ∈ P(Π) which is a Pareto-optimal pair, p ∈ [Pmin,Pmax].

Proof. Clearly p ≤ Pmax, since Pmax is the maximal attainable profit. Now, suppose that
(p, w) ∈ P(Π) is a Pareto optimal pair, and assume for the sake of contradiction that
p < Pmin. Since there exists a UW(πW) = Wmax, there exists, for any ϵ > 0, some policy πϵ

such that UW(πϵ) = UW(πW), and UP(πϵ) ≥ Pmin − ϵ. By making ϵ sufficiently small, we can
ensure that UP(πϵ) > p. On the other hand, UW(πϵ) = UW(πW) = Wmax, so that in particular
UW(πϵ) ≥ w. Hence, πϵ dominates the policy with utilities (p, w) in a Pareto sense, so that
(p, w) /∈ P(Π).

We now establish the existence of Pareto curves for for well-behaved policy classes.

Lemma 3.2 (Properties of the Pareto curve). For well-behaved function classes (Assump-
tion 3.1), there exists a unique, non-increasing function gΠ such that

P(Π) = {(p,gΠ(p)) : p ∈ [Pmin,Pmax]} , (3.11)

where gΠ(p) := supπ∈Π{UW(π) : UP(π) = p}, and where we recall Pmin,Pmin from Assump-
tion 3.1. If in addition Π is convex, then gΠ(p) is concave.

Proof of Lemma 3.2. Suppose Assumption 3.1 holds.
First, we show P(Π) ⊆ {(p,gΠ(p)) : p ∈ [Pmin,Pmax]}. Given (p, w) ∈ P(Π) correspond-

ing to a policy π, we must have that p ∈ [Pmin,Pmax] by Lemma 3.1. Moreover, by Pareto
optimality, w = gΠ(p) := supπ∈Π{UW(π) : UP(π) = p} since this optimal is attained by
Assumption 3.1.

For the reverse inclusion, we know that if p ∈ [Pmin,Pmax], then by Assumption 3.1(a),
there exists a policy π such that UP(π) = p. Then, by Assumption 3.1(b), there exists a
policy π which maximizes UW(π) : UP(π) = p. By definition, UW(π) = gΠ(p), and π is Pareto
optimal by definition. Hence (p, w) ∈ P(Π).
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We now show that that convexity of Π implies concavity of gΠ. It suffices to show
that, for any points (p1, w1), (p2, w2) ∈ P(Π), and any λ ∈ [0, 1], λw1 + (1 − λ)w2 ≤
gΠ(λp1 + (1 − λ)p2). Indeed, by definition of the Pareto curve, there exist policies π1 and
π2 such that (UP(πi),UW(πi)) = (pi, wi) for i ∈ {1, 2}. By convexity of Π, the policy π :=
λπ1 + (1 − λ)π2 ∈ Π. Moreover, UP(π) = λp1 + (1 − λ)p2 and UW(π) = λw1 + (1 − λ)w2.
Finally, by definition of gΠ, UW(π) ≤ gΠ(UP(π)), which concludes the proof.

Lemma 3.2 confirms that the Pareto curve, as we might intuitively imagine it, actually
exists. With this in hand, we now show that given the Pareto-optimal policies with exact
scores, the parameterizing function gΠ is concave. Pictorially, gΠ(p) is the Pareto frontier
interpreted as a function of allowable profit p which returns the maximum amount of welfare
w that can be achieved at this profit level (e.g. the black curve in Figure 3.1, left).

Theorem 3.3 (Pareto frontier under exact knowledge). Suppose that the unconstrained poli-
cies are a well-behaved class. Consider the setting where the welfare and profit are specified
exactly by scores w and p. Then, given any population distribution over p, w, the Pareto
optimal policies π⋆

η are given by Eq. (3.2) and the Pareto frontier P(Π⋆) is given by

Pexact := {(UP(π⋆
η),UW(π⋆

η)) : η ∈ [0, 1]}.

Moreover, the associated function gexact(p) is non-increasing and concave.

Proof of Theorem 3.3. The first statement follows from Proposition 3.6, and that gPexact(p)
is non-increasing follows from Lemma 3.2.

Concavity of gPexact(p) follows from Lemma 3.2, and the fact that Π⋆ is convex.

3.B Proof of Proposition 3.2
Proof of Proposition 3.2. By definition of π⋆

η,

Uη(π⋆
η)− Uη(πplug

η ) = E[|ηw + (1− η)p| · I(π⋆
η ̸= πplug

η )] . (3.12)

Now consider the event π⋆
η ̸= πplug

η . This happens only when the predicted scores incur an
opposite classification by the η threshold policy, that is, (ηwi+(1−η)pi)·(ηŵi+(1−η)p̂i) < 0.
Define the quantities

yi := ηwi + (1− η)pi

zi := η(ŵi − wi) + (1− η)(p̂i − pi) ,

so that

Uη(π⋆
η)− Uη(πplug

η ) = E[|y| · I(y(y + z) < 0)] ,
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where y ∼ N (0, η2σ2
w + (1 − η)2σ2

p + 2ρη(1 − η)σwσp) and z is sub-Gaussian with squared
parameter σ̃2 = 4(η2σ2

εw + (1− η)2σ2
εp) [287].8 By assumption, the errors are independent of

the scores, so that

E[|y| · I(y(y + z) < 0)] = E [|y| · E [I(y(y + z) < 0)|y]]
= E [|y| · P (y(y + z) < 0)] .

Now by sub-Gaussianity of z, we bound P (y(y + z) < 0) for any fixed y:

P (y(y + z) < 0) ≤
{
P (z < −y) y > 0

P (z > −y) y < 0

≤ e−
y2

2σ̃2 .

By symmetry of the distribution of y, the expectation can be bounded as

E[|y| · I(y(y + z) < 0)] ≤ 2

∫ ∞

0

y(e−y2/(2σ̃2)) · 1

σy

√
2π

e−y2/(2σ2
y)dy

=

√
2

σy

√
π

∫ ∞

0

ye
− y2

2

(
1
σ̃2+

1

σ2
y

)
dy

=
1

σy

(
1
σ̃2 +

1
σ2
y

)1/2 ·
√
2
(

1
σ̃2 +

1
σ2
y

)1/2
√
π

∫ ∞

0

ye
− y2

2

(
1
σ̃2+

1

σ2
y

)
dy .

This is a scaled mean of a half-normal distribution with scale parameter
(

1
σ̃2 +

1
σ2
y

)−1/2

.
Thus, difference in η-utility is bounded as

Uη(π⋆
η)− Uη(πplug

η ) ≤
√
2

σy

√
π

(
1

σ̃2
+

1

σ2
y

)−1

=
σy ·
√
2√

π

(
σ̃2

σ̃2 + σ2
y

)
.

The expected utility of the optimal classifier is E[yI(y ≥ 0) ≥ 0] for y ∼ N (0, σ2
y) as defined

above. As one half the expectation of a half-normal distribution with scale parameter σy,

E[Uη(π
⋆)] =

σy√
2π

=
1√
2π

√
η2σ2

w + (1− η)2σ2
p + 2ρη(1− η)σwσp ,

8When ϵw and ϵp are assumed to be independent, σ̃2 = (η2σ2
εw + (1− η)2σ2

εp) [287].
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which is non-decreasing in ρ for η ∈ [0, 1], and increasing in ρ for η ∈ (0, 1). Then, the
expected Pareto utility of the plug in policy can be lower bounded as

E[Uη(πplug
η )] = E[Uη(π⋆

η)−
(
Uη(π⋆

η)− Uη(πplug
η )

)
]

≥ σy√
2π

(
1− c

σ̃2

σ̃2 + σy

)

= E[Uη(π⋆
η)]

(
1− c

σ̃2

σ̃2 + σ2
y

)
,

where c = 2. Since σy is increasing in ρ for η ∈ (0, 1), the lower bound on E[Uη(πplug
η )] is

increasing as well.

3.C Proof of Proposition 3.4
Before presenting the supporting lemmas that will lead into the proof of of Proposition 3.4,
we define important quantities. Recall from Chapter 2 that demographic parity constrains
the selection rates of policies. Define rate function for each group as

rg(π) = E[πg(p) | in group g] .

Because we focus on threshold policies, we will equivalently write rg(t) := rg(I(p ≥ t)).
This function is monotonic in the threshold t, and therefore its inverse maps acceptance
rates to thresholds which achieve that rate, i.e. r−1

g (β) = tg. Define fA(β) and fB(β) to be
components of the objective function in (3.8) due to each group, that is,

fg(β) = P{in g}E[p · I{p > r−1
g (β)} | in g] .

By Proposition 5.3 in [179], the functions fg are concave. Therefore, the combined objective
function is concave in each argument,

UP(βA, βB) :=
∑

g∈{A,B}

P{in g}E[p · I{p > r−1
g (βg)} | in g] =

∑

g∈{A,B}

fg(βg) . (3.13)

We restrict our attention to the case that p has continuous support. In this case, the functions
fg are differentiable.

Lemma 3.3. If the distribution of exact profit scores for groups A and B are such that that
maximum profit selection rates βMaxUtil

A = rA(0) and βMaxUtil
B = rB(0) and rA(0) ≤ rA(0),

then for any ϵ ≥ 0, the selection rates maximizing the optimization problem (3.8) under
demographic parity satisfy the following:

βMaxUtil
A ≤ βϵ

A ≤ βϵ
B ≤ βMaxUtil

B .
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Proof of Lemma 3.3. First, note we must have that βϵ
A ≤ βMaxUtil

B . If it were that βϵ
A >

βMaxUtil
B , then the alternate solution βA = βMaxUtil

B and βB = βMaxUtil
B would be feasible for

(3.8) and achieve a higher objective value by the concavity of Eq. (3.13).
Then we show that βϵ

B ≤ βMaxUtil
B . Assume for the sake of contradiction that βϵ

B > βMaxUtil
B .

Then since βϵ
A ≤ βMaxUtil

B , setting βB = βMaxUtil
B achieves higher objective value without

increasing |βB − βϵ
A|, and thus would be feasible for (3.8). A similar argument shows that

βϵ
A ≥ βMaxUtil

A .
Then, we show that for any optimal selection rates, βϵ

A ≤ βϵ
B for all ϵ ≥ 0. Suppose for

the sake of contradiction that βϵ
A > βϵ

B. In this case, we can equivalently write that

βMaxUtil
B − βϵ

B > βMaxUtil
B − βϵ

A and/or βϵ
A − βMaxUtil

A > βϵ
B − βMaxUtil

A .

In either case, setting βϵ
A = βϵ

B would be a feasible solution which would achieve a higher
objective function value, by the concavity of Eq. (3.13). This contradicts the assumption
that βϵ

A > βϵ
B, and thus it must be that βϵ

A ≤ βϵ
B.

Lemma 3.4. Under the conditions of Lemma 3.3, the maximizer (βϵ
A, β

ϵ
B) of the ϵ-demographic

parity constrained problem in (3.8) is either satisfied with the maximum profit selection rates
(βMaxUtil

A , βMaxUtil
B ), or βϵ

B − βϵ
A = ϵ (or the two conditions coincide).

Proof of Lemma 3.4. If it were that |βϵ
A−βϵ

B| = γ < ϵ then we could construct an alternative
solution using the remaining ϵ − γ slack in the constraint which would achieve a higher
objective function value, since the functions fg are concave. Furthermore, by Lemma 3.3,
we have that |βϵ

A − βϵ
B| = βϵ

B − βϵ
A .

This result implies that the complexity of the maximization in (3.8) can be reduced to a
single variable search:

β⋆ = argmax
β

fA(β) + fB(β + ϵ), πϵ
fair = (I{p ≥ r−1

g (β⋆)}, I(p ≥ r−1
g (β⋆ + ϵ)}) (3.14)

This expression holds when |βMaxUtil
A − βMaxUtil

B | > ϵ, and otherwise the solution is given by
(βMaxUtil

A , βMaxUtil
B ) .

Lemma 3.5. Under the conditions of Lemma 3.3, as ϵ ≥ 0 decreases, the group-dependent
selection rates βϵ

A and βϵ
B become closer to the profit maximizing selection rates for each

group. That is, the functions |βϵ
A − βMaxUtil

A | and |βϵ
B − βMaxUtil

B | are both increasing in ϵ.

Proof of Lemma 3.5. We show that for any ϵ′ ≥ ϵ ≥ 0, it must be that |βϵ
g−βMaxUtil

g | ≤ |βϵ′
g −

βMaxUtil
g |. First, we remark that if |βMaxUtil

A − βMaxUtil
B | ≤ ϵ or if ϵ ≤ |βMaxUtil

A − βMaxUtil
B | ≤ ϵ′,

the claim holds by application of Lemma 3.3.
Otherwise, let the ϵ-demographic parity constrained solution be optimized by (β, β + ϵ)

and the ϵ′-demographic parity constrained solution be optimized by (β′, β′+ϵ′). This is valid
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by Lemma 3.4. Equivalently, β ∈ argmax{fA(β) + fB(β + ϵ)} and β′ ∈ argmax{fA(β′) +
fB(β

′ + ϵ′)}. Since fA and fB are concave and differentiable,

f ′
A(β) + f ′

B(β + ϵ) = 0 and f ′
A(β

′) + f ′
B(β

′ + ϵ′) = 0 .

Assume for sake of contradiction that β < β′ and recall that by Lemma 3.3 we further
have β′ > β ≥ βMaxUtil

A , so by the concavity of fA,

fA(β) ≥ fA(β
′) and f ′

A(β
′) ≤ f ′

A(β) .

Analogously, we must have that βMaxUtil
B ≥ β′ + ϵ′ > β + ϵ, so that

fB(β
′ + ϵ′) ≥ fB(β + ϵ) and f ′

B(β
′ + ϵ′) ≥ f ′

B(β + ϵ) .

Using the equations above, we have that

f ′
B(β + ϵ) = −f ′

A(β) ≤ −f ′
A(β

′) = f ′
B(β

′ + ϵ′) .

Since fB is concave and thus its derivative is decreasing, this statement implies that β + ϵ ≥
β′ + ϵ′, which is a contradiction. Thus, it must be that β ≥ β′, i.e. βϵ

A ≥ βϵ′

A . With an
analogous proof by contradiction, one can show that βϵ′

B ≥ βϵ
B.

Combining these two inequalities in Lemma 3.3 completes the proof of Lemma 3.5.

Proof of Proposition 3.4. The proof makes use of Lemma 3.3 and Lemma 3.5.
First, we show that tϵA ≤ 0 for all ϵ ≥ 0. This is a consequence of Lemma 3.3, which

shows that βϵ
A ≥ βMaxUtil

A . Since rA is a decreasing function (and thus, r−1
A is also a decreasing

function), this implies that

tϵA = r−1
A (βϵ

A) ≤ r−1
A (βMaxUtil

A ) = 0 .

A similar argument holds to show that tϵB ≥ 0 for all ϵ ≥ 0.
Now we show that tϵA is increasing in ϵ and tϵB is decreasing in ϵ to show that both are

shrinking toward 0 as ϵ increases. Since tg = r−1
g (β) is decreasing in β, Lemma 3.5 implies

that the functions |tϵA| = |tϵA−tMaxUtilA | and |tϵB| = |tϵB−tMaxUtilB | are also decreasing in ϵ toward
the max profit thresholds of tMaxUtilA = tMaxUtilB = 0. Since tϵA ≤ 0 and tϵB ≥ 0 for all ϵ ≥ 0,
this concludes the proof of Proposition 3.4.
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Part II

Training Data as a Form of Context:
Two Views for Supervised Learning

Model building and model testing, however, are necessarily constrained by the properties of
the data with which we are dealing: one’s philosophy of measurement influences the

hypotheses that one can formulate and the ways in which those hypotheses may be examined.

— David J. Hand, “Statistics and the Theory of Measurement,” 1996 [122]

Alongside understanding and designing for the intent of learning systems as discussed in
Part I, it is crucial to understand how we can reach these diverse objectives when learning
statistical models from data. In Part II of this thesis, we ground our study of context in
learning systems by focusing on two key elements of structure in training data: how data
instances are collected across different sub-populations and data sources and what
information different features of a dataset convey.

In Chapter 4, we incorporate dataset collection as a design step in the learning procedure.
This enables us to assess and leverage the importance of different data allocations toward
reaching high group and population accuracies. The results expose that in many settings,
representation across all diverse groups in training data is aligned with reaching
population-level accuracy goals. In service of obtaining accurate predictors, no components
of data should be overlooked. In Chapter 5, we study how to make the most of information
that is available to us in data, focusing on careful use of auxilliary “side information” like
time or location metadata. Such data are natural to many settings, but should be
incorporated with care. We propose that post-processing is a natural and effective way to
utilize this structure, and show it is robust to different tasks, predictors, and sampling
patterns.

Together, Chapters 4 and 5 provide two complementary and encouraging takes on
understanding and utilizing data as a form of context for delineating system requirements
and improving model performance. These two views illustrate how data can be used to
formalize certain notions of context in learning systems. However, data are not the whole
of context; in Chapter 6, we highlight key limitations of viewing data as context,
emphasizing opportunities for expanding this line of research.
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Chapter 4

The Importance of Numerical
Representation of Sub-Groups in
Training Data

This chapter is based on the paper “Representation matters: Assessing the importance of sub-
group allocations in training data” [247], written in collaboration with Theodora Worledge,
Benjamin Recht, and Michael I. Jordan.

Collecting more diverse and representative training data is often touted as a remedy for
the disparate performance of machine learning predictors across subpopulations. However,
a precise framework for understanding how dataset properties like diversity affect learn-
ing outcomes is largely lacking. By casting data collection as part of the learning process,
we demonstrate that diverse representation in training data is key not only to increasing
subgroup performances, but also to achieving population-level objectives. Analysis and ex-
periments presented in this chapter describe how dataset compositions influence performance
and provide constructive results for using trends in existing data, alongside domain knowl-
edge, to help guide intentional, objective-aware dataset design.

4.1 Background
Datasets play a critical role in shaping the perception of performance and progress in ma-
chine learning —the way we collect, process, and analyze data affects the way we benchmark
success and form new research agendas [93, 220]. A growing appreciation of this determi-
native role of datasets has sparked a concomitant concern that standard datasets used for
training and evaluating machine learning models lack diversity along significant dimensions,
for example, geography, gender, and skin type [49, 258].

Lack of diversity in evaluation data can obfuscate disparate performance when evaluating
based on aggregate accuracy [49]. Lack of diversity in training data can limit the extent
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to which learned models can adequately apply to all portions of a population, a concern
highlighted in recent work in the medical domain [119, 134].

This chapter aims to develop a general unifying perspective on the way that dataset
composition affects outcomes of machine learning systems. We focus on dataset allocations :
the number of datapoints from predefined subsets of the population. While we acknowledge
that numerical inclusion of groups is an imperfect proxy of representation, we believe that
allocations provide a useful initial mathematical abstraction for formulating relationships
among diversity, data collection, and statistical risk. We discuss broader implications of our
formulation in Section 4.5 and Chapter 6.

With the implicit assumption that the learning task is well specified and performance
evaluation from data is meaningful for all groups, we first ask:

1. Are group allocations in training data pivotal to performance? To what extent can
methods that up-weight underrepresented groups help, and when might upweighting ac-
tually hurt performance?

Taking a point of view that data collection is a critical component of the overall machine
learning process, we study the effect that dataset composition has on group and population
accuracies. This complements work showing that simply gathering more data can mitigate
some sources of bias or unfairness in learned outputs [61], a phenomenon which has been
observed in practice as well. Indeed, in response to the Gender Shades study [49], which
exposed disparate intersectional accuracies of commercially available facial recognition soft-
ware, companies selectively collected additional data to decrease the exposed inaccuracies
of their facial recognition models for certain groups, often raising aggregate accuracy in the
process [234]. Given the potential for targeted data collection efforts to repair unintended
outcomes of machine learning systems, we next ask:

2. How might we describe “optimal” dataset allocations for different learning objectives?
Does the often-witnessed lack of diversity in large-scale datasets align with maximizing
population accuracy?

We show that purposeful data collection efforts can proactively support intentional ob-
jectives of a learning system, and that diversity and population objectives are often aligned.
Many datasets have recently been designed or amended to exhibit diversity of the underlying
population [250, 275, 297]. Such endeavors are significant undertakings, as data gathering
and annotation must consider consent, privacy, and power concerns in addition to inclusivity,
transparency and reusability [106, 150, 292]. In light of the importance of more representa-
tive and diverse datasets, and the effort required to create them, our final question asks:

3. When and how can we leverage existing datasets to help inform better allocations,
towards achieving diverse objectives in a subsequent dataset collection effort?
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Representation bias, or systematic underrepresentation of meaningful sub-population in
a dataset, is one of many causes of unintended consequences of machine learning [269]. It is
our intention that the results of this work can provide a resource toward comprehensive and
contextual scoping of machine learning pipelines and their limitations so that they may be
applied conscientiously and successfully. In this chapter:

1. We analyze the complementary roles of dataset allocations and algorithmic interven-
tions for achieving per-group and total-population performance (Section 4.2). Our
experiments show that while algorithmically up-weighting underrepresented groups
can help, dataset composition is the most consistent determinant of performance (Sec-
tion 4.4).

2. We propose a scaling model that describes the impact of dataset allocations on group
accuracies (Section 4.3). Under this model, when parameters governing the relative
values of within-group data are equal for all groups, the allocation that minimizes
population risk overrepresents minority groups relative to their population proportions.

3. We demonstrate that our proposed scaling model captures major trends of the relation-
ship between dataset allocations and performance (Section 4.4). Further experiments
evidence that a small initial sample can be used to inform subsequent data collection
efforts to, for example, maximize the minimum accuracy over groups.

Sections 4.2 and 4.3 formalize data collection as part of the learning problem and derive
results under illustrative settings. Experiments in Section 4.4 support these results and
expose nuances inherent to real-data contexts. Section 4.5 synthesizes results and delineates
possible generalizations and extensions of our findings.

Additional Related Work

Targeted data collection in machine learning. Recent research evidences that targeted
data collection can be an effective way to reduce disparate performance of machine learning
models evaluated across sub-populations [234]. Chen, Johansson, and Sontag [61] present
a formal argument that the addition of training data can lessen discriminatory outcomes
while improving accuracy of learned models, and adaptively collecting data from the lowest-
performing sub-population has been proposed as a method by which to increase the minimum
accuracy over groups [4, 259].

At the same time, there are many complexities of gathering data as a solution to disparate
performance across groups. Targeted data collection from specific groups can present undue
burdens of surveillance or skirt consent [220]. When learning systems fail portions of their
intended population due to issues of measurement and construct validity, more thorough
data collection is unlikely to solve the issue without further intervention [143].

With these complexities in mind, we study the importance of numerical representation
in training datasets in achieving diverse objectives. Optimal allocation of subpopulations
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in statistical survey designs dates back to at least Neyman in 1934 [209], including strati-
fied sampling methods to ensure coverage across sub-populations [182]. For more complex
prediction systems, the field of optimal experimental design [227] studies what inputs are
most valuable for reaching a given objective, often focusing on linear prediction functions.
We consider a constrained sampling structure and directly model the impact of group allo-
cations on subgroup performance for general model classes, more similar to the setting of
Hashimoto [127].

Valuing data. In economics, allocations indicate a division of goods to various entities
[74]. While we focus on the influence of data allocations on model accuracies across groups,
there are many approaches to valuing data. Methods centering on a theory of Shapley
valuations [107, 298] complement studies of the influence of individual data points on model
performance to aid subsampling data [286].

Methods for handling group-imbalanced data. Importance sampling and impor-
tance weighting are standard approaches to addressing class imbalance or small groups sizes
[48, 120], though the effects of importance weighting for deep learning may vary with regu-
larization [52]. Other methods specifically address differential performance between groups.
Maximizing minimum performance across groups can reduce accuracy disparities [251] and
promote fairer sequential outcomes [128]. For broader classes of group-aware objectives,
techniques exist to mitigate unfairness or disparate performance of black box prediction
functions [97, 162]. It might not be clear a priori which subsets need attention; Sohoni et al.
[265] propose a method to identify and account for hidden strata, while other methods are
defined for any subsets [128, 162].

In addition to modifying the optimization objective or learning algorithm, one can also
modify the input data itself to match the desired population by downsampling or by upsam-
pling with data augmentation techniques [60, 142].

Notation

∆k denotes the k-dimensional simplex. Z+ denotes non-negative integers and R+ non-
negative reals.

4.2 Training Set Allocations and Alternatives
We study settings in which each data instance is associated with a group gi, so that the
training set can be expressed as S = {xi, yi, gi}ni=1 where xi, yi denote the features and
labels of each instance. We index the discrete groups by integers G = {1, .., |G|}, or when
we specifically consider just two groups, we write G = {A,B}. We assume that groups
are disjoint and cover the entire population, with γg = P(X,Y,G)∼D[G = g] denoting the
population prevalence of group g, so that γ⃗ ∈ ∆|G|. Groups could represent inclusion in
one of many binned demographic categories, discrete sources of data, or simply a general
association with latent characteristics that are relevant to prediction.
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For a given population with distribution D over features, labels, and groups, we are
interested in the population level risk, R(f̂(S);D) := E(X,Y,G)∼D[ℓ(f̂(X), Y )], of a predictor
f̂ trained on dataset S, as well as group specific risks. Denoting the group distributions
by Dg, defined as conditional distributions, via

P(X,Y )∼Dg [X = x, Y = y] = P(X,Y,G)∼D[X = x, Y = y,G = g]/γg,

the population risk decomposes as a weighted average over group risks:

R(f̂(S);D) =
∑

g∈G

γg · R(f̂(S);Dg) . (4.1)

In the remainder of this section we will assume that the loss ℓ(ŷ, y) is a separable function
over data instances. While this holds for many common loss functions, some objectives do
not decouple in this sense (e.g., group losses and associated classes of fairness-constrained
objectives; see [97]). We revisit this point in Sections 4.4 and 4.5.

Training Set Allocations

In light of the decomposition of the population-level risk as a weighted average over group
risks in Eq. (4.1), we now consider the composition of fixed-size training sets, in terms of
how many samples come from each group.

Definition 4.1 (Allocations). Given a dataset of n triplets, {xi, yi, gi}ni=1, the allocation
α⃗ ∈ ∆|G| describes the relative proportions of each group in the dataset:

αg :=
1
n

n∑

i=1

I[gi = g], g ∈ G. (4.2)

It will be illuminating to consider α⃗ not only as a property of an existing dataset, but as
a parameter governing dataset construction, as captured in the following definition.

Definition 4.2 (Sampling from allocation α⃗). Given the sample size n, group distributions
{Dg}g∈G, and allocation α⃗ ∈ ∆|G|, such that ng :=αgn ∈ Z+,∀g ∈ G, to sample from
allocation α⃗ is procedurally equivalent to independent sampling of |G| disjoint datasets Sg
and concatenating:

S(α⃗, n) = ∪
g∈G
Sg (4.3)

Sg = {xi, yi, g}ng

i=1, (xi, yi) ∼i.i.d. Dg .

For α⃗ not satisfying the requirement that αgn is integral, we could randomize the frac-
tional allocations, or take ng = ⌊αgn⌋, reducing the total number of samples to

∑
g⌊αgn⌋.

In the following sections we will generally allow allocations with ng ̸∈ Z, assuming that the
effect of up to |G| fractionally assigned instances is negligible for large n.
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The procedure given in Definition 4.2 suggests formalizing data collection as a component
of the learning process in the following way: in addition to choosing a loss function and
method for minimizing the risk, choose the relative proportions at which to sample the
groups in the training set:

α⃗∗ = argmin
α⃗∈∆|G|

min
f̂∈F
R
(
f̂ (S(α⃗, n)) ;D

)
.

In Section 4.3, we show that when a dataset curator can design dataset allocations in the
sense of Definition 4.2, they have the opportunity to improve accuracy of the trained model.
Of course, one does not always have the opportunity to collect new data or modify the
composition of an existing dataset. We next consider methods for using fixed datasets that
have groups with small training set allocation αg, relative to γg, or high risk for some groups
relative to the population.

Accounting for Small Group Allocations in Fixed Datasets

In classical empirical risk minimization (ERM), one learns a function from class F
that minimizes average prediction loss over the training instances (xi, yi, gi) ∈ S (we also
abuse notation and write i ∈ S) with optional regularization R:

f̂(S) = argmin
f∈F

∑

i∈S

ℓ(f(xi), yi) +R(f,S).

There are many methods for addressing small group allocations in data (see Section 4.1). Of
particular relevance to our work are objective functions that minimize group or population
risks. In particular, one approach is to use importance weighting (IW) to re-weight
training samples with respect to a target distribution defined by γ⃗:

f̂ IW(S) = argmin
f∈F

∑

g∈G

γg
αg


∑

i∈Sg

ℓ(f(xi), yi)


+R(f,S).

This empirical risk with instances weighted by γg/αg = γgn/ng is an unbiased estimate of
the population risk, up to regularization. While unbiasedness is often desirable, importance
weighting can induce high variance of the estimator when γg/αg is large for some group [76],
which happens when group g is severely underrepresented in the training data relative to
their population prevalence.

Alternatively, group distributionally robust optimization (GDRO) [138, 251] min-
imizes the maximum empirical risk over all groups:

f̂GDRO(S) = argmin
f∈F

max
g∈G


 1

ng

∑

i∈Sg

ℓ(f(xi), yi) +R(f,Sg)


 .
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For losses ℓ which are continuous and convex in the parameters of f , the optimal GDRO so-
lution corresponds to the minimizer of a group-weighted objective: 1

n

∑n
i=1 w(gi) ·ℓ(f(xi), yi),

though this is not in general true for nonconvex losses (see Proposition 1 of [251] and the
remark immediately thereafter).

Given the correspondence of GDRO (for convex loss functions) and IW to the opti-
mization of group-weighted ERM objectives, we now investigate the joint roles of sample
allocation and group re-weighting for estimating group-weighted risks. For prediction func-
tion f , loss function ℓ, and group weights w : G → R+, let L̂(w, α, n; f, ℓ) be the random
variable defined by:

L̂(w, α, n; f, ℓ) := 1
n

∑

i∈S(α⃗,n)

w(gi) · ℓ(f(xi), yi) ,

where the randomness in L̂ comes from the draws of xi, yi from Dgi according to procedure
S(α⃗, n) (Definition 4.2), as well as any randomness in f .

The following proposition shows that group weights and allocations play complementary
roles in risk function estimation. In particular, if w(g) depends on the sampling allocations
αg, then there are alternative group weights w∗ and allocation α⃗∗ such that the alternative
estimator has the same expected value but lower variance.
Proposition 4.1 (Weights and allocations). For any loss ℓ, prediction function f and group
distributions Dg, there exist weights with w∗(g) ∝

(
Var(x,y)∼Dg [ℓ(f(x), y)]

)−1/2 such that for
any triplet (α⃗, w, n) with

∑
g αgw(g) > 0, if w ̸∝∼ w∗,1 there exists an alternative allocation

α⃗∗ such that

E[L̂(w∗, α⃗∗, n; f, ℓ)] = E[L̂(w, α⃗, n; f, ℓ)]
Var[L̂(w∗, α⃗∗, n; f, ℓ)] < Var[L̂(w, α⃗, n; f, ℓ)] .

If w(g) > w∗(g), α∗
g > αg and if w(g) < w∗(g), α∗

g < αg.

Proof of Proposition 4.1. For any total training set size n, any (w, α⃗) pair induces a vector
γ⃗′ with entries γ′

g(w, α⃗) :=
w(g)αg∑

g∈G w(g)αg
, where

E[L̂(w, α⃗, n; f, ℓ)] =
1

n

∑

(xi,yi,gi)∈S(α⃗,n)

w(gi)E[ℓ(f(xi), yi)]

=
∑

g∈G

ng

n
w(g)E(x,y)∼Dg [ℓ(f(x), y)]

= c · Eg∼Multinomial(γ⃗′)

[
E(x,y)∼Dg [ℓ(f(x), y)]

]

1We use the symbol ̸∝∼ to denote “not approximately proportional to.” The approximately part of this
relation stems from finite and integer sample concerns; for example, the proposition holds if we consider
w ̸∝∼ w∗ to mean ∃g ∈ G : |1− w(g)

w∗(g) | >
|G|
αgn

.
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for constant c =
∑

g αgw(g). The vector γ⃗′ in this sense describes an implicit “target distri-
bution” induced by applying weights w after sampling with allocation α⃗. Note that unless
wg = 0 for all g with αg > 0, γ⃗′ has at least one nonzero entry. The constant c re-scales the
weighted objective function with original weights w so as to match the expected loss with
respect to the group proportions γ⃗′. Stated another way, for any alternative allocation α⃗′,
we could pick weights w′(g) = cγ′

g/α
′
g (letting w′(g) = 0 if α′

g = 0), and satisfy

E[L̂(w′, α⃗′, n; f, ℓ)] = E[L̂(w, α⃗, n; f, ℓ)] .

Given this correspondence, we now find the pair (α⃗∗, w∗) which minimizes Var[L̂(cw′, α⃗′, n; f, ℓ)],
subject to w′(g)α′

g = cγ′
g. Since the original pair (α⃗, w) satisfies this constraint (by construc-

tion), we must have

min
α⃗′,w′:w′(g)α′

g=cγ′
g

Var[L̂(w′, α⃗′, n; f, ℓ)] ≤ Var[L̂(w, α⃗, n; f, ℓ)] .

We first compute Var[L̂(w′, α⃗′, n; f, ℓ)]. By Definition 4.2, samples (xi, yi) are assumed to
be independent draws from distributions Dgi , so that the variance of the estimator can be
written as (for convenience we assume here that nα′

g ∈ Z, see the discussion below):

Var
[
L̂(w′, α⃗′, n; f, ℓ)

]
=

1

n2

∑

g∈G

w′(g)2
nα′

g∑

i=1

E(xi,yi)∼Dg

[(
ℓ(f(xi), yi)− E(x,y)∼Dg [ℓ(f(x), y)]

)2]

=
1

n

∑

g∈G

α′
gw

′(g)2Var
[
ℓ(i)g

]
,

where Var
[
ℓ
(i)
g

]
denotes E(xi,yi)∼Dg

[(
ℓ(f(xi), yi)− E(x,y)∼Dg [ℓ(f(x), y)]

)2]. Now, to respect
the constraint w′(g)α′

g = cγ′
g means that for any g with γ′

g > 0, w′(g) is a deterministic
function of α′

g, since c and γ⃗′ are determined by the initial pair (α⃗, w). Then it is sufficient
to compute

argmin
α′∈∆|G|

1

n

∑

g∈G:γ′
g>0

α′
g

(
cγ′

g

α′
g

)2

Var
[
ℓ(i)g

]
= argmin

α′∈∆|G|

c2

n

∑

g∈G:γ′
g>0

(γ′
g)

2

α′
g

Var
[
ℓ(i)g

]
.

The minimizer α⃗∗ has entries α∗
g = γ′

g

√
Var[ℓ

(i)
g ]/

(∑
g∈G γ

′
g

√
Var[ℓ

(i)
g ]

)
. Because α⃗∗ is unique

and determines w∗, Var[L̂(w∗, α⃗∗, n; f, ℓ)] ≤ Var[L̂(w′, α⃗′, n; f, ℓ)] with strict inequality unless
(w′, α⃗′) = (w∗, α⃗∗). The optimal weights are

w∗(g) = cγ′
g/α

∗
g = c

(∑

g∈G

γ′
g

√
Var[ℓ

(i)
g ]

)
/

√
Var[ℓ

(i)
g ] .
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Note that for any pair of groups (g, g′), the relative weights satisfy w∗(g)
w∗(g′)

=

√
Var[ℓ

(i)

g′ ]

Var[ℓ
(i)
g ]

, and

thus do not depend on γ⃗′.
If we consider finite sample concerns, the minimizer α∗ must satisfy integer values nα∗

g ∈
Z+ ∀g ∈ G. In this case, efficient algorithms exist for finding the integral solution to allocating
{ng}g∈G [294]. However, the non-integer restricted solution α∗ has a closed form solution,
and we will use the fact that for any group g, α∗

g as defined above and its variant with the
additional constraint that nα∗

g ∈ Z+ can differ by at most |G|
n

. This means that any α⃗ with
|αg−α∗

g| > |G|
n

cannot be a minimizer of the objective function, even constrained to nα∗
g ∈ Z.

Since w(g)αg = cγ′
g, an equivalent statement in terms of w is |1− w(g)

w∗(g)
| > w(g)|G|

ncγ′(g)
= |G|

nαg
= |G|

ng
.

Finally, we show that if w∗(g) < w(g), α∗
g > αg. This follows from our definition of γ⃗′

such that w(g) = cγ′
g/αg, and our constraint, such that w∗(g) = cγ′

g/α
∗
g. From these, we

must have that w∗(g)α∗
g = w(g)αg, from which the claim follows.

Since the estimation of risk functions is a key component of learning, Proposition 4.1 illu-
minates an interplay between the roles of sampling allocations and group-weighting schemes
like IW and GDRO. When allocations and weights are jointly maximized, the optimal alloca-
tion accounts for an implicit target distribution γ⃗′ (defined above), which may vary by objec-
tive function. The optimal weights account for per-group variabilities Var(x,y)∼Dg [ℓ(f(x), y))].
In Section 4.4 we find that it can be advantageous to use IW and GDRO when some groups
have small αg/γg; though the boost in accuracy is less than having an optimally allocated
training set to begin with, and diminishes when all groups are appropriately represented in
the training set allocation.

4.3 Allocating Samples to Minimize Population-Level
Risk

Having motivated the importance of group allocations, we now investigate the direct effects
of training set allocations on group and population risks. Using a model of per-group per-
formance as a function of allocations, we study the optimal allocations under a variety of
settings.

A Per-Group Power-Law Scaling Model

We model the impact of allocations on performance with scaling laws that describe per-group
risks as a function of the number of data points from their respective group, as well as the
total number of training instances.

Assumption 4.1 (Group risk scaling with allocation). The group risks denoted asR(f̂ ;Dg) :=

E(x,y)∼Dg [ℓ(f̂(x), y)] scale approximately as the sum of inverse power functions on the number
of samples from group g and the total number of samples. That is, ∃ Mg > 0, σg, τg, δg ≥ 0,
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and p, q > 0 such that for a learning procedure which returns predictor f̂(S), and training
set S with group sizes ng≥Mg:

R
(
f̂
(
S(α⃗, n)

)
;Dg

)
:= E(x,y)∼Dg

[
ℓ(f̂(S)(x), y)

]
≈ r(αgn, n;σg, τg, δg, p, q) ∀ g ∈ G

r(ng, n;σg, τg, δg, p, q) := σ2
gn

−p
g + τ 2gn

−q + δg . (4.4)

Assumption 4.1 is similar to the scaling law in Chen, Johansson, and Sontag [61], but
includes a τ 2gn

−q term to allow for data from other groups to influence the risk evaluated
on group g. It additionally requires that the same exponents p, q apply to each group, an
assumption that underpins our theoretical results in Section 4.3. We examine the extent to
which Assumption 4.1 holds empirically in Section 4.4, and will modify Eq. (4.4) to include
group-dependent terms pg, qg when appropriate. The following examples give intuition into
the form of Eq. (4.4).

Example 4.1 (Split classifiers per group). When separate models are trained for each group,
using training data only from that group, we expect Eq. (4.4) to apply with τg = 0 ∀g ∈ G.
The parameter p could derived through generalization bounds [42], or through modeling
assumptions (Example 4.3). ♢

It is often advantageous to pool training data to learn a single classifier. In this case,
model performance evaluated on group g will depend on both ng and n, as the next examples
show.

Example 4.2 (Groups irrelevant to prediction). When groups are irrelevant for prediction
and the model class F correctly accounts for this, we expect Eq. (4.4) to apply with σg = 0
∀g ∈ G. ♢

Example 4.3 (Shared linear model with group-dependent intercepts). Consider a (d + 1)-
dimensional linear model, where two groups, {A,B}, share a weight vector β and features
x ∼ N (0,Σx), but the intercept varies by group:

yi = β⊤xi + cAI[gi = A] + cBI[gi = B] +N (0, σ2).

The ordinary least squares predictor has group risks2

E(x,y)∼Dg [(x
⊤β̂ + ĉg − y)2] = σ2 (1 + 1/ng +O(d/n)) ,

where the 1/ng arises because we need samples from group g to estimate the intercept cg,
whereas samples from both groups help us estimate β. ♢

2The derivation of the group risks is given in Section 4.A.
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Example 4.3 suggests that in some settings, we can relate σg and τg to group specific
and group agnostic model components that affect performance for group g. In general, the
relationship between group sizes and group risks can be more nuanced. Data from differ-
ent groups may be correlated, so that samples from groups similar to or different from g
have greater effect on R(f̂ ;Dg) (see e.g. Figure 4.5). Equation 4.4 is meant to capture the
dominant effects of training set allocations on group risks and serves as our main structural
assumption in the next section, where we study the allocation that minimizes the approxi-
mate population risk.

Optimal (w.r.t. Population Risk) Allocations

We now study properties of the allocation that minimizes the approximated population risk:

R̂(α⃗, n) :=
∑

g∈G

γgr(αgn, n;σg, τg, δg, p, q) ≈
∑

g∈G

γgR
(
f̂(S);Dg

)
= R

(
f̂(S);D

)
. (4.5)

The following proposition lays the foundation for two corollaries which show that:

(1) when only the population prevalences γ⃗ vary between groups, the allocation that min-
imizes the approximate population risk up-represents groups with small γg;

(2) for two groups with different scaling parameters σg, the optimal allocation of the group
with γg <

1
2

is bounded by functions of σA, σB, and γ⃗.

Proposition 4.2. Given a population made up of disjoint groups g ∈ G with population
prevalences γg, under the conditions of Assumption 4.1, the allocation α⃗∗ ∈ ∆|G| that mini-
mizes the approximated population risk R̂ in Eq. (4.5) has elements:

α∗
g =

(
γgσ

2
g

)1/(p+1)

∑
g∈G
(
γgσ2

g

)1/(p+1)
. (4.6)

If σg = 0 ∀g ∈ G, then any allocation in ∆|G| minimizes R̂.

Note that α⃗∗ does not depend on n, {τg}g∈G, or q; this will in general not hold if powers
pg differ by group.

Proof of Proposition 4.2. Recall the decomposition of the estimated population risk:

E(x,y)∼D

[
ℓ(f̂S(x), y)

]
=
∑

g∈G

γg · E(x,y)∼Dg

[
ℓ(f̂(x), y)

]
≈
∑

g∈G

γg
(
σ2
g(nαg)

−p + τ 2gn
−q + δg

)
.
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Now we find

α⃗∗ = argmin
α⃗∈∆|G|

∑

g∈G

γg
(
σ2
g(nαg)

−p + τ 2gn
−q + δg

)

= argmin
α⃗∈∆|G|

(n−p)
∑

g∈G

γg
(
σ2
g(αg)

−p
)

= argmin
α⃗∈∆|G|

∑

g∈G

γgσ
2
gα

−p
g .

If σg = 0 ∀g ∈ G, then any allocation α⃗∗ ∈ ∆|G| minimizes the approximated population loss.
Otherwise, α∗

g will be 0 for any group with σg = 0; what follows describes the solution α∗
g for

g with σg > 0. If any αg = 0, then the objective is unbounded above, so we can restrict our
constraints to α⃗ ∈ (0, 1)|G|. As the sum of convex functions, the objective function is convex
in α⃗. It is continuously differentiable when αg > 0, ∀g ∈ G. The Karush-Kuhn-Tucker
(KKT) conditions of this constrained optimization problem are satisfied when

pγgσ
2
gα

−(p+1)
g = λ ∀g
∑

g

αg = 1 .

Solving this system of equations yields that the KKT conditions are satisfied when α∗
g =(

γgσ
2
g

)1/(p+1)
/
∑

g

(
γgσ

2
g

)1/(p+1). Since this is the only solution to the KKT conditions, it is
the unique minimizer.

We now study the form of α⃗∗ under illustrative settings. Corollary 4.1 shows that when
the group scaling parameters σg in Eq. (4.4) are equal across groups, the allocation that
minimizes the approximate population risk allocates samples to minority groups at higher
than their population prevalences.

Corollary 4.1 (Many groups with equal σg). When σg = σ > 0, ∀g ∈ G, the allocation that
minimizes R̂ in Eq. (4.5) satisfies α∗

g ≥ γg for any group with γg ≤ 1
|G| .

Proof of Corollary 4.1. Let m = |G| denote the number of groups. When σg = σ ∀g ∈ G,

α∗
g =

γ
1/(p+1)
g∑
g γ

1/(p+1)
g

= γg ·
1

γg + γ
p/(p+1)
g

∑
g′ ̸=g γ

1/(p+1)
g′

.

Since p > 0 by Assumption 4.1, we can use the fact that in general,
∑n

i=1 γi
1/(p+1) with γi

subject to (a)
∑n

i=1 γi = s for some constant s, and (b) γi > 0, is maximized when all γi are
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equal. In our setting, since
∑

g′ ̸=g γ
′
g = 1− γg,

γg ·
1

γg + γ
p/(p+1)
g

∑
g′ ̸=g γ

1/(p+1)
g′

≥ γg ·
1

γg + γ
p/(p+1)
g

∑
g′ ̸=g

(
1−γg
m−1

)1/(p+1)

= γg ·
1

γg + ((m− 1)γg)
p/(p+1) (1− γg)1/(p+1)

.

When γg ≤ 1/m, γg/(1− γg) ≤ 1
m−1

, so that

α∗
g ≥ γg ·

1

γg + (1− γg) (m− 1)p/(p+1) (γg/(1− γg))
p/(p+1)

≥ γg ·
1

γg + (1− γg)
= γg .

This shows that the allocation that minimizes population risk can differ from the actual
population prevalences γ⃗. In fact, Corollary 4.1 asserts that near the allocation α⃗ = γ⃗,
the marginal returns to additional data from group g are largest for groups with small αg,
enough so as to offset the small weight γg in Eq. (4.1). This result provides evidence against
the idea that small training set allocation to minority groups might comply with minimizing
population risk as a result of a small relative contribution to the population risk.

Remark. A counterexample shows that α∗
g ≤ γg does not hold for all g with γg > 1/|G|.

Take γ⃗ = [.68, .30, .01, .01] and p = 1; Eq. (4.6) gives α∗
2 > 0.3 = γ2 > 1/4. In general,

whether group g with γg ≥ 1/|G| gets up- or down-sampled depends on the distribution of
γ⃗ across all groups.

Complementing the investigation of the role of the population proportions γ⃗ in Corol-
lary 4.1, the next corollary shows that the optimal allocation α⃗∗ generally depends on the
relative values of σg between groups. Inspecting Eq. (4.4) shows that σg defines a limit of
performance: if σ2

g is large, the only way to make the approximate risk for group g small is to
make ng large. For two groups, we can bound the optimal allocations α⃗∗ in terms of {σg}g∈G
and the population proportions γ⃗. We let A be the smaller of the two groups without loss
of generality.

From Eq. (4.6), we know that for two groups, α∗
A is increasing in σA

σB
; Corollary 4.2 gives

upper and lower bounds on α∗
A in terms of σA and σB.

Corollary 4.2 (Unequal per-group constants). For two groups {A,B} = G with γA < γB,
and parameters σA, σB>0 in Eq. (4.4), the allocation of the smaller group α∗

A that minimizes
R̂ in Eq. (4.5) is upper and lower bounded as

γA(σ
2
A)

1/(p+1)

γA(σ2
A)

1/(p+1) + γB(σ2
B)

1/(p+1)
< α∗

A <
(σ2

A)
1/(p+1)

(σ2
A)

1/(p+1) + (σ2
B)

1/(p+1)
.

When σA ≥ σB, α∗
A > γA, and when σA ≤ σB, α∗

A < 1/2.
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Proof of Corollary 4.2. For the two group setting, we can express the optimal allocations as:

α∗
A =

(γAσ
2
A)

1/(p+1)

(γAσ2
A)

1/(p+1)
+ ((1− γA)σ2

B)
1/(p+1)

, α∗
B = 1− α∗

A

Rearranging,

α∗
A = γA

1

γA + (σ2
B/σ

2
A)

1/(p+1)(1− γA)1/(p+1)(γA)p/(p+1)
.

For p > 0, it holds that 0 < 1
p+1

< 1. Therefore, for any p > 0 and γ < 0.5,

γ < (γ)
1

p+1 (1− γ)
p

p+1 < (1− γ) .

From this, we derive the upper bound

α∗
A < γA

1

γA + (σ2
B/σ

2
A)

1/(p+1)(γA)
=

(σ2
A)

1/(p+1)

(σ2
A)

1/(p+1) + (σ2
B)

1/(p+1)
,

and the lower bound

α∗
A > γA

1

γA + (σ2
B/σ

2
A)

1/(p+1)(1− γA)
= γA

(σ2
A)

1/(p+1)

γA(σ2
A)

1/(p+1) + (σ2
B)

1/(p+1)(1− γA)
.

When σA ≥ σB,

α∗
A > γA

(σ2
A)

1/(p+1)

γA(σ2
A)

1/(p+1) + (σ2
B)

1/(p+1)(1− γA)
> γA

(σ2
A)

1/(p+1)

(γA + 1− γA)(σ2
A)

1/(p+1)
= γA ,

and when σA ≤ σB,

α∗
A <

(σ2
A)

1/(p+1)

(σ2
A)

1/(p+1) + (σ2
B)

1/(p+1)
<

(σ2
A)

1/(p+1)

(σ2
A)

1/(p+1) + (σ2
A)

1/(p+1)
= 1/2 .

Altogether, these results highlight key properties of training set allocations that minimize
population risk. Experiments in Section 4.4 give further insight into the values of weights
and allocations for minimizing group and population risks and apply the scaling law model
in real data settings.
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4.4 Experiments
Having shown the importance of training set allocations from a theoretical perspective, we
now undertake an empirical investigation of this phenomenon. Throughout our experiments,
we use a diverse collection of datasets to give as full a picture of the empirical phenomena
as possible (Table 4.1).

Following a description of the datasets used, the first set of experiments in this section
investigates group and population accuracies as a function of the training set allocation α⃗ by
sub-sampling different training set allocations for a fixed training set size. We also study the
amount to which importance weighting and group distributionally robust optimization can
increase group accuracies, complementing the results of Proposition 4.1 with an empirical
perspective. The second set of experiments uses a similar subsetting procedure to examine
the fit of the scaling model proposed in Section 4.3.

The third set of experiments investigates using the estimated scaling law fits to inform
future sampling practices. We simulate using a small pilot training set to inform targeted
dataset augmentation through collecting additional samples. In the final experiment of this
chapter, we probe a setting where we might expect the scaling law to be too simplistic,
exposing the need for more nuanced modelling in such settings.

In contrast to Section 4.2, here losses are defined over sets of data; note in particular that
AUROC is not separable over groups, and thus Eq. (4.1) does not apply for this metric.

Datasets

Here we give a brief description of each dataset we use, with summary in Table 4.1.3.
Modified CIFAR-4. To create a dataset where we can ensure class balance (equal

number of positive and negative labels) across groups, we modify the CIFAR-10 dataset
[169] by subsetting to the bird, car, horse, and plane classes. We predict whether the image
subject moves primarily by air (plane/bird) or land (car/horse) and group by whether the
image contains an animal (bird/horse) or vehicle (car/plane); see Figure 4.1. We set γ = 0.9.

ISIC. The International Skin Imaging Collaboration (ISIC) dataset is a set of labeled
images of skin lesions designed to aid development and standardization of imaging proce-
dures for automatic detection of melanomas [73]. For our main analysis, we follow similar
preprocessing steps to [265], removing any images with patches. We predict whether a lesion
is benign or malignant, and group instances by the approximate age of the patient of whom
the image was taken.

Goodreads. Given publicly available book reviews compiled from the Goodreads database
[288], we predict the rating (1-5) corresponding to each review using tf-idf embeddings to
featurize reviews. We use data from two genres: “fantasy & paranormal” and “history &
biography,” and group instances by genre.

3See [247] for further details on each experimental setup.
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Figure 4.1: Modified CIFAR-4 dataset setup.

Mooc. The HarvardX-MITx Person-Course Dataset contains student demographic and
activity data from 2013 offerings of online courses [126]. We predict whether a student earned
a certification in the course and we group instances by highest completed level of education.

Adult. The Adult dataset, downloaded from the UCI Machine Learning Repository [94]
and originally taken from the 1994 Census database, has a prediction task of whether an
individual’s annual income is over $50, 000. We group instances by sex, codified as binary
male/female, and exclude features that directly determine group status.

Table 4.1: Summary descriptions of datasets used throughout Section 4.4.

dataset groups {A,B} γA ming ng ntest target label loss metric main model used
CIFAR-4 {animal, vehicle} 0.1 10,000 4,000 air/land 0/1 loss resnet-18
ISIC {age ≥ 55, age < 55} 0.43 4,092 2,390 benign/malignant 1 - AUROC resnet-18
Goodreads {history, fantasy} 0.38 50,000 25,000 book rating (1-5) ℓ1 loss logistic regression
Mooc {edu ≤ 2◦, edu > 2◦} 0.16 3,897 6,032 certified 1 - AUROC random forest
Adult {female, male} 0.5 10,771 16,281 income > $50K 0/1 loss random forest

Allocation-Aware Objectives vs. Ideal Allocations

We first investigate (a) the change in group and population performance at different training
set allocations, and (b) the extent to which optimizing the three objective functions defined
in Section 4.2 decreases average and group errors.

For each dataset, we vary the training set allocations α⃗ between (0, 1) and (1, 0) while
fixing the training set size as n = ming ng (see Table 4.1) and evaluate the per-group and
population losses on subsets of the heldout test sets. For the image classification tasks,
we compare group-agnostic empirical risk minimization (ERM) to importance weighting
(implemented via importance sampling (IS) batches following the findings of Buda, Maki,
and Mazurowski [48]) and group distributionally robust optimization (GDRO) with group-
dependent regularization as described in [251]. For the non-image datasets, we implement
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Figure 4.2: Performance across α⃗ for the different datasets studied. Shaded regions denote
one standard deviation above and below the mean over 10 trials. Stars indicate population
minima for each objective (ERM: white, IS/IW: grey, GDRO: black).

importance weighting (IW) by weighting instances in the loss function during training, and
do not compare to GDRO, as the gradient-based algorithm of Sagawa et al. [251] is not
easily adaptable to the predictors we use for these datasets. We pick hyperparameters
for each method based on cross-validation results over a coarse grid of α⃗; for IS, IW, and
GDRO, we allow the hyperparameters to vary with α⃗; for classical ERM we choose a single
hyperparameter setting for all α⃗ values.

Figure 4.2 highlights the importance of at least a minimal representation of each group
in order to achieve low population loss (black curves) for all objectives. For CIFAR-4, the
population loss increases sharply for αA < 0.1 and αA > 0.8, and for ISIC, when αA < 0.2.
While not as crucial for achieving low population losses for the remaining datasets, the
optimal allocations α⃗∗ (stars) do require a minimal representation of each group. The α⃗∗

are largely consistent across the training objectives (different star colors). The population
losses (black curves) are largely consistent across mid-range values of αA for all training
objectives. The relatively shallow slopes of the black curves for αA near α∗

A (stars) stand in
contrast to the per-group losses (blue and orange curves), which can vary considerably as α⃗
changes. From the perspective of model evaluation, this reinforces a well-documented need
for more comprehensive reporting of performance. From the view of dataset design, this
exposes an opportunity to choose allocations which optimize diverse evaluation objectives
while maintaining low population loss. Experiments below investigate this further.

Across the CIFAR-4 and ISIC tasks, GDRO (dotted curves) is more effective than IS
(dashed curves) at reducing per-group losses. This is expected, as minimizing the largest
loss of any group is the explicit objective of GDRO. Figure 4.2 shows that GDRO can also
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improve the population loss (see αA > 0.7 for CIFAR-4 and αA < 0.2 for ISIC) as a result of
minimizing the worst group loss. Importance weighting (dashed curves) has little effect on
performance for Mooc and Adult (random forest models), and actually increases the loss for
Goodreads (multiclass logistic regression model).

For all the datasets we study, the advantages of using IS or GDRO are greatest when one
group has very small training set allocation (αA near 0 or 1). When allocations are optimized
(stars in Figure 4.2), the boost that these methods give over ERM diminishes. In light of
Proposition 4.1, these results suggest that in practice, part of the value of such methods is
in compensating for sub-optimal allocations. We find, however, that explicitly optimizing
the maximum per-group loss with GDRO can reduce population loss more effectively than
directly accounting for allocations with IS.

Assessing the Scaling Law Fits

For each dataset, we combine the results in Figure 4.2 with extra subsetting runs where we
vary both ng and n. From the combined results, we use nonlinear least squares to estimate
the parameters of modified scaling laws, where exponents can differ by group:

lossg ≈ σ2
gn

−pg
g + τ 2gn

−qg + δg . (4.7)

The estimated parameters of Eq. (4.7) given in Table 4.2 capture different high-level phe-
nomena across the five datasets. For CIFAR-4, τ̂g ≈ 0 for both groups, indicating that most
of the group performance is explained by ng, the number of training instances from that
group, whereas the total number of data points n has less influence. For Goodreads, both
ng and n have influence in the fitted model, though τ̂g and q̂g are larger than σ̂g and p̂g,
respectively. For ISIC, τ̂A ≈ 0 but τ̂B ̸≈ 0, suggesting other-group data has little effect on
the first group, but is beneficial to the latter. For the non-image datasets (Goodreads, Mooc,
and Adult), 0<σ̂g<τ̂g and p̂g<q̂g for all groups.

These results shed light on the applicability of the assumptions made in Section 4.3.
Figure 4.3 shows that the fitted curves capture the overall trends of per-group losses as
a function of n and ng. However, the assumptions of Proposition 4.2 and Corollaries 4.1
and 4.2 (e.g., equal pg for all g ∈ G) are not always reflected in the empirical fits. Results in
Section 4.3 use Eq. (4.4) to describe optimal allocations under different hypothetical settings;
we find that allowing the scaling parameters vary by group as in Eq. (4.7) is more realistic
in empirical settings.

The estimated models describe the overall trends (Figure 4.3), but the parameter es-
timates are variable (Table 4.2), indicating that a range of parameters can fit the data,
a well-known phenomenon in fitting power laws to data [70]. While we caution against
absolute or prescriptive interpretations based on the estimates given in Table 4.2, if such
interpretations are desired [61], we suggest evaluating variation due to subsetting patterns
and comparing to alternative models such as log-normal and exponential fits (cf. Clauset,
Shalizi, and Newman [70]).
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Figure 4.3: Estimated scaling law fits describe observed trends of group errors as a function
of (ng, n). Grey points are not included in the scaling law fit, as ng < Mg (see Table 4.2).

Table 4.2: Estimated scaling parameters for Eq. (4.7). Parentheses denote standard de-
viations estimated by the nonlinear least squares fit. Parameters are constrained so that
τ̂g, σ̂g, δ̂g ≥ 0 and p̂g, q̂g ∈ [0, 2].

dataset Mg group g σ̂g p̂g τ̂g q̂g δ̂g

CIFAR-4 500
animal 1.9 (0.12) 0.47 (9.8e-04) 4.5e-09 (1.8e+06) 2.0 (0.0e+00) 1.1e-03 (8.9e-06)
vehicle 1.6 (0.19) 0.54 (2.0e-03) 3.2e-12 (1.1e+06) 2.0 (0.0e+00) 1.4e-03 (2.8e-06)

ISIC 200
age ≥ 55 0.61 (1.7e-03) 0.20 (1.1e-03) 1.7e-09 (1.9e+04) 1.9 (0.0e+00) 1.4e-15 (6.1e-04)
age < 55 0.26 (9.3e-04) 0.13 (0.012) 0.61 (0.044) 0.3 (7.5e-03) 7.5e-11 (7.2e-03)

Goodreads 2500
history 0.16 (1.2e-03) 0.074 (2.5e-03) 2.5 (0.058) 0.37 (2.0e-04) 0.41 (3.0e-03)
fantasy 0.62 (0.69) 0.020 (1.2e-03) 3.1 (0.093) 0.39 (1.9e-04) 7.2e-21 (0.72)

Mooc 50
edu ≤ 2◦ 0.08 (2.6e-05) 0.14 (6.0e-03) 0.73 (0.059) 0.63 (4.8e-03) 1.3e-15 (2.6e-04)
edu > 2◦ 0.038 (6.2e-04) 0.068 (6.3e-03) 0.54 (6.5e-03) 0.61 (9.8e-04) 2.8e-12 (8.0e-04)

Adult 50
female 0.078 (0.051) 0.018 (3.6e-03) 0.43 (8.3e-03) 0.59 (1.6e-03) 8.0e-16 (0.052)
male 0.066 (2.6e-05) 0.21 (1.2e-03) 0.47 (6.5e-03) 0.50 (1.1e-03) 0.16 (5.4e-06)

Targeted Data Collection with Fitted Scaling Laws

We now study the use of scaling models fitted on a small pilot dataset to inform a subse-
quent data collection effort. Given the result summarized in Figure 4.2, we aim to collect a
training set that minimizes the maximum loss on any group. This procedure goes beyond
the descriptive use of the estimated scaling models in the previous experiments; important
considerations for operationalizing these findings are discussed below.
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Figure 4.4: Pilot sample experiment. Panels show the result of the three allocations α⃗ ∈
{α̂∗

minmax, γ⃗, (1/2, 1/2)} for different sizes of the new training sets compared with an α∗
grid

baseline that minimizes the maximum group loss over a grid of resolution 0.01, averaged
over 10 random trials. Purple circles indicate average maximum error over groups and grey
diamonds indicate average population error. Ranges denote standard errors.

We perform this experiment with the Goodreads dataset, the largest of the five we study.
The pilot sample contains 2,500 instances from each group, drawn at random from the full
training set. We estimate the parameters of Eq. (4.7) using a procedure similar to that
described in the experiment above. For a new training set of size nnew, we suggest an
allocation to minimize the maximum forecasted loss of any group:

α̂∗
minmax = argmin

α⃗∈∆2

max
g∈G

(
σ̂2
g(αgnnew)

−p̂g + τ̂ 2gn
−q̂g
new + δ̂g

)
.

For nnew ∈ {1×, 2×, 4×, 8×} the pilot sample size, we simulate collecting a new training set
by drawing nnew fresh samples from the training set with allocation α⃗ = α̂∗

minmax(nnew). We
train a model on this sample (ERM objective) and evaluate on the test set. For comparison,
we also sample at α⃗ = γ⃗ (population proportions) and α⃗ = (0.5, 0.5) (equal allocation to
both groups). We repeat the experiment, starting with the random instantiation of the pilot
dataset, for ten trials. As a point of comparison, we also compute the results for all α in
a grid of resolution 0.01, and denote the allocation value in this grid that minimizes the
average maximum group loss over the ten trials as α∗

grid.
Among the three allocation strategies we compare, α⃗ = α̂∗

minmax minimizes the average
maximum loss over groups, across nnew (Figure 4.4). Since per-group losses generally decrease
with the increased allocations to that group, we expect the best minmax loss over groups
to be achieved when the purple and grey bars meet in Figure 4.4. The allocation strategy
α⃗ = α̂∗

minmax does not quite achieve this; however, it does not increase the population loss over
that of the other allocation strategies. This reinforces the finding of previous experiments
that different per-group losses can be reached for similar population losses and provides
evidence that we can navigate these possible outcomes by leveraging information from a
small initial sample.
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While the results in Figure 4.4 are promising, error bars highlight the variation across
trials. The variability in performance across trials for allocation baseline α∗

grid (which is kept
constant across the ten trials) is largely consistent with that of the other allocation sampling
strategies examined (standard errors in Figure 4.4). However, the estimation of α̂∗ in each
trial does introduce additional variation: across the ten draws of the pilot data, the range
of α̂∗ values for subsequent dataset size nnew = 5000 is [2e-04,0.04], for nnew = 10000 it is
[1e-04,0.05], for nnew = 20000 it is [5e-05,0.14], and for nnew = 40000 it is [2e-05,0.82].

Therefore, the estimated α̂∗ should be leveraged with caution, especially if the subsequent
sample will be much larger than the pilot sample. Further caution should be taken if there
may be distribution shifts between the pilot and subsequent samples. We suggest to interpret
estimated α̂∗ values as one signal among many that can inform a dataset design in conjunction
with current and emerging practices for ethical data collection (see Chapter 6).

Interactions Between Groups

We now shift the focus of our analysis to explore potential between- and within-group in-
teractions that are more nuanced than the scaling law in Eq. (4.4) provides for. The results
highlight the need for and encourage future work extending our analysis to more complex
notions of groups (e.g., intersectional, continuous, or proxy groups).

As discussed in Section 4.3, data from groups similar to or different from group g may
have greater effect on R(f̂(S);Dg) compared to data drawn at random from the entire
distribution. We examine this possibility on the ISIC dataset, which is aggregated from
different studies [73]). We measure baseline performance of the model trained on data from
all of the studies. We then remove one study at a time from the training set, retrain the
model, and evaluate the change in performance for all studies in the test set.

Figure 4.5a shows the percent changes in performance due to leaving out studies from the
training set. The MSK and UDA studies are comprised of 5 and 2 sub-studies, respectively;
Figure 4.5b shows the results of leaving out each sub-study. Rows correspond to the study
withheld from the training set and columns correspond to the study used for evaluation.
Rows and columns are ordered by % malignancy. For Figure 4.5a this is the same as ordering
by dataset size, SONIC being the largest study.

Consistent with our modelling assumptions and results so far, accuracies evaluated on
group g decrease as a result of removing group g from the training set (diagonal entries of
Figure 4.5). However, additional patterns show more nuanced relationships between groups.
Positive values in the upper right regions of Figures 4.5a and 4.5b show that excluding studies
with low malignancy rates can raise performance evaluated on studies with high malignancy
rates.

This could be partially due to differences in label distributions when removing certain
studies from the training data. Importantly, this provides a counterpoint to consequence of
Assumption 4.1, that group risks decrease in the total training set size n, regardless of the
groups these n instances belong to. To study more nuanced interactions between pairs g′ ̸=g,
future work could modify Eq. (4.4) by reparameterizing r(·) to directly account for ng′ .
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Figure 4.5: Percent change in performance (AUROC / accuracy) due to withholding a study
from the training set. Studies are ordered by % malignancy of the data in the evaluation
set. SONIC and MSK-5 contain all benign instances and the 2018 JID Editorial Images
dataset has all malignant instances; for these we report % change in binary accuracy. For
the remaining groups, we report % change in AUROC. Note that the random training/test
splits differ between (a) and (b), accounting for the differences in values for corresponding
cells between the two figures.

Grouping by substudies within the UDA and MSK studies reveals that even within well
defined groups, interactions between subgroups can arise. Negative off-diagonal entries in
Figure 4.5b suggest strong interactions between different groups, underscoring the impor-
tance of evaluating results across hierarchies and intersections of groups when feasible.

Of the 16,965 images in the full training set, 7,401 are from the SONIC study. When
evaluating on all non-SONIC instances (like the evaluation set from the rest of the section),
withholding the SONIC study from the training set (akin to the training set from previ-
ous experiments) leads to higher AUROC (.905) than training on all studies (0.890). This
demonstrates that more data is not always better, especially if the distributional differences
between the additional data and the target populations are not well accounted for.

4.5 Conclusions
This chapter studies the ways in which group and population performances are affected by
the numerical allocations of discrete groups in training sets. We demonstrate that represen-
tation in data is fundamental to training machine learning models that work for the entire
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population of interest. By casting dataset design as part of the learning procedure, we can
formalize the characteristics that training data must satisfy in order to reach the objec-
tives and specifications of the overall machine learning system. Empirical results bolster our
theoretical findings and explore the nuances of real-data phenomena that call for domain
dependent analyses in order to operationalize our general results in specific contexts.

While focusing on discrete groups allows us to derive meaningful results, understanding
similar phenomena for intersectional groups and continuous notions of inclusion is an im-
portant next step. Addressing the more nuanced relationships between the allocations of
different data sources (as in the experiment summarized by Figure 4.5) is a first step in this
direction. Extending and applying this framework to other objectives and loss functions
(e.g., robustness for out-of-distribution prediction and fairness objectives) will also be an
important area of future work.

We find that underrepresentation of groups in training data can limit group and popu-
lation accuracies. However, assuming we can easily remedy these effects by collecting more
data about any group is often naive. There may be unintended consequences of upweight-
ing certain groups in an objective function. Naive targeted data collection attempts can
present undue burdens of surveillance or skirt consent [220]. When ML systems fail to rep-
resent subpopulations due to measurement or construct validity issues, more comprehensive
interventions are needed [143]. Chapter 6 discusses these concerns in further detail.

4.A Derivation of Example 4.3
In Example 4.3, we consider the model yi = x⊤

i β+α1I[gi = A]+α2I[gi = B]+N (0, σ2) where
xi ∼ N (0,Σx) and denote θ = [α1, α2, β

⊤] (note: here αi denote the model coefficients, not
allocations). We want to compute

E(x,y,g)∼D

[
(f̂(x)− y)2|g = A

]

= σ2 + E
[
∥x⊤(β̂ − β) + (α̂1 − α1)∥2

]

= σ2 + E
[
x⊤(β̂ − β)(β̂ − β)⊤x

]
+ 2E

[
(α̂1 − α1)(β̂ − β)⊤x

]
+ E

[
(α̂1 − α1)

2
]
.

Since the draw (x, y, g) ∼ D is independent of the data from which the ordinary least squares
solution θ̂ is predicted, we can write out each of these terms in terms of the dependence on
n, the total number of data points, as well as nA and nB (where nA + nB = n), the total
number of datapoints for each group, from which θ̂ is estimated. To do this, we’ll solve for
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the entries of the covariance matrix:

E[(θ̂ − θ)(θ̂ − θ)⊤]

=




E [(α̂1 − α1)
2] E [(α̂1 − α1)(α̂2 − α2)] E

[
(β̂ − β)(α̂1 − α1)

]⊤

E [(α̂1 − α1)(α̂2 − α2)] E [(α̂2 − α2)
2] E

[
(β̂ − β)(α̂2 − α2)

]⊤

E
[
(β̂ − β)(α̂1 − α1)

]
E
[
(β̂ − β)(α̂2 − α2)

]
E
[
(β̂ − β)(β̂ − β)⊤

]




= σ2(Z⊤Z)−1

where Z is the n × (d + 2) design matrix with rows {(I[gi = A], I[gi = B], x⊤
i )}ni=1. Next,

we find the block entries of the matrix (Z⊤Z)−1. We first interrogate the term within the
inverse:

Z⊤Z =




nA 0 nAx̄
⊤
A

0 nB nBx̄
⊤
B

nAx̄A nBx̄B X⊤X




where x̄A = 1
nA

∑n
i=1 xi ·I[gi = A], and similarly for x̄B. We’ll now use the Schur complement

to compute the desired blocks of Σ. The Schur complement is

S = X⊤X −
[
nAx̄A nBx̄B

] [n−1
A 0
0 n−1

B

] [
nAx̄

⊤
A

nBx̄
⊤
B

]
= X⊤X − nx̄x̄⊤ ,

which we simplify to S = X⊤X by assuming that we zero-mean the sample feature matrix
X before calculating the least squares solution. Using the Schur complement, the covariance
matrix in block form is

(Z⊤Z)−1 =




1
nA

+ x̄⊤
AS

−1x̄A x̄⊤
AS

−1x̄B −x̄⊤
AS

−1

x̄⊤
BS

−1x̄A
1
nB

+ x̄⊤
BS

−1x̄B −x̄⊤
BS

−1

−S−1x̄A −S−1x̄B S−1


 .

Plugging in the appropriate blocks to our original equation, we get:

E(x,y,g)∼D

[
(f̂(x)− y)2|g = A

]

= σ2 + E(x,y)∼DA

[
x⊤(β̂ − β)(β̂ − β)⊤x+ 2(α̂1 − α1)(β̂ − β)⊤x+ (α̂1 − α1)

2
]

= σ2(1 +
1

nA

+ Eg=A

[
x⊤S−1x+ x̄⊤

AS
−1x̄A

]
),

where the middle term can be removed since E[x] = 0. Note that S is the scaled sample
covariance matrix. The vectors xi are drawn i.i.d. from N (0,Σx) so that S−1 follows an
inverse Wishart distribution with parameters n, d,Σx. For a freshly drawn independently
sampled x,

E[x⊤S−1x] = Trace(E[S−1]E[xx⊤]) =
1

n− d− 1
Tr(Σ−1

x Σx) =
d

n− d− 1
.
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For the x̄⊤
AS

−1x̄A term we invoke the matrix inversion lemma. For a single row xi of X, let
X−i denote the (n− 1)× d matrix comprised of all rows of X except Xi. Then

x⊤
i (X

⊤X)−1xi = x⊤
i (X

⊤
−iX−i + xix

⊤
i )

−1xi

= x⊤
i

(
(X⊤

−iX−i)
−1 − (X⊤

−iX−i)
−1xi(1 + x⊤

i (X
⊤
−iX−i)

−1xi)
−1x⊤

i (X
⊤
−iX−i)

−1
)
xi .

Letting ai = x⊤
i (X

⊤
−iX−i)

−1xi ≥ 0, we rewrite the above as

x⊤
i (X

⊤X)−1xi = ai −
a2i

1 + ai
=

ai
1 + ai

≤ ai .

Since the xi are independent and zero mean, E
[
x⊤
i (X

⊤
−iX−i)

−1xj

]
= E[x⊤

i ]E[(X⊤
−iX−i)

−1xj] =
0∀i ̸= j. From a similar argument to that given above, we derive that E[ai] = d/(n− d− 2),
so that

E
[
x̄⊤
AS

−1x̄A

]
= E



(

1

nA

nA∑

i

xi

)⊤

S−1

(
1

nA

nA∑

i

xi

)
 =

1

n2
A

E

[
nA∑

i

x⊤
i S

−1xi

]

≤ 1

nA

· d

n− d− 2
.

Putting this all together, we conclude that for n≫ d,

E(x,y,g)∼D

[
(f̂(x)− y)2|g = A

]
= σ2

(
1 +

1

nA

+
d

n− d− 1
+ E[x̄⊤

AS
−1x̄A]

)

= σ2

(
1 +

1

nA

+O

(
d

n

))
.
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Chapter 5

Post-Estimation Smoothing for Learning
with Structural Side Information

This chapter is based on the paper “Post-estimation smoothing: A simple baseline for learn-
ing with side information” [244], written in collaboration with Benjamin Recht and Michael
I. Jordan.

Observational data are often accompanied by natural structural indices, such as time
stamps or geographic locations, which are meaningful to prediction tasks but are often dis-
carded. In this chapter we aim to leverage semantically meaningful indexing data while
ensuring robustness to potentially uninformative or misleading indices. We propose a post-
estimation smoothing operator as a fast and effective method for incorporating structural
index data into prediction. Because the smoothing step is separate from the original predic-
tor, it applies to a broad class of machine learning tasks, with no need to retrain models.
Our theoretical analysis details simple conditions under which post-estimation smoothing
will improve accuracy over that of the original predictor. Our experiments on large scale
spatial and temporal datasets highlight the speed and accuracy of post-estimation smoothing
in practice. Together, these results illuminate a novel way to consider and incorporate the
natural structure of index variables in machine learning.

5.1 Background
The canonical machine learning setup models pairs of features and labels as originating
from some underlying distribution, {xi, yi} ∼ D(x, y); the problem is to learn a predictor
ŷ(x) which describes y as faithfully as possible. However, a recent narrative in machine
learning is that well-annotated, large-scale datasets are rare, whereas less curated data are
abundant; this has led to a taxonomy of supervision including distant-, weak-, and semi-
supervision. Whether labels are noisy by nature (distant) [200], programmatically generated
(weak) [236], or missing altogether (semi) [309], it stands that characteristics of some data
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necessitate making use of additional sources of constraints.
Semi-supervised methods in particular aim to leverage unlabeled data to elicit an under-

lying structure which can aid prediction [263]. In practice, however, semi-supervised methods
can be computationally expensive, and are sensitive to distribution shifts [213]. In this chap-
ter we propose to use readily-available data that is inherently structural, and apply a robust
post-processing method which is independent of the original predictor to incorporate this
structure.

We consider scenarios where each datum (x, y) has an associated index t with some
linking or semantic meaning. We thus represent observations as triplets:

{xi, yi, ti} i = 1, ..., n .

Examples of such triplets include {image, annotation, frame number} in video prediction,
{house attributes, price, address} in house price prediction, and {document, sentiment,
keywords} in sentiment analysis. While intuition suggests that index variables t may be
correlated with the label values y and thus are highly informative to the prediction task,
in many cases they are not well suited as predictors of y without major modification. For
example, in object detection in videos, we may expect objects to move smoothly across
frames, but the frame number itself does not carry predictive power from one video to
another.

We aim to leverage the structural information encoded in t without over-relying on it.
This motivates a main question of our work: how can we utilize the dependence of x and y
on t even for predictors that might ignore or underestimate such dependence? We propose a
post-estimation smoothing (P-ES) operator S(t) that only depends on t to obtain smoothed
predictions:

ỹ = S(t)ŷ(x).

Decoupling smoothing S(t) from the initial feature-based prediction step ŷ(x) allows us to ef-
ficiently smooth any off-the-shelf model. P-ES applies to any precomputed predictions made
over time or space, regardless of the original predictive model. The ease of applying P-ES
facilitates robust and reproducible incorporation of index variable structure in predictions.

Throughout this work we consider the setting in which we have a dataset indexed by
ti ∈ Rl, as well as predictions ŷi ∈ R associated with each index. It is natural to consider
that there is also a set of features xi ∈ Rd and model f : Rd → R from which predictions
ŷ = f(x) were generated; we take this as given and work with directly with ŷ.

We study the post-prediction application of a P-ES matrix operator S(t) : Rn → Rn to
form smoothed predictions, ỹ := S(t)ŷ, such that the ỹ are closer to the true labels y than
the original unsmoothed predictions ŷ are. In our theoretical analysis in Section 5.2, this
is measured using the expected mean-squared error: E

[
1
n
∥ỹ − y∥22

]
= E

[
1
n

∑n
i=1(ỹi − yi)

2
]
,

while experiments in Section 5.3 consider different accuracy metrics suitable to different
contexts.

In this chapter:
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• We formulate a structural-index-based post-process smoothing procedure, P-ES, which
is applicable to any predictor.

• We derive theoretical results proving that under mild conditions, P-ES will improve
accuracy relative to the original predictor (Theorem 5.1), and characterizing when a
linear smoothing operation can greatly increase predictive accuracy (Lemma 5.1).

• We perform experiments on large-scale datasets for human pose estimation and house
price prediction demonstrating that P-ES improves accuracy of state-of-the-art predic-
tors at minimal extra cost.

These contributions are made possible by incorporating the general index variables separately
from the feature based predictor. This results in a fast, accurate, and robust method for
local variance reduction, with the potential to change how we consider and leverage structural
variables in machine learning predictions.

More broadly, we demonstrate the effectiveness of a simple method that extends and
generalizes previous scholarship in locality-based semi-supervised learning and nonparamet-
ric regression, applied in a modern context of abundant but weakly predictive data. Given
recent exposition of the systematic underreporting of simple baselines [82, 190] in machine
learning and especially in semi-supervised learning [213], it is worth considering P-ES as a
theoretically motivated and easily implementable baseline for semi-supervised learning and
smoothing in large scale, real-data contexts.

Related Work

Semi-supervised learning (SSL) methods leverage large amounts of unlabeled data along with
some labeled data under a local consistency assumption: instances which are near to each
other should have similar label values. Distance is commonly determined with respect to an
underlying manifold or graph defined by the features [29, 310].

To encourage local consistency of predictions, Belkin, Niyogi, and Sindhwani [30] add
a Laplacian regularization term to least squares and support vector machines, and Jean,
Xie, and Ermon [147] add a spatial regularization to the loss function of deep neural nets.
There is also a considerable amount of work incorporating additive consistency regularization
and similar notions in neural nets [18, 112, 273]. As noted by Oliver et al. [213], however,
such methods can be sensitive to distribution shifts and require large validation sets and
heavy computation to tune parameters; thus they are often poorly suited for “real-world”
applications.

Unfortunately, adding a local consistency regularization term multiplies the number of
parameter configurations in the optimization problem, and only works for predictors with an
explicit objective function. For example, it not straightforward to add a spatial consistency
term to random forests. An alternative method, Gaussian harmonic energy minimization
(HEM) [310], augments an underlying graph with noisy predictions and solves for spatially
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consistent predictions on this larger graph. The local and global consistency (LCG) algorithm
[307] solves a similar optimization problem iteratively.

Singh, Nowak, and Zhu [263] show that unlabeled data is useful in SSL precisely when it
illuminates the underlying structure of the data beyond what was discernible by the labeled
data alone. However, if modeling assumptions incorrectly summarize the true structure of
the data, unlabeled data can be misleading and even degrade performance [79, 213]. One
approach to mitigate this is to fortify semi-supervised learning methods to be robust to
this mismatch [174]; we obtain robustness by decoupling feature-based prediction from a
nonparametric incorporation of structural indices.

The literature on nonparametric regression methods is extensive [117, 276]; we focus on
two prominent approaches. Gaussian process regression (GPR) places a Gaussian prior on
label covariances, specified by feature variables [293]. GPR has been widely adopted and
extended in the geospatial statistics community, under the names of “kriging” and “inverse
distance interpolation” [16, 184]. As pointed out by Banerjee et al. [23], when applied
to large datasets, GPR has large computation and memory requirements, or necessitates
approximations [293].

Kernel smoothing [276] is another type of nonparametric regression in which predictions
are locally weighted averages of observations. Of particular note is the Nadaraya-Watson
estimator [207, 291] in which weights are determined by a kernel relation on all instances.
GPR, Laplacian regularized least squares [30], HEM [310], and exact LCG [307] can all be
cast as instances of linear smoothing operators for which computing the smoothing matrix
involves inverting a matrix of size n× n.

Lastly, recent work on the statistical optimality of data interpolation in machine learning
[31] highlights that averaging methods are quite powerful for prediction. We apply a locally-
weighted average to predictions themselves, which are the output of some prior model. Like
semi-supervised learning methods, P-ES encodes spatial consistency properties, but P-ES
takes the perspective of refining given predictions with minimal restrictions on the underlying
structure. In light of the previous work, P-ES can be seen as a fast and robust way to leverage
structure, and to interpolate. Application-specific references are provided in Section 5.3.

5.2 Analysis
Here we answer the questions (i) how should we form a useful post-estimation smoothing
matrix while maintaining robustness to possible distributional misspecification? and (ii)
for what data distributions and predictors is linear smoothing beneficial? Throughout the
analysis, we model true values y, predictions ŷ, and error residuals ε as stochastic processes
indexed by t:

ŷ(t) = y(t) + ε(t) . (5.1)
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Accuracy Increases with General Smoothing Matrices

While we may have strong intuition that there is some locality-based structure in certain
domains, the choice of distributional priors governing this structure will most often be inex-
act. We use a matrix W (t) ∈ Rn×n, where weights Wij denote how much the jth prediction
should contribute to a smoothed estimate for the ith instance, depending on the values of ti
and tj.

Theorem 5.1 below shows that using a reasonable weight matrix W (t) which captures
correlation in the underlying data can improve performance. A key insight is that shrinking
W towards the identity matrix tempers potential misspecification gracefully. Therefore, we
form our smoothing matrix as the convex combination:

Sc(t) = c ·W (t) + (1− c) · I , (5.2)

where in practice c ∈ [0, 1] can be chosen through cross-validation along with any parameters
of W .

For any weight matrix, define the following quantities: γ(ε,W ), which describes the
amount by which W acts as a zero operator on the errors, and β(ε,W ; y), which describes
the amount by which W acts as the identity operator on the true labels, both scaled by
E[∥ε∥22]:

γ(ε,W ) := E[ε⊤Wε]/E[∥ε∥22],
β(ε,W ; y) := E[ε⊤(W − I)y]/E

[
∥ε∥22

]
.

Intuitively, we want to use a weight matrix W such that both γ and β are small, so that
W averages out erroneous error signals while decreasing correlation between y and ε. Theo-
rem 5.1 shows that an imperfect W will suffice, so long as the sum γ + β is controlled.

Theorem 5.1. Given any predictor ŷ of y with error residuals satisfying E [∥ε∥22] ̸= 0, and
any weight matrix W satisfying γ(ε,W ) + β(ε,W ; y) < 1, there exists a constant c ∈ (0, 1]
such that the smoothing matrix Sc = c ·W +(1− c) · I strictly reduces expected mean squared
error (MSE) of the resulting predictions:

E
[
1
n
∥Scŷ − y∥22

]
< E

[
1
n
∥ŷ − y∥22

]
.

Proof of Theorem 5.1. Let µ := E[ε] = E[ŷ − y]. The squared error of using smoothing
matrix Sc = cW + (1− c)I decomposes as:

∥Scŷ − y∥22 = ∥c(Wŷ − y) + (1− c)(ŷ − y)∥22
= ∥c(Wŷ − y) + (1− c)(ε)∥22
= c2∥Wŷ − y∥22 + (1− c)2∥ε∥22 + 2c(1− c)(ε⊤Wε+ ε⊤(W − I)y)

so that the expected reduction in MSE is given by

E
[
∥Scŷ − y∥22

]
− E

[
∥ŷ − y∥22

]
= c2E

[
∥Wŷ − y∥22

]
+
(
1 + (c2 − 2c) + 2(c− c2)γ

)
E
[
∥ε∥22

]

+ 2c(1− c)E
[
ε⊤(W − I)y)

]
− E

[
∥ε∥22

]

= c2E
[
∥Wŷ − y∥22

]
+
(
(c2 − 2c) + 2(c− c2)(γ + β)

)
E
[
∥ε∥22

]
.
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This is a quadratic in c:

E
[
∥Scŷ − y∥22

]
− E

[
∥ŷ − y∥22

]
= c2

(
E
[
∥Wŷ − y∥22

]
+ (1− 2(γ + β))E

[
∥ε∥22

])

+ 2c
(
(γ + β − 1)E

[
∥ε∥22

])
.

We first show that under the assumptions above, this expression is convex. Afterwards, we
will show that the nonzero root is strictly greater than zero, and therefore conclude that
there must be a value c ∈ (0, 1] for which the objective is negative. We first get a handle on
the coefficient of the quadratic term:

E
[
∥Wŷ − y∥22 + (1− 2(γ + β))∥ε∥22

]
= E

[
∥Wŷ − y∥22 + ∥ε∥22 − 2ε⊤Wε+ 2ε⊤(I −W )y

]

= E
[
∥Wŷ∥22 − 2y⊤Wŷ + ∥ŷ∥22 − 2ε⊤Wŷ

]

= E
[
∥(W − I)ŷ∥22

]

≥ 0 .

The coefficient on the quadratic term is nonnegative, so that the expression is convex in c.
Now we show that under the conditions outlined in the theorem statement, the coefficient on
the linear term is negative. Recall the condition that the matrix W acts close to the identity
on y but close to the zero matrix on ε, with respect to the errors: γ(ε,W ) + β(ε,W ; y) < 1.
When this conditions holds, we have

2
(
(γ + β − 1)E

[
∥ε∥22

])
< 0 .

Thus, the optimal c value is given as

c∗ =
(1− (γ + β))E [∥ε∥22]

E [∥Wŷ − y∥22] + (1− 2γ − 2β)E [∥ε∥22]
.

Since c∗ is always positive, by convexity and continuity of the objective function, the optimal
value for c within the range (0, 1] is min(c∗, 1). If c∗ > 1, this implies that

(1− (γ + β))E
[
∥ε∥22

]
> E

[
∥Wŷ − y∥22

]
+ (1− 2γ − 2β)E

[
∥ε∥22

]

(γ + β))E
[
∥ε∥22

]
> E

[
∥Wŷ − y∥22

]
.

If this is the case, then clipping the chosen c to be c = 1 (denote the resulting smoothing
matrix S1) will result in expected MSE decrease

E
[
1
n
∥S1ŷ − y∥22

]
− E

[
1
n
∥ε∥22

]
= E

[
1
n
∥Wŷ − y∥22

]
− E

[
1
n
∥ε∥22

]

< −(1− γ − β)E
[
1
n
∥ε∥22

]
.

Otherwise (if c∗ ≤ 1), the resulting expected MSE decrease is upper bounded as

E
[
1
n
∥Sc∗ ŷ − y∥22

]
− E

[
1
n
∥ε∥22

]

≤ − (1− γ − β)2 E [∥ε∥22]
2

n (E [∥Wŷ − y∥22] + (1− 2γ − 2β)E [∥ε∥22])

= −(1− γ − β)E
[
1
n
∥ε∥22

]
· (1− γ − β)E [∥ε∥22]
(E [∥Wŷ − y∥22] + (1− 2γ − 2β)E [∥ε∥22])

.
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The optimal resulting MSE reduction from using Sc where c = min{c∗, 1} is then bounded
as

E
[
1
n
∥Scŷ − y∥22

]
− E

[
1
n
∥ŷ − y∥22

]

≤ −(1− γ − β)E
[
1
n
∥ε∥22

]
·min

{
1,

(1− γ − β)E [∥ε∥22]
(E [∥Wŷ − y∥22] + (1− 2γ − 2β)E [∥ε∥22])

}

< 0 .

Theorem 5.1 inverts the standard statistical smoothing analysis [261, 276]—which, pro-
vided generative processes as in Eq. (5.1), calculates the bias and variance of the resulting
smoothed estimator—and instead characterizes properties of the underlying signal y(t), the
prediction errors ε(t), and the weight matrix W that make smoothing beneficial. As in stan-
dard kernel smoothing regression [289], in P-ES we are willing to tolerate an increase in the
bias of our predictor, so long as the variance decreases. Formulating the conditions in terms
of γ and β allows us to assess this trade-off in terms of the conditions on the prediction
errors directly.

We can guarantee that γ(ε,W ) ≤ 1 by ensuring λmax(W ) ≤ 1, for example by taking
any right-stochastic matrix (here λmax(·) denotes the maximum eigenvalue). Controlling
β(ε,W ; y) depends on both the true values and the errors in predictions. A sufficient condi-
tion to achieving β ≤ c is to pick W which satisfies E [∥(W − I)y∥22] ≤ c2E [∥ε∥22], encoding
that we tolerate a deviation in labels due to W limited by the magnitude of errors that can
potentially be reduced. The next two paragraphs show that under a reasonable assumption
on the predictions, β + γ < 1 can always be satisfied and detail practical considerations in
picking W and checking the conditions of the theorem.

On ensuring β+γ < 1: Manipulation of the definitions of γ and β shows that the condition
β + γ < 1 is equivalent to the condition E[ε⊤(W − I)ŷ] < 0, which is always satisfiable with
some W , so long as E[εŷ⊤] is not the all zeros matrix. Further, when |E[ε⊤y]| < E[ε⊤ε],
W = t · I for any t < 1 will suffice so that β+ γ < 1. The wide range of possible t is because
the matrix W is combined in a convex combination with the identity matrix to form Sc(t)
in Eq. (5.2).

Lemma 5.1 and Example 5.1 below show that an optimal smoothing matrix averages out
errors in the predictions, depending on the structure in y and ε. We’d like our empirical
choice of W to be close to this optimal matrix. For practical applications, we could (a)
use empirical covariance matrices from training/validation data to inform our choice of W ,
and/or (b) for a pre-specified W we could estimate γ and β by using the training/validation
data to estimate ε and y. We suspect that estimating γ and β in this way may not be
practically necessary, for the following reason. If the chosen matrix W does not reduce the
mean squared error for any choice of c ∈ (0, 1], then cross validation over parameter c will
result in c = 0, such that no smoothing occurs. Since cross-validating over c amounts to
only vector (not matrix) operations, it is practical to sweep over a large number of possible
c’s. Thus, it could be just as fast to check if smoothing with matrix Sc (for any of the c’s)
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reduces the MSE as to check the condition γ + β < 1.

In general, the condition β + γ < 1 represents a trade-off in choosing a weight matrix
that acts approximately as a zero matrix with respect to the errors (small γ), while acting
close to an identity matrix with respect to the true values (small β). In order to keep
the sum small, W needs to incorporate knowledge in the structure of the domain-specific
labels, y, as well as the distribution of prediction errors, ε, for a given predictor. For all
experiments (Section 5.3), we use the Nadaraya-Watson smoothing matrix with a Gaussian
kernel (Eq. (5.4)). This matrix is right-stochastic, and the Gaussian kernel encodes the
constraint that nearby data points (measured with respect to structural index variable t)
should have similar label values y.

The best-case reduction in MSE attainable by P-ES is bounded in the final line of the
proof of Theorem 5.1. The MSE reduction depends on covariances between W , y, and the
error residuals in ŷ. This motivates us to study the form of the optimal smoothing operator
and the resulting expected error reduction, when these covariances are known.

Optimal P-ES for Known Distributions

Having proposed a P-ES matrix Sc in the previous section, we now study the form of an
optimal linear smoothing matrix S∗ when the distributions governing the labels and error
residuals are known. This reinforces the high-level structures we wish to capture in Sc, and
provides a baseline for simulation experiments in Section 5.3. Denote the cross-correlation
matrices K element-wise as Kxy[t, s] = E [x(t)y(s)].

Lemma 5.1. For a predictor ŷ of y with error residuals distributed as ε(t) = ŷ(t)− y(t),
when Kŷŷ ≻ 0, the optimal linear smoothing matrix has the form

S∗ = argmin
S∈Rn×n

E
[
1
n
∥Sŷ − y∥22

]

= I − (Kεε +Kyε)
⊤(Kyy +Kyε +Kεy +Kεε)

−1 .

The expected MSE reduction of applying S∗ versus using the original predictions ŷ is always
non-negative, and is given by

1
n
E
[
∥ŷ − y∥22]− ∥S∗ŷ − y∥22

]
= 1

n
tr
(
K⊤

ŷy(Kŷŷ)
−1Kŷy

)
.

Proof of Lemma 5.1. Setting the matrix differential of the following convex objective to zero,
any solution S∗ to

S∗ = argmin
S∈Rn×n

E
[
1
n
∥Sŷ − y∥22

]

satisfies
∂

∂S
E
[
(Sŷ − y)⊤(Sŷ − y)

]
= 2(SKŷŷ −Kyŷ) = 0 .
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If Kŷŷ is positive definite (and thus invertible), the objective is strictly convex and the unique
optimal solution is

S∗ = Kyŷ(Kŷŷ)
−1

= I −Kεŷ(Kŷŷ)
−1

= I − (Kεε +Kεy)(Kyy +Kyε +Kεy +Kεε)
−1 .

Since the identity matrix I is within the set of possible estimators (Rn×n), we know that the
resulting objective satisfies E [∥S∗ŷ − y∥22] ≤ E [∥ŷ − y∥22]. In fact, applying properties of the
trace operator (cyclic property, invariance to transposes) gives the following expression for
the reduction in expected squared error:

E
[
∥ŷ − y∥22 − ∥S∗ŷ − y∥22

]
= tr

(
Kyy +Kŷŷ − 2Kyŷ −Kyy +Kyŷ (Kŷŷ)

−1 Kŷy

)

= tr
(
(Kŷŷ −Kyŷ)(Kŷŷ)

−1(Kŷŷ −Kŷy)
)

= tr
(
(Kεε +Kyε)

⊤(Kyy +Kεε +Kεy +Kyε)
−1(Kεε +Kyε)

)
.

Applying a matrix trace inequality for positive definite matrix A and positive semi-definite
matrix B: tr (A−1B) ≥ λmin(A

−1)tr (B) = tr (B) /λmax(A) ≥ tr (B) /tr (A) gives an upper
bound on the reduction:

E
[
∥ŷ − y∥22 − ∥S∗ŷ − y∥22

]
≥

tr
(
(Kεε +Kyε) (Kεε +Kyε)

⊤
)

tr (Kyy +Kεε +Kεy +Kyε)
.

Note that (Kεε + Kyε)(Kεε + Kyε)
⊤ and Kyy + Kεε + Kεy + Kyε = Kŷŷ are positive

semi-definite by construction and positive definite by assumption, respectively.

Lemma 5.1 shows that smoothing can reduce prediction error associated with Kεε and
Kyε, but that the extent to which errors can be smoothed out depends on the forms of Kyy

and Kyε. The following example underscores this point for an illustrative data generating
model and sets the stage for simulation experiments in Section 5.3. The main details of the
example are given here, with more extensive exposition in [244].

Example 5.1. Consider zero-mean stochastic processes x(t) and y(t) which are dependent
on a third zero-mean hidden process z(t), but with independent additive Gaussian noise. In
particular:

z ∼ N (0, Kzz) (5.3)
x(t) = z(t) + ω(t), ω(t) ∼i.i.d. N (0, σ2

x)

y(t) = a · z(t) + µ(t), µ(t) ∼i.i.d. N (0, σ2
y) .

The autocorrelation matrices show that there is shared variation due to the “hidden" process
z:

Kxx = Kzz +Kωω, Kyy = a2Kzz +Kµµ, Kxy = aKzz .
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Without any specific knowledge of the covariance structure in z, this could be modeled
with an “errors in variables” model, for which total least squares (TLS) gives a statistically
consistent estimator of a. In the setting of this example, the asymptotic distribution of the
TLS estimator is normal, with mean a, and variance approaching 0 as n → ∞ [139, 254],
from which it follows that the expected MSE of the TLS predictions approaches

E
[
1
n
∥ŷTLS − y∥22

]
≈ σ2

y + a2σ2
x

as n grows large. Invoking Lemma 5.1, the expected smoothed performance using S∗ ap-
proaches

E
[
1
n
∥S∗ŷTLS − y∥22

]
≈ σ2

y + a2σ2
x

(
1− 1

n
tr
(
(σ−2

x Kzz + I)−1
))
≥ σ2

y .

The expected MSE reduction is approximately a2σ2
x

n
tr
(
(σ−2

x Kzz + I)
−1
)

which is strictly
positive for a > 0 and σ2

x > 0, and increasing with σ2
x. ♢

5.3 Experiments
We first use simulated experiments to study situations in which smoothing is beneficial and
to demonstrate that a simple instantiation of Eq. (5.2) achieves close to optimal accuracy
in these settings. We then apply P-ES to predictions on real-world datasets with temporal
and spatial structure: human-pose prediction in video and house-price prediction over space.
P-ES improves performance of all predictors we consider, including some that already incor-
porate locality. P-ES compares favorably to statistical smoothing and SSL methods, both
in predictive accuracy and computation time. As a simple local-averaging weight matrix,
all experiments use as W the Nadaraya-Watson smoothing matrix with squared exponential
kernel on t, where Dij(t;σ) = e−

1
2σ2 ∥ti−tj∥22 :

Sc(t;σ) = c · diag−1
(
D1⃗
)
D + (1− c) · I . (5.4)

Simulations

We return to the distribution defined in Eq. (5.3) in Example 5.1, where the processes x(t)
and y(t) are influenced by a third hidden process z(t). We now make a specific assumption
for the covariance of z:

z⃗ = N
(
0⃗,Σ(t)

)
, Σij(t) = e

− 1

2σ2
z
(ti−tj)

2

.

We take t = (0, 1/n, 2/n, . . . , (n− 2)/n, (n− 1)/n) with n = 2000, and σz = 0.2. Half of
the points are chosen at random to form a training set from which we learn the total least
squares (TLS) estimator ŷ(x). The remaining 1000 points are used to evaluate performance
with and without P-ES. To show the expressiveness of the matrix Sc, in simulations we
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Figure 5.1: Simulation results. (a) Two examples of structure in z (left column), where a
total least squares (TLS) estimator recovers structure (middle column), but is improved upon
using P-ES (right column). (b) Aggregate performance over different noise parameters for
unsmoothed and P-ES estimates, compared to a lower bound of σ2

y for any linear smoother.
Vertical black lines show minima and maxima over 10 trials.

pick the parameters c, σ of Sc so as to maximize performance on the evaluation set. In
experiments with real data below, we pick parameters on a validation set before applying to
a holdout set.

Figure 5.1(a) shows the process of P-ES as local variance reduction. Each row shows a
different setting of σx, σy. The leftmost column shows observed labels y(t) as a function of
indices t. The middle and right columns show the TLS predictions, without and with P-ES,
respectively. Errors in ŷ that are made in the horizontal axis are reducible by smoothing,
as Sc(t) gives more weight to pairs closer in t (similar hue in Figure 5.1(a)). The smoothed
predictions ỹ exhibit a similar structure to the original predictions, with significantly re-
duced horizontal error bands. The difference in the performance of the TLS estimator with
and without P-ES (Figure 5.1(b)) indicates that P-ES reduces prediction errors that are
uncorrelated with the index variable t.

Human Pose Prediction in Video

Recent work has shown that improvements in human pose estimation [81, 156, 303] and
object detection and classification in videos [226, 300, 311] can be obtained by encoding
temporal consistency as part of a larger predictive pipeline. The intuition is that exploiting
continuity of motion over video frames can reduce the noise in per-frame predictions. For
example, a recent state-of-the-art method for pose estimation [156] learns both a temporal
encoder and temporal human dynamics as part of the predictive pipeline. In the following
experiment, we apply P-ES to predictions from this model as well as to predictions from a
per-frame baseline model [155].
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Table 5.1: Holdout set performance for human pose estimation in video. Arrows indicate
the direction of desired performance; bold numbers indicate the best performance for each
metric. For all metrics, P-ES predictions (italicized methods) have the best performance of
all methods considered. Other methods are attributed as “temporal, temporal + dynamics:”
Kanazawa et al. [156], “per-frame:” Kanazawa et al. [155, 156].

3DPW Penn Action

method PCK ↑ MPJPE ↓ PA-MPJPE ↓ Acc. Err. ↓ PCK ↑ Accel ↓
per-frame 84.06 129.95 76.68 37.41 73.17 79.91
per-frame, with P-ES 84.46 128.44 75.84 20.46 73.74 48.22
temporal 82.59 139.19 78.35 15.15 71.16 29.30
temporal + dynamics 86.37 127.08 80.05 16.42 77.88 29.66
temporal + dynamics with P-ES 86.57 126.14 79.73 8.14 78.07 4.96

We use the same validation and holdout splits for the 3D Poses in the Wild (3DPW)
[191] and the Penn Action datasets [305] as in Kanazawa et al. [156]. Before testing results
on the holdout set, smoothing parameters were chosen from σ ∈ [0.5, 1, 2, 3, 4] frames, and
c ∈ [0.0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] to maximize average validation accuracy measured
by the key-point accuracy (PCK) metric.

Holdout test set performance is given in Table 5.1. We evaluate performance using the
same metrics as reported in [156], and the same code to calculate these metrics. All metrics
are defined per video, and averaged over all videos. A description of each metric is given
here; See [17, 156] for further explanation:

• Percentage key points (PCK): percentage of 2D key points that fall within α·max{h,w}
of the labeled key point, where h and w parameters of a per-frame tight bounding box
around the entire person; here α = 0.05.

• Mean per joint position error (MPJPE): Mean euclidean distance of predicted to ground
truth joint, averaged over joints in the human pose model (calculated after aligning
root joints), measured in millimeters.

• Mean per joint position error after Procrustes alignment (PA-MPJPE): MPJPE after
alignment to the ground truth by Procrustes alignment method, measured in millime-
ters.

• Acceleration Error (Accel Err): defined in [156] as “the average difference between
ground truth 3D acceleration and predicted 3D acceleration of each joint in mm/s2.”

• Acceleration (Accel) For 2D datasets, measures “acceleration in mm/s2” [156]. Note
that this metric is only useful in conjunction with other metrics, as a baseline constant
predictor would achieve 0 acceleration. However, for predictions that also do well on
PCK, lower acceleration is more meaningful.
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Table 5.2: Optimal hyperparameter values on validation set per predictor for 3D Poses in
the Wild (3DPW) and the Penn Action datasets.

per-frame temporal + dynamics

3DPW PA 3DPW Penn Action

σ 2 3 2 2
c 0.5 0.4 0.8 1.0

While we optimized P-ES parameters according to the PCK metric, P-ES improves per-
formance in both models, across all metrics. Smoothing confers greater gains in the time-
agnostic per-frame model than the temporal dynamics model. Interestingly, the “temporal
model” without human dynamics does worse in almost all metrics than the “per-frame”
model. This underscores our motivation that temporal information must be encoded with
care, as well as our claim that P-ES is a suitable baseline for such tasks.

The optimal hyperparameter pairs chosen are given in Table 5.2. For both models, the
optimal σ was around 2 frames, but the optimal c for the per-frame predictions was much
smaller for the per-frame model (avg. 0.45) than for the model that already incorporated
temporal structure (avg. 0.9). This may be because predictions for the temporal model are
smoother, so that we do not alter the signal in predictions as much with P-ES.

In summary, P-ES confers performance gains to both the per-frame model and the more
accurate temporal and dynamics model, showing that P-ES can improve performance even
when the base estimator is a complex model incorporating locality.

Predicting House Price from Attributes

The usefulness of applying semi-parametric techniques merging feature-based prediction and
spatial regularization in predicting house prices has been documented from many perspec-
tives (see, e.g. [54, 55, 68, 95]). This motivates house price prediction as a domain in which
to compare the performance of P-ES and other methods exploiting spatial consistency. Using
data on house sales from the Zillow Transaction and Assessment Database (ZTRAX) [312],
we first demonstrate the effectiveness of P-ES on various machine learning regression meth-
ods (Figure 5.2), and then in comparison to standard semi-supervised learning techniques
(Table 5.3).

In this experiment we predict sale prices y of single family homes, given features x about
the homes (e.g., number of bedrooms, year of home sale, etc.).1 Location t is the latitude and

1Features included were: year built (from 2010), number of stories, number of rooms, number of bed-
rooms, number of baths, number of partial baths, size (sqft), whether there is heating, whether there is air
conditioning, the contract year, the contract month, and whether the home was new; location was encoded
as the latitude and longitude of the home, and target label is the most recent sale price of the home. We
drop any instances missing values for any of these features. The results and opinions are those of the authors
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Figure 5.2: P-ES performance for various base predictors. Bars denote average performance;
vertical black lines show minima and maxima over 10 trials. All six average relative differ-
ences (unsmoothed minues smoothed) are positive with p-value < 1e−4, those that include
the training set have p-value < 1e−7.

longitude of the homes. After preprocessing to restrict to single family homes and only most
recent sales, the dataset contains roughly 600,000 home sales at unique locations. We test
three diverse machine learning models: ridge regression, random feature regression [232], and
gradient boosted decision trees (XGB) [64], with and without post-estimation smoothing.
For all three resulting models, we chose parameters jointly over the model parameters and
P-ES parameters to maximize validation set accuracy, measured in R2, the percent of label
variation explained by the predictions.

Figure 5.2 shows the holdout test set performance of smoothed and unsmoothed models
for the three machine learning algorithms. Training, validation, and test sets are of size
n = 20, 000 each. We performed this experiment over 10 random data draws. Smoothing is
performed with respect to just the predictions, as well as with respect to the concatenated
training set labels and test set predictions (validated on training set labels and validation
set predictions).

For all three methods, applying P-ES with the test set predictions improves accuracy over
the original predictions. Smoothing with the training points, in the spirit of semi-supervised
learning, boosts accuracy further, as we might expect since there is no estimation error for
the training labels.

Table 5.3 shows a comparison to alternative methods for reducing variance or inducing
spatial consistency: kernel smoothing based only on the training set labels (without predic-
tions), Gaussian process regression (GPR), Laplacian regularized least squares (LapRLS),

of this work and do not reflect the position of Zillow Group.
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Table 5.3: Comparison with nonparametric and semi-supervised methods, for 10 random
trials with train, validation, and holdout sets of size n = 10, 000. Values in parentheses
denote standard deviations.

model function (f) or average holdout average runtime
post-processing (pp) accuracy mean (std)

method form mean (std) in r2 in secs

kernel smoothing f(t, y) 0.277 (0.185) 20.6 (0.2)
GPR (Kriging) f(t, y) 0.386 (0.011) 1336.1 (4.6)
LapRLS [30] f(x, t, y) 0.452 (0.012) 1683.6 (12.4)
XGB f(x, y) 0.458 (0.014) 7.8 (0.1)
XGB + shrinkage pp(t, ŷXGB) 0.457 (0.014) + 0.0 (0.0)
XGB + P-ES pp(t, y, ŷXGB) 0.526 (0.015) + 27.0 (0.2)
HEM [310] f(t, y, ŷXGB) 0.544 (0.015) + 898.6 (4.8)
HEM [310] + P-ES pp (t, y, f(t, y, ŷXGB)) 0.546 (0.015) + 287.8 (8.0)

a variance reducing shrinkage estimator (taking S = δ · ( 1
n
1⃗⃗1⊤) + (1 − δ)I), and Gaussian

harmonic energy minimization (HEM) (see Section 5.1 for more details on these methods).
Timing results underscore that P-ES is a fast way to incorporate spatial structure (it

incurs an O(n2) additional runtime as opposed to O(n3) for GPR, LapRLS, and HEM).
The high variance in performance of kernel smoothing alone may be explained by inherent
difficulties in choosing hyperparameters in semi-supervised settings, as discussed by [213].
Accuracy of post-processing with P-ES is within 1.2 standard deviations of the HEM method
which takes roughly 30× as long to run in this instance over the chosen set of hyperparameters
(grid of 9 σ values and 11 c values).

Runtimes for post-processing procedures are reported as the additional time compared to
not running the post-processing procedure (on average, computing P-ES predictions takes 27
seconds on top of the 7.8 seconds to run XGB over multiple hyperparameter configurations).
The runtime numbers reported in Table 5.3 are for solving the exact HEM and LapRLS
problems, using the inverse and with as much shared computation as possible. We omit
experimental comparison to LGC [307, 308] as the adaption from multi-class classification
and ranking problems to regression problems is nontrivial, but we note that it is an iterative
method where each iteration is O(n2). The first iteration of the LGC algorithm is very
similar to P-ES, so that similarity of accuracy of HEM and P-ES with the smoothing matrix
defined in Eq. (5.4) suggests that a one-iteration approximation of these algorithms can be
sufficient in some cases.

The last line in table Table 5.3 confirms that we get a very small increase in accuracy
by smoothing the best SSL method; this is consistent with our understanding that this
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Figure 5.3: In-sample (unsmoothed) validation performance and out-of-sample holdout per-
formance for different methods of incorporating spatial index variables for housing price
prediction. Vertical lines on the barplots show minima and maxima over 10 trials.

smoothing operator acts similarly to the graph-defined HEM operator. The reduction in
computation to apply P-ES significantly reduces the barrier to comparing to this family of
algorithms as a baseline. Additionally, the computational speed of P-ES makes it much easier
to explore different choices of the weight matrix W (t;σ) from which to form the smoothing
matrix; we consider this future work since such a matrix will likely be domain-specific.

We conclude our experiments with a final example of the danger of incorporating index
variables with unique characteristics as predictive features. We compare the out-of-sample
generalizability of a model ŷ(x, t) trained on the concatenated set of home attributes and
geographic locations as features with that of the model from previous experiments ŷ(x)
trained only on attributes with smoothing applied.

Figure 5.3 shows the results of these two approaches for a spatial extrapolation exper-
iment, where a training set and validation set of size 20, 000 each are sampled from the
northern U.S. and a holdout set of size 20, 000 is sampled from a disjoint southern segment.

We might expect that incorporating latitude and longitude as features could cause the
first model to overfit, whereas distribution shift in neighborhood structure might negatively
impact the learning of parameters for P-ES. Indeed, while the XGB predictor trained with
locations and attributes (XGB trained on [X, t]) has better validation performance than the
location-agnostic predictor (XGB trained on [X]), it performs much worse on the holdout
set (0.10 vs 0.35 average R2). However, applying P-ES does not degrade performance (0.002
average R2 increase). In this scenario, the distribution shift with respect to t is so severe
that it is possible to overfit by using t as a feature. Incorporating structure in t with P-ES,
on the other hand, is much more robust to this distribution shift.

5.4 Conclusions
In this chapter we introduce post-estimation smoothing as a method for incorporating struc-
tural indices like time or location as valuable information sources in machine learning pre-
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dictions. Theory and experiments underscore that P-ES is an effective and robust way
to incorporate structured index variables in prediction, at much less cost than traditional
semi-supervised methods.

The performance of P-ES depends on the accuracy of the original predictions. If pre-
dictions ŷ are very far from y, smoothing is unlikely to remedy this. While decoupling
smoothing from the original prediction may be limiting, we have shown that it can be ad-
vantageous when viewing P-ES as a diagnostic method or a baseline with which to compare
more complex methods.

The results detailed in this chapter open a door for extensions to applications where index
variables satisfy less physical notions of distance (e.g., word embeddings), and to analysis
characterizing when decoupling local consistency and prediction can be close to the optimal
integrated approach. Future work could also consider multivariate labels y with correlation
among their elements. Lastly, it will likely be worthwhile to investigate more structured
weight matrices W (other than the Nadaraya-Watson estimator) which form the basis of
the smoothing matrix S. Due to the decoupling of smoothing from the original prediction,
practitioners can try domain-specific weight matrices with marginal extra cost.

In summary, when the goal is to obtain accurate predictors, no data should be overlooked.
However, index variables such as time and space should be incorporated with care. We
propose that post-processing is a natural and effective way to utilize this structure, and
show it is robust to different tasks, predictors, and sampling patterns.
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Chapter 6

Limitations of “Data as Context”

While Chapters 4 and 5 provide encouraging results toward understanding and utilizing data
as a form of context for statistical learning systems, it is important to recognize aspects of
context that a data-centric view is not currently poised to address. Studying numerical
allocations alone will not address issues of misuse of prediction systems, nor will it address
issues of mismeasurement, when the data available does not fully or faithfully represent the
salient factors of the phenomena studied. This chapter delineates potential limitations of
identifying context within a data-centric framework. Understanding these limitations can
help to clearly characterize the failure modes and opportunities to improve or augment data-
centered analysis, essential steps toward developing even more nuanced and holistic methods
of incorporating context in learning systems and frameworks.

6.1 Limitations of Numerical Allocation as
Representation

Representation is a broad and often ambiguous concept [59], and numerical allocation is
an imperfect proxy of representation or inclusion. One concern is that the data annotation
process may systematically misrepresent individuals from certain groups or sup-populations.
For example, Abbasi et al. [1] expose and quantify representational harms that can arise
from stereotyping individuals in groups. If this is the case, solely optimizing allocations as in
Chapter 4 to maximize accuracy with respect to those labels would not reflect an intended
goal of high efficacy across all groups.

True representation thus requires that each data instance captures, or measures, the in-
tended variables and their complexities in addition to having sufficient numerical allocations.
The field of measurement theory provides a language by which to discuss these concepts of
representation and suitability of measurements and their use in statistical analysis [22, 121,
122]. Specifically addressing learning contexts, Jacobs and Wallach [143] delineate key con-
cepts of construct reliability and construct validity – commonly used in the quantitative
social sciences – as they pertain to concerns of unfairness in algorithmic systems. For ex-
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ample, in the group fairness setting introduced in Chapter 2, the definition of groups and
assignment of instances to them requires measuring those demographic groups, which are of-
ten imperfectly described by a group structure at all. This is further complicated by the fact
that “many demographic factors, such as race or gender, are themselves essentially contested
constructs, with theoretical understandings that vary across cultures and over time” [143].

Focusing primarily on the numerical allocations of data from certain groups is thus only
suitable to the extent that those data accurately measure the relevant phenomena for indi-
viduals in each group, and to the extent that the definition and measurement of those groups
are valid. Understanding and accounting for key concepts and tools in measurement theory
offers an opportunity to frame, extend, and possibly contest specific uses of data as context.

6.2 Whose Context do Data Reflect?
While data can encode certain types of context about a prediction problem, it is important
to understand the ways in which data have social context: be that political, historical, or
otherwise. As Boyd and Crawford [45] explain, “data are not generic. There is value to
analyzing data abstractions, yet retaining context remains critical, particularly for certain
lines of inquiry.”

For example, relying on neighborhood effects for predicting house prices may increase
accuracy on an existing evaluation set, but could also exacerbate deflation of home prices
in historically undervalued neighborhoods, similarly to examples seen in Chapter 2. His-
torical context salient at the time of data creation or publication may get lost over time
as datasets are reused or repurposed. Radin [229] details that as the Pima Indian Diabetes
Dataset (PIDD) became widely used as a benchmark dataset in machine learning, its use be-
came largely detached from the subjects and community from whom the data was collected.
Couldry and Mejias [77] use the term “data colonialism” to illustrate the political and social
disconnect between ways in which data is collected, processed, analysed, and shared, and
the people whom that data is meant to represent.

Understanding and accounting for the context of data goes hand in hand with utilizing
the context within it to the extent possible in statistical models. For example, results in
Chapter 5 show that structural index variables can mislead predictors to rely on trends
that do not generalize if used naively in the predictive model. Similarly, different data
types and sources may differ in quality across regions, as we discuss for satellite imagery
in Chapter 8. Understanding and delineating these characteristics of data with statistical
tools can aid reliable reporting of machine learning model performance. More importantly,
we must realize and account for the fact that the application of these statistical tools to
real-world settings occurs within a broader social context beyond what can be encoded in
numerical data.
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6.3 Additional Data Collection is Not a Panacea
The results in this part of this thesis indicate the importance of having suitable representation
in both the number of data points from all salient data sources or groups (Chapter 4) and
utilizing the information carried in the feature representations of each instance (Chapter 5).
At first glance, this might seem to indicate that a simple remedy to poor performance of a
learning system would be to collect more data, either by collecting more samples (increasing
n), or collecting more information about each data point (increasing d). But this is not
necessarily the case. As Borgman [41] puts it quite simply, “having the right data is usually
better than having more data.”

While having more high quality data is generally preferable, assuming that just collecting
more data will easily or necessarily remedy undesirable effects of machine learning systems
can be naive. When machine learning systems fail to represent subpopulations due to mea-
surement or construct validity issues discussed above, more comprehensive interventions are
needed [1, 143]. Moreover, naive targeted data collection attempts can present undue bur-
dens of surveillance or skirt consent [220]. Modeling characteristics of data from statistical
perspectives as in Chapters 4 and 5 is thus complementary to current and emerging practices
for ethical, contextualized data collection and curation [2, 90, 106, 150]. Integrating these
perspectives together will be an important step toward operationalizing our findings.
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Part III

Context-Driven Applications in Remote
Sensing and Machine Learning

Data is the lifeblood of decision-making and the raw material for accountability. . . New
sources of data - such as satellite data -, new technologies, and new analytical approaches,
if applied responsibly, can enable more agile, efficient and evidence-based decision-making
and can better measure progress on the Sustainable Development Goals (SDGs) in a way

that is both inclusive and fair.

— United Nations Global Issues, “Big Data for Sustainable Development” [34]

Whereas the first two parts of this thesis center around the themes of intent and impact
(Part I) and context (Part II) in general machine learning systems, in Part III we detail
two applications of these themes to combining machine learning and remote sensing. These
specific applications are indicative of a broader class of problems in using machine learning
to aid environmental monitoring, a compelling area for jointly achieving social benefit and
leveraging structures in remotely sensed data to anchor context-aware prediction in
practice.

In Chapter 7, we study the problem of robotic source localization. We develop statistically
efficient trajectory planning methods for robots to find sources of environmental radiation.
Our solution makes use of precise measurement structures of the on-board radiation
sensors to optimize a sampling procedure for the robot, despite physical travel constraints.
In Chapter 8, we detail a large scale project that combines machine learning and satellite
imagery, where structures in the imagery data and downstream use cases guide algorithmic
innovations that increase accessibility and computational efficiency of this technology.

Applied perspectives like these shed light on how the themes of intent, impact, and context
can manifest in real-world machine learning systems. Together, Chapters 7 and 8 evidence
that structural domain knowledge about our application space—including properties of our
data sensing process and intended downstream decisions or use cases—can be leveraged to
delineate and optimize for our intent with targeted algorithmic innovations.
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Chapter 7

A Successive-Elimination Approach to
Adaptive Robotic Source Seeking

This chapter is based on the paper “A successive-elimination approach to adaptive robotic
sensing” [243], written in collaboration with David Fridovich-Keil, Max Simchowitz, Ben-
jamin Recht, and Claire Tomlin.1

In this chapter, we study an adaptive source seeking problem, in which a mobile robot
must identify the strongest emitter(s) of a signal in an environment with background emis-
sions. Background signals may be highly heterogeneous and can mislead algorithms that are
based on receding horizon control. We propose AdaSearch, a general algorithm for adaptive
source seeking in the face of heterogeneous background noise. AdaSearch combines global
trajectory planning with principled confidence intervals in order to concentrate measurements
in promising regions while guaranteeing sufficient coverage of the entire area. Theoretical
analysis shows that AdaSearch confers gains over a uniform sampling strategy when the
distribution of background signals is highly variable. Simulation experiments demonstrate
that when applied to the problem of radioactive source-seeking, AdaSearch outperforms both
uniform sampling and a receding time horizon information maximization approach based on
previous literature. We also demonstrate AdaSearch in hardware, providing further evidence
of its potential for real-time implementation.

7.1 Background
Robotic source seeking is a problem domain in which a mobile robot must traverse an en-
vironment to locate the maximal emitters of a signal of interest, usually in the presence
of background noise. Adaptive source seeking involves adaptive sensing and active infor-

1Full citation: Esther Rolf et al. “A successive-elimination approach to adaptive robotic source seeking”.
In: IEEE Transactions on Robotics 37.1 (2021), pp. 34–47. doi: 10.1109/TRO.2020.3005537 © 2021
IEEE
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Figure 7.1: A Crazyflie 2.0 quadrotor in a motion capture room during a hardware demo of
AdaSearch (round 3 of the algorithm). Top: confidence intervals for estimated radioactivity
(simulated). Bottom: horizontal speed over time, indicating slow and fast sections in which
AdaSearch allocates more and fewer sensor measurements, respectively. In later rounds,
more time is spent measuring points that are still in consideration (in teal). ©2021 IEEE

mation gathering, and encompasses several well-studied problems in robotics, including the
rapid identification of accidental contamination leaks and radioactive sources [196, 285], and
finding individuals in search and rescue missions [133]. We consider a specific motivating
application of radioactive source seeking (RSS), in which an unmanned aerial vehicle (UAV)
(Figure 7.1) must identify the k-largest radioactive emitters in a planar environment, where
k is a user-defined parameter. RSS is a particularly interesting instance of source seeking due
to the challenges posed by the highly heterogeneous background noise [216].

A well-adopted methodology for approaching source seeking problems is information
maximization, in which measurements are collected in the most promising locations fol-
lowing a receding planning horizon. Information maximization favors measuring regions
that are likely to contain the highest emitters and avoids wasting time elsewhere. However,
when operating in real-time, computational constraints necessitate approximations such as
limits on planning horizon and trajectory parameterization. These limitations scale with
size of the search region and complexity of the sensor model and may cause the algorithm
to be excessively greedy, spending extra travel time tracking down false leads.

To overcome these limitations, we introduce AdaSearch, a successive-elimination frame-
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work for general source seeking problems with multiple sources, and demonstrate it within
the context of RSS. AdaSearch explicitly maintains confidence intervals over the emissions
rate at each point in the environment. Using these confidence intervals, the algorithm iden-
tifies a set of candidate points likely to be among the top-k emitters, and eliminates points
that are not. Rather than iteratively planning for short, receding time horizons, AdaSearch
repeats a fixed, globally-planned path, adjusting the robot’s speed in real-time to focus mea-
surements on promising regions. This approach offers coverage of the full search space while
affording an adaptive measurement allocation in the spirit of information maximization. By
maintaining a single fixed, global path, AdaSearch reduces the online computational over-
head, yielding an algorithm easily amenable to real-time implementation.

In this chapter:

• We present AdaSearch, a general framework for designing efficient sensing trajectories
for robotic source seeking problems.

• We derive theoretical runtime analysis of AdaSearch and compare to that of a naive,
uniform sampling baseline which follows the same fixed global path but moves at
constant speed.

• We detail simulation experiments for RSS evaluating AdaSearch in comparison with a
uniform baseline and information maximization.

Our theoretical analysis sharply quantifies AdaSearch’s improvement over its uniform sam-
pling analog. Experiments validate this finding in practice, and also show that AdaSearch

outperforms a custom implementation of information maximization tailored to the RSS prob-
lem. Together, these results suggest that the accuracy and efficient runtime of AdaSearch are
robust to heterogeneous background noise, which stands in contrast to existing alternative
methods. This robustness is particularly valuable in real-world applications where the exact
distribution of background signals in the environment is likely unknown.

This chapter is organized as follows. The remainder of this section presents a brief survey
of related literature. In Section 7.2, we provide a formal statement of the source seeking prob-
lem and introduces our solution, AdaSearch. In Section 7.3, we consider a radioactive source
seeking (RSS) case study and develop two appropriate sensing models which allow us to
apply AdaSearch to RSS. In Section 7.4, we analyze the theoretical runtime complexity of
AdaSearch and its uniform sampling analog for the RSS problem. In Section 7.5, we present
simulation experiments which corroborate these theoretical results. A hardware demon-
stration provides further evidence of AdaSearch’s potential for real-time application. In
Section 7.6, we suggests a number of extensions and generalizations to AdaSearch, and in
Section 7.7, we conclude with a summary of our results.

Related Work

There is a breadth of existing work related to source seeking. Much of this literature, particu-
larly when tailored to robotic applications, leverages some form of information maximization,
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often using a Gaussian process prior. However, our own work is inspired by approaches from
the pure exploration multi-armed bandit literature, even though bandits are not typically
used to model physical sensing problems with realistic motion constraints. We survey the
most relevant work in both information maximization and multi-armed bandits below.

Information Maximization Methods

A popular approach to active sensing and source seeking in robotics, e.g. in active mapping
[44] and target localization [199], is to choose trajectories that maximize a measure of in-
formation gain [19, 44, 58, 173, 187]. In the specific case of linear Gaussian measurements,
Atanasov et al. [11] formulate the informative path planning problem as an optimal control
problem that affords an offline solution. Similarly, Lim, Hsu, and Lee [176] propose a recur-
sive divide and conquer approach to active information gathering for discrete hypotheses,
which is near-optimal in the noiseless case.

Planning for information maximization-based methods typically proceeds with a reced-
ing horizon [19, 116, 192, 193, 195]. For example, Ristic, Morelande, and Gunatilaka [239]
formulate information gathering as a partially observable Markov decision process and ap-
proximate a solution using a receding horizon. Marchant, Roman and Ramos, Fabio [193]
combine upper confidence bounds (UCBs) at potential source locations with a penalization
term for travel distance to define a greedy acquisition function for Bayesian optimization.
Their subsequent work [192] reasons at the path level to find longer, more informative tra-
jectories. Noting the limitations of a greedy receding horizon approach, Hitz et al. [132]
incentivize exploration by using a look-ahead step in planning. Though similar in spirit to
these information seeking approaches, a key benefit of AdaSearch is that it is not greedy,
but rather iterates over a global path.

Information maximization methods typically require a prior distribution on the underly-
ing signals. Many active sensing approaches model this prior as being drawn from a Gaussian
process (GP) over an underlying space of possible functions [19, 193, 199], tacitly enforc-
ing the assumption that the sensed signal is smooth [193]. In certain applications, this is
well motivated by physical laws, e.g. diffusion [132]. However, GP priors may not reflect
the sparse, heterogeneous emissions encountered in radiation detection and similar problem
settings.

Multi-Armed Bandit Methods

AdaSearch draws heavily on confidence-bound based algorithms from the pure exploration
bandit literature [13, 102, 144]. In contrast to these works, our method explicitly incor-
porates a physical sensor model and allows for efficient measurement allocation despite the
physical movement constraints inherent to mobile robotic sensing. Other works have studied
spatial constraints in the online, “adversarial” reward setting [47, 168]. Baykal et al. [28]
consider spatial constraints in a persistent surveillance problem, in which the objective is to
observe as many events of interest as possible despite unknown, time-varying event statistics.
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Recently, Ma, Garnett, and Schneider [187] encode a notion of spatial hierarchy in design-
ing informative trajectories, based on a multi-armed bandit formulation. While [187] and
AdaSearch are similarly motivated, hierarchical planning can be inefficient for many sensing
models, e.g. for short-range sensors, or signals that decay quickly with distance from the
source.

Bandit algorithms are also studied from a Bayesian perspective, where a prior is placed
over underlying rewards. For example, Srinivas et al. [266] provide an interpretation of the
GP upper confidence bound (GP-UCB) algorithm in terms of information maximization.
AdaSearch does not use such a prior, and is more similar to the lower and upper confidence
bound (LUCB) algorithm [154], but opts for successive elimination over the more aggressive
LUCB sampling strategy for measurement allocation.

A multi-armed bandit approach to active exploration in Markov decision processes (MDPs)
with transition costs is studied in [272], which details trade-offs between policy mixing and
learning environment parameters. This work highlights the potential difficulties of applying
a multi-armed bandit approach while simultaneously learning robot policies. In contrast, we
show that decoupling the use of active learning during the sampling decisions from a fixed
global movement path confers efficiency gains under reasonable environmental models.

Other Source Seeking Methods

Other notable extremum seeking methods include those that emulate gradient ascent in the
physical domain [36, 197, 225], take into account specific environment signal characteris-
tics [159], or are specialized for particular vehical dynamics [198]. Modeling emissions as a
continuous field, gradient-based approaches estimate and follow the gradient of the measured
signal toward local maxima [36, 197, 225]. One of the key drawbacks of gradient-based meth-
ods is their susceptibility to finding local, rather than global, extrema. Moreover, the error
margin on the noise of gradient estimators for large-gain sensors measuring noisy signals
can be prohibitively large [284], as is the case in RSS. Khodayi-mehr, Aquino, and Zavlanos
[159] handle noisy measurements by combining domain, model, and parameter reduction
methods to actively identify sources in steady state advection-diffusion transport system
problems such as chemical plume tracing. Their approach combines optimizing an infor-
mation theoretic quantity based on these approximations with path planning in a feedback
loop, specifically incorporating the physics of advection-diffusion problems. In comparison,
we consider planning under specific sensor models, and plan motion path and optimal mea-
surement allocation separately.
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7.2 AdaSearch Planning Strategy

Problem Statement

We consider signals (e.g. radiation) which emanate from a finite set of environment points
S. Each point x ∈ S emits signals {Xt(x)} indexed by time t with means µ(x), independent
and identically distributed over time. Our aim is to correctly and exactly discern the set of
the k points in the environment that emit the maximal signals:

S∗(k) = argmax
S′⊆S,|S′|=k

∑

x∈S′

µ(x) (7.1)

for a pre-specified integer 1 ≤ k ≤ |S|. Throughout, we assume that the set of maximal
emitters S∗(k) is unique.

In order to decide which points are maximal emitters, the robot takes sensor measure-
ments along a fixed path Z = (z1, . . . , zn) in the robot’s configuration space. Measurements
are determined by a known sensor model h(x, z) that describes the contribution of environ-
ment point x ∈ S to a sensor measurement collected from sensing configuration z ∈ Z. We
consider a linear sensing model in which the total observed measurement at time t, Yt(z),
taken from sensing configuration z, is the weighted sum of the contributions {Xt(x)} from
all environment points:

Yt(z) =
∑

x∈S

h(x, z)Xt(x). (7.2)

Note that while h(x, z) is known, the {Xt} are unknown and must be estimated via the
observations {Yt}.

The path of sensing configurations, Z, should be as short as possible, while providing
sufficient information about the entire environment. This may be expressed as a condition
on the minimum aggregate sensitivity α to any given environment point x over the sensing
path Z:

∑

z∈Z

h(x, z) ≥ α > 0 ∀x ∈ S. (7.3)

Moreover, we need to disambiguate between contributions from different environment
points x, x′ ∈ S. We define the matrix H ∈ R|S|×|Z| that encodes the sensitivity of each
sensing configuration zj ∈ Z to each point xi ∈ S, so that Hij := h(xi, zj). Disambiguation
then translates to a rank constraint rank(H) ≥ |S|, enforcing invertibility of HHT . In
Section 7.3, we define two specific sensitivity functions that we consider in the context of
the RSS problem. In Section 7.6, we discuss sensitivity functions that may arise in other
application domains.
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Algorithm 1: AdaSearch
1 Input Candidate points of interest S; sensing path of configurations Z; number of

points of interest k; minimum measurement duration τ0; procedure for constructing
[LCBi(x),UCBi(x)] (e.g., as in Section 7.3); confidence parameter δtot.

2 Initialize Stop
0 = ∅,S0 = S.

3 For rounds i = 0, 1, 2, . . .

4 If Si = ∅, Return Stop
i .

5 Choose configuration subset Zi ⊆ Z that is informative about environment
points x ∈ Si.

6 Execute a trajectory along path Z that spends time τi = τ0 · 2i at each z ∈ Zi

and time τ0 at each z ∈ Z \ Zi. Meanwhile, observe signal measurements
according to (7.2).

7 Update [LCBi(x),UCBi(x)] for all x ∈ S.
8 Update Augment Stop

i according to (7.4), and prune Si according to (7.5).

Figure 7.2: (left) Raster path Z over an example grid environment of size 6 × 6. The
path ensures that each point is sufficiently measured during each round. (right) Illustrative
trajectory for round i = 1. Dots indicate measurements. AdaSearch slows to take twice as
many measurements over points x ∈ Si. ©2021 IEEE

The AdaSearch Algorithm

AdaSearch (Algorithm 1) concentrates measurements in regions of uncertainty until we are
confident about which points belong to S∗(k). At each round i, we maintain a set of environ-
ment points Stop

i that we are confident are among the top-k, and a set of candidate points
Si about which we are still uncertain. As the robot traverses the environment, new sensor
measurements allow us to update the lower and upper confidence bounds

[LCBi(x),UCBi(x)] for each x ∈ Si
and prune the uncertainty set Si. The procedure for constructing these intervals from ob-
servations should ensure that for every x ∈ Si, LCBi(x) ≤ µ(x) ≤ UCBi(x) with high
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probability. In Section 7.3, we detail the definition of these confidence intervals under dif-
ferent sensing models.

Using the updated confidence intervals, we expand the set Stop
i+1 and prune the set Si+1.

We add to the top-set all points x ∈ Si whose lower confidence bounds exceed the upper
confidence bounds of all but (k − |Stop

i |) points in Si; formally,

Stop
i+1 ← Stop

i ∪ {x ∈ Si | LCBi(x) > (k − |Stop
i |+ 1)-th largest UCBi(x

′), x′ ∈ Si}. (7.4)

In (7.4), we need not re-evaluate confidence intervals for points x already in Stop
i when

producing the set Stop
i+1, and can only consider new points. This is explained in the proof

of correctness (Lemma 7.1) and in Theorem 7.1, where we show that with high probability,
points x /∈ S∗(k) are never incorrectly added to the estimate of the top set Stop

i .
Next, the points added to Stop

i+1 are removed from Si+1, since we are now certain about
them. Additionally, we remove all points in Si whose upper confidence bound is lower than
the lower confidence bounds of at least k − |Stop

i+1| points in Si. The set Si+1 is defined
constructively as:

Si+1 ← {x ∈ Si | x /∈ Stop
i+1 and UCBi(x) ≥ (k − |Stop

i+1|)-th largest LCBi(x
′), x′ ∈ Si}. (7.5)

Trajectory Planning for AdaSearch

The update rules (7.4) and (7.5) only depend on confidence intervals for points x ∈ Si. At
each round, AdaSearch chooses a subset of the sensing configurations Zi ⊆ Z which are
informative to disambiguating the points remaining in Si.

AdaSearch defines a trajectory by following the fixed path Z over all configurations,
slowing down to spend time 2iτ0 at informative configurations in Zi, and spending minimal
time τ0 at all other configurations in Z \Zi. Doubling the time spent at each z ∈ Zi in each
round amortizes the time spent traversing the entire path Z. For omnidirectional sensors, a
simple raster pattern (Figure 7.2) suffices for Z and choosing Zi is relatively straightforward.
Finally, we remark that one can set the time per configuration z ∈ Zi as τi = τ0c

i for any
constant c > 1; this yields similar theoretical guarantees, and constants other than c = 2
may confer slight benefits in practice.

We could also design a trajectory that visits the z ∈ Zi and minimizes total travel
distance each round, e.g. by approximating a traveling salesman solution. In practice, this
would improve upon the runtime of the fixed raster path suggested above. In this chapter,
we use a raster pattern to emphasize the gains due to our main algorithmic components:
global coverage and adaptive measurement allocation.

Correctness

Lemma 7.1 establishes that the two update rules above guarantee the overall correctness
of AdaSearch, whenever the confidence intervals [LCBj(x),UCBj(x)] actually contain the
correct mean µ(x):
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Lemma 7.1 (Sufficient condition for correctness). For each round i ≥ 0, Stop
i ∩ Si = ∅.

Moreover, whenever the confidence intervals satisfy the coverage property:

for all rounds j ≤ i and all x ∈ Sj, µ(x) ∈ [LCBj(x),UCBj(x)], (7.6)

then Stop
i+1 ⊆ S∗(k) ⊆ {Stop

i+1∪Si+1}. If (7.6) holds for all rounds i, then AdaSearch terminates
and correctly returns S∗(k).

Proof of Lemma 7.1. First, we verify that for each round i ≥ 0, Stop
i ∩ Si = ∅. At round

i = 0, Stop
i = ∅, so the bound holds immediately. Suppose by an inductive hypothesis that

Stop
i ∩ Si = ∅ for some i ≥ 0. Then, for any x ∈ Stop

i+1, we have two cases:

(a) x ∈ Stop
i . Then, x /∈ Si by the inductive hypothesis, and Si ⊃ Si+1 by (7.5).

(b) x is added to Stop
i+1 via (7.4). Then x /∈ Si+1 by (7.5).

Next, we verify that if the confidence intervals are correct in all rounds leading up to round
i, i.e.

for all rounds j ≤ i and all x ∈ Sj, µ(x) ∈ [LCBj(x),UCBj(x)], (7.7)

then Stop
i+1 ⊂ S∗(k), and S∗(k) ⊂ Stop

i+1 ∪ Si+1. We again use induction. Initially, we have
Stop
0 = ∅ ⊂ S∗(k) ⊂ S = S0. Now, suppose that at round i, one has that Stop

i ⊂ S∗(k), and
S∗(k) ⊂ Stop

i ∪ Si.
To show that Stop

i+1 ⊂ S∗(k), it suffices to show that if x is added to Stop
i+1, then x ∈ S∗(k).

By the inductive hypothesis there exists k − |Stop
i | elements of S∗(k) in Si. Hence, if x is

added to Stop
i+1, and if (7.7) holds, then

µ(x) ≥ LCBi(x)

> (k − |Stop
i |+ 1)-th largest value of UCBi(x), x ∈ Si by (7.4)

≥ (k − |Stop
i |+ 1)-th largest value of µ(x), x ∈ Si by (7.7)

≥ (k + 1)-th largest value of µ(x), x ∈ Si ∪ Stop
i .

Hence, µ(x) is among the k largest values of µ(x) for x ∈ Si ∪Stop
i . Since S∗(k) ⊂ Si ∪Stop

i ,
we therefore have that x ∈ S∗(k).

Similarly, to show S∗(k) ⊂ Si+1 ∪ Stop
i+1, it suffices to show that if x ∈ Si \ Si+1, and

x /∈ Stop
i+1, then x /∈ S∗(k). For x such that x ∈ Si \ Si+1, and x /∈ Stop

i+1, it follows that

µ(x) ≤ UCBi(x)

< (k − |Stop
i+1|)-th largest value of LCBi(x), x ∈ Si by (7.5)

≤ (k − |Stop
i+1|)-th largest value of µ(x), x ∈ Si by (7.7)

≤ k-th largest value of µ(x), x ∈ Si ∪ Stop
i+1

≤ k-th largest value of µ(x), x ∈ S,
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hence µ(x) /∈ S∗(k).
Finally, we verify that if (7.7) holds at each round, then at the termination round ifin,

Sifin = ∅, so that Stop
ifin
⊂ S∗(k) ⊂ Stop

ifin
∪ Sifin = Stop

ifin
, and thus S∗(k) = Stop

ifin
.

The proof of Lemma 7.1 holds for any instantiation of Algorithm 1, regardless of the
sensing model or the planning strategy. Lemma 7.1 provides a backbone upon which we
construct a probabilistic correctness guarantee in Section 7.4. If the event (7.6) holds over
all rounds with some probability 1− δtot, then AdaSearch returns the correct set S∗(k) with
the same probability 1− δtot.

7.3 Radioactive Source Seeking with Poisson Emissions
While AdaSearch applies to a range of adaptive sensing problems, for concreteness we now
refine our focus to the problem of radioactive source seeking (RSS) with an omnidirectional
sensor. The environment is defined by potential emitter locations which lie on the ground
plane, i.e. x ∈ S ⊂ R2 × {0}, and sensing configurations encode spatial position, i.e.
z ∈ Z ⊂ R3. Environment points emit gamma rays according to a Poisson process, i.e.
Xt(x) ∼ Poisson (µ(x)). Here, µ(x) corresponds to rate or intensity of emissions from point
x.

Thus, the number of gamma rays observed over a time interval of length τ from config-
uration z has distribution

Yt(z) ∼ Poisson
(
τ ·
∑

x∈S

h(x, z)µ(x)
)

(7.8)

where h(x, z) is specified by the sensing model. In the following sections, we introduce two
sensing models: a pointwise sensing model amenable to theoretical analysis, and a more
physically realistic sensing model for experiments.

In both settings, we develop appropriate confidence intervals for use in the AdaSearch

algorithm. We introduce the specific path used for global trajectory planning, and conclude
Section 7.3 with two benchmark algorithms to which we compare AdaSearch.

Pointwise Sensing Model

First, we consider a simplified sensing model, where the set of sensing locations Z coincides
with the set S of all emitters, i.e. each z ∈ Z corresponds to exactly one x ∈ S and vice
versa. The sensitivity function is defined as h(x, z) := I(x = z) = [1 if x = z, 0 if x ̸= z].

Now we derive confidence intervals for Poisson counts observed according to this sensing
model. Define N(x) to be the total number of gamma rays observed during the time interval
of length τ spent at x. The maximum likelihood estimator (MLE) of the emission rate for
point x is µ̂(x) = N(x)

τ
. In Section 7.A, we introduce the bounding functions U−(·, ·) and
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U+(·, ·):

U+ (N, δ) := 2 log(1/δ) +N+
√
2N log (1/δ) and

U− (N, δ) := max
{
0,N−

√
2N log(1/δ)

}
.

Then for any λ ≥ 0, N ∼ Poisson(λ), and δ ∈ (0, 1),

P[U−(N, δ) ≤ λ ≤ U+(N, δ)] ≥ 1− 2δ.

Let Ni(x) denote the number of gammas rays observed from emitter x during round i, so that
N(x) ∼ Poisson(τiµ(x)). For any point x ∈ Si, the corresponding duration of measurement
would be τi. The bounding functions above provide the desired confidence intervals for
signals µ(x), ∀x ∈ Si:

LCBi(x) :=
1
τi
U− (Ni(x), δi) , UCBi(x) :=

1
τi
U+ (Ni(x), δi) . (7.9)

This bound implies that the inequality τiLCBi(x) ≤ τiµ(x) ≤ τiUCBi(x) holds with prob-
ability 1−2δi. Dividing by τi, we see that LCBi(x) and UCBi(x) are valid confidence bounds
for µ(x).

The term δi can be thought of as an “effective confidence” for each interval that we
construct during round i. In order to achieve the correctness in Lemma 7.1 with overall
probability 1 − δtot, we set the effective confidence δi at each round to be δi = δtot/(4|S|i2)
(see Lemma 7.4 in Section 7.B).

Physical Sensing Model

A more physically accurate sensing model for RSS reflects that the gamma ray counts
at each location are sensitivity-weighted combinations of emissions from each environment
point. Conservation of energy in free space allows us to approximate the sensitivity with an
inverse-square law h(x, z) := c/∥x− z∥22, with c a known, sensor-dependent constant. More
sophisticated approximations are also possible [239].

Because multiple environment points x contribute to the counts observed from any sensor
position z, the MLE µ̂ for the emission rates at all x ∈ S is difficult to compute efficiently.
However, we can approximate it in the limit: 1√

τ
Poisson(τµ)

d→ N (µ, µ) as τ → ∞. Thus,
we may compute µ̂ as the least squares solution:

µ̂ = argmin
µ⃗
∥H̃T µ⃗− Y⃗∥22 , (7.10)

where µ⃗ ∈ R|S| is a vector representing the mean emissions from each x ∈ S, Y⃗ ∈ Rm is a
vector representing the observed number of counts at each of m consecutive time intervals,
and H̃ ∈ R|S|×m is a rescaled sensitivity matrix such that H̃ij gives the measurement-adjusted
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sensitivity of the ith environment point to the sensor at the jth sensing position.2 The
resulting confidence bounds are given by the standard Gaussian confidence bounds:

[LCBi(xk),UCBi(xk)] := µ̂(xk)± α(δi) · Σ1/2
kk where Σ := (H̃H̃T )−1 (7.11)

α(δi) controls the round-wise effective confidence widths in Eq. (7.11) as a function of the
desired threshold probability of overall error, δtot. We use a Kalman filter to solve the least
squares problem (7.10) and compute the confidence intervals (7.11).

Design and Planning for AdaSearch : Choosing Z and Zi

Pointwise sensing model. In the pointwise sensing model, Z = S and the most informa-
tive sensing locations Zi at round i are precisely Si. We therefore choose the path Z to be
a simple space filling curve over a raster grid, which provides coverage of all of S. We adopt
a simple dynamical model of the quadrotor in which it can fly at up to a pre-specified top
speed, and where acceleration and deceleration times are negligible. This model is suitable
for large outdoor environments where travel times are dominated by movement at maximum
speed, denoted as τ0. Figure 7.2 shows an example environment with raster path Z overlaid
(left) and trajectory during round i = 1 with Z1 shown in teal (right).

Physical sensing model. Because the physical sensitivity follows an inverse-square
law, the most informative measurements about µ(x) are those taken at locations near to x.
We take measurements at points z ∈ R3 two meters above points x ∈ S on the ground plane.
Flying at relatively low height improves the conditioning of the sensitivity matrix H. We
use the same design and planning strategy as in the pointwise model, following the raster
pattern depicted in Figure 7.2. More generally, one should chose configurations zi from Zi

so that environment point xi on the ground below each is still in the set Si of environment
points we are unsure about.

Baselines

We compare AdaSearch to two baselines: a uniform-sampling based algorithm NaiveSearch,
and a spatially-greedy information maximization algorithm InfoMax.

NaiveSearch algorithm. As a non-adaptive baseline, we consider a uniform sam-
pling scheme that follows the raster pattern in Figure 7.2 at constant speed. This global
NaiveSearch trajectory results in measurements uniformly spread over the grid, and avoids
redundant movements between sensing locations. The only difference between NaiveSearch

and AdaSearch is that NaiveSearch flies at a constant speed, while AdaSearch varies its
speed. Comparing to NaiveSearch thus separates the advantages of AdaSearch’s adaptive

2Specifically, we define H̃ij = h(xi, zj)/(Yj + b). The rescaling term Yj + b is a plug-in estimator for the
variance of Yj (with small bias b introduced for numerical stability), which down-weights higher variance
measurements.
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measurement allocation from the effects of its global trajectory heuristic. Theoretical anal-
ysis in Section 7.4 considers a slight variant in which the sampling time is doubled at each
round. This doubling has theoretical benefits, but for all experiments we implement the
more practical fixed-speed baseline.

InfoMax algorithm. As discussed in Section 7.1, one of the most successful methods
for active search in robotics is receding horizon informative path planning, e.g. [192, 195].
We implement InfoMax, a version of this approach based on [192] and specifically adapted
for RSS. Each planning invocation solves an information maximization problem over the
space of trajectories ξ : [t, t+ Tplan] −→ B mapping from time in the next Tplan seconds to a
box B ⊂ R3.

We measure the information content of a candidate trajectory ξ by accumulating the
sensitivity-weighted variance at each grid point x ∈ S at N evenly-spaced times along ξ, i.e.

ξ∗t = argmax
ξ

N∑

i=1

|S|∑

j=1

Σjj · h (xj, ξ(t+ Tplani/N)) . (7.12)

This objective favors taking measurements sensitive to regions with high uncertainty. As
a consequence of the Poisson emissions model, these regions will also generally have high
expected intensity µ; therefore we expect this algorithm to perform well for the RSS task.
We parameterize trajectories ξ as Bezier curves in R3, and use Bayesian optimization (see
[194]) to solve Eq. (7.12). Empirically, we found that Bayesian optimization outperformed
both naive random search and a finite difference gradient method. We set Tplan to 30 s and
use second-order Bezier curves.

Stopping criteria and metrics. All three algorithms use the same stopping criterion,
which is satisfied when the kth highest LCB exceeds the (k + 1)th highest UCB. For k = 1
emitter, this corresponds to the first round i in which LCBi(x) > UCBi(x

′), ∀x′ ∈ S \ {x}
for some environment point x. For sufficiently small probability of error δtot, this ensures
that the top-k sources are almost always correctly identified by all algorithms.

7.4 Theoretical Runtime and Sampling Analysis
Separation of sample-based planning and a repeated global trajectory make AdaSearch par-
ticularly amenable to runtime and sample complexity analysis. We analyze AdaSearch and
NaiveSearch under the pointwise sensing model and trajectory planning strategy outlined in
Section 7.3. Runtime and sample guarantees are given in Theorem 7.1, with further analysis
for a single source in Corollary 7.1 to complement experiments. For ease of exposition, we
defer some proofs and complimentary lower bounds to Sections 7.A to 7.C. Simulations (Sec-
tion 7.5) show that our theoretical results are indeed predictive of the relative performance
of AdaSearch and NaiveSearch.

We analyze AdaSearch with the trajectory and planning strategy outlined in Section 7.3.
For NaiveSearch, the robot spends time τi at each point in each round i until termina-
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tion, which is determined by the same confidence intervals and termination criterion for
AdaSearch.

We will be concerned with the total runtime. Recall that τ0 is the time spent over any
point when the robot is moving at maximum speed; τi is the time spent sampling candidate
points at the slower speed of round i. The total runtime is then

T run =

{∑ifin
i=0 (τi|Si|+ τ0|S \ Si|) (AdaSearch)∑ifin
i=0 τi|S| (NaiveSearch)

, (7.13)

where ifin is the round at which the algorithm terminates. We state bounds in terms of
divergences between emission rates µ2 ≥ µ1 > 0:

d(µ1, µ2) = (µ2 − µ1)
2/µ2 .

These divergences approximate the KL-divergence between distributions Poisson(µ1) and
Poisson(µ2) (see Lemma 7.3), and hence the sample complexity of distinguishing between
points emitting photons at rates µ1, µ2. Analogous divergences are available for any expo-
nential family, for example Gaussian distributions where the divergences are symmetric.

To achieve the termination criterion (when S∗(k) is determined with confidence 1− δtot),
all points with emission rate below the lowest in S∗(k) must be distinguished from µ(k),
the lowest emission rate of points in S∗(k). Therefore, for points x ̸∈ S∗(k), we consider
divergences d(µ(x), µ(k)). Similarly, all points in S∗(k) must be distinguished from the highest
background emitter corresponding to the divergences d(µ(k+1), µ(x)), describing how close
µ(x) is to the mean rate of the highest background emitter.

Theorem 7.1. (Sample and runtime guarantees). Define the general adaptive and uniform
sample complexity terms C(k)adapt and C(k)unif:

C(k)adapt := |S|τ0 +
∑

x∈S∗(k)

1
d(µ(k+1),µ(x))

+
∑

x∈S\S∗(k)

1
d(µ(x),µ(k))

C(k)unif := |S|τ0 + |S|
1

d(µ(k+1), µ(k))
. (7.14)

C(k)adapt ≥ C(k)unif for any integer number of sources k ≥ 1 and any distribution of emitters.
For any δtot ∈ (0, 1), the following hold each with probability at least 1− δtot: 3

(i) AdaSearch correctly returns S∗(k), with runtime at most

T run(AdaSearch) ≤ C(k)adapt · Õ (log(|S|/δtot)) + Õ
(
|S| log+

(
C(k)unif/|S|

))
.

(ii) NaiveSearch correctly returns S∗(k) with runtime bounded by

T run(NaiveSearch) ≤ C(k)unif · Õ (log(|S|/δtot)) .

3Õ(·) notation suppresses doubly-logarithmic factors.
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Theorem 7.1 is a consequence of results in Sections 7.A to 7.C. We sketch the main ideas
of the proof here:

Proof of Theorem 7.1 (sketch). The runtimes (7.13) of each algorithm depend on how quickly
we can reduce the set Si in each round. For each point x, let ifin(x) denote the round at
which AdaSearch removes x from Si; at this point we are confident as to whether or not x
is in S∗(k), so we do not sample it on successive rounds. At round i, we spend time τi = 2i

sampling each point still in Si, so that we spend
∑

x∈S
∑ifin(x)

i=0 τi ≤
∑

x∈S 2
1+ifin(x) time sam-

pling x throughout the run of the algorithm. For NaiveSearch, we sample all points in all
rounds, so we spend time ≤ |S|maxx∈S 2

1+ifin(x) sampling.
Now we bound ifin(x) for each algorithm. These quantities depend on the estimated

means µ̂i(x). Using the concentration bounds that informed the bounding functions in
Section 7.3, we can form deterministic bounds [LCBi,UCBi] that depend only on the true
means µ(x). We choose these to encompass the algorithm confidence intervals, so that:
LCBi(x) ≤ LCBi(x) ≤ µ(x) ≤ UCBi(x) ≤ UCBi(x) with high probability. If each of
these inequalities holds with probability δtot/(4|S|i2), then a union bound gives that the
probability of failure of any inequality over all rounds is at most δtot. By Lemma 7.1, this
ensures correctness with probability at least 1− δtot.

Because LCBi(x) and UCBi(x) are deterministic given µ(x) and are contracting to µ(x)
nearly geometrically in i, we can bound ifin(x) by inverting the intervals to find the smallest
integer i such that LCBi(x

∗) > UCBi(x) for all x∗ ∈ S∗(k) and x ∈ S \ S∗(k). This requires
an inversion lemma from the best arm identification literature (Eq. (110) in [260]). The
specific forms of LCBi and UCBi yield the bounds on ifin(x) in terms of approximate KL
divergences, which are added across all environment points to obtain the sample complexity
terms for each algorithm in (7.14).

The form of C(k)unif results from noting that the function (a, b) 7→ a
(a−b)2

is decreasing in a

and increasing in b for a > b, therefore max
{
maxx∈S∗(k)

1
d(µ(k+1),µ(x))

,maxx∈S\S∗(k)
1

d(µ(x),µ(k))

}

= 1/d(µ(k+1), µ(k)).

The Õ (log(|S|/δtot)) term in the AdaSearch runtime bounds accounts for travel times
of transitioning between measurement configurations. The second term |S| log(Cunif/|S|)
accounts for the travel time of traversing the uninformative points in the global path Z
at a high speed. This term is never larger than T run(NaiveSearch) and is typically domi-
nated by Cadapt · Õ (log(|S|/δtot)). With a uniform strategy, runtime scales with the largest
value of 1/d(µ(x1), µ(x2)) over x1 ̸∈ S∗(k), x2 ∈ S∗(k) because that quantity alone deter-
mines the number of rounds required. In contrast, AdaSearch scales with the average of
1/d(µ(x1), µ(x2)) because it dynamically chooses which regions to sample more precisely.

In many scenarios, the number k may estimate the number of hotspots, or there may
be more than k sources with similarly high emissions. The extreme case is when emissions
µ(k) and µ(k+1) are equal, the divergences d(µ(k+1), µ(k)) zero. Here the resultant sample
complexities Cadapt and Cunif are infinite – because no statistical test can distinguish between
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µ(k) and µ(k+1), the algorithm continues to collect additional samples without terminating.
Later in this section, we resolve this issue by proposing a simple modification of the stopping
condition which returns a set Ŝ of possibly greater than k sources. This modification enjoys
similar guarantees to our default termination rule (Theorem 7.2).

Sample Complexity for Heterogeneous Sources

Our sample complexity results qualitatively match standard bounds for active top-k identifi-
cation with sub-Gaussian rewards in the general multi-armed bandit setting (e.g. [154]). The
following corollary suggests that when the values of d(µ(x), µ∗) are heterogeneous, AdaSearch
yields significant speedups over NaiveSearch.

Corollary 7.1 (Performance under heterogeneous background noise). For a large envi-
ronment with a single source x∗ with emission rate µ∗ and background signals distributed
as µ(x) ∼ Unif[0, µ] for x ̸= x∗, the ratio of the upper bounds on sample complexities of
AdaSearch to NaiveSearch scales with the ratio of µ to µ∗ as 1− µ/µ∗.

Proof of Corollary 7.1. To control the complexity of NaiveSearch, note that

Cunif = Õ(max
x̸=x∗

1/d(µ(x), µ∗)) = Õ(µ∗/(µ∗ −max
x̸=x∗

µ(x))2).

It is well known that that the maximum of N uniform random variables on [0, 1] is approxi-
mately 1 − Θ( 1

N
) with probability 1 − Θ( 1

N
), implying that maxx̸=x∗ µ(x) ≈ (1 − 1

|S|)µ ≈ µ

with probability at least 1−Θ(1/|S|). Hence, the sample complexity of NaiveSearch scales
as Õ (|S|µ∗/(µ− µ∗)

2). On the other hand, the sample complexity of AdaSearch grows as

Cadapt = Õ(
∑

x̸=x∗

1/d(µ(x), µ∗)) = Õ(
∑

x̸=x∗

µ∗(µ∗ − µ(x))−2).

When µ(x) ∼ Unif[0, µ] are random and |S| is large, the law of large numbers implies that this
tends to Õ

(
µ∗|S| · Eµ(x)∼Unif[0,µ](µ

∗ − µ(x))−2
)
= Õ (|S|(µ∗ − µ)−1). Therefore, the ratio

of sample bounds of AdaSearch to NaiveSearch is (|S|(µ∗ − µ)−1) / (|S|µ∗(µ∗ − µ)−2) =
1− µ/µ∗.

Extension: Unknown Number of High-Emission Sources

In many scenarios, there may be considerably more sources of radiation than anticipated.
For example, suppose that AdaSearch is specified with one target source (k = 1), but in
fact there exist two sources x1, x2 ∈ S with µ(x1) = µ(x2) = µ∗. Then, AdaSearch will not
terminate with high probability, because it cannot differentiate between these two sources.

To remedy this, we can introduce a slightly more aggressive stopping criterion which will
terminate even if multiple sources have similar emissions. The stopping criterion can be
stated to terminate if the following holds for an error parameter ϵ > 0:
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Definition 7.1 (ϵ-approximate termination rule). Under the ϵ-approximate termination
rule, AdaSearch either (a) terminates when Si = ∅ and returns Ŝ ← Stop

i , or (b) terminates
when

min{LCBi(x) : x ∈ Si} ≥ max{UCBi(x) : x ∈ Si} − ϵ (7.15)

and returns the union of the sets Ŝ = Si ∪ Stop
i .

This criterion will ensure bounded runtime even when there are multiple sources whose
mean emissions are close to that of µ(k). For another possible approach to addressing un-
known k, we direct the reader to Section 7.6. Under the modification of Definition 7.1, we
can modify Theorem 7.1 as follows. For µ2 ≥ µ1 > 0, introduce

dϵ(µ1, µ2) :=
max{µ2 − µ1, ϵ}2

µ2

.

Observe that dϵ(µ1, µ2) ≥ d(µ1, µ2), and is always at least ϵ2/µ2. We define complexity terms
analogous to Eq. (7.14):

C(k)adapt(ϵ) := |S|τ0 +
∑

x∈S∗(k)

1
dϵ(µ(k+1),µ(x))

+
∑

x∈S\S∗(k)

1
dϵ(µ(x),µ(k))

C(k)unif(ϵ) := |S|τ0 + |S|
1

dϵ(µ(k+1), µ(k))
. (7.16)

The above describe the adaptive and uniform complexities analogous to those applied in
Theorem 7.1. Essentially, these complexities prevent the runtime from suffering if there are
many sources whose emissions are close to that of µ(k).

Lastly, we introduce a relaxed definition of correctness, which requires that an estimate
set Ŝ of the top emitters contains all top emitters S∗(k), and all remaining sources in the
set have emissions close to µ(k).

Definition 7.2. A set Ŝ ⊂ S is said to be (k, ϵ)-correct if Ŝ ⊇ S∗(k), and for any x ∈ Ŝ,
µ(x) ≥ µ(k) − ϵ.

For the stopping rule in Definition 7.1 and approximate notion of correctness in Defini-
tion 7.2, Theorem 7.1 generalizes as follows:

Theorem 7.2. (Sample and runtime guarantees). For any δtot ∈ (0, 1) and ϵ ≤ µ(k), the
following hold each with probability at least 1− δtot:
(i) AdaSearch with the termination rule in Definition 7.1 returns a (k, ϵ)-correct Ŝ with
runtime at most

T run(AdaSearch) ≤ C(k)adapt(ϵ) · Õ (log(|S|/δtot)) + Õ
(
|S| log+

(
C(k)unif(ϵ)/|S|

))
.

(ii) NaiveSearch with the termination rule in Definition 7.1 returns a (k, ϵ)-correct Ŝ with
runtime bounded by

T run(NaiveSearch) ≤ C(k)unif(ϵ) · Õ (log(|S|/δtot)) .
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Proof. We first prove correctness. To see that the modified termination rule returns a (k, ϵ)-
correct set, we consider the two possible termination criteria. If the default stopping rule
Si = ∅, is triggered, then the correctness follows from Theorem 7.1.

Suppose instead that the stopping rule in Eq. (7.15) is triggered, so that Ŝ = Si∪Stop
i . By

the original correctness analysis, with high probability, the top emitters are never eliminated
from Si∪Stop

i . Thus, Ŝ contains S∗(k). To prove (k, ϵ)-correctness, let us now show that for
any x ∈ Ŝ, µ(x) ≥ µ(k) − ϵ. With high probability, Stop

i ⊂ S∗(k) for all rounds i, so we will
verify this while restricting to x ∈ Si. We note that on the high probability event that top
emitters are never eliminated from Si ∪ Stop

i , and if |Stop
i | < k, there exists some x0 ∈ S∗(k)

such that x0 ∈ Si; for this source, µ(x0) ≥ µ(k). By definition of the stopping rule, we then
have

∀x ∈ Si, LCBi(x) ≥ UCBi(x0)− ϵ. (7.17)

Under the high-probability event that the confidence intervals are correct (see Sec-
tion 7.B), this means that

∀x ∈ Si, µ(x) ≥ max{µ(x) : x ∈ Si} − ϵ. (7.18)

Hence, Eq. (7.18) implies that ∀x ∈ Si, µ(x) ≥ µ(k) − ϵ, as desired.
Let us now account for the improved sample complexity. In the proof of Theorem 7.1,

we considered an upper bound ifin(x) on the last round i at which x ∈ S remains in Si. The
total number of samples were then 2ifin(x), and up to logarithmic factors, this upper bound
scaled as 1

d(µ(k+1),µ(x))
for x ∈ S∗(k), and with 1

d(µ(x),µ(k))
for x /∈ S∗(k).

For the new stopping rule, we have two cases: if µ(x) /∈ [µ(k) − ϵ/4, µ(k) + ϵ/4], then
the desired sample complexity analysis carries through, as is. This is is because, if µ(x) ≥
µ(k)+ϵ/4 then dϵ(µ

(k+1), µ(x)) = Ω(d(µ(k+1), µ(x))) (and analogously when µ(x) ≤ µ(k)−ϵ/4).
Now, consider i0 to be sufficiently large so that i0 ≥ max{inf(x) : µ(x) /∈ [µ(k)−ϵ/4, µ(k)+

ϵ/4]}. Then, for i ≥ i0, all that remain are means µ(x) ∈ [µ(k)−ϵ/4, µ(k)+ϵ/4]. But once the
confidence intervals are at most ϵ/8 in width, all LCB’s and UCB’s will be within, say ϵ/4 of
one another, triggering the new stopping condition Eq. (7.15). Hence, the sample complexity
for these means is governed by how many samples are required to shrink these intervals to a
width of Ω(ϵ), which is bounded by µ(k)+ϵ/4

ϵ2
. Under the assumption that µ(k) ≤ ϵ, this is at

most µ(k)

ϵ2
, which is bounded by 1/dϵ(µ

(k), µ(x)) for x /∈ S∗(k), and by 1/dϵ(µ(x), µ
(k+1)) for

x ∈ S∗(k).

7.5 Experiments
We compare the performance of AdaSearch with the baselines defined in Section 7.3 in
simulation for the RSS problem with physical sensing model (also defined in Section 7.3),
and validate AdaSearch in a hardware demonstration.
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Figure 7.3: Simulation results of AdaSearch, NaiveSearch and InfoMax for 25 randomly
instantiated environments with µ = 400 and µ∗ = 800 counts

s . Lighter shaded areas denote
the range of values at each time over 25 runs of each algorithm; dark lines show the mean.
We include final errors for runs that have already finished in max, min, and mean computa-
tions. Each algorithm was given the same 25 randomized grids. (a) Runtimes of AdaSearch,
NaiveSearch, and InfoMax over 25 random trials. (b) Absolute source error |µ̂(x∗)(t)−µ(x∗)|
over time. (c) Total grid error

√∑
x∈S ∥µ̂(x)(t)− µ(x)∥22 over time. ©2021 IEEE

Simulation Methodology

We evaluate AdaSearch, InfoMax, and NaiveSearch in simulation using the Robot Operating
System (ROS) framework [228]. Environment points S lie in a 16 × 16 planar grid, spread
evenly over a total area 64 × 64 m2. Radioactive emissions are detected by a simulated
sensor following the physical sensing model given in Section 7.3 and constrained to fly above
a minimum height of 2m at all times (see inset of Figure 7.1 for simulation setup with 4× 4
planar grid environment). For all experiments, we set confidence parameter α = 0.0001.

For the first set of experiments (Figures 7.3 and 7.5), we set k = 1, so that the set
of sources S∗(k) = {x∗} is a single point in the environment. We set µ∗ = µ(x∗) = 800
photons/s. In this setting, we investigate algorithm performance in the face of hetero-
geneous background signals by varying a maximum environment emission rate parameter
µ ∈ {300, 400, 500, 600}. For each setting of µ, we test all three algorithms on 25 grids
randomly generated with background emission rates drawn uniformly at random from the
interval [0, µ].

We also examine the relative performance of all three algorithms as the number of sources
increases (Figure 7.7). For all experiments with k > 1, we randomly assign k unique environ-
ment points from the grid as the point sources, with emissions rates set to span evenly the
range [800, 1000] photons/s. The signals of the remaining background emitters are drawn
randomly as before, with µ = 400.

Finally, we examine the relative performance of each algorithm for different environment
sizes: square grids with widths 2× and 4× that of the previous experiments (Table 7.2). To
keep the number of sources that must be disambiguated consistent, we instantiate environ-
ment points S in a 16× 16 grid, so that the size of each cell changes with the environment
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Figure 7.4: Indicative flight paths for each algorithm. The highest emitting source is denoted
by the red dot. AdaSearch and NaiveSearch follow a fixed pattern over several rounds,
whereas InfoMax does not. ©2021 IEEE

scale factor. Here we set k = 1, µ = 400, and µ∗ = 800. For the InfoMax baseline, we adjust
the planning horizon to scale with the width of the environment, setting Tplan = 60 for the
doubled grid and Tplan = 120 for the largest grid.

Results

Figure 7.3 shows performance across the three algorithms with respect to the following
metrics: (a) total runtime (time from takeoff until x∗ is located with confidence), (b) absolute
difference between the predicted and actual emission rate of x∗, and (c) aggregate difference
between predicted and actual emission rates for all environment points x ∈ S, measured
in Euclidean norm. The uniform baseline NaiveSearch terminates significantly earlier than
InfoMax, and AdaSearch terminates even earlier, on average. Of these 25 runs, AdaSearch
finished faster than NaiveSearch in 21 runs, and finished faster than InfoMax in 24. The
flight patterns for the first trial of each algorithm are shown in Figure 7.4.

To examine the variation in runtimes due to factors other than the environment instan-
tiation, we also conducted 25 runs of the same exact environment grid. Due to delays in
timing and message passing in simulation (just like there would be in a physical system),
measurements of the simulated emissions can still be thought of as random though the en-
vironment is fixed. Indeed, the variance in runtimes was comparable to the variance in
runtimes in Figure 7.3; over the 25 trials of a fixed grid, the variance in runtimes were
265s (AdaSearch), 537s (NaiveSearch), and 1028s (InfoMax). Of these 25 runs, AdaSearch
finished faster than NaiveSearch in 18 runs, and finished faster than InfoMax in all 25.
Figure 7.3(b) plots the absolute difference in the estimated emission rate µ̂(x∗) and the true
emission rate µ(x∗) at the one source. AdaSearch and NaiveSearch perform comparably
over time, and AdaSearch terminates significantly earlier. Figure 7.3(c) plots the Euclidean
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Figure 7.5: Performance of all three algorithms for grids with maximum background varying,
and set as µ ∈ {300, 400, 500, 600}, µ∗ = 800 counts/s. For each value of µ, each algorithm
was given the same 25 randomized grids. ©2021 IEEE

Figure 7.6: Relative performance of AdaSearch and NaiveSearch per random grid, measured
as T run(NaiveSearch)/T run(AdaSearch); magenta bars indicate mean, and horizontal black
lines denote one standard deviation from the mean in either direction. Dashed line shows
an approximate fit according to Corollary 7.1. Data is obtained from the same randomized
grids as in Figure 7.5. ©2021 IEEE

error between the estimated and the ground truth grids; in this metric the gaps in error
between all three algorithms are smaller. AdaSearch is fast at locating the highest-mean
sources without sacrificing performance in total environment mapping.

Figure 7.5 shows performance of all three algorithms across different maximum back-
ground radiation thresholds µ. As µ increases, all algorithms take longer to terminate
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Figure 7.7: Performance across number of sources, k for k ∈ [2, 5, 10]. µ(x) ∈ [800, 1000] for
all x ∈ S∗(k). For each value of k, Each algorithm was given the same 25 randomized grids.
©2021 IEEE

because the source is harder to distinguish from increasing heterogeneous background sig-
nals (left). For high background radiation values (e.g. µ = 600), the difference in run-
times between all three algorithms is larger; the runtime of AdaSearch increases grad-
ually under high background signals, whereas NaiveSearch and InfoMax are greatly af-
fected. Figure 7.6 shows that as µ approaches µ∗, the relative speedup of using adaptivity,
T run(NaiveSearch)/T run(AdaSearch), increases. This is consistent with the theoretical anal-
ysis in Section 7.4; the dashed line plots a fit curve with rule 0.7 · µ∗/(µ∗ − µ̄).

Figure 7.7 compares algorithm runtimes across different numbers of sources, k. As sug-
gested from Theorem 7.1, both absolute and relative performance is consistent across k for
all three algorithms.

The runtimes and number of rounds executed by AdaSearch and NaiveSearch for these
experiments are summarized in Table 7.1. In every trial, AdaSearch takes no more rounds
than NaiveSearch to reach the termination criterion, suggesting that slowing down over
informative points saves the algorithm from having to do more entire passes over the en-
vironment. Note that each successive round of the AdaSearch algorithm takes longer than
a round of NaiveSearch, since the robot slows down over informative regions, whereas
NaiveSearch does not.

AdaSearch is inherently a probabilistic algorithm, returning the true sources with prob-
ability 1− δtot, as a function of the number of rounds and the confidence with parameter, α.
Of the 175 trials run throughout these experiments, AdaSearch locates the correct source
in 174 of them (99.4%). We set α = 0.0001 in our experiments to facilitate fair comparison
of algorithms while maintaining reasonable runtime of the slower methods (NaiveSearch,
InfoMax). Given the speed with which AdaSearch returns a source, in practice it would be
feasible to reduce α to reduce the probability of a mistake, δtot. As evidenced Figure 7.3(c),
even in the low-probability case that an incorrect source is returned, AdaSearch still provides
valuable information about the environment.
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Table 7.1: Round number at time of termination and runtime for AdaSearch and
NaiveSearch. Averages and standard deviations taken over 25 trials. ©2021 IEEE

round # at term.: avg (std) runtime in seconds: avg (std)

k µ AdaSearch NaiveSearch AdaSearch NaiveSearch

1 300 3.0 (0.4) 3.8 (0.8) 981 (1778) 1103 (237)
1 400 3.8 (0.6) 7.4 (2.4) 1352 (255) 2208 (694)
1 500 5.0 (0.7) 14.4 (6.8) 2136 (391) 4436 (2145)
1 600 6.6 (0.6) 30.5 (9.5) 3558 (767) 9483 (3004)
2 400 4.0 (0.4) 6.6 (1.2) 1442 (200) 1955 (386)
5 400 3.8 (0.4) 7.8 (2.0) 1465 (167) 2295 (569)
10 400 4.2 (0.5) 8.2 (1.7) 1667 (168) 2502 (532)

Table 7.2: Runtime for each algorithm with different environment sizes, as well as the round
number at termination for AdaSearch and NaiveSearch. Each grid consists of 16× 16 cells
with k = 1 and µ = 400. Averages and standard deviations taken over 10 trials. ©2021
IEEE

round # at termination: avg (std) runtime in seconds: avg (std)

grid size AdaSearch NaiveSearch AdaSearch NaiveSearch InfoMax

64× 64 3.8 (0.4) 7.6 (2.4) 1345 (229) 2222 (692) 2460 (701)
128× 128 2.0 (0.0) 2.4 (0.5) 1356 (170) 1322 (193) 3301 (837)
256× 256 1.9 (0.3) 1.9 (0.3) 1916 (548) 2025 (424) 6792 (1949)

The performance of each algorithm for environments at larger scale factors is given in Ta-
ble 7.2. Doubling the environment scale factor has two effects on the difficulty of the problem.
First, it essentially doubles the flight time to fulfill a “snaking” path across the environment
(see Figure 7.2). Second, doubling the environment grid width distributes environment points
farther from each other in space, so that contributions from individual environment points
are easier to disambiguate. The results in Table 7.2 show that for larger grid sizes, both
AdaSearch and NaiveSearch outperform InfoMax in terms of runtime. Additionally, the
difference in average runtime between AdaSearch and NaiveSearch is small for the larger
grid sizes (128 × 128 and 256 × 256 m2), a consequence of the easier sampling problem
(due to dispersed environment points), indicated by a reduced number of rounds needed for
the larger grid environments, compared to the 64 × 64 m2 grid. In all runs summarized in
Table 7.2, the algorithms locate the correct source.
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Discussion

While all three methods eventually locate the correct source x∗ the vast majority of the
time, the two algorithms with global planning heuristics, AdaSearch and NaiveSearch,
terminate considerably earlier than InfoMax, which uses a greedy, receding horizon approach
(Figure 7.3). Moreover, the adaptive algorithm AdaSearch consistently terminates before its
non-adaptive counterpart, NaiveSearch. These trends hold over differing background noise
threshold µ and number of sources, k (Figures 7.5 and 7.7).

The AdaSearch algorithm excels when it can quickly rule out points in early rounds.
From (7.14) we recall that the AdaSearch sample complexity scales with the average value
of µ(x)/(µ∗ − µ(x))2 (rather than the maximum, for NaiveSearch). Hence, AdaSearch will
outperform NaiveSearch when there are varying levels of background radiation.

As µ approaches µ∗ and the gaps µ∗ − µ(x) become more variable, adaptivity confers
even greater advantages over uniform sampling. From Corollary 7.1, we expect the ratio of
NaiveSearch runtime to AdaSearch runtime to scale as µ∗/(µ∗ − µ), which is corroborated
by the fit of the dashed line to the average runtime ratios in Figure 7.6. The stability of
AdaSearch in spite of increasing background noise is striking, especially in comparison to
the two alternatives presented here; this suggests that in settings where background noise
could be misleading to discerning the true signal, a confidence-bound based sampling scheme
is likely preferable.

The performance differences between AdaSearch, InfoMax, and NaiveSearch hold as the
number of sources increases, indicating that AdaSearch is preferable for a range of different
environments and source seeking instances.

InfoMax’s strength lies in quickly reducing global uncertainty across the entire emissions
landscape. However, InfoMax takes considerably longer to identify x∗ (Figure 7.3(a)) and,
surprisingly, AdaSearch and NaiveSearch perform similarly to InfoMax in mapping the
entire emissions landscape on longer time scales (Figure 7.3(c)). We attribute this to the
effects of greedy, receding horizon planning. Initially, InfoMax has many locally-promising
points to explore and reduces the Euclidean error quickly. Later on, it becomes harder to
find informative trajectories that route the quadrotor near the few under-explored regions.
The results in Table 7.2 evidence that this problem remains for larger environments as well.
These results suggest that when a path Z such as the raster path used here is available, it
is well worth considering.

High variation in all experiments is expected due to the noisy Poisson emissions signals.
While this noise effects the runtime of all algorithms, the range of runtimes for AdaSearch

is consistently tight compared to the other two methods, suggesting that carefully allocated
measurements are indeed increasing robustness under heterogeneous background signals.

Hardware Demonstration

The previous results are based on a simulation of two key physical processes: radiation
sensing and vehicle dynamics. We also test AdaSearch on a Crazyflie 2.0 palm-sized quadro-
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Figure 7.8: Hardware experiment trajectories for each round of AdaSearch, color coded by
speed (m/s). The highest emitting source is denoted by the red dot. ©2021 IEEE

tor in a motion capture room with simulated radiation readings. The motion capture data
(position and orientation) is acquired at roughly 235 Hz and processed in real time using
precisely the same implementation of AdaSearch used in our software simulations. Figure 7.1
visualizes the confidence intervals and the absolute source point estimation error, as well as
the horizontal speed during a representative flight over a small 4×4 grid, roughly 3m / side.

Figure 7.8 shows the flight paths for each round, color coded by speed (darker is slower).
Despite imperfections in following the snake path and velocity changes, the robot’s trajectory
successfully represents the algorithm. After two rounds, AdaSearch identifies the two highest
emitting points as the highlighted pixels in the top inset, and the absolute error in estimating
µ(x∗) is very small. AdaSearch spends most of its remaining runtime sensing these two points
and avoids taking redundant measurements elsewhere. The plot of horizontal speed over time
(lower inset of Figure 7.1) shows this reallocation of sensor measurements; in the final two
rounds, the quadrotor moves quickly at first, then slows down over the two candidate points.
This hardware demonstration gives preliminary validation that AdaSearch is indeed safe and
reasonable to use onboard a physical system.

7.6 Generalizations and Extensions
Before concluding, we briefly discuss several extensions and generalizations of AdaSearch.

Unknown Number of Sources

At the end of Section 7.4, we presented a modified termination criterion which accommodates
the possibility of multiple high-emission sources (Definition 7.1). This criterion is particularly
suitable if there are multiple sources whose emissions are near that of the k-th largest source
µ(k). The modified algorithm correctly recovers all top-k sources, as well as possibly returning
some additional sources for which emissions µ(x) are within ϵ of µ(k).
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In other scenarios, it may be more suitable to return all sources for which emissions µ(x)
are within ϵ of µ(k) and no sources whose emission are with a factor of ϵ′ > ϵ. With more so-
phisticated termination criterion and candidate sets Stop

i and Si, AdaSearch can be modified
to accommodate this alternate guarantee. More broadly, the AdaSearch design principle—
combining confidence-interval based elimination with simple raster movement planning—is
amenable to other approximate-search criteria which may arise in given application domains.
We also note that, if one runs AdaSearch with a small k, the algorithm will still collect mea-
surements from other high-emission locations that can re-used if the practitioner wishes to
consider a greater number of k′ > k on a subsequent run.

Oriented Sensor

A natural extension of the radioactive source-seeking example is to consider a sensing model
with a sensitivity function which depends upon orientation. The additional challenge lies
in identifying informative sensing configuration sets Zi and a reasonably efficient equivalent
fixed global path Z. More broadly, the sensing configurations z ∈ Z could be taken to
represent generalized configurations of the robot and sensor, e.g., they could encode the
position and angular orientation of a directional sensor or joint angles of a manipulator arm.

Pointwise Sensing Model

We motivated the pointwise sensing model where sensitivity function is h(x, z) = I{x = z}
as a model conducive to theoretical analysis. Though it is only a coarse (yet still predictive)
approximation of the physical process of radiation sensing, this sensitivity model is a more
precise descriptor of other sensing processes. For example, the pointwise model is appropriate
for survey design. As a concrete example, suppose a government agency with enough funding
to set up k medical clinics seeks to identify which k towns had the highest rates of disease.
It is reasonable to think that the data collected about town i is mostly informative about
only the rate of disease in that town, so that the pointwise sensing model may be quite
appropriate.

Surveying

Although we demonstrate AdaSearch operating onboard a UAV in the context of RSS,
the core algorithm applies more broadly, even to non-robotic embodied sensing problems.
Consider the above problem of a government planning k clinic locations, each in a different
town. Because surveys are conducted in person, the government may be resource limited,
both in terms of the time it takes to survey a single person or clinic within a town, and in
terms of travel time between towns. A survey planner could use AdaSearch to guide the
decisions of how long to spend in each town counting new cases of the disease before moving
on to the next, and to trade-off the travel time of returning to collect more data from a
certain town with spending extra time at the town in the first place.
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While AdaSearch provides a good starting point for solving such problems, the high
cost of transportation would likely make it worthwhile to further optimize the surveying
trajectory at each round, e.g. by (approximately) solving a traveling salesman problem.

7.7 Conclusions
In this chapter, we show that statistical methods from pure exploration active learning offer
a promising, under-explored toolkit for robotic source seeking. Specifically, we show that
motion constraints need not impede active learning strategies.

Our main contribution, AdaSearch, outperforms a greedy information-maximization base-
line in a radioactive source seeking task. Its success can be understood as a consequence of
two structural phenomena: planning horizon and implicit design objective. The information-
maximization baseline operates on a receding horizon and seeks to reduce global uncertainty,
which means that even if its planned trajectories are individually highly informative, they
may lead to sub-optimal performance over a long time scale. In contrast, AdaSearch uses an
application-dependent global path that efficiently covers the entire search space and allocates
measurements using principled, statistical confidence intervals.

While our results for the problem of RSS are encouraging, it is likely that in many
applications, performance could be limited by the range, field of view, or orientation of the
sensors. In some cases (e.g. oriented sensors), such limitations could be addressed by the
extensions suggested in Section 7.6, and in others, might necessitate new innovations. We are
hopeful that the abstraction of sensing models, statistical measurement, and path planning
as separate but integrated components of source seeking can guide such future innovations.

AdaSearch excels in situations with a heterogeneous distribution of the signal of interest;
it would be interesting to make a direct comparison with Gaussian process (GP)-based
methods in a domain where the smooth GP priors are more appropriate. Furthermore, as
AdaSearch is explicitly designed for general embodied sensing problems, it would be exciting
to test it in a wider variety of application domains.

7.A Theoretical Results for Pointwise Sensing
In this section, we present formal statements of the measurement complexities provided in
Section 7.4.

Notation. Throughout, we use the notation f ≲ g to denote that there exists a universal
constant C, independent of problem parameters, for which f ≤ C · g. We also define
log+(x) := max{1, log x}.

Formal setup. Throughout, we consider a rectangular grid S of |S| points, and let
µ(x) denote the mean emission rate of each point x ∈ S in counts/second. We let µ(k)

denote the k-th largest mean µ(x). In the case that k = 1, we denote µ∗ := µ(1), and let
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x∗ := argmaxx∈S µ(x) denote the highest-mean point, with emission rate µ∗ := µ(x∗). For
identifiability, we assume µ(k) > µ(k+1).

Measurements. As described in Section 7.3, we assume a point-wise sensing model in
which AdaSearch and NaiveSearch can measure each point directly. Recall that at each
round i, AdaSearch takes τi := 2iτ0 measurements at each point x ∈ Si, and NaiveSearch

takes τi measurements at each x ∈ S. We let Ni(x) denote the total number of counts
collected at position x at round i. We further assume that µ(x) are standardized according
to the same time units as τ0, so that measuring a source of mean µ(x) for time interval
of length τi yields counts distributed according to Ni ∼ Poisson(2i · µ(x)). Finally, we
shall let ifin denote the (random) round at which a given algorithm - either AdaSearch or
NaiveSearch - terminates.

Confidence intervals. At the core of our analysis are rigorous 1 − δ upper and lower
confidence intervals for Poisson random variables. It is well known that the upper Poisson
tail satisfies Bennet’s inequality, and its lower tail is sub-Gaussian, yielding the following
exponential tail bounds (see, e.g. [43]):

Lemma 7.2. Let N ∼ Poisson(µ). Then,

P[N ≥ µ+ x] ≤ exp

(
− x2

2(µ+ x/3)

)
and P[N ≤ µ− x] ≤ exp

(
−x2

2µ

)
. (7.19)

.

At each round i and x ∈ Si (AdaSearch) or x ∈ S (NaiveSearch), recall that we use
upper and lower confidence intervals with definitions recalled in Eq. (7.20) below:

LCBi(x) :=
1

τi
U− (Ni(x), δi) , UCBi(x) :=

1

τi
U+ (Ni(x), δi) , where δi := δ/(4|S|i2).

The following proposition bounds the probability that the true mean emission rate is above
or below these quantities.

Proposition 7.1. Fix any µ ≥ 0 and let N ∼ Poisson(µ). Define

U+ (N, δ) := 2 log(1/δ) +N+
√

2N log (1/δ) and

U− (N, δ) := max
{
0,N−

√
2N log(1/δ)

}
(7.20)

Then, it holds that P[µ > U+(N, δ)] ≤ δ and P[µ < U−(N, δ)] ≤ δ.

Proof of Proposition 7.1. We first prove that P[µ ≤ U+(N, δ)] ≥ 1− δ. Recall the definition

U+ (N, δ) := 2 log(1/δ) +N+
√

2N log (1/δ).

We begin by bounding the lower tail of N, which corresponds to the upper confidence U+

bound on µ. Let E+(δ) denote the event {N ≥ µ−
√

2µ log(1/δ)}. By Lemma 7.2, we have
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that P[E+(δ)c] ≤ δ; hence, it suffices to show that E+(δ) implies {µ ≤ U+(N, δ)}. If E+(δ)
holds, the quadratic equation implies

µ1/2 ≤
√

2 log(1/δ) +
√

2 log(1/δ) + 4N

2
. (7.21)

Hence, we have

µ ≤ 2 log(1/δ) + 2 log(1/δ) + 4N+ 2
√

2 log(1/δ)
√

4N+ 2 log(1/δ)

4

≤ 2 log(1/δ) +N+
√

2N log(1/δ) = U+(N, δ), as needed.

Next we prove that P[µ ≥ U−(N, δ)] ≥ 1 − δ. Analogous to the above, let E−(δ) :=
{N ≤ µ +

√
2µ log(1/δ) + 2

3
log(1/δ)}. Since P[N ≥ µ + x] ≤ exp(− x2

2(µ+x/3)
), we have

that P[E−(δ)] ≥ 1 − δ. Thus, again it suffices to show that E−(δ) implies {µ ≥ U−(N, δ)}.
We have two cases:

(a) N ≤ 2
3
log(1/δ). Then, U−(N, δ) = 0, so µ ≥ U−(N, δ) trivially.

(b) Otherwise, by solving the quadratic in the definition E−(δ), we find that on E−(δ),

µ1/2 ≥
−
√
2 log(1/δ)±

√
2 log(1/δ)− 8

3
log(1/δ) + 4N

2

=
−
√

2 log(1/δ)±
√
4N− 2/3 log(1/δ)

2
,

where we note that the discriminant is positive since N ≥ 2
3
log(1/δ). Squaring,

µ ≥ 2 log(1/δ) + 4N− 2 log(1/δ)/3− 2
√

2 log δ−1
√

4N− 2/3 log(1/δ)

4

≥ N+ (1− 1/6−
√
1/3) log(1/δ)−

√
2N log(1/δ) ≥ N−

√
2N log(1/δ) .

Since we also have µ ≥ 0, we see that on E0(δ), we have that

µ ≥ max{N−
√

2N log(1/δ), 0} = U−(N, δ), as needed.

Trajectory for AdaSearch. AdaSearch follows a trajectory where, at each round i,
AdaSearch spends time τi = 2i · τ0 measuring each x ∈ Si, and spends τ0 travel time
traveling over each x /∈ Si. For the radioactive sensing problem, this is achieved by following
the “snaking pattern” depicted in Figure 7.2, in which the quadrotor speeds up or slows
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down over each point to match the specified measurement times. We define the total sample
complexity and total run time respectively as

T sample :=

ifin∑

i=0

τi|Si| and T run := T sample +

ifin∑

i=0

τ0|S \ Si|.

The first quantity above captures the total number of measurements taken at points we
still wish to measure, and the second captures the total flight time of the algorithm. For
simplicity, we will normalize our units of time so that τ0 = 1.

Trajectory for NaiveSearch. Whereas we implement NaiveSearch to travel at a con-
stant speed at each point for each round, our analysis considers a variant where NaiveSearch
halves its speed each round - that is, takes 2i measurements at each point for each round;
this doubling yields slightly better bounds on sample complexity, and makes NaiveSearch

compare even more favorably compared to AdaSearch in theory.4 This results in a total of
2iτ0|S| measurements per round. For NaiveSearch, the total sample complexity and total
run time are equal, and given by

T run = T sample = |S|
ifin∑

i=0

τi.

Termination criterion for NaiveSearch. For an arbitrary number of k emitters, NaiveSearch
terminates at the first round i in which the k-th largest lower confidence bound of all points
x ∈ S is higher than the (k + 1)-th largest upper confidence bound of all points x ∈ S.

Main Results for k = 1 Emitters

We are now ready to state our main theorems for k = 1 emitters. Recall the divergence
terms

d(µ1, µ2) :=
(µ2 − µ1)

2

µ2

, (µ1 < µ2)

and, in particular,

d(µ(x), µ∗) :=
(µ∗ − µ(x))2

µ∗ , (µ(x) < µ∗)

from Section 7.4. When term d(µ(x), µ∗) is small, it is difficult to distinguish between x∗

and x. The following lemma shows that d(µ(x), µ∗) approximates the the KL-divergence
between the distribution Poisson(µ(x)) and Poisson(µ∗):

4In practice, we keep the speed constant between trials because, for uniform sampling, this is more
efficient; that is, in both theory and practical evaluations, we choose the variant of NaiveSearch performs
the best.
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Lemma 7.3. There exists universal constants c1 and c2 such that, for any µ2 ≥ µ1 > 0,

c1 · d(µ1, µ2) ≤ KL(Poisson(µ1),Poisson(µ2)) ≤ c2 · d(µ1, µ2), (7.22)

where d(µ1, µ2) = (µ2 − µ1)
2/µ2.

Proof of Lemma 7.3. We begin by stating a standard computation of the KL-divergence
between two Poisson distributions.

Fact 7.1. KL(Poisson(µ1),Poisson(µ2)) = µ1 log(µ1/µ2) + (µ2 − µ1) .

To prove Lemma 7.3, recall that we assume that µ2 ≥ µ1. We may therefore reparame-
terize µ← µ2, and µ1 ← (1− α)µ2 for α ∈ (0, 1). One then has

KL(Poisson(µ1),Poisson(µ2)) = µ{α + (1− α) log(1− α)} .

Since µ2 − µ1 = µ(1 − (1 − α)) = αµ, it suffices to show that there exists constants c1 and
c2 such that

c1µα
2 ≤ KL(Poisson(µ1),Poisson(µ2)) ≤ c2µα

2 . (7.23)

To this end, it suffices to show that there exists a universal constant α0 > 0, such for all
α ≤ α0, one has

KL(Poisson(µ1),Poisson(µ2)) ∈
[
1

4
,
3

4

]
µα2 . (7.24)

Indeed, for any α ≥ α0, we have that

0 < µ(α0 + (1− α0) log(1− α0)) ≤ KL(Poisson(µ1),Poisson(µ2)) ≤ µ ,

which implies that, for α ∈ [α0, 1],

0 <
(
α2µ

)
· (α0 + (1− α0) log(1− α0))

≤ α2µ · α0 + (1− α0) log(1− α0)

α2

≤ KL(Poisson(µ1),Poisson(µ2))

≤ α2µ · 1
α2
≤
(
µα2

)
· 1
α2
0

.

Hence taking c1 = (α0 + (1 − α0) log(1 − α0)) and c2 = 1
α2
0
, we see that (7.23) holds for

α ∈ [α0, 1]. We now turn to prove (7.24). Note that log′(1− x) = −1/(1− x), log′′(1− x) =
1/(1−x)2, and log′′′(x) = −2/(1−x)3. Hence, by Taylor’s theorem, there exists an α′ ∈ [0, α]
such that

log(1− α) = α log′(1) +
α2

2
log′′(1) +

α3

6
log′′′(1− α′) = −α− α2

2
− 2α3

(1− α′)3
.
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Hence,

KL(Poisson(µ1),Poisson(µ2)) = µ

{
α− (1− α)

(
α +

α2

2
+

2α3

(1− α′)3

)}

= µ

{
α2

2
+ α3

( −2
(1− α′)3

+
1

2
+

2α

(1− α′)3

)}
.

In particular, there exists a universal constant α0 such that, for all α ≤ α0,

KL(Poisson(µ1),Poisson(µ2)) ∈
[
1

4
,
3

4

]
µα2 .

Up to log factors, the sample complexities for AdaSearch and NaiveSearch in the k = 1
case are given by Cadapt and Cunif, respectively, below:

Cadapt :=
∑

x∈S\{x∗}

(
τ0 +

1

d(µ(x), µ∗)

)
and Cunif = |S|

(
τ0 +max

x∈S

1

d(µ(x), µ∗)

)
.(7.25)

Similarly to the definitions in Theorem 7.1, Cadapt and Cunif differ in that Cadapt considers
the sum over all these point-wise complexities, whereas Cunif replaces this sum with the
number of points multiplied by the worst per-point complexity. Cadapt can be thought of
as the complexity of sampling each point x ̸= x∗ the exact number of times to distinguish
it from x∗, whereas Cunif is the complexity of sampling each point the exact number of
times to distinguish the best point from every other point. Note that we always have that
Cadapt ≤ Cunif, and in fact Cunif can be as large as Cadapt · |S|.

Our next theorem bounds the sample complexity of AdaSearch for the k = 1 version of
the case presented in Section 7.4. We recall that the sample complexity is the total time
spent at all x ∈ Si until termination.

Theorem 7.3. For any δ ∈ (0, 1), the following holds with probability at least 1 − δ:
AdaSearch correctly returns x∗, the total sample complexity is bounded by bounded above
by

T sample ≲ |S|+
∑

x̸=x∗

log+

(
|S| log+

(
1

d(µ(x),µ∗)

)
/δ
)

d(µ(x), µ∗)
= Õ

(
|S|+

∑

x̸=x∗

log(|S|/δ)
d(µ(x), µ∗)

)
,

and the runtime is bounded above by

T run ≲ T sample + |S| log+
(
log+

|S|
δ
·max
x̸=x∗

1
d(µ(x),µ∗)

)
= Õ

(
Cadapt log(|S|/δ) + τ0|S| log

(
Cunif
|S|

))
,

where Õ(·) hides the doubly logarithmic factors in 1/d(µ(x), µ∗).
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Theorem 7.3 is a direct consequence of our more general bound for k ≥ 1 emitters, given
by Theorem 7.5, which is proved in Section 7.B. The next theorem, proved in Section 7.C,
controls the sample complexity of NaiveSearch.

Theorem 7.4. For any δ ∈ (0, 1), the following holds with probability at least 1 − δ:
NaiveSearch correctly returns x∗, and the total runtime is bounded by bounded above by

T run ≲ |S| ·


max

x̸=x∗

log+

(
|S| log+

(
1

d(µ(x),µ∗)

)
/δ
)

d(µ(x), µ∗)


 = Õ (Cunif log(|S|/δ)) .

Lastly, we show that our adaptive and uniform sample complexities are near optimal.
The following proposition lower bounds the number of samples any adaptive algorithm must
take.

Proposition 7.2. There exists a universal constant c such that, for any δ ∈ (0, 1/4), any
adaptive sampling allocation which correctly identifies the top emitting point x∗ with proba-
bility at least 1− δ must collect at least

c log(1/δ) · Cadapt
samples in expectation. Moreover, any uniform sampling allocation which identifies the top
emitting point x∗ with probability at least 1− δ must take at least

c log(1/δ) · Cunif
samples in expectation.

Proof of Proposition 7.2. The basic proof strategy follows along the lines of the information-
theoretic lower bounds in [157]. Consider a grid S of |S| points, with means µ(x), x ∈ S.
We fix a given sampling algorithm, adaptive or otherwise, and let T (x) denote the expected
number of measurements from point x given that the means are given by µ(x). Suppose
x∗ := argmaxx∈S µ(x) is unique. We will argue that for a universal constant c1 and any
x ̸= x∗ ,

T (x) ≥ c1 log(1/δ)

KL(µ(x), µ(x∗))
. (7.26)

By the KL approximation in Lemma 7.3, this implies that for some universal constant c2,

T (x) ≥ c2 log(1/δ)

d(µ(x), µ∗)
. (7.27)

For adaptive sampling, the expected number of samples is at least
∑

x̸=x∗ T (x), which
by (7.27) is at least

c2 log(1/δ) ·
∑

x̸=x∗

µ(x∗)

∆2
x

.
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This completes the proof for adaptive sampling. For non-adaptive sampling, T (x) = T (x′)
for all x, x′ ∈ S. Hence, the expected number of samples is at least

∑

x∈S

T (x) = |S|max
x̸=x∗

T (x)
(7.27)
≥ |S| ·max

x̸=x∗
c2 log(1/δ)

µ(x∗)

∆2
x

.

We now verify Equation (7.26). To do so, consider an alternative grid S of |S| pixels, with
means µ′(x). Suppose moreover that x∗′ := argmaxx∈S µ

′(x) is unique, and that x∗ ̸= x.
The key insight from Kaufmann, Cappé, and Garivier [157] is that any algorithm which
identifies x∗ with probability 1− δ must be able to distinguish between the means µ′(x) and
the with means µ(x). Kaufmann, Cappé, and Garivier [157] show that this requires that the
expected number of samples T (x) satisfy

∑

x∈S

T (x)KL(µ(x), µ′(x)) ≥ c1 log(1/δ) . (7.28)

Now let’s fix a particular x0 ̸= x∗ and an ϵ > 0. We can define the means µ′(x) to be

µ′(x) :=

{
µ(x∗) + ϵ x = x0

µ(x) otherwise
.

Note then that argmaxx µ
′(x) = x0, and µ(x0) = µ(x∗) + ϵ. Hence, Eq. (7.28) holds for the

means µ′(·). Moreover, µ(x) = µ′(x) for all x ̸= x0, so that KL(µ(x), µ′(x)) = 0 for x ̸= x0

and Eq. (7.28) simplifies to

T (x0)KL(µ′(x0), µ
′(x∗) + ϵ) = T (x0)KL(µ(x0), µ

′(x0)) ≥ c1 log(1/δ) .

Since KL(µ′(x0), µ
′(x∗) + ϵ) is continuous in ϵ (see Fact 7.1), taking ϵ→ 0 yields

T (x0)KL(µ′(x0), µ
′(x∗)) ≥ c1 log(1/δ) as needed.

Analysis for Top-k Poisson Emitters

We now continue our analysis of AdaSearch, addressing the full problem of identifying the
k Poisson emitters with the highest emission rates. Our goal is to identify the unique set

S∗(k) := {x ∈ S : µ(x) ≥ µ(k)} . (7.29)

To ensure the top-k emitters are unique, we assume that µ(k) > µ(k+1) (recall that µ(k) denotes
the k-th largest value of µ(x) among all x ∈ S). The complexity of identifying the top-k
emitters can then described in terms of the gaps of the divergence terms

d(µ(k+1), µ(x)) =
(µ(x)− µ(k+1))2

µ(x)
, (µ(x) > µ(k+1)) and

d(µ(x), µ(k)) =
(µ(k) − µ(x))2

µ(k)
, (µ(x) < µ(k)).
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For x ∈ S∗(k), d(µ(k+1), µ(x)) describes how close the emission rate µ(x) is to the “best”
alternative in S \ S∗(k). For x ∈ S \ S∗(k), d(µ(x), µ(k)) describes how close µ(x) is to the
mean µ(k) of the emitter in S∗(k) from which it is hardest to distinguish. The analogues of
Cadapt and Cunif are then

C(k)adapt :=
∑

x∈S∗(k)

1

d(µ(k+1), µ(x))
+

∑

x∈S\S∗(k)

1

d(µ(x), µ(k))
and (7.30)

C(k)unif := |S| ·max

{
max

x∈S∗(k)

1

d(µ(k+1), µ(x))
, max
x∈S\S∗(k)

1

d(µ(x), µ(k))

}

= |S|d(µ(k+1), µ(k)) (7.31)

where the equality follows by noting that the function (x, a) 7→ x
(x−a)2

is decreasing in x and
increasing in a for x > a. The following theorem, proved in Section 7.B, provides an upper
bound on the sample complexity for top-k identification.

Theorem 7.5. For any δ ∈ (0, 1), the following holds with probability at least 1 − δ:
AdaSearch correctly returns S∗(k), the total sample complexity is bounded above by

T sample ≲ |S|
∑

x∈S∗(k)

log+

(
|S| log+

(
1

d(µ(k+1),µ(x))

)
/δ
)

d(µ(k+1), µ(x))

+
∑

x∈S\S∗(k)

µ(k) log+

(
|S| log+

(
1

d(µ(x),µ(k))

)
/δ
)

d(µ(x), µ(k))

= Õ
(
C(k)adapt · log(|S|/δ)

)
,

and the total runtime is bounded by

T run ≲ T sample + |S| log+

(
log+

|S|
δ

d(µ(k+1), µ(k))

)
= Õ

(
C(k)adapt · log |S|

δ
+ |S| log+

(
C(k)
unif

|S|

))
.

We remark that our sample complexity qualitatively matches standard bounds for active
top-k identification with sub-Gaussian rewards in the non-embodied setting (see, e.g. [154]).
Our results differ by considering the appropriate modifications for Poisson emissions, as well
as accounting for total travel time. Lastly, we have the bound for uniform sampling for the
case of general k.

Theorem 7.6. For any δ ∈ (0, 1), the following holds with probability at least 1 − δ:
NaiveSearch correctly returns S∗(k), and the total runtime is bounded by bounded above
by

T run ≲ Õ (Cunif) · log(|S|/δ) .
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7.B Analyzing AdaSearch: Proof of Theorem 7.5

Analysis Roadmap

To simplify the analysis, we assume that at round i, we take a fresh τi = 2i samples (recall
we have normalized τ0 = 1) from each remaining x ∈ Si.5 For x ∈ Si, Ni(x) denotes the
number of counts observed from point x over the interval of length τi, and µ̂i(x) denotes the
empirical average emissions; that is, µ̂i(x) = Ni(x)/τi. With this notation, our confidence
intervals take the following form:

LCBi(x) :=
1

2i
U−

(
Ni(x),

δ

4|S|i2
)

and UCBi(x) :=
1

2i
U+

(
Ni(x),

δ

4|S|i2
)

. (7.32)

We first argue that there exists a good event, Egood(δ), occurring with probability at
least 1− δ, on which the true mean µ(x) of each pixel x lies between LCBi(x) and UCBi(x)
for all i. Moreover, LCBi(x) and UCBi(x) are contained within the interval defined by
[UCBi(x),LCBi(x)], which depends explicitly upon µ(x), but not on µ̂i(x). To derive
UCBi(x) and LCBi(x), we begin by deriving high probability upper and lower bounds
U+(µ, δ) and U−(µ, δ) for the functions U+(N, δ) and U−(N, δ) that hold for Poisson random
variables. Formally, we have the following

Proposition 7.3. Let µ ≥ 0 and let and N ∼ Poisson(µ). Define

U+(µ, δ) := µ+
14

3
log (1/δ) + 2

√
2µ log (1/δ) and

U− (µ, δ) := max
{
0, µ− 2

√
2µ log (1/δ)

}
.

Then, it holds that

P
[
U−(µ, δ) ≤ U−(N, δ) ≤ µ ≤ U+(N, δ) ≤ U+(µ, δ)

]
≥ 1− 2δ . (7.33)

Proof of Proposition 7.3. From the proof of Proposition 7.1, recall the events

E+(δ) := {N ≥ µ−
√

2µ log(1/δ)} and

E−(δ) := {N ≤ µ+
√
2µ log(1/δ) +

2

3
log(1/δ)} .

Further, recall that on E+(δ), we have µ ≤ U+(N, δ) and µ ≥ U−(N, δ). We now show that
on E−(δ), we also have U+(N, δ) ≤ UCB(µ, δ), and on E+(δ), we have U−(N, δ) ≥ LCB(µ, δ).

5The analysis is nearly the same as if we used the total 2i+1 − 1 samples collected throughout.
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To bound U−(N, δ) ≥ U−(µ, δ), observe that N 7→ U−(N, δ) is increasing in N, and on
E+(δ), one has {N ≥ µ−

√
2µ log(1/δ)}. Thus

U−(N, δ) := N−
√
2N log(1/δ)

≥ µ−
√
2µ log(1/δ)−

√
2 log(1/δ)µ(µ−

√
2µ log(1/δ))

≥ µ−
√
2µ log(1/δ)−

√
2µ log(1/δ)

≥ µ− 2
√
2µ log(1/δ) := U−(µ, δ) .

Next, we prove the bound bound U+(N, δ) ≤ U+(µ, δ). On E−(δ), we have

N ≤ µ+
2

3
log(1/δ) +

√
2µ log(1/δ)

= (µ1/2 +
√

2 log(1/δ))2 − 2 log(1/δ) +
2

3
log(1/δ)

≤ (µ1/2 +
√

2 log(1/δ))2 .

Hence, when the above occurs, we have

U+(N, δ) = 2 log(1/δ) +N+
√
2N log(1/δ)

=
8

3
log(1/δ) + µ+

√
2µ log(1/δ) +

√
2((µ1/2 +

√
2 log(1/δ))2) log(1/δ)

≤ 8

3
log(1/δ) + µ+

√
2µ log(1/δ) +

√
2µ log(1/δ) + 2 log(1/δ)

=
14

3
log(1/δ) + µ+ 2

√
2µ log(1/δ) .

As a consequence of Proposition 7.3, we can show that LCBi(x) and UCBi(x) are prob-
abilistic lower and upper bounds on LCBi(x) and UCBi(x):

Lemma 7.4. Introduce the confidence intervals

LCBi(x) :=
1

τi
U−

(
τiµ(x),

δ

4|S|i2
)

and UCBi(x) :=
|S|
τi

U+

(
τiµ(x),

δ

4|S|i2
)

.

Then, there exists an event Egood for which P[Egood] ≥ 1− δ, and

∀i ≥ 1, x ∈ Si : LCBi(x) ≤ LCBi(x) ≤ µ(x) ≤ UCBi(x) ≤ UCBi(x). (7.34)

Proof of Lemma 7.4. Lemma 7.4 is a simple consequence of Propositions 7.1 and 7.3, and a
union bound:

P
[
∃x ∈ S0, i ≥ 1 :

{
LCBi(x) ≤ LCBi(x) ≤ µ(x) ≤ UCBi(x) ≤ UCBi(x)

}
fails

]

union bound
≤ ∑

x∈S0,i≥1 P
[{

LCBi(x) ≤ LCBi(x) ≤ µ(x) ≤ UCBi(x) ≤ UCBi(x)
}

fails
]

Prop. 7.1&7.3

≤ ∑
x∈S0,i≥1

δ
2|S|i2 = |S|∑i≥1

δ
2|S|i2 = δ

2

∑
i i

−2 ≤ δ .
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Note that on Egood, one has that µ(x) ∈ [LCBi(x),UCBi(x)] for all rounds i and all
x ∈ Si; hence, as a result of Lemma 7.1,

Lemma 7.5. If Egood holds, then for all rounds i, Stop
i ⊂ S∗(k) ⊂ Stop

i ∪Si; in particular, if
AdaSearch terminates at round ifin, then it correctly returns S∗(k).

Finally, the next lemma gives a deterministic condition under which a point x ∈ S can
be removed from Si, in terms of the deterministic confidence bounds LCBi(x) and UCBi(x).

Lemma 7.6. Suppose Egood holds. Let x(k) and x(k+1) denote arbitrary points in S with
µ(x(k)) = µ(k) and µ(x(k+1)) = µ(k+1). Define the function

ifin(x) :=

{
inf{i : LCBi(x) > UCBi(x

(k+1))} x ∈ S∗(k)

inf{i : UCBi(x) < LCBi(x
(k))} x ∈ S \ S∗(k)

.

Then, on Egood, x /∈ Si for all i > ifin(x).

Proof of Lemma 7.6. Assume Egood holds, and let x ∈ S, and set i = ifin(x). Then

(a) If x ∈ S∗(k), then LCBi(x) > UCBi(x
(k+1)). In this case, we shall show that x will be

added to Stop
i via (7.4).

(b) If x ∈ S \ S∗(k), then UCBi(x) < LCBi(x
(k)). In this case, we shall show that x will

be removed from Si via (7.5).

Case (a): LCBi(x) > UCBi(x
(k+1)). By (7.4), x is added to Stop

i+1 if LCBi(x) is larger
than all but k−|Stop

i | values of UCBi(x
′), x′ ∈ Si. Since LCBi(x) ≥ LCBi(x) and UCBi(x

′) ≤
UCBi(x

′) on Egood, it is enough that

LCBi(x) > (k − |Stop
i |+ 1)-st largest value of UCBi(x

′), x′ ∈ Si.

We now observe that UCBi(x
′) is monotonic in µ(x′). Hence, it is enough that

LCBi(x) > UCBi(x+), where µ(x+) = (k − |Stop
i |+ 1)-st largest value of µ(x′), x′ ∈ Si.

But since there are exactly k−|Stop| elements of S∗(k) in Si by Lemma 7.5, x+ is not among
the top k, and thus µ(x+) ≤ µ(x(k+1)). Hence, UCBi(x+) ≤ UCBi(µ(x

(k+1))), so it is enough
that LCBi(x) > UCBi(µ(x

(k+1))).
Case (b): UCBi(x) < LCBi(x

(k)). Following the reasoning of case (a) applied to (7.5),
we can see that it is enough that

UCBi(x) < LCBi(x−), where µ(x−) = (k − |Stop
i+1|)-st largest value of µ(x), x′ ∈ Si \ Stop

i+1.

Lemma 7.5 ensures that there are (k − |Stop
i+1|) members of S∗(k) in Si \ Stop

i+1, so µ(x−) ≥
µ(x(k)). Hence, it is enough that UCBi(x) < LCBi(x

(k)).
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In view of Lemma 7.6, we can bound

T sample :=

ifin∑

i=0

τi|Si| =
∑

x∈S

∑

i≥0

τiI(x ∈ Si) ≤
∑

x∈S

ifin(x)∑

i=0

τi (by Lemma 7.6)

≤
∑

x∈S

2ifin(x)+1 (since τi = 2i) (7.35)

and further, bound

T run := T sample +

ifin∑

i=0

τ0|S \ Si| ≤ T sample + |S|ifin (recall τ0 = 1)

≤ T sample + |S|max
x∈S

ifin(x). (7.36)

where the last line uses Lemma 7.6. Lastly, we prove an upper bound on ifin(x) for all x ∈ S.

Proposition 7.4. There exists a universal constant C > 1 such that, for x ∈ S∗(k),

2ifin(x) ≤ C ·



1 +

log+

(
|S| log+

(
1

d(µ(k+1),µ(x))

)
/δ
)

d(µ(k+1), µ(x))





whereas for x ∈ S \ S∗(k),

2ifin(x) ≤ C ·



1 +

log+

(
|S| log+

(
1

d(µ(k+1),µ(x))

)
/δ
)

d(µ(k+1), µ(x))





The proof of Proposition 7.4 will invoke an inversion lemma from the best arm identifi-
cation literature (see, e.g. Equation (110) in [260]):

Lemma 7.7. For any δ, u > 0, let T (u, δ) := 1 + log+(δ
−1 log+(u))/u. There exists a

universal constant C0 such that, for all n ≥ C0T (u, δ), we have log(δ−1 log n)/n < u.

Proof of Proposition 7.4. Let n = 2i, let δ0 = δ/(4|S| log2 e), and let ∆ = µ(x1) − µ(x2).
Then UCBi(x2) < LCBi(x1) is equivalent to

µ(x2) +
14

3n
log
(
δ−1
0 log n

)
+ 2
√

2µ(x2) log
(
δ−1
0 log n

)
/n

< µ(x1)− 2
√
2µ(x1) log

(
δ−1
0 log n

)
/n

implied by
14

3n
log
(
δ−1
0 log n

)
+ 4
√

2µ(x1) log
(
δ−1
0 log n

)
/n < ∆ ,
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where the second line uses µ(x2) ≤ µ(x1). For the second line to hold, it is enough that

1

n
log
(
δ−1
0 log n

)
<

3∆

28
and log

(
δ−1
0 log n

)
/n <

(
∆

8
√
2

)2

. (7.37)

Lemma 7.7 and (7.37) imply that it is sufficent that

n ≥ C0T
(
min

{
3∆

28
,

1

µ(x1)

(
∆

8
√
2

)2
}
, δ0

)
,

from which it follows that

inf
{
2i : UCBi(x2) < LCBi(x1)

}
≤ 2C0

{
T
(
min

{
3∆

28
,

1

µ(x1)

(
∆

8
√
2

)2
}
, δ0

) }
.

Absorbing constants and plugging in δ0 = δ/(4|S| log2 e), algebraic manipulation finally
implies that there exists a universal constant C such that, for any x1, x2 with µ(x1) < µ(x2),

inf
{
2i : UCBi(x1) < LCBi(x2)

}
≤ C

{
1 + T

(
min

{
∆,

∆2

µ(x1)

}
, δ/M

)}

= C

{
1 + T

(
∆2

µ(x1)
, δ/|S|

)}

= C {1 + T (d(µ(x2), µ(x1)), δ/|S|)} .

To conclude, we select x1 = x(k+1) and x2 = x when x ∈ S∗(k), and x1 = x and x2 = x(k)

for x ∈ S \ S∗(k).

Theorem 7.5 now follows by plugging in Proposition 7.4 into Eq.’s (7.35) and (7.36).

7.C Analyzing NaiveSearch: Proof of Theorem 7.4
In this section, we present a brief proof of Theorem 7.4 and Theorem 7.6. The arguments
are quite similar to those in the analysis of AdaSearch, and we point out modifications as
we go allow.

Let Egood denote the event of Lemma 7.4, modified to hold for all x ∈ S at each round i
(rather than all x ∈ Si, as in the case of AdaSearch). The proof of Lemma 7.4 extends to
this case as well, yielding that

P[Egood] ≥ 1− δ .

It suffices to show that on Egood, NaiveSearch correctly returns S∗(k), and satisfies the
desired runtime guarantees.
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Correctness: On Egood, we have that x ∈ S∗(k), µ(x) ≤ UCBi(x), and for x′ ∈ S\S∗(k),
µ(x′) ≥ LCBi(x

′). Hence, for any x′ ∈ S \ S∗(k) and for all x ∈ S∗(k), LCBi(x
′) ≤ µ(x′) <

µ(x) ≤ UCBi(x). Thus, the termination criterion can only fulfilled when LCBi(x), each
x ∈ S∗(k), are greater than the remained |S|− k values of UCBi(x). This yields correctness.

Runtime: Recall that for NaiveSearch with the standardization τ0, we have

T run = |S|
ifin∑

i=0

τi = |S|
ifin∑

i=0

2i ≤ 2|S| · 2ifin .

Arguing as in the analysis for AdaSearch, it suffices to show that, on Egood,

ifin ≤ inf{i : LCBi(x) > UCBi(x
′) ∀x ∈ S∗(k), x′ ∈ S \ S∗(k)} := ifin, (7.38)

for which we bound

T run ≲ |S|2ifin

(i)

≲ |S| · max
x∈S∗(k),x′∈S−S∗(k)

log+

(
|S|
δ
log+(

1
d(µ(x′),µ(x))

)
)

d(µ(x′), µ(x))

= |S| ·
log+

(
|S|
δ
log+

(
1

d(µ(k+1),µ(k))

))

d(µ(k+1), µ(k))

= Õ(Cunif log(|S|/δ)),

where (i) follows from the same argument as in the proof of Proposition 7.4. To verify (7.38),
suppose that Egood holds, and that NaiveSearch has not terminated before round ifin. Then,
by definition of ifin,

LCBi(x) > UCBi(x
′), ∀x ∈ S∗(k), x′ ∈ S \ S∗(k) .

Moreover, on Egood, LCBi(x) ≥ LCBi(x) and UCBi(x
′) ≤ UCBi(x

′) for all x ∈ S∗(k) and all
x′ ∈ S \ S∗(k). Thus,

LCBi(x) > UCBi(x
′), ∀x ∈ S∗(k), x′ ∈ S \ S∗(k),

which directly implies the termination criterion for NaiveSearch.



129

Chapter 8

MOSAIKS: A Generalizable and
Accessible Approach to Machine
Learning with Global Satellite Imagery

This chapter is based on the paper “A generalizable and accessible approach to machine learn-
ing with global satellite imagery” [245]1, written in collaboration with Jonathan Proctor,
Tamma Carleton, Ian Bolliger, Vaishaal Shankar, Miyabi Ishihara, Benjamin Recht, and
Solomon Hsiang.

Combining satellite imagery with machine learning (SIML) has the potential to address
global challenges by remotely estimating socioeconomic and environmental conditions in
data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We
show that a single encoding of satellite imagery can generalize across diverse prediction tasks
(e.g. forest cover, house price, road length). Our method achieves accuracy competitive with
deep neural networks at orders of magnitude lower computational cost, scales globally, deliv-
ers label super-resolution predictions, and facilitates characterizations of uncertainty. Since
image encodings are shared across tasks, they can be centrally computed and distributed to
unlimited researchers, who need only fit a linear regression to their own ground truth data
in order to achieve state-of-the-art SIML performance.

8.1 Background
Addressing complex global challenges—such as managing global climate changes, popula-
tion movements, ecosystem transformations, or economic development—requires that many
different researchers and decision-makers (hereafter, users) have access to reliable, large-
scale observations of many variables simultaneously. Planet-scale ground-based monitoring
systems are generally prohibitively costly for this purpose, but satellite imagery presents a

1Reproduced with permission from Springer Nature
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viable alternative for gathering globally comprehensive data, with over 700 earth observa-
tion satellites currently in orbit [280]. Application of machine learning is proving to be an
effective approach for transforming these vast quantities of unstructured imagery data into
structured estimates of ground conditions. For example, combining satellite imagery and
machine learning (SIML) has enabled better characterization of forest cover [123], land use
[141], poverty rates [145] and population densities [241], thereby supporting research and
decision-making. We refer to such prediction of an individual variable as a task. Demand
for SIML-based estimates is growing, as indicated by the large number of private service-
providers specializing in predicting one or a small number of these tasks.

The resource requirements for deploying SIML technologies, however, limit their accessi-
bility and usage. Satellite-based measurements are particularly under-utilized in low-income
contexts, where the technical capacity to implement SIML may be low, but where such
measurements would likely convey the greatest benefit [118, 299]. For example, government
agencies in low-income settings might want to understand local waterway pollution, illegal
land uses, or mass migrations. SIML, however, remains largely out of reach to these and other
potential users because current approaches require a major resource-intensive enterprise, in-
volving a combination of task-specific domain knowledge, remote sensing and engineering
expertise, access to imagery, customization and tuning of sophisticated machine learning
architectures, and large computational resources [21].

To remove many of these barriers, we develop a new approach to SIML that enables non-
experts to obtain state-of-the-art performance without manipulating imagery, using special-
ized computational resources, or developing a complex prediction procedure. We design a
one-time, task-agnostic encoding that transforms each satellite image into a vector of vari-
ables (hereafter, features). We then show that these features (x) perform well at predicting
ground conditions (y) across diverse tasks, using only a linear regression implemented on a
personal computer. Prior work has similarly sought an unsupervised encoding of satellite
imagery [65, 146, 222, 249]; however, to the best of our our knowledge, we are the first
to demonstrate that a single set of features both achieves performance competitive with
deep-learning methods across a variety of tasks and scales globally.

We focus here on the problem of predicting properties of small regions (e.g. average
house price) at a single time period, using high-resolution daytime satellite imagery as the
only input. We develop a simple yet high-performing system that is tailored to address the
challenges and opportunities specific to SIML applications. We achieve large computational
efficiency gains in model training and testing, relative to deep neural networks, through
algorithmic simplifications that take advantage of the fact that satellite images are collected
from a fixed distance and viewing angle and capture repeating patterns and objects. This
contrasts with deep-learning approaches to SIML that use techniques originally developed
for natural images (e.g. photos taken from handheld cameras), where inconsistency in many
key factors, such as subject or camera perspective, require complex solutions that our results
suggest may be mostly unnecessary for SIML applications.

Here we show that a single set of general purpose features can encode rich information in
satellite images. We utilize an unsupervised featurization process, which separates feature
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construction from model-fitting. This approach dramatically increases computational speed
for any given researcher and delivers large computational gains at the research-system level by
reorganizing how imagery is processed and distributed. Traditionally, hundreds or thousands
of researchers use the same images to solve different and unrelated tasks. Our approach
allows common sources of imagery to be converted into centralized sets of features that can
be accessed by many researchers, each solving different tasks. This isolates future users from
the costly steps of obtaining, storing, manipulating, and processing imagery themselves.
The magnitude of the resulting benefits grow with the size of the expanding SIML user
community and the scale of global imagery data, which currently increases by more than
80TB/day [177].

8.2 Multi-Task Observation using Satellite Imagery &
Kitchen Sinks

Our objective is to enable any user with basic resources to predict ground conditions using
only satellite imagery and a limited sample of task-specific ground truth data which they
possess. Our SIML system, “Multi-task Observation using Satellite Imagery and Kitchen
Sinks” (MOSAIKS), separates the prediction procedure into two independent steps: a fixed
“featurization step” which translates satellite imagery into succinct vector representations
(images→ x), and a “regression step” which learns task-specific coefficients that map these
features to outcomes for a given task (x→ y). For each image, the unsupervised featuriza-
ton step can be centrally executed once, producing one set of outputs that are used to solve
many different tasks through repeated application of the regression step by multiple indepen-
dent users (Figure 8.1). Because the regression step requires relatively little computation,
MOSAIKS scales efficiently across unlimited users and tasks.

The accessibility of our approach stems from the simplicity and computational efficiency
of the regression step for potential users, given features which are already computed once
and stored centrally. To generate SIML predictions, a user of MOSAIKS (i) queries these
tabular data for a vector of K features for each of their N locations of interest; (ii) merges
these features x with label data y, i.e. the user’s independently collected ground truth data;
(iii) implements a linear regression of y on x to obtain coefficients β; (iv) uses coefficients
β and and features x to predict labels ŷ in new locations where imagery and features are
available but ground truth data are not (Figure 8.1).

The generalizability of our approach means that a single mathematical summary of satel-
lite imagery (x) performs well across many prediction tasks (y1, y2, ...) without any task-
specific modification to the procedure. The success of this generalizability relies on how
images are encoded as features, which we describe below.

In contrast to many recent alternative approaches to SIML, MOSAIKS does not require
training or using the output of a deep neural network and encoding images into unsupervised
features requires no labels. Nonetheless, MOSAIKS achieves competitive performance at a
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Figure 8.1: Schematic of the MOSAIKS process. N images are transformed using random
convolutional features (RCF) into K-dimensional feature vectors before labels are known.
Once the feature matrix X ∈ RN×K is computed, it can be used for unlimited tasks without
recomputation. Users interested in a new task s (e.g. forest cover or population density)
merge their own labels ys to features for training.

large computational advantage that grows linearly with the number of SIML users and tasks,
due to shared computation and storage. In principle, any unsupervised featurization would
enable these computational gains. However, to date, a single set of unsupervised features has
neither achieved accuracy competitive with supervised CNN-based approaches across many
SIML tasks, nor at the scale that we study. In Sections 8.3 to 8.5, we show that MOSAIKS
achieves a practical level of generalization and effectiveness in real world contexts.

Random Convolutional Features

We design a featurization function by building on the theoretically grounded machine learn-
ing concept of random kitchen sinks [231], which we apply to satellite imagery by construct-
ing random convolutional features (RCFs). RCFs are suitable for the structure of satellite
imagery and have established performance encoding genetic sequences [204], classifying pho-
tographs [72], and predicting solar flares [151] . RCFs capture a flexible measure of similarity
between every sub-image across every pair of images without using contextual or task-specific
information. The regression step in MOSAIKS then treats these features x as an overcom-
plete basis for predicting any y, which may be a nonlinear function of image elements.

Notation. In our notation, the input variable z is a set of satellite images I, each cor-
responding to a physical location, ℓ. We use brackets to denote indexing into images,
with colons denoting sub-regions of images (e.g. Iℓ[i, j] is the (i, j)th pixel of image Iℓ,
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Figure 8.2: MOSAIKS featurization process (random convolutional features). Given a large
sample of N satellite images, a random sample of K patches are drawn. These K random
patches Pk are convolved over each image Iℓ and passed through a nonlinear function Φ(·) =
ReLU(·) to generate K activation maps. Pixel-specific activations are pooled across each
image to generate K-dimensional features that can be stored and distributed to users.

Iℓ[i : i +M, j : j +M ] is the square sub-image of size M ×M starting at pixel (i, j).) Be-
cause images have a third dimension (spectral bands), a colon Iℓ[i, j, :] denotes all bands at
pixel (i, j). Indexing into non-image objects is denoted with subscripts (e.g. the kth element
of vector x is denoted as xk and the kth patch in a set of patches P is denoted as Pk). We
denote inner products with angular brackets ⟨·, ·⟩ and the convolution operator with ∗.

Figure 8.2 depicts our featurization process. We begin with a set of images {Iℓ}Nℓ=1,
each of which is centered at locations indexed by ℓ = {1, . . . , N}. MOSAIKS generates
task-agnostic feature vectors x(Iℓ) for each satellite image Iℓ by convolving K “patches”,
Pk ∈ RM×M×S, across the entire image. Each patch is a randomly sampled sub-image from
the set of training images {Iℓ}Nℓ=1.

2 M is the width and height of each patch in units of
pixels and S is number of spectral bands; in our analysis, we use patches of width and height
M = 3 and S = 3 bands (red, green, and blue). The dimension of the resulting feature space
is equal to K, the number of patches used; in our main analyses we employ K = 8, 192.3

Both images and patches are whitened according to zero components analysis (ZCA), a
common pre-processing routine in image processing [169].4 We then convolve each patch Pk

over each of the N images and apply a pixel-wise nonlinearity operator Φ to each resulting
matrix to obtain K nonlinear activation maps Ak(Iℓ) = Φ(Pk ∗ Iℓ + bk) for each image Iℓ.

2This patch selection process is almost identical to the filter selection methods described in [5, 71, 237].
3To improve efficiency of the featurization process, our implementation calculates the inner product of

patch and image only for K/2 = 4096 unique patches. We then create an additional K/2 values equal to the
negative of each of the original inner products.

4ZCA whitening pre-multiplies each patch by a transformation such that the resulting empirical covari-
ance matrix of the whitened patches is the identity matrix. In practice, we apply the whitening operator as
a right multiplication to the original 8192× 27 whitened patch matrix in order to reduce computation.
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The (i, j)th pixel of the kth activation map is defined as

Ak(Iℓ)[i, j] = Φ(⟨Iℓ[i : i+M, j : j +M, :],Pk⟩+ bk), (8.1)

where bk is a bias term from the constant bias matrix bk, in which every element is equal to
bk = 1. We use Φ(Iℓ;Pk,bk) = ReLU(Pk ∗ Iℓ + bk) := max{Pk ∗ Iℓ + bk, 0} as the nonlinear
operator. We then aggregate across the image by taking the average of the nonlinear acti-
vation maps. The combination of the nonlinear operator Φ(·) and average pooling results in
a scalar value for each patch k and image ℓ pair. With images of shape 256× 256 pixels and
patches of width and height M = 3, the features are expressed as:

xk(Iℓ) =
1

2542

254∑

i=1

254∑

j=1

Ak(Iℓ)[i, j] . (8.2)

Stacking these scalars across all K patches provides the resulting K-dimensional feature
vector x(Iℓ) :=

[
x1(Iℓ) x2(Iℓ) ... xK(Iℓ)

]
∈ RK . This featurization thus embeds the

original image Iℓ into a K-dimensional feature space, which can then be mapped to many
different outcomes as illustrated in Figure 8.1. The linear link between labels and features
in Figure 8.1 may express a relationship between labels and image pixels that is highly
nonlinear because the features themselves are nonlinear with respect to the images.

Connections to the Random Kitchen Sinks Framework

Random kitchen sinks approximate arbitrary functions by creating a finite series of features
generated by passing the input variables z through a set of K nonlinear functions g(z; Θk),
each paramaterized by draws of a random vector Θ. The realized vectors Θk are drawn
independently from a pre-specified distributions for each of k = 1...K features. Given an
expressive enough function g and infinite K, such a featurization would be a universal func-
tion approximator [230]. In our case, such a function g would encode interactions between
all subsets of pixels in an image. For an image of size 256 × 256 × 3, there are 2256×256×3

such subsets. Therefore, the fully-expressive approach is inefficient in generating predictive
skill with reasonably concise K because each feature encodes more pixel interactions than
are empirically useful.

To adapt random kitchen sinks for satellite imagery, we use random convolutional fea-
tures (described above), making the simplifying assumption that most information contained
within satellite imagery is represented in local image structure. Connecting our implemen-
tation and notation to the framework of random kitchen sinks, the random variables Θk are
instantiated as the values of a random patch Pk and the bias bk. The input variable z is
an image Iℓ, and g(z; Θk) represents the convolution of the patch over the image, followed
by addition of the bias bk and application of a element-wise ReLU function and an average
pool. Applied to satellite images, random convolutional features reduce the number of effec-
tive parameters in the function by considering only local spatial relationships between pixels.
This results in a highly expressive, yet computationally tractable model for prediction.
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Relevant Structures of Satellite Imagery and SIML Tasks

Three particular properties provide the the motivation for our choice of a convolution and
average-pool mapping to define g.

First, we hypothesize that convolutions of small patches will be sufficient to capture
nearly all of the relevant spatial information encoded in images because objects of interest
(e.g. a car or a tree) tend to be contained in a small sub-region of the image. This is
particularly true in satellite imagery, which has a much lower spatial resolution than most
natural imagery.

Second, we expect a single layer of convolutions to perform well because satellite im-
ages are taken from a constant perspective (from above the region of interest) at a constant
distance and are often orthorectified to remove the effects of image perspective. Together,
these characteristics mean that a given object will tend to appear the same size when cap-
tured in different images. This allows for MOSAIKS’s relatively simple, translation invariant
featurization scheme to achieve high performance, and avoids the need for more complex ar-
chitectures designed to provide robustness to variation in object size and orientation.

Third, we average-pool the convolution outputs because most labels in the types of
problems we study can be approximately decomposed into a sum of sub-image characteristics.
For example, forest cover is measured by the percent of total image area covered in forest,
which can equivalently be measured by averaging the percent forest cover across sub-regions
of the image. Labels that are strictly averages, totals, or counts of sub-image values (such
as forest cover, road length, population density, elevation, and night lights) will all exhibit
this decomposition. While this is not strictly true of all SIML tasks, for example income
and average housing price, we demonstrate that MOSAIKS still recovers strong predictive
skill on these tasks. This suggests that some components of the observed variance in these
labels may still be decomposable in this way, possibly because they are well-approximated
by functions of sums of observable objects.

8.3 Assessing Generalization Across Tasks
We design a set of experiments to test whether and under what settings MOSAIKS can
provide access to high-performing, computationally-efficient, global-scale SIML predictions.
In the next several sections, we demonstrate generalization across tasks, and compare MO-
SAIKS’s performance and cost to existing state-of-the-art SIML models (Section 8.3), assess
its performance when data are limited and when predicting far from observed labels (Sec-
tion 8.4), scale the analysis to make global predictions and try recreating the results of a
national survey (Section 8.5), and detail an algorithmic extension that enables us to make
predictions at finer resolution than the provided labels (Section 8.6).
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Figure 8.3: 1km × 1km resolution prediction of many tasks across the continental US. Left
maps: observations. Right maps: predictions (concatenated validation set estimates from
5-fold cross-validation for the same 80,000 grid cells as the observations). Scatters: spatially
disagreggated ground-truth observations (vertical axis) vs. predictions (horizontal axis);
each point is a ∼1km×1km grid cell. Values in maps are aggregated up to 20km×20km cells
for display. Grey areas were not sampled in the experiment.
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Multi-Task Performance of MOSAIKS in the US

We first test whether MOSAIKS achieves a practical level of generalization by applying
it to a diverse set of pre-selected tasks in the continental United States (US). While many
applications of interest for SIML are in remote and/or data-limited environments where
ground-truth may be unavailable or inaccurate, systematic evaluation and validation of SIML
methods are most reliable in well-observed and data-rich environments [37].

We sample daytime images using the Google Static Maps API [111] from across the con-
tinental US, each covering ∼1km×1km (640 × 640, downsampled to 256 × 256 pixels) and
aligned to an equal-area grid. For our primary experiment we subsample sets of 100,000 ob-
servations, roughly 1.25% of the grid cells in the continental US, using two distinct sampling
strategies.5 First, we sample uniformly-at-random (UAR) from all grid cells within the conti-
nental US. This sampling strategy is most appropriate for tasks like forest cover, where there
is meaningful variation in most regions of the country. Second, we implement a population-
weighted (POP) sampling strategy, where each grid cell is sampled with probability weighted
by population density estimates for the year 2015 from [57]. This weighted sampling strategy
is most applicable to tasks like housing price, where the most meaningful variation lies in
more populated regions of the US. We use the UAR sample for the forest cover, elevation,
and population density tasks. We use the POP sample for nighttime lights, income, road
length, and housing price. We model labels whose distribution is approximately log-normal
(population density, nighttime lights, and housing price) using a log transformation.

We first implement the featurization step, passing these images through the MOSAIKS
feature extraction algorithm (Section 8.2) to produce K = 8, 192 features per image. Using
the resulting matrix of features (X), we then repeatedly implement the regression step by
solving a 5-fold cross-validated ridge regression for each task and predict forest cover (R2 =
0.91), elevation (R2 = 0.68), population density (R2 = 0.72), nighttime lights (R2 = 0.85),
average income (R2 = 0.45), total road length (R2 = 0.53), and average house price (R2 =
0.52)6 in a holdout test sample made up of 20% of the sampled data (Figure 8.3).7 Computing
the feature matrix X from imagery for a 100,000 image sample took less than 2 hours on a
cloud computing node (Amazon EC2 p3.2xlarge instance, Tesla V100 GPU). Subsequently,
solving a cross-validated ridge regression for each task took 6.8 minutes to compute on a
local workstation with ten cores (Intel Xeon CPU E5-2630).

These results indicate that MOSAIKS is skillful for a wide range of possible applications
without changing the procedure or features and without task-specific expertise. Note that
due to the absence of metadata describing the exact time of observation in the Google
imagery, as well as task-specific data availability constraints, these performance measures

5We discard marine grid cells, but do not discard grid cells that are composed only of lakes or smaller
inland bodies of water.

6Performance observed for housing using our published data will be higher (R2 = 0.60) because privacy
concerns mandate the withholding of a subset of this data (see Section 8.A).

7Test set and validation set performance are essentially identical (Table 8.1); validation set values are
used in Figure 8.3 for display purposes as there are more observations.
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MOSAIKS Fine-tuned ResNet-18 Pre-trained ResNet-152
Task R2 R2 R2

Forest cover 0.91 0.94 0.66
Elevation 0.68 0.80 0.32
Population density 0.72 0.80 0.29
Nighttime lights 0.85 0.89 0.48
Income 0.45 0.47 0.07
Road length 0.53 0.58 0.16
Housing price 0.52 0.50 0.01

Table 8.1: Task-specific MOSAIKS test-set performance in contrast to an 18-layer variant of
the ResNet Architecture (ResNet-18) trained end-to-end for each task and an unsupervised
featurization using the last hidden layer of a 152-layer ResNet variant pre-trained on natural
imagery and applied using ridge regression.

are conditional on a certain degree of unknown temporal mismatch between imagery and
task labels (Section 8.A).

Benchmarking Performance with Alternative SIML Approaches

We contextualize this performance by comparing MOSAIKS to existing deep-learning based
SIML approaches (Table 8.1). First, we retrain end-to-end a commonly-used deep con-
volutional neural network (CNN) architecture [115, 129, 175] (ResNet-18) using identi-
cal imagery and labels for the seven tasks above. This training took 7.9 hours per task
on a cloud computing node (Amazon EC2 p3.xlarge instance, Tesla V100 GPU). We find
that MOSAIKS exhibits predictive accuracy competitive with the CNN for all seven tasks
(mean R2

CNN − R2
MOSAIKS = 0.04; smallest R2

CNN − R2
MOSAIKS = −0.02 for housing; largest

R2
CNN −R2

MOSAIKS = 0.12 for elevation).
Second, we apply transfer learning [217] using a ResNet-152 CNN pre-trained on natural

images to featurize the same satellite images [115, 175]. We then apply ridge regression
to the CNN-derived features. The speed of this approach is similar to MOSAIKS, but its
performance is dramatically lower on all seven tasks (Table 8.1).

Third, we compare MOSAIKS to an approach from prior studies [130, 145, 296] where
a deep CNN (VGG16 [262] pretrained on the ImageNet dataset) is trained end-to-end on
nighttime lights and then each task is solved via transfer learning. We apply MOSAIKS to
the imagery from Rwanda, Haiti, and Nepal used in [130] to solve all eleven development-
oriented tasks they analyze. We find MOSAIKS matches prior performance across tasks in
Rwanda and Haiti, and has slightly lower performance (average ∆R2 = 0.08) on tasks in
Nepal (Figure 8.4). The regression step of this transfer learning approach and MOSAIKS
are similarly fast, but the transfer learning approach requires country-specific retraining of
the CNN, limiting its accessibility and reducing its generalizability.
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Figure 8.4: Comparison of accuracy between MOSAIKS and a transfer learning model.
Box plots (left) show task-specific performance of MOSAIKS models (random convolutional
features, RCF, in blue and RCF + nighttime lights appended as an additional column in
the feature matrix in green) in contrast to a transfer learning model (black). Box and
whiskers show the performance over the 5 cross-validation folds. Scatter plots (right) show
the performance of MOSAIKS models and a nighttime lights-only model (orange) versus the
transfer learning model performance. Each point in the scatter is the average R2 over the 5
cross-validation folds, while whiskers indicate the full range of performance across folds.
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Together, these three experiments illustrate that with a single set of task-independent
features, MOSAIKS predicts outcomes across a diverse set of tasks, with performance and
speed that favorably compare to existing SIML approaches. However, throughout this set of
experiments, we find that some sources of variation in labels are not recovered by MOSAIKS.
For example, extremely high elevations (>3,000m) are not reliably distinguished from high
elevations (2,400-3,000m) that appear visually similar (Figure 8.3). Additionally, roughly
half the variation in incomes and housing prices is unresolved (Figure 8.3), presumably
because they depend on factors not observable from orbit, such as tax policies or school
districts.

Comparing Costs

In practice, high computational costs can limit the use of SIML methods – especially when
resources are scarce, such as in government agencies of low-income countries [118] or research
teams and NGOs with limited budgets. Specifically designed to address this challenge, MO-
SAIKS scales across many research tasks by decoupling featurization from task selection,
model-fitting, and prediction. The computationally costly step of featurization is done cen-
trally on a fast computer with a graphics processing unit (GPU). Implementation of this
one-time unsupervised featurization results in a roughly 6 to 1 compression of stored and
transmitted imagery data with K = 8, 912 features.8 Because features are created and stored
by a central entity, the research community could make use of a cached set of computations,
potentially reducing the overall computational burden of widespread SIML and any external
social costs generated by these computations [268]. Additionally, decoupling task-agnostic
computations from task-specific computations enables practitioners to run more diagnostic
analyses on their tasks, such as those described in Section 8.4.

From the perspective of a user who can access pre-computed MOSAIKS features to train
and validate a new task, we find that MOSAIKS is ∼ 250× to 10, 000× faster than a stan-
dard deep neural net architecture (ResNet-18), depending on the computational resources
available to a MOSAIKS user (Table 8.2). Moreover, MOSAIKS performance is competitive
with the ResNet on all tasks we have studied (Table 8.1). From the perspective of the entire
computational ecosystem, which bears the cost of image featurization in addition to model
training and testing, we find that MOSAIKS is 5.3× faster than the ResNet-18 when solving
a single task. The relative efficiency of MOSAIKS grows with the number of tasks studied
because MOSAIKS features can be reused across tasks.

For the ResNet-18 model, the times in Table 8.2 reflect our wall-clock time on a single
Amazon EC2 instance for a single task, so that the time costs are similar to that of intro-
ducing a single new domain ex post. For MOSAIKS, we report wall-clock times on three
different computational platforms, as users may have access to different resources. We show
times using the same GPU instance as we use for the ResNet comparisons, times on a local

8This is calculated as: (256 ∗ 256 ∗ 3)/(8192 ∗ 4) = 6× compression, where 256 * 256 * 3 integer values
per image are compressed into 8192 float32 features, each of which takes 4× the storage of an integer. Using
100 features gives a 500× compression.
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ResNet MOSAIKS
Component Time (GPU) Time
Training set featurization (N = 80k)

∼ 7.9 hours

∼ 1.2 hours (GPU)
Model training ∼ 2.8 seconds (GPU)

∼ 50 seconds (10 cores)
∼ 1.8 minutes (laptop)

Holdout set featurization (N = 20k)

∼ 40 seconds

∼18 minutes (GPU)
Holdout set prediction < 0.01 seconds (GPU)

∼ 0.1 seconds (10 cores)
∼ 0.7 seconds (laptop)

Total cost to ecosystem ∼ 7.9 hours ∼ 1.5 hours (GPU)
Total cost to user ∼ 7.9 hours ∼ 2.8 seconds (GPU)

∼ 50.1 seconds (10 cores)
∼ 1.8 minutes (laptop)

Table 8.2: Wall-clock times of components of MOSAIKS compared with a fine-tuned CNN.
Bold times are those that a practitioner using each method would incur (assuming MO-
SAIKS users have access to a standard laptop only). Model training time is reported for a
single hyperparameter configuration and a single task for both ResNet and MOSAIKS (us-
ing K=8,192 features). ResNet operations were run on an Amazon EC2 p3.2xlarge instance
with a Tesla V100 GPU and 60GB of onboard RAM, which cost roughly $3/hr at the time
we ran our experiments. MOSAIKS operations are shown for this same instance, a local
workstation with ten cores (Intel Xeon CPU E5-263), and a laptop (2018 MacBook Pro).

workstation with ten cores, and times on a laptop. For both ResNet and MOSAIKS, we
report model training time for a single set of hyperparameters. The ecosystem-wide costs of
featurization per task shown in Table 8.2 would decline as MOSAIKS becomes more widely
adopted, because features can be cached centrally and distributed without modification to
multiple users who are training and/or testing SIML in common locations.

For cost comparisons, we considered only one CNN architecture, which we chose because
of its use in previous remote sensing applications [145]. We did not attempt to innovate
in deep neural net architectural design or algorithms to decrease computational constraints.
Our results suggest that such innovations may be both possible and worthwhile, as increasing
training efficiency can in turn increase accessibility and enable context-sensitive analysis.

8.4 Evaluating Model Sensitivity
There is growing recognition that understanding the accuracy, precision, and limits of SIML
predictions is important, since consequential decisions increasingly depend on these outputs,
such as which households should receive financial assistance [12, 37]. However, historically,
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Figure 8.5: Prediction accuracy using smaller K and N . Validation set R2 performance for
all seven tasks while varying the number of random convolutional features K and holding
N = 64, 000 (left) and while varying N and holding K = 8, 192 (right). Lines indicate
average accuracy across folds; shaded bands indicate accuracy range across folds.

the high costs of training deep-learning models have generally prevented the stress-testing
and bench-marking that would ensure accuracy and constrain uncertainty. To characterize
the performance of MOSAIKS, we test its sensitivity to the number of features (K) and
training observations (N), as well as the extent of spatial extrapolation.

Changes to Training Data

Due to the sampling of random patches in the MOSAIKS featurization step, the compu-
tational complexity of the regression step can be manipulated by simply including more or
fewer features. Repeatedly re-solving the linear regression step in MOSAIKS with a varied
number of features indicates that increasing K above 1,000 features provides minor predic-
tive gains (Figure 8.5). A majority of the observable signal in the baseline experiment using
K = 8, 192 is recovered using K = 200 (min 55% for income, max 89% for nighttime lights),
reducing each 65,536-pixel tri-band image to just 200 features (∼ 250× data compression).
Similarly, re-solving MOSAIKS predictions with a different number of training observations
demonstrates that models trained with fewer samples may still exhibit high accuracy. A
majority of the available signal is recovered for many outcomes using only N = 500 (55% for
road length to 87% for forest cover), with the exception of income (28%) and housing price
(26%) tasks, which require larger samples. Together, these experiments suggest that users
with computational, data acquisition, or data storage constraints can easily tailor MOSAIKS
to match available resources and can estimate the performance impact of these alterations.

To systematically evaluate the ability of MOSAIKS to make accurate predictions in large
contiguous areas where labels are not available, we conduct a spatial cross-validation ex-
periment by partitioning the US into a checkerboard pattern (Figure 8.6), training on the
black squares and testing on the white squares. Increasing the width of squares (δ) in the
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Figure 8.6: Evaluation of performance over regions of increasing extents that that are ex-
cluded from training sample. Data are split using a checkerboard partition, where the width
and height of each square is δ (measured in degrees). Example partitions with δ = 0.5◦, 8◦,
16◦ are shown in maps at the bottom of the figure. For a given δ, training occurs using data
sampled from black squares and performance is evaluated in white squares. Plots show col-
ored lines representing average performance of MOSAIKS in the US across δ values for each
task. Benchmark performance numbers from Figure 8.3 are indicated as circles at δ = 0.
Grey dashed lines indicate corresponding performance using only spatial interpolation with
an optimized radial basis function (RBF) kernel instead of MOSAIKS. For each δ, colored
or grey bands denote ranges of performance across four instantiations of the checkerboard
using different center vertices to define checkerboard cells.

checkerboard increases the average distances between train and test observations, simulating
increasingly large spatial extrapolations. We find that for three of seven tasks (forest cover,
population density, and nighttime lights), performance declines minimally regardless of dis-
tance (maximum R2 decline of 10% at δ = 16◦ for population density). For income, road
length, and housing price, performance falls moderately at small degrees of spatial extrapo-
lation (19%, 33%, and 35% decline at δ = 4◦, respectively), but largely stabilizes thereafter.
Finally, elevation exhibits steady decline with increasing distances between training and
testing data (49% decline at δ = 16◦).

To contextualize this performance, we compare MOSAIKS to kernel-based spatial in-
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terpolation using a Gaussian radial basis function (RBF) kernel, a simple and widely used
approach to fill in regions of missing data (see Chapter 5). In this approach, the value for
a point in the validation set at location ℓv ∈ R2 is predicted to be a weighted sum of the
values of all the points in the training set ℓt, as follows:

ŷsv =

∑
ℓt∈[Train]

ystw(ℓt, ℓv)

∑
ℓt∈[Train]

w(ℓt, ℓv)
; w(ℓt, ℓv) = e−

1
2σ2 ∥ℓt−ℓv∥2 .

Here, w is the weight assigned to each observation in the training set based on distance,
such that w decreases as the distance between the point being predicted and the point in
the training set increases. We select σ, the parameter that determines the rate at which
w degrades with distance, to maximize average performance on the validation set across
four spatially-offset runs of the checkboard partitions shown in Figure 8.6, and tune the
regularization parameter in the MOSAIKS ridge regression in the same fashion.

Using the same samples, MOSAIKS substantially outperforms spatial interpolation (grey
dashed lines in Figure 8.6) across all tasks except for elevation, where interpolation performs
almost perfectly over small ranges (δ = 0.5◦ : R2 = 0.95), and housing price, where interpo-
lation slightly outperforms MOSAIKS at small ranges. For both, interpolation performance
converges to that of MOSAIKS over larger distances. Thus, in addition to generalizing across
tasks, MOSAIKS generalizes out-of-sample across space, outperforming spatial interpolation
of ground-truth in 5 of 7 tasks. This suggests that MOSAIKS, and SIML generally, exploits
the spectral and structural content of information within an image to generate predictions
at national scale that extend beyond what can be captured by geographic location alone.

The above sensitivity tests are enabled by the speed and simplicity of training MOSAIKS.
These computational gains also enable quantification of uncertainty in model performance
within each diagnostic test. As demonstrated by the shaded bands in Figures 8.5 and 8.6,
uncertainty in MOSAIKS performance due to variation in splits of training-validation data
remains modest under most conditions.

8.5 Testing Performance at Scale
Having evaluated MOSAIKS systematically in the data-rich US, we test its performance at
planetary scale and its ability to recreate results from a national survey.

Global Observation

We test the ability of MOSAIKS to scale globally using the four tasks for which global
labels are readily available. Using a random sub-sample of global land locations (training
and validation: N = 338,781, test: N = 84,692), we construct planet-scale, multi-task
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Figure 8.7: Global training data (left maps) and estimates using a single featurization of
daytime imagery (right maps). Insets (far right) marked by black squares in global maps.
Out-of-sample predictions are constructed using 5-fold cross-validation. For display purposes,
maps depict ∼50km × 50km average values (ground truth and predictions at ∼1km × 1km).

estimates using a single set of label-independent features (K = 2048, Figure 8.7)9, predicting
the distribution of forest cover (R2 = 0.85), elevation (R2 = 0.45), population density
(R2 = 0.62), and nighttime lights (R2 = 0.49).

For our global analysis, we draw samples from a global grid, composed of roughly 420
million cells just over 1km2 in size, using an identical structure to that we use for the US.
To obtain observations for our global analysis, we sub-sample 1,000,000 cells from this grid,
sampling UAR from non-marine grid cells.

One of the difficulties in sub-sampling from the global grid is that there are many grid
cells where we do not have images available (there are negligibly few missing images in the US

9When generating features (K = 2, 048) for our global model, we use patches drawn randomly from the
global sample of images, not just from within the US.
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Figure 8.8: MOSAIKS predictions at global scale (Figure 8.7) are generated from six separate
cross-validated ridge regressions using random convolutional features. Each continent model
is trained on 80% of the sample size shown (N).

grid). After discarding grid cells with missing imagery from our original sample of 1,000,000
observations, we are left with N = 498, 063 valid observations. After removing observations
for which labeled data are missing for any of the tasks we analyze at global scale (forest
cover, elevation, population density, and nighttime lights), we are left with N = 423, 476
observations, which we use to train and evaluate the model.

When training the global model, we follow the approach outlined in Section 8.2, solving
for grid cell labels as a linear function of the random convolutional features using ridge
regression and cross-validation to tune the regularization parameter λ. However, recovered
regression weights are likely to differ across regions of the globe due to heterogeneity in image
quality and in visual signal of task labels or their derivatives. We divide our global sample
into six continental regions before solving each task. The continents (and sample sizes used
for training and testing each continent-specific model) are shown in Figure 8.8.

Modeling heterogeneity using the continents shown in this way leads to meaningful gains
in performance over ignoring continent effects, resulting in R2 values of 0.85, 0.45, 0.62,
and 0.49, for forest cover, elevation, population density, and nighttime lights, respectively
(Figure 8.7). In contrast, a global model that pools all observations across the globe and
solves for a single linear function of random convolutional features generates R2 values of
0.80, 0.26, 0.48, and 0.41, for the same tasks.

Scaling Across Tasks

It has been widely suggested that SIML could be used by resource-constrained governments
to reduce the cost of surveying their citizens [86, 130, 145, 203, 238]. To demonstrate
MOSAIKS’s performance in this theoretical use-case, we simulate a field test with the goal of
recreating results from an existing nationally representative survey. Using the pre-computed
features from the first US experiment above, we generate predictions for 12 pre-selected
questions in the 2015 American Community Survey (ACS) conducted by the US Census
Bureau [278]. We obtain R2 values ranging from 0.06 (% household income spent on rent)
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Figure 8.9: Test-set performance in the US shown for 12 variables from the 2015 American
Community Survey (ACS) conducted by the US Census Bureau [278]. Income per household
(HH) (in purple) is also shown in Figure 8.3 and Table 8.1.

to 0.52 (building age), with an average R2 of 0.34 across 12 tasks (Figure 8.9).
Compared to a baseline of no ground survey, or a costly survey extension, these results

suggest that MOSAIKS predictions could provide useful information to a decision-maker for
almost all tasks at low cost; noting that, in contrast, the ACS costs > $200 million to deploy
annually [279]. However, some variables (e.g. percent household income spent on rent) may
continue to be retrievable only via ground survey.

8.6 Extension: Label Super-Resolution
Many use cases would benefit from SIML predictions at finer resolution than is available in
training data [188, 274]. Here we show that MOSAIKS can estimate the relative contribution
of sub-regions within an image to overall image-level labels, even though only aggregated
image-level labels are used in training (Figure 8.10). Such “label super-resolution” prediction
follows from the functional form of the featurization and linear regression steps in MOSAIKS,
allowing it to be analytically derived for labels that represent nearly linear combinations of
ground-level conditions.

The featurization method in MOSAIKS exploits the fact that many image-level outcomes
of interest are linearly decomposable across sub-image regions. This is done by creating
image-level features that are averages of statistics from all sub-image regions. Because these
features are ultimately used in linear regression, a natural property of this approach is that
weights estimated in this linear regression can be used not only to generate predictions
of outcome variables at the image-scale, but also at the scale of any sub-image region, as
illustrated in Figure 8.11.

Given an image-label pair {Iℓ, ysℓ}, the goal of label super-resolution is to resolve which
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Figure 8.10: Label super-resolution predictions for an example image. Shown here are the
image-level labels (column 1), predicted outcomes from MOSAIKS at increasing levels of
label super-resolution (columns 2-5), and the image from Google Static Maps (column 6).

sub-regions of the image Iℓ contribute to high or low values of ysℓ . Recall that for image Iℓ,
feature vector x(Iℓ) is a K dimensional vector, where each scalar element xk(Iℓ) of x(Iℓ) is
an average across the pixels of the image of the values obtained by convolving sub-regions
of the image with patch Pk. As in Section 8.2, denote by X the full random feature matrix
in RN×K , so that Xℓk denotes the kth element of the feature vector describing image Iℓ.
When we perform a linear regression for task s, the resulting regression weights are a vector
β̂s ∈ RK such that the scalar β̂s

k describes the relative weight of feature k in the image-scale
predictions. The prediction of outcome s using image Iℓ thus decomposes as:

ŷsℓ = Xℓβ̂
s (8.3)

=
K∑

k=1

Xℓk · β̂s
k (8.4)

=
K∑

k=1

(
1

2542

254∑

i=1

254∑

j=1

Ak(Iℓ)[i, j]

)
· β̂s

k (8.5)

=
1

2542

254∑

i=1

254∑

j=1

(
K∑

k=1

β̂s
k · (Ak(Iℓ)[i, j])

)

︸ ︷︷ ︸
super-resolution prediction

(8.6)

where the third line follows from substituting Xℓk according to Eq. (8.2). Therefore, we can



CHAPTER 8. A GENERALIZABLE AND ACCESSIBLE APPROACH TO MACHINE
LEARNING WITH GLOBAL SATELLITE IMAGERY 149

A     Training regression weights and predicting at image scale

average across 
images

=

=

activation maps feature vector
 

=

=

superresolution
predictions

image level
predictionsA(I )

A1(I )

A2(I )

A3(I )

x(I )

y1 = x(I )β1 + ε1

linear regression
for two tasks

prediction

B     Predicting at sub-image (super-resolution) scale

prediction
•β

ˆ

β̂1

β̂2

β̂3

ˆ

β̂3

β1
1

β̂2
1

1

2

2

2

activation maps

use weights 
trained at image

scale 
we could

average across
sub-image predictions 

task 1

task 2

A1(I )

A2(I )

A3(I )

x1(I )

x2(I )

x3(I )

β̂x(I )

y2 = x(I ) β2  +   ε2

image level
predictionsA(I ) A(I )

β̂3

β1
1

β̂2
1

1

β̂1

β̂2

β̂3

2

2

2

x1(I )

x2(I )

x3(I )

x1(I )

x2(I )

x3(I )

Figure 8.11: Illustration of the procedure to construct predictions at image resolution and
label super-resolution. Panel A illustrates the standard MOSAIKS prediction pipeline. Panel
B illustrates how the weights trained using labels and features at image-scale in panel A can
be used to generate predictions at resolutions higher than the images and labeled data,
achieving predictions at label super-resolution. The last column of panel B illustrates the
fact that label super-resolution predictions, when averaged across an image, are identical to
predictions generated from the standard process in panel A.

associate with each pixel indexed by (i, j) a predicted super-resolution value:

ŷsℓ,(i,j) =
K∑

k=1

β̂s
k · (Ak(Iℓ)[i, j]) (8.7)

which is that pixel’s predicted label value, and thus its contribution to the overall predicted
image-level label value ŷℓ for Iℓ. We use a Gaussian filter to smooth these per-pixel predictions
to enforce spatial consistency and reduce variance of the high-resolution predictions, using a
kernel bandwidth of σ = 16 pixels. These smoothed pixel-level predictions can be average-
pooled to larger sub-image scales as shown in Figure 8.10. The procedure to construct label
super-resolution predictions, and a comparison to the procedure to construct image-level
predictions, is illustrated in Figure 8.11.
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Figure 8.12: Evaluation of within-image R2 recovered in the forest cover task.

We numerically assess label super-resolution predictions of MOSAIKS for the forest cover
task, since raw label data are available at much finer resolution than our image labels.
Provided only a single label per image, MOSAIKS recovers substantial within-image signal
when predicting forest cover in 4 to 1,024 sub-labels per label10 (within-image R2 = 0.54-0.32,
Figure 8.12) across a subsample of N = 16, 000 images.

To assess the performance of label super-resolution at a variety of scales, we calculate the
percent of the variance of the raw within-image forest cover labels that can be explained by
the super-resolution label predictions at each scale. For example, to assess the performance of
2×2 label super-resolution predictions, we average predictions from the 254×254 label super-
resolution predictions by quadrants, resulting in four predicted values (twice the original
resolution).11 We perform the same per-quadrant average for the raw fine-resolution forest
cover labels. We demean both the within-image predictions and labels to eliminate across-
image variation, thereby focusing this test on the ability of the predictions to explain residual
within-image variation. We then concatenate these within-image predictions and labels
across the N = 16, 000 sampled images, so that the resulting R2 value reported is the
percent of super-resolution label variance explained by label super-resolution predictions,
across 64, 000 = 16, 000 · 22 label-prediction pairs.

8.7 Conclusions
In this chapter, we develop a new approach to SIML that achieves practical generalization
across tasks while exhibiting performance that is competitive with deep learning models op-

10We test up to w = 32 because the native width of the forest cover labels (∼30m) is just under 1/32 the
width of the original image (∼1km).

11For the analysis, we clip the images and predictions to 224 x 224 pixels so they are evenly divisible by
a 32x super-resolution factor.
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timized for a single task. Crucial to context-driven planet-scale analyses, MOSAIKS requires
orders of magnitude less computation time to solve a new task than CNN-based approaches.
We hope these computational gains, paired with the relative simplicity of using MOSAIKS,
will democratize access to global-scale SIML technology and accelerate its application to
solving pressing global challenges.

While we have shown that in many cases MOSAIKS is a faster and simpler alternative
to existing deep learning methods, there remain contexts in which custom-designed SIML
pipelines will continue to play a key role in research and decision-making. Existing ground-
based surveys will also remain important. We expect MOSAIKS can complement these
efforts, especially in resource constrained settings. For example, MOSAIKS can provide fast
assessments to guide slower SIML systems or extend the range and resolution of traditional
surveys.

As real-world policy actions increasingly depend on SIML predictions, it is crucial to
understand the accuracy, precision and sensitivity of these measurements. The low cost and
high speed of re-training MOSAIKS enables thorough stress tests that can support robust
SIML-based decision systems. Here, we tested the sensitivity of MOSAIKS to model param-
eters, number of training points, and degree of spatial extrapolation, and expect that many
more tests can be developed and implemented to analyze model performance and prediction
accuracies in context. The high performance of RCF, a relatively simple featurization, sug-
gests that developing and benchmarking other unsupervised SIML methods across tasks at
scale may be a rich area for future research.

By distilling SIML to a pipeline with simple and mathematically interpretable compo-
nents, MOSAIKS facilitates development of methodologies for additional SIML use cases
and enhanced performance. For example, the ability of MOSAIKS to achieve label super-
resolution is easily derived analytically (Section 8.6). Furthermore, while we have focused
here on tri-band daytime imagery, we showed that MOSAIKS can seamlessly integrate data
from multiple sensors through simple concatenation, extracting useful information from each
source to maximize performance. We conjecture that integrating new diverse data, from both
satellite and non-satellite sources, may substantially increase the predictive accuracy of MO-
SAIKS for tasks not entirely resolved by daytime imagery alone; such integration using deep
learning models is an active area of research [135].

We hope that MOSAIKS lays the foundation for the future development of an accessible
and democratized system of global information sharing, where, over time, imagery from all
available global sensors is continuously encoded as features and appended to a single table of
data, which is distributed and used planet-wide. Such a unified global system may enhance
our collective ability to observe and understand the world, a necessary condition for tackling
pressing global challenges.
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8.A Data Details
This section first describes the datasets we use to construct our ground truth labels across
all seven of our tasks: forest cover, elevation, population density, nighttime lights, income,
road length, and housing price. We then describe the imagery used in the analysis, and
lastly how label data is assigned to the spatial extent of each sample image.

In evaluating the ability of MOSAIKS to generalize, we are interested in its ability to
recover different types of variables, including: (i) variables that are averages of sub-image
properties, (ii) variables that are not directly observable through daytime imagery but are a
function of visible objects in the image, such as nighttime lights, and (iii) variables that are
an underlying factor that determines what material appears in the image, such as elevation.
Labels may also be a combinations of (i)-(iii), such as housing price or household income.

For each task, we obtain an up-to-date and geographically complete publicly available
datasource to match with the images. Most of these data are based on measurements from
2010 - 2015, though our data on population density draws from sources that date back as
far as 2005 in order to achieve global coverage. Our imagery data, from the Google Static
Maps API [111], was mostly acquired in 2018, though in some cases images may be a few
years older.

Labels

Tasks were chosen to represent outcomes of classes (i)-(iii) above, subject to the condition
that high resolution and up-to-date label data are available across the US. Below we describe
these data sources.

Forest cover. To measure forest cover, we use globally comprehensive raster data from
[123], which is designed to accurately measure forest cover in 2010. This dataset is commonly
used to measure forest cover when ground-based measurements are not available [7, 56].
Forest in these data is defined as vegetation greater than 5m in height, and measurements
of forest cover are given at a raw resolution of roughly 30m × 30m. These estimates of
annual maximum forest cover are derived from a model based on Landsat imagery captured
during the growing season and were derived using different spectral bands than we observe in
our imagery, and using information about how surface reflectance changes over the growing
season, which we did not observe. This gives us confidence that we are indeed learning to
map visual, static, high-resolution imagery to forest cover, rather than simply recovering the
model used in [123].12

12These data were originally accessed at:
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php. They can now be found
from the University of Maryland, Department of Geographical Sciences and USGS at https://glad.umd.
edu/dataset/global-2010-tree-cover-30-m.
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Elevation. We use data on elevation provided by Mapzen, and accessed via the Amazon
Web Services (AWS) Terrain Tile service. These Mapzen terrain tiles provide global elevation
coverage in raster format. The underlying data behind the Mapzen tiles comes from the
Shuttle Radar Topography Mission (SRTM) at NASA’s Jet Propulsion Laboratory (JPL),
in addition to other open data projects.

These data can be accessed through AWS at different zoom levels, which range from 1 to
14 and, along with latitude, determine the resolution of the resulting raster. To align with
the resolution of our satellite imagery, we use zoom level 8, which leads to a raw resolution
of 611.5 meters at the equator.13

Population density. We use data on population density from the Gridded Population of
the World (GPW) dataset [57]. The GPW data estimates population on a global 30 arc-
second (roughly 1 km at the equator) grid using population census tables and geographic
boundaries. It compiles, grids, and temporally extrapolates population data from 13.5 million
administrative units. It draws primarily from the 2010 Population and Housing Censuses,
which collected data between 2005 and 2014. GPW data in the US comes from the 2010
census.14

Nighttime lights. We use luminosity data generated from nighttime satellite imagery,
which is provided by the Earth Observations Group at the National Oceanic and Atmospheric
Administration (NOAA) and the National Geogphysical Data Center (NGDC). The values
we use are Version 1.3 annual composites representing the average radiance captured from
satellite images taken at night by the Visible Infrared Imaging Radiometer Suite (VIIRS).
We use values from 2015, the most recent annual composite available [98].

This composite is created after the Day/Night VIIRS band is filtered to remove the effects
of stray light, lightening, lunar illumination, lights from aurora, fires, boats, and background
light. Cloud cover is removed using the VIIRS Cloud Mask product. These values are
provided across the globe from a latitude of 75N to 65S at a resolution of 15 arc-seconds.
The radiance units are nW cm−2 sr−1 (nanowatts per square centimeter per steradian).

Like forest cover, these labels are themselves derived from satellite imagery. However,
because they capture luminosity at night, while our satellite imagery is taken during the day,
the labels for luminosity and the imagery used to predict luminosity represent independent
data sources. Our ability to predict nighttime lights depends on how well objects visible
during the day are indicative of light emissions at night.15

Income. We use the American Community Survey (ACS) 5-year estimates of median an-
nual household income in 2015. These data are publicly available at the census block group

13We accessed these data via the R function get_aws_terrain from the elevatr package. Code and
documentation can be found here: https://www.github.com/jhollist/elevatr.

14These data can be accessed at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 and
are licensed for use under a Creative Commons Attribution 4.0 International License.

15These data can be accessed at https://eogdata.mines.edu/products/vnl/.
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A B

Figure 8.13: Quality of ground truth road data varies by region. (A) Private roads in
the northern Midwest recorded in the USGS National Transportation Dataset. There is a
noticeable lack of recorded private roads in Indiana and sections of Ohio. (B) Overlaying
recorded roads of all types (shown in white) over a single satellite image (from Google Static
Maps) in Indiana demonstrates that some roads that are easily visible from satellite imagery
are missing in the data that we use to construct labels.

level, of which there are 211,267 in the US, including Puerto Rico. On average, block groups
are around 38 km2, though block groups are smaller in more densely populated areas.16

Note that all estimates in this chapter that are based off of the ACS use the Census
Bureau Data API but are not endorsed or certified by the Census Bureau.

Road length. We use road network data from the United States Geological Survey (USGS)
National Transportation Dataset, which is based on TIGER/Line data provided by US
Census Bureau in 2016. Shapefiles for each state provide road locations and types, including
highways, local neighborhood roads, rural roads, city streets, unpaved dirt trails, ramps,
service drives, and private roads. The variable we predict is road length (in meters), which
is computed as the total length of all types of roads that are recorded in a given grid cell.

The Census Bureau database is created and corrected via a combination of partner sup-
plied data, aerial images, and fieldwork. The spatial accuracy of linear features of roads and
coordinates vary by source materials used. The accuracy also differs by region, causing cases
in which some regions lack recordings of certain road types, the most common one being
private roads and dirt trails. For example, private roads are rarely recorded in Indiana and
some regions in Ohio despite satellite images that suggest they are present (Figure 8.13).17

16These data are accessible using the acs package in R [109], table number B19013.
17The data can be accessed at: https://prd-tnm.s3.amazonaws.com/index.html?prefix=

StagedProducts/Tran/Shape/.
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Housing price. We estimate housing price per square foot using sale price and assessed
square footage values for residential buildings. Data are provided by Zillow through the
Zillow Transaction and Assessment Dataset (ZTRAX). This dataset aggregates transaction
and assessment data across the United States, combining reported values from states and
counties with widely varying regulations and standards. Thus, significant data cleaning is
required. Furthermore, because some states do not require mandatory disclosure of the sale
price, we have limited data for the following states: Idaho, Indiana, Kansas, Mississippi,
Missouri, Montana, New Mexico, North Dakota, South Dakota, Texas, Utah, and Wyoming.
To address data quality issues, we develop a quality assurance and quality control (QA/QC)
approach that is based on approaches employed in previous work [108, 205, 281] but adapted
for our case.

ZTRAX contains data on the majority of buildings in the United States, initially com-
prising 374 million detailed records of transactions across more than 2,750 counties. The
data is organized into two components - transaction data and assessment data. These two
datasets are linked, allowing us to merge the latest sale price of a property to the latest as-
sessment data. To minimize the effect of nation-wide trends in housing price that would be
unobservable from our cross-sectional satellite imagery, we limit our dataset to sales occur-
ring in 2010 or later. Further, we restrict our analysis to buildings coded as “residential" or
“residential income - multi-family” and drop any sale that was coded as an intra-family trans-
fer. To obtain a square footage value, we follow the example in Zillow Research’s GitHub
repository [313] and take the maximum reported square footage for a given improvement,
and then sum over all improvements on a given property.

To reduce the number of potentially miscoded outliers at the bottom end of the distribu-
tion of sale price and property size, we drop any remaining sales that fall under $10,000 USD,
any properties that fall under 100 sq. ft., and any $/sq. ft. values under $10. To address
outliers on the high end of the distribution, we take this restricted sample and further cut
our dataset at the 99th percentile of $/sq. ft. by state. Afterwards, we select the most recent
recorded sale price for each property (divided by the most recent assessed square footage).
We then average across all of the remaining units within each grid cell to comprise our final
dataset of housing price per square foot.

To protect potentially identifiable information, our public data release contains housing
price labels only for grid cells that contain 30 or more sales meeting the aforementioned
criteria. This reduces the size of the dataset from N = 80, 420 to N = 52, 355 and makes
the model performance better than that stated in the main text. For example, the public
dataset will yield a test set R2 of 0.60, rather than 0.52. This could be due to the fact that
the average housing price label we train on is noisier when estimated in a grid cell with few
valid sales prices. It could also be because the average housing price of areas with few recent
sales may be inherently harder to predict via satellite imagery than that of areas with a
greater number of recent sales.
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Figure 8.14: Assignment of grid cell labels from raw data. We calculate labels by spatially
overlaying our grid cells and raw labeled data. We calculate labels as the average of raw
label values that fall within the grid cell, except for roads where we calculate the label as
the sum of road length within the grid cell. Example image from Google Static Maps.

Imagery

We use satellite imagery from Google Static Maps API [111], zoom level 16. This gives
roughly 1km × 1km images which are 640 × 640 pixels across and 3 dimensions deep (red,
green, and blue spectral bands). We coarsen these images to 256 × 256 × 3 prior to fea-
turizing, meaning that our models are trained on images with roughly 4m resolution. These
images can be composites of several satellite images – sources include the Landsat, Sentinel,
SPOT, Pleiades, WorldView and QuickBird satellites.18 Prior to downloading, images were
geo-rectified and pre-processed to remove cloud occlusions.19

Assigning Label Data to Sampled Imagery

To assign labels to each grid cell, we spatially overlay our raw labeled data and our custom
grid. The native format and spatial resolution of the labeled data vary across the tasks
studied, necessitating different aggregation or disaggregation procedures for each task. Here,
we describe the approach taken in each task (Figure 8.14). In these cases, we aggregate
labeled data up to the grid cell level.

The raw forest cover, elevation, population density and nighttime lights data are provided
natively as rasters with higher spatial resolution than our custom grid. For these tasks, we

18In some cases aerial photography is also integrated into images.
19More information is available at: https://developers.google.com/maps/documentation/

maps-static/dev-guide.
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perform aggregation by calculating the mean of all labeled pixels with centroids that fall
within the imagery grid cell. The resulting labels indicate mean forest cover, mean elevation,
mean population density, and mean nighttime lights across the image grid cell.

Our road length data are provided as high-resolution spatial line segments. To aggregate
these data to the image grid cell, we calculate the sum of road length segments within each
image grid cell.

Our housing price data are available as individual house sales. We aggregate these
geocoded prices to the image grid cell by taking the average housing price per square foot
across all sale prices that fall within the extent of the image. The resulting labels indicate
the average housing price per square foot across all observed houses within a grid cell.

Our income data are provided at the block-group level. In some parts of the U.S.,
these block-groups are larger in total area than our image grid cells. However, in other
regions, block-groups are smaller than our image grid cells. To treat both cases consistently,
we aggregate incomes to the grid cell level by taking the weighted average of block-group
incomes, where the weights are the area of intersection between the image grid cell and the
block-group polygons. These weights are normalized to unity for each grid cell. The resulting
labels indicate the area-weighted average median income across the grid cell.

Future users of a production-scale version of MOSAIKS would employ label data of
arbitrary format and resolution. The above approaches provide guidelines for how to match
various forms of label data to the pre-computed image feature grid, but other methods may
be used. In the simplest case, for example, sparse point data could be directly matched to
the nearest grid cell centroid.
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Part IV

Connections, Conclusions, and
Perspectives
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Chapter 9

Discussion

We began this thesis by contrasting the potential for statistical machine learning systems to
help humans improve our world with the evidence that in practice, such systems often fail to
live up to this potential. Motivated to move toward this potential for benefit with machine
learning systems, in Chapter 1 we introduced the themes of intent, impact, and context that
interweave throughout this thesis.

In Part I, we saw that algorithmic systems that are theoretically well motivated can fail
to live up to anticipated performance in the real world, and can exacerbate inequality rather
than relieve it. Contrasting the intents and impacts of machine learning systems led us to
develop a framework in which an intended benefit — for example, social welfare — can be
expressly delineated and optimized alongside multiple objectives.

In Part II, we studied context in general statistical machine learning settings by focusing
on specific structures in input data. We leveraged group structures in datasets to study
the importance of numerical representation to achieving high group- and population-level
accuracies. In a different problem setting, we designed a post-processing method to utilize
structural side information like spatio-temporal correlations that can amplify predictive sig-
nal, but can hurt generalization performance if treated like traditional features. Alongside
these examples of considering data as a useful form of context, in Chapter 6 we discussed
limitations of using data to encode context, underscoring that data should never be the only
form of context in real-world machine learning systems.

In Part III, we anchored the themes of intent and context with applications in machine
learning with remotely sensed data. Making use of precise structures in sensor data, we
designed simple but effective learning algorithms in two different settings. In an adaptive
data acquisition problem, we developed a statistically-aware trajectory planning method to
speed up localization of environmental radioactivity with quadcopter robots. In light of the
potential for combining machine learning and remotely sensed data to confer social benefit
discussed in Chapter 1, our second example focused on simplifying machine learning with
satellite imagery, with the intent to make such technologies accessible to a much broader set
of researchers.

We now conclude by synthesizing the three major parts of this thesis and the connections
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that interweave throughout them. In Section 9.1, we draw connections between chapters
spanning Parts I to III, emphasizing potential for future work at their unions. We conclude
with overarching perspectives in Section 9.2.

9.1 Connections and Conclusions

Interconnections between Intent and Context

The first two parts of this thesis largely separated the focuses of intent and impact (Part I)
from using data as a form of context (Part II). Separating these focuses allowed us to isolate
and frame our scope of inquiry in each chapter. Of course, producing effective data-driven
learning systems will require integrating these themes together. We need both the capability
to delineate and balance specific system objectives and the understanding of how different
input data influence our ability to reach diverse and multifaceted intents.

For example, consider a scenario in which a prediction system is used to recommend
individuals for selection for targeted humanitarian aid [6]. If the program designers aim to
disburse aid so as to improve welfare along multiple dimensions (e.g. education and health),
Chapter 3 details how policies acting on multiple learned scores can be used to strike optimal
balances between these objectives. As we saw in Section 3.3, the range of possible utilities in
both dimensions expands if the predicted scores are more accurate. If the program designers
are willing to spend some of their total budget to collect more data to update and improve
the predicted scores, they will be able to target aid more precisely and efficiently with the
remaining budget, possibly reaching higher utility solutions. The question is then how much
budget to spend on improving the model versus targeting aid with an imperfect model. A
comprehensive answer requires the designers to understand the costs of acquiring different
forms of data and the effects on system performance (broadly construed) that additional
data will confer. The latter of those questions was a fundamental point of study in Part II
of this thesis.

The interconnections between intent and impact span a broad range of exciting research
directions. Like the example in the previous paragraph, future research could integrate con-
straints on downstream uses cases that can help guide system design, including data acqui-
sition and algorithmic improvements. Integrating the intent-driven perspective of Chapter 3
with the focus on representation in Chapter 4 can guide end-to-end design of machine learn-
ing systems that incorporate diverse system objectives, including targeted benefit, privacy,
or participation. Moreover, perhaps such a synthesis can also help describe why existing
systems might not reach these diverse goals. Extending our study of the different charac-
teristics data might take on, as in Chapter 5, with careful considerations of the limitations
of using data as a way to encode context (Chapter 6) and potential harmful impacts of
well intentioned systems (Chapter 2) can guide future work toward nuanced, effective, and
explainable notions of how data and representation reflect one another.
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Intent, Impact, and Context in Remote Sensing and Machine
Learning

Part III of this thesis added application-driven perspectives to situating learning systems
within their broader context, complementing the more generalized problem settings consid-
ered in Parts I and II. In Chapter 7, we studied a physical sensing problem with a clear and
singular intent: use the sensor-equipped quadcopter to locate the environment point emit-
ting the largest amount of radiation, as quickly as possible. Modeling the specific structure
of the onboard omni-directional radiation sensor and its measurements of the environment
guided us to cast the source identification problem as a multi-armed bandit problem with
travel constraints, from which we derived a sample-efficient trajectory planning method. A
key insight was to consider the value of sensing configurations across a global set of possible
configurations. As a result, our algorithm adaptively allocates data acquisition in a princi-
pled manor that does not fall prey to the same myopic phenomena of more local or greedy
trajectory planning approaches.

In Chapter 8, we presented a very different instantiation of intent- and context-aware
design to combining machine learning and satellite imagery. Like in the previous example,
we made use of specific structures of the remotely sensed data to design suitable machine
learning methods within our predictive system. Levering scale and rotation invariances com-
mon to many satellite imagery prediction tasks, we used a simple computer vision algorithm
to obtain an effective unsupervised embedding of imagery. The desire for such simplifications
was motivated by the intent of having this single embedding of the satellite imagery encode
relevant statistical properties useful to multiple possible downstream prediction tasks, where
the prediction step can be achieved with a simple model (in the case of MOSAIKS, linear
regression). The practical effect of these design choices was to share computational cost in
the primary embedding step, and to make global prediction with satellite imagery accessi-
ble for researchers with a broader set of possible backgrounds and computational resources.
Understanding and designing for this potential research-ecoystem level impact required in-
tegrating a broader type of context: the ways in which such a prediction system would be
likely to be used in practice, and by whom.

The application-centric perspectives in Chapters 7 and 8 not only evidence intent- and
context-aware design in practice, but they also show how real-world problems can expose
opportunities to expand general learning frameworks. Our application of the multi-armed
bandits framework in Chapter 7 showed that a statistical framework typically abstracted
from physical problems can confer advantages when adapted for embodied settings. Fur-
thermore, we incorporated characteristics of the physical environment into performance and
regret bounds from which we can ascertain for which physical environments our algorithm
will be most appropriate. In Chapter 8, we delineated the potentially transformative impacts
of a single embedding of satellite imagery to generalize across prediction tasks. This insight
highlights the importance of a growing research focus on unsupervised and self-supervised
methods for satellite imagery (e.g. [15, 146, 189]). The competitiveness of random convo-
lutional features – a relatively simple computer vision algorithm – to fine-tuning with full
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supervision suggests a baseline for such improvements, as well as an algorithmic building
block from which to instantiate them.

Looking forward, it is important to address unique issues of fairness, responsibility, and
ethics of the emerging field intersecting machine learning, remote sensing, and policy. For ex-
ample, sparse or clustered label data may elicit concerns over data representation in learning
settings [38]. Disparately inaccurate or uncertain predictions across geographies can affect
the validity and fairness of downstream policy decisions [167, 304].

Addressing these issues requires a blend of algorithmic innovations and interdisciplinary
viewpoints, drawing on and expanding beyond the themes of intent, impact and context
developed in Parts I to III. Future work bridging these themes could focus on the key
notions of representation, data quality, and fairness with remotely sensed data. Relating to
and expanding beyond the instantiation of these themes in Chapters 2 to 8, an important
area of future work is to address issues of privacy, surveillance, power, and politics that arise
in using machine learning and remotely sensed data for consequential predictions.

9.2 Perspectives
Through the work presented in this thesis, we make a start toward understanding how we
might characterize and design for context, intent, and impact in machine learning systems.
In many ways, it is just a start. In Section 9.1, we outlined opportunities for future research
bridging the core themes of Parts I to III. While such work will be integral to framing statis-
tical learning systems so that they might confer benefit, actually achieving that benefit will
often necessitate taking a broader perspective. We illustrate this point with two challenges
that exemplify the need for interconnecting diverse perspectives if we are to address real
world problems with machine learning.

Our first exemplary challenge is that of reconciling the potential of machine learning for
the environment with the environmental and social impacts of training and deploying large
predictive models. As we saw in Chapters 1, 7 and 8, combining machine learning with
remote sensing can help shed light on hard-to-reach regions of the world, helping humans
make more informed decisions to monitor and address climate and ecological change. But
alongside examples applying machine learning to monitor deforestation [85, 215], biodiversity
changes [277], and climate change [248] come numerous concerns of the environmental toll
of training and deploying large machine learning models [32, 255]. The tension between the
potential for machine learning to promote or impede sustainability goals has been noted by
previous researchers [78], notably in the practice of “green AI” [255].

Navigating the range of possible positive and negative impacts machine learning solutions
might have on our environment will be an interdisciplinary endeavor. It will for example
involve estimating and monitoring policy impacts of the proposed technologies in light of
the environmental costs associated with training and maintaining machine learning models.
Toward such an effort, Schwartz et al. [255] encourage creators of machine learning mod-
els to publish metrics of energy and computation requirements for training and prediction
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alongside the models themselves. They suggest focusing on efficiency of models as a com-
plementary effort to advancing benchmark accuracy metrics, a goal exemplified by our work
in Chapter 8. Simpler and more efficient models have the additional advantage of increasing
accessibility to a wider range of researchers who can use, study, or audit their use in practice
– a current downside of large models [268]. Equity in access to predictive models is especially
pivotal as machine learning systems are monitored and maintained by human oversight and
intervention.

This brings us to a second exemplary challenge: ensuring that data driven strategies
enhance rather than divert resources from addressing underlying social problems. A common
thread underlying Chapters 2, 3 and 6 is that data-driven algorithms encode social context
in intricate and imperfect ways. In the best case, predictive models can still help guide
decisions by providing valuable, if incomplete information. Predictions of poverty levels using
remote sensing and digital trace data can help target aid to the poorest people in a region,
especially valuable in places where traditional censuses are sparse [6, 145]. In using such
machine learning systems, one must contend with the knowledge that “automated decision-
making. . . reframes shared social decisions about who we are and who we want to be as
systems engineering problems,” as scholar Virginia Eubanks writes in her book Automating
inequality: How high-tech tools profile, police, and punish the poor [101].

The dangers of focusing on efficiency above efficacy and short-term metrics above long-
term solutions are many. As we argued in Section 6.2, data exist within social contexts
and structures of power. Prediction models and their outputs are no different, and thus can
reflect or reinforce harmful or unjust social systems [33, 101, 211]. A perhaps more subtle
concern is that assigning resources to deriving machine learning-based solutions can divert
those resources from directly addressing social problems. As Moore [202] puts it, “many
of these problems, like poverty, recidivism, and the distribution of resources, are ones of
institutional failure. Technology-based approaches, when not aimed at the root of problems,
divert attention from the proper recourse: structural change.” Even within a well-motivated
machine learning solution, over-reliance on imperfect proxy predictions has the potential to
disincentivize valuable data collection efforts that would result in more reliable information
in the future.

Virginia Eubanks goes on to explain that “political contests are more than informational;
they are about values, group membership, and balancing conflicting interests” [101]. Situ-
ating technical solutions within political systems thus requires critical thought as to what
information is helpful and how that information can be used [3, 113]. Moreover, understand-
ing the myriad risks and benefits of machine learning systems is not a one-time affair, but
something that can be continuously re-assessed from multiple perspectives.

Addressing these types of broader challenges requires re-contextualizing what aspects of
a machine learning system (Figure 1.1) to include in the design space. Current lines of
inquiry within machine learning research already incorporate certain aspects of context, for
example by addressing human incentives, computational efficiency, and deep integration with
a variety of application spaces. Still, a dominant focus in machine learning research aims
toward improving model performance on benchmark datasets as a measure of progress [233,
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255]. The body of work presented in this thesis suggests that a different sort of progress can
be made by expanding the purview of the machine learning system to incorporate key forms
of context by design.

As echoed throughout this thesis, context is layered. Incorporating these different layers
of context in machine learning systems offers several opportunities for individual researchers
and the field at large. First is an opportunity to leverage data as a formalizable encod-
ing of context, toward answering what exactly data-driven algorithms and analysis can and
cannot provide. This could take shape using tools in statistics, mathematics, and comput-
ing to delineate capabilities and guide-rails of learning systems. A second layer of context
wraps tightly around a particular machine learning system and its scope of application. Here
researchers in machine learning have the opportunity to leverage cross-disciplinary collabo-
rations and partnerships to understand the structural, methodological and ethical elements
of the problem before co-designing a solution. A broader layer of social, environmental, and
political context encompasses more than any one or two disciplines. This layer evolves at
a quicker pulse, as our societies change rapidly in tandem with the technologies that inter-
face with us. It confers the opportunities to listen, learn, and adapt capabilities of machine
systems to the needs of the world around us.
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