
Scalable Supervision for Safe and Efficient Online

Robot Learning

Ashwin Balakrishna

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-77

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-77.html

May 12, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

To my Mom and Dad for their constant support through the many highs and
lows of my time as a PhD student as Berkeley and for giving me the
opportunities that gave me the freedom to pursue my curiosity throughout
my education and life.

Scalable Supervision for Safe and Efficient Online Robot Learning

by

Ashwin Balakrishna

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Ken Goldberg, Chair
Claire Tomlin, Anca Dragan, Chelsea Finn

Spring 2022

Scalable Supervision for Safe and Efficient Online Robot Learning

Copyright 2022
by

Ashwin Balakrishna

1

Abstract

Scalable Supervision for Safe and Efficient Online Robot Learning

by

Ashwin Balakrishna

Doctor of Philosophy in Computer Science

University of California, Berkeley

Ken Goldberg, Chair

Robotics has seen increasing success in automating a wide variety of tasks in structured
settings, such as factories and assembly lines. However, using robots for reliable automation
in less structured, open-world environments remains a critical challenge. Recent advances in
machine learning have played a critical role in the development of agents which can bridge
this gap by exploring the environment online and leveraging collected experiences to modify
their behavior. For these algorithms to be broadly applicable in practice, they must be
both efficient enough to direct exploration towards regions that are relevant for learning new
tasks while being safe and reliable enough to deploy in the physical world. However, this
is exceedingly challenging if these algorithms must discover information about promising
and unpromising behaviors entirely from their own online experience, and are not provided
with any additional supervision indicating promising behaviors to emulate and unpromising
behaviors to avoid.

This dissertation introduces a number of online learning algorithms for learning from demon-
strations, reinforcement learning, and bandit exploration which use scalable sources of super-
vision, both from sparing human queries and offline datasets, to structure online exploration
to facilitate safe and efficient robot learning. I will discuss both theoretical properties of
these algorithms and their evaluation in a number of environments with uncertain dynamics
both in simulation and on robotic manipulation tasks in the physical world. I will end by
talking about opportunities for future work in improving the scalability and applicability of
online learning algorithms for robot learning in practice.

i

To my Mom and Dad for their constant support through the many highs and lows of my
time as a PhD student as Berkeley and for giving me the opportunities that gave me the

freedom to pursue my curiosity throughout my education and life.

ii

Contents

Contents ii

1 Introduction 1
1.1 Efficient Online Imitation Learning . 2
1.2 Reinforcement Learning from Suboptimal Demonstrations 3
1.3 Reinforcement Learning from Negative Demonstrations 3
1.4 Learning Priors for Rapid Bandit-Based Grasp Exploration 4

I Efficient Online Imitation Learning 6

2 LazyDAgger: Reducing Context Switching in Interactive Imitation Learn-
ing 7
2.1 Background and Related Work . 8
2.2 Problem Statement . 10
2.3 Preliminaries: SafeDAgger . 11
2.4 LazyDAgger . 12

2.4.1 Action Discrepancy Prediction . 12
2.4.2 Noise Injection . 13

2.5 Experiments . 14
2.5.1 Simulation Experiments: MuJoCo Benchmarks 14
2.5.2 Fabric Smoothing in Simulation . 17
2.5.3 Physical Fabric Manipulation Experiments 18

2.6 Discussion and Future Work . 19

3 ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive
Imitation Learning 21
3.1 Related Work . 23
3.2 Problem Statement . 24
3.3 ThriftyDAgger . 25

3.3.1 Novelty Estimation . 25
3.3.2 Risk Estimation . 26

iii

3.3.3 Regulating Switches in Control Modes 26
3.3.4 Computing Risk and Novelty Thresholds from Data 27
3.3.5 ThriftyDAgger Overview . 27

3.4 Experiments . 28
3.4.1 Evaluation Metrics . 28
3.4.2 Comparisons . 29
3.4.3 Peg Insertion in Simulation . 29
3.4.4 User Study: Controlling A Fleet of Three Robots in Simulation . . . 30
3.4.5 Physical Experiment: Visuomotor Cable Routing 32

3.5 Discussion and Future Work . 32

4 On-Policy Robot Imitation Learning from a Converging Supervisor 34
4.1 Related Work . 35
4.2 Converging Supervisor Framework and Preliminaries 36

4.2.1 On-Policy Imitation Learning . 36
4.2.2 Converging Supervisor Framework (CSF) 37

4.3 Regret Analysis . 38
4.3.1 Static Regret . 38
4.3.2 Dynamic Regret . 39

4.4 Converging Supervisors for Deep Continuous Control 41
4.5 Experiments . 42

4.5.1 Simulation Experiments . 43
4.5.2 Physical Robot Experiments . 43

4.6 Discussion and Future Work . 44

II Reinforcement Learning from Suboptimal Demonstrations 46

5 ABC-LMPC: Safe Learning MPC for Stochastic Nonlinear Dynamical
Systems with Adjustable Boundary Conditions 47
5.1 Related Work . 48
5.2 Problem Statement . 49
5.3 Preliminaries . 50

5.3.1 Safe Set . 50
5.3.2 Value Function . 51
5.3.3 Transfer to Novel Goal Sets . 52

5.4 Controller Design . 52
5.4.1 Task Driven Optimization . 53
5.4.2 Start State Expansion . 54

5.5 Properties of ABC-LMPC . 55
5.6 Practical Implementation . 56

5.6.1 Sample-Based Safe Set . 56

iv

5.6.2 Start State Expansion Strategy . 57
5.6.3 Goal Set Transfer . 57
5.6.4 ABC-LMPC Optimization Procedure 57

5.7 Experiments . 58
5.7.1 Experimental Domains . 58
5.7.2 Fixed Start and Goal Conditions . 59
5.7.3 Start State Expansion . 59
5.7.4 Goal Set Transfer . 60
5.7.5 Inverted Pendulum Swing-Up Task 62

5.8 Discussion and Future Work . 62

6 SAVED: Safe Deep Model-Based RL for Sparse Cost Robotic Tasks 63
6.1 Related work . 65
6.2 Safety Augmented Value Estimation from Demonstrations (SAVED) 65

6.2.1 Assumptions and Preliminaries . 66
6.2.2 Algorithm Overview . 67
6.2.3 Task Completion Driven Exploration 68
6.2.4 Chance Constraint Enforcement . 70
6.2.5 Algorithm Pseudocode . 70

6.3 Experiments . 70
6.3.1 Baselines . 71
6.3.2 Simulated Navigation . 72
6.3.3 Simulated Robot Experiments . 74
6.3.4 Physical Robot Experiments . 75

6.4 Discussion and Future Work . 76

7 LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of
Sparse Reward Iterative Tasks 77
7.1 Related Work . 78

7.1.1 Safe, Iterative Learning Control . 78
7.1.2 Model Based Reinforcement Learning 79
7.1.3 Reinforcement Learning from Pixels 80

7.2 Problem Statement . 80
7.3 Latent Space Safe Sets (LS3) . 81

7.3.1 Learning a Latent Space for Planning 83
7.3.2 Latent Safe Sets for Model-Based Control 83
7.3.3 Reward and Constraint Estimation 84
7.3.4 Model-Based Planning with LS3 . 84

7.4 Experiments . 85
7.4.1 Comparisons . 86
7.4.2 Evaluation Metrics . 86
7.4.3 Domains . 87

v

7.4.4 Simulation Results . 87
7.4.5 Physical Results . 89

7.5 Discussion and Future Work . 89

8 Monte Carlo Augmented Actor-Critic for Sparse Reward Deep RL from
Suboptimal Demonstrations 90
8.1 Related Work . 91

8.1.1 Reinforcement Learning from Demonstrations 91
8.1.2 Improving Q-Value Estimates . 92

8.2 Problem Statement . 92
8.3 Preliminaries: Actor-Critic Algorithms . 93
8.4 Monte Carlo augmented Actor-Critic . 94

8.4.1 MCAC Algorithm . 94
8.4.2 MCAC Practical Implementation . 95

8.5 Experiments . 96
8.5.1 Experimental Procedure . 97
8.5.2 Domains . 97
8.5.3 Algorithm Comparisons . 100
8.5.4 Results . 101

8.6 Discussion and Future Work . 102

III Reinforcement Learning from Negative Demonstrations 103

9 Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones104
9.1 Related Work . 106
9.2 Problem Statement . 108
9.3 Recovery RL . 109

9.3.1 Preliminaries: Training a Safety Critic 109
9.3.2 Defining a Recovery Set and Policy 109
9.3.3 Offline Pretraining . 111
9.3.4 Practical Implementation . 112

9.4 Experiments . 112
9.5 Discussion and Future Work . 118

10 MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance 119
10.1 Related Work . 120

10.1.1 Safe Reinforcement Learning . 120
10.1.2 Meta Reinforcement Learning . 121

10.2 Preliminaries . 122
10.2.1 Constrained Markov Decision Processes 122
10.2.2 Safety Critics for Safe RL . 122

vi

10.2.3 Recovery RL . 123
10.2.4 Meta-learning . 123

10.3 Problem Statement . 124
10.4 MEta-learning for Safe Adaptation (MESA) 124

10.4.1 Phase 1, Meta-Learning Qπ
risk . 125

10.4.2 Phase 2, Test Time Adaptation . 125
10.4.3 Phase 3, Using Qπ

risk and πrec for Safe RL 125
10.5 Experiments . 125

10.5.1 Data Collection . 129
10.5.2 Results . 130

10.6 Ablations . 130
10.6.1 Test Dataset Size . 131
10.6.2 Test Environment Generalization . 131

10.7 Discussion and Future Work . 131

IV Learning Priors for Rapid Bandit-Based Grasp Exploration133

11 Accelerating Grasp Exploration by Leveraging Learned Priors 134
11.1 Related Work . 136
11.2 Problem Statement . 137

11.2.1 Assumptions . 137
11.2.2 Definitions . 137
11.2.3 Bayesian Bandits . 138
11.2.4 Learning Objective . 138

11.3 Grasp Exploration Method . 138
11.3.1 Thompson Sampling with a Beta-Bernoulli Process 139
11.3.2 Leveraging Neural Network Priors . 139
11.3.3 Prior Mismatch . 140

11.4 Practical Implementation . 141
11.5 Experiments . 142

11.5.1 Setup . 142
11.5.2 Simulation Experiments . 144

11.6 Discussion and Conclusion . 146
11.7 Discussion and Future Work . 146

12 Exploratory Grasping: Asymptotically Optimal Algorithms for Grasping
Challenging Polyhedral Objects 148
12.1 Related Work . 149
12.2 Exploratory Grasping: Problem Statement 150

12.2.1 Exploratory Grasping as an MDP . 151
12.2.2 Assumptions . 152

vii

12.2.3 Learning Objective . 152
12.3 Reinforcement Learning for Exploratory Grasping 153

12.3.1 Analyzing the Exploratory Grasping MDP 153
12.4 Bandits for Online Rapid Grasp Exploration Strategy (BORGES) 154
12.5 Experiments . 157

12.5.1 Simulation Experiments . 157
12.5.2 Initial Physical Experiments . 159

12.6 Future Work . 160

V Conclusion and Future Work 161

13 Conclusion 162
13.1 Opportunities for Future Work . 163

13.1.1 Efficient Online Imitation Learning 163
13.1.2 Reinforcement Learning from Suboptimal Demonstrations 163
13.1.3 Reinforcement Learning from Negative Demonstrations 164
13.1.4 Learning Priors for Rapid Bandit-Based Grasp Exploration 164

13.2 Broader Vision for Robot Learning . 164

Bibliography 166

A LazyDAgger: Reducing Context Switching in Interactive Imitation Learn-
ing 190
A.1 MuJoCo . 190
A.2 LazyDAgger Switching Thresholds . 191
A.3 Fabric Smoothing in Simulation . 192
A.4 Fabric Manipulation with the ABB YuMi . 195

B ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive
Imitation Learning 198
B.1 Algorithm Details . 198

B.1.1 ThriftyDAgger . 198
B.1.2 Behavior Cloning . 199
B.1.3 SafeDAgger . 199
B.1.4 LazyDAgger . 199
B.1.5 HG-DAgger . 201

B.2 Hyperparameter and Implementation Details 201
B.2.1 ThriftyDAgger . 201
B.2.2 Behavior Cloning . 202
B.2.3 SafeDAgger . 202
B.2.4 LazyDAgger . 203

viii

B.2.5 HG-DAgger . 203
B.3 Environment Details and Additional Metrics 203

B.3.1 Peg Insertion in Simulation . 203
B.3.2 Block Stacking in Simulation . 204
B.3.3 Physical Cable Routing . 205

B.4 User Study Details . 207
B.4.1 User Study Interface . 207
B.4.2 NASA TLX Survey Results . 208
B.4.3 Wall Clock Time . 208
B.4.4 Detailed Protocol . 208

C On-Policy Robot Imitation Learning from a Converging Supervisor 210
C.1 Static Regret . 210

C.1.1 Proof of Theorem 4.3.1 . 210
C.1.2 Proof of Corollary 4.3.1 . 212

C.2 Dynamic Regret . 213
C.2.1 Proof of Lemma 4.3.1 . 213
C.2.2 Proof of Corollary 4.3.2 . 215
C.2.3 Predictability of Online Learning Problems 215
C.2.4 Proof of Lemma 4.3.2 . 218
C.2.5 Proof of Theorem 4.3.2 . 219

C.3 Training Details . 219
C.3.1 CSF Learner . 219
C.3.2 PETS . 219
C.3.3 SAC . 220
C.3.4 TD3 . 220
C.3.5 ME-TRPO . 220

C.4 Experimental Details . 220
C.4.1 Simulated Experiments . 220
C.4.2 Physical Experiments . 221

D Safe Learning MPC for Stochastic Nonlinear Dynamical Systems with
Adjustable Boundary Conditions 222
D.1 Proofs of Controller Properties . 222
D.2 Adjustable Boundary Condition LMPC Implementation Details 225

D.2.1 Solving the MPC Problem . 225
D.2.2 Value Function . 225
D.2.3 Start State Expansion . 225

D.3 Experiment Specific Parameters . 226
D.3.1 Pointmass Navigation . 226
D.3.2 7-Link Reacher Arm . 226
D.3.3 Inverted Pendulum . 227

ix

D.4 Controller Domain Expansion Strategy . 227

E SAVED: Safe Deep Model-Based RL for Sparse Cost Robotic Tasks 229
E.1 Additional Experimental Details for SAVED and Baselines 229

E.1.1 SAVED . 229
E.1.2 Behavior Cloning . 230
E.1.3 PETSfD and PETSfD Dense . 230
E.1.4 SACfD . 230
E.1.5 OEFD . 231

E.2 Simulated Experiments Additional Results 231
E.3 Physical Experiments: Additional Details and Experiments 232

E.3.1 Figure-8 . 233
E.3.2 Knot-Tying . 235

E.4 Ablations . 236
E.4.1 SAVED . 236
E.4.2 Model-Free . 239

F LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of
Sparse Reward Iterative Tasks 241
F.1 Algorithm Details . 241

F.1.1 Latent Space Safe Sets (LS3) . 241
F.1.2 Soft Actor-Critic from Demonstrations (SACfD) 243
F.1.3 Soft Actor-Critic from Demonstrations with Learned Recovery Zones

(SACfD+RRL) . 244
F.1.4 Advantage Weighted Actor-Critic (AWAC) 244

F.2 LS3 Implementation Details . 244
F.3 Experimental Domain Details . 245

F.3.1 Navigation . 245
F.3.2 Reacher . 246
F.3.3 Sequential Pushing . 246
F.3.4 Physical Cable Routing . 246

F.4 Additional Results . 247
F.5 Sensitivity Experiments . 247

G Monte Carlo Augmented Actor-Critic for Sparse Reward Deep RL from
Suboptimal Demonstrations 249
G.1 Implementation Details . 249

G.1.1 Behavioral Cloning . 249
G.1.2 Twin Delayed Deep Deterministic Policy Gradients 249
G.1.3 Soft Actor Critic . 249
G.1.4 Overcoming Exploration with Demonstrations 250
G.1.5 Advantage Weighted Actor Critic . 250

x

H Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones251
H.1 Recovery RL Theoretical Motivation and Variants 251

H.1.1 Theoretical Motivation . 251
H.1.2 Safety Value Function . 252
H.1.3 Reachability-based Variant . 252

H.2 Algorithm Details . 252
H.2.1 Recovery RL . 252
H.2.2 Unconstrained . 253
H.2.3 Lagrangian Relaxation (LR) . 253
H.2.4 Risk Sensitive Policy Optimization (RSPO) 253
H.2.5 Safety Q-Functions for Reinforcement Learning (SQRL) 254
H.2.6 Reward Penalty (RP) . 254
H.2.7 Off Policy Reward Constrained Policy Optimization (RCPO) 254

H.3 Additional Experimental Metrics . 254
H.4 Safety Critic Visualizations . 256
H.5 Implementation Details . 256

H.5.1 Network Architectures . 257
H.5.2 Global Training Details . 259
H.5.3 Recovery Policy Training Details . 260

H.6 Environment Specific Algorithm Parameters 261
H.7 Environment Details . 261

H.7.1 Navigation Environments . 262
H.7.2 Manipulation Environments . 262
H.7.3 Image Maze . 263
H.7.4 Physical Experiments . 263
H.7.5 Additional Physical Experiment . 265

I MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance 266
I.1 Algorithm Description . 266
I.2 Hyperparameters for MESA and Comparisons 266
I.3 Dataset Details . 266

J Exploratory Grasping: Asymptotically Optimal Algorithms for Grasping
Challenging Polyhedral Objects 270
J.1 Proofs . 270

J.1.1 Proof of Lemma 12.3.1 . 270
J.1.2 Proof of Theorem 12.3.1 . 271
J.1.3 Proof of Theorem 12.4.1 . 272
J.1.4 Proof of Theorem 12.4.2 . 273

J.2 Experimental Details . 274
J.3 Additional Simulation Experiments . 274
J.4 Sensitivity Experiments . 275

xi

J.4.1 Sensitivity to Number of Grasp Samples 275
J.4.2 Sensitivity to Exploratory Grasping Parameters 276

J.5 Initial Physical Experiments Details . 277

xii

Acknowledgments

My time at Berkeley has felt like a whirlwind of experiences which has helped me develop
significantly as a researcher and a person in general. However, nothing I’ve done at Berkeley
would have been possible without the support of a number of key mentors early on in life
who helped prepare me for a career in research. To my high school physics teacher Mr.
Chuck Williams, thank you for teaching me how to break down complex problems and
for all your philosophical life advice. Thank you for also encouraging me to help deepen
my understanding of ideas by explaining them to others. This has been a technique that
has consistently helped me throughout my academic work, beginning with as a teaching
assistant for your course, but also as a student and a researcher when trying to ensure
my knowledge was thorough and robust. To Manuel Lopez, thank you for giving me the
opportunity to work under you in the Aerospace Computing Lab when I was a clueless high
school student. You gave me my first introduction to open-ended scientific exploration, and
your encouragement, feedback, and advice gave me the knowledge and confidence to explore
research as an undergraduate at Caltech.

As a freshman at Caltech, I was excited about getting involved in research, but still
didn’t have many of the skills needed to contribute meaningfully to most research projects.
After applying for positions in a number of different labs, the only person who offered me
a position was Professor Hyuck Choo, who seemed more interested in my enthusiasm for
research than in my specific skillset. Thank you so much for taking a chance on me and
giving me the freedom to explore a wide range of different projects. Your consistently
thoughtful research feedback was always mixed with a jovial and relaxed attitude which
made me feel consistently welcome, valued, and happy. I deeply appreciate your advice both
on research and life, and you are the example I’ve always striven to emulate when interacting
with my fellow researchers. I would also like to thank Jeong Oen Lee for working closely with
me and mentoring me throughout my time in the Choo lab. You were my first role model
in research, and I am grateful for all the time you spent teaching me both about technical
concepts and how academic research works in general. Both you and Professor Choo made
research both accessible and fun, and were my primary inspirations for embarking on a PhD.

When I first arrived at Berkeley for the EECS PhD visit days, I found the idea of
robotics research exciting, but really didn’t have much prior experience and was still trying
to figure out what sorts of problems I was interested in. However, when I visited Professor
Ken Goldberg’s lab, his infectious enthusiasm for robotics and the friendly and welcoming
students running robot demos got me excited about joining the AUTOLAB. This turned out
to be one of the decisions that made the rest of my PhD both intellectually and personally
rewarding, and I am incredibly grateful to Ken for giving me the opportunity to join the
AUTOLAB despite my limited experience coming in. Ken’s mentorship and advice has
played a significant role in my development as a researcher, and I particularly appreciate
him giving me the freedom to explore a variety of ideas while helping me learn how to shape
these ideas into concrete research contributions through careful analysis of both problem
assumptions and experimental data. Ken’s extremely thorough advice on paper drafts and

xiii

conference talks/videos has also helped me develop my communication skills significantly.
His insights have not only helped advance my research career, but will definitely be a valuable
asset throughout my professional life.

When I first joined the AUTOLAB and was looking for inspiration on research to get
started with, I had the good fortune to work with Mike Danielczuk and Matt Matl, who
were my first collaborators in the AUTOLAB. Thank you for giving me such a great welcome
to the lab – during my first few months at Berkeley, you both not only taught me a ton
about robotics, but also made spending time in lab a super enjoyable experience. From the
daily lunches on the 5th floor of Soda Hall to laughing at random YouTube videos when
we should have been doing experiments, working with you was both extremely educational
and highly entertaining. Matt ended up leaving the AUTOLAB soon after to play a major
role in founding Ambi Robotics, but I’d like to additionally thank Mike for continuing to
be such a great collaborator and friend throughout the rest of my PhD. I’ve always striven
to learn as much as I could from your prowess with robot hardware, clarity of thought, and
amazing ability to rapidly conduct experiments and carefully analyze their results. Working
with you has helped me significantly in developing as a researcher, and your fun-loving spirit
has always made working with you a blast.

After a few months in the AUTOLAB, my research interests started to shift towards
reinforcement and imitation learning, and this led to a number of fun initial discussions
with Brijen Thananjeyan. These discussions ended up leading to the most productive and
enjoyable collaboration during my PhD, and my work with Brijen has formed the backbone
of the work in this dissertation. Thank you for always being around for endless discussions
and brainstorming on random research ideas, however wild and far-fetched, and for working
closely with me on so many research projects. Developing as a researcher along with you
has been so much fun, and our collaboration has been the highlight of my research career.
I’ve always admired your research creativity, especially your ability to come up with ideas
that are both elegant and practical, and have tried to learn from your calm, collected, and
thorough approach to solving problems. I’ve also been very fortunate to get to know you
well beyond our research discussions. From bingeing tennis matches and movies during late
nights in the lab, to getting destroyed by you in tennis in real life, your friendship has
significantly enriched my time at Berkeley.

I have also had the opportunity to work closely with a number of undergraduate re-
searchers and masters students throughout my time at Berkeley. I appreciate your patience
as I learned how best to help advise you, and would like to especially highlight Ryan Hoque,
Albert Wilcox, Michael Luo, Leitan Fu, and Katherine Li for their significant contributions
to the work in this dissertation. I was lucky to have the opportunity to continue to work
with Ryan when he joined the AUTOLAB as a PhD student and quite extensively with Al-
bert throughout his undergraduate work. To Ryan and Albert, I’ve always been impressed
not only with your amazing abilities as researchers, but also with your relaxed and cheerful
attitude towards research and life even during the most stressful of times. I’ve also been
impressed with Albert’s consistently low quality food recommendations and frequent comic
relief. I would like to additionally thank Priya Sundaresan, Jennifer Grannen, Aditya Gana-

xiv

pathi, Vainavi Viswanath, Shivin Devgon, Zaynah Javed, and Satvik Sharma who I also
worked closely with on a number of different projects focused on deformable manipulation,
industrial automation, and reinforcement learning. While these collaborations are not di-
rectly discussed in this dissertation, I am grateful to have had the opportunity to advise,
collaborate with, and learn from all of you. To Priya and Jennifer, you two were the first
students I played a major role in advising; thank you for putting up with my initial incom-
petence as an advisor and for your friendship outside of the lab. I’m now always excited to
hear about all of the awesome things you two are working on during your own PhDs.

There are also a number of others in the AUTOLAB who deserve recognition for making
my research and personal experiences in the lab more enjoyable. To Jeffrey Ichnowski, Daniel
Brown, Ajay Tanwani, Ellen Novoseller, Daniel Seita, and Minho Hwang, thank you for your
advice, paper edits, and all the wisdom you’ve shared during our collaborations. I’d like
to give a special shoutout to Jeff for his hilarious acronyms for algorithm names, the high
quality Trader Joe’s snacks he always brought to lab, and for teaching me so much about
how to give research talks. To Justin Kerr and Alejandro Escontrela, your constant readiness
with a joke and enthusiasm provided me with endless entertainment during the final year
of my PhD, and I’m excited to hear about all of your work in the future. I would also like
to thank all of the other members of the AUTOLAB I didn’t have the opportunity to work
directly with, especially Chung Min Kim, Raven Huang, and Yahav Avigal, for promoting
such a friendly and light-hearted atmosphere. Struggling through research was significantly
more enjoyable when surrounded by others with a broad perspective on life beyond the many
ups and downs typical of life as a researcher.

While my friends and colleagues in the AUTOLAB were central to my PhD experience,
there are a number of others at Berkeley and beyond who also played a significant role in
my research journey. Early on in my PhD, I had a great time working with collaborators
Andrey Kurenkov, Roberto Mart́ın Mart́ın, Animesh Garg, and Silvio Savarase at Stanford
on identifying and extracting various objects from cluttered environments. This collaboration
formed my first exploration into robotics research and taught me a lot about how to be an
effective researcher in the AUTOLAB. I would also like to acknowledge my collaborators
during my internship at Toyota Research Institute (TRI): Rowan McAllister, Blake Wulfe,
Logan Ellis, Jean Mercat, and Adrien Gaidon. Thank you for making my time at TRI so
enjoyable, giving me the opportunity to learn about so much exciting research, and providing
both freedom and guidance as I explored a variety of different ideas in reinforcement learning
and representation learning. Jonathan Lee, Felix Li, Arsh Zahed, Ugo Rosolia, Francesco
Borrelli, Sergey Levine, Chelsea Finn, Anca Dragan, Claire Tomlin, Joey Gonzalez, and my
collaborators at Google, Julian Ibarz and Jie Tan, also deserve significant acknowledgement
for their insights and contributions on a number of projects on safe reinforcement learning
and control. I am especially grateful to Ugo and Joey for their extensive advice and feedback
on a number of different ideas early on in my PhD and to Claire, Anca, and Chelsea for
serving on my qualifying exam and dissertation committees. In addition, I would like to
thank all of the Berkeley EECS and BAIR administrators for their work behind the scenes
in facilitating my experience here, especially Angie Abbatecola, Shirley Salanio, and Jean

xv

Nguyen.
Finally, I must acknowledge my friends and family for their critical role in supporting

me throughout my time at Berkeley. There are a large number of people who have played
a significant role in making my life as a PhD student more enjoyable, but I would like to
especially acknowledge Suraj Nair, Vansh Kumar, and Anshul Ramachandran for all of the
fun times we have shared both before and during my time at Berkeley. I would like to
additionally thank Suraj for being my go-to person to discuss both research ideas and life
ideas and Anshul for referring me to my new job after Berkeley! Last, but certainly not
least, I must thank my parents. Anything I have accomplished in my life is primarily due
to your advice and support. Thank you for encouraging me to dream big and explore my
interests while still helping me maintain perspective on the many other joys of life beyond
academic pursuits.

1

Chapter 1

Introduction

While robots have already seen widespread adoption in structured manufacturing settings
such as factories and assembly lines, their adoption in less structured settings such as house-
holds and city streets remains elusive. In order to bridge this gap, robots must have the
ability to reason about large degrees of variability and uncertainty in their environment. One
recent paradigm for addressing this challenge involves collecting or leveraging existing large
offline datasets of interactive behaviors to learn robotic control policies which can be reli-
ably deployed in the physical world. While these approaches have shown significant success
in recent literature [1, 2, 3, 4, 5, 6, 7], I argue that for robots to be reliably and robustly
deployed in uncertain environments, they must also have the ability to autonomously im-
prove and adjust their control strategies through online exploration. This ability is critical
for a number of reasons. First, there will often be significant domain shift between offline
data sources and data collected in the environment in the robot is deployed, making online
adaptation critical. Second, even in the absence of dynamics shift, the data distribution in
offline datasets may not fully cover the space of behaviors relevant for the robot to learn how
to do some new task it is given to learn. Finally, online learning makes it possible for robots
to continually improve their performance as they execute their policies in the environment.

Developing algorithms to enable robots to effectively learn new tasks through online ex-
ploration in the real world remains an open challenge. Algorithmic paradigms from the
online learning community such as imitation learning, reinforcement learning, and multi-
armed bandits have emerged as popular approaches for learning tasks through online in-
teraction. However, two core challenges which limit application of these ideas to learning
robotic control policies is the difficulty in achieving (1) efficiency and (2) safety during online
exploration. To apply online learning algorithms to robotics, algorithms must allow robots
to learn performant policies with minimal environment interaction due to the significant time
and monetary costs of operating robots in physical environments. Additionally, they must al-
low robots to explore their environments safely, and avoid engaging in behaviors which could
damage themselves, their surroundings, or require excessive human intervention. Achieving
these properties is exceedingly challenging when online learning algorithms are expected to
identify promising and unpromising behaviors entirely from autonomous experience, and are

CHAPTER 1. INTRODUCTION 2

provided no additional supervision indicating which behaviors may be good to emulate and
which behaviors may be wiser to avoid.

This dissertation contributes a number of online learning algorithms which introduce
methods to use scalable sources of supervision to structure online exploration to enable safe
and efficient online robot learning. We explore algorithms which span a range of online
learning paradigms, from online imitation learning, reinforcement learning, and bandit ex-
ploration and show how exploration can be made more efficient and safe without imposing
significant additional supervision burden. We then show how these ideas can be used to
enable safe and efficient robot learning for a number of different manipulation tasks in the
real world such as robot knot tying, cable routing, and grasping.

The core idea in all of the algorithms in this dissertation is leveraging data from either
offline datasets of desired or undesirable behaviors, or sparing human queries, to provide
additional feedback to online robot learning algorithms to guide them towards task relevant
states and away from constraint violating regions. To do this, we first study how sparing
online human feedback can be used to accelerate learning new tasks while limiting the amount
of burden imposed on human supervisors. We then study how offline data can be used to
structure online exploration by either (1) identifying subsets of the environment in which
to restrict exploration or (2) learn priors which bias exploration towards high performing
actions.

1.1 Efficient Online Imitation Learning

We begin by exploring algorithms for learning from demonstrations, or imitation learning,
which has been a very popular and successful approach for training robotic control policies
in practice [8, 3, 9, 10]. Prior approaches for robotic imitation learning have largely focused
on training policies using a set of offline expert demonstrations and then deploying them in
the environment. However, this process can result in poor performance if the robot policy
begins to visit states that differ sufficiently from those in the demonstrations, as there is no
longer any reference behavior to imitate. This distribution shift has been shown to result in
poor performance both in theory and practice [8]. To help bridge this gap, there has been
significant interest in algorithms for online imitation learning, in which the robot has query
access to an expert supervisor, which can take control of the robot or give various forms
of feedback to the robot while the robot is executing its policy. While online access to a
supervisor can significantly improve policy performance [8, 11, 12], it also comes at a cost,
as supervisor queries, especially if the supervisor is a human, are often quite expensive.

In Chapters 2 and 3, we present two algorithms, LazyDAgger and ThriftyDAgger, which
study how to sparingly request human feedback on a robot policy to strike a balance be-
tween achieving good policy performance and minimizing the burden imposed on the human
supervisor to improve both the performance and scalability of online imitation learning algo-
rithms for robotics. Then in Chapter 4, we study how online imitation learning algorithms
can be used even without direct human supervision. Here, we explore how ideas from online

CHAPTER 1. INTRODUCTION 3

imitation learning can be leveraged to iteratively distill model-based policies, which may be
performant and sample efficient, but highly expensive to query, into reactive policies which
can be rapidly evaluated while maintaining high quality performance.

1.2 Reinforcement Learning from Suboptimal

Demonstrations

One key limitation of imitation learning algorithms is their inability to explore new, possibly
higher performing behaviors than those provided by the expert supervisor. In practice,
providing truly optimal demonstrations of a task can be challenging due to factors such as
unintuitive robotic control interfaces or lack of human expertise in a task. To address this
challenge, there has been significant interest in leveraging suboptimal demonstrations, which
may be much more readily available in practice, to accelerate reinforcement learning. This
simultaneously allows the robot to continually improve upon its behavior while giving it
some initial signal about high performing behaviors.

In Chapters 5, 6, and 7 we present a series of three model-based reinforcement learning
algorithms, Adjustable Boundary Condition LMPC (ABC-LMPC), Safety Augmented Value
Estimation from Demonstrations (SAVED), and Latent Space Safe Sets (LS3), which use
suboptimal demonstrations to learn what we call a safe set, which measures the support
of states from which the robot is confident in its ability to complete a task. As the robot
samples more successful trajectories during online reinforcement learning, this safe set is
iteratively expanded to capture the new states in the trajectories. The key idea in these
three algorithms is to use this safe set to restrict exploration to the neighborhood of prior
successful trajectories. This allows for stable and highly efficient learning, even in long
horizon tasks with sparse rewards, as the robot is able to direct its exploration towards
known promising regions in the state space, and does not spend time exploring behaviors
that are very different from those which were previously successful. Then in Chapter 8, we
study model-free reinforcement learning algorithms, and present Monte Carlo augmented
Actor-Critic, a simple modification to the standard Bellman backup used in value-based
reinforcement learning which leads to significantly faster learning from demonstrations.

1.3 Reinforcement Learning from Negative

Demonstrations

One significant challenge with using reinforcement learning algorithms in practical robotic
settings is that learning new tasks requires exploring a large space of possible behaviors, but
in practice there may be certain behaviors or states which are known to be clearly subopti-
mal, dangerous, or generally unsafe/undesirable. Enabling safe exploration in reinforcement
learning is challenging for two primary reasons: (1) to know how to be safe, you need to have

CHAPTER 1. INTRODUCTION 4

some idea of what unsafe behaviors look like, and (2) there is an inherent conflict between
exploring enough to learn some new task while restricting exploration in order to be safe.
This motivates leveraging offline examples of unsafe behaviors to learn about such behaviors
before online exploration, making it possible to learn new tasks without uncontrolled safety
violations during deployment.

In Chapter 9, we present Recovery RL, an algorithm which first leverages a set of offline
data of unsafe behaviors to learn a safety critic, which estimates the probability of constraint
violation given the current state and a proposed action. Then, Recovery RL decouples learn-
ing across two policies: a task policy, which only optimizes a task specific reward function,
and a recovery policy, which pushes the agent away from constraint violating states. The
recovery policy is activated when the estimated probability of constraint violation from the
safety critic exceeds some threshold, resulting in a switching controller that helps strike a
balance between task performance and constraint satisfaction. However, it may typically be
challenging to collect a large set of initial unsafe behaviors in safety critical environments, but
may be comparatively easier to collect such behaviors in other environments with similar dy-
namics (eg. computational simulations or instrumented setups). To this end, in Chapter 10,
we present MEta-learning for Safe Adaptation (MESA), which introduces a meta-learning
approach to utilize the unsafe behaviors from related environments to learn a safety critic
which can be rapidly adapted to a safety critical target environment.

1.4 Learning Priors for Rapid Bandit-Based Grasp

Exploration

Bandit-based exploration algorithms have been one of the most successful classes of online
learning algorithms in practical applications. They have been applied widely in web-based
recommendation systems in online retail systems such as Amazon, entertainment such as
YouTube and Netflix, and social media platforms such as Twitter and Facebook. However,
many of the same challenges which make it difficult to use reinforcement learning algorithms
for robotics make it challenging to use bandits. In the multi-armed bandit setting, the
objective is to identify arms (actions) which correspond to high average reward, but selecting
a given arm does not lead to a transition which changes the internal state of the system.
This makes exploration somewhat less challenging, since there is no need to reason about
long horizon plans or system dynamics. However, when there are sufficiently many actions to
consider, exploration still takes significant time. This is particularly a challenge in robotics,
in which efficient exploration is critical for algorithms to be useful on physical hardware.

We explore applying bandit exploration algorithms to robot grasping, where there is
often a large number of possible actions (grasp candidate) to consider when identifying
performant grasps. To accelerate exploration, we present Thompson Sampling with Learned
Priors (TSLP) and Bandits for Online Rapid Grasp Exploration Strategy (BORGES) in
Chapters 11 and 12 to learn a data-driven prior from general purpose grasping systems,

CHAPTER 1. INTRODUCTION 5

which can give initial signal about which grasps may be promising and which grasps are
clearly suboptimal. This prior can be readily computed from released, pre-trained grasping
models, and interfaced directly with existing multi-armed bandit algorithms. This process
allows these algorithms to rapidly refine this prior, making it feasible to quickly identify high
quality grasps from up to 100 candidate grasps on a physical robot.

6

Part I

Efficient Online Imitation Learning

7

Chapter 2

LazyDAgger: Reducing Context
Switching in Interactive Imitation
Learning

Imitation learning allows a robot to learn from human feedback and examples [13, 14, 15].
In particular, interactive imitation learning (IL) [16, 12, 11], in which a human supervisor
periodically takes control of the robotic system during policy learning, has emerged as a
popular imitation learning method, as interventions are a particularly intuitive form of hu-
man feedback [16]. However, a key challenge in interactive imitation learning is to reduce
the burden that interventions place on the human supervisor [11, 12].

Figure 2.1: LazyDAgger learns to cede control to a supervisor in states in which it estimates
that its actions will significantly deviate from those of the supervisor. LazyDAgger reduces
context switches between supervisor and autonomous control to reduce burden on a human
supervisor working on multiple tasks.

One source of this burden is the cost of context switches between human and robot

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 8

control. Context switches incur significant time cost, as a human must interrupt the task
they are currently performing, acquire control of the robot, and gain sufficient situational
awareness before beginning the intervention. As an illustrative example, consider a robot
performing a task for which an action takes 1 time unit and an intervention requires two
context switches (one at the start and one at the end). We define latency L as the number
of time units associated with a single context switch. For instance, L ≫ 1 for a human
supervisor who will need to pause an ongoing task and walk over to a robot that requires
assistance. If the supervisor takes control 10 times for 2 actions each, she spends 20L + 20
time units helping the robot. In contrast, if the human takes control 2 times for 10 actions
each, she spends only 4L + 20 time units. The latter significantly reduces the burden on
the supervisor. Furthermore, prior work suggests that frequent context switches can make it
difficult for the supervisor to perform other tasks in parallel [17] or gain enough situational
awareness to provide useful interventions [18].

We present LazyDAgger (Figure 2.1), an algorithm which initiates useful interventions
while limiting context switches. The name LazyDAgger is inspired by the concept of lazy
evaluation in programming language theory [19], where expressions are evaluated only when
required to reduce computational burden. As in SafeDAgger [11], LazyDAgger learns a
meta-controller which determines when to context switch based on the estimated discrep-
ancy between the learner and supervisor. However, unlike SafeDAgger, LazyDAgger reduces
context switching by (1) introducing asymmetric switching criteria and (2) injecting noise
into the supervisor control actions to widen the distribution of visited states. One appealing
property of this improved meta-controller is that even after training, LazyDAgger can be
applied at execution time to improve the safety and reliability of autonomous policies with
minimal context switching. We find that across 3 continuous control tasks in simulation,
LazyDAgger achieves task performance on par with DAgger [8] with 88% fewer supervisor
actions than DAgger and 60% fewer context switches than SafeDAgger. In physical fab-
ric manipulation experiments, we observe similar results, and find that at execution time,
LazyDAgger achieves 60% better task performance than SafeDAgger with 60% fewer context
switches.

2.1 Background and Related Work

Challenges in learning efficiency and reward function specification have inspired significant
interest in algorithms that can leverage supervisor demonstrations and feedback for policy
learning.

Learning from Offline Demonstrations: Learning from demonstrations [13, 15,
14] is a popular imitation learning approach, as it requires minimal supervisor burden: the
supervisor provides a batch of offline demonstrations and gives no further input during
policy learning. Many methods use demonstrations directly for policy learning [20, 21, 22,
23], while others use reinforcement learning to train a policy using a reward function inferred
from demonstrations [24, 25, 26, 27, 28]. Recent work has augmented demonstrations with

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 9

additional offline information such as pairwise preferences [29, 30], human gaze [31], and
natural language descriptions [32]. While offline demonstrations are often simple to provide,
the lack of online feedback makes it difficult to address specific bottlenecks in the learning
process or errors in the resulting policy due to covariate shift [8].

Learning from Online Feedback: Many policy learning algorithms’ poor perfor-
mance stems from a lack of online supervisor guidance, motivating active learning methods
such as DAgger, which queries the supervisor for an action in every state that the learner
visits [8]. While DAgger has a number of desirable theoretical properties, labeling every state
is costly in human time and can be a non-intuitive form of human feedback [33]. More gen-
erally, the idea of learning from action advice has been widely explored in imitation learning
algorithms [34, 35, 36, 37]. There has also been significant recent interest in active preference
queries for learning reward functions from pairwise preferences over demonstrations [38, 39,
40, 41, 42, 30]. However, many forms of human advice can be unintuitive, since the learner
may visit states that are significantly far from those the human supervisor would visit, mak-
ing it difficult for humans to judge what correct behavior looks like without interacting with
the environment themselves [16, 43].

Learning from Supervisor Interventions: There has been significant prior work on
algorithms for learning policies from interventions. Xie et al. [44] and Kurenkov et al. [45]
leverage interventions from suboptimal supervisors to accelerate policy learning, but assume
that the supervisors are algorithmic and thus can be queried cheaply. Thananjeyan* et al.
[46], Nolan Wagener [47], and Saunders et al. [48] also leverage interventions from algorithmic
policies, but for constraint satisfaction during learning. Kelly et al. [12], Spencer et al. [16],
Wang et al. [49], Kahn, Abbeel, and Levine [50], Mandlekar et al. [51], and Amir et al. [52]
instead consider learning from human supervisors and present learning algorithms which
utilize the timing and nature of human interventions to update the learned policy. By giving
the human control for multiple timesteps in a row, these algorithms show improvements
over methods that only hand over control on a state-by-state basis [53]. However, the
above algorithms assume that the human is continuously monitoring the system to determine
when to intervene, which may not be practical in large-scale systems or continuous learning
settings [54, 55, 17, 56]. Such algorithms also assume that the human knows when to
cede control to the robot, which requires guessing how the robot will behave in the future.
Zhang and Cho [11] and Menda, Driggs-Campbell, and Kochenderfer [57] present imitation
learning algorithms SafeDAgger and EnsembleDAgger, respectively, to address these issues
by learning to request interventions from a supervisor based on measures such as state novelty
or estimated discrepancy between the learner and supervisor actions. These methods can still
be sample inefficient, and, as we discuss later, often result in significant context switching.

By contrast, LazyDAgger encourages interventions that are both easier to provide and
more informative. To do this, LazyDAgger prioritizes (1) sustained interventions, which allow
the supervisor to act over a small number of contiguous sequences of states rather than a
large number of disconnected intervals, and (2) interventions which demonstrate supervisor
actions in novel states to increase robustness to covariate shift in the learned policy.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 10

2.2 Problem Statement

We consider a setting in which a human supervisor is training a robot to reliably perform a
task. The robot may query the human for assistance, upon which the supervisor takes control
and teleoperates the robot until the system determines that it no longer needs assistance.
We assume that the robot and human policy have the same action space, and that it is
possible to pause task execution while waiting to transfer control. We formalize these ideas
in the context of prior imitation learning literature.

We model the environment as a discrete-time Markov decision process (MDP) M with
states s ∈ S, actions a ∈ A, and time horizon T [58]. The robot does not have access to the
reward function or transition dynamics of M but can cede control to a human supervisor,
who executes some deterministic policy πH : S → A. We refer to times when the robot is
in control as autonomous mode and those in which the supervisor is in control as supervisor
mode. We minimize a surrogate loss function J(πR) to encourage the robot policy πR : S → A
to match that of the supervisor (πH):

J(πR) =
T∑
t=1

Est∼dπRt [L(πR(st), πH(st))] , (2.1)

where L(πR(s), πH(s)) is an action discrepancy measure between πR(s) and πH(s) (e.g., the
squared loss or 0-1 loss), and dπRt is the marginal state distribution at timestep t induced by
executing πR in MDPM.

In interactive IL we require a meta-controller π that determines whether to query the
robot policy πR or to query for an intervention from the human supervisor policy πH ; im-
portantly, π consists of both (1) the high-level controller which decides whether to switch
between πR and πH and (2) the low-level robot policy πR. A key objective in interactive IL
is to minimize some notion of supervisor burden. To this end, let mI(st; π) be an indicator
which records whether a context switch between autonomous (πR) and supervisor (πH) modes
occurs at state st (either direction). Then, we define C(π), the expected number of context
switches in an episode under policy π, as follows: C(π) =

∑T
t=1 Est∼dπt [mI(st; π)], where d

π
t

is the marginal state distribution at timestep t induced by executing the meta-controller π
in MDP M. Similarly, let mH(st; π) indicate whether the system is in supervisor mode at
state st. We then define D(π), the expected number of supervisor actions in an episode for
the policy π, as follows: D(π) =

∑T
t=1 Est∼dπt [mH(st; π)].

We define supervisor burden B(π) as the expected time cost imposed on the human
supervisor. This can be expressed as the sum of the expected total number of time units spent
in context switching and the expected total number of time units in which the supervisor is
actually engaged in performing interventions:

B(π) = L · C(π) +D(π), (2.2)

where L is context switch latency (Section 2) in time units, and each time unit is the time it
takes for the supervisor to execute a single action. The learning objective is to find a policy

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 11

π that matches supervisor performance, πH , while limiting supervisor burden to lie within a
threshold Γb, set by the supervisor to an acceptable tolerance for a given task. To formalize
this problem, we propose the following objective:

π = argmin
π′∈Π

{J(π′
R) | B(π′) ≤ Γb}, (2.3)

where Π is the space of all meta-controllers, and π′
R is the low-level robot policy associated

with meta-controller π′.

2.3 Preliminaries: SafeDAgger

We consider interactive IL in the context of the objective introduced in Equation (2.3): to
maximize task reward while limiting supervisor burden. To do this, LazyDAgger builds
on SafeDAgger [11], a state-of-the-art algorithm for interactive IL. SafeDAgger selects be-
tween autonomous mode and supervisor mode by training a binary action discrepancy clas-
sifier f to discriminate between “safe” states which have an action discrepancy below a
threshold βH (i.e., states with L(πR(s), πH(s)) < βH) and “unsafe” states (i.e. states with
L(πR(s), πH(s)) ≥ βH). The classifier f is a neural network with a sigmoid output layer (i.e.,
f(s) ∈ [0, 1]) that is trained to minimize binary cross-entropy (BCE) loss on the datapoints
(st, πH(st)) sampled from a dataset D of trajectories collected from πH . This is written as
follows:

LS(πR(st), πH(st), f) = −f ∗(πR(st), πH(st)) log f(st)

−(1− f ∗(πR(st), πH(st))) log(1− f(st)),
(2.4)

where the training labels are given by f ∗(πR(st), πH(st)) = 1 {L(πR(st), πH(st)) ≥ βH}, and
1 denotes the indicator function. Thus, LS(πR(st), πH(st), f) penalizes incorrectly classifying
a “safe” state as “unsafe” and vice versa.

SafeDAgger executes the meta-policy π which selects between πR and πH as follows:

π(st) =

{
πR(st) if f(st) < 0.5

πH(st) otherwise,
(2.5)

where f(st) < 0.5 corresponds to a prediction that L(πR(st), πH(st)) < βH , i.e., that st is
“safe.” Intuitively, SafeDAgger only solicits supervisor actions when f predicts that the
action discrepancy between πR and πH exceeds the safety threshold βH . Thus, SafeDAgger
provides a mechanism for querying the supervisor for interventions only when necessary. In
LazyDAgger, we utilize this same mechanism to query for interventions but enforce new
properties once we enter these interventions to lengthen them and increase the diversity of
states observed during the interventions.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 12

2.4 LazyDAgger

We summarize LazyDAgger in Algorithm 1. In the initial phase (Lines 1-3), we train
πR and safety classifier f on offline datasets collected from the supervisor policy πH . In
the interactive learning phase (Lines 4-19), we evaluate and update the robot policy for N
epochs, ceding control to the supervisor when the robot predicts a high action discrepancy.

2.4.1 Action Discrepancy Prediction

SafeDAgger uses the classifier f to select between πR and πH (Equation (2.5)). However,
in practice, this often leads to frequent context switching (Figure 2.3). To mitigate this, we
make two observations. First, we can leverage that in supervisor mode, we directly observe
the supervisor’s actions. Thus, there is no need to use f , which may have approximation
errors, to determine whether to remain in supervisor mode; instead, we can compute the
ground-truth action discrepancy L(πR(st), πH(st)) exactly for any state st visited in super-
visor mode by comparing the supplied supervisor action πH(st) with the action proposed
by the robot policy πR(st). In contrast, SafeDAgger uses f to determine when to switch
modes both in autonomous and supervisor mode, which can lead to very short interventions
when f prematurely predicts that the agent can match the supervisor’s actions. Second, to
ensure the robot has returned to the supervisor’s distribution, the robot should only switch
back to autonomous mode when the action discrepancy falls below a threshold βR, where
βR < βH . As illustrated in Figure 2.2, LazyDAgger’s asymmetric switching criteria create
a hysteresis band, as is often utilized in control theory [59]. Motivated by Eq. (2.3), we

Figure 2.2: LazyDAgger Switching Strategy: SafeDAgger switches between supervisor
and autonomous mode if the predicted action discrepancy is above threshold βH . In contrast,
LazyDAgger uses asymmetric switching criteria and switches to autonomous mode based on
ground truth action discrepancy. The gap between βR and βH defines a hysteresis band [59].

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 13

Figure 2.3: MuJoCo Simulation Results: We study task performance (A), ablations (B),
online supervisor burden (C), and total bidirectional context switches (D) for LazyDAgger
and baselines over 3 random seeds. For Columns (A)-(D), the x-axis for all plots shows the
number of epochs over the training dataset, while the y-axes indicate normalized reward
(A, B), counts of supervisor actions (C, log scale), and context switches (D) with shading
for 1 standard deviation. We find that LazyDAgger outperforms all baselines and ablations,
indicating that encouraging lengthy, noisy interventions improves performance. Additionally,
LazyDAgger uses far fewer context switches than other baselines while requesting far fewer
supervisor actions than DAgger.

adjust βH to reduce context switches C(π) and adjust βR as a function of βH to increase
intervention length. We hypothesize that redistributing the supervisor actions into fewer
but longer sequences in this fashion both reduces burden on the supervisor and improves the
quality of the online feedback for the robot. Details on setting these hyperparameter values
in practice, the settings used in our experiments, and a hyperparameter sensitivity analysis
are provided in the Appendix.

2.4.2 Noise Injection

If the safety classifier is querying for interventions at state st, then the robot either does not
have much experience in the neighborhood of st or has trouble matching the demonstrations
at st. This motivates exploring novel states near st so that the robot can receive maximal
feedback on the correct behavior in areas of the state space where it predicts a large action
discrepancy from the supervisor. Inspired by prior work that has identified noise injection as

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 14

Algorithm 1 The Student-Teacher Framework

Require: Collect D,DS offline with supervisor policy πH
1: πR ← argminπR E(st,πH(st))∼D [L(πR(st), πH(st))] {Eq. (2.1)}
2: f ← argminf E(st,πH(st))∼D∪DS

[LS(πR(st), πH(st), f)] {Eq. (2.4)}
3: for i ∈ {1, . . . N} do
4: Initialize s0, Mode ← Autonomous
5: for t ∈ {1, . . . T} do
6: at ∼ πR(st)
7: if Mode = Supervisor or f(st) ≥ 0.5 then
8: aHt = πH(st)
9: D ← D ∪ {(st, aHt)}
10: Execute ãHt ∼ N (aHt , σ

2I)
11: if L(at, aHt) < βR then
12: Mode ← Autonomous
13: else
14: Mode ← Supervisor
15: end if
16: else
17: Execute at
18: end if
19: end for
20: πR ← argminπR E(st,πH(st))∼D [L(πR(st), πH(st))]
21: f ← argminf E(st,πH(st))∼D∪DS

[LS(πR(st), πH(st), f)]
22: end for

a useful tool for improving the performance of imitation learning algorithms (e.g. Laskey et
al. [33] and Brown, Goo, and Niekum [27]), we diversify the set of states visited in supervisor
mode by injecting isotropic Gaussian noise into the supervisor’s actions, where the variance
σ2 is a scalar hyperparameter (Line 10 in Algorithm 1).

2.5 Experiments

We study whether LazyDAgger can (1) reduce supervisor burden while (2) achieving similar
or superior task performance compared to prior algorithms. Implementation details are
provided in the supplementary material. In all experiments, L measures Euclidean distance.

2.5.1 Simulation Experiments: MuJoCo Benchmarks

Environments: We evaluate LazyDAgger and baselines on 3 continuous control environ-
ments from MuJoCo [61], a standard simulator for evaluating imitation and reinforcement

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 15

Figure 2.4: Fabric Smoothing Simulation Results: We study task performance mea-
sured by final fabric coverage (A), total supervisor actions (B), and total context switches
(C) for LazyDAgger and baselines in the Gym-Cloth environment from [60]. The hori-
zontal dotted line shows the success threshold for fabric smoothing. LazyDAgger achieves
higher final coverage than Behavior Cloning and SafeDAgger with fewer context switches
than SafeDAgger but more supervisor actions. At execution time, we again observe that
LazyDAgger achieves similar coverage as SafeDAgger but with fewer context switches.

learning algorithms. In particular, we evaluate on HalfCheetah-v2, Walker2D-v2 and Ant-v2.
Metrics: For LazyDAgger and all baselines, we report learning curves which indicate

how quickly they can make task progress in addition to metrics regarding the burden imposed
on the supervisor. To study supervisor burden, we report the number of supervisor actions,
the number of context switches, and the total supervisor burden (as defined in Eq. (2.2)).
Additionally, we define L∗ ≥ 0 to be the latency value such that for all L > L∗, LazyDAgger
has a lower supervisor burden than SafeDAgger. We report this L∗ value, which we refer to
as the cutoff latency, for all experiments to precisely study the types of domains in which
LazyDAgger is most applicable.

Baselines: We compare LazyDAgger to Behavior Cloning [23], DAgger [8], and SafeDAg-
ger [11] in terms of the total supervisor burden and task performance. The Behavior Cloning
and DAgger comparisons evaluate the utility of human interventions, while the comparison
to SafeDAgger, another interactive IL algorithm, evaluates the impact of soliciting fewer but
longer interventions.

Experimental Setup: For all MuJoCo environments, we use a reinforcement learn-
ing agent trained with TD3 [62] as an algorithmic supervisor. We begin all LazyDAgger,
SafeDAgger, and DAgger experiments by pre-training the robot policy with Behavior Cloning
on 4,000 state-action pairs for 5 epochs, and similarly report results for Behavior Cloning
after the 5th epoch. To ensure a fair comparison, Behavior Cloning uses additional offline
data equal to the average amount of online data seen by LazyDAgger during training. All
results are averaged over 3 random seeds.

Results: In Figure 2.3, we study the performance of LazyDAgger and baselines. After
every epoch of training, we run the policy for 10 test rollouts where interventions are not

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 16

allowed and report the task reward on these rollouts in Figure 2.3. Results suggest that
LazyDAgger is able to match or outperform all baselines in terms of task performance across
all simulation environments (Figure 2.3A). Additionally, LazyDAgger requires far fewer con-
text switches compared to SafeDAgger (Figure 2.3D), while requesting a similar number of
supervisor actions across domains (Figure 2.3C): we observe a 79%, 56%, and 46% reduc-
tion in context switches on the HalfCheetah, Walker2D, and Ant environments respectively.
LazyDAgger and SafeDAgger both use an order of magnitude fewer supervisor actions than
DAgger. While SafeDAgger requests much fewer supervisor actions than LazyDAgger in
the Ant environment, this limited amount of supervision is insufficient to match the task
performance of LazyDAgger or any of the baselines, suggesting that SafeDAgger may be
terminating interventions prematurely. We study the total supervisor burden of SafeDAgger
and LazyDAgger as defined in Equation (2.2) and find that in HalfCheetah, Walker2D, and
Ant, the cutoff latencies L∗ are 0.0, 4.3, and 7.6 respectively, i.e. LazyDAgger achieves lower
supervisor burden in the HalfCheetah domain for any L as well as lower burden in Walker2D
and Ant for L > 4.3 and L > 7.6 respectively. The results suggest that LazyDAgger can
reduce total supervisor burden compared to SafeDAgger even for modest latency values, but
that SafeDAgger may be a better option for settings with extremely low latency.

Ablations: We study 2 key ablations for LazyDAgger in simulation: (1) returning to
autonomous mode with f(·) rather than using the ground truth discrepancy (LazyDAgger
(-Switch to Auto) in Figure 2.3), and (2) removal of noise injection (LazyDAgger (-Noise)).
LazyDAgger outperforms both ablations on all tasks, with the exception of ablation 1 on
Walker2D, which performed similarly well. We also observe that LazyDAgger consistently
requests more supervisor actions than either ablation. This aligns with the intuition that
both using the ground truth action discrepancy to switch back to autonomous mode and
injecting noise result in longer but more useful interventions that improve performance.

Algorithm Task Successes Task Progress Context Switches Supervisor Actions Robot Actions Failure Modes
(1) (2) (3) A B C D

Behavior Cloning 0/10 6/10 0/10 0/10 N/A N/A 119 2 1 7 0
SD-Execution 2/10 6/10 4/10 2/10 53 34 108 5 0 0 3
LD-Execution 8/10 10/10 10/10 8/10 21 43 47 0 0 0 2

Table 2.1: Physical Fabric Manipulation Experiments: We evaluate LazyDAgger-
Execution and baselines on a physical 3-stage fabric manipulation task and report the success
rate and supervisor burden in terms of total supervisor actions and bidirectional context
switches (summed across all 10 trials). Task Progress indicates how many trials completed
each of the 3 stages: Smoothing, Aligning, and Folding. LazyDAgger-Execution achieves
more successes with fewer context switches (L∗ = 0.28). We observe the following failure
modes (Table 2.1): (A) action limit hit (> 15 total actions), (B) fabric is more than 50%
out of bounds, (C) incorrect predicted pick point, and (D) the policy failed to request an
intervention despite high ground truth action discrepancy.

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 17

Figure 2.5: Physical Fabric Manipulation Task: Left: We evaluate on a 3-stage
fabric manipulation task consisting of smoothing a crumpled fabric, aligning the fabric so all
corners are visible in the observations, and performing a triangular fold. Right: Rollouts
of the fabric manipulation task, where each frame is a 100 × 100 × 3 overhead image.
Human supervisor actions are denoted in red while autonomous robot actions are in green.
Rollouts are shaded to indicate task progress: blue for smoothing, red for alignment, and
green for folding. SafeDAgger ends human intervention prematurely, resulting in poor task
performance and more context switches, while LazyDAgger switches back to robot control
only when confident in task completion.

2.5.2 Fabric Smoothing in Simulation

Environment: We evaluate LazyDAgger on the fabric smoothing task from [60] (shown
in Figure 2.4) using the simulation environment from [60]. The task requires smoothing an
initially crumpled fabric and is challenging due to the infinite-dimensional state space and
complex dynamics, motivating learning from human feedback. As in prior work [60], we
utilize top-down 100 × 100 × 3 RGB image observations of the workspace and use actions
which consist of a 2D pick point and a 2D pull vector. See [60] for further details on the
fabric simulator.

Experimental Setup: We train a fabric smoothing policy in simulation using DAgger
under supervision from an analytic corner-pulling policy that leverages the simulator’s state
to identify fabric corners, iterate through them, and pull them towards the corners of the
workspace [60]. We transfer the resulting policy for a 16×16 grid of fabric into a new sim-
ulation environment with altered fabric dynamics (i.e. lower spring constant, altered fabric
colors, and a higher-fidelity 25×25 discretization) and evaluate LazyDAgger and baselines
on how rapidly they can adapt the initial policy to the new domain. As in [60], we terminate

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 18

rollouts when we exceed 10 time steps, 92% coverage, or have moved the fabric more than
20% out of bounds. We evaluate performance based on a coverage metric, which measures
the percentage of the background plane that the fabric covers (fully smooth corresponds to
a coverage of 100).

Results: We report results for the fabric smoothing simulation experiments in Fig-
ure 2.4. Figure 2.4 (A) shows the performance of the SafeDAgger and LazyDAgger policies
during learning. To generate this plot we periodically evaluated each policy on test roll-
outs without interventions. Figure 2.4 (B) and (C) show the number of supervisor actions
and context switches required during learning; LazyDAgger performs fewer context switches
than SafeDAgger but requires more supervisor actions as the interventions are longer. Re-
sults suggest that the cutoff latency (as defined in Section 2.5.1) is L∗ = 1.5 for fabric
smoothing. Despite fewer context switches, LazyDAgger achieves comparable performance
to SafeDAgger, suggesting that LazyDAgger can learn complex, high-dimensional robotic
control policies while reducing the number of hand-offs to a supervisor. We also evaluate
LazyDAgger-Execution and SafeDAgger-Execution, in which interventions are allowed but
the policy is no longer updated (see Section 2.5.3). We see that in this case, LazyDAgger
achieves similar final coverage as SafeDAgger with significantly fewer context switches.

2.5.3 Physical Fabric Manipulation Experiments

Environment: In physical experiments, we evaluate on a multi-stage fabric manipulation
task with an ABB YuMi robot and a human supervisor (Figure 2.5). Starting from a
crumpled initial fabric state, the task consists of 3 stages: (1) fully smooth the fabric,
(2) align the fabric corners with a tight crop of the workspace, and (3) fold the fabric
into a triangular fold. Stage (2) in particular requires high precision, motivating human
interventions. As in the fabric simulation experiments, we use top-down 100× 100× 3 RGB
image observations of the workspace and have 4D actions consisting of a pick point and
pull vector. The actions are converted to workspace coordinates with a standard calibration
procedure and analytically mapped to the nearest point on the fabric. Human supervisor
actions are provided through a point-and-click interface for specifying pick-and-place actions.
See the supplement for further details.

Experimental Setup: Here we study how interventions can be leveraged to improve
the final task performance even at execution time, in which policies are no longer being
updated. We collect 20 offline task demonstrations and train an initial policy with behavior
cloning. To prevent overfitting to a small amount of real data, we use standard data augmen-
tation techniques such as rotating, scaling, changing brightness, and adding noise to create
10 times as many training examples. We then evaluate the behavior cloning agent (Behavior
Cloning) and agents which use the SafeDAgger and LazyDAgger intervention criteria but
do not update the policy with new experience or inject noise (SafeDAgger-Execution and
LazyDAgger-Execution respectively). We terminate rollouts if the fabric has successfully
reached the goal state of the final stage (i.e. forms a perfect or near-perfect dark brown
right triangle as in Hoque et al. [63]; see Figure 2.5), more than 50% of the fabric mask

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 19

is out of view in the current observation, the predicted pick point misses the fabric mask
by approximately 50% of the plane or more, or 15 total actions have been executed (either
autonomous or supervisor).

Results: We perform 10 physical trials of each technique. In Table 2.1, we report
both the overall task success rate and success rates for each of the three stages of the task:
(1) Smoothing, (2) Alignment, and (3) Folding. We also report the total number of con-
text switches, supervisor actions, and autonomous robot actions summed across all 10 trials
for each algorithm (Behavior Cloning, SafeDAgger-Execution, LazyDAgger-Execution). In
Figure 2.5 we provide representative rollouts for each algorithm. Results suggest that Behav-
ior Cloning is insufficient for successfully completing the alignment stage with the required
level of precision. SafeDAgger-Execution does not improve the task success rate signifi-
cantly due to its inability to collect interventions long enough to navigate bottleneck regions
in the task (Figure 2.5). LazyDAgger-Execution, however, achieves a much higher suc-
cess rate than SafeDAgger-Execution and Behavior Cloning with far fewer context switches
than SafeDAgger-Execution: LazyDAgger-Execution requests 2.1 context switches on aver-
age per trial (i.e. 1.05 interventions) as opposed to 5.3 switches (i.e. 2.65 interventions).
LazyDAgger-Execution trials also make far more task progress than the baselines, as all 10
trials reach the folding stage. LazyDAgger-Execution does request more supervisor actions
than SafeDAgger-Execution, as in the simulation environments. LazyDAgger-Execution also
requests more supervisor actions relative to the total amount of actions due to the more con-
servative switching criteria and the fact that successful episodes are shorter than unsuccessful
episodes on average. Nevertheless, results suggest that for this task, LazyDAgger-Execution
reduces supervisor burden for any L > L∗ = 0.28, a very low cutoff latency that includes all
settings in which a context switch is at least as time-consuming as an individual action (i.e.
L ≥ 1).

In experiments, we find that SafeDAgger-Execution’s short interventions lead to many
instances of Failure Mode A (see Table 2.1), as the policy is making task progress, but not
quickly enough to perform the task. We observe that Failure Mode C is often due to the fabric
reaching a highly irregular configuration that is not within the training data distribution,
making it difficult for the robot policy to make progress. We find that SafeDAgger and
LazyDAgger experience Failure Mode D at a similar rate as they use the same criteria
to solicit interventions (but different termination criteria). However, we find that all of
LazyDAgger’s failures are due to Failure Mode D, while SafeDAgger also fails in Mode A
due to premature termination of interventions.

2.6 Discussion and Future Work

We propose context switching between robot and human control as a metric for supervisor
burden in interactive imitation learning and present LazyDAgger, an algorithm which can
be used to efficiently learn tasks while reducing this switching. We evaluate LazyDAgger
on 3 continuous control benchmark environments in MuJoCo, a fabric smoothing environ-

CHAPTER 2. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 20

ment in simulation, and a fabric manipulation task with an ABB YuMi robot and find that
LazyDAgger is able to improve task performance while reducing context switching between
the learner and robot by up to 79% over SafeDAgger. In subsequent work, we investigate
more intervention criteria and apply robot-gated interventions to controlling a fleet of robots,
where context switching can negatively impact task throughput.

21

Chapter 3

ThriftyDAgger: Budget-Aware
Novelty and Risk Gating for
Interactive Imitation Learning

Imitation learning (IL) [13, 10, 15] has seen success in a variety of robotic tasks ranging
from autonomous driving [20, 64, 65] to robotic manipulation [66, 67, 68, 69, 70]. In its
simplest form, the human provides an offline set of task demonstrations to the robot, which
the robot uses to match human behavior. However, this offline approach can lead to low task
performance due to a mismatch between the state distribution encountered in the demon-
strations and that visited by the robot [8, 33], resulting in brittle policies that cannot be
effectively deployed in real-world applications [71]. Interactive imitation learning, in which
the robot periodically cedes control to a human supervisor for corrective interventions, has
emerged as a promising technique to address these challenges [12, 16, 37, 72]. However,
while interventions make it possible to learn robust policies, these interventions require sig-
nificant human time. Thus, the central challenge in interactive IL algorithms is to control
the timing and length of interventions to balance task performance with the burden imposed
on the human supervisor [11, 72]. Achieving this balance is even more critical if the human
supervisor must oversee multiple robots at once [54, 73, 17], for instance supervising a fleet
of self-driving taxis [65] or robots in a warehouse [74]. Since even relatively reliable robot
policies inevitably encounter new situations that must fall back on human expertise, this
problem is immediately relevant to contemporary companies such as Waymo and Plus One
Robotics.

One way to determine when to solicit interventions is to allow the human supervisor to
decide when to provide the corrective interventions. However, these approaches—termed
“human-gated” interactive IL algorithms [12, 16, 51]—require the human supervisor to con-
tinuously monitor the robot to determine when to intervene. This imposes significant burden
on the supervisor and cannot effectively scale to settings in which a small number of humans
supervise a large number of robots. To address this challenge, there has been recent inter-
est in approaches that enable the robot to actively query humans for interventions, called

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 22

Figure 3.1: ThriftyDAgger: Given a desired context switching rate αH , ThriftyDAgger
transfers control to a human supervisor if the current state st is (1) sufficiently novel or (2)
sufficiently risky, indicating that the probability of task success is low under robot policy πR.
Intuitively, one should not only distrust πR in states significantly out of the distribution of
previously encountered states, but should also cede control to a human supervisor in more
familiar states where the robot predicts that it is unlikely to successfully complete the task.

“robot-gated” algorithms [11, 35, 57, 72]. Robot-gated methods allow the robot to reduce
burden on the human supervisor by only requesting interventions when necessary, switching
between robot control and human control based on some intervention criteria. Hoque et al.
[72] formalize the idea of supervisor burden as the expected total cost incurred by the human
in providing interventions, which consists of the expected cost due to context switching be-
tween autonomous and human control and the time spent actually providing interventions.
However, it is difficult to design intervention criteria that limit this burden while ensuring
that the robot gains sufficient information to imitate the supervisor’s policy.

This chapter makes several contributions. First, we develop intervention criteria based
on a synthesis of two estimated properties of a given state: novelty, which measures whether
the state is significantly out of the distribution of previously encountered states, indicating
that the robot policy should not be trusted; and risk, which measures the likelihood of the
robot successfully completing the task on its own. While state novelty has been considered
in prior work [57], the key insight in our intervention criteria lies in combining novelty with a
new risk metric to estimate the probability of task success. Second, we present a new robot-
gated interactive IL algorithm, ThriftyDAgger (Figure 3.1), which employs these measures
jointly to solicit human interventions only when necessary. Third, while prior robot-gated
algorithms [11, 72] require careful parameter tuning to modulate the timing and frequency
of human intervention requests, ThriftyDAgger only requires the supervisor to specify a
desired context switching rate and sets thresholds accordingly. Fourth, experimental results
demonstrate ThriftyDAgger’s effectiveness for reducing supervisor burden while learning
challenging tasks both in simulation and in an image-based cable routing task on a physical

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 23

robot. Finally, the results of a human user study applying ThriftyDAgger to control a fleet
of three simulated robots suggest that ThriftyDAgger significantly improves performance
on both the robots’ task and an independent human task while imposing fewer context
switches, fewer human intervention actions, and lower mental load and frustration than
prior algorithms.

3.1 Related Work

Imitation Learning from Human Feedback: There has been significant prior work in
offline imitation learning, in which the agent leverages an offline dataset of expert demon-
strations either to directly match the distribution of trajectories in the offline dataset [20, 26,
13, 15, 14, 21, 22], for instance via Behavior Cloning [23, 75], or to learn a reward function
that can then be optimized via reinforcement learning [24, 26, 27]. However, while these
approaches have shown significant success in a number of domains [66, 69, 68, 75], learning
from purely offline data leads to a trajectory distribution mismatch which yields suboptimal
performance both in theory and practice [8, 33]. To address this problem, there have been
a number of approaches that utilize online human feedback while the agent acts in the en-
vironment, such as providing suggested actions [8, 34, 36, 37] or preferences [38, 39, 40, 41,
42, 30]. However, many of these forms of human feedback may be unreliable if the robot
visits states that significantly differ from those the human supervisor would themselves visit;
in such situations, it is challenging for the supervisor to determine what correct behavior
should look like without directly interacting with the environment [16, 43].

Interactive Imitation Learning: A natural way to collect reliable online feedback for
imitation learning is to periodically cede control to a human supervisor, who then provides
a corrective intervention to illustrate desired behavior. Human-gated interactive IL algo-
rithms [12, 16, 51] such as HG-DAgger [12] require the human to determine when to engage
in interventions. However, these algorithms require a human to continuously monitor the
robot to determine when to intervene, which imposes significant burden on the supervisor
and is particularly impractical if a small number of humans must supervise a large number
of robots. Furthermore, it requires the human to determine when the robot needs help and
when to cede control, which can be unintuitive and unreliable.

By contrast, robot-gated interactive IL algorithms, such as EnsembleDAgger [57], SafeDAg-
ger [11], and LazyDAgger [72], allow the robot to actively query for human interventions. In
practice, these algorithms estimate various quantities correlated with task performance [11,
72, 76, 35] and uncertainty [57] and use them to determine when to solicit interventions.
Prior work has proposed intervention criteria which use the novelty of states visited by the
robot [57] or the predicted discrepancy between the actions proposed by the robot policy and
those of the supervisor [11, 72]. However, while state novelty provides a valuable signal for
soliciting interventions, we argue that this alone is insufficient, as a state’s novelty does not
convey information about the level of precision with which actions must be executed in that
state. In practice, many robotic tasks involve moving through critical “bottlenecks” [51],

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 24

which, though not necessarily novel, still present challenges. Examples include moving an
eating utensil close to a person’s mouth or placing an object on a shelf without disturb-
ing nearby objects. Similarly, even if predicted accurately, action discrepancy is often a
flawed risk measure, as high action discrepancy between the robot and the supervisor may
be permissible when fine-grained control is not necessary (e.g. a robot gripper moving in free
space) but impermissible when precision is critical (e.g. a robot gripper actively trying to
grasp an object). In contrast, ThriftyDAgger presents an intervention criteria incorporating
both state novelty and a novel risk metric and automatically tunes key parameters, allowing
efficient use of human supervision.

3.2 Problem Statement

Given a robot, a task for the robot to accomplish, and a human supervisor with a specified
context switching budget, the goal is to train the robot to imitate supervisor performance
within the budget. We model the robot environment as a discrete-time Markov Decision
Process (MDP)M with continuous states s ∈ S, continuous actions a ∈ A, and time horizon
T [58]. We consider the interactive imitation learning (IL) setting [12], where the robot does
not have access to a shaped reward function or to the MDP’s transition dynamics but can
temporarily cede control to a supervisor who uses policy πH : S → A. We specifically focus
on tasks where there is a goal set G which determines success, but that can be challenging
and long-horizon, making direct application of RL highly sample inefficient.

We assume that the human and robot utilize the same action space (e.g. through a
teleoperation interface) and that task success can be specified by convergence to some goal
set G ⊆ S within the time horizon (i.e., the task is successful if G is reached within T
timesteps). We further assume access to an indicator function 1G : S → {0, 1}, which
indicates whether a state belongs to the goal set G.

The IL objective is to minimize a surrogate loss function J(πR) to encourage the robot
policy πR : S → A to match πH :

J(πR) =
T∑
t=1

Est∼dπRt [L(πR(st), πH(st))] , (3.1)

where L(πR(s), πH(s)) is an action discrepancy measure between πR(s) and πH(s) (e.g. MSE
loss), and dπRt is the marginal state distribution at timestep t induced by the robot policy
πR inM.

In the interactive IL setting, in addition to optimizing Equation (3.1), a key design goal
is to minimize the imposed burden on the human supervisor. To formalize this, we define a
switching policy π, which determines whether the system is under robot control πR (which
we call autonomous mode) or human supervisor control πH (which we call supervisor mode).
Following prior work [72], we define C(π), the expected number of context switches in an
episode under policy π, as follows: C(π) =

∑T
t=1 Est∼dπt [mI(st; π)], where mI(st; π) is an

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 25

indicator for whether or not a context switch occurs from autonomous to supervisor control.
Similarly, we define I(π) as the expected number of supervisor actions in an intervention
solicited by π. We then define the total burden B(π) imposed on the human supervisor as
follows:

B(π) = C(π) ·
(
L+ I(π)

)
, (3.2)

where L is the latency of a context switch between control modes (summed over both switch-
ing directions) in units of timesteps, where each action takes one timestep. The interactive IL
objective is to minimize the discrepancy from the supervisor policy while limiting supervisor
burden within some Γb:

π = argmin
π′∈Π

{J(πR) | B(π′) ≤ Γb}. (3.3)

Because it is challenging to explicitly optimize policies to satisfy the supervisor burden
constraint in Equation (3.3), we present novel intervention criteria that enable reduction of
supervisor burden by limiting the total number of interventions to a user-specified budget.
Given sufficiently high latency L, limiting the interventions C(π) directly corresponds to
limiting supervisor burden B(π).

3.3 ThriftyDAgger

ThriftyDAgger determines when to switch between autonomous and human supervisor con-
trol modes by leveraging estimates of both the novelty and risk of states. Below, Sec-
tions 3.3.1 and 3.3.2 discuss the estimation of state novelty and risk of task failure, re-
spectively, while Section 3.3.3 discusses ThriftyDAgger’s integration of these measures to
determine when to switch control modes. Section 3.3.4 then describes an online procedure
to set thresholds for switching between control modes. Finally, Section 3.3.5 describes the
full control flow of ThriftyDAgger.

3.3.1 Novelty Estimation

When the robot policy visits states that lie significantly outside the distribution of those
encountered in the supervisor trajectories, it does not have any reference behavior to imitate.
This motivates initiating interventions to illustrate desired recovery behaviors in these states.
However, estimating the support of the state distribution visited by the human supervisor
is challenging in the high-dimensional state spaces common in robotics. Following prior
work [57], we train an ensemble of policies with bootstrapped samples of transitions from
supervisor trajectories. We then measure the novelty of a given state s by calculating the
variance of the policy outputs at state s across ensemble members. In practice, the action
a ∈ A outputted by each policy is a vector; thus, we measure state novelty by computing the
variance of each component of the action vector a across the ensemble members and then

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 26

averaging over the components. We denote this quantity by Novelty(s). Once in supervisor
mode, as noted in Hoque et al. [72], we can obtain a more precise correlate of novelty by
computing the ground truth action discrepancy between the supervisor’s actions and those
of the robot policy.

3.3.2 Risk Estimation

Interventions may be required not only in novel states outside the distribution of supervisor
trajectories, but also in familiar states that are prone to result in task failure. For example,
a task might have a “bottleneck” region with low tolerance for error, which has low novelty
but nevertheless requires more supervision to learn a reliable robot policy. To address this
challenge, we propose a novel measure of a state’s “riskiness,” capturing the likelihood that
the robot cannot successfully converge to the goal set G. We first define a Q-function to
quantify the discounted probability of successful convergence to G from a given state and
action under the robot policy:

QπR
G (st, at) = Est′∼dπRt′

[
∞∑
t′=t

γt
′−t
1G(st′)|st, at

]
, (3.4)

where 1G(st) is equal to 1 if st belongs to G. We estimate QπR
G (st, at) via a function ap-

proximator Q̂πR
ϕ,G parameterized by ϕ, and define a state’s riskiness in terms of this learned

Q-function:

RiskπR(s, a) = 1− Q̂πR
ϕ,G(s, a). (3.5)

In practice, we train Q̂πR
ϕ,G on transitions (st, at, st+1) from both autonomous mode and su-

pervisor mode by minimizing the following MSE loss inspired by [46]:

JQG (st, at, st+1;ϕ) =
1

2

(
Q̂πR
ϕ,G(st, at)− (1G(st)+ (1− 1G(st))γQ̂

πR
ϕ,G(st+1, πR(st+1)))

)2
. (3.6)

Note that since Q̂πR
ϕ,G is only used to solicit interventions, it must only be accurate enough to

distinguish risky states from others, rather than be able to make the fine-grained distinctions
between different states required for accurate policy learning in reinforcement learning.

3.3.3 Regulating Switches in Control Modes

We now describe how ThriftyDAgger leverages the novelty estimator from Section 3.3.1 and
the risk estimator from Section 3.3.2 to regulate switches between autonomous and supervisor
control. While in autonomous mode, the switching policy π initiates a switch to supervisor
mode at timestep t if either (1) state st is sufficiently unfamiliar or (2) the robot policy has
a low probability of task success from st. Stated precisely, π initiates a switch to supervisor
mode from autonomous mode at timestep t if the predicate Intervene(st, δH , βH) evaluates to

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 27

True, where Intervene(st, δH , βH) isTrue if (1) Novelty(st) > δH or (2) RiskπR(st, πR(st)) >
βH , and False otherwise. Note that the proposed switching policy only depends on RiskπR

for states which are not novel (as novel states already initiate switches to supervisor control
regardless of risk), since the learned risk measure should only be trusted on states in the
neighborhood of those on which it has been trained.

In supervisor mode, π switches to autonomous mode if the action discrepancy between
the human and robot policy and the robot’s task failure risk are both below threshold values
(Section 3.3.4), indicating that the robot is in a familiar and safe region. Stated precisely, π
switches to autonomous mode from supervisor mode if the predicate Cede(st, δR, βR) eval-
uates to True, where Cede(st, δR, βR) is True if (1) ||πR(st) − πH(st)||22 < δR and (2)
RiskπR(st, πR(st)) < βR, and False otherwise. Here, the risk metric ensures that the robot
has a high probability of autonomously completing the task, while the coarser 1-step action
discrepancy metric verifies that we are in a familiar region of the state space where the Q̂πR

ϕ,G
values can be trusted. Motivated by prior work [72] and hysteresis control [59], we use asym-
metric switching criteria with stricter thresholds in supervisor mode (βR < βH) to encourage
lengthier interventions and reduce context switches experienced by the human supervisor.

3.3.4 Computing Risk and Novelty Thresholds from Data

One challenge of the control strategy presented in Section 3.3.3 lies in tuning the key param-
eters (δH , δR, βH , βR) governing when context switching occurs. As noted in prior work [57],
performance and supervisor burden can be sensitive to these thresholds. To address this diffi-
culty, we assume that the user specifies their availability in the form of a desired intervention
budget αH ∈ [0, 1], indicating the desired proportion of timesteps in which interventions will
be requested. This desired context switching rate can be interpreted in the context of su-
pervisor burden as defined in Equation (3.2): if the latency of a context switch dominates
the time cost of the intervention itself, limiting the expected number of context switches to
within some intervention budget directly limits supervisor burden.

Given αH , we set βH to be the (1 − αH)-quantile of RiskπR(s, πR(s)) for all states pre-
viously visited by πR and set δH to be the (1 − αH)-quantile of Novelty(s) for all states
previously visited by πR. We set δR to be the mean action discrepancy on the states visited
by the supervisor after πR is trained and set βR to be the median of RiskπR(s, πR(s)) for
all states previously visited by πR. (Note that βR can easily be set to different quantiles
to adjust mean intervention length if desired.) We find that these settings strike a balance
between informative interventions and imposed supervisor burden.

3.3.5 ThriftyDAgger Overview

We now summarize the ThriftyDAgger procedure, with full pseudocode available in the
supplement. ThriftyDAgger first initializes πR via Behavior Cloning on offline transitions
(DH from the human supervisor, πH). Then, πR collects an initial offline dataset DR from
the resulting πR, initializes Q̂

πR
ϕ,G by optimizing Equation (3.5) on DR ∪ DH , and initializes

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 28

parameters βH , βR, δH , and δR as in Section 3.3.4. We then collect data for N episodes,
each with up to T timesteps. In each timestep of each episode, we determine whether robot
policy πR or human supervisor πH should be in control using the procedure in Section 3.3.3.
Transitions in autonomous mode are aggregated into DR while transitions in supervisor mode
are aggregated into DH . After each episode, πR is updated via supervised learning on DH ,
and Q̂πR

ϕ,G is then updated on DR∪DH to reflect the probability of task success of the updated
πR.

3.4 Experiments

In the following experiments, we study whether ThriftyDAgger can balance task perfor-
mance and supervisor burden more effectively than prior IL algorithms in three contexts:
(1) training a simulated robot to perform a peg insertion task (Section 3.4.3); (2) supervising
a fleet of three simulated robots to perform the peg insertion task in a human user study
(Section 3.4.4); and (3) training a physical surgical robot to perform a cable routing task
(Section 3.4.5). In the supplementary material, we also include results from an additional
simulation experiment on a challenging block stacking task.

3.4.1 Evaluation Metrics

We consider ThriftyDAgger’s performance during training and execution. For the latter, we
evaluate both the (1) autonomous success rate, or success rate when deployed after training
without access to a human supervisor, and (2) intervention-aided success rate, or success
rate when deployed after training with a human supervisor in the loop. These metrics are
reported in the Peg Insertion study (Section 3.4.3) and the Physical Cable Routing study
(Section 3.4.5). For all experiments, during both training and intervention-aided execution,
we evaluate the number of interventions, human actions, and robot actions per episode.
These metrics are computed over successful episodes only to prevent biasing the metrics by
the maximum episode horizon length T ; such bias occurs, for instance, when less successful
policies appear to take more actions due to hitting the time boundary more often. Additional
metrics including cumulative statistics across all episodes are reported in the supplement.

In our user study (Section 3.4.4), we also report the following quantities: throughput
(total number of task successes across the three robots), performance on an independent
human task, the idle time of the robots in the fleet, and users’ qualitative ratings of mental
load and frustration. By comparing the amount of human supervision and success rates
across different algorithms, we are interested in evaluating how effectively each algorithm
balances supervision with policy performance.

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 29

3.4.2 Comparisons

We compare ThriftyDAgger to the following algorithms: Behavior Cloning, which does not
use interventions; HG-DAgger [12], which is human-gated and always requires supervision;
SafeDAgger [11], which is robot-gated and performs interventions based on estimated action
discrepancy between the human supervisor and robot policy; and LazyDAgger [72], which
builds on SafeDAgger by introducing asymmetric switching criteria to encourage lengthier
interventions. We also implement two ablations: one that does not use a novelty measure
to regulate context switches (ThriftyDAgger (-Novelty)) and one that does not use risk to
regulate context switches (ThriftyDAgger (-Risk)).

3.4.3 Peg Insertion in Simulation

We first evaluate ThriftyDAgger on a long-horizon (100+ timesteps) peg insertion task (Fig-
ure 3.2) from the Robosuite simulation environment [77]. The goal is to grasp a ring in a
random initial pose and thread it over a cylinder at a fixed target location. This task has two
bottlenecks which motivate learning from interventions: (1) correctly grasping the ring and
(2) correctly placing it over the cylinder. A human teleoperates the robot through a keyboard
interface to provide interventions. The states consist of the robot’s joint angles and ring’s
pose, while the actions specify 3D translation, rotation, and opening or closing the grip-
per. For ThriftyDAgger and its ablations, we use target intervention frequency αH = 0.01
(Section 3.3.4). We collect 30 offline task demos (2,687 state-action pairs) from a human
supervisor to initialize the robot policy for all compared algorithms. Behavior Cloning is
given additional state-action pairs roughly equivalent to the average amount of supervisor
actions solicited by the interactive algorithms (Table B.1 in the appendix). For ThriftyDAg-
ger and each interactive IL baseline, we perform 10,000 environment steps, during which
each episode takes at most 175 timesteps and system control switches between the human
and robot. Hyperparameter settings for all algorithms are detailed in the supplement.

Results (Table 3.1) suggest that ThriftyDAgger simultaneously solicits fewer interven-
tions and achieves a significantly higher autonomous success rate than prior robot-gated algo-
rithms, although it does request more human actions due to its conservative exit criterion for
interventions (Cede(st, δR, βR)). The number of human actions falls significantly at execution
time (Table 3.1), when the robot policy has been trained on online data and is therefore less
risky. We find that all interactive IL algorithms substantially outperform Behavior Cloning,
which does not have access to supervisor interventions. Notably, ThriftyDAgger achieves a
higher autonomous success rate than even HG-DAgger, in which the supervisor is able to de-
cide the timing and length of interventions. This indicates that ThriftyDAgger’s intervention
criteria enable it to autonomously solicit interventions as informative as those chosen by a
human supervisor with expert knowledge of the task. Furthermore, ThriftyDAgger achieves
a 100% intervention-aided success rate at execution time, suggesting that ThriftyDAgger
successfully identifies the required states at which to solicit interventions. We find that both
ablations of ThriftyDAgger (Ours (-Novelty) and Ours (-Risk)) achieve significantly lower

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 30

Figure 3.2: Experimental Domains: We visualize the peg insertion simulation domain
(top row) and the cable routing domain with the physical robot (bottom row). We visualize
sample start and goal states, in addition to states which ThriftyDAgger categorizes as novel,
risky, or neither. ThriftyDAgger marks states as novel if they are far from states that the
supervisor visited and risky if the robot is stuck in a bottleneck, e.g. if the ring is wedged
against the side of the cylinder (top) or the cable is near all four obstacles (bottom).

autonomous success rates, indicating that both the novelty and risk measures are critical to
ThriftyDAgger’s performance. We calculate ThriftyDAgger’s context switching rate to be
1.15% novelty switches and 0.79% risk switches, both approximately within the budget of
αH = 0.01.

3.4.4 User Study: Controlling A Fleet of Three Robots in
Simulation

We conduct a user study with 10 participants (7 male and 3 female, aged 18-37). Participants
supervise a fleet of three simulated robots, each performing the peg insertion task from
Section 3.4.3. We evaluate how different interactive IL algorithms affect the participants’
(1) ability to provide effective robot interventions, (2) performance on a distractor task
performed between robot interventions, and (3) levels of mental demand and frustration.
For the distractor task, we use the game Concentration (also known as Memory or Matching
Pairs), in which participants identify as many pairs of matching cards as possible among a
set of face-down cards. This is intended to emulate tasks which require continual focus, such
as cooking a meal or writing a research paper, in which frequent context switches between
performing the task and helping the robots is frustrating and degrades performance.

The participants teleoperate the robots using three robot-gated interactive IL algo-
rithms: SafeDAgger, LazyDAgger, and ThriftyDAgger. The participant is instructed to
make progress on the distractor task only when no robot requests an intervention. When an
intervention is requested, the participant is instructed to pause the distractor task, provide

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 31

Table 3.1: Peg Insertion in Simulation Results: We first report training performance
(number of interventions (Ints), number of human actions (Acts (H)), and number of robot
actions (Acts (R))) and report the success rate of the fully-trained policy at execution time
when no interventions are allowed (Auto Succ.). We then evaluate the fully-trained poli-
cies with interventions allowed and report the same intervention statistics and the success
rate (Int-Aided Succ.). We find that ThriftyDAgger achieves the highest autonomous and
intervention-aided success rates among all algorithms compared. Notably, ThriftyDAgger
even achieves a higher autonomous success rate than HG-DAgger, in which the human de-
cides when to intervene during training.

Algorithm Training Interventions Auto Succ. Execution Interventions Int-Aided Succ.
Ints Acts (H) Acts (R) Ints Acts (H) Acts (R)

Behavior Cloning N/A N/A 108.0± 15.9 24/100 N/A N/A N/A N/A
SafeDAgger 3.89± 1.44 19.8± 9.9 88.8± 19.4 24/100 4.00± 1.37 19.5± 5.3 77.5± 11.7 17/20
LazyDAgger 1.46± 1.15 13.2± 12.4 102.1± 18.2 48/100 1.73± 1.29 12.6± 14.4 91.7± 24.0 11/20
HG-DAgger 1.49± 0.88 20.3± 15.6 97.1± 17.5 57/100 1.15± 0.73 17.1± 11.6 103.6± 14.0 20/20
Ours (-Novelty) 0.79± 0.81 35.1± 23.1 70.0± 35.8 49/100 0.33± 0.62 2.5± 5.0 114.0± 26.0 12/20
Ours (-Risk) 0.99± 0.96 7.8± 12.0 104.2± 19.2 49/100 1.39± 0.95 9.8± 12.0 109.1± 22.9 18/20
Ours: ThriftyDAgger 0.88± 1.01 43.6± 24.5 60.0± 32.8 73/100 1.35± 0.66 21.3± 15.0 84.8± 21.8 20/20

an intervention from the requested state until the robot (or multiple robots queued after each
other) no longer requires assistance, and then return to the distractor task. The participants
also teleoperate with HG-DAgger, where they no longer perform the distractor task and are
instructed to continually monitor all three robots simultaneously and decide on the length
and timing of interventions themselves. Each algorithm runs for 350 timesteps, where in
each timestep, all robots in autonomous mode execute one action and the human executes
one action on the currently supervised robot (if applicable). The supplement illustrates the
user study interface and fully details the experiment protocol. All algorithms are initialized
as in Section 3.4.3.

Results (Table 3.2) suggest that ThriftyDAgger achieves significantly higher throughput
than all prior algorithms while requiring fewer interventions and fewer human actions, in-
dicating that ThriftyDAgger requests interventions more judiciously than prior algorithms.
Furthermore, ThriftyDAgger also enables a lower mean idle time for robots and higher per-
formance on the distractor task. Notably, ThriftyDAgger solicits fewer interventions and
total actions while achieving a higher throughput than HG-DAgger, in which the participant
chooses when to intervene. We also report metrics of users’ mental workload and frustra-
tion using the NASA-TLX scale [78] in the supplement. Results suggest that users experi-
ence lower degrees of frustration and mental load when interacting with ThriftyDAgger and
LazyDAgger compared to HG-DAgger and SafeDAgger. We hypothesize that participants
struggle with HG-DAgger due to the difficultly of monitoring multiple robots simultaneously,
while SafeDAgger’s frequent context switches lead to user frustration during experiments.

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 32

Table 3.2: Three-Robot Fleet Control User Study Results: Results for experiments
with 10 human subjects and 3 simulated robots on the peg insertion task. We report the total
numbers of interventions, human actions, and robot actions, as well as the throughput, or
total task successes achieved across robots, for all algorithms. Additionally, for robot-gated
algorithms, we report the Concentration score (number of pairs found) and the mean idle
time of robots in the fleet in timesteps. Results suggest that ThriftyDAgger outperforms all
prior algorithms across all metrics, requesting fewer interventions and total human actions
while achieving higher throughput, lowering the robots’ mean idle time, and enabling higher
performance on the Concentration task.

Algorithm Interventions Human Actions Robot Actions Concentration Pairs Throughput Mean Idle Time
HG-DAgger 10.6 ± 2.5 198.0 ± 32.1 834.4 ± 38.1 N/A 5.1 ± 1.9 N/A
SafeDAgger 22.1 ± 4.8 234.1 ± 31.8 700.7 ± 70.4 17.7 ± 8.2 3.0 ± 2.4 38.4 ± 14.1
LazyDAgger 10.0 ± 2.1 219.5 ± 43.3 719.2 ± 89.7 20.9 ± 7.9 5.1 ± 1.7 37.1 ± 20.5
Ours: ThriftyDAgger 7.9± 2.1 179.4± 34.9 793.2 ± 86.6 33.0± 8.5 9.2± 2.0 25.8± 19.3

3.4.5 Physical Experiment: Visuomotor Cable Routing

Finally, we evaluate ThriftyDAgger on a long-horizon cable routing task with a da Vinci
surgical robot [79]. Here, the objective is to route a red cable into a Figure-8 pattern around
4 pegs via teleoperation with the robot’s master controllers (see supplement). The algorithm
only observes high-dimensional 64×64×3 RGB images of the workspace and generates contin-
uous actions representing delta-positions in (x, y). As in Section 3.4.3, ThriftyDAgger uses a
target intervention frequency of αH = 0.01. We collect 25 offline task demonstrations (1,381
state-action pairs) from a human supervisor to initialize the robot policy for ThriftyDAgger
and all comparisons. We perform 1,500 environment steps, where each episode has at most
100 timesteps and system control can switch between the human and robot. The supplement
details the hyperparameter settings for all algorithms.

Results (Table 3.3) suggest that both ThriftyDAgger and HG-DAgger achieve a sig-
nificantly higher autonomous success rate than Behavior Cloning, which is never able to
complete the task. Furthermore, ThriftyDAgger achieves a comparable autonomous success
rate to HG-DAgger while requesting fewer interventions and a similar number of total human
actions. This again suggests that ThriftyDAgger’s intervention criteria enable it to solicit
interventions equally as informative or more informative than those chosen by a human super-
visor. Finally, at execution time ThriftyDAgger achieves a 100% intervention-aided success
rate with minimal supervision, again indicating that ThriftyDAgger successfully identifies
the timing and length of interventions to increase policy reliability.

3.5 Discussion and Future Work

We present ThriftyDAgger, a scalable robot-gated interactive imitation learning algorithm
that leverages learned estimates of state novelty and risk of task failure to reduce burden on

CHAPTER 3. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 33

Table 3.3: Physical Cable Routing Results: We first report intervention statistics during
training (number of interventions (Ints), number of human actions (Acts (H)), and number of
robot actions (Acts (R))) and report the success rate of the fully-trained policy at execution
time when no interventions are allowed (Auto Succ.). We then evaluate the fully-trained
policies with interventions allowed and report the same intervention statistics and the success
rate (Int-Aided Succ.). We find that ThriftyDAgger achieves the highest autonomous and
intervention-aided success rates among all algorithms compared. Notably, ThriftyDAgger
achieves a comparable autonomous success rate to HG-DAgger, in which the human decides
when to intervene during training.

Algorithm Training Interventions Auto Succ. Execution Interventions Int-Aided Succ.
Ints Acts (H) Acts (R) Ints Acts (H) Acts (R)

Behavior Cloning N/A N/A N/A 0/15 N/A N/A N/A N/A
HG-DAgger 1.55± 1.16 13.9± 10.9 55.5± 10.9 10/15 0.40± 0.49 2.7± 3.5 73.9± 7.9 15/15
Ours: ThriftyDAgger 1.42± 1.14 15.2± 12.4 45.5± 18.3 12/15 0.40± 0.71 1.5± 3.1 61.3± 6.5 15/15

a human supervisor during training and execution. Experiments suggest that ThriftyDAgger
effectively enables long-horizon robotic manipulation tasks in simulation, on a physical robot,
and for a three-robot fleet while limiting burden on a human supervisor. In future work,
we hope to apply ideas from ThriftyDAgger to interactive reinforcement learning and larger
scale fleets of physical robots. We also hope to study how ThriftyDAgger’s performance
varies with the target supervisor burden specified via αH . In practice, αH could even be
time-varying: for instance, αH may be significantly lower at night, when human operators
may have limited availability. Similarly, αH may be set to a higher value during training
than at deployment, when the robot policy is typically higher quality.

34

Chapter 4

On-Policy Robot Imitation Learning
from a Converging Supervisor

In robotics there is significant interest in using human or algorithmic supervisors to train
policies via imitation learning [66, 80, 81, 82]. For example, a trained surgeon with ex-
perience teleoperating a surgical robot can provide successful demonstrations of surgical
maneuvers [83]. Similarly, known dynamics models can be used by standard control tech-
niques, such as model predictive control (MPC), to generate controls to optimize task reward
[84, 85]. However, there are many cases in which the supervisor is not fixed, but is converging
to improved behavior over time, such as when a human is initially unfamiliar with a tele-
operation interface or task or when the dynamics of the system are initially unknown and
estimated with experience from the environment when training an algorithmic controller.
Furthermore, these supervisors are often slow, as humans can struggle to execute stable,
high-frequency actions on a robot [85] and model-based control techniques, such as MPC,
typically require computationally expensive stochastic optimization techniques to plan over
complex dynamics models [86, 87, 88]. This motivates algorithms that can distill supervisors
which are both converging and slow into policies that can be efficiently executed in prac-
tice. The idea of distilling improving algorithmic controllers into reactive policies has been
explored in a class of reinforcement learning (RL) algorithms known as dual policy iteration
(DPI) [89, 90, 91], which alternate between optimizing a reactive learner with imitation
learning and a model-based supervisor with data from the learner. However, past methods
have mostly been applied in discrete settings [89, 90] or make specific structural assumptions
on the supervisor [91].

This chapter analyzes learning from a converging supervisor in the context of on-policy
imitation learning. Prior analysis of on-policy imitation learning algorithms provide regret
guarantees given a fixed supervisor [8, 92, 93, 94]. We consider a converging sequence of
supervisors and show that similar guarantees hold for the regret against the best policy in
hindsight with labels from the converged supervisor, even when only intermediate supervisors
provide labels during learning. Since the analysis makes no structural assumptions on the
supervisor, this flexibility makes it possible to use any off-policy method as the supervisor in

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 35

the presented framework, such as an RL algorithm or a human, provided that it converges to
a good policy on the learner’s distribution. We implement an instantiation of this framework
with the deep MPC algorithm PETS [86] as an improving supervisor and maintain the data
efficiency of PETS while significantly reducing online computation time, accelerating both
policy learning and evaluation.

The key contribution of this work is a new framework for on-policy imitation learning
from a converging supervisor. We present a new notion of static and dynamic regret in
this setting and provide sublinear regret guarantees by showing a reduction from this new
notion of regret to the standard notion for the fixed supervisor setting. The dynamic regret
result is particularly unintuitive, as it indicates that it is possible to do well on each round
of learning compared to a learner with labels from the converged supervisor, even though
labels are only provided by intermediate supervisors during learning. We then show that the
presented framework relaxes assumptions on the supervisor in DPI and perform simulated
continuous control experiments suggesting that when a PETS supervisor [86] is used, we
can outperform other deep RL baselines while achieving up to an 80-fold speedup in policy
evaluation. Experiments on a physical surgical robot yield up to an 20-fold reduction in query
time and 53% reduction in policy evaluation time after accounting for hardware constraints.

4.1 Related Work

On-policy imitation learning algorithms that directly learn reactive policies from a supervisor
were popularized with DAgger [8], which iteratively improves the learner by soliciting super-
visor feedback on the learner’s trajectory distribution. This yields significant performance
gains over analogous off-policy methods [95, 9]. On-policy methods have been applied with
both human [96] and algorithmic supervisors [85], but with a fixed supervisor as the guiding
policy. We propose a setting where the supervisor improves over time, which is common when
learning from a human or when distilling a computationally expensive, iteratively improving
controller into a policy that can be efficiently executed in practice. Recently, convergence re-
sults and guarantees on regret metrics such as dynamic regret have been shown for the fixed
supervisor setting [93, 94, 97]. We extend these results and present a static and dynamic
analysis of on-policy imitation learning from a convergent sequence of supervisors. Recent
work proposes using inverse RL to outperform an improving supervisor [98, 29]. We instead
study imitation learning in this context to use an evolving supervisor for policy learning.

Model-based planning has seen significant interest in RL due to the benefits of lever-
aging structure in settings such as games and robotic control [89, 90, 91]. Deep model-
based reinforcement learning (MBRL) has demonstrated superior data efficiency compared
to model-free methods and state-of-the-art performance on a variety of continuous control
tasks [86, 87, 88]. However, these techniques are often too computationally expensive for
high-frequency execution, significantly slowing down policy evaluation. To address the online
burden of model-based algorithms, Sun et al. [91] define a novel class of algorithms, dual pol-
icy iteration (DPI), which alternate between optimizing a fast learner for policy evaluation

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 36

using labels from a model-based supervisor and optimizing a slower model-based supervisor
using trajectories from the learner. However, past work in DPI either involves planning in
discrete state spaces [89, 90], or making specific assumptions on the structure of the model-
based controller [91]. We discuss how the converging supervisor framework is connected to
DPI, but enables a more flexible supervisor specification. We then provide a practical algo-
rithm by using the deep MBRL algorithm PETS [86] as an improving supervisor to achieve
fast policy evaluation while maintaining the data efficiency of PETS.

4.2 Converging Supervisor Framework and

Preliminaries

4.2.1 On-Policy Imitation Learning

We consider continuous control problems in a finite-horizon Markov decision process (MDP),
which is defined by a tuple (S,A, P (·, ·), T, R(·, ·)) where S is the state space and A is the
action space. The stochastic dynamics model P maps a state s and action a to a probability
distribution over states, T is the task horizon, and R is the reward function. A deterministic
control policy π maps an input state in S to an action in A. The goal in RL is to learn a
policy π over the MDP which induces a trajectory distribution that maximizes the sum of
rewards along the trajectory. In imitation learning, this objective is simplified by instead
optimizing a surrogate loss function which measures the discrepancy between the actions
chosen by learned parameterized policy πθ and supervisor ψ.

Rather than directly optimizing R from experience, on-policy imitation learning involves
executing a policy in the environment and then soliciting feedback from a supervisor on the
visited states. This is in contrast to off-policy methods, such as behavior cloning, in which
policy learning is performed entirely on states from the supervisor’s trajectory distribution.
The surrogate loss of a policy πθ along a trajectory is a supervised learning cost defined by the
supervisor relabeling the trajectory’s states with actions. The goal of on-policy imitation is to
find the policy minimizing the corresponding surrogate risk on its own trajectory distribution.
On-policy algorithms typically adhere to the following iterative procedure: (1) at iteration
i, execute the current policy πθi by deploying the learner in the MDP, observing states and
actions as trajectories; (2) Receive labels for each state from the supervisor ψ; (3) Update
πθi according to the supervised learning loss to generate πθi+1

.
On-policy imitation learning has often been viewed as an instance of online optimization

or online learning [8, 93, 94]. Online optimization is posed as a game between an adversary,
which generates a loss function li at iteration i and an algorithm, which plays a policy πθi in
an attempt to minimize the total incurred losses. After observing li, the algorithm updates
its policy πθi+1

for the next iteration. In the context of imitation learning, the loss li(·) at
iteration i corresponds to the supervised learning loss function under the current policy. The
loss function li(·) can then be used to update the policy for the next iteration. The benefit of
reducing on-policy imitation learning to online optimization is that well-studied analyses and

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 37

regret metrics from online optimization can be readily applied to understand and improve
imitation learning algorithms. Next, we outline a theoretical framework in which to study
on-policy imitation learning with a converging supervisor.

4.2.2 Converging Supervisor Framework (CSF)

We begin by presenting a set of definitions for on-policy imitation learning with a converging
supervisor in order to analyze the static regret (Section 4.3.1) and dynamic regret (Section
4.3.2) that can be achieved in this setting. In this chapter, we assume that policies πθ are
parameterized by a parameter θ from a convex compact set Θ ⊂ Rd equipped with the
l2-norm, which we denote with ∥·∥ for simplicity for both vectors and operators.

Definition 4.2.1. Supervisor: We can think of a converging supervisor as a sequence
of supervisors (labelers), (ψi)

∞
i=1, where ψi defines a deterministic controller ψi : S → A.

Supervisor ψi provides labels for imitation learning policy updates at iteration i.

Definition 4.2.2. Learner: The learner is represented at iteration i by a parameterized
policy πθi : S → A where πθi is differentiable function in the policy parameter θi ∈ Θ.

We denote the state and action at timestep t in the trajectory τ sampled at iteration i
by the learner with sit and a

i
t respectively.

Definition 4.2.3. Losses: We consider losses at each round i of the form: li(πθ, ψi) =

Eτ∼p(τ |θi)
[
1
T

∑T
t=1∥πθ(sit)− ψi(sit)∥2

]
where p(τ |θi) defines the distribution of trajectories gen-

erated by πθi. Gradients of li with respect to θ are defined as ∇θli(πθi , ψi) = ∇θli(πθ, ψi)
∣∣
θ=θi

.

For analysis of the converging supervisor setting, we adopt the following standard as-
sumptions. The assumptions in this section and the loss formulation are consistent with
those in Hazan [99] and Ross, Gordon, and Bagnell [8] for analysis of online optimization
and imitation learning algorithms. The loss incurred by the agent is the population risk
of the policy, and extension to empirical risk can be derived via standard concentration
inequalities as in Ross, Gordon, and Bagnell [8].

Assumption 4.2.1. Strongly convex losses: ∀θi ∈ Θ, li(πθ, ψ) is strongly convex with
respect to θ with parameter α ∈ R+. Precisely, we assume that

li(πθ2 , ψ) ≥ li(πθ1 , ψ) +∇θli(πθ1 , ψ)
T (θ2 − θ1) +

α

2
∥θ2 − θ1∥2 ∀ θ1, θ2 ∈ Θ

The expectation over p(τ |θi) in Assumption 4.2.1 preserves strong convexity of the
squared loss for an individual sample, which is assumed to be convex in θ.

Assumption 4.2.2. Bounded operator norm of policy Jacobian: ∥∇θπθi(s)∥ ≤ G
∀s ∈ S, ∀ θ, θi ∈ Θ where G ∈ R+.

Assumption 4.2.3. Bounded action space: The action space A has diameter δ. Equiv-
alently stated: δ = supa1,a2∈A ∥a1 − a2∥.

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 38

4.3 Regret Analysis

We analyze the performance of well-known algorithms in on-policy imitation learning and
online optimization under the converging supervisor framework. In this setting, we emphasize
that the goal is to achieve low loss li(πθi , ψN) with respect to labels from the last observed
supervisor ψN . We achieve these results through regret analysis via reduction of on-policy
imitation learning to online optimization, where regret is a standard notion for measuring
the performance of algorithms. We consider two forms: static and dynamic regret [100],
both of which have been utilized in previous on-policy imitation learning analyses [8, 93].
In this chapter, regret is defined with respect to the expected losses under the trajectory
distribution induced by the realized sequence of policies (πθi)

N
i=1. Standard concentration

inequalities can be used for finite sample analysis as in Ross, Gordon, and Bagnell [8].
Using static regret, we can show a loose upper bound on average performance with respect

to the last observed supervisor with minimal assumptions, similar to [8]. Using dynamic
regret, we can tighten this upper bound, showing that θi is optimal in expectation on its
own distribution with respect to ψN for certain algorithms, similar to [93, 97]; however, to
achieve this stronger result, we require an additional continuity assumption on the dynamics
of the system, which was shown to be necessary by Cheng and Boots [94]. To harness
regret analysis in imitation learning, we seek to show that algorithms achieve sublinear
regret (whether static or dynamic), denoted by O(N) where N is the number of iterations.
That is, the regret should grow at a slower rate than linear in the number of iterations.
While existing algorithms can achieve sublinear regret in the fixed supervisor setting, we
analyze regret with respect to the last observed supervisor ψN , even though the learner is
only provided labels from the intermediate ones during learning. See supplementary material
for all proofs.

4.3.1 Static Regret

Here we show that as long as the supervisor labels are Cauchy, i.e. if ∀s ∈ S, ∀N >
i, ∥ψi(s)− ψN(s)∥ ≤ fi where limi→∞ fi = 0, it is possible to achieve sublinear static regret
with respect to the best policy in hindsight with labels from ψN for the whole dataset. This
is a more difficult metric than is typically considered in regret analysis for on-policy imitation
learning since labels are provided by the converging supervisor ψi at iteration i, but regret
is evaluated with respect to the best policy given labels from ψN . Past work has shown that
it is possible to obtain sublinear static regret in the fixed supervisor setting under strongly
convex losses for standard on-policy imitation learning algorithms such as online gradient
descent [99] and DAgger [8]; we extend this and show that the additional asymptotic regret
in the converging supervisor setting depends only on the convergence rate of the supervisor.
The standard notion of static regret is given in Definition 4.3.1.

Definition 4.3.1. The static regret with respect to the sequence of supervisors (ψi)
N
i=1 is given

by the difference in the performance of policy πθi and that of the best policy in hindsight under

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 39

the average trajectory distribution induced by the incurred losses with labels from current
supervisor ψi.

RegretSN((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗ , ψi) where θ
∗ = argmin

θ∈Θ

N∑
i=1

li(πθ, ψi)

However, we instead analyze the more difficult regret metric presented in Definition 4.3.2
below.

Definition 4.3.2. The static regret with respect to the supervisor ψN is given by the dif-
ference in the performance of policy πθi and that of the best policy in hindsight under the
average trajectory distribution induced by the incurred losses with labels from the last observed
supervisor ψN .

RegretSN(ψN) =
N∑
i=1

li(πθi , ψN)−
N∑
i=1

li(πθ⋆ , ψN) where θ
⋆ = argmin

θ∈Θ

N∑
i=1

li(πθ, ψN)

Theorem 4.3.1. RegretSN(ψN) can be bounded above as follows:

RegretSN(ψN) ≤ RegretSN((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]

Theorem 4.3.1 essentially states that the expected static regret in the converging super-
visor setting can be decomposed into two terms: one that is the standard notion of static
regret, and an additional term that scales with the rate at which the supervisor changes.
Thus, as long as there exists an algorithm to achieve sublinear static regret on the standard
problem, the only additional regret comes from the evolution of the supervisor. Prior work
has shown that algorithms such as online gradient descent [99] and DAgger [8] achieve sub-
linear static regret under strongly convex losses. Given this reduction, we see that these
algorithms can also be used to achieve sublinear static regret in the converging supervisor
setup if the extra term is sublinear. Corollary 4.3.1 identifies when this is the case.

Corollary 4.3.1. If ∀s ∈ S, ∀N > i, ∥ψi(s) − ψN(s)∥ ≤ fi where limi→∞ fi = 0, then
RegretSN(ψN) can be decomposed as follows:

RegretSN(ψN) = RegretSN((ψi)
N
i=1) + O(N)

4.3.2 Dynamic Regret

Although the static regret analysis provides a bound on the average loss, the quality of that
bound depends on the term minθ

∑N
i=1 li(πθ, ψN), which in practice is often very large due

to approximation error between the policy class and the actual supervisor. Furthermore, it
has been shown that despite sublinear static regret, policy learning may be unstable under

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 40

certain dynamics [94, 96]. Recent analyses have turned to dynamic regret [93, 94], which
measures the sub-optimality of a policy on its own distribution: li(πθi , ψN)−minθ li(πθ, ψN).
Thus, low dynamic regret shows that a policy is on average performing optimally on its
own distribution. This framework also helps determine if policy learning will be stable or if
convergence is possible [93]. However, these notions require understanding the sensitivity of
the MDP to changes in the policy. We quantify this with an additional Lipschitz assumption
on the trajectory distributions induced by the policy as in [93, 94, 97]. We show that even in
the converging supervisor setting, it is possible to achieve sublinear dynamic regret given this
additional assumption and a converging supervisor by reducing the problem to a predictable
online learning problem [97]. Note that this yields the surprising result that it is possible
to do well on each round even against a dynamic comparator which has labels from the
last observed supervisor. The standard notion of dynamic regret is given in Definition 4.3.3
below.

Definition 4.3.3. The dynamic regret with respect to the sequence of supervisors (ψi)
N
i=1

is given by the difference in the performance of policy πθi and that of the best policy under
the current round’s loss, which compares the performance of current policy πθi and current
supervisor ψi.

RegretDN((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗i , ψi) where θ
∗
i = argmin

θ∈Θ
li(πθ, ψi)

However, similar to the static regret analysis in Section 4.3.1, we seek to analyze the
dynamic regret with respect to labels from the last observed supervisor ψN , which is defined
as follows.

Definition 4.3.4. The dynamic regret with respect to supervisor ψN is given by the difference
in the performance of policy πθi and that of the best policy under the current round’s loss,
which compares the performance of current policy πθi and last observed supervisor ψN .

RegretDN(ψN) =
N∑
i=1

li(πθi , ψN)−
N∑
i=1

li(πθ⋆i , ψN) where θ
⋆
i = argmin

θ∈Θ
li(πθ, ψN)

We first show that there is a reduction from RegretDN(ψN) to RegretDN((ψi)
N
i=1).

Lemma 4.3.1. RegretDN(ψN) can be bounded above as follows:

RegretDN(ψN) ≤ RegretDN((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]

Given the notion of supervisor convergence discussed in Corollary 4.3.1, Corollary 4.3.2
shows that if we can achieve sublinear RegretDN((ψi)

N
i=1), we can also achieve sublinear

RegretDN(ψN).

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 41

Corollary 4.3.2. If ∀s ∈ S, ∀N > i, ∥ψi(s) − ψN(s)∥ ≤ fi where limi→∞ fi = 0, then
RegretDN(ψN) can be decomposed as follows:

RegretDN(ψN) = RegretDN((ψi)
N
i=1) + O(N)

It is well known that RegretDN((ψi)
N
i=1) cannot be sublinear in general [93]. However,

as in [93, 94], we can obtain conditions for sublinear regret by leveraging the structure
in the imitation learning problem with a Lipschitz continuity condition on the trajectory
distribution. Let dTV (p, q) =

1
2

∫
|p − q|dτ denote the total variation distance between two

trajectory distributions p and q.

Assumption 4.3.1. There exists η ≥ 0 such that the following holds on the trajectory
distributions induced by policies parameterized by θ1 and θ2:

dTV (p(τ |θ1), p(τ |θ2)) ≤ η∥θ1 − θ2∥/2

A similar assumption is made by popular RL algorithms [101, 102], and Lemma 4.3.2
shows that with it, sublinear RegretDN((ψi)

N
i=1) can be achieved using results from predictable

online learning [97].

Lemma 4.3.2. If Assumption 4.3.1 holds and α > 4Gη supa∈A ∥a∥, then there exists an algo-
rithm where RegretDN((ψi)

N
i=1) = O(N). If the diameter of the parameter space is bounded, the

greedy algorithm, which plays θi+1 = argminθ∈Θ li(πθ, ψN), achieves sublinear Regret
D
N((ψi)

N
i=1).

Furthermore, if the losses are γ-smooth in θ and
4Gη supa∈A ∥a∥

α
> α

2γ
, then online gradient de-

scent achieves sublinear RegretDN((ψi)
N
i=1).

Finally, we combine the results of Corollary 4.3.2 and Lemma 4.3.2 to conclude that since
we can achieve sublinear RegretDN((ψi)

N
i=1) and have found a reduction from RegretDN(ψN) to

RegretDN((ψi)
N
i=1), we can also achieve sublinear dynamic regret in the converging supervisor

setting.

Theorem 4.3.2. If ∀s ∈ S, ∀N > i, ∥ψi(s) − ψN(s)∥ ≤ fi where limi→∞ fi = 0 and
under the assumptions in Lemma 4.3.2, there exists an algorithm where RegretDN(ψN) =
O(N). If the diameter of the parameter space is bounded, the greedy algorithm that plays
θi+1 = argminθ∈Θ li(πθ, ψN) achieves sublinear RegretDN(ψN). Furthermore, if the losses

are γ-smooth in θ and
4Gη supa∈A ∥a∥

α
> α

2γ
, then online gradient descent achieves sublinear

RegretDN(ψN).

4.4 Converging Supervisors for Deep Continuous

Control

Sun et al. [91] apply DPI to continuous control tasks, but assume that both the learner and
supervisor are of the same policy class and from a class of distributions for which computing

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 42

the KL-divergence is computationally tractable. These constraints on supervisor structure
limit model capacity compared to state-of-the-art deep RL algorithms. In contrast, we do
not constrain the structure of the supervisor, making it possible to use any converging,
improving supervisor (algorithmic or human) with no additional engineering effort. Note
that while all provided guarantees only require that the supervisor converges, we implicitly
assume that the supervisor labels actually improve with respect to the MDP reward function,
R, when trained with data on the learner’s distribution for the learner to achieve good task
performance. This assumption is validated by the experimental results in this chapter and
those in prior work [89, 90]. One strategy to encourage the supervisor to improve on the
learner’s distribution is to add noise to the learner policy to increase the variety of the
experience used by the supervisor to learn information such as system dynamics. However,
this was not necessary for the environments considered in this chapter, and we defer further
study in this direction to future work.

We utilize the converging supervisor framework (CSF) to motivate an algorithm that
uses the state-of-the-art deep MBRL algorithm, PETS, as an improving supervisor. Note
that while for analysis we assume a deterministic supervisor, PETS produces stochastic
supervision for the agent. We observe that this does not detrimentally impact performance
of the policy in practice. PETS was chosen since it has demonstrated superior data efficiency
compared to other deep RL algorithms [86]. We collect policy rollouts from a model-free
learner policy and refit the policy on each episode using DAgger [8] with supervision from
PETS, which maintains a trained dynamics model based on the transitions collected by
the learner. Supervision is generated via MPC by using the cross entropy method to plan
over the learned dynamics for each state in the learner’s rollout, but is collected after the
rollout has completed rather than at each timestep of every policy rollout to reduce online
computation time.

4.5 Experiments

The method presented in Section 4.4 uses the Converging Supervisor Framework (CSF) to
train a learner policy to imitate a PETS supervisor trained on the learner’s distribution.
We expect the CSF learner to be less data efficient than PETS, but have significantly faster
policy evaluation time. To evaluate this hypothesis, we measure the gap in data efficiency
between the learner on its own distribution (CSF learner), the supervisor on the learner’s
distribution (CSF supervisor) and the supervisor on its own distribution (PETS). Returns
for the CSF learner and CSF supervisor are computed by rolling out the model-free learner
policy and model-based controller after each training episode. Because the CSF supervisor is
trained with off-policy data from the learner, the difference between the performance of the
CSF learner and CSF supervisor measures how effectively the CSF learner is able to track the
CSF supervisor’s performance. The difference in performance between the CSF supervisor
and PETS measures how important on-policy data is for PETS to generate good labels. All
runs are repeated 3 times to control for stochasticity in training; see supplementary material

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 43

for further experimental details. The DPI algorithm in Sun et al. [91] did not perform well on
the presented environments, so we do not report a comparison to it. However, we compare
against the following set of 3 state-of-the-art model-free and model-based RL baselines and
demonstrate that the CSF learner maintains the data efficiency of PETS while reducing
online computation time significantly by only collecting policy rollouts from the fast model-
free learner instead of from the PETS supervisor.

1. Soft Actor Critic (SAC): State-of-the-art maximum entropy model-free RL algo-
rithm [103].

2. Twin Delayed Deep Deterministic policy gradients (TD3): State-of-the-art
model-free RL algorithm [62] which uses target networks and delayed policy updates
to improve DDPG [104], a popular actor critic algorithm.

3. Model-Ensemble Trust Region Policy Optimization (ME-TRPO): State-of-
the-art model-free, model-based RL hybrid algorithm using a set of learned dynamics
models to update a closed-loop policy offline with model-free RL [102].

4.5.1 Simulation Experiments

We consider the PR2 Reacher and Pusher continuous control MuJoCo domains from Chua
et al. [86] (Figure 4.1) since these are standard benchmarks on which PETS attains good
performance. For both tasks, the CSF learner outperforms other state-of-the-art deep RL
algorithms, demonstrating that the CSF learner enables fast policy evaluation while main-
taining data efficient learning. The CSF learner closely matches the performance of both
the CSF supervisor and PETS, indicating that the CSF learner has similar data efficiency
as PETS. Results using a neural network CSF learner suggest that losses strongly-convex in
θ may not be necessary in practice.

This result is promising because if the model-free learner policy is able to achieve similar
performance to the supervisor on its own distribution, we can simultaneously achieve the
data efficiency benefits of MBRL and the low online computation time of model-free methods.
To quantify this speedup, we present timing results in Table 4.1, which demonstrate that
a significant speedup (up to 80x in this case) in policy evaluation is possible. Note that
although we still need to evaluate the model-based controller on each state visited by the
learner to generate labels, since this only needs to be done offline, this can be parallelized to
reduce offline computation time as well.

4.5.2 Physical Robot Experiments

We also test CSF with a neural network policy on a physical da Vinci Surgical Robot
(dVRK) [105] to evaluate its performance on multi-goal tasks where the end effector must
be controlled to desired positions in the workspace. We evaluate the CSF learner/supervisor
and PETS on the physical robot for both single and double arm versions of this task, and

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 44

0 20 40 60 80 100
Episode

300
200
100

0

Re
wa

rd

Return: Reacher Linear Policy

0 20 40 60 80 100
Episode

300
200
100

0

Re
wa

rd

Return: Reacher NN Policy

0 20 40 60 80 100
Episode

150

100

50

Re
wa

rd

Return: Pusher Linear Policy

0 20 40 60 80 100
Episode

150

100

50

Re
wa

rd

Return: Pusher NN Policy

Figure 4.1: Simulation experiments: Training curves for the CSF learner, CSF su-
pervisor, PETS, and baselines for the MuJoCo Reacher (top) and Pusher (bottom) tasks
for a linear (left) and neural network (NN) policy (right). The linear policy is trained via
ridge-regression with regularization parameter α = 1, satisfying the strongly-convex loss as-
sumption in Section 4.2. To test more complex policy representations, we repeat experiments
with a neural network (NN) learner with 2 hidden layers with 20 hidden units each. The CSF
learner successfully tracks the CSF supervisor on both domains, performs well compared to
PETS, and outperforms other baselines with both policy representations. The CSF learner
is slightly less data efficient than PETS, but policy evaluation is up to 80x faster than PETS.
SAC, TD3, and ME-TRPO use a neural network policy/dynamics class.

find that the CSF learner is able to track the PETS supervisor effectively (Figure 4.2) and
provide up to a 22x speedup in policy query time (Table 4.1). We expect the CSF learner
to demonstrate significantly greater speedups relative to standard deep MBRL for higher
dimensional tasks and for systems where higher-frequency commands are possible.

4.6 Discussion and Future Work

We formally introduce the converging supervisor framework for on-policy imitation learning
and show that under standard assumptions, we can achieve sublinear static and dynamic
regret against the best policy in hindsight with labels from the last observed supervisor, even
when labels are only provided by the converging supervisor during learning. We then show a
connection between the converging supervisor framework and DPI, and use this to present an
algorithm to accelerate policy evaluation for model-based RL without making any assump-
tions on the structure of the supervisor. We use the state-of-the-art deep MBRL algorithm,
PETS, as an improving supervisor and maintain its data efficiency while significantly accel-

CHAPTER 4. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 45

0 50 100 150 200
Episode

200

100

0

Re
wa

rd

Return: dVRK Reacher

CSF Supervisor
CSF Learner
PETS

0 50 100 150 200
Episode

200

100

0

Re
wa

rd

Return: dVRK Double-Arm Reacher

CSF Supervisor
CSF Learner
PETS

Figure 4.2: Physical experiments: Training curves for the CSF learner, CSF supervisor
and PETS on the da Vinci surgical robot with a neural network policy. The CSF learner is
able to track the CSF supervisor and PETS effectively and can be queried up to 20x faster
than PETS. However, due to control frequency limitations on this system, the CSF learner
has a policy evaluation time that is only 1.52 and 1.46 times faster than PETS for the single
and double-arm tasks respectively. The performance gap between the CSF learner and the
supervisor takes longer to diminish for the harder double-arm task.

Table 4.1: Policy evaluation and query times: We report policy evaluation times in
seconds over 100 episodes for the CSF learner and PETS (format: mean ± standard devia-
tion). Furthermore, for physical experiments, we also report the total time taken to query
the learner and PETS over an episode, since this difference in query times indicates the true
speedup that CSF can enable (format: (total query time, policy evaluation time)). Policy
evaluation and query times are nearly identical for simulation experiments. We see that the
CSF learner is 20-80 times faster to query than PETS across all tasks. Results are reported
on a desktop running Ubuntu 16.04 with a 3.60 GHz Intel Core i7-6850K and a NVIDIA
GeForce GTX 1080. We use the NN policy for all timing results.

PR2 Reacher (Sim) PR2 Pusher (Sim) dVRK Reacher dVRK Double-Arm Reacher

CSF Learner 0.29± 0.01 1.13± 0.66 (0.036± 0.009,5.54± 0.67) (0.038± 0.007,8.87± 1.12)
PETS 24.77± 0.08 57.77± 17.12 (0.78± 0.02, 8.43± 1.07) (0.88± 0.07, 12.97± 0.77)

erating policy evaluation. Finally, we evaluate the efficiency of the method by successfully
training a policy on a multi-goal reacher task directly on a physical surgical robot. The
provided analysis and framework suggests a number of interesting questions regarding the
degree to which non-stationary supervisors affect policy learning. In future work, it would
be interesting to derive specific convergence guarantees for the converging supervisor set-
ting, consider different notions of supervisor convergence, and study the trade-offs between
supervision quality and quantity.

46

Part II

Reinforcement Learning from
Suboptimal Demonstrations

47

Chapter 5

ABC-LMPC: Safe Learning MPC for
Stochastic Nonlinear Dynamical
Systems with Adjustable Boundary
Conditions

Model predictive control (MPC) has seen significant success in a variety of robotic tasks [106,
86, 107], and there is substantial experimental and theoretical work demonstrating that the
resulting closed loop system performs well on challenging tasks in stochastic dynamical sys-
tems [106, 108, 109, 110]. In this work, we build on the recently proposed learning model
predictive control (LMPC) framework [111, 110, 109]. We assume a known stochastic dy-
namics model and design an iteratively improving MPC-based control strategy by estimating
safe sets and value functions from past closed-loop trajectories.

The LMPC framework [111, 110, 109] presents a novel class of reference-free control
strategies which utilize MPC to iteratively improve upon a suboptimal controller for a goal
directed task. LMPC algorithms typically operate in the iterative learning control setting
with fixed initial and terminal conditions, and provide robust guarantees on iterative im-
provement (in terms of task cost) for stochastic linear systems [110, 109] and deterministic
nonlinear systems [111] if the MPC problem can be solved exactly. However, while LMPC-
based control strategies exhibit a variety of desirable theoretical properties [111, 110, 109]
and have been shown to work well on practical problems on physical robotic systems [112,
106], they have two key limitations: (1) guarantees for stochastic systems are limited to
linear systems while practical systems are often stochastic and nonlinear and (2) start states
and goal sets are typically assumed to be identical in each iteration.

We address both of these challenges. First, we extend the results in [109] to show itera-
tive improvement guarantees for stochastic nonlinear systems. Second, we present a method
to expand the set of feasible start states and goal sets during learning while maintaining
these guarantees. Finally, we introduce sample-based approximations to present a practi-
cal algorithm to learn safe policies, which reliably complete tasks with varying boundary

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 48

conditions while satisfying pre-specified constraints. The contributions of this work are (1)
a novel multi-start, multi-goal LMPC algorithm, Adjustable Boundary Condition LMPC
(ABC-LMPC), which optimizes expected costs subject to robust constraints, with (2) guar-
antees on expected performance, robust constraint satisfaction, and convergence to the goal
for stochastic nonlinear systems, (3) a practical algorithm for expanding the allowed set of
initial states and goal sets during learning, and (4) simulated continuous control experiments
demonstrating that the learned controller can adapt to novel start states and goal sets while
consistently and efficiently completing tasks during learning.

5.1 Related Work

Model Predictive Control: There has been a variety of prior work on learning based
strategies for model predictive control in the reinforcement learning [106, 86, 107] and con-
trols communities [113, 114, 115, 116, 117, 118]. Prior work in learning for model predictive
control has focused on estimating the following three components used to design MPC poli-
cies: i) a model of the system [114, 116, 119, 112, 117, 86, 107, 106], ii) a safe set of states
from which the control task can be completed using a known safe policy [120, 121, 122,
123] and iii) a value function [106, 109, 110, 124], which for a given safe policy, maps each
state of the safe set to the closed-loop cost to complete the task. The most closely related
works, both by Rosolia et. al. [109, 110], introduce the learning MPC framework for iterative
learning control in stochastic linear systems. Here, MPC is used to iteratively improve upon
a suboptimal demonstration by estimating a safe set and a value function from past closed
loop trajectories. Robust guarantees are provided for iterative controller improvement if
the MPC problem can be solved exactly. Furthermore, Thananjeyan* et al. [106] propose
a practical reinforcement learning algorithm using these strategies to learn policies for non-
linear systems. However, [110, 106] are limited to the iterative learning control setting, and
although [109] presents a strategy for controller domain expansion, the method is limited
to linear systems and requires the user to precisely specify an expansion direction. In this
work, we build on this framework by (1) extending the theoretical results to prove that
under similar assumptions, LMPC based controllers yield iterative improvement in expecta-
tion under certain restrictions on the task cost function and (2) providing a practical and
general algorithm to adapt to novel start states and goal sets while preserving all theoretical
guarantees on controller performance.
Reinforcement Learning: There has been a variety of work from the reinforcement learn-
ing (RL) community on learning policies which generalize across a variety of initial and
terminal conditions. Curriculum learning [125, 126, 127] has achieved practical success in
RL by initially training agents on easier tasks and reusing this experience to accelerate
learning of more difficult tasks. Florensa et al. [125] and Resnick et al. [126] train policies
initialized near a desired goal state, and then iteratively increase the distance to the goal
state as learning progresses. While these approaches have achieved practical success on a
variety of simulated robotic and navigation tasks, the method used to expand the start state

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 49

distribution is heuristic-based and requires significant hand-tuning. We build on these ideas
by designing an algorithm which expands the start state distribution for an MPC-based pol-
icy by reasoning about reachability, similar to Ivanovic et al. [128]. However, [128] provides
a curriculum for model free RL algorithms and does not provide feasibility or convergence
guarantees, while we present an MPC algorithm which expands the set of allowed start states
while preserving controller feasibility and convergence guarantees. There is also recent inter-
est in goal-conditioned RL [129, 130]. The most relevant prior work in this area is hindsight
experience replay [131], which trains a goal-conditioned policy using imagined goals from
past failures. This strategy efficiently reuses data to transfer to new goal sets in the absence
of dense rewards. We use a similar idea to learn goal-conditioned safe sets to adapt to novel
goal sets by reusing data from past trajectories corresponding to goal sets reached in prior
iterations.
Motion Planning: The domain expansion strategy of the proposed algorithm, ABC-
LMPC, bears a clear connection to motion planning in stochastic dynamical systems [132,
133]. Exploring ways to use ABC-LMPC to design motion planning algorithms which can
efficiently leverage demonstrations is an exciting avenue for future work, since the receding
horizon planning strategy could prevent the exponential scaling in complexity with time
horizon characteristic of open-loop algorithms [134].

5.2 Problem Statement

In this work, we consider nonlinear, stochastic, time-invariant systems of the form:

xt+1 = f(xt, ut, wt) (5.1)

where xt ∈ Rn is the state at time t, ut ∈ Rm is the control, wt ∈ Rk is a disturbance input,
and xt+1 is the next state. The disturbance wt is sampled i.i.d. from a known distribution
over a bounded set W ⊆ Rp. We denote Cartesian products with exponentiation, e.g.
W2 =W×W . We consider constraints requiring states to belong to the feasible state space
X ⊆ Rn and controls to belong to U ⊆ Rm. Let xjt , u

j
t , and w

j
t be the state, control input,

and disturbance realization sampled at time t of iteration j respectively. Let πj : Rn → Rm

be the control policy at iteration j that maps states to controls (i.e. ujt = πj(xjt)).
Unlike [109], in which the goal of the control design is to solve a robust optimal control

problem, we instead consider an expected cost formulation. Thus, instead of optimizing for
the worst case noise realization, we consider control policies which optimize the given cost
function in expectation over possible noise realizations. To do this, we define the following
objective function with the following Bellman equation and cost function C(·, ·):

Jπ
j

(xj0) = E
wj

0

[
C(xj0, π

j(xj0)) + Jπ
j

(f(xj0, u
j
0, w

j
0))
]

(5.2)

However, we would like to only consider policies that are robustly constraint-satisfying for all
timesteps. Thus, the goal of the control design is to solve the following infinite time optimal

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 50

control problem:

J j,∗0→∞(xj0) = min
πj(.)

Jπ
j

(xj0)

s.t. xjt+1 = f(xjt , u
j
t , w

j
t)

ujt = πj(xjt)

xjt ∈ X , u
j
t ∈ U

∀wjt ∈ W , t ∈ {0, 1, . . .}

(5.3)

In this chapter, we present a strategy to iteratively design a feedback policy πj(.) : F jG ⊆
X → U , where F jG is the domain of πj for goal set G (and also the set of allowable initial
conditions). Conditioned on the goal set G, the controller design provides guarantees for
(i) robust satisfaction of state and input constraints, (ii) convergence in probability of the
closed-loop system to G, (iii) iterative improvement: for any xj0 = xl0 where j < l, expected
trajectory cost is non-increasing (Jπ

j
(xj0) ≥ Jπ

j+1
(xj+1

0)), and (iv) exploration: the domain
of the control policy does not shrink over iterations (F jG ⊆ F

j+1
G for all goal sets G sampled

up to iteration j). In Section 5.3.3, we describe how to transfer to a new goal set H by
reusing data from prior iterations while maintaining the same properties.

We adopt the following definitions and assumptions:

Assumption 5.2.1. Costs: We consider costs which are zero within the goal set G and
greater than some ϵ > 0 outside the goal set: ∃ϵ > 0 s.t. C(x, u) ≥ ϵ1GC (x) where 1 is an
indicator function and GC is the complement of G.

Definition 5.2.1. Robust Control Invariant Set: As in Rosolia and Borrelli [109], we
define a robust control invariant set A ⊆ X with respect to dynamics f(x, u, w) and policy
class Π as a set where ∀x ∈ A, ∃π ∈ Π s.t. f(x, π(x), w) ∈ A, π(x) ∈ U , ∀w ∈ W.

Assumption 5.2.2. Robust Control Invariant Goal Set: G ⊆ X is a robust control
invariant set with respect to the dynamics and the set of state feedback policies Π.

5.3 Preliminaries

Here we formalize the notion of safe sets, value functions, and how they can be conditioned
on specific goals. We also review standard definitions and assumptions.

5.3.1 Safe Set

We first recall the definition of a robust reachable set as in [109]:

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 51

Definition 5.3.1. Robust Reachable Set: The robust reachable set Rπ
t (x

j
0) contains the

set of states reachable in t-steps by the system (5.1) in closed loop with π at iteration j:

Rπ
t+1(x

j
0) =

{
xt+1 ∈ Rn| ∃wt ∈ W , xt ∈ Rπ

t (x
j
0), xt+1 = f(xt, π(xt), wt)

}
(5.4)

where Rπ
0 (x

j
0) = xj0. We define Rπ

t+1 similarly when the input is a set and for time-varying
policies.

Now, we define the safe set at iteration j for the goal set G as in [109].

Definition 5.3.2. Safe Set: The safe set SSjG contains the full evolution of the system at
iteration j,

SSjG =

{
∞⋃
t=0

Rπj

t (xj0)
⋃
G

}
. (5.5)

Note that (5.5) is robust control invariant by construction [109]. We could set SS0
G = G or

initialize the algorithm with a nominal controller π0. This enables the algorithm to naturally
incorporate demonstrations to speed up training.

Definition 5.3.3. Expected Cost: The expected cost of πj from start state xj0 is defined
as

Jπ
j

(xj0) = E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
(5.6)

5.3.2 Value Function

Definition 5.3.4. Value Function: Recursively define the value function of πj in closed-
loop with (5.3) as:

Lπ
j

G (x) =

{
E
w

[
C(x, πj(x)) + Lπ

j

G (f(x, πj(x), w))
]

x ∈ SSjG
+∞ x ̸∈ SSjG

(5.7)

Let V πj

G (x) = min
k∈{0,...j}

Lπ
k

G (x), which is the expected cost-to-go of the best performing prior

controller at x.

Observe that Lπ
j

G is defined only on SSjG, and Jπ
j
= Lπ

j

G on SSjG. In the event a nominal
controller π0 is used, we require the following assumption on the initial safe set SS0

G, which
is implicitly a restriction on π0 for start state x00.

Assumption 5.3.1. Safe Set Initial Condition: If a nominal controller π0 is used,
then ∀x ∈ SS0

G, L
π0

G (x) <∞.

This assumption requires that the nominal controller is able to robustly satisfy constraints
and converge in probability to G. If no nominal controller is used, then this assumption is
not required. In that case, we let SS0

G = G and Lπ
0

G (x) = 0 ∀x ∈ SS0
G.

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 52

5.3.3 Transfer to Novel Goal Sets

While Rosolia and Borrelli [109] studies tasks with fixed goal sets, here we show how the safe
set and value function can be modified to transfer the learned controller at iteration j + 1
to a new robust control invariant goal set H and reuse data from the earlier iterations to
accelerate learning.

Definition 5.3.5. Goal Conditioned Safe Set: Define the goal conditioned safe set by
collecting the prefixes of all robust reachable sets until they robustly fall in H as follows:

SSjH =

{⋃k∗

k=0Rπj

k

⋃
H max

k∈N
1{Rπj

k (xj0) ⊆ H} = 1

H otherwise
(5.8)

where k∗ = argmax
k∈N

1{Rπj

k (xj0) ⊆ H}

We also redefine the value function as follows:

Definition 5.3.6. Goal Conditioned Value Function: Recursively define the goal-
conditioned value function of πj in closed-loop with (5.3) as:

Lπ
j

H (x) =

E
w

[
C(x, πj(x)) + Lπ

j
(f(x, πj(x), w))

]
x ∈ SSjH \ H

0 x ∈ H
+∞ x ̸∈ SSjH

(5.9)

Define V πj

H (x) = min
k∈{0,...j}

Lπ
k

H (x) as before.

This new value function is for a policy that executes πj but switches to a policy that
keeps the system in H upon entry.

5.4 Controller Design

Here we describe the controller design for optimizing the task cost function while satisfying
state and input constraints (Section 5.4.1), and discuss how this can be extended to iteratively
expand the controller domain (Section 5.4.2). We consider a fixed goal set G for clarity, but
note that the same formulation holds for other goal sets if the safe set and value function
are appropriately defined as in Definitions 5.3.5 and 5.3.6. See Figure 5.1 for an illustration
of the full ABC-LMPC controller optimization procedure.

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 53

Figure 5.1: ABC-LMPC Iterative Algorithm (Left): ABC-LMPC alternates between
(1) collecting rollouts under the current policy πj given SSjG0

and Lπ
j

G0
(by optimizing (5.10)),

(2) updating SSj+1
G0

and Lπ
j+1

G0
given the new rollouts, and (3) expanding the controller domain

towards a desired start state (by optimizing (5.13)); Goal Set Transfer (Right): When a
new goal set G1 is supplied, trajectories to goal G0 can be reused to estimate a new safe set
for a new goal G1 (SSjG1

) and associated value function (Lπ
j

G1
).

5.4.1 Task Driven Optimization

At time t of iteration j with goal set G, the controller solves the following receding-horizon
trajectory optimization problem with planning horizon H > 0:

J jt→t+H(x
j
t) = min

πt:t+H−1|t∈ΠH
E

wj
t:t+H−1

[
H−1∑
i=0

C(xjt+i|t, πt+i|t(x
j
t+i|t)) + V πj−1

G (xjt+H|t)

]
s.t. xjt+i+1|t = f(xjt+i|t, πt+i|t(x

j
t+i), wt+i) ∀i ∈ {0, . . . , H − 1}

xjt+H|t ∈
j−1⋃
k=0

SSkG, ∀w
j
t:t+H−1 ∈ W

H

xjt:t+H|t ∈ X
H+1, ∀wjt:t+H−1 ∈ W

H

(5.10)

where πt+i|t is the i-th policy in the planning horizon conditioned on xjt and πt:t+H−1|t =
{πt|t, . . . , πt+H−1|t} (likewise for other optimization variables). Let the minimizer of (5.10)

be π∗,j
t:t+H−1|t. Then, execute the first policy at xjt :

ujt = πj(xjt) = π∗,j
t|t (x

j
t) (5.11)

Solving 5.10 is typically intractable in practice, so we discuss practical approximations we
make to the designed algorithm in Section 5.6.

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 54

5.4.2 Start State Expansion

We now describe the control strategy for expanding the controller domain. If there exists a
policy π for which theH-step robust reachable set for the start states sampled at iteration j is
contained within the current safe set for goal set G, then we can define the feasible set/domain
for the controller at iteration j. The domain of πj for G is computed by collecting the set
of all states for which there exists a sequence of policies which robustly keep the system in⋃j−1
k=0 SS

k
G. Precisely, we define the controller domain as follows:

F jG = {x | ∃π0:H−1 ∈ ΠH s.t. Rπ0:H−1

H (x) ⊆
j−1⋃
k=0

SSkG} (5.12)

This set defines the states from which the system can robustly plan back to
⋃j−1
k=0 SS

k
G. Note

that the controller domain is a function of the goal set G.
While any start state sampled from F jG will ensure feasibility and convergence for goal

set G (proven in Section 5.5), we present a method to compute states from F jG \
⋃j−1
k=0 SS

k
G

to expand F jG towards a desired start state, which may not be added to the domain through
task-directed exploration. Computing this set is intractable for general nonlinear stochastic
systems, so we introduce the following method to approximate this.

At the end of iteration j, we sample a start state xjS ∈
⋃j
k=0 SS

k
G and seek to execute

a sequence of H ′ exploration policies πjE,0:H′−1 which carry the system outside of
⋃j
k=0 SS

k
G

and then robustly back into
⋃j
k=0 SS

k
G, for all noise realizations w0:H′−2 ∈ WH′−1 where

H ′ ≥ 0. The sequence of policies πjE,0:H′−1 is computed by solving an H ′-step optimization

problem with a cost function Cj
E(x, u) that encourages exploration outside of

⋃j
k=0 SS

k
G while

enforcing that the controller terminates in some state xjH′ ∈
⋃j
k=0 SS

k
G. In Section 5.6, we

discuss some possibilities for Cj
E(x, u), implement one instantiation, and demonstrate that it

enables adaptation to novel start states while maintaining controller feasibility. The sequence
of controllers can computed by solving the following 1-step trajectory optimization problem:

πjE,0:H′−1 = argmin
π0:H′−1∈ΠH′

E
wj

0:H′−2

[
H′−1∑
i=0

Cj
E(x

j
i , πi(x

j
i))

]
s.t. xji+1 = f(xji , πi(x

j
i), wi), ∀i ∈ {0, . . . ,H

′ − 1}

xjH′ ∈
j⋃

k=0

SSkG , ∀w0:H′−2 ∈ WH′−1

xj0:H′ ∈ XH
′+1, ∀w0:H′−2 ∈ WH′−1

(5.13)

Let M =

(
R
πj

E,0:H′−1

i (xjS)

)H′

i=0

, the set of all states reachable in H ′ steps by πE and let

MH =

(
R
πj

E,0:H′−1

i (xjS)

)H′

i=max(H′−H, 0)
. Note that ∀x ∈ MH , the controller initialized at x

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 55

can be robustly guided to
⋃j
k=0 SS

k
G in H steps. At iteration j + 1, feasible start states can

be sampled fromMH to guide the policy’s domain toward a desired target start state. An
MPC policy πjE could be executed instead to generate these future start states. We could
also use the exploration policy to explicitly augment the value function Lπ

j

G and safe set SSjG
and thus F jG. This could be used for general domain expansion instead of directed expansion
towards a desired start state.

5.5 Properties of ABC-LMPC

In this section, we study the properties of the controller constructed in Section 5.4. For
analysis, we will assume a fixed goal set G, but note that if the goal set is changed at some
iteration, the same properties still apply to the new goal set H by the same proofs, because
all of the same assumptions hold for H. See Appendix D.1 for all proofs.

Lemma 5.5.1. Recursive Feasibility: Consider the closed-loop system (5.10) and (5.11).
Let the safe set SSjG be defined as in (5.5). If assumptions 5.2.1-5.3.1 hold and xj0 ∈ F

j
G,

then the controller induced by optimizing (5.10) and (5.11) is feasible almost surely for t ≥ 0
and j ≥ 0. Equivalently stated, E

wj
0:H−1

[J jt→t+H(x
j
t)] <∞, ∀t, j ≥ 0.

Lemma 5.5.1 shows that the controller is guaranteed to satisfy state-space constraints
for all timesteps t in all iterations j given the definitions and assumptions presented above.
Equivalently, the expected planning cost of the controller is guaranteed to be finite. The
following lemma establishes convergence in probability to the goal set given initialization
within the controller domain.

Lemma 5.5.2. Convergence in Probability: Consider the closed-loop system defined by
(5.10) and (5.11). Let the sampled safe set SSjG be defined as in (5.5). Let assumptions 5.2.1-

5.3.1 hold and xj0 ∈ F
j
G. If the closed-loop system converges in probability to G at iteration

0, then it converges in probability at all subsequent iterations. Stated precisely, at iteration
j: limt→∞ P (xjt ̸∈ G) = 0.

Theorem 5.5.1. Iterative Improvement: Consider system (5.1) in closed-loop with
(5.10) and (5.11). Let the sampled safe set SSj be defined as in (5.5). Let assumptions 5.2.1-
5.3.1 hold, then the expected cost-to-go (5.6) associated with the control policy (5.11) is non-
increasing in iterations for a fixed start state. More formally:

∀j ∈ N, xj0 ∈ F
j
G, x

j+1
0 ∈ F j+1

G =⇒ Jπ
j

(xj0) ≥ Jπ
j+1

(xj+1
0)

Furthermore, {Jπj
(xj0)}∞j=0 is a convergent sequence.

Theorem 5.5.1 extends prior results [109], which guarantee robust iterative improvement
for stochastic linear systems with convex costs and convex constraint sets. Here we show

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 56

iterative improvement in expectation for ABC-LMPC for stochastic nonlinear systems with
costs as in Assumption 5.2.1. The following result implies that the controller domain is
non-decreasing.

Lemma 5.5.3. Controller domain expansion: The domain of πj is an non-decreasing
sequence of sets: F jG ⊆ F

j+1
G .

5.6 Practical Implementation

ABC-LMPC alternates between two phases at each iteration: the first phase performs the
task by executing πj and the second phase runs the exploration policy πjE,0:H′−1. Only data

from πj is added to an approximation of SSjG, on which the value function Lπ
j
is fit, but

in principle, data from πjE,0:H′−1 can also be used. Although the task (5.10) and explo-
ration (5.13) objectives are generally intractable, we present a simple algorithm which intro-
duces sample-based approximations to expand the policy’s domain F jG while approximately
maintaining theoretical properties in practice. Here, we describe how each component in the
controller design is implemented and how optimization is performed. See Appendix D.2 for
further implementation details.

5.6.1 Sample-Based Safe Set

In practice, as in [109], we approximate the safe set SSjG using samples from the closed loop
system defined by (5.10) and (5.11). To do this, we collect R closed-loop trajectories at
iteration j, each of length T as in [109] where T is the task horizon.

Thus, given the ith disturbance realization sequence collected at iteration j, given by
wj
i = [wj0,i, . . . w

j
T,i], we define the closed loop trajectory associated with this sequence as

in [109]: xj(wj
i) =

[
xj0(w

j
i), . . . , x

j
T (w

j
i)
]
. As in [109], we note that xjk(w

j
i) ∈ Rπj

k (xj0), so

R rollouts from the closed-loop system provides a sample-based approximation to Rπj

k (xj0)
as follows: R̃πj

k (xj0) =
⋃R
i=1 x

j
k(w

j
i) ⊆ Rπj

k (xj0). Similarly, we can define a sample-based

approximation to the safe set as follows: S̃SjG =
{⋃∞

k=0 R̃πj

k (xj0)
⋃
G
}
.

While S̃SjG is not robust control invariant, with sufficiently many trajectory samples (i.e.
R sufficiently big), this approximation becomes more accurate in practice [109]. To obtain
a continuous approximation of the safe set for planning, we use the same technique as [106],

and fit density model ρGα to
⋃j−1
k=0 S̃S

k

G and instead of enforcing the terminal constraint by

checking if xt+H ∈
⋃j−1
k=0 S̃S

k

G, ABC-LMPC instead enforces that ρGα(xt+H) > δ, where α is
a kernel width parameter. We implement a tophat kernel density model using a nearest
neighbors classifier with tuned kernel width α and use δ = 0 for all experiments. Thus, all

states within Euclidean distance α from the closest state in
⋃j−1
k=0 S̃S

k

G are considered safe
under ρGα.

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 57

5.6.2 Start State Expansion Strategy

To provide a sample-based approximation to the procedure from Section 5.4.2, we sample

states xjS from
⋃j
k=0 S̃S

k
and execute πjE,0:H′−1 for R trajectories of length H ′, which approx-

imateM. We repeat this process until an xjS is found such that all R sampled trajectories

satisfy the terminal state constraint that xjH′ ∈
⋃j
k=0 S̃S

k

G (Section 5.4.2). Once such a
state is found, a state is sampled from the last H steps of the corresponding trajectories
to serve as the start state for the next iteration, which approximates sampling from MH .
We utilize a cost function which encourages controller domain expansion towards a specific
desired start state x∗, although in general any cost function can be used. This cost function
is interesting because it enables adaptation of a learning MPC controller to desired speci-
fications while maintain controller feasibility. Precisely, we optimize a cost function which
simply measures the discrepancy between a given state in a sampled trajectory and x∗, ie.
Cj
E(x, u) = D(x, x∗). This distance measure can be tuned on a task-specific basis based on

the appropriate distance measures for the domain (Section 5.7.3). However, we remark that
this technique requires: (1) an appropriate distance function D(·, ·) and (2) a reverse path
from the goal to the start state, that may differ from the optimal forward path, along which
the goal is robustly reachable.

5.6.3 Goal Set Transfer

We practically implement the goal set transfer strategy in Section 5.3.3 by fitting a new
density model ρHα on the prefixes of prior trajectories that intersect some new user-specified

goal set H. If H is chosen such that S̃SjH contains many states, the controller can seamlessly
transfer to H. If this is not the case, the controller domain for H must be expanded from H
until it intersects many trajectories in the original domain.

5.6.4 ABC-LMPC Optimization Procedure

As in prior work on MPC for nonlinear control [86, 106], we solve the MPC optimization
problem in (5.10) over sampled open loop sequences of controls using the cross entropy
method (CEM) [135]. In practice, we implement the terminal safe set constraints and state-
space constraints in (5.10) and (5.13) by imposing a large cost on sampled action sequences
which violate constraints when performing CEM. We use a probabilistic ensemble of 5 neural
networks to approximate Lπ

j

G (x) as in [106]. In contrast to [106], a separate Lπ
j

G (x) is fit using
data from each iteration instead of fitting a single function approximator on all data. We uti-
lize Monte Carlo estimates of the cost-to-go values when fitting Lπ

j

G (x). Each element of the
ensemble outputs the parameters of a conditional axis-aligned Gaussian distribution and are
trained on bootstrapped samples from the training dataset using a maximum likelihood [86].

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 58

Figure 5.2: Experimental Domains: We evaluate ABC-LMPC on three stochastic do-
mains: a navigation domain with an obstacle, a 2D 7-link arm reacher domain with an
obstacle, and an inverted pendulum domain. In the first two domains, suboptimal demon-
strations are provided, while no demonstrations are provided for the inverted pendulum task.

5.7 Experiments

We evaluate whether ABC-LMPC can enable (1) iterative improvement in expected perfor-
mance for stochastic nonlinear systems, (2) adaptation to new start states and (3) transfer
to new goal sets on 3 simulated continuous control domains. In Section 5.7.1 we describe the
experimental domains, in Section 5.7.2, we evaluate the controller with fixed start states and
goal sets, in Section 5.7.3, we expand the controller domain iteratively toward a desired start
state far from the goal set, in Section 5.7.4, we switch the goal set during learning, and finally
in Section 5.7.5 we utilize both start state expansion and the goal set transfer technique to
control a pendulum to an upright position. In all experiments, we use C(x, u) = 1{x ̸∈ G}
as in [106]. Note that for this cost function, the maximum trajectory cost is the task horizon
T , and the resulting objective corresponds to minimum time optimal control. We include
comparisons to the minimum trajectory cost achieved by the state-of-the-art demonstration
augmented model-based reinforcement learning algorithm, SAVED [106] after 10 iterations
of training to evaluate the quality of the learned controller. For all experiments, we use

R = 5 closed-loop trajectories from the current controller to estimate S̃SjG and perform start
state expansion. Experimental domains have comparable stochasticity to those in [109].
See Appendix D.3 for further details about experimental, optimization, and environment
parameters.

5.7.1 Experimental Domains

Point Mass Navigation: We consider a 4-dimensional (x, y, vx, vy) navigation task as
in [106], in which a point mass is navigating to a goal set (a unit ball centered at the origin
unless otherwise specified). The agent exerts force (fx, fy), ∥(fx, fy)∥ ≤ 1, in each cardinal
direction and experiences drag coefficient ψ. We introduce truncated Gaussian process noise
zt ∼ N (0, σ2I) in the dynamics with domain [−σ, σ]. We include a large obstacle in the
center of the environment that the robot must navigate around to reach the goal. While this

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 59

task has linear dynamics, the algorithm must consider non-convex state space constraints
and stochasticity.
7-Link Arm Reacher: Here, we consider a 2D kinematic chain with 7 joints where the
agent provides commands in delta joint angles. We introduce truncated Gaussian process
noise zt ∼ N (0, σ2I) in the dynamics with domain [−σ, σ] and build on the implementation
from [136]. The goal is to control the end effector position to a 0.5 radius circle in R2 centered
at (3,−3). We do not model self-collisions but include a circular obstacle of radius 1 in the
environment which the kinematic chain must avoid.
Inverted Pendulum: This environment is a noisy inverted pendulum task adapted from
OpenAI Gym [137]. We introduce truncated Gaussian process noise in the dynamics.

5.7.2 Fixed Start and Goal Conditions

We first evaluate ABC-LMPC on the navigation and reacher environments with a fixed start
state and goal set. In the navigation domain, the robot must navigate from S0 = (−50, 0, 0, 0)
to the origin (G0) while in the reacher domain, the agent must navigate from a joint con-
figuration with the end effector at (7, 0) to one with the end effector at (3,−3) (G1). For
optimization parameters and other experimental details, see Appendix D.3. The controller
rapidly and significantly improves upon demonstrations for both domains (Figure 5.3). The
controller achieves comparable cost to SAVED for both tasks and never violates constraints
during learning.

5.7.3 Start State Expansion

ABC-LMPC is now additionally provided a target start state which is initially outside its
domain and learns to iteratively expand its domain toward the desired start state. We report
the sequence of achieved start states over iterations in addition to the mean and standard
deviation trajectory cost. ABC-LMPC is able to maintain feasibility throughout learning and
achieve comparable performance to SAVED at the final start state when SAVED is supplied
with 100 demonstrations from the desired state. To ensure that results are meaningful, we
specifically pick desired start states such that given 100 demonstrations from the original
start state, ABC-LMPC is never able to accomplish the task after 30 iterations of learning.
A different CE(x, u) is used for start state expansion based on an appropriate distance metric
for each domain.

We first consider a navigation task where 100 suboptimal demonstrations are supplied
from (−25, 0, 0, 0) with average trajectory cost of 44.76. The goal is to expand the controller
domain in order to navigate from start states S1 = (−70, 0, 0, 0) and S2 = (−60,−20, 0, 0).
CE(x, u) measures the Euclidean distance between the positions of x and those of the desired
start state. After 20 iterations, the controller reaches the desired start state while consistently
maintaining feasibility during learning (Table 5.1).

We then consider a similar Reacher task using the same suboptimal demonstrations from
Section 5.7.2. The desired start end effector position is (−1, 0), and CE(x, u) measures the

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 60

Figure 5.3: Fixed Start, Single Goal Set Experiments: Learning curves for ABC-
LMPC averaged over R = 5 rollouts per iteration on simulated continuous control domains
when the start state and goal set is held fixed during learning. Performance of the demon-
strations is shown at iteration 0, and the controller performance is shown thereafter. Point
Mass Navigation: The controller immediately improves significantly upon the demon-
stration performance within 1 iteration, achieving a mean trajectory cost of around 20 while
demonstrations have mean trajectory cost of 42.58. 7-Link Arm Reacher: The controller
significantly improves upon the demonstrations, achieving a final trajectory cost of around
18 while demonstrations achieve a mean trajectory cost of 37.77. In all experiments, the
controller quickly converges to the best cost produced by SAVED.

Euclidean distance between the end effector position of states x in optimized trajectories
and that of the desired start state. Within 16 iterations of learning, the controller is able
to start at the desired start state while maintaining feasibility during learning (Table 5.1).
On both domains, the controller achieves comparable performance to SAVED when trained
with demonstrations from that start state and the controller successfully expands its domain
while rapidly achieving good performance at the new states. Constraints are never violated
during learning for all experiments.

5.7.4 Goal Set Transfer

ABC-LMPC is trained as in Section 5.7.2, but after a few iterations, the goal set is changed
to a new goal set that is in the controller domain. In the navigation domain, the robot
is supplied a new goal set centered at G1 = (−25, 10, 0, 0) or G2 = (−7, 7, 0, 0) with radius
7 after 2 iterations of learning on the original goal set. We increase the radius so more
prior trajectories can be reused for the new goal-conditioned value function. Results are
shown in Figure 5.4 for both goal set transfer experiments. We also perform a goal set
transfer experiment on the 7-link Reacher Task in which the robot is supplied a new goal set

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 61

Table 5.1: Start State Expansion Experiments: Pointmass Navigation: Start State
Expansion towards position (−70, 0) (left) and (−60,−20) (center). Here we see that ABC-
LMPC is able to reach the desired start state in both cases while consistently maintaining
controller feasibility throughout learning. Furthermore, the controller achieves competitive
performance with SAVED, which achieves a minimum trajectory cost of 21 from (−70, 0)
and 23 from (−60,−20); 7-link Arm Reacher: Here we expand the start state from that
corresponding to an end effector position of (7, 0) to that corresponding to an end effector
position of (−1, 0) (right). Again, we see that the controller consistently maintains feasi-
bility during learning and achieves trajectory costs comparable to SAVED, which achieves
a minimum trajectory cost of 24. The trajectory costs are presented in format: mean ±
standard deviation over R = 5 rollouts.

Point Navigation (-70, 0)

Iteration Start Pos (x, y) Trajectory Cost

4 (−42.3, 1.33) 23.0± 0.89
8 (−54.1, 0.08) 22.8± 1.67
12 (−61.2, 2.70) 25.0± 2.37
16 (−70.3,−0.26) 32.6± 5.08
20 (−70.4, 0.12) 29.4± 2.33

Point Navigation (-60, -20)

Iteration Start Pos (x, y) Trajectory Cost

4 (−42.6,−8.76) 19.6± 4.22
8 (−54.6,−14.2) 25.6± 5.23
12 (−58.8,−20.3) 27.2± 12.0
16 (−60.6,−20.2) 21.0± 0.63
20 (−60.5,−19.6) 22.4± 1.85

7-Link Reacher

Iteration Start EE Position Trajectory Cost

4 (−1.28,−0.309) 31.6± 8.04
8 (−0.85,−0.067) 30.8± 15.7
12 (−0.95,−0.014) 20.2± 1.83
16 (−1.02,−0.023) 19.4± 4.03

Figure 5.4: Goal Set Transfer Learning: In this experiment, the goal set is switched to
to a new goal set at iteration 3 and we show a learning curve which indicates performance on
both the first goal (blue) and new goal (red). The controller is re-trained as in Section 5.6.3
to stabilize to the new goal. The controller immediately is able to perform the new task and
never hits the obstacle. Results are plotted over R = 5 controller rollouts per iteration.

centered at G1 = (4, 0.2) with radius 1 after 2 iterations of training. Results are shown in
Figure 5.4. In both domains, ABC-LMPC seamlessly transfers to the new goal by leveraging
prior experience to train a new set of value functions.

CHAPTER 5. ABC-LMPC: SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 62

Table 5.2: Pendulum Swing Up Experiment: We iteratively expand the controller
domain outward from a goal set centered around the downward orientation (G0) towards
the upward orientation until the controller domain includes a goal set centered around the
upward orientation (G1). Then, the goal set is switched to G1. The resulting controller
maintains feasibility throughout and seamlessly transitions to G1. The trajectory costs are
presented as: mean ± standard deviation over R = 5 rollouts. The upward orientation
corresponds to a pendulum angle of 0◦ and the angle (degrees) increases counterclockwise
from this position until 360◦.

Iteration Start Angle Goal Set Trajectory Cost

3 200.3 G0 30.2± 1.47
6 74.3 G0 35.0± 0.00
9 53.9 G0 34.4± 0.49
12 328.1 G1 36.0± 0.63
15 345.1 G1 13.8± 7.03
18 0.6 G1 0.00± 0.00

5.7.5 Inverted Pendulum Swing-Up Task

In this experiment, we incorporate both the start state optimization procedure and goal set
transfer strategies to balance a pendulum in the upright position, but without any demon-
strations. We initialize the pendulum in the downward orientation (G0), and the goal of
the task is to eventually stabilize the system to the upright orientation (G1). We iteratively
expand the controller domain using the start state expansion strategy with initial goal G0
until the pendulum has swung up sufficiently close to the upright orientation. Once this is
the case, we switch the goal set to G1 to stabilize to the upright position. The controller
seamlessly transitions between the two goal sets, immediately transitioning to G1 while com-
pleting the task (convergence to either G0 or G1 within the task horizon) on all iterations
(Table 5.2). CE(x, u) measures the distance between the pendulum’s orientation and the
desired start state’s orientation.

5.8 Discussion and Future Work

We present a new algorithm for iteratively expanding the set of feasible start states and goal
sets for an LMPC-based controller and provide theoretical guarantees on iterative improve-
ment in expectation for non-linear systems under certain conditions on the cost function and
demonstrate its performance on stochastic linear and nonlinear continuous control tasks.
In future work, we will explore synergies with sample based motion planning to efficiently
generate asymptotically optimal plans. We will also integrate the reachability-based do-
main expansion strategies of ABC-LMPC with model-based RL to learn safe and efficient
controllers when dynamics are learned from experience.

63

Chapter 6

SAVED: Safe Deep Model-Based RL
for Sparse Cost Robotic Tasks

To use RL in the real world, algorithms need to be efficient, easy to use, and safe, motivating
methods which are reliable even with significant dynamical uncertainty. Deep model-based
reinforcement learning (deep MBRL) is of significant interest because of its sample efficiency
advantages over model-free methods in a variety of tasks, such as assembly, locomotion,
and manipulation [87, 86, 112, 138, 139, 108, 140]. However, past work in deep MBRL
typically requires dense hand-engineered cost functions, which are hard to design and can
lead to unintended behavior [141]. It would be easier to simply specify task completion in the
cost function, but this setting is challenging due to the lack of expressive supervision. This
motivates using demonstrations, which allow the user to roughly specify desired behavior
without extensive engineering effort. However, providing high-performing trajectories of the
task may be challenging, motivating methods that can rapidly improve upon suboptimal
demonstrations that may be supplied via a PID controller or kinesthetically. Furthermore,
in many robotic tasks, specifically in domains such as surgery, safe exploration is critical to
ensure that the robot does not damage itself or cause harm to its surroundings. To enable
this, deep MBRL algorithms must be able to satisfy user-specified (and possibly nonconvex)
state-space constraints.

We develop a method to efficiently use deep MBRL in dynamically uncertain environ-
ments with both sparse costs and complex constraints. We address the difficulty of hand-
engineering cost functions by using a small number of suboptimal demonstrations to provide
a signal about task progress in sparse cost environments, which is updated based on agent
experience. Then, to enable stable policy improvement and constraint satisfaction, we im-
pose two probabilistic constraints to (1) constrain exploration by ensuring that the agent
can plan back to regions in which it is confident in task completion and (2) leverage un-
certainty estimates in the learned dynamics to implement chance constraints [143] during
learning. The probabilistic implementation of constraints makes this approach broadly ap-
plicable, since it can handle settings with significant dynamical uncertainty, where enforcing
constraints exactly is difficult.

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 64

Figure 6.1: SAVED is able to safely learn maneuvers on the da Vinci surgical robot, which
is difficult to precisely control [142]. We demonstrate that SAVED is able to optimize
inefficient human demonstrations of a surgical knot-tying task, substantially improving on
demonstration performance with just 15 training iterations.

We introduce a new algorithm motivated by deep model predictive control (MPC) and
robust control, Safety Augmented Value Estimation from Demonstrations (SAVED), which
enables efficient learning for sparse cost tasks given a small number of suboptimal demon-
strations while satisfying the provided constraints. We specifically consider tasks with a
tight start state distribution and fixed, known goal set. SAVED is evaluated on MDPs with
unknown dynamics, which are iteratively estimated from experience, and with a cost func-
tion that only indicates task completion. The contributions of this work are (1) a novel
method for constrained exploration driven by confidence in task completion, (2) a technique
for leveraging model uncertainty to probabilistically enforce complex constraints, enabling
obstacle avoidance or optimizing demonstration trajectories while maintaining desired prop-
erties, (3) experimental evaluation against 3 state-of-the-art model-free and model-based RL
baselines on 8 different environments, including simulated experiments and physical maneu-
vers on the da Vinci surgical robot. Results suggest that SAVED achieves superior sample
efficiency, success rate, and constraint satisfaction rate across all domains considered and
can be applied efficiently and safely for learning directly on a real robot.

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 65

6.1 Related work

There is significant interest in model-based planning and deep MBRL [138, 139, 140, 144,
86, 87] due to the improvements in sample efficiency when planning over learned dynamics
compared to model-free methods for continuous control [103, 62]. However, most prior
deep MBRL algorithms use hand-engineered dense cost functions to guide exploration and
planning, which we avoid by using demonstrations to provide signal about delayed costs.
Demonstrations have been leveraged to accelerate learning for a variety of model-free RL
algorithms, such as Deep Q Learning [145] and DDPG [146, 147], but model-free methods
are typically less sample efficient and cannot anticipate constraint violations since they learn
reactive policies [148]. Demonstrations have also been leveraged in model-based algorithms,
such as in motion planning with known dynamics [149] and for seeding a learned dynamics
model for fast online adaptation using iLQR and a dense cost [140], distinct from the task
completion based costs we consider. Unlike traditional motion planning algorithms, which
generate open-loop plans to a goal configuration when dynamics are known, we consider
designing a closed-loop controller that operates in stochastic dynamical systems where the
system dynamics are initially unknown and iteratively estimated from data. Finally, Brown
et al. [29] use inverse RL to significantly outperform suboptimal demonstrations, but do not
enforce constraints or consistent task completion during learning.

In iterative learning control (ILC), the controller tracks a predefined reference trajectory
and data from each iteration is used to improve closed-loop performance [150]. Rosolia,
Zhang, and Borrelli [151] and Rosolia and Borrelli [109, 111] provide a reference-free algo-
rithm to iteratively improve the performance of an initial trajectory by using a safe set and
terminal cost to ensure recursive feasibility, stability, and local optimality given a known,
deterministic nonlinear system or stochastic linear system under certain regularity assump-
tions. In contrast to Rosolia, Zhang, and Borrelli [151] and Rosolia and Borrelli [109, 111],
we consider designing a similar controller in stochastic non-linear dynamical systems where
the dynamics are unknown and iteratively estimated from experience. Thus, SAVED uses
function approximation to estimate a dynamics model, value function, and safe set. There
has also been significant interest in safe RL [152], typically focusing on exploration while sat-
isfying a set of explicit constraints [153, 154, 155], satisfying specific stability criteria [156],
or formulating planning via a risk sensitive Markov Decision Process [157, 158]. Distinct
from prior work in safe RL and control, SAVED can be successfully applied in settings with
both uncertain dynamics and sparse costs by using probabilistic constraints to constrain
exploration to feasible regions during learning.

6.2 Safety Augmented Value Estimation from

Demonstrations (SAVED)

This section describes how SAVED uses a set of suboptimal demonstrations to constrain
exploration while satisfying user-specified state space constraints. First, we discuss how

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 66

SAVED learns system dynamics and a value function to guide learning in sparse cost en-
vironments. Then, we motivate and discuss the method used to enforce constraints under
uncertainty to both ensure task completion during learning and satisfy user-specified state
space constraints.

6.2.1 Assumptions and Preliminaries

In this work, we consider stochastic, unknown dynamical systems with a cost function that
only identifies task completion. We outline the framework for MBRL using a standard
Markov Decision Process formulation. A finite-horizon Markov Decision Process (MDP) is a
tuple (X ,U , P (·, ·), T, C(·, ·)) where X is the feasible (constraint-satisfying) state space and
U is the control space. The stochastic dynamics model P maps a state and control input to
a probability distribution over states, T is the task horizon, and C is the cost function. A
stochastic control policy π maps an input state to a distribution over U .

We assume that (1) tasks are iterative in nature, and have a fixed low-variance start
state distribution and fixed, known goal set G. This is common in a variety of repetitive
tasks, such as assembly, surgical knot-tying, and suturing. We further assume that (2) the
user specifies an indicator function 1 (x ∈ X), which checks whether a state x is constraint-
satisfying. Finally, we assume that (3) a modest set of suboptimal but constraint satisfying
demos are available, for example from imprecise human teleoperation or a hand-tuned PID
controller. This enables rough specification of desired behavior without having to design a
dense cost function, allowing us to consider cost functions which only identify task comple-
tion: C(x, u) = 1GC (x), where G ⊂ X defines a goal set in the state space and GC is its
complement. We define task success by convergence to G at the end of the task horizon with-
out violating constraints. Note that under this definition of costs, the problem we consider
is equivalent to the shortest time control problem in optimal control, but with initially un-
known system dynamics which are iteratively estimated from experience. The applicability
of SAVED extends beyond this particular choice of cost function, but we focus on this class
due to its convenience and notorious difficulty for reinforcement learning algorithms [147].

Finally, we define the notion of a safe set to enable constrained policy improvement, which
is described further in Section 6.2.3. Recent MPC literature [111] motivates constraining
exploration to regions in which the agent is confident in task completion, which gives rise
to desirable theoretical properties when dynamics are known and satisfy certain regularity
conditions [151, 109, 111]. For a trajectory at iteration k, given by xk = {xkt |t ∈ N}, we
define the sampled safe set as

SSj =
⋃

k∈Mj

xk (6.1)

whereMj = {k ∈ [0, j) : limt→∞ xkt ∈ G} is the set of indices of all successful trajectories
before iteration j as in Rosolia and Borrelli [111]. SSj contains the states from all iterations
before j from which the agent controlled the system to G and is initialized from demonstra-
tions. A key operating principle of SAVED is to use SSj to guide exploration by ensuring

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 67

Figure 6.2: Task Completion Driven Exploration (left): A density model is used to
represent the region in state space where the agent has high confidence in task completion;
trajectory samples over the learned dynamics that do not have sufficient density at the end
of the planning horizon are discarded. The agent may explore outside the safe set as long
as a plan exists to guide the agent back to the safe set from the current state; Chance
Constraint Enforcement (right): Implemented by sampling imagined rollouts over
the learned dynamics for the same sequence of controls multiple times and estimating the
probability of constraint violation by the percentage of rollouts that violate a constraint.

that there always exists a way to plan back into a continuous approximation of SSj. This
allows for policy improvement while ensuring that the agent can always return to a state
from which it has previously completed the task, enabling consistent task completion during
learning.

6.2.2 Algorithm Overview

Deep Model Predictive Control

SAVED uses MPC to optimize costs over a sequence of controls at each state. However, when
using MPC, since the current control is computed by solving a finite-horizon approximation
to the infinite-horizon control problem, an agent may take shortsighted controls which may
make it impossible to complete the task safely, such as planning the trajectory of a race
car over a short horizon without considering an upcoming curve [159]. Additionally, the
planner receives no feedback or information about task progress when using the indicator
task functions used in this work. Thus, to guide exploration in temporally-extended tasks, we
solve the problem in equation 6.2a, which includes a learned value function in the objective.
Note that UH refers to the set of H length control sequences while XH+1 refers to the set of
H + 1 length state sequences. This corresponds to the standard objective in MPC with an
appended value function V π

ϕ , which provides a terminal cost estimate for the current policy
at the end of the planning horizon.

While prior work in deep MBRL [87, 86] has primarily focused on planning over learned
dynamics, we introduce a learned value function, which is initialized from demonstrations to
provide initial signal, to guide planning even in sparse cost settings. The learned dynamics

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 68

model fθ and value function V π
ϕ are each represented with a finite probabilistic ensemble of

n neural networks (in this work we pick n = 5), as is used to represent system dynamics
in Chua et al. [86]. The probabilistic ensemble consists of a set of neural networks, each
of which output the parameters of a conditional axis-aligned Gaussian distribution and are
trained on bootstrapped samples from the training dataset using a maximum likelihood
objective as in [86]. Each conditional Gaussian is used to model aleatoric uncertainty in the
dynamics, while the bootstrapped ensemble of these models captures epistemic uncertainty
due to data availability in different regions of the MDP. SAVED uses the learned stochasticity
of the models to enforce probabilistic constraints when planning under uncertainty. These
functions are initialized from demonstrations and updated from data collected from each
training iteration. See supplementary material for further details on how these networks are
trained.

Probabilistic Constraints

The core novelties of SAVED are the additional probabilistic constraints in 6.2c to encourage
task completion driven exploration and enforce user-specified chance constraints. First, a
non-parametric density model ρ is trained on SSj, which includes states from prior successful
trajectories, including those from demonstrations. ρ constraints exploration by requiring
xt+H to fall in a region with high probability of task completion. This enforces cost-driven
constrained exploration and iterative improvement, enabling reliable performance even with
sparse costs. Note that the agent can still explore new regions, as long as it has a plan that
can take it back to the safe set with high probability. Second, we require all elements of xt:t+H
to fall in the feasible region XH+1 with probability at least β, which enables probabilistic
enforcement of state space constraints. In Section 6.2.3, we discuss the methods used for task
completion driven exploration and in Section 6.2.4, we discuss how probabilistic constraints
are enforced during learning.

In summary, SAVED solves the following optimization problem at each timestep based
on the current state of the system, xt, which is measured from observations:

u∗t:t+H−1 = argmin
ut:t+H−1∈UH

Ext:t+H

[
H−1∑
i=0

C(xt+i, ut+i) + V π
ϕ (xt+H)

]
(6.2a)

s.t. xt+i+1 ∼ fθ(xt+i, ut+i) ∀i ∈ {0, . . . ,H − 1} (6.2b)

ρα(xt+H) > δ,P
(
xt:t+H ∈ XH+1

)
≥ β (6.2c)

6.2.3 Task Completion Driven Exploration

Under certain regularity assumptions, if states at the end of the MPC planning horizon are
constrained to fall in the sampled safe set SSj, iterative improvement, controller feasibility,
and convergence are guaranteed given known stochastic linear dynamics or deterministic

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 69

Algorithm 2 Safety Augmented Value Estimation from Demonstrations (SAVED)

Require: Replay Buffer R; value function V π
ϕ (x), dynamics model f̂θ(x

′|x, u), and safety
density model ρα(x) all seeded with demos; kernel and chance constraint parameters α
and β.
for i ∈ {1, . . . , N} do
Sample x0 from start state distribution
for t ∈ {1, . . . , T − 1} do
Pick u∗t:t+H−1 by solving eq. 6.2 using CEM
Execute u∗t and observe xt+1

R = R∪ {(xt, u∗t , C(xt, u∗t), xt+1)}
end for
if xT ∈ G then
Update safety density model ρα with x0:T

end if
Optimize θ and ϕ with R

end for

nonlinear dynamics [111, 151, 109]. The way we constrain exploration in SAVED builds
on this prior work, but we note that unlike Rosolia and Borrelli [111], Rosolia, Zhang,
and Borrelli [151], and Rosolia and Borrelli [109], SAVED is designed for settings in which
dynamics are completely unknown, nonlinear, and stochastic. As illustrated in Figure 6.2,
the mechanism for constraining exploration allows the agent to generate trajectories that
leave the safe set as long as a plan exists to navigate back in, enabling policy improvement.
By adding newly successful trajectories to the safe set, the agent is able to further improve
its performance. Note that since the safety density model and value function are updated
on-policy, the support of the safety density model expands over iterations, while the value
function is updated to reflect the current policy. This enables SAVED to improve upon the
performance of the demonstrations since on each iteration, it simply needs to be able to plan
back to the high support region of a safety density model fit on states from which SAVED
was able to complete the task from all prior iterations rather than just those visited by the
demonstrations.

Since SSj is a discrete set, we introduce a continuous approximation by fitting a density
model ρ to SSj. Instead of requiring that xt+H ∈ SSj, SAVED instead enforces that
ρα(xt+H) > δ, where α is a kernel width parameter (constraint 6.2c). Since the tasks
considered in this work have sufficiently low (< 17) state space dimension, kernel density
estimation provides a reasonable approximation. We implement a top-hat kernel density
model using a nearest neighbors classifier with a tuned kernel width α and use δ = 0 for
all experiments. Thus, all states within Euclidean distance α from the closest state in SSj
are considered safe under ρα, representing states in which the agent is confident in task
completion. As the policy improves, it may forget how to complete the task from very old
states in SSj, so such states are evicted from SSj to reflect the current policy when fitting

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 70

ρα. We discuss how these constraints are implemented in Section 6.2.4, with further details
in the supplementary material. In future work, we will investigate implicit density estimation
techniques to scale to high-dimensional settings.

6.2.4 Chance Constraint Enforcement

SAVED leverages uncertainty estimates in the learned dynamics to enforce probabilistic con-
straints on its trajectories. This allows SAVED to handle complex, user-specified state space
constraints to avoid obstacles or maintain certain properties of demonstrations without a
user-shaped or time-varying cost function. During MPC trajectory optimization, control
sequences are sampled from a truncated Gaussian distribution that is iteratively updated
using the cross-entropy method (CEM) [86]. Each control sequence is simulated multiple
times over the stochastic dynamics model as in [86] and the average return of the simula-
tions is used to score the sequence. However, unlike Chua et al. [86], we implement chance
constraints by discarding control sequences if more than 100 · (1 − β)% of the simulations
violate constraints (constraint 6.2c), where β is a user-specified tolerance. Note that the β
parameter controls the tradeoff between ensuring sufficient exploration to learn the dynamics
and satisfying specified constraints. This is illustrated in Figure 6.2. The task completion
constraint (Section 6.2.3) is implemented similarly, with control sequences discarded if any
of the simulated rollouts do not terminate in a state with sufficient density under ρα.

6.2.5 Algorithm Pseudocode

We summarize SAVED in Algorithm 2. The dynamics, value function, and state density
model are initialized from suboptimal demonstrations. At each iteration, we sample a start
state and then controls are generated by solving equation 6.2 using the cross-entropy method
(CEM) at each timestep. Transitions are collected in a replay buffer to update the dynamics,
value function, and safety density model at the end of each iteration. The state density model
is only updated if the last trajectory was successful.

6.3 Experiments

We evaluate SAVED on simulated continuous control benchmarks and on real robotic tasks
with the da Vinci Research Kit (dVRK) [105] against state-of-the-art deep RL algorithms
and find that SAVED outperforms all baselines in terms of sample efficiency, success rate, and
constraint satisfaction rate during learning. All tasks use C(x, u) = 1GC (x) (Section 6.2.1),
which yields a controller which maximizes the time spent inside the goal set. All algorithms
are given the same demonstrations and are evaluated by measuring iteration cost, success
rate, and constraint satisfaction rate (if applicable). Tasks are only considered successfully
completed if the agent reaches and stays in G until the end of the episode. Constraint
violation results in early termination of the episode.

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 71

For all experiments, we run each algorithm 3 times to control for stochasticity in training
and plot the mean iteration cost vs. time with error bars indicating the standard deviation
over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction
rate, we show bar plots indicating the median value over the 3 runs with error bars between
the lowest and highest value over the 3 runs. When reporting the iteration cost of SAVED and
all baselines, any constraint violating trajectory is reported by assigning it the maximum
possible iteration cost T , where T is the task horizon. Thus, any constraint violation is
treated as a catastrophic failure. We plan to explore soft constraints as well in future work.
Furthermore, for all simulated tasks, we also report best achieved iteration costs, success
rates, and constraint satisfaction rates for model-free methods after 10,000 iterations since
they take much longer to start performing the task even when supplied with demonstrations.

For SAVED, dynamics models and value functions are each represented with a proba-
bilistic ensemble of 5, 3 layer neural networks with 500 hidden units per layer with swish
activations as used in Chua et al. [86]. To plan over the dynamics, the TS-∞ trajectory
sampling method from [86] is used. We use 5 and 30 training epochs for dynamics and
value function training when initializing from demonstrations. When updating the models
after each training iteration, 5 and 15 epochs are used for the dynamics and value functions
respectively. Value function initialization is done by training the value function using the
true cost-to-go estimates from demonstrations. However, when updated on-policy, the value
function is trained using temporal difference error (TD-1) on a replay buffer containing prior
states. The safety density model, ρ, is trained on a fixed history of states from which the
agent was able to reach the goal (safe states), where this history can be tuned based on
the experiment (see supplement). We represent the density model using kernel density es-
timation with a tophat kernel. Instead of modifying δ for each environment, we set δ = 0
(keeping points with positive density), and modify α (the kernel parameter/width), which
works well in practice. See the supplementary material for additional experiments, videos,
and ablations with respect to choice of α, β, and demonstration quantity/quality. We also
include further details on baselines, network architectures, hyperparameters, and training
procedures.

6.3.1 Baselines

We consider the following set of model-free and model-based baseline algorithms. To enforce
constraints for model-based baselines, we augment the algorithms with the simulation based
method described in Section 6.2.4. Because model-free baselines have no such mechanism
to readily enforce constraints, we instead apply a very large cost when constraints are vio-
lated. See supplementary material for an ablation of the reward function used for model-free
baselines.

1. Behavior Cloning (Clone): Supervised learning on demonstration trajectories.

2. PETS from Demonstrations (PETSfD): Probabilistic ensemble trajectory sam-
pling (PETS) from Chua et al [86] with the dynamics model initialized with demo

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 72

trajectories and planning horizon long enough to plan to the goal (judged by best
performance of SAVED).

3. PETSfD Dense: PETSfD with tuned dense cost.

4. Soft Actor Critic from Demonstrations (SACfD): Model-free RL algorithm, Soft
Actor Critic [103], where demo transitions are used for training initially.

5. Overcoming Exploration in Reinforcement Learning from Demonstrations
(OEFD): Model-free algorithm from Nair et al. [147] which combines model-free RL
with a behavior cloning loss on the demonstrations to accelerate learning.

6. SAVED (No SS): SAVED without the sampled safe set constraint described in Sec-
tion 6.2.3.

6.3.2 Simulated Navigation

To evaluate whether SAVED can efficiently and safely learn temporally extended tasks with
nonconvex constraints, we consider a 4-dimensional (x, y, vx, vy) navigation task in which a
point mass is navigating to a goal set, which is a unit ball centered at the origin. The agent
can exert force in cardinal directions and experiences drag coefficient ψ and Gaussian process
noise zt ∼ N (0, σ2I) in the dynamics. We use ψ = 0.2 and σ = 0.05 in all experiments in
this domain. Demonstrations trajectories are generated by guiding the robot along a very
suboptimal hand-tuned trajectory for the first half of the trajectory before running LQR on
a quadratic approximation of the true cost. Gaussian noise is added to the demonstrator
policy. Additionally, we use a planning horizon of 15 for SAVED and 25, 30, 30, 35 for
PETSfD for tasks 1-4 respectively. The 4 experiments run on this environment are:

1. Long navigation task to the origin: x0 = (−100, 0) We use 50 demonstrations
with average return of 73.9 and kernel width α = 3.

2. Large obstacle blocking the x-axis: This environment is difficult for approaches
that use a Euclidean norm cost function due to local minima. We use 50 demonstrations
with average return of 67.9, kernel width α = 3, and chance constraint parameter β = 1.

3. Large obstacle with a small channel near the x-axis: This environment is
difficult for the algorithm to optimally solve since the iterative improvement of paths
taken by the agent is constrained. We use x0 = (−50, 0), 50 demonstrations with
average return of 67.9, kernel width α = 3, and chance constraint parameter β = 1.

4. Large obstacle surrounds the goal set with a small channel for entry: This
environment is very difficult to solve without demonstrations. We use x0 = (−50, 0),
100 demonstrations with average return of 78.3, kernel width α = 3, and chance
constraint parameter β = 1.

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 73

Figure 6.3: Navigation Domains: SAVED is evaluated on 4 navigation tasks. Tasks 2-4
contain obstacles, and task 3 contains a channel for passage to G near the x-axis. SAVED
learns significantly faster than all RL baselines on tasks 2 and 4. In tasks 1 and 3, SAVED
has lower iteration cost than baselines using sparse costs, but does worse than PETSfD
Dense, which is given dense Euclidean norm costs to find the shortest path to the goal. For
each task and algorithm, we report success and constraint satisfaction rates over the first 100
training iterations and also over the first 10,000 iterations for SACfD and OEFD. We observe
that SAVED has higher success and constraint satisfaction rates than other RL algorithms
using sparse costs across all tasks, and even achieves higher rates in the first 100 training
iterations than model-free algorithms over the first 10,000 iterations.

SAVED has a higher success rate than all other RL baselines using sparse costs, even
including model-free baselines over the first 10,000 iterations, while never violating con-
straints across all navigation tasks. Furthermore, this performance advantage is amplified
with task difficulty. Only Clone and PETSfD Dense ever achieve a higher success rate, but
Clone does not improve upon demonstration performance (Figure 6.3) and PETSfD Dense
has additional information about the task. Furthermore, SAVED learns significantly more
efficiently than all RL baselines on all navigation tasks except for tasks 1 and 3, in which
PETSfD Dense with a Euclidean norm cost function finds a better solution. While SAVED
(No SS) can complete the tasks, it has a much lower success rate than SAVED, especially in
environments with obstacles as expected, demonstrating the importance of the sampled safe
set constraint. Note that SACfD, OEFD, and PETSfD make essentially no progress in the

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 74

Figure 6.4: Simulated Robot Experiments Performance: SAVED achieves better per-
formance than all baselines on both tasks. We use 20 demonstrations with average iteration
cost of 94.6 for the reacher task and 100 demonstrations with average iteration cost of 34.4
for the pick and place task. For the reacher task, the safe set constraint does not improve
performance, likely because the task is very simple, but for pick and place, we see that the
safe set constraint adds significant training stability.

Figure 6.5: Physical Surgical Knot-Tying: Training Performance: After just 15
iterations, the agent completes the task relatively consistently with only a few failures, and
converges to a iteration cost of 22, faster than demos, which have an average iteration cost of
34. In the first 50 iterations, both baselines mostly fail, and are less efficient than demos when
they do succeed; Trajectories: SAVED quickly learns to speed up with only occasional
constraint violations.

first 100 iterations and never complete any of the tasks in this time, although they mostly
satisfy constraints. After 10,000 iterations of training, SACfD and OEFD achieve average
best iteration costs of 23.7 and 23.8 respectively on task 1, 21 and 21.7 respectively on task
2, 17.3 and 19 respectively on task 3, and 23.7 and 40 respectively on task 4. Thus, we see
that SAVED achieves comparable performance in the first 100 iterations to the asymptotic
performance of model-free RL algorithms while maintaining consistent task completion and
constraint satisfaction during learning.

6.3.3 Simulated Robot Experiments

To evaluate whether SAVED also outperforms baselines on standard unconstrained envi-
ronments, we consider sparse versions of two common simulated robot tasks: the torque-

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 75

controlled PR2 Reacher environment from Chua et al. [86] with a fixed goal and on a pick
and place task with a simulated, position-controlled Fetch robot from [160]. The reacher task
involves controlling the end-effector of a simulated PR2 robot to a small ball in R3. The state
representation consists of 7 joint positions, 7 joint velocities, and the goal position. The goal
set is specified by a 0.05m radius Euclidean ball in state space. Suboptimal demonstrations
are generated with average cost 94.6 by training PETS with a shaped cost function that
heavily penalizes large torques. We use α = 15 for SAVED and a planning horizon of 25
for both SAVED and PETSfD. SACfD and OEFD achieve a best iteration cost of 9 and 60
respectively over 10,000 iterations of training averaged over the 3 runs. The pick and place
task involves picking up a block from a fixed location on a table and also guiding it to a small
ball in R3. The task is simplified by automating the gripper motion, which is difficult for
SAVED to learn due to the bimodality of gripper controls, which is hard to capture with the
unimodal truncated Gaussian distribution used during CEM sampling. The state represen-
tation for the task consists of (end effector relative position to object, object relative position
to goal, gripper jaw positions). Suboptimal demonstrations are generated by hand-tuning a
controller that slowly but successfully completes the task with average iteration cost 34.4.
We use a safe set buffer size of 5000 and α = 0.05. We use a planning horizon of 10 for
SAVED and 20 for PETSfD. SACfD and OEFD both achieve a best iteration cost of 6 over
10,000 iterations of training averaged over the 3 runs.

SAVED learns faster than all baselines on both tasks (Figure 6.4) and exhibits signifi-
cantly more stable learning in the first 100 and 250 iterations for the reacher and pick and
place tasks respectively. However, while SAVED is substantially more sample efficient than
SACfD and OEFD for these tasks, both algorithms achieve superior asymptotic performance.

6.3.4 Physical Robot Experiments

We evaluate the ability of SAVED to learn a surgical knot-tying task with nonconvex state
space constraints on the da Vinci Research Kit (dVRK) [105]. The dVRK is cable-driven
and has relatively imprecise controls, motivating model learning [142]. Furthermore, safety
is paramount due to the cost and delicate structure of the arms. The goal of these tasks is to
speed up demonstration trajectories while still maintaining properties of the trajectories that
result in a task completion. This is accomplished by constraining learned trajectories to fall
within a tight, 1 cm tube of the demos. The goal set is represented with a 1 cm ball in R3 and
the robot is controlled via delta-position control, with a maximum control magnitude of 1
cm during learning for safety. Robot experiments are very time consuming due to interactive
data collection, so training RL algorithms on limited physical hardware is difficult without
sample efficient algorithms. We include additional experiments on a Figure-8 tracking task
in the supplementary material.

CHAPTER 6. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 76

Surgical Knot-Tying

SAVED is used to optimize demonstrations of a surgical knot-tying task on the dVRK, using
the same multilateral motion as in [161]. Demonstrations are hand-engineered for the task,
and then policies are optimized for one arm (arm 1), while a hand-engineered policy is used
for the other arm (arm 2). While arm 1 wraps the thread around arm 2, arm 2 simply
moves down, grasps the other end of the thread, and pulls it out of the phantom as shown
in Figure 6.1. Thus, we only expect significant performance gain by optimizing the policy
for the portion of the arm 1 trajectory which involves wrapping the thread around arm 2.
We only model the motion of the end-effectors in 3D space. We use β = 0.8, α = 0.05,
planning horizon 10, and 100 demonstrations with average cost 34.4 for SAVED. We use a
planning horizon of 20 and β = 1. for PETSfD. SAVED quickly learns to smooth out demo
trajectories, with a success rate of over 75% (Figure 6.5) during training, while baselines are
unable to make sufficient progress in this time. PETSfD rarely violates constraints, but also
almost never succeeds, while SACfD almost always violates constraints and never completes
the task. Training SAVED directly on the real robot for 50 iterations takes only about an
hour, making it practical to train on a real robot for tasks where data collection is expensive.
At execution-time (post-training), we find that SAVED is very consistent, successfully tying
a knot in 20/20 trials with average iteration cost of 21.9 and maximum iteration cost of 25
for the arm 1 learned policy, significantly more efficient than demos which have an average
iteration cost of 34. See supplementary material for trajectory plots of the full knot-tying
trajectory and the Figure-8 task.

6.4 Discussion and Future Work

We present SAVED, a model-based RL algorithm that can efficiently learn a variety of
robotic control tasks in the presence of dynamical uncertainty, sparse cost feedback, and
complex constraints by using suboptimal demonstrations to constrain exploration to regions
in which the agent is confident in task completion. We then empirically evaluate SAVED on
6 simulated benchmarks and on a knot-tying task on a real surgical robot. Results suggest
that SAVED is more sample efficient and has higher success and constraint satisfaction rates
than all RL baselines and can be efficiently and safely trained on a real robot. In future
work, we will explore convergence and safety guarantees for SAVED and extensions to a
wide distribution of start states and goal sets. Additionally, a limitation of SAVED is that
solving the MPC objective with CEM makes high frequency control difficult. In future work,
we will explore distilling the learned controller into a reactive policy to enable fast policy
evaluation in practice.

77

Chapter 7

LS3: Latent Space Safe Sets for
Long-Horizon Visuomotor Control of
Sparse Reward Iterative Tasks

Visual planning over learned forward dynamics models is a popular area of research in robotic
control from images [162, 163, 164, 165, 166, 167, 168], as it enables closed-loop, model-
based control for tasks where the state of the system is not directly observable or difficult
to analytically model, such as the configuration of a sheet of fabric or segment of cable.
These methods learn predictive models over either images or a learned latent space, which
can then be used to plan actions which maximize some task reward. While these approaches
have significant promise, there are several open challenges in learning policies from visual
observations. First, reward specification is particularly challenging for visuomotor control
tasks, because high-dimensional observations often do not expose the necessary features
required to design dense, informative reward functions [169], especially for long-horizon tasks.
Second, while many prior reinforcement learning methods have been successfully applied to
image-based control tasks [170, 171, 172, 173, 174], learning policies from image observations
often requires extensive exploration due to the high dimensionality of the observation space
and the difficulties in reward specification, making safe and efficient learning exceedingly
challenging.

One promising strategy for efficiently learning safe control policies is to learn a safe
set [111, 175], which captures the set of states from which the agent is known to behave safely,
which is often reformulated as the set of states where it has previously completed the task.
When used to restrict exploration, this safe set can be used to enable highly efficient and safe
learning [111, 176, 106], as exploration is restricted to states in which the agent is confident
in task success. However, while these safe sets can give rise to algorithms with a number of
appealing theoretical properties such as convergence to a goal set, constraint satisfaction, and
iterative improvement [111, 176, 109], using them for controller design for practical problems
requires developing continuous approximations at the expense of maintaining theoretical
guarantees [106]. This choice of continuous approximation is a key element in determining

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 78

the applications to which these safe sets can be used for control.
Prior works have presented approaches which collect a discrete safe set of states from

previously successful trajectories and represent a continuous relaxation of this set by con-
structing a convex hull of these states [111] or via kernel density estimation with a tophat
kernel function [106]. While these approaches have been successful for control tasks with
low-dimensional states, extending them to high-dimensional observations presents two key
challenges: (1) scalability: these prior methods cannot be efficiently applied when the num-
ber of observations in prior successful trajectories is large, as querying safe set inclusion
scales linearly with number of samples it contains and (2) representation capacity: both of
these prior approaches do not scale well to high dimensional observations and are limited in
the space of continuous sets that they can efficiently represent. Applying these ideas to vi-
suomotor control is even more challenging, since images do not directly expose details about
the system state or dynamics that are typically needed for formal controller analysis [111,
176, 177].

This work makes several contributions. First, we introduce a scalable continuous approx-
imation method which makes it possible to leverage safe sets for visuomotor policy learning.
The key idea is to reframe the safe set approximation as a binary classification problem in a
learned latent space, where the objective is to distinguish states from successful trajectories
from those in unsuccessful trajectories. Second, we present Latent Space Safe Sets (LS3), a
model-based RL algorithm which encourages the agent to maintain plans back to regions in
which it is confident in task completion, even when learning in high dimensional spaces. This
constraint makes it possible to define a control strategy to (1) improve safely by encouraging
consistent task completion (and therefore avoid unsafe behavior) and (2) learn efficiently
since the agent only explores promising states in the immediate neighborhood of those in
which it was previously successful. Third, we present simulation experiments on 3 visuomo-
tor control tasks which suggest that LS3 can learn to improve upon demonstrations more
safely and efficiently than prior algorithms. Fourth, we conduct physical experiments on a
vision-based cable routing task which suggest that LS3 can learn more efficiently than prior
algorithms while consistently completing the task and satisfying constraints during learning.

7.1 Related Work

7.1.1 Safe, Iterative Learning Control

In iterative learning control (ILC), the agent tracks a reference trajectory and uses data from
controller rollouts to refine tracking performance [150]. Rosolia, Zhang, and Borrelli [151] and
Rosolia and Borrelli [109, 111] present a new class of algorithms, known as Learning Model
Predictive Control (LMPC), which are reference-free and instead iteratively improve upon
the performance of an initial feasible trajectory. To achieve this, Rosolia, Zhang, and Borrelli
[151] and Rosolia and Borrelli [109, 111] use data from controller rollouts to learn a safe set
and value function, with which recursive feasibility, stability, and local optimality can be

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 79

Unsafe PlanUnsafe Plan

Safe Plans

Latent Space Obstacle ()

Latent Space
Safe Set ()

1. Observe Image 2. Encode
Image

3. Sample Trajectories, Check Constraints, Sort by Value
Candidate Action

Plans

Figure 7.1: Latent Space Safe Sets (LS3): At time t, LS3 observes an image st of the
environment. The image is first encoded to a latent vector zt ∼ fenc(zt|st). Then, LS3 uses a
sampling-based optimization procedure to optimize H-length action sequences by sampling
H-length latent trajectories over the learned latent dynamics model fdyn. For each sampled
trajectory, LS3 checks whether latent space obstacles are avoided and if the terminal state in
the trajectory falls in the latent space safe set. The terminal state constraint encourages the
algorithm to maintain plans back to regions of safety and task confidence, but still enables
exploration. For feasible trajectories, the sum of rewards and value of the terminal state are
computed and used for sorting. LS3 executes the first action in the optimized plan and then
performs this procedure again at the next timestep.

guaranteed given a known, deterministic nonlinear system or stochastic linear system under
certain regularity assumptions. However, a core challenge with these algorithms is that
they assume known system dynamics, and cannot be applied to high-dimensional control
problems. Thananjeyan* et al. [106] extends the LMPC framework to higher dimensional
settings in which system dynamics are unknown and must be learned, but the visuomotor
control setting introduces a number of new challenges as learned system dynamics, safe
sets, and value functions must flexibly scale to visual inputs. Richards, Berkenkamp, and
Krause [175] designs expressive safe sets for fixed policies using neural network classifiers
with Lyapunov constraints. In contrast, LS3 constructs a safe set for an improving policy by
optimizing a task cost function instead of uniformly expanding across the state space.

7.1.2 Model Based Reinforcement Learning

There has been significant recent progress in algorithms which combine ideas from model-
based planning and control with deep learning [138, 139, 140, 144, 86, 87]. These algorithms
are gaining popularity in the robotics community as they enable leaning complex policies
from data while maintaining some of the sample efficiency and safety benefits of classical
model-based control techniques. However, these algorithms typically require hand-engineered
dense cost functions for task specification, which can often be difficult to provide, especially in
high-dimensional spaces. This motivates leveraging demonstrations (possibly suboptimal) to

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 80

provide an initial signal regarding desirable agent behavior. There has been some prior work
on leveraging demonstrations in model-based algorithms such as Quinlan and Khatib [149]
and Ichnowski et al. [178], which use model-based control with known dynamics to refine ini-
tially suboptimal motion plans, and Fu, Levine, and Abbeel [140], which uses demonstrations
to seed a learned dynamics model for fast online adaptation using iLQR [140]. Thananjeyan*
et al. [106] and Zhu et al. [179] present ILC algorithms which rapidly improve upon sub-
optimal demonstrations when system dynamics are unknown. However, these algorithms
either require knowledge of system dynamics [149, 178] or are limited to low-dimensional
state spaces [140, 106, 179] and cannot be flexibly applied to visuomotor control tasks.

7.1.3 Reinforcement Learning from Pixels

Reinforcement learning and model-based planning from visual observations is gaining sig-
nificant recent interest as RGB images provide an easily available observation space for
robot learning [162, 180]. Recent work has proposed a number of model-free and model-
based algorithms that have seen success in laboratory settings in a number of robotic tasks
when learning from visual observations [181, 182, 171, 183, 173, 174, 162, 184, 180]. How-
ever, two core issues that prevent application of many RL algorithms in practice, inefficient
exploration and safety, are significantly exacerbated when learning from high-dimensional
visual observations in which the space of possible behaviors is very large and the features
required to determine whether the robot is safe are not readily exposed. There has been
significant prior work on addressing inefficiencies in exploration for visuomotor control such
as latent space planning [163, 180, 184] and goal-conditioned reinforcement learning [174,
171]. However, safe reinforcement learning for visuomotor tasks has received substantially
less attention. Thananjeyan* et al. [46] and Kahn et al. [185] present reinforcement learning
algorithms which estimate the likelihood of constraint violations to avoid them [46] or reduce
the robot’s velocity [185]. Unlike these algorithms, which focus on presenting methods to
avoid violating user-specified constraints, LS3 additionally provides consistent task comple-
tion during learning by limiting exploration to the neighborhood of prior task successes. This
difference makes LS3 less susceptible to the challenges of unconstrained exploration present
in standard model-free reinforcement learning algorithms.

7.2 Problem Statement

We consider an agent interacting in a finite horizon goal-conditioned Markov Decision Pro-
cesses (MDP) which can be described with the tupleM = (S,G,A, P (·|·, ·), R(·, ·), µ, T). S
and A are the state and action spaces, P : S × A × S → [0, 1] maps a state and action
to a probability distribution over subsequent states, R : S × A × S → R is the reward
function, µ is the initial state distribution (s0 ∼ µ), and T is the time horizon. In this
work, the agent is only provided with RGB image observations st ∈ RW×H×3

+ = S, where
W and H are the image width and height in pixels, respectively. We consider iterative

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 81

tasks, where the agent must reach a fixed goal set G ⊆ S as efficiently as possible and the
support of µ is small. While there are a number of possible choices of reward functions
that would encourage fast convergence to G, providing shaped reward functions can be ex-
ceedingly challenging, especially when learning from high dimensional observations. Thus,
as in Thananjeyan* et al. [106], we consider a sparse reward function that only indicates
task completion: R(s, a, s′) = 0 if s′ ∈ G and −1 otherwise. To incorporate constraints,
we augmentM with an extra constraint indicator function C : S → {0, 1} which indicates
whether a state satisfies user-specified state-space constraints, such as avoiding known ob-
stacles. This is consistent with the modified CMDP formulation used in [46]. We assume
that R and C can be evaluated on the current state of the system, but may be approximated
using prior data for use during planning. We make this assumption because in practice we
plan over predicted future states, which may not be predicted at sufficiently high fidelity to
expose the necessary information to directly evaluate R and C during planning.

Given a policy π : S → A, we define its expected total return inM asRπ = Eπ,µ,P [
∑

tR(st, at)].
Furthermore, we define P π

C(s) as the probability of future constraint violation (within time
horizon T) under policy π from state s. The objective is to maximize the expected return
Rπ while maintaining a constraint violation probability lower than δC. This can be written
formally as follows:

π∗ = argmax
π∈Π

{Rπ : Es0∼µ [P π
C(s0)] ≤ δC} (7.1)

We assume that the agent is provided with an offline dataset D of transitions in the
environment of which some subset Dconstraint ⊊ D are constraint violating and some subset
Dsuccess ⊊ D appear in successful demonstrations from a suboptimal supervisor. As in [46],
Dconstraint contains examples of constraint violating behaviors (for example from prior runs
of different policies or collected under human supervision) so that the agent can learn about
states which violate user-specified constraints.

7.3 Latent Space Safe Sets (LS3)

We describe how LS3 uses demonstrations and online interaction to safely learn iteratively
improving policies. Section 7.3.1 describes how we learn a low-dimensional latent repre-
sentation of image observations to facilitate efficient model-based planning. To enable this
planning, we learn a probabilistic forward dynamics model as in [86] in the learned latent
space and models to estimate whether plans will likely complete the task (Section 7.3.2) and
to estimate future rewards and constraint violations (Section 7.3.3) from predicted trajec-
tories. In Section 7.3.4, we discuss how these components are synthesized in LS3. Dataset
D is expanded using online rollouts of LS3 and used to update all latent space models (Sec-
tions 7.3.2 and 7.3.3) after every K rollouts. See Algorithm 3 and the supplement for further
details on training procedures and data collection.

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 82

Value FunctionLatent Space
Safe Set Goal Predictor

Constraint
Predictor

Observation Encoder

Latent Dynamics

Decoder

Start
Obstacle

Goal

Agent

Figure 7.2: LS3 Learned Models: LS3 learns a low-dimensional latent representation of
image-observations (Section 7.3.1) and learns a dynamics model, value function, reward
function, constraint classifier, and safe set for constrained planning and task-completion
driven exploration in this learned latent space. These models are then used for model-based
planning to maximize the total value of predicted latent states (Section 7.3.3) while enforcing
the safe set (Section 7.3.2) and user-specified constraints (Section 7.3.3).

Algorithm 3 Latent Space Safe Sets (LS3)

Require: offline dataset D, number of updates U
1: Train VAE encoder fenc and decoder fdec (Section 7.3.1) using data from D
2: Train dynamics fdyn, safe set classifier fS(Section 7.3.2), and the value function V goal

indicator fG, and constraint estimator fC (Section 7.3.3) using data from D.
3: for j ∈ {1, . . . , U} do
4: for k ∈ {1, . . . , K} do
5: Sample starting state s0 from µ.
6: for t ∈ {1, . . . , T} do
7: Choose and execute at (Section 7.3.4)
8: Observe st+1, reward rt, constraint ct.
9: D := D ∪ {(st, at, st+1, rt, ct)}
10: end for
11: end for
12: Update fdyn, V , fG, fC, and fS with data from D.
13: end for

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 83

7.3.1 Learning a Latent Space for Planning

Learning compressed representations of images has been a popular approach in vision based
control to facilitate efficient algorithms for planning and control which can reason about
lower dimensional inputs [163, 184, 167, 186, 187, 180]. To learn such a representation,
we train a β-variational autoencoder [188] on states in D to map states to a probability
distribution over a d-dimensional latent space Z. The resulting encoder network fenc(z|s) is
then used to sample latent vectors zt ∼ fenc(zt|st) to train a forward dynamics model, value
function, reward estimator, constraint classifier, safe set, and combine these elements to
define a policy for model-based planning. Motivated by Laskin et al. [189], during training
we augment inputs to the encoder with random cropping, which we found to be helpful
in learning representations that are useful for planning. For all environments we use a
latent dimension of d = 32, as in [163] and found that varying d did not significantly affect
performance.

7.3.2 Latent Safe Sets for Model-Based Control

LS3 learns a binary classifier for latent states to learn a latent space safe set that represents
states from which the agent has high confidence in task completion based on prior experience.
Because the agent can reach the goal from these states, they are safe: the agent can avoid
constraint violations by simply completing the task as before. While classical algorithms use
known dynamics to construct safe sets, we approximate this set using successful trajectories
from prior iterations.

At each iteration j, the algorithm collects K trajectories in the environment. We then
define the sampled safe set at iteration j, Sj, as the set of states from which the agent
has successfully navigated to G in iterations 0 through j of training, where demonstrations
trajectories are those collected at iteration 0. We refer to the dataset collecting all these states
as Dsuccess. This discrete set is difficult to plan to with continuous-valued state distributions
so we leverage data from Dsuccess (data in the sampled safe set), data from D \ Dsuccess
(data outside the sampled safe set), and the learned encoder from Section 7.3.1 to learn
a continuous relaxation of this set in latent space (the latent safe set). We train a neural
network with a binary cross-entropy loss to learn a binary classifier fS(·) that predicts the
probability of a state st with encoding zt being in Sj. To mitigate the negative bias that
appears when trajectories that start in safe regions fail, we utilize the intuition that if a state
st+1 ∈ Sj then it is likely that st is also safe. To do this, rather than just predict 1Sj , we
train fS with a recursive objective to predict max(1Sj , γSfS(st+1)). The relaxed latent safe
set is parameterized by the superlevel sets of fS, where the level δS is adaptively set during
execution: SjZ = {zt|fS(·)(zt) ≥ δS}.

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 84

7.3.3 Reward and Constraint Estimation

In this work, we define rewards based on whether the agent has reached a state s ∈ G, but we
need rewards that are defined on predictions from the dynamics, which may not correspond
to valid real images. To address this, we train a classifier fG : Z → {0, 1} to map the
encoding of a state to whether the state is contained in G using terminal states in Dsuccess
(which are known to be in G) and other states in D.

However, in the temporally-extended, sparse reward tasks we consider, reward prediction
alone is insufficient because rewards only indicate whether the agent is in the goal set, and
thus provide no signal on task progress unless the agent can plan to the goal set. To address
this, as in prior MPC-literature [106, 176, 111, 169], we train a recursively-defined value
function (details in the supplement). Similar to the reward function, we use the encoder
(Section 7.3.1) to train a classifier fC : Z → [0, 1] with data of constraint violating states
from Dconstraint and the constraint satisfying states in D \Dconstraint to map the encoding of
a state to the probability of constraint violation.

7.3.4 Model-Based Planning with LS3

LS3 aims to maximize total rewards attained in the environment while limiting constraint
violation probability within some threshold δC (equation 7.1).

We optimize an approximation of this objective over an H-step receding horizon with
model-predictive control. Precisely, LS3 solves the following optimization problem to gener-
ate an action to execute at timestep t:

argmax
at:t+H−1∈AH

Ezt:t+H

[
H−1∑
i=1

fG(zt+i) + V π(zt+H)

]
(7.2)

s.t. zt ∼ fenc(zt|st) (7.3)

zk+1 ∼ fdyn(zk+1|zk, ak) ∀k ∈ {t, . . . , t+H − 1} (7.4)

P̂
(
zt+H ∈ Sj−1

Z
)
≥ 1− δS (7.5)

P̂(zt+i ∈ ZC) ≤ δC ∀i ∈ {0, . . . , H − 1} (7.6)

In this problem, the expectations and probabilities are taken with respect to the learned,
probabilistic dynamics model fdyn(zt+1|zt, at). The optimization problem is solved approxi-
mately using the cross-entropy method (CEM) [190] which is a popular optimizer in model-
based RL [191, 106, 176, 192, 46].

The objective function is the expected sum of future rewards if the agent executes at:t+H−1

and then subsequently executes π (equation 7.2). First, the current state st is encoded to
zt (equation 7.3). Then, for a candidate sequence of actions at:t+H−1, an H-step latent
trajectory {zt+1, . . . , zt+H} is sampled from the learned dynamics fdyn (equation 7.4). LS3

constrains exploration using two chance constraints: (1) the terminal latent state in the plan
must fall in the safe set (equation 7.5) and (2) all latent states in the trajectory must satisfy

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 85

Figure 7.3: Experimental Domains: LS3 is evaluated on 3 long-horizon, image-based,
simulation environments: a visual navigation domain where the goal is to navigate the blue
point mass to the right goal set while avoiding the red obstacle, a 2 degree of freedom reacher
arm where the task is to navigate around a red obstacle to reach the yellow goal set, and
a sequential pushing task where the robot must push each of 3 blocks forward a target
displacement from left to right. We also evaluate LS3 on a physical, cable-routing task on a
da Vinci Surgical Robot, where the goal is to guide a red cable to a green target without the
cable or robot arm colliding with the blue obstacle. This requires learning visual dynamics,
because the agent must model how the rest of the cable will deform during manipulation to
avoid collisions with the obstacle.

user-specified state-space constraints (equation 7.6). ZC is the set of all latent states such that
the corresponding observation is constraint violating. The optimizer estimates constraint
satisfaction probabilities for a candidate action sequence by simulating it repeatedly over
fdyn.

The first chance constraint ensures the agent maintains the ability to return to safe states
where it knows how to do the task within H steps if necessary.

Because the agent replans at each timestep, the agent need not return to the safe set:
during training, the safe set expands, enabling further exploration. In practice, we set δS
for the safe set classifier fS adaptively as described in the supplement. The second chance
constraint encourages constraint violation probability of no more than δC. After solving the
optimization problem, the agent executes the first action in the plan: π(zt) = at where at is
the first element of a∗t:t+H−1, observes a new state, and replans.

7.4 Experiments

We evaluate LS3 on 3 robotic control tasks in simulation and a physical cable routing task on
the da Vinci Research Kit (dVRK) [105]. Safe RL is of particular interest for surgical robots
such as the dVRK due to its delicate structure, motivating safety, and relatively imprecise
controls [106, 142], motivating closed-loop control. We study whether LS3 can learn more
safely and efficiently than algorithms that do not structure exploration based on prior task
successes.

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 86

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50

Re
wa

rd
Pointbot Navigation

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50
Reacher

0 100 200 300 400 500
Training Trajectories

150

125

100

75

50

25
Sequential Pushing

Demonstrations SACfD AWAC SACfD + RRL LS3 (BC SS) LS3 (SS) Ours: LS3

Figure 7.4: Simulation Experiments Results: Learning curves showing mean and stan-
dard error over 10 random seeds. We see that LS3 learns more quickly than baselines and
ablations. Although SACfD and SACfD+RRL converge to similar reward values, LS3 is
much more sample efficient and stable across random seeds.

7.4.1 Comparisons

We evaluate LS3 in comparison to prior algorithms that behavior clone suboptimal demon-
strations before exploring online (SACfD) [193] or leverage offline reinforcement learning
to learn a policy using all offline data before updating the policy online (AWAC) [194].
For both of these comparisons we enforce constraints via a tuned reward penalty of λ for
constraint violations as in [195]. We also implement a version of SACfD with a learned
recovery policy (SACfD+RRL) using the Recovery RL algorithm [46] to use prior con-
straint violating data to try to avoid constraint violating states. We then compare LS3 to
an ablated version without the safe set constraint (just binary classification (BC)) in equa-
tion 7.5 (LS3 (−Safe Set)) to evaluate if the safe set promotes consistent task completion
and stable learning. Finally, we compare LS3 to an ablated version of the safe set classifier
(Section 7.3.2) without a recursive objective, where the classifier is just trained to predict
1Sj (LS3 (BC SS)). See the supplement for details on hyperparameters and offline data
used for LS3 and prior algorithms.

7.4.2 Evaluation Metrics

For each algorithm on each domain, we aggregate statistics over random seeds (10 for sim-
ulation experiments, 3 for the physical experiment), reporting the mean and standard error
across the seeds. We present learning curves that show the total sum reward for each train-
ing trajectory to study how efficiently LS3 and the comparisons learn each task. Because all
tasks use the sparse task completion based rewards defined in Section 7.2, the total reward
for a trajectory is the time to reach the goal set, where more negative rewards correspond
to slower convergence to G. Thus, for a task with task horizon T , a total reward greater
than −T implies successful task completion. The state is frozen in place upon constraint
violation until the task horizon elapses. We also report task success and constraint satisfac-
tion rates for LS3 and comparisons during learning to study (1) the degree to which task

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 87

completion influences sample efficiency and (2) how safely different algorithms explore. LS3

collects K = 10 trajectories in between training phases on simulated tasks and K = 5 in
between training phases for physical tasks, while the SACfD and AWAC comparisons update
their parameters after each timestep. This presents a metric in terms of the amount of data
collected across algorithms.

7.4.3 Domains

In simulation, we evaluate LS3 on 3 vision-based continuous control domains that are illus-
trated in Figure 7.3. We evaluate LS3 and comparisons on a constrained visual navigation
task (Pointmass Navigation) where the agent navigates from a fixed start state to a fixed
goal set while avoiding a large central obstacle. We study this domain to gain intuition and
visualize the learned value function, goal/constraint indicators, and safe set in Figure 7.2.
We then study a constrained image-based reaching task (Reacher) based on [196], where
the objective is to navigate the end effector of a 2-link planar robotic arm to a yellow goal
position without the end-effector entering a red stay out zone. We then study a challenging
sequential image-based robotic pushing domain (Sequential Pushing), in which the objective
is to push each of the 3 blocks forward on the table without pushing them to either side and
causing them to fall out of the workspace. Finally, we evaluate LS3 with an image-based
physical experiment on the da Vinci Research Kit (dVRK) [79] (Figure 7.3), where the ob-
jective is to guide the endpoint of a cable to a goal region without letting the cable or end
effector collide with an obstacle. The Pointmass Navigation and Reaching domains have a
task horizon of T = 100 while the Sequential Pushing domain and physical experiment have
task horizons of T = 150 and T = 50 respectively. See the supplement for more details on
all domains.

7.4.4 Simulation Results

We find that LS3 is able to learn more stably and efficiently than all comparisons across all
simulated domains while converging to similar performance within 250 trajectories collected
online (Figure 7.4). LS3 is able to consistently complete the task during learning, while the
comparisons, which do not learn a safe set to structure exploration based on prior successes,
exhibit much less stable learning. Additionally, in Table 7.1 and Table 7.2, we report the
task success rate and constraint violation rate of all algorithms during training. We find
that LS3 achieves a significantly higher task success rate than comparisons on all tasks. We
also find that LS3 violates constraints less often than comparisons on the Reacher task, but
violates constraints more often than SACfD and SACfD+RRL on the other domains. This
is because SACfD and SACfD+RRL spend much less time in the neighborhood of constraint
violating states during training due to their lower task success rates. Because they do not
efficiently learn to perform the tasks, they do not violate constraints as often. We find
that the AWAC comparison achieves very low task performance. While AWAC is designed
for offline reinforcement learning, to the best of our knowledge, it has not been previously

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 88

Table 7.1: Task Success Rate over all Training Episodes: We present the mean and
standard error of training-time task completion rate over 10 random seeds. We find LS3

outperforms all comparisons across all 3 domains, with the gap increasing for the challenging
sequential pushing task.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.363± 0.068 0.312± 0.093 0.184± 0.053 0.818± 0.019 0.988± 0.004
Reacher 0.502± 0.072 0.255± 0.089 0.473± 0.056 0.736± 0.025 0.870± 0.024
Sequential Pushing 0.425± 0.064 0.006± 0.003 0.466± 0.065 0.366± 0.030 0.648± 0.049

Table 7.2: Constraint Violation Rate: We report mean and standard error of training-
time constraint violation rate over 10 random seeds. LS3 violates constraints less than
comparisons on the Reacher task, but SAC and SACfD+RRL achieve lower constraint vi-
olation rates on the Navigation and Pushing tasks, likely due to spending less time in the
neighborhood of constraint violating regions due to their much lower task success rates.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.006± 0.002 0.104± 0.070 0.001± 0.001 0.019± 0.006 0.005± 0.001
Reacher 0.146± 0.039 0.398± 0.107 0.142± 0.031 0.247± 0.027 0.102± 0.027
Sequential Pushing 0.033± 0.003 0.138± 0.028 0.054± 0.006 0.122± 0.031 0.107± 0.016

evaluated on long-horizon, image-based tasks as in this work, which we hypothesize are very
challenging for it.

We find LS3 has a lower success rate when the safe set constraint is removed (LS3(−Safe
Set)) as expected. The safe set is particularly important in the sequential pushing task, and
LS3 (−Safe Set) has a much lower task completion rate than LS3. LS3 without the recursive
classification objective from Section 7.3.2 (LS3 (BC SS)) has similar performance to LS3 on
the navigation environment, but learns substantially more slowly on the Reacher environment
and performs significantly worse than LS3 on the more challenging Pushing environment as
the learned safe set is unable to exploit temporal structure to distinguish safe states from
unsafe states. See the supplement for details on experimental parameters and offline data
used for LS3 and comparisons and ablations studying the effect of the planning horizon and
threshold used to define the safe set.

CHAPTER 7. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 89

7.4.5 Physical Results

In physical experiments, we compare LS3 to SACfD and SACfD+RRL (Figure 7.5) on the
physical cable routing task illustrated in Figure 7.3. We find LS3 quickly outperforms the
suboptimal demonstrations while succeeding at the task significantly more often than both
comparisons, which are unable to learn the task and also violate constraints more than
LS3. We hypothesize that the difficulty of reasoning about cable collisions and deformation
from images makes it challenging for prior algorithms to make sufficient task progress as
they do not use prior successes to structure exploration. See the supplement for details on
experimental parameters and offline data used for LS3 and comparisons.

0 20 40 60
Training Trajectories

50

40

30

20

Re
wa

rd

Physical Cable Routing

SACfD SACfD + RRL LS30.0

0.2

0.4

0.6

0.8
Task Success Rate

SACfD SACfD + RRL LS30.000
0.025
0.050
0.075
0.100
0.125
0.150

Constraint Violation Rate

Demonstrations SACfD SACfD + RRL LS3

Figure 7.5: Physical Cable Routing Results: We present learning curves, task success
rates and constraint violation rates with a mean and standard error across 3 random seeds.
LS3 learns a more efficient policy than the demonstrator while still violating constraints less
than comparisons, which are unable to learn the task.

7.5 Discussion and Future Work

We present LS3, a scalable algorithm for safe and efficient policy learning for visuomotor
tasks. LS3 structures exploration by learning a safe set in a learned latent space, which
captures the set of states from which the agent is confident in task completion. LS3 then
ensures that the agent can plan back to states in the safe set, encouraging consistent task
completion during learning. Experiments suggest that LS3 can safely and efficiently learn 4
visuomotor control tasks, including a challenging sequential pushing task in simulation and
a cable routing task on a physical robot. In future work, we are excited to explore further
physical evaluation of LS3 on safety critical visuomotor control tasks and applications to
systems with dynamic constraints on velocity or acceleration.

90

Chapter 8

Monte Carlo Augmented Actor-Critic
for Sparse Reward Deep RL from
Suboptimal Demonstrations

Reinforcement learning has been successful in learning complex skills in a variety of envi-
ronments [197, 198, 199], but providing dense, informative reward functions for RL agents
is often very challenging to do accurately [200, 201, 202]. This is particularly challenging for
high-dimensional control tasks, in which there may be a large number of factors that influ-
ence the agent’s objective. In many settings, it may be much easier to provide sparse reward
signals that simply convey high-level information about task progress, such as whether an
agent has completed a task or has violated a constraint. However, optimizing RL policies
given such reward signals can be exceedingly challenging, as sparse reward functions may not
provide sufficient information to meaningfully distinguish between a wide range of different
policies.

This issue can be mitigated by leveraging demonstrations, which provide initial signal
about desired behaviors. Though demonstrations may often be suboptimal in practice, they
should still serve to encourage exploration in promising regions of the state space, while
allowing the agent to explore behaviors which may outperform the demonstrations. Prior
work has considered a number of ways to leverage demonstrations to improve learning effi-
ciency for reinforcement learning, including by initializing the policy to match the behavior
of the demonstrator [203, 204], using demonstrations to explicitly constrain agent explo-
ration [205, 206, 207], and introducing auxiliary losses to incorporate demonstration data
into policy updates [208, 209, 210]. While these algorithms have shown impressive perfor-
mance in improving the sample efficiency of RL algorithms, they add significant complexity
and hyperparameters, making them difficult to implement and tune for different tasks.

We present Monte Carlo augmented Actor-Critic (MCAC), which introduces an easy-to-
implement, but highly effective, change that can be readily applied to existing actor-critic
algorithms without the introduction of any additional hyperparameters and only minimal
additional complexity. The key idea is to encourage the RL agent to initially be optimistic

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 91

in the neighborhood of successful trajectories, and progressively reduce this optimism during
learning so that it can continue to explore new behaviors. To operationalize this idea, MCAC
introduces two modifications to existing actor-critic algorithms. First, MCAC initializes the
replay buffer with task demonstrations. Second, MCAC computes a modified target Q-value
for critic updates by taking the maximum of the standard temporal distance (TD-1) targets
and a Monte Carlo estimate of the reward-to-go. The intuition is that Monte Carlo value
estimates can more effectively capture longer-term reward information, making it possible to
rapidly propagate reward information from demonstrations through the learned Q-function.
This makes it possible to prevent underestimation of values in high-performing trajectories
early in learning, as eventual high rewards may be difficult to initially propagate back to
earlier states with purely temporal distance targets [211]. Experiments on five continuous
control domains suggest that MCAC is able to substantially accelerate exploration for both
standard RL algorithms and recent RL from demonstrations algorithms in sparse reward
tasks.

8.1 Related Work

8.1.1 Reinforcement Learning from Demonstrations

One standard approach for using demonstrations for RL first uses imitation learning [13]
to pre-train a policy, and then fine-tunes this policy with on-policy reinforcement learning
algorithms [212, 213, 204, 203]. However, initializing with suboptimal demonstrations can
hinder learning and using demonstrations to initialize only a policy is inefficient, since this
data can also be used for more accurate Q-value estimation.

Other approaches leverage demonstrations to explicitly constrain agent exploration. Thanan-
jeyan et al. [205] and Wilcox et al. [207] propose model-based RL approaches that uses
suboptimal demonstrations to iteratively improve performance by ensuring consistent task
completion during learning. Similarly, Jing et al. [214] also uses suboptimal demonstrations
to formulate a soft-constraint on exploration. However, a challenge with these approaches is
that they introduce substantial algorithm complexity, making it difficult to tune and utilize
these algorithms in practice. For example, while Thananjeyan et al. [205] does enable iter-
ative improvement upon suboptimal demonstrations, it requires learning a model of system
dynamics and a density estimator to capture the support of successful trajectories making
it challenging to scale to high-dimensional observations.

Finally, many methods introduce auxiliary losses to incorporate demonstrations into pol-
icy updates Kim et al. [215], Gao et al. [210], and Kang, Jie, and Feng [216]. Deep Determin-
istic Policy Gradients from Demonstrations (DDPGfD) maintains all the demonstrations in
a separate replay buffer and uses prioritized replay to allow reward information to propagate
more efficiently Vecerik et al. [217], Nair et al. [208], and Hester et al. [209] use similar ap-
proaches, where demonstrations are maintained separately from the standard replay buffer
and additional policy losses encourage imitating the behavior in the demonstrations. Mean-

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 92

while, offline RL algorithms such as AWAC [218] use demonstration data to constrain the
distribution of actions selected during online exploration. While these methods often work
well in practice, they often increase algorithmic complexity and introduce several additional
hyperparameters that are difficult and time consuming to tune, unlike MCAC which does
neither and can easily be wrapped around any existing actor-critic algorithm.

8.1.2 Improving Q-Value Estimates

One of the core contributions of this work is to demonstrate an easy-to-implement, yet highly
effective, method for stabilizing actor-critic methods for sparse reward tasks using demonstra-
tions and an augmented Q-value target. There has been substantial literature investigating
learning stability challenges in off-policy deep Q-learning and actor-critic algorithms. Please
refer to Van Hasselt et al. [219] for a more thorough treatment of the learning stability
challenges introduced by combining function approximation, bootstrapping, and off-policy
learning, as well as prior work focused on mitigating these issues.

One class of approaches focuses on developing new ways to compute target Q-values [220,
211, 221, 222]. Van Hasselt, Guez, and Silver [221] computes target Q-values with two
Q-networks, using one to select actions and the other to measure the value of selected
actions, which helps to prevent the Q-value over-estimation commonly observed in practice
in many practical applications of Q-learning. TD3 Fujimoto, Hoof, and Meger [62] attempts
to address overestimation errors by taking the minimum of two separate Q-value estimates,
but this can result in underestimation of the true Q-value target. Kuznetsov et al. [223]
uses an ensemble of critics to adaptively address estimation errors in Q-value targets, but
introduces a number of hyperparameters which must be tuned separately for different tasks.
Wright et al. [224] and Schulman et al. [222] observe that different estimators of a policy’s
value make different bias and variance tradeoffs that can affect learning dynamics, which has
some relationships to combining Monte Carlo and temporal difference based reward-to-go
estimates as in MCAC.

Similar to our work, Wright et al. [211] explore the idea of taking a maximum over a
bootstrapped target Q-value (TD-1 target) and a Monte Carlo estimate of the return-to-go
to improve fitted Q-iteration. However, Wright et al. [211] does not use demonstrations
and only considers simple low-dimensional control tasks using Q-learning with linear value
approximation. To the best of our knowledge, MCAC is the first extension of these ideas
to actor-critic algorithms with deep function approximation where we show surprising im-
provements in RL performance on complex high-dimensional continuous control tasks.

8.2 Problem Statement

We consider a Markov Decision Process (MDP) described by a tuple (S,A, p, r, γ, T) with
a state set S, an action set A, a transition probability function p : S × A × S → [0, 1], a
reward function r : S ×A → R, a discount factor γ, and finite time horizon T . In each state

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 93

st ∈ S the agent chooses an action at ∈ A and observes the next state st+1 ∼ p(·|st, at) and
a reward r(st, at) ∈ R. The agent acts according to a policy π, which induces a probability
distribution over A given the state, π(at|st). The agent’s goal is to find the policy π∗ which
at any given st ∈ S maximizes the expected discounted sum of rewards,

π∗ = argmax
π

Eτ∼π

[
T∑
t=0

γtr(st, at)

]
, (8.1)

where τ = (s0, a0, s1, a1, . . . sT) and τ ∼ π indicates the distribution of trajectories induced
by evaluating policy π in the MDP.

In this work, we make additional assumptions specific to the class of problems we study.
First, we assume that all transitions in the replay buffer are elements of complete trajectories;
this is a reasonable assumption as long as all transitions are collected from rolling out some
policy in the MDP. Second, we assume the agent has access to an offline dataset Doffline of
(possibly suboptimal) task demonstrations. Finally, we focus on settings where the reward
function is sparse, and takes on values in a small finite set. More formally, r(st, at) : S ×
A → R where |R| is small (we use |R| ≤ 4 in all experiments). MCAC is not limited to
sparse reward settings, but MDPs with unshaped rewards are often those in which MCAC is
the most useful, as it can more efficiently direct exploration towards prior high performing
trajectories.

8.3 Preliminaries: Actor-Critic Algorithms

For a given policy π, its state-action value function Qπ is defined as

Qπ(st, at) = Eτ∼π

[
T∑
k=t

γk−tr(sk, ak)

]
. (8.2)

Actor-critic algorithms learn a sample-based approximation to Qπ, denoted Qπ
θ , and a

policy πϕ which selects actions to maximize Qπ
θ , with a function approximators (typically

neural networks) parameterized by θ and ϕ respectively. During the learning process, they
alternate between regressing Qπ

θ to predict Qπ and optimizing πϕ to select actions with high
values under Qπ

θ .
Exactly computing Qπ targets to train Qπ

θ is typically intractable for arbitrary policies
in continuous MDPs, motivating other methods for estimating them. One such method is
to simply collect trajectories (st, at, rt, st+1, . . . sT−1, aT−1, rT−1, sT) by executing the learned
policy πϕ from state st, computing a Monte Carlo estimate of the reward-to-go defined as
follows:

Qtarget
MC (st, at) =

T∑
k=t

γk−tr(sk, ak), (8.3)

and fitting Qπ
θ to these targets.

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 94

However, Qtarget
MC is a very high variance estimator of the reward-to-go [222, 225], motivat-

ing the popular one-step temporal difference target (TD-1 target) to help stabilize learning:

Qtarget
TD (st, at) = r(st, at) + γQπ

θ′(st+1, at+1), (8.4)

where at+1 ∼ πϕ(st+1), which is recursively defined based on only a single (st, at, st+1, rt)
transition. Here θ′ gives the parameters of a lagged target network [221], which is commonly
used in value function learning with function approximation.

8.4 Monte Carlo augmented Actor-Critic

Here we discuss the algorithmic procedure of Monte Carlo augmented Actor-Critic. We first
define the intuition behind MCAC in Section 8.4.1. Then, in Section 8.4.2, we describe how
MCAC is implemented in practice.

8.4.1 MCAC Algorithm

The objective of MCAC is to efficiently convey information about sparse rewards from sub-
optimal demonstrations to Qπ

θ in order to accelerate policy learning while still maintaining
learning stability. To do this, MCAC leverages two different methods of computing tar-
gets for fitting Q-functions to enable efficient value propagation throughout the state-action
space while also learning a Q-value estimator with low enough variance for stable learning.
To operationalize this idea, MCAC defines a new Q-function target for training Qπ

θ by taking
the maximum of the Monte Carlo Q-target (eq 8.3) and the temporal difference Q-target
(eq 8.4): max

[
Qtarget

TD (st, at), Q
target
MC (st, at)

]
.

The idea here is that early in learning, when the policy has not yet learned how to achieve
high reward behaviors, a Q-function trained only with temporal difference targets will have
very low values throughout the state-action space, as most online trajectories will be low
performing. For sufficiently sparse rewards and long-horizon tasks, propagating information
about delayed rewards through the temporal difference target can be very slow and sample
inefficient [219]. On the other hand, the Monte Carlo Q-target can easily capture long-term
rewards without a susceptibility to generalization issues in the learned Q-function [211], with
the tradeoff that for unsuccessful trajectories it may dramatically underestimate Q-values.
Thus, taking a maximum over these two targets serves to initially boost the Q-values for
transitions near high performing trajectories while limiting the influence of underestimates
from the Monte Carlo estimate.

Initially increasing the Q-values along demonstrator trajectories naturally biases early
exploration towards more promising regions of the state space. Once MCAC starts sampling
more high reward behaviors, the temporal distance targets are primarily trained on high per-
forming trajectories, making it easier for them to capture information about sparse rewards
and calibrate to the Monte Carlo targets. Once this is the case, the temporal distance targets
learn reward-to-go estimates that are both accurate and low variance, making it possible for

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 95

Algorithm 4 Monte Carlo augmented Actor-Critic

Require: Offline dataset Doffline.
Require: Total training episodes N , batch size M
Require: Episode time horizon T .
1: Initialize replay buffer R := Doffline.
2: Initialize agent πϕ and critic Qπ

θ .
3: for i ∈ {1, . . . , N} do
4: Initialize episode buffer E = {}.
5: Observe state si1.
6: for j ∈ {1, . . . , T} do
7: Sample and execute ait ∼ πθ(s

i
j).

8: Observe sij+1, r
i
j.

9: τ ij ← (sij, a
i
j, s

i
j+1, r

i
j)

10: E ← E ∪ {τ ij}.
11: Sample B ⊊ R such that |B| =M .
12: Optimize Qπ

θ on B to minimize loss in eq (8.8).
13: Optimize policy πϕ to maximize Qθ.
14: end for
15: for τ ij ∈ E do

16: Compute Qtarget
MC-∞(sij, a

i
j) as in eq (8.6).

17: τ ij ← (sij, a
i
j, s

i
j+1, r

i
j, Q

target
MC-∞(sij, a

i
j)).

18: end for
19: R ← R∪ E .
20: end for

MCAC to stably improve its performance. Notably, MCAC does not constrain its Q-targets
explicitly based on the transitions in the demonstrations, making it possible for the policy
to discover higher performing behaviors than those in the demonstrations.

8.4.2 MCAC Practical Implementation

Here we discuss how MCAC can be implemented in practice. In principle, MCAC can
be used in conjunction with any actor-critic RL algorithm, but in this work we specifically
consider the application of MCAC to the Twin Delayed Deep Deterministic Policy Gradients
(TD3) algorithm [62] and the Soft Actor-Critic (SAC) algorithm [193]. MCAC starts with
an offline dataset of suboptimal demonstrations Doffline, which are used to initialize a replay
buffer R. Then, during each episode i, we collect a full trajectory τ i, where the jth transition
(sij, a

i
j, s

i
j+1, r

i
j) in τ

i is denoted by τ ij .
Next, consider any actor-critic method using a learned Q function approximator Qθ(st, at)

that, for a given transition τ ij = (sij, a
i
j, s

i
j+1, r

i
j) ∈ τ i ⊊ R, would be updated by minimizing

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 96

start goal

(a) Pointmass Nav (b) Block Extraction (c) Sequential Pushing (d) Door Opening (e) Block Lifting

Figure 8.1: We evaluate MCAC on five continuous control domains: a pointmass navigation
environment, and four high-dimensional robotic control domains. All domains are associated
with relatively unshaped reward functions, which only indicate constraint violation, task
completion, or completion of a subtask based on the experimental domain.

a loss,
J(θ) = ℓ

(
Qθ(s

i
j, a

i
j), Q

target(sij, a
i
j)
)
, (8.5)

where ℓ is an arbitrary differentiable loss function and Qtarget is the target value for regressing
Qθ. To implement MCAC, we first calibrate with the TD-1 target (which provides infinite-
horizon Q estimates) by computing the infinite horizon analogue of the Monte Carlo target
defined in Equation 8.3, which assumes the last observed reward value will repeat forever
and uses this to add an infinite sum of discounted rewards, and is given by

Qtarget
MC-∞(sij, a

i
j) = γT−j+1 riT

1− γ
+

T∑
k=j

γk−jr(sik, a
i
k). (8.6)

Then, we simply replace the target with a maximum over the original target and the Monte
Carlo target defined in Equation 8.6, given by

Qtarget
MCAC(s

i
j, a

i
j) = max

[
Qtarget(sij, a

i
j), Q

target
MC-∞(sij, a

i
j)
]
. (8.7)

This results in the following loss function for training Qθ:

J(θ) = ℓ
(
Qθ(s

i
j, a

i
j), Q

target
MCAC(s

i
j, a

i
j)
)
. (8.8)

The full training procedure alternates between updating Qπ
θ using the method described

above and optimizing the policy πϕ using the policy update method from the original algo-
rithm MCAC is being applied to. The full MCAC algorithm is described in Algorithm 4.

8.5 Experiments

In the following experiments we study (1) whether MCAC enables more efficient learning
when built on top of standard actor-critic RL algorithms, (2) whether MCAC can be applied

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 97

to improve prior algorithms for RL from demonstrations, and (3) the sensitivity of MCAC to
the quantity and quality of demonstrations and a slight modification in how target Q-values
are constructed.

8.5.1 Experimental Procedure

We aggregate statistics over 10 random seeds for the experiments in Figure 8.2 and 5 seeds
for all other experiments, reporting the mean and standard error across the seeds with
exponential smoothing. Details on hyperparameters and implementation details are provided
in Appendix G.1.

Figure 8.2: MCAC and Standard RL Algorithms Results: Learning curves showing
the mean and standard error across 10 random seeds. Exponentially smoothed curves are
shown in bold while raw curves are shown behind them. We find that MCAC improves the
learning efficiency of both TD3 and SAC across all 5 environments.

8.5.2 Domains

We consider the five long-horizon continuous control tasks shown in Figure 8.1. All tasks
follow the sparse reward assumption described in Section 8.2, making demonstrations critical
for performance. We found that all of these domains posed significant exploration challenges
for SAC and TD3 without demonstrations.

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 98

Figure 8.3: MCAC and RL from Demonstrations Algorithm Results: Learning
curves showing the mean and standard error across 5 random seeds. Exponentially smoothed
curves are shown in bold while raw curves are shown behind them. We find that in the envi-
ronments in which OEFD or AWAC achieve high performance almost immediately, MCAC
has little impact on performance. However, on the environments in which OEFD are unable
to learn efficiently or have significant instability during learning, MCAC serves to signifi-
cantly accelerate and stabilize policy learning.

Pointmass Navigation: The first domain is a pointmass 2D navigation task (Fig-
ure 8.1a) with time horizon T = 100, where the objective is to navigate around the red
barrier from start set S to a goal set G by executing 2D delta-position controls. If the agent
collides with the barrier it receives a reward of −100 and the episode terminates. To in-
crease the difficulty of the task, we perturb the state with zero-mean Gaussian noise at each
timestep. The combination of noisy transitions and sparse reward signal makes this a very
difficult exploration task where the agent must learn to make it through the slit without
converging to the local optima of avoiding both the barrier and the slit. At each time step,
the agent receives a reward of −1 if it is not in the goal set and 0 if it is in the goal set.

The demonstrator is implemented as a series of proportional controllers guiding it from
the starting set to the slit, through the slit, and to the goal set. The actions are clipped to
fit in the action space, and trajectories are nearly optimal. The learner is provided with 20
demonstrations.

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 99

0 20000 40000 60000 80000 100000
Timesteps

130

120

110

100

90

80

70

60

50

Re
wa

rd

= 0.0
= 0.1

= 0.15
= 0.25

= 0.35

(a) Demonstration Quality

0 20000 40000 60000 80000 100000
Timesteps

140

120

100

80

60

Re
wa

rd

Demos
N = 1

N = 5
N = 10

N = 20
N = 50

(b) Demonstration Quantity

0 20000 40000 60000 80000 100000
Timesteps

120

110

100

90

80

70

60

50

Re
wa

rd

SAC
= 0.1
= 0.2

= 0.5
= 0.9

= 1.0
SAC + MCAC

(c) Linear Combination Comparison

Figure 8.4: MCAC Sensitivity Experiments: Learning curves showing the mean and
standard error across 5 random seeds for varying demonstration qualities (a) and quantities
(b) for SAC +MCAC. Exponentially smoothed curves are shown in bold while raw curves are
shown behind them. (a): Results suggest that MCAC is somewhat sensitive to demonstration
quality, as when ϵ-greedy noise is injected into the demonstrator, MCAC’s performance does
drop significantly, although it eventually make some task progress for most values of ϵ. (b):
MCAC appears to be much less sensitive to demonstration quantity, and is able to achieve
relatively high performance even with a single task demonstration. (c): We also study how
MCAC compares with simply defining Q targets with a weighted combination of the Monte
Carlo returns (weight λ) and TD-1 returns (weight 1−λ). We find that MCAC significantly
outperforms all weightings, providing further evidence for the benefits of MCAC’s parameter
free method of taking the maximum of the Monte Carlo and TD-1 returns.

Object Manipulation in MuJoCo: We next consider two object manipulation tasks
designed in the MuJoCo physics simulator [61], where the objective is to extract a block
from a tight configuration on a table (Block Extraction, Figure 8.1b) and push each of a set
of 3 blocks forward on the plane (Sequential Pushing, Figure 8.1c). In the Block Extraction
task, the action space consists of 3D delta position controls and an extra action dimension to
control the degree to which the gripper is opened. In the Sequential Pushing environment,
this extra action dimension is omitted and the gripper is always kept closed. In the Block
Extraction domain, the agent receives a reward of −1 for every timestep that it hasn’t
retrieved the red block and 0 when it has. In the Sequential Pushing domain, the reward
increases by 1 for each block the agent pushes forward: the agent receives a reward of −3
when it has made no progress and 0 when it has completed the task. The Block Extraction
task is adapted from Thananjeyan et al. [206] while the Sequential Pushing task is adapted
from Wilcox et al. [207]. We use a time horizon of T = 50 for the Block Extraction task and
T = 150 for the Sequential Pushing task.

The block extraction demonstrator is implemented as a series of proportional controllers
guiding the arm to a position to grip the block, followed by an instruction to close the gripper
and a controller to lift. We provide the agent with 50 slightly suboptimal demonstrations.

For the sequential pushing environment, the demonstrator uses a series of proportional

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 100

controllers to slowly push one block forward, move backwards, line up with the next block,
and repeat the motion until all blocks have been pushed. Because it moves slowly and moves
far back from each block it pushes, demonstrations are very suboptimal. The learner is
provided with 500 demonstrations.

Robosuite Object Manipulation: Finally, we consider two object manipulation tasks
built on top of Robosuite [226], a collection of robot simulation tasks using the MuJoCo
physics engine. We consider the Door Opening task (Figure 8.1d) and the Block Lifting
task (Figure 8.1e). In the Door Opening task, a Panda robot with 7 DoF and a parallel-jaw
gripper must turn the handle of a door in order to open it. The door’s location is randomized
at the start of each episode. At each timestep, the agent receives a reward of -1 if it has
not opened the door and a reward of 0 if it has. In the Block Lifting task, the same Panda
robot is placed in front of a table with a single block on its surface. The robot must pick up
the block and lift it above a certain threshold height. The block’s location is randomized at
the start of each episode and the agent receives a reward of −1 for every timestep it has not
lifted the block and a reward of 0 when it has. Both Robosuite tasks use a time horizon of
T = 50.

For both Robosuite tasks, demonstrators are trained using SAC on a version of the
task with a hand-designed dense reward function, as in the Robosuite benchmarking exper-
iments Zhu et al. [226]. In order to ensure suboptimality, we stop training the demonstrator
policy before convergence. For each Robosuite environment we use the trained demonstrator
policies to generate 100 suboptimal demonstrations for training MCAC and the baselines.

8.5.3 Algorithm Comparisons

We empirically evaluate the following baselines both individually and in combination with
MCAC. All methods are provided with the same demonstrations which are collected as
described in Section 8.5.2. See Appendix G.1 for more in depth details on implementation
and training.

Behavior Cloning: Direct supervised learning on the offline suboptimal demonstrations.

Twin Delayed Deep Deterministic Policy Gradients (TD3) [62]: State of the
art actor-critic algorithm which trains a deterministic policy to maximize a learned critic.
In experiments we seed the replay buffer for TD3 with the same demonstrations used for
MCAC.

Soft Actor-Critic (SAC) [193]: State of the art actor-critic algorithm which trains
a stochastic policy which maximizes a combination of the Q value of the policy and the
expected entropy of the policy to encourage exploration. In experiments we seed the replay
buffer for SAC with the same demonstrations used for MCAC.

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 101

Overcoming Exploration from Demonstrations (OEFD) [208]: OEFD builds on
DDPG [104] but adds an additional loss which encourages imitating demonstrations and a
learned filter which determines when to activate this loss. We provide OEFD with the same
demonstrations used for MCAC.

Advantage Weighted Actor-Critic (AWAC) [218]: A recent offline reinforcement
learning algorithm designed for fast online fine-tuning. We also implement versions of each
of the above RL algorithms with MCAC (TD3 + MCAC, SAC + MCAC, OEFD + MCAC,
AWAC + MCAC). The behavior cloning comparison serves to determine whether online
learning is beneficial in general, while the other comparisons study whether MCAC can be
used to accelerate reinforcement learning for commonly used actor-critic algorithms (SAC
and TD3) and also for recent algorithms for RL from demonstrations (OEFD and AWAC).

8.5.4 Results

In Section 8.5.4 we study whether MCAC enables more efficient learning when built on top of
SAC and TD3, which are standard actor-critic RL algorithms widely used in the literature.
Then, in Section 8.5.4 we study whether MCAC can provide similar benefits when applied
to recent RL from demonstration algorithms (OEFD and AWAC). Finally, in Section 8.5.4,
we investigate the sensitivity of MCAC to the quantity and quality of demonstrations on the
pointmass environment, where demonstration quality can be easily controlled.

MCAC and Standard RL Algorithms

In Figure 8.2, we study the impact of augmenting SAC and TD3 with the MCAC target
Q-function. Note that all methods, both with and without MCAC, initialize their replay
buffers with the same set of demonstrations. The results in Figure 8.2 suggest that MCAC is
able to significantly accelerate learning for both TD3 and SAC across all environments, and
is able to converge to performance that is either on-par or better than the demonstrations.
Furthermore, in the Pointmass Navigation and Block Lifting task, SAC and TD3 are unable
to make much task progress without MCAC.

MCAC and RL From Demonstrations Algorithms

In Figure 8.3, we study the impact of augmenting OEFD Nair et al. [208] and AWAC Nair
et al. [218] with the MCAC target Q-function. Results suggest that MCAC significantly
improves the learning efficiency of OEFD on the Pointmass Navigation, Sequential Pushing,
and Block Lifting tasks, but does not have a significant positive or negative affect on perfor-
mance for the Block Extraction and Door Opening tasks. MCAC significantly improves the
performance of AWAC on the Pointmass Navigation and Sequential Pushing environments,
but does not significantly affect performance on the other 3 environments as AWAC is able
to immediately converge to a stable policy after offline pre-training. These results suggest

CHAPTER 8. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 102

that for OEFD, MCAC gives a significant performance boost on 3/5 environments while not
harming performance in the environments in which OEFD is already very effective. Simi-
larly, in the Block Extraction, Door Opening, and Block Lifting environments, AWAC works
almost immediately, and thus MCAC has no impact on its performance as desired. How-
ever, on the Pointmass Navigation and Sequential Pushing environments in which AWAC is
unable to converge to a stable policy, MCAC significantly improves the stability of AWAC
and enables it to converge to a high-performing policy.

MCAC Sensitivity Experiments

In Figure 8.4, we first study the impact of demonstration quality (Figure 8.4a) and quantity
(Figure 8.4b) on MCAC when applied to SAC (SAC + MCAC) on the Pointmass Navigation
domain. We evaluate sensitivity to demonstration quality by injecting ϵ-greedy noise into the
demonstrator for the Pointmass Navigation domain. Results suggest that MCAC is some-
what sensitive to demonstration quality, since MCAC’s performance does drop significantly
for most values of ϵ, although it still typically makes some task progress. In Figure 8.4b,
results suggest that MCAC is relatively robust to the number of demonstration.

We then compare MCAC with a modification in which Q-targets are computed via a
weighted combination of Monte-Carlo and TD-1 targets with a weight parameter λ instead
of by taking a maximum over the two, shown in Figure 8.4c. Results suggest that MCAC
significantly outperforms this modification for a range of different weightings, providing
further evidence for the benefits of MCAC in practice.

8.6 Discussion and Future Work

We present Monte Carlo augmented Actor-Critic (MCAC), a simple, yet highly effective,
change that can be applied to any actor-critic algorithm in order to improve reinforcement
learning from demonstrations. We present empirical results suggesting that MCAC often
significantly improves, and does not significantly degrade, performance when applied to two
state-of-the-art actor-critic RL algorithms and two RL from demonstrations algorithms on
five different continuous control domains.

In future work, we hope to study Monte Carlo augmented Actor-Critic theoretically to
better understand the exact mechanism behind why this simple change to standard actor
critic algorithms can lead to such a significant increase in policy performance. We also will
release an open-source implementation to encourage further research on algorithms for RL
from demonstrations.

103

Part III

Reinforcement Learning from
Negative Demonstrations

104

Chapter 9

Recovery RL: Safe Reinforcement
Learning with Learned Recovery
Zones

Reinforcement learning (RL) provides a general framework for robots to acquire new skills,
and has shown promise in a variety of robotic domains such as navigation [227], locomo-
tion [228], and manipulation [74, 229]. However, when deploying RL agents in the real
world, unconstrained exploration can result in highly suboptimal behaviors which can dam-
age the robot, break surroundings objects, or bottleneck the learning process. For example,
consider an agent tasked with learning to extract a carton of milk from a fridge. If it tips
over the carton, then not only can this possibly break the carton and create a mess, but it
also requires laborious human effort to wipe up the milk and replace the carton so that the
robot can continue learning. In the meantime, the robot is not able to collect experience
or improve its policy until the consequences of this violation are rectified. Thus, endowing
RL agents with the ability to satisfy constraints during learning not only enables robots to
interact safely, but also allows them to more efficiently learn in the real world. However,
enforcing constraints on the agent’s behavior during learning is challenging, since system
dynamics and the states leading to constraint violations may be initially unknown and must
be learned from experience, especially when learning from high dimensional observations
such as images. Safe exploration poses a tradeoff: learning new skills through environmental
interaction requires exploring a wide range of possible behaviors, but learning safely forces
the agent to restrict exploration to constraint satisfying states.

We consider a RL formulation subject to constraints on the probability of unsafe future
behavior and design an algorithm that can balance the often conflicting objectives of task-
directed exploration and safety. Most prior work in safe RL integrates constraint satisfaction
into the task objective to jointly optimize the two. While these approaches are appealing
for their generality and simplicity, there are two key aspects which make them difficult
to use in practice. First, the inherent objective conflict between exploring to learn new
tasks and limiting exploration to avoid constraint violations can lead to suboptimalities in

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 105

Figure 9.1: Recovery RL can safely learn policies for contact-rich tasks from high-dimensional
image observations in simulation experiments and on a physical robotic system. We evaluate
Recovery RL on an image-based obstacle avoidance task with delta-position control on the
da Vinci Research Kit (top left) with overhead image observations (top right). We find that
Recovery RL substantially outperforms prior methods (Figure 9.6), suggesting that it can be
used for visuomotor control on physical robots. We also find that Recovery RL can perform
challenging contact-rich manipulation tasks in simulation; as shown in the bottom row,
Recovery RL successfully extracts the red block without toppling other blocks by learning
to nudge it away from other blocks before grasping it.

policy optimization. Second, exploring the environment to learn about constraints requires
a significant amount of constraint violations during learning. However, this can result in the
agent taking uncontrolled actions which can damage itself and the environment.

We take a step towards addressing these issues with two key algorithmic ideas. First,
inspired by recent work in robust control [230, 177, 231, 232], we represent the RL agent with
two policies: the first policy focuses on optimizing the unconstrained task objective (task
policy) and the second policy takes control when the task policy is in danger of constraint
violations in the near future (recovery policy). Instead of modifying the policy optimization
procedure to encourage constraint satisfaction, which can introduce suboptimality in the
learned task policy [233], the recovery policy can be viewed as defining an alternate MDP
for the task policy to explore in which constraint violations are unlikely. Separating the task
and recovery policies makes it easier to balance task performance and safety, and allows using
off-the-shelf RL algorithms for both. Second, we leverage offline data to learn a recovery set,
which indicates regions of the MDP in which future constraint violations are likely, and a
recovery policy, which is queried within this set to prevent violations. This offline data can
be collected under human supervision to illustrate examples of desired behaviors before the
agent interacts with the environment or can contain unsafe behaviors previously experienced
by the robot in the environment when performing other tasks. Both the recovery set and

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 106

Figure 9.2: Recovery RL: For intuition, we illustrate Recovery RL on a 2D maze navigation
task where a constraint violation corresponds to hitting a wall. Recovery RL first learns
safety critic Q̂π

ϕ,risk with offline data from some behavioral policy πb, which provides a small
number of controlled demonstrations of constraint violating behavior as shown on the left.
For the purposes of illustration, we visualize the average of the Q̂π

ϕ,risk learned by Recovery
RL over 100 action samples. Then, at each timestep, Recovery RL queries the task policy
πtask for some action a at state s, evaluates Q̂π

ϕ,risk(s, a), and executes the recovery policy πrec

if Q̂π
ϕ,risk(s, a) > ϵrisk and πtask otherwise. The task policy, recovery policy, and safety critic

are updated after each transition from agent experience.

policy are updated online with agent experience, but the offline data allows the agent to
observe constraint violations and learn from them without the task policy directly having to
experience too many uncontrolled violations during learning.

We present Recovery RL, a new algorithm for safe robotic RL. Unlike prior work, Recov-
ery RL (1) can leverage offline data of constraint violations to learn about constraints before
interacting with the environment, and (2) uses separate policies for the task and recovery
to learn safely without significantly sacrificing task performance. We evaluate Recovery RL
against 5 state-of-the-art safe RL algorithms on 6 navigation and manipulation domains in
simulation, including a visual navigation task, and find that Recovery RL trades off con-
straint violations and task successes 2 - 20 times more efficiently than the next best prior
method. We evaluate Recovery RL on an image-based obstacle avoidance task on a phys-
ical robot and find that it trades off constraint violations and task successes 3 times more
efficiently than the next best prior algorithm.

9.1 Related Work

Prior work has studied safety in RL in several ways, including imposing constraints on
expected return [155, 195], risk measures [234, 235, 236, 237], and avoiding regions of the
MDP where constraint violations are likely [238, 239, 177, 106, 156, 240]. We build on the

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 107

latter approach and design an algorithm which uses a learned recovery policy to keep the
RL agent within a learned safe region of the MDP.

Jointly Optimizing for Task Performance and Safety: A popular strategy in
algorithms for safe RL involves modifying the policy optimization procedure of standard RL
algorithms to simultaneously reason about both task reward and constraints using methods
such as trust regions [155], optimizing a Lagrangian relaxation [195, 241, 242], or constructing
Lyapunov functions [243, 244]. The most similar of these works to Recovery RL is Srinivasan
et al. [242], which trains a safety critic to estimate the probability of future constraint
violation under the current policy and optimizes a Lagrangian objective function to limit
the probability of constraint violations while maximizing task reward. Unlike Srinivasan et al.
[242], which uses the safety critic to modify the task policy optimization objective, Recovery
RL uses it to determine when to execute a learned recovery policy which minimizes the
safety critic to keep the agent in safe regions of the MDP. This idea enables Recovery RL to
more effectively balance task performance and constraint satisfaction than algorithms which
jointly optimize for task performance and safety.

Restricting Exploration with an Auxiliary Policy: Another approach to safe RL
explicitly restricts policy exploration to a safe subset of the MDP using a recovery or shield-
ing mechanism. This idea has been explored in [230, 177], which utilize Hamilton-Jacobi
reachability analysis to define a task policy and safety controller, and in the context of
shielding [231, 232, 245]. In contrast to these works, which assume approximate knowledge
of system dynamics or require precise knowledge of constraints apriori, Recovery RL learns
information about the MDP, such as constraints and dynamics, from a combination of of-
fline data and online experience. This allows Recovery RL to scale to high-dimensional state
spaces such as images, in which exact specification of system dynamics and constraints can be
very challenging, and is often impossible. Additionally, Recovery RL reasons about chance
constraints rather than robust constraints, which may be challenging to satisfy when dynam-
ics are unknown. Fisac et al. [230] design and prove safety guarantees for learning-based
controllers in a robust optimal control setting with known dynamics and a robust control
invariant safe set. With these additional assumptions, Recovery RL has similar theoretical
properties as well. Han, Levine, and Abbeel [246] and Eysenbach et al. [238] introduce reset
policies which are trained jointly with the task policy to reset the agent to its initial state
distribution, ensuring that the task policy only learns behaviors which can be reset [238].
However, enforcing the ability to fully reset can be impractical or inefficient. Inspired by
this work, Recovery RL instead executes approximate resets to nearby safe states when
constraint violation is probable. Richter and Roy [227] learns the probability of constraint
violation conditioned on an action plan to activate a hand-designed safety controller. In
contrast, Recovery RL uses a learned recovery mechanism which can be broadly applied
across different tasks.

Leveraging Demonstrations for Safe RL and Control: There has also been signifi-
cant prior work investigating how demonstrations can be leveraged to enable safe exploration.
Rosolia and Borrelli [111] and Thananjeyan* et al. [176] introduce model predictive control
algorithms which leverage initial constraint satisfying demonstrations to iteratively improve

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 108

their performance with safety guarantees and Thananjeyan* et al. [106] extends these ideas
to the RL setting. In contrast to these works, Recovery RL learns a larger safe set that
explicitly models future constraint satisfaction and also learns the problem constraints from
prior experience without task specific demonstrations. Also, Recovery RL is compatible with
model-free RL algorithms while [106, 176] require a dynamics model to evaluate reachability-
based safety online.

9.2 Problem Statement

We consider RL under Markov decision processes (MDPs), which can be described by tuple
M = (S,A, P (·|·, ·), R(·, ·), γ, µ) where S and A are the state and action spaces. Stochastic
dynamics model P : S × A × S → [0, 1] maps a state and action to a probability distribu-
tion over subsequent states, γ ∈ [0, 1] is a discount factor, µ is the initial state distribution
(s0 ∼ µ), and R : S × A → R is the reward function. We augment the MDP with an
extra constraint cost function C : S → {0, 1} which indicates whether a state is constraint
violating and associated discount factor γrisk ∈ [0, 1]. This yields the following new MDP:
(S,A, P (·|·, ·), R(·, ·), γ, C(·), γrisk). We assume that episodes terminate on violations, equiv-
alent to transitioning to a constraint-satisfying absorbing state with zero reward.

Let Π be the set of Markovian stationary policies. Given policy π ∈ Π, the expected re-
turn is defined as Rπ = Eπ,µ,P [

∑
t γ

tR(st, at)] and the expected discounted probability of con-
straint violation is defined as Qπ

risk(si, ai) = Eπ,µ,P [
∑

t γ
t
riskC(st+i)] =

∑
t γ

t
riskP (C(st+i) = 1),

which we would like to be below a threshold ϵrisk ∈ [0, 1]. The goal is to solve the following
constrained optimization problem:

π∗ = argmax
π∈Π

{Rπ : Qπ
risk(s0, a0) ≤ ϵrisk} (9.1)

This setting exactly corresponds to the CMDP formulation from [247], but with constraint
costs limited to binary indicator functions for constraint violating states. We limit the choice
to binary indicator functions, as they are easier to provide than shaped costs and use Qπ

risk

to convey information about delayed constraint costs. We define the set of feasible policies,
{π : Qπ

risk ≤ ϵ}, the set of ϵ-safe policies Πϵ. Observe that if γrisk = 1, then by the assumption
of termination on constraint violation, Qπ

risk(si, ai) = P (
⋃
tC(st) = 1), or the probability of

a constraint violation in the future. Setting ϵrisk = 0 as well results in a robust optimal
control problem.

We present an algorithm to optimize equation (9.1) by utilizing a pair of policies, a
task policy πtask, which is trained to maximize Rπ over πtask ∈ Π and a recovery policy πrec,
which attempts to guide the agent back to a state-action tuple (s, a) where Qπ

risk(s, a) ≤
ϵrisk. We assume access to a set of transitions from offline data (Doffline) with examples
of constraint violations. Unlike in typical imitation learning settings, this data need not
illustrate task successes, but shows possible ways to violate constraints. We leverage Doffline

to constrain exploration of the task policy to reduce the probability of constraint violation
during environment interaction.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 109

9.3 Recovery RL

We outline the central ideas behind Recovery RL. In Section 9.3.1, we review how to learn a
safety critic to estimate the probability of future constraint violations for the agent’s policy.
Then in Section 9.3.2, we show how this safety critic is used to define the recovery policy for
Recovery RL and the recovery set in which it is activated. In Section 9.3.3 we discuss how
the safety critic and recovery policy are initialized from offline data and in Section 9.3.4 we
discuss implementation details. See Algorithm 5 and Figure 9.2 for further illustration of
Recovery RL.

9.3.1 Preliminaries: Training a Safety Critic

As in Srinivasan et al. [242], Recovery RL learns a critic function Qπ
risk that estimates the

discounted future probability of constraint violation of the current policy π:

Qπ
risk(st, at) = Eπ

[
∞∑
t′=t

γt
′−t
risk ct′|st, at

]
= ct + (1− ct)γriskEπ [Qπ

risk(st+1, at+1)|st, at] .
(9.2)

Here ct = 1 indicates that state st is constraint violating with ct = 0 otherwise. Note we do
not assume access to the true constraint cost function C. This is different from the standard
Bellman equations to the assumption that episodes terminate when ct = 1. In practice,
we train a sample-based approximation Q̂π

ϕ,risk, parameterized by ϕ, by approximating these
equations using sampled transitions (st, at, st+1, ct).

We train Q̂π
ϕ,risk by minimizing the following MSE loss with respect to the target (RHS

of equation 9.2).

Jrisk(st, at, st+1;ϕ) =
1

2

(
Q̂π
ϕ,risk(st, at)− (ct

+ (1− ct)γrisk E
at+1∼π(·|st+1)

[Q̂π
ϕ,risk(st+1, at+1)])

)2 (9.3)

and use a target network to create the target values [242, 103].

9.3.2 Defining a Recovery Set and Policy

Recovery RL executes a composite policy π in the environment, which selects between a
task-driven policy πtask and a recovery policy πrec at each timestep based on whether the
agent is in danger of constraint violations in the near future. To quantify this risk, we use
Qπ

risk to construct a recovery set that contains state-action tuples from which π may not
be able to avoid constraint violations. Then if the agent finds itself in the recovery set, it
executes a learned recovery policy instead of πtask to navigate back to regions of the MDP

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 110

that are known to be sufficiently safe. Specifically, define two complimentary sets: the safe
set T πsafe and recovery set T πrec:

T πsafe = {(s, a) ∈ S ×A : Qπ
risk(s, a) ≤ ϵrisk}

T πrec = S ×A \ T πsafe

We consider state-action tuple (s, a) to be safe if in state s after taking action a, executing
π has a discounted probability of constraint violation less than ϵrisk.

If the task policy πtask proposes an action aπtask at state s such that (s, aπtask) ̸∈ T πsafe, then
a recovery action sampled from πrec is executed instead of aπtask . Thus, the recovery policy
in Recovery RL can be thought of as projecting πtask into a safe region of the policy space
in which constraint violations are unlikely. The recovery policy πrec is also an RL agent, but
is trained to minimize Q̂π

ϕ,risk(s, a) to reduce the risk of constraint violations under π. Let
aπtaskt ∼ πtask(·|st) and aπrect ∼ πrec(·|st). Then π selects actions as follows:

at =

{
aπtaskt (st, a

πtask
t) ∈ T πsafe

aπrect (st, a
πtask
t) ∈ T πrec

(9.4)

Recovery RL filters proposed actions that are likely to lead to unsafe states, equivalent to
modifying the environment that πtask operates in with new dynamics:

P πrec
ϵrisk

(s′|s, a) =

{
P (s′|s, a) (s, a) ∈ T πsafe
P (s′|s, aπrec) (s, a) ∈ T πrec

(9.5)

We train Q̂π
ϕ,risk on samples from π since πtask is not executed directly in the environment,

but is rather filtered through π.
It is easy to see that the proposed recovery mechanism will shield the agent from regions

in which constraint violations are likely if Q̂π
ϕ,risk is correct and executing πrec reduces its

value. However, this poses a potential concern: while the agent may be safe, how do we
ensure that πtask can make progress in the new MDP defined in equation 9.5? Suppose that
πtask proposes an unsafe action aπtaskt under Q̂π

ϕ,risk. Then, Recovery RL executes a recovery
action aπrect and observes transition (st, a

πrec
t , st+1, rt) in the environment. However, if πtask

is updated with this observed transition, it will not learn to associate its proposed action
(aπtaskt) in the new MDP with rt and st+1. As a result, πtask may continue to propose the same
unsafe actions without realizing it is observing the result of an action sampled from πrec. To
address this issue, for training πtask, we relabel all actions with the action proposed by πtask.
Thus, instead of training πtask with executed transitions (st, at, st+1, rt), πtask is trained with
transitions (st, a

πtask
t , st+1, rt). This ties into the interpretation of defining a safe MDP with

dynamics P πrec
ϵrisk

(s′|s, a) for πtask to act in since all transitions for training πtask are relabeled
as if πtask was executed directly.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 111

Algorithm 5 Recovery RL

Require: Doffline, task horizon H, number of episodes N
1: Pretrain πrec and Q̂

π
ϕ,risk on Doffline {Section 9.3.3}

2: Dtask ← ∅, Drec ← Doffline

3: s0 ← env.reset()

4: for i ∈ {1, . . . N} do
5: for t ∈ {1, . . . H} do
6: if ct = 1 or is terminal(st) then
7: st ← env.reset()

8: end if
9: aπtaskt ∼ πtask(·|st) {Query task policy}
10: {Check if task policy will be unsafe}
11: if (st, a

πtask
t) ∈ T πrec then

12: at ∼ πrec(·|st) {Select recovery policy}
13: else
14: at = aπtaskt {Select task policy}
15: end if
16: Execute at
17: Observe st+1, rt = R(st, at), ct = C(st)
18: {Relabel transition}
19: Dtask ← Dtask ∪ {(st, aπtaskt , st+1, rt)}
20: Drec ← Drec ∪ {(st, at, st+1, ct)}
21: Train πtask on Dtask, πrec on Drec

22: Train Q̂π
ϕ,risk on Drec {Eq. 9.3}

23: end for
24: end for

9.3.3 Offline Pretraining

To convey information about constraints before interaction with the environment, we provide
the agent with a set of transitions Doffline that contain constraint violations for pretraining.
While this requires violating constraints in the environment, this data can be collected by
human defined policies or under human supervision, and thus provide the robotic agent
with examples of constraint violations without the robot having to experience too many
uncontrolled examples online. We pretrain Q̂π

ϕ,risk by minimizing Equation 9.3 over offline

batches sampled from Doffline. We also pretrain πrec using Doffline. Then, πtask, πrec, and Q̂
π
ϕ,risk

are all updated online using experience from the agent’s composite policy as discussed in
Section 9.3.2 and illustrated in Algorithm 5. Any RL algorithm can be used to represent
πtask while any off-policy RL algorithm can be used to learn πrec. For some environments
in which exploration is challenging, we use a separate set of task demos to initialize πtask to
expedite learning.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 112

9.3.4 Practical Implementation

Recovery Policy: Any off-policy RL algorithm can be used to learn πrec. In this chapter,
we explore both model-free and model-based RL algorithms to learn πrec. For model-free
recovery, we perform gradient descent on the safety critic Q̂π

ϕ,risk(s, πrec(s)), as in the popular
off-policy RL algorithm DDPG [104]. For model-based recovery, we perform model predictive
control (MPC) over a learned dynamics model fθ using the safety critic as a cost function.
For lower dimensional tasks, we utilize the PETS algorithm from Chua et al. [86] to plan
over a learned stochastic dynamics model, while for tasks with visual observations, we use
a VAE based latent dynamics model. Task Policy: We utilize the popular maximum
entropy RL algorithm SAC [103] to learn πtask, but note that any RL algorithm could be
used. Details on the implementation of both policies is in the supplement.

9.4 Experiments

In the following experiments, we aim to study whether Recovery RL can (1) more effectively
trade off task performance and constraint satisfaction than prior algorithms, which jointly
optimize both and (2) effectively use offline data for safe RL.

Domains: We evaluate Recovery RL on a set of 6 simulation domains (Figure 9.3) and an
image-based obstacle avoidance task on a physical robot (Figure 9.6). All experiments involve
policy learning under state space constraints, in which a constraint violation terminates
the current episode. This makes learning especially challenging, since constraint violations
directly preclude further exploration. This setting is reflective of a variety of real world
environments, in which constraint violations can require halting the robot due to damage to
itself or its surrounding environment.

We first consider three 2D navigation domains: Navigation 1, Navigation 2, and Maze.
Here, the agent only observes its position in 2D space and experiences constraint violations if
it hits obstacles, walls, or workspace boundaries. We then consider three higher dimensional
tasks to evaluate whether Recovery RL can be applied to contact rich manipulation tasks
(Object Extraction, Object Extraction (Dynamic Obstacle)) and vision-based continuous
control (Image Maze). In the object extraction environments, the goals is to extract the
red block without toppling any blocks, and in the case of Object Extraction (Dynamic
Obstacle), also avoiding contact with a dynamic obstacle which moves in and out of the
workspace. Image Maze is a shorter horizon version of Maze, but the agent is only provided
with image observations rather than its (x, y) position in the environment.

We then evaluate Recovery RL on an image-based obstacle avoidance task on the da
Vinci Research Kit (dVRK) [105] where the robot must guide its end effector within 2 mm
of a target position from two possible starting locations without touching red 3D printed
obstacles in the workspace. See Figure 9.1 for an illustration of the experimental setup. The
dVRK is cable-driven and has relatively imprecise controls, motivating closed-loop control
strategies to compensate for these errors [248]. Furthermore, the dVRK system has been

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 113

used in the past to evaluate safe RL algorithms [106] due to its high cost and the delicate
structure of its arms, which make safe learning critical. Further environment, task, and data
collection details can be found in the supplement for all simulation and physical experiments.

Offline Data Collection: To effectively initialize Q̂π
ϕ,risk, Doffline should ideally contain

a diverse set of trajectories which violate constraints in different ways. Since Doffline need
not be task specific, data from other tasks in the environment could be used, or simple
human defined policies can be used to illustrate constraint violating behaviors. We take
the latter approach: for all navigation environments (Navigation 1, Navigation 2, Maze,
Image Maze, and the physical experiment), offline data is collected by initializing the agent
in various regions of the environment and directing the agent towards the closest obstacle.
For the object extraction environments (Object Extraction, Object Extraction (Dynamic
Obstacle)), demonstrations are collected by guiding the end effector towards the target red
block and adding Gaussian noise to controls when it is sufficiently close to the target object
to make toppling likely. Recovery RL and all comparisons which have a safety critic are
given the same offline dataset Doffline. See the supplementary material for details on the data
collection procedure, and the number of total transitions and constraint violating states for
all offline datasets.

Evaluation Metric: Since Recovery RL and prior methods trade off between safety
and task progress, we report the ratio of the cumulative number of task successes and the
cumulative number of constraint violations at each episode to illustrate this (higher is better).
We tune all algorithms to maximize this ratio, and task success is determined by defining a
goal set in the state space for each environment. To avoid issues with division by zero, we
add 1 to the cumulative task successes and constraint violations when computing this ratio.
This metric provides a single scalar value to quantify how efficiently different algorithms
balance task completion and constraint satisfaction. We do not report reward per episode,
as episodes terminate on task completion or constraint violation. Each run for simulation
experiments is replicated across 10 random seeds and we report the mean and standard error.
For physical experiments we run each algorithm across 3 random seeds and visualize all 3
runs. In the supplementary material, we also report additional metrics for each experiment:
cumulative task successes, cumulative constraint violations, and reward learning curves. We
find that Recovery RL violates constraints less often than comparisons while maintaining a
similar task success rate and more efficiently optimizing the task reward.

Comparisons: We compare Recovery RL to the following algorithms that ignore
constraints (Unconstrained) or enforce constraints via the optimization objective (LR, SQRL,
RSPO) or via reward shaping (RP, RCPO).

• Unconstrained: optimizes task reward, ignoring constraints.

• Lagrangian Relaxation (LR): minimizes Lpolicy(s, a, r, s
′; π)+λ(Ea∼π(·|s)

[
Q̂π
ϕ,risk(s, a)

]
−

ϵrisk), where Lpolicy is the policy optimization loss and the second term approximately

enforces Q̂π
ϕ,risk(s, a) ≤ ϵrisk. Policy parameters and λ are updated via dual gradient

descent.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 114

Figure 9.3: Simulation Experiments Domains: We evaluate Recovery RL on a set of
2D navigation tasks, two contact rich manipulation environments, and a visual navigation
task. In Navigation 1 and 2, the goal is to navigate from the start set to the goal set
without colliding into the obstacles (red) while in the Maze navigation tasks, the goal is to
navigate from the left corridor to the red dot in the right corridor without colliding into
walls/borders. In both object extraction environments, the objective is to grasp and lift the
red block without toppling any of the blocks or colliding with the distractor arm (Dynamic
Obstacle environment).

• Safety Q-Functions for RL (SQRL) [242]: combines the LR method with a filter-
ing mechanism to reject policy actions for which Q̂π

ϕ,risk(s, a) > ϵrisk.

• Risk Sensitive Policy Optimization (RSPO) [235]: minimizes Lpolicy(s, a, r, s
′; π)+

λt(Ea∼π(·|s)
[
Q̂π
ϕ,risk(s, a)

]
− ϵrisk), where λt is a sequence which decreases to 0.

• Reward Penalty (RP): observes a reward function that penalizes constraint viola-
tions: R′(s, a) = R(s, a)− λC(s).

• Critic Penalty Reward Constrained Policy Optimization (RCPO) [195]: op-
timizes the Lagrangian relaxation via dual gradient descent and the policy gradient

trick. The policy gradient update maximizes Eπ
[∑∞

t=0 γ
t(R(st, at)− λQ̂π

ϕ,risk(st, at))
]

and the multiplier update is the same as in LR.

All of these algorithms are implemented with the same base algorithm for learning the
task policy (Soft Actor-Critic [103]) and all but Unconstrained and RP are modified to use
the same safety critic Q̂π

ϕ,risk which is pretrained on Doffline for all methods. Thus, the key

difference between Recovery RL and prior methods is how Q̂π
ϕ,risk is utilized: the comparisons

use a joint objective which uses Q̂π
ϕ,risk to train a single policy that optimizes for both task

performance and constraint satisfaction, while Recovery RL separates these objectives across
two sub-policies. We tune all prior algorithms and report the best hyperparameter settings
found on each task for the ratio-based evaluation metric. Details on Recovery RL and all
comparison algorithms are in the supplement.

Results: We first study the performance of Recovery RL and prior methods in all
simulation domains in Figure 9.4. Results suggest that Recovery RL with both model-
free and model-based recovery mechanisms significantly outperform prior algorithms across

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 115

Figure 9.4: Simulation Experiments: Left: ratio of successes to constraint violations over
the course of online training. In all navigation tasks, we find that Recovery RL significantly
outperforms prior methods with both model-free and model-based recovery policies, while
for the object extraction environments, Recovery RL with a model-based recovery policy
significantly outperforms prior algorithms while Recovery RL with a model-free recovery
policy does not perform as well. We hypothesize that this is due to the model-based recovery
mechanism being better able to compensate for imperfections in Q̂π

ϕ,risk. Results are averaged
over 10 runs for each algorithm; the sawtooth pattern occurs due to constraint violations,
which result in a sudden drop in the ratio. Right: cumulative successes and constraint
violations. Additionally, we show the cumulative task successes and cumulative constraint
violations for the Object Extraction task for all algorithms, and find that Recovery RL
with model-based recovery succeeds more often than all comparisons while also violating
constraints the least. Similar plots for all other experimental domains can be found in the
supplementary material.

all 3 2D pointmass navigation environments (Navigation 1, Navigation 2, Maze) and the
visual navigation environment (Image Maze). In the Object Extraction environments, we
find that Recovery RL with model-based recovery significantly outperforms prior algorithms,
while Recovery RL with a model-free recovery mechanism does not perform nearly as well.
We hypothesize that the model-based recovery mechanism is better able to compensate for
approximation errors in Q̂π

ϕ,risk, resulting in a more robust recovery policy. We find that
the prior methods often get very low ratios since they tend to achieve a similar number of
task completions as Recovery RL, but with many more constraint violations. In contrast,
Recovery RL is generally able to effectively trade off between task performance and safety.
This is illustrated on the right pane of Figure 9.4, which suggests that Recovery RL with
model-based recovery not only succeeds more often than comparison algorithms, but also
exhibits fewer constraint violations. We study this further in the supplement. Finally,
we evaluate Recovery RL and prior algorithms on the image-based obstacle avoidance task

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 116

Figure 9.5: Sensitivity Experiments: We report the final number of task successes
and constraint violations averaged over 10 runs at the end of training for Recovery RL
and comparison algorithms for a variety of different hyperparameter settings on the Object
Extraction task. We find that the comparison algorithms are relatively sensitive to the value
of the penalty parameter λ while given a fixed γrisk, Recovery RL achieves relatively few
constraint violations while maintaining task performance over a range of ϵrisk values.

Figure 9.6: Physical Experiment: We evaluate Recovery RL on an image-based obstacle
avoidance task (red obstacles) on the dVRK (Figure 9.1). We supply all algorithms with an
overhead RGB image as input and run each algorithm 3 times. We find that Recovery RL
significantly outperforms Unconstrained and LR.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 117

Figure 9.7: Ablations: We first study the affect of different algorithmic components of
Recovery RL (left). Results suggest that offline pretraining of πrec and Q̂π

ϕ,risk is critical
for good performance, while removing online updates leads to a much smaller reduction
in performance. Furthermore, we find that the action relabeling method for training πtask
(Section 9.3.2) is critical for good performance. We then study the sensitivity of Recovery
RL to the number of offline transitions used to pretrain πrec and Q̂π

ϕ,risk (right) and find
that Recovery RL performs well even with just 1000 transitions in Doffline for the Object
Extraction task, with performance degrading when the number of transitions is reduced
beyond this point.

illustrated in Figure 9.1 and find that Recovery RL substantially outperforms prior methods,
suggesting that Recovery RL can be used for contact-rich visuomotor control tasks in the real
world (Figure 9.6). We study when Recovery RL violates constraints in the supplement, and
find that in most tasks, the recovery policy is already activated when constraint violations
occur. This is encouraging, because if a recovery policy is challenging to learn, Recovery RL
could still be used to query a human supervisor for interventions.

Ablations: We ablate different components of Recovery RL and study the sensitivity
of Recovery RL to the number of transitions in Doffline for the Object Extraction domain
in Figure 9.7. Results suggest that Recovery RL performs much more poorly when πrec
and Q̂π

ϕ,risk are not pretrained with data from Doffline, indicating the value of learning to

reason about safety before environment interaction. However, when πrec and Q̂π
ϕ,risk are

not updated online, performance degrades much less significantly. A key component of
Recovery RL is relabeling actions when training the task policy so that πtask can learn to
associate its proposed actions with their outcome (Section 9.3.2). We find that without this
relabeling, Recovery RL achieves very poor performance as it rarely achieves task successes.
Additionally, we find that although the reported simulation experiments supply Recovery
RL and all prior methods with 20, 000 transitions in Doffline for the Object Extraction task,
Recovery RL is able to achieve good performance with just 1000 transitions in Doffline, with
performance significantly degrading only when the size of Doffline is reduced to less than this
amount.

CHAPTER 9. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 118

Sensitivity Experiments: We tune hyperparameters for Recovery RL and all baselines
to ensure a fair comparison. We first tune γrisk and ϵrisk for Recovery RL, and then use the
same γrisk and ϵrisk for prior methods to ensure that all algorithms use the same safety critic
training procedure. These two hyperparameters are the only ones tuned for Recovery RL
and SQRL. For RP, RCPO, and LR, we tune the penalty term λ with γrisk and ϵrisk fixed
as mentioned above. For RSPO, we utilize a schedule which decays λ from 2 times the best
value found for λ when tuning the LR comparison to 0 with an evenly spaced linear schedule
over all training episodes. In Figure 9.5, we study the sensitivity of Recovery RL with model-
based recovery and the RP, RCPO, and LR comparisons to different hyperparameter choices
on the Object Extraction task. Recovery RL appears less sensitive to hyperparameters than
the comparisons for the γrisk values we consider.

9.5 Discussion and Future Work

We present Recovery RL, a new algorithm for safe RL which is able to more effectively balance
task performance and constraint satisfaction than 5 state-of-the-art prior algorithms for safe
RL across 6 simulation domains and an image-based obstacle avoidance task on a physical
robot. In future work we hope to explore further evaluation on physical robots, establish
formal guarantees, and use ideas from offline RL to more effectively pretrain the recovery
policy. We will explore settings in which constraint violations may not be catastrophic and
applications for large-scale robot learning.

119

Chapter 10

MESA: Offline Meta-RL for Safe
Adaptation and Fault Tolerance

Reinforcement learning (RL) is a versatile abstraction that has shown significant recent
success in learning a variety of different robotic tasks purely from interactions with the
environment. However, while learning policies through online experience affords simplicity
and generality to RL algorithms, this can result in unsafe behavior during online learning.
Unconstrained exploration can potentially lead to highly unproductive or unsafe behaviors,
which can cause equipment/monetary losses, risk to surrounding humans, and inhibit the
learning process. This motivates safe RL algorithms that leverage prior experience to avoid
unsafe behaviors during exploration. Recent work on safe RL algorithms typically learn
a risk measure [46, 249, 242], which captures the probability that an agent will violate a
constraint in the future, and then uses this measure to avoid unsafe behaviors. For example,
a robot may realize that, under its current policy, it is likely to collide with a wall and hence
take preemptive measures to avoid collision. However, the agent’s ability to be safe largely
depends on the accuracy of the learned risk measure, and learning this risk measure requires
significant data demonstrating unsafe behavior. This poses a key challenge: to know how to
be safe, an agent must see sufficiently many examples of unsafe behavior, but the more such
examples it generates, the less effectively it has protected itself from unsafe behaviors.

This challenge motivates developing methods to endow RL agents with knowledge about
constraints before online interaction, so the agent can learn safely without excessive con-
straint violations during deployment in risk-sensitive environments. Prior work studies how
to use previous data of agent interactions, either via online interaction or offline datasets,
to learn a risk measure which can then be adapted during online deployment [242, 46, 250].
However, a challenge with these methods is that these offline transitions are required to
be in the same environment as that in which the agent is deployed, which may not always
be practical in risk-sensitive environments in which a large number of constraint violations
could be exceedingly costly or dangerous. Additionally, shifting dynamics is a ubiquitous
phenomenon in real robot hardware: for example losses in battery voltage [251] or wear-and-
tear in manipulators or actuators [252]. These changes can drastically change the space of

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 120

Figure 10.1: Left: MEta-learning for Safe Adaptation (MESA): MESA takes a 3
phase approach to learn a transferable risk measure for safe RL. In Phase 1, MESA uses
offline datasets from training environments of different dynamics to meta-learn a safety critic
Qπ

risk. In Phase 2, MESA adapts the safety critic to a test environment with unseen dynamics
using a small test dataset. Finally, in Phase 3, MESA uses the adapted safety critic and
recovery policy in the test environment to enable safe learning as in Recovery RL.

safe behaviors, as the robot may need to compensate for unforeseen differences in the robot
dynamics. Furthermore, these changes in dynamics will often not be immediately observ-
able for a robot control policy, motivating algorithms which can identify and adapt to these
changes based online interaction.

To address this, we aim to effectively transfer knowledge about safety between envi-
ronments with different dynamics, so that when learning some downstream task in a test
environment with previously unseen dynamics, the agent can rapidly learn to be safe. Our
insight is that the agent should be able to leverage offline datasets across previous deploy-
ments, with knowledge of only the safety of states in these datasets, to rapidly learn to be
safe in new environments without task specific information. The contributions of this work
are (1) casting safe RL as an offline meta-reinforcement learning problem [253, 254], where
the objective is to leverage fully offline data from training and test environments to learn how
to be safe in the test environment; (2) MEta-learning for Safe Adaptation (MESA), which
meta-learns a risk measure that is used for safe reinforcement learning in new environments
with previously unseen dynamics; (3) simulation experiments across 3 continuous control
domains which suggest that MESA can cut the number of constraint violations in half in
a new environment with previously unseen dynamics while maintaining task performance
compared to prior algorithms. Please see the supplement for a more thorough discussion of
related work.

10.1 Related Work

10.1.1 Safe Reinforcement Learning

There has been significant recent work on reinforcement learning algorithms which can satisfy
safety constraints. We specifically focus on satisfying explicit state-space constraints in the
environment and review prior literature which also considers this setting [255]. Prior work

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 121

has considered a number of methods for incorporating constraints into policy optimization
for reinforcement learning, including trust region based methods [256, 155], optimizing a
Lagrangian relaxation [195, 241, 242, 257], drawing connections to Lyapunov theory [243,
244, 156], anticipating violations with learned dynamics models [106, 176, 207, 250], using
Gaussian processes to reason about uncertainty [258, 259], using recovery policies to shield
the agent from constraint violations [231, 232, 246, 238, 46], formal reachability analysis [230,
177, 260, 261, 262, 263], or formal logic [245, 264]. Zhang et al. [250] design a model-based RL
algorithm which leverages unsafe data from a variety of training environments with different
dynamics to predict whether the agent will encounter unsafe states and penalize its reward if
this is the case. Unlike Zhang et al. [250], we explicitly optimize for adaptation and decouple
information about constraints from the reward function, making it possible to efficiently
learn transferable notions of safety. Additionally, we learn a risk measure in a fully offline
setting, and do not assume direct access to the training environments.

Srinivasan et al. [242] introduce the idea of a safety critic, which estimates the discounted
probability of constraint violation of the current policy given the current state and a proposed
action. Srinivasan et al. [242], Bharadhwaj et al. [257], and Thananjeyan* et al. [46] present
3 different methods to utilize the learned safety critic for safe RL. Srinivasan et al. [242]
and Thananjeyan* et al. [46] also leverage prior data from previous interactions to learn
how to be safe. However, unlike these works, which assume that prior data is collected in
an environment with the same dynamics as the test environment, MESA learns to leverage
experience from a variety of environments with different dynamics in addition to a small
amount of data from the test environment. This choice makes it possible to avoid excessive
constraint violations in the test environment, in which constraint violations may be costly,
by leveraging prior experience in safer environments or from accident logs from previous
deployments.

10.1.2 Meta Reinforcement Learning

There is a rich literature [265, 266, 267, 268, 269] studying learning agents that can efficiently
adapt to new tasks. In the context of reinforcement learning, this problem, termed meta-
reinforcement learning [270, 271, 272], aims to learn RL agents which can efficiently adapt
their policies to new environments with unseen transition dynamics and rewards. A number
of strategies exist to accomplish this such as recurrent or recursive policies [270, 271, 273],
gradient based optimization of policy parameters [272, 274], task inference [275, 276, 277],
or adapting dynamics models for model-based RL [278, 279]. One of the core challenges
studied in many meta-RL works is efficient exploration [280, 275, 281, 282], since the agent
needs to efficiently explore its new environment to identify the underlying task. Unlike all
of these prior works, which focus on learning transferable policies, we focus on learning risk
measures which can be used to safely learn new tasks in a test environment with previously
unseen dynamics. Additionally, we study learning these measures in the context of offline
meta-RL, and learn from purely offline datasets of prior interactions in various environments
with different dynamics.

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 122

The offline meta reinforcement learning problem [253, 254, 283] considers a setting in
which the agent learns from a set of offline data from each training task, and adapts to the
test environment conditioned only on a small set of offline transitions. Critically, this setting
is particularly well suited to the problem of safe RL, because it has potential to enable an
agent to be safe in an environment with previously unseen dynamics conditioned on a small
set of experiences from that environment. In this work, we formalize safe reinforcement
learning as an offline meta-RL problem and present an algorithm to adapt a safety critic
to new environments and use this adapted safety critic for safe reinforcement learning. One
option for meta-learning for safe RL is using meta-learning for sim-to-real domain adaptation
where data can be collected safely and at scale in simulated environments [284]. By contrast,
MESA explicitly reasons about safety constraints in the environment to learn adaptable risk
measures. Additionally, while prior work has also explored using meta-learning in the context
of safe-RL [285], specifically by learning a single safety filter which keeps policies adapted for
different tasks safe, we instead adapt the risk measure itself to unseen dynamics and fault
structures.

10.2 Preliminaries

10.2.1 Constrained Markov Decision Processes

In safe reinforcement learning, an agent interacts with a Constrained Markov Decision Pro-
cess (CMDP) [247], defined by the tupleM = (S,A, P, r, C, ρ0, γ, γrisk), where S represents
the state space, A is the action space, the transition dynamics function P : S×A×S → [0, 1]
maps the current state and action to a probability distribution of next states, r : S×A → R
is the reward function, C : S → {0, 1} is a constraint function which indicates whether a state
is constraint violating, ρ0 : S → [0, 1] is the starting state distribution, and γ, γrisk ∈ [0, 1]
are the discount factors for the rewards and constraint values. As in prior work [242,
46], we assume constraint violations end the episode immediately. The expected return
for a policy π : S → A is R(π) = Eπ,ρ0,P [

∑∞
t γtr(st, at)]. The discounted probabil-

ity of future constraint violation for policy π is Qπ
risk(st, at) = Eπ,ρ0,P [

∑∞
t γtriskC(st)] =

Eπ,ρ0,P [
∑∞

t γtriskP (C (st) = 1)]. Unlike unconstrained RL, safe RL agents seek to optimize:

π∗ = argmax
π

{Rπ : Qπ
risk ≤ ϵrisk} (10.1)

where ϵrisk is a hyper-parameter that defines how safe the agent should be.

10.2.2 Safety Critics for Safe RL

Recent work investigates ways to estimate the discounted future probability of catastrophic
constraint violation under the current policy: Qπ

risk(st, at) =
∑∞

t′=t γ
t′−t
riskC(st) [46, 242]. In

practice, algorithms search over a parametric function class:
{
Qπ
ψ,risk(st, at) : ψ ∈ Ψ

}
, where

ψ is a particular parameter vector and Ψ is its possible values. This function is trained by

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 123

minimizing an MSE loss function with respect to a target function on a dataset of transitions
{(st, at, ct, st+1)i}Ni=1 collected in the environment:

Lrisk(st, at, ct, st+1) = (Qπ
ψ,risk(st, at)− (ct

+ γrisk(1− ct)Eat+1∼π(·|st+1)

[
Qπ
ψ,risk,targ(st+1, at+1)

]
))22

where Qπ
ψ,risk,targ is a target network and ct denotes that state st is constraint violating. The

safety critic can be used for constrained policy search, by either optimizing a Lagrangian
function [195, 242, 257] with it or filtering dangerous actions [242, 46].

10.2.3 Recovery RL

In this work, we use the safety critic Qπ
risk to detect when to switch to a recovery policy

and to train the recovery policy as in Recovery RL [46]. In particular, Recovery RL trains
a task policy πtask and a recovery policy πrec and executes actions from πtask when the risk
estimate is sufficiently low and from πrec otherwise. That is,

at ∼
{
πtask(·|st) Qπ

risk(st, a
π
t) ≤ ϵrisk

πrec (·|st) otherwise

Here ϵrisk ∈ [0, 1] is a user-specified hyperparameter that indicates the level of risk the
agent is willing to take. If the safety critic indicates that the current state and action visited
by the task policy is unsafe, the recovery policy will overwrite the task policy’s actions,
moving the agent back to safe regions of the state space. Both policies can be trained using
any reinforcement learning algorithm, where πtask optimizes task reward and πrec minimizes
Qπ

risk.

10.2.4 Meta-learning

Consider a task distribution p(M) where tasks are sampled via Mi ∼ p(M). In the RL
setting, each task corresponds to an MDP, all of which share the same state and action spaces
but may have varying dynamics (e.g. varying controller impedance for a legged robot). The
goal in this work is to learn risk measures that rapidly adapt to new environments, such as
when a robot’s actuator loses power and it is forced to compensate with only the remaining
actuators. We will briefly discuss how functions can be initialized for rapid adaptation to
new tasks by training on similar tasks.

Meta-learning learns a model explicitly optimized for adaptation to a new task from
p(M). Let θ′i = θ − α∇θLMi

(fθ) be the parameters θ after a single gradient step from
optimizing LMi

(fθ). Model-Agnostic Meta-Learning (MAML) [272] optimizes the following
objective at meta-train time:

min
θ

EMi∼p(M)

[
LMi

(fθ′i)
]
= min

θ
EMi∼p(M)

[
LMi

(fθ−α∇θLMi
(fθ))

]
(10.2)

After meta-training, to quickly adapt to a new test environment, MAML computes a
task-specific loss function from an unseen task and updates θ with several gradient steps.

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 124

10.3 Problem Statement

We consider the offline meta-reinforcement learning problem setting introduced in [253, 254],
in which the objective is to leverage offline data from a number of different tasks to rapidly
adapt to an unseen task at test-time. We consider an instantiation of this setting in which
tasks correspond to CMDPs {Mi}Ni=1, each with different system dynamics pi(s

′|s, a), but
which otherwise share all other MDP parameters, including the same state and action spaces
and constraint function. Here the agent is not allowed to directly interact with any environ-
ment at meta-train time or meta-test time, but is only provided with a fixed offline dataset
of transitions from environments. This setting is particularly applicable to the safe reinforce-
ment learning setting, where direct environmental interaction can be risky, but there may be
accident logs from prior robot deployments in various settings. We formalize the problem of
learning about constraints in the environment in the context of offline meta-reinforcement
learning, in which the agent is provided with offline data from Ntrain training environments
{Mtrain

i }Ntrain
i=1 with varying system dynamics and must rapidly adapt to being safe in a new

environment Mtest with unseen system dynamics. The intuition is that when dynamics
change, the states which violate constraints remain the same, but the behaviors that lead
to these states may be very different. Thus, we consider the problem of using data from a
number of training environments to optimize the safe RL objective in Equation 10.1.

We assume that the agent is provided with a set of Ntrain datasets of offline transitions
Dtrain = {Dtrain

i }Ntrain
i=1 from training environments with different dynamics in addition to a

small dataset Dtest of offline transitions from the test environmentMtest, in which the agent
is to be deployed. The agent’s objective is to leverage this data to optimize the safe RL
objective in Equation 10.1 in MDP Mtest by learning some task τ in MDP Mtest while
minimizing constraint violations.

10.4 MEta-learning for Safe Adaptation (MESA)

We introduce MEta-learning for Safe Adaptation (MESA), a 3-phase procedure to optimize
the objective in Section 10.3. First, MESA uses datasets of offline transitions from the train-
ing environments to meta-learn a safety critic optimized for rapid adaptation (Section 10.4.1).
Then, we discuss how MESA adapts its meta-learned safety critic using a dataset of offline
transitions from the test environment (Section 10.4.2). This same dataset is also used to
learn a recovery policy, which is trained to descend the safety critic and prevent the agent
from visiting unsafe states as in Thananjeyan* et al. [46], but we note that the learned safety
critic can also be used in conjunction with other safe RL algorithms such as those from Srini-
vasan et al. [242] and Bharadhwaj et al. [257]. Finally, the meta-learned safety critic and
recovery policy are used and updated online when learning some downstream task τ in the
testing environment (Section 10.4.3). The full algorithm is summarized in Algorithm 8 and
Figure 10.1. An illustration of the safety critic adaptation procedure is shown in Figure 10.2.

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 125

10.4.1 Phase 1, Meta-Learning Qπ
risk

Given offline transitions from Ntrain training environments, {Dtrain
i }Ntrain

i=1 , we meta-learn the
safety critic Qπ

ψ,risk, with parameters ψ, using Model-agnostic Meta Learning [272]. We
utilize the same safety critic loss function from [46]. The recovery policy is not trained with
a MAML-style objective. Similar to the actor’s loss function in DDPG [104], the recovery
policy, parameterized by ω, aims to minimize the safety critic value for input state st:

Lπrec(ω, st) = Qπ
ψ,risk(st, πω,rec(·|st)).

10.4.2 Phase 2, Test Time Adaptation

A previously unseen test environment Mtest is sampled from task distribution p(M) and
the agent is supplied with a dataset of offline transitions Dtest, which is 10-100x smaller
than the training datasets. We then perform M gradient steps with respect to Lrisk(ψ, s)
(in Section 10.2.2) and Lπrec(ω, s) over Dtest to rapidly adapt safety critic Qπ

ψ,risk and train
recovery policy πω,rec

Note that the learned Qπ
ψ,risk is initially calibrated with the policy used for data collec-

tion in the meta-training environments. Since these datasets largely consist of constraint
violations, the resulting Qπ

ψ,risk serves as a pessimistic initialization for online learning of
some downstream task τ . This is a desirable property, as Qπ

ψ,risk will initially prevent con-
straint violations, and then become increasingly less pessimistic during online exploration
when calibrated with the task policy for task τ .

10.4.3 Phase 3, Using Qπ
risk and πrec for Safe RL

We initialize the safety critic and recovery policy with the adapted Qπ
ψ,risk and πω,rec when

learning a task τ in the test environment. Since the safety critic is learned offline in a task-
agnostic way, we can flexibly utilize the meta-learned safety critic and recovery policy to
learn a previously unknown task τ in the test environment. As in Recovery RL [46], both
Qπ
ψ,risk and πω,rec are updated online through interaction with the environment so that they

are calibrated with the learned task policy for τ .

10.5 Experiments

We study the degree to which MESA can leverage offline data from environments with
different dynamics to quickly learn safety in a new test domain with modified, previously
unseen dynamics via a small amount of experience in the new domain. To do this, we compare
MESA with prior safe reinforcement learning algorithms and study the degree to which they
can limit constraint violations when learning in a perturbed test environment with previously
unseen dynamics. MEta-learning for Safe Adaptation (MESA) and all comparisons are built
on top of the Soft Actor Critic (SAC) algorithm from Haarnoja et al. [103]. Comparisons:

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 126

Figure 10.2: Safety Critic Adaptation Visualizations: For purposes of illustration, we
evaluate MESA and a Multi-Task learning comparison on a simple Maze Navigation task (left)
from [46] in which the objective is for the agent (the red dot) to navigate from a random point
in the left column to the middle of the right column without colliding into any of the Maze walls
or boundaries. Environments are sampled by changing the gaps in the walls (parameterized by
w1, w2 ∼ U(−0.1, 0.1)), leading to significant changes in which behaviors are safe. On the left, we
show heatmaps of the learned safety critic Qπ

risk when it is adapted to a new Maze with unseen
wall gaps for the Multi-Task comparison (top) and MESA (bottom). Here bluer colors denote low
probability of constraint violation while redder colors denote a higher probability, and the labels
above the heatmaps indicate the number of gradient steps used for adaptation on Dtest. The Multi-
Task learning comparison, which aggregates data from all environments to learn the safety critic
and does not explicitly optimize for adaptation, is much slower to adapt while MESA is able to
leverage its learned prior to rapidly adapt to the new gap positions.

(a) Navigation 1 (b) Navigation 2 (c) Cartpole
Length

(d) HalfCheetah
Disabled

(e) Ant Dis-
abled

Figure 10.3: Simulation Domains: We evaluate MESA on a set of 2D navigation and locomotion
tasks in simulation. In Navigation 1 and Navigation 2, the agent learns to navigate from a beginning
position to the goal while avoiding the obstacles (red walls). In the Cartpole-Length task, the goal is
to keep the pole balanced on the cart while minimizing the number of times the pole falls beneath
the rail or moves off the rail. Lastly, in the HalfCheetah-Disabled and Ant-Disabled tasks, the
objective is to learn how to move forwards while minimizing the number of collisions with the
ground of the head (HalfCheetah) or torso (Ant) during training.

We compare MESA with the following algorithms: Unconstrained: A soft actor critic
agent which only optimizes for task rewards and ignores constraints; Recovery RL (RRL):
Uses data only from Dtest to learn Qπ

risk and then uses Qπ
risk in conjunction with the Recovery

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 127

RL algorithm [46]; Multi-Task Learning (Multi-Task): Learns Qπ
risk from a combination

of all data from both the training datasets {Di}Ntrain
i=1 in phase 1 and then adapts in phase

2 using gradient steps on only the test dataset Dtest. In phase 3, Multi-Task uses the
learned Qπ

risk in conjunction with the Recovery RL algorithm [46] as in MESA and the RRL
comparison; CARL: A prior safe meta-reinforcement learning algorithm which learns a
dynamics model and safety indicator function through interaction with number of source
environments and uses the uncertainty of the learned dynamics models to adapt to a target
environment with previously unknown dynamics in a risk-averse manner; CARL-Offline:
A modification of CARL which only provides CARL with offline datasets from the source
environments, consistent with the offline meta-RL setting we consider in this work.

The comparison to Unconstrained allows us to evaluate the effect of reasoning about
constraints at all. The comparison to Recovery RL allows us to understand whether offline
data from different environments enables MESA to learn about constraints in the test envi-
ronment. The comparison to the Multi-Task Learning algorithm allows us to evaluate the
benefits of specifically leveraging meta-learning to quickly adapt learned risk measures. The
comparisons to CARL and CARL-Offline allow us to evaluate whether MESA can outperform
prior work in safe meta-RL.
Experimental Procedure: We evaluate MESA and comparisons on their ability to (1)
efficiently learn some downstream task τ in the test environment (2) while satisfying con-
straints. We report learning curves and cumulative constraint violations for all algorithms to
see if MESA can leverage prior experience to safely adapt in the test environment. Episodes
are terminated upon a constraint violation, making learning about constraints critical for
safely learning in the test environment. We report average performance over 5 random seeds
with standard error shading for all learning curves.
Domains: We evaluate MESA and comparisons on 5 simulation domains which are illus-
trated in Figure 10.3. All domains we study have the property that the changes in the
dynamics are not immediately observable in the agent’s observation, motivating learning
how to be safe from interaction experience when dynamics change. This is common in vari-
ous practical settings, such as a robot with worn out joints or sudden power loss in a legged
locomotion system. We first consider two 2D navigation domains from [46] in which the
agent must navigate between a start set and goal set without colliding into red obstacles in
a system with linear Gaussian dynamics. The environment distribution for both domains
is defined by varying the coefficients of the A and B matrices in the transition dynamics
function where st+1 = A · st +B · at + ϵ, where ϵ ∼ N (0, σ2I).

We then consider a cartpole task (Cartpole-Length) in which the agent must balance
the cartpole system without letting the pole fall below the cart. Here environments are
sampled by varying the length of the pole, where pole lengths for the training environments
are sampled from U (0.4, 0.8) and the test environment corresponds to a pole of length 1.
We also consider two legged locomotion tasks, HalfCheetah-Disabled and Ant-Disabled, in
which the agent is rewarded for running as fast as possible, but violates constraints given
a collision of the head with the floor or torso with the floor for the HalfCheetah-Disabled
and Ant-Disabled tasks respectively. For both HalfCheetah-Disabled and Ant-Disabled,

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 128

Figure 10.4: Navigation Results: Top: Learning Curves (Phase 3). MESA is able to
achieve similar task success compared to prior algorithms on bot domains. Bottom: Cumulative
Constraint Violations (Phase 3). Here, we find that MESA achieves fewer constraint violations
than most comparisons, but find that the Multi-Task comparison also performs well on these
environments.

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 129

Figure 10.5: Locomotion Results: Top: Learning Curves (Phase 3). MESA achieves simi-
lar task performance as the best comparison algorithm, indicating that MESA is able to effectively
learn in a test environment with previously unseen dynamics. Bottom: Cumulative Constraint
Violations (Phase 3). MESA violates constraints less often than comparisons, with this differ-
ence being most significant on the HalfCheetah-Disabled and Ant-Disabled tasks. This suggests
that MESA is able to effectively leverage its prior experiences across environments with different
dynamics to rapidly adapt its risk measure to the test environment.

environments are sampled by choosing a specific joint and simulating a loss of power (power
loss corresponds to always providing zero motor torque to the joint), resulting in significantly
different dynamics across environments. The Cartpole-Length and HalfCheetah-Disabled
tasks are adapted from [250] while the Ant-Disabled task is from [279].

10.5.1 Data Collection

For the navigation environments, offline datasets are collected via a random policy where the
episode does not terminate upon constraint violation. We collect a total of 20-25 datasets for
each of the sampled training environments, with each dataset consisting of 10000 transitions
(680 and 1200 violations in Navigation 1 and Navigation 2 respectively), similar to that of
[46]. However, the dataset in the test environment is 50-100x smaller than each training
task dataset (∼100, 200 transitions with 15, 36 violations respectively).

Similarly, for locomotion environments, the datasets from the test environment are col-
lected via a random policy rollout, where the episode does not terminate early upon con-
straint violations. To collect datasets from the training environments, we train SAC on each
of the training environments and log the replay buffer from an intermediate checkpoint. For

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 130

the HalfCheetah-Disabled and Ant-Disabled tasks, we collect 4 and 3 training datasets of
400 episodes (on average ∼400K transitions with 14K and 113K violations) respectively. The
dataset from the testing environment consists of 40K transitions (2.4K, and 11.2K violations
for HalfCheetah, Ant), which is 10x smaller than before. For the Cartpole-Length task, 20
training datasets are generated, with each containing 200 episodes of data (∼20K timesteps
with 4.5K violations). The dataset from the testing environment contains 1K transitions
(with 200 violations), which is 20x smaller than before.

10.5.2 Results

Navigation Results: We evaluate the performance of MESA and comparisons in Fig-
ure 10.4. Unconstrained SAC performs poorly as it no mechanism to reason about constraints
and thus collides frequently and is unable to learn the task. MESA violates constraints less
often than the Multi-Task comparison, but the performance gap is somewhat small in these
environments. We hypothesize that this is because in the Navigation environments, partic-
ularly Navigation 2, the space of safe behaviors does not change significantly as a function
of the system dynamics, making it possible for the Multi-Task comparison to achieve strong
performance by simply learning the safety critic jointly on a buffer of all collected data.
CARL and CARL-Offline baselines perform the best in the Navigation 1 environment but
are unable to make much progress in Navigation 2.

Locomotion Results: MESA significantly outperforms prior methods on the HalfCheetah-
Disabled and Ant-Disabled, while achieving comparable performance on the Cartpole task
(Figure 10.5). We hypothesize that in the HalfCheetah-Disabled and Ant-Disabled tasks,
the different training environments are sufficiently different in their dynamics that a safety
critic and recovery policy trained jointly on all of them is unable to accurately represent
the boundaries between safe and unsafe states. Thus, when adapting to an environment
with unseen dynamics, the space of safe behaviors may be so different than in the train-
ing environments that the Multi-Task comparison cannot easily adapt. MESA mitigates
this by explicitly optimizing the safety critic for rapid adaptation to different dynamics. In
addition, CARL and CARL-Offline make little task progress in the HalfCheetah and Ant
Disabled domain and, as a result, are able to generally satisfy constraints. The sharp decline
in performance is likely due to the planning algorithm that CARL utilizes for optimization
over learned dynamics.

10.6 Ablations

In ablations, we seek to answer the following questions: (1) how small can the dataset from
the test environment be for MESA to safely adapt to new test environments? and (2) how
well can MESA generalize to environments consisting of more significantly different dynamics
(e.g. partial joint failures when only trained on datasets with examples of full joint failures)?

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 131

10.6.1 Test Dataset Size

We first investigate the sensitivty of MESA to the size of the test dataset. Figure 10.6a,
we study performance when the test dataset is 1x, 1/2x, 1/4x, 1/8x, and 1/16x the size
of the test dataset (40K transitions) used for the HalfCheetah-Disabled results reported in
Section 10.5. We find that MESA can do well when given a test dataset 1/4 the size of
the original test dataset (10K transitions, which is 10 episodes of environment interaction).
This suggests that the test size dataset can be up to 40x smaller than the training dataset
sizes without significant drop in performance. We find that when the test dataset is reduced
to 1/8 and 1/16 the size of the original test dataset, MESA exhibits degrading performance,
as the safety critic has insufficient data to learn about constraints in the test environment.

10.6.2 Test Environment Generalization

Here we study how MESA performs when the test environments have more significantly
different dynamics from those seen during training. To evaluate this, we consider the
HalfCheetah-Disabled task, and train MESA using the same training datasets considered
in Section 10.5, in which specific joints are selected to lose power. However, at test time,
we evaluate MESA on a setting with partial power losses to joints, in which the maximum
applicable power to certain joints is set to some k percent of the original maximum power,
where k ∈ U (0.5, 0.95). This is analogous to partial subsystem failures that can occur in
real-world robotic systems. In, Figure 10.6b, we find that MESA achieves superior perfor-
mance compared to the the Multi-Task comparison in terms of both task performance and
constraint violations during training. This suggests that MESA could rapidly learn to be
safe even with system dynamics that are out of the meta-training environment distribution.

10.7 Discussion and Future Work

We formulate safe reinforcement learning as an offline meta-reinforcement learning problem
and motivate how learning from offline datasets of unsafe behaviors in previous environments
can provide a scalable and compelling way to learn tasks safely in new environments with
unobserved change in system dynamics. We then present MEta-learning for Safe Adaptation
(MESA), a new algorithm for learning a risk measure which can transfer knowledge about
safety across environments with different dynamics. Results in simulation experiments sug-
gest that MESA is able to achieve strong performance across 5 different robotic simulation
domains and is able to effectively adapt to test environments with previously unseen dy-
namics. In future work we will explore applications of MESA to tasks on a physical robotic
system.

CHAPTER 10. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 132

(a) Varying Test Dataset Sizes

(b) Test Task Generalization: Partial Joint Failures

Figure 10.6: Ablation: Sensitivity to Test Dataset Size: In Figure 10.6a, we investigate the
sensitivity of MESA to the number of transitions in the test dataset used for adapting Qπ

risk for
HalfCheetah-Disabled. We find that even with a test dataset 4 times smaller than used in the ex-
periments in Section 10.5, MESA does not experience much degradation in performance. However,
further reductions in the test dataset size make it difficult for MESA to learn a sufficiently accurate
safety critic in the test environment, leading to more significant drops in performance. Gener-
alization to More Different Test Environment Dynamics: In Figure 10.6b, we investigate
MESA’s and Multi-Task’s generalization to partial joint failures in the HalfCheetah-Disabled task,
where the training sets are kept the same as described in Section 10.5. We find that MESA is able
to significantly reduce the number of constraint violations compared to the Multi-Task comparison
while also achieving superior task performance, suggesting that as differences in system dynamics
increase between the training and testing environments, MESA is able to more effectively adapt
risk measures across the environments.

133

Part IV

Learning Priors for Rapid
Bandit-Based Grasp Exploration

134

Chapter 11

Accelerating Grasp Exploration by
Leveraging Learned Priors

Robotic grasping has a wide range of industry applications such as warehouse order fulfill-
ment, manufacturing, and assistive robotics. However, grasping is a difficult problem due
to uncertainty in sensing and control, and there has been significant prior work on both
analytical [286, 287, 288, 289, 290] and data-driven methods [291, 292, 293] for tackling
these challenges. Recently, data-driven grasping algorithms have shown impressive success
in learning grasping policies which generalize across a wide range of objects [294, 295, 296].
However, these techniques can fail to generalize to novel objects that are significantly differ-
ent from those seen during training. Precisely, we investigate learning grasping policies for
objects where general purpose grasping systems such as [294] produce relatively inaccurate
grasp quality estimates, resulting in persistent failures during policy execution.

This motivates algorithms which can efficiently learn from on-policy experience by re-
peatedly attempting grasps on a new object and leveraging grasp outcomes to adjust the
sampling distribution. Deep reinforcement learning has been a popular approach for online
learning of grasping policies from raw visual input [297, 293, 173], but these approaches
often take prohibitively long to learn robust grasping policies. These approaches typically
attempt to learn tabula rasa, limiting learning efficiency. In this work, we introduce a method
which leverages information from a general purpose grasping system to provide a prior for
the learned policy while using geometric structure to inform online grasp exploration. We
cast grasp exploration in the multi-armed bandits framework as in [298, 299]. However,
unlike Laskey et al. [298] which focuses on grasping 2D objects where some rough geometric
knowledge is known and Mahler et al. [299] which presents a method to transfer grasps to
new 3D objects using a dataset of grasps on 3D objects with known geometry, we focus on
efficiently learning grasping policies for 3D objects directly from depth image observations.
In addition, the algorithm learns to grasp a specific object through online interaction, unlike
Mahler et al. [299] which learns a general grasping policy for arbitrary objects. Specifically,
we present a method which leverages prior grasp success probabilities from the state-of-the-
art Dex-Net 4.0 grasp quality network GQ-CNN [294] to guide online grasp exploration on

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 135

Figure 11.1: For adversarial objects, state-of-the-art grasp planning algorithms may incor-
rectly predict the distribution over grasp qualities (left column), where each whisker rep-
resents a grasp candidate colored by the likelihood of success (red indicates a poor grasp,
green indicates a robust grasp). We find that TSLP can use the prior to efficiently discover
the best grasp on the object (right column). Here, the policy discovers the only robust grasp
despite a poor initial estimate of its quality from the GQ-CNN prior.

unknown 3D objects with only depth-image observations.
The contributions of this chapter are:

1. A new problem formulation for leveraging learned priors on grasp quality to accelerate
online grasp exploration.

2. An efficient algorithm, Thompson Sampling with Learned Priors (TSLP), for learning
grasping policies on novel 3D objects from depth images by leveraging priors from the
Dex-Net 4.0 robot grasping system [300].

3. A new formulation of the mismatch between a prior distribution on grasp qualities and
the ground truth grasp quality distribution and empirical analysis studying the effect
of this mismatch on policy performance.

4. Simulation experiments suggesting that TSLP attains an average total reward 64.5%
higher than a greedy baseline when evaluated over 300, 000 training runs across 3000
object poses and is able to effectively leverage information from a GQ-CNN prior.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 136

11.1 Related Work

Robot grasping methods develop policies that execute grasps on novel objects, and can be
divided into analytical methods and data-driven methods. Analytic methods assume knowl-
edge of the geometry of the object to be grasped [288, 289, 287, 286, 301] or use geometric
similarities between known and unknown objects to infer grasps on unknown objects [299]
However, the generalization of these methods is limited for objects dissimilar to the known
objects, or when geometric information is unknown [302], as in the case we consider. Data-
driven methods rely on labels from humans [291, 303, 292, 296], self-supervision across
many physical trials [297, 293, 173, 304], simulated grasp attempts [305, 306], or sim-to-real
transfer methods such as domain randomization [307] or domain adaptation [295]. Hybrid
approaches generate simulated grasp labels using analytical grasp metrics such as force clo-
sure or wrench resistance [300, 308, 294]. These data-driven and hybrid approaches train
a deep neural network on the labeled data to predict grasp quality or directly plan reliable
grasps on novel objects. A recent paper in sim-to-real transfer learning correct for inaccu-
rate gripper poses predicted by the neural network by combining domain adaptation and
visual servoing in the grasp planning process [309]. However, for adversarial objects [290],
for which very few high quality grasps exist, or for objects significantly out of the training
distribution, grasps planned by these methods may still fail. The presented method aims
to leverage learned grasp quality estimates to enable efficient online learning for difficult-
to-grasp objects through physical exploration of one pose of one object at a time, without
previous knowledge of the object’s geometry.

Past works have formulated grasp planning as a Multi-Armed Bandit problem for grasping
2D objects where some geometric knowledge is known [298] or for transferring grasps to
unknown 3D objects using a dataset of grasps on 3D objects with known geometry. Laskey
et al. [298] found that Thompson sampling with a uniform prior significantly outperformed
uniform allocation or iterative pruning in 2D grasp planning in terms of convergence rate
to within 3% of the optimal grasp, but their policy is limited to 2D grasps and cannot
operate directly on visual inputs. Mahler et al. [299] extend [298] to 3D and incorporate
prior information from Dex-Net 1.0, a dataset of over 10,000 3D object models and a set of
associated robust grasps. The algorithm then uses Thompson sampling, in which the prior
belief distribution for each grasp is calculated based on its similarity to grasps and objects
from the Dex-Net 1.0 database [299]. For objects with geometrically similar neighbors in
Dex-Net 1.0, the algorithm converges to the optimal grasp approximately 2 times faster
than Thompson sampling without priors [299]. In contrast, we present a Bayesian multi-
armed bandit algorithm for robotic grasping with depth image inputs that does not require a
database to compute priors but instead leverages the Dex-Net 4.0 grasping system from [294]
as a learned prior to guide active grasp exploration. Instead of learning a general grasping
strategy for arbitrary objects as [299], the algorithm learns to grasp a specific object through
online interactions with the object.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 137

11.2 Problem Statement

Given a single unknown object on a planar workspace, the objective is to effectively leverage
prior estimates on grasp qualities to learn a grasping policy that maximizes the likelihood
of grasp success. We first define the parameters and assumptions on the environment (Sec-
tions 11.2.1 and 11.2.2), cast grasp exploration in the Bayesian bandits framework (Sec-
tion 11.2.3), and formally define the policy learning objective (Section 11.2.4).

11.2.1 Assumptions

We make the following assumptions about the environment.

1. Pose Consistency: We assume that the object remains in the same pose during all
rounds of learning. In simulation, this can be achieved by using ground-truth knowl-
edge of physics and object geometry. In physical experiments, the pose consistency
assumption will not hold generally. We discuss methods to approximately enforce pose
consistency in physical experiments in Section 11.7.

2. Evaluating Grasp Success: We assume that the robot can evaluate whether a grasp
has succeeded. In simulation, grasp success can be computed by using ground-truth
knowledge of physics and object geometry. In physical experiments, success or failure
can be determined using load cells, as in [294].

11.2.2 Definitions

1. Observation: An overhead depth image observation of the object at time t = 0 before
policy learning has begun, given by o ∈ RH×W

+ .

2. Arms: We define a set of K arms, {ak}Kk=1.

3. Actions: Given a selected arm k we define a corresponding grasp action uk ∈ U .

4. Reward Function: Rewards for each arm are drawn from a Bernoulli distribution
with unknown parameter pk: r(uk) ∼ Ber(pk). Here r(uk) = 1 if executing uk results
in the object being successfully grasped, and 0 otherwise.

5. Priors: We assume access to priors on the Bernoulli parameter pk for each arm k.

6. Policy: Let πθ(uk) denote a policy parameterized by θ which selects an arm k and
executes the action uk. Thus, πθ(uk) defines a distribution over U at any given timestep
t.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 138

11.2.3 Bayesian Bandits

A multi-armed bandits problem is defined by an agent which must make a decision at each
timestep t ∈ {1, 2, . . . T} by selecting an arm k ∈ {1, 2, . . . K} to pull. After each arm pull,
the agent receives a reward which is sampled from an unknown reward distribution. In the
Bayesian bandits framework [310], the agent maintains a belief over the parameters of the
reward distribution for each arm, which can optionally be seeded with a known prior. The
objective is to learn a policy with a distribution over arms that maximizes the cumulative
expected reward over T rounds.

Figure 11.2: Method Overview: A pre-trained GQ-CNN is used to set the priors on the
reward parameters for each arm given the initial observation o and arms are sampled on
observation o. Then, at each timestep the learned policy selects an arm and executes the
corresponding action in the environment. The Thompson sampling parameters are updated
based on the reward received as described in Section 11.3.1.

11.2.4 Learning Objective

The objective in policy learning is to maximize the total accumulated reward, which cor-
responds to maximizing the frequency with which the object is grasped. Let ut denote the
action selected at timestep t. Then the objective is to learn policy parameters θ to maximize
the following:

J(θ) = Eut∼πθ(ut)

[
T∑
t=1

r(ut)

]
(11.1)

11.3 Grasp Exploration Method

We discuss how to leverage learned priors from GQ-CNN to guide grasp exploration by
using Thompson sampling, to learn a vision-based grasping policy. Since rewards are drawn
from a Bernoulli distribution as defined in Section 11.2, we represent the prior with a Beta
distribution, the conjugate prior for a Bernoulli distribution. As noted in [298], this choice of

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 139

prior is convenient since we can update the belief distribution over an arm k after executing
corresponding action uk in closed form given the sampled reward. See Figure 11.2 for a full
method overview.

11.3.1 Thompson Sampling with a Beta-Bernoulli Process

Given that we pull arm k at time t and receive reward r(uk) ∈ {0, 1}, as shown in [298], we
can form the posterior of the Beta distribution by updating the shape parameters αk,t and
βk,t:

αk,t+1 = αk,t + r(uk)

βk,t+1 = βk,t + (1− r(uk))

For Thompson sampling, at time t, the policy samples p̂k,t ∼ Beta(αk,t, βk,t) for all arms
k ∈ {1, 2, . . . K}, selects arm k∗ = argmaxk p̂k,t, and executes the corresponding action uk∗
in the environment. Note that the expected Bernoulli parameter for arm k can be computed
from the current shape parameters αk,t and βk,t as follows:

E [p̂k,t] =
αk,t

αk,t + βk,t
(11.2)

However, it remains to appropriately initialize αk,0 and βk,0. Note that setting αk,0 =
βk,0 = 1 ∀ k ∈ {1, 2, . . . K} corresponds to a prior which is uniform on [0, 1] for Bernoulli
parameter pk,t. We instead set αk,0, βk,0 according to a learned prior by using the initial
depth image observation o.

11.3.2 Leveraging Neural Network Priors

We use a pre-trained Grasp Quality Convolutional Neural Network (GQ-CNN) from [294] to
obtain an initial estimate of the probability of grasp success. GQ-CNN learns a Q-function,
Qϕ(·, ·), which given an overhead depth image of an object and a proposed parallel jaw grasp,
estimates the probability of grasp success. However, as explored in [290], there exist many
objects for which the analytical methods used for training GQ-CNN are relatively inaccurate,
resulting in significant errors. Thus, we refine the initial GQ-CNN grasp quality estimates
with online exploration.

We first computeQϕ(o, uk) ∀ k ∈ {1, 2, . . . K} and use these estimates as each arm’s initial
mean Bernoulli parameter. Note that αk,t and βk,t, as defined in Section 11.3.1, correspond
to the cumulative number of grasp successes and grasp failures respectively for action uk
up to time t. Thus, (αk,0, βk,0) can be interpreted as pseudo-counts of grasp successes and
failures respectively for action uk before policy learning has begun, while prior strength
S = αk,0 + βk,0 can be interpreted as the number of pseudo-rounds before policy learning. If
S is large, the prior induced by (αk,0, βk,0) will significantly influence the expected Bernoulli
parameter given in 11.2 for many rounds, while if S is small, the resulting prior will be

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 140

quickly washed out by samples from online exploration. We enforce the following initial
conditions for (αk,0, βk,0), given the GQ-CNN prior:

αk,0
αk,0 + βk,0

= Qϕ(o, uk)

βk,0
αk,0 + βk,0

= 1−Qϕ(o, uk)

For a desired prior strength S = αk,0 + βk,0, we set:

αk,0 = S ·Qϕ(o, uk)

βk,0 = S · (1−Qϕ(o, uk))

This prior enforcement technique in conjunction with online learning with Thompson
Sampling, as discussed in Section 11.3.1, results in a stochastic policy πθ(uk) parameterized
by θ =

(
{(αk, βk)}Kk=1, ϕ

)
, the learned Beta distribution shape parameters across all arms

and the fixed parameters of the GQ-CNN used for initialization.

11.3.3 Prior Mismatch

To measure the quality of the GQ-CNN prior, we define a notion of dissimilarity between
the prior and ground truth grasp probabilities, as in Chapelle and Li [311], termed the prior
mismatch. However, unlike Chapelle and Li [311], which primarily focuses on mismatch
between the mean of the prior distribution and true Bernoulli parameter, we present a new
metric based on the discrepancy between how arms are ranked under the prior and under
the ground truth distribution.

Given the grasp quality estimates of the GQ-CNN prior qp = (Qϕ(o, uk))
K
k=1 and the

ground truth grasp probabilities qg = (pk)
K
k=1 on all K arms, let P = {(qp[k], qg[k])}Kk=1. We

then compute Kendall’s tau coefficient, defined as:

τ =
Nc −Nd√

(Nc +Nd + Tp)(Nc +Nd + Tg)

where Nc and Nd are the number of concordant and discordant pairs in P , respectively, and
Tp and Tg are the number of pairs for which qp[i] = qp[j] and qg[i] = qg[j], respectively [312,
313]. As a rank correlation coefficient, τ ∈ [−1, 1], where 1 denotes a perfect match in the
rankings and −1 denotes perfectly inverse rankings. We define the prior mismatch M as a
dissimilarity measure that maps τ to [0, 1]:

M =
1− τ
2

In practice, to control for stochasticity when sampling arms on the initial observation o, we
average M over 10 independently sampled sets of K arms.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 141

11.4 Practical Implementation

We implement the method from Section 11.3 in a simulated environment using 3D object
models from the Dex-Net 4.0 dataset [294]. We render a simulated depth image of the
object using camera parameters that are selected to be consistent with a Photoneo PhoXi
S industrial depth camera. Arms are selected by sampling parallel-jaw antipodal grasp
candidates on the observation o using the antipodal image grasp sampling technique from
Dex-Net 2.0 [300]. The antipodal grasp sampler thresholds the depth image to find areas
with high gradients, then uses rejection sampling over pairs of pixels to find antipodal grasp
points. Each parallel jaw grasp is represented by a center point p = (x, y, z) ∈ R3 and a
grasp axis v ∈ R3 [299]. They are visualized as whiskers in Figures 11.1 and 11.5. Once
the arms are sampled from the image, we calculate the prior grasp probabilities using GQ-
CNN, then deproject each grasp from image space into a 3D grasp using the known camera
intrinsics. Note that TSLP can also be easily be applied with different types of grasps such as
Suction grasps [308] provided that the actions corresponding to the arms are parameterized
accordingly. We then iteratively choose grasps according to the policy for a set number of
timesteps and collect the reward for each grasp.

Algorithm 6 Thompson Sampling with Learned Priors (TSLP) for Image-Space Grasp
Exploration

Input: Number of arms (K), Maximum Iterations T , Pretrained GQ-CNN Qϕ(·, ·), Prior
Strength S

Output: Grasp exploration policy: πθ(uk)
Capture observation o, sample K antipodal grasps {ak}Kk=1, and compute prior beliefs
αk,0, βk,0 ∀ k ∈ {1, 2, . . . K} using Qϕ(o, uk) using method from Section 11.3.2.
for t = 1, ..., T do
Select action uk using Thompson sampling as in Section 11.3.1
Execute uk and observe r(uk)
Update αk,t, βk,t ∀k ∈ {1, 2, . . . K} as in Section 11.3.1

end for

Algorithm 6 summarizes the full approach discussed in Section 11.3 along with implemen-
tation details. If we are unable to sample K arms or if none of the corresponding grasps has
ground truth quality greater than zero, we do not consider the object pose. In simulation,
we evaluate the probability of grasp success for each arm using the robust wrench resistance
metric, which measures the grasp’s ability to resist the gravity wrench under perturbations
in the grasp pose, as in [308]. Then, rewards during policy learning and evaluation are sam-
pled from a Bernoulli distribution with parameter defined by this metric. Note that while
computing this metric requires knowledge of the object geometry, this metric is simply used
to simulate grasp success on a physical robotic system and is not exposed to TSLP.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 142

Figure 11.3: (a) The distribution of prior mismatch M for the 3946 total object poses in
the dataset used by [294]. We find that M ranges from 0.16 to 0.64 and a value between
0.4 and 0.45 is the most common, accounting for about 25% of the object poses. All object
poses withM above 0.55 are placed into the highest bin. (b) The sum of rewards over policy
evaluation computed over 3000 object poses randomly selected from the dataset. This plot
suggests that the chosen metric accurately describes the mismatch between the prior and
ground truth grasp quality distribution, as performance of all TSLP policies decreases with
increased prior mismatch.

11.5 Experiments

11.5.1 Setup

In simulation experiments, we evaluate both the accuracy of the prior mismatch metric and
the ability of TSLP to increase grasp exploration efficiency. We assess whether TSLP can
discover higher quality grasps than baselines which do not explore online or which explore
online but do not leverage learned priors for the grasp selection policy. In both experiments,
we make use of the dataset from Mahler et al. [294], which contains approximately 1,600
object meshes.

We evaluate the learned policies every 10 steps of learning, and perform 500 learning steps
in total for all experiments. To evaluate the learned policies, we sample 100 grasps from the
current policy without policy updates and compute the metric defined in Equation (11.1).
We evaluate TSLP with a variety of different prior strengths to evaluate how important the
GQ-CNN prior is for policy performance. We also compare to Thompson sampling with a
uniform prior over the arms. Thus, this policy does not utilize the GQ-CNN prior at all,
and all learning is performed online. Note that when evaluating policies, there are two key

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 143

Figure 11.4: Visualization of policy performance for all baselines and TSLP policies (labeled
with their prior strength). The first row visualizes grasp qualities as measured by the GQ-
CNN prior (left) and the ground truth grasp success probabilities (right) for a single stable
pose of each of the four objects (shown top down). Green whiskers indicate high estimated
or ground truth grasp quality, while red whiskers indicate low estimated or ground truth
grasp quality. In the second row, we visualize the distributions of GQ-CNN prior and
ground truth grasp qualities. (a) With a low prior mismatch (M = 0.29), the greedy policy
performs well and all Thompson sampling policies with non-zero prior strengths converge
quickly to the ground truth. (b-c) For objects with higher prior mismatch, the Thompson
sampling policies with non-zero prior strength rapidly improve on the prior for object poses
with higher prior mismatch (M = 0.35 and M = 0.40, respectively). (d) For objects with
very high prior mismatch (M = 0.46), the Thompson sampling policies with non-zero prior
strength converge more slowly, but still show improvement on the baseline with prior strength
0.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 144

Table 11.1: Policy evaluation on large object set: We evaluate each TSLP policy, the
greedy and Thompson sampling with uniform prior baselines, and the ground truth policy
on a dataset of 3000 object poses and report the average sum reward over all runs on each
of the object poses (300, 000 total training runs per policy, 100 training runs per object for
each policy) in the format of mean ± standard deviation. Since we evaluate the policy 51
times per episode, the maximum possible sum reward is 51. For readability, we scale all
results by a factor of 100/51 for a maximum scaled sum reward of 100. We find that the
est performing TSLP policy, TSLP (S=5), outperforms the greedy baseline by 64.5% while
achieving performance within 5.7% of the ground truth oracle baseline.

Greedy TS (Uniform) TSLP (S=5) TSLP (S=10) TSLP (S=50) TSLP (S=100) Ground Truth

54.33± 33.02 72.08± 20.67 89.37± 17.88 88.43± 18.53 82.63± 23.51 78.88± 26.29 94.53± 13.49

sources of uncertainty: (1) the variability in the arms sampled on the initial observation
o, and (2) the inherent stochasticity during learning given a set of arms. To control for
variations in these parameters, when reporting results on a particular pose of an object, 10
different sets of K = 100 arms are sampled on the corresponding observation o. Then, for
each of these sets of arms, every policy is trained 10 times for a total of 100 rollouts for each
object pose.

We additionally compare the learned policy to a greedy policy that repeatedly selects
the grasp with highest quality under GQ-CNN as in [294] and a ground truth oracle policy,
which repeatedly selects the grasp with the highest quality under the ground truth grasp
quality metrics computed in simulation. The former gives an idea of policy performance if
no online exploration is performed, while the latter provides an upper bound on possible
performance since it can access the true grasp success probabilities, which are not available
to our algorithm.

11.5.2 Simulation Experiments

We conduct simulation experiments across object poses with a wide range of prior mismatches
M , as shown in Figure 11.3(a), which plots the frequency of prior mismatch values over the
3946 total object poses in the dataset. When the prior mismatch is relatively low, we expect
policies which give more weight to the prior to perform well, while if the prior mismatch is
high, we expect policies which prioritize online exploration over following the prior to attain
higher rewards.

We evaluate each policy on 3000 of these object poses and compute the sum reward of
all policies averaged over the 300, 000 total training runs (100 training runs per object pose).
The results are shown in Figure 11.3(b) and Table 11.1. Figure 11.3(b) shows policy perfor-
mance as a function of prior mismatch, given the distribution of objects over prior mismatch

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 145

values shown in Figure 11.3(a) over 3000 total object poses. These results suggest that
the metric introduced here accurately models prior mismatch, as increased prior mismatch
causes performance for all online learning policies, as well as the greedy policy, to degrade. A
second trend is that object poses with higher prior mismatch also tend to have lower ground
truth quality values, suggesting that GQ-CNN especially struggles to identify high quality
grasps when very few are present or when the highest quality grasps have comparatively
lower quality.

Table 11.1 shows that TSLP significantly outperforms the greedy baseline and is able to
achieve average total reward that is very close to the ground truth policy. This result suggests
that TSLP is able to successfully leverage priors from GQ-CNN to outperform GQ-CNN on
a wide variety of objects of varying geometries.

As a further case study, we select a set of 4 objects, as shown in Figure 11.4, which are
diverse in their shapes and sizes and vary widely in their prior mismatch M . As expected,
the ground truth policy (GT) achieves the best performance since it uses oracle information.
We find that for objects with relatively low prior mismatch (M = 0.29), the greedy policy
and the Thompson sampling policies which place very high weight on the GQ-CNN prior
(high prior strength) perform very well. However, for objects with higher prior mismatch
(M = 0.35, M = 0.41), we find that the greedy policy performs much more poorly, and
online exploration is critical to finding high quality grasps. However, even with high prior
mismatch, the gap in performance between the Thompson sampling policies that use the
prior and the uniform prior Thompson sampling policy indicates that the GQ-CNN prior
helps accelerate grasp exploration substantially. Finally, for objects with very high prior
mismatch (M = 0.46), the greedy policy and Thompson sampling policies with high prior
strengths perform poorly, as expected. However, Thompson sampling policies with low prior
strength outperform Thomspon sampling with a uniform prior. This result indicates that
although the prior is of very low quality, it still provides useful guidance to the Thompson
sampling policy if a low prior strength is used.

Figure 11.5 shows how the mean Bernoulli parameter inferred by TSLP evolves over
learning steps for each of the sampled arms. TSLP is able to successfully learn grasp qualities
close to the ground truth grasp qualities for a wide variety of different objects. Note that the
learned policy is generally more accurate for higher quality grasps, which makes sense since
Thompson sampling directs exploration towards high reward grasps, allowing it to focus on
distinguishing between high quality grasps rather than capturing the quality distribution of
low quality grasps. For the first object, TSLP is able to find the best grasp when the prior
strength is relatively weak, but performs poorly when the prior strength is set too high. For
the second object, the prior mismatch is lower, so increasing the prior strength accelerates
discovery of the best grasps on the object. Note that with a uniform prior, Thompson
sampling is generally able to discover most of the best grasps, but fails to distinguish them
from bad grasps, resulting in poorer policy performance when these grasps are sampled
during policy evaluation.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 146

11.6 Discussion and Conclusion

In this chapter, we present Thompson Sampling with Learned Priors (TSLP), a bandit
exploration strategy for robotic grasping which facilitates use of expressive neural network-
based prior belief distributions and enables efficient online exploration for objects for which
this prior is inaccurate. We quantify the notion of prior mismatch as it pertains to the
ranking of arms and explore the effect of prior strength on the efficiency and efficacy of online
learning. Experiments suggest that across a dataset of 3000 object poses, TSLP outperforms
both a greedy baseline as well as a Thompson sampling baseline that uses a uniform prior
and is able to leverage a GQ-CNN prior to significantly accelerate grasp exploration.

11.7 Discussion and Future Work

In future work, we will design new online learning algorithms to explore grasps across different
object stable poses and extend experiments to new grasping modalities, such as suction.
In addition, we will explore ways to approximately enforce pose consistency in physical
experiments. For example, we can use a string to lift the object after each grasp and put
it into pose. Additionally, we can detect stable pose changes by evaluating whether the
observed depth image changes in a way that cannot be described by a planar rotation and
translation. Using the Super4PCS algorithm [314], we can compute the registration of the
new point cloud with respect to the original point cloud and restrict the range of output
to planar transformations. If the algorithm cannot find such a planar transformation, we
resample grasps on the new pose.

CHAPTER 11. ACCELERATING GRASP EXPLORATION BY LEVERAGING
LEARNED PRIORS 147

Figure 11.5: We visualize the evolution of the mean Bernoulli parameter (defined in Equa-
tion (11.2)) inferred by TSLP with varying prior strengths on sampled arms over learning
steps for two different objects. Grasps with high estimated success probabilities or ground
truth quality values are colored green, while those with low estimated success probabilities
or ground truth qualities are colored orange or red. The inferred mean Bernoulli parameter
for TSLP eventually converges to the ground truth probabilities. For the first object, we
note that TSLP is able to find the best grasps when the prior strength is relatively weak,
but unable to do so when the prior strength is too high since the prior is overly pessimistic
(M = 0.46). For the second object, the prior is relatively good (M = 0.31), so increasing
the prior strength accelerates discovery of the best grasps.

148

Chapter 12

Exploratory Grasping:
Asymptotically Optimal Algorithms
for Grasping Challenging Polyhedral
Objects

Robot grasping systems have a broad array of applications in manufacturing, warehousing,
assistive robotics, and household automation [315, 173, 293, 294]. There has been significant
recent work in analytic grasp planning algorithms [287, 289, 286, 316], but these methods can
often be difficult to apply when object geometry is unknown. In recent years, robot learning
has shown exciting promise by utilizing large-scale datasets of previously attempted grasps
both in simulation [294, 292, 315, 306] and in physical experiments [297, 293, 315, 317] to
learn general-purpose grasping policies that can generalize to objects of varying geometries.
To further enable generalization, there has also been work on applying reinforcement learning
to learn grasping policies [173, 293, 318, 319]. However, while these techniques have shown
significant success in practice, their generality comes at a cost: a policy which aims to grasp
every object may fail to generalize to specific challenging objects [290, 320].

Inspired by infants that repeatedly attempt to grasp a toy until they can learn reliable
ways to grasp it, we consider a novel problem: Exploratory Grasping, where a robot is
presented with an unknown object and learns to reliably grasp it by repeatedly attempting
grasps and allowing the object pose to evolve based on grasp outcomes. The objective is for
the robot to explore grasps across different object poses to reliably grasp the object from
any of its stable resting poses. We then present an algorithm for Exploratory Grasping
motivated by polyhedral objects with sparse grasps and adversarial geometries, which can
cause persistent failures in general-purpose grasping systems [320, 290]. The intuition is that
while a general-purpose grasping policy can be broadly applied to a large set of objects, it
can be complemented by learned policies for specific challenging objects.

This chapter contributes (1) Exploratory Grasping: an MDP formulation of the problem
of discovering robust grasps across object poses through online interaction that is indepen-

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 149

dent of the grasping modality (parallel-jaw, suction, multi-fingered, etc), (2) parameter-
dependent performance bounds on a family of existing tabular reinforcement learning algo-
rithms in this setting, (3) an efficient bandit-inspired algorithm, Bandits for Online Rapid
Grasp Exploration Strategy (BORGES), for Exploratory Grasping, and associated no-regret
guarantees, (4) simulation experiments suggesting that BORGES can significantly outper-
form baseline algorithms which explore via reinforcement learning or select actions using
general-purpose grasping policies across 46 objects in both the Dex-Net adversarial and
EGAD! object datasets, and (5) initial physical results suggesting that BORGES can im-
prove grasp success rate by 45% on average over two challenging objects compared to a
Dex-Net baseline.

Figure 12.1: Simulation Experiments: Performance of each policy across the vase, pawn
and pipe objects from the Dex-Net 2.0 adversarial object set [300] (first three columns),
as well as aggregated performance over 7 Dex-Net objects (fourth column) and 39 EGAD!
objects (fifth column). We report the number of distinguishable stable poses (N) with the
first three shown in the second row, as well as ϵ (ground truth value for the lowest quality
best grasp across poses), λ1 (least likely stable pose probability) and maxs,s′ [δs,s′ − ϵλs′]
(maximum difference in transitioning via toppling and transitioning via grasping to a new
pose) values. For the datasets, we give mean values and show the most likely stable pose
of each object. We visualize policy performance in the learning curves in the lowest row.
BORGES quickly converges to near-optimal performance even when Assumption 12.4.1 is
violated while the other algorithms fail to reach optimal performance.

12.1 Related Work

Work in analytic robot grasping assumes knowledge of object geometry and pose to design
geometric grasp planning algorithms Bicchi and Kumar [287], Rimon and Burdick [286],

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 150

Kim et al. [316], and Murray [289]. Recently, learning-based general-purpose algorithms
have emerged for planning grasps robust to uncertainty in object geometry and sensing on
a wide range of objects with data-driven strategies Mahler et al. [294], Pinto and Gupta
[297], Viereck et al. [306], Morrison, Corke, and Leitner [315], Lenz, Lee, and Saxena [291],
and Kappler, Bohg, and Schaal [292] and online exploration through reinforcement learn-
ing Kalashnikov et al. [173] and Levine et al. [293]. The latter approaches have been very
effective in learning end-to-end policies for grasp planning for a variety of objects. In con-
trast, we focus on learning policies for the specific challenging objects that pose problems
for these systems Wang et al. [290] and Sanders et al. [320].

Significant prior work studies multi-armed bandit frameworks for online grasp explo-
ration Laskey et al. [321, 298], Oberlin and Tellex [322], Li et al. [323], Kroemer et al. [324],
Eppner and Brock [325], and Lu, Van der Merwe, and Hermans [326], but primarily focus
on settings when some geometric knowledge is known or grasp exploration is limited to a
single object pose. In contrast, we consider a formulation where the robot must learn grasps
across all poses of the object without human supervision. Laskey et al. [298] consider the
setting where some prior geometric knowledge is known, but present an algorithm for 2D
objects that does not use visual inputs. Li et al. [323] and Oberlin and Tellex [322] relax
these assumptions by exploring grasps for a single stable pose of 3D object with RGB or
depth observations. We extend these ideas by repeatedly dropping the object and exploring
grasps in all encountered stable poses. Thus, BORGES naturally explores grasps over the
distribution of possible stable poses Goldberg et al. [327] to learn a robust policy which can
reliably grasp the object when randomly dropped in the workspace.

A key requirement for successful exploration of grasps on an object is exploring the
space of its resting stable poses, since the object will necessarily be in one of these poses
during grasp attempts. There has been significant prior work on orienting parts into specific
stable poses through a series of parallel jaw gripper movements Goldberg [328], toppling
actions Correa et al. [329], and squeezing actions Goldberg and Mason [330]. However,
these approaches require knowledge of object geometry apriori. When object geometry is
not known, but assumed to be polyhedral, prior work Goldberg et al. [327] has established
that repeatedly dropping the object from a known initial distribution of poses onto a flat
workspace results in a stationary distribution over stable poses. This dropping procedure
provides a useful primitive for reaching new stable poses of an object. We leverage this
insight to formulate the Exploratory Grasping problem and design algorithms that address
this setting to discover high-quality grasps for different object stable poses.

12.2 Exploratory Grasping: Problem Statement

Given a single unknown polyhedral object on a planar workspace, the objective is to learn
a grasping policy that maximizes the likelihood of grasp success over all stable poses of the
object Goldberg et al. [327] and Moll and Erdmann [331]. We formulate Exploratory Grasp-
ing as a Markov Decision Process (Section 12.2.1), define assumptions on the environment

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 151

(Section 12.2.2) and formulate the policy learning objective (Section 12.2.3).

12.2.1 Exploratory Grasping as an MDP

We consider exploring grasps on an unknown, rigid, polyhedral object O which rests in one
of a finite set of N distinguishable stable poses with associated landing probabilities {λs}Ns=1.
We consider polyhedral objects since they admit a finite number of stable resting poses, as
does any object defined with a triangular mesh Rao and Goldberg [332]. We assume that
the robot does not initially know any of these stable poses or their count N . The robot must
discover new stable poses from experience by attempting grasps on the object in its current
stable pose and lifting and then releasing the object when grasps are successful. We assume
an overhead depth camera with known camera intrinsics that cannot reliably determine the
3D shape of the object, but can be used to recognize distinguishable 3D poses by performing
planar translations and rotations of the image into a canonical orientation and translation.
We also assume that the camera can be used after grasp attempts to determine if a grasp
succeeds.

We model Exploratory Grasping as an MDPM = (S,A, P, R) as follows. We first define
a one-to-many mapping from the set of object stable poses Σ to the set of overhead point
clouds I that are scale-invariant, translation-invariant, and rotationally-invariant about the
vertical axis. Then, we define the state space as the set of distinguishable stable poses S,
where S is the set of equivalence classes within Σ, where two poses are equivalent if they map
to the same set of overhead point clouds I. For example, all poses of a cube would map to
the same overhead point cloud, so a cube only has 1 distinguishable stable pose. We assume
point cloud I is obtained by deprojecting a depth image observation o ∈ R+

H×W taken from
the overhead camera with known intrinsics. We define a set As of K grasp actions, such as
parallel-jaw or suction grasps, for each stable pose s ∈ S of the object. The K grasps are
sampled from o for each stable pose as in Mahler et al. [300]. The full action space is the
union of the grasp actions available on each pose: A =

⋃
s∈S
As. We assume that the robot

acts in an environment with unknown transition probability distribution P (s′ | s, a), which
denotes the probability of the object transitioning to pose s′ if grasp action a is executed in
pose s. If a is a successful grasp, then the object is released onto the workspace to sample a
new stable pose s′ based on unknown landing probabilities {λs}Ns=1, while if a is a failed grasp,
the object topples into some new pose s′ with unknown probability δs,s′ . The robot receives
reward R(s, a) for selecting grasp action a on stable pose s, so R(s, a) = 1 if executing a in
stable pose s results in the object being successfully grasped and lifted, and 0 otherwise. We
assume that rewards are drawn from a Bernoulli distribution with unknown parameter ϕs,a:
R(s, a) ∼ Ber(ϕs,a) for a ∈ As.

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 152

12.2.2 Assumptions

To study Exploratory Grasping, we first establish assumptions on the system dynamics to
ensure that all poses are reachable and which describe how the object pose can evolve when
the object is (1) released onto the workspace or (2) when a grasp is attempted. We make no
assumptions on the grasping modality (e.g., parallel jaw, suction, multi-fingered, etc).

Assumption 12.2.1. Grasp Dynamics: If a grasp succeeds, we assume that the robot can
randomize the pose of the object before releasing it to sample subsequent stable poses from
the associated unknown stable pose landing probabilities {λs}Ns=1 for O. If a grasp fails, we
assume that the object’s pose will either remain unchanged or topple into some other pose s′

with unknown probability δs,s′.

Assumption 12.2.2. Release Dynamics: The categorical distribution over stable poses
defined by landing probabilities {λs}Ns=1 is stationary and independent of prior actions and
poses when O is released from a fixed height with its orientation randomized as in Goldberg
et al. [327].

Assumption 12.2.3. Irreducibility: We assume that there exists a policy π such that
the Markov chain over stable poses induced by executing π inM is irreducible, and thus can
reach all stable poses with nonzero probability for any initialization.

Note that Assumption 12.2.3 is satisfied if, for all poses s ∈ S, λs > 0 and there exists
a grasp with success probability ϵ > 0. We assume that these conditions hold for analysis,
but since object toppling is also possible, note that these conditions are sufficient but not
necessary for ensuring irreducibility.

12.2.3 Learning Objective

The objective is to learn a policy π : S → A that maximizes the expected average re-
ward over an infinite time horizon under the state distribution induced by π. Let τ =
{(st, π(st))}Tt=1 be a trajectory of all states and actions when executing π for time T and
let r(τ) =

∑T
t=1R(st, π(st)) be the sum of rewards for all states and actions in τ , and let

p(τ |π) be the trajectory distribution induced by policy π. Then the expected average reward
obtained from policy π inM is given as:

J(M, π, T) =
1

T
Eτ∼p(τ |π) [r(τ)] (12.1)

The objective is to find the policy which maximizes expected reward over an infinite time
horizon:

π∗ = argmax
π

lim
T→∞

J(M, π, T) (12.2)

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 153

12.3 Reinforcement Learning for Exploratory

Grasping

We first consider the performance of reinforcement learning algorithms for Exploratory
Grasping and leverage the structure of the MDP described in Section 12.2 to establish a
bound on the cumulative regret for a family of existing tabular reinforcement learning algo-
rithms when applied to Exploratory Grasping. See Section J.1 of the supplementary material
for all proofs.

12.3.1 Analyzing the Exploratory Grasping MDP

A common metric to measure policy performance in online-learning settings is regret, which
has been analyzed in the reinforcement learning setting by a variety of prior work [333,
334, 335, 336]. Intuitively, regret quantifies the difference in accumulated reward within T
timesteps between a given policy π and optimal infinite horizon policy π∗ for MDPM. More
precisely, we define average regret based on the definition in [333]:

Regret(M, π, T) = max
π′

[
lim
T→∞

J(M, π′, T)
]
− J(M, π, T) (12.3)

Recent theoretical work by Jaksh, Ortner, and Auer [333] on reinforcement learning
for tabular MDPs yielded algorithms which can attain average regret proportional to the
diameter of the MDP, a measure of the furthest distance between pairs of states under
an appropriate policy. However, for general MDPs, this diameter can be arbitrarily large,
making these regret bounds difficult to interpret in practical settings. We leverage the
structure of the MDP to derive an upper bound on the MDP diameter, which precisely
quantifies the difficulty of grasp exploration based on the parameters ofM.

We begin by defining the Markov chain over S induced by a stationary deterministic
policy π.

Definition 12.3.1. Pose Evolution under π: Given stationary policy π, the transi-
tions between pairs of states in M is defined by a Markov chain. Precisely, the transition
probabilities under π, denoted by P π where P π[s, s′] = P (s′ | s, a = π(s)), are given as
follows:

P π[s, s′] = ϕs,π(s)λs′ + (1− ϕs,π(s))δs,s′ (12.4)

Given this Markov Chain over poses for π, we can now analyze the diameter of the
MDP, denoted D(M), by considering the hitting time between stable poses inM as defined
in [337].

Definition 12.3.2. Let T πs→s′ denote the expected hitting time between states s and s′ under
policy π under the Markov chain defined in Definition 12.3.1. Then the diameter of M is

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 154

defined as follows [333]:

D(M) = max
s̸=s′

min
π

E [T πs→s′] (12.5)

Intuitively, D(M) measures the temporal distance between the most distant states in an
MDP under the policy that minimizes this distance. We now leverage the structure of M
to establish an upper bound on D(M).

Lemma 12.3.1. The diameter ofM can be bounded above as follows:

D(M) ≤ 1

ϵλ1
(12.6)

Here ϵ is a lower bound on the success probability of the highest quality grasp over all stable
poses and λ1 is the landing probability for the least likely stable pose.

Lemma 12.3.1 captures the intuition that the diameter of the MDP is large if the best
grasp in each stable pose has a low success probability (ϵ is small), or if there exists a stable
pose with very low landing probability (λ1 is small).

Now we can establish regret bounds for 4 tabular reinforcement learning algorithms
(UCRL2 [333], KL-UCRL [335], PSRL [338], and UCRLV [334]) when applied to M by
combining diameter dependent regret bounds from prior work and the bound on the diameter
ofM established in Lemma 12.3.1.

Theorem 12.3.1. UCRL2 [333], KL-UCRL [335] and PSRL [338] achieve average re-

gret given by Regret(M, π, T) ∼ Õ
(
N
ϵλ1

√
K
T

)
for any Exploratory Grasping MDP M while

UCRLV [334] achieves average regret given by Regret(M, π, T) ∼ Õ
(√

NK
ϵλ1T

)
. Here N , K,

T , ϵ and λ1 are defined as in Section 12.2.

Theorem 12.3.1 leverages the specific structure of the MDP in Exploratory Grasping to
relate the accumulated regret of 4 tabular RL algorithms to intuitive parameters of the MDP,
providing insight into the theoretical complexity of Exploratory Grasping in the context of
reinforcement learning.

12.4 Bandits for Online Rapid Grasp Exploration

Strategy (BORGES)

While the reinforcement learning algorithms in Section 12.3 provide a method and formal
guarantees for Exploratory Grasping, the algorithms themselves do not exploit any specific
structure in MDPM. One key feature of Exploratory Grasping is that in practice, objects
have a small, finite set of stable poses [327]. This motivates learning a set of N policies, each
of which explore grasps in a particular object stable pose. However, the grasp exploration

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 155

problem in each pose is coupled. For example, there may exist a pose s with no available
high quality grasps but a high likelihood of a failed grasp causing the object to topple into
another pose with high quality grasps. Then, the optimal policy may deliberately fail to
grasp the object in pose s in order to obtain access to grasps in the more favorable stable
pose, leading it to avoid grasp exploration in poses without high quality grasps. To avoid
this behavior, we introduce Assumption 12.4.1.

Assumption 12.4.1. We assume that δs,s′ ≤ ϵλs′ for all s ̸= s′ where δs,s′ is the probability
of toppling into pose s′ given a failed grasp in pose s, ϵ is a lower bound on the success
probability of the highest quality grasp over all stable poses as defined above, and λs′ is the
landing probability of pose s′.

Assumption 12.4.1 ensures that there exists a grasp in all stable poses s such that the
probability of transitioning to new pose s′ via a grasp attempt is higher than that of toppling
from pose s to pose s′. Given this assumption, the optimal grasp exploration policy inM
reduces to selecting the grasp with highest success probability in each encountered pose, as
this policy maximizes both reward at the current timestep and exploration of other stable
poses when the object is released. In other words, the global optimal policy is the greedy
policy. Given this structure, we can view the grasp exploration problem as N independent
multi-armed bandit problems corresponding to grasp exploration in each pose. However,
although grasp exploration can be performed independently in each pose, the success of a
grasp exploration policy in one pose affects the time available to explore grasps in another
pose, thereby coupling each bandit problem.

We propose an algorithm that takes advantage of this structure to enable rapid on-
line grasp exploration: Bandits for Online Rapid Grasp Exploration Strategy (BORGES)1.
BORGES works by maintaining the parameters of N independent bandit policies (πB

s)
N
s=1,

where πB
s : s→ As and πB

s is only active in pose s. Let πB denote the meta-policy induced by
executing πB

s in pose s and assume that πB
s is learned by running a no-regret online learning

algorithm B for grasp exploration in s. No-regret algorithms for the stochastic multi-armed
bandit problem include the UCB-1 algorithm [339] and Thompson Sampling [340]. We then
formulate a new notion of regret capturing the gap between πB and the optimal policy
on their respective distributions and show that BORGES achieves vanishing average regret
despite the interdependence between pose exploration times.

Let pBT denote the distribution of poses seen under the sequence of policies πB
1:T at each

round of learning up to time T and let p∗T denote the distribution of poses seen when executing
the optimal policy (π∗) in M up to time T . We define the average regret achieved by
BORGES in MDPM after T rounds as the difference in accumulated reward of the optimal
policy on pose distribution p∗T and the accumulated reward of πB on pose distribution pBT .

Definition 12.4.1. The average regret accumulated by running B in each stable pose is
defined as the difference between the average regret on each pose visited by the optimal policy

1Jorge Luis Borges (1899-1986) was a brilliant writer whose short stories considered geometry, time, and
combinatorics.

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 156

π∗ weighted by the probability of it visiting each pose and the corresponding quantity for the
executed policy πB:

E
[
RB(T)

]
=

N∑
s=1

p∗T (s)E

[
1

T ∗
s

T ∗
s∑

t=1

R(s, π∗(s))

]
−

N∑
s=1

pBT (s)E

 1

TB
s

TB
s∑

t=1

R(s, πB
t (s))

where T ∗

s is the time spent by the optimal policy in pose s and TB
s is the time spent by πB in

pose s.

In Section J.1 of the supplementary material, we show that the average regret as defined
in Definition 12.4.1 vanishes to 0 in the limit as T →∞ as stated in Theorem 12.4.1.

Theorem 12.4.1. The average regret achieved by BORGES, when using any no-regret bandit
algorithm B for grasp exploration in each encountered stable pose, vanishes in the limit:

lim
T→∞

E
[
RB(T)

]
= 0

This result leverages the precise structure of M, namely that the optimal policy is the
greedy policy, to provide sublinear regret guarantees for BORGES.

A convenient property of BORGES is that while exploring grasps on an object, it natu-
rally explores different object poses as well. Theorem 12.4.2 establishes an upper bound on
the expected number of timesteps required for BORGES to reach all object stable poses.

Theorem 12.4.2. Let Tcover denote the number of grasps BORGES executes until it has
reached every stable pose. We can bound E [Tcover] above as follows where K, ϵ, and λ are
defined as in Section 12.2.

E [Tcover] ≤
K

ϵ

N∑
j=1

1

1−
∑j

i=2 λi−1

We note that there can be pathological objects for which Assumption 12.2.3 is violated
due to a sink state from which the object can neither be grasped nor toppled into a new
pose. In this case, no grasp exploration strategy will be successful, because there will exist
poses from which the robot cannot recover. However, one benefit of BORGES is that it
can detect these cases, as it maintains estimates of the success probabilities of each grasp
during learning and thus could request external intervention from a human supervisor when it
becomes clear that a given pose is a sink state inM. We also acknowledge that many objects
violate Assumption 12.4.1 as they can be easily toppled between poses, including several of
the objects we use for evaluation. However, we find that even when Assumption 12.4.1 is
violated, BORGES still achieves good performance in practice (Figure 12.1).

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 157

12.5 Experiments

12.5.1 Simulation Experiments

In simulation experiments, we study whether BORGES can discover high quality grasps
on objects for which general-purpose grasping policies, such as Dex-Net 4.0 [294] and GG-
CNN Morrison, Corke, and Leitner [315], perform poorly and whether learning different
policies for each stable pose accelerates grasp exploration.

Simulation Details: To evaluate each policy, we choose 7 objects from the set of Dex-
Net 2.0 adversarial objects [300] and 39 evaluation objects from the EGAD! dataset Morrison,
Corke, and Leitner [341] for which general-purpose parallel-jaw grasping policies (Dex-Net
4.0 [294] and GG-CNN [315]) perform poorly, despite there existing high-quality grasps in
multiple stable poses. We sample a set of K parallel-jaw grasps on the image observation of
pose s of each object as in [300], and calculate the ground-truth quality of each grasp, ϕs,a,
using a wrench resistance metric that measures the ability of the grasp to resist gravity [308].
We randomize the initial pose of each object and execute BORGES and baselines, sampling
rewards from Ber(ϕs,a). If the grasp succeeds, we randomize the pose, choosing a stable pose
according to the stable pose distribution of the object. Otherwise, the object may topple
into a new stable pose. We execute each policy for 10 rollouts of 10 trials, where new grasps
are sampled for each trial and each rollout evaluates the policy over 10,000 timesteps of
grasp exploration. Since there is stochasticity in both the grasp sampling and the policies
themselves, we average policy performance across the 10 rollouts and 10 trials. In addition,
we smooth policy performance across a sliding window of 20 timesteps and report average
reward for each timestep.

To model object toppling when grasps are unsuccessful (Section 12.2.2), we use the
toppling analysis from Correa et al. [329] to determine the toppling transition matrix for
a given object. Specifically, we generate the distribution of next states from a given state
by sampling non-colliding pushes across vertices on the object, finding their distribution of
next states given perturbations around the nominal push point, and average the distribution
from all of the pushes. Then if a grasp fails, we choose the next state according to the
corresponding topple transition probabilities. When evaluating policies, we remove poses
that have no grasps with nonzero ground-truth quality and renormalize the stable pose
distribution. We emphasize that we perform this step for all policies and do this only to
ensure that no poses act as sink states from which the robot can never change the pose in
the future (and thus ensure that Assumption 12.2.3 is satisfied). For the 7 objects from the
Dex-Net 2.0 adversarial object dataset, 11% of poses (an average of 1.3 poses per object)
were removed. We present additional experiments in the supplementary material where
this pose removal step is not performed, and find that while all policies perform more poorly
(Section J.3), BORGES still outperforms all baseline policies. We also include further details
on the experimental setup in the supplementary material.

Policies: We compare 3 variants of BORGES against 3 baselines to evaluate whether
BORGES is able to (1) substantially outperform general-purpose grasping policies Mahler

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 158

et al. [294] on challenging objects and (2) learn more efficiently than other online learning
algorithms which update a grasp quality convolutional network (GQCNN) online or explore
grasps via reinforcement learning. We also instantiate BORGES with different algorithms
for B to study how this choice affects grasp exploration efficiency and implement an oracle
baseline to study whether BORGES is able to converge to the optimal policy. We compare
the following baselines and BORGES variants: Dex-Net, which selects grasps greedily with
respect to the Grasp Quality Convolutional Network from Dex-Net 4.0 [294] with proba-
bility 0.95 and selects a grasp uniformly at random with probability 0.05, Dex-Net-FT,
which additionally fine tunes the GQCNN policy online from agent experience, an imple-
mentation of UCRL2 from [342], a tabular RL algorithm discussed in Section 12.3, and
instantiations of BORGES with the UCB-1 algorithm [339] (BORGES-UCB), Thompson
sampling (BORGES-TS) with a uniform Beta distribution prior, and Thompson sampling
with a prior from the Dex-Net policy of strength 5 (BORGES-TS5) as in [323]. Finally,
we implement an oracle baseline that chooses grasps with the best ground-truth metric at
each timestep to establish an upper bound on performance.

Simulation Results: Results for baselines and BORGES variants are in Figure 12.1.
Above the learning curves in Figure 12.1, we report the maximum violation of Assump-
tion 12.4.1 across all pose pairs for each object (maxs,s′ [δs,s′ − ϵλs′]). This value captures
how much more likely an object is to topple between poses s and s′ than be successfully
grasped in s and released into s′ for pose pair (s, s′) which most violates Assumption 12.4.1.
BORGES is robust to large violations of Assumption 12.4.1, and substantially outperforms
prior methods even when there exist pose pairs where it is 30% more likely to topple between
the poses than transition between them with a successful grasp.

As shown in Figure 12.1, the Dex-Net policy typically performs very poorly, achieving
an average reward of less than 0.1 per timestep. While the online learning policies also
start poorly, they quickly improve, and BORGES-TS eventually converges to the optimal
policy. We also find that BORGES-TS5, which leverages Dex-Net as a prior using the
method presented in [323], further accelerates convergence to the optimal policy. This result
is promising, as it suggests that the exploration strategy in BORGES can be flexibly com-
bined with general-purpose grasping policies to significantly accelerate grasp exploration on
unknown objects. We find that the Dex-Net-FT policy performs very poorly even though it
continues to update the weights of the network online with the results of each grasp attempt
and samples a random grasp with probability 0.05, which aids exploration. We hypothe-
size that this is due to the initial poor performance of Dex-Net—since the vast majority of
fine-tuning grasps attain zero reward, the network is unable to explore enough high-quality
grasps on the object. Overall, these results suggest that BORGES can greatly increase grasp
success rates on objects for which Dex-Net performs poorly. We also find that BORGES
policies greatly outperform tabular RL policy UCRL2 by leveraging the structure of the
MDP. Both the UCB and Thompson sampling implementations maintain separate policies
in each pose, leveraging the fact that the optimal policy is the greedy policy. This allows
the BORGES policies to not waste timesteps exploring possible transitions to poses with low
rewards. Thompson sampling additionally leverages the fact that the rewards are distributed

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 159

Figure 12.2: Experiment setup and learning curves for the Dex-Net and BORGES-TS5
policies for two objects across 200 grasp attempts (smoothed with a running average of
20 attempts). The robot attempts to grasp the object at each timestep and, if it succeeds,
rotates and drops the object to sample from the stable pose distribution (left). BORGES-TS5
quickly converges within 100 attempts on both objects, indicating that it finds grasps that
succeed nearly every time for each pose. Dex-Net’s performance remains uneven, indicating
that it finds high-quality grasps for some poses, but not others.

as Bernoulli random variables, which may explain the significant performance gap between
the Thompson sampling and UCB implementations. Thus, BORGES policies quickly learn
to choose high-quality grasps in each pose to transition quickly to new poses.

We perform sensitivity analysis of BORGES to ϵ and λ1 and find that BORGES quickly
converges to the optimal policy unless ϵ or λ1 is low. We additionally evaluate BORGES
for different numbers of sampled grasps (K) on each pose, and find that with decreasing
values of K, all policies perform worse since the likelihood of sampling a high quality grasp
decreases, but BORGES policies continue to outperform prior methods. See Section J.4 of
the supplementary material for more details.

12.5.2 Initial Physical Experiments

In physical experiments, we evaluate BORGES on two challenging objects on an ABB YuMi
robot and compare performance with the Dex-Net policy from Section 12.5.1. Section J.5
of the supplementary material contains further details on the experimental setup and pro-
cedures. Figure 12.2 shows learning curves for both BORGES and Dex-Net; results suggest
that BORGES quickly finds high-quality grasps across all object poses, converging to near-
perfect performance. Dex-Net correctly predicts high-quality grasps on some of the poses,

CHAPTER 12. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 160

but attempts suboptimal grasps in others, resulting in high variance performance across the
rollout since it is unable to adapt to its successes and failures. Across the final 100 timesteps
for each object (i.e., after BORGES begins to explore all poses), BORGES reaches 0.89 and
0.87 success rates on the clamp and pipe, respectively, as compared to 0.49 and 0.37 for the
Dex-Net policy after just 200 grasp attempts in real world. This highlights the importance
of a policy that can learn online from successful and failed grasp attempts; Dex-Net does not
learn online so continuing to attempt grasps will lead to the same high-variance behavior
over time, but BORGES continues to stabilize as it approaches optimal performance across
all stable poses.

12.6 Future Work

In future work, we plan to evaluate BORGES in extensive physical trials with different
grasping modalities such as suction grasps and with priors from different grasp planners.
One property of BORGES is that in the process of exploring grasps, it also explores different
object stable poses. Thus, we are excited to explore further applications of BORGES; for
example, exploring different object poses to construct accurate 3D models of unknown objects
or inspect parts for defects.

161

Part V

Conclusion and Future Work

162

Chapter 13

Conclusion

This dissertation contributes a number of online learning algorithms which enable robotic
agents to learn new tasks by exploring the environment while ensuring that this exploration
is both efficient and safe enough to be practical on robotic systems in the real world. To
do this, we made the observation that while online learning is critical for robotic systems
to be able to continually improve in their performance and align their control strategies
with the properties of the environment, online learning algorithms which learn purely from
autonomous execution are rarely practical in robotic settings due to inefficiency and safety
concerns, which are of extreme importance when deploying control policies on physical hard-
ware. This motivates developing methods to scalably supervise these algorithms that can
convey additional information about promising and unpromising behaviors without forcing
the robot to identify all of these behaviors through online exploration. To this end, we
presented algorithms which leverage offline datasets or sparing human queries to structure
online exploration and demonstration how this enables safe and efficient online robot learning
in the physical world.

In Chapters 2-3, we presented LazyDAgger and ThriftyDAgger, interactive imitation
learning algorithms which can adaptively request human intervention in order to improve
policy performance while limiting burden on the human supervisor. Results suggest that
LazyDAgger and ThriftyDAgger are able to more effectively balance task performance and
supervisor burden than prior interactive imitation learning algorithms. Notably, ThriftyDAg-
ger often achieves superior task performance than a baseline in which a human constantly
monitors the robot and decides when to intervene, suggesting that ThriftyDAgger can some-
times identify opportune times for human intervention more effectively than a human them-
selves. Then, in Chapter 4, we showed how ideas from online imitation learning and model-
based reinforcement learning can be combined to design an algorithm which can achieve the
high sample efficiency of model-based reinforcement learning algorithms while maintaining
the fast policy evaluation enabled by model-free policies.

Then in Chapters 5-8, we studied how a small set of suboptimal demonstrations can
be used to substantially accelerate exploration in reinforcement learning. We explored two
classes of approaches: (1) learning a safe set to constrain exploration to the neighborhood of

CHAPTER 13. CONCLUSION 163

prior successful trajectories (Chapters 5-7) and (2) using demonstrations to define a modified
Bellman backup to boost the Q-values of transitions in demonstration trajectories (Chap-
ter 8). We found that these algorithms enable reinforcement learning for long horizon,
sparse reward tasks while outperforming the suboptimal demonstrations. In Chapters 9-10,
we studied how negative demonstrations, which contain examples of safety violations, can
be used to design reinforcement learning algorithms which can avoid unsafe states during
exploration.

We ended by exploring bandit-based exploration algorithms for efficient robot grasping
in the real world. In Chapter 11, we presented an algorithm to learn priors on grasp quality
from general purpose grasping systems such as Dex-Net [300] and show how these priors
can significantly accelerate grasp exploration on a given object stable pose in simulation. In
Chapter 12, we extended these ideas to rapidly exploring grasps on multiple different object
stable poses both in simulation and on a physical robot. We found that this synthesis of
priors from general purpose grasping systems trained on large diverse datasets of objects
and efficient online exploration algorithms from the multi-armed bandit literature makes it
possible to simultaneously leverage the generalization ability of neural networks trained on
large datasets and the rapid adaptability of classical online learning methods.

13.1 Opportunities for Future Work

There are a number of exciting areas to explore in future work related to each of the main
sections of this dissertation. We discuss future work related to efficient online imitation learn-
ing algorithms in Section 13.1.1, reinforcement learning from suboptimal demonstrations in
Section 13.1.2, reinforcement learning from negative demonstrations in Section 13.1.3, and
bandit-based grasp exploration in Section 13.1.4.

13.1.1 Efficient Online Imitation Learning

In the context of interactive imitation learning, it would be interesting to study how recent
work on estimating uncertainty in neural networks [343] could be applied to improving the
intervention criteria of LazyDAgger and ThriftyDAgger. It would also be interesting to
precisely study the settings in which human and learned intervention criteria disagree, or
use the points at which humans chose to initiate interventions previously to learn when a
human might choose to intervene in the future. Studying application of interactive imitation
learning algorithms to large scale robot fleet learning problems in autonomous driving or
warehouse automation would also be exciting to explore in the future.

13.1.2 Reinforcement Learning from Suboptimal Demonstrations

There are also a variety of exciting extensions for the algorithms we discussed on reinforce-
ment learning from suboptimal demonstrations in Chapters 5-8. One interesting direction

CHAPTER 13. CONCLUSION 164

could be to extend Adjustable Boundary Condition LMPC (ABC-LMPC) in Chapter 5 to
high-dimensional settings as studied in Chapter 7. It would also be interesting to learn goal-
conditioned safe sets and extend the ideas from ABC-LMPC, SAVED, and LS3 to design
motion planning algorithms for stochastic dynamical systems by using the strategy in ABC-
LMPC to iteratively expand their controller domain throughout the state space in order to
find a sequence of controllers to robustly plan between any pair of states. It would also
be exciting to explore recent work in support and density estimation [344] to improve the
quality of learned safe sets in high-dimensional state spaces.

13.1.3 Reinforcement Learning from Negative Demonstrations

It would also be interesting to study extensions of the constrained reinforcement learning
algorithms in Chapters 9-10. One direction is to study how to collect informative offline
datasets with constraint violations which would inform safely learning a variety of different
downstream tasks in the environment while not violating constraints more often than is
strictly necessary for learning safely after offline data collection. It would also be interesting
to use learned safety critics to determine when human intervention might be necessary rather
than just for querying/learning a recovery policy.

13.1.4 Learning Priors for Rapid Bandit-Based Grasp
Exploration

Finally, for the grasping projects in Chapters 11-12, it would be exciting to study how recent
work from the meta-learning community [345] might be applied to learn initializations for
grasp quality prediction networks that can be rapidly fine-tuned on new objects. This could
be used in conjunction with bandit based exploration to further accelerate grasp exploration
in practice. It would also be exciting to learn priors which quantify some notion of uncertainty
in their predictions, as this may be useful in deciding how much to trust these priors when
choosing grasps during online exploration.

13.2 Broader Vision for Robot Learning

I am generally interested in studying scalable ways to supervise online learning algorithms
for robot learning applications. The two primary bottlenecks for online learning algorithms
I have observed in my work are the difficulties in (1) learning structured representations of
the world that make it more efficient for robots to identify task relevant quantities in the en-
vironment and (2) actually executing such algorithms in the real world without continuously
reaching states which require human intervention due to slow task progress. The algorithms
presented in this dissertation make some steps towards addressing each of these challenges,
but there are a number of future directions to explore that I believe would significantly
broaden the applicability and utility of online robot learning algorithms.

CHAPTER 13. CONCLUSION 165

For the first challenge, I have developed a number of algorithms which leverage offline
data to learn data-driven subsets of the environment to restrict exploration for safe and
efficient learning (Chapters 5-10). However, moving forward, it would be exciting to explore
ways to use such datasets to learn control aware representations in order to facilitate rapid
and safe online exploration in environments with high-dimensional observations. There has
been a lot of focus in prior work on designing new algorithms for online robot learning, but
less focus on studying the impact of the representations on which these algorithms operate.
Learning representations that maintain invariance to task-irrelevant distractors and focus on
the information needed to plan actions in the environment would be very useful in ensuring
that learned robotic control policies are robust and can be learned efficiently. One interesting
direction here is to learn representations that are predictive of the types of actions an expert
demonstrator might take in the world, but do not necessarily contain the information to
reconstruct everything in the environment. Such representations will likely be quite useful
for robotic control, as they will contain the information needed to plan actions based on
environment observations, but not contain spurious information that is irrelevant for control.

For the second challenge, I have explored algorithms for humans to supervise robots
during online exploration so that they can intervene when robots reach states in which they
are unlikely to make task progress in Chapters 1-7. I strongly believe that developing more
sophisticated algorithms to scalably leverage human resources during robot learning will be
of vital importance in industrial applications of robot learning algorithms. When learning
new tasks online, learned policies will almost certainly reach states in which they are unable
to make further progress or violate safety constraints. This motivates designing algorithms
which can allow a large number of robots to query a small number of human supervisors for
assistance when safety violations are likely or progress is stalled. This will involve learning
metrics which capture task progress as in Chapter 7 and probability of constraint violation
as in Chapter 9 and finding intelligent ways to combine these metrics to prioritize different
robots for human intervention. This general setting would be particularly interesting in
the context of autonomous driving or warehouse automation, in which there are often large
numbers of autonomous agents operating in the environment and only a small number of
human supervisors available to serve intervention requests, making it critical that human
labor is allocated intelligently across the robotic agents. Studying the tradeoffs between
different forms of human feedback for robot learning with respect to learning utility and
human cost would also be exciting to study moving forward.

166

Bibliography

[1] Sudeep Dasari et al. “RoboNet: Large-Scale Multi-Robot Learning”. In: (2019).

[2] Frederik Ebert et al. “Visual Foresight: Model-Based Deep Reinforcement Learning
for Vision-Based Robotic Control”. In: arXiv preprint arXiv:1812.00568 (2018).

[3] Eric Jang et al. “BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learn-
ing”. In: (2021).

[4] Michael Janner, Qiyang Li, and Sergey Levine. “Offline Reinforcement Learning as
One Big Sequence Modeling Problem”. In: (2021).

[5] Lili Chen et al. “Decision Transformer: Reinforcement Learning via Sequence Model-
ing”. In: (2021).

[6] Aviral Kumar et al. Conservative Q-Learning for Offline Reinforcement Learning.
2020. arXiv: 2006.04779 [cs.LG].

[7] Aviral Kumar et al. “Stabilizing Off-Policy Q-Learning via Bootstrapping Error Re-
duction”. In: (2019).

[8] Stephane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: International
Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[9] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”. In:
Conference on Neural Information Processing Systems (NeurIPS). 1989.

[10] J. Andrew Bagnell. An Invitation to Imitation. Tech. rep. CMU-RI-TR-15-08. Pitts-
burgh, PA: Carnegie Mellon University, Mar. 2015.

[11] Jiakai Zhang and Kyunghyun Cho. “Query-Efficient Imitation Learning for End-to-
End Autonomous Driving”. In: Association for the Advancement of Artificial Intelli-
gence (AAAI). 2017.

[12] Michael Kelly et al. “HG-DAgger: Interactive Imitation Learning with Human Ex-
perts”. In: IEEE International Conference on Robotics and Automation (ICRA). 2019.

[13] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[14] Saurabh Arora and Prashant Doshi. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: arXiv preprint arXiv:1806.06877 (2018).

https://arxiv.org/abs/2006.04779

BIBLIOGRAPHY 167

[15] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In: arXiv
preprint arXiv:1811.06711 (2018).

[16] Jonathan Spencer et al. “Learning from Interventions: Human-robot Interaction as
both Explicit and Immplicit Feedback”. In: Robotics: Science and Systems (RSS).
2020.

[17] Gokul Swamy et al. “Scaled autonomy: Enabling human operators to control robot
fleets”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2020, pp. 5942–5948.

[18] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. “Where Do You Think You’re
Going?: Inferring Beliefs about Dynamics from Behavior”. In: Neural Information
Processing Systems (NeurIPS). 2018.

[19] John Launchbury. “A Natural Semantics for Lazy Evaluation”. In: POPL ’93. Charleston,
South Carolina, USA: Association for Computing Machinery, 1993, pp. 144–154. isbn:
0897915607. doi: 10.1145/158511.158618. url: https://doi.org/10.1145/
158511.158618.

[20] Dean A Pomerleau. “Efficient training of artificial neural networks for autonomous
navigation”. In: Neural Computation 3.1 (1991).

[21] Auke Jan Ijspeert et al. “Dynamical movement primitives: learning attractor models
for motor behaviors”. In: Neural computation 25.2 (2013).

[22] Alexandros Paraschos et al. “Probabilistic movement primitives”. In: Advances in
neural information processing systems. 2013, pp. 2616–2624.

[23] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral Cloning from Observa-
tion”. In: Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI). Stockholm, Sweden, July 2018.

[24] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine
learning. 2004, p. 1.

[25] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: Asso-
ciation for the Advancement of Artificial Intelligence (AAAI). 2008.

[26] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:
Advances in Neural Information Processing Systems. 2016.

[27] Daniel S Brown, Wonjoon Goo, and Scott Niekum. “Better-than-Demonstrator Imi-
tation Learning via Automaticaly-Ranked Demonstrations”. In: Conference on Robot
Learning (CoRL). 2019.

[28] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adversarial
Inverse Reinforcement Learning”. In: arXiv preprint arXiv:1710.11248 (2017).

https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/158511.158618

BIBLIOGRAPHY 168

[29] Daniel S. Brown et al. “Extrapolating Beyond Suboptimal Demonstrations via Inverse
Reinforcement Learning from Observations”. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019. 2019.

[30] Daniel S Brown et al. “Safe Imitation Learning via Fast Bayesian Reward Inference
from Preferences”. In: International Conference on Machine Learning. 2020, pp. 1165–
1177.

[31] Akanksha Saran et al. “Understanding Teacher Gaze Patterns for Robot Learning”.
In: ed. by Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura. Vol. 100. Pro-
ceedings of Machine Learning Research. PMLR, Oct. 2020, pp. 1247–1258.

[32] Hsiao-Yu Tung et al. “Reward learning from narrated demonstrations”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 7004–7013.

[33] Michael Laskey et al. “DART: Noise Injection for Robust Imitation Learning”. In:
Conference on Robot Learning (CoRL). Vol. abs/1703.09327. 2017. arXiv: 1703 .

09327. url: http://arxiv.org/abs/1703.09327.

[34] Ashwin Balakrishna* et al. “On-Policy Robot Imitation Learning from a Converging
Supervisor”. In: Conference on Robot Learning (CoRL). PMLR. 2019.

[35] Michael Laskey et al. “SHIV: Reducing Supervisor Burden using Support Vectors for
Efficient Learning from Demonstrations in High Dimensional State Spaces”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2016.

[36] Kshitij Judah, Alan Fern, and Thomas Dietterich. “Active imitation learning via
state queries”. In: Proceedings of the icml workshop on combining learning strategies
to reduce label cost. Citeseer. 2011.

[37] Snehal Jauhri, Carlos Celemin, and Jens Kober. “Interactive Imitation Learning in
State-Space”. In: arXiv preprint arXiv:2008.00524 (2020).

[38] Dorsa Sadigh et al. “Active Preference-Based Learning of Reward Functions”. In:
Proceedings of Robotics: Science and Systems (RSS). 2017.

[39] Paul F Christiano et al. “Deep reinforcement learning from human preferences”. In:
Neural Information Processing Systems (NeurIPS). 2017.

[40] Borja Ibarz et al. “Reward learning from human preferences and demonstrations in
Atari”. In: Advances in Neural Information Processing Systems. 2018.

[41] Malayandi Palan et al. “Learning Reward Functions by Integrating Human Demon-
strations and Preferences”. In: Proceedings of Robotics: Science and Systems (RSS).
2019.

[42] Erdem Bıyık et al. “Asking easy questions: A user-friendly approach to active reward
learning”. In: arXiv preprint arXiv:1910.04365 (2019).

[43] Siddharth Reddy, Anca D Dragan, and Sergey Levine. “Shared autonomy via deep
reinforcement learning”. In: Robotics: Science and Systems (RSS) (2018).

https://arxiv.org/abs/1703.09327
https://arxiv.org/abs/1703.09327
http://arxiv.org/abs/1703.09327

BIBLIOGRAPHY 169

[44] Linhai Xie et al. “Learning with Training Wheels: Speeding up Training with a Simple
Controller for Deep Reinforcement Learning”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2018.

[45] Andrey Kurenkov et al. “AC-Teach: A Bayesian Actor-Critic Method for Policy Learn-
ing with an Ensemble of Suboptimal Teachers”. In: Conference on Robot Learning
(CoRL). 2019.

[46] Brijen Thananjeyan* et al. “Recovery RL: Safe Reinforcement Learning with Learned
Recovery Zones”. In: Robotics and Automation Letters (RAL). IEEE. 2021.

[47] Ching-An Cheng Nolan Wagener Byron Boots. “Safe Reinforcement Learning Using
Advantage-Based Intervention”. In: International Conference on Machine Learning
(ICML). 2021.

[48] William Saunders et al. “Trial without Error: Towards Safe RL with Human Inter-
vention”. In: 17th International Conference on Autonomous Agents and MultiAgent
Systems (2018).

[49] Fan Wang et al. “Intervention Aided Reinforcement Learning for Safe and Practical
Policy Optimization in Navigation”. In: Conference on Robot Learning (CoRL). 2018.

[50] Gregory Kahn, Pieter Abbeel, and Sergey Levine. “LaND: Learning to Navigate from
Disengagements”. In: arXiv preprint arXiv:2010.04689. 2020.

[51] Ajay Mandlekar et al. Human-in-the-Loop Imitation Learning using Remote Teleop-
eration. 2020. arXiv: 2012.06733 [cs.RO].

[52] Ofra Amir et al. “Interactive Teaching Strategies for Agent Training”. In: Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI). 2016.

[53] Erik B̊avenstrand and Jakob Berggren. “Performance Evaluation of Imitation Learn-
ing Algorithms with Human Experts”. In: Technical Report KTH Royal Institute of
Technology Sweden. 2019.

[54] Jacob W Crandall et al. “Validating human-robot interaction schemes in multitasking
environments”. In: IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 35.4 (2005), pp. 438–449.

[55] Jessie YC Chen and Michael J Barnes. “Human–agent teaming for multirobot con-
trol: A review of human factors issues”. In: IEEE Transactions on Human-Machine
Systems 44.1 (2014), pp. 13–29.

[56] Taylor Kessler Faulkner et al. “Active attention-modified policy shaping: socially
interactive agents track”. In: Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems. 2019.

[57] Kunal Menda, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. “Ensem-
bleDAgger: A Bayesian Approach to Safe Imitation Learning”. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 2019.

https://arxiv.org/abs/2012.06733

BIBLIOGRAPHY 170

[58] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[59] B. K. Bose. “An adaptive hysteresis-band current control technique of a voltage-
fed PWM inverter for machine drive system”. In: IEEE Transactions on Industrial
Electronics 37.5 (1990). doi: 10.1109/41.103436.

[60] Daniel Seita et al. “Deep Imitation Learning of Sequential Fabric Smoothing From
an Algorithmic Supervisor”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020.

[61] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A Physics Engine for
Model-Based Control”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2012, pp. 5026–5033. url: https://ieeexplore.ieee.
org/abstract/document/6386109/.

[62] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approx-
imation Error in Actor-Critic Methods”. In: International Conference on Machine
Learning (ICML). 2018.

[63] Ryan Hoque et al. “VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric Manip-
ulation”. In: Robotics: Science and Systems (RSS). 2020.

[64] Yunpeng Pan et al. “Agile Autonomous Driving using End-to-End Deep Imitation
Learning”. In: Robotics: Science and Systems (RSS). 2018.

[65] Felipe Codevilla et al. “End-to-end driving via conditional imitation learning”. In:
2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 4693–4700.

[66] Chelsea Finn et al. “One-Shot Visual Imitation Learning via Meta-Learning”. In:
Conference on Robot Learning (CoRL) (2017).

[67] Bin Fang et al. “Survey of imitation learning for robotic manipulation”. In: Interna-
tional Journal of Intelligent Robotics and Applications 3.4 (2019), pp. 362–369.

[68] Aditya Ganapathi et al. “Learning Dense Visual Correspondences in Simulation to
Smooth and Fold Real Fabrics”. In: IEEE International Conference on Robotics and
Automation (ICRA). 2021.

[69] Priya Sundaresan et al. “Learning Interpretable and Transferable Rope Manipula-
tion Policies Using Depth Sensing and Dense Object Descriptors”. In: International
Conference on Robotics and Automation (ICRA). IEEE. 2020.

[70] Oliver Kroemer, Scott Niekum, and George Konidaris. “A Review of Robot Learning
for Manipulation: Challenges, Representations, and Algorithms.” In: J. Mach. Learn.
Res. 22 (2021), pp. 30–1.

[71] Alex Irpan.Deep Reinforcement Learning Doesn’t Work Yet. https://www.alexirpan.
com/2018/02/14/rl-hard.html. 2018.

https://doi.org/10.1109/41.103436
https://ieeexplore.ieee.org/abstract/document/6386109/
https://ieeexplore.ieee.org/abstract/document/6386109/
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

BIBLIOGRAPHY 171

[72] Ryan Hoque et al. “LazyDAgger: Reducing context switching in interactive imita-
tion learning”. In: International Conference on Automation Sciences and Engineering
(CASE). 2021.

[73] Jessie YC Chen, Michael J Barnes, and Michelle Harper-Sciarini. “Supervisory control
of multiple robots: Human-performance issues and user-interface design”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
41.4 (2010), pp. 435–454.

[74] Dmitry Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for Vision-
Based Robotic Manipulation”. In: Conference on Robot Learning (CoRL) (2018).

[75] Felipe Codevilla et al. “Exploring the Limitations of Behavior Cloning for Autonomous
Driving”. In: International Conference on Computer Vision (2019).

[76] Stephane Ross and J. Andrew Bagnell. Reinforcement and Imitation Learning via
Interactive No-Regret Learning. 2014. arXiv: 1406.5979 [cs.LG].

[77] Yuke Zhu et al. “Robosuite: A Modular Simulation Framework and Benchmark for
Robot Learning”. In: arXiv preprint arXiv:2009.12293. 2020.

[78] Sandra G Hart. “NASA-task load index (NASA-TLX); 20 years later”. In: Proceedings
of the human factors and ergonomics society annual meeting. Vol. 50. Sage publica-
tions Sage CA: Los Angeles, CA. 2006, pp. 904–908.

[79] Peter Kazanzides et al. “An open-source research kit for the da Vinci® Surgical
System”. In: 2014 IEEE international conference on robotics and automation (ICRA).
IEEE. 2014, pp. 6434–6439.

[80] Yuxuan Liu et al. “Imitation from Observation: Learning to Imitate Behaviors from
Raw Video via Context Translation”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2018.

[81] Yuxuan Liu et al. “Imitation from Observation: Learning to Imitate Behaviors from
Raw Video via Context Translation”. In: IEEE International Conference on Robotics
and Automation (ICRA) (2018).

[82] Tianhao Zhang et al. “Deep Imitation Learning for Complex Manipulation Tasks
from Virtual Reality Teleoperation”. In: IEEE International Conference on Robotics
and Automation (ICRA) (2018).

[83] Yixin Gao et al. “JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS)
: A Surgical Activity Dataset for Human Motion Modeling”. In: MICCAI Workshop.
2014.

[84] Gregory Kahn et al. “PLATO: Policy learning using adaptive trajectory optimiza-
tion”. In: IEEE International Conference on Robotics and Automation (ICRA) (2017),
pp. 3342–3349.

[85] Yunpeng Pan et al. “Agile off-road autonomous driving using end-to-end deep imita-
tion learning”. In: arXiv preprint arXiv:1709.07174 (2017).

https://arxiv.org/abs/1406.5979

BIBLIOGRAPHY 172

[86] Kurtland Chua et al. “Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models”. In: Conference on Neural Information Processing
Systems (NeurIPS) (2018).

[87] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep Rein-
forcement Learning with Model-Free Fine-Tuning”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA) (2018).

[88] Brijen Thananjeyan et al. “Extending Deep Model Predictive Control with Safety
Augmented Value Estimation from Demonstrations”. In: CoRR (2019).

[89] Thomas Anthony, Zheng Tian, and David Barber. “Thinking fast and slow with deep
learning and tree search”. In: Conference on Neural Information Processing Systems
(NeurIPS). 2017.

[90] David Silver et al. “Mastering the game of go without human knowledge”. In: Nature
(2017).

[91] Wen Sun et al. “Dual policy iteration”. In: Conference on Neural Information Pro-
cessing Systems (NeurIPS). 2018.

[92] Wen Sun et al. “Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential
Prediction”. In: International Conference on Machine Learning (ICML). 2017.

[93] Jonathan Lee et al. “A Dynamic Regret Analysis and Adaptive Regularization Algo-
rithm for On-Policy Robot Imitation Learning”. In: WAFR (2019).

[94] Ching-An Cheng and Byron Boots. “Convergence of Value Aggregation for Imitation
Learning”. In: AISTATS (2018).

[95] J. Andrew (Drew) Bagnell. An Invitation to Imitation. Tech. rep. CMU-RI-TR-15-08.
Pittsburgh, PA: Carnegie Mellon University, 2015.

[96] Michael Laskey et al. “Comparing human-centric and robot-centric sampling for robot
deep learning from demonstrations”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2017.

[97] Ching-An Cheng et al. “Online Learning with Continuous Variations: Dynamic Regret
and Reductions”. In: CoRR (2019).

[98] Alexis Jacq et al. “Learning from a Learner”. In: International Conference on Machine
Learning (ICML). 2019.

[99] Elad Hazan. “Introduction to online convex optimization”. In: Foundations and Trends
in Optimization 2.3-4 (2016), pp. 157–325.

[100] Martin Zinkevich. “Online convex programming and generalized infinitesimal gradient
ascent”. In: International Conference on Machine Learning (ICML). 2003.

[101] John Schulman et al. “Trust region policy optimization”. In: International Conference
on Machine Learning (ICML). 2015.

BIBLIOGRAPHY 173

[102] Thanard Kurutach et al. “Model-Ensemble Trust-Region Policy Optimization”. In:
International Conference on Learning Representations (ICLR). 2018.

[103] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: International Conference on Machine
Learning (ICML) (2018).

[104] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”.
In: CoRR abs/1509.02971 (2015). arXiv: 1509.02971. url: http://arxiv.org/abs/
1509.02971.

[105] Peter Kazanzides et al. “An Open-Source Research Kit for the da Vinci Surgical
System”. In: IEEE International Conference on Robotics and Automation (ICRA).
2014.

[106] Brijen Thananjeyan* et al. “Safety Augmented Value Estimation from Demonstra-
tions (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks”. In: IEEE
Robotics and Automation Letters (RA-L) 5.2 (2020), pp. 3612–3619.

[107] Anusha Nagabandi et al. “Deep Dynamics Models for Learning Dexterous Manipula-
tion”. In: Conference on Robot Learning (CoRL). 2019.

[108] Ashwin Balakrishna et al. “On-Policy Robot Imitation Learning from a Converging
Supervisor”. In: Conference on Robot Learning (CoRL). 2019.

[109] Ugo Rosolia and Francesco Borrelli. “Sample-Based Learning Model Predictive Con-
trol for Linear Uncertain Systems”. In: CoRR abs/1904.06432 (2019). arXiv: 1904.
06432. url: http://arxiv.org/abs/1904.06432.

[110] U. Rosolia, X. Zhang, and F. Borrelli. “Robust Learning Model Predictive Control
for Iterative Tasks: Learning from Experience”. In: Annual Conference on Decision
and Control (CDC). 2017.

[111] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Iterative
Tasks. A Data-Driven Control Framework”. In: IEEE Transactions on Automatic
Control (2018).

[112] Ugo Rosolia and Francesco Borrelli. “Learning how to autonomously race a car: a
predictive control approach”. In: Proceedings 2017 IFAC World Congress. IEEE, 2019.

[113] Anil Aswani et al. “Provably Safe and Robust Learning-Based Model Predictive Con-
trol”. In: Automatica 49 (2011).

[114] Jus Kocijan et al. “Gaussian process model based predictive control”. In: 2004.

[115] Torsten Koller et al. “Learning-based Model Predictive Control for Safe Exploration
and Reinforcement Learning”. In: 2018.

[116] Lukas Hewing, Alexander Liniger, and Melanie Zeilinger. “Cautious NMPC with
Gaussian Process Dynamics for Autonomous Miniature Race Cars”. In: 2018.

https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1904.06432
https://arxiv.org/abs/1904.06432
http://arxiv.org/abs/1904.06432

BIBLIOGRAPHY 174

[117] Enrico Terzi et al. “Learning-based predictive control for linear systems: A unitary
approach”. In: Automatica 108 (2019).

[118] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. “Cautious model predictive
control using Gaussian process regression”. In: IEEE Transactions on Control Systems
Technology (2019).

[119] Juš Kocijan et al. “Gaussian process model based predictive control”. In: Proceedings
of the 2004 American Control Conference.

[120] Marko Bacic et al. “General interpolation in MPC and its advantages”. In: IEEE
Transactions on Automatic Control 48 (2003).

[121] Florian D Brunner, Mircea Lazar, and Frank Allgöwer. “Stabilizing linear model
predictive control: On the enlargement of the terminal set”. In: 2013 European Control
Conference (ECC). 2013.

[122] Kim P Wabersich and Melanie N Zeilinger. “Linear model predictive safety certifica-
tion for learning-based control”. In: 2018 IEEE Conference on Decision and Control
(CDC). 2018.

[123] Franco Blanchini and Felice Andrea Pellegrino. “Relatively optimal control and its
linear implementation”. In: IEEE Transactions on Automatic Control 48 (2003).

[124] Kendall Lowrey et al. “Plan Online, Learn Offline: Efficient Learning and Explo-
ration via Model-Based Control”. In: International Conference on Machine Learning
(ICML). 2019.

[125] Carlos Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning”.
In: Conference on Robot Learning (CoRL). Vol. abs/1707.05300. 2017. arXiv: 1707.
05300. url: http://arxiv.org/abs/1707.05300.

[126] Cinjon Resnick et al. “Backplay: ”Man muss immer umkehren””. In: CoRR abs/1807.06919
(2018). arXiv: 1807.06919. url: http://arxiv.org/abs/1807.06919.

[127] Sanmit Narvekar and Peter Stone. “Learning Curriculum Policies for Reinforcement
Learning”. In: Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems. 2019.

[128] Boris Ivanovic et al. “BaRC: Backward Reachability Curriculum for Robotic Rein-
forcement Learning”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2019.

[129] Ashvin V Nair et al. “Visual Reinforcement Learning with Imagined Goals”. In: Con-
ference on Neural Information Processing Systems (NeurIPS). 2018.

[130] Tom Schaul et al. “Universal Value Function Approximators”. In: International Con-
ference on Machine Learning (ICML). 2015.

[131] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Advances in Neural
Information Processing Systems. 2017, pp. 5048–5058.

https://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
https://arxiv.org/abs/1807.06919
http://arxiv.org/abs/1807.06919

BIBLIOGRAPHY 175

[132] Jur van den Berg, Pieter Abbeel, and Kenneth Y. Goldberg. “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state information.”
In: I. J. Robotics Res. 30.7 (2011), pp. 895–913.

[133] Alex Pui-wai Lee et al. “Gaussian Belief Space Planning for Imprecise Articulated
Robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2013.

[134] Hanna Kurniawati et al. “Motion planning under uncertainty for robotic tasks with
long time horizons”. In: International Journal of Robotics Research (IJRR) 30.3
(2011), pp. 308–323.

[135] Zdravko I. Botev et al. The Cross-Entropy Method for Optimization. 2013.

[136] Atsushi Sakai et al. “PythonRobotics: a Python code collection of robotics algo-
rithms”. In: (2018).

[137] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[138] MP. Deisenroth and CE. Rasmussen. “PILCO: A Model-Based and Data-Efficient Ap-
proach to Policy Search”. In: International Conference on Machine Learning (ICML).
2011.

[139] Ian Lenz, Ross A. Knepper, and Ashutosh Saxena. “DeepMPC: Learning Deep Latent
Features for Model Predictive Control”. In: Robotics: Science and Systems. 2015.

[140] Justin Fu, Sergey Levine, and Pieter Abbeel. “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2016.

[141] Dario Amodei et al. “Concrete problems in AI safety”. In: arXiv preprint arXiv:1606.06565
(2016). arXiv: 1606.06565 [cs.AI].

[142] D. Seita et al. “Fast and Reliable Autonomous Surgical Debridement with Cable-
Driven Robots Using a Two-Phase Calibration Procedure”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2018.

[143] Arkadi Nemirovski. “On safe tractable approximations of chance constraints”. In:
European Journal of Operational Research (2012).

[144] Kendall Lowrey et al. “Plan Online, Learn Offline: Efficient Learning and Explo-
ration via Model-Based Control”. In: International Conference on Machine Learning
(ICML). 2019.

[145] Todd Hester et al. “Deep q-learning from demonstrations”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[146] Matej Vecerik et al. “Leveraging Demonstrations for Deep Reinforcement Learning
on Robotics Problems with Sparse Rewards”. In: CoRR abs/1707.08817 (2017).

[147] Ashvin Nair et al. “Overcoming Exploration in Reinforcement Learning with Demon-
strations”. In: IEEE International Conference on Robotics and Automation (ICRA)
(2018).

arXiv:1606.01540
https://arxiv.org/abs/1606.06565

BIBLIOGRAPHY 176

[148] Stephen Tu and Benjamin Recht. “The Gap Between Model-Based and Model-Free
Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint”. In: CoRR
abs/1812.03565 (2018).

[149] S. Quinlan and O. Khatib. “Elastic bands: connecting path planning and control”.
In: International Conference on Robotics and Automation. 1993, 802–807 vol.2.

[150] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. “A survey of iterative
learning control”. In: IEEE control systems magazine (2006).

[151] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. “A Stochastic MPC Approach
with Application to Iterative Learning”. In: 2018 IEEE Conference on Decision and
Control (CDC) (2018).

[152] Javier Garćıa and Fernando Fernández. “A Comprehensive Survey on Safe Reinforce-
ment Learning”. In: Journal of Machine Learning Research (JMLR) (2015).

[153] Z. Li, U. Kalabić, and T. Chu. “Safe Reinforcement Learning: Learning with Su-
pervision Using a Constraint-Admissible Set”. In: 2018 Annual American Control
Conference (ACC). 2018.

[154] Teodor Mihai Moldovan and Pieter Abbeel. “Safe exploration in Markov decision
processes”. In: arXiv preprint arXiv:1205.4810 (2012).

[155] Joshua Achiam et al. “Constrained policy optimization”. In: Journal of Machine
Learning Research (JMLR). 2017.

[156] Felix Berkenkamp et al. “Safe Model-based Reinforcement Learning with Stability
Guarantees”. In: NIPS. 2017.

[157] Teodor M. Moldovan and Pieter Abbeel. “Risk Aversion in Markov Decision Processes
via Near Optimal Chernoff Bounds”. In: Conference on Neural Information Processing
Systems (NeurIPS). 2012.

[158] Takayuki Osogami. “Robustness and risk-sensitivity in Markov decision processes”.
In: NIPS. 2012.

[159] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[160] Matthias Plappert et al. “Multi-Goal Reinforcement Learning: Challenging Robotics
Environments and Request for Research”. In: CoRR abs/1802.09464 (2018). arXiv:
1802.09464. url: http://arxiv.org/abs/1802.09464.

[161] Jur Van Den Berg et al. “Superhuman performance of surgical tasks by robots us-
ing iterative learning from human-guided demonstrations”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2010.

[162] Frederik Ebert et al. “Visual foresight: Model-based deep reinforcement learning for
vision-based robotic control”. In: arXiv preprint arXiv:1812.00568 (2018).

https://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1802.09464

BIBLIOGRAPHY 177

[163] Danijar Hafner et al. “Learning Latent Dynamics for Planning from Pixels”. In: In-
ternational Conference on Machine Learning (ICML) (2019).

[164] Ryan Hoque et al. “Visuospatial foresight for multi-step, multi-task fabric manipula-
tion”. In: Robotics: Science and Systems (RSS) (2020).

[165] Ian Lenz, Ross A Knepper, and Ashutosh Saxena. “DeepMPC: Learning deep latent
features for model predictive control.” In: Robotics: Science and Systems. Rome, Italy.
2015.

[166] Suraj Nair and Chelsea Finn. “Hierarchical foresight: Self-supervised learning of long-
horizon tasks via visual subgoal generation”. In: International Conference on Learning
Representations (ICLR) (2019).

[167] Suraj Nair, Silvio Savarese, and Chelsea Finn. “Goal-Aware Prediction: Learning
to Model What Matters”. In: Proceedings of the 37th International Conference on
Machine Learning. 2020, pp. 7207–7219.

[168] Karl Pertsch et al. “Long-horizon visual planning with goal-conditioned hierarchical
predictors”. In: Conference on Neural Information Processing Systems (NeurIPS)
(2020).

[169] Stephen Tian et al. “Model-Based Visual Planning with Self-Supervised Functional
Distances”. In: International Conference on Learning Representations (ICLR) (2021).

[170] Tuomas Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In.

[171] Ashvin Nair et al. “Visual reinforcement learning with imagined goals”. In: Neural
Information Processing Systems (NeurIPS) (2018).

[172] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: Journal
of Machine Learning Research (JMLR) (2016).

[173] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation”. In: Conference on Robot Learning (CoRL) (2018).

[174] Vitchyr H Pong et al. “Skew-fit: State-covering self-supervised reinforcement learn-
ing”. In: International Conference on Machine Learning (ICML) (2020).

[175] Spencer M Richards, Felix Berkenkamp, and Andreas Krause. “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical systems”. In:
Conference on Robot Learning. PMLR. 2018, pp. 466–476.

[176] Brijen Thananjeyan* et al. “ABC-LMPC: Safe Sample-Based Learning MPC for
Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions”. In:
Workshop on the Algorithmic Foundations of Robotics. 2020.

[177] Somil Bansal et al. “Hamilton-Jacobi Reachability: A Brief Overview and Recent
Advances”. In: Conference on Decision and Control (CDC). 2017.

[178] Jeffrey Ichnowski et al. “Deep learning can accelerate grasp-optimized motion plan-
ning”. In: Science Robotics 5.48 (2020).

BIBLIOGRAPHY 178

[179] Zhaoxuan Zhu et al. In: (2021). arXiv: 2105.11640 [cs.LG].

[180] Martina Lippi et al. “Latent Space Roadmap for Visual Action Planning of De-
formable and Rigid Object Manipulation”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2020.

[181] Andrei A Rusu et al. “Sim-to-real robot learning from pixels with progressive nets”.
In: Conference on Robot Learning. PMLR. 2017, pp. 262–270.

[182] Gerrit Schoettler et al. “Deep reinforcement learning for industrial insertion tasks
with visual inputs and natural rewards”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2020).

[183] Avi Singh et al. “End-to-end robotic reinforcement learning without reward engineer-
ing”. In: Robotics: Science and Systems (RSS) (2019).

[184] Marvin Zhang et al. “Solar: Deep structured representations for model-based rein-
forcement learning”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 7444–7453.

[185] Greg Kahn et al. “Uncertainty-Aware Reinforcement Learning for Collision Avoid-
ance”. In: CoRR (2017).

[186] Aravind Srinivas et al. “Universal Planning Networks”. In: International Conference
on Machine Learning (ICML) (Apr. 2018).

[187] B. Ichter and M. Pavone. “Robot Motion Planning in Learned Latent Spaces”. In:
IEEE Robotics and Automation Letters 4.3 (2019), pp. 2407–2414. doi: 10.1109/
LRA.2019.2901898.

[188] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained varia-
tional framework”. In: International Conference on Learning Representations (ICLR)
(2017).

[189] Michael Laskin et al. “Reinforcement Learning with Augmented Data”. In: (2020).
arXiv:2004.14990.

[190] Reuven Rubinstein. “The cross-entropy method for combinatorial and continuous op-
timization”. In: Methodology and computing in applied probability 1.2 (1999), pp. 127–
190.

[191] K. Chua et al. “Deep Reinforcement Learning in a Handful of Trials using Proba-
bilistic Dynamics Models”. In: Conference on Neural Information Processing Systems
(NeurIPS). 2018.

[192] Jesse Zhang et al. “Cautious adaptation for reinforcement learning in safety-critical
settings”. In: International Conference on Machine Learning. PMLR. 2020, pp. 11055–
11065.

[193] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor”. In: International Conference on Ma-
chine Learning (ICML) (2018).

https://arxiv.org/abs/2105.11640
https://doi.org/10.1109/LRA.2019.2901898
https://doi.org/10.1109/LRA.2019.2901898

BIBLIOGRAPHY 179

[194] Ashvin Nair et al. AWAC: Accelerating Online Reinforcement Learning with Offline
Datasets. 2021. arXiv: 2006.09359 [cs.LG].

[195] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. “Reward Constrained Policy
Optimization”. In: International Conference on Learning Representations (ICLR).
2019.

[196] Yuval Tassa et al. dm-control: Software and Tasks for Continuous Control. 2020.
arXiv: 2006.12983 [cs.RO].

[197] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: nature 518.7540 (2015), pp. 529–533.

[198] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[199] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347 [cs.LG].

[200] Jiexin Xie et al. “Deep reinforcement learning with optimized reward functions for
robotic trajectory planning”. In: IEEE Access 7 (2019), pp. 105669–105679.

[201] Victoria Krakovna et al. “Specification gaming: the flip side of AI ingenuity”. In:
DeepMind Blog (2020).

[202] Zheng Wu et al. “Learning Dense Rewards for Contact-Rich Manipulation Tasks”.
In: arXiv preprint arXiv:2011.08458 (2020).

[203] Aravind Rajeswaran et al. Learning Complex Dexterous Manipulation with Deep Re-
inforcement Learning and Demonstrations. 2018. arXiv: 1709.10087 [cs.LG].

[204] Xue Bin Peng et al. Advantage-Weighted Regression: Simple and Scalable Off-Policy
Reinforcement Learning. 2019. arXiv: 1910.00177 [cs.LG].

[205] Brijen Thananjeyan et al. Safety Augmented Value Estimation from Demonstrations
(SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks. 2020. arXiv:
1905.13402 [cs.LG].

[206] Brijen Thananjeyan et al. “Recovery rl: Safe reinforcement learning with learned
recovery zones”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4915–
4922.

[207] Albert Wilcox et al. “LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Con-
trol of Sparse Reward Iterative Tasks”. In: Conference on Robot Learning (CoRL).
PMLR. 2021.

[208] Ashvin Nair et al. “Overcoming exploration in reinforcement learning with demonstra-
tions”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2018, pp. 6292–6299.

[209] Todd Hester et al. “Deep q-learning from demonstrations”. In: Thirty-second AAAI
conference on artificial intelligence. 2018.

https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.12983
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1905.13402

BIBLIOGRAPHY 180

[210] Yang Gao et al. “Reinforcement learning from imperfect demonstrations”. In: arXiv
preprint arXiv:1802.05313 (2018).

[211] Robert Wright et al. “Exploiting Multi-step Sample Trajectories for Approximate
Value Iteration”. In:Machine Learning and Knowledge Discovery in Databases. Ed. by
Hendrik Blockeel et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 113–
128. isbn: 978-3-642-40988-2.

[212] Stefan Schaal et al. “Learning from demonstration”. In: Advances in neural informa-
tion processing systems (1997), pp. 1040–1046.

[213] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In:
Learning Motor Skills. Springer, 2014, pp. 83–117.

[214] Mingxuan Jing et al. “Reinforcement learning from imperfect demonstrations under
soft expert guidance”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 34. 04. 2020, pp. 5109–5116.

[215] Beomjoon Kim et al. “Learning from Limited Demonstrations.” In: NIPS. Citeseer.
2013, pp. 2859–2867.

[216] Bingyi Kang, Zequn Jie, and Jiashi Feng. “Policy optimization with demonstrations”.
In: International Conference on Machine Learning. PMLR. 2018, pp. 2469–2478.

[217] Mel Vecerik et al. Leveraging Demonstrations for Deep Reinforcement Learning on
Robotics Problems with Sparse Rewards. 2018. arXiv: 1707.08817 [cs.AI].

[218] Ashvin Nair et al. AWAC: Accelerating Online Reinforcement Learning with Offline
Datasets. 2021. arXiv: 2006.09359 [cs.LG].

[219] Hado Van Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. 2018.
arXiv: 1812.02648 [cs.LG].

[220] George Konidaris, Scott Niekum, and Philip S Thomas. “Td gamma: Re-evaluating
complex backups in temporal difference learning”. In: Advances in Neural Information
Processing Systems 24 (2011), pp. 2402–2410.

[221] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 30. 1. 2016.

[222] John Schulman et al. “High-Dimensional Continuous Control Using Generalized Ad-
vantage Estimation”. In: International Conference on Learning Representations (ICLR)
(June 2016).

[223] Arsenii Kuznetsov et al. “Controlling overestimation bias with truncated mixture of
continuous distributional quantile critics”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 5556–5566.

[224] Robert William Wright et al. “CFQI: Fitted Q-Iteration with Complex Returns.” In:
AAMAS. Citeseer. 2015, pp. 163–170.

https://arxiv.org/abs/1707.08817
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/1812.02648

BIBLIOGRAPHY 181

[225] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
1st. Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[226] Yuke Zhu et al. “robosuite: A Modular Simulation Framework and Benchmark for
Robot Learning”. In: arXiv preprint arXiv:2009.12293. 2020.

[227] Charles Richter and Nicholas Roy. “Safe Visual Navigation via Deep Learning and
Novelty Detection”. In: Robotics Science and Systems (RSS) (2013).

[228] Tuomas Haarnoja et al. “Soft Actor-Critic Algorithms and Applications”. In: CoRR
(2018).

[229] Anusha Nagabandi et al. “Deep Dynamics Models for Learning Dexterous Manipula-
tion”. In: Conference on Robot Learning (CoRL) (2019).

[230] Jaime F. Fisac et al. “A General Safety Framework for Learning-Based Control in
Uncertain Robotic Systems”. In: IEEE Transactions on Automatic Control. 2018.

[231] J. H. Gillula and C. J. Tomlin. “Guaranteed Safe Online Learning via Reachability:
tracking a ground target using a quadrotor”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2012.

[232] Shuo Li and Osbert Bastani. “Robust Model Predictive Shielding for Safe Reinforce-
ment Learning with Stochastic Dynamics”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2020.

[233] Alex Ray, Joshua Achiam, and Dario Amodei. “Benchmarking Safe Exploration in
Deep Reinforcement Learning”. In: NeurIPS Deep Reinforcement Learning Workshop.
2019.

[234] M. Heger. “Consideration of risk in reinforcement learning”. In: Machine Learning
Proceedings. 1994.

[235] Yun Shen et al. “Risk-sensitive Reinforcement Learning”. In: Neural Computation.
Vol. 26. 2014.

[236] A. Tamar, Y. Glassner, and S. Mannor. “Policy Gradients Beyond Expectations:
Conditional value-at-risk”. In: CoRR. 2014.

[237] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. “Worst Cases Policy
Gradients”. In: Conference on Robot Learning (CoRL) (2019).

[238] Benjamin Eysenbach et al. “Leave no Trace: Learning to Reset for Safe and Au-
tonomous Reinforcement Learning”. In: International Conference on Learning Rep-
resentations (2018).

[239] Jaime F. Fisac et al. “Bridging Hamilton-Jacobi Safety Analysis and Reinforcement
Learning”. In: IEEE International Conference on Robotics and Automation (ICRA).
2019.

[240] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. “Safe Exploration in Fi-
nite Markov Decision Processes with Gaussian Processes”. In: Neural Information
Processing Systems (NeurIPS). 2016.

BIBLIOGRAPHY 182

[241] Fritz Wysotzki Peterr Geibel. “Risk-Sensitive Reinforcement Learning Applied to
Control under Constraints”. In: Journal of Artificial Intelligence Rersearch. Vol. 24.
2005.

[242] Krishnan Srinivasan et al. “Learning to be Safe: Deep RL with a Safety Critic”. In:
arXiv preprint arXiv:2010.14603 (2020).

[243] Y. Chow et al. “A Lyapunov-based Approach to Safe Reinforcement Learning”. In:
NeurIPS. 2018.

[244] Y. Chow et al. “Lyapunov-based Safe Policy Optimization for Continuous Control”.
In: ICML Workshop RL4RealLife. 2019.

[245] Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”. In: 2018.

[246] Weiqiao Han, Sergey Levine, and Pieter Abbeel. “Learning Compound Multi-Step
Controllers under Unknown Dynamics”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2015).

[247] Eitan Altman. Constrained Markov Decision Processes. 1999, p. 260. doi: 10.1016/
0167-6377(96)00003-X.

[248] Minho Hwang et al. “Efficiently Calibrating Cable-Driven Surgical Robots With
RGBD Sensing, Temporal Windowing, and Linear and Recurrent Neural Network
Compensation”. In: Robotics and Automation Letters (RAL) (2020).

[249] Homanga Bharadhwaj et al. “Conservative Safety Critics for Exploration”. In: arXiv
preprint arXiv:2010.14497 (2020).

[250] Jesse Zhang et al. “Cautious Adaptation for Reinforcement Learning in Safety-Critical
Settings”. In: International Conference on Machine Learning (ICML) (2020).

[251] Xingyou Song et al. “Rapidly Adaptable Legged Robots via Evolutionary Meta-
Learning”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2020).

[252] Julian Ibarz et al. “How to Train Your Robot with Deep Reinforcement Learning:
Lessons we Have Learned”. In: International Journal of Robotics Research (IJRR)
(2021).

[253] Eric Mitchell et al. Offline Meta-Reinforcement Learning with Advantage Weighting.
2020. arXiv: 2008.06043 [cs.LG].

[254] Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline Meta Learning of Exploration.
2021. arXiv: 2008.02598 [cs.LG].

[255] J. Garcia and F. Fernández. “A Comprehensive Survey on Safe Reinforcement Learn-
ing”. In: Journal of Machine Learning Research. 2015.

[256] Yinlam Chow et al. “Risk-Constrained Reinforcement Learning with Percentile Risk
Criteria”. In: Journal of Machine Learning Research 1 (2015), pp. 1–49.

https://doi.org/10.1016/0167-6377(96)00003-X
https://doi.org/10.1016/0167-6377(96)00003-X
https://arxiv.org/abs/2008.06043
https://arxiv.org/abs/2008.02598

BIBLIOGRAPHY 183

[257] Homanga Bharadhwaj et al. “Conservative Safety Critics for Exploration”. In: arXiv
preprint arXiv:2010.14497 (2020).

[258] Felix Berkenkamp and Angela P. Schoellig. “Safe and Robust Learning Control with
Gaussian Processes”. In: European Control Conference (2015).

[259] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. “Safe Controller Opti-
mization for Quadraotors with Gaussian Processes”. In: Conference on Decision and
Control (2015).

[260] Albert Wu and Jonathan P. How. “Guaranteed Infinite Horizon Avoidance of Unpre-
dictable, Dynamically Constrained Obstacles”. In: Autonomous Robots (2012).

[261] Meeko Oishi Ian M. Mitchell Mo Chen. “Ensuring Safety of Nonlinear Sampled Data
Systems through Reachability”. In: International Federation of Automatic Control 45
(9 2012), pp. 108–114.

[262] Kostas Margellos and John Lygeros. “Hamilton-Jacobi Formulation for Reach-Avoid
Differential Games”. In: Transactions on Automatic Control 56 (8 2011).

[263] Mo Chen et al. “Safe Platooning of Unmanned Aerial Vehicles via Reachability”. In:
Conference on Decision and Control (2015).

[264] Susmit Jha et al. “Safe Autonomy Under Perception Uncertainty Using Chance-
Constrained Temporal Logic”. In: Transactions on Automated Reasoning (2017).

[265] Jurgen Schmidhuber. “Evolutionary Principles in Self-Referential Learning. On Learn-
ing now to Learn: The Meta-Meta-Meta...-Hook”. Diploma Thesis. Technische Uni-
versitat Munchen, Germany, 1987. url: http://www.idsia.ch/~juergen/diploma.
html.

[266] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.
Citeseer.

[267] Devang K Naik and Richard J Mammone. “Meta-neural networks that learn by learn-
ing”. In: [Proceedings 1992] IJCNN International Joint Conference on Neural Net-
works. Vol. 1. IEEE. 1992, pp. 437–442.

[268] Sebastian Thrun and Lorien Pratt. “Learning to learn: Introduction and overview”.
In: Learning to learn. Springer, 1998, pp. 3–17.

[269] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. “Learning To Learn Using
Gradient Descent”. In: IN LECTURE NOTES ON COMP. SCI. 2130, PROC. INTL.
CONF. ON ARTI NEURAL NETWORKS (ICANN-2001. Springer, 2001, pp. 87–94.

[270] Yan Duan et al. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning.
2016. arXiv: 1611.02779 [cs.AI].

[271] Jane XWang et al. Learning to reinforcement learn. 2017. arXiv: 1611.05763 [cs.LG].

[272] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks. 2017. arXiv: 1703.03400 [cs.LG].

http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.05763
https://arxiv.org/abs/1703.03400

BIBLIOGRAPHY 184

[273] Nikhil Mishra et al. A Simple Neural Attentive Meta-Learner. 2018. arXiv: 1707.
03141 [cs.AI].

[274] Rein Houthooft et al. Evolved Policy Gradients. 2018. arXiv: 1802.04821 [cs.LG].

[275] Kate Rakelly et al. Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
Context Variables. 2019. arXiv: 1903.08254 [cs.LG].

[276] Jan Humplik et al. Meta reinforcement learning as task inference. 2019. arXiv: 1905.
06424 [cs.LG].

[277] Rasool Fakoor et al. Meta-Q-Learning. 2020. arXiv: 1910.00125 [cs.LG].

[278] Steindor Saemundsson, Katja Hofmann, and Marc P. Deisenroth. “Meta Reinforce-
ment Learning with Latent Variable Gaussian Processes”. In: Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence (UAI). Acceptance rate: 25. 2018.
url: https://arxiv.org/abs/1803.07551.

[279] Anusha Nagabandi et al. Learning to Adapt in Dynamic, Real-World Environments
Through Meta-Reinforcement Learning. 2019. arXiv: 1803.11347 [cs.LG].

[280] Bradly Stadie et al. “The Importance of Sampling inMeta-Reinforcement Learning”.
In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.
Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips.cc/
paper/2018/file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf.

[281] Jin Zhang et al. Learn to Effectively Explore in Context-Based Meta-RL. June 2020.

[282] Evan Zheran Liu et al.Decoupling Exploration and Exploitation for Meta-Reinforcement
Learning without Sacrifices. 2021. arXiv: 2008.02790 [cs.LG].

[283] Lanqing Li, Rui Yang, and Dijun Luo. “Efficient Fully-Offline Meta-Reinforcement
Learning via Distance Metric Learning and Behavior Regularization”. In: Interna-
tional Conference on Learning Representations. 2021. url: https://openreview.
net/forum?id=8cpHIfgY4Dj.

[284] Karol Arndt et al. “Meta Reinforcement Learning for Sim-to-real Domain Adap-
tation”. In: IEEE International Conference on Robotics and Automation (ICRA)
(2020).

[285] Djordje Grbic and Sebastian Risi. Safe Reinforcement Learning through Meta-learned
Instincts. 2020. arXiv: 2005.03233 [cs.LG].

[286] Elon Rimon and Joel Burdick. The Mechanics of Robot Grasping. Cambridge Univer-
sity Press, 2019.

[287] Antonio Bicchi and Vijay Kumar. “Robotic grasping and contact: A review”. In:
IEEE International Conference on Robotics and Automation (ICRA). Vol. 1. IEEE.
2000, pp. 348–353.

[288] Domenico Prattichizzo and Jeffrey C Trinkle. “Grasping”. In: Springer handbook of
robotics. Springer, 2016, pp. 955–988.

https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1802.04821
https://arxiv.org/abs/1903.08254
https://arxiv.org/abs/1905.06424
https://arxiv.org/abs/1905.06424
https://arxiv.org/abs/1910.00125
https://arxiv.org/abs/1803.07551
https://arxiv.org/abs/1803.11347
https://proceedings.neurips.cc/paper/2018/file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d0f5722f11a0cc839fa2ca6ea49d8585-Paper.pdf
https://arxiv.org/abs/2008.02790
https://openreview.net/forum?id=8cpHIfgY4Dj
https://openreview.net/forum?id=8cpHIfgY4Dj
https://arxiv.org/abs/2005.03233

BIBLIOGRAPHY 185

[289] Richard M Murray. A mathematical introduction to robotic manipulation. CRC press,
2017.

[290] David Wang et al. “Adversarial Grasp Objects”. In: 2019 IEEE 15th International
Conference on Automation Science and Engineering (CASE). IEEE. 2019, pp. 241–
248.

[291] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: International Journal of Robotics Research (IJRR) 34.4-5 (2015), pp. 705–
724.

[292] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big data for grasp
planning”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2015, pp. 4304–4311.

[293] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: International Journal of Robotics Re-
search (IJRR) 37.4-5 (2018), pp. 421–436.

[294] Jeffrey Mahler et al. “Learning ambidextrous robot grasping policies”. In: Science
Robotics 4.26 (2019), eaau4984.

[295] Stephen James et al. “Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 12627–12637.

[296] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach”. In: Proc. of Robotics:
Science and Systems (RSS). 2018.

[297] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 3406–3413.

[298] Michael Laskey et al. “Multi-armed bandit models for 2d grasp planning with uncer-
tainty”. In: 2015 IEEE International Conference on Automation Science and Engi-
neering (CASE). IEEE. 2015, pp. 572–579.

[299] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards”. In: 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2016,
pp. 1957–1964.

[300] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”. In: Robotics: Science and Systems (RSS).
2018.

[301] Min Liu et al. “Deep Differentiable Grasp Planner for High-DOF Grippers”. In: ArXiv
abs/2002.01530 (2020).

BIBLIOGRAPHY 186

[302] Jeannette Bohg et al. “Data-driven grasp synthesis—a survey”. In: IEEE Transactions
on Robotics 30.2 (2013), pp. 289–309.

[303] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. “Robotic grasping of novel
objects using vision”. In: International Journal of Robotics Research (IJRR) 27.2
(2008), pp. 157–173.

[304] Cristian Bodnar et al. “Quantile QT-Opt for Risk-Aware Vision-Based Robotic Grasp-
ing”. In: ArXiv abs/1910.02787 (2019).

[305] Edward Johns, Stefan Leutenegger, and Andrew J Davison. “Deep learning a grasp
function for grasping under gripper pose uncertainty”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 4461–4468.

[306] Ulrich Viereck et al. “Learning a visuomotor controller for real world robotic grasping
using simulated depth images”. In: arXiv preprint arXiv:1706.04652 (2017).

[307] Konstantinos Bousmalis et al. “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 4243–4250.

[308] Jeffrey Mahler et al. “Dex-Net 3.0: Computing Robust Robot Vacuum Suction Grasp
Targets in Point Clouds using a New Analytic Model and Deep Learning”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2018.

[309] Ole-Magnus Pedersen, Ekrem Misimi, and François Chaumette. “Grasping Unknown
Objects by Coupling Deep Reinforcement Learning, Generative Adversarial Networks,
and Visual Servoing”. In: ICRA 2020 - IEEE International Conference on Robotics
and Automation. Paris, France: IEEE, May 2020, pp. 1–8. url: https://hal.inria.
fr/hal-02495837.

[310] Daniel J. Russo et al. “now publishers - A Tutorial on Thompson Sampling”. In: 11.1
(2018), pp. 1–96.

[311] Olivier Chapelle and Lihong Li. “An Empirical Evaluation of Thompson Sampling”.
In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor
et al. Curran Associates, Inc., 2011, pp. 2249–2257. url: http://papers.nips.cc/
paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf.

[312] Maurice G Kendall. “A new measure of rank correlation”. In: Biometrika 30.1/2
(1938), pp. 81–93.

[313] Maurice G Kendall. “The treatment of ties in ranking problems”. In: Biometrika 33.3
(1945), pp. 239–251.

[314] Nicolas Mellado, Dror Aiger, and Niloy J. Mitra. Super 4PCS Library. https://github.com/nmellado/Super4PCS.
2017.

[315] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Learning robust, real-time, reac-
tive robotic grasping”. In: International Journal of Robotics Research (IJRR) 39.2-3
(2020), pp. 183–201.

https://hal.inria.fr/hal-02495837
https://hal.inria.fr/hal-02495837
http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf
http://papers.nips.cc/paper/4321-an-empirical-evaluation-of-thompson-sampling.pdf

BIBLIOGRAPHY 187

[316] Junggon Kim et al. “Physically based grasp quality evaluation under pose uncer-
tainty”. In: IEEE Transactions on Robotics 29.6 (2013), pp. 1424–1439.

[317] Changhyun Choi et al. “Learning object grasping for soft robot hands”. In: IEEE
Robotics and Automation Letters (RA-L) 3.3 (2018), pp. 2370–2377.

[318] Michel Breyer et al. “Comparing task simplifications to learn closed-loop object pick-
ing using deep reinforcement learning”. In: IEEE Robotics and Automation Letters
(RA-L) 4.2 (2019), pp. 1549–1556.

[319] Oliver Kroemer, Scott Niekum, and George Konidaris. “A review of robot learning
for manipulation: Challenges, representations, and algorithms”. In: arXiv preprint
arXiv:1907.03146 (2019).

[320] Kate Sanders et al. “Non-Markov Policies to Reduce Sequential Failures in Robot
Bin Picking”. In: IEEE Conference on Automation Science and Engineering (CASE).
2020.

[321] Michael Laskey et al. “Budgeted multi-armed bandit models for sample-based grasp
planning in the presence of uncertainty”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2015.

[322] John Oberlin and Stefanie Tellex. “Autonomously acquiring instance-based object
models from experience”. In: International Symposium on Robotics Research (ISRR).
Springer, 2015, pp. 73–90.

[323] Katherine Li et al. “Accelerating Grasp Exploration by Leveraging Learned Priors”.
In: IEEE Conference on Automation Science and Engineering (CASE). 2020.

[324] Oliver B Kroemer et al. “Combining active learning and reactive control for robot
grasping”. In: Robotics and Autonomous systems 58.9 (2010), pp. 1105–1116.

[325] Clemens Eppner and Oliver Brock. “Visual detection of opportunities to exploit con-
tact in grasping using contextual multi-armed bandits”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2017.

[326] Qingkai Lu, Mark Van der Merwe, and Tucker Hermans. “Multi-Fingered Active
Grasp Learning”. In: arXiv preprint arXiv:2006.05264 (2020).

[327] Ken Goldberg et al. “Part pose statistics: Estimators and experiments”. In: IEEE
Transactions on Robotics and Automation 15.5 (1999), pp. 849–857.

[328] Ken Goldberg. “Orienting Polygonal Parts without Sensors”. In: Algorithmica (1993).

[329] Christopher Correa et al. “Robust Toppling for Vacuum Suction Grasping”. In: (2019).

[330] Kenneth Y Goldberg and Matthew T Mason. “Bayesian grasping”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). 1990, pp. 1264–1269.

[331] Mark Moll and Michael A Erdmann. “Manipulation of pose distributions”. In: Inter-
national Journal of Robotics Research (IJRR) 21.3 (2002), pp. 277–292.

BIBLIOGRAPHY 188

[332] A. S. Rao and K. Y. Goldberg. “Manipulating algebraic parts in the plane”. In: IEEE
Transactions on Robotics and Automation 11.4 (1995), pp. 598–602.

[333] Thomas Jaksh, Ronald Ortner, and Peter Auer. “Near-optimal Regret Bounds for
Reinforcement Learning”. In: Journal of Machine Learning Research (JMLR). 2010.

[334] Aristide Tossou, Debabrota Basu, and Christos Dimitrakakis. “Near-optimal Opti-
mistic Reinforcement Learning using empirical Bernstein Inequalities”. In: 2019.

[335] Sarah Filippi, Olivier Cappé, and Aurélien Garivier. “Optimism in Reinforcement
Learning and Kullback-Leibler Divergence”. In: Annual Allerton Conference on Com-
munication, Control, and Computing. 2010.

[336] Ian Osband and Benjamin Van Roy. “Near-optimal Reinforcement Learning in Fac-
tored MDPs”. In: Neural Information Processing Systems (NeurIPS). 2014.

[337] Haiyan Chen and Fuji Zhang. “The expected hitting times for finite Markov chains”.
In: Linear Algebra and its Applications 428.11-12 (2008), pp. 2730–2749.

[338] Ziping Xu and Ambuj Tewari. “Near-optimal Reinforcement Learning in Factored
MDPs: Oracle-Efficient Algorithms for the Non-episodic Setting”. In: International
Conference on Machine Learning (ICML). 2018.

[339] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the mul-
tiarmed bandit problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[340] Shipra Agrawal and Navin Goyal. “Further Optimal Regret Bounds For Thomp-
son Sampling”. In: Sixteenth International Conference on Artificial Intelligence and
Statistics (AISTATS). 2013.

[341] Douglas Morrison, Peter Corke, and Jurgen Leitner. “EGAD! an Evolved Grasping
Analysis Dataset for diversity and reproducibility in robotic manipulation”. In: IEEE
Robotics and Automation Letters (RA-L) (2020).

[342] Ronan Fruit. Exploration-Exploitation in Reinforcement Learning. https://github.
com/RonanFR/UCRL. 2018.

[343] Moloud Abdar et al. “A review of uncertainty quantification in deep learning: Tech-
niques, applications, and challenges”. In: arXiv preprint arXiv:2011.06225 (2021).

[344] Patrik Puchert et al. “Data-driven deep density estimation”. In: arXiv preprint arXiv:2107.11085
(2021).

[345] Timothy Hospedales et al. “Meta-Learning in Neural Networks: A Survey”. In: arXiv
preprint arXiv:2004.05439 (2020).

[346] Kurtland Chua. Experiment code for ”Deep Reinforcement Learning in a Handful of
Trials using Probabilistic Dynamics Models”. https://github.com/kchua/handful-
of-trials. 2018.

[347] Vitchyr Pong. rlkit. https://github.com/vitchyr/rlkit. 2019.

https://github.com/RonanFR/UCRL
https://github.com/RonanFR/UCRL
https://github.com/kchua/handful-of-trials
https://github.com/kchua/handful-of-trials
https://github.com/vitchyr/rlkit

BIBLIOGRAPHY 189

[348] Thanard Kurutach. Model-Ensemble Trust-Region Policy Optimization (ME-TRPO).
https://github.com/thanard/me-trpo. 2019.

[349] Justin Fu, John Co-Reyes, and Sergey Levine. “EX2: Exploration with exemplar mod-
els for deep reinforcement learning”. In: Advances in Neural Information Processing
Systems. 2017, pp. 2577–2587.

[350] Pranjal Tandon. pytorch-soft-actor-critic. https://github.com/pranz24/pytorch-
soft-actor-critic. 2018.

[351] Rishabh Jangir.Overcoming exploration from demos. https://github.com/jangirrishabh/
Overcoming-exploration-from-demos. 2018.

[352] John Schulman et al. “Trust Region Policy Optimization”. In: Proceedings of Machine
Learning Research 37 (2015). Ed. by Francis Bach and David Blei, pp. 1889–1897.
url: http://proceedings.mlr.press/v37/schulman15.html.

[353] Brijen Thananjeyan Ashwin Balakrishna. Code for Recovery RL. https://github.
com/abalakrishna123/recovery-rl. 2021.

[354] Harshit Sikchi. Code for Advantage Weighted Actor Critic. https://github.com/
hari-sikchi/AWAC. 2021.

[355] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2015).

[356] Harshit Sikchi and Albert Wilcox. pytorch-AWAC. url: https://github.com/hari-
sikchi/AWAC.

[357] Quan Vuong. PyTorch implementation of PETS. https://github.com/quanvuong/
handful-of-trials-pytorch. 2020.

https://github.com/thanard/me-trpo
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/jangirrishabh/Overcoming-exploration-from-demos
https://github.com/jangirrishabh/Overcoming-exploration-from-demos
http://proceedings.mlr.press/v37/schulman15.html
https://github.com/abalakrishna123/recovery-rl
https://github.com/abalakrishna123/recovery-rl
https://github.com/hari-sikchi/AWAC
https://github.com/hari-sikchi/AWAC
https://github.com/hari-sikchi/AWAC
https://github.com/hari-sikchi/AWAC
https://github.com/quanvuong/handful-of-trials-pytorch
https://github.com/quanvuong/handful-of-trials-pytorch

190

Appendix A

LazyDAgger: Reducing Context
Switching in Interactive Imitation
Learning

Here we provide further details on our MuJoCo experiments, hyperparameter sensitivity,
simulated fabric experiments, and physical fabric experiments.

A.1 MuJoCo

As stated in the main text, we evaluate on the HalfCheetah-v2, Walker2D-v2, and Ant-v2
environments. To train the algorithmic supervisor, we utilize the TD3 implementation from
OpenAI SpinningUp (https://spinningup.openai.com/en/latest/) with default hyper-
parameters and run for 100, 200, and 500 epochs respectively. The expert policies obtain
rewards of 5330.78 ± 117.65, 3492.08 ± 1110.31, and 4492.88 ± 1580.42, respectively. Note
that the experts for Walker2D and Ant have high variance, resulting in higher variance for
the corresponding learning curves in Figure 2.3. We provide the state space dimensionality
|S|, action space dimensionality |A|, and LazyDAgger hyperparameters (see Algorithm 1) for
each environment in Table A.1. The βH value in the table is multiplied with the maximum
possible action discrepancy ||ahigh − alow||22 to become the threshold for training f(·). In
MuJoCo environments, ahigh = 1⃗ and alow = −1⃗. The βH value used for SafeDAgger in all
experiments is chosen by the method provided in the chapter introducing SafeDAgger [11]:
the threshold at which roughly 20% of the initial offline dataset is classified as “unsafe.”

For LazyDAgger and all baselines, the actor policy πR(·) is a neural network with 2
hidden layers with 256 neurons each, rectified linear unit (ReLU) activation, and hyperbolic
tangent output activation. For LazyDAgger and SafeDAgger, the discrepancy classifier f(·)
is a neural network with 2 hidden layers with 128 neurons each, ReLU activation, and
sigmoid output activation. We take 2,000 gradient steps per epoch and optimize with Adam
and learning rate 1e-3 for both neural networks. To collect D and DS in Algorithm 1 and

https://spinningup.openai.com/en/latest/

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 191

SafeDAgger, we randomly partition our dataset of 4,000 state-action pairs into 70% (2,800
state-action pairs) for D and 30% (1,200 state-action pairs) for DS.

Environment |S| |A| N T βH βR σ2

HalfCheetah 16 7 10 5000 5e-3 βH / 10 0.30
Walker2D 16 7 15 5000 5e-3 βH / 10 0.10
Ant 111 8 15 5000 5e-3 βH / 2 0.05

Table A.1: MuJoCo Hyperparameters: |S| and |A| are aspects of the Gym environments
while the other values are hyperparameters of LazyDAgger (Algorithm 1). Note that T and
βH are the same across all environments, and that βR is a function of βH .

A.2 LazyDAgger Switching Thresholds

As described in Section 2.4.1, the main LazyDAgger hyperparameters are the safety thresh-
olds for switching to supervisor control (βH) and returning to autonomous control (βR). To
tune these hyperparameters in practice, we initialize βH and βR with the method in Zhang
and Cho [11]; again, this sets the safety threshold such that approximately 20% of the initial
dataset is unsafe. We then tune βH higher to balance reducing the frequency of switching to
the supervisor with allowing enough supervision for high policy performance. Finally we set
βR as a multiple of βH , starting from βR = βH and tuning downward to balance improving
the performance and increasing intervention length with keeping the total number of ac-
tions moderate. Note that since these parameters are not automatically set, we must re-run
experiments for each change of parameter values. Since this tuning results in unnecessary
supervisor burden, eliminating or mitigating this requirement is an important direction for
future work.

To analyze sensitivity to βR and βH , we plot the results of a grid search over parameter
values on each of the MuJoCo environments in Figure A.1. Note that a lighter color in the
heatmap is more desirable for reward while a darker color is more desirable for actions and
switches. We see that the supervisor burden in terms of actions and context switches is not
very sensitive to the threshold as we increase βH but jumps significantly for the very low
setting (βH = 5× 10−4) as a large amount of data points are classified as unsafe. Similarly,
we see that reward is relatively stable (note the small heatmap range for HalfCheetah) as
we decrease βH but can suffer for high values, as interventions are not requested frequently
enough. Reward and supervisor burden are not as sensitive to βR but follow the same trends
we expect, with higher reward and burden as βR decreases.

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 192

Figure A.1: LazyDAgger βR and βH sensitivity heatmaps across the 3 MuJoCo environments.
The x-axis denotes βH and the y-axis denotes βR. Note that βR is a function of βH . Each of
the 3 environments was run 9 times with the different settings of βR and βH . As in Figure 2.3
we plot test reward, number of supervisor actions, and number of context switches.

A.3 Fabric Smoothing in Simulation

Fabric Simulator

More information about the fabric simulator can be found in Seita et al. [60], but we review
the salient details here. The fabric is modeled as a mass-spring system with a n×n square grid
of point masses. Self-collision is implemented by applying a repulsive force between points
that are sufficiently close together. Blender (https://blender.org/) is used to render the
fabric in 100× 100× 3 RGB image observations. See Figure 2.4 for an example observation.
The actions are 4D vectors consisting of a pick point (x, y) ∈ [−1, 1]2 and a place point
(∆x,∆y) ∈ [−1, 1]2, where (x, y) = (−1,−1) corresponds to the bottom left corner of the
plane while (∆x,∆y) is multiplied by 2 to allow crossing the entire plane. In simulation,
we initialize the fabric with coverage 41.1 ± 3.4% in the hardest (Tier 3) state distribution
in [60] and end episodes if we exceed 10 time steps, cover at least 92% of the plane, are at
least 20% out of bounds, or have exceeded a tearing threshold in one of the springs. We use
the same algorithmic supervisor as [60], which repeatedly picks the coordinates of the corner
furthest from its goal position and pulls toward this goal position. To facilitate transfer to
the real world, we use the domain randomization techniques in [60] to vary the following
parameters:

• Fabric RGB values uniformly between (0, 0, 128) and (115, 179, 255), centered around
blue.

https://blender.org/

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 193

• Background plane RGB values uniformly between (102, 102, 102) and (153, 153, 153).

• RGB gamma correction uniformly between 0.7 and 1.3.

• Camera position (x, y, z) as (0.5+δ1, 0.5+δ2, 1.45+δ3) meters, where each δi is sampled
from N (0, 0.04).

• Camera rotation with Euler angles sampled from N (0, 90◦).

• Random noise at each pixel uniformly between -15 and 15.

For consistency, we use the same domain randomization in our sim-to-sim (“simulator to
simulator”) fabric smoothing experiments in Section 2.5.2.

Actor Policy and Discrepancy Classifier

The actor policy is a convolutional neural network with the same architecture as [60], i.e.
four convolutional layers with 32 3x3 filters followed by four fully connected layers. The
parameters, ignoring biases for simplicity, are:

policy/convnet/c1 864 params (3, 3, 3, 32)

policy/convnet/c2 9216 params (3, 3, 32, 32)

policy/convnet/c3 9216 params (3, 3, 32, 32)

policy/convnet/c4 9216 params (3, 3, 32, 32)

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 65536 params (256, 256)

policy/fcnet/fc4 1024 params (256, 4)

Total model parameters: 3.44 million

The discrepancy classifier reuses the actor’s convolutional layers by taking a forward pass
through them. We do not backpropagate gradients through these layers when training the
classifier, but rather fix these parameters after training the actor policy. The rest of the
classifier network has three fully connected layers with the following parameters:

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 1024 params (256, 4)

Total model parameters: 3.34 million

Training

Due to the large amount of data required to train fabric smoothing policies, we pretrain the
actor policy (not the discrepancy classifier) in simulation. The learned policy is then fine-
tuned to the new environment while the discrepancy classifier is trained from scratch. Since
the algorithmic supervisor can be queried cheaply, we pretrain with DAgger as in [60]. To
further accelerate training, we parallelize environment interaction across 20 CPUs, and before

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 194

Figure A.2: Behavior Cloning and DAgger performance across 10 test episodes evaluated
every 10 epochs. Shading indicates 1 standard deviation. The first 100 epochs (left half) are
Behavior Cloning epochs and the second 100 (right half) are DAgger epochs.

DAgger iterations we pretrain with 100 epochs of Behavior Cloning on the dataset of 20,232
state-action pairs available at [60]’s project website. Additional training hyperparameters
are given in Table A.2 and the learning curve is given in Figure A.2.

Hyperparameter Value
BC Epochs 100
DAgger Epochs 100
Parallel Environments 20
Gradient Steps per Epoch 240
Env Steps per Env per DAgger Epoch 20
Batch Size 128
Replay Buffer Size 5e4
Learning Rate 1e-4
L2 Regularization 1e-5

Table A.2: DAgger Hyperparameters. After Behavior Cloning, each epoch of DAgger
(1) runs the current policy and collects expert labels for 20 time steps in each of 20 parallel
environments and then (2) takes 240 gradient steps on minibatches of size 128 sampled from
the replay buffer.

Experiments

In sim-to-sim experiments, the initial policy is trained on a 16x16 grid of fabric in a range of
colors centered around blue with a spring constant of k = 10, 000. We then adapt this policy

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 195

to a new simulator with different physics parameters and an altered visual appearance.
Specifically, in the new simulation environment, the fabric is a higher fidelity 25x25 grid
with a lower spring constant of k = 2, 000 and a color of (R, G, B) = (204, 51, 204) (i.e.
pink), which is outside the range of colors produced by domain randomization (Section A.3).
Hyperparameters are given in Table A.3.

Hyperparameter Value
N 10
T 20
βH 0.001
βR βH
σ2 0.05
Initial |D| 1050
Initial |DS| 450
Batch Size 50
Gradient Steps per Epoch 200
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

Table A.3: Hyperparameters for sim-to-sim fabric smoothing experiments, where the first
5 rows are LazyDAgger hyperparameters in Algorithm 1. Initial dataset sizes and batch
size are in terms of images after data augmentation, i.e. scaled up by a factor of 15 (see
Section A.4). Note that the offline data is split 70%/30% as in Section A.1.

A.4 Fabric Manipulation with the ABB YuMi

Experimental Setup

We manipulate a brown 10” by 10” square piece of fabric with a single parallel jaw gripper as
shown in Figure 2.1. The gripper is equipped with reverse tweezers for more precise picking
of deformable materials. Neural network architecture is consistent with Section A.3 for both
actor and safety classifier. We correct pick points that nearly miss the fabric by mapping
to the nearest point on the mask of the fabric, which we segment from the images by color.
To convert neural network actions to robot grasps, we run a standard camera calibration
procedure and perform top-down grasps at a fixed depth. By controlling the width of the
tweezers via the applied force on the gripper, we can reliably pick only the top layer of
the fabric at a given pick point. We provide LazyDAgger-Execution hyperparameters in
Table A.4.

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 196

Figure A.3: The user interface for human interventions. The current observation of the fabric
state from the robot’s perspective is displayed, with an overlaid green arrow indicating the
action the human has just specified.

Image Processing Pipeline

In the simulator, the fabric is smoothed against a light background plane with the same size
as the fully smoothed fabric (see Figure 2.4). Since the physical workspace is far larger than
the fabric, we process each RGB image of the workspace by (1) taking a square crop, (2)
rescaling to 100 × 100, and (3) denoising the image. Essentially we define a square crop of
the workspace as the region to smooth and align against, and assume that the fabric starts
in this region. These processed images are the observations that fill the replay buffer and
are passed to the neural networks.

User Interface

When the system solicits human intervention, an interactive user interface displays a scaled-
up version of the current observation. The human is able to click and drag on the image to
provide a pick point and pull vector, respectively. The interface captures the input as pixel
locations and analytically converts it to the action space of the environment (i.e. a ∈ [−1, 1]4)
for the robot to execute. See Figure A.3 for a screen capture of the user interface.

Data Augmentation

To prevent overfitting to the small amount of real data, before adding each state-action pair
to the replay buffer, we make 10 copies of it with the following data augmentation procedure,
with transformations applied in a random order:

• Change contrast to 85-115% of the original value.

• Change brightness to 90-110% of the original value.

APPENDIX A. LAZYDAGGER: REDUCING CONTEXT SWITCHING IN
INTERACTIVE IMITATION LEARNING 197

• Change saturation to 95-105% of the original value.

• Add values uniformly between -10 and 10 to each channel of each pixel.

• Apply a Gaussian blur with σ between 0 and 0.6.

• Add Gaussian noise with σ between 0 and 3.

• With probability 0.8, apply an affine transform that (1) scales each axis independently
to 98-102% of its original size, (2) translates each axis independently by a value between
-2% and 2%, and (3) rotates by a value between -5 and 5 degrees.

Hyperparameter Value
βH 0.004
βR βH
|D| 875
|DS| 375
Batch Size 50
Gradient Steps per Epoch 125
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

Table A.4: Hyperparameters for physical fabric experiments provided in the same format as
Table A.3. Since this is at execution time, N , T and σ2 hyperparameters do not apply.

198

Appendix B

ThriftyDAgger: Budget-Aware
Novelty and Risk Gating for
Interactive Imitation Learning

In Appendix B.1, we discuss algorithmic details for ThriftyDAgger and all comparisons.
Then, Appendix B.2 discusses implementation and hyperparameter details for all algorithms.
In Appendix B.3, we provide additional details about the simulation and physical experi-
ment domains, and in Appendix B.4, we describe the protocol and detailed results from the
conducted user study.

B.1 Algorithm Details

Here we provide a detailed algorithmic description of ThriftyDAgger and all comparisons.

B.1.1 ThriftyDAgger

The full pseudocode for ThriftyDAgger is provided in Algorithm 7. ThriftyDAgger first
initializes πr via Behavior Cloning on offline transitions (Dh from the human supervisor, πh)
(line 1-2). Then, πr collects an initial offline dataset Dr from the resulting πr, initializes
Q̂πR
ϕ,G by optimizing Equation (3.5) on Dr ∪ Dh, and initializes parameters βH , βR, δH , and

δR as in Section 3.3.4 (lines 3-5). We then collect data for N episodes, each with up to
T timesteps. In each timestep of each episode, we determine whether robot policy πr or
human supervisor πh should be in control using the procedure in Section 3.3.3 (lines 10-
20). Transitions in autonomous mode are aggregated into Dr while transitions in supervisor
mode are aggregated into Dh. Episodes are terminated either when the robot reaches a valid
goal state or has exhausted the time horizon T . At this point, we re-initialize the policy to
autonomous mode and update parameters βH , βR, δH , and δR as in Section 3.3.4 (lines 21-

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 199

23). After each episode, πr is updated via supervised learning on Dh, while Q̂πR
ϕ,G is updated

on Dr ∪ Dh to reflect the task success probability of the resulting πr (lines 24-26).

B.1.2 Behavior Cloning

We train policy πR via direct supervised learning with a mean-squared loss to predict refer-
ence control actions given a dataset of (state, action) tuples. Behavior Cloning is trained only
on full expert demonstrations collected offline from πH and is not allowed access to online
interventions. Thus, Behavior Cloning is trained only on dataset Dh (line 1, Algorithm 7)
and the policy is frozen thereafter. In our simulation experiments, Behavior Cloning is given
50% more offline data than the other algorithms for a more fair comparison, such that the
amount of additional offline data is approximately equal to the average amount of online
data provided to the other algorithms.

B.1.3 SafeDAgger

SafeDAgger [11] is an interactive imitation learning algorithm which selects between au-
tonomous and supervisor mode using a classifier f that discriminates between “safe” states,
for which πR’s proposed action is within some threshold βH of that proposed by supervisor
policy πH , and “unsafe” states, for which this action discrepancy exceeds βH . SafeDAg-
ger learns this classifier using dataset Dh from Algorithm 7, and updates f online as Dh
is expanded through human interventions. During policy rollouts, if f marks a state as
safe, the robot policy is executed (autonomous mode), while if f marks a state as unsafe,
the supervisor is queried for an action. While this approach can be effective in some do-
mains [11], prior work [72] suggests that this intervention criterion can lead to excessive
context switches between the robot and supervisor, and thus impose significant burden on a
human supervisor. As in ThriftyDAgger and other DAgger [8] variants, SafeDAgger updates
πR on an aggregated dataset of all transitions collected by the supervisor (analogous to Dh
in Algorithm 7).

B.1.4 LazyDAgger

LazyDAgger [72] builds on SafeDAgger [11] and trains the same action discrepancy classifier
f to determine whether the robot and supervisor policies will significantly diverge at a given
state. However, LazyDAgger introduces a few modifications to SafeDAgger which lead to
lengthier and more informative interventions in practice. First, LazyDAgger observes that
when the supervisor has control of the system (supervisor mode), querying f for estimated
action discrepancy is no longer necessary since we can simply query the robot policy at
any state during supervisor mode to obtain a true measure of the action discrepancy be-
tween the robot and supervisor policies. This prevents exploiting approximation errors in f
when the supervisor is in control. Second, LazyDAgger introduces an asymmetric switching
condition between autonomous and supervisor control, where switches are executed from

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 200

Algorithm 7 ThriftyDAgger

Require: Number of episodes N , time horizon T , supervisor policy πH , desired context switching rate αH

1: Collect offline dataset Dh of (s, aH) tuples with πH

2: Initialize πR via Behavior Cloning on Dh

3: Collect offline dataset Dr of (s, aR) tuples with πR

4: Initialize Q̂πR

ϕ,G by optimizing Equation (3.4) on Dr ∪ Dh

5: Optimize βH , βR, δH , δR on Dh {Online tuning based on αH (Section 3.3.4)}
6: for i ∈ {1, . . . N} do
7: Initialize s0, Mode ← Autonomous
8: for t ∈ {1, . . . T} do
9: aRt = πR(st) {Determine control mode (Section 3.3.3)}
10: if Mode = Supervisor or Intervene(st, δH , βH) then
11: aHt = πH(st)
12: Dh ← Dh ∪ {(st, aHt)}
13: Execute aHt {Default control mode for next timestep (Section 4.3)}
14: if Cede(st, δR, βR) then
15: Mode ← Autonomous
16: else
17: Mode ← Supervisor
18: end if
19: else
20: Execute aRt
21: Dr ← Dr ∪ {(st, at)}
22: end if
23: if Terminal state reached then
24: Exit Loop, Mode ← Autonomous
25: Recompute βH , βR, δH {Online tuning based on αH (Section 3.3.4)}
26: end if
27: end for
28: πR ← argminπR

E(st,aH
t)∼Dh

[L(πR(st), πH(st))]
29: Collect Dr offline with robot policy πR

30: Update Q̂πR

ϕ,G on Dr ∪ Dh {Update Q-function via Equation (3.6)}
31: end for

autonomous to supervisor mode if f indicates that the predicted action discrepancy is above
βH , but switches are only executed from supervisor mode back to autonomous mode if the
true action discrepancy is below some value βR < βH . This encourages lengthier interven-
tions, leading to fewer context switches between autonomous and supervisor modes. Finally,
LazyDAgger injects noise into supervisor actions in order to spread the distribution of states
in which reference controls from the supervisor are available. ThriftyDAgger builds on the
asymmetric switching criterion introduced by LazyDAgger, but introduces a new switch-
ing criterion based on the estimated task success probability, which we found significantly
improved performance in practice.

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 201

B.1.5 HG-DAgger

Unlike SafeDAgger, LazyDAgger, and ThriftyDAgger, which are robot-gated and autonomously
determine when to solicit intervention requests, HG-DAgger is human-gated, and thus re-
quires that the supervisor determine the timing and length of interventions. As in ThriftyDAg-
ger, HG-DAgger updates πR on an aggregated dataset of all transitions collected by the
supervisor (analogous to Dh in Algorithm 7).

B.2 Hyperparameter and Implementation Details

Here we provide a detailed overview of all hyperparameter and implementation details for
ThriftyDAgger and all comparisons to facilitate reproduction of all experiments. We also
include code in the supplement, and will release a full open-source codebase after anonymous
review.

B.2.1 ThriftyDAgger

Peg Insertion (Simulation): We initially populate Dh with 2,687 offline transitions,
which correspond to 30 task demonstrations collected by an expert human supervisor, to
initialize the robot policy πR. We represent πR with an ensemble of 5 neural networks,
trained on bootstrapped samples of data from Dh in order to quantify uncertainty for novelty
estimation. Each neural network is trained using the Adam Optimizer (learning rate 1e−3)
with 5 training epochs, 500 gradient steps in each training epoch, and a batch size of 100.
All networks consist of 2 hidden layers, each with 256 hidden units with ReLU activations,
and a Tanh output activation.

The Q-function used for risk-estimation, Q̂πR
ϕ,G, is trained with a batch size of 50, and

batches are balanced such that 10% of all sampled transitions contain a state in the goal
set. We train Q̂πR

ϕ,G with the Adam Optimizer, with a learning rate of 1e−3 and discount

factor γ = 0.9999. In order to train Q̂πR
ϕ,G, we collect 10 test episodes from πR every 2,000

environment steps. We represent Q̂πR
ϕ,G with a 2 hidden layer neural net in which each hidden

layer has 256 hidden units with ReLU activations and with a sigmoid output activation. The
state and action are concatenated before they are fed into Q̂πR

ϕ,G.

Block Stacking (Simulation): This is an additional simulation environment not in-
cluded in the main text. Results and a description of the task are in Section B.3.2. We
populate Dh with 1,677 offline transitions, corresponding to 30 task demonstrations, to ini-
tialize πR. All other parameters and implementation details are identical to the peg insertion
environment.

Cable Routing (Physical): We initially populate Dh with 1,381 offline transitions, cor-
responding to 25 task demonstrations collected by an expert human supervisor, to initialize

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 202

the robot policy πR. We again represent πR with an ensemble of 5 neural networks, trained on
bootstrapped samples of data fromDh in order to quantify uncertainty for novelty estimation.
Each neural network is trained using the Adam Optimizer (learning rate 2.5e−4) with 5 train-
ing epochs, 300 gradient steps per training epoch, and a batch size of 64. All networks consist
of 5 convolutional layers (format: (in channels, out channels, kernel size, stride)): [(3, 24, 5, 2), (24, 36, 5, 2), (36, 48, 5, 2), (48, 64, 3, 1), (64, 64, 3, 1)]
followed by 4 fully connected layers (format: (in units, out units)): [(64, 100), (100, 50), (50, 10), (10, 2)].
Here we utilize ELU (exponential linear unit) activations with a Tanh output activation.

The Q-function used for risk-estimation, Q̂πR
ϕ,G, is trained with a batch size of 64 as well,

and batches are balanced such that 10% of all sampled transitions contain a state in the goal
set. We train Q̂πR

ϕ,G with the Adam Optimizer with a learning rate of 2.5e−4 and discount

factor γ = 0.9999. In order to train Q̂πR
ϕ,G, we collect 5 test episodes from πR every 500

environment steps. We represent Q̂πR
ϕ,G with a neural network with the same 5 convolutional

layers as the policy networks above, but with the fully connected layers as follows (format:
(in units, out units)): [(64 + 2, 100), (100, 50), (50, 10), (10, 1)]. We concatenate the action
with the state embedding resulting from the 5 convolutional layers (hence the 64 + 2) and
feed the resulting concatenated embedding into the 4 fully connected layers above. We utilize
ELU (exponential linear unit) activations with a sigmoid output activation.

B.2.2 Behavior Cloning

Peg Insertion (Simulation): For Behavior Cloning, we initially populate Dh with 4,004
offline transitions, corresponding to 45 task demonstrations collected by an expert human
supervisor, to initialize the robot policy πR (note that this is more transitions than are
provided to ThriftyDAgger). All other details are the same as ThriftyDAgger for training
πR.

Block Stacking (Simulation): We initially populate Dh with 3,532 offline transitions,
corresponding to 60 task demonstrations, to initialize πR. Note that Behavior Cloning has
access to twice as many offline demonstrations as the other algorithms.

Cable Routing (Physical): We train πR with the same architecture and procedure as
for ThriftyDAgger, but only on the initial offline data.

B.2.3 SafeDAgger

We use the same hyperparameters and architecture for training πR as for ThriftyDAgger.
Unlike ThriftyDAgger, SafeDAgger does not have a mechanism to automatically set inter-
vention thresholds when provided an intervention budget αH . Thus, we must specify a value
for the switching threshold βH . We use βH = 0.008, since this is recommended in [11] as the
value which was found to work well in experiments (in practice, this value marks about 20%
of states as “unsafe”).

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 203

B.2.4 LazyDAgger

We use the same hyperparameters and architecture for training πR as for ThriftyDAgger.
Unlike ThriftyDAgger, LazyDAgger does not have a mechanism to automatically set inter-
vention thresholds when provided an intervention budget αH . Thus, we must specify a value
for both switching thresholds βH and βR. We use βH = 0.015, βR = 0.25βH and use a noise
covariance matrix of 0.02N (0, I) when injecting noise into the supervisor actions. These
values were tuned to strike a balance between supervisor burden and policy performance.

B.2.5 HG-DAgger

All hyperparameters and architectures are identical to those used for Behavior Cloning, with-
out the extra offline demonstrations. Note that for HG-DAgger, the supervisor determines
the timing and length of interventions.

B.3 Environment Details and Additional Metrics

B.3.1 Peg Insertion in Simulation

We evaluate our algorithm and baselines in the Robosuite environment (https://robosuite.
ai) [77], which builds on MuJoCo [61] to provide a standardized suite of benchmark tasks
for robot learning. Specifically, we consider the “Nut Assembly” task, in which a robot must
grab a ring from a random initial pose and place it over a cylinder at a fixed location. We
consider a variant of the task that considers only 1 ring and 1 target, though the simulator
allows 2 rings and 2 targets. The states are s ∈ R51 and actions a ∈ R5 (translation in the
XY-plane, translation in the Z-axis, rotation around the Z-axis, and opening or closing the
gripper). The simulated robot arm is a UR5e, and the controller reaches a commanded pose
via operational space control with fixed impedance. To avoid bias due to variable teleoper-
ation speeds and ensure that the Markov property applies, we abstract 10 timesteps in the
simulator into 1 environment step, and in supervisor mode we pause the simulation until
keyboard input is received. This prevents accidentally collecting “no-op” expert labels and
allows the end effector to “settle” instead of letting its momentum carry on to the next state.
In practice it does not make the task more difficult, as control is still fine-grained enough
for precise manipulation. Each episode is terminated upon successful task completion or
when 175 actions are executed. Interventions are collected through a keyboard interface. In
Table B.1, we report additional metrics for the peg insertion simulation experiment and find
that ThriftyDAgger solicits fewer interventions than prior algorithms at training time while
achieving a higher success rate during training than all algorithms other than HG-DAgger,
though it does request more human actions. The train success rate column also indicates
that ThriftyDAgger achieves throughput comparable to HG-DAgger and higher than other
baselines, as ThriftyDAgger has more task successes in the same amount of time (10,000
timesteps for all algorithms). At execution time, ThriftyDAgger collects lengthier interven-

https://robosuite.ai
https://robosuite.ai

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 204

Table B.1: Peg Insertion in Simulation Additional Metrics: We report additional
statistics for the peg insertion task: total number of interventions (T Ints), total number of
offline and online human actions (T Acts (H)), and total number of robot actions (T Acts
(R))) at training time across all trajectories (successful and unsuccessful). We report these
same metrics at execution time, but T Acts (H) does not include offline human actions, as
at execution time it does not refer to the number of training samples for the robot policy.
We also report the success rate of the mixed control policy at training time (Train Succ.).
Results suggest that ThriftyDAgger solicits fewer interventions than prior algorithms at
training time while achieving a comparable success rate and throughput to HG-DAgger.
At execution time, ThriftyDAgger collects lengthier interventions than prior algorithms but
succeeds more often at the task (Table 3.1).

Algorithm Training Interventions Train Succ. Execution Interventions
T Ints T Acts (H) T Acts (R) T Ints T Acts (H) T Acts (R)

Behavior Cloning N/A 4004 N/A N/A N/A N/A N/A
SafeDAgger 334 4227 8460 48/73 81 396 1781
LazyDAgger 82 3683 9004 37/67 30 290 2422
HG-DAgger 124 4392 8295 83/83 23 342 2071
Ours (-Novelty) 60 5242 7445 62/80 12 157 2649
Ours (-Risk) 87 3623 9064 72/81 30 237 2255
Ours: ThriftyDAgger 84 6840 5847 76/86 27 426 1696

tions than prior algorithms, but as a result is able to succeed more often at execution time
as discussed in the main text.

B.3.2 Block Stacking in Simulation

To further evaluate the algorithm and baselines in simulation, we also consider the block
stacking task from Robosuite (see previous section). Here the robot must grasp a cube in a
randomized initial pose and place it on top of a second cube in another randomized pose. See
Table B.2 for training results and Figure B.1 for an illustration of the experimental setup.
Due to the randomized place position, small placement region, and geometric symmetries,
the task is more difficult than peg insertion, as evidenced by the lower autonomous success
rate for all algorithms. However, we still see that ThriftyDAgger achieves comparable per-
formance to HG-DAgger in terms of autonomous success rate, success rate during training,
and throughput, while outperforming the other baselines and ablations. ThriftyDAgger also
solicits fewer interventions than prior algorithms, but generally requires more human ac-
tions as these interventions tend to be lengthier. This makes ThriftyDAgger well-suited to
situations in which the cost of context switches (latency) may be high.

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 205

Figure B.1: Left: An example start and goal state for the block stacking environment in
Robosuite. The goal is to place the red block on top of the green one. Initial poses of both
blocks are randomized. Right: The da Vinci Research Kit Master Tool Manipulator (MTM)
7DOF interface used to provide human interventions in the physical experiments. The human
expert views the workspace through the viewer (top) and teleoperates the robot by moving
the right joystick (middle) in free space while pressing the rightmost pedal (bottom).

B.3.3 Physical Cable Routing

Finally, we evaluate our algorithm on a visuomotor cable routing task with a da Vinci
Research Kit surgical robot. We take RGB images of the scene with a Zivid One Plus camera
inclined at about 45 degrees to the vertical. These images are cropped into a square and
downsampled to 64 × 64 before they are passed to the neural network policy. The cable state
is initialized to approximately the same shape (see Figure 3.2) with the cable initialized in the
robot’s gripper. The workspace is approximately 10 cm × 10 cm, and each component of the
robot action (∆x,∆y) is at most 1 cm in magnitude. To avoid collision with the 4 obstacles,
we implement a “logical obstacle” as 1-cm radius balls around the center of each obstacle.
Actions that enter one of these regions are projected to the boundary of the circle. Each
episode is terminated upon successful task completion or 100 actions executed. Interventions
are collected through a 7DOF teleoperation interface (Figure B.1) that matches the pose of
the robot arm, with rotation of the end effector disabled. Teleoperated actions are mapped
to the robot’s action space by projecting pose deltas to the 2D plane at 1 second intervals.
The human teleoperates the robot at a frequency that roughly corresponds to taking actions
with the maximum magnitude (1 cm / sec). In Table B.3, we report additional metrics
for the physical cable routing experiment and find that ThriftyDAgger solicits a number of
interventions similar to HG-DAgger while achieving a similar success rate during training.

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 206

Table B.2: Block Stacking in Simulation Results: We report the number of interven-
tions (Ints), number of human actions (Acts (H)), and number of robot actions (Acts (R))
during training (over successful trajectories as in Table 3.1) and report the success rate of the
robot policy after training when no interventions are allowed (Auto Succ.). We also report
the total number of interventions (T Int), total number of actions from the human (offline
and online, in T Acts (H)), total number of actions executed by the robot (T Acts (R)), and
the success rate of the mixed control policy during training (Train Succ.). Results suggest
that ThriftyDAgger achieves comparable performance to HG-DAgger in terms of both au-
tonomous and training success rates while outperforming the other baselines and ablations.
ThriftyDAgger also solicits fewer interventions than prior algorithms, but generally requires
more human actions.

Algorithm Ints Acts (H) Acts (R) Auto Succ. T Ints T Acts (H) T Acts (R) Train Succ.
Behavior Cloning N/A N/A 68.0± 11.4 5/100 N/A 3532 N/A N/A
SafeDAgger 5.00± 3.41 40.5± 14.1 44.3± 25.6 3/100 574 4387 7290 27/68
LazyDAgger 1.81± 1.02 25.8± 17.8 56.6± 28.3 40/100 85 2940 8737 36/75
HG-DAgger 1.62± 0.91 22.5± 16.5 54.6± 14.2 56/100 201 4535 7142 124/125
Ours (-Novelty) 0.65± 0.70 43.7± 13.3 28.6± 28.5 8/100 37 3599 8078 23/69
Ours (-Risk) 1.89± 0.72 12.9± 7.7 72.4± 25.5 31/100 109 2518 9159 47/79
Ours: ThriftyDAgger 1.33± 0.76 35.4± 15.8 37.2± 27.5 52/100 153 5873 5804 111/120

Table B.3: Physical Cable Routing Additional Metrics: We report additional statis-
tics for the peg insertion task: total number of interventions (T Ints), total number of offline
and online human actions (T Acts (H)), and total number of robot actions (T Acts (R))) at
training time across all trajectories. We report these same metrics at execution time, but
T Acts (H) does not include offline human actions, as at execution time it does not refer
to the number of training samples for the robot policy. We also report the success rate of
the mixed control policy at training time (Train Succ.). Results suggest that ThriftyDAgger
needs fewer interventions than HG-DAgger while achieving a similar training success rate.
At execution time, we find that ThriftyDAgger solicits the same number of interventions as
HG-DAgger, but requires fewer human and robot actions.

Algorithm Training Interventions Train Succ. Execution Interventions
T Ints T Acts (H) T Acts (R) T Ints T Acts (H) T Acts (R)

Behavior Cloning N/A 1381 N/A N/A N/A N/A N/A
HG-DAgger 31 1682 1199 20/20 6 41 1109
Ours: ThriftyDAgger 27 1728 1153 19/21 6 23 919

This again indicates that ThriftyDAgger is able to learn intervention criteria competitive
with human judgment. At execution time, we find that ThriftyDAgger solicits the same
number of interventions as HG-DAgger, but requires fewer human and robot actions than
HG-DAgger.

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 207

Figure B.2: User Study Survey Results: We illustrate the user study interface for the
human-gated and robot-gated algorithms (left) and users’ survey responses regarding their
mental load and frustration (right) for each algorithm. Results suggest that users report
similar levels of mental load and frustration for ThriftyDAgger and LazyDAgger, but signif-
icantly higher levels of both metrics for HG-DAgger and SafeDAgger. We hypothesize that
the sparing and sustained interventions solicited by ThriftyDAgger and LazyDAgger lead to
greater user satisfaction and comfort compared to algorithms which force the user to con-
stantly monitor the system (HG-DAgger) or frequently context switch between teleoperation
and the distractor task.

B.4 User Study Details

Here we detail the protocol for conducting user studies with ThriftyDAgger and comparisons
and discuss qualitative results based on participants’ answers to survey questions measuring
their mental load and levels of frustration when using each of the algorithms.

B.4.1 User Study Interface

Figure B.2 (left) illustrates the interface used for the user study. The user study is performed
with the same peg insertion environment used for simulation experiments, but with 3 robots
performing the task in parallel. The base policy is initialized from 30 demos, as in the other
simulation experiments. To speed up the task execution for the user study, each action
has twice the magnitude as in the peg insertion experiments. Since this results in shorter
trajectories that are easier for Behavior Cloning to accomplish, we also inject a small amount
of Gaussian noise (covariance matrix = 0.02N (0, I)).

In the human-gated study with HG-DAgger, participants are shown videos of all 3 robots
attempting to perform the task in a side pane (Figure B.2, top right of left pane) and are
instructed to monitor all of the robots and intervene when they deem it appropriate. In
all robot-gated studies, participants are instructed to play the Concentration game until
they hear a chime, at which point they are instructed to switch screens to the teleoperation
interface. The Concentration game (also called Memory) is illustrated on the left of the left
pane in Figure B.2: the objective is to find pairs of cards (all of which are initially face-down)

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 208

which have matching pictures on their front side. Examples of a non-matching pair and a
matching pair are illustrated in Figure B.2.

All robots which require interventions are placed in a FIFO queue, with participants
serving intervention requests sequentially until no robot requires intervention. Thus, the
participant may be required to provide interventions for multiple robots in succession if
multiple robots are currently in the queue. When no robot requires assistance, the teleop-
eration interface turns black and reports that no robot currently needs help, at which point
participants are instructed to return to the Concentration game.

B.4.2 NASA TLX Survey Results

After each participant is subjected to all 4 conditions (SafeDAgger, LazyDAgger, ThriftyDAg-
ger, and HG-DAgger) in a randomized order, we give each participant a NASA TLX survey
asking them to rate their mental demand and frustration for each of the conditions on a scale
of 1 (very low) - 5 (very high). Results (Figure B.2 right pane) suggest that ThriftyDAgger
and LazyDAgger impose less mental demand and make participants feel less frustrated than
HG-DAgger and SafeDAgger. During experiments, we found that participants found it cum-
bersome to keep track of all of the robots simultaneously in HG-DAgger, while the frequent
context switches in SafeDAgger made participants frustrated since they were often unable
to make much progress in the Concentration Game and felt that the robot repeatedly asked
for interventions in very similar states.

B.4.3 Wall Clock Time

We report additional metrics on the wall clock time of each condition in Table B.4. Since all
experiments are run for the same 350 time steps, total wall clock time is relatively consistent.
However, HG-DAgger takes longer, as it takes more compute to render all three robot views
at once. ThriftyDAgger takes less total human time than the baselines, allowing the human
to make more progress on independent tasks. Note that other robots in autonomous mode
can still make task progress during human intervention. Note also that HG-DAgger requires
human attention for the Total Wall Clock Time, as the human must supervise all the robots
even if he or she is not actively teleoperating one (as recorded by Human Wall Clock Time).

B.4.4 Detailed Protocol

For the user study, we recruited 10 participants aged 18-37, including members without any
knowledge or experience in robotics or AI. All participants are first assigned a randomly
selected user ID. Then, participants are instructed to play a 12-card game of Concentration
(also known as Memory) (https://www.helpfulgames.com/subjects/brain-training/
memory.html) in order to learn how to play. Then, users are given practice with both the
robot-gated and human-gated teleoperation interfaces. To do this, the operator of the study
(one of the authors) performs one episode of the task in the robot-gated interface and briefly

https://www.helpfulgames.com/subjects/brain-training/memory.html
https://www.helpfulgames.com/subjects/brain-training/memory.html

APPENDIX B. THRIFTYDAGGER: BUDGET-AWARE NOVELTY AND RISK
GATING FOR INTERACTIVE IMITATION LEARNING 209

Table B.4: Wall Clock Time: We compare the total amount of wall clock time and total
amount of human wall clock time averaged over the 10 subjects in the user study. Human
Wall Clock Time refers to the amount of time the human spent actively teleoperating a robot,
while Total Wall Clock Time measures the amount of time taken by the total experiment.
ThriftyDAgger requires the lowest amount of human time, and the total amount of time is
relatively consistent. Note that HG-DAgger takes more Total Wall Clock Time as it takes
longer to simulate the “bird’s eye view” of all 3 robots, and that autonomous robots can still
make task progress independently while a human is operating a robot.

Algorithm Human Wall Clock Time (s) Total Wall Clock Time (s)
SafeDAgger 448.0± 48.1 613.0± 33.1
LazyDAgger 415.3± 90.3 609.6± 49.5
HG-DAgger 532.6± 105.2 792.8± 68.7
Ours: ThriftyDAgger 365.4± 88.1 625.5± 52.3

explains how to control the human-gated interface. Then, participants are instructed to
perform one practice episode in the robot-gated teleoperation interface and spend a few
minutes exploring the human-gated interface until they are confident in the usage of both
interfaces and in how to teleoperate the robots. In the robot-gated experiments, participants
are instructed to play Concentration when no robot asks for help, but to immediately switch
to helping the robot whenever a robot asks for help. In the human-gated experiment with
HG-DAgger, participants are instructed to continuously monitor all of the robots and perform
interventions which they believe will maximize the number of successful episodes. During
the robot-gated study, participants play the 24-card version of Concentration between robot
interventions. If a participant completes the game, new games of Concentration are created
until a time budget of robot interactions is hit. Then for each condition, the participant is
scored based on (1) the number of times the robot successfully completed the task and (2)
the number of total matching pairs the participant found across all games of Concentration.

210

Appendix C

On-Policy Robot Imitation Learning
from a Converging Supervisor

C.1 Static Regret

C.1.1 Proof of Theorem 4.3.1

Recall the standard notion of static regret as defined in Definition 4.3.1:

RegretSN((ψi)
N
i=1) =

N∑
i=1

[li(πθi , ψi)− li(πθ∗ , ψi)] where θ∗ = argmin
θ∈Θ

N∑
i=1

li(πθ, ψi) (C.1)

However, we seek to bound

RegretSN(ψN) =
N∑
i=1

[li(πθi , ψN)− li(πθ⋆ , ψN)] where θ⋆ = argmin
θ∈Θ

N∑
i=1

li(πθ, ψN) (C.2)

as defined in Definition 4.3.2.
Notice that this corresponds to the static regret of the agent with respect to the losses

parameterized by the last observed supervisor ψN . We can do this as follows:

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 211

RegretSN(ψN) =
N∑
i=1

[li(πθi , ψN)− li(πθ⋆ , ψN)] (C.3)

=
N∑
i=1

[li(πθi , ψN)− li(πθ⋆ , ψN)]− RegretSN((ψi)
N
i=1) + RegretSN((ψi)

N
i=1) (C.4)

=
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ∗ , ψi)− li(πθ⋆ , ψN)]

+ RegretSN((ψi)
N
i=1)

(C.5)

≤
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ⋆ , ψi)− li(πθ⋆ , ψN)]

+ RegretSN((ψi)
N
i=1)

(C.6)

Here, inequality C.6 follows from the fact that
∑N

i=1 li(πθ∗ , ψi) ≤
∑N

i=1 li(πθ⋆ , ψi). Now, we
can focus on bounding the extra term. Let h(x, y) = ∥x− y∥2.

N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ⋆ , ψi)− li(πθ⋆ , ψN)] (C.7)

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN(s

i
t))− h(πθi(sit), ψi(sit))

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ⋆(s
i
t), ψi(s

i
t))− h(πθ⋆(sit), ψN(sit))

] (C.8)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨∇ψh(πθi(s
i
t), ψN(s

i
t)), ψN(s

i
t)− ψi(sit)⟩

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨∇ψh(πθ⋆(s
i
t), ψi(s

i
t)), ψi(s

i
t)− ψN(sit)⟩

] (C.9)

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 212

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨2(ψN(sit)− πθi(st)), ψN(sit)− ψi(sit)⟩

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨2(ψi(sit)− πθ⋆(st)), ψi(sit)− ψN(sit)⟩

] (C.10)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2∥ψN(sit)− πθi(st)∥∥ψN(sit)− ψi(sit)∥

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2∥ψi(sit)− πθ⋆(st)∥∥ψi(sit)− ψN(sit)∥

] (C.11)

≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]
(C.12)

Equation C.8 follows from applying the definition of the loss function. Inequality C.9 follows
from applying convexity of h in ψ. Equation C.10 follows from evaluating the corresponding
gradients. Inequality C.11 follows from Cauchy-Schwarz and inequality C.12 follows from
the action space bound. Thus, we have:

RegretSN(ψN) ≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]
+RegretSN((ψi)

N
i=1) (C.13)

C.1.2 Proof of Corollary 4.3.1

∀s ∈ S, ∀N > i, ∥ψi(s)− ψN(s)∥ ≤ fi where lim
i→∞

fi = 0 (C.14)

implies that

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψi(sit)− ψN(sit)∥

]
≤ fi ∀N > i ∈ N (C.15)

This in turn implies that

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψi(sit)− ψN(sit)∥

]
≤

N∑
i=1

fi (C.16)

Remark: For sublinearity, we really only need inequality C.15 to hold. Due to the dependence
of p(τ |θi) on the parameter θi of the policy at iteration i, we tighten this assumption with
the stricter Cauchy condition C.14 to remove the dependence of a component of the regret
on the sequence of policies used.

The Additive Cesàro’s Theorem states that if the sequence (an)
∞
n=1 has a limit, then

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 213

lim
n→∞

a1 + a2 . . . an
n

= lim
n→∞

an

Thus, we see that if limi→∞ fi = 0, then it must be the case that limN→∞
1
N

∑N
i=1 fi = 0.

This shows that for some (fi)
N
i=1 converging to 0, it must be the case that

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψi(sit)− ψN(sit)∥

]
≤

N∑
i=1

fi = O(N)

Thus, based on the regret bound in Theorem 4.3.1, we can achieve sublinear RegretSN(ψN)
for any sequence (fi)

N
i=1 which converges to 0 given an algorithm that achieves sublinear

RegretSN((ψi)
N
i=1):

RegretSN(ψN) = RegretSN((ψi)
N
i=1) + O(N)

C.2 Dynamic Regret

C.2.1 Proof of Lemma 4.3.1

Recall the standard notion of dynamic regret as defined in Definition 4.3.3:

RegretDN((ψi)
N
i=1) =

N∑
i=1

[
li(πθi , ψi)− li(πθ∗i , ψi)

]
where θ∗i = argmin

θ∈Θ
li(πθ, ψi) (C.17)

However, we seek to bound

RegretDN(ψN) =
N∑
i=1

[
li(πθi , ψN)− li(πθ⋆i , ψN)

]
where θ⋆i = argmin

θ∈Θ
li(πθ, ψN) (C.18)

as defined in Definition 4.3.4.
Notice that this corresponds to the dynamic regret of the agent with respect to the losses

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 214

parameterized by the most recent supervisor ψN . We can do this as follows:

RegretDN(ψN) =
N∑
i=1

[
li(πθi , ψN)− li(πθ⋆i , ψN)

]
(C.19)

=
N∑
i=1

[
li(πθi , ψN)− li(πθ⋆i , ψN)

]
− RegretDN((ψi)

N
i=1)

+ RegretDN((ψi)
N
i=1)

(C.20)

=
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ∗i , ψi)− li(πθ⋆i , ψN)

]
+RegretDN((ψi)

N
i=1)

(C.21)

≤
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ⋆i , ψi)− li(πθ⋆i , ψN)

]
+RegretDN((ψi)

N
i=1)

(C.22)

Here, inequality C.22 follows from the fact that li(πθ∗i , ψi) ≤ li(πθ⋆i , ψi). Now as before, we
can focus on bounding the extra term. Let h(x, y) = ∥x− y∥2.

N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ⋆i , ψi)− li(πθ⋆i , ψN)

]
(C.23)

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN(s

i
t))− h(πθi(sit), ψi(sit))

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ⋆i (s
i
t), ψi(s

i
t))− h(πθ⋆i (s

i
t), ψN(s

i
t))

] (C.24)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨∇ψh(πθi(s
i
t), ψN(s

i
t)), ψN(s

i
t)− ψi(sit)⟩

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨∇ψh(πθ⋆i (s
i
t), ψi(s

i
t)), ψi(s

i
t)− ψN(sit)⟩

] (C.25)

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 215

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨2(ψN(sit)− πθi(st)), ψN(sit)− ψi(sit)⟩

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

⟨2(ψi(sit)− πθ⋆i (st)), ψi(s
i
t)− ψN(sit)⟩

] (C.26)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2∥ψN(sit)− πθi(st)∥∥ψN(sit)− ψi(sit)∥

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2∥ψi(sit)− πθ⋆i (st)∥∥ψi(s
i
t)− ψN(sit)∥

] (C.27)

≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]
(C.28)

The steps of this proof follow as in the proof of the static regret reduction. Equation C.24
follows from applying the definition of the loss function. Inequality C.25 follows from apply-
ing convexity of h in ψ. Equation C.26 follows from evaluating the corresponding gradients.
Inequality C.27 follows from Cauchy-Schwarz and inequality C.28 follows from the action
space bound. Combining this bound with C.22, we have our desired result:

RegretDN(ψN) ≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψN(sit)− ψi(sit)∥

]
+RegretDN((ψi)

N
i=1) (C.29)

C.2.2 Proof of Corollary 4.3.2

By Corollary 4.3.1,

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥ψi(sit)− ψN(sit)∥

]
= O(N)

which implies that
RegretDN(ψN) = RegretDN((ψi)

N
i=1) + O(N)

C.2.3 Predictability of Online Learning Problems

Next, we establish that the online learning problem defined by the losses defined in Section
4.2 is an (α, β)-predictable online learning problem as defined in Cheng et al. [97]. An online
learning problem is (α, β)-predictable if it satisfies ∀θ ∈ Θ, (1) li(.) is α strongly convex in θ,

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 216

(2) ∥∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)∥ ≤ β∥θi+1 − θi∥+ ζi where
∑N

i=1 ζi = O(N). Proposition
12 in Cheng et al. [97] shows that for (α, β)-predictable problems, sublinear dynamic regret
can be achieved if α > β. Furthermore, Theorem 3 in Cheng et al. [97] shows that if α is
sufficiently large and β sufficiently small, then sublinear dynamic regret can be achieved by
online gradient descent.

Lemma C.2.1. If ∀s ∈ S, ∀N > i, ∥ψi(s)− ψN(s)∥ ≤ fi where limi→∞ fi = 0, the learning
problem is (α, 4Gη supa∈A ∥a∥)-predictable in θ: li(πθ, ψ) is α-strongly convex by assumption
and if Assumption 4.3.1 holds, then li(πθ, ψ) satisfies:

∥∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)∥ ≤ 4Gη sup
a∈A
∥a∥∥θi+1 − θi∥+ ζi where

N∑
i=1

ζi = O(N)

Proof of Lemma C.2.1 We have bounded RegretDN(ψN) by the sum of RegretDN((ψi)
N
i=1)

and a sublinear term. Now, we analyze RegretDN((ψi)
N
i=1). We note that we can achieve

sublinear RegretDN((ψi)
N
i=1) if the losses satisfy

∥∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)∥ ≤ β∥θi+1 − θi∥+ ζi

where
∑N

i=1 ζi = O(N) by Proposition 12 in Cheng et al. [97].

Note that for Jτ (πθ, ψ) =
1
T

∑T
t=1∥ψ(st)− πθ(st)∥2, we have

∇θli(πθ, ψ) = Eτ∼p(τ |θi)
1

T

T∑
t=1

∇θ∥ψ(st)− πθ(st)∥2 (C.30)

= Eτ∼p(τ |θi)∇θJτ (πθ, ψ) (C.31)

=

∫
p(τ |θi)∇θJτ (πθ, ψ)dτ (C.32)

∇θJτ (πθ, ψ) =
1

T

∑
st∈τ

2∇θπθ(st)
T (πθ(st)− ψ(st)) (C.33)

=
2

T
∇θπθ(τ)

T (πθ(τ)− ψ(τ)) (C.34)

where

ψ(τ) =

ψ(s0)...
ψ(sT)

 , πθ(τ) =
πθ(s0)...
πθ(sT)

 , ∇θπθ(τ) =

∇θπθ(s0)
...

∇θπθ(sT)

 (C.35)

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 217

Taking the difference of the above loss gradients, we obtain:

∥∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)∥ (C.36)

=

∥∥∥∥∫ p(τ |θi+1)∇θJτ (πθ, ψi+1)dτ −
∫
p(τ |θi)∇θJτ (πθ, ψi)dτ

∥∥∥∥ (C.37)

≤
∫
∥p(τ |θi+1)∇θJτ (πθ, ψi+1)− p(τ |θi)∇θJτ (πθ, ψi)∥dτ (C.38)

=

∫ ∥∥∥∥ 2T∇θπθ(τ)
T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

+
2

T
∇θπθ(τ)

T (p(τ |θi+1)πθ(τ)− p(τ |θi)πθ(τ))
∥∥∥∥dτ (C.39)

≤
∫ ∥∥∥∥ 2T∇θπθ(τ)

T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+

∫ ∥∥∥∥ 2T∇θπθ(τ)
Tπθ(τ)(p(τ |θi+1)− p(τ |θi))

∥∥∥∥dτ (C.40)

≤
∫ ∥∥∥∥ 2T∇θπθ(τ)

T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+ 2G sup

a∈A
∥a∥

∫
|p(τ |θi+1)− p(τ |θi)|dτ

(C.41)

≤
∫ ∥∥∥∥ 2T∇θπθ(τ)

T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ + 2Gη sup
a∈A
∥a∥∥θi+1 − θi∥ (C.42)

≤ 2

T
G

∫
∥p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ)∥dτ + 2Gη sup

a∈A
∥a∥∥θi+1 − θi∥ (C.43)

=
2

T
G

∫
∥p(τ |θi)ψi(τ)− p(τ |θi)ψi+1(τ) + p(τ |θi)ψi+1(τ)− p(τ |θi+1)ψi+1(τ)∥dτ

+ 2Gη sup
a∈A
∥a∥∥θi+1 − θi∥

(C.44)

≤ 2

T
G

∫
∥p(τ |θi)(ψi(τ)− ψi+1(τ))∥+ ∥(p(τ |θi)− p(τ |θi+1))ψi+1(τ)∥dτ

+ 2Gη sup
a∈A
∥a∥∥θi+1 − θi∥

(C.45)

≤ 2

T
G

∫
p(τ |θi)∥ψi(τ)− ψi+1(τ)∥dτ + 4Gη sup

a∈A
∥a∥∥θi+1 − θi∥ (C.46)

≤ 2Gfi

∫
p(τ |θi)dτ + 4Gη sup

a∈A
∥a∥∥θi+1 − θi∥ (C.47)

≤ 2Gfi + 4Gη sup
a∈A
∥a∥∥θi+1 − θi∥ (C.48)

= 4Gη sup
a∈A
∥a∥∥θi+1 − θi∥+ ζi (C.49)

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 218

where here ζi = 2Gfi and we see that 2G
∑N

i=1 fi = O(N) as desired for some (fi)
N
i=1 where

limi→∞ fi = 0 as in Corollary 4.3.1. Equation C.37 follows from applying definitions. Equa-
tion C.38 follows from the triangle inequality. Equation C.39 follows from substitution of
the loss gradients. Inequality C.40 follows from the triangle inequality and factoring out
common terms. Inequality C.41 follows from subadditivity, the policy Jacobian and action
space bound. Inequality C.42 follows from Assumption 4.3.1. Equation C.43 follows from
subadditivity of the operator norm and the policy Jacobian bound. Equation C.45 follows
from the triangle inequality, and equation C.46 follows from the triangle inequality and As-
sumption 4.3.1. Equations C.47 and C.49 follow from the convergence assumption of the
supervisor and the triangle inequality.

Lemma C.2.2. Assumption 4.2.2 implies that the loss function gradients are bounded as
follows:

∥∇θli(πθ, ψ)∥ ≤ 2Gδ ∀θ, θi ∈ Θ, ∀ψ

Proof of Lemma C.2.2∥∥∥∥∥Eτ∼p(τ |θi)
[
1

T

T∑
t=1

2(∇θπθ(s
i
t))

T
(
πθ(s

i
t)− ψi(sit)

)] ∥∥∥∥∥ ≤
Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥∥∥∥2(∇θπθ(s
i
t))

T
(
πθ(s

i
t)− ψi(sit)

) ∥∥∥∥
]

by convexity of norms ∥·∥ and Jensen’s inequality.
Then, we have that

∥(∇θπθ(s))
T (πθ(s)− ψ(s))∥ ≤ ∥∇θπθ(s)∥∥πθ(s)− ψ(s)∥ ≤ Gδ ∀θ ∈ Θ, ∀s ∈ S, ∀ψ

due to subadditivity and the assumption that the action space diameter is bounded. Thus,
we have that

∀θ, θi ∈ Θ,∀ψ, ∥∇θli(πθ, ψ)∥ ≤ 2Gδ

C.2.4 Proof of Lemma 4.3.2

From Lemma C.2.1, the loss gradients are bounded by the sum of a Lipschitz-type term and
a sublinear term, satisfying the conditions for Proposition 12 from Cheng et al. [97]. Thus,
by Proposition 12 from Cheng et al. [97], we see that as long as α > 4Gη supa∈A∥a∥, there
exists an algorithm that can achieve sublinear RegretDN((ψi)

N
i=1). An example of an algorithm

that achieves sublinear dynamic regret under this condition is the greedy algorithm [97]:
θi+1 = argminθ∈Θ li(πθ, ψi).

Define β = 4Gη supa∈A∥a∥, λ = β/α, and ξi = ζi/α. For the greedy algorithm, the result
can be shown in a similar fashion to Theorem 3 of Cheng et al. [97]:

∥θ∗i − θi∥ = ∥θ∗i − θ∗i−1∥ ≤ λ∥θi − θi−1∥+
ζi
α
≤ λi∥θ1 − θ0∥+

i∑
j=1

λi−jξj

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 219

where the first inequality follows from Proposition 1 of Lee et al. [93] and the second in-
equality follows from repeated application of the same proposition. Summing from 1 to N
with ζi = 2Gfi as in the proof of Lemma 4.3.2, we have

N∑
i=1

i∑
j=1

λi−jξj ≤
N∑
i=1

ξi(1 + λ+ λ2 + . . .) ≤ 1

1− λ

N∑
i=1

ξi =
2G

α(1− λ)

N∑
i=1

fi

Thus, if
∑N

i=1 fi = O(N), we can show that the greedy algorithm achieves sublinear RegretDN((ψi)
N
i=1)

by using the Lipschitz continuity of the losses as shown in the proof of Lemma C.2.2 if the
parameter space diameter is bounded as follows: D = supθ,θ′∈Θ ∥θ − θ′∥.

RegretDN((ψi)
N
i=1) ≤ 2Gδ

N∑
i=1

∥θi − θ∗i ∥

≤ 2Gδ

(
D

N∑
i=1

λi +
2G

α(1− λ)

N∑
i=1

fi

)

≤ 2Gδ

(
D

1− λ
+

2G

α(1− λ)

N∑
i=1

fi

)
= O(N)

For the last part of the lemma, the fact that online gradient descent achieves sublin-
ear RegretDN((ψi)

N
i=1) follows directly from applying Theorem 3 from Cheng et al. [97] with

4Gη supa∈A ∥a∥
α

> α
2γ

if the losses are γ-smooth in θ.

C.2.5 Proof of Theorem 4.3.2

The proof follows immediately from combining the result of Corollary 4.3.2 and Lemma 4.3.2.

C.3 Training Details

C.3.1 CSF Learner

For the linear policy, the CSF learner is trained via linear regression with regularization
parameter α = 1. For the neural network policy, the CSF learner is represented with an
ensemble of 5 neural networks, each with 2 layers with 20 hidden units and swish activations.

C.3.2 PETS

PETS learns an ensemble of neural network dynamics models using sampled transitions and
updates them on-policy to better reflect the dynamics local to the learned policy’s state

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 220

distribution. We use the implementation from [346]. MPC is run over the learned dynamics
to select actions for the next iteration. For all environments, a probabilistic ensemble of 5
neural networks with 3 hidden layers, each with 200 hidden units and swish activations are
used to represent the dynamics model. The TS-∞ sampling procedure is used for planning.
We use an MPC planning horizon of length 25 for all environments and 1 initial random
rollout to seed the learned dynamics model. Chua et al. [86] contains further details on
training PETS.

C.3.3 SAC

We use the rlkit implementation [347] of soft actor critic with the following parameters: batch
size = 128, discount factor = 0.99, soft target τ = 0.001, policy learning rate = 0.0003, Q
function learning rate = 0.0003, value function learning rate = 0.0003, and replay buffer size
= 1000000. All networks are two-layer multi-layer perceptrons with 300 hidden units.

C.3.4 TD3

We use the rlkit implementation [347] of TD3 with the following parameters: batch size =
128, discount factor = 0.99, and replay buffer size = 1000000. The exploration strategy
consists of adding Gaussian noise N (0, 0.1) to actions chosen by the policy. All networks
are two-layer multi-layer perceptrons with 300 hidden units.

C.3.5 ME-TRPO

Wemodel both the policy and dynamics with neural networks, using an ensemble of dynamics
models to avoid exploitation of model bias. We use the ME-TRPO implementation from
[348] with the following hyperparameters: batch size=128, discount factor=1, and learning
rate =.001 for both the policy and dynamics. The policy network has two hidden layers with
64 units each and all dynamics networks have two hidden layers with 512 units each and
ReLU activation.

C.4 Experimental Details

C.4.1 Simulated Experiments

Both simulated experiments involve manipulation tasks on a simulated PR2 robot and are
from the provided code in Chua et al. [86]. Both are implemented as 7-DOF torque control
tasks. For all tasks, we plot the sum of rewards for each training episode.

APPENDIX C. ON-POLICY ROBOT IMITATION LEARNING FROM A
CONVERGING SUPERVISOR 221

C.4.2 Physical Experiments

Both physical experiments involve delta-position control in 3D space on the daVinci surgical
system, which is cable driven and hard to precisely control, making it difficult to reliably
reach a desired pose without appropriate compensation [142]. The CSF learner policy and
supervisor dynamics are modeled by 3 hidden-layer feed-forward neural networks with 200
hidden units each. The tasks involve guiding the end effectors to targets in the workspace
and isotropic concave quadratic rewards are used. For all tasks, we plot the sum of rewards
for each training episode. For multi-arm experiments, the arms are limited to subsets of the
state space where collisions are not possible. We are investigating modeling arm collisions
for future work. Since the da Vinci surgical system has relatively limited control frequency,
although the CSF learner often enables significantly faster query time than PETS, the im-
provement in policy evaluation time was somewhat less significant due to physical hardware
constraints. In future work, we plan to implement the proposed algorithm on a robot with
higher frequency control capability.

222

Appendix D

Safe Learning MPC for Stochastic
Nonlinear Dynamical Systems with
Adjustable Boundary Conditions

D.1 Proofs of Controller Properties

Proof of Lemma 5.5.1 We proceed by induction. By assumption 5.3.1, J0
0→H(x

j
0) <∞.

By the definition of V πj

G and F jG, J
j
0→H(x

j
0) < ∞. Let J jt→t+H(x

j
t) < ∞ for some t ∈ N. In

the following expressions, we do not explicitly write the MPC problem constraints for clarity.
Conditioning on the random variable xjt :

J jt→t+H(x
j
t) = E

wj
t:t+H−1

[
H−1∑
k=0

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + V πj−1

G (xjt+H|t)

]
(D.1)

= C(xjt , π
∗,j
t|t (x

j
t)) + Ewj

t:t+H−1

[
H−1∑
k=1

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + V πj−1

G (xjt+H|t)

]
(D.2)

= C(xjt , π
∗,j
t|t (x

j
t))

+ E
wj

t:t+H

[H−1∑
k=1

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + C(xjt+H|t, π

l(xjt+H|t))

+ V πj−1

G (xjt+H+1|t)

]
, l ∈ [j − 1]

(D.3)

(D.4)

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 223

≥ C(xjt , π
∗,j
t|t (x

j
t))

+ E
wj

t

[
min

πt+1:t+H|t+1

E
wj

t+1:t+H

[H−1∑
k=1

C(xjt+k|t+1, πt+k|t+1(x
j
t+k|t+1))

+ C(xjt+H|t+1, πt+H|t+1(x
j
t+H|t+1))

+ V πj−1

G (xjt+H+1|t+1)

]]
(D.5)

= C(xjt , π
j(xjt)) + E

wj
t

[
J jt+1→t+H+1(x

j
t+1)|x

j
t

]
(D.6)

Equation D.1 follows from the definition in 5.10, equation D.3 follows from the definition

of V
πj−1

G , which is defined as a point-wise minimum over
(
Lπ

l

G

)j−1

l=0
. We take a function Lπ

l

G

that is active at xjt+H|t and apply its definition to expand it and then replace Lπ
l

G with V πj−1

G
in the expansion. The inner expectation in equation D.5 conditions on the random variable
xjt+1, and the outer expectation integrates it out. The inequality in D.5 follows from the fact

that [π∗,j
t+1|t, . . . , π

∗,j
t+H−1|t, π

j−1] is a possible solution to (D.5). Equation D.6 follows from the
definition in equation 5.10.

We have shown that J jt→t+H(x
j
t) <∞ =⇒ E

wj
t

[
J jt+1→t+H+1(x

j
t+1|t)

]
<∞. So:

E
wj

0:t−1

[
J jt→t+H(x

j
t)
]
<∞ =⇒ E

wj
0:t−1

[
E
wj

t

[
J jt+1→t+H+1(x

j
t+1|t)

]]
(D.7)

= E
wj

0:t

[
J jt+1→t+H+1(x

j
t+1)

]
<∞ (D.8)

By induction, E
wj

0:t−1

[J jt→t+H(x
j
t)] <∞ ∀t ∈ N. Therefore, the controller is feasible at iteration

j.

Proof of Lemma 5.5.2 By Lemma 5.5.1 and Assumption 5.2.1, ∀L ∈ N,

E
wj

1:L−1

[
L−1∑
k=0

C(xjk, π
j(xjk)) + J jL→L+H(x

j
L)

]
≤ J j0→H(x

j
0) (D.9)

=⇒ E
wj

1:L−1

[
J jL→L+H(x

j
L)
]
≤ J j0→H(x

j
0)− E

wj
1:L−1

[
L−1∑
k=0

C(xjk, π
j(xjk))

]
(D.10)

≤ J j0→H(x
j
0)− ϵ

L−1∑
k=0

P (xjk ̸∈ G) (D.11)

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 224

Line D.11 follows from rearranging D.9 and applying assumption 5.2.1. Because G is robust
control invariant by assumption 5.2.2, xt ∈ G =⇒ xt+k ∈ G ∀k ≥ 0. Now, assume
limk→∞ P (xjk ̸∈ G) does not exist or is nonzero. This implies that P (xjk ̸∈ G) ≥ δ >
0 infinitely many times. By the Archimedean principle, the RHS of D.11 can be driven
arbitrarily negative, which is impossible. By contradiction, limk→∞ P (xjk ̸∈ G) = 0.

Proof of Theorem 5.5.1 Let j ∈ N

J j0→H(x0) ≥ C(x0, u0) + E
wj

0

[
J j1→H+1(x

j
1)
]

(D.12)

≥ E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
E

wj
0:t−1

[
J jt→t+H(x

j
t)
]

(D.13)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
E

1{xjt ̸∈G}

[
E

wj
0:t−1

[
J jt→t+H(xt)|1{x

j
t ̸∈ G}

]]
(D.14)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
E

wj
0:t−1

[
J jt→t+H(x

j
t)|x

j
t ̸∈ G

]
P (xjt ̸∈ G) (D.15)

≥ E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
ϵP (xjt ̸∈ G) (D.16)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
= Jπ

j

(x0) (D.17)

Equations D.12 and D.13 follow from repeated application of Lemma 5.5.1 (D.6). Equa-
tion D.14 follows from iterated expectation, equation D.15 follows from the cost function
assumption 5.2.1. Equation D.16 follows again from assumption 5.2.1 (incur a cost of at
least ϵ for not being at the goal at time t). Then, Equation D.17 follows from Lemma 5.5.2.
Using the above inequality with the definition of Jπ

j
(x0),

J j0→H(x0) ≥ Jπ
j

(x0) = E
wj

0:H−1

[
H−1∑
t=0

C(xjt , π
j(xt)) + V πj

G (xjH)

]
(D.18)

≥ E
wj

0:H−1

[
H−1∑
t=0

C(xjt , π
∗,j
t|0 (xt|0)) + V πj

G (xH|0)

]
= J j+1

0→H(x0) (D.19)

≥ Jπ
j+1

(x0) (D.20)

Equation D.18 follows from equation D.17, equation D.19 follows from taking the minimum
over all possible H-length sequences of policies in the policy class Π. Equation D.20 follows
from equation D.17. By induction, this proves the theorem.

Note that this also implies convergence of (Jπ
j
(x0))

∞
j=0 by the Monotone Convergence

Theorem.

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 225

Proof of Lemma 5.5.3 The proof is identical to [109]. Because SSjG is an increasing

sequence of sets, F jG is also an increasing sequence of sets by definition.

D.2 Adjustable Boundary Condition LMPC

Implementation Details

D.2.1 Solving the MPC Problem

As in [106], we sample a fixed population size of action sequences at each iteration of CEM
from a truncated Gaussian. These action sequences are simulated over a known model of the
system dynamics and then the sampling distribution for the next iteration is updated based
on the lowest cost sampled trajectories. For the cross entropy method we build off of the
implementation in [86]. Precisely, at each timestep in a trajectory, a conditional Gaussian
is initialized with the mean based on the final solution for the previous timestep and some
fixed variance. Then, at each iteration of CEM, pop size action sequences of plan hor length
are sampled from the conditional Gaussian, simulated over a model of the system dynamics,
and then the num elites samples with the lowest sum cost are used to refit the mean and
variance of the conditional Gaussian distribution for the next iteration of CEM. This process
is repeated num iters times. The sum cost of an action sequence is computed by summing
up the task cost function at each transition in the resulting simulated trajectory and then
adding a large penalty for each constraint violating state in the simulated trajectory and an
additional penalty if the terminal state in the simulated trajectory does not have sufficient
density under ρG. For all experiments, we add a 1e6 penalty for violating terminal state
constraints and a 1e8 penalty for violating task constraints. In practice to accelerate domain

expansion to x∗, when selecting initial states xjS from
⋃j
k=0 S̃S

k
, we sort states in the safeset

under Cj
E(x) and use this to choose xjS close to x∗ under Cj

E(x). Note that this choice does
not impact any of the theoretical guarantees.

D.2.2 Value Function

We represent each member of the probabilistic ensemble of neural networks used to approxi-
mate Lπ

j
(x) with a neural network with 3 hidden layers, each with 500 hidden units. We use

swish activations, and update weights using the Adam Optimizer with learning rate 0.001.
We use 10 epochs to learn the weights for Lπ

j
(x).

D.2.3 Start State Expansion

We again perform trajectory optimization using the cross entropy method and for each
experiment use the same pop size, num elites, num iters parameters as for solving the MPC
problem. Costs for action sequences are computed by summing up Cj

E(x) evaluated at

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 226

each state x in the corresponding simulated trajectory, and the same mechanism is used for
enforcing the terminal state constraint and task constraints as for solving the MPC problem.

D.3 Experiment Specific Parameters

D.3.1 Pointmass Navigation

Environment Details: We use ψ = 0.2 and σ = 0.05 in all experiments in this domain.
Demonstration trajectories are generated by guiding the robot past the obstacle along a
very suboptimal hand-tuned trajectory for the first half of the trajectory before running
LQR with clipped actions on a quadratic approximation of the true cost. Gaussian noise is
added to the demonstrator controller. The task horizon is set to T = 50.

Task Controller MPC Parameters: For the single start, single goal set case we use
popsize = 400, num elites = 40, cem iters = 5, and plan hor = 15. For all start state
expansion experiments, we utilize the same popsize, num elites, and cem iters but utilize
plan hor = 20. For experiments we utilize α = 2 for the kernel width parameter for density
model ρGα.

Start State Expansion Parameters: We utilize H ′ = H − 5 for all experiments
(trajectory optimization horizon for exploration policy).

SAVED Baseline Experimental Parameters: We supply SAVED with 100 demon-
strations generated by the same demonstration policy as for ABC-LMPC. We utilize α = 3
and utilize the implementation from [106]. Both the value function and dynamics for SAVED
are represented with a probabilistic ensemble of 5 neural networks with 3 hidden layers of 500
hidden units each. We use swish activations, and update weights using the Adam Optimizer
with learning rate 0.001.

D.3.2 7-Link Reacher Arm

Environment Details: We use σ = 0.03 for all experiments. The state space consists of
the 7 joint angles. Each link is of 1 unit in length and the goal is to control the end effector
position to a 0.5 radius circle in R2 centered at (3,−3). We do not model self-collisions but
also include a circular obstacle of radius 1 in the environment which the kinematic chain
must navigate around. Collisions with the obstacle are checked by computing the minimum
distance between each link in the kinematic chain and the center of the circular obstacle and
determining whether any link has a minimum distance from the center of the obstacle that
is less than the radius of the obstacle. The task horizon is set to T = 50. We build on the
implementation provided through [136].

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 227

Task Controller MPC Parameters: For the single start, single goal set case we use
popsize = 400, num elites = 40, cem iters = 5, and plan hor = 15. For all start state
expansion experiments, we utilize the same popsize, num elites, and cem iters but utilize
plan hor = 20. For experiments we utilize α = 0.5 for the kernel width parameter for
density model ρGα.

Start State Expansion Parameters: We utilize H ′ = H − 5 for all experiments
(trajectory optimization horizon for exploration policy).

SAVED Baseline Experimental Parameters: We supply SAVED with 100 demon-
strations generated by the same demonstration policy as for ABC-LMPC. We utilize α = 0.5
and utilize the implementation from [106]. Both the value function and dynamics for SAVED
are represented with a probabilistic ensemble of 5 neural networks with 3 hidden layers of 500
hidden units each. We use swish activations, and update weights using the Adam Optimizer
with learning rate 0.001.

D.3.3 Inverted Pendulum

Environment Details: We use σ = 0.5 for all experiments. The robot consists of a
single link and can exert a torque to rotate it. The state space consists of the angle and
angular velocity of the pendulum. Note that there are only stable orientations, the upright
orientation and downward orientation for this task, and thus for a goal set to be robust control
invariant, it will likely need to be defined around the neighborhood of these orientations. The
task horizon is set to T = 40. We define G1 as the goal set centered around the downward
orientation and G2 as the goal set centered around the upright orientation. Precisely, inclusion
in G1 is determined by determining whether the orientation of the pendulum is within 45
degrees of the downward orientation. Similarly, inclusion in G2 is determined by determining
whether the orientation of the pendulum is within 45 degrees of the upward orientation.

Task Controller MPC Parameters: We utilize popsize = 600, num elites = 40,
cem iters = 5, and plan hor = 15. For experiments we utilize α = 2 for the kernel width
parameter for density model ρGα.

Start State Expansion Parameters: We utilize H ′ = H for all experiments (trajectory
optimization horizon for exploration policy).

D.4 Controller Domain Expansion Strategy

Here we discuss how the controller domain can be expanded when the safe set and value
function are updated based on samples from the exploration policy. To approximately expand⋃j
k=0 SS

k
G, we can again solve the following 1-step trajectory optimization problem:

APPENDIX D. SAFE LEARNING MPC FOR STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS WITH ADJUSTABLE BOUNDARY CONDITIONS 228

πjE,0:H′−1 = argmin
π0:H′−1∈ΠH′

E
wj

0:H′−2

[
H′−1∑
i=0

Cj
E(x

j
i , πi(x

j
i))

]
s.t. xji+1 = f(xji , πi(x

j
i), wi) ∀i ∈ {0, . . . ,H

′ − 1}

xjH′ ∈
j−1⋃
k=0

SSkG , ∀w0:H′−2 ∈ WH′−1

xj0:H′ ∈ XH
′+1, ∀w0:H′−2 ∈ WH′−1

(D.21)

For all xjS ∈ SS
j−1
G , the states

⋃H′

k=0R
πj

E,0:H′−1

k (xjS) ∪
⋃∞
k=1Rπj

k (R
πj

E,0:H′−1

H′ (xjS)) are added

to SSjG. The second union is included to define the value function for the composition

of πj and πjE,0:H′−1. This is analogous to running the exploration policy followed by run-

ning the task-directed policy πj. Denoting the safe set where πj is executed as SSπj

G =⋃∞
k=1Rπj

k (R
πj

E,0:H′−1

H′ (SSj−1
G)) ∪

⋃∞
k=1Rπj

k (SSj−1
G), we redefine Lπ

j

G as:

Lπ
j

G (x) =

E
w

[
C(x, πj(x)) + Lπ

j

G (f(x, πj(x), w))
]

x ∈ SSπj

G \ G

E
w

[
C(x, πjE,0:H′−1(x)) + Lπ

j

G (f(x, πjE,0:H′−1(x), w))
]

x ∈ SSjG \ SS
πj

G

0 x ∈ G
+∞ x ̸∈ SSjG

(D.22)

This means that trajectories from the exploration policy can spend more time outside of the
safe set. In either case, the safe set remains robust control invariant.

Thus, each iteration j is split into two phases. In the first phase, πj is executed and
in the second phase, πjE,0:H′−1 is executed. This procedure provides a simple algorithm to

expand the policy’s domain F jG while still maintaining its theoretical properties.

229

Appendix E

SAVED: Safe Deep Model-Based RL
for Sparse Cost Robotic Tasks

E.1 Additional Experimental Details for SAVED and

Baselines

For all experiments, we run each algorithm 3 times to control for stochasticity in training
and plot the mean iteration cost vs. time with error bars indicating the standard deviation
over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction
rate, we show bar plots indicating the median value over the 3 runs with error bars between
the lowest and highest value over the 3 runs. Experiments are run on an Nvidia DGX-1
and on a desktop running Ubuntu 16.04 with a 3.60 GHz Intel Core i7-6850K, 12 core CPU
and an NVIDIA GeForce GTX 1080. When reporting the iteration cost of SAVED and
all baselines, any constraint violating trajectory is reported by assigning it the maximum
possible iteration cost T , where T is the task horizon. Thus, any constraint violation is
treated as a catastrophic failure. We plan to explore soft constraints as well in future work.

E.1.1 SAVED

Dynamics and Value Function

For all environments, dynamics models and value functions are each represented with a
probabilistic ensemble of 5, 3 layer neural networks with 500 hidden units per layer with
swish activations as used in Chua et al. [86]. To plan over the dynamics, the TS-∞ trajectory
sampling method from [86] is used. We use 5 and 30 training epochs for dynamics and value
function training when initializing from demonstrations. When updating the models after
each training iteration, 5 and 15 epochs are used for the dynamics and value functions
respectively. All models are trained using the Adam optimizer with learning rate 0.00075
and 0.001 for the dynamics and value functions respectively. Value function initialization is

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 230

done by training the value function using the true cost-to-go estimates from demonstrations.
However, when updated on-policy, the value function is trained using temporal difference
error (TD-1) on a buffer containing all prior states. Since we use a probabilistic ensemble
of neural networks to represent dynamics models and value functions, we built off of the
provided implementation [346] of PETS in [86].

Constrained Exploration

Define states from which the system was successfully stabilized to the goal in the past as
safe states. We train density model ρ on a fixed history of safe states, where this history
is tuned based on the experiment. We have found that simply training on all prior safe
states works well in practice on all experiments in this work. We represent the density
model using kernel density estimation with a top-hat kernel. Instead of modifying δ for
each environment, we set δ = 0 (keeping points with positive density), and modify α (the
kernel parameter/width). We find that this works well in practice, and allows us to speed up
execution by using a nearest neighbors algorithm implementation from scikit-learn. We are
experimenting with locality sensitive hashing, implicit density estimation as in Fu, Co-Reyes,
and Levine [349], and have had some success with Gaussian kernels as well (at significant
additional computational cost). The exploration strategy used by SAVED in navigation task
2 is illustrated in Figure E.1.

E.1.2 Behavior Cloning

We represent the behavior cloning policy with a neural network with 3 layers of 200 hidden
units each for navigation tasks and pick and place, and 2 layers of 20 hidden units each for
the PR2 Reacher task. We train on the same demonstrations provided to SAVED and other
baselines for 50 epochs.

E.1.3 PETSfD and PETSfD Dense

PETSfD and PETSfD Dense use the same network architectures and training procedure as
SAVED and the same parameters for each task unless otherwise noted, but just omit the
value function and density model ρ for enforcing constrained exploration. PETSfD uses a
planning horizon that is long enough to complete the task, while PETSfD Dense uses the
same planning horizon as SAVED.

E.1.4 SACfD

We use the rlkit implementation [350] of soft actor critic with the following parameters:
batch size=128, discount=0.99, soft target τ = 0.001, policy learning rate = 3e − 4, Q
function learning rate = 3e− 4, and value function learning rate = 3e− 4, batch size = 128,
replay buffer size = 1000000, discount factor = 0.99. All networks are two-layer multi-layer

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 231

perceptrons (MLPs) with 300 hidden units. On the first training iteration, only transitions
from demonstrations are used to train the critic. After this, SACfD is trained via rollouts
from the actor network as usual. We use a similar reward function to that of SAVED,
with a reward of -1 if the agent is not in the goal set and 0 if the agent is in the goal set.
Additionally, for environments with constraints, we impose a reward of -100 when constraints
are violated to encourage constraint satisfaction. The choice of collision reward is ablated in
section E.4.2. This reward is set to prioritize constraint satisfaction over task success, which
is consistent with the selection of β in the model-based algorithms considered.

E.1.5 OEFD

We use the implementation of OEFD provided by Jangir [351] with the following parameters:
learning rate = 0.001, polyak averaging coefficient = 0.8, and L2 regularization coefficient
= 1. During training, the random action selection rate is 0.2 and the noise added to policy
actions is distributed as N (0, 1). All networks are three-layer MLPs with 256 hidden units.
Hindsight experience replay uses the “future” goal replay and selection strategy with k = 4
[131]. Here k controls the ratio of HER data to data coming from normal experience replay
in the replay buffer. We use a similar reward function to that of SAVED, with a reward of
-1 if the agent is not in the goal set and 0 if the agent is in the goal set. Additionally, for
environments with constraints, we impose a reward of -100 when constraints are violated to
encourage constraint satisfaction. The choice of collision reward is ablated in section E.4.2.
This reward is set to prioritize constraint satisfaction over task success, which is consistent
with the selection of β in the model-based algorithms considered.

E.2 Simulated Experiments Additional Results

In Figure E.1, we illustrate the mechanism by which SAVED iteratively improves upon
suboptimal demonstrations on navigation task 2 by planning into an expanding safe set.

In Figure E.2, we show the task success rate for the PR2 reacher and Fetch pick and place
tasks for SAVED and baselines. We note that SAVED outperforms RL baselines (except
SAVED (No SS) for the reacher task, most likely because the task is relatively simple so
the sampled safe set constraint has little effect) in the first 100 and 250 iterations for the
reacher and pick and place tasks respectively. Note that although behavior cloning has a
higher success rate, it does not improve upon demonstration performance. However, although
SAVED’s success rate is not as different from the baselines in these environments as those
with constraints, this result shows that SAVED can be used effectively in a general purpose
way, and still learns more efficiently than baselines in unconstrained environments as seen
in the corresponding chapter.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 232

Figure E.1: Navigation Task 2 Trajectory Evolution: SAVED rapidly improves upon
demonstration trajectories by constraining its exploration to regions of relative certainty and
high cost. By iteration 15, SAVED is able to find a safe but efficient trajectory to the goal
at the origin.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Simulated Robot Success Rate

 PR2 Reacher Fetch Pick and Place

SAVED
SAVED (No SS)
PETSfD
Clone
SACfD
OEFD
SACfD (10K)
OEFD (10K)

Figure E.2: Simulated Robot Experiments Success Rate: SAVED has comparable
success rate to Clone, PETSfD, and SAVED (No SS) on the reacher task in the first 100
iterations. For the pick and place task, SAVED outperforms all baselines in the first 250
iterations except for Clone, which does not improve upon demonstration performance.

E.3 Physical Experiments: Additional Details and

Experiments

For all experiments, α = 0.05 and a set of 100 hand-coded trajectories with a small amount
of Gaussian noise added to the controls is generated. For all physical experiments, we use
β = 1 for PETSfD since we found this gave the best performance when no signal from the
value function was provided. In all tasks, the goal set is represented with a 1 cm ball in R3.
The dVRK is controlled via delta-position control, with a maximum control magnitude set

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 233

to 1 cm during learning for safety. We train state density estimator ρ on all prior successful
trajectories for the physical robot experiments.

E.3.1 Figure-8

In addition to the knot-tying task discussed in the main paper, we also evaluate SAVED on
a Figure-8 tracking task on the surgical robot. In this task, the dVRK must track a Figure 8
in the workspace. The agent is constrained to remain within a 1 cm pipe around a reference
trajectory with chance constraint parameter β = 0.8 for SAVED and β = 1 for PETSfD.
We use 100 inefficient but successful and constraint-satisfying demonstrations with average
iteration cost of 40 steps for both segments. Additionally we use a planning horizon of 10
for SAVED and 30 for PETSfD. However, because there is an intersection in the middle
of the desired trajectory, SAVED finds a shortcut to the goal state. Thus, the trajectory
is divided into non-intersecting segments before SAVED separately optimizes each one. At
execution-time, the segments are stitched together and we find that SAVED is robust enough
to handle the uncertainty at the transition point. We hypothesize that this is because the
dynamics and value function exhibit good generalization.

Results for both segments of the Figure 8 task are shown in Figures E.3 and E.4 below.
In Figure E.3, we see that SAVED quickly learns to smooth out demo trajectories while
satisfying constraints, with a success rate of over 80% while baselines violate constraints
on nearly every iteration and never complete the task, as shown in Figure E.3. Note that
PETSfD almost always violates constraints, even though constraints are enforced exactly
as in SAVED. We hypothesize that since we need to give PETSfD a long planning horizon
to make it possible to complete the task (since it has no value function), this makes it
unlikely that a constraint satisfying trajectory is sampled with CEM. For the other segment
of the Figure-8, SAVED still quickly learns to smooth out demo trajectories while satisfying
constraints, with a success rate of over 80% while baselines violate constraints on nearly
every iteration and never complete the task, as shown in Figure E.4.

In Figure E.5, we show the full trajectory for the Figure-8 task when both segments are
combined at execution-time. This is done by rolling out the policy for the first segment, and
then starting the policy for the second segment as soon as the policy for the first segment
reaches the goal set. We see that even given uncertainty in the dynamics and end state for the
first policy (it could end anywhere in a 1 cm ball around the goal position), SAVED is able
to smoothly navigate these issues and interpolate between the two segments at execution-
time to successfully stabilize at the goal at the end of the second segment. Each segment of
the trajectory is shown in a different color for clarity. We suspect that SAVED’s ability to
handle this transition is reflective of good generalization of the learned dynamics and value
functions.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 234

0 10 20 30 40 50
Iteration

20

30

40

50

Ite
ra

tio
n

Co
st

Figure-8 Segment 1: Iteration Cost vs. Time

SAVED
PETSfD
SAC
Demo Avg

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s R

at
e

Success Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

tra
in

t S
at

isf
ac

tio
n

Ra
te

Constraint Satisfaction Rate
Figure-8 Segment 1

SAVED PETSfD SACfD 0.125 0.100 0.075 0.050 0.025 0.000 0.025
X

0.02

0.04

0.06

0.08

0.10

Y

Figure 8 Segment 1 Trajectory
Demo
Learned

Figure E.3: Figure-8: Training Performance: After just 10 iterations, SAVED con-
sistently succeeds and converges to an iteration cost of 26, faster than demos which took
an average of 40 steps. Neither baseline ever completes the task in the first 50 iterations;
Trajectories: Demo trajectories satisfy constraints, but are noisy and inefficient. SAVED
learns to speed up with only occasional constraint violations and stabilizes in the goal set.

0 10 20 30 40 50
Iteration

25

30

35

40

45

50

Ite
ra

tio
n

Co
st

Figure-8 Segment 2: Iteration Cost vs. Time

SAVED
PETSfD
SAC
Demo Avg 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s R

at
e

Success Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

tra
in

t S
at

isf
ac

tio
n

Ra
te

Constraint Satisfaction Rate
Figure-8 Segment 2

SAVED PETSfD SACfD 0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
X

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Y

Figure 8 Segment 2 Trajectory
Demo
Learned

Figure E.4: Figure-8: Training Performance: After 10 iterations, the agent consistently
completes the task and converges to an iteration cost of around 32, faster than demos which
took an average of 40 steps. Neither baseline ever completed the task in the first 50 iterations;
Trajectories: Demo trajectories are constraint-satisfying, but noisy and inefficient. SAVED
quickly learns to speed up demos with only occasional constraint violations and successfully
stabilizes in the goal set. Note that due to the difficulty of the tube constraint, it is hard to
avoid occasional constraint violations during learning, which are reflected by spikes in the
iteration cost.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 235

Figure E.5: Full Figure-8 trajectory: We show the full figure-8 trajectory, obtained by
evaluating learned policies for the first and second figure-8 segments in succession. Even when
segmenting the task, the agent can smoothly interpolate between the segments, successfully
navigating the uncertainty in the transition at execution-time and stabilizing in the goal set.

Figure E.6: Knot-Tying Full Trajectories: (a) Arm 1 trajectory: We see that the
learned part of the arm 1 trajectory is significantly smoothed compared to the demonstrations
at execution-time as well, consistent with the training results. Then, in the hand-coded
portion of the trajectory, arm 1 is simply moved down towards the phantom along with
arm 2, which grasps the thread and pulls it up; (b) Arm 2 trajectory: This trajectory is
hand-coded to move down towards the phantom after arm 1 has fully wrapped the thread
around it, grasp the thread, and pull it up.

E.3.2 Knot-Tying

In Figure E.6, we show the full trajectory for both arms for the surgical knot-tying task. We
see that the learned policy for arm 1 smoothly navigates around arm 2, after which arm 1
is manually moved down along with arm 2, which grasps the thread and pulls it up through
the resulting loop in the thread, completing the knot.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 236

E.4 Ablations

E.4.1 SAVED

We investigate the impact of kernel width α, chance constraint parameter β, and the number
of demonstrator trajectories used on navigation task 2. Results are shown in Figure E.8.
We see that SAVED is able to complete the task well even with just 20 demonstrations,
but is more consistent with more demonstrations. We also notice that SAVED is relatively
sensitive to the setting of kernel width α. When α is set too low, we see that SAVED is
overly conservative, and thus can barely explore at all. This makes it difficult to discover
regions near the goal set early on and leads to significant model mismatch, resulting in poor
task performance. Setting α too low can also make it difficult for SAVED to plan to regions
with high density further along the task, resulting in SAVED failing to make progress. On
the other extreme, making α too large causes a lot of initial instability as the agent explores
unsafe regions of the state space. Thus, α must be chosen such that SAVED is able to
sufficiently explore, but does not explore so aggressively that it starts visiting states from
which it has low confidence in being able reach the goal set. Reducing β allows the agent
to take more risks, but this results in many more collisions. With β = 0, most rollouts end
in collision or failure as expected. In the physical experiments, we find that allowing the
agent to take some risk during exploration is useful due to the difficult tube constraints on
the feasible state space.

Finally, we also ablate the quantity and quality of demonstrations used for navigation
task 2 (Figure E.8), and find that SAVED is still able to consistently complete the task with
just 20 demonstrations and is relatively robust to lower quality demonstrations, although
this does result in some instability during training. We additionally ablate the quantity and
quality of demonstrations for navigation task 1 in Figure E.7. We note that again, SAVED
is relatively robust to varying demonstration quality, achieving similar performance even for
very slow demonstrations

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 237

0 10 20 30 40 50
Iteration

20

40

60

80

100

Tr
aj

ec
to

ry
 C

os
t

Navigation 1: Demo Quantity Ablation
100 Demos
50 Demos
20 Demos

Figure E.7: SAVED Ablations on Navigation Task 1: Number of Demonstrations:
SAVED is able to consistently complete the task with just both demo qualities considered
without significant performance decay. The 100 demonstrations provided in this task have
average trajectory cost of 117.56 (black) and 77.82 (red) and SAVED significantly outper-
forms both, converging in less than 10 iterations in all runs to a policy with trajectory cost
less than 30. Demonstration quality: SAVED is able to consistently complete the task
with just 20 demonstrations (red) after 15 iterations. The demonstrations provided in this
task have average trajectory cost of 77.82.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 238

0 25 50 75 100 125 150 175 200
Iteration

20

40

60

80

100

Ite
ra

tio
n

Co
st

Alpha Ablation: Iteration Cost vs. Time
3
0.5
20

0 25 50 75 100 125 150 175 200
Iteration

20

40

60

80

100

Ite
ra

tio
n

Co
st

Beta Ablation: Iteration Cost vs. Time
1
0.5
0

0 20 40 60 80 100
Iteration

25

50

75

100

Tr
aj

ec
to

ry
 C

os
t

Navigation 2: Demo Quantity Ablation
100 Demos
50 Demos
20 Demos
10 Demos

Figure E.8: SAVED Ablations on Navigation Task 2: Kernel width α: We see
that α must be chosen to be high enough such that SAVED is able to explore enough to
find the goal set, but not so high that SAVED starts to explore unsafe regions of the state
space; Chance constraint parameter β: Decreasing β results in many more collisions
with the obstacle. Ignoring the obstacle entirely results in the majority of trials ending in
collision or failure. Demonstration quantity: In this experiment, we vary the number
of demonstrations that SAVED is provided. We see that SAVED is able to complete the
task with just 20 demonstrations (red), but more demonstrations result in increased stability
during learning. Even with 10 demonstrations (green), SAVED is able to sometimes complete
the task. The demonstrations provided in this task have average trajectory cost of 77.82.
Demonstration quality: SAVED efficiently learns a controller in all runs in all cases, the
worst of which has demos that attain an iteration cost 5 times higher than the converged
controller. We do occasionally observe some instability in the value function, which begins
to display somewhat volatile behavior after initially finding a good controller. Constraints
are never violated during learning in any of the runs.

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 239

E.4.2 Model-Free

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Navigation Task 2 Success Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

tra
in

t S
at

isf
ac

tio
n

Ra
te

Navigation Task 2 Constraint Satisfaction Rate
Model-Free Collision Cost Ablation

SACfD (10K, OBS_COST=100)
SACfD (10K, OBS_COST=1)
OEFD (10K, OBS_COST=100)
OEFD (10K, OBS_COST=1)

Figure E.9: A high cost for constraint violations results in conservative behavior that learns
to avoid the obstacle, but also makes it take longer to learn to perform the task. Setting the
cost low results in riskier behavior that more often achieves task success.

To convey information about constraints to model-free methods, we provide an additional
cost for constraint violations. We ablate this parameter for navigation task 2 in Figure E.9.
We find that a high cost for constraint violations results in conservative behavior that learns
to avoid the obstacle, but also takes much longer to achieve task success. Setting the cost
low results in riskier behavior that succeeds more often. This trade-off is also present for
model-based methods, as seen in the prior ablations. Additionally, we also ablate the demon-
stration quality for the model-free baselines, and find that increasing the iteration cost of
the demonstrations by almost 50% does not significantly change the learning curve of OEFD
(Figure E.10), and in both cases, OEFD takes much longer than SAVED to start performing
the task successfully (Figure E.7). We also perform the same study on the model-free RL
baseline algorithm Soft Actor Critic from Demonstrations (SACfD) [103]. We observe that
increasing demonstration length results in somewhat faster learning, and hypothesize this
could be due to the replay buffer having more data to initially train from. We note that
this method has high variance across the runs, and all runs took close to 900 iterations to
converge (Figure E.10) while SAVED converges in less than 10 iterations (Figure E.7). We
also ablate demo quantity for SACfD on navigation task 1 in Figure E.11 and find that
although SACfD has a performance improvement with additional demonstrations, it takes
a few hundred iterations to converge and more than a 100 iterations to even complete the
task, while SAVED converges within 15 iterations (Figure E.7).

APPENDIX E. SAVED: SAFE DEEP MODEL-BASED RL FOR SPARSE COST
ROBOTIC TASKS 240

Figure E.10: SAVED Model-Free RL Demo Quality Ablations on Navigation Task
1: OEFD: We see that the baseline OEFD has similar performance across demonstration
qualities. OEFD takes hundreds of iterations to start performing the task successfully, while
SAVED converges less than 10 iterations; SACfD: We see that the baseline SACfD does
slightly better with worse demonstrations. This could be due to the fact that more samples
are placed in the agent’s replay buffer with longer demonstrations. We note that both cases
take hundreds of iterations to start completing the task, while SAVED starts to the complete
the task almost immediately.

Figure E.11: SACfD Demo Quantity Ablation on Navigation Task 1: We study the ef-
fect of varying demonstration numbers on the model free RL baseline algorithm SACfD [103].
We see that the baseline SACfD has high variance across all demonstration quantities, and
takes roughly similar time to converge in all settings with 50 demonstrations (green) being
the fastest. We also plot the best observed cost in 10,000 iterations across all runs (dashed
blue) and note that unlike OEFD (Figure E.10), the SACfD runs all converge close to this
value.

241

Appendix F

LS3: Latent Space Safe Sets for
Long-Horizon Visuomotor Control of
Sparse Reward Iterative Tasks

In Appendices F.1 and F.2 we discuss algorithmic details and implementation/hyperparam-
eter details respectively for LS3 and all comparisons. We then provide full details regarding
each of the experimental domains and how data is collected in these domains in Appendix F.3.
In Appendix F.4, we present an additional experiment studying the task success rate of LS3

and comparisons evolves as training progresses. Finally, in Appendix F.5 we perform sensi-
tivity experiments and ablations.

F.1 Algorithm Details

In this section, we provide implementation details and additional background information
for LS3 and comparison algorithms.

F.1.1 Latent Space Safe Sets (LS3)

We now discuss additional details for each of the components of LS3, including network
architectures, training data, and loss functions.

Variational Autoencoders: We scale all image inputs to a size of (64, 64, 3) before feeding
them to the β-VAE, which uses a convolutional neural network for fenc and a transpose
convolutional neural network for fdec. We use the encoder and decoder from Hafner et al.
[163], but modify the second convolutional layer in the encoder to have a stride of 3 rather
than 2. As is standard for β-VAEs, we train with a mean-squared error loss combined with
a KL-divergence loss. For a particular observation st ∈ S the loss is

J(θ) = ∥fdec(zt)− st∥22 + βDKL (fenc(zt|st)||N (0, 1)) (F.1)

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 242

where zt ∼ fenc(zt|st) is modeled using the reparameterization trick.

Probabilistic Dynamics: As in Chua et al. [191] we train a probabilistic ensemble of
neural networks to learn dynamics. Each network has two hidden layers with 128 hidden
units. We train these networks with a maximum log-likelihood objective, so for two particular
latent states zt, zt+1 ∈ Z and the corresponding action at ∈ A the loss is as follows for
dynamics model fdyn,θ with parameter θ:

J(θ) = − log fdyn,θ(zt+1|zt, at) (F.2)

When using fdyn for planning, we use the TS-1 method from Chua et al. [191].

Value Functions: As discussed in Section 7.3.3, we train an ensemble of recursively de-
fined value functions to predict long term reward. We represent these functions using fully
connected neural networks with 3 hidden layers with 256 hidden units. Similarly to [106], we
use separate training objectives during offline and online training. During offline training, we
train the function to predict actual discounted cost-to-go on all trajectories in D. Hence, for
a latent vector zt, the loss during offline training is given as follows where V has parameter
θ:

J(θ) =

(
V π
θ (zt)−

T−t∑
i=1

γirt+i

)2

(F.3)

In online training we also store target network V π′
and calculate a temporal difference (TD-1)

error,

J(θ) =
(
V π
θ (zt)− (rt + γV π′

θ′ (zt+1))
)2

(F.4)

where θ′ are the parameters of a lagged target network and π′ is the policy at the timestep
at which θ′ was set. We update the target network every 100 updates. In each of these
equations, γ is a discount factor (we use γ = 0.99). Because all episodes end by hitting a
time horizon, we found it was beneficial to remove the mask multiplier usually used with
TD-1 error losses.

For all simulated experiments we update value functions using only data collected by
the suboptimal demonstrator or collected online, ignoring offline data collected with random
interactions or offline demonstrations of constraint violating behavior.

Constraint and Goal Estimators: We represent constraint indicator fC : Z → {0, 1}
with a neural network with 3 hidden layers and 256 hidden units for each layer with a binary
cross entropy loss with transitions from Dconstraint for unsafe examples and the constraint
satisfying states in D\Dconstraint as safe examples. Similarly, we represent the goal estimator
fG : Z → {0, 1} with a neural network with 3 hidden layers and 256 hidden units. This
estimator is also trained with a binary cross entropy loss with positive examples from Dsuccess

and negative examples sampled from all datasets. For the constraint estimator and goal

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 243

indicator, training data is sampled uniformly from a replay buffer containing Dsuccess, Drand

and Dconstraint.

Safe Set: The safe set classifier fS(·) is represented with neural network with 3 hidden
layers and 256 hidden units. We train the safe set classifier to predict

fS(st) = max(1Sj(st), γSfS(st+1)) (F.5)

using a binary cross entropy loss, where 1Sj(st) is an indicator function indicating whether
st is part of a successful trajectory. Training data is sampled uniformly from a replay buffer
containing all of D. Similar to deep value function learning literature [103, 352, 106], the
safe set is trained to solve the above equation by fixed point iteration: the safe set is used
to construct its own targets, which are then used to update the safe set before using the
updated safe set to construct new targets.

Cross Entropy Method: We use the cross entropy method to solve the optimization
problem in equation 7.2. We build on the implementation of the cross entropy method pro-
vided in [346], which works by sampling ncandidate action sequences from a diagonal Gaussian
distribution, simulating each one nparticle times over the learned dynamics, and refitting the
parameters of the Gaussian on the nelite trajectories with the highest score under equation 7.2
where constraints are implemented by assigning large negative rewards to trajectories which
violate either the safe set constraint or user-specified constraints. This process is repeated
for ncem iters to iteratively refine the set of sampled trajectories to optimize equation 7.2. To
improve the optimizer’s efficiency on tasks where subsequent actions are often correlated,
we sample a proportion (1− prandom) of the optimizer’s candidates at the first iteration from
the distribution it learned when planning the last action. To avoid local minima, we sample
a proportion prandom uniformly from the action space. See Chua et al. [191] for more details
on the cross entropy method as applied to planning over neural network dynamics models.

As mentioned in Section 7.3.4, we set δS for the safe set classifier fS adaptively by checking
whether there exists at least one plan which satisfies the safe set constraint at each CEM
iteration. If no such plan exists, we multiply δS by 0.8 and re-initialize the optimizer at the
first CEM iteration with the new value of δS. We initialize δS = 0.8.

F.1.2 Soft Actor-Critic from Demonstrations (SACfD)

We utilize the implementation of the Soft Actor Critic algorithm from [350] and initialize
the actor and critic from demonstrations but keep all other hyperparameters the same as
the default in the provided implementation. We create a new dataset Ddemos ⊊ D using only
data from the suboptimal demonstrator, and use the data from Ddemos to behavior clone the
actor and initialize the critic using offline bellman backups. We use the same mean-squared
loss function for behavior cloning as for the behavior clone policy, but only train the mean
of the SAC policy. Precisely, we use the following loss for some policy π with parameter

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 244

θ: L(θ,Ddemos) =
∑

τi∈Ddemos

∑T
t=1 ||µθ(sit) − ait||2 where sit and ait are the state and action

at timestep t of trajectory τi and π(·|st) ∼ N (µθ(st), σϕ(st)). We also experimented with
training the SAC critic on all data provided to LS3 inD but found that this hurt performance.
We use the architecture from [350] and update neural network weights using an Adam
optimizer with a learning rate of 3×10−4. The only hyperparameter for SACfD that we tuned
across environments was the reward penalty λ which was imposed upon constraint violations.
For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20} and report the
highest performing value. Accordingly, we use λ = −3 for all experiments except the reacher
task, for which we used λ = −1. We observed that higher values of λ resulted in worse task
performance without significant increase in constraint satisfaction. We hypothesize that
since the agent is frozen in the environment upon constraint violations, the resulting loss of
rewards from this is sufficient to enable SACfD to avoid constraint violations.

F.1.3 Soft Actor-Critic from Demonstrations with Learned
Recovery Zones (SACfD+RRL)

We build on the implementation of the Recovery RL algorithm [46] provided in [353]. We
train the safety critic on all offline data from D. Recovery RL uses SACfD as its task
policy optimization algorithm, and introduces two new hyperparameters: (γrisk, ϵrisk). For
each of the simulation environments, we evaluated SACfD+RRL across 3-4 (γrisk, ϵrisk) set-
tings and reported results from the highest performing run. Accordingly, for the navigation
environment, we use: (γrisk = 0.95, ϵrisk = 0.8). For the reacher environment, we use
(γrisk = 0.55, ϵrisk = 0.7), and we use (γrisk = 0.75, ϵrisk = 0.7) for the sequential pushing
environment. For the cable routing environment, we use (γrisk = 0.55, ϵrisk = 0.7).

F.1.4 Advantage Weighted Actor-Critic (AWAC)

To provide a comparison to state of the art offline reinforcement learning algorithms, we eval-
uate AWAC [194] on the experimental domains in this work. We use the implementation of
AWAC from [354]. For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20}
and report the highest performing value. Accordingly, we use λ = −1 for all experiments.
We used the default settings from [354] for all other hyperparameters.

F.2 LS3 Implementation Details

In Table F.1, we present the hyperparameters used to train and run LS3. We present details
for the constraint thresholds δC and δS. We also present the planning horizon H and VAE KL
regularization weight β. We present the number of particles sampled over the probabilistic
latent dynamics model for a fixed action sequence nparticles, which is used to provide an
estimated probability of constraint satisfaction and expected rewards. For the cross entropy
method, we sample ncandidate action sequences at each iteration, take the best nelite action

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 245

Table F.1: Hyperparameters for LS3

Parameter Navigation Reacher Sequential Pushing Cable Routing

δS 0.8 0.5 0.8 0.8
δC 0.2 0.2 0.2 0.2
β 1× 10−6 1× 10−6 1× 10−6 1× 10−6

H 5 3 3 5
nparticle 20 20 20 20
ncandidate 1000 1000 1000 2000
nelite 100 100 100 200

ncem iters 5 5 5 5
d 32 32 32 32

prandom 1.0 1.0 1.0 0.3
Frame Stacking No Yes No No

Batch Size 256 256 256 256
γ 0.99 0.99 0.99 0.99
γS 0.3 0.3 0.9 0.9

sequences and then refit the sampling distribution. This process iterates ncem iters times. We
also report the latent space dimension d, whether frame stacking is used as input, training
batch size, and discount factor γ. Finally, we present values of the safe set bellman coefficient
γS. For all domains, we scale RGB observations to a size of (64, 64, 3). For all modules we
use the Adam optimizer with a learning rate of 1 × 10−4, except for dynamics which use a
learning rate of 1× 10−3.

F.3 Experimental Domain Details

F.3.1 Navigation

The visual navigation domain has 2-D single integrator dynamics with additive Gaussian
noise sampled from N (0, σ2I2) where σ = 0.125. The start position is (30, 75) and goal
set is B2((150, 75), 3), where B2(c, r) is a Euclidean ball centered at c with radius r. The
demonstrations are created by guiding the agent north for 20 timesteps, east for 40 timesteps,
and directly towards the goal until the episode terminates. This tuned controller ensures that
demonstrations avoid the obstacle and also reach the goal set, but they are very suboptimal.
To collect demonstrations of constraint violating behavior, we randomly sample starting
points throughout the environment, move in a random direction for 15 time steps, and
then move directly towards the obstacle. We do not collect additional data for Drand in
this environment. We collect 50 demonstrations of successful behaviors and 50 trajectories
containing constraint violating behaviors.

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 246

F.3.2 Reacher

The reacher domain is built on the reacher domain provided in the DeepMind Control Suite
from [196]. The robot is represented with a planar 2-link arm and the agent supplies torques
to each of the 2 joints. Because velocity is not observable from a single frame, algorithms
are provided with several stacked frames as input. The start position of the end-effector
is fixed and the objective is to navigate the end effector to a fixed goal set on the top left
of the workspace without allowing the end effector to enter a large red stay-out zone. To
collect data from Dconstraint we randomly sample starting states in the environment, and
then use a PID controller to move towards the constraint. To sample random data that will
require the agent to model velocity for accurate prediction, we start trajectories at random
places in the environment, and then sample each action from a normal distribution centered
around the previous action, at+1 ∼ N (at, σ

2I) for σ2 = 0.2. We collect 50 demonstrations
of successful behavior, 50 trajectories containing constraint violations and 100 short (length
20) trajectories or random data.

F.3.3 Sequential Pushing

This sequential pushing environment is implemented in MuJoCo [61], and the robot can
specify a desired planar displacement a = (∆x,∆y) for the end effector position. The goal is
to push all 3 blocks backwards by at least some displacement on the table, but constraints
are violated if blocks are pushed backwards off of the table. For the sequential pushing
environment, demonstrations are created by guiding the end effector to the center of each
block and then moving the end effector in a straight line at a low velocity until the block is
in the goal set. This same process is repeated for each of the 3 blocks. Data of constraint
violations and random transitions forDconstraint andDrand are collected by randomly switching
between a policy that moves towards the blocks and a policy that randomly samples from
the action space. We collect 500 demonstrations of successful behavior and 300 trajectories
of random and/or constraint violating behavior.

F.3.4 Physical Cable Routing

This task starts with the robot grasping one endpoint of the red cable, and it can make
(∆x,∆y) motions with its end effector. The goal is to guide the red cable to intersect with the
green goal set while avoiding the blue obstacle. The ground-truth goal and obstacle checks
are performed with color masking. LS3 and all baselines are provided with a segmentation
mask of the cable as input. The demonstrator generates trajectories Dsuccess by moving the
end effector well over the obstacle and to the right before executing a straight line trajectory
to the goal set. This ensures that it avoids the obstacle as there is significant margin to
the obstacle, but the demonstrations may not be optimal trajectories for the task. Random
trajectories Drand are collected by following a demonstrator trajectory for some random
amount of time and then sampling from the action space until the episode hits the time

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 247

horizon. We collect 420 demonstrations of successful behavior and 150 random trajectories.
We use data augmentation to increase the size of the dataset used to train fenc and fdec,
taking the images in D and creating an expanded dataset by adding randomly sampled affine
translations and perspective shifts, until |DVAE| > 100000.

F.4 Additional Results

We additionally study how the task success rate of LS3 and comparisons evolves as training
progresses in Figure F.1. Precisely, we checkpoint each policy after each training trajectory
and evaluate it over 10 rollouts for each of the 10 random seeds (100 total trials per data-
point). We find that LS3 achieves a much higher task success rate than comparisons early
on in training, and maintains a higher task success rate throughout the course of training
on all simulation domains.

F.5 Sensitivity Experiments

Key hyperparameters in LS3 are the constraint threshold δC and safe set threshold δS, which
control whether the agent decides predicted states are constraint violating or in the safe set
respectively. We ablate these parameters for the Sequential Pushing environment in figures-
ls3-ls3 F.2 and F.3. We find that lower values of δC made the agent less likely to violate
constraints as expected. Additionally, we find that higher values of δS helped constrain
exploration more effectively, but too high of a threshold led to poor performance suffered as
the agent exploited local maxima in the safe set estimation. Finally, we ablate the planning
horizon H for LS3 (Figure F.4) and find that when H is too high, Latent Space Safe Sets
(LS3) can explore too aggressively away from the safe set, leading to poor performance.
When H is lower, LS3 explores much more stably, but if it is too low (ie. H = 1), LS3 is
eventually unable to explore significantly new plans, while slightly increasing H (ie. H = 3)
allows for continuous improvement in performance.

0 50 100 150 200 250
Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Pointbot Navigation

0 50 100 150 200 250
Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0
Reacher

0 100 200 300 400 500
Training Trajectories

0.0

0.2

0.4

0.6

0.8

Sequential Pushing

SACfD AWAC SACfD + RRL LS3 (BC SS) LS3 (SS) Ours: LS3

Figure F.1: Task Success Rate: Learning curves showing mean and standard error of task
success rate of checkpointed policies over 10 random seeds (and 10 rollouts per seed). We
see that LS3 has a much higher task success rate than comparisons early on, and maintains
a success rate at least as high as comparisons throughout training in all environments.

APPENDIX F. LS3: LATENT SPACE SAFE SETS FOR LONG-HORIZON
VISUOMOTOR CONTROL OF SPARSE REWARD ITERATIVE TASKS 248

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Constraint Threshold Sweep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Task Success Rate

0.00

0.05

0.10

0.15

0.20

Constraint Violation Rate

Demonstrations No Constraints = 0.8 = 0.5 = 0.3 = 0.1 = 0.05

Figure F.2: Hyperparameter Sweep for LS3 Constraint Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings of δC on the
sequential pushing environment. As expected, we see that without avoiding latent space
obstacles (No Constraints) the agent violates constraints more often, while lower thresholds
(meaning the planning algorithm is more conservative) generally lead to fewer violations.

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Safe Set Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Task Success Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Constraint Violation Rate

Demonstrations = 1.0 = 0.8 = 0.5 = 0.2 No Safe Set

Figure F.3: Hyperparameter Sweep for LS3 Safe Set Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings of δS on the
sequential pushing environment. We see that after offline training, the agent can successfully
complete the task only when δS is high enough to sufficiently guide exploration, and that
runs with higher values of δS are more successful overall.

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Planning Horizon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Task Success Rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Constraint Violation Rate

Demonstrations H = 10 H = 8 H = 5 H = 3 H = 1

Figure F.4: Hyperparameter Sweep for LS3 Planning Horizon: Plots show mean
and standard error over 10 random seeds for experiments with different settings of H on
the sequential pushing environment. We see that when the planning horizon is too high the
agent cannot reliably complete the task due to modeling errors. When the planning horizon
is too low, it learns quickly but cannot significantly improve because it is constrained to the
safe set. We found H = 3 to balance this trade off best.

249

Appendix G

Monte Carlo Augmented Actor-Critic
for Sparse Reward Deep RL from
Suboptimal Demonstrations

G.1 Implementation Details

For all algorithms, all Q functions and policies are approximated using deep neural networks
with 2 hidden layers of size 256. They are all updated using the Adam optimizer from [355].

G.1.1 Behavioral Cloning

We used a straightforward implementation of behavioral cloning, regressing with a mean
square error loss. For all experiments learners were provided with the same number of
demonstrators as the other algorithms and optimized for 10000 gradient steps using a learning
rate of 1× 10−4.

G.1.2 Twin Delayed Deep Deterministic Policy Gradients

We use the author implementation of TD3 from [62], modifying it to implement MCAC. In
order to maintain the assumption about complete trajectories described in Section 8.2, we
modify the algorithm to only add to the replay buffer at the end of sampled trajectories,
but continue to update after each timestep. We found the default hyperparameters from the
repository to be sufficient in all environments.

G.1.3 Soft Actor Critic

For all SAC experiments we used a modified version of the SAC implementation from Tandon
[350] which implements SAC with a double-Q critic update function to combat Q overesti-
mation. Additionally, we modify the algorithm to satisfy the trajectory assumption as in

APPENDIX G. MONTE CARLO AUGMENTED ACTOR-CRITIC FOR SPARSE
REWARD DEEP RL FROM SUBOPTIMAL DEMONSTRATIONS 250

Section G.1.2. We mostly use the default hyperparameters from [193], but tuned α and τ .
Parameter choices are shown in Table G.1.

Table G.1: Hyperparameters for SAC

Parameter Navigation MuJoCo Robosuite

Learning Rate 3× 10−4 3× 10−4 3× 10−4

Automatic Entropy Tuning False False False
Batch Size 256 256 256

Hidden Layer Size 256 256 256
Hidden Layers 2 2 2

Updates Per Timestep 1 1 1
α 0.2 0.1 0.05
γ 0.99 0.99 0.99
τ 5× 10−2 5× 10−3 5× 10−2

G.1.4 Overcoming Exploration with Demonstrations

We implement the algorithm from [208] on top of the implementation of TD3 described in
Section G.1.2. Because it would provide an unfair advantage over comparisons, the agent
is not given the ability to reset to arbitrary states in the replay buffer. Since our setting is
not goal-conditioned, our implementation does not include hindsight experience replay. For
the value λ balancing the actor critic policy update loss and behavioral cloning loss, we use
λ = 1.0.

G.1.5 Advantage Weighted Actor Critic

For AWAC experiments we use the implementation from [356], once again modifying it to
maintain the assumption about complete trajectories and to implement MCAC. We found
the default hyperparameter values to be sufficient in all settings.

251

Appendix H

Recovery RL: Safe Reinforcement
Learning with Learned Recovery
Zones

The supplementary material is structured as follows: In Section H.1 we discuss brief the-
oretical motivation for Recovery RL and possible variants and in Section H.2 we discuss
algorithmic details for Recovery RL and comparison algorithms. In Section H.3, we report
additional metrics for all domains and comparisons and in Section H.4 we visualize the safety
critic for all navigation experiments. We provide additional details about algorithm imple-
mentation in Section H.5, and on domain-specific algorithm hyperparameters in Section H.6.
Finally, we report simulation and physical environment details in Section H.7.

H.1 Recovery RL Theoretical Motivation and

Variants

In this section, we will briefly and informally discuss additional properties of Recovery RL
and then discuss some variants of Recovery RL.

H.1.1 Theoretical Motivation

Recall that the task policy is operating in an environment with modified dynamics:

P πrec
ϵrisk

(s′|s, a) =

{
P (s′|s, a) (s, a) ∈ T πsafe
P (s′|s, aπrec) (s, a) ∈ T πrec

(H.1)

However, P πrec
ϵrisk

changes over time (even within the same episode) and analysis of policy
learning in non-stationary MDPs is currently challenging and ongoing work. Assuming that
P πrec
ϵrisk

is stationary following the pretraining phase, it is immediate that πtask is operating

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 252

in a stationary MDPM′ = (S,A, P πrec
ϵrisk

, R(·, ·), γ, µ), and therefore all properties of πtask in
stationary MDPs apply inM′. Observe that iterative improvement for πtask inM′ implies
iterative improvement for π in M, since both MDPs share the same reward function, and
an action taken by πtask in M′ is equivalent to πtask trying the action in M before being
potentially caught by πrec.

H.1.2 Safety Value Function

One variant of Recovery RL can use a safety critic that is a state-value function V π
risk(s)

instead of a state-action-value function. While this implementation is simpler, the Qπ
risk

version used in this work can switch to a safe action instead of an unsafe one instead of
waiting to reach an unsafe state to start recovery behavior.

H.1.3 Reachability-based Variant

Another variant can use the learned dynamics model in the model-based recovery policy to
perform a one (or k) step lookahead to see if future states-action tuples are in T πsafe. While
Qπ

risk in principle carries information about future safety, this is an alternative method to
check future states.

H.2 Algorithm Details

H.2.1 Recovery RL

Recovery Policy: In principle, any off-policy reinforcement learning algorithm can be used
to learn the recovery policy πrec. We explore both model-free and model-based reinforcement
learning algorithms to learn πrec. For model-free recovery, we perform gradient descent on the
safety critic Q̂π

ϕ,risk(s, πrec(s)), as in the popular off-policy reinforcement learning algorithm
DDPG [104]. We choose the DDPG-style objective function over alternatives since we do
not wish the recovery policy to explore widely. For model-based recovery, we perform model
predictive control (MPC) over a learned dynamics model fθ by minimizing the following
objective:

Lθ(st, at) = E

[
H∑
i=0

Q̂π
ϕ,risk(ŝt+i, at+i)

]
(H.2)

where ŝt+i+1 ∼ fθ(ŝt+i, at+i), ŝt = st, and â = at. For lower dimensional tasks, we utilize the
PETS algorithm from Chua et al. [86] to plan over a learned stochastic dynamics model while
for tasks with visual observations, we utilize a VAE based latent dynamics model. In the
offline pretraining phase, when model-free recovery is used, batches are sampled sequentially
from Doffline and each batch is used to (1) train Q̂π

ϕ,risk and (2) optimize the DDPG policy to

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 253

minimize the current Q̂π
ϕ,risk. When model-based recovery is used, the data in Doffline is first

used to learn dynamics model fθ using either PETS (low dimensional tasks) or latent space
dynamics (image-based tasks). Then, Q̂π

ϕ,risk is separately optimized to over batches sampled
from Doffline. During the online RL phase, all methods are updated online using on-policy
data from composite policy π.

Task Policy: In experiments, we utilize the popular maximum entropy RL algorithm
SAC [103] to learn πtask, but note that any RL algorithm could be used to train πtask. In
general πtask is only updated in the online RL phase. However, in certain domains where
exploration is challenging, we pre-train SAC on a small set of task-specific demonstrations
to expedite learning. To do this, like for training the model-free recovery policy, we sample
batches sequentially from Doffline and each batch is used to (1) train Q̂π

ϕ,risk and (2) optimize

the SAC policy to minimize the current Q̂π
ϕ,risk. To ensure that πtask learns which actions

result in recovery behavior, we train πtask on transitions (st, a
πtask
t , st+1) even if πrec was

executed.

H.2.2 Unconstrained

We use an implementation of the popular model-free reinforcement learning algorithm Soft
Actor Critic [350, 103], which maximizes a combination of task reward and policy entropy
with a stochastic actor function.

H.2.3 Lagrangian Relaxation (LR)

In this section we will briefly motivate and derive the Lagrangian relaxation comparison. As
before, we desire to solve the following constrained optimization problem:

min
π
Lpolicy(s; π) s.t. Ea∼π(·|s) [Qπ

risk(s, a)] ≤ ϵrisk

where Lpolicy is a policy loss function we would like to minimize (e.g. from SAC). As in prior
work in solving constrained optimization problems, we can solve the following unconstrained
problem instead:

max
λ≥0

min
π
Lpolicy(s; π) + λ(Ea∼π(·|s) [Qπ

risk(s, a)]− ϵrisk)

We aim to find a saddle point of the Lagrangian function via dual gradient descent. In
practice, we use samples to approximate the expectation in the objective by sampling an
action from π(·|s) each time the objective function is evaluated.

H.2.4 Risk Sensitive Policy Optimization (RSPO)

We implement Risk Sensitive Policy Optimization by implementing the Lagrangian Relax-
ation method as discussed in Section H.2.3 with a sequence of multipliers which decrease

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 254

over time. This encourages initial constraint satisfaction followed by gradual increase in pri-
oritization of the task objective and is inspired by the Risk Sensitive Q-learning algorithm
from [235].

H.2.5 Safety Q-Functions for Reinforcement Learning (SQRL)

This comparison is identical to LR, except it additionally adds a Q-filter, that performs
rejection sampling on the policy’s distribution π(·|st) until it finds an action at such that
Qπ

risk(st, at) ≤ ϵrisk.

H.2.6 Reward Penalty (RP)

The reward penalty comparison simply involves subtracting a constant penalty λ from the
task reward function when a constraint is violated. This is the only comparison algorithm
other than Unconstrained which does not use the learned Qπ

risk or the constraint demos, but
is included due to its surprising efficacy and simplicity.

H.2.7 Off Policy Reward Constrained Policy Optimization
(RCPO)

In on-policy RCPO [195], the policy is optimized via policy gradient estimators by maxi-
mizing Eπ [

∑∞
t=0 (γ

tR(s, a)− λγtriskD(s, a))]. In this work, we use D(s, a) = Qπ
risk(s, a) and

update the Lagrange multiplier λ as in LR. We could also use D(s, a) = C(s), which would
be almost identical to the RP comparison. Instead of optimizing this with on-policy RL, we
use SAC to optimize it in an off-policy fashion to be consistent with the other comparisons.

H.3 Additional Experimental Metrics

In Figure H.1 and Figure H.2, we report cumulative task successes and constraint violations
for all methods for all simulation experiments. We report these statistics for the image-
based obstacle avoidance physical experiment in Figure H.4. We observe that Recovery RL
is generally very successful across most domains with relatively few violations. Some more
successful comparisons tend to have many more constraint violations.

Additionally, in Figures H.3 and H.5, we plot the cumulative reward attained by the agent
for Recovery RL and all comparison algorithms to evaluate whether Recovery RL learns more
efficiently than comparisons while also learning safely. For all plots, we show total reward
attained in each episode smoothed over a 100 episode length window. Additionally, we do
not show results when constraints are violated to prevent negative bias for algorithms which
may violate constraints very frequently, which accounts for gaps in the plot, especially for the
unconstrained algorithm which tends to violate constraints very frequently. Thus, the plots
illustrate the attained reward for all algorithms conditioned on not violating constraints,

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 255

Figure H.1: Simulation Experiments Cumulative Successes: We plot the cumulative
task successes for each algorithm in each simulation domain, with results averaged over 10
runs for all algorithms. We observe that Recovery RL (green), is generally among the most
successful algorithms. In the cases that it has lower successes, we observe that it is safer
(Figure H.2). We find that Recovery RL has a higher or comparable task success rate to
the next best algorithm on all environments except for the Object Extraction (Dynamic
Obstacle) environment.

which provides a good measure on the quality of solutions found. We find that in addition
to the safe learning shown by Recovery RL as evidenced by the results in Figure H.2, the
results in Figure H.3 and Figure H.5 indicate that when Recovery RL satisfies constraints,
it generally converges to higher quality solutions more quickly compared to the comparison
algorithms. These results provide further evidence that the way Recovery RL separates the
often conflicting objectives of task directed optimization and constraint satisfaction allows
it to not only be safer during learning, but also learn more efficiently.

In Table H.1, we report empirical results for when constraint violations occur in Table H.1.
Results suggest that in most tasks, the recovery policy is already activated when violations
do occur. Thus, in these failure cases, Recovery RL is able to successfully predict future
violations, but is not able to prevent them. This is encouraging, and suggests that for
environments in which a recovery policy is very challenging to learn, Recovery RL could still
be used to query a human supervisor for interventions.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 256

Figure H.2: Simulation Experiments Cumulative Violations: We plot the cumulative
constraint violations for each algorithm in each simulation domain, with results averaged
over 10 runs for all algorithms. We observe that Recovery RL (green), is among the safest
algorithms across all domains. In the cases where it is less safe than a comparison, it has a
higher task success rate (Figure H.1).

H.4 Safety Critic Visualizations

We visualize the safety critic after pretraining for the navigation domains in Figure H.7 and
observe that increasing γrisk results in a more gradual increase in regions near obstacles.
Increasing γrisk carries more information about possible future violations in Qπ

risk(s, a). How-
ever, increasing γrisk too much causes the safety critic to bleed too much throughout the
state-action space as in the right-most column, making it difficult to distinguish between
safe and unsafe states.

H.5 Implementation Details

Here we overview implementation and hyperparameter details for Recovery RL and all com-
parisons. The recovery policy (πrec) and task policy (πtask) are instantiated and trained in
both the offline phase, in which data from Doffline is used to pre-train the recovery policy,
and the online phase, in which Recovery RL updates the task policy with its exploration
constrained by the learned safety critic and recovery policy. The safety critic and recovery
policy are also updated online.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 257

Figure H.3: Simulation Experiments Reward Learning Curve: We show the total
reward attained in each episode smoothed over a 100 episode length window for each simu-
lation domain, with results averaged over 10 runs for all algorithms. We do not show results
when constraints are violated to prevent negative bias for algorithms which may violate con-
straints very frequently, which accounts for gaps in the plot, especially for the unconstrained
algorithm which tends to violate constraints very frequently. Thus, the plots illustrate the
attained reward for all algorithms conditioned on not violating constraints, which provides a
good measure on the quality of solutions found. We find that on all but the dynamic obsta-
cle domain, Recovery RL is able to converge more quickly to higher quality solutions with
respect to the task reward function compared to comparisons. This indicates that Recovery
RL is able to learn more efficiently, in addition to more safely, compared to comparison
algorithms.

For all experiments, we build on the PyTorch implementation of Soft Actor Critic [228]
provided in [350] and all trained networks are optimized with the Adam optimizer with a
learning rate of 3e − 4. We first overview the hyperparameters and training details shared
across Recovery RL and comparisons in Section H.5.2 and then discuss the implementation
of the recovery policy for Recovery RL in Section H.5.3.

H.5.1 Network Architectures

For low dimensional experiments, we represent the critic with a fully connected neural net-
work with 2 hidden layers of size 256 each with ReLU activations. The policy is also rep-
resented with a fully connected network with 2 hidden layers of size 256 each, uses ReLU
activations, and outputs the parameters of a conditional Gaussian. We use a deterministic

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 258

Figure H.4: Physical Experiment Successes and Violations: We plot the cumulative
constraint violations and task successes for the image-based obstacle avoidance task on the
dVRK for all 3 runs of each algorithm. We observe that Recovery RL is generally both more
successful and safer than LR and unconstrained.

Figure H.5: Physical Experiment Reward Learning Curve: We show the total reward
attained in each episode smoothed over a 10 episode length window with results from 3 runs
for all algorithms. We do not show results when constraints are violated to prevent negative
bias for algorithms which may violate constraints very frequently, which accounts for gaps
in the plot or explains why some plots have a single line (only one out of 3 runs is constraint
satisfying) . Note that the Unconstrained algorithm does not appear in the plot as it never
makes progress on the harder initial configuration of the task. Thus, the plots illustrate the
attained reward for all algorithms conditioned on not violating constraints, which provides
a good measure on the quality of solutions found. We find that Recovery RL is able to
converge more quickly to higher quality solutions with respect to the task reward function
compared to comparisons. This indicates that Recovery RL is able to learn more efficiently,
in addition to more safely, compared to comparison algorithms.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 259

Table H.1: Constraint Violations Breakdown: We report the proportion of constraint
violations for each environment that occur when the recovery policy is activated for Recovery
RL (format is mean ± standard error). If most constraint violations occur when the recovery
policy is active, this indicates that the safety critic is sufficiently accurate to detect that the
recovery policy must be activated, but may not provide sufficient information to avoid con-
straint violations. We note that if the safety critic detects the need for recovery behavior too
late, then these errors are attributed to the recovery policy. For the both Maze environments
and the Object Extraction environment, most constraint violations occur when the recovery
policy is activated. In Navigation 1, none occur when the recovery policy is activated, but in
this environment constraints are almost never violated. In the Image-Based obstacle avoid-
ance tasks, most violations occur when the recovery policy is not activated, which indicates
that the bottleneck in this task is the quality of the safety critic. In Navigation 2, Recovery
RL never violates constraints and only model-free recovery was run for Recovery RL on the
physical robot. In the Dynamic Obstacle Object Extraction environment, we observe a more
even combination of low safety critic values and recovery errors during constraint violations.

Navigation 1 Navigation 2 Maze Object Extraction Object Extraction (Dynamic Obstacle) Image Maze Image Obstacle Avoidance

MF Recovery N/A N/A 0.828± 0.115 0.954± 0.024 0.550± 0.049 0.717± 0.156 0.000± 0.000
MB Recovery N/A 1.000± 0.000 0.858± 0.039 0.98344± 0.01655 0.269± 0.055 0.583± 0.059 N/A

version of the same policy for the model-free recovery policy. For image-based experiments,
we represent the critic with a convolutional neural network with 3 convolutional layers to
embed the input image and 2 fully connected layers to embed the input action. Then, these
embeddings are concatenated and fed through two more fully connected layers. All fully
connected layers have 256 hidden units each. We utilize 3 convolutional layers, with 128, 64,
and 16 filters respectively. All layers utilize a kernel size of 3, stride of 2, and padding of
1. ReLU activations are used between all layers, and batch normalization units are added
for the convolutional layers. For all algorithms which utilize a safety critic (Recovery RL,
LR, SQRL, RSPO, RCPO), Qπ

risk is represented with the same architecture as the task critic
except that a sigmoid activation is added at the output head to ensure that outputs are
on [0, 1] in order to effectively learn the probability of constraint violation. The task and
model-free recovery policies also use the same architectures for image-based experiments,
except that they output the parameters of a conditional Gaussian over the action space or
an action, respectively.

H.5.2 Global Training Details

To prevent overestimation bias, we train two copies of all critic networks to compute a pes-
simistic (min for task critic, max for safety critic) estimate of the Q-values. Each critic is
associated with a target network, and Polyak averaging is used to smoothly anneal the pa-

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 260

rameters of the target network. We use a replay buffer of size 1000000 and target smoothing
coefficient τ = 0.005 for all experiments except for the manipulation environments, in which
a replay buffer of size 100000 and target smoothing coefficient τ = 0.0002. All networks are
trained with batches of 256 transitions. Finally, for SAC we utilize entropy regularization
coefficient α = 0.2 and do not update it online. We take a gradient step with batch size 1000
to update the safety critic after each timestep. We also update the model free recovery policy
if applicable with the same batch at each timestep. If using a model-based recovery policy,
we update it for 5 epochs at the end of each episode. For pretraining, we train the safety
critic and model-free recovery policy for 10, 000 steps. We train the model-based recovery
policy for 50 epochs.

H.5.3 Recovery Policy Training Details

In this section, we describe the neural network architectures and training procedures used
by the recovery policies for all tasks.

Model-Free Recovery

The model-free recovery policy uses the same architecture as the task policy for all tasks, as
described in Section H.5.1. However, it directly outputs an action in the action space instead
of a distribution over the action space and greedily minimizes Q̂π

ϕ,risk rather than including
an entropy regularization term as in [103]. The recovery policy is trained at each timestep
on a batch of 1000 samples from the replay buffer.

Model-Based Recovery Training Details

For the non-image-based model-based recovery policy, we use PETS [86, 357], which trains
and plans over a probabilistic ensemble of neural networks. We use an ensemble of 5 neural
networks with 3 hidden layers of size 200 and swish activations (except at the output layer) to
output the parameters of a conditional Gaussian distribution. We use the TS-∞ trajectory
sampling scheme from Chua et al. [86] and optimize the MPC optimization problem with 400
samples, 40 elites, and 5 iterations for all environments. For image-based tasks, we utilize a
VAE based latent dynamics model as in Nair, Savarese, and Finn [167]. We train the encoder,
decoder, and dynamics model jointly where the encoder and decoder and convolutional neural
networks and the forward dynamics model is a fully connected network. We follow the same
architecture as in Nair, Savarese, and Finn [167]. For the encoder we utilize the following
convolutional layers (channels, kernel size, stride): [(32, 4, 2), (32, 3, 1), (64, 4, 2), (64,
3, 1), (128, 4, 2), (128, 3, 1), (256, 4, 2), (256, 3, 1)] followed by fully connected layers
of size [1024, 512, 2L] where L is the size of the latent space (predict mean and variance).
All layers use ReLU activations except for the last layer. The decoder takes a sample
from the latent space of dimension L and then feeds this through fully connected layers
[128, 128, 128] which is followed by de-convolutional layers (channels, kernel size, stride):

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 261

Table H.2: Hyperparameters for Recovery RL and comparisons for all domains

LR RP RCPO MF Recovery MB Recovery
Navigation 1 (0.8, 0.3, 5000) 1000 (0.8, 0.3, 1000) (0.8, 0.3) (0.8, 0.3, 5)
Navigation 2 (0.65, 0.2, 1000) 3000 (0.65, 0.2, 5000) (0.65, 0.2) (0.65, 0.2, 5)

Maze (0.5, 0.15, 100) 50 (0.5, 0.15, 50) (0.5, 0.15) (0.5, 0.15, 15)
Object Extraction (0.75, 0.25, 50) 50 (0.75, 0.25, 50) (0.75, 0.25) (0.85, 0.35, 15)

Object Extraction (Dyn. Obstacle) (0.85, 0.25, 20) 25 (0.85, 0.25, 10) (0.85, 0.35) (0.85, 0.25, 15)
Image Maze (0.65, 0.1, 10) 20 (0.65, 0.1, 20) (0.65, 0, 1) (0.6, 0.05, 10)

Image Obstacle Avoidance (0.55, 0.05, 1000) N/A N/A (0.55, 0.05) N/A

Table H.3: Hyperparameters for Recovery RL and all comparisons.

Algorithm Name Hyperparameter Format
LR (γrisk, ϵrisk, λ)
RP λ

RCPO (γrisk, ϵrisk, λ)
MF Recovery (γrisk, ϵrisk)
MB Recovery (γrisk, ϵrisk, H)

[(128, 5, 2), (64, 5, 2), (32, 6, 2), (3, 6, 2)]. All layers again use ReLU activations except for the
last layer, which uses a Sigmoid activation. For the forward dynamics model, we use a fully
connected network with layers [128, 128, 128, L] with ReLU activations on all but the final
layer.

H.6 Environment Specific Algorithm Parameters

We use the same γrisk and ϵrisk for LR, RSPO, SQRL, and RCPO. For LR, RSPO, and SQRL,
we find that the initial choice of λ strongly affects the overall performance of this algorithm
and heavily tune this. We use the same values of λ for LR and SQRL, and use twice the best
value found for LR in as an initialization for the λ-schedule in RSPO. We also heavily tune
λ for RP and RCPO. These values are shown for each environment in Tables H.3 and H.2.

H.7 Environment Details

In this section, we provide additional details about each of the environments used for eval-
uation.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 262

H.7.1 Navigation Environments

The Navigation 1 and 2 environments have linear Gaussian dynamics and are built from
scratch while the Maze environment is built on the Maze environment from [167]. In all
navigation environments, offline data is collected by repeatedly initializing the pointmass
agent randomly in the environment and executing controls to make it collide with the nearest
obstacle.

1. Navigation 1 and 2: This environment has single integrator dynamics with additive
Gaussian noise sampled from N (0, σ2I2) where σ = 0.05 and drag coefficient 0.2. The
start location is sampled from N

(
(−50, 0)⊤, I2

)
and the task is considered successfully

completed if the agent gets within 1 unit of the origin. We use negative Euclidean
distance from the goal as a reward function. Methods that use a safety critic are
given 8000 transitions of data for offline pretraining. For Navigation 1, 455 of these
transitions contain constraint violating states, while in Navigation 2, 778 of these
transitions contain constraint violating states.

2. Maze: This environment is implemented in MuJoCo and we again use negative Eu-
clidean distance from the goal as a reward function. Methods that use a safety critic are
given 10, 000 transitions of data for offline pretraining, 1163 of which contain constraint
violating states.

H.7.2 Manipulation Environments

We build two manipulation environments on top of the cartgripper environment in the visual
foresight repository [2]. The robot can translate in cardinal directions and open/close its
grippers. In manipulation environments, offline data is collected by tuning a proportional
controller to guide the robot end effector towards the objects. For the offline constraint
violations, Gaussian noise is added to the controls when the end effector is sufficiently close
to the objects to increase the likelihood of constraint violations. Additionally, to seed the
task critic function for SAC to ease exploration for all algorithms, we utilize the same PID
controller to collect task demos illustrating the red object being successfully lifted by auto-
matically opening and closing the gripper when the end effector is sufficiently close to the
red object.

1. Object Extraction: This environment is implemented in MuJoCo, and the reward
function is −1 until the object is grasped and lifted, at which point it is 0 and the
episode terminates. Constraint violations are determined by checking whether any
object’s orientation is rotated about the x or y axes by at least 15 degrees. All methods
that use a safety critic are given 20, 000 transitions of data for offline pretraining, 363
of which contain constraint violating states. All methods are given 1000 transitions of
task demonstration data to pretrain the task policy’s critic function.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 263

2. Object Extraction (Dynamic Obstacle): This environment is implemented in
MuJoCo, and the reward function is −1 until the object is grasped and lifted, at
which point it is 0 and the episode terminates. Constraint violations are determined
by checking whether any object’s orientation is rotated about the x or y axes by at
least 15 degrees. Additionally, there is a distractor arm that is moving back and forth
in the workspace in a periodic fashion. Arm collisions are also considered constraint
violations. All methods that use a safety critic are given 20, 000 transitions of data for
offline pretraining, 896 of which contain constraint violating states. All methods are
given 1000 transitions of task demonstration data to pretrain the task policy’s critic
function.

Figure H.6: Additional Physical Experiment: The image reacher task on the dVRK
involves guiding the end effector to a target position while avoiding an invisible stay out
zone in the center of the workspace. We plot the cumulative constraint violations and task
successes the image reacher task on the dVRK. We observe that Recovery RL is both more
successful and safer than LR and unconstrained.

H.7.3 Image Maze

This maze is also implemented in MuJoCo with different walls from the maze that has
ground-truth state. Constraint violations occur if the robot collides with a wall. All methods
are only supplied with RGB images as input, and all methods that use the safety critic are
supplied with 20, 000 transitions for pretraining, 3466 of which contain constraint violating
states.

H.7.4 Physical Experiments

Physical experiments are run on the da Vinci Research Kit (dVRK) [105], a cable-driven
bilateral surgical robot. Observations are recorded and supplied to the policies from a Zivid
OnePlus RGBD camera. However, we only use RGB images, as the capture rate is much
faster, and we subsample the images so input images have dimensions 48 × 64 × 3. End
effector position is checked by the environment using the robot’s odometry to check task
completion, but this is not supplied to any of the policies. In practice, the robot’s end

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 264

Figure H.7: Q̂π
ϕ,risk Visualization: We plot the safety critic Qπ

risk for the navigation envi-
ronments using the cardinal directions (left, right, up, down) as action input. We see that
as γrisk is increased, the gradient is lower, and the the function more gradually increases as
it approaches the obstacles. Increasing γrisk essentially increases the amount of information
preserved from possible future constraint violations, allowing them to be detected earlier.
These plots also illustrate action conditioning of the safety critic values. For example, the
down action marks states as more unsafe than the up action directly above walls and obsta-
cles.

APPENDIX H. RECOVERY RL: SAFE REINFORCEMENT LEARNING WITH
LEARNED RECOVERY ZONES 265

effector position can be slightly inaccurate due to cabling effects such as hysteresis [248],
but we ignore these effects in this work. We train a neural network to classify whether the
robot is in collision based on its current readings and joint position. All methods that use a
safety critic are supplied with 6, 000 transitions of data for pretraining, 649 of which contain
constraint violating states. As for the navigation environments, offline data is collected by
randomly initializing the end effector in the environment and guiding it towards the nearest
obstacle. To reduce extrapolation errors during learning, we sample a start state on the right
and left sides of the workspace with equal probability.

H.7.5 Additional Physical Experiment

We also evaluate Recovery RL and comparisons on an image-based reaching task where the
robot must make sure the end effector position does not intersect with a stay out zone in
the center of the workspace instead of physical bumpers. The setup is almost identical to
the setup described in Section H.7.4. We again provide RGB images to algorithms, and use
10,000 transitions to pre-train the safety critic. We again find that Recovery RL is able
to outperform comparisons on this task, both in terms of constraint satisfaction, and task
completion.

266

Appendix I

MESA: Offline Meta-RL for Safe
Adaptation and Fault Tolerance

I.1 Algorithm Description

The full detail of the MESA algorithm is described in Algorithm 8. In Phase 1, Offline
Meta-Learning, the safety critic is updated with a MAML-style objective. In Phase 2, both
the safety critic and recovery policy adapt to the test environment with a small offline test
dataset. Finally, in Phase 3, the agent interacts with the test environment by using Recovery
RL [46] to avoid constraint violations.

I.2 Hyperparameters for MESA and Comparisons

We report global hyperparameters shared across all algorithms in Table I.1 and additionally
include domain specific hyperparameters in separate tables in Tables I.2, I.3, and I.4. We
use the same base neural network architecture for the safety critic, recovery policy, actor for
the task policy, and critic for the task policy. This base network is a fully connected network
with 2 hidden layers each with 256 hidden units. For the task policy, we utilize the Soft
Actor Critic algorithm from [103] and build on the implementation provided in [350].

I.3 Dataset Details

To collect datasets from the training environments, we train SAC on each of the training en-
vironments and log the replay buffer from an intermediate checkpoint. For the HalfCheetah-
Disabled and Ant-Disabled tasks, we collect 4 and 3 training datasets of 400 episodes (on
average ∼400K transitions with 14K and 113K violations) respectively. The dataset from the
testing environment consists of 40K transitions (2.4K, and 11.2K violations for HalfChee-
tah, Ant), which is 10x smaller than before. For the Cartpole-Length task, 20 training

APPENDIX I. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 267

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 10000 10000
Inner Batch Size |Bin| — — — 256
Outer Batch Size |Bout| — — — 256
Inner Adaptation Steps — — — 1
Inner LR α1 — — — 0.001
Outer LR α2 — — — 0.00001
Task Batch Size K — — — 5
Adam LR η — — 0.0003 —
Batch Size B — — 256 —

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 10000 500 500
Batch Size B — 256 256 256
Adam LR — 0.0003 η α1

Phase 3: Online Finetuning

Adam LR 0.0003 0.0003 η α1

Batch Size B 256 256 256 256
Discount γ 0.99 0.99 0.99 0.99
γrisk — 0.8 0.8 0.8
ϵrisk — 0.1 0.1 0.1

Table I.1: Algorithm Hyperparameters.

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 2000 100 100
Batch Size B — 64 64 64

Phase 3: Online Finetuning

γrisk (Navigation 2) — 0.65 0.65 0.65
ϵrisk (Navigation 1) — 0.3 0.3 0.3

Table I.2: Navigation Hyperparameter Differences

APPENDIX I. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 268

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Table I.3: HalfCheetah-Disabled Hyperparameter Differences.

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Phase 3: Online Finetuning

Risk Threshold ϵrisk — 0.3 0.3 0.3

Table I.4: Ant-Disabled Hyperparameter Differences.

datasets are generated, with each containing 200 episodes of data (∼20K timesteps with
4.5K violations). The dataset from the testing environment contains 1K transitions (with
200 violations), which is 20x smaller than before.

Dataset Ntrain |Dtrain| |Dtest|

Cartpole-Length 20 20K 1K
HalfCheetah-Disabled 4 400K 40K
Ant-Disabled 3 400K 40K

Table I.5: Dataset Hyperparameters.

For all environments, datasets are collected by an early-stopped SAC run, where the
episode does not end on constraint violation. The testing dataset is collected by a randomly
initialized policy. Each episode consists of 1000 timesteps.

APPENDIX I. MESA: OFFLINE META-RL FOR SAFE ADAPTATION AND FAULT
TOLERANCE 269

Algorithm 8 MEta-learning for Safe Adaptation (MESA)

Require: Training datasets Dtrain = {Dtraini }Ntrain
i=1 , adaptation dataset Dtest, task horizon

H, safety threshold ϵrisk, safety critic step sizes α1 and α2, recovery policy step size β.
{Phase 1: Offline Meta-Learning}

1: for i ∈ {1, . . . N} do
2: for j ∈ {1, . . . K} do
3: Sample Dtrainj ∼ Dtrain

4: ψ′
j ← ψ − α1 · ∇ψLrisk

(
ψ,Dtrainj

)
5: end for
6: for j ∈ {1, . . . K} do
7: Sample Dtestj ∼ Dtest

8: end for
9: ψ ← ψ − α2 ·

∑
j∇ψLrisk

(
ψ′
j,Dtrain

j

)
10: ω ← ω − β · ∇ωLπrec (ω,Dtest)
11: end for{Phase 2: Test Time Adaptation}
12: for i ∈ {1, . . .M} do
13: ψ ← ψ − α1 · ∇ψLrisk (ψ,Dtest)
14: ω ← ω − β · ∇ωLπrec (ω,Dtest)
15: end for
16: Dtask ← ∅ {Phase 3: Recovery RL}
17: while not converged do
18: s1 ∼ env.reset()

19: for t ∈ {1, . . . H} do
20: aπt , a

rec
t ∼ πθ(·|st), πrec(·|st)

21: if Qπ
risk(st, at) ≤ ϵrisk then

22: at = aπt
23: else
24: at = arect
25: end if
26: Execute at, observe rt, ct, and st+1

27: Add (st, a
π
t , ct, st+1) to Dtest

28: Add (st, at, rt, st+1) to Dtask

29: θ ← θ − γ · ∇θLπ
(
θ,Dtask

)
30: ψ ← ψ − α1 · ∇ψLsafe (ψ,Dtest)
31: ω ← ω − β · ∇ωLπrec (ω,Dtest)
32: if ct then
33: End episode
34: end if
35: end for
36: end while

270

Appendix J

Exploratory Grasping:
Asymptotically Optimal Algorithms
for Grasping Challenging Polyhedral
Objects

The supplementary material is organized as follows. In Section J.1 we provide proofs for all
theoretical results in Sections 12.3 and 12.4. In Section J.2 we provide additional experimen-
tal details, in Section J.3 we include additional simulation experiments, and in Section J.4
we perform sensitivity experiments. In Section 12.5.2 we provide further details on physical
experiments.

J.1 Proofs

Here we provide the proofs for all results in Section 12.3 and Section 12.4 in the main text.

J.1.1 Proof of Lemma 12.3.1

Consider Exploratory Grasping MDPM′ for which the object stable pose does not change
when a grasp fails. Thus, it must be the case that δl,m = 0 when l ̸= m and δl,l = 1 ∀l.
Note that for any Exploratory Grasping MDPM, it must be the case that D(M) ≤ D(M′)
since the probability of transition between any pair of distinct states in M′ is at most the
probability of transition inM. Now we establish a bound on D(M) by bounding D(M′).

Without loss of generality, let λ1 ≤ λs ∀s ∈ S. Additionally, define π∗ as the policy which
selects the grasp with highest success probability on all poses, with associated probability
transition matrix P π∗

and with hitting time T π
∗

s→s′ defined as in Definition 12.3.1. Then, the
diameter ofM′ can be computed as follows.

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 271

For MDPM′, it must be the case that

min
π
T πs→s′ = T π

∗

s→s′ (J.1)

since π∗, the policy which always picks the highest quality grasp on each pose, minimizes
the hitting time between any pair of poses s, s′. Furthermore, note that

max
s ̸=s′

T π
∗

s→s′ = max
s
T π

∗

s→1 (J.2)

since for any starting pose s, the hitting time between s and s′ will always be highest for
s′ = 1 (the pose with lowest drop probability) for any policy π. Thus, we see that

D(M′) = max
s
T π

∗

s→1 (J.3)

Finally, we leverage equation J.3 to compute an upper bound on D(M′) as follows.
Let πϵ be any policy which selects a grasp with success probability ϵ on each stable pose l.

Note that by Assumption 12.2.3 we assume that there exists a grasp with success probability
at least ϵ on each pose. Without loss of generality, we can consider the case that there exists
a grasp with success probability exactly ϵ on each pose and the policy which selects these
grasps since the hitting times under this policy will only be greater than those under a policy
which selects grasps with success probability greater than ϵ. Then, it follows that

min
π
T πs→s′ ≤ T πϵs→s′ ∀s, s

′ (J.4)

Now note that since we are considering pose evolution under πϵ, which selects a grasp of the
same quality ϵ on any pose, the starting pose s does not affect the hitting time. Combining
this with the fact that the hitting time to the least likely pose (pose 1) will always be the
highest for any policy π and inequality (J.4) yields that

D(M′) ≤ max
s ̸=s′

T πϵs→s′ = T πϵ2→1 (J.5)

Since the choice of s does not matter under πϵ, we use s = 2 above without loss of generality.
Now, note that the hitting time to pose 1 under πϵ is distributed as a geometric random
variable with parameter ϵλ1, which has mean 1

ϵλ1
, yielding the desired result.

J.1.2 Proof of Theorem 12.3.1

The result immediately follows from combining the diameter bound from Lemma 12.3.1
and the regret bounds established for UCRL2 [333], KL-UCRL [335] and PSRL [338] (av-
erage regret Õ(DS

√
A/T)) and for UCRLV [334] (average regret Õ(

√
DSA/T)) where D

is the MDP diameter and S and A are the cardinalities of the state space and action space
respectively.

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 272

J.1.3 Proof of Theorem 12.4.1

We bound the expected regret of BORGES by decomposing the regret into two terms, one
which depends on the divergence between the distribution of poses seen by the optimal policy
and πB, and the other of which depends on the difference in rewards attained by πB and π∗

when evaluated on the distribution of poses seen by πB. For simplicity, we refer to πB as π
for the proof.

E
[
RB(T)

]
=

S∑
s=1

p∗T (s)E

[
1

T ∗
s

T ∗
s∑

t=1

R(s, π∗(s))

]
−

S∑
s=1

pπT (s)E

[
1

T πs

Tπ
s∑

t=1

R(s, πt(s))

]
(J.6)

=
S∑
s=1

(p∗T (s)− pπT (s)) g∗s(T ∗
s) +

S∑
s=1

pπT (s) (g
∗
s(T

∗
s)− gπs (T πs)) (J.7)

= E
[
RB
π (T)

]
+

S∑
s=1

(p∗T (s)− pπT (s)) g∗s(T πs) (J.8)

where (J.7) follows from letting g∗s(T
∗
s) = E

[
1
T ∗
s

∑T ∗
s
t=1R(s, π

∗(s))
]
and gπs (T

π
s) = E

[
1
Tπ
s

∑Tπ
s
t=1R(s, πt(s))

]
and (J.8) follows from letting E

[
RB
π (T)

]
denote the expected regret on the distribution of

poses visited by policy π and noting that the average reward for the optimal policy, g∗s , is
independent of the timesteps spent in the pose (i.e., g∗s(T

π
s) = g∗s(T

∗
s) ∀s).

We first focus on the first term in (J.8). We know that E
[
RB
π (T)

]
approaches zero if

each pose is visited infinitely often in the limit as T → ∞ provided that B is a no-regret
online learning algorithm:

lim
T→∞

pπT (s) > 0,∀s ∈ {1, 2, . . . , S} ⇒ lim
T→∞

E
[
RB
π (T)

]
= 0 (J.9)

Thus, it remains to be shown that under π, all poses are visited infinitely often in the limit
as T → ∞. Note that this statement is equivalent to showing that in the limit as T → ∞,
bandit algorithm B selects grasps on each pose with non-zero success probability with non-
zero probability. Suppose that this was not the case (i.e., that as T → ∞, B assigns zero
grasp probability to all grasps with non-zero success probability). This would imply that B
only selects grasps with zero success probability, and thus incurs constant regret on its own
distribution (limT→∞ E

[
RB
π (T)

]
> 0). This contradicts the initial assumption that B is a

no-regret online learning algorithm, showing that under π, all poses must be visited infinitely
often in the limit as T →∞.

Now we shift our attention to the second term in (J.8). Given that B is a no-regret online
learning algorithm, it must be the case that gπs (T

π
s) −−−−→

Tπ
s →∞

g∗s(T
π
s) ∀s. This implies that in

the limit as T → ∞, π and π∗ have the same success rate on all stable poses. Two policies
with the same success rate on all stable poses induce the same Markov chain over S, and
thus admit the same stable pose distribution. Thus, pπT (s) −−−→

T→∞
p∗T (s), implying that the

second term also approaches 0 as T →∞.

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 273

J.1.4 Proof of Theorem 12.4.2

Let X denote the random variable that is the number of drops needed until we’ve reached
every stable pose. We assume we have n distinct stable poses. Let Xk be the discrete random
variable that represents the number of drops after visiting the (k− 1)th distinct stable pose
to visit the kth distinct stable pose. As a base case, X1 = 1 since the first pose we drop into
will always be distinct. By linearity of expectation we have

E[X] =
N∑
j=1

E[Xj]. (J.10)

After we visit the (j − 1)th distinct stable pose we have N − j + 1 stable poses left that
haven’t been visited yet. As before, we order the stable poses in order from most likely
to least likely: λ1 > λ2 > · · · > λN . Because the expected number of drops to get into
an unseen pose is a geometric random variable, we can upper bound the number of drops
needed to visit all stable poses as

E[X] =
N∑
j=1

E[Xj] ≤
N∑
j=1

1

1−
∑j

i=2 λi−1

. (J.11)

We derive this by first noting that the probability of visiting a new stable pose is 1 −∑
i∈visited λi and the expected number of drops to successfully visit a new stable pose is

a geometric random variable. We want to bound the number of drops to visit all stable
poses, but we do not know what order we will visit these poses. However, the worst-case
outcome (largest number of required drops) will be if we visit them in order from largest drop
probability to smallest since this will reduce the probability as quickly as possible which will
maximize E[X] since the probabilities are in the denominator. The above analysis assumes
we are repeatedly able to randomly drop the object, with no accounting for grasp success or
failure. Rather than only bounding the number of drops, we want to bound the expected
number of grasps to visit all stable poses at least once.

The grasping strategy will impact how often we need to attempt grasps before we get to
drop again. For a worst-case analysis, we assume that there are no topples, δs,s′ = 0 ∀s, s′,
and assume that each stable pose has only one grasp with non-zero success probability. We
will also let ϵ be the lower bound on the success probability of this grasp across all stable
poses. If we just pick grasps uniformly at random on each pose, we have a 1/K probability
of selecting the best grasp (ie. the one grasp with non-zero success probability) out of K
possible grasps. Note that this strategy can only yield strictly lower grasp success rate
than BORGES since any no-regret algorithm (such as UCB or Thompson sampling) will
cause BORGES to pick grasps with non-zero success probability with higher probability
than grasps which never succeed. Thus, if we can upper bound the number of grasps under
a uniform random grasp strategy this will upper bound the number of grasps for BORGES.
The lower bound on the probability of a successful grasp which leads to a redrop is ϵ. Thus,

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 274

in the worst-case, we have probability ϵ/K of getting to redrop and the worst-case expected
number of grasps to get a successful grasp is K/ϵ since this is a geometric random variable.
Thus, the expected number of grasps we need to visit all stable poses is no more than

K

ϵ

N∑
j=1

1

1−
∑j

i=2 λi−1

. (J.12)

J.2 Experimental Details

Object Selection: We choose 7 objects from the set of adversarial objects in Dex-Net
2.0 [300] because these objects had empirically been shown to be difficult to grasp for the
Dex-Net policy. Similarly, the recently-introduced EGAD! object dataset [341] was created
to contain objects with few high-quality parallel-jaw grasps. For this dataset, we select all
objects for which there exists at least one sampled grasp of quality ϵ = 0.1 on at least one
stable pose of the object. Of the 49 objects in the EGAD evaluation dataset, 39 met this
criterion.

Pose Selection: For each of the objects, we remove stable poses from the distribution
in simulation if they occur with less than a 0.1% chance or if they do not contain a sampled
grasp with quality at least ϵ = 0.1. When a pose is removed, the remaining stable pose
distribution is renormalized.

Grasp Sampling: We sample a set of K = 100 parallel-jaw grasps on the image obser-
vation of each pose of each object as in [300]. This sampling process is done using the depth
image grasp sampler from the GQCNN repository and is repeated for up to 10 iterations.
At each iteration, the sampled grasps’ ground truth qualities are calculated using the robust
wrench resistance metric that measures the ability of the grasp to resist gravity [308]. If no
grasps are found with quality of at least ϵ = 0.1, then the sampling process is repeated for
another iteration where more grasps are sampled. If a grasp is found with quality at least ϵ,
then that grasp is selected along with 99 other grasps chosen at random from the sampled
grasps. If the maximum number of iterations are exceeded without finding a grasp with
quality ϵ, the stable pose is discarded.

J.3 Additional Simulation Experiments

We also evaluate BORGES and baselines in a setting in which toppling is not possible
(δs,s′ = 0, ∀s ̸= s). This exacerbates the difficulty of grasp exploration since an object must
be successfully grasped in a given pose for policies to be able to explore grasps in other poses.
When evaluating policies, we remove poses that have no grasps with nonzero ground-truth
quality and renormalize the stable pose distribution. We emphasize that we perform this
step for all policies and do this only to ensure that no poses act as sink states from which

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 275

the robot can never change the pose in the future (and thus ensure that Assumption 12.2.3
is satisfied). For the 7 objects from the Dex-Net 2.0 adversarial object dataset, 11% of poses
(an average of 1.3 poses per object) were removed. These poses made up an average of 2.8%
of the probability mass of the stable pose distribution. These results are shown in Figure J.1.
We find that BORGES again significantly outperforms baseline policies in this setting.

Figure J.1: Reward plots for three Dex-Net Adversarial objects as well as aggregated rewards
across all Dex-Net Adversarial objects and EGAD! objects in a scenario where no toppling
is allowed between poses. Poses without any nonzero quality grasps are discarded. When
transitions can only occur due to successful grasps, Exploratory Grasping policies converge
to the optimal policy much more quickly than baselines.

We show the importance of Assumption 12.2.3 even when toppling is included by eval-
uating policies on all stable poses of the object, regardless of whether a grasp with nonzero
ground-truth quality exists or toppling out of each pose is possible. Thus, it is possible
that some poses may act as sink states. Figure J.2 suggests that for objects that do not
obey Assumption 12.2.3, such as the pawn, all policies find sink states and remain in them.
For objects that do obey Assumption 12.2.3, but have stable poses that can only transition
via toppling, such as the mount, performance decreases for all policies, but the order of
convergence is consistent.

J.4 Sensitivity Experiments

J.4.1 Sensitivity to Number of Grasp Samples

We varyK, the number of grasp samples per object pose, within the rangeK = {10, 20, 50, 100, 200}
across the 7 objects in the Dex-Net Adversarial object set. The results in Figure J.3 sug-
gest that as K increases, the likelihood of sampling a high-quality grasp on each pose also

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 276

Figure J.2: Reward plots for two Dex-Net adversarial objects shown alongside an aggregation
of all Dex-Net adversarial objects and EGAD! objects in a scenario where no poses are
removed from exploration. In such a case, there is a split between objects without sink
states, such as the mount, and objects with sink states, such as the pawn, where no means
of transitioning via toppling or grasping is available.

increases. With more grasps to consider, each policy takes longer to converge to the optimal
policy, but the order of convergence between policies is consistent.

Figure J.3: Sensitivity of BORGES to the number of grasp samples K across the 7 Dex-Net
Adversarial objects. With more grasp samples, the likelihood of including a higher-quality
grasp increases, but the rate of convergence decreases.

J.4.2 Sensitivity to Exploratory Grasping Parameters

We perform sensitivity analysis of BORGES to the Exploratory Grasping parameters ϵ and
λ1. For these experiments, we evaluate the policy using a set of synthetic objects with
λ1 = {0.001, 0.01, 0.1, 0.2} and ϵ = {0.1, 0.25, 0.5, 0.75, 1.0} and for simplicity consider the
case in which toppling is not possible. In each case, we choose a single grasp on each pose to

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 277

have reliability ϵ with all other grasps having a mean parameter of 0. The results are shown
in Figure J.4. These results suggest that unless ϵ or λ1 are low, BORGES quickly converges
to the optimal policy. In particular, ϵ has an outsized effect on the accumulated reward;
with ϵ ≤ 0.10, we observe that the policy fails to approach the optimal policy regardless of
λ1 through the first 10,000 timesteps.

Figure J.4: Sensitivity of BORGES to the Exploratory Grasping parameters ϵ and λ1, as
shown across 20 synthetic objects. Unless ϵ or λ is low, BORGES quickly converges to the
optimal policy. However, when either is low, particularly ϵ, the policy converges much more
slowly, taking even more than the 10,000 timesteps shown for some combinations.

J.5 Initial Physical Experiments Details

In physical experiments, we evaluate BORGES on two challenging 3D printed objects and
compare performance with the Dex-Net policy from Section 12.5.1. The object is placed
in front of an ABB Yumi robot with a parallel-jaw gripper and overhead Photoneo PhoXi
S camera. At each timestep, we capture a depth image observation from the camera and
estimate if the current object stable pose has been seen previously with the following stable
pose change detection procedure. Specifically, we cache the first depth image seen for each
new pose, and compare the current depth image at each timestep to the cached depth
images. We segment out the background and project the depth image into a point cloud
representation. We then mean-center the current point cloud, apply 7200 rotations around
the z-axis, and measure the chamfer distance between each resulting rotated point cloud and
the point cloud representations of each of the cached depth images. We classify each point
in the current point cloud as an inlier if the closest point in a previous point cloud is less
than 0.02 mm away. If at least 80% of the points are inliers, we classify the two point clouds
as belonging to the same stable pose. If the pose has not been seen previously, we add the
depth image to the cache, sample a set of grasps, and calculate the Dex-Net predicted quality
values for each pose. Otherwise, we recall the previously sampled grasps for the given pose

APPENDIX J. EXPLORATORY GRASPING: ASYMPTOTICALLY OPTIMAL
ALGORITHMS FOR GRASPING CHALLENGING POLYHEDRAL OBJECTS 278

Figure J.5: Experiment setup and learning curves for the Dex-Net and BORGES-TS5 policies
for the clamp and pipe objects across 200 grasp attempts (smoothed with a running average
of 20 attempts). The robot attempts to grasp the object at each timestep and, if it succeeds,
rotates and drops the object to sample from the stable pose distribution (left). BORGES-TS5
quickly converges within 100 attempts on both objects, indicating that it finds grasps that
succeed nearly every time for each pose. Dex-Net’s performance remains uneven, indicating
that it finds high-quality grasps for some poses, but not others.

and transform them by the relative transform between the cached and current images. A
grasp is executed according to the Dex-Net or BORGES policy; if the grasp is successful,
the object is lifted, rotated by 30 degrees around an axis sampled uniformly at random
from 3D unit vectors, and released. If the grasp is unsuccessful, the object may topple into
another pose or may remain in the same pose. This process repeats for 200 timesteps per
object. After each grasp attempt, we move the object to the center of the workspace to
prevent errors in the stable pose change detection procedure, but strongly suspect that this
procedure will likely be unnecessary with a more constrained workspace or a more robust
stable pose change detection procedure, which we will implement in future work.

In Figure J.5 we show a larger version of Figure 12.2 from Section 12.5.2. As described in
Section 12.5.2, we find that BORGES is able to significantly increase the grasp success rate of
a Dex-Net policy, achieving success rates of 0.89 and 0.87 on the clamp and pipe, respectively,
as compared to 0.49 and 0.37 for the Dex-Net policy with just 200 grasp attempts in the
real world. This effect highlights the importance of a policy that is able to learn online from
successful and failed grasp attempts; Dex-Net does not learn online so continuing to attempt
grasps will lead to the same high-variance behavior over time, but BORGES continues to
stabilize as it approaches optimal performance across all poses.

	Contents
	Introduction
	Efficient Online Imitation Learning
	Reinforcement Learning from Suboptimal Demonstrations
	Reinforcement Learning from Negative Demonstrations
	Learning Priors for Rapid Bandit-Based Grasp Exploration

	Efficient Online Imitation Learning
	LazyDAgger: Reducing Context Switching in Interactive Imitation Learning
	Background and Related Work
	Problem Statement
	Preliminaries: SafeDAgger
	LazyDAgger
	Action Discrepancy Prediction
	Noise Injection

	Experiments
	Simulation Experiments: MuJoCo Benchmarks
	Fabric Smoothing in Simulation
	Physical Fabric Manipulation Experiments

	Discussion and Future Work

	ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning
	Related Work
	Problem Statement
	ThriftyDAgger
	Novelty Estimation
	Risk Estimation
	Regulating Switches in Control Modes
	Computing Risk and Novelty Thresholds from Data
	ThriftyDAgger Overview

	Experiments
	Evaluation Metrics
	Comparisons
	Peg Insertion in Simulation
	User Study: Controlling A Fleet of Three Robots in Simulation
	Physical Experiment: Visuomotor Cable Routing

	Discussion and Future Work

	On-Policy Robot Imitation Learning from a Converging Supervisor
	Related Work
	Converging Supervisor Framework and Preliminaries
	On-Policy Imitation Learning
	Converging Supervisor Framework (CSF)

	Regret Analysis
	Static Regret
	Dynamic Regret

	Converging Supervisors for Deep Continuous Control
	Experiments
	Simulation Experiments
	Physical Robot Experiments

	Discussion and Future Work

	Reinforcement Learning from Suboptimal Demonstrations
	ABC-LMPC: Safe Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions
	Related Work
	Problem Statement
	Preliminaries
	Safe Set
	Value Function
	Transfer to Novel Goal Sets

	Controller Design
	Task Driven Optimization
	Start State Expansion

	Properties of ABC-LMPC
	Practical Implementation
	Sample-Based Safe Set
	Start State Expansion Strategy
	Goal Set Transfer
	ABC-LMPC Optimization Procedure

	Experiments
	Experimental Domains
	Fixed Start and Goal Conditions
	Start State Expansion
	Goal Set Transfer
	Inverted Pendulum Swing-Up Task

	Discussion and Future Work

	SAVED: Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
	Related work
	Safety Augmented Value Estimation from Demonstrations (SAVED)
	Assumptions and Preliminaries
	Algorithm Overview
	Task Completion Driven Exploration
	Chance Constraint Enforcement
	Algorithm Pseudocode

	Experiments
	Baselines
	Simulated Navigation
	Simulated Robot Experiments
	Physical Robot Experiments

	Discussion and Future Work

	LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of Sparse Reward Iterative Tasks
	Related Work
	Safe, Iterative Learning Control
	Model Based Reinforcement Learning
	Reinforcement Learning from Pixels

	Problem Statement
	Latent Space Safe Sets (LS3)
	Learning a Latent Space for Planning
	Latent Safe Sets for Model-Based Control
	Reward and Constraint Estimation
	Model-Based Planning with LS3

	Experiments
	Comparisons
	Evaluation Metrics
	Domains
	Simulation Results
	Physical Results

	Discussion and Future Work

	Monte Carlo Augmented Actor-Critic for Sparse Reward Deep RL from Suboptimal Demonstrations
	Related Work
	Reinforcement Learning from Demonstrations
	Improving Q-Value Estimates

	Problem Statement
	Preliminaries: Actor-Critic Algorithms
	Monte Carlo augmented Actor-Critic
	MCAC Algorithm
	MCAC Practical Implementation

	Experiments
	Experimental Procedure
	Domains
	Algorithm Comparisons
	Results

	Discussion and Future Work

	Reinforcement Learning from Negative Demonstrations
	Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones
	Related Work
	Problem Statement
	Recovery RL
	Preliminaries: Training a Safety Critic
	Defining a Recovery Set and Policy
	Offline Pretraining
	Practical Implementation

	Experiments
	Discussion and Future Work

	MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance
	Related Work
	Safe Reinforcement Learning
	Meta Reinforcement Learning

	Preliminaries
	Constrained Markov Decision Processes
	Safety Critics for Safe RL
	Recovery RL
	Meta-learning

	Problem Statement
	MEta-learning for Safe Adaptation (MESA)
	Phase 1, Meta-Learning Qrisk
	Phase 2, Test Time Adaptation
	Phase 3, Using Qrisk and rec for Safe RL

	Experiments
	Data Collection
	Results

	Ablations
	Test Dataset Size
	Test Environment Generalization

	Discussion and Future Work

	Learning Priors for Rapid Bandit-Based Grasp Exploration
	Accelerating Grasp Exploration by Leveraging Learned Priors
	Related Work
	Problem Statement
	Assumptions
	Definitions
	Bayesian Bandits
	Learning Objective

	Grasp Exploration Method
	Thompson Sampling with a Beta-Bernoulli Process
	Leveraging Neural Network Priors
	Prior Mismatch

	Practical Implementation
	Experiments
	Setup
	Simulation Experiments

	Discussion and Conclusion
	Discussion and Future Work

	Exploratory Grasping: Asymptotically Optimal Algorithms for Grasping Challenging Polyhedral Objects
	Related Work
	Exploratory Grasping: Problem Statement
	Exploratory Grasping as an MDP
	Assumptions
	Learning Objective

	Reinforcement Learning for Exploratory Grasping
	Analyzing the Exploratory Grasping MDP

	Bandits for Online Rapid Grasp Exploration Strategy (BORGES)
	Experiments
	Simulation Experiments
	Initial Physical Experiments

	Future Work

	Conclusion and Future Work
	Conclusion
	Opportunities for Future Work
	Efficient Online Imitation Learning
	Reinforcement Learning from Suboptimal Demonstrations
	Reinforcement Learning from Negative Demonstrations
	Learning Priors for Rapid Bandit-Based Grasp Exploration

	Broader Vision for Robot Learning

	Bibliography
	LazyDAgger: Reducing Context Switching in Interactive Imitation Learning
	MuJoCo
	LazyDAgger Switching Thresholds
	Fabric Smoothing in Simulation
	Fabric Manipulation with the ABB YuMi

	ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning
	Algorithm Details
	ThriftyDAgger
	Behavior Cloning
	SafeDAgger
	LazyDAgger
	HG-DAgger

	Hyperparameter and Implementation Details
	ThriftyDAgger
	Behavior Cloning
	SafeDAgger
	LazyDAgger
	HG-DAgger

	Environment Details and Additional Metrics
	Peg Insertion in Simulation
	Block Stacking in Simulation
	Physical Cable Routing

	User Study Details
	User Study Interface
	NASA TLX Survey Results
	Wall Clock Time
	Detailed Protocol

	On-Policy Robot Imitation Learning from a Converging Supervisor
	Static Regret
	Proof of thm-static-regret-bound
	Proof of lemma-static-regret-rate

	Dynamic Regret
	Proof of lemma-dynamic-regret-reduction
	Proof of lemma-sublinear-standard-dynamic-regret
	Predictability of Online Learning Problems
	Proof of lemma-dynamic-regret-standard
	Proof of thm-dynamic-regret-bound

	Training Details
	CSF Learner
	PETS
	SAC
	TD3
	ME-TRPO

	Experimental Details
	Simulated Experiments
	Physical Experiments

	Safe Learning MPC for Stochastic Nonlinear Dynamical Systems with Adjustable Boundary Conditions
	Proofs of Controller Properties
	Adjustable Boundary Condition LMPC Implementation Details
	Solving the MPC Problem
	Value Function
	Start State Expansion

	Experiment Specific Parameters
	Pointmass Navigation
	7-Link Reacher Arm
	Inverted Pendulum

	Controller Domain Expansion Strategy

	SAVED: Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
	Additional Experimental Details for SAVED and Baselines
	SAVED
	Behavior Cloning
	PETSfD and PETSfD Dense
	SACfD
	OEFD

	Simulated Experiments Additional Results
	Physical Experiments: Additional Details and Experiments
	Figure-8
	Knot-Tying

	Ablations
	SAVED
	Model-Free

	LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of Sparse Reward Iterative Tasks
	Algorithm Details
	Latent Space Safe Sets (LS3)
	Soft Actor-Critic from Demonstrations (SACfD)
	Soft Actor-Critic from Demonstrations with Learned Recovery Zones (SACfD+RRL)
	Advantage Weighted Actor-Critic (AWAC)

	LS3 Implementation Details
	Experimental Domain Details
	Navigation
	Reacher
	Sequential Pushing
	Physical Cable Routing

	Additional Results
	Sensitivity Experiments

	Monte Carlo Augmented Actor-Critic for Sparse Reward Deep RL from Suboptimal Demonstrations
	Implementation Details
	Behavioral Cloning
	Twin Delayed Deep Deterministic Policy Gradients
	Soft Actor Critic
	Overcoming Exploration with Demonstrations
	Advantage Weighted Actor Critic

	Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones
	Recovery RL Theoretical Motivation and Variants
	Theoretical Motivation
	Safety Value Function
	Reachability-based Variant

	 Algorithm Details
	Recovery RL
	Unconstrained
	Lagrangian Relaxation (LR)
	Risk Sensitive Policy Optimization (RSPO)
	Safety Q-Functions for Reinforcement Learning (SQRL)
	Reward Penalty (RP)
	Off Policy Reward Constrained Policy Optimization (RCPO)

	Additional Experimental Metrics
	Safety Critic Visualizations
	Implementation Details
	Network Architectures
	Global Training Details
	Recovery Policy Training Details

	Environment Specific Algorithm Parameters
	Environment Details
	Navigation Environments
	Manipulation Environments
	Image Maze
	Physical Experiments
	Additional Physical Experiment

	MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance
	Algorithm Description
	Hyperparameters for MESA and Comparisons
	Dataset Details

	Exploratory Grasping: Asymptotically Optimal Algorithms for Grasping Challenging Polyhedral Objects
	Proofs
	Proof of Lemma 12.3.1
	Proof of Theorem 12.3.1
	Proof of Theorem 12.4.1
	Proof of Theorem 12.4.2

	Experimental Details
	Additional Simulation Experiments
	Sensitivity Experiments
	Sensitivity to Number of Grasp Samples
	Sensitivity to Exploratory Grasping Parameters

	Initial Physical Experiments Details

