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Abstract

Bridging the Gap Between Modular and End-to-end Autonomous Driving Systems

by

Eric Leong

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joseph Gonzalez, Chair

We aim to bridge the gap between end-to-end learning and traditional pipeline-based ap-
proaches for autonomous vehicles (AVs). In this work, we replace the traditional planning
and control algorithms of modular approaches with an end-to-end learned policy, developing
a hybrid of the two approaches. Our learned policy takes a bird’s eye view representation of
the world as input, and produces control actions such as braking, steering, and acceleration.
To support the development of this learned policy, we introduce caRLot, a novel OpenAI
gym environment that builds atop the open-source Pylot AV platform to provide config-
urable abstractions in addition to an interface with the CARLA simulator. We use caRLot
to learn a model-free reinforcement learning policy that replaces planning and control, and
compare its performance and runtime against several state-of-the-art approaches. We find
that our hybrid approach has a notable improvement in runtime over a modular driving
system, while having a significant advantage in interpretability over end-to-end systems.
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Chapter 1

Introduction

Traditional approaches to autonomous vehicles (AVs) rely on multi-stage, human-engineered
pipelines [25, 24, 57, 3, 4]. Such pipelines provide several important benefits, such as the
ability to test, verify, and develop AV software on a per-component basis. As AVs become
an impending reality, and governments seek to ensure the safety of such vehicles on the road,
this modular approach provides further benefits in the ability to audit and explain an AV’s
decisions, which becomes especially critical in the case of crashes [57].

Despite the benefits of the engineered approach, advances in deep learning have sparked
interest in new approaches that blur the lines between components by propagating gradients
and sharing neural network architectures across several tasks. For example, Tesla’s Full
Self-Driving architecture uses neural networks with shared backbones to complete a variety
of perception tasks [36], and Wayve applies a pure machine-learning driven approach to
AVs [74].

Such approaches place faith in machine learning to provide better performance in AVs
for the following reasons: (i) machine learning can discover features that enable safer, more
comfortable, and more generalizable autonomous driving than the hand-engineered features
used by traditional components in traditional pipelines, (ii) learned approaches to driving
can scale and improve with data, as opposed to pipeline-based approaches which may require
engineers to hand-encode tra�c rules and vehicle behaviors for di↵erent countries, and (iii)
a move towards end-to-end learning in AVs may result in better performance and smaller,
less complex systems because machine learning can be used to optimize overall system per-
formance [7].

Although the benefits seem promising, the large scale of data required and the di�culty
of ensuring reliable behavior have frustrated learned approaches to AVs. In this work, we
seek to bridge the gap between modular approaches and end-to-end approaches by devel-
oping caRLot, a hybrid between the two approaches. caRLot builds a novel OpenAI gym
environment [8] atop the open-source Pylot modular AV platform [27], providing a wide
variety of configurable abstractions over both sensors and AV components. We replace two
key components of modular pipelines, planning, and control, with an end-to-end solution.
Specifically, we use deep reinforcement learning to train a model-free policy that takes an
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image-like representation of the vehicle’s surroundings and directly produce control outputs
(e.g., braking, steering, and acceleration). We compare our policy to existing approaches
involving end-to-end learning and a traditional pipeline by evaluating on NoCrash bench-
mark [19] which is run using the CARLA simulator [22], and by comparing overall runtimes.

The rest of this thesis is organized as follows. Chapter 2 provides an overview of au-
tonomous driving systems, discussing both modular and end-to-end approaches in detail
while examining relevant works. In Chapter 3, we introduce our approach caRLot, describ-
ing important details about our integration with the Pylot AV platform [27] and outlining
our environment setup, reward design, and policy. Chapter 4 discusses our experiments re-
lated to training and runtime analysis. Finally, Chapter 5 discusses the future directions of
research for our work.
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Chapter 2

Overview of Autonomous Driving

Systems

There are currently two primary paradigms that autonomous driving systems typically follow:
end-to-end and modular driving [79]. An end-to-end system aims to learn a direct mapping
from the raw sensory input to the vehicle control signals. In contrast, a modular system
decomposes the driving task into separate modules or sub-tasks that ultimately link the
sensor input to the control signal. There are typically five core modules: sensing, perception,
prediction, planning, and control.

Object 
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Traffic Sign 
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Object 
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Motion 
Prediction
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State
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Figure 2.1: ADS Pipeline
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In this section, we will first discuss the modular design paradigm, discussing each of the
modules in detail. We will then provide an overview of approaches to end-to-end learning.
Going over the two approaches in detail will be crucial for understanding our approach to
bridging the gap between end-to-end and modular systems.

2.1 Modular Approach

By developing individual modules separately, modular systems divide the challenging task of
autonomous driving into an easier-to-solve set of problems [79]. Furthermore, each module
is commonly divided into smaller components. Dividing the autonomous task into modules
and components with clearly defined intermediate representations and interdependencies
contributes to interpretability as one can easily determine the source of error in case of
unexpected behavior [70]. Dividing into smaller tasks also allows for ease of transferring
knowledge from corresponding literature in computer vision, robotics, and other related fields
[34]. Another major advantage of modular systems is that algorithms can be integrated and
built upon each other in a modular design, such that changes in a module would not require
a revamp in the implementation of other modules [27].

However, modular systems bear several disadvantages. Namely, modular systems face
major challenges with generalizing to di↵erent scenarios to achieve robustness [70, 34]. The
modules are human-engineered with predefined input and output representations and rely
on heuristics or intuitions that may not be accurate for all scenarios. For instance, the object
detection component in perception outputs just a bounding box and class type for a detected
object. This removes a lot of context from the scene that would’ve been useful for downstream
modules for decision-making. Other major challenges in modular systems include over-
complexity, dependence on supervised data, and error propagation [79, 34]. Modular systems
are often overly-complex, having many models implemented for each module and using many
intermediate representations and outputs. This has a growing impact on the overall run
time of the system. Furthermore, a lot of these models, especially those in perception, are
dependent on supervised data for training, creating a human-defined information bottleneck
[79].

We discuss each of the five main modules and the techniques used and challenges faced
in their components.

Sensing

In the sensing module, the ADS employs a variety of sensor technologies, including cameras,
LiDARs, Radars, GPS, and IMUs. These sensors provide the ego-vehicle with high-resolution
information about the color, texture, and depth of objects in their surroundings, as well as
important information necessary for localization and mapping [79]. The vast amount of data
from the sensors is utilized by downstream operators to perceive the driving environment
precisely, allowing the ego-vehicle to plan and make critical decisions accordingly.
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Figure 2.2: Example Sensor Configuration in an autonomous vehicle. Adapted from Sensor
and Sensor Fusion Technology in Autonomous Vehicles: A Review [9].

Since each sensor type has di↵erent strengths and weaknesses, autonomous vehicles typ-
ically employ multiples of each type of sensor to improve the e�ciency and reliability of the
ADS. For more details, we refer the reader to [9] which provides a detailed overview of sensor
technologies and sensor fusion techniques to integrate data from multiple sensing modalities.

Perception

The perception module processes data from various sensors to form a meaningful representa-
tion of the driving environment, often using computer vision techniques. With the advent of
deep learning and its growing application to computer vision tasks such as object detection
and segmentation, perception in autonomous vehicles has become one of the most actively
researched AI fields [33, 34]. Though cameras are the primary sensors used for perception as
it builds upon decades of computer vision research, 3D vision using the depth data provided
by LiDARs and Radars has proven to be a powerful supplement to perception [29, 62, 77].
However, in this work, we will focus on perception restricted to just camera images. The
perception module typically includes object detection, object tracking, and lane detection
as components [79]. We will briefly cover these components and discuss some of the main
challenges in perception.

• Object detection refers to the task of identifying and locating objects of interest,
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given a single camera image. Objects of interest include static objects, such as tra�c
lights and tra�c signs, as well as dynamic objects, which includes other vehicles and
pedestrians. Object detection is one of the most critical components of the general
autonomous driving pipeline due to its potential impact on safety. For instance, a
failed vehicle detection will propagate to downstream modules and will essentially be
unknown to the planning and control components. The planning and control compo-
nents will make decisions without accounting for the vehicle, potentially leading to a
crash.

Current state-of-the-art object detection models typically fall within two types: one-
stage detectors and two-stage detectors [68]. Two-stage detectors, such as Faster-
RCNN [64] and Mask R-CNN [31], first utilize a region proposal network (RPN) to
generate regions of interest before sending them to the classification and bounding-box
regression stage. In contrast, one-stage detectors, including [63, 47, 45, 71], lack a
region proposal stage, performing regression directly over a regular, dense sampling of
locations in the image. By virtue of not using an RPN, single-stage detectors trade-
o↵ accuracy for much lower computational costs. This introduces the notion of the
accuracy-latency trade-o↵ in the perception module, which we will later discuss.

• Object Tracking and multi-object tracking (MOT) tracks multiple objects as they
move around frames in a sequence or video. For each object, the object tracker main-
tains a consistent identifier paired with the bounding box for each frame throughout a
sequence. Using the identifier, the output of the MOT can be accumulated over time
to represent the trajectory of each object and be used for trajectory prediction.

Traditional approaches and deep learning approaches are both commonly used. SORT
is a classical object tracker that uses traditional algorithms such as the Kalman Filter
and Hungarian algorithm to respectively maintain the bounding boxes and IDs [6].
Deep learning approaches such as [48, 60] achieve state-of-the-art performances on
many tracking benchmarks [50, 78, 69, 20]. Although deep learning methods generally
have significantly better performance than traditional approaches, they also tend to
have much higher latency [34].

• Lane Detection is the task of detecting lanes and lane segments on the road, given
a camera image. Lane detection is crucial for understanding the road semantics to
properly navigate the road. Given the large variety of road topology, lane marking
types, and complex semantics such as lane direction, lane detection continues to be a
very challenging task in perception [79].

Similar to object tracking, lane detection methods can be classified into two categories:
traditional methods and deep learning-based methods. Traditional methods often used
primitive information such as color features, texture, and gradients to perform geomet-
ric modeling i.e. line detection and fitting, or to employ various energy minimization
algorithms [82]. A common issue with traditional approaches is that they are not ro-
bust to road scene variations [46]. Deep learning-based models include segmentation
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approaches, encoder-decoder models, and CNN-RNN hybrid models. For a compre-
hensive overview of deep learning approaches to lane detection, we refer the reader to
[81, 46].

A common characteristic of the perception components is that their state-of-the-art mod-
els focus on having either low latency or high accuracy. For instance, the SORT tracker is
still often used despite its poor performance compared to deep learning approaches because
of its very low latency. This dilemma introduces the phenomenon of the accuracy-latency
trade-o↵, in which complex, highly parameterized deep learning models typically have higher
accuracy and worse latency than more traditional, lightweight models. Although it is piv-
otal for the ego-vehicle’s perception system to have high accuracy, having low latency in
time-critical settings like self-driving is equally as important.

The accuracy-latency trade-o↵ in perception can be interpreted as weighing the costs
between having a missed detection and having a slower reaction time, both of which will
have an impact on the overall performance of the autonomous driving system. Errors in
the perception module will be propagated to downstream components and can result in sub-
optimal behaviors that may lead to collisions. Similarly, a slow reaction time detracts from
the goal of having real-time control. Self-driving has critical deadlines for making decisions,
and if not consistently met, can be extremely costly depending on the driving context. For
instance, according to [37], if the ego-vehicle is driving at 40km per hour in an urban area
and needs the control signal ready every 1 meter, then the entire pipeline’s desired response
time should be less than 90ms. Although a more extreme case, this example illustrates
how strict runtime requirements limit the types of perception models that could be used in
realistic scenarios.

Prediction

The prediction module uses the environment representation from the perception module to
evaluate the behaviors of surrounding vehicles and pedestrians and assess the risks of the
driving scene [79]. To assess risk, the prediction module tries to predict the future state
of the surrounding drivers and pedestrians in a process called motion trajectory prediction.
Object tracking plays a pivotal role in prediction by keeping track of each agent’s previous
states for a certain horizon, which can be used to estimate the velocity over time and lane
localization. In addition to the information provided by previous tracks, scene information
such as from 3D point clouds from LiDAR sensors and a bird’s eye view of the environment
are used as input [52]. Using the previous prediction num past steps states of the agent,
the prediction module will predict its next prediction num future steps states.

The linear regression model serves as a baseline for prediction as it assumes that each
agent travels at a constant velocity, ignoring the scene context and driving behaviors. Similar
to the SORT tracker, linear prediction has poor performance compared to deep learning
models but is much more e�cient. For a detailed overview of deep learning approaches, we
refer the reader to [52].
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Prediction is a challenging but critical task in self-driving, as it provides essential in-
formation for the ego-vehicle to act proactively, such as to change lanes or drive through
intersections. However, the task becomes especially di�cult when there are multiple dynamic
agents in the scene that must be monitored. The parameters prediction num past steps
and prediction num future steps have even more impact on the model latency, as increas-
ing them will exponentially increase the amount of data tracked or predicted.

Planning

The planning module produces a trajectory of waypoints that the ego-vehicle should follow,
using the predicted trajectories of other agents from the prediction module along with in-
formation from the localization and mapping component from the perception module. It is
typically decomposed into three sequential components: route planning, behavior planning,
and motion planning.

Route planning is first in the sequence. Given a starting and goal location, the route
planner treats the road network as a directed graph and produces a high-level route to the
destination. The road network can be interpreted as a graph, for example, by representing
the intersections as vertices and the roads as edges with weights based on distance. Given
the representation of road networks as graphs, graph traversal and path searching algorithms
such as A* search [56] and Dijkstra’s algorithm [21] are commonly used to find the shortest
path to the goal location [79].

Behavior planning is the second in the sequence. Using the route plan, the behavior
planner outputs high-level behavior that the ego-vehicle should follow. Commonly defined
high-level behavior includes staying in the same lane, preparing for a lane change, or fol-
lowing waypoints. Because of the uncertainty of the driving scene, approaches to behavior
planning commonly use probabilistic frameworks such as Markov decision processes (MDP)
and partially-observable MDPs (POMDPs) [58].

Finally, motion planning, also referred to as trajectory planning, uses the selected high-
level behavior to produce a safe, comfortable, and dynamically feasible trajectory towards the
goal configuration. Popular approaches include graph search methods [56] and incremental
search methods [35]. Graph search methods construct a graphical construction of the ego-
vehicle’s configuration space and search for the shortest path using graph search methods,
while incremental search approaches incrementally construct a tree of reachable states from
the initial state of the vehicle and then select the best branch of such a tree. [58] provides a
comprehensive overview of motion planning methods.

Control

The control module is responsible for accurately tracking the trajectory generated by the
planning module, doing so by adjusting the steering, throttle, and braking of the ego-vehicle.
It plays a crucial role in the overall ADS as it is responsible for actually generating the
commands that drive the vehicle.



CHAPTER 2. OVERVIEW OF AUTONOMOUS DRIVING SYSTEMS 9

Traditional control methods are the most widely used control strategy and include the
PID (proportional-integral-derivative) controller [1] and MPC (model-predictive-control)
[39]. Though such traditional approaches are very e↵ective, they often require frequent
re-tuning since they do not generalize well to varying operating conditions [66]. Implemen-
tation and retuning of these controllers also require system-level knowledge. Furthermore,
advanced traditional control methods, such as MPC, are often computationally expensive.

Because of these issues, one may opt for learning-based control methods, such as end-to-
end systems, or hybrid control approaches. We will discuss end-to-end systems in more depth
in the next section. We refer the reader to [66] for a more detailed overview of traditional
control mechanisms and hybrid strategies.

2.2 End-to-End Approach

We now focus on end-to-end approaches to control in autonomous driving systems. Rather
than decomposing the driving task into modules, end-to-end strategies find a direct mapping
from the sensory input to control commands. End-to-end systems are much less complex
than modular systems, usually having simpler models and fewer intermediate representations
[70]. However, this is problematic for the model’s interpretability, as it becomes more di�cult
to ascertain why the model behaves abnormally. This is in stark contrast to modular systems
where it is simple to determine which module in the pipeline erred.

End-to-end approaches can be broadly classified into two categories: imitation learning
and reinforcement learning. We will cover each category in more detail next.

Imitation Learning

Imitation learning is the process of learning and developing new skills by observing these
skills performed by another agent. This is often performed through behavioral cloning,
a supervised learning strategy in which an agent is trained using labeled data gathered
from an expert agent, essentially aiming to “clone” their behavior. In the context of self-
driving, an agent learns from recorded expert trajectories containing sensory data and control
commands.

End-to-end learning through imitation learning was one of the earliest approaches to
self-driving. It was first pioneered in the 1990s by the ALVINN system [61]. ALVINN used
a simple 3-layer network and demonstrated success in the road following task. It served as a
precursor to DAVE [53] and subsequently DAVE-2 [7], which used simple CNN architectures
to map visual input to steering commands. Through the DAVE-2 system, Bojarski et al.
demonstrated that CNNs can learn the entire task of lane and road following without de-
composition into road or lane marking detection, semantic abstraction, path planning, and
control [7].

Though imitation learning poses advantages such as ease of implementation and relatively
quick training processes due to supervised learning, it struggles to achieve the reliability and
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robustness necessary for real-world driving [18]. The amount of expert data that is necessary
to achieve reliability is too costly and time-consuming to collect. Furthermore, it is di�cult
to gather data from demonstrations in dangerous scenarios because of safety concerns. As
a result, the collection of states that the expert encounters does not usually cover all the
potential states that the trained agent may encounter during testing. Imitative agents will
often struggle from covariate shifts when the online behavior begins to deviate from the
o✏ine training experience. For example, the imitative agent will struggle to learn driving
skills to handle dangerous situations, due to a lack of sample experiences. One approach to
alleviating covariate shifts is Data Aggregation (DAgger) [65]. DAgger continuously updates
the state distribution by collecting trajectories from the current policy, relabelling them using
the expert policy, and aggregating them to the original dataset. However, this demonstrates
that an agent would require frequent human intervention at test-time when encountering
complex scenarios, such as crossing an intersection or reacting to multiple dynamic objects.

More recent works focus on designing robust policies that can drive in complex urban
scenarios. Rather than imitating a human driver, Pan et al. [59] imitated a model predictive
controller to perform high-speed driving. Bansal et al. [5] present a mid-level input repre-
sentation of the environment to reduce sample complexity and use this input to predict a
driving trajectory which is then converted into control commands. Codevilla et al. [17] use
conditional branching based on high-level commands, similar to the commands in behavior
planning, extending imitative models for urban driving. By conditioning on commands, the
policy could handle sensorimotor coordination while responding to navigational commands.
Zeng et al. [80] use imitation learning to train a cost volume predictor that determines the
quality of possible locations on the planning horizon. Chen et al. [11] train an imitative
policy using learned a↵ordances to improve driving scene understanding.

Figure 2.3: Overview of the two-step process in Learning by Cheating [14]. (Left) A privi-
leged agent with direct access to the environment state learns a robust policy by imitating
the expert. (Right) A sensorimotor agent without access to privileged information learns
the task by imitating the trained privileged agent.
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Learning by Cheating uses a two-step process to achieve state-of-the-art performance on
the CARLA benchmark [14]. Chen et al. first train a privileged agent to learn to predict
future waypoints for the vehicle to steer towards, using ground truth information from the
simulator. It then uses the privileged agent to teach a purely vision-based sensorimotor agent
in o✏ine settings to accomplish the same task. For both agents, a lightweight keypoint de-
tection architecture is used to predict waypoints. Additional on-policy training is performed
to control for distribution shifts and provide stronger imitative supervision signals. Finally,
to translate waypoints into control commands, a low-level PID controller is used.

Reinforcement Learning

In reinforcement learning (RL), an autonomous agent learns to perform optimal actions
for an assigned task by repeatedly interacting with the environment, essentially learning
through trial and error. Unlike imitation learning, no expert is telling the RL agent how to
act. Instead of gaining insights about the policy’s performance in a supervised manner by
comparing to an expert, performance in RL is dictated by a reward function prescribed by
the environment.

RL problems are formally described through Markov decision processes (MDPs) [76].
The standard discounted, finite-horizon MDP consists of a set of states S, a set of actions A,
transition function P (st+1|at, st), reward function R(st, at), discount factor �, and horizon
T. At each step t, the agent will use information about the current environment state st to
produce action at, which will be enacted on the environment. After taking the action, the
agent will receive a reward rt = R(st, at) from the environment along with the updated state
space st+1. The reward rt informs the agent on the quality of the previous state-action pair
(st, at), playing a critical role in learning the optimal task. The objective of the RL agent
is to learn a policy that achieves the maximum expected sum of rewards over trajectories in
the state space:

⇡⇤ = argmax
⇡

E⇡[
TX

t=0

�trt] (2.1)

In the context of real-world applications such as autonomous driving, an agent cannot
observe all features of the environment’s state. Thus, the RL problem for our task will be
formulated as a partially-observed MDP (POMDP), introducing the notion of an observation
space O and emission probability P (ot+1|st +1, at). The agent uses observations ot from the
environment, instead of the state st, to compute an action at.

The main techniques for solving RL problems include value function based methods,
policy search, and hybrid methods. Kiran et al. [2] provide a detailed overview of various
techniques, such as Q-learning (value-based), the REINFORCE algorithm (policy search),
and the actor-critic algorithm (hybrid).

Similar to other areas, the advent of deep learning has accelerated progress in reinforce-
ment learning. The use of deep neural networks in RL to develop optimal policies defines
the field of deep reinforcement learning (DRL). By using deep neural networks, DRL can
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take advantage of the important properties of deep neural networks. Properties such as the
ability to scale to settings with high-dimensional data through representation learning and
the ability to act as universal function approximators are most pertinent to RL [2, 32]. DRL
has made a number of breakthroughs in recent years. For instance, DRL agents achieved
superhuman level performance in games such as Atari [51] and Go [67] which notably have
high-dimensional sensory inputs or complex action spaces. From these successes, DRL algo-
rithms have been applied to a wide range of problems, such as robotics, video games, and
systems capable of learning to adapt to the real world. DRL for autonomous driving has
recently become an emergent field. For a detailed overview of DRL algorithms and research
challenges in the field, see [76, 2].

Deep RL for Autonomous Driving

As previously mentioned, imitative models struggle with robustness and reliability due to
their dependency on large amounts of expert data. We are motivated to use RL over imitative
learning for learning driving policies because unsupervised learning removes the dependency
on expert data. We can also learn in a simulated driving environment and learn through trial
and error [22]. This is especially important for learning to drive in a complex urban driving
environment as we can simulate a large variety of scenarios, including dangerous ones. Thus,
the RL agent is more robust than imitative models by nature of having more exposure to
many di↵erent driving scenarios [16]. Given the high-dimensional environment and complex
action space in autonomous driving, we are also motivated to use DRL over traditional RL
for learning complex driving policies.

DRL for self-driving was first introduced in Learning to Drive in a Day [38]. When
using RL for the autonomous driving task, the MDP formulation of the state space S,
observation space O, action space A, and reward function R can be freely set. Kendall et al.
used monocular camera images to define the observation space O, steering angle continuous
between [-1, 1] to define the action space, and a reward function based on minimizing the
distance from the center of the lane. They took a model-free RL approach, using the Deep
Deterministic Policy Gradients (DDPG) algorithm. Though the results demonstrated the
first successful application of DRL for self-driving, their model only handled steering angle
for the lane keeping task which does not generalize to the urban driving scenario.

One of the major limitations in model-free RL is sample ine�ciency: requiring an enor-
mous amount of data to learn expected behaviors and training is very expensive [49, 28].
Even relatively simple tasks can require millions of training steps. Combined with the high
sample complexity in vision-based autonomous driving, urban driving is a daunting task
to learn using model-free RL, especially if the original sensor inputs are used. To reduce
sample complexity, the sensor inputs can be encoded in a more compact and semantically
rich representation that the DRL network will be trained on.

Chen et al. [16] follow this idea and, similar to the previous approach, provide a model-
free RL approach to the autonomous driving task. However, their method was able to learn
a driving policy robust enough for an urban driving task: driving through a roundabout with
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many vehicles and pedestrians. Instead of directly using front-view camera images during
training, they designed a new representation for the observations, using a bird’s-eye-view
representation combining multiple perception information from the scene. This served to
reduce the sample complexity of observations substantially, especially when compared to raw
sensor observations. To further reduce sample complexity, they learned a low-dimensional
latent representation from the bird’s-eye-view images. Finally, the latent encoding is then
used as observations for the RL model. The paper uses o↵-policy, model-free RL algorithms,
such as DDQN [51, 30] and SAC [28]. O↵-policy learning, compared to on-policy learning,
does not require new samples to be collected for each gradient step and instead aims to reuse
past experiences [28]. As a result, o↵-policy algorithms are more sample-e�cient. Though
the work demonstrated some success in a specific urban scenario, it struggled to handle crash
scenarios and ignored tra�c lights.

Toromano↵ et al. [72] also develop a latent representation, introducing Implicit A↵or-
dances. In contrast to the previous method, the representation provided a su�cient signal
to the RL agent for tra�c light detection in urban driving. In their approach, they used an
end-to-end pipeline composed of two subsystems trained successively. First, a convolutional
encoder is trained on auxiliary tasks, such as semantic segmentation and tra�c light state
detection. The encoder is subsequently frozen and the DRL subsystem is trained using the
encoder’s latent space. A novel reward design was also introduced, which we will discuss
later. Overall, their approach was highly successful and achieved strong performance on the
CARLA leaderboard.

Figure 2.4: Overview of World on Rails [12]. (a) A forward model is learned using pre-
recorded logs. (b) Under the learned forward model, the Bellman equations are used to com-
pute the Q-function. (c) The Q-function supervises the visuomotor driving policy through
policy distillation.

More recently, Chen et al. [12] developed a vision-based driving policy for the urban driv-
ing task that achieves state-of-the-art performance in di�cult benchmarks and the CARLA
leaderboard. Unlike the previously discussed approaches, they followed a model-based RL
approach, generating a model of the world from pre-recorded logs, and learning a policy
that acts upon this model. By learning a model for the environment dynamics, model-based
approaches reduce the number of costly interactions required with the real environment,
improving sample e�ciency [40]. The work makes a further simplifying assumption that
neither the agent nor its actions influence the environment. Though this assumption clearly
does not hold in the simulator and the real world, it simplified the learning process sig-
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nificantly, allowing for a simplified tabular RL setup. Once the forward model is learned,
the action-value function (Q-function) is estimated using dynamic programming and back-
ward induction over a simplified form of the Bellman equations. Finally, we use the tabular
approximation of the Q-function to supervise a visuomotor policy through policy distillation.

Reward Design for RL in Autonomous Driving

The design of the reward function is crucial to the performance of any RL policy: RL
agents seek to maximize the return from the reward function, therefore the optimal policy is
defined for the reward function. However, real-world applications such as self-driving often
have sparse and/or delayed rewards. This is problematic because RL agents learn behaviors
through the reward signal. For instance, the reward function for the traditional self-driving
task of following a route and reaching the goal destination safely is typically defined by a
large reward when reaching the goal destination and a penalty when crashing [40]. Both of
these states are extremely sparse, and they provide barely any signal to the agent on proper
driving behavior. Additional rewards can be provided to the agent, through reward shaping.
Reward shaping allows a reward function to be engineered in a way to provide more frequent
feedback signals on appropriate behaviors [41]. Examples of reward shaping in autonomous
driving include having a penalty for deviating from the center of the lane, for deviating from
steering straight, or for getting close to other vehicles.

Even with reward shaping, designing a proper reward function in autonomous driving is
challenging. Knox et al. [41] provide a detailed overview of challenges in reward design. An
important mention is that reward design is challenging because driving is a multi-attributed
problem. Attributes such as progress to the destination, time spent driving, collisions, obey-
ing the law, fuel consumption, etc. all contribute to the quality of driving. It is di�cult to
enumerate and reward all types of behavior, and also consider their external impacts. Knox
et al. also provide a survey of di↵erent reward designs for the self-driving task and sanity
checks for reward shaping. They mentioned that rewarding behavior that is correlated with
performance can backfire. Strongly optimizing such reward can result in policies that pri-
oritize the shaped reward over other performance-related outcomes, which can drive down
overall performance.

When designing our reward function in 3.5, we take inspiration from the reward designs in
World On Rails [12] and End-to-End Model-Free Reinforcement Learning for Urban Driving
using Implicit A↵ordances [72]. In World On Rails, the agent receives a +1 reward for
staying in the target lane at the desired position, orientation, and speed, with a smooth
penalty down to a value of 0 for deviations. When at a “zero-speed” region, such as a red
light, stop sign, or nearby other agents, the agent is rewarded for having zero velocity or
braking. There is no explicit penalty for collisions. Toromano↵ et al., on the other hand,
define a reward function based on three main components: desired speed, desired position,
and desired rotation. The agent is rewarded +1 when at the desired speed, linearly going
down to 0 if the agent’s speed is above or below. The desired speed is adaptive to the
situation, for example, going to 0 in red-light zones or nearby another agent. It is computed
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Figure 2.5: Lateral distance and angle distance computation for the reward function proposed
by Toromano↵ et al. [72].

using “privileged” information from the simulator. The desired position is based on lateral
distance from the center of the lane. Finally, the desired rotation is inversely proportional
to the angle di↵erence between the agent and the nearest waypoint from the route. Figure
2.5 illustrates how lateral distance and di↵erence in angle are computed.
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Chapter 3

caRLot

We aim to build an autonomous driving system that bridges the gap between modular sys-
tems and end-to-end systems, addressing the major challenges that each archetype faces,
while retaining some of its key features. As discussed in Section 2.1, modular approaches
struggle with high-complexity and robustness but are highly interpretable and components
easily interchangeable. End-to-end approaches, as discussed in Section 2.2, sacrifice inter-
pretability for simplicity. Furthermore, reinforcement learning, unlike modular approaches
and imitation learning, does not have a human-defined information bottleneck as it can learn
unsupervised in a simulator through trial-and-error. By training in a simulator, the driving
model is also more robust as the agent can experience dangerous situations in simulation.
However, as we discussed in Section 2.2, a major challenge in RL, specifically DRL, is poor
sample e�ciency. When combined with the high sample complexity in autonomous driving,
training becomes very expensive.

In this section, we will first discuss Pylot [27], a modular AV platform interfacing with
the CARLA simulator [22] that forms the foundations of our approach. We will then build
upon what we’ve explored in previous sections and discuss our proposed autonomous driving
system, which we call caRLot.

3.1 Pylot

Pylot is an open-source autonomous driving platform for developing and testing AV com-
ponents, providing a modular ADS implementation. Modularity in Pylot is achieved by
building on top of ERDOS [26], a high-throughput, low latency dataflow system. Under a
dataflow system, the AV pipeline is structured as a directed graph where AV components
are represented as vertices (ERDOS operators) connected through edges (ERDOS streams).
Using the streams, operators can communicate with each other by either reading or writing
timestamped messages. Since operators can read from or write to multiple data streams,
ERDOS uses a system of watermarks to ensure that data across multiple streams is processed
synchronously at a particular timestamp.
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Figure 3.1 summarizes the modules in Pylot’s AV pipeline, the components within each
module, and how they are all interconnected. Through a modular structure, Pylot achieves
the benefits of modular systems that we describe in Section 2.1, such as interpretability
and ease of integration. Thus, we can use Pylot to study the e↵ects of changing individual
components on end-to-end driving behavior, without having to worry about runtime vari-
abilities or interactions between components. We can also easily visualize the output of
individual components, using the visualization tools that Pylot o↵ers. To support the devel-
opment process, Pylot provides reference implementations for components. Moreover, Pylot
interfaces with CARLA [22], an urban driving simulator that provides privileged informa-
tion about the driving environment. When interfacing with CARLA, Pylot o↵ers “perfect”
implementations for certain components, using information from the simulator to produce
the ground truth for a particular component. This enables us to more accurately evaluate
components in isolation and determine the individual impact on end-to-end performance.
To take advantage of this feature, we develop our approach and run experiments over the
CARLA simulator.

CARLA

Because our approach will be developed over Pylot’s interface with the CARLA simulator, it
is important to discuss some of CARLA’s abstractions when simulating the real-world driving
environment. As previously discussed, CARLA o↵ers an abundance of privileged information
about the simulation environment, su�cient for producing ground-truth implementations of
most of the perception module. Though privileged information is useful for testing purposes,
over-relying on it may make it to transfer our system to the real world in the future [40].
We describe some of the privileged information relevant to our approach while considering
the “simulator-reality gap”.

While driving in the real world, the vehicle’s pose is necessary to determine how to follow
a specific route towards the destination; the simulator is no di↵erent. In Pylot, the vehicle’s
pose is defined by its position, orientation, forward speed, and velocity. Using the CARLA
simulator, Pylot operators can access the ground truth pose of the vehicle at each instance.
This is in stark contrast to the real world, where vehicles would use GPS and IMU sensors for
localization components to estimate pose. Though Pylot supports localization, we decided
to use the simulator’s computed pose to eliminate a potential source of error.

To navigate from a start location to an end location, CARLA uses a high-level route plan-
ner to generate high-level navigational commands: “turn left”, “turn right”, “go straight”,
“follow lane”, “change lane left”, and “change lane right”. These commands are similar to
those provided by navigation tools that guide human drivers along a route. We use these
commands in our approach, following previous works that use the high-level command to
guide the vehicle along reproducible routes and reduce ambiguity at intersections [17, 14,
12].
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Figure 3.1: Modules and components in the Pylot AV pipeline [27]. Reference implemen-
tations are listed next to the component while perfect implementations are provided for
components with a green check mark.

Perception Stack

We denote the sensing, perception, and prediction modules as the perception stack as they
are responsible for perceiving the surrounding environment and extracting the information
necessary for the planning and control modules to ensure safe navigation.

For the purposes of this paper, we focus on the following subset of sensor technologies
supported in Pylot: cameras and GPS. In Pylot, cameras can easily be integrated into the
vehicle by defining a CameraSetup for each camera. The CameraSetup is defined by the
camera’s image width, image height, and transform with respect to the vehicle, field of
view, and camera type. CARLA supports RGB cameras, depth cameras, and segmentation
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cameras. To attach a camera to the ego-vehicle, the CarlaCameraDriverOperator is created
with the defined CameraSetup. The operator will receive camera frames from the CARLA
simulator and send them on an output stream as a FrameMessage. For visualization purposes,
the camera frame can be rendered as a 2D RGB image. Though the transform configuration
in CameraSetup is generally used to transform the camera to a location and orientation
relative to the vehicle, Pylot supports bird’s eye view transforms to transform the camera’s
view to a top-down perspective.

Similar to the camera, a GPS can be attached at a specific location and rotation relative
to the vehicle. As we’ve discussed, the GPS sensor plays an important role in mapping
and localization. Since we will be using the privileged pose information from the simulator,
localization with GPS (and IMU) will not be necessary. However, the GPS is still necessary
for determining which high-level command to follow, while the ego-vehicle is progressing
through the computed route.

In Pylot, nearly all components in the perception module are dependent on just camera
sensors, which contributes to our decision to limit sensor types to cameras and GPS. For our
pipeline, we will utilize all of the perception components because each plays a critical role in
achieving urban driving. The perception components, tra�c light detection, lane detection,
object detection, and object tracking have individual Pylot operators for reference imple-
mentation and “perfect” implementation. Tra�c sign detection is integrated into object
detection: tra�c signs and stop signs will be detected as obstacles and labeled appropriately
for downstream operators. Perception operators will process camera data from the input
camera stream to compute their results, which they communicate through their correspond-
ing message type. For instance, object detection operators transmit detections through an
ObstacleMessage, containing the information for a particular obstacle’s ID, bounding box,
and class label. The tra�c light detection operator provides nearly the same information
as the object detector in a TrafficLightsMessage but provides a tra�c light state (green,
yellow, red, o↵) instead of a class label. Lane detection operators send a LaneMessage, con-
taining the detected lanes which are each represented as a sequence of lane markings for both
sides of the lane. Object tracking operators utilize the detections from the ObstacleMessage
and send their results through an ObstacleTrajectoryMessage to the prediction module.

From the ObstacleTrajectoryMessage, the prediction module observes the bounding
box and identifier of each obstacle at every time instance to predict future behavior, gen-
erating an ObstaclePredictionMessage. The message contains the past and predicted
trajectory of each obstacle. Unlike the perception components, the prediction module lacks
a “perfect” implementation, so the linear predictor reference implementation is used as a
baseline.

Once all of the perception messages are received, Pylot’s internal representation of the
world, the World class, can be updated with the perception outputs. Although Pylot uses
World as the representation of the planning world for the planning module, it serves as a
convenient representation of the environment’s current state. The World class stores in-
formation about the driving environment, such as the ego-vehicle’s current state and its
trajectory, the route to be followed, detected agents and their trajectories, detected lanes,
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Figure 3.2: A bird’s eye view representation of an AV’s surroundings produced by the Pylot
AV pipeline [27]. The representation is annotated with driveable regions, nearby vehicles,
pedestrians, and the predicted paths of nearby agents.

and detected tra�c lights and signs.

3.2 Approach

Our approach, caRLot, builds an OpenAI gym environment [8] atop the Pylot modular AV
platform, which will interface with the CARLA simulator. By integrating with Pylot and
CARLA, we gain access to previously discussed features, namely a framework for a modular
ADS, a simulator that can be used for training and evaluating RL policies, and reference and
“perfect” implementations of AV components. As shown in Figure 3.3, caRLot will use just
the perception stack of Pylot, replacing the planning and control modules with a separately
learned DRL policy. Essentially, our design bridges the gap between modular and end-to-end
approaches by developing a hybrid system.

Our hybrid approach consists of the modules in the perception stack (sensing, perception,
prediction) and an end-to-end RL model. In designing caRLot, we consider the challenges
of achieving robustness, e�ciency, and interpretability. We specifically replaced the plan-
ning and control module with an end-to-end RL policy to improve robustness and e�ciency.
Replacing these modules with a single learned policy reduces the overall complexity of the
system, eliminating the need for the predefined output structure between planning and con-
trol components. Explicitly replacing the control module with a learned policy also improves
our ability to generalize across a range of scenarios and lowers the computational complex-
ity. For our end-to-end model, we use deep reinforcement learning over imitation learning
because RL models can take advantage of the CARLA’s simulated driving environment and
learn from a large variety of scenarios to develop a robust, reliable policy. We make a further
design choice to opt for model-free RL approaches over model-based ones as our end-to-end
model. Though model-based policies have improved sample e�ciency, they rely heavily on
the simulator’s environment dynamics which may not be indicative of the real-world driving
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environment. Furthermore, using model-free RL enables us to easily interchange and exper-
iment with di↵erent algorithms as long as they are compatible with our environment. We
will discuss this in further detail in Section 3.6

These added benefits of using end-to-end learning in the ADS pipeline questions the need
for a hybrid approach, rather than a full end-to-end system. Retaining the perception and
prediction modules will improve the interpretability of our overall system and the sample
e�ciency of the downstream DRL policy. Since we maintain the perception stack of the mod-
ular approach, we can still observe the intermediate outputs between modules for debugging
purposes. We’ve discussed in 2.2 that DRL models struggle with sample ine�ciency, which
is only exacerbated by the high sample complexity of raw sensor data in self-driving. As
demonstrated by Chen et al. [16], we can use the output of the perception stack instead of
raw sensor data for our DRL model to reduce the sample complexity of the observation space
substantially. However, instead of passing in the perception stack output directly, we design
a bird’s eye view representation to further promote learning by improving sample e�ciency.
Finally, we follow prior approaches to reducing ambiguity at intersections by incorporating
routing information into our observations, using high-level navigational commands [44, 14,
12]. We will now discuss more specifics about the implementation of our approach in the
subsequent sections.

3.3 Environment Setup

Since we realize our caRLot through an OpenAI gym environment built atop Pylot, we first
discuss our gym environment setup and the Pylot integrations.

Pylot Setup

When initializing or resetting the gym environment, all of the Pylot operators must be
initialized. Since we will be interfacing with CARLA, we use Pylot’s CarlaOperator which
will act as a bridge to the CARLA simulator. The CarlaOperator sets the required town
and weather, initializes the required number of actors, and initializes the ego-vehicle. It
also provides access to privileged information, such as the current ego-vehicle pose and the
ground truth information necessary to create perfect components.

With the ego-vehicle constructed in the simulator, we can begin adding the necessary
operators that form our perception stack. We configure caRLot to use cameras with a defined
resolution of camera width ⇥ camera height. Though cameras of di↵erent placements and
orientations can be used (left, right, and rear cameras), we use only center cameras: cameras
positioned at the center of the vehicle with a forward-facing orientation. Following the
center camera setup, we add RGB, depth, and segmented CameraDriverOperators to the
ego-vehicle, each of which provides camera frames of their corresponding type through an
ERDOS stream. In addition to the camera sensors, a GNSS (GPS) sensor is added to our
vehicle, used specifically for routing purposes. Since we will be using the ground truth pose
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Figure 3.3: The caRLot gym environment integrates with Pylot [27] and CARLA [22] to
provide customizable configurations of interconnected sensors and components to produce
a bird’s eye view (BEV) representation of the AV’s surroundings. Thus, caRLot enables
the development of fully learned policies that produce control outputs directly from BEV,
and take the place of traditional AV trajectory planning and control algorithms (e.g. RRT
Planner [35] or model predictive control [39]). caRLot can evaluate an policy’s robustness
by taking advantage of Pylot’s variety of component implementations (including “perfect”
implementations that use ground-truth information from the simulator, marked with a green
check mark) to introduce pertubations in the BEV, mirroring the introduction of new weights
and di↵erent model architectures in the development cycle of real world AVs.
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instead of estimating it through localization, an IMU sensor will be unnecessary. Finally, a
collision sensor is added to the ego-vehicle to notify downstream operators of collision events
with other agents.

Once the camera sensors are set up, we can configure the remainder of the perception
stack, the perception and prediction components. We set up caRLot to use Pylot’s imple-
mentations for obstacle detection, obstacle tracking, lane detection, tra�c light detection,
and trajectory prediction (see 3.1 for more details). Each of these components is customiz-
able; caRLot can select from a variety of models as well as “perfect” components that use
privileged information from the simulator to provide ground truth predictions. Once all of
the operators in the perception stack are configured, we initialize Pylot’s planning World,
which will represent the state of the driving environment perceived by the ego-vehicle.

Since we will be evaluating performance based on our agent’s ability to reach a target
destination, we implemented a gym environment wrapper, RouteWrapper. RouteWrapper
receives the spawn and goal point indices which determine where in the current town the
ego-vehicle is spawned and will aim to reach. If these indices are not set, a random point
will be selected. RouteWrapper will convert input point indices into actual locations in the
CARLA map and uses the simulator to compute a high-level route from the start location
to the goal location. RouteWrapper also computes the distance to the goal destination and
lets us know when we’ve reached the destination.

Observation Representation

At each environment step, we feed camera inputs to the AV perception components and
receive as outputs raw observations of the vehicle’s surroundings from perception mes-
sages. This will include all of the data stored in TrafficLightsMessage, ObstacleMessage,
ObstacleTrajectoryMessage, LaneMessage, ObstaclePredictionMessage such as detected
tra�c lights, detected lane markings, and bounding boxes of nearby agents and their pre-
dicted motion. We also read from the GNSS sensor to receive the current latitude, longitude,
and altitude of the vehicle. This information is used to fetch the high-level navigation com-
mand of the closest waypoint in the computed route. The high-level command is then
mapped into a numerical value ranging from [0, 5] in the following order: “turn left”, “turn
right”, “go straight”, “follow lane”, “change lane left”, and “change lane right”. Finally, we
update the World with the raw perception observations to maintain the perceived environ-
ment state at each iteration.

In pre-processing steps, we facilitate learning by transforming this abstract representa-
tion into a more sample-e�cient representation of the AV’s surroundings. Using Pylot’s
visualization tools, we could draw the perception stack outputs onto a camera frame. For
instance, the detected objects would be visualized with a bounding box around the object
with a class label and detected lanes visualized by plotting the lane markings on the frame.
We utilize the camera setup’s extrinsic and intrinsic to compute a top-down transform to
convert our camera representation into a bird’s-eye-view representation. This is done by
transforming all detection coordinates into bird’s-eye-view coordinates, before drawing onto
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(a) Roadmap (b) Tra�c Lights (c) Route (d) Current Ego Position

(e) Past Ego Trajectory (f) Past Obstacle Trajectory(g) Predicted Obstacle Tra-

jectory

(h) Center Camera View

Figure 3.4: Bird’s-eye-view representation of perception stack output (a-g) and original
center camera view (h)

a frame. As shown in 3.4, the modified representation comprises of several images of size
W ⇥ H rendered into a top-down (bird’s-eye-view) coordinate system. Each of the images
is grayscale. (a) Roadmap: a binary image {0, 255} containing information about the road.
Detected lane markings and stop signs are rendered on the road map. (b) Tra�c Lights:
the intended route that the ego-vehicle should follow, with brightness varying on tra�c light
state. The brightest level for red lights, an intermediate gray level for yellow lights, and a
darker level for green and unknown lights. (c) Route: the intended route that the ego-vehicle
should follow, with brightness varying on high-level command. (d) Current ego position: a
binary image 0, 255 with the ego-vehicle’s current position rendered as a large circle. (e) Past
ego trajectory: the ego-vehicle’s past t positions are rendered as small circles with reduced
brightness meaning earlier timesteps. (f) Past Obstacle trajectory: past bounding boxes of
detected agents with reduced brightness meaning earlier timesteps. (g) Predicted obstacle
trajectory: predicted bounding boxes of detected agents with reduced brightness meaning
later timesteps.

Since the original camera image is of dimension camera width ⇥ camera height, we
resize each image to W ⇥H. We then concatenate all of the images to form a W ⇥H ⇥ 7
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representation. We use this bird’s-eye-view representation as observations for our caRLot
gym environment.

Action Space

The traditional action space A for the ego-vehicle has continuous steering: s 2 [�1, 1],
continuous throttle: t 2 [0, 1], and discrete braking: b 2 {0, 1}. To expedite training, we
take inspiration from CARLA’s RLlib integration [10] and Toromano↵ et al.’s work [72]
and discretize the continuous action spaces as follows: restrict s 2 {0,±0.5,±0.75} and
restrict t 2 {0.0, 0.3, 0.6, 1.0}. We can further simplify the action space into just 28 discrete
actions using various combinations, ranging in actions from coasting, applying break, and
moving straight, left, and right at various speeds and orientations. Discrete actions can
be compensated in the future by making the actions more fine-grained and increasing the
number of discrete actions [72].

3.4 caRLot Implementation

caRLot is implemented as an OpenAI gym environment that wraps Pylot’s APIs to set up
a customizable simulated AV pipeline across all components except planning and control. A
caRLot environment takes as input a configuration (e.g. a YAML file or a Python dictionary),
which it uses to set up Pylot’s sensors and components. We encountered several challenges
in supporting the reset() method of the OpenAI Gym interface. Firstly, Pylot is not
designed to frequently reset its internal state, so caRLot shuts down and restarts Pylot upon
every reset. Consequently, we needed to add features to caRLot to manage the execution and
graceful termination of Pylot processes, to avoid hanging and orphaned processes. Moreover,
we wanted to run multiple invocations of Pylot in parallel to support training at scale;
however, this caused issues when running multiple Pylot instances on the same machine,
as Pylot uses statically-allocated TCP ports to communicate between the processes that
encapsulate AV components, resulting in errors when multiple processes attempted to bind
to the same ports. To solve this problem, we modified Pylot to dynamically select available
TCP ports which prevent di↵erent processes from binding to the same port.

Another major challenge we encountered during our initial implementation was that
environment steps were extremely slow. We learn from initial experiments, discussed in
Chapter4, that environment steps took 10.7 seconds on average. Through further analysis,
we determined that a large amount of time was spent converting the raw perception output
into our perception representation, specifically, drawing detected lanes onto the Roadmap
frame using Pylot’s visualization tools. This task was taking a substantial amount of time
because the “perfect” lane detection operator represented each lane using on average 10,000
lane markings. Transforming all markings into the bird’s eye view representation was very
computationally expensive. To alleviate the issue, we sampled from the set of detected lane
markings and decided to only transform and plot the lane markings we sampled. This in-
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(a) Roadmap with sampling (b) Roadmap without sampling

Figure 3.5: Comparison between the roadmap perception component with (a) and without
(b) sampling. With sampling, the lanes appear more slightly more jagged.

troduced a trade-o↵ between latency and quality of the detected lane representation: using
fewer samples would improve the latency but make the lane appear more dotted. We exper-
imented with various sampling approaches and settled on using systematic sampling with a
periodic interval of 10. We similarly applied this optimization for other frames that required
many transforms. In addition to sampling, we removed some repetition in drawing the lanes.
Since each lane is represented by left markings and right markings, the lane markings in the
middle of two adjacent lanes will be overlapping and drawn twice. Thus, we made further
optimizations by drawing the overlapping markings only once. Through these optimizations,
we were able to reduce the duration of each environment step to 800-1000 ms, which is over
a 90% reduction. Furthermore, the improved runtime did not have a large impact on the
visual quality of the frames. Visual changes to the representation did not appear too drastic,
as seen in Figure 3.5. Most of the remaining latency is attributed to the delay in gathering
observations from the simulator.

3.5 Reward Design

Initial Design

We experimented with two di↵erent reward functions. Our first reward function depended
only on the current ego-vehicle’s pose. Since we planned to evaluate our model on the No-
Crash benchmarks, our initial rewards setup focused on rewarding behavior that would lead
to getting to the destination as e�ciently as possible. A straightforward way of treating
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Listing 3.1: An example rollout using caRLot. The config specifies caRLot should set up
the underlying AV pipeline. In the example, we use perfect perception components, and
use linear prediction. The environment is then created using the config, and wrapped by
the RouteWrapper, which generates random start and goal locations between which the AV
must navigate. The policy then interacts with the environment by producing actions from
the provided observation.

c on f i g = py lo t env . PylotConf ig ( camera image width=360 ,
camera image he ight=360 ,
b i rd image width=96,
b i rd image he i gh t =96,
town=1)

c on f i g . add l an e de t e c t i on ( ‘ p e r f e c t ’ )
c on f i g . add ob s t a c l e d e t e c t i o n ( ‘ p e r f e c t ’ )
c on f i g . a d d t r a f f i c l i g h t d e t e c t i o n ( ‘ p e r f e c t ’ )
c on f i g . add ob s t a c l e t r a ck i n g ( ‘ p e r f e c t ’ )
c on f i g . add pr ed i c t i on ( ‘ l i n e a r ’ )
c on f i g . add gns s s en so r ( ‘ gn s s s en s o r ’ )
env = py lot env . PylotEnv ( c on f i g )
env = py lot env . RouteWrapper ( env ,

spawn point index=−1,
g oa l p o i n t i nd ex=−1)

obs = env . r e s e t ( )
env . render ( )
po l i c y = . . .

done = Fal se
while not done :

a c t i on = po l i c y . p r ed i c t ( obs )
obs , reward , done , i n f o = env . s tep ( ac t i on )
env . render ( )
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this task would be to have a large positive reward when reaching the destination and a
large negative reward when crashing into an obstacle. The discount factor would place more
emphasis on achieving the goal sooner. However, reaching the goal destination is a very
sparse event and can only occur once the policy has learned to navigate through a di�cult
route. Thus, we added reward shaping to provide more frequent signals on appropriate
behaviors during training.

First, to ensure that the ego-vehicle was moving towards the goal destination, we intro-
duced a continuous reward based on the distance traveled towards the destination. We used
the RouteWrapper to compute the distance between the current ego position and the goal
destination. The reward is positive if the distance to the destination decreases (getting closer
to the destination), and negative otherwise (moving away from the destination). To ensure
that the agent does not remain idle, we penalized the agent (-10) if it remained stagnant in
a position for a certain threshold max time idle. We determined the agent is stagnant by
checking if the distance traveled in each step was close to 0. To promote following the route,
the agent is penalized (-10) if it makes a wrong turn at an intersection. We assumed an agent
made the wrong turn if the agent moves away from the goal destination for max wrong route
consecutive steps.

During training, we prescribe a set of termination conditions that, when met, will send a
“done” signal to end the current episode. The primary conditions to terminate occur when
the ego-vehicle reaches the goal destination or when it crashes. The collision sensor notifies
the rest of the pipeline when our agent crashed. During training, we also terminate when
max time idle or max wrong route thresholds are met. Lastly, we tracked the number of
steps taken in the current episode and terminate the episode when reaching max time step
number of steps. The agent is also provided a reward of +10 when reaching this condi-
tion. This serves as an intermediary goal for the agent: instead of just aiming to reach the
destination, the agent tries to move towards the goal without crashing.

Revised Design

After running experiments with the initial rewards design, we decided to revise our rewards
function, following prior works more closely. Our incentives for redesigning the rewards are
discussed in Chapter 4. For our revised reward function, we drew inspiration from the re-
ward designs in World On Rails [12] and End-to-End Model-Free Reinforcement Learning for
Urban Driving using Implicit A↵ordances [72]. Rather than solely basing the reward on dis-
tance traveled like our initial approach, we consider the following components: speed reward,
stop reward, brake reward, position reward, orientation reward, and steering reward. For
convenience, at timestep t, we define the ego-vehicle’s speed as vt and high-level navigation
command to follow as ct. The current control command is throttle, steer, brake.

The speed reward rspeed is based on the idea of a target speed, introduced by Toromano↵
et al. [72]. We introduce two parameters into our caRLot configuration: target speed vturn tgt

and turn target speed vtgt. These parameters determine the speed that the ego-vehicle should
maintain when there are no events at the scene. Moreover, we use the current high-level
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command value, ct, to determine whether to use target speed or the turn target speed. To
compute the target speed in di↵erent tra�c scenarios, we multiply the target speed with
a “speed factor”. The speed factor vf , within range [0, 1], is computed using information
from the perception stack, such as detected obstacles and tra�c lights. The speed factor is
reduced whenever the ego-vehicle’s path is blocked by an obstacle or agent, or if it must stop
at a tra�c light. When the speed factor is 0, the ego-vehicle is expected to make a full stop.
We define the component in the following equation, where the ego-vehicle’s current speed is
defined as vt:

rspeed =

(
1� |vf ·vturn tgt�vt|

vturn tgt
if ct 2 [0, 1]

1� |vf ·vtgt�vt|
vtgt

otherwise
(3.1)

The stop reward rstop is also based on the agent’s current speed, providing a penalty when
the agent is driving in a “zero-speed” region with greater than zero speed. We determine if
the agent is within the region by checking if the speed factor is 0. The reward ranges from
[0,�1], minimum when vt = 0. We compute the stop reward as follows:

rstop =

(
� tanh vt if vf = 0

0 otherwise
(3.2)

The brake reward rbrake is similarly provided when the ego-vehicle is within the “zero-speed”
region. A greedy reward of +1 is provided when the agent brakes in the region.

rbrake =

(
1 if vf = 0 \ brake = 1

0 otherwise
(3.3)

The position and orientation rewards are computed similarly to how they’re computed in
Figure 2.5. The position reward rpos ranges from [0, -1] and is based on the lateral distance
from the ego-vehicle to the center of the lane. The lateral distance dlat is computed using
the vehicle’s current pose and the closest waypoint in the route. The reward is 0 when the
vehicle is exactly at the center, and -1 when the vehicle is out of the lane. We define the
maximum distance from the lane center as dmax for the computation:

rpos = �dlat/dmax (3.4)

The orientation reward rorient is based on the heading error of the ego-vehicle. We define
heading error as the angle between the ego-vehicle’s forward vector (fe) and the closest
waypoint’s forward vector (fw). The heading error will range from [0, 1], maximized when
the forward vectors are perpendicular. We define the orientation reward, ranging from [0,
-1]:

rorient = 1� arccos (
fw · fe

||fw|| ||fe||
) (3.5)
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Finally, the steer reward is based on whether the current steer command matches the high-
level navigation command. If they do not match, the steer reward is set to -1.

rsteer =

8
>>><

>>>:

�1 (steer 6= 0 \ ct 2 [2]) [
(steer > 0 \ ct 2 [0, 4]) [
(steer < 0 \ ct 2 [1, 5])

0 otherwise

(3.6)

All reward components are additive, so the total reward rt at timestep t is:

rt = rspeed + rstop + rbrake + rpos + rorient + rsteer (3.7)

During training, we terminate the episode when the ego-vehicle reaches the goal des-
tination, crashes or goes outside the target lane. Leaving the target is indicated by a
rpos <= �1.0. Unlike our initial reward design, we do not provide any additional reward or
penalty when the episode terminates. Chen et al. found it unnecessary to explicitly penalize
collisions when using zero-speed zones and brake rewards [12].

3.6 Policy

Using the caRLot gym environment and defined reward functions, we aim to build an end-
to-end driving policy ⇡(I) that at each timestep t, maps I, the bird’s eye view representation
of the perception stack output and high-level command, to a discrete action a 2 A map-
ping to a raw control command. To implement and train our RL policy, we integrated our
gym environment with Ray RLlib [43]. RLlib is an open-source library for reinforcement
learning that o↵ers a simple, customizable RL training workflow. RLlib also has an ex-
isting set of implemented model-free RL algorithms with default configurations, making it
straightforward to experiment with various RL algorithms as long as they are compatible
with the environment setup. Furthermore, the model architecture used in each algorithm
can be customized appropriately. Since we will be training a vision-based policy, we design
a CNN-based neural network architecture. Other relevant training configurations that we
modify include the batch size, optimizer, learning rate, and exploration method. We will
discuss how each parameter is set during training in Chapter 4. For the purposes of this
paper, we use RLlib to train our models in an online setting. RLlib supports o✏ine learning,
which we will address in Chapter 5.

RL Algorithm

To decide on which model-free RL algorithms to use for training, we consider the following
challenges: sample ine�ciency and slow environment. We can also only consider algorithms
that support discrete actions. Though we addressed the challenge of sample e�ciency by
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introducing a perception representation with more optimal sample complexity, it is still nec-
essary to utilize a sample-e�cient RL algorithm during the training process. This is largely
in part to our slow simulator environment. Even though we significantly improved the run
time of each environment step, the current duration of 800-1000 ms is still a challenge for
online training. We decided to narrow the list of available RLlib algorithms to those that
support o↵-policy learning. O↵-policy algorithms are significantly more sample-e�cient than
on-policy algorithms because past experiences can be reused through a replay bu↵er. Fur-
thermore, using an o↵-policy RL algorithm is consistent with previous approaches that used
model-free RL to learn a driving policy [72, 16]. We experiment with o↵-policy algorithms
IMPALA [23], DQN [51, 30], and SAC [28]. We discuss each algorithm when describing our
experiment setup in Chapter 4.
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Chapter 4

Experiments

4.1 Experimental Setup

All experiments in this chapter were performed on top of CARLA 0.9.10 on a machine having
2 Xeon Gold 6226 CPUs, 128GB of DDR4 RAM, and 2 Titan-RTX 2080 GPU with CUDA
version 11.4.

Benchmark

We will train and evaluate our method on the CARLA simulator, using the caRLot gym
environment. We specifically use the CARLA NoCrash benchmark, which is designed to test
the ego vehicle’s ability to handle complex events caused by changing tra�c conditions and
dynamic agents (pedestrians, other vehicles) in the scene, similar to an urban environment
[19]. The NoCrash benchmark includes 50 predefined routes: 25 in the training town (Town
1) and 25 in the test town (Town 2). Each route is defined by a spawn and goal point
index, each of which corresponds to a predefined location in the CARLA town. Agents are
evaluated on success rate. A trial is considered successful if the agent can safely navigate
from the starting position to the goal position within a time limit. We set the time limit
to 10,000 environment steps, which approximates the maximum number of steps necessary
to drive each route at 5 km/h. In addition to failing to meet the time limit, a trial is
deemed a failure when the collision sensor detects that a collision above a preset threshold
has occurred.

The CARLA simulator provides di↵erent weather settings, allowing users to specify
weather conditions such as cloudiness, precipitation, and solar altitude angle. The NoCrash
benchmark is evaluated under six weather presets, split into train and test sets. For instance,
the training weathers are “Clear noon”, “Clear noon after rain”, “Heavy raining noon”, and
“Clear sunset” while the test weathers are “After rain sunset” and “Soft raining sunset”.
However, we reduce the scope of training and evaluation to use only the “ClearNoon” weather
preset.
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The NoCrash Benchmark also proposes three di↵erent tasks: Empty Town, Regular Traf-
fic, and Dense Tra�c. We run our experiments on the Regular Tra�c condition, randomly
distributing 20 vehicles and 40 pedestrians throughout the town. Each vehicle and pedestrian
move autonomously throughout the town, simulating a multi-agent urban environment.

Training Setup

Using our integration with RLlib, we train an RL agent on the caRLot gym environment
under an online setting. Though we can fundamentally use any supported RL algorithm, we
experiment with and train agents using the following sample-e�cient, o↵-policy algorithms:
DQN, SAC, and IMPALA. For our gym environment, we use our standard perception stack
consisting of the following Pylot components: camera sensors, GPS, object detection, object
tracking, lane detection, tra�c light detection, and object prediction. Furthermore, we use
the “perfect” versions of the object detection, object tracking, lane detection, and tra�c
light detection operators and use linear trajectory prediction.

Regarding the sensor configuration, we initially set the camera resolution to 96 ⇥ 96.
However, we observed that it was very challenging to identify or distinguish certain features
in our representation, such as the object trajectories and lane markings. Consequently,
we increased the camera resolution and set it to 300 ⇥ 300 to ensure that the perception
stack has enough resolution for precise detection in the scene. Once the perception stack
representation is constructed with the larger resolution, its resolution can be resized to the
bird’s-eye-view resolution, which we set to 96 ⇥ 96. Under this setup, the policy ⇡(I) will
receive a 96⇥ 96⇥ 7 dimensional input, so we set dim = 96.

On top of the caRLot environment, we add two gym environment wrappers: RouteWrapper
and NormalizeObservation. NormalizeObservation uses a running mean and std to nor-
malize our observation representation. The RouteWrapper is necessary so that the agent can
follow a defined route, computed when given a spawn and goal point index. Through the
RouteWrapper, we can train each agent using the training routes from the CARLA simula-
tor NoCrash benchmark. At each new episode, the agent is given a random spawn and goal
point index from the set of training routes. The RouteWrapper will update the base environ-
ment with the route so that the correct high-level commands will be used in the perception
representation and reward function. Once the environment is finished initializing, the agent
will aim to follow the route at a target speed, until a termination condition is triggered. We
set the target speed to 6.5 km/s and turn target speed to 6.0 km/s. matching the target
speeds set by Chen et al. [12]. Once the episode terminates, the environment (and all Pylot
operators) will be reinitialized before the new episode can begin with a newly selected route.
This ensures that the simulator and Pylot operators are always up to date and properly
synced.
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RL Configuration

We train a policy ⇡(I), over the caRLot gym environment, to learn how to drive through
routes from the NoCrash benchmark using various RL algorithms. We first discuss the
common settings for the RL algorithms we experiment with. In each of our experiments,
we use the same policy network architecture: a vision-based neural network architecture
consisting of 4 convolutional layers followed by 2 fully connected layers. Supposing each
convolutional layer is defined by the tuple (filters, kernel size, strides), our convolutional
layers consists of [(16, 5, 4), (32, 5, 2), (32, 5, 2), (64, 5, 2)]. The fully connected layers
have hidden dimensions of [256, 512] and are followed by a tanh activation. To train all of
our networks, we use the Adam optimizer with a preset initial learning rate, dependent on
the algorithm. We use the default training configurations for each algorithm and discuss
deviations from the default for each algorithm in the following:

1) IMPALA: Importance Weighted Actor-Learner Architecture (IMPALA) is proposed
to be data e�cient and highly scalable [23]. IMPALA follows an actor-critic setup, using a
central learner running SGD in a tight loop while asynchronously pulling sample batches
from many actor processes. A novel o↵-policy learning algorithm called V-Trace is used
for o↵-policy correction.

Training experiments with IMPALA occurred prior to the other experiments. The IM-
PALA experiment is run using the initial rewards function before the optimizations for
environment steps from Section 3.4 were applied. Without any optimizations, we were
only able to train the IMPALA agent for 15K timesteps. Under our initial rewards setup,
we set max time step = 150, max time idle = 75, and max wrong route = 25. We
used the Adam optimizer with initial learning rate 0.0025. The discount factor is set to
0.99. We use stochastic sampling as the exploration algorithm.

2) DQN: The Deep Q-network (DQN) algorithm uses a deep neural network to approx-
imate the Q value Q⇡(s, a), the expected total reward from taking action a in state s and
following policy ⇡ afterward. With a target network, DQN supports o↵-policy learning,
using a replay bu↵er to store transition pairs. A larger replay bu↵er improves stability
but due to memory limitations, we set the replay bu↵er size to just 1000 transitions.

The standard DQN implementation in RLlib includes dueling DQN [73] and Double DQN
(DDQN) [30]. Dueling DQN helps di↵erentiate actions between each other, while DDQN
alleviates the issue that the original DQN algorithm has of overestimating Q-values. We
retain both of these modifications to improve the training process for the agent.

For the environment, we use our revised reward function. The networks are trained for
about 150k training steps, using the Adam optimizer with learning rate 0.0025. We set
the train batch size to 64, with a rollout fragment length of 16. The discount factor is
set to 0.99. We use RLlib’s SoftQ exploration algorithm with temperature set to 1.0 to
perform stochastic sampling over the discrete action distribution.
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3) SAC: DQN methods often su↵er from brittle convergence properties, requiring sub-
stantial hyperparameter tuning. The Soft Actor-Critic (SAC) algorithm is proposed to
alleviate this issue by using maximum entropy RL. Instead of just maximizing the ex-
pected reward, it also maximizes the entropy. SAC defines three networks: a soft Q
network, a soft value network, and a policy network and alternates between optimizing
the policy evaluation networks (soft Q and soft value) and policy improvement network
(policy). We use the same architecture for all the networks. SAC supports using o↵-
policy data from a replay bu↵er because both value estimators and the policy can be
trained entirely on o↵-policy data. Similar to DQN, we set the bu↵er size to 1000 due to
memory limitations.

Similar to DQN, we use the revised reward function in the environment. The networks
are trained for 250k timesteps using the Adam optimizer with learning rate of 3e�4. The
train batch size is set to 64 with a rollout fragment length of 1. The discount factor is
set to 0.99. The exploration strategy is included in the SAC policy network, performing
stochastic sampling by default.

4.2 Training Results

The training results are summarized in Figure 4.1. From the learning curves of our initial
experiment (plots a-b), we see that the average return for the IMPALA agent had minimal
improvement. Though further training may eventually lead to more noticeable improvement,
we identified issues with the initial reward design that might have contributed to unsatisfac-
tory learning of the task. For instance, it was unnecessary to include a penalty for wrong
turns, using max wrong route, as this is already accounted for by the distance to goal re-
ward. Furthermore, high-level commands were not incorporated into the rewards, so there
wasn’t a reward signal that guided the agent towards correct steering. Our initial training
e↵orts with IMPALA were drastically hindered by the slow environment step time since the
experiment occurred before we introduced the optimizations discussed in Section 3.4. The
average environment wait time during initial training was 10.7 seconds, and training just
15K timesteps took around 39 hours. From the initial training experiment, we were able to
pinpoint the issue and apply the optimizations we discussed in Section 3.4.

After modifying the rewards and optimizing environment step time, we ran our train-
ing experiments for the DQN and SAC agents for about 150K training steps. Comparing
the learning curves of SAC and DQN in plots (c-d), we see no significant di↵erence in ei-
ther the average return or average episode length curves. The learning curves demonstrate
that the policies are slowly improving as training progresses. However, the shaded regions
demonstrate that DQN is substantially more unstable than SAC, having a very large range
of returns and episode lengths. In contrast, the shaded regions for the SAC agent are very
minimal throughout most of the curve. This concurs with our previous discussion that DQN
struggles with instability and poor convergence, issues that SAC tries to mitigate [28]. Fol-
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(a) Train Average Return (b) Train Average Episode Length

(c) Train Average Return (d) Train Average Episode Length

Figure 4.1: Learning curves of di↵erent RL approaches on the training routes of the NoCrash
Benchmark. (a-b) For our initial experiment, the IMPALA agent used our initial reward
function. (c-d) The DQN and SAC agents were trained in a following experiment using our
revised reward design, hence the di↵erence in reward scale. The statistics are computed from
episode rollouts throughout training. The shaded region represents half a standard deviation
about the mean at each timestep.
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lowing this analysis, we trained just our SAC policy for an additional 100K timesteps, due to
limited computing resources. We use the SAC agent for analysis in the subsequent sections.

It is important to note that our online training e↵orts were still bottlenecked by the slow
environment step time, even after optimizing the environment steps. The wait time was still
on average 1 second. Thus, training our SAC policy for 350K timesteps took approximately
108 hours. This had a considerable impact on our agent’s performance in evaluation, which
we discuss next.

4.3 Evaluation

Table 4.1: Success Rate (%) Comparison

Town LBC Rails caRLot

train 88 96 0

test 80 92 0

We attempted to compare our approach to two state-of-the-art approaches: Learning
by Cheating [14] and World on Rails [12]. To evaluate our baselines, we ported each of
these approaches onto our caRLot-based infrastructure. We utilized the provided pre-trained
models on the NoCrash routes from the papers and were able to replicate the claimed results
without retraining or modifying the models, demonstrating the versatility of the caRLot
software artifact. Table 4.1 list the success rate of the baselines on the CARLA NoCrash
benchmark.

Unfortunately, we found that our RL policy was unable to complete a single NoCrash
route. We attribute our model’s poor performance to insu�cient training, as we believe 250k
training steps are inadequate for a complex policy to converge for a di�cult benchmark. For
reference, Chen et al. trained their model-free RL models for about 200 epochs before they
exhibited signs of convergence for a simpler task [16]. As each epoch trained using 50k
frames, about 10M training steps in total were needed before their model-free RL policy
began to reach its goal state. For the Carla leaderboard task [22], Toromano↵ et al. trained
their model-free policy for 20M steps, taking 23 days of training [72].

For a more direct comparison within our task, we compare with the training process
Chen et al. used in World On Rails [12] for the NoCrash benchmark. Instead of online
learning, they use o✏ine learning on collected data to train the Rails model to convergence.
To gather data, a privileged autopilot drives through the training routes, collecting 270K
total frames. The pre-trained Rails model we evaluated was trained for 16 epochs through
each of the samples, which equates to over 4 million training steps. Provided that Rails uses
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a model-based policy and, as a result, is more sample e�cient than our model-free strategy,
it is not unreasonable to assume that 250k training steps are still an order of magnitude
less than what is necessary to su�ciently train our model for the NoCrash driving task. We
address potential solutions to improving training on caRLot in Chapter 5.

4.4 Runtime

We compare the runtime of the end-to-end approaches, modular approach (Pylot), and our
approach when running through a route in the NoCrash benchmark. We specifically run route
town 1, start index 75, and goal index 225 for 1000 timesteps and compute the statistics. We
compute the end-to-end runtime from first receiving the sensor data to generating the control
commands. This is straightforward for LBC and Rails, as only the runtime of the policy
needs to be measured. To compute the end-to-end runtime of caRLot and Pylot, we compute
the runtime of the individual Pylot operators using Pylot’s logging tools. The end-to-end
runtime for Pylot is simply the accumulated runtime of all the operators, excluding the ones
for interfacing with the simulator. For caRLot, we sum the runtimes of the perception and
prediction operators and the runtime of the RL policy.

However, the overall runtime of Pylot and caRLot will vary depending on the specific
operator used for a component. For instance, using the SORT tracker operator will have a
much lower runtime than the other tracking operators. To ensure a fair comparison, we keep
the operators for the perception and prediction components in caRLot and Pylot consistent.
We use a Faster-RCNN model for object detection and tra�c light detection, LaneNet [55]
for lane detection, the SORT object tracker [6], and linear trajectory prediction. For the
planning and control components in Pylot, we use the Frenet Optimal Trajectory planner [75]
and the model predictive controller [39].

Table 4.2: Overall Runtime Statistics (ms)

LBC Rails caRLot Pylot
mean 9.27 9.22 481.84 641.46
std 0.88 0.72 56.45 60.22
min 8.54 8.68 415.91 515.09
25% 8.79 9.00 465.89 612.85
50% 8.85 9.21 477.01 637.45
75% 10.20 9.32 490.54 655.92
max 30.83 27.53 4591.71 5029.03

The overall runtime results are summarized in Table 4.2. Clearly, the end-to-end models
are on average substantially faster (9.27 and 9.22 ms) than both caRLot (481.84 ms) and
Pylot (641.46 ms). This concurs with our previous discussion about the higher complexity
of modular systems compared to end-to-end systems. The components in the perception
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Table 4.3: Component Runtime Statistics (ms)

Perception + Prediction caRLot Policy Planning + Control
mean 478.17 3.67 163.29
std 56.44 0.81 21.00
min 412.95 2.96 102.15
25% 462.52 3.36 150.33
50% 473.52 3.49 163.93
75% 486.87 3.67 169.04
max 4571.46 20.24 457.57

modules are especially ine�cient, contributing to most of the runtime of caRLot and Pylot
as seen in Table 4.3. However, caRLot has lower mean runtime (481.84 ms) than Pylot
(641.46 ms), which is about a 25% improvement. Though they share the same perception
components, Pylot’s planning and control components are quite expensive, having a signifi-
cantly higher average runtime (163.29 ms) than caRLot’s RL policy (3.67 ms). Though not
as substantial of a di↵erence as from end-to-end systems, caRLot’s lower runtime than the
modular approach provides additional breathing room for meeting the critical deadlines in
real-world driving. This breathing room can either be preserved to provide better guarantees
that deadlines are met or used for more complex, accurate perception models with regard to
the accuracy-latency trade-o↵, which we discussed in Chapter 2.
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Chapter 5

Future work

There are many directions in which our work in caRLot can be improved and further ex-
tended. We discuss a few areas in the following sections.

5.1 Policy Learning

Though we developed an infrastructure for training driving policies using the caRLot envi-
ronment, it currently only supports online learning. Online learning in our setting has major
drawbacks, which we will address solutions to in this section. Furthermore, we discuss o✏ine
learning as a possible alternative.

Improving Online Learning

Online training using caRLot is currently bottlenecked by the simulator delay during each
environment step. Since each environment step takes on average 900 ms after applying some
optimizations, it’d still take about 250 hours of continuous training to run 1 million training
steps. Not only is this impractical, but a million training steps also is likely not enough
for a complex policy to converge, even when using sample-e�cient RL methods such as
model-based approaches. Due to these drawbacks, this work was unable to adequately train
a driving model for the NoCrash benchmark, This would’ve been necessary to evaluate the
e↵ectiveness of our proposed perception representation for improving sample e�ciency.

To make online learning more practical, future work in reducing the latency of environ-
ment steps is necessary. Since the majority of the remaining delay comes from the delay
in gathering observations from the simulator, future work should focus on reducing this de-
lay. From further investigation, we discover that the “perfect” lane detection and “perfect”
tra�c light detection operators, take about 200 ms each. Therefore, an e↵ective next step
is to optimize how these operators gather privileged data from the simulator and how they
compute the ground truth from the simulator data.
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Integrating O✏ine Learning

O✏ine reinforcement learning serves as a great alternative to online learning, using previously
collected datasets in the environment to learn a policy without having to actively interact
with the environment. This would enable us to circumvent the bottleneck created by the
latency of environment steps. Integrating o✏ine training is a straightforward task, provided
that RLlib has o✏ine training APIs for its existing set of RL algorithms. Furthermore, the
RLlib algorithm library includes some algorithms specific to o✏ine RL, such as Conservative
Q-Learning (CQL) [42]. These algorithms address major challenges in o✏ine RL, such as
the overestimation of Q-values. However, distribution shifts and function approximation are
still major issues when using o✏ine RL, and must be addressed when extending o✏ine RL
for this work. For instance, policies can be trained from o✏ine data and finetuned through
online learning using AWAC [54].

To support o✏ine learning, a data collection tool must be integrated with the caRLot
gym environment. For an o✏ine policy to be successful, the o✏ine dataset must cover a
large, robust set of trajectories. Fortunately, it is easier to gather a robust dataset from the
simulator, than it is from the real world to use for behavioral cloning. A data collection
approach similar to previous works that use a privileged autopilot to traverse the route can
be integrated [14, 12, 13].

5.2 Interpretability

Compared to traditional end-to-end models, caRLot has an advantage in terms of inter-
pretability: it constructs an intermediate representation of the agent’s understanding of the
environment using the perception stack. Our use of an intermediate bird’s-eye-view repre-
sentation is quite similar to Chen et al.’s application for improving interpretability [15]. The
intermediate representation provides us a better understanding of failure cases, such as when
trying to diagnose that a crash was caused by a failed detection of another vehicle.

However, caRLot is still quite limited in interpretability compared to modular systems.
Since our driving policy is model-free, it behaves quite similarly to a black box: the policy
network ⇡(I) provides no intuition on how the bird’s-eye-view images are used to generate
control commands. In contrast, model-based approaches provide more intuition through
their learned understanding of environment dynamics. Future work can explore how model-
based algorithms can be integrated with the caRLot environment to improve interpretability.
Model-based methods are also substantially more sample-e�cient, which can mean fewer
environment steps in our expensive environment. However, as we’ve discussed, using a
model-based approach may introduce di�culties with integrating the trained model for use
in the real world. Thus, other approaches to improving interpretability include analyzing
the visual saliency of the policy network, predicting waypoints instead of control commands,
and having auxiliary tasks [70, 12, 13].
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Chapter 6

Conclusion

We introduce caRLot, a novel OpenAI Gym environment that enables reinforcement learning
with realistic AV observations. We successfully port state-of-the-art models to caRLot and
evaluate them on a widely-used benchmark. In addition, we train a model-free reinforcement
learning policy that replaces the planning and control components of a typical AV pipeline.
Unfortunately, this policy does not outperform solutions that use end-to-end learning; we
believe that our policy’s ability to learn is bottlenecked by slow simulation time. Thus,
despite using a sample-e�cient, o↵-policy reinforcement learning algorithm such as SAC,
training would take very long and under the time constraints of the project, we were unable
to adequately train our policies. This, of course, had a significant impact on the agent’s
performance in the NoCrash benchmark as the agent was unable to complete a route.

Despite our policy’s poor performance due to such issues, we still demonstrated the major
benefits of our hybrid approach. The addition of an intermediate perception representation
provides a significant advantage over end-to-end models in terms of interpretability. On the
other hand, replacing the planning and control stages of modular systems with a simpler
learned policy led to a 25% runtime improvement. Though our work is preliminary, it
illustrates the potential of hybrid systems that can achieve “the best of both worlds”.
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