
Disruptive Research on Distributed Machine Learning

Systems

Guanhua Wang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-83

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-83.html

May 12, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Disruptive Research on Distributed Machine Learning Systems

by

Guanhua Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Joseph Gonzalez
Professor Alexandre Bayen
Professor Michael Mahoney

Spring 2022



Disruptive Research on Distributed Machine Learning Systems

Copyright 2022
by

Guanhua Wang



1

Abstract

Disruptive Research on Distributed Machine Learning Systems

by

Guanhua Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Deep Neural Networks (DNNs) enable computers to excel across many different applications
such as image classification, speech recognition and robotic control. To accelerate DNN
training and serving, parallel computing is widely adopted. System efficiency is a big issue
when scaling out. High communication overheads and limited on-device memory are two
major causes for system inefficiency in distributed machine learning.

This dissertation studies possible ways to mitigate communication bottlenecks and achieve
better on-device memory utilization in data and model parallelism for distributed machine
learning workloads.

On the communication side, our Blink project mitigates communication bottleneck in data
parallel training. By packing spanning trees rather than forming rings, Blink achieves higher
flexibility in arbitrary networking environments and provides near-optimal network through-
put. To eliminate the communication in model parallel training and inference, we go above
from system layer to application layer. Our sensAI project decouples a multi-task model
into disconnected subnets, where each subnet is responsible for decision making of a single
task or a subset of the original task-set.

Towards better utilization of on-device memory, our Wavelet project intentionally adds task
launching latency to interleave peak memory usage across different waves of training tasks
on the accelerators. By packing multiple training waves on the same accelerator, it improves
both computation and on-device memory utilization.



i

To my parents, Ying Han and Xin Wang.



ii

Contents

Contents ii

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Serving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Model Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Faster Collective Communication 12
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Ring-based Collectives . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Topology Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Trees vs Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Blink Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Packing Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Approximate Tree-Packing . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Extending to Many-to-many Collectives . . . . . . . . . . . . . . . . 24
3.3.5 Hybrid Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.6 DGX-2 and Multi-machine Settings . . . . . . . . . . . . . . . . . . . 25



iii

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Automatic Chunk Size Selection . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Link Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Broadcast and AllReduce Micro-benchmarks . . . . . . . . . . . . . . 29

3.5.1.1 NVLink Broadcast . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1.2 NVLink AllReduce . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1.3 NVSwitch AllReduce . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2 Hybrid Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 End-to-end DNN Training . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3.1 Single Machine . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3.2 Multiple Machine . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Eliminating Communication in Model Parallelism 34
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 sensAI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Class-specific Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2.1 Binary Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2.2 Grouped Classifiers . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Retraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Combining Results Back to N-way Predictions . . . . . . . . . . . . . 41

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Datasets and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 CIFAR-10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2.1 Pruning Policy Comparison . . . . . . . . . . . . . . . . . . 42
4.4.2.2 sensAI Evaluation on VGG-19 and ResNet-164 . . . . . . . 42
4.4.2.3 sensAI vs Model Parallel Baseline . . . . . . . . . . . . . . . 43
4.4.2.4 sensAI vs OVA . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2.5 sensAI Improvements on Efficient CNNs . . . . . . . . . . . 45
4.4.2.6 Binary Models Analysis . . . . . . . . . . . . . . . . . . . . 46

4.4.3 CIFAR-100 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3.1 sensAI vs single GPU Baseline . . . . . . . . . . . . . . . . 48
4.4.3.2 sensAI vs Model Parallel Baseline . . . . . . . . . . . . . . . 49

4.4.4 ImageNet-1K Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.4.1 sensAI vs Single GPU Baseline . . . . . . . . . . . . . . . . 50
4.4.4.2 sensAI vs Model Parallel Baseline . . . . . . . . . . . . . . . 51

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Extending to Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 52



iv

4.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Extending to Fault Tolerance, Robotic Control, and Beyond . . . . . . . . . 54
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Improving on-device memory utilization 56
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Zoom-in Analysis over Data Parallel Training . . . . . . . . . . . . . 60
5.2.2 Sub-iteration Analysis on Model Parallel Training . . . . . . . . . . . 60

5.3 Wavelet Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Wavelet in Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2.1 Memory Overlapping . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2.2 Computation Overlapping . . . . . . . . . . . . . . . . . . . 65
5.3.2.3 Model Synchronization between Waves . . . . . . . . . . . . 66

5.3.3 Wavelet in Model Parallelism . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3.1 Launching Multiple Tock-wave Tasks . . . . . . . . . . . . . 68
5.3.3.2 Model Partition Switching . . . . . . . . . . . . . . . . . . . 69
5.3.3.3 Inter-batch Synchronization . . . . . . . . . . . . . . . . . . 70

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1.1 Single-machine Multi-GPU . . . . . . . . . . . . . . . . . . 71
5.4.1.2 Multi-machine Multi-GPU . . . . . . . . . . . . . . . . . . . 72

5.4.2 Model Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2.1 Single-machine Multi-GPU . . . . . . . . . . . . . . . . . . 73
5.4.2.2 Multi-machine Multi-GPU . . . . . . . . . . . . . . . . . . . 73
5.4.2.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Future Work and Conclusion 76
6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77



v

List of Figures

2.1 A toy example of normal deep learning model. . . . . . . . . . . . . . . . . . . . 5
2.2 Forward propagation and backward propagation in DNN model training. . . . . 6
2.3 Data parallel training paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Model synchronization in data parallel training. . . . . . . . . . . . . . . . . . . 9
2.5 Model parallelism paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Ring-based Broadcast from GPU0. . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 NVLink topology of DGX-1 8-GPU server (left with P100 GPUs, right with V100

GPUs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 3-GPU Broadcast from GPU0 using both Blink and NCCL on DGX-1-P100 server. 15
3.4 Number of GPUs placement for each job within each 8-GPU server on a cloud

cluster allocated with 40,000 multi-GPU jobs. . . . . . . . . . . . . . . . . . . . 15
3.5 Ring-based Broadcast from A (4-node fully connected). . . . . . . . . . . . . . . 16
3.6 Blink Broadcast from A (4-node fully connected). . . . . . . . . . . . . . . . . . 16
3.7 6-GPU topology on DGX-1-P100. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 NCCL 6-GPU Rings (Broadcast from GPU3). . . . . . . . . . . . . . . . . . . . 17
3.9 Blink 6-GPU spanning trees (Broadcast from GPU3). . . . . . . . . . . . . . . . 17
3.10 Best-worst case of communication percentage regarding to end-to-end DNN train-

ing iteration time (DGX-1-P100). . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 Best-worst case of communication percentage regarding to end-to-end DNN train-

ing iteration time (DGX-1-V100). . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12 Breadth Test: Fan-in forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Breadth Test: Fan-in reduce and forward. . . . . . . . . . . . . . . . . . . . . . 19
3.14 Breadth Test: Fan-out forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.15 Breadth Test Throughput: Fan-in forward. . . . . . . . . . . . . . . . . . . . . . 19
3.16 Breadth Test Throughput: Fan-in reduce and forward. . . . . . . . . . . . . . . 19
3.17 Breadth Test Throughput: Fan-out forward. . . . . . . . . . . . . . . . . . . . . 19
3.18 Depth Test: chain forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.19 Depth Test: chain reduce and forward. . . . . . . . . . . . . . . . . . . . . . . . 20
3.20 Depth Test: chain reduce and broadcast. . . . . . . . . . . . . . . . . . . . . . . 20
3.21 Depth Test Throughput: chain forward only. . . . . . . . . . . . . . . . . . . . . 20
3.22 Depth Test Throughput: chain reduce and forward. . . . . . . . . . . . . . . . . 20
3.23 Depth Test Throughput: chain reduce and broadcast. . . . . . . . . . . . . . . . 20



vi

3.24 Multi-Input, Multi-Output (MIMO). . . . . . . . . . . . . . . . . . . . . . . . . 20
3.25 Multi-chain aggregation (MCA). . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.26 MIMO and MCA throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.27 Blink workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.28 Blink’s Three-phase AllReduce protocol for cross-machine settings. . . . . . . . 25
3.29 Chunking data to reduce multi-hop network latency. . . . . . . . . . . . . . . . 26
3.30 Automatic chunk size selection using multiple-increase additive-decrease (MIAD). 26
3.31 Stream reuse for fair sharing of links. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.32 Broadcast throughput comparison between Blink and NCCL for all unique topolo-

gies in DGX-1-V100 machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.33 Broadcast throughput comparison between Blink and NCCL for all unique topolo-

gies in DGX-1-P100 machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.34 AllReduce throughput comparison between Blink and NCCL for all unique topolo-

gies in DGX-1-V100 machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.35 AllReduce throughput comparison between Blink and NCCL on a 16-GPU DGX-

2 machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.36 AllReduce latency comparison (in µs) between Blink and NCCL on a 16-GPU

DGX-2 machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.37 Broadcast throughput comparison between hybrid and NVLink-only with various

number of GPUs on DGX-1-V100 machine. . . . . . . . . . . . . . . . . . . . . 30
3.38 Blink training time reduction for each iteration over 4 popular DNNs on ImageNet-

1K dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.39 Blink communication time reduction over each iteration on ImageNet-1K dataset. 31
3.40 System throughput (Image/Sec) for distributed DNN training using two DGX-1-

V100 machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.41 AllReduce throughput projections given potential high bandwidth cross-machine

interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Data Parallel model serving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Model Parallel model serving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Class Parallel model serving (sensAI). . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 sensAI’s three-phase workflow for class-parallel inference. . . . . . . . . . . . . . 36
4.5 t-SNE visualization for feature representation of all training images with fully-

trained VGG-19 on CIFAR-10 dataset. . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 t-SNE visualization for feature representation of all training images with fully-

trained VGG-19 on CIFAR-100 dataset. . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Pruning method comparison among APoZ, Avg, and our hybrid solutions (VGG-

19, CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Number of Parameters vs test accuracy comparison (VGG-19, CIFAR-10). . . . 41
4.9 FLOPs consumption vs test accuracy comparison (VGG-19, CIFAR-10). . . . . 41
4.10 Per-image inference time vs test accuracy comparison (VGG-19, CIFAR-10). . . 41
4.11 Number of Parameters vs test accuracy comparison (ResNet-164, CIFAR-10). . 42



vii

4.12 FLOPs consumption vs test accuracy comparison (ResNet-164, CIFAR-10). . . . 42
4.13 Per-image inference time vs test accuracy comparison (ResNet-164, CIFAR-10). 42
4.14 Similarity comparison among binary classifiers by measuring IoU on channels

(VGG-19, CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.15 Similarity comparison among binary classifiers by measuring IoU on channels

(ResNet-164, CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.16 Similarity comparison among binary classifiers by measuring IoU on channels

(ShuffleNet-V2, CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.17 Similarity comparison among binary classifiers by measuring IoU on channels

(MobileNet-V2, CIFAR-10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.18 Robust Class Parallelism with Cyclic Coding. . . . . . . . . . . . . . . . . . . . 54

5.1 Normalized on-device memory usage of data parallel training job using 2 V100
GPUs with gang-scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Normalized computation usage of data parallel training job using 2 V100 GPUs
with gang-scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Normalized on-device memory usage of data parallel training job using 2 V100
GPUs with tick-tock scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Normalized computation usage of data parallel training job using 2 V100 GPUs
with tick-tock scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Normalized peak and average GPU memory usage during data parallel training
among different CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Average utilization rate of computation core during data parallel training among
different CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 GPU Memory spatiotemporal utilization pattern of BERT model training using
4 V100 with gang-scheduled model parallelism (w/o pipeline parallelism). . . . . 61

5.8 GPU Memory spatiotemporal utilization pattern of BERT model training using
4 V100 with gang-scheduled model parallelism (w/ pipeline parallelism). . . . . 61

5.9 GPU computation usage of BERTmodel training using 4 V100 with gang-scheduled
model parallelism (w/o pipeline parallelism). . . . . . . . . . . . . . . . . . . . . 62

5.10 GPU computation usage of BERTmodel training using 4 V100 with gang-scheduled
model parallelism (w/ pipeline parallelism). . . . . . . . . . . . . . . . . . . . . 62

5.11 Wavelet workflow overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.12 Data parallel training via gang scheduling. . . . . . . . . . . . . . . . . . . . . . 64
5.13 Data parallel training via tick-tock scheduling. . . . . . . . . . . . . . . . . . . . 64
5.14 Wavelet model synchronization between tick and tock waves on GPU-i during

data parallel training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.15 Model parallel training with Wavelet in 4-GPU setting. . . . . . . . . . . . . . . 68
5.16 Wavelet’s throughput speedup over data parallel training baseline (single-machine

multi-GPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.17 Wavelet’s throughput speedup over data parallel training baseline (multi-machine

multi-GPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



viii

5.18 Wavelet’s throughput speedup over model parallel training baseline (single-machine
multi-GPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.19 Wavelet’s throughput speedup over model parallel training baseline (multi-machine
multi-GPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.20 Wavelet overhead breakdown in the 4+4 cross-machine case . . . . . . . . . . . 74



ix

List of Tables

4.1 Comparison between baseline with model parallelism (MP) and sensAI using 10
GPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Comparison between OVA and sensAI with 10 GPUs on CIFAR-10. . . . . . . . 44
4.3 Comparison between efficient baseline models and sensAI. . . . . . . . . . . . . 45
4.4 Comparison between sensAI with two grouping methods (random and nearby

grouping) with 5-group (5 GPUs) 10-group (10 GPUs) v.s. baselines of Single
GPU and model parallelism (MP) using same amount of GPUs (5, 10 GPUs) on
CIFAR-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Comparison between sensAI of 10-group (10 GPUs) and 20-group (20 GPUs) v.s.
baselines of Single GPU and model parallelism (MP) with 10 GPUs and 20 GPUs
on ImageNet-1K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



x

Acknowledgments

First and foremost, I would like to express my gratitude and appreciation to my academic
advisor Professor Ion Stoica. This dissertation would not be possible without the guidance
and support from him. Ion was the primary reason I started my PhD at UC Berkeley. One
big thing I learnt from Ion is to do fundamentally novel research, either finding new problems
or proposing new solutions to old problems. These principles guide me through my whole
PhD. For my first few years, even though I did not make good progress, Ion still believed in
me. For example, he thought Blink was a good project even after it had been rejected for
several years across multiple good venues. I want to thank Professor Joseph Gonzalez for
insightful feedback and helping me connect with machine learning folks at Berkeley. I also
want to thank Professor Dawn Song for offering me the chance to learn how an early-stage
startup operates in the blockchain area. I am also thankful to my dissertation committee
members Professor Alexandre Bayen, Professor Michael Mahoney, and my prelim committee
Professor Scott Shenker. All of them are role models and I took much inspirations from their
works in this dissertation.

I was fortunate to work with excellent mentors during my PhD. I would like to especially
thank both Amar Phanishayee (MSR) and Shivaram Venkataraman (UW–Madison). Amar
was my mentor during my internship at MSR, who leaded me into the research area of
machine learning systems. Shivaram was a final-year PhD student in the AMPLab, who also
joint our Blink project later on. Amar, Shivaram and I worked on Blink project for almost
3 years. I learnt a lot from both of them, such as how to set proper baby steps, how to write
more readable code, how to make good presentations.

I am grateful to Zhuang Liu for helping me understand concepts and theories in computer
vision models. I still miss the days when Zhuang, Brandon Hsieh and I sitting together to
solve the problems we encountered in the sensAI project. I learnt a lot from Zhuang during
our 2 years collaboration. For instance, anytime we got stuck at some point, he was the
person to help us verify the theory and debug the code. We then become good friends. And
now I am trying to convince Zhuang to move to Seattle for work, so that we can still meet
in-person frequently.

I want to thank all my other collaborators and friends. I would like to thank Dequan
Wang, Gur-Eyal Sela, Zhewei Yao, Fisher Yu (ETH) and Professor Kannan Ramchandran for
helping us revise our previous paper drafts. I really enjoy having interesting discussions with
Paras Jain, Fangyu Wu, Hong Zhang (UWaterloo), Siyuan Zhuang on various topics like deep
learning, blockchain, robotic control, computer networks. For my prelim exam preparation,
Chang Lan and Peter Xiang Gao helped me a lot. I also enjoy long-distance running with
Haoran Tang, Renyuan Xu (USC) from Berkeley to Oakland during the weekends. I am
particularly thankful to Wei Bai (MSR), Zhe Cao (Facebook), Wenyu Wang (UIUC), Keyu
Wang (Google) for useful tips during my job hunting. I would like to also thank Kenan
Jiang, Kehan Wang, Yaoqing Yang, Jichan Chung, Balaji Veeramani, Vipul Gupta, Adarsh
Karnati, Zihao Fan, Praveen Batra, Hank O’Brien, Yingxin Kang, Sahil Rao, Aleksander
Ficek, Xiangjun Li, Jorgen Thelin (MSR), Nikhil Devanur (Amazon) for contributing to



xi

our code repositories. I also want to thank our administrative staff Kattt Atchley, Boban
Zakovich, Shane Knapp, Jon Kuroda, Dave Schonenberg in the AMPLab/RISELab. I cannot
list all the people who are important to me. But I would like to thank all the folks who
spending time with me during my PhD.

Last but not least, I would like to thank my parents Ying Han and Xin Wang for their
unconditional support and selfless love throughout my whole life.



1

Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) becomes one of the paramount technologies in recent decades [1].
Machine learning [2] and Artificial Intelligence (AI) [3] in general are regarded as major
components for the fourth Industrial revolution in the human history [4].

To handle complicated tasks in computer vision [5][6][7], speech recognition [8][9] and
robotic control [10], deep neural networks (DNNs) stands out and becomes the main force
in machine learning area over the last decade. Influential models like AlexNet [5], BERT [8],
AlphaGo [11] enable computers to excel over human in a broad spectrum of tasks like image
classification, natural language processing and game playing.

To achieve better intelligence and higher model serving accuracy, both the input data
size [12] and deep learning model size [13] are growing drastically. Taking computer vision
area as an example, from CIFAR-10/100 [14] to ImageNet-1K [15] dataset, the number of
images increase from 60k to over 1.2 million. In addition, the image resolution also grows
a lot from CIFAR’s 32x32 pixels to ImageNet’s 256x256 pixels. On the model side, from
GoogLeNet [16] to recent AmoebaNet series [17], the number of parameters almost increase
200 times. More astonishing numbers can be found in the Natural Language Processing
(NLP) domain [18][19]. Taking transformer-based model GPT-3 [13] as an example, the
number of parameters can be up to 175 billions. And the model is trained for around 300
billion tokens.

Given these giant models and enormous amount of input data, it is almost impossible to
conduct model training or serving on a single accelerator. Thus, distributed model training
and serving paradigms are widely adopted [20][21]. These distributed machine learning
systems mainly focus on collectively using multiple accelerators (e.g., GPUs) to execute
in-parallel model training and serving tasks [22][23]. System efficiency is a big issue when
scaling out to tens, hundreds or even thousands of accelerators. More specifically, high
communication overhead and limited on-device memory are two major causes of system
inefficiency in large-scale machine learning systems.



CHAPTER 1. INTRODUCTION 2

In this thesis, we study possible ways to improve system efficiency in both communication
and on-device memory aspects. We aim to mitigate network communication bottleneck
and improve on-device memory usage for distributed machine learning workloads. We next
summarize the goals and contributions of this dissertation.

1.2 Thesis Contributions

For distributed DNN training and serving, two main parallel paradigms are data parallelism
and model parallelism. In data parallelism, each machine or accelerator holds a full copy of
the model and conduct local training or serving on a dis-joint subset of the input data [24][25].
In model parallelism, each device only maintains one partition of the whole model and
executes training or serving on the same shared input data [26][20][27].

Model synchronization is a major communication overhead in data and model parallel
training. In data parallelism, since all the workers are trained on separate input data parti-
tions, model synchronization is needed to synchronize model parameters among all the work-
ers involved. In recent model parallel training system like Megatron-LM [28], synchronization
using collectives (e.g., All-Reduce) is also required to aggregate partial matrix-multiplication
results. Collective communication is the main-stream scheme for model synchronization in
modern distributed machine learning frameworks [29][23][30]. Different companies provide
their own collective communication libraries, such as NCCL [31] from Nvidia, Horovod [32]
from Uber and Gloo [33] from Facebook. All of them focus on building rings in the given
network topology to conduct collective communication. Our Blink project [34] adopts a dif-
ferent approach with topology-awareness. By packing maximum number of spanning trees
in the topology, we achieve higher link utilization than ring-based schemes. Our Blink solu-
tion can also achieve near-optimal network throughput performance given arbitrary network
topology and heterogeneity.

In model parallel training and serving, different workers also need to communication
intermediate results like activations and gradients [20][35][36] in each iteration. To elimiate
the communication among different nodes holding different model partitions, we propose
sensAI project [37]. By applying a divide-and-conquer paradigm, we split a multi-task
model into a bunch of disconnected subnets, where each is responsible for decision making
of a single task.

Lots of DNN training and serving jobs are memory bounded [38][39]. To achieve higher
accelerator utilization, previous literature propose to multiplex multiple jobs on each accel-
erator [38][40]. However, job-multiplexing on the same device introduces extra overheads,
such as frequent context switching [41] or data loading from disk storage [42], inter-job inter-
ference [38], extra memory footprints for holding multiple models inside device memory [40].
More importantly, these job-multiplexing schemes cannot speed-up the training progress of
a single job. Our Wavelet project [43] provides an generic and efficient way to improve ac-
celerator utilization in the single job case. By intentionally adding task launching latency,



CHAPTER 1. INTRODUCTION 3

we interleave peak memory usage among different training waves of a single job. Thus we
can improve both computation and on-device memory usage in the single job case.

In this thesis, we incorporate our previous research work in distributed machine learning
systems, namely Blink [34], sensAI [37] and Wavelet [43]. For accelerators, we limit our
discussion to Nvidia GPUs [44]. And our approaches should be generally applicable to other
hardware accelerators like TPUs [45], FPGAs [46] and other ASIC chips [47][48].

Contributions: We summarize the main contributions of this thesis as follows:

• By packing spanning trees rather than forming rings, Blink achieve higher throughput
than ring-based solutions given arbitrary network environments.

• To eliminate the communication in model parallelism, we propose sensAI as an divide-
and-conquer approach. By decoupling a multi-task model into multiple disconnected
single-task subnets, we remove the communication among these subnets.

• By interleaving peak memory usage among multiple training waves of a single job,
Wavelet improves accelerator utilization on both computation side and on-device mem-
ory side.

1.3 Thesis Organization

This thesis is organized as follows. Starting with Chapter 1, we discuss the motivation of
this dissertation and our main contributions.

Chapter 2 provides more detailed explanations of deep learning models, distributed
paradigms. We first describe training and serving stages of deep learning models. Then
we discuss two main distributed methods as data parallelism and model parallelism.

Chapter 3 studies collective communication schemes, which is the modern model syn-
chronization method for both data and model parallel training. The key issue of existing
ring-based solution is some hardware links would be wasted if these links cannot form a
new ring. We develop Blink [34] to tackle this issue. We abandon ring-based solution and
use spanning trees to achieve higher flexibility and provide near-optimal performance given
arbitrary network environments.

Following that Chapter 4 presents a new technique to decouple DNN model into dis-
connect subnets. Thus, we can eliminate communication in model parallel training and
inference. Here we mainly explain our sensAI [37] approach in Convolution Neural Networks
(CNNs) setting.

We next study how to improve GPU memory utilization in single DNN training job case
as Chapter 5. We argue that gang scheduling policy [49][50][51] may under-utilize the limited
on-device memory. In Wavelet project [43], we propose a novel yet simple scheduling policy
called tick-tock. We profile and interleave peak memory usage among multiple training waves
on the same group of GPUs. Thus, it can achieve near-optimal device memory usage and
consequently increase the computation core usage.



CHAPTER 1. INTRODUCTION 4

Finally, Chapter 6 discusses future research directions for distributed machine learning
systems. We then conclude this thesis with a summary of our main results.



5

Chapter 2

Background

2.1 Deep Learning Models

Deep learning becomes the hottest topic in machine learning research for the last decade.
Deep learning models in computer vision, natural language processing and reinforcement
learning enable machine to excel across a wide range of difficult tasks such as object detec-
tion [52][53], question answering [8][54] and robotic control [10][55].

As shown in Figure 2.1, A normal DNN model consists of input layer, several hidden
layers and an output layer. And each layer includes several neurons, where each neuron can
often be regarded as a weight matrix. Communication is usually needed between adjacent
layers of the model. And normally no communication is needed among neurons within each
layer.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

In
pu

t

O
ut

pu
t

Figure 2.1: A toy example of normal deep learning model.



CHAPTER 2. BACKGROUND 6

Loss

L1 Forw
ard

L2 Forw
ard

L3 Forw
ard

L4 Forw
ard

L1 Backw
ard

L2 Backw
ard

L3 Backw
ard

L4 Backw
ard

ss

Figure 2.2: Forward propagation and backward propagation in DNN model training.

For instance, in CNN models, the model layers are mainly convolution layers [56] with
Max-Pooling and ReLU (Rectified Linear Unit) layers in between [57]. And the models usu-
ally end with several fully-connected (FC) layers. To solve the internal covariate shift issue,
modern ConvNets adopt Batch Normalization (BN) [58] to improve model serving accuracy.
In deep Reinforcement Learning (RL) domain, deep RL models are mainly composed of
fully-connected layers [10], but can also incorporate other layers like convolution layers [59],
recurrent layers [60] and transformer layers [61][62].

Besides data pre-processing like tokenization [63] or image padding [57], deep learning
models usually have two main stages, namely training and serving. We next explain each of
them in Section 2.1.1 and Section 2.1.2 respectively.

2.1.1 Training

Given a specific model structure, the model parameters are initialized with random weights
values. Then the training iterations start by consuming batches of input data and pass it
into the model.

For a single batch of input, the training iteration mainly contains two steps: forward
propagation and backward propagation [64].

As depicted in Figure 2.2, forward propagation [64] follows the blue arrows on the upper
half of the figure. And backward propagation is shown as the grey arrows of the bottom half
in in Figure 2.2. Here L1, L2, L3, L4 refer to the DNN model layers from 1 to 4.



CHAPTER 2. BACKGROUND 7

In forward propagation shown in Figure 2.2, given one training input batch, the data first
go through L1. After L1 generates local activations, it passes its layer outputs to L2 and
then triggers L2’s forward propagation, and so on and so forth. After L4 finishes forward
propagation, its output values ŷ go through the loss function module.

The goal of model training is to find proper weights and biases θ given a loss function on
the training data. If the model serving task is classification, cross entropy loss or negative
log-likelihood is often used. Our training target is to minimize cross entropy loss function
as:

L(θ) = −
n∑
i

yilog(ŷi) (2.1)

As illustrated in Equation 2.1, yi are the true labels whereas ŷi are the prediction prob-
abilities.

For regression problems, mean square error (MSE) loss is commonly used. And our target
is trying to minimize MSE loss function as:

L(θ) = 1

n

n∑
i

(yi − ŷi)
2 (2.2)

Similar as Equation 2.1, in Equation 2.2, yi are truly observed values whereas ŷi are
predicted values.

After loss calculation, we can conduct backward propagation [64] in the reverse direction
(i.e., grey arrows in Figure 2.2). The backward propagation starts from L4. After L4
generates its local gradients, it pass its gradient outputs back to L3, and so on and so forth.
Then we can use gradients generated in each layer to update model weights in order to
minimize our loss function.

For each batch of input, a training iteration is completed after one forward pass followed
by one backward pass.

2.1.2 Serving

Compared with model training in Section 2.1.1, model serving stage is much simpler. Basi-
cally it only conducts the forward propagation shown in Figure 2.2 and generates prediction
values for model serving.

Latency is the key performance indicator at the model serving stage [65][66][67][68]. Big
tech companies try to reduce model serving latency by providing specific frameworks. For
example, Google proposes TensorFlow Runtime [69] for low-latency model inference. Face-
book/Meta’s PyTorch incorporates ONNX runtime [70] to reduce model serving latency.
Nvidia also provides TensorRT [71] SDK for accelerating model serving on the GPU hard-
ware.



CHAPTER 2. BACKGROUND 8

Machine 1 Machine 2

Input data
(Partition 1)

Input data
(Partition 2)

Model
Synchronization

Figure 2.3: Data parallel training paradigm.

2.2 Data Parallelism

Above we describe basic concepts in deep learning models, such as model training and serving.
Now we discuss two major distributed paradigms for deep learning models, namely data
parallelism (Section 2.2) and model parallelism (Section 2.3). We explain data parallelism
in this section.

The data parallel training paradigm is depicted as Figure 2.3. In data parallelism, both
machine 1 and machine 2 hold a full copy of the model parameters. In each iteration, they
conduct local model training on separate input data, which is shown in Figure 2.3 as input
data (partition 1) on machine 1 and input data (partition 2) on machine 2.

After each local training iteration finishes, all the GPUs involved in the same data parallel
training job need to conduct model synchronization, which is denoted as the double-headed
arrow in Figure 2.3. We illustrate model synchronization with a 4-GPU example, which is
shown as Figure 2.4. In data parallel training, after each GPU generating its local gradients
(i.e., ∇W 1, ∇W 2, ∇W 3, ∇W 4 in Figure 2.4), it triggers model synchronization to aggregate
all the local gradients together as:



CHAPTER 2. BACKGROUND 9

∇W1 ∇W2

∇W3 ∇W4

Figure 2.4: Model synchronization in data parallel training.

∇W =
n∑

i=1

∇W i (2.3)

With the aggregated gradients as ∇W , we broadcast this ∇W to all the GPUs in use,
and allow all the GPUs to update their local model parameters based on ∇W .

Model synchronization is the main communication overhead in data parallel training [72].
There are mainly two schemes for model synchronization in data parallel training [73], namely
Parameter Server (PS) [24][74][75][76] and Collective Communication [22][31][32][33]. Mod-
ern deep learning frameworks [23][29] adopt collective communication as the main scheme
for model synchronization, due to its simplicity and scalability [77][78][34][79][80][81]. More
specifically, collective communication treats all machines as workers uniformly whereas PS
architecture needs to specify two different roles as parameter server and worker. In addition,
PS also need to manually assign the ratio between parameter servers and workers among all
the nodes involved. And there is no optimal solution on what ratio should be used given
arbitrary number of nodes. Thus, in collective communication paradigm, it is much easier
to insert or delete worker nodes than parameter server architecture.

Data parallel serving is simpler. Basically, each machine/GPU consumes separate input
data partition and generates output predictions in-parallel. No communication is needed
during data parallel inference.



CHAPTER 2. BACKGROUND 10

Machine 1 Machine 2

Machine 3 Machine 4

Input data

Figure 2.5: Model parallelism paradigm.

2.3 Model Parallelism

In this section, we discuss another distributed deep learning paradigm called model paral-
lelism [82][83][84][28]. Different from data parallelism, in model parallelism, each machine
or GPU only holds a portion of the full model parameters.

A 4-node model parallelism setting is shown as Figure 2.5. The model is split into 4 dis-
joint subsets and each machine holds roughly a quarter of the whole model parameters. As
depict in Figure 2.5, all the machines share the same input data during both model training
and serving stages.

However, during both model training and serving, they need to transfer lost of interme-
diate results among each other, which are highlighted as the bold lines across the model
partition boarders in Figure 2.5. More specifically, during model parallel training, all the
machines need to communication activations during forward propagation and gradients dur-
ing backward propagation. In model parallel inference, all the machines communication
activations in the forward pass only.

In addition, model parallelism naturally creates synchronization barriers due to the se-
quential dependency of DNN layers [85]. For example, in Figure 2.5, machine 1 and machine
2 cannot start forward propagation until completely receive all the intermediate results from



CHAPTER 2. BACKGROUND 11

machine 3 and machine 4. Breaking each input batch in micro-batches and conducting data
pipelining over micro-batches [35][36] can mitigate this sequential blocking issue.



12

Chapter 3

Faster Collective Communication

3.1 Background

As discussed in Section 2.2, collective communication is the main data transfer scheme used
in data parallel training [21], which allows GPUs to frequently exchange and synchronize
model parameters. It is also used in some modern model parallel training systems like
Megatron-LM [28] from Nvidia.

To mitigate collective communication overhead, different companies provide their own
solutions, such as Collective Communications Library (NCCL) [31] from Nvidia, Uber’s
Horovod [32], and Gloo [33] from Facebook/Meta. Incorporated with techniques like wait-
free backward propagation that hides communication under computation [86], these collective
communication libraries are specially designed to speed-up model synchronization.

3.1.1 Ring-based Collectives

State-of-the-art collective solutions like NCCL and Horovod focus on building rings within
the network topology of a single job, and pipeline data transfer over rings they build.

Figure 3.1 shows a toy example of ring-based broadcast in a 4-GPU setting. On the left
side of Figure 3.1, it shows a formed ring within the topology. GPU0 want to broadcast
its local data to GPU1, GPU2 and GPU3. Before data transfer, GPU0 first partition its
local data into small chunks, which are shown as 4 chunks with different colors in Figure 3.1.
Assuming the link is unidirectional, GPU0 can pipeline the data transfer over the ring in
clockwise direction, which is shown as the right side of Figure 3.1. In reality, all links are
bi-directional [87][88][89][90]. Besides this clockwise ring, GPU0 can easily create another
ring in counter-clockwise direction using the same group of links in the topology but in the
reverse direction.

Ring-based All-Reduce [91][92] follows similar protocol as Ring broadcast described above.
The main difference from broadcast is that, current node need to aggregate local results with
data received from predecessor before sending it to its successor.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 13

GPU0 GPU1

GPU2GPU3

Topology

GPU0 GPU1 GPU2 GPU3

Ring Broadcast 
(from GPU0)

Figure 3.1: Ring-based Broadcast from GPU0.

3.1.2 Topology Heterogeneity

We target on the state-of-the-art multi-GPU hardware with NVLink [88] and NVSwitch [90]
like Nvidia’s DGX-1 [93] and DGX-2 [94]. We find that, despite incorporate these advanced
hardware (e.g., DGX-1 and DGX-2), modern collective communication libraries (e.g., NCCL)
still cannot fully mitigate the communication bottleneck in data parallel training. The key
issue is ring-based collectives under-utilize hardware links due to topology heterogeneity. We
define topology heterogeneity in following three aspects:

First, topology heterogeneity may occur because of different server configurations. As
shown in Figure 3.2, for the same DGX-1 8-GPU box, it may have two different versions
of network topology. If the DGX-1 server is embedded with P100 GPUs [95], the NVLink
topology among GPUs is shown as the left side of Figure 3.2, which is called a hyper-cube
topology. Each link here is the first generation NVLink, which provides around 18GB/s. If
the DGX-1 box is incorporated with V100 GPUs [96], besides that hyper-cube topology in
P100 version DGX-1, there is an additional ring added into the topology of DGX-1 V100
version, which is denoted as red dashed arrow-lines on right side of Figure 3.2. Therefore,
in order to fully utilize all the hardware links effectively in different DGX-1 versions, the
collective protocols need to be topology-aware.

Second, existing solutions cannot use heterogeneous links within the system. Servers like
DGX-1 mainly have two different kinds of interconnects for intra-machine communication.
First, it contains point-to-point interconnects called NVLink [88], which is shown as Fig-
ure 3.2. NVLink is GPU-exclusive communication links, where each provides 18-25GB/s
bi-directional communication bandwidth. DGX-1 box has traditional PCIe bus, which is a



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 14

GPU3 GPU0

GPU2 GPU1

GPU4 GPU7

GPU5 GPU6

GPU4 GPU7

GPU5 GPU6

DGX1-P100 (NVLink 1st Gen, ~18GB/s) DGX1-V100 (NVLink 2nd Gen, ~23GB/s)

Figure 3.2: NVLink topology of DGX-1 8-GPU server (left with P100 GPUs, right with
V100 GPUs).

shared bus between host and devices. PCIe 3.0 [87] can reach peak throughput between 8 to
12 GB/s. PCIe bus connects multiple GPUs together via switch hierarchy within the same
DGX-1 machine. Ring-based collectives such as NCCL and Horovord, they fail to use het-
erogeneous links. The key reason is that, the throughput of a ring is limited by the link with
lowest bandwidth. For example, low bandwidth PCIe will be the communication bottleneck
if it is included in a high bandwidth NVLink ring. Thus for intra-node communication,
Ring-based solution like NCCL prioritizes NVLink over PCIe. Left side of Figure 3.3 shows
a 3-GPU broadcast case from GPU0. Since all the GPUs are fully connected with NVLink,
NCCL will build two unidirectional rings (one: GPU0–>GPU1–>GPU3–>GPU0, the other:
GPU0–>GPU3–>GPU1–>GPU0) over bi-directional NVLink, and abandons PCIe bus com-
pletely.

Third, in multi-tenant clusters, the job schedulers are often oblivious to hardware in-
terconnect topologies among GPUs. And multiple jobs can be allocated within the same
multi-GPU machine. In addition, topology-aware scheduler must also embrace fragmented
allocation to avoid queuing delays [97][98][99]. A simple example of fragmented allocation
can be: a 8-GPU job may be assigned with 3 GPUs on 1 machine, and 5 GPUs on another
machine. We analyse over 40,000 multi-GPU jobs on a multi-tenant cluster in the cloud. As
shown in Figure 3.4, even though ML practitioners always require GPUs in powers of two,
it is fairly common that the number of GPUs assigned to jobs can be 3,5,6,7 within each
8-GPU server. Although by adopting scheduling method like Gandiva [38] that is topology-
aware and job migration enabled, such schemes has a higher entry barrier since replacing all
the independent scheduling frameworks is cumbersome and almost impossible. Furthermore,
not every job can be placed and migrated properly given varied job arrival rates.

Ring-based collective protocols may under-utilize links given the above 3 challenges under



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 15

GPU1	

NCCL2	 Blink	

	T
hr
ou

gh
pu

t	(
GB

/s
)	

43.6	

48.4	

GPU3	

GPU0	

NVLink�
PCIe

Th
ro

ug
hp

ut
(G

B/
s)

NVLink 26.4
GPU1

GPU0

4.8

GPU4

PCIe

NCCL2  Blink

(a)  Fully connected case. (b)  Partially connected case.

Figure 3.3: 3-GPU Broadcast from GPU0 using both Blink and NCCL on DGX-1-P100
server.

0%
5%
10%
15%
20%
25%

2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f 
M

ul
ti-

G
PU

 jo
bs

# of GPUs

Figure 3.4: Number of GPUs placement for each job within each 8-GPU server on a cloud
cluster allocated with 40,000 multi-GPU jobs.

the umbrella of topology heterogeneity. For instance, on right side of Figure 3.3, if a job is
assigned with GPU0, GPU1 and GPU4, NVLink ring cannot be formed since there are only
2 NVlinks among these three GPUs (i.e., lack of NVLink between GPU1 and GPU4). In
such a case, existing solution like NCCL will fall back to PCIe if it cannot form a NVLink
ring.

3.2 Motivation

In this section, we first illustrate why ring-based solution may under-utilize hardware links
with several case study. Then we highlight the benefits of packing spanning trees in the face of



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 16

A B

C D

Figure 3.5: Ring-based Broadcast
from A (4-node fully connected).

A B

C D

Figure 3.6: Blink Broadcast from A
(4-node fully connected).

topology heterogeneity. Last, we present our micro-benchmark results which characterizing
the capabilities of modern GPUs (e.g., V100) that helps guide our Blink [34] design.

3.2.1 Trees vs Rings

Our work is motivated by high communication overhead in data parallel training workloads
on high-end multi-GPU machine like Nvidia’s DGX-1 [93] and DGX-2 [94]. And this high
communication overhead still exists even by setting the largest mini-batch size on each
GPU and leveraging advanced collectives like NCCL with non-blocking layer-wise backward
propagation [86] techniques. The communication overhead becomes more pronounced given
increased model sizes and faster computation on newer GPUs like V100 [96], A100 [100] and
H100 [101].

More crucially, even within a single DGX-1 machine, the communication overhead is am-
plified and becomes training bottleneck. The main reason is existing solutions like NCCL or
Horovod fail to handle topology heterogeneity we defined in Section 3.1.2. These schemes
first build rings given network topology and then pipeline data transfer over the rings. How-
ever, ring-based solution have several major structural limitations. First, for each ring, each
node can only maintain one input degree and one output degree. This strong structural
restriction makes it impossible for ring-based solution to fit into arbitrary and irregular net-
work topologies. Thus it leads to link under-utilization. Second, in order to create a ring,
number of links needed is equivalent to the number of GPUs (i.e., N) involved in the same
training job. However, the minimum number of links to connect N GPUs is actually N − 1
links.

Besides the example shown on the right side of Figure 3.3, we provide more toy examples
of how rings’ structural constrains cause link under-utilization. Figure 3.5 shows a 4-node
broadcast setting where node-A broadcast its data to all the other three nodes. These four
nodes are fully connected, which is equivalent to left or right four GPUs in Figure 3.2 with
P100 setting. Since links are usually bi-directional, node-A forms two rings: one in clockwise
direction (i.e., A –>B –>D –>C –>A), the other in counter-clockwise direction (i.e., A –>C
–>D –>B –>A). Since there are two concurrent data transfer channels, node-A can split its
local data into half and half, then pass first half of data through one ring and the second



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 17

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

Figure 3.7: 6-GPU topology
on DGX-1-P100.

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

Figure 3.8: NCCL 6-GPU Rings (Broadcast from GPU3).

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

GPU3 GPU0

GPU1

GPU4 GPU7

GPU5

Figure 3.9: Blink 6-GPU spanning trees (Broadcast from GPU3).

half through the other ring. However, the two links in the center are never used during
this broadcast process, which are denoted as dashed lines in Figure 3.5. Another more
complicated example can be found as Figure 3.8. Figure 3.7 shows the NVLink topology
among 6 GPUs inside a DGX-1-P100 machine (i.e., left of Figure 3.2). Here GPU3 initialize
broadcast to all the other 5 GPUs. As shown in Figure 3.8, ring-based solution like NCCL
also forms two rings, one in clockwise direction and the other in counter-clockwise direction.
However, the links between GPU1 <–>GPU3, GPU5 <–>GPU7, GPU0 <–>GPU4 are
never used in the 6-GPU broadcast case.

Figure 3.10 and Figure 3.11 show detailed measurements of communication overhead as
percentage of end-to-end per-iteration training time. We study over four popular ConvNets
as AlexNet [5], VGG [102] and ResNet [6] using NCCL as the communication backend on
single DGX-1 machine with P100 GPUs and V100 GPUs. Since a fixed number of GPUs
may form different NVLink topology, we measure the best-worst case as a range for each
particular number of GPUs in use. As shown in Figure 3.11, the communication overhead
from NCCL can be up to 50% of the end-to-end DNN training time on a DGX-1-V100
machine.

In contrast, by modeling hardware links as edges of a graph, classic graph theories [103][104]
suggest that, packing spanning trees could lead to maximum network flow from a root node
to all other nodes in a directed graph. Therefore, one-to-many and many-to-one primitives
such as broadcast and reduce can be directly applied over these uni-directional spanning
trees. Furthermore, AllReduce can be split into reduce in one direction then broadcast in



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 18

0

10

20

30

40

50

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

C
om

m
un

ic
at

io
n 

P
er

ce
nt

ag
e(

%
)

network
 AlexNet
 ResNet18
 ResNet50
 VGG

DGX1−P100

Figure 3.10: Best-worst case of communi-
cation percentage regarding to end-to-end
DNN training iteration time (DGX-1-P100).

0

10

20

30

40

50

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

C
om

m
un

ic
at

io
n 

P
er

ce
nt

ag
e(

%
)

network
 AlexNet
 ResNet18
 ResNet50
 VGG

DGX1−V100

Figure 3.11: Best-worst case of communi-
cation percentage regarding to end-to-end
DNN training iteration time (DGX-1-V100).

the reverse direction among the spanning trees we have.
By packing spanning trees rather than forming rings, we can achieve optimal link uti-

lization. The advantage of trees over rings are shown in examples of Figure 3.3, Figure 3.6
and Figure 3.9. On the right of Figure 3.3, since spanning trees can be formed with just
2 NVLinks in this setting, our spanning tree solution (i.e., Blink) can leverage the high-
bandwidth NVLink for broadcast in this partially connected 3-GPU case. In Figure 3.6, we
can pack 3 uni-directional spanning trees from node-A, which utilize all the links available
in this 4-GPU setting. In Figure 3.9, we can pack 3 spanning trees with root of GPU3 and
use up all the links available in this 6-GPU irregular topology.

With spanning tree paradigm, each GPU could have various degrees of inputs and out-
puts. Next, we want to evaluate how close to line-rate that GPUs perform using multiple
trees not rings.

3.2.2 Micro-benchmarks

In this section, we measure the network throughput among our cases of having computation
inline with communication over spanning trees. We present our results on DGX-1-V100
machines. We also conducted measurements over DGX-1-P100 machines, which show similar
results. For the sake of brevity, we exclude those results in this thesis. We categorize our
measurements into following three settings.

Breadth Test: First, we test fan-in, fan-out data transfer together with inline reduce
operations. As shown in Figure 3.12, for fain-in forward case, a central node (i.e., GPU4)
collects three input data streams from GPU1,2,3 then forwards towards GPU5. For fan-in
reduce and forward defined as Figure 3.13, the central node (i.e., GPU4) aggregates incoming
data with its local data by computing a reduction, and then forward aggregated results to
its successor (i.e., GPU5). Our fan-out forward defined in Figure 3.14 is the reverse data



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 19

GPU1 
(d1)

GPU2 
(d2)

GPU4 
(d4)

GPU5

d1d1

d2d2

d1,
d2,
d3,
d4

d1,
d2,
d3,
d4

GPU3 
(d3)

d3d3

Figure 3.12: Breadth Test:
Fan-in forward.

GPU1 
(d1)

GPU2 
(d2)

GPU4 
(d4)

GPU5

d1d1

d2d2
d1    d2  
d3    d4
d1    d2  
d3    d4

GPU3 
(d3)

d3d3

Figure 3.13: Breadth Test:
Fan-in reduce and forward.

GPU1

GPU2 GPU4
GPU5
(d5)

d5d5

d5d5
d5d5

GPU3

d5d5

Figure 3.14: Breadth Test:
Fan-out forward.

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-in Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.15: Breadth Test
Throughput: Fan-in for-
ward.

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-in Reduce+Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.16: Breadth Test
Throughput: Fan-in reduce
and forward.

  0

  5

  10

  15

  20

  25

1 2 3

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Fan-out Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.17: Breadth Test
Throughput: Fan-out for-
ward.

forward of our fan-in forward. Basically, GPU4 broadcasts GPU5’s data to GPU1,2,3.
We test network throughput over above three breadth test cases by transferring data

size ranging from 1MB to 1000MB. The corresponding results are shown as Figure 3.16, Fig-
ure 3.16 and Figure 3.17 respectively. In summary, with data size equal or larger than 50MB,
all of these three breadth test can achieve near maximum network throughput. Compared
with fan-in forward, fan-in reduce and forward has 1-2 GB/s lower throughput, which is
mainly due to reduction computation latency. Fan-out forward has similar network through-
put as fan-in forward, which is close to the line-rate of NVLink.

Depth Test: Next, we conduct our micro-benchmark of depth test, which creates chains
for data forwarding and reduction. Here we mainly measure three kinds of chain traffic:
forward (Figure 3.18), reduce and forward (Figure 3.19), then reduce and broadcast (Fig-
ure 3.20). For chain forward in Figure 3.18, GPU1 is the source with data d1. GPU2 and
GPU3 forward the data to GPU4 in the end. For chain reduce and forward in Figure 3.19,
for forwarding nodes like GPU2 and GPU3, they aggregates local data with data received
from predecessor, and then forward aggregated results to their successors. For chain reduce
and broadcast in Figure 3.20, all the nodes execute reduce and forward operation from left
to right, then broadcast the final results from right to left.

We also test above three depth test cases with various data size ranging from 1 MB
to 1000 MB. The length of chain we tested is ranging from 3-GPU to 8-GPU within an
DGX-1-V100 server. For chain forward only results in Figure 3.21, with data size over 500



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 20

GPU1 
(d1)

GPU2 GPU3 GPU4

d1d1 d1d1 d1d1

Figure 3.18: Depth Test:
chain forward.

GPU1 
(d1)

GPU2 
(d2)

GPU3 
(d3)

GPU4

d1d1 d1 + d2d1 + d2 d1     d2     d3d1     d2     d3

Figure 3.19: Depth Test:
chain reduce and forward.

GPU1 
(d1)

GPU2 
(d2)

GPU3 
(d3)

GPU4
(d4)

d1d1 d1    d2d1    d2 d1    d2    d3d1    d2    d3

d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4d1    d2    d3    d4

Figure 3.20: Depth Test:
chain reduce and broadcast.

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Forward (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.21: Depth Test
Throughput: chain forward
only.

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Reduce+Forward(V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.22: Depth Test
Throughput: chain reduce
and forward.

  0

  5

  10

  15

  20

  25

3 4 5 6 7 8

B
a
n
d
w

id
th

 G
B

/s

# of GPUs

Reduce−Bcast (V100)

1MB
5MB
10MB
50MB
100MB
500MB
1000MB

Figure 3.23: Depth Test
Throughput: chain reduce
and broadcast.

GPU1 
(d1)

GPU3 
(d3, 
d3')

GPU4

d1d1

GPU2 
(d2)

d2d2

d1    d3d1    d3

GPU5

d2     d3'd2     d3'

Figure 3.24: Multi-Input,
Multi-Output (MIMO).

GPU2 
(d2)

GPU5

d1    d2d1    d2

d1    d2   
d3    d4
d1    d2   
d3    d4

GPU4 
(d4)

d3    d4d3    d4

d1d1
GPU1 
(d1)

GPU1 
(d1)

d1
GPU1 
(d1)

GPU3 
(d3)

GPU3 
(d3)

d3d3

Figure 3.25: Multi-chain ag-
gregation (MCA).

0

5

10

15

20

10MB 100MB 1000MB

T
hr

ou
hg

pu
t (

G
B

/s)

Data Size

MIMO MCA

Figure 3.26: MIMO and MCA
throughput.

MB, the throughput decreases from 22 GB/s in 3GPU case to around 20 GB/s in 8-GPU
case. This pattern is less noticeable in the case of reduce and forward in Figure 3.22. For
ore than 500 MB data, the average throughput in chain reduce and forward is around 18
GB/s in Figure 3.22. For chain reduce and broadcast shown as Figure 3.23, with more than
500 MB data, the throughput decreases from around 19 GB/s to around 16 GB/s when we
increase the length of the chain from 3 to 8 GPUs. Overall, we see the throughput drops
with smaller data sizes. The main reason are twofold. First, it is difficult to fully saturate
high bandwidth links with small data sizes. Second, there are constant control overheads for
launching CUDA [105] kernels.

Multi-transfer Test: Now we consider the case of concurrent data flow in any given
network topology. We mainly test two caces: multiple-input-multiple-output (MIMO) in
Figure 3.24 and multiple-chain aggregation (MCA) in Figure 3.25.

In our MIMO configuration in Figure 3.24, GPU1 and GPU2 send their local data (d1,
d2) to the center node GPU3. Then GPU3 aggregates its local data d3 and d3’ with d1 and



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 21

TopologyTopologyTopology 
Discovery

Filter & TreeGen

Scheduler

Assigned
GPUs

Assigned
GPUs

CodeGen
TreesTrees libBlink.so

Main
Program

libNCCL.so

Figure 3.27: Blink workflow.

d2 separately. GPU3 sends d1+d3 to GPU4 and sends d2+d3’ to GPU5 simultaneously.
In our MCA setting, basically it merges two reduce-and-forward chains together. In the
upper chain, GPU2 aggregates local data with GPU1’s, then forwards aggregated results
to GPU5. GPU4 reduce local data with GPU3’s, then forward reduction values to GPU5.
GPU5 aggregates both chains’ input with its own local data.

The throughput result of MIMO and MCA is shown as Figure 3.26. For smaller data size
like 10 MB, both MIMO and MCA can only achieve throughput around 15 GB/s, which is
mainly due to the small data chunk cannot fully saturate the NVLink bandwidth. For data
size in the range of 100 MB or 1000 MB, both MIMO and MCA can achieve around 18 GB/s
throughput.

Summary: From all the micro-benchmark results above, we see that modern GPUs
like V100 with NVLink interconnects could provide good support for data transfer over
spanning trees with various depth and width. We also see the throughput drops a little when
incorporating computation kernels like reduction with communication. In summary, these
micro-benchmarks make it promising and possible for using spanning trees to implement
collective communications such as broadcast and allreduce.

3.3 Blink Design

In this section, first we provide a brief system workflow of our Blink project. We describe
Blink design and our techniques to handle heterogeneous links while achieve high link uti-
lization. Second, we illustrate how we use uni-directional spanning trees for one-to-many and
many-to-one primitives such as reduce and broadcast. Third, we also extend it into many-
to-many primitives such as allreduce by leveraging the bi-directional hardware interconnects.
Fourth, we provide solutions to use PCIe and NVLink together for collective communication.
Last, we extend our method to DGX-2 [94] and multi-GPU multi-machine cases.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 22

3.3.1 System Overview

We provide the overview of Blink project in this section. Blink is a fast and generic collective
communication library. The workflow of Blink is shown as Figure 3.27.

Given arbitrary network topology, Blink dynamically generates the optimal collective
communication scheme by packing maximum number of non-conflicting spanning trees in
the topology. Now we decribe the major components and workflow of Blink project in
Figure 3.27. The workflow of Blink is composed of the followings:

• At job runtime, after the scheduler assigns a set of GPUs to the DNN training job,
Blink probes the network topology and available links among these assigned GPUs.

• Once Blink collects the network topology information, we pass this topology infor-
mation into our TreeGen module. Our TreeGen computes the maximum fractional
packing of spanning trees in the given topology. We use these spanning trees for the
implementation of our collective communication protocol.

• We then pass the spanning trees from TreeGen to our CodeGen, which generates
the code for data transfer commands over these spanning trees. The code generated
provides same API as NCCL, and is packed as a shared library (i.e., libBlink.so in
Figure 3.27).

• Last, we use LD PRELOAD flag to dynamically load our Blink implementation to
replace the NCCL counterpart (i.e., libNCCL.so in Figure 3.27) when the main program
is invoked.

We next illustrate each module in Figure 3.27 in the following sections.

3.3.2 Packing Spanning Trees

We first consider one-to-many primitives such as broadcast using uni-directional spanning
trees. We model the network topology information as follows. We treat each GPU as a
vertex V and each hardware link as a directed edge E. Each directed edge is assigned with
a bandwidth value which is proportional to its link capacity. Thus, these vertices and edges
creates a directional graph.

With the above graph model, the optimal throughput for broadcast is to find the max-
imum weights of flows that start from a given root node and reach all other vertices in the
graph. This problem is well-studied in classic graph theory [104]. Basically, the objective
function is to find the maximal packing of uni-directional spanning trees or arborescences in
a directed graph [103]. Thus, we formalize our optimization problem as follows:



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 23

max
∑
i

wi (3.1)

such that ∀e ∈ E,
∑
i

κi ∗ wi < ce (3.2)

where κi =

{
1, if e ∈ Ti

0, otherwise
(3.3)

Formally speaking, our objective is that, given a directed graph G with edges E , root
vertex r, vertices V and set of spanning trees T , we want to find the weights wi so that the
sum of wi trees passing through edges in E will not exceed the capacity of any edges.

However, the search space of above formalized problem too large. For example, in a
complete graph, the number of arborescences can be at the exponential scale as O(nn−2).
Therefore, the runtime for problem solving can be insanely long. Some exact and more
computational efficient algorithm has been proposed recently, which reduces the computa-
tional complexity to O(n3mlog(n2/m)) with m edges and n vertices [106]. However, we still
abandon this exact and slightly efficient solution due to its high computational complexity.
We adopt an approximate algorithm in the next section.

3.3.3 Approximate Tree-Packing

We adopt an approximation technique called multiplicative weight update (MWU), which
is usually used in optimization in game theory. Our use of MWU follows a recent work to
achieve near-linear time approximation in fractional packing problems [107]. For instance,
it can solve spanning tree packing problem in O(m lnm/ϵ2) where m is number of edges in
the graph.

This MWU-based approach for packing spanning trees works as follows: we initialize
each edge in E with capacity value and another weight indicating how much the capacity
of each edge has been used. Given this setting, we can use iterative method such that,
during each iteration, we find the minimum weight spanning tree in current assignment. We
increase the weight by a factor of ϵ and then update the whole graph accordingly. Therefore,
this algorithm can be converged after O(lnm/ϵ2) iterations. Upon the convergence, we can
get a set of spanning trees {Ti, i ∈ N} and corresponding weights {wi, i ∈ N}. The total
bandwidth B for broadcast is as the sum of weights as follows:

B =
∑
i∈N

wi (3.4)

However, this MWU-based algorithm [107] has no bound on the number of spanning
trees it generates. After solving this MWU optimization problem, we find that the number
of arborescences generated can be too large. For example, the number of arborescences



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 24

generated is 181 within an 8-GPU server. Thus, it is impossible to use so many spanning
trees together for concurrent data transfer. It is because the data size per each tree will be
too small to fully saturate the link bandwidth.

To minimize the number of spanning trees being generated, we formulate an integer linear
program (ILP). Here we limit the weights wi can only be 0 or 1. Thus, the whole problem
can be formalize as below:

max
k∑

i=1

wi (3.5)

such that ∀e ∈ E,
∑
i

κi ∗ wi < ce (3.6)

∀wi ∈ {0, 1} (3.7)

where κi =

{
1, if e ∈ Ti

0, otherwise
(3.8)

Here k can be controlled by the number of arborescences generated from previous MWU
procedure. Solving this ILP will generate ĉ, which may be lower than theoretical optimal as
c∗. We then iteratively relax constrains until the difference between ĉ and c∗ is under some
threshold (e.g., 3%). With this integer approximation, we can reduce the number of trees
from 181 to 6 in an 8-GPU DGX-1 server. With total data size as 1000 MB, now each tree is
responsible for transferring around 166 MB data which could fully saturate link bandwidth.

3.3.4 Extending to Many-to-many Collectives

Above we discuss one-to-many or many-to-one collective primitives such as Broadcast, Gather,
Reduce. In this section, we further extend it to many-to-many primitives such as AllGather
and AllReduce.

We exploit the fact that all the modern hardware links are bi-directional. Thus, for each
uni-directional spanning tree we have, we can run many-to-one primitive in one direction
and run one-to-many primitive in the reverse direction. Taking AllReduce as an example,
in Figure 3.20, we pick the root node as GPU4 on the right. For AllReduce in this 4-GPU
setting, we reduce from left to right, then broadcast from right left. Thus it finishes the
AllReduce operation.

This stratgy of combing two unidirectional spanning trees also guarantee we match the
lower bound of number of messages passing for many-to-many primitives (e.g., AllReduce).
For example, in AllReduce operation, our solution achieves the lower bound of 2×⌈N−1

N
⌉ as

shown in previous literature [108].



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 25

Machine 1 Machine 2

A1.1

C1.1
D1.1

GPU1 GPU2

GPU3 GPU4

B1.1

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

B1.2 = B1.1+B1.2+B1.3+B1.4 B2.2 = B2.1+B2.2+B2.3+B2.4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

B1.2 = B1.2+B2.2 B2.2 = B1.2+B2.2

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

Phase 1: local reduce Phase 2: cross-machine reduce-bcast Phase 3: local broadcastData partitions

A1.2

C1.2
D1.2

B1.2

A1.3

C1.3
D1.3

B1.3

A1.4

C1.4
D1.4

B1.4

A2.1

C2.1
D2.1

B2.1

A2.2

C2.2
D2.2

B2.2

A2.3

C2.3
D2.3

B2.3

A2.4

C2.4

B2.4

D2.4
Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2

Figure 3.28: Blink’s Three-phase AllReduce protocol for cross-machine settings.

3.3.5 Hybrid Communication

We provide concurrent data transfer over both PCIe and NVLink for intra-machine collective
communication. The first challenge we faced is, there is no official way to switch between
NVLink and PCIe for communication. In our experience, we find by using cudaDeviceDis-
ablePeerAccess(), it can force data transfer on PCIe and disable NVLink communication.

Another challenge is how to balance data transfer over PCIe and NVLink such that they
can finish at roughly the same time. We denote Dtotal as the total amount of data needs
to be transferred. DNV L and DPCIe are the data splits between NVLink and PCIe bus.
TDPA refers to the latency for calling cudaDeviceDisablePeerAccess() function. We denote
the bandwidth of PCIe and NVLink as BWPCIe and BWNV L

Objective Fn: TPCIe + Tdpa = TNV L

=⇒ DPCIe =
Dtotal ×BWPCIe

BWPCIe +BWNV L

−

Tdpa ×BWPCIe ×BWNV L

BWPCIe +BWNV L

DNV L =Dtotal −DPCIe

(3.9)

Given these notation and objective function in Equation 3.9, we can find the optimal
data split between NVLink and PCIe. TDPA is empirically measured and may vary given
different number of GPUs in use. And we measure this value on the first few initial calls
into our library.

3.3.6 DGX-2 and Multi-machine Settings

In this section, we first describe our collective scheme in DGX-2 [94] with NVSwitch [90].
Then we illustrate our multi-machine design.

DGX-2: DGX-2 has 16 V100 GPUs inside a single box. These GPUs are connected
over NVSwitch. Each GPU is connected with 6x NVLink bandwidth, which is equivalent to
around 130 GB/s. For DGX-2 machine embedded with NVSwitch, the connectivity among
any subset of the GPUs in DGX-2 is now uniformed. In DGX-2, NCCL constructs double-



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 26

GPU1 -> GPU2 GPU2 -> GPU3 GPU3 -> GPU4

Time

w/o
chunking

w/
chunking

Figure 3.29: Chunking data to reduce
multi-hop network latency.

0
20
40
60
80
100

1 2 3 4 5Th
ro

ug
hp

ut
 

(G
B/

s)

iteration number

Throughput

0
2
4
6
8

10

1 2 3 4 5C
hu

nk
 si

ze
 

(M
B)

iteration number

Chunk size

Figure 3.30: Automatic chunk size se-
lection using multiple-increase additive-
decrease (MIAD).

binary trees [109] with data size smaller than 16 KB, and still forms rings for collective
communication with larger data size.

In contrast, Blink still maintains spanning tree scheme. More specifically, we create single-
hop trees which can be direct support for one-to-many and many-to-one primitives such as
Gather, Broadcast. For many-to-many primitives like AllReduce, we still apply reduce in
one direction and broadcast in the reverse direction over the same spanning tree. Given n
GPUs, we create n such one-hop tree. Each GPU acts as a root node for data collection of 1

n

total data. Our one-hop tree solution guarantees we have the minimum end-to-end network
latency.

Multi-machine: In multi-machine case, Blink provide a 3 phase protocol, which is
shown as Figure 3.28. As shown in Figure 3.28, Data item Xm.g denotes data partition X on
server m’s GPU g. For each data partition, it maintains a distinct server-to-local root. For
the sake of simplicity, Figure 3.28 only shows the reduction (function is denoted as symbol
+) for partition B and the root is at GPU2. Similar protocol can be applied for the other
data partitions.

This 3-step protocol works as follows:

• Intra-server local reduce: In each machine, the root of each tree aggregates data from
its children nodes.

• Cross-machine reduce and broadcast: It is similar as the single-hop trees in DGX-2
machine. For n servers, we create n such one-hop cross-machine trees, where each tree
is for data collection of 1/n total data.

• Intra-server local broadcast: at this stage, each server’s local roots broadcast the results
obtained in the second phase above to all the nodes inside the machine.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 27

GPU1 
(d1, d2)

GPU2 GPU3 GPU4
d1d1 d1d1 d1d1

GPU1 
(d1, d2)

GPU4

GPU2 GPU3

d2d2

d2d2 d2d2
Tree 2Tree 2

Tree 1Tree 1

Stream reuse Stream reuse

Figure 3.31: Stream reuse for fair sharing of links.

3.4 Implementation

This section describes our CodeGen module. Basically, CodeGen translates the spanning
trees generated from TreeGen into real data transfer commands. Here we implement two
optimization components to achieve ideal system performance.

3.4.1 Automatic Chunk Size Selection

In each CUDA stream, data chunk is the atomic and smallest unit for data transfer over our
spanning trees. One common way to reduce end-to-end network latency is to chunk data
into smaller pieces and pipeline the data transfer.

As shown in Figure 3.29, by chunking the data into half and half and pipelining data
forwarding, we can reduce the amount of time which is similar as the length of black bar in
Figure 3.29. Our objective is to parallelize or pipeline data transfer with minimum network
latency. Intuitively, smaller chunk size should always lead towards lower end-to-end latency.
However, if the chunk size is too small, it may not be able to fully saturate the link bandwidth
and also introduces too much system scheduling overheads.

To select proper chunk size on each CUDA stream, we adopt an adaptive scheme from
TCP/IP Stack [110], which is multiplicative increase and additive decrease (MIAD). We start
with a small size and increase the chunk size by multiplicative factor when the corresponding
throughput is increasing. On the other hand, if the throughput decreases, we additively
decrease our chunk size to find an steady and near-optimal state.

As shown in Figure 3.30, we start with small chunk size as 1 MB in our first iteration and
measure the throughput. We then double the chunk size in iteration 2,3,4. Once we reach a
steady state, we fix the chunk size (i.e., 8 MB in Figure 3.30) and use this fixed chunk size
for later on data transfer.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 28

0
20
40
60
80

100
120
140

5,6
,7

4,5
,7

3,6
,7

3,5
,7

1,5
,6
4,5

,6,
7
3,5

,6,
7
3,4

,6,
7
3,4

,5,
7
2,3

,6,
7
2,3

,5,
7
2,3

,5,
6
1,5

,6,
7
1,4

,5,
7
1,4

,5,
6
1,3

,5,
7
1,3

,5,
6
1,3

,4,
5
1,2

,5,
6

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

1,4
,5,

6,7

1,3
,5,

6,7

1,3
,4,

6,7

1,3
,4,

5,7

1,3
,4,

5,6

1,2
,5,

6,7

1,2
,4,

6,7

1,2
,4,

5,7

1,2
,4,

5,6

1,2
,3,

4,5

0,1
,4,

5,7

2,3
,4,

5,6
,7

1,3
,4,

5,6
,7

1,2
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

1,2
,3,

4,5
,7

1,2
,3,

4,5
,6

0,1
,4,

5,6
,7

0,1
,3,

4,5
,7

0,1
,3,

4,5
,6

1,2
,3,

4,5
,6,

7

0,1
,3,

4,5
,6,

7

0,1
,2,

3,4
,5,

6,7

ge
oM

ean

Th
ro

ug
hp

ut
 (G

B/
s)

Allocated GPU IDs

Blink
NCCL 2

Figure 3.32: Broadcast throughput comparison between Blink and NCCL for all unique
topologies in DGX-1-V100 machine.

0

10

20

30

40

50

60

5,6
,7

3,6
,7

4,5
,6,

7
3,5

,6,
7
2,3

,6,
7
2,3

,5,
7

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

2,3
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

7G
PU

8G
PU

ge
oM

ean

Th
ro

ug
hp

ut
(G

B/
s)

GPU lD 

Blink NCCL 2

Figure 3.33: Broadcast throughput comparison between Blink and NCCL for all unique
topologies in DGX-1-P100 machine.

3.4.2 Link Sharing

Another challenge with our multiple trees scheme is that CUDA does not provide direct
control over shared links. For example, if we have two trees passing the same hardware link
and each with weight of 0.5, a fair sharing scheme should transmit one data chunk from
the first tree followed by one chunk from the second tree, so on and so forth. However, in
practice, our CUDA implementation does not allow such fine-grained control over the order
of different data chunks. It leads to the cases that chunks from some trees are arbitrarily
delayed and harms our overall throughput performance.

Based on our observation, the orders of chunks within the same stream is guaranteed.
Thus, we address this issue by reuse the CUDA streams in the case that same link is used by
multiple trees at roughly the same position. For instance, in Figure 3.31, we do broadcast
from GPU1, which has two data chunk d1 and d2. We create two spanning trees (Tree 1
and Tree 2) from root node GPU1. Note that the link between GPU1 <–>GPU2 maintains
the same position for both Tree 1 and Tree 2, instead of initializing a new CUDA stream for
Tree 2, we re-use the CUDA stream from Tree 1 to guarantee the fair sharing of the link.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 29

0
10
20
30
40
50
60
70

5,6
,7

4,5
,7

3,6
,7

3,5
,7

1,5
,6
4,5

,6,
7
3,5

,6,
7
3,4

,6,
7
3,4

,5,
7
2,3

,6,
7
2,3

,5,
7
2,3

,5,
6
1,5

,6,
7
1,4

,5,
7
1,4

,5,
6
1,3

,5,
7
1,3

,5,
6
1,3

,4,
5
1,2

,5,
6

3,4
,5,

6,7

2,3
,5,

6,7

2,3
,4,

5,7

1,4
,5,

6,7

1,3
,5,

6,7

1,3
,4,

6,7

1,3
,4,

5,7

1,3
,4,

5,6

1,2
,5,

6,7

1,2
,4,

6,7

1,2
,4,

5,7

1,2
,4,

5,6

1,2
,3,

4,5

0,1
,4,

5,7

2,3
,4,

5,6
,7

1,3
,4,

5,6
,7

1,2
,4,

5,6
,7

1,2
,3,

5,6
,7

1,2
,3,

4,6
,7

1,2
,3,

4,5
,7

1,2
,3,

4,5
,6

0,1
,4,

5,6
,7

0,1
,3,

4,5
,7

0,1
,3,

4,5
,6

1,2
,3,

4,5
,6,

7

0,1
,3,

4,5
,6,

7

0,1
,2,

3,4
,5,

6,7

ge
oM

eanTh
ro

ug
hp

ut
(G

B/
s)

Allocated GPU IDs

Blink
NCCL 2

Figure 3.34: AllReduce throughput comparison between Blink and NCCL for all unique
topologies in DGX-1-V100 machine.

0.015625
0.0625
0.25
1
4
16
64
256

1K
B
2K
B
4K
B
8K
B
16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B
4M
B
8M
B
16
MB
32
MB
64
MB
12
8M
B

25
6M
B

51
2M
B
1G
B

T
hr

ou
gh

pu
t

(G
B

/s)

Data Size

NCCL Blink

Figure 3.35: AllReduce throughput compar-
ison between Blink and NCCL on a 16-GPU
DGX-2 machine.

1
8
64
512
4096
32768

1K
B
2K
B
4K
B
8K
B
16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B
4M
B
8M
B
16
MB
32
MB
64
MB

12
8M
B

25
6M
B

51
2M
B
1G
B

L
at

en
cy

 (u
s)

Data Size

NCCL Blink

Figure 3.36: AllReduce latency comparison
(in µs) between Blink and NCCL on a 16-
GPU DGX-2 machine.

3.5 Evaluation

In this section, we compare throughput performance between NCCL 2.4 [31] and Blink for
collective communication such as Broadcast and AllReduce. We evaluate on both DGX-1-
P100, DGX-1-V100 machine and DGX-2 machine. We also provide the end-to-end speedups
of using Blink with 4 popular DNNs in both single machine and multiple machine cases.

3.5.1 Broadcast and AllReduce Micro-benchmarks

Here we compare performance between Blink and NCCL 2.4 on Broadcast adn AllReduce
operations. Given the topologies shown in Figure 3.2, we may have different topologies with
same or different number of GPUs in use. In total, we have 46 different configurations for
different number of GPUs in use and their locations in DGX-1-V100 machine, and 14 differ-
ent topologies for DGX-1-P100 machine. Figure 3.32 and Figure 3.33 show the Broadcast
comparison between NCCL and Blink on DGX-1-V100 machine and DGX-1-P100 machine,
respectively. And Figure 3.34 shows AllReduce comparison between Blink and NCCL on a
single DGX-1-V100 machine. For Figure 3.32, Figure 3.33, Figure 3.34, the number array on
x-axis refers to the allocated GPU IDs in each configuration, which can be directly mapped
to Figure 3.2.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 30

0

20

40

60

80

100

120

140

3GPU 4GPU 5GPU 6GPU 7GPU 8GPU geoMean

Th
ro

ug
hp

ut
 (G

B/
s) NVLink

PCIe+NVLink

Figure 3.37: Broadcast throughput comparison between hybrid and NVLink-only with var-
ious number of GPUs on DGX-1-V100 machine.

3.5.1.1 NVLink Broadcast

Here we provide detailed evaluation for Broadcast comparison between NCCL 2.4 and Blink
on both DGX-1-V100 machine and DGX-1-P100 machine.

In Figure 3.32, compared with NCCL, Blink can achieve up to 6x speedup with 2x geo-
mean on a DGX-1-V100 machine. In the cases of irregular topology like 1,4,5,6, since NVLink
cannot form a ring, NCCL fall back to PCIe for collective communication, which leads to
dramatically lower network throughput when comparing with Blink. Even in the cases that
NCCL can form rings, Blink still outperforms over NCCL due to our higher link utilization
rate and optimized chunk size selection.

For DGX-1-P100 machine results in Figure 3.33, Blink achieves up to 3x speedup with
1.6x geo-mean over NCCL. All the 14 configurations in this DGX-1-P100 machine show
similar results as DGX-1-V100 machine in Figure 3.32.

3.5.1.2 NVLink AllReduce

Figure 3.34 lists the AllReduce comparison between NCCL and Blink on a DGX-1-V100
machine with 46 different topology configurations. Generally, AllReduce throughput is lower
compared with Broadcast in Figure 3.32. The main reason is computation kernels (e.g.,
Reduce) are involved in the procedure, thus it may decrease both throughput and latency
performance when comparing with Broadcast cases.

Overall, Blink outperforms over NCCL with up to 8x speed-up with 2x geo-mean in
throughput. For the sake of brevity, we exclude AllReduce result fro DGX-1-P100 since it
closely match the findings as DGX-1-V100 results in Figure 3.34.

3.5.1.3 NVSwitch AllReduce

For DGX-2 with NVSwitch, we direct conduct a 16-GPU AllReduce operation and measure
the throughput (Figure 3.35) and latency (Figure 3.36) results. The y-axis in both Fig-



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 31

0%

20%

40%

60%

3GPU (0,1,2)

3GPU (3,6,7)

4GPU (0,1,2,3)

4GPU(1,4,5,7)

5GPU (1,4,5,6,7)

5GPU(2,3,5,6,7)

6GPU (1,2,4,5,6,7)

6GPU(2,3,4,5,6,7)
7GPU 8GPU

geoMean

R
ed

uc
tio

n 
in

 
ite

ra
tio

n 
tim

e

ResNet18
ResNet50
AlexNet
VGG16

Figure 3.38: Blink training time reduction for
each iteration over 4 popular DNNs on ImageNet-
1K dataset.

0%
20%
40%
60%
80%

100%

3GPU (0,1,2)

3GPU (3,6,7)

4GPU (0,1,2,3)

4GPU(1,4,5,7)

5GPU (1,4,5,6,7)

5GPU(2,3,5,6,7)

6GPU (1,2,4,5,6,7)

6GPU(2,3,4,5,6,7)
7GPU

8GPU
geoMean

R
ed

uc
tio

n 
in

 
co

m
m

. t
im

e

Figure 3.39: Blink communication
time reduction over each iteration on
ImageNet-1K dataset.

ure 3.35 and Figure 3.36 are log-scaled. We measure throughput and latency with data size
ranging from 1KB to 1GB, which are shown as ticks on x-axis of these two figures.

In both Figure 3.35 and Figure 3.36, comparing with NCCL’s double binary trees and
rings, Blink’s single-hop trees (described in Section 3.3.6) achieves up to 3.5x speed-up in
throughput and 3.32x latency reduction. Our biggest wins are with small data sizes. This
is mainly due to our single-hop trees guarantee the minimum network latency.

3.5.2 Hybrid Transfer

Figure 3.37 shows the evaluation results of our hybrid (PCIe+NVLink) data transfer and
NVLink-only in Broadcast on a DGX-1-V100 machine. We tested over the number of GPUs
ranging from 3 to 8. Overall, by adopting hybrid data transfer, we can achieve around 2-5
GB/s throughput boost when comparing with NVLink only solution.

3.5.3 End-to-end DNN Training

We test our end-to-end DNN training performance with popular DNNs using PyTorch [29].
The DNNs we use are ConvNets as AlexNet [5], two ResNet [6] and VGG16 [102]. We train
these ConvNets on ImageNet-1K dataset [15] and measure our communication time and
training iteration time using both NCCL and Blink. We conduct our measurements with
both single DGX-1-V100 machine case and multiple DGX-1 machine case.

3.5.3.1 Single Machine

The evaluation results for single machine are shown as Figure 3.38 and Figure 3.39. Here
we also test DNN training performance over 3 to 8 GPUs on a DGX-1-V100 server.

As communication reduction results shown in Figure 3.39, switching from NCCL to Blink
leads to up to 87% communication time (with 31% geo-mean) reduction in DNN training
jobs. In Figure 3.38, Blink outperforms NCCL by up to 40% time reduction (with 6.3%
geo-mean) in end-to-end DNN training jobs.



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 32

0

500

1000

Re
sN
et1
8

Re
sN
et5
0

Al
ex
Ne
t

VG
G1
6

Im
ag
e/
Se
c NCCL

Blink

Figure 3.40: System
throughput (Image/Sec)
for distributed DNN train-
ing using two DGX-1-V100
machines.

0
10
20
30
40

40Gbps 100Gbps 400Gbps

Th
ro

ug
hp

ut
(G

B/
s)

Cross-machine bandwidth

NCCL
Blink

Figure 3.41: AllReduce
throughput projections
given potential high
bandwidth cross-machine
interconnects

3.5.3.2 Multiple Machine

As described in Section 3.3.6, Blink’s multi-machine collective communication is a three
phase protocol. As shown in Figure 3.40, Blink outperforms over Horovod [32] with NCCL
and MPI [91] when training four different DNNs over two DGX-1-V100 machines. The reason
for this minor improvement is due to limited cross-machine bandwidth. In our test setting,
the cross-machine AllReduce throughput is only 40Gbps (i.e., 5GB/s), which is much lower
than our intra-machine AllReduce with NVLink (40GB/s).

To project how faster cross-machine interconnects may change our performance, we sim-
ulate with different cross-machine bandwidth and measure AllReduce throughput, which is
shown as Figure 3.41. The data size we use here is 100 MB. As depicted in Figure 3.41,
with high bandwidth cross-machine interconnects [111][112][113], Blink’s performance gain
will be more pronounced when comparing with NCCL. For example, we can achieve up to
7x AllReduce speedup over NCCL if we have 400Gbps cross-machine bandwidth.

3.6 Related Work

Previous work on collective communication mainly falls into the following two categories.
Topology-fixed Schemes: For fixed topology setting, previous standard collective com-

munication is MPI [91]. Previous literature mainly focus on regular network topology such
as full-mesh [114][115] and hyper-cube [116][117][118]. Some more recent work provides op-
timizations over MPI, such as handling the case that number of nodes is not powers of
two [119], or buffer size auto-tune for specific hardware architecture [120].

One line of work is called butterfly algorithm [121][122][123], which achieves lantecy-
optimal AllReduce. Butterfly AllReduce is divided into to phases: first is a recursive Re-
duceScatter then followed by a recursive AllGather. However, the communication patterns
in butterfly algorithm can cause network contention very often, thus makes it less practical.
Ring-based collectives are shown to be bandwidth optimal in homogeneous network environ-



CHAPTER 3. FASTER COLLECTIVE COMMUNICATION 33

ments [108][124]. Different companies implement ring-based solution as their own collective
communication library such as NCCL [31] from Nvidia, Horovod [32] from Uber, Gloo [33]
from Facebook/Meta and IBM Power AI DDL [80]. However, all the literature mentioned
above assume to have fixed and regular network topology, which may not be a good fit when
topology changes in cloud environments. Blink is designed to handle both irregular and
dynamic topology and provides optimal solutions.

Topology-aware Protocols: Topology-aware works are main found in wide-area net-
works to minimize data transfer over slow links [125][126]. Similar idea has been applied to
cloud environments which determine node locality based on pair-wise bandwidth [127]. This
method is extended into NUMA multire-core architecture [128]. Recent work like Bluecon-
nect [79] decouples AllReduce into ReduceScatter followed by AllGather. However, it can
only be applied to symmetric topologies, which makes it less flexible when comparing with
Blink. Blink can be generally applied to both symmetric and asymmetric network topologies,
and can also combine heterogeneous links for concurrent data transfers.

3.7 Summary

This part of the thesis provides a fast and generic collective communication library called
Blink. To handle the topology heterogeneity, Blink dynamically packing maximum number
of spanning tree in the given network topology and achieve near-optimal network throughput.
Compared with state-of-the-are ring-based solution like NCCL, Blink achieves up to 8x faster
AllReduce, and reduce end-to-end DNN training time by up to 40%.



34

Chapter 4

Eliminating Communication in Model
Parallelism

4.1 Background

Convolution Neural Networks (CNNs) is a specialized kind of DNNs, which enables comput-
ers to excel on a lot of vision learning tasks such as image classification [5][6][129], semantic
segmentation [52] and object detection [53].

In the past decade, we see the trends that both input image resolutions and model
sizes are growing drastically. As mentioned in Section 1.1, the CNNs model size almost
increases 200 times over the years, and the number of pixels per image also grows by
orders-of-magnitude. To reduce model serving latency, distributed model serving is widely-
adopted [23][22][21][130], which allows a single CNN to run in-parallel over multiple machines
or accelerators. There are mainly two types of conventional parallelism approaches, namely
data parallelism [131][24] and model parallelism [26] [20]. In data parallel serving, each
machine or GPU hold the full copy of model parameters and does model inference indepen-
dently on separate subset of the whole input data. In model parallel serving, each GPU only
maintain a portion of the whole CNN model. Lots of intermediate results such as activations
are transmitted during in-parallel model serving.

Recently, making faster decision on live data becomes more and more important. For
instance, in autonomous driving application scenarios [132][133], if the perception camera
captures a frame of image than contains pedestrians ahead, it may save people lives if we
can make the stop decision slightly quicker. Similar latency-driven cases can also be found
in finance domain. For example, giant banks such as Goldman Sachs [134][135] and J.P.
Morgan [136] are adopting deep learning methods for automatic stock trading. In this case,
if one party can make the trading decision slightly faster (e.g., several milliseconds earlier)
than the other parties, it can bring-in huge amount of profit to the company. From a system
point of view, making faster decision on live data is equivalent to making faster decision on
each atomic, incoming data item (e.g., instantaneous price of a single stock, each incoming



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 35

Machine 1 Machine 2

Figure 4.1: Data Parallel
model serving.

Machine 3

Machine 1 Machine 2

Machine 4

Figure 4.2: Model Parallel
model serving.

Machine 1 Machine 2

output: cat? output: dog?

output: cat/dog?

Figure 4.3: Class Parallel
model serving (sensAI).

image).
In this case, neither model parallelism nor data parallelism can reduce live data serving

latency. As shown in Figure 4.1, it is impossible to split an atomic input item into pieces
and do data parallel serving. In model parallel serving (Figure 4.2), all the machines can
share the same input piece. However, they need to communicate intermediate results (e.g.,
feature-maps as red dashed lines in Figure 4.2) among each other for each single input item,
which is huge communication overheads.

To achieve low-latency inference on single input piece, we propose sensAI, which is a
generic scheme to decouple a big CNN into a bunch of disconnected subnets. This divide-and-
conquer scheme only needs negligible communication (i.e., one float value per subnet) and
achieves decent inference accuracy. At high level, sensAI achieves near-zero communication
overhead by adopting a new concept called Class Parallelism. As shown in Figure 4.3, we
decouple a multi-way classification base model into a number of binary classification subnets,
where each subnet is only responsible for decision making of a single class (e.g., car or not cat,
dog or not dog). The theoretical intuition behind our class parallelism is, different neurons
(i.e., channels) are responsible for predicting separate classes of images. Normally, only a
subset of channels are crucial for predicting certain class of images [137]. Furthermore, our
class parallelism method is orthogonal to data parallelism, which means it can be applied
together with data parallelism.

For classification tasks with small number of classes say N (e.g., CIFAR-10 [14]), our
class parallelism can be achieved by pulling out N binary classifiers from the base model.
And we use these N binary models in-parallel to determine the predicted class by taking
the maximum confidence value among these binary classifiers. For classification problem
with too many classes (such as ImageNet-1K [7]), we decouple the base model into multiple
grouped classifiers (e.g., k groups), where each grouped classifier is a m-way classifier pulled



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 36

Fully-trained
CNN

Dog classifier

Cat classifier

dog?

cat?

0.2

0.6

SoftMax
Decision:

Cat

Class-specific 
pruning
(One-shot)

retrain

Active neurons

Inactive/pruned neurons

Figure 4.4: sensAI’s three-phase workflow for class-parallel inference.

from base model. To guarantee the full class coverage, we ensure that

k ×m = N (4.1)

This guarantees that using our k m-way classifiers together can cover the original N -way
classification problem. Next we will discuss related literature.

4.2 Related Work

The related work to our sensAI project in mainly in following four categories.
Data and model parallelism: To speed up model inference, in-parallel paradigms,

such as data parallelism [21][73][34], model parallelism [20][35][27] and hybrid of two [130],
have been widely adopted. However, all of these fall short of reducing latency with single
atomic input item. As mentioned in Section 4.1, we cannot split atomic input piece for
data parallel serving, and model parallel serving introduce huge communication overheads.
Different from data and model parallelism, sensAI decouples a base model into disconnected
subnets with Class Parallelism, thus the communication in-between can almost be eliminated
at the in-parallel model serving stage.

Class-specific neuron analysis: Previous literature provides unit ablation study and
shows that unit ablation over a fully-trained CNN only decreases serving accuracy of certain
classes [138]. Recent work also shows the possibility of decouple a 10-way classification CNN
into 10 binary ones without losing test accuracy [137]. However, sensAI is the first scheme
to propose Class Parallelism and use it for low-latency, in-parallel model inference.

Network pruning: It is well-known in deep learning domain that traditional CNNs are
over-parameterized [139][140]. To reduce computation cost and memory footprints, struc-
tured [141] and unstructured [142][143][144] network pruning gains lots of attention, which
provide a effective way to reduce model size while maintaining decent accuracy [145][146].



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 37

sensAI also adopt network pruning methods. However, different from existing class-agnostic
pruning methods, sensAI conducts one-shot, class-specific pruning to pull out binary or
grouped classifiers from the base model. And we can further shrink down our subnets’ sizes
by incorporating traditional class-agnostic pruning methods [143][141][146].

One-Vs-All (OVA) reduction: OVA model reduction is a generic machine learning
approach that reduces multi-class learning problem into a bunch of binary classification prob-
lems [147][148]. Previous literature demonstrates the effectiveness and theoretical correctness
of OVA-based approaches [149][150]. Some modern art incorporates OVA with Error Cor-
recting Output Codes (ECOC) to further increase the model serving accuracy [151][152][153].
However, both OVA approaches and its ECOC extensions need to pre-define the model struc-
ture of binary classifiers [154][151]. Different from OVA and its ECOC extensions, sensAI
automatically learns varied subnet structures from the fully-trained base model for different
classes or groups. And we achieve better model serving accuracy with less redundant binary
or grouped subnets.

4.3 sensAI Method

In this section, we first provide an overview of sensAI workflow. Then we dive into all the
key components in the following sections.

4.3.1 Overview

Before applying sensAI method, we assume to have a fully-trained N -way CNN classifier,
where N is the total number of classes in the vision learning task. As a toy example depicted
in Figure 4.4, sensAI has a 3-phase workflow: 1) class-specific pruning, 2) retraining, 3)
combining results for in-parallel inference. Given a fully-trained base ConvNet, we first
pull out binary or grouped classifiers from the base model. Second, we conduct retraining
over these binary or grouped classifier to regain some possibly loss test accuracy due to
the previous pruning step. Third, we deploy each subnet on a single GPU and conduct
in-parallel, non-blocking model serving.

4.3.2 Class-specific Pruning

Here we first discuss how we distill binary classifiers from a base model. It is used for
classification task with smaller number of classes. Then we extend our solution to distill
grouped (i.e., multi-class) classifiers from the base model. This can be applied to more
complicated classification problem with many classes.

4.3.2.1 Binary Classifiers

In order to pull out binary classifiers from a base model, we need to identify the sets of
neurons that are crucial for particular image classes. We choose to use activation-based



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 38

Figure 4.5: t-SNE visualization for fea-
ture representation of all training images
with fully-trained VGG-19 on CIFAR-10
dataset.

Figure 4.6: t-SNE visualization for fea-
ture representation of all training images
with fully-trained VGG-19 on CIFAR-100
dataset.

pruning approach. Basically, given a fully trained ConvNet, we pass in all the training
images of a single class into this ConvNet. Then we collects activation statistics per each
neuron (i.e., channel). We directly borrow some popular activation-based pruning schemes
such as Average Percentage of Zeros (APoZ [155]) and average activations (Avg [137]).

The pruning method is important and may affect our final in-parallel model serving
accuracy [145]. After trails-and-errors test, we define our pruning policy as a hybrid of
both Average Percentage of Zeros (APoZ [155]) and average activations (Avg [137]) with
modifications on threshold values.

Our hybrid pruning policy is defined as below:

Ψ(N c
i,j) =

Dc∑
Φ(Ac

i,j < θ1)

Dc

(4.2)

where Θ(Ac
i,j) < θ2 (4.3)

In Equation 4.2, N c
i,j refers to j-th neuron in i-th layer that is evaluating on the c-th class

of images, and the corresponding output feature-maps are Ac
i,j. The symbol Dc denotes the

number of images that belonging to the c-th class. For Φ(·), it calculates average percentage
of activation values that are smaller than a threshold θ1 for each image in the set of c-th
class.

Our hybrid pruning policy works as follows. First, we generalize APoZ algorithm as
Ψ(·) in Equation 4.2, which calcuate the average percent of activation values less than the



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 39

threshold value of θ1. We generate our initialize pruning candidates’ list by setting this pre-
defined threshold θ1. Second, we exclude the neurons from the pruning list if its feature-maps
mean absolute value is larger than another threshold θ2. By doing this two-step pruning,
we can avoid pruning the neurons that generating featuremaps 1) with high percentage of
near-zero value and 2) has a few very large non-zero values.

4.3.2.2 Grouped Classifiers

For simple classification tasks like CIFAR-10, it is reasonable to pull out 10 binary classifier
from the base model. However, for more complicated tasks such as ImageNet-1K, it is
unrealistic to distill 1000 binary classifiers from the base model and use 1000 GPUs together
for in-parallel model inference.

In this case, given an N -way classification model, we decouple it into k m-way classifiers
and ensure that k ×m = N . We call each m-way classifier as grouped model. To automati-
cally group multiple classes, we adopt t-SNE and balanced k-mean clustering methods.

Our grouping methods works in two steps. First we evaluate the similarity of train-
ing images belonging to different classes. After passing in all the training images into a
fully-trained CNN, we collects the feature vector before the last fully-connected layer as the
feature representation for each training image. Then we use t-distributed stochastic neighbor
embedding (t-SNE) [156] to cast the high-dimensional feature representation into 2D. Fig-
ure 4.5 and Figure 4.6 show the t-SNE vitualization results on both CIFAR-10 CIFAR-100
datasets. Here each data point with the same color refers to a training image belongs to
the same class. The reason of using t-SNE is because it guarantees nearby classes are also
closed with each other in the projected space [157]. Second, given the t-SNE results, we
conduct balanced k-mean clustering [158][159][160] to automatically group nearby classes.
Our balanced k-mean clustering is defined as Algorithm 1.

Algorithm 1 K-means clustering over t-SNE output

Input: total number of classes: N , number of groups: k, t-SNE output: {xc
i} ∈ Xc where

c={0,1,..N-1}
for m = 0 to N-1 do

am ←
|Xm|−1∑
n=0

xm
n / | Xm | ; // Avg FR per class

end
Data: {ac} ∈ Ac for c={0,1,..N-1}, Minsize ← ⌊N/k⌋, Maxsize ← ⌈N/k⌉
if Minsize == Maxsize then

kmeans-balanced(Ac, N/k)
else

kmeans-constrained(Ac,Minsize,Maxsize)
end



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 40

0 2 4 6 8 10 12 14
Parameters per node (106)

80

82

84

86

88

90

92

94

Te
st

A
cc

ur
ac

y
(%

)

Baseline, 20.04M
APoZ pruning
Avg. pruning
Hybrid pruning

Figure 4.7: Pruning method comparison among APoZ, Avg, and our hybrid solutions (VGG-
19, CIFAR-10).

In Algorithm 1, we first calculate all the average feature-representation (i.e., FR) per-class
over t-SNE’s output (i.e., Xc). Then we use these FR per-class as input data for k-means
clustering algorithm [158].

The k-means clustering in Algorithm 1 mainly handles two cases. First, if the number of
classes N could be divided by our group number as k, we directly apply kmeans-balanced()
algorithm [159]. Second, if number of total class N is not divisible by number of groups k
we have, we adopt another variation of balanced k-means called kmeans-constrained() [160]
and pass-in minimum group size (i.e., Minsize) and maximum group size (i.e., Maxsize)
as arguments into the function. Here we split the classes as even as possible such that
Maxsize −Minsize ≤ 1.

After we generates these class groups, we do group-wise pruning, which follows similar
approach defined in Section 4.3.2.1. Instead of feed 1 class of training image, here we pass
in a class group of training images into the fully trained base model. Then we can use the
hybrid pruning policy to do group-wise pruning to distill grouped (i.e., multi-class) classifiers.
For the final classification layer, we keep all m prediction heads and add another head to
indicates the negative samples. Here negative samples refer to the input images that not
belonging to this particular class group. Therefore, each of our grouped classifier have m+1
prediction heads.

4.3.3 Retraining

After getting all the binary or grouped classifiers from the base model, we need to conduct
a retraining phase in order to regain possibly lost test accuracy because of previous pruning
step. Note that all the binary or grouped classifier can be retrained independently, which
means there is zero communication needed among the whole set of our binary or grouped
classifiers.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 41

0 4 8 12 16 20
Parameters per node (106)

80

85

90

95

Te
st

A
cc

ur
ac

y
(%

)

baseline
20.04M
sensAI

Figure 4.8: Number of
Parameters vs test accu-
racy comparison (VGG-19,
CIFAR-10).

0.0 0.5 1.0 1.5 2.0
FLOPs per node (109)

80

85

90

95

Te
st

A
cc

ur
ac

y
(%

)

baseline
2.4e9
sensAI

Figure 4.9: FLOPs con-
sumption vs test accuracy
comparison (VGG-19,
CIFAR-10).

0.2 0.4
Time per-image (ms)

80

85

90

95

Te
st

A
cc

ur
ac

y
(%

)

baseline
0.39ms
sensAI

Figure 4.10: Per-image in-
ference time vs test accu-
racy comparison (VGG-19,
CIFAR-10).

To improve retrain efficiency, we need to balance both negative and positive training
samples. We also need to modify the loss function accordingly. For binary classifiers, we
need to change the loss function into binary cross-entropy (BCE) loss. And for grouped
classifiers, we need to change it into multi-way cross-entropy loss with (m + 1) prediction
heads.

4.3.4 Combining Results Back to N-way Predictions

After getting all our retrained binary or grouped classifiers, we combine their outputs to the
original N -way prediction tasks. Here we directly pick the maximum probability of being
positive among all our binary/grouped classifiers’ output as the final prediction result of
original N -way prediction tasks. For example, in Figure 4.4, since cat confidence value 0.6
is larger than dog’s confidence value 0.2, we predict the image as a cat image.

4.4 Evaluation

4.4.1 Datasets and Models

We evaluate sensAI on several standard CNN models, such as ResNet [6] and VGGNet [102].
We test our approach on three different datasets as CIFAR-10, CIFAR-100 [14] and ImageNet-
1K [15]. In addition, we also verify sensAI’s effectiveness over some more efficient networks
such as ShuffleNet-V2 [161] and MobileNet-V2 [162]. We report our model size and FLOPs
reduction, inference time speedups and Top-1 test accuracy performance.

For the hardware testbed, we use Nvidia Tesla M60 GPUs [163] for all the experiments.
For each binary or grouped classifier, we assign it to a single GPU exclusive without resource
sharing among other workloads.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 42

0.0 0.5 1.0 1.5
Parameters per node (106)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.71M
sensAI

Figure 4.11: Number of
Parameters vs test accu-
racy comparison (ResNet-
164, CIFAR-10).

0.0 0.5 1.0 1.5
FLOPs per node (109)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.51e9
sensAI

Figure 4.12: FLOPs con-
sumption vs test accuracy
comparison (ResNet-164,
CIFAR-10).

1.00 1.25 1.50
Time per-image (ms)

88

90

92

94

96

Te
st

A
cc

ur
ac

y
(%

)

baseline
1.67ms
sensAI

Figure 4.13: Per-image in-
ference time vs test accu-
racy comparison (ResNet-
164, CIFAR-10).

4.4.2 CIFAR-10 Results

Here we mainly evaluate on two CNNs as VGG-19 and ResNet-164. We also test our improve-
ment over more efficient CNNs like MobileNet-V2 and ShuffleNet-V2. We train the model
with standard hyper-parameter settings. We train 164 epochs. Learning rate starts with 0.1
then decay by 0.1 at 91, 122 epochs. The test accuracy of our base models are 92.85% for
VGG-19, 94.79% for ResNet-164, 93.46% for ShuffleNet-V2 and 94.24% for MobileNet-V2.

4.4.2.1 Pruning Policy Comparison

We first compare different pruning policies we have, namely APoZ, avg, and our hybrid policy.
We compare the final test accuracy using these three policy on VGG-19 using CIFAR-10
dataset.

For our hybrid policy defined in Section 4.3.2.1’s equation 4.2 and Equation 4.3, we need
to find two threshold values as θ1 and θ2. In our implementation, these two threshold are
determined by a grid search on separate validation dataset. And the thresholds values are
not layer-specific but global across different layers of the neural nets. The pruning percentage
is thus determined by these two threshold values.

As depicted in Figure 4.7, our hybrid pruning policy generally outperforms over both
APoZ and Avg policies. It achieves the highest inference accuracy among the three policies
for the binary classifiers of same size. Therefore, we adopt our hybrid pruning policy as the
default pruning scheme for the rest evaluations.

4.4.2.2 sensAI Evaluation on VGG-19 and ResNet-164

We evaluate sensAI performance with respects of number of parameters per GPU, FLOPs
consumption, and inference time per-image. We mainly test on VGG-19 (with batch normal-



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 43

Model
Test Avg. per-GPU Per-image
acc. model size infer. time
(%) (106) (ms)

MP-baseline VGG-19 92.85 2.00 1.12
(10 GPUs) ResNet-164 94.79 0.17 2.33

sensAI
VGG-19 92.86 1.01 0.06

ResNet-164 94.79 0.16 0.81

Table 4.1: Comparison between baseline with model parallelism (MP) and sensAI using 10
GPUs.

ization [58]) and ResNet-164. For the retraining of our binary classifiers, we borrow similar
learning rate decay policy as described in Section 4.4.2.

Figure 4.8, Figure 4.9 and Figure 4.10 show the evaluation results of VGG-19 on CIFAR-
10 dataset. Surprisingly, by only single-shot class-specific pruning, we can reduce the model
size by 20x per GPU (Figure 4.8), FLOPs by 24x with no test accuracy loss (Figure 4.9).
For per-image inference time, we can reduce it by 6x as depicted in Figure 4.10.

Similar results can be found in ResNet-164 evaluations as Figure 4.11, Figure 4.12 and
Figure 4.13. Comparing with base model of ResNet-164, sensAI can reduce number of
parameter by 11x (Figure 4.11), FLOPs consumption by 11x (Figure 4.12) and inference
time per image by 2x (Figure 4.13) without any test accuracy loss. The inference time
reduction in ResNet-164 is worse compared with our VGG-19 results. The main reason is
we only reduce the width of the model and keep the model depth unchanged. It is generally
believed model pruning should not prune in the model depth dimension [141][142]. Therefore,
2x per-image inference time speedup on ResNet-164 is still good.

Why we can prune so many neurons with just single-shot pruning? The main reason is
we simplify the classification task itself. More specifically, in CIFAR-10 case, we simplify the
original 10-way prediction problem into a few binary prediction problems. Thus, the base
model has more redundancy for us to achieve this high ratio of pruning. In addition, we
can incorporate class-agnostic pruning methods [143][141] to further reduce the size of our
binary models.

Another thing worth mentioning is that, we can achieve better test accuracy when main-
taining slightly large binary models. For instance, in ResNet-164 results shown as Fig-
ure 4.11, better test accuracy can be achieved when the average binary model size is ranging
from 0.16M to 0.91M.

4.4.2.3 sensAI vs Model Parallel Baseline

Before we compare sensAI with base model assigned to single GPU, we now evaluate sensAI
with model parallel inference, where both sensAI and model parallelism using 10 GPUs.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 44

Test Accuracy %
Average binary
model size (106)

OVA 91.65 0.27

sensAI
94.79 0.16
94.90 0.24

Table 4.2: Comparison between OVA and sensAI with 10 GPUs on CIFAR-10.

For model parallel baseline, as suggested by recent model parallel work [35][36], we evenly
split the model layers across all the 10 GPUs. The follow model parallelism baselines in our
CIFAR-100 and ImageNet-1K follows the same role.

In Table 4.1, adopting model parallel inference performs worse than doing single image
inference on a single GPU. More specifically, comparing with single-GPU baseline, our model
parallel baseline’s per-image inference time is 0.73ms longer on VGG-19, and 0.66ms longer
on ResNet-164. The main reasons are twofold. First, there exists high communication
overhead among all the GPUs in use during the model parallel inference. Second, model
parallelism naturally creates synchronization barries due the the sequential dependency of
DNN layers [85]. For example, the GPUs holding last few layers cannot start working until
fully receiving activations from all the previous layers.

In contrast, the binary classifiers generated by sensAI can run independently without
blocking each other. Thus, in Table 4.1 compared with model parallel baseline, for single
image inference time, sensAI can achieve 18x speedup in VGG-19 and 3x in ResNet-164
without losing test accuracy.

4.4.2.4 sensAI vs OVA

One-Vs-All (OVA) reduction scheme is studied for multiple years [147][148][149], which is
close to our sensAI approach. Basically, for image classification tasks, both sensAI and
OVA decouple a multi-way classification problem into a bunch of much simpler, binary
classification problems.

Here we direction compare OVA performance with sensAI on CIFAR-10 dataset. Since
OVA needs pre-defined model structure for binary classification tasks, we directly choose
ResNet-20 for each single class task in CIFAR-10 dataset. We follow the same training
recipes described in Section 4.4.2. For training datasets of OVA’s binary classifiers, we use
the same per-class dataset we generated at our sensAI’s retraining stage. After all the OVA’s
binary classifiers are fully trained, we also impose calibrations among all the OVA’s binary
classifier in order to obtain the possible best test accuracy.

For evaluation, we use these calibrated and fully trained OVA binary classifier together
for in-parallel model serving as our sensAI approach. For our sensAI models, we directly use
two sets of binary models pulled from ResNet-164 in Section 4.4.2.2. One set of models are



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 45

Model

Test Model FLOPs Per-image
acc. size per-GPU infer.
(%) per-GPU (109) time

(106) (ms)

Baseline
MobileNet-V2 94.24 2.30 0.56 0.48
ShuffleNet-V2 93.46 1.26 0.27 0.23

sensAI
MobileNet-V2 94.27 0.45 0.16 0.22
ShuffleNet-V2 93.50 0.31 0.07 0.12

Table 4.3: Comparison between efficient baseline models and sensAI.

smaller than OVA’s ResNet-20. The other set of binary models share similar model sizes as
OVA solution.

As shown in Table 4.2, when using similar model sizes as OVA’s average size of 0.27M
and sensAI’s are with size of 0.24M, our binary classifiers outperforms OVA solutions with
3.25% high test accuracy. For the case that sensAI’s binary models are much smaller than
OVA’s ResNet-20 (i.e., sensAI average model size is 0.16), our sensAI solution still achieve
higher model serving accuracy and outperforms over OVA counterpart by around 3% on
CIFAR-10 dataset.

In summary, compared with OVA solution of same and pre-defined model structure,
sensAI automatically learns different model architecture for different class of images from
the base model. And our solution achieves better model serving accuracy while having less
computation cost.

4.4.2.5 sensAI Improvements on Efficient CNNs

Now we verify the effectiveness of our sensAI approach on more efficient ConvNets such as
MobileNet-V2 [162] and ShuffleNet-V2 [161].

These two models are designed with the goal of computational efficiency. Both MobileNet-
V2 and ShuffleNet-V2 are small regarding to number of model paramerters and FLOPs
consumptions. And they are designed to be executed on single GPU. In addition, as results
shown in Section 4.4.2.3, small model generally performs worse with model parallelism.
Therefore, here we report sensAI’s speed-up over single GPU baselines.

As results shown in Table 4.3, for MobileNet-V2, sensAI can reduce number of parameters
by 5x, with 3.5x FLOPs reduction and 2x per-image inference time reduction. For ShuffleNet-
V2, sensAI reduces number of parameters by 4x, with 4x FLOPs reduction, and 2x per-image
inference time reduction.

Our sensAI method is generic approach which can also be directly applicable to modern
ConvNets [164] like ConvNeXt [165], or even with 3D input data [166].



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 46

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

planecarbirdcatdeerdogfroghorseshiptruck 0.30
0.45
0.60
0.75
0.90

Figure 4.14: Similarity com-
parison among binary classifiers
by measuring IoU on channels
(VGG-19, CIFAR-10).

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.30

0.45

0.60

0.75

0.90

Figure 4.15: Similarity com-
parison among binary classifiers
by measuring IoU on channels
(ResNet-164, CIFAR-10).

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.30

0.45

0.60

0.75

0.90

Figure 4.16: Similarity com-
parison among binary classifiers
by measuring IoU on channels
(ShuffleNet-V2, CIFAR-10).

pl
an

e
ca

r
bi

rd ca
t

de
er

do
g

fro
g

ho
rs

e
sh

ip
tru

ck

plane
car

bird
cat

deer
dog
frog

horse
ship

truck
0.45

0.60

0.75

0.90

Figure 4.17: Similarity com-
parison among binary classifiers
by measuring IoU on channels
(MobileNet-V2, CIFAR-10).

4.4.2.6 Binary Models Analysis

Here we do simple statistical analysis over the binary models we distilled from the base
models in CIFAR-10 dataset. The sets of binary models we analyzed are the best ones
we have. Here best means the binary models with smallest number of parameters while
maintaining the same test accuracy as the base model. We analyze the best binery model
sets we pulled out from different base models, namely VGG-19, ResNet-164, ShuffleNet-V2
and MobileNet-V2.

We first analyze the similarity among the set of binary classifiers we collected. For each
binary classifier we pulled out from the same base model, we collect its channel indices in the
original base model. Then we measure the similarity of two binary classifier by taking the



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 47

Type Model
Grouping Test acc. Model size FLOPs Per-image infer. time speed-up
method (%) (106) (109) (over 1-GPU Baseline)

Baseline VGG-19 N/A 71.95 20.02 2.39 1x
(1 GPU) ResNet-110 N/A 72.44 1.66 1.3 1x

MP-baseline VGG-19 N/A 71.95 4.00 0.48 0.41x
(5 GPUs) ResNet-110 N/A 72.44 0.33 0.29 0.78x

MP-baseline VGG-19 N/A 71.95 2.00 0.24 0.33x
(10 GPUs) ResNet-110 N/A 72.44 0.17 0.14 0.76x

sensAI

VGG-19

Random 5-group 71.75 4.28 1.06 2.17x
Random 10-group 71.84 2.21 0.36 3.25x
Nearby 5-group 72.07 3.01 0.47 2.44x
Nearby 10-group 72.18 1.61 0.21 4.5x

ResNet-110

Random 5-group 72.43 0.513 0.501 1.64x
Random 10-group 72.14 0.24 0.233 1.87x
Nearby 5-group 72.52 0.31 0.298 1.8x
Nearby 10-group 72.41 0.167 0.143 2.06x

Table 4.4: Comparison between sensAI with two grouping methods (random and nearby
grouping) with 5-group (5 GPUs) 10-group (10 GPUs) v.s. baselines of Single GPU and
model parallelism (MP) using same amount of GPUs (5, 10 GPUs) on CIFAR-100.

intersection of unions (IoU) of the channel indices. Figure 4.14 shows the similarity of binary
classifiers we collected from VGG-19 as a heatmap. In this heatmap, the darker color block
indicates the the binary pair has higher similarity. We observe that cat binary classifier and
dog binary classifier share most neurons among all pairs, which is very intuitive since they
look similar in human eyes. Similar observation results are found in other popular neural
nets such as ResNet-164, ShuffleNet-V2 and MobileNet-V2, which are shown as Figure 4.15,
Figure 4.16 and Figure 4.17 respectively.

Second, we analyse the model sizes amoung 10 binary classifiers distilled from the same
base model. We observe that the whole set of binary classifiers usualy share the same model
sizes. For example, in VGG-19, all binary models have around 1 million parameters with
variance less than 0.1M. In ResNet-164, binary classifiers all have around 0.16M parameters
with variance less than 0.02M. For the case of more efficient ConvNet as MobileNet-V2, the
binary ones are all 0.45M parameters with less than 0.05M variance. For ShuffleNet-V2,
all binary models are around 0.31M parameter with less than 0.04M variance. The reason
behind may due to the fact that we split the original task evenly among subnets. This decent
attribute guarantee all our binary classifiers can finish their in-parallel inference at roughly
the same time, which means there is no stragglers among the whole set of binary classifiers
in use.

4.4.3 CIFAR-100 Results

Starting in this section, we switch our evaluation from binary classifiers to the grouped
classifiers we generate using sensAI approach. Here we present our results on CIFAR-100



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 48

dataset. We first train our base models as VGG-19 and ResNet-110. With similar training
recipe as mentioned in Section 4.4.2, we got test accuracy as 71.95% for VGG-19 and 72.44%
for ResNet-110 on CIFAR-100 dataset. These two models are served as the baseline for both
single GPU (i.e., Baseline in Table 4.4) and model parallelism using multiple GPUs (i.e.,
MP-baseline in Table 4.4) cases. Similar as described in Section 4.4.2.3, for model parallel
baseline on CIFAR-100, we also evenly split these ConvNets model layers across all the
GPUs in use. For automatic grouping, we mainly compare two grouping methods, namely
random grouping and nearby grouping using t-SNE and k-means algorithm as we defined in
Section 4.3.2.2.

As discussed in Section 4.4.2.6, by evenly split the original tasks, we can get subnets
with similar model sizes, which means there is no straggler during in-parallel model serving
using the whole set of subnets. Following similar rule and achieving good load-balancing, we
assign each of our grouped classifier with same number of classes coverage. We tested two
group size settings, 5 and 10 groups. In 5-group case, each grouped classifier covers model
serving of 20 classes. In 10-group setting, each grouped classifier is responsible for 10-class
prediction.

As we discussed in Section 4.4.2.1, we choose hybrid pruning policy by default in our
evaluation here on CIFAR-10 dataset, since it provides the highest model serving accuracy
given the same model pruning ratio. We also adopt this hybrid pruning policy for our later
evaluation on ImageNet-1K dataset in Section 4.4.4. For retraining process over our grouped
classifiers on CIFAR-100 dataset, since each class only has 500 training images, it is more
likely to cause over-fitting. Thus, we reduce the number of retraining epoch to only 40, and
collects the best set of grouped classifiers we have during this training session.

4.4.3.1 sensAI vs single GPU Baseline

In Table 4.4, without sacrificing too much test accuracy, we collect the set of grouped mod-
els with smallest size. In general, comparing with random grouping, our nearby grouping
described in Section 4.3.2.2 performs better in both model serving accuracy and per-image
serving time reduction.

Random Grouping: As shown in Table 4.4, for 5-group cases, given test accuracy
drop within 0.3% of baseline, we can reduce model size by 4.6x/3.2x, FLOPs consumption
of 2.2x/2.6x and per-image inference time by 2.17x/1.64x over single GPU baseline (i.e.,
Baseline in Table 4.4) on VGG-19/ResNet-110, respectively. In the 10-group cases, with
negligible test accuracy loss, we achieve model size reduction by 9x/7x, FLOPs reduction
by 6x/5x, and 3.25x/1.87x inference time reduction of single image on VGG-19/ResNet-110,
separately.

Nearby Grouping: In Table 4.4, our nearby grouping method generally outperforms the
random grouping counterpart. With 5 groups, when comparing with single-GPU baseline,
we achieve model size reduction by 6.6x/5.3x, FLOPs reduction by 5x/4x, and per-image
serving time reduction by 2.44/1.8x on VGG-19/ResNet-110 separately. In our 10-group
settings, with negligible inference accuracy loss, our nearby grouping method can achieve



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 49

Type Model
Nearby Test acc. Model size FLOPs Per-image infer. time speed-up
Grouping (%) (106) (109) (over 1-GPU Baseline)

Baseline VGG-19 N/A 74.21 143.68 117.99 1x
(1 GPU) ResNet-50 N/A 76.13 25.56 24.63 1x

MP-baseline VGG-19 N/A 74.21 14.37 11.8 0.45x
(10 GPUs) ResNet-50 N/A 76.13 2.56 2.47 0.58x
MP-baseline VGG-19 N/A 74.21 7.2 5.9 0.43x
(20 GPUs) ResNet-50 N/A 76.13 1.28 1.24 0.57x

sensAI
VGG-19

10-group 74.26 15.34 18.45 3.4x
20-group 74.24 8.57 9.73 5.87x

ResNet-50
10-group 76.17 2.71 2.93 2.16x
20-group 76.06 1.83 1.89 3.08x

Table 4.5: Comparison between sensAI of 10-group (10 GPUs) and 20-group (20 GPUs)
v.s. baselines of Single GPU and model parallelism (MP) with 10 GPUs and 20 GPUs on
ImageNet-1K.

reduction of 12x/10x on model size, 11x/9x on FLOPs consumption and 4.5x/2.6x per-image
serving time on VGG-19/ResNet-110, respectively.

4.4.3.2 sensAI vs Model Parallel Baseline

Here we compare the grouped classifiers from sensAI against model parallel baseline (i.e.,
MP-baseline in Table 4.4) using the same number of GPUs. we test in two different cases,
5-GPU case and 10-GPU case. As mentioned in Section 4.4.2, for model parallel baseline,
we evenly split model layers among all the GPUs in use.

As shown in Table 4.4, for model-parallel baseline, even though the per-GPU model sizes
and FLOPs are significantly reduced, it generally performs much worse compared with single-
GPU baseline with respect to per-image serving time. The key reason is model partitions
hold on different GPUs may block each other due to sequential dependency of the DNN
layers [85]. We present our results on both 5-GPU and 10-GPU cases.

5-GPU: Comparing with 5-GPU model parallel baseline, sensAI can maintain similar
model size reduction and FLOPs reduction for both VGG-19 and ResNet-110. However,
since all our 20-class grouped models can run in-parallel without blocking each other, we
can achieve 2.44/0.41=5.95x and 1.8/0.78=2.3x speedup over model parallel baseline for
per-image model serving on VGG-19/ResNet-110, separately.

10-GPU: Similar results can also be found in this 10-GPU setting. Comparing with
10-GPU model parallel baseline, our 10-class grouped classifiers achieves slightly higher
reduction rate in terms of model size and FLOPs consumption per-GPU for both VGG-
19 and ResNet-110. In single image inference time, sensAI achieves 4.5/0.33=13.64x and
2.06/0.76=2.71x time reduction over model-parallel counterparts on VGG-19 and ResNet-
110, separately.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 50

4.4.4 ImageNet-1K Results

In this section we present our experimental results on ImageNet-1K dataset [15]. The two
model we evluate here are VGG-19 and ResNet-50. Here we directly use pre-trained models
as our baselines (i.e., Baseline in Table 4.5).

In our sensAI setup, we use the same hybrid pruning policy, due to its advantages over
APoZ and Avg policies discussed in Section 4.4.2.1. As evaluated in Section 4.4.3.1, since
nearby grouping generally outperforms random grouping method, we apply nearby grouping
strategy and form 10-group and 20-group settings on ImageNet-1K dataset. For 10-group
case, each grouped classifier is for predicting 100 classes. In 20-group setting, each grouped
classifier is responsible for decision making of 50 classes. During our retraining stage, we
limit the number of epochs to be 40. For the retraining recipe, we have learning rate decay
of 0.1 at both 20th and 30th epochs. We report our best sets of grouped classifiers (i.e.,
smallest model size with negligible test accuracy loss) as Table 4.5.

4.4.4.1 sensAI vs Single GPU Baseline

In Table 4.5, by splitting VGG-19 into 10 grouped classifiers using sensAI, we reduce the
model size by 9x, FLOPs by 6x and per-image inference time by 3.4x over single GPU
baseline at no loss of model serving accuracy. In the 20-group setting, we achieve model size
reduction by around 17x, FLOPs reduction by 12x and reduction of inference time per-image
by around 6x (i.e., 5.87x in Table 4.5) without test accuracy loss.

For ResNet-50 results shown in Table 4.5, by decoupling base model into 10 grouped
classifiers using sensAI, we can reduce each grouped model size by 9.4x, FLOPs consumption
by 8.4x and per-image serving time by 3.08x over single GPU baseline with moderate test
accuracy loss (i.e., 0.07%). Comparing with deeper ResNet (i.e., ResNet-164 and ResNet-
110) we used in our CIFAR-10 and CIFAR-100 experiments, here with shallower ResNet like
ResNet-50, we can indeed prune more neurons (i.e., channels) and achieve higher speedups
for per-image serving time.

One thing worth noting on ImageNet-1K evaluation is, since image resolution of each
ImageNet-1K picture is much larger than CIFAR’s 32x32 pixels, sensAI can achieve per-
image inference time reduction at millisecond level. For instance, in our 20-group with
VGG-19 setting, we can reduce 7.79ms of per-image serving latency over single GPU baseline
with no test accuracy loss.

Another thing worth mentioning is that, each of our grouped classifier can be retrained
independently, since there is zero communication needed at retraining stage among the
whole set of our grouped classifiers. Given the longer training time on ImageNet-1K dataset
comparing with CIFAR-10 and CIFAR-100, we can incorporate data parallelism to further
accelerate our model retraining stage. More specifically, for each of our grouped classifier,
we adopt data parallel training to increase parallelism and training throughput. Thus, we
can make trade-off between training completion time and number of GPUs in use.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 51

We note the aggregated number of parameters among the whole set of our grouped
classifiers is larger than the base model. Given that our main goal is to reduce single image
serving latency not total number of parameters, our class parallelism is still a practical
and generic solution. Since we only do single-shot class-specific pruning, we can further
incorporate class-agnostic pruning methods [141][143] to further reduce our grouped model
sizes.

4.4.4.2 sensAI vs Model Parallel Baseline

Now we evaluate our sensAI approach and compare it with model parallel baseline on
ImageNet-1K dataset. For model parallel baseline, we evenly split base model over the
same amount of GPUs that our sensAI uses. In Table 4.5, we report the comparison re-
sults between our method and model parallel baseline (i.e., MP-Baseline (10 GPUs) and
MP-Baseline (20 GPUs) in Table 4.5).

10-GPU: We first present our result in 10-GPU case. As shown in Table 4.5, comparing
with 10-GPU MP-Baseline, 10-group classifiers in sensAI maintains larger model size and
FLOP consumption per-GPU. However, regarding per-image model serving time, sensAI
achieves 3.4/0.45=7.5x and 2.16/0.58=3.7x end-to-end latency reduction on VGG-19 and
ResNet-50, respectively.

20-GPU: For 20-GPU setting, compared with the corresponding model parallel baseline
(i.e., MP-Baseline (20-GPU) in Table 4.5), the 20-group classifiers from sensAI achieve time
reduction for single image by 5.87/0.43=13.5x and 3.08/0.57=5.4x on VGG-19 and ResNet-
50, separately.

4.5 Discussion

Above we describe sensAI’s advantages over traditional data and model parallel model serv-
ing. Here we discuss several issues we note on sensAI’s novel class parallelism approach.

First, in our defined class parallelism paradigm, we have a hard limitation: we can only
scale out up to the number of classes we have in the original classification task. This could
limit its usage in some cases. For instance, we cannot distribute a 10-way classification task
(e.g., CIFAR-10) to over more than 10 GPUs or nodes. Furthermore, if the original problem
is a binary classification task itself, our methodology is not directly applicable.

Second, we note that the aggregated number parameters among the whole set of our bi-
nary/grouped classifiers may even be larger than the base model itself (e.g., ImageNet-1K re-
sults in Section 4.4.4.1). Since our main goal is to reduce single image serving latency, reduc-
ing total amount of parameters can be regarded as a byproduct but not necessary. To further
reduce our live data serving latency and mode size, besides our single-shot class-specific prun-
ing, we can incorporate class-agnostic pruning methods [141][142][167][168][169][170][171] for
iterative pruning, and quantization schemes [143][172][173][174][175][176] for model compres-
sion. And we leave it as a future research direction.



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 52

Third, if the set of our binary/grouped classifiers have high variance in terms of number
of parameters, the end-to-end in-parallel inference time is then determined by the ones with
most computation. Given our analysis on binary classifiers in Section 4.4.2.6, we find that
all our binary classifiers share similar model sizes. This attribute of similar subnet sizes may
because of our even split of original classification task. This feature of similar model sizes
guarantees that all our binary/grouped classifiers can finish in-parallel forward propagation
at roughly the same time (i.e., no stragglers).

Fourth, with respect to baseline, single GPU setting achieves the lowest latency for sin-
gle image inference in most cases. This is mainly because transferring intermediate results
(e.g., feature-maps) across different GPUs and machines can be expensive. And conven-
tional model parallelism naturally creates hard synchronization barriers in our single image
inference scenarios. For example, the GPUs holding deeper layers of the model cannot start
forward propagation until fully receiving activations from GPUs maintaining previous model
layers. Furthermore, neither data parallelism [21] nor pipeline parallelism [35] is applicable
for reducing serving latency in single image cases. Our evaluation results also verify that,
even though model parallel baseline reduces per-GPU model sizes and FLOPs, the end-
to-end per-image serving latency is usually higher than single GPU baseline. In contrast,
sensAI achieves similar per-GPU model sizes as model parallel baseline while reducing model
serving latency over single-GPU baseline at the same time. The key reason is we remove
all possible communication overheads and synchronization barriers in forward propagation.
Thus, all our subnets are able to run in-parallel without blocking each other.

Fifth, besides class parallel model serving, we further extend our methodology to class-
specific, concurrent model training at zero communication cost. We briefly discuss the
method and evaluate it on CIFAR-10 dataset as Section 4.6.

4.6 Extending to Model Training

We describe how we extend our class parallelism to model training stage at no communication
cost.

4.6.1 Method

Applying class parallelism at training stage is slightly different from the inference stage we
discussed above. Given that we do not have a pre-trained base model, we first initialize the
model parameter and train a base model for several epochs, which allow the model to learn
feature representations from the training data samples. Then, based on this “half-baked”
base model, we distill our binary or grouped classifiers with same methodology we described
in Section 4.3.

Given this “half-baked” N -way classification model, we first collect the activation statis-
tics of each neuron (i.e., channel) by feeding in all the training images for each class/class-
group. Then we use our hybrid pruning policy to pull out binary/grouped classifiers. Second,



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 53

we deploy each of our binary/grouped classifier on a single GPU for independent class-parallel
training. After all the subnets are fully trained, we use them together for in-parallel model
serving.

In class-parallel model training, even though we need to train the base model for a
small number of epochs, most of the training epochs are conducted over our whole set of
binary/grouped classifiers at zero communication cost. For example, on CIFAR-10 dataset,
it normally takes around 164 epochs to fully train a base model [177]. For our class-parallel
model training, we empirically train the base model for only 20 epochs to get our “half-baked”
baseline, from which we distill our binary classifiers. Then the rest 164-20=144 epochs are
trained on the binary classifiers in-parallel at no communication cost. Since each of our
binary classifier is much smaller in size when comparing with base model and can be trained
in-parallel over multiple GPUs, the total training completion time of class parallelism is much
shorter than training base model on single GPU. After all our binary/grouped classifiers are
fully trained, we combine their output values for the original N -way predictions.

4.6.2 Results

We evaluate class-parallel training with VGG-19 and ResNet-164 on CIFAR-10 dataset.
As mentioned in Section 4.6.1, we first initialize weights for the base model and train it

on full dataset for 20 epochs. Given that the model converges fastest during the first 10s of
epochs, we can get a “half-baked” model which has high similarity compared with a fully
trained one. We conduct our one-shot class-specific pruning to pull out binary classifiers
from this “half-baked” model. Then we form per-class training dataset and train each of
these binary classifiers for the rest 164-20=144 epochs. Here we use 64 as the mini-batch
size during training. We measure per-iteration training time both both base model and our
in-parallel binary ones. After all the binary classifiers are fully trained, we use them together
for serving and report our model size and training time reduction.

Without losing test accuracy, we get binary models with around 1M parameters for
VGG-19 and 0.16M for ResNet-164. For class-parallel model training, the completion time
reduction is 11x on VGG-19, which is over linear scalability. The key reason is we reduce
model size per-GPU by 20x and zero communication is needed during our in-parallel model
training. For ResNet-164, we can reduce the training completion time by 3x.

We also conduct binary model analysis for these binary classifiers distilled from “half-
baked” base model. Generally speaking, compared with binary models pulled from fully
trained base model (Section 4.4.2.6), these binary subnets getting from “half-baked” baseline
has lower top-1 test accuracy with drop between 0.04% to 0.38%. In addition, these binary
models generated from “half-baked” base model have higher variance in model size. For
instance, some of binary models can be 1.2x to 2x the size of some other smaller ones in
the same set. This is possibly because that the baseline model is not fully trained, which
generates more noisy signals at our class-specific pruning stage. However, we still maintain 2x
to 5x speedups for per-image inference over model parallel counterparts. The main reason is



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 54

Figure 4.18: Robust Class Parallelism with Cyclic Coding.

our binary models are very tiny and double the size does not make much difference regarding
to the end-to-end forward propagation time during live data serving.

4.7 Extending to Fault Tolerance, Robotic Control,

and Beyond

To improve system robustness, we add fault tolerance feature on top of our vanilla class
parallelism approach. We borrow simple error-correcting codes [178][179] called cyclic cod-
ing [180] for our fault tolerance extension.

As shown in Figure 4.18, different from our vanilla class parallelism where grouped clas-
sifiers having disjoint class coverage, we now allow all grouped classifiers have overlapped
class coverage, which is similar as parity models [179]. Thus, for each overlapped class, we
can do major vote over multiple prediction values of the same class to avoid the cases like
machine failures or malicious nodes. For example, in Figure 4.18, class #2 is covered among
machine 2 (i.e., ( ,2, )), machine 3 (i.e., (2, , )) and machine 10 (i.e., ( , ,2)). Thus, For
class #2, we can do major vote over the three confidence values generated from machine 2,3
and 10. More details and preliminary results on CIFAR-10 and CIFAR-100 datasets can be
found in our robust sensAI paper [181].

We also extend sensAI’s divide-and-conquer scheme to control system in drones. Right
now the control system on a quad-copter is centralized. The centralized control module
collects data from the sensors located around four propellers, and then send back decisions
to all 4 propellers. In our sensAI reinforcement learning branch (i.e., sensAI-RL), we want
to decouple the centralized control system into four much smaller control units, where each



CHAPTER 4. ELIMINATING COMMUNICATION IN MODEL PARALLELISM 55

is only responsible for decision making of a single propeller. More details can be found in
our sensAI-RL paper [182].

Since sensAI’s class parallelism is a generic approach, we are also working on extending
it to other deep learning models such as recurrent neural networks [183][184], transform-
ers [8][13][146], etc.

4.8 Summary

In sensAI, we propose a novel in-parallel model serving paradigm called class parallelism,
which reduces serving latency on live data. Given a fully trained base model, we decou-
ple it into disconnected subnets, where each is responsible for decision making of a single
class/class-group. Our experiments on CIFAR-10 demonstrate its effectiveness: our class
parallelism can reduce per-image serving time by 6x on VGG-19 and 2x across ResNet-164,
MobileNet-V2, ShuffleNet-V2 over the best baseline among single-GPU and model-parallel
settings. Comparing with model parallel baseline, we can reduce upto 18x model serving
latency on single image. Our evaluations on CIFAR-100 and ImageNet-1K show similar re-
sults, which also verifies sensAI’s effectiveness. We further extend our class parallelism to the
model training stage. We then add fault tolerance feature to sensAI’s class parallelism with
cyclic coding. We also study the possibility for extending class parallelism to reinforcement
learning, natural language processing areas.



56

Chapter 5

Improving on-device memory
utilization

5.1 Background

Given giant DNNs and huge amount of input data, distributed model training using mul-
tiple accelerators has been widely-adopted. To boost up model training speed, data par-
allelism [22] and model parallelism [20][82] are two most popular approaches. To increase
parallelism, these schemes either partition input data or split model across multiple acceler-
ators.

In distributed DNN training, all the training tasks are required to be launched at the
same time, i.e., gang-scheduled [49][51][185][186][187][188]. It is mainly because of two rea-
sons. First, some hyper-parameters (e.g., learning rate, mini-batch size, etc.) need to be
picked with fixed number of machines or accelerators [21][189][190]. Second, synchronization
occurs frequently among all the accelerators of the same job [50]. Thus, it imposes a strong
constraint that all the in-parallel model training tasks should start and end at the same time
to avoid stragglers [191].

Despite of the immense popularity of gang-scheduling policy in distributed DNN training
phase, it may under-utilize memory and computation resources on the accelerators. From
on-device memory aspect, gang-scheduling policy forces all the GPUs to reach their peak
and valley memory usage at the same time. Thus, in single job case, the memory valley
periods are wasted among all the GPUs. On the computation side, for most advanced Nvidia
GPUs like H100 [101], A100 [100] and V100 [96], the computation power of single GPU
is increasing tremendously. However, the computation resources are often under-utilized
due to limited on-device memory size. A wide range of deep learning jobs are memory
bounded, and computation cores are insufficiently used [39]. In Figure 5.1 and Figure 5.2,
we monitor resource utilization of gang scheduled data parallel training job using 2 V100
GPUs [6]. We show normalized GPU memory usage (Figure 5.1) and computation core usage
(Figure 5.2). In Figure 5.1, on-device memory resource is repeatedly underutilized during



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 57

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (sec)

0

20

40

60

80

100

No
rm

al
ize

d 
M

em
or

y 
Us

ag
e 

(%
)

Fo
rw

ar
d 

St
ar

t

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d 

St
ar

t

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d 

St
ar

t

Ba
ck

w
ar

d 
St

ar
t

Figure 5.1: Normalized on-device memory usage of data parallel training job using 2 V100
GPUs with gang-scheduling.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (sec)

0
20
40
60
80

100

Co
m

pu
te

 U
sa

ge
 (%

)

usage

Figure 5.2: Normalized computation usage of data parallel training job using 2 V100 GPUs
with gang-scheduling.

backward propagation in every model training iteration. Figure 5.2 shows that computation
core is consistently underused during the whole training process due to limited on-device
memory capacity.

Although fine-grained GPU sharing via multiplexing jobs on the same device can im-
prove GPU resource utilization, it also introduce extra overheads, such as frequent context
switching [41][192] and loading data from storage [42], inter-job interference [38], maintain-
ing multiple DNN models inside the same GPU memory [40], etc. More essentially, job
multiplexing schemes do not contribute to the model training process of the original job or
in single job case.

In this chapter, we propose Wavelet project. Wavelet is an generic and efficient approach
for achieving high resource utilization of both computation and on-device memory in order to
accelerate the training process of a single job. Wavelet packs and interleaves waves of training
tasks over the same set of GPUs. By interleaving peak memory usage among different



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 58

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (sec)

0

20

40

60

80

100

No
rm

al
ize

d 
M

em
or

y 
Us

ag
e 

(%
)

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Fo
rw

ar
d/

Ba
ck

w
ar

d 
St

ar
t

Tick Wave
Tock Wave

Figure 5.3: Normalized on-device memory usage of data parallel training job using 2 V100
GPUs with tick-tock scheduling.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (sec)

0
20
40
60
80

100

Co
m

pu
te

 U
sa

ge
 (%

)

usage

Figure 5.4: Normalized computation usage of data parallel training job using 2 V100 GPUs
with tick-tock scheduling.

training waves, tasks of one wave can leverage on-device memory from tasks belonging to
another wave in their memory valley periods, which increases the training throughput for
a single job. As depicted in Figure 5.4 and Figure 5.3, we split data parallel training tasks
into two waves: one is tick-wave and the other is tock-wave. In Figure 5.3, we intentionally
delay the task launching time of tock-wave for half of the normal forward-backward training
cycle. Thus, the tock-wave tasks can utilize the memory valley period of tick-wave tasks
(e.g., 0.4s to 0.6s in Figure 5.3), given that the backward propagation of tick-wave tasks are
computation heavy with low memory usage. Tick-wave tasks can leverage memory valley
period of tock-wave tasks in the same way as we described above.

Aside from improving accelerator utilization in data parallel training, we also apply
wavelet’s tick-tock scheduling to model parallel training. Standard model parallel training
with gang scheduling has severe resource under-utilization issue [28]. As discussed in Sec-
tion 4.5 of previous chapter, the main reasons are two-fold. First, there is huge and frequent



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 59

Figure 5.5: Normalized peak and average GPU memory usage during data parallel training
among different CNNs.

0 20 40 60 80 100

VGG-16
VGG-19-BN

ResNet-56
ShuffleNet-V2
MobileNet-V2

ResNet-110

Core Usage (%)

Figure 5.6: Average utilization rate of computation core during data parallel training among
different CNNs.

communication overhead for transferring intermediate results among all the GPUs holding
different model partitions. Second, splitting model to multiple GPUs naturally creates syn-
chronization barriers due to DNN’s sequential layer dependency [85][35]. Furthermore, even
though recent literature improves vanilla model parallel training performance by incorpo-
rating pipeline parallelism [35][36], the problem is GPU under-utilization is still not fully
addressed [39]. In model parallelism, given its longer memory valley periods and lower com-
putation core utilization, we insert multiple training waves on top of the original one. As
shown in Figure 5.15, based on our profiling analysis, we insert 3 additional training waves
working on new batches of input data (i.e., Batch 1,2,3) on top of the original model parallel
training wave (i.e., Batch 0). We arrange training tasks in round-robin fashion [193] in or-
der to align backward propagation of same model partition across different batches of data.
More details are illustrated in Section 5.3.3.

Next, we present our resource monitoring results for both data parallel and model parallel
training jobs via gang-scheduling.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 60

5.2 Motivation

In this section, we discuss the major characteristics of distributed DNN training jobs. The
motivation of our work stems from the low on-device memory usage when running distributed
deep learning workloads. We first present our analysis over data parallel training workload
and then discuss about job attributes for model parallel training.

5.2.1 Zoom-in Analysis over Data Parallel Training

One argument we want to make is gang-scheduling, as a widely adopted design principle
in distributed DNN training, may lead to system inefficiency. Here we monitor resource
utilization of data parallel training jobs on several popular convolutional neural network
(i.e., VGG [102], ResNet [6], MobileNet-V2 [162] and ShuffleNet-V2 [161]) using ImageNet-
1K dataset [15]. We report GPU compute core and on-device memory usage for each training
iteration, which includes one forward propagation followed by one backward propagation.

In Figure 5.5, it summarizes average and peak on-device memory usage in data parallel
training among different CNNs. In most of the cases, the peak memory usages (i.e., blue
bars in Figure 5.5) among these ConvNets training can almost reach the on-device memory
capacity. However, the average memory usage among them is relatively low, which is shown
as orange bars in Figure 5.5. Among all these neural nets training, the average memory
usage is only around 30% of the memory capacity. Similar observation has also been found
in recent literature [194][195].

In Figure 5.1, it shows a detailed spatiotemporal snapshot of GPU memory usage in
the time period of 3 training iterations using ResNet-56. It indicates that the memory
usage is highly predictable, and both memory valleys and peaks are well-defined in every
training iteration. Figure 5.2 depicts the corresponding computation core utilization during
the same period of time. As a consequence of on-device memory wall, the computation cores
are consistently underutilized. The computation utilization rate is only around 30%, which
leaves around 70% unused. Similar evaluation results on resource utilization are discussed
in Section 5.4.1.

Figure 5.6 summarizes GPU computation utilization when training different CNNs using
data parallelism. We measure GPU occupancy rate [196] as our computation utilization
metric. It shows that the GPU computation cores are generally under-used, which is only
around 40% on average across varied neural networks.

5.2.2 Sub-iteration Analysis on Model Parallel Training

Now we report our resource utilization results of model parallel training with gang-scheduled
tasks. We collect resource utilization statistics of fine-tuning NLP model BERT [8] on
SQuAD 2.0 dataset [54]. As suggested by previous literature [35][36], we split the model
evenly among 4 V100 GPUs.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 61

0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

40
50
60
70
80
90

100

No
rm

al
ise

d 
M

em
or

y 
Us

ag
e 

(%
)

GPU 0
GPU 1
GPU 2
GPU 3

Figure 5.7: GPU Memory spatiotemporal
utilization pattern of BERT model train-
ing using 4 V100 with gang-scheduled
model parallelism (w/o pipeline paral-
lelism).

0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

40
50
60
70
80
90

100

No
rm

al
ise

d 
M

em
or

y 
Us

ag
e 

(%
)

GPU 0
GPU 1
GPU 2
GPU 3

Figure 5.8: GPU Memory spatiotemporal
utilization pattern of BERT model train-
ing using 4 V100 with gang-scheduled
model parallelism (w/ pipeline paral-
lelism).

As shown in Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10, the forward propagation
starts from GPU0, follows the chain of GPU0 –>GPU1 –>GPU2 –>GPU3 and ends at
GPU3. The backward propagation is in the reverse direction (i.e., GPU3 –>GPU2 –>GPU1
–>GPU0). Figure 5.7 and Figure 5.8 depict the spatiotemporal memory utilization of model
parallel training by incorporating pipeline parallelism (i.e., w/ pipeline parallelism) or not
(i.e., w/o pipeline parallelism). For GPU computation usage, Figure 5.9 visualizes the cases
without integrating pipeline parallelism and Figure 5.10 shows the cases of model parallel
training with pipeline parallelism.

As shown in Figure 5.7, similar as the results we observed in data parallel training (e.g.,
Figure 5.1), the on-device memory usage in vanilla model parallel training also shows well-
defined and clear peaks and valleys. Different from data parallel counterparts, the memory
valley periods in model parallel training are much wider. This is mainly because the sequen-
tial layer dependency of DNNs generates hard synchronization barriers among GPUs holding
different model partitions [85]. More precisely, the long memory valley periods are mainly
due to the head-of-line blocking in the backward propagation as GPU3 –>GPU2 –>GPU1
–>GPU0. Thus, the memory valley time is much longer here than the valley period in
data parallel training, which does not have data dependency during backward propagation
among different GPUs. Consequently, this low on-device memory utilization leads to low
computation core usage, which is shown as Figure 5.9. Results in Figure 5.8 and Figure 5.10



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 62

0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

0

20

40

60

80

100

Co
m

pu
te

 U
sa

ge
 (%

) GPU 0
GPU 1
GPU 2
GPU 3

Figure 5.9: GPU computation usage of
BERT model training using 4 V100 with
gang-scheduled model parallelism (w/o
pipeline parallelism).

0.1 0.2 0.3 0.4 0.5 0.6
Time (sec)

0

20

40

60

80

100

Co
m

pu
te

 U
sa

ge
 (%

) GPU 0
GPU 1
GPU 2
GPU 3

Figure 5.10: GPU computation usage
of BERT model training using 4 V100
with gang-scheduled model parallelism
(w/ pipeline parallelism).

indicates that, by pipelining the input data, the resource utilization is improved in model
parallel training. However, this inefficiency issue is still not fully addressed. Recent liter-
ature [39] also observes similar GPU resource underutilization even by adopting optimized
implementation such as Megatron-LM [28].

To sum up, this system inefficiency introduced by gang-scheduling policy is highly pre-
dictable and repeated in every training iteration for both data and model parallelism. There-
fore, it leaves ample room for use to optimize and improve.

5.3 Wavelet Design

In this section, we first outline the workflow of Wavelet project. Then, we present our detailed
techniques in order to address the dual challenges of achieving high utilization of both high
GPU memory and computation core in data and model parallel training. We illustrate how
we apply our tick-tock scheduling in data parallelism. And then we discuss how we extend it
to model parallel training by injecting multiple new training waves to further improve GPU
utilization and training throughput.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 63

DNN workload Profiling on target GPU Tick-Tock interleaving execution

Core

Mem

Core

Mem

Figure 5.11: Wavelet workflow overview.

5.3.1 Overview

Given our analysis results in Section 5.2, the memory usage patterns are well-defined and
repeatedly occurred across training iterations in both data parallelism and model paral-
lelism [38][40], which provides good opportunity for further improving system efficiency.

We assume the distributed DNN training job is assigned to a group of GPUs with proper
interconnects in between [93][94]. In addition, we also assume load balancing is conducted
among all the accelerators, which evenly partitions the training workload among all the
homogeneous GPUs. In the cases of heterogeneous environment [197][198][199][200][201], we
can properly balance the workload based on each device’s computation power and guarantee
that they all finish each training iteration using the same amount of time. Alternatively,
we can also conduct job migration to reconstruct homogeneous execution environments [38].
Since our main goal is to improve system efficiency in both GPU computation and memory
usage, we directly borrow existing collective communication protocols [31][92][34] for our
model synchronization and communication.

As shown in Figure 5.11, Wavelet works as follows. First, given a DNN training job,
we first collects its runtime characteristics on each GPU via a short profiling over first few
hundreds of mini-batch training. Given that a normal training job usually consists of millions
of mini-batch training iterations [36][40], this profiling overhead is negligible.

In the profiling phase, we mainly collects three quantities for each training iteration
on the target GPU. These three quantities are total runtime of single mini-batch training
iteration (i.e., 1 forward + 1 backward propagation), peak and valley periods of memory
usage, computation core utilization rate. With these attributes of DNN training jobs, we
can determine whether it is memory-bounded computation. If so, we replace gang-scheduling
with our tick-tock scheduling policy and interleave multiple training waves on each GPU.
Periodically, we conduct synchronization among both intra-wave and inter-wave training
tasks. By interleaving peak memory usage and packing more computation kernels into
GPUs, we can achieve near optimal device utilization.

We describe our design in both data parallelism and model parallelism as following sec-
tions. We uniformly call the origial gang-scheduled training tasks as tick-wave tasks. And
tock-wave tasks are the training tasks that Wavelet injects into the training pipeline via our
peak memory interleaving method.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 64

F F

F F

GPU0

Mem.
usage GPU1

Time
Core
usage
Per-
GPU

Time

B

B

B

B

K
1

K
2

K
3

Kn...

Figure 5.12: Data parallel training via
gang scheduling.

F F

F F

GPU0

Mem.
usage GPU1

TimeCore
usage

Per-
GPU

Time

B

B

B

B

Kn...

F F

F F

B

B

K
3

K
2

K
1

KnK
3

K
2

K
1 ...

Stream1

Stream2

Figure 5.13: Data parallel training via
tick-tock scheduling.

5.3.2 Wavelet in Data Parallelism

We now describe our Wavelet design in data parallelism. As discussed in Section 5.2.1,
in data parallel training, gang-scheduling policy leaves ample room for GPU memory and
computation sharing [40][202]. Figure 5.12 shows a gang-scheduled, data parallel training
job with 2 GPUs, where F means forward propagation and B is backward propagation and
K1...Kn are the sequence of computation kernels (i.e., Ki) launched on each GPU.

As shown in the upper of Figure 5.12, for memory usage with gang-scheduling, all the
GPUs reach their memory peaks and valleys at the same time. More precisely, GPUs reach
memory peaks during forward propagation and arrive at valley periods in the backward
propagation. Since gang-scheduling ensures all GPUs reach their memory valley period
at the same time, it is impossible for one task to leverage another task’s memory valley
period. Thus all the memory valley periods are wasted simultaneously during the backward
propagation.

As computation utilization with gang scheduling shown in the bottom of Figure 5.12,
due to limited on-device memory capacity, the tensor size for in-parallel execution inside
each CUDA kernel is also limited. Therefore, the GPU computation is memory-bounded
and consistently under-utilized in both forward and backward propagation.

To improve resource utilization on GPUs, a straw man approach is to interrupt and
switch to another training batch during the memory valley period of tick-wave tasks (i.e., B
periods in Figure 5.12). However, this preemption may block the original tick-wave training
to run its own backward propagation due to the high frequency of memory peak and valley
changing cycles.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 65

In contrast to above straw man scheme, our Wavelet approach enable concurrent task
launching and interleaving on the same GPU without interfering each other. We describe
how we achieve this non-blocking interleaving in three aspects: memory overlapping (Sec-
tion 5.3.2.1), computation overlapping (Section 5.3.2.2) and model synchronization between
waves (Section 5.3.2.3).

5.3.2.1 Memory Overlapping

In contrast to gang scheduling policy, as tick-tock scheduling shown in Figure 5.13, we first
allow the tick-wave tasks (i.e., blank boxes of F and B in the upper figure of Figure 5.13) to
be launched as normal. Right after the tick-wave completing the forward propagation, we
inject our tock-wave tasks (i.e., shadow boxes of F and B on the upper side of Figure 5.13) on
to the same group of GPUs in use. This injection happens at the time when tick-wave tasks
begin to free allocated memory during their backward propagation. Generally speaking,
by intentionally adding task launching delay with the same duration of a normal forward
propagation time, tick-tock scheduling policy can overlap tick-wave’s backward propagation
with tock-wave’s forward propagation, and vice-versa. In addition, we do not add heavy
control signals such as interrupt or preempt/resume. This simple yet decent attribute of our
tick-tock scheduling guarantees we can achieve near-optimal on-device memory usage (e.g.,
Figure 5.3).

To simultaneously execute two training tasks (i.e., one from tick-wave, the other in tock-
wave) on each GPU, we need to maintain two model replicas inside GPU memory. One
replica is for maintaining model weights of tick-wave, the other replica is to hold model
parameters of tock-wave. The necessity of maintaining 2 copies of model is for version
control between tick and tock waves since they are training on different input data [36].
Recent literature [38][40] also reports that the popular DNN model sizes are often order-
of-magnitude smaller than the generated intermediate results (e.g., activations) over input
data batches.

5.3.2.2 Computation Overlapping

As mentioned in Section 5.3.2.1, we need to keep two model copies inside each GPU’s memory,
one for tick-wave and the other for tock-wave. Different from conventional GPU sharing
among multiple jobs via time slicing [38][40], we indeed launch two different sequences of
CUDA kernels concurrently on each GPU. One kernel sequence is for forward propagation
of one training wave, and the other kernel sequence is for backward propagation of the other
training wave. In such a way, we can improve computation core usage in both temporal and
spatial dimensions.

To prevent head-of-line blocking [203] between two concurrent kernel sequences as de-
picted at the bottom of Figure 5.13, we launch these two sequences of kernels on different
CUDA streams [105]. Thus, it guarantees the execution order of kernels within a stream, but
non-blocking for CUDA kernels residing in different streams. By simultaneously launching



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 66

Main

F0

F1

F2 F4

F3

B0 B2

B1 B3

gi0 G0

S S
G1gi1

S S
gi2G2

Tick

Tock

gi0’ gi1’ gi2’

Figure 5.14: Wavelet model synchronization between tick and tock waves on GPU-i during
data parallel training

multiple sequences of computation kernels on separate CUDA streams, we improve compu-
tation utilization in spatial dimension.

One addition benefit of simultaneously launching two streams of CUDA computation
kernels is to allow kernels on different sequences to fill-in each other’s execution bubble
time interval. Evidence has been reported that the latency of CPU sending instructions to
GPU may be amplified and create empty bubbles when launching sequences of computation
kernels [71][204]. As depicted on the bottom side of Figure 5.13, the “bubble time” refers to
those empty space between adjacent kernels on the same CUDA stream. Thus, by allowing
kernels belonging to different CUDA streams to fill-in the “bubble time” of kernels in the
same CUDA stream, Wavelet also increases the computation core usage in the temporal
dimension.

5.3.2.3 Model Synchronization between Waves

One big component of data parallel training is model synchronization. For model synchro-
nization among training tasks of the same wave, we can directly use existing model synchro-
nization schemes (e.g., AllReduce) inherited from existing deep learning platforms [29][23].
Given that tasks belonging to the same wave complete each training iteration at the same
time, we can directly impose model synchronization at the end of every mini-batch training
iterations. The main problem here is there is no existing solution for model synchronization
between our tick and tock waves on the same GPU.

Figure 5.14 shows how Wavelet enables model synchronization between tick and tock
waves’ training tasks. Here we have three threads (i.e., Main, Tick and Tock) inside the
training process. In Figure 5.14, gin′ refers to the gradients generated on GPU i with its
current local mini-batch of input. gin is the averaged gradients between the (n−1)-th iteration
and n-th iteration on GPU i, which is defined as Equation 5.1. Fn and Bn indicates the
forward and backward propagation of the n-th global training iteration. S in Figure 5.14



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 67

stands for global model synchronization among all GPUs in use for the training tasks belongs
to a single wave (i.e., either tick or tock wave). Gn is the global averaged gradients of the
n-th iteration’s model synchronization (e.g., AllReduce) among all the training tasks in the
same wave.

As shown in Figure 5.14, on GPU i, After B0 in the tick wave completes generating its
local gradients as gi0′ (in the first training iteration, gi0′ = gi0 since there is no need to average
cross-wave gradients), it sends gi0′ to the subsequent tock wave task during its backward
propagation (i.e., B1). Then the Main thread executes global model synchronization and
get back global averaged gradient G0 for this tick-wave training iteration. Then the task in
the tick wave updates its model parameters using G0, and begins its second training iteration
as F2. Concurrently, task B1 on tock wave computes its local gradients as gi1′ and sends it
back to tick wave’s B2 phase. Then, the tock wave B1 averages local gradients gi1′ with
previously received gi0′ from tick wave using Equation 5.1.

gim =
gim′+ gim−1′

2
(5.1)

After gradient averaging, it uses gi1 to do global model synchronization among all tock
wave tasks from other GPUs, and get back G1 for model updating in this tock-wave training
iteration. Then, the tock wave launches its second training iteration as F3, and so on and
so forth.

To verify the model convergence, we provide following proof steps.
Lemma 1: For any globally synchronized gradients as Gm(m > 0) across N GPUs, it is

also globally synchronized between the overlapped one tick-wave and one tock-wave tasks
(i.e., Fm−1, Bm−1 and Fm, Bm in Figure 5.14).

Gm =

N∑
i=1

(gim−1′+ gim′)

2×N
(5.2)

where m ∈ {1, 2, ...n} (5.3)

Proof: With Equation 5.1 for averaging local gradients between each tick-tock task pair,
we directly plug-in it into Equation 5.2 and calculate the corresponding global synchroniza-
tion results Gm as Equation 5.4.

Gm =

N∑
i=1

gim

N

=

N∑
i=1

(gim′+ gim−1′)

2×N

(5.4)



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 68

Forward Backward

All-Reduce
3

GPU0

GPU1

GPU2

GPU3

F00,0 F01,3 F02,2 F03,1

F10,1

F20,2

F30,3

F11,0

F21,1

F31,2

Batch0

All-Reduce
2

All-Reduce
1

All-Reduce
0

Batch1 Batch2 Batch3

F12,3

F22,0

F33,0 B3
3,0

B2
2,0

B1
1,0

B0
0,0

F23,3

F23,2

F32,1

B2
3,3

B1
3,2

B0
3,1

B1
2,3

B0
2,2

B3
2,1

B0
1,3

B2
1,1

B3
1,2

B1
0,1

B2
0,2

B3
0,3

Figure 5.15: Model parallel training with Wavelet in 4-GPU setting.

Therefore, our design for model synchronization cross tick and tock waves is equivalent
to model synchronization over 2×N data parallel training tasks using 2×N GPUs together,
which guarantees our model convergence.

5.3.3 Wavelet in Model Parallelism

Here we discuss our model parallel design with tick-tock scheduling policy. Recently, larger
models show remarkable improvement of model serving accuracy, especially in NLP do-
main [19][9]. State-of-the-art model serving performance for tasks like next sentence predic-
tion and question answering is mostly achieve by transformer models, which usually contain
millions or billions of model parameters [13][18].

Recent literature [35][36] leverages input batch pipelining to improving GPU resource
utilization rate in model parallel training. Basically, after each GPU finishes forward com-
putation on current micro-batch of data, rather than waiting for its turns to compute back-
ward propagation on the same micro-batch, the GPU loads in a new micro-batch of data
and conduct forward propagation. Thus by doing this data pipelining, it utilizes the idle
time between 1 micro-batch’s forward and backward propagation gap on each GPU.

5.3.3.1 Launching Multiple Tock-wave Tasks

As described in Section 5.2.2, the memory valley periods in model parallel training are
generally longer than the data parallel counterparts. Therefore, we can leverage the wider
memory valley periods on the GPUs more aggressively. Instead of injecting one tock-wave



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 69

tasks, Wavelet in model parallelism injects multiple tock-wave tasks together for training on
new mini-batches of data.

Figure 5.15 shows a model parallel training job in a 4-GPU setting. Similar as our
notations in Section 5.3.2, here F and B also refer to forward propagation and backward
propagation. In Figure 5.15, F i

m,n refers to forward propagation of model partition m for
data batch n on GPU-i. And Bi

m,n follows the same naming rule. The vanilla model parallel
training baseline (i.e., tick-wave) is shown as the blank boxes (e.g. F 0

0,0, F
1
1,0, F

2
2,0...B

0
0,0) in

Figure 5.15. All the GPUs are under-utilized since at each time slot there is only one GPU
working.

Different from vanilla model parallelism, we force all the GPUs to load the first model
partition during the first computation cycle and execute forward propagation on different
input data batches (e.g., F 0

0,0, F
1
0,1, F

2
0,2, F

3
0,3 in the first time slot). Similarly, in the second

computation cycle, we allow all GPUs to swap to the second model partition and training on
separate input data batches, and so on and so forth. Therefore, our design can be regarded
as sequentially launching 3 new tock-wave tasks (i.e., tasks processing on batch 1,2,3 in
Figure 5.15) on top of original tick-wave tasks (i.e., tasks working on batch 0 in Figure 5.15)
in this 4-GPU case. Theoretically, we can inject N − 1 new tock-waves with N GPUs in
order to fully utilize all the GPU memory and computation resources.

5.3.3.2 Model Partition Switching

In both vanilla model parallelism and model parallelism with pipeline parallelism, each GPU
always holds the same model partition during the whole training process. In contrast to
both of them, Wavelet imposes each GPU to maintain different model partitions and process
different input data bates in different training cycles. Therefore, frequent context switching is
needed in both model partition and input data dimensions. We design our context switching
scheme in a round-robin fashion [193]. As depicted in Figure 5.15, in the first forward
propagation cycle, all GPUs load the first model partition and train on separate input data
batches. After the first training cycle completes, we down-shift the batch-id and also up-shift
the model partition number on each GPU. For instance, on GPU1, it first conduct forward
propagation on batch 1 with model partition 0 in the first computation cycle (i.e., F 1

0,1).
In the second compute slot, GPU 1 works on batch (1 − 1)%4 = 0 with model partition
(0 + 1)%4 = 1, which is shown as F 1

1,0 in Figure 5.15. All the GPUs in use follows the same
round-robin swapping on both data and model partitions. And backward propagation is just
symmetric too the forward propagation but in the inverse order.

We note that frequent context switching of both input data and model partitions would
definitely introduce overheads. We empirically evaluate our context switching overheads
via end-to-end DNN training experiments in Section 5.4.2. To further reduce our on-device
memory overheads for holding intermediate results, we can leverage the techniques such as
tensor re-materialization [205][206][207] to recompute the intermediate results on-demand.
And we leave it as one of our future research directions.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 70

Figure 5.16: Wavelet’s throughput speedup over data parallel training baseline (single-
machine multi-GPU).

Figure 5.17: Wavelet’s throughput speedup over data parallel training baseline (multi-
machine multi-GPU).

5.3.3.3 Inter-batch Synchronization

In Figure 5.15, with our round-robin scheme, we inject (N − 1) tock waves on top of the
original tick-wave training in N GPUs setting. With our round-robin assignments, for each
single model partition, we can generate gradients from all the batches at the same time. For
example, in Figure 5.15, the backward propagation for model partition 3 across batches of
0,1,2,3 (i.e., Bx

3,y, x, y ∈ {0, 1, 2, 3}) are finished at the same time. This inherit alignment
of backward propagation across batches on the same model partition simplifies our model
synchronization design in model parallel training. Here we directly impose AllReduce right
after the backward propagation of same model partition across separate batches, and update
the model parameters for each model partition accordingly (e.g., All-Reduce3 for Bx

3,y).



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 71

5.4 Evaluation

We evaluate Wavelet performance using five different DNNs on two kinds of datasets. For
data parallel training, we test Wavelet on several popular CNNs. The ones we use are
VGG-16 [102], VGG-19 with batch normalization [58], ResNet-50 and ResNet-101 [6]. We
train these models on ImageNet-1K dataset [7]. For model parallel training, we first fine-
tune BERT model [8] with SQuAD2.0 dataset [54]. We also test model parallel training
with VGG-19 on ImageNet-1K dataset. All the experiments are executed on DGX-1 [93]
machines, which contains V100 GPUs and point-to-point NVLink connection among the
GPUs within a machine. For cross-machine communication, the link in between is 25Gb/s
Ethernet. We test both single-machine multi-GPU cases and multi-machine multi-GPU cases
for both data parallel and model parallel training experiments.

We report a number of important findings from our evaluation. First, Wavelet can
achieve up to 1.88x throughput speedup over data parallel training baseline. Second, Wavelet
outperforms over hybrid of model and pipeline parallel training by up to 4.15x speedup. We
achieve up to 6.7x faster in training when compared with vanilla model parallel training
baseline.

5.4.1 Data Parallelism

In our data parallel training setting, we use the biggest mini-batch size that can fit into the
GPU memory. This guarantees the highest throughput can be reached in our baseline. It
also ensures the best GPU memory utilization that Wavelet can achieve via our tick-tock
interleaving. Here we choose 64 as the per-GPU mini-batch size for data parallel training
on both VGGNets and ResNets.

5.4.1.1 Single-machine Multi-GPU

In single-machine multi-GPU case, we test follow three different settings: data parallel train-
ing with 2*V100 GPUs, 4*V100 GPUs and 8*V100 GPUs. All these GPUs are connected
with NVLink, which provides around 25GB/s per link.

We normalize the throughput of data parallel training baseline as 1, and report our speed-
up numbers over the normalized baseline. As depicted in Figure 5.16, Wavelet achieves up
to 1.88x speed up over the data parallel baseline. The average training throughput gain is
1.4x across different CNNs and different number of GPUs in use. Note that we can only
achieve <1.2x speedup for some VGG training, this is mainly because each training iteration
time of VGGs are short. Since our injection of tock-wave tasks lengthen the duration of
each training iteration, the speedup number is inversely proportional to original training
iteration time. Thus, if the original training iteration time is short, our performance gain is
less pronounce, and vice versa.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 72

Figure 5.18: Wavelet’s throughput speedup over model parallel training baseline (single-
machine multi-GPU).

Figure 5.19: Wavelet’s throughput speedup over model parallel training baseline (multi-
machine multi-GPU).

5.4.1.2 Multi-machine Multi-GPU

In multi-machine multi-GPU settings, we use two DGX-1 machine together. We test the
following three different situations: 8 + 8, 4 + 4 and 1 + 1. In Figure 5.17, 1 + 1 means we
use 1 GPU on one machine, and another GPU on the other machine. 8 + 8 and 4+ 4 follow
the same naming rule.

In contrast to single-machine performance, here we can only achieve up to 1.18x speedup
over data parallel training baseline in these multi-machine cases. Additionally, our Wavelet
performs even worse than the baseline in many cases in Figure 5.17. This is mainly due to
the limited cross-machine network bandwidth. Since our inserted tock-wave needs additional
cross-machine model synchronization (e.g., AllReduce), it adds extra latency in each training
iteration. Although we also interleave AllReduce operations between tick-wave and tock-
wave tasks (e.g., G0, G1 in Fig. 5.14) to mitigate the burst of communication, the limited
inter-machine bandwidth is still the major throughput bottleneck.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 73

5.4.2 Model Parallelism

In our model parallel training setting, as suggested by previous literature [35][36], we evenly
split both VGG-19 and BERT models among all the GPUs in use for better load balancing.
Similar as our data-parallel setups, we also choose the largest batch size per-GPU without
introducing out-of-memory exceptions.

5.4.2.1 Single-machine Multi-GPU

In single machine case, we test 4-GPU and 8-GPU cases of model parallel training on VGG-
19 and BERT. For each model we test two different settings: one is vanilla model parallelism
and the other is model parallelism with pipeline parallelism (i.e., w/ pipe in Figure 5.18).
In Figure 5.18, Wavelet outperforms baseline with higher throughput speedup number in 8-
GPU cases than 4-GPU cases. More precisely, compared with vanilla model parallel baseline,
we achieve 4.7x speedup on VGG-19 and 6.7x on BERT in 8-GPU settings. Comparing to
model parallel training with Pipeline parallelism, Wavelet achieves 4.4x speedup on VGG-19
and 4.15x speed up on BERT in 8-GPU cases.

Even by incorporating pipeline parallelism such as Gpipe [35], the reported speedups
over vanilla model parallel baseline is normally <2x with 4-GPU and around 3x in 8-GPU
settings [35]. This is mainly due to the high frequency in both CUDA kernel launching and
intermediate results communication. More precisely, regarding each mini-batch (e.g., of size
M) of input data, Gpipe or PipeDream [36] further breaks it into multiple small micro-
batches (e.g., of size N) and pipelines training over micro-batches. Therefore, for training 1
single mini-batch data, the frequency of communication increases from 2 (i.e., for each GPU,
1 for forward propagation, 1 for backward propagation) to 2 × M

N
(i.e., first M

N
for forward

propagation, and second M
N

for backward propagation). More crucially, this high frequent
but small data chunks may not fully saturate the link bandwidth such as NVLink [88] and
NVSwitch [90], which leads to longer communication latency. Similarly, the number of
CUDA kernel calls also increase by M

N
times for processing 1 mini-batch input, which also

introduces higher control overheads. In contrast, for 1 mini-batch training, Wavelet still
maintains the communication frequency of 2 with same number of CUDA kernels as vanilla
model parallel training. Therefore, we can achieve higher system throughput compared with
pipeline parallelism.

5.4.2.2 Multi-machine Multi-GPU

As shown in Figure 5.19, due to low bandwidth cross-machine interconnects, we achieve only
moderate (i.e. 2x) speedup over baseline with or without incorporating pipeline parallelism
in our 4+4 cross-machine cases. For 8+8 settings, we only test with BERT model, since it is
unreasonable to split a ConvNet over 16 GPUs. In 8+8 setting, we achieve 6.5x speedup over
vanilla model parallel training, and 4.5x faster over BERT training with pipeline parallelism.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 74

1 10 100 1000 10000

BERT

VGG-19-BN

Time (sec.)

Context_switch All-Reduce
Communication Total

Figure 5.20: Wavelet overhead breakdown in the 4+4 cross-machine case

Given that our task pipelining only happens on each single GPU, we believe increas-
ing the number of GPUs to very large systems will not cause any significant performance
degradation.

5.4.2.3 Overhead Analysis

Now we analyze the overheads introduced by Wavelet’s tock-wave injections in model parallel
training. Here we only test one hardware setting which is 4+4, which means we use 4 GPUs
on one machine, and another 4 GPUs on the other machine.

In Figure 5.20, we record the total time for training one epoch on both VGG-19 and BERT
models. We also collect the time breakdowns in three major overheads as context switch,
communication and All-Reduce. Here context switch denotes the time spending on switching
model partitions in different model training cycles. The communication is the time for
transmitting intermediate results (e.g., gradients) among all the GPUs involved in the same
job. The All-Reduce overhead refers to model synchronization time for each model partition
across different data batches in the backward propagation.

As shown in Figure 5.20, the cross-machine communication takes longest time duration
among all these main system overheads. Communication takes 19.5% of total iteration
training time in VGG-19, and 14% of iteration time in BERT training. The sum of All-
Reduce and context switch only occupies 5% iteration time on BERT and 2% on VGG-19,
separately. Therefore, the major system overhead is caused by low bandwidth cross-machine
networks, not context switch or model synchronization (i.e. All-Reduce) time introduced by
Wavelet.



CHAPTER 5. IMPROVING ON-DEVICE MEMORY UTILIZATION 75

5.5 Related Work

Previous literature mainly falls into the two categories below.
Resource allocation in distributed DNN training: A number of resource allocation

and scheduling policies are tailor-made for distributed DNN training jobs [51]. They may
have varied focus such as job fairness [49], better overlapping between computation and
communication [208], better job locality [38], improving system goodput [209], minimizing
job completion time [50], transparent auto-scaling [191] [194], etc. However, at the in-parallel
task launching stage, gang-scheduling is used by-default and could be the only option for task
launching of distributed DNN training job. In contrast, Wavelet proposes tick-tock policy as
another option for in-parallel task launching of distributed ML workloads. Comparing with
gang-scheduling, our tick-tock scheduling achieves higher GPU computation and memory
usage. Consequently, we boost up the training speed in single job case.

GPU sharing: Several recent work has been focusing on fine-grained GPU sharing, such
as Nvidia’s MPS [204], Salus [40], Gandiva [38], etc. CUDA Multi-Process Service (MPS)
is a runtime architecture which allows multiple CUDA processes to share the same GPU
memory with static partitioning. When multiplexing different jobs on to the same GPU,
static memory partitioning introduces frequent inter-job interference, which may leads to job
failure and decreases overall performance. Gandiva co-locates deep learning jobs first and
conducts job migration to run each job within minimum number of machines for better data
locality, and finally reach no-sharing mode. Salus achieves fine-grained GPU sharing among
multiple deep learning jobs by sharing computation resource in spatiotemporal way. Nvidia’s
TensorRT [71] supports concurrent deep learning model inference on the same GPU, but
lack of training supports. Different from all the works listed above targeting on multiplexing
multiple jobs on same device, Wavelet allows GPU sharing among different training waves
of a single job, thus improves the training speed in single job case.

Earlier literature on GPU sharing [210][211][212] focus on workloads with just a few
CUDA kernel functions. Thus, it could not be directly applicable to deep learning applica-
tions with hundreds of unique kernel executions.

5.6 Summary

In this chapter, we present a novel way to improve training throughput of single job via our
tick-tock scheduling policy. By interleaving peak memory usage among different training
waves of a single job, we improve GPU utilization rate in both computation and on-device
memory aspects. By replacing gang-scheduling with our tick-tock scheduling policy, Wavelet
achieves up to 6.7x time reduction of each training iteration in single job case. Wavelet
is generic and can be applied to data parallel, model parallel and hybrid DNN training
paradigms.



76

Chapter 6

Future Work and Conclusion

6.1 Future Directions

Go distributed or go centralized, that is the question.
Clearly, given giant deep learning models and massive data, practitioners naturally go dis-

tributed with more accelerators. Countless research papers have been published to improve
system efficiency under various distributed settings. However, low cross-machine bandwidth
and limited on-device memory already set the upper bound on system throughput.

Recently, we see the trend that hardware manufacturers are trying to pack more and more
accelerators into a single box. For example, Nvidia groups 16 GPUs inside a single server
with fast interconnects in between [94]. From Apple’s original M1 chip, to M1 Pro/Max and
now M1 Ultra, they build larger System-on-a-chip (SoC) by packing more and more GPU
cores on a single chip [213]. Maybe it is time to design smart scheduling algorithms in these
centralized settings.

6.2 Concluding Remarks

This dissertation proposes novel designs to efficiently distribute machine learning workloads.
We first illustrate why distributed model training and serving are needed as our thesis

motivation. Following that we highlight two major issues when scaling out: high communi-
cation overheads and limited on-device memory. Before diving into our solutions, we provide
background knowledge on deep learning models and popular parallel paradigms.

In Blink, we argue that packing spanning trees rather than forming rings achieves better
link utilization given arbitrary network environments. In sensAI, by decoupling a base model
into disconnected subnets via our class parallelism, we nearly eliminate the communication
in model parallelism. In Wavelet, by intentionally adding task launching latency, we increase
both GPU utilization and training throughput in single job case.



77

Bibliography

[1] Andrew Ng, Coursera: Machine learning course at stanford, https://www.coursera.
org/learn/machine-learning, 2022.

[2] Ethem Alpaydin, Machine learning. MIT Press, 2016.

[3] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th ed.
Pearson, 2020.

[4] MIT Technology Review, The fourth industrial revolution has begun: Now’s the time
to join, https://www.technologyreview.com/2020/10/15/1010365/the-fourth-
industrial-revolution-has-begun-nows-the-time-to-join/, 2020.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with
deep convolutional neural networks,” in NeurIPS, 2012.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning
for image recognition,” in CVPR, 2016.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in CVPR, 2009.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[9] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[11] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis, “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, 2017.

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.technologyreview.com/2020/10/15/1010365/the-fourth-industrial-revolution-has-begun-nows-the-time-to-join/
https://www.technologyreview.com/2020/10/15/1010365/the-fourth-industrial-revolution-has-begun-nows-the-time-to-join/


BIBLIOGRAPHY 78

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar, “Mi-
crosoft coco: Common objects in context,” arXiv preprint arXiv:1405.0312, 2015.

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei, “Language models are few-shot learners,” in NeurIPS, 2020.

[14] Alex Krizhevsky, “Learning multiple layers of features from tiny images,” University
of Toronto, Tech. Rep., 2009.

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, 2015.

[16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, “Going
deeper with convolutions,” arXiv preprint arXiv:1409.4842, 2014.

[17] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le, “Regularized evolu-
tion for image classifier architecture search,” in AAAI, 2019.

[18] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer, “Opt: Open pre-trained transformer lan-
guage models,” arXiv preprint arXiv:2205.01068, 2022.

[19] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever, “Zero-shot text-to-image generation,” arXiv
preprint arXiv:2102.12092, 2021.

[20] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and
Andrew Y. Ng, “Large scale distributed deep networks,” in NeurIPS, 2012.

[21] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He, “Accurate, large minibatch
sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[22] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala,
“Pytorch distributed: Experiences on accelerating data parallel training,” in VLDB,
2020.



BIBLIOGRAPHY 79

[23] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng, “Tensorflow: A system for large-scale machine learning,” in USENIX OSDI,
2016.

[24] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su, “Scaling distributed
machine learning with the parameter server,” in USENIX OSDI 2014, 2014.

[25] Guanhua Wang, Distributed Machine Learning with Python: Accelerating model train-
ing and serving with distributed systems. Packt, 2022.

[26] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P
Xing, “On model parallelization and scheduling strategies for distributed machine
learning,” in NeurIPS, 2014.

[27] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A. Gibson, and
Eric P. Xing, “Strads: A distributed framework for scheduled model parallel machine
learning,” in EuroSys, 2016.

[28] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro, “Megatron-lm: Training multi-billion parameter language mod-
els using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala,
“PyTorch: an imperative style, high-performance deep learning library,” in NeurIPS,
2019.

[30] Frank Seide and Amit Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD’16, 2016.

[31] Sylvain Jeaugey, Optimized inter-GPU collective operations with NCCL 2, https:
//developer.nvidia.com/nccl, 2017.

[32] Alex Sergeev and Mike Del Balso, “Horovod: fast and easy distributed deep learning
in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[33] Pieter Noordhuis, Accelerating machine learning for computer vision, https : / /

github.com/facebookincubator/gloo, 2017.

[34] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin, Nikhil
Devanur, and Ion Stoica, “Blink: Fast and Generic Collectives for Distributed ML,”
in Third Conference on Machine Learning and Systems (MLSys), 2020.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo


BIBLIOGRAPHY 80

[35] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen,
“Gpipe: Efficient training of giant neural networks using pipeline parallelism,” in
NeurIPS, 2019.

[36] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Deva-
nur, Greg Ganger, and Phil Gibbons, “Pipedream: Fast and efficient pipeline parallel
dnn training,” arXiv preprint arXiv:1806.03377, 2018.

[37] GuanhuaWang, Zhuang Liu, Brandon Hsieh, Siyuan Zhuang, Joseph Gonzalez, Trevor
Darrell, and Ion Stoica, “sensAI: ConvNets Decomposition via Class Parallelism for
Fast Inference on Live Data,” in Fourth Conference on Machine Learning and Systems
(MLSys), 2021.

[38] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun
Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan
Yang, and Lidong Zhou, “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[39] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler, “Data
Movement Is All You Need: A Case Study on Optimizing Transformers,” in Fourth
Conference on Machine Learning and Systems (MLSys 2021), 2021.

[40] Peifeng Yu and Mosharaf Chowdhury, “Salus: Fine-grained gpu sharing primitives for
deep learning applications,” in Third Conference on Machine Learning and Systems
(MLSys), 2020.

[41] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin, “Pipeswitch: Fast pipelined context
switching for deep learning applications,” in USENIX OSDI, 2020.

[42] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram,
“Analyzing and mitigating data stalls in dnn training,” in VLDB, 2021.

[43] Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion Stoica, “Wavelet:
Efficient DNN Training with Tick-Tock Scheduling,” in Fourth Conference on Ma-
chine Learning and Systems (MLSys), 2021.

[44] Nvidia, Graphics processing unit, https://www.nvidia.com/en- us/geforce/
graphics-cards/, 2022.

[45] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

https://www.nvidia.com/en-us/geforce/graphics-cards/
https://www.nvidia.com/en-us/geforce/graphics-cards/


BIBLIOGRAPHY 81

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gor-
don MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon, “In-
datacenter performance analysis of a tensor processing unit,” in ISCA, 2017.

[46] Wikipedia-fpga, Field-programmable gate array, https://en.wikipedia.org/wiki/
Field-programmable_gate_array.

[47] Wikipedia-asic, Application-specific integrated circuit, https://en.wikipedia.org/
wiki/Application-specific_integrated_circuit.

[48] Beidi Chen, Tharun Medini, Sameh Gobriel James Farwell, Charlie Tai, and Anshu-
mali Shrivastava, “Slide : In defense of smart algorithms over hardware acceleration
for large-scale deep learning systems,” in MLSys, 2020.

[49] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman,
Aditya Akella, Amar Phanishayee, and Shuchi Chawla, “Themis: Fair and efficient
gpu cluster scheduling,” in USENIX NSDI, 2020.

[50] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Junjie
Qian, Hongqiang Liu, and Chuanxiong Guo, “Tiresias: A gpu cluster manager for
distributed deep learning,” in USENIX NSDI, 2019.

[51] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong
Xiao, and Fan Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn training
workloads,” in USENIX ATC, 2019.

[52] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in NeurIPS, 2015.

[53] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” in CVPR, 2014.

[54] Pranav Rajpurkar, Robin Jia, and Percy Liang, “Know what you don’t know: Unan-
swerable questions for squad,” in Annual Meeting of the Association for Computa-
tional Linguistics(ACL), 2018.

[55] Jens Kober, J. Andrew Bagnell, and Jan Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, 2013.

[56] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet, “Convolutional networks
and applications in vision,” in ISCAS, 2010.

[57] Fei-fei Li, Deep learning for computer vision, http://cs231n.stanford.edu/, 2022.

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://cs231n.stanford.edu/


BIBLIOGRAPHY 82

[58] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of Machine Learning
Research, 2015.

[59] Zhongxia Yan, Jingguo Ge, Yulei Wu, Liangxiong Li, and Tong Li, “Automatic virtual
network embedding: A deep reinforcement learning approach with graph convolutional
networks,” IEEE Journal on Selected Areas in Communications, 2020.

[60] Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and Ji He,
“Recurrent reinforcement learning: A hybrid approach,” arXiv:1509.03044, 2015.

[61] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch, “Decision transformer: Rein-
forcement learning via sequence modeling,” in NeurIPS, 2021.

[62] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Sid-
dhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury,
Matthew Botvinick, Nicolas Heess, and Raia Hadsell, “Stabilizing transformers for
reinforcement learning,” in Proceedings of the 37th International Conference on Ma-
chine Learning (PMLR), 2020.

[63] Hugging Face, Tokenizer, https://huggingface.co/docs/transformers/main_
classes/tokenizer, 2022.

[64] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer, “Automatic
differentiation in PyTorch,” in NeurIPS, 2017.

[65] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, G. Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William
Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared
Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin,
Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmo-
tov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady
Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei
Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi
Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou,
“Mlperf inference benchmark,” in ISCA, 2020.

[66] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez,
and Ion Stoica, “Clipper: A low-latency online prediction serving system,” in USENIX
NSDI, 2017.

[67] Vijay Janapa Reddi, David Kanter, Peter Mattson, Jared Duke, Thai Nguyen, Ramesh
Chukka, Ken Shiring, Koan-Sin Tan, Mark Charlebois, William Chou, Mostafa El-
Khamy, Jungwook Hong, Tom St John, Cindy Trinh, Michael Buch, Mark Mazumder,
Relja Markovic, Thomas Atta, Fatih Cakir, Masoud Charkhabi, Xiaodong Chen,

https://huggingface.co/docs/transformers/main_classes/tokenizer
https://huggingface.co/docs/transformers/main_classes/tokenizer


BIBLIOGRAPHY 83

Cheng-Ming Chiang, Dave Dexter, Terry Heo, Guenther Schmuelling, Maryam Sha-
bani, and Dylan Zika, “Mlperf mobile inference benchmark: An industry-standard
open-source machine learning benchmark for on-device ai,” in MLSys, 2022.

[68] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E. Gonzalez,
Ion Stoica, and Alexey Tumanov, “Inferline: Ml inference pipeline composition frame-
work,” in ACM SoCC, 2020.

[69] Google, Tfrt: A new tensorflow runtime, https://blog.tensorflow.org/2020/04/
tfrt-new-tensorflow-runtime.html, 2020.

[70] onnxruntime, https://onnxruntime.ai/pytorch, 2022.

[71] Nvidia, Tensorrt, https://developer.nvidia.com/tensorrt, 2022.

[72] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir
Braverman, Joseph Gonzalez, and Raman Arora, “Communication-efficient federated
learning with sketching,” in ICML, 2020.

[73] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo, “A generic communication scheduler for distributed dnn
training acceleration,” in ACM SOSP, 2019.

[74] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Junjie
Qian, Hongqiang Liu, and Chuanxiong Guo, “Tiresias: A gpu cluster manager for
distributed deep learning,” in USENIX NSDI, 2019.

[75] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko, “Priority-based parameter propagation for distributed dnn training,” in
MLSys, 2019.

[76] Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing,
“Geeps: Scalable deep learning on distributed gpus with a gpu-specialized parameter
server,” in EuroSys, 2016.

[77] Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Olli Saarikivi, Emad Barsoum,
Jaliya Ekanayake, Vadim Eksarevskiy, and Tianju Xu, “Scaling distributed training
with adaptive summation,” in MLSys, 2021.

[78] Nadeen Gebara, Paolo Costa, and Manya Ghobadi, “In-network aggregation for shared
machine learning clusters,” in MLSys, 2021.

[79] Minsik Cho, Ulrich Finkler, David Kung, and Hillery Hunter, “Blueconnect: Decom-
posing all-reduce for deep learning on heterogeneous network hierarchy,” in MLSys,
2019.

[80] Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and Dheeraj
Sreedhar, “PowerAI DDL,” arXiv preprint arXiv:1708.02188, 2017.

https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html
https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html
https://onnxruntime.ai/pytorch
https://developer.nvidia.com/tensorrt


BIBLIOGRAPHY 84

[81] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevi-
cius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David
Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy Hock, Xinyuan
Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan,
Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor
Robie, Tom St John, Carole-Jean Wu, Lingjie Xu, Cliff Young, and Matei Zaharia,
“Mlperf training benchmark,” in MLSys, 2020.

[82] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn
Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan
Sepassi, and Blake Hechtman, “Mesh-tensorflow: Deep learning for supercomputers,”
in Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NeurIPS), 2018.

[83] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander
M. Rush, “Huggingface’s transformers: State-of-the-art natural language processing,”
arXiv preprint arXiv:1910.03771, 2019.

[84] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping
Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez, and Ion
Stoica, “Alpa: Automating inter- and intra-operator parallelism for distributed deep
learning,” in USENIX OSDI, 2022.

[85] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yan-
ping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen, “Gshard: Scaling giant
models with conditional computation and automatic sharding,” in ICLR, 2021.

[86] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu,
Jinliang Wei, Pengtao Xie, and Eric P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on GPU clusters,” in 2017 USENIX Annual
Technical Conference (USENIX ATC), Santa Clara, CA: USENIX Association, 2017,
pp. 181–193.

[87] PCI Express: An Overview of the PCI Express Standard, http://www.ni.com/white-
paper/3767/en/, 2014.

[88] NVIDIA NVLINK, http://www.nvidia.com/object/nvlink.html, 2017.

[89] Introduction to InfiniBand, https://www.mellanox.com/pdf/whitepapers/IB_
Intro_WP_190.pdf, 2007.

[90] NVIDIA NVSWITCH, http://images.nvidia.com/content/pdf/nvswitch-
technical-overview.pdf, 2018.

[91] “Mpi: A message passing interface,” in Proceedings of the 1993 ACM/IEEE Confer-
ence on Supercomputing, 1993.

http://www.ni.com/white-paper/3767/en/
http://www.ni.com/white-paper/3767/en/
http://www.nvidia.com/object/nvlink.html
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf


BIBLIOGRAPHY 85

[92] Blaise Barney,Message Passing Interface, https://computing.llnl.gov/tutorials/
mpi/, 2018.

[93] NVIDIA DGX-1, https://www.nvidia.com/en-us/data-center/dgx-1/, 2020.

[94] NVIDIA DGX-2, https://www.nvidia.com/en-us/data-center/dgx-2/, 2021.

[95] NVIDIA Tesla P100 GPU, https://www.nvidia.com/en-us/data-center/tesla-
p100/, 2018.

[96] NVIDIA V100 GPU, https://www.nvidia.com/en-us/data-center/v100/, 2019.

[97] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong
Xiao, and Fan Yang, “Multi-tenant GPU Clusters for Deep Learning Workloads:
Analysis and Implications,”Microsoft Research Technical Report (MSR-TR-2018-13),
2018.

[98] Tan N. Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu, “Allox: Compute
allocation in hybrid clusters,” in Proceedings of the Fifteenth European Conference
on Computer Systems (EuroSys), 2020.

[99] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo, “Opti-
mus: An efficient dynamic resource scheduler for deep learning clusters,” in EuroSys,
2018.

[100] NVIDIA A100 GPU, https://www.nvidia.com/en-us/data-center/a100/, 2021.

[101] NVIDIA H100 GPU, https://www.nvidia.com/en-us/data-center/h100/, 2022.

[102] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in ICLR, 2015.

[103] Laszlo Lovasz, “On two minimax theorems in graph,” Journal of Combinatorial The-
ory, Series B, vol. 21, no. 2, pp. 96–103, 1976.

[104] Jack Edmonds, “Edge-disjoint branchings,” Combinatorial algorithms, 1973.

[105] NVIDIA CUDA toolkit, https://developer.nvidia.com/cuda-toolkit, 2022.

[106] Harold N Gabow and KS Manu, “Packing algorithms for arborescences (and spanning
trees) in capacitated graphs,” Mathematical Programming, vol. 82, no. 1-2, pp. 83–
109, 1998.

[107] Chandra Chekuri and Kent Quanrud, “Near-linear time approximation schemes for
some implicit fractional packing problems,” in Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2017, pp. 801–820.

[108] Pitch Patarasuk and Xin Yuan, “Bandwidth optimal all-reduce algorithms for clusters
of workstations,” J. Parallel Distrib. Comput., pp. 117–124, 2009.

[109] Massively Scale Your Deep Learning Training with NCCL 2.4, https://bit.ly/
2lFwFQ4, 2019.

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/h100/
https://developer.nvidia.com/cuda-toolkit
https://bit.ly/2lFwFQ4
https://bit.ly/2lFwFQ4


BIBLIOGRAPHY 86

[110] Wiki of TCP/IP Internet protocol suite, https : / / en . wikipedia . org / wiki /

Internet_protocol_suite, 2022.

[111] Shelby Thomas, Geoffrey M. Voelker, and George Porter, “Cachecloud: Towards
speed-of-light datacenter communication,” in USENIX hotcloud 2018, 2018.

[112] Removing roadblocks on the path to 400G and beyond, https://bit.ly/2k4PXh9,
2018.

[113] Verizon marks milestone with successful 400G technology trial, https://bit.ly/
2lKgAs7, 2018.

[114] M. Barnett, R. Littlefield, D. Payne, and R. van de Geijn, “Global combine on mesh
architectures with wormhole routing,” in Proceedings of the 7th International Parallel
Processing Symposium, 1993.

[115] S. Bokhari and H. Berryman, “Complete exchange on a circuit switched mesh,” in
Proceedings of the Scalable High Performance Computing Conference, 1992.

[116] D. Scott, “Efficient all-to-all communication patterns in hypercube and mesh topolo-
gies,” in Proceedings of the 6th Distributed Memory Computing Conference, 1991.

[117] Laxmi N. Bhuyan and Dharma P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Transactions on Computers, 1984.

[118] S.L. Johnsson and C.-T. Ho, “Optimum broadcasting and personalized communica-
tion in hypercubes,” IEEE Transactions on Computers, 1989.

[119] Rajeev Thakur, Rolf Rabenseifner, and William Gropp, “Optimization of collective
communication operations in mpich,” Int. J. High Perform. Comput. Appl., 2005.

[120] Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra, “Automatically tuned
collective communications,” in Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, ser. SC ’00, 2000.

[121] Huasha Zhao and John Canny, “Butterfly mixing: Accelerating incremental-update
algorithms on clusters,” in Proceedings of the 2013 SIAM International Conference
on Data Mining, 2013.

[122] Rolf Rabenseifner, “Optimization of collective reduction operations,” in International
Conference on Computational Science, 2004.

[123] Robert van de Geijn, “On global combine operations,” in Journal of Parallel and
Distributed Computing, 1994.

[124] Ahmad Faraj, Pitch Patarasuk, and Xin Yuan, “Bandwidth efficient all-to-all broad-
cast on switched clusters,” International Journal of Parallel Programming, 2008.

[125] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan, “Ex-
ploiting hierarchy in parallel computer networks to optimize collective operation per-
formance,” in Proceedings of the Fourteenth International Parallel and Distributed
Processing Symposium, ser. IEEE IPDPS’00, 2000.

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://bit.ly/2k4PXh9
https://bit.ly/2lKgAs7
https://bit.ly/2lKgAs7


BIBLIOGRAPHY 87

[126] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang, “MagPIe:
MPI’s collective communication operations for clustered wide area systems,” in ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser. ACM
PPoPP’99, 1999.

[127] Yifan Gong, Bingsheng He, and Jianlong Zhong, “Network performance aware mpi
collective communication operations in the cloud,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2015.

[128] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, and
Timothy Roscoe, “Machine-aware atomic broadcast trees for multicoress,” in USENIX
OSDI, 2016.

[129] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[130] Zhihao Jia, Matei Zaharia, and Alex Aiken, “Beyond data and model parallelism for
deep neural networks,” in MLSys, 2019.

[131] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang, “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems,” arXiv preprint
arXiv:1512.01274, 2015.

[132] Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli,
“A survey of motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[133] Claudine Badue, Ranik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vini-
cius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago Paixao,
Filipe Mutz, Lucas Veronese, Thiago Oliveira-Santos, and Alberto Ferreira De Souza,
“Self-driving cars: A survey,” in arXiv:1901.04407, 2019.

[134] Daniel G. Jennings, Goldman Sachs Gambles Big in AI, https://bit.ly/3jNLkCj,
2018.

[135] Jeremy Horwitz, Goldman: AI tools have potential in finance beyond smart stock
trading, https://bit.ly/3ckkX3A, 2020.

[136] Katia Porzecanski, JPMorgan Commits Hedge Fund to AI in Technology Arms Race,
https://bloom.bg/2P1JUpF, 2019.

[137] Fuxun Yu, Zhuwei Qin, and Xiang Chen, “Distilling Critical Paths in Convolutional
Neural Networks,” in NeurIPS CDNNRIA workshop, 2018.

[138] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba, “Revisiting the importance
of individual units in cnns via ablation,” arXiv preprint arXiv:1806.02891, 2018.

https://bit.ly/3jNLkCj
https://bit.ly/3ckkX3A
https://bloom.bg/2P1JUpF


BIBLIOGRAPHY 88

[139] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus,
“Exploiting linear structure within convolutional networks for efficient evaluation,”
in NeurIPS, 2014.

[140] Jimmy Ba and Rich Caruana, “Do deep nets really need to be deep?” In NeurIPS,
2014.

[141] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang, “Learning efficient convolutional networks through network slimming,”
in ICCV, 2017.

[142] Song Han, Jeff Pool, John Tran, and William Dally, “Learning both weights and
connections for efficient neural network,” in NeurIPS, 2015.

[143] Song Han, Huizi Mao, and William J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,” in ICLR,
2016.

[144] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf, “Pruning
filters for efficient convnets,” in ICLR, 2017.

[145] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell, “Rethinking
the value of network pruning,” in ICLR, 2019.

[146] Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and
Eric Xing, “Vision transformer slimming: Multi-dimension searching in continuous
optimization space,” in CVPR, 2022.

[147] Mikel Galara, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and
Francisco Herrera, “An overview of ensemble methods for binary classifiers in multi-
class problems: Experimental study on one-vs-one and one-vs-all schemes,” Pattern
Recognition, vol. 44, pp. 1761–1776, 2011.

[148] Alina Beygelzimer, Hal Daume III, John Langford, and Paul Mineiro, “Learning re-
ductions that really work,” Proceedings of the IEEE, vol. 104, no. 1, pp. 136–147,
2016.

[149] Ryan Rifkin and Aldebaro Klautau, “In defense of one-vs-all classification,” Journal
of Machine Learning Research, vol. 5, pp. 101–141, 2004.

[150] Alina Beygelzimer, John Langford, and Bianca Zadrozny, “Weighted one-against-all,”
in AAAI, 2005.

[151] Thomas G. Dietterich and Ghulum Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” Journal of Artificial Intelligence Research, vol. 2,
pp. 263–286, 1995.

[152] Eun Bae Kong and Thomas G. Dietterich, “Error-correcting output coding corrects
bias and variance,” in ICML, 1995.



BIBLIOGRAPHY 89

[153] Huiqun Deng, George Stathopoulos, and Ching Y. Suen, “Applying error-correcting
output coding to enhance convolutional neural network for target detection and pat-
tern recognition,” in International Conference on Pattern Recognition, 2010.

[154] Rangachari Anand, Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka, “Ef-
ficient classification for multiclass problems using modular neural networks,” IEEE
Transactions on Neural Networks, vol. 6, no. 1, pp. 117–124, 1995.

[155] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang, “Network Trimming: A
Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures,” arXiv
preprint arXiv:1607.03250, 2017.

[156] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, 2008.

[157] George C. Linderman and Stefan Steinerberge, “Clustering with t-sne, provably,”
SIAM Journal on Mathematics of Data Science, vol. 1, 2019.

[158] J. B. MacQueen, “Some methods for classification and analysis of multivariate ob-
servations,” in Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, University of California Press, 1967, pp. 281–297.

[159] Mikko I. Malinen and Pasi Franti, “Balanced k-means for clustering,” in Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, 2014.

[160] Josh Levy-Kramer and Matt Klaber, k-means-constrained 0.4.3, https://pypi.org/
project/k-means-constrained/, 2020.

[161] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in CVPR, 2018.

[162] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR, 2018.

[163] Nvidia, Data sheet: Tesla m60, https://images.nvidia.com/content/tesla/pdf/
188417-Tesla-M60-DS-A4-fnl-Web.pdf, 2016.

[164] Yuxin Wu and Kaiming He, “Group normalization,” in ECCV, 2018.

[165] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie, “A convnet for the 2020s,” in CVPR, 2022.

[166] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo,
Justin Johnson, and Georgia Gkioxari, “Accelerating 3d deep learning with pytorch3d,”
arXiv preprint arXiv:2007.08501, 2020.

[167] Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang, “Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers,” in ICLR, 2018.

[168] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in ICLR, 2017.

https://pypi.org/project/k-means-constrained/
https://pypi.org/project/k-means-constrained/
https://images.nvidia.com/content/tesla/pdf/188417-Tesla-M60-DS-A4-fnl-Web.pdf
https://images.nvidia.com/content/tesla/pdf/188417-Tesla-M60-DS-A4-fnl-Web.pdf


BIBLIOGRAPHY 90

[169] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang, “Soft filter pruning
for accelerating deep convolutional neural networks,” in IJCAI, 2018.

[170] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang, “Filter pruning via geo-
metric median for deep convolutional neural networks acceleration,” in CVPR, 2019.

[171] Michael Zhu and Suyog Gupta, “To prune, or not to prune: Exploring the efficacy of
pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.

[172] Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and Junjie Yan, “Quantization
mimic: Towards very tiny cnn for object detection,” in ECCV, 2018.

[173] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev, “Compressing deep con-
volutional networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[174] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng, “Quantized
convolutional neural networks for mobile devices,” in CVPR, 2016.

[175] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy, “Fixed point quantization
of deep convolutional networks,” in Proceedings of The 33rd International Conference
on Machine Learning (PMLR), 2016.

[176] Ron Banner, Yury Nahshan, and Daniel Soudry, “Post training 4-bit quantization of
convolutional networks for rapid-deployment,” in NeurIPS, 2019.

[177] Wei Yang, pytorch-classification on CIFAR10/100 and ImageNet, https://github.
com/bearpaw/pytorch-classification, 2017.

[178] D J. Baylis, Error Correcting Codes: A Mathematical Introduction. Chapman and
Hall/CRC, 1997.

[179] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman, “Parity models: Erasure-
coded resilience for prediction serving systems,” in SOSP, 2019.

[180] Wikipedia, Cyclic code, https://en.wikipedia.org/wiki/Cyclic_code.

[181] Yaoqing Yang, Jichan Chung, Guanhua Wang, Vipul Gupta, Adarsh Karnati, Ke-
nan Jiang, Ion Stoica, Joseph Gonzalez, and Kannan Ramchandran, “Robust Class
Parallelism - Error Resilient Parallel Inference with Low Communication Cost,” in
the 54th Asilomar Conference on Signals, Systems, and Computers (Asilomar 2020),
2020.

[182] Fangyu Wu, Guanhua Wang, Siyuan Zhuang, Kehan Wang, Alexander Keimer, Ion
Stoica, and Alexandre Bayen, “Composing MPC with LQR and Neural Networks for
Efficient and Stable Control,” arXiv preprint arXiv:2112.07238, 2021.

[183] Sepp Hochreiter and Jurgen Schmidhuber, “Long short-term memory,” Neural Com-
putation 9(8), 1997.

[184] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer, “Deep contextualized word representations,”
arXiv preprint arXiv:1802.05365, 2018.

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification
https://en.wikipedia.org/wiki/Cyclic_code


BIBLIOGRAPHY 91

[185] Nikko Strom, “Scalable distributed dnn training using commodity gpu cloud comput-
ing,” in Interspeech, 2015.

[186] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Re, Christopher Aberger, and
Christopher De Sa, “Pipemare: Asynchronous pipeline parallel dnn training,” in ML-
Sys, 2021.

[187] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He, “Deepspeed:
System optimizations enable training deep learning models with over 100 billion pa-
rameters,” in SIGKDD (Tutorial Abstract), 2020.

[188] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand,
Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan Saeta,
Parker Schuh, Ryan Sepassi, Laurent El Shafey, Chandramohan A. Thekkath, and
Yonghui Wu, “Pathways: Asynchronous distributed dataflow for ml,” in MLSys, 2022.

[189] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-
tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar, “A system for massively
parallel hyperparameter tuning,” in MLSys, 2020.

[190] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama,
“Optuna: A next-generation hyperparameter optimization framework,” in SIGKDD,
2019.

[191] Andrew Or, Haoyu Zhang, and Michael J. Freedman, “Resource elasticity in dis-
tributed deep learning,” in MLSys, 2020.

[192] Chien-Chin Huang, Gu Jin, and Jinyang Li, “Swapadvisor: Push deep learning beyond
the gpu memory limit via smart swapping,” in ACM ASPLOS, 2020.

[193] Wikipedia, Round-robin scheduling, https://en.wikipedia.org/wiki/Round-
robin_scheduling.

[194] Andrew Or, Haoyu Zhang, and Michael Freedman, “Virtualflow: Decoupling deep
learning models from the underlying hardware,” in MLSys, 2022.

[195] Michael Kuchnik, Ana Klimovic, Jiri Simsa, Virginia Smith, and George Amvrosiadis,
“Plumber: Diagnosing and removing performance bottlenecks in machine learning
data pipelines,” in MLSys, 2022.

[196] Nvidia-occupancy, Achieved Occupancy, https://bit.ly/36S3bnG, 2020.

[197] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo,
“A unified architecture for accelerating distributed dnn training in heterogeneous
gpu/cpu clusters,” in USENIX OSDI, 2020.

[198] Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen, Seung-Hwan Lim, and Robert
Patton, “Fleet: Flexible efficient ensemble training for heterogeneous deep neural
networks,” in MLSys, 2020.

https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://bit.ly/36S3bnG


BIBLIOGRAPHY 92

[199] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Zhi Li Pengyang Hou, Yihui Feng,
Wei Lin, and Yangqing Jia, “Antman: Dynamic scaling on gpu clusters for deep
learning,” in USENIX OSDI, 2020.

[200] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee, and
Matei Zaharia, “Heterogeneity-aware cluster scheduling policies for deep learning
workloads,” in USENIX OSDI, 2020.

[201] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee,
Jaesik Choi, Sam H. Noh, and Young-ri Choi, “Hetpipe: Enabling large dnn train-
ing on (whimpy) heterogeneous gpu clusters through integration of pipelined model
parallelism and data parallelism,” in USENIX ATC, 2020.

[202] Lukasz Wesolowski, Bilge Acun, Valentin Andrei, Adnan Aziz, Gisle Dankel, Christo-
pher Gregg, Xiaoqiao Meng, Cyril Meurillon, Denis Sheahan, Lei Tian, Janet Yang,
Peifeng Yu, and Kim Hazelwood, “Datacenter-scale analysis and optimization of gpu
machine learning workloads,” IEEE Micro, vol. 41, 2021.

[203] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo Park,
“Elastic resource sharing for distributed deep learning,” in USENIX NSDI, 2021.

[204] CUDA multi-process Service, https://docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf, 2021.

[205] Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang, “Efficient
rematerialization for deep networks,” in NeurIPS, 2019.

[206] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt
Keutzer, Ion Stoica, and Joseph E. Gonzalez, “Checkmate: Breaking the memory
wall with optimal tensor rematerialization,” in MLSys, 2020.

[207] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared
Roesch, Tianqi Chen, and Zachary Tatlock, “Dynamic tensor rematerialization,” in
ICLR, 2021.

[208] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell, “Tictac: Acceler-
ating distributed deep learning with communication scheduling,” in MLSys, 2019.

[209] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger, Qirong
Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in USENIX OSDI, 2021.

[210] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timothy
G. Rogers, “Pagoda: Fine-grained gpu resource virtualization for narrow tasks,” in
Proceedings of Principles and Practice of Parallel Programming (ACM PPoPP), 2017.

[211] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in ACM ASPLOS, 2013.

[212] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and Lishan
Yang, “G-net: Effective gpu sharing in nfv systems,” in USENIX NSDI, 2018.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf


BIBLIOGRAPHY 93

[213] Apple newsroom, Apple unveils m1 ultra, the world’s most powerful chip for a personal
computer, https://www.apple.com/newsroom/2022/03/apple- unveils- m1-
ultra-the-worlds-most-powerful-chip-for-a-personal-computer/, 2022.

https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	Background
	Deep Learning Models
	Training
	Serving

	Data Parallelism
	Model Parallelism

	Faster Collective Communication
	Background
	Ring-based Collectives
	Topology Heterogeneity

	Motivation
	Trees vs Rings
	Micro-benchmarks

	Blink Design
	System Overview
	Packing Spanning Trees
	Approximate Tree-Packing
	Extending to Many-to-many Collectives
	Hybrid Communication
	DGX-2 and Multi-machine Settings

	Implementation
	Automatic Chunk Size Selection
	Link Sharing

	Evaluation
	Broadcast and AllReduce Micro-benchmarks
	NVLink Broadcast
	NVLink AllReduce
	NVSwitch AllReduce

	Hybrid Transfer
	End-to-end DNN Training
	Single Machine
	Multiple Machine


	Related Work
	Summary

	Eliminating Communication in Model Parallelism
	Background
	Related Work
	sensAI Method
	Overview
	Class-specific Pruning
	Binary Classifiers
	Grouped Classifiers

	Retraining
	Combining Results Back to N-way Predictions

	Evaluation
	Datasets and Models
	CIFAR-10 Results
	Pruning Policy Comparison
	sensAI Evaluation on VGG-19 and ResNet-164
	sensAI vs Model Parallel Baseline
	sensAI vs OVA
	sensAI Improvements on Efficient CNNs
	Binary Models Analysis

	CIFAR-100 Results
	sensAI vs single GPU Baseline
	sensAI vs Model Parallel Baseline

	ImageNet-1K Results
	sensAI vs Single GPU Baseline
	sensAI vs Model Parallel Baseline


	Discussion
	Extending to Model Training
	Method
	Results

	Extending to Fault Tolerance, Robotic Control, and Beyond
	Summary

	Improving on-device memory utilization
	Background
	Motivation
	Zoom-in Analysis over Data Parallel Training
	Sub-iteration Analysis on Model Parallel Training

	Wavelet Design
	Overview
	Wavelet in Data Parallelism
	Memory Overlapping
	Computation Overlapping
	Model Synchronization between Waves

	Wavelet in Model Parallelism
	Launching Multiple Tock-wave Tasks
	Model Partition Switching
	Inter-batch Synchronization


	Evaluation
	Data Parallelism
	Single-machine Multi-GPU
	Multi-machine Multi-GPU

	Model Parallelism
	Single-machine Multi-GPU
	Multi-machine Multi-GPU
	Overhead Analysis


	Related Work
	Summary

	Future Work and Conclusion
	Future Directions
	Concluding Remarks

	Bibliography

