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Abstract

Hallucination Is All You Need: Using Generative Models for Test Time Data Augmentation

by

Dhruv Jhamb

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor John F. Canny, Chair

Multimodal learning, which consists of building models that can take information from
di↵erent modalities as input, is growing in popularity due to its potential. Deep learning-
based multimodal models can be applied to a variety of downstream tasks such as video
description, sentiment analysis, event detection, cross-modal translation, and cross-modal
retrieval. Inherently, we can expect multimodal models to outperform unimodal models
because the additional modalities provide more information. The way humans experience and
learn is multimodal, as we combine multiple senses to experience the world around us. In the
ideal case, we assume completeness of data, meaning that all modalities are entirely present.
However, this assumption is not always guaranteed at test time, meaning that it is necessary
to create multimodal models robust to missing modalities in real-world applications. We
choose to address this missing modality problem during test time by comparing several
feature reconstruction methods on multimodal emotion recognition datasets.
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Chapter 1

Introduction

Within the field of artificial intelligence (AI), multimodal learning is becoming a popular
tool for solving di↵erent tasks. This is in part due to the abundance of available data that
comes from di↵erent modalities. While combining di↵erent modalities increases the amount
of knowledge models have access to, data incompleteness is a problem that diminishes these
gains in information. In many multimodal datasets and the real world, there will not be
complete modalities for each sample. In other work, generative modeling approaches, such
as autoencoders and GANs, have been used to reconstruct the missing modality. Other more
simple approaches have also been used as baselines, such as zero padding, which is padding
feature representations of the missing modality with the value zero.

The purpose of this project is to investigate the commonly used approaches for handling
missing modalities by measuring performance on a downstream task. This will allow us to
see the robustness of commonly used approaches in dealing with missing modalities during
test time. This project will investigate modality reconstruction, namely which approaches
can generate missing modality better than others, and see if trends hold across di↵erent
datasets.

The downstream task we will focus on is emotion recognition, using the multimodal
datasets: RAVDESS, eNTERFACE’05, and CMU-MOSI. Making emotion recognition our
task stems from it being an important prerequisite for AI systems in the future, with it being
a central part of natural human-computer interactions. Emotion recognition can be used for
tasks such as security measures, HR assistance, customer service, audience engagement,
video game testing, healthcare [9]. Human emotions can range from being simple to being
complex, with humans relying on visual and auditory cues to distinguish a person’s sentiment.
Therefore, we aim to achieve the highest performance we can and present approaches that
achieve state-of-the-art on RAVDESS and close to the state-of-the-art on eNTERFACE’05.

For feature reconstruction, several methods will be explored: zero padding, replacement
with training mean, replacement with random uniform values, gaussian mixture models
(GMMs), generative adversarial networks (GANs), variational autoencoders (VAEs), and
other sampling baselines that will be discussed in Chapter 3.
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Chapter 2

Related Work

2.1 Multimodal Learning

One of the biggest reasons for the relevance of multimodal learning is the number of tasks
that it can be applied to. Some popular applications are image description, video description,
visual question answering, speech synthesis, event detection, and emotion recognition [31].

Missing Modalities

Figure 2.1: Example of how a video can be split into di↵erent modalities for emotion recog-
nition [37].

Du et al. propose a semi-supervised multiview deep generative framework for multimodal
emotion recognition with incomplete data [7]. Our work is di↵erent because Du et al. only
consider the scenario where a certain modality is missing or incomplete. We allow for di↵erent
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modalities to be missing at the same time, which is closer to real-world situations. Ma et
al. address the problem of audio-visual emotion recognition with missing labels and missing
modalities [19]. They identify two challenges: 1) large amounts of emotional data have
missing labels, and 2) emotional data often has missing modalities. We specifically focus on
the second challenge of missing modalities and go more in depth than [19].

There has been a wide range of research into handling missing modalities. Tsai et al.
focus on addressing missing or noisy modalities during testing using a Multimodal Factoriza-
tion Model [34]. Shi et al. use a contrastive framework to make use of unpaired multimodal
data [28]. Mengmeng Ma et al. o↵er a flexible solution to handle severely missing modali-
ties during train time and test time using a feature reconstruction network to approximate
the missing modality [21]. Fei Ma et al. use an approach based on maximum likelihood
estimation to incorporate knowledge in modality-missing data [20].

Methods to deal with missing modalities can mainly be divided into three groups. The
first group features the data augmentation approach, which randomly ablates the inputs to
mimic missing modality cases [26]. The second group is based on generative methods to
directly predict the missing modalities given the available modalities [17, 5, 32, 7]. The
third group aims to learn the joint multimodal representations that can contain related
information from these modalities [1, 27, 13, 35]. Our work falls under the second group as
we use generative methods to reconstruct missing modalities.

We apply some of the common approaches from the above literature to our specific
datasets; however, we focus solely on missing modality during test time to better simu-
late real-world circumstances. We combine the notion of feature reconstruction methods
grounded in statistics like [21, 20] and re-use some of the baselines discussed in the above
papers.

Emotion Recognition

We specifically look into audio-visual emotion recognition since our chosen multimodal
datasets are focused on emotion classification. [37] uses multimodal fusion by applying a
Missing Modality Imagination Network that learns robust joint multimodal representations.
It can predict the representation of any missing modality given available modalities under
di↵erent missing modality conditions. In contrast with [37], we do not jointly learn multi-
modal representations and instead separately concatenate vision and audio representations
to create our features. However, we do use the same principle of “imagining” the missing
modality given available modalities.

2.2 Modality Generation

To address the problem of missing modality during test time, we employ feature reconstruc-
tion techniques to generate modalities. The data this project is concerned with are videos,
which by nature include both a visual and auditory modality. Vision and sound are closely
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related, sparking the question of whether accurate audio can be generated from a sequence
of image frames and whether accurate vision can be generated from audio.

Image Generation

Gregor et al. propose the architecture DRAW which uses a variational autoencoder to
improve upon state-of-the-art on MNIST [11]. Other work such as Oord et al.’s Pixel CNN
Decoder falls under conditional image generation. Their model can be conditioned on any
vector or latent embeddings generated by other networks [25]. Bodla et al. implement a
Fused GAN which fused a generator for unconditional image generation and a generator for
conditional image generation [4].

To generate the vision features, we implement a variety of methods, including a condi-
tional Variational Autoencoder (VAE) and a conditional Generative Adversarial Network
(GAN). We reason that generating the visual aspect given the audio would perform better
than using a non-conditional approach. In a sense, we hope these models can “imagine” the
visual data from the audio data.

Audio Generation

Zhou et al. use a hierarchical RNN to predict raw audio signals from inputs videos [40].
Generative models such as GANs are also commonly used to generate audio. Donahue et al.
use WaveGAN to generate audio suitable for sound e↵ect generation [6].

Intuitively, we expect that audio would be related to vision. In terms of a video, the
sound should align with what is occurring in each image frame. Zhu et al. define audio-
visual generation as trying to synthesize one modality (audio or visual) from the other
modality [41]. We pursue audio-visual generation through the methods we implement which
are discussed in Chapter 3, including a conditional VAE and a conditional GAN. Similar to
the case of image generation, we hope these models can “imagine” the audio data from the
visual data.
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Chapter 3

Methods

In this chapter, we will discuss how we extract multimodal features from raw video data, our
baseline with complete data, and feature reconstruction methods we use to handle missing
modalities at test time.

3.1 Feature Extraction

We use separate neural network architectures for vision features and audio features. We
concatenate our vision and audio features to get our multimodal features for each video.
Refer to 3.1 for a diagram of our feature extraction architecture.

Figure 3.1: Feature extraction pipeline from raw video data to multimodal features. Vision
and audio features are concatenated to get a feature vector of length 912.

All feature extraction networks we use are zero-shot, meaning they have not been exposed
to our data at all. With additional fine-tuning of these networks, we would expect overall
accuracy improvements, although the general trends between methods should still hold.
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Vision Features

To extract vision features, we use a PyTorchVideo model (SlowFast [8]) pre-trained on the
Kinetics 400 dataset. For the datasets RAVDESS and CMU-MOSI, we use SlowFast R50.
For the dataset eNTERFACE, we use SlowFast R101. Model-specific input transforms were
applied to the data following Torch Hub documentation. The output of the SlowFast models
is a tensor of length 400.

The decision to use SlowFast networks for extracting vision features stems from their
strong performance on the tasks action classification and detection in video. They achieve
state-of-the-art accuracy on major video recognition benchmarks: Kinetics, Charades, and
AVA [8].

We use SlowFast networks pre-trained on the Kinetics 400 dataset because we expect
the information that the network learns about videos to carry over to our task of sentiment
classification. Since we achieved close to state-of-the-art accuracy on RAVDESS and eNTER-
FACE while doing feature extraction in a zero-shot manner, it seems that this hypothesis
was correct.

Audio Features

To extract audio features, we use a Wav2Vec2.0 model (XLSR-Wav2Vec2) pre-trained in 53
languages and fine-tuned on English using the Common Voice dataset [12, 3]. The necessary
data pre-processing which is done before feeding the data into the Wav2Vec2.0 processor and
model is detailed in Chapter 4. The output of the Wav2Vec2.0 model is a tensor of length
512.

The decision to use Wav2Vec2.0 is because it achieves state of the art on the full Lib-
rispeech benchmark for noisy speech and works well for speech recognition with a limited
amount of labeled data [3].

We use fine-tuned Wav2Vec2.0 because we expect the information the network learns
about English speech to carry over to our task of sentiment classification. Since we achieved
close to state-of-the-art accuracy on RAVDESS and eNTERFACE while doing feature ex-
traction in a zero-shot manner, it seems that this hypothesis was correct.

3.2 Baseline for Classification

We use a basic feedforward neural network, or multilayer perceptron (MLP), for classification
on our chosen datasets. The MLP takes in the dataset features from the feature extraction
networks detailed above as input and outputs a classification.

Refer to 3.2 for a diagram of the MLP architecture. We train our MLP for 1000 epochs
using cross-entropy loss, the Adam optimizer with a learning rate of 1e-4 and a weight decay
of 1e-5, and a learning rate scheduler with a step size of 250 and a gamma value of 0.1.
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Figure 3.2: MLP architecture. The variable num classes depends on the choice of dataset.

3.3 Feature Reconstruction

Zero Padding

Perhaps one of the most straightforward ways to deal with missing data is to simply replace
the missing values with the value 0, which is referred to as zero padding. We use zero padding
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to serve as our baseline for our feature reconstruction methods detailed below. Intuitively, we
expect other feature reconstruction methods to outperform, or at least match, zero padding
because replacing missing feature values with 0 does not add any information that the
classification MLP can use.

Replacement with Training Mean

As a potential improvement over zero padding, we replace missing audio feature values in
our test data with the mean of the audio features of the training data and we replace missing
vision feature values in our test data with the mean of the vision features of the training
data.

Replacement with Random Values

As an alternative to zero padding, we replace missing feature values in our test data with
random uniform values between 0 and 1. Intuitively, we expect this to perform worse than
the previously mentioned approaches (zero padding and replacement with training mean)
because missing modalities are replaced with random noise, which could be misleading com-
pared to replacement with a constant value.

Gaussian Mixture Model

We use a Gaussian Mixture Model (GMM) with variational inference algorithms (Varia-
tional Bayesian Gaussian Mixture). The model infers an approximate posterior distribution
over the parameters of a Gaussian mixture model. Variational inference is an extension of
expectation-maximization that maximizes a lower bound on model evidence instead of data
likelihood. A Variational Bayesian Gaussian Mixture model avoids singularities often found
in expectation-maximization solutions.

We use scikit-learn’s implementation and specify the number of mixture components to
be 2 and the covariance type to be diagonal so that each component has its own diago-
nal covariance matrix. We fit the model on our train dataset and then sample from it to
reconstruct missing feature data in our test dataset.

We choose to use a GMM because it is an unsupervised approach that clusters data into
multiple Gaussian distributions. GMMs are used when there is uncertainty about the number
of clusters in the data and are useful for generating synthetic data points for data augmen-
tation. In our case, it serves as a more advanced model than the replacement techniques
described above.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of generative model introduced by
Goodfellow et al. [10]. GANs are inspired by the two-player zero-sum game and are trained
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under the notion of adversarial learning. A GAN is comprised of a generator and a discrim-
inator that are typically neural networks. The role of the generator is to generate new data
samples that capture the potential distribution of real samples. The role of the discrimina-
tor is to classify the real samples as real and generated samples as fake. In essence, both
networks are trained simultaneously and the generator tries to fool the discriminator.

The optimization process of GANs is a minimax game process and the goal is for the
generator to capture the distribution of real data samples. Typically, GANs are used to
generate realistic images, address the problem of insu�cient training examples for supervised
learning, and they are even applied to speech and language processing.

GANs are used for modality generation (image generation, voice generation, etc.) and
are a very popular generative approach. We choose to use them because of their popularity
for generative tasks and because other similar missing modality works also use them.

In our case, we choose to implement a standard GAN and conditional GAN, where we
generate one modality by conditioning on the other modality. In this sense, if we have the
audio modality but are missing the visual modality, then we will generate the visual modality
by sampling from a GAN conditioning on the audio modality. The process of conditioning
is done by feeding the conditioned variable c into the generator and discriminator with
the input data x. x and c are concatenated and then used as input to the generator and
discriminator networks. When sampling from the conditional GAN, we concatenate c with
random noise z to feed into the generator. The generator output is then returned.

We train a total of 3 di↵erent GANs for each dataset and seed:

1. AV-GAN (Standard GAN): in the case where both the visual and audio modality are
missing, sample from AV-GAN to generate both.

2. V-GAN (Conditional GAN): in the case where the visual modality is missing, sample
from V-GAN and use the audio modality as the conditional variable to generate the
visual modality.

3. A-GAN (Conditional GAN): in the case where the audio modality is missing, sample
from A-GAN and use the visual modality as the conditional variable to generate the
audio modality.

Refer to 3.3 for the architecture for the GANs we use. We train our GANs for 200 epochs
using binary cross-entropy loss and the Adam optimizer with a learning rate of 2e-4.

Variational Autoencoders

Variational Autoencoders (VAEs) are a type of generative model introduced by [15] that
are used for learning complex data distributions. VAEs are composed of an encoder and
a decoder that parametrize the variational approximate posterior and the conditional data
distributions in a latent variable generative model [16]. Typically, both the encoder and
decoder are neural networks.
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Figure 3.3: GAN architecture. For AV-GAN: in shape = 100, in shape 2 = 912. For V-
GAN: in shape = 612, in shape 2 = 1424. For A-GAN: in shape = 500, in shape 2 = 1312.

VAEs are deep Bayesian generative models that rely on the principles of amortized vari-
ational inference to approximate the complex distributions from which the observed data
originate. The ground-truth distribution p(x) is modeled by a parametric distribution p✓(x)
with a latent variable generative process that the encoder learns as seen below [16]. z is the
latent variable.

p✓(x) =
Z

p✓(x|z)p(z)dz (3.1)

Like GANs, VAEs are typically used for modality generation and are popular deep gen-
erative models. We choose to use them because of their popularity for generative tasks and
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because other similar missing modality works also use autoencoders.
In our case, we choose to implement a standard VAE and conditional VAE, where we

generate one modality by conditioning on the other modality. In this sense, if we have the
audio modality but are missing the visual modality, then we will generate the visual modality
by sampling from a VAE conditioning on the audio modality. The process of conditioning is
done by feeding the conditioned variable c into the decoder along with the Gaussian random
noise z. z and c are concatenated and then used as input to the decoder network. When
sampling from the conditional VAE, we concatenate c with random noise z to feed into the
decoder. The decoder output is then returned.

We train a total of 3 di↵erent VAEs for each dataset and seed:

1. AV-VAE (Standard VAE): in the case where both the visual and audio modality are
missing, sample from AV-VAE to generate both.

2. V-VAE (Conditional VAE): in the case where the visual modality is missing, sample
from V-VAE and use the audio modality as the conditional variable to generate the
visual modality.

3. A-VAE (Conditional VAE): in the case where the audio modality is missing, sample
from A-VAE and use the visual modality as the conditional variable to generate the
audio modality.

Refer to 3.4 for the architecture for the VAEs we use. We train our VAEs for 2000 epochs
using a loss function composed of KL divergence and Gaussian likelihood. We use the Adam
optimizer with a learning rate of 1e-4.

3.4 Oracle Models

The motivation behind implementing oracle models, that is models that assume complete
knowledge of the test data, is to establish an upper bound and lower bound for the afore-
mentioned feature reconstruction methods. Beyond this, the oracle models also serve to
facilitate an understanding of how feature reconstruction works across di↵erent possible sce-
narios: replacement with features from the same class, replacement with features from a
di↵erent class, and replacement with the class-conditioned mean. The results from using
these oracle models have implications on the total maximum and minimum performance we
can expect from feature reconstruction on our datasets.

Oracle: Sample From Same Class

To establish an upper bound for feature reconstruction, we create a method that assumes
complete knowledge of the test data. Assume a data sample d with label l has missing
feature data. This oracle model replaces the missing data with another data sample d0 with
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Figure 3.4: VAE architecture. For AV-VAE: in shape = 256. For V-VAE: in shape = 768.
For A-VAE: in shape = 656.

the same label l. The sample d0 is selected at random and both d and d0 are in the test
dataset.

Oracle: Sample From Di↵erent Class

As another guideline, we create a method that assumes complete knowledge of the test data
but behaves di↵erently from the previous method by serving as a lower bound. Assume a
data sample d with label l has missing feature data. This oracle model replaces the missing
data with another data sample d0 with some label l0 where l0 6= l. The sample d0 is selected
at random and both d and d0 are in the test dataset.

Oracle: Class-Conditioned Means

As an improvement over the method Replacement with Training Mean, we create another
method that assumes complete knowledge of the test data. For each class (label), the means
of the vision and audio features are computed. Let µvision(l) be the mean of the vision
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features with label l from the test data and µaudio(l) be the mean of the audio features with
label l from the test data. Assume a data sample d with label l has missing feature data.
This oracle model replaces the missing vision feature data with the value µvision(l) and the
missing audio feature data with value µaudio(l).
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Chapter 4

Experimental Design

4.1 Datasets

RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) contains
356 files (total size: 24.8 GB). The database contains 24 professional actors (12 female,
12 male), vocalizing two lexically-matched statements in a neutral North American accent.
Speech includes calm, happy, sad, angry, fearful, surprised, and disgusted expressions, and
song contains calm, happy, sad, angry, and fearful emotions. Each expression is produced at
two levels of emotional intensity (normal and strong), with an additional neutral expression.
All conditions are available in three modality formats: Audio-only (16bit, 48kHz .wav),
Audio-Video (720p H.264, AAC 48kHz, .mp4), and Video-only (no sound) [18].

We choose to use the audio-video files (visual and audio modalities) with the task of
classifying emotion from 8 categories: calm, happy, sad, angry, fearful, surprise, and disgust.

eNTERFACE’05

The final version of the database contains 42 subjects, coming from 14 di↵erent nationalities.
Among the 42 subjects, 81% were men, while the remaining 19% were women. 31% of the
total set wore glasses, while 17% of the subjects had a beard. Each subject was told to
listen to six successive short stories, each of them eliciting one of the following emotions:
happiness, sadness, surprise, anger, disgust, and fear. They had then to react to each of the
situations and two human experts judged whether the reaction unambiguously expressed the
emotion. If this was the case, the sample was added to the database. If not, it was discarded
[22].

We used the video files (visual and audio modalities) with the task of classifying emotion
from 6 categories: happiness, sadness, surprise, anger, disgust, and fear.
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CMU-MOSI

The Multimodal Opinion-level Sentiment Intensity dataset (CMU-MOSI) is a standard
benchmark for multimodal sentiment analysis. It is a collection of 2199 opinion video clips,
with each video being annotated with a sentiment in the range [-3, 3]. The dataset is rigor-
ously annotated with labels for subjectivity, sentiment intensity, per-frame, and per-opinion
annotated visual features, and per-milliseconds annotated audio features [36].

While the dataset contains visual, audio, and text modalities, we choose to only use the
visual and audio modalities. We address the task of classifying emotion from 7 classes (-3,
-2, -1, 0, 1, 2, 3) and the simpler task of classifying samples as one of two classes: positive
(� 0) or negative (< 0).

4.2 Data Processing

The raw multimodal data are video files (.avi or .mp4 files depending on the dataset). The
following sections detail how the multimodal features (concatenation of vision and audio
features) are created.

Vision Features

To extract vision features, we use the SlowFast model and follow the PyTorch documentation
for how to load the video and define the input transform (which is model-specific). A clip
from the beginning of the video is loaded (clip duration is defined in PyTorch documentation).
That clip is then transformed and then fed to the SlowFast model to get a feature vector of
length 400. This process is repeated for every video in the dataset and these features are
saved.

Audio Features

To extract audio features, we use Wav2Vec2.0. We use librosa to load in the video with a
sampling rate of 16000 and convert the signal to mono to get an audio time series. We feed
this into the Wav2Vec2.0 processor and then feed the processor’s output into the Wav2Vec2.0
model. We take the mean of the model’s output across dimension 1 to get a feature vector
of length 512. This process is repeated for every video in the dataset and these features are
saved.

4.3 Experiment Design

To split our datasets into a train and test set, we assign 20% of the videos to be in our test
set and the remaining 80% to make up our train set.
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To simulate missing modality during test time, we will drop data from the test set of
each of our datasets. For each data sample, modality m 2 {vision, audio} is dropped with
probability pm. We drop a modality by dropping its entire part of the feature representation.
For example, if we drop the vision modality, then we remove the 400 elements corresponding
to the vision features from the complete multimodal feature vector. We run experiments
with di↵erent values of pm for m 2 {vision, audio}. We evaluate the feature reconstruction
methods detailed in Chapter 3 by evaluating the trained MLP on the test set.

For the feature reconstruction methods using GANs and VAEs, we follow a specific
process for replacing the missing modality. Depending on the modality/modalities missing,
we sample from one of our GANs/VAEs to replace the modality. We do this sampling process
20 times and use our classification MLP to predict each sample. We then take the max vote
of the 20 predictions and have that be our predicted label. Refer to Algorithm 1 for the
pseudocode of this sampling process.

Algorithm 1 GAN/VAE Sampling Algorithm
for inputs 2 dataset do

maskaudio  random() < pa . pa is the probability of masking the audio
maskvision  random() < pv . pv is the probability of masking the vision
for i 2 [0, 20) do

if maskaudio and maskvideo then

inputs  AV Model.sample()
end if

if maskaudio and not maskvideo then

inputs  A Model.sample(vision features)
end if

if not maskaudio and maskvideo then

inputs  V Model.sample(audio features)
end if

predictions.append(mlp(inputs))
end for

if max vote(predictions) == correct label then
running corrects  running corrects + 1

end if

end for

When running experiments, we run each experiment with 5 di↵erent seeds: 42, 1, 2, 3,
4. In our results in Chapter 5, we report accuracy with a 95% confidence interval.
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Chapter 5

Results and Analysis

Before we begin, we will define a legend to explain the terms used in our results section.
Refer to 5.1 for this legend.

5.1 Results

We run multiple experiments to measure the performance of each of our methods on our
datasets. We vary the probability of dropping a modality for each test data sample and record
the accuracy of our MLP (trained on complete training data) on the partially corrupted test
data.

Results can be found in the following tables: 5.2, 5.3, 5.4, 5.5, 5.6.

Table 5.1: Legend

Term Definition

pa Probability of dropping audio modality
pv Probability of dropping vision modality
ZP Zero Padding
MR Replacement with Training Mean

Random Replacement with Random Uniform Values
GMM Gaussian Mixture Model
GAN Generative Adversarial Network
VAE Variational Autoencoder
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Table 5.2: Baseline Accuracies for Trained MLP

Dataset Baseline Accuracy With Complete Test Data

RAVDESS 91.85 ± 0.50
eNTERFACE’05 77.07 ± 1.43

CMU-MOSI (7 classes) 29.05 ± 1.24
CMU-MOSI (2 classes) 67.05 ± 1.24

Table 5.3: RAVDESS Feature Reconstruction Method Accuracies

pa pv ZP MR Random GMM GAN VAE

0.25 0.25 73.52 ± 1.98 73.73 ± 1.82 70.22 ± 1.67 73.28 ± 1.19 73.32 ± 1.54 79.14 ± 1.42
0.50 0.50 53.93 ± 3.71 53.85 ± 3.75 49.61 ± 1.89 53.52 ± 1.77 54.83 ± 3.52 62.28 ± 1.31
0.75 0.75 32.46 ± 4.26 32.59 ± 4.05 31.20 ± 1.86 34.42 ± 1.58 33.52 ± 3.05 40.45 ± 1.32
1.00 1.00 11.00 ± 3.67 11.00 ± 3.67 14.38 ± 0.80 14.18 ± 1.25 11.00 ± 3.67 14.99 ± 2.02

Table 5.4: RAVDESS Oracle Methods

pa pv Sample From Same Class Sample From Di↵erent Class Class-Conditioned Means

0.25 0.25 89.08 ± 0.67 68.39 ± 1.70 93.97 ± 0.14

0.50 0.50 85.17 ± 1.43 47.05 ± 1.81 95.52 ± 0.48

0.75 0.75 85.42 ± 1.60 28.92 ± 1.40 97.47 ± 0.35

1.00 1.00 83.87 ± 1.24 13.60 ± 0.26 100.00 ± 0.00

Table 5.5: eNTERFACE Feature Reconstruction Method Accuracies

pa pv ZP MR Random GMM GAN VAE

0.25 0.25 62.01 ± 2.59 61.70 ± 2.62 59.07 ± 2.83 61.78 ± 1.88 61.39 ± 2.11 65.71 ± 2.18
0.50 0.50 45.71 ± 2.46 45.25 ± 1.98 40.93 ± 2.01 45.95 ± 1.70 45.41 ± 2.84 49.58 ± 2.15
0.75 0.75 29.65 ± 2.78 29.58 ± 2.56 28.96 ± 2.77 29.58 ± 1.90 30.58 ± 3.28 32.59 ± 3.09
1.00 1.00 17.99 ± 3.08 17.99 ± 3.08 16.06 ± 4.21 17.76 ± 2.13 17.99 ± 3.08 15.44 ± 1.71

Table 5.6: eNTERFACE Oracle Methods

pa pv Sample From Same Class Sample From Di↵erent Class Class-Conditioned Means

0.25 0.25 74.98 ± 2.83 59.77 ± 1.49 81.00 ± 1.46

0.50 0.50 70.27 ± 1.94 43.17 ± 2.85 86.33 ± 0.70

0.75 0.75 68.26 ± 2.90 29.34 ± 2.24 91.58 ± 1.16

1.00 1.00 67.41 ± 2.92 15.91 ± 1.34 100.00 ± 0.00
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Table 5.7: CMU-MOSI (7 Classes) Feature Reconstruction Method Accuracies

pa pv ZP MR Random GMM GAN VAE

0.25 0.25 25.27 ± 1.43 25.36 ± 1.44 25.86 ± 1.00 25.23 ± 0.71 23.95 ± 1.10 26.73 ± 1.31
0.50 0.50 21.73 ± 2.42 21.82 ± 2.67 21.00 ± 0.48 23.14 ± 0.89 19.73 ± 2.11 25.00 ± 1.23
0.75 0.75 17.59 ± 4.39 17.86 ± 4.79 19.23 ± 1.90 19.86 ± 0.61 16.68 ± 3.42 20.14 ± 1.57
1.00 1.00 12.91 ± 1.43 12.91 ± 6.69 17.05 ± 1.51 18.50 ± 1.60 12.91 ± 6.69 18.05 ± 1.17

Table 5.8: CMU-MOSI (7 Classes) Oracle Methods

pa pv Sample From Same Class Sample From Di↵erent Class Class-Conditioned Means

0.25 0.25 26.91 ± 1.10 24.59 ± 1.27 28.59 ± 1.99

0.50 0.50 26.23 ± 1.84 21.27 ± 1.40 31.41 ± 3.44

0.75 0.75 23.77 ± 0.53 19.23 ± 1.81 36.05 ± 6.54

1.00 1.00 22.91 ± 2.44 18.77 ± 2.80 41.68 ± 11.54

Table 5.9: CMU-MOSI (2 Classes) Feature Reconstruction Method Accuracies

pa pv ZP MR Random GMM GAN VAE

0.25 0.25 59.73 ± 1.58 59.41 ± 1.38 61.27 ± 1.05 62.36 ± 1.09 62.14 ± 1.74 64.68 ± 0.96
0.50 0.50 55.91 ± 2.38 55.77 ± 2.44 53.27 ± 1.23 57.64 ± 1.85 55.14 ± 1.08 64.59 ± 1.34
0.75 0.75 51.32 ± 1.34 51.32 ± 1.39 49.45 ± 1.86 53.05 ± 2.08 51.09 ± 2.42 56.82 ± 1.98
1.00 1.00 47.68 ± 3.78 47.68 ± 3.78 46.05 ± 0.99 50.64 ± 0.99 47.68 ± 3.78 50.55 ± 1.67

Table 5.10: CMU-MOSI (2 Classes) Oracle Methods

pa pv Sample From Same Class Sample From Di↵erent Class Class-Conditioned Means

0.25 0.25 64.32 ± 1.86 62.55 ± 2.10 63.09 ± 1.33
0.50 0.50 62.05 ± 0.87 57.41 ± 0.69 60.05 ± 1.99
0.75 0.75 63.68 ± 2.77 53.64 ± 1.30 54.27 ± 1.95
1.00 1.00 62.77 ± 3.03 50.0 ± 1.83 47.68 ± 3.78
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5.2 Analysis

Baseline Accuracies

Before analyzing our feature reconstruction methods, we will briefly discuss our baseline
accuracies with complete test data and compare our approach with other work.

RAVDESS

We achieve state-of-the-art performance on the RAVDESS dataset. We report an accuracy
of 91.85%. Middya et al. use separate feature extractor networks for audio and video data,
and then fuse these features in a multimodal model to achieve 86% accuracy [23]. 81%. [30,
2] only use audio and an MLP to achieve 81% accuracy and 85% accuracy respectively.

eNTERFACE’05

We achieve close to state-of-the-art performance on the eNTERFACE’05 dataset. We report
an accuracy of 77.07%. Tiwari et al. use S-DLA to extract features and feed those into a
1-D CNN, resulting in an accuracy of 86.41% [33]. Zhi et al. use three attention modules
inserted into a backbone network to achieve 88.33% [39].

CMU-MOSI

Unfortunately, our feature extraction and emotion classification architecture does not per-
form as well on the CMU-MOSI dataset compared to existing work. We report an Acc-7 of
29.05% and an Acc-2 or 67.05%. Song et al. use ALBERT and PANNs on the raw text and
audio respectively to create multimodal features and achieve an accuracy of 84.98% in the 2
class scenario [29]. Zhao et al. use MAG+ (multimodal adaptation gate attached to BERT
and XLNet) to get 87.60% in the 2 class scenario [38]. Miyazawa et al. use pre-trained
Transformer models to achieve an Acc-7 of 56.27% and an Acc-2 of 86.89% [24].

Dataset Trends for Feature Reconstruction

Across all three datasets (RAVDESS, eNTERFACE, and CMU-MOSI), the same general
trends hold with regard to the feature reconstruction methods. The only noticeable di↵erence
across datasets is that for CMU-MOSI with 2 classes, the results of the Oracle methods di↵er.

In terms of the feature reconstruction methods, the only method that o↵ers a significant
improvement in performance after feature reconstruction for all datasets is the VAE. For
the dataset RAVDESS, across di↵erent values of pa and pv, the VAE achieved performance
gains over the other methods of between 6 to 12%. For eNTERFACE, the VAE achieved
performance gains over other methods of 3 to 4%. The oracle models performed identically
across datasets. For CMU-MOSI (7 Classes), the VAE achieved performance gains over other
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methods of 2 to 4%. For CMU-MOSI (2 Classes), the VAE achieved performance gains over
other methods of 5 to 9%.

For CMU-MOSI specifically, the GMM and GANs achieved small performance gains over
zero padding, mean replacement, and random replacement for di↵erent masking probabilities.
These performance gains ranged from 2 to 3%.

Replacement with 0, training mean, random values

These methods are simple approaches for feature reconstruction that are good baselines for
other more complicated approaches. Across all datasets, replacing the missing modality with
0 results in the same performance as replacing the missing modality with the training mean.
This makes intuitive sense as our trained MLP contains a batch normalization layer, which
standardizes layer inputs by keeping track of the mean and standard deviation of input
variables. Therefore, replacing missing modalities with a constant value results in the same
performance regardless of the value since inputs are standardized. Replacing the missing
modality with uniform random values results in worse performance across di↵erent values
of pa and pv, around a 3-5% drop compared to replacement with 0 or the training mean
for RAVDESS and eNTERFACE. Replacement with random values achieves comparable
performance to zero padding and mean replacement for CMU-MOSI, perhaps indicating that
our multimodal feature extraction architecture does not perform as well on this dataset.

GMM

For RAVDESS and eNTERFACE, sampling from a GMM results in similar performance to
replacement with 0 and the training mean. This is likely because the GMM learns a normal
distribution with a mean close to the modality-specific training means. So sampling from
this distribution should result in values close to the training means and therefore similar
performance to replacement with training mean.

In the case of CMU-MOSI (7 Classes), the GMM achieves a 2% improvement for pa, pv =
0.50 and pa, pv = 0.75. For CMU-MOSI (2 Classes), the GMM achieves a 2 to 3% improve-
ment across all values of pa and pv.

VAE

Interestingly enough, the only method with a significant improvement over replacing the
missing modality with 0’s was using VAEs. This is perhaps due to the VAE architecture being
able to better learn representations of our feature data. If the quality of latent representation
of our multimodal data is good, then it makes sense that sampling the VAEs results in
modality representations that are more accurate than the other methods.
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VAE vs. GAN

While using the VAEs for feature reconstruction resulted in a performance improvement, the
GANs were unable to replicate this. This could be because for our use case, the multimodal
data we have is more suited to the Gaussian distribution that the VAE’s encoder learns.
We hypothesize that the VAEs are easier to train, hence why our VAEs can learn how to
generate missing modalities better than the GANs. In order to achieve a similar performance
boost, we would have to tune the GANs and potentially modify our training process, which
is more di�cult.

Oracle Models

For the model Oracle: Class-Conditioned Means, performance on RAVDESS and eNTER-
FACE improves as pa and pv increase. This is the only method for which this phenomenon
occurs. What this means is that replacing missing modalities with their class-conditioned
means performs very well. This approach removes any sampling variance and as a result the
trained MLP successfully classifies a majority of the test data (achieving 100% accuracy in
the case where all modalities are dropped). Therefore, we can say that the MLP has trouble
with variance in the feature data.

On CMU-MOSI (7 Classes), Oracle: Class-Conditioned Means achieves better perfor-
mance as pa and pv increase. However, on CMU-MOSI (2 Classes), the class-conditioned
means model has worse performance as pa and pv increase. Furthermore, the model Oracle:
Sample From Same Class outperforms Oracle: Class-Conditioned Means across all values of
pa, pv. The reasons for this are not obvious but we hypothesize that in the case of having
only 2 classes, the class-conditioned means are too similar and not distinct enough for the
MLP to distinguish them.

For the dataset RAVDESS, our feature reconstruction methods all outperform Oracle:
Sample From Di↵erent Class, which is our theoretical minimum performance. The worst
method is replacement with random uniform values, which still outperforms Oracle: Sample
From Di↵erent Class. Intuitively, we expect a method that adds no new information (or
simply noise) to still outperform a method that adds misleading information (the case for this
specific Oracle model). The feature reconstruction methods all achieve worse performance
than Oracle: Sample From Same Class, which is our theoretical maximum performance. We
expect none of our methods to reach this Oracle model’s performance because it assumes
knowing the labels of the test data. However, it does tell us that while the best feature
reconstruction methods cannot exactly match the original MLP accuracy, they can get within
a reasonable delta. This is an incentive to continue working on the problem of missing
modality reconstruction since theoretically, it can result in close to the original performance.

For the dataset eNTERFACE, almost all of our feature reconstruction methods outper-
form Oracle: Sample From Di↵erent Class. Surprisingly, replacing with random uniform
values performs worse than sampling from a di↵erent class. However, unlike in RAVDESS,
the di↵erence in accuracy between Oracle: Sample From Di↵erent Class and the feature
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reconstruction methods is smaller. While the performance improvement is smaller, it is en-
couraging that the methods we present are still above the theoretical minimum bound of
performance. This decreased performance delta could be dataset-dependent, as perhaps it is
tougher for our generative models to learn representations for the eNTERFACE data. Hence
why using a GMM and GANs performs worse than zero padding.

For the dataset CMU-MOSI (7 Classes), our feature reconstruction methods generally
fall between Oracle: Sample From Di↵erent Class and Oracle: Sample From Same Class.
However, perhaps because the baseline accuracy on this dataset is low, the di↵erence in
performance between the two theoretical bounds is small. Some methods are below our
theoretical lower bound for certain probability values.

For the dataset CMU-MOSI (2 Classes), our feature reconstruction methods generally
fall below our theoretical lower bound. Every method except for the VAEs is slightly below
Oracle: Sample From Di↵erent Class. Surprisingly, the VAEs outperform our theoretical
upper bound for pa, pv = 0.25 and pa, pv = 0.50. These trends di↵er from our results
on RAVDESS and eNTERFACE. We expect that this is because our feature extraction
pipeline does not result in accurate features for CMU-MOSI, hence why we get atypical
performance. However, even on this dataset, we show the success of our VAEs in handling
missing modality at test time as we outperform the other feature reconstruction methods
and even the theoretical upper bound.
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Chapter 6

Future Work

While we cover multiple multimodal datasets and generative methods, there are still some
intriguing extensions that can be explored. This work is solely concerned with multimodal
emotion recognition datasets, but it would be interesting to see the addition of more datasets
and compare the results. A dataset like Kinetics [14] would be an ideal choice because it is a
human action video dataset. Videos are multimodal in nature, containing vision and sound
modalities. Kinetics-400 contains 400 human action classes, and it would be interesting
seeing if the feature reconstruction methods presented in this work perform well for other
dataset choices.

Additionally, we focus on missing modality strictly during test time. Other work has
investigated training models with less data by removing portions of modalities in the training
data. Removing portions of the data at train time should result in a more robust model that
can handle missing modality during test time more e↵ectively. Training with less data, for
example dropping 50% of the input data, and then running the same experiments described
in this work to see how that a↵ects results would be a logical next step.

One limitation of this current work is that our feature extraction process is zero shot,
meaning that neither our vision nor audio feature extraction networks are trained on any
of the multimodal data we use from RAVDESS, eNTERFACE, or CMU-MOSI. While we
still present close to state-of-the-art results despite this, fine-tuning our feature extraction
networks would improve our MLP baseline accuracy. A second limitation is that the per-
formance of our GANs/VAEs could likely be improved further with more tuning. While
the VAEs achieve the best performance for feature reconstruction, the GANs are essen-
tially equivalent to zero padding. Intuitively, with more tuning, we would expect our GAN
method to outperform other methods such as zero padding, replacement with training mean,
replacement with random values, and sampling from a GMM.
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Chapter 7

Conclusion

In this work, we examined missing data at test time in the multimodal setting. We investigate
multimodal datasets with the task of emotion recognition: RAVDESS, eNTERFACE’05, and
CMU-MOSI. Real-world AI systems are dependent on taking in multiple streams of data that
often come from di↵erent modalities. In systems being used for tasks that are necessary to be
performed correctly, such as autonomous vehicles, a data collection device failing should not
drastically impact the system. We examine several feature reconstruction methods to deal
with losing modalities with varying probabilities. As we show, VAEs are able to minimize
the loss in performance from losing modality data. Additionally, we present state-of-the-art
performance on RAVDESS and close to state-of-the-art performance on eNTERFACE. Our
novel classification architecture (feature extraction networks and MLP) outperforms existing
work in the domain of multimodal emotion recognition. More work still needs to be done
and pursuing the extensions from Chapter 6 is a logical next step. Handling loss of modality
in multimodal deep learning is still very much an open problem that if solved can lead to
the more widespread acceptance of multimodal AI systems.
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