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Abstract

Interpreting batch correction of single-cell variational inference at scale

by

Katherine Wu

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Nir Yosef, Chair

Single-cell RNA sequence datasets often contain unwanted technical variation from di↵er-
ences in sample collection, protocol, sequencing depth, experimental labs, and biological
factors. These nuisance factors, known as batch e↵ects, are especially common in newer
datasets that span multiple conditions and hundreds of donors. To correct for such batch ef-
fects, integration methods like single-cell variational inference (scVI) combine samples of data
and produce a self-consistent version for downstream analysis. In this thesis, we benchmark
scVI’s current performance on complex integration tasks of 100+ donor datasets, evaluating
its ability to both remove batch e↵ects and retain important biological information. We fur-
ther propose the addition of a donor embedding to the model architecture, and demonstrate
that the embedding is e↵ective at interpreting batch correction for confounding covariates.
Finally, we assess scVI integration in relation to gene expression through a scoring protocol
that measures the batch sensitivity of each gene.
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Chapter 1

Introduction

1.1 Background

scRNA-seq technology and advances

Single-cell RNA sequencing (scRNA-seq) is a method that enables gene expression mea-
surement at the single-cell resolution. Prior to single-cell sequencing, it was impossible
to decouple inter-sample variation from intra-sample variation— all cell types were mixed
together, so it was not possible to understand relationships between individual genes and
specific biological phenomena. With scRNA-seq, it is now possible to distinguish cell type
clusters, arrange populations of cells according to novel hierarchies, and identify cells tran-
sitioning between states. This can lead to a clearer view of the dynamics of tissue and
organism development, as well as structures within cell populations that were previously
seen as homogeneous [8].

To sequence cells in this manner, the scRNA-seq procedure involves taking cells from a
tissue and adding each cell to an individual droplet of water. A droplet-specific barcode is
added to the mRNA in order to trace back which molecule came from which cell. Finally, the
mRNA is translated into cDNA and sequenced [3]. The result is a gene expression matrix
Xng that contains the counts for the expression of every gene g in cell n.

This data allows researchers to understand the many facets of a cell’s unique molecular
identity. Cells can be categorized by cell type, which can further be classified into finer
subtypes through a hierarchical taxonomy. They can also be categorized by more transient
properties, referred to as cell states. For example, we can look at the temporal progression
of a cell during di↵erentiation or the temporal vascillation of a cell during the cell cycle. We
can also look at spatial context, such as its physical position in the tissue and the identity
of neighboring cells [17]. Together these factors span the space of possible cell states and
can be likened to a superposition of ’basis vectors,’ each determining a di↵erent aspect of
cellular organization and function.

Beyond cellular identity, another goal of single cell sequencing is to construct a compre-
hensive atlas of all human cell types and subtypes, including activity states, physical loca-
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tions, and lineage relationships through development [11]. The Human Cell Atlas project,
for example, aims to transform our understanding of the organization and function of tissues
in health and disease. Researchers have also used scRNA-seq to explore cellular interactions
in immunology [15], tumor evolution [5], and other subfields of biology [1].

Technical challenges in single-cell data

The analyses that biologists wish to perform on scRNA-seq data can be separated into several
main categories [19]:

• Filtering: Checking if a cell is in a droplet or if it is just noise, and filtering genes to
know which ones have biological signal

• Clustering: Finding what cell types are present in the experiment

• Di↵erential Expression: Finding what genes are expressed in those cells

• Disentanglement: Separating technical variance from biological signal

• Imputation: Establishing whether a zero in a matrix is a technical or biological zero

• Multiple donor scenarios: Understanding heterogeneity of samples with multiple hu-
man donors (especially with di↵erent clinical phenotypes)

This thesis will focus on the challenge of separating technical variance from biological signal
in multiple donor scenarios. In single-cell datasets with a large number of donors, data can
be confounded by technical variables such as site and method of sampling. Samples are also
a↵ected by variables of biological interest, such as a donor’s age, sex, and clinical status.

scVI

Single-cell variational inference, or scVI, is a fully probabilistic approach for the normaliza-
tion and analysis of scRNA-seq data. Unlike other models that assume a generalized linear
model, scVI is based on a hierarchical Bayesian model with conditional distributions speci-
fied by deep neural networks. The transcriptome of each cell is encoded through a nonlinear
transformation into a low-dimensional latent vector of normal random variables. This latent
space is then decoded by another nonlinear transformation to generate a posterior estimate
of the distributional parameters of each gene in each cell [6]. scVI stands out from other
methods by modelling two key noise factors in scRNA-seq data— variation in library size
and batch e↵ects. It also is able to ensure consistency and interpretability by performing
a range of analysis tasks using the same generalized model, whereas other methods require
di↵erent models for di↵erent tasks. Finally, while other methods can only be applied to tens
of thousands of cells, scVI can be applied to hundreds of thousands of cells.
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1.2 Problem Formulation

As mentioned earlier, current datasets often include samples generated from multiple labs
and across multiple conditions. Because cells come from di↵erent sources, unwanted technical
variation arises from di↵erences in sequencing depth, sequencing lanes, read length, plates or
flow cells, protocol, experimental labs, sample acquisition and handling, sample composition,
reagents or media, and sampling time [7]. This increased complexity results in nonlinear and
nested batch e↵ects in single-cell data.

Data integration methods such as scVI have been created to mitigate these batch e↵ects;
they combine datasets or samples of high-throughput sequencing data to produce a self-
consistent version of the data for downstream analysis. In this thesis, we have four goals:

• Evaluate scVI’s performance on integration tasks of 100+ donor datasets: we will
choose and compute metrics for the chosen datasets, as well as qualitatively evaluate
performance through latent space visualizations.

• Interpret scVI batch e↵ects: how well does scVI capture batch e↵ects from di↵er-
ent donors/sites/other covariates? The addition of the batch embedding will help us
understand the donor latent space.

• Interpret scVI batch correction for individual genes: what genes are most sensitive to
batch? Are there biological or technical properties that make a gene more prone to
batch e↵ects?

• Improve scVI performance: by switching from a one-hot encoding to a batch embed-
ding, we hope to reduce the time and memory constraints required to train the scVI
model.

1.3 Related Work

In addition to scVI, several other data integration methods exist for biologists to integrate
samples of data and remove batch e↵ects. In particular, it is found that BBKNN, Scanorama,
and scVI perform well on complex integration tasks, while Seurat v3 performs well on simpler
tasks with distinct biological signals [2, 6, 7, 9]. Harmony and scVI are partially e↵ective
for scATAQ-seq data integration [7]. Below is a summary of the popular data integration
methods used in scRNA-seq.

Scanorama

Scanorama uses panorama stitching of scRNA-seq data to correct for batch e↵ects through
similar cells identified across batches [2]. Approximate SVD is used to transform gene ex-
pression data into a lower dimensional subspace. Then, an approximate nearest neighbor
search is performed to identify mutually linked cells across batches. It searches across all
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batches and determines the priority of dataset merging based on percentage of matching
cells in the batch. Finally, batches are merged into panoramas using a weighted average of
vectors between local matching cells.

BBKNN

Batch balanced k-nearest neighbors (BBKNN) first computes the k-nearest neighbors in a
lower dimensional principal component space. The nearest neighbors are identified in a
batch-balanced manner using Euclidean distances. It transforms the neighbor information
into connectivities to construct a graph that links cells together across batches [9]. The
resulting graph is used for clustering and other standard workflows.

Harmony

Harmony is an unsupervised joint embedding method that uses iterative clustering to align
cells from di↵erent batches. The algorithm combines the batches and projects the data into a
lower dimensional space using PCA. It uses an iterative procedure consisting of 4 steps: first
the cells are grouped into multiple-dataset clusters using a variant of soft k-means clustering.
Then Harmony computes a global centroid for each cluster and a centroid for each dataset.
A correction factor is then computed for each dataset. Finally, the corection factor is used
to correct each cell with a cell-specific factor. This procedure is applied iteratively until
convergence. The resulting normalized Harmony vectors can be used as input for analysis
workflows [4].

Seurat 3

Seurat 3 uses canonical correlation analysis to compute the linear combinations of genes with
maximum correlation across batches. It then identifies mutual nearest neighbors (MNNs)
of similar cell states across batches in the normalized CCA subspace. The shared nearest
neighbor graphs are used to assess cell type similarity. A correction vector is computed us-
ing the di↵erence in expression profiles between cells to perform the data transformation [16].

1.4 Contributions

In this thesis, we benchmark scVI on large single-cell donor studies and evaluate its ability
to account for batch e↵ects in complex integration tasks. We further propose the addition of
a batch embedding to scVI’s existing model architecture. Finally, we explore how the batch
embedding can be used to understand batch correction with multiple confounding covariates.
We structure the thesis as follows:
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• In section 2, we provide a description of the metrics used to benchmark SCVI on
large donor datasets. We further describe scVI’s existing architecture and present
the addition of the batch embedding. Finally, we describe the experiment setup for
evaluating scVI’s performance.

• In section 3, we describe the datasets used to evaluate scVI. We then present an
evaluation of batch e↵ects and runtime. We interpret the batch embedding space
using UMAP visualizations of the batch embedding. Finally, we discuss genes that are
”sensitive to batch.”
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Chapter 2

Methodology

2.1 Metrics

The accuracy of our single cell generative model is determined by both its ability to re-
move batch e↵ects and its ability to conserve biological variance. We implement the series
of metrics listed below to evaluate scVI’s performance on both axes. For removal of batch
e↵ects, batch silhouette width (ASW) measures batch e↵ect removal per cell identity label
and batch local inverse Simpson’s Index (iLISI) measures batch e↵ect removal independent
of cell identity. For conservation of biological variance, we have the following label conserva-
tion metrics: cell type local inverse Simpson’s Index (cLISI), Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI), and cell type silhouette width. Finally, we evaluate
the model on scalability and usability through measurement of CPU time and memory use.

Silhouette Score

The silhouette score, or average silhouette width (ASW), is calculated using the mean within-
cluster distance and mean nearest-cluster distance for each sample [13]. We define the
silhouette coe�cient for a sample as

s(i) =
b(i)� a(i)

max (a(i), b(i))

where a(i) is the average distance from point i to all points in the same cluster and b(i) is the
lowest average distance from i to all points in the same cluster c among all clusters C. Thus,
the silhouette width ranges between �1 and 1, where 1 represents dense and well-separated
clusters and 0 or �1 correspond to overlapping clusters or strong classification.

ASW is used for determining the degree of separation of the clusters, and the distances
are defined based on scVI embedding output. In this case, ”clusters” refer to the groupings
of cells of the same cell type or batch label. We calculate silhouette width for both cell type
labels and batch labels. Within cell type ASW, the silhouette score is linearly scaled to
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range [0, 1] using the following equation:

ASWc =
ASW+ 1

2

where larger values indicate that cells of di↵erent types make well-separated clusters. For
batch ASW, we again scale to range [0, 1] using

ASWb = 1� |ASW|

In this case, a score of 1 would indicate that the batches are ideally mixed, while a score of
0 would indicate strongly separated, not mixed batches.

LISI

LISI can also be used to assess both batch mixing (iLISI) and cell type separation (cLISI).
This metric is measured by looking at the neighborhood of each cell to see what labels
they come from. More specifically, we count the number of cells that can be drawn from a
neighbor list before one label is observed twice [7]. This is a score from 1 to N , where N

is the total number of labels in the data set. In the case of iLISI, we use batches as the
labels. Ideally they should come from batches representative of the overall population, so a
higher score represents better batch mixing. For cLISI, we use cell type labels, so a lower
score represents better cell type separation. Both cLISI and iLISI are rescaled by min/max
observed median scores across tasks.

As an example, suppose that one of the columns in the metadata is a categorical variable
with three categories. If LISI is approximately equal to 3 for an item in the matrix, that
means that the item is surrounded by neighbors from all 3 categories. On the other hand, if
LISI is approximately equal to 1, then the item is surrounded by neighbors from 1 category.

Adjusted Rand Index

The rand index measures similarity between two clusters by considering all pairs of samples
and counting the number of pairs that are assigned to the same cluster when given the
predicted and true clusterings [10]. To compute the Adjusted Rand Index, we adjust the
raw RI score to account for chance: ARI = RI�E[RI]

max(RI)�E[RI] . The index ranges from 0 to 1,
with 0 indicating random labelling and 1 indicating that the clusterings are identical. In
our case, we compare SCVI’s labels with the labels given by the NMI-optimized Louvain
clustering computed on the integrated dataset.

ARI =

P
i,j

�
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Normalized Mutual Information

Normalized mutual information also compares the overlap of the SCVI cell type labels with
the Louvain clusters computed on the integrated dataset [6]. It ranges from 0 to 1, where 0
indicates an uncorrelated clustering and 1 indicates a perfect match. It is scaled using the
mean of entropy terms for cell type and cluster labels.

NMI =
I(P ;T )p
H(P )H(T )

where H is Shannon entropy, I is mutual entropy, and P,T are the empirical categorical
distributions for predicted and true clusterings.

2.2 scVI Model Architecture

scVI models the observed expression xng of each gene g in cell n as a sample drawn from
a zero-inflated negative binomial (ZINB) distribution p(xng|zn, sn, ln) conditioned on the
batch annotation sn of each cell and two latent random variables. One latent variable,
ln, is a one-dimensional Gaussian that represents nuisance variation due to di↵erences in
capture e�ciency and sequencing depth. In the most recent version of scVI, ln is treated
as an observed variable instead, equal to the total RNA UMI (Unique Molecular Identifier)
count of the cell. UMIs are ”molecular barcodes” added to sequencing libraries before PCR
amplification, so UMI count represents the absolute number of observed transcripts per
cell. The second latent variable, zn, is a low-dimensional vector of Gaussians representing
the remaining variation, and is intended to reflect the biological di↵erences between cells.
It represents each cell as a point in a low-dimensional latent space that can be used for
clustering and visualization [6].

We use a neural network to map the latent variables to the parameters of the ZINB
distribution.

Generative Process

zn ⇠ Normal(0, I)

ln ⇠ LogNormal(lTµ sn, l
T
�2sn)

⇢n = fw(zn, sn)

⇡ng = f
g
h(zn, sn)

xng ⇠ ZINB(ln⇢n, ✓g, ⇡ng)

fw(zn, sn) : R
d ⇥ 0, 1K ! �G�1

fh(zn, sn) : R
d ⇥ 0, 1K ! (0, 1)T
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Figure 2.1: scVI model architecture [Image taken from Lopez et al., 2018]

Figure 2.2: scVI generative process [Image taken from scvi-tools.org]
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As described above, gene expression depends on cell specific latent variable zn and batch
id sn. The library size variable ln depends on the empirical mean and variance of the log
library size over cells, lµ and l�2 . It should be noted that ln is not the log library size itself,
but a scaling factor that correlates strongly with library size. The generative process uses
two neural networks fw and fh. The fw network decodes the denoised/normalized gene
expression, which by default is a vector that sums to 1 within a cell. It is constrained during
inference to encode the mean proportion of transcripts expressed across all genes through
a softmax activation in the last layer. The fh network decodes whether or not a particular
entry has dropped out due to technical e↵ects, otherwise known as the the non-zero inflation
probability. Both fw and fh can be interpreted as expected frequencies. The expression data
xng are generated from a zero inflated negative binomial distribution parameterized by its
mean, inverse dispersion, and non-zero-inflation probability1.

The two neural networks allow us to go beyond a linear model framework to better encode
gene expression. Each network has one, two, or three fully connected layers. The activation
functions are ReLU functions. Weights for some layers are shared between fw and fh.

Inference

We wish to determine the posterior distribution p(xng|zn, ln, sn), which combines prior knowl-
edge from the latent space with information acquired from data matrix X. However, we
cannot directly apply Bayes rule because the denominator p(xn|sn) in intractable. We can
instead apply variational inference to learn the model parameters and approximate pos-
terior distribution. First we integrate out the latent variables wng, hng and yng because
p(xng|zn, ln, sn) has closed-form density. We can now approximate the posterior p(zn, ln|xn, sn)
using our variational distribution q(zn, ln|xn, sn), assuming that:

q(zn, ln|xn, sn) = q(zn|xn, sn)q(ln|xn, sn)

The variational distribution q(zn|xn, sn) is a Gaussian with a diagonal covariance matrix,
mean, and covariance given by an encoder network applied to (xn, sn). The two priors in
this case are xn, the expression data of cell n, and sn, the batch id of cell n. The variational
distribution q(ln|xn, sn) is a log normal distribution with a scalar mean and variance also
given by an encoder network applied to (xn, sn).

The variational lower bound is as follows:

logp(x|s) � Eq(z,l|x,s)logp(x|z, l, s)
�DKL(q(z|x, s)||p(z))
�DKL(q(l|x, s)||p(l))

To optimize the lower bound, we use the analytic expression for p(x|z, l, s) and for the
Kullback-Leibler divergences. Coupled with neural network approximation, this allows us

1Adopting scVI’s current best practices, my work uses a negative binomial distribution instead of the
original ZINB distribution.
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Figure 2.3: scVI generative model architecture with batch embedding

to e�ciently carry out inference with arbitrary models, including those with conditional
distributions specified by neural networks. We also subsample from the training set to
increase stochasticity. At each iteration, we focus on a randomly sampled subset of the data
and do not need to go through the whole dataset. Since the number of genes is limited to a
few thousands, these mini-batches of cells can be handled by a GPU.

We use an Adam optimizer with ✏ = 0.01 and batch normalization during learning. We
optimize the objective function until convergence.

2.3 Batch Embedding

In the current architecture, we represent each donor as a one-hot encoding. For each sn in S

we represent the donor by a vector of size 1⇥ |S|, and all elements of the vector are 0 except
for the element at index n. In this representation, we feed in a one-hot encoding matrix of
size n ⇥ |S| into the decoder, where n is the number of samples and |S| is the number of
donors.

One drawback to this representation is its large size— as the dataset size increases, the
size of the one-hot encoding matrix scales linearly to the number of donors sampled. While
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Figure 2.4: Batch embedding visualization

this would not be a issue for single-cell datasets with a few donors, there is a decrease in
performance when we scale up to the 100+ donor datasets that are becoming more common
in single-cell studies. Furthermore, it treats each donor as an independent entity with no
relation to other donors, when in reality we know that donors are interconnected to other
donors through covariates such as age and health status. Indeed, what we really desire is
some notion of similarity between donors that would allow us to encode each donor into the
matrix more e�ciently. For example, we can encode di↵ering levels of similarity based on
their age, gender, health conditions, and geographic location, among other factors. If we
are able to encode similarities between donors into our matrix representation before we pass
it into the decoder, we can reduce the size of the matrix as well as discover the greatest
sources of variation and similarity between donors. This will further allow us to investigate
the extent to which non-biological variation, i.e. technical variation from di↵erent sampling
methods or sites, plays a role in the generation of the final latent space.

To achieve this goal, we propose a batch embedding that condenses this input matrix
from size n⇥ |S| into a matrix of size n⇥ d, where d is the dimension of the embedding (we
use a default of d = 5 in our model). Instead of using a one-hot encoding for every donor,
we represent each donor by a vector of size 1⇥d. We can think of each dimension as a donor
attribute that the model learns, i.e. an attribute that explains the variation in donors well.
Thus, we treat the batch embedding as parameters in our model that get updated during
training.

2.4 Experiment Setup

To evaluate batch e↵ects, we run the original scVI model on subsets of the donor population
ranging from 10 donors to 100 donors, going in increments of 10 donors. We repeat this
procedure for 3 trials per subset. In doing so, we can see how the number of donors in the
dataset a↵ects the batch e↵ects in the resulting data after training. For the Stephenson
dataset (see description of all datasets below), we use initial clustering as the label
key and patient id as the batch key. For the Ren dataset, we use cell type as the label
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key and patient as the batch key. In both cases, the batch key is chosen to reflect the
assumption that each patient comes from a di↵erent batch. While other covariates such as
smoking status, age, and site could have been used, we chose to use the patient variable
in this case because it the most obvious ”batch” in the data. For label key, we chose the
variable corresponding to the sample’s cell type labelling.

First we subset the AnnData to only contain observations from the randomly chosen set
of d donors. We then subset the AnnData to the top 1200 highly variable genes, and filter
genes to only include genes with a count greater than three using the scanPy library [18].
We then train the SCVI model on the subsetted AnnData using the default parameters: 128
nodes per hidden layer, 10 dimensional latent space, 1 hidden layer for encoder and decoder
NNs, and 0.1 dropout rate. We use a constant negative binomial dispersion parameter per
gene across cells and a Normal latent distribution. We use a negative binomial to represent
gene likelihood. During training, we record runtime and memory usage of the model.

After the model is trained, we compute a k nearest neighbor graph on the latent space
and use UMAP to estimate connectivities of the data points. To visualize the generated
latent space, we plot the UMAP and use colors corresponding to the covariates we wish
to investigate. We also run PCA on the original data with 50 principle components and
compute the kNN graph for the PCA-generated latent space. We then plot the PCA UMAP
as a measure of comparison for the SCVI generated latent space.

To evaluate the SCVI model, we compute metrics on the resulting AnnData. Removal
of batch e↵ects is evaluated through the Batch ASW and iLISI metrics. Conservation of
biological variance is measured through cLISI, ARI, NMI, and cell type ASW.
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Chapter 3

Results

3.1 Datasets

COVID-19 Immune Features (Ren 2021)

This dataset contains 284 single-cell RNA sequence samples from 196 COVID-19 patients and
controls, totalling 1.46 million cells [12]. Data was gathered from 39 institutes or hospitals
from di↵erent regions in China. It includes 171 COVID-19 patients, with 22 patients with
mild or moderate symptoms, 54 hospitalized patients with severe symptoms, 95 recovered
patients, and 25 healthy controls. The cohort ranges from age 6 to 92 years old, with aged
patients enriched in severe groups. No significant di↵erent between sex of patients was
noted between moderate and severe groups. From the 284 samples, 249 were obtained from
peripheral blood mononuclear cells (PBMCs) with or without further sorting for B or T
cells, and 35 were from the respiratory system, with 12 bronchoalveolar lavage fluid (BALF)
samples, 22 sputum samples, and 1 sample of pleural fluid mononuclear cells (PFMCs).

Most samples were subjected to scRNA-seq based on the 10x Genomics 5’ sequencing
platform to generate both gene expression and T cell receptor or B cell receptor data. In total,
1,462,702 single cells were obtained, with an average of 4,835 unique molecular identifiers
(UMIs) representing 1,587 genes. 64 cell types were derived. It was noticed that CD8+,
CD4+ T, and plasma B cells were more enriched in BALF than PBMCs. Additionally,
proliferative and activated B and T cells and macrophages were more enriched in severe
COVID-19 patients in the disease progression stage.

Single-cell multiomics analysis of the immune response in
COVID-19 (Stephenson 2021)

Single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor anal-
yses were performed for over 780,000 peripheral blood mononuclear cells from a cohort of
130 patients with varying severities of COVID-19 [14]. Data was gathered from 3 UK centers
in Newcastle, Cambridge, and London, and controls included healthy volunteers, individu-
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als with non-COVID-19 severe respiratory illness, and healthy volunteers administered with
IV-LPS as a surrogate for inflammatory response. In total, 781,123 cells from 143 samples
were included in the dataset.

Cells were manually annotated based on RNA expression of known marker genes sup-
ported by surface protein expression of markers employed in flow cytometry. 18 cell subsets
were defined, with an additional 27 cell states identified after subclustering. A relative
expansion of proliferating lymphocytes, proliferating monocytes, platelets, and mobilized
hematopoietic stem and progenitory cells was observed with increasing COVID-19 severity.
Plasmablasts and B cells were also expanded in severe and critical disease.

3.2 Batch E↵ect Evaluation

Visualization of Latent Space

Comparing the UMAPs of the PCA-generated latent space and the scvi-generated latent
space, we see that scVI successfully clusters cell types for both datasets, across all numbers
of donors (3.1, 3.7). In addition, we can observe how covariates contribute to batch e↵ects by
looking at the scVI latent space through the lens of the donors in which the cells came from.
We first examine the features qualitatively to understand the major confounding factors in
the data.

In the Stephenson dataset, we plot the UMAPs for patient ID, COVID-19 status, sex,
site, and age. From the patient ID UMAP (3.10), we see some stratification by patient in the
upper right cluster as well as the bottom right cluster. In particular, the patches of red and
yellow along the left side of the CD4 and CD8 cell clusters indicate that there is technical or
biological variation from those donors. To investigate this further, we can observe the sites
that the data was gathered from (3.6). This UMAP plots the scVI latent space and colors
the cells by the site of the donors, which come from Cambridge, Newcastle, and Sanger.
From this plot, we see that the variation from earlier is explained by technical variation.
The Sanger donor cells are all stratified to the left side of the CD cell clusters, while the
Ncl donor cells are all stratified to the right. For the B cell cluster, the left side contains
Ncl cells while the right contains Cambridge and Sanger cells. The Cambridge cells tend to
be in the middle of the cells of the other two sites, and more mixed with the cells of the
Sanger site. There also appears to be fewer Cambridge cells overall; the CD14 and CD18
cluster on the bottom right has very few blue patches. To round out the analysis, we explore
other covariates such as the clinical status, sex, and age of the donors. From Figure 3.5, we
see that the large patch of ’nan’ values stratified in the clinical status UMAP is similar to
the stratification in the site UMAP: the Sanger site produces many ’nan’ values for clinical
status. Looking at sex and age, both covariates appear to be well mixed within their cell
type clusters.

We run similar analyses for the Ren dataset, which also contains gene expression data for
a large sample of COVID-19 donors. In Figure 3.10, we observe that the patient ID UMAP
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Figure 3.1: Stephenson PCA cell type UMAP for 50 donors

also exhibits standalone patches of color indicating clusters that are not well mixed. For
example, there are large yellow, magenta, and green patches in the monocyte cluster and
smaller unique patches of color along the edges of the CD4 and CD8 clusters. These indi-
cate that certain donors exhibit variation, either biologically or due to technical error, that
stratify them from the other donors in the study. Looking at the UMAPs for batch and city
(3.11), we see that some of the variation can be explained by the di↵erent sample sites that
the data was gathered from. In particular, the Beijing and Harbin sites are stratified from
the rest and from their own patches on the edges of the cell clusters. Looking at the sample
type and COVID-19 severity of the donors, we can get a clearer picture of what contributes
to this city-to-city variation. More specifically, we see that severe/critical COVID patients
are stratified away from mild/moderate ones in all of the major clusters. This corresponds
to the variation we saw earlier with Beijing and Harbin sites. We also see the exact same
stratification with sample type, in that it appears that severe/critical patients had frozen
PBMC samples while mild/moderate patients had fresh PBMC samples taken.

Metrics

We now observe the overall benchmarking metrics across di↵erent numbers of donors. The
goal of this experiment is to discover if batch e↵ects increase or decrease as a result of scaling
up to larger donor datasets. In particular, the hypothesis is that having more donors in the
experiment would lead to more sources of technical variation (i.e. donors across various
cities, ages, severities, etc.), and thus create greater batch e↵ects in the data that could be
captured through the benchmarking metrics.

Table 3.1 contains the cell type ASW, batch ASW, iLISI, and cLISI metrics for the batch-
embedding scVI latent space computed on the Stephenson dataset, with metrics computed
using ’site’ as the batch. Metrics were calculated using 3 trials per subset, and averaged for
every subset. We note that the cell type ASW remains relatively neutral as the number of
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Figure 3.2: Stephenson PCA patient ID UMAP for 50 donors

Figure 3.3: Stephenson scVI cell type UMAP for 50 donors

Figure 3.4: Stephenson scVI patient ID UMAP for 50 donors
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Figure 3.5: Stephenson scVI COVID status and sex UMAPs for 50 donors

Figure 3.6: Stephenson scVI site and age UMAPs for 50 donors

Figure 3.7: Ren PCA cell type UMAP for 50 donors
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Figure 3.8: Ren PCA patient ID UMAP for 50 donors

Figure 3.9: Ren scVI cell type UMAP for 50 donors

Figure 3.10: Ren scVI patient ID UMAP for 50 donors
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Figure 3.11: Ren scVI batch and city UMAPs for 50 donors

Figure 3.12: Ren scVI sample and severity UMAPs for 50 donors

donors increases: there is an increase from 10 to 20 donors, but after that it fluctuates in
the range between .53 and .54 and does not exhibit a noticeable pattern. We can interpret
this to mean that scVI’s overall ability to cluster cell types remains the same, and does not
get significantly worse as we scale to 100+ donor datasets. Looking at batch ASW, there is
a similarly large drop from 10 to 20 donors, and then the rest of the values fluctuate around
.40 to .44. We notice a slight downward trend in that the values are generally higher in
the 10-40 donor range, and decrease as we scale up to 50-100 donors. More specifically, we
see the 10-40 donor range has values ranging from .43 to .46, while the 50-100 donor range
drops into the .40-.42 values. While the decrease in batch ASW score is not extreme, there
is some small drop in the scores as we scale to more donors. This is a small indication that
batch e↵ects increase as a result of the increasing numbers of donors. We can also observe
the iLISI and cLISI metrics: similar to batch ASW, iLISI begins relatively high at 1.53 and
decreases as we go into the 50-100 donor range. cLISI fluctuates from 1.36 to 1.43, but does
not exhibit a pattern as the number of donors increases.
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We can similarly observe the metrics for the Ren dataset in Table 3.2. We see that
cell type ASW fluctuates from .53-.55 while batch ASW fluctuates from .45 to .50. There
is a drop from 10 to 20 donors, but the rest of the values are small fluctuation. Unlike
the Stephenson metrics, batch silhouette width for this dataset does not exhibit a noticeable
pattern; the values are as high around 20-30 donors as they are around 80-90 donors and tend
to jump up and down regardless of number of donors. iLISI values paint a similar story: the
values jump from 1.31 to 1.41 without much pattern. cLISI values fluctuate without pattern
as well. The main takeaway from these metrics is that there is not a noticeable increase in
batch e↵ects as a result of scaling to one hundred donors, which is what we initially expected.
Instead, scVI’s batch correction ability remains the same even with many more batches.

donors cell type ASW batch ASW iLISI cLISI
10 0.518 0.464 1.530 1.432
20 0.539 0.436 1.310 1.379
30 0.540 0.437 1.280 1.375
40 0.535 0.434 1.259 1.393
50 0.534 0.414 1.142 1.372
60 0.536 0.421 1.165 1.379
70 0.535 0.410 1.114 1.374
80 0.534 0.421 1.124 1.365
90 0.534 0.406 1.129 1.373
100 0.530 0.399 1.094 1.381

Table 3.1: Metrics for Stephenson 21 scVI with batch embedding, measured using batch key
= ’site’

3.3 Run Time Evaluation

From our runs of the batch embedding model and vanilla scVI model for the Stephenson
dataset, we find that the batch embedding version always trains around 620-640 seconds
while the vanilla model varied from 600-900 seconds. Since computational power of the
cluster played a role in training time, it is hard to tell whether di↵erences in time are due
to the usage of the cluster or to changes in the model. We would need to run further
benchmarking on a machine to confirm if the batch embedding model improves the training
time. However, we note that in both cases the train time is not significantly long— a variation
in train time from 10 to 15 minutes is reasonable for the typical scVI user.
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donors cell type ASW batch ASW iLISI cLISI
10 0.546 0.501 1.307 1.225
20 0.549 0.465 1.324 1.190
30 0.547 0.473 1.302 1.203
40 0.544 0.469 1.409 1.221
50 0.545 0.452 1.272 1.226
60 0.539 0.457 1.304 1.189
70 0.534 0.446 1.322 1.204
80 0.549 0.475 1.392 1.205
90 0.542 0.463 1.366 1.203
100 0.553 0.470 1.308 1.199

Table 3.2: Metrics for Ren 21 scVI with batch embedding, measured using batch key =
’sample type’

3.4 Interpretation of the Batch Embedding Space

Latent Space Visualization

Beyond memory improvements, the batch embedding gives us the opportunity to interpret
the latent space formed by the donors and look for associations in covariate variables. As an
example, the batch embedding UMAP for the Stephenson dataset with 100 donors is shown
in figure 3.13. To plot this graph, we took the n ⇥ 5 matrix outputted by the inference
step during training and projected the values onto a UMAP, coloring each donor by its
COVID status, age, site, and sex. We see that the UMAPs for age and sex are well mixed,
as expected, while site is the covariate that has the largest stratification. In particular, we
notice that the Ncl and Cambridge sites are in completely separate clusters, and the Sanger
site is also not a part of these clusters. Looking at COVID status, the variety in possible
statuses makes it di�cult to notice specific clusters for any one status. However, we can
again note that ’nan’ values are separated from the rest, and correspond to the same donors
as the Sanger site.

Analyzing the Ren dataset batch embedding in figure 3.14, we see that donors are clus-
tered by batch and city. Similar to our earlier analysis of the overall latent space, we see that
sample type is a major covariate contributing to technical variation: the fresh and frozen
PBMC samples are not well mixed in the batch embedding. Severity appears more well
mixed in this case.

Overall, we note that this qualitative batch embedding analysis is useful for understanding
donor stratification in large single-cell studies. It provides a visualization of how the scVI
model groups batches of cells and accounts for batch e↵ects during inference. From this
analysis, we find that scVI batch correction is generally successful— the batch embedding
captures nuisance variation such as batch and site, while ignoring biological variation such
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(a) Covid Status (b) Age

(c) Site (d) Sex

Figure 3.13: Batch embedding for Stephenson with 100 donors

as COVID-19 status.

Metrics

To understand how well the batch embedding captures variation in the donors, we calculate
the batch silhouette metric for each batch embedding from 10 donors to 100 donors. From
table 3.3, we see that ASW initially increases from 10-30 donors, but then fluctuates for the
remaining portion of the experiment. The fluctuation in ASW scores does not point to a
clear pattern as number of donors increases. We note that this may be because the clustering
of the donors is already well separated in the batch embedding even in the smaller donor
subsamples.

3.5 Sensitivity to Batch in Gene Expression Data

In this section, we want to see how gene expression is actually being corrected, and which
genes tend to be more corrected than others. We will use the procedure described in algo-
rithm 1 to obtain a relative ”sensitivity to batch” ranking of the genes. We then use the
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(a) Batch (b) City

(c) Sample Type (d) Severity

Figure 3.14: Batch embedding for Ren with 100 donors

donors ASW
10 0.478
20 0.484
30 0.531
40 0.526
50 0.539
60 0.539
70 0.534
80 0.524
90 0.528
100 0.548

Table 3.3: Stephenson batch embedding silhouette width

consensus ranking algorithm described in algorithm 2 to compile the overall rank of each
gene from ten trial runs of the S2B algorithm. By finding the mean and standard deviation
of each rank, we can see how stable the S2B scores are for di↵erent groups of donors. This
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will tell us if S2B is really a property of the gene or whether what we’re seeing is just random
fluctuation. Once we have these aggregate S2B values, we will look at what characterizes
these genes, and see if any patterns appear for ”batchy” genes. More specifically, we can look
at mean gene expression values, expression variance, gene sequence length, and biological
interpretation of individual genes.

To summarize, the overall goal of this section is to expose how batch correction works in
the scVI model in the context of gene expression. By computing this ”sensitivity to batch”
value, we can find which genes are more batch corrected than others in the scVI model and
understand reasons underlying the need for batch correction. For scVI users, this could be
a useful metric alongside benchmarking metrics to understand the gene expression outputs
of the scVI model.

Algorithm 1 Sensitivity to Batch Algorithm

1: procedure s2b(S) . S is a subset of donors
2: for g 2 G do
3: for c 2 C do
4: s batch of cell c
5: p[c] = E[P (gc|s)] . Generate using scVI decoder
6: end for
7: Rg  std(p)/mean(p)
8: end for
9: return R . R contains the relative s2b rank of every gene g

10: end procedure

Algorithm 2 Consensus Ranking Algorithm
Input: n, number of trials, and d, number of donors in each subset S

1: procedure consensus(n, d)
2: for i 2 [1, n] do
3: S  random(d)
4: Ri  s2b(S)
5: end for
6: sort R by mean(R)
7: return top 10 genes in R
8: end procedure

S2B genes after scVI batch correction

Table 3.4 displays the genes with the highest sensitivity to batch (e.g., the genes that were
most batch corrected in the Stephenson dataset). Next to the name of each gene, we have
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Gene Mean Rank Std of Rank
MTRNR2L8 1190.9 8.70
MYOM2 1185.6 10.73
GP1BB 1183.5 18.64
NAPSA 1173.0 29.66
IL1R2 1154.6 18.24
AL133415.1 1146.7 52.48
AC007952.4 1143.2 56.09
TRAV30 1140.7 70.91
IGHV1OR15-1 1137.9 31.87
CH25H 1127.6 49.94

Table 3.4: Relative rank of highest ”sensitive to batch” genes

the mean rank and standard deviation of rank. In figure 3.15, we can see a visualization
of the consensus ranking genes: the genes with the highest mean rank, or the most batchy
genes, also had the lowest standard deviation in rank. This indicates the highest S2B genes
remained consistent across di↵erent samples of donors. In this case, the highest S2B genes
are the points on the rightmost bottom corner of the plot. We can also notice that for
genes without a very high or low rank, the standard deviation is quite high; there is little
agreement across di↵erent samples because all genes in the middle had similar S2B values.

We can now look into the characteristics of the genes that are sensitive to batch. From
table 3.5, we note that the expression mean and variance for gene MTRNR2L8 are high, but
other genes do not exhibit particularly high or low levels of gene expression (mean expression
is 0.015, mean variance is 0.076).

We can further interpret gene expression through stratification by site and clinical status,
two covariates that we determined were large sources of technical and biological variance.
From figure 3.16, we can see four of the genes that exhibited the biggest di↵erence across
sites. MTRNR2L8, AL133415.1, and AC007952.4 all had much greater expression in samples
from the Cambridge site than the other two sites. IL1R2 had much greater expression in the
Ncl site than the other sites. From figure 3.17, we see genes stratified by clinical COVID-19
status.
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Figure 3.15: Consensus ranking of genes

Gene Expression mean Expression variance
MTRNR2L8 1.860 157.5
MYOM2 0.074 0.263
GP1BB 0.011 0.072
NAPSA 0.041 0.264
IL1R2 0.060 0.325
AL133415.1 0.028 0.073
AC007952.4 0.114 0.573
TRAV30 0.017 0.072
IGHV1OR15-1 0.015 6.101
CH25H 0.006 0.015

Table 3.5: Gene expression of highest ”sensitive to batch” genes
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(a) MTRNR2L8 (b) AL133415.1

(c) AC007952.4 (d) IL1R2

Figure 3.16: S2B gene expression grouped by site

(a) MTRNR2L8 (b) MYOM2

Figure 3.17: S2B gene expression grouped by clinical status
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Chapter 4

Conclusion

4.1 Summary

In this thesis, we demonstrate that scVI does not degrade in performance when scaling up
to datasets with 100+ donors. Barring a small decrease in ability to remove batch e↵ects,
scVI continues to capture biological variation and cluster the data well. By adding the batch
embedding to the model architecture, we can identify donor-level phenotypes and find out
which covariates contribute most to batch e↵ects in the data. This allows us to understand
how the scVI model works under the hood by revealing how scVI encodes batches (either
donors or other covariates) and corrects for batch-related variation. Finally, with the addition
of the ”sensitivity to batch” score for genes, we can identify the genes that are most batch-
corrected and investigate patterns that may cause a gene to become more batch sensitive.
In addition, this provides useful functionality for scVI users who may want to take note of
or remove the most ”batchy” genes from their gene expression analysis.

4.2 Code Contributions

• Batch embedding: The batch embedding option is implemented as part of the scvi-tools
codebase and can be enabled during training with the parameter use batch embedding
set to True. In addition, functions were added for the user to retrieve the batch
embedding and individual donor encodings from the model.

• Metrics: All metrics used during benchmarking are implemented as util functions
within scvi-tools and can be used for any trained model here. We also created an
experiment pipeline for large donor studies.

• Sensitivity to batch: We implemented the function get batchy genes(), which returns
genes that are most sensitive to batch along with their sensitivity score.

https://github.com/scverse/scvi-tools/blob/batch_embedding/scvi/module/_vae.py
https://github.com/scverse/scvi-tools/blob/batch_embedding/scvi/utils/_metrics.py
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• Large donor analysis tutorial: Finally, here is a jupyter notebook tutorial demonstrat-
ing usage of the above features— batch embedding, metrics, ”sensitivity to batch” gene
analysis— on one example dataset.

https://colab.research.google.com/drive/1Kut2cj_OHMd__0aOc7PIfXsnbgJIADzV?usp=sharing
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