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Abstract

We characterize the topology and geometry of the set of all weight vectors for which a linear neural network
computes the same linear transformation W. This set of weight assignments is called the fiber of W, and it
is embedded in a Euclidean weight space of all possible weight vectors. The fiber is an algebraic variety
with singular points, hence it is not a manifold. We show a way to stratify the fiber—that is, to partition the
algebraic variety into a finite set of manifolds of varying dimensions called strata. We derive the dimensions
of these strata and the relationships by which they adjoin each other. (Although they are disjoint, some strata
lie in the closures of other, higher-dimensional strata.) Each stratum is smoothly embedded in weight space,
so it has a well-defined tangent space (which is a subspace of weight space) at every point. We show how to
determine the subspace tangent to a specified stratum at a specified point on the stratum, and we construct
an elegant basis for that subspace.

To help achieve these goals, we first derive a Fundamental Theorem of Linear Neural Networks, analogous to
Gilbert Strang’s Fundamental Theorem of Linear Algebra. We show how to decompose each layer of a linear
neural network into a set of subspaces that show how information flows through the neural network—in
particular, tracing which information is annihilated at which layers of the network, and identifying subspaces
that carry no information but might become available to carry information as training modifies the network
weights. We summarize properties of these information flows in “basis flow diagrams” that reveal a rich
and occasionally surprising structure. Each stratum of the fiber represents a different pattern by which
information flows (or fails to flow) through the neural network.

We use this knowledge to find transformations in weight space called moves that allow us to modify the
neural network’s weights without changing the linear transformation that the network computes. Some
moves stay on the same stratum, and some move from one stratum to another stratum of the fiber. In this way,
we can visit different weight assignments for which the neural network computes the same transformation.
These moves help us to construct a useful basis for the weight space and a useful basis for each space tangent
to a stratum.
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1 Introduction

In its simplest form, a linear neural network is a sequence of matrices whose product is a matrix. The first
matrix linearly transforms an input vector; each subsequent matrix linearly transforms the vector produced
by the previous matrix; and the composition of those transformations is also a linear transformation, rep-
resented by the product of the matrices. But this definition is incomplete: the term of art neural network
typically also entails software that computes the sequence of vectors, an optimization algorithm that trains
the network by choosing good weights, and more. So here is a computational definition: a linear neural
network is a neural network in which there are no activation functions. (If you prefer, the activation function
at the output of each unit is just the identity function.) Each layer of connections (edges) in the network is
represented by a matrix—for layer k of edges, we call it Wk. Given an input vector x, the network computes
the linear transformation

y = Wx, where W = µ(WL,WL−1, . . . ,W2,W1) = WLWL−1 · · ·W2W1.

The matrices are numbered in the order they are applied in computation. For brevity, we omit added terms,
which do not appreciably affect our results.

In this paper, we study µ−1(W), the set of all factorizations of a matrix W into a product of matrices of
specified sizes. This set is infinite and it is an algebraic variety—the set of all solutions of a system of
polynomial equations. Trager, Kohn, and Bruna [16] call µ−1(W) the fiber of W. Said differently, we
wish to study the set of all choices of linear neural network weights such that the network computes the
linear transformation W. The fiber has a complicated topology and geometry: it is a union of manifolds of
varying dimensions. Understanding the fiber has applications in understanding gradient descent algorithms
for training neural networks—but it is also a beautiful mathematical problem in its own right.

We also study how to move along the fiber. This study is motivated by our belief that movements along a fiber
can sometimes help a neural network to improve its training speed, and that performing such movements is
practical even when computing W explicitly is not.

Let us give a simple example of a fiber. Suppose every matrix is square and W is invertible; then every
factor matrix Wi must also be invertible. The set of all real, invertible d × d matrices is called the general
linear group GL(d,R), which is a d2-dimensional manifold embedded in Rd×d. GL(d,R) has two connected
components: one for matrices with positive determinants and one for negative determinants. To factor W,
we can choose each matrix Wi to be an arbitrary member of GL(d,R) except for one matrix that is uniquely
determined by the other choices. The fiber is

µ−1(W) = {(WL,WL−1, . . . ,W2,W−1
2 W−1

3 · · ·W
−1
L W) : WL,WL−1, . . . ,W2 ∈ GL(d,R)}.

This fiber is a smooth, (d2(L − 1))-dimensional manifold with topology GL(d,R) ×GL(d,R) × . . .GL(d,R)
(with L − 1 factors) and hence 2L−1 connected components (reflecting the signs of the determinants of the
factor matrices). Figure 1 graphs the fiber µ−1([1]) when we factor the matrix [1] into three 1 × 1 matrices.
Although this graph lacks the complexities of larger matrices, we see a graceful 2-dimensional manifold
with four components, as advertised, and we gain an inkling of what the general case might look like.

Unfortunately, if the network has a matrix that isn’t square or if W does not have full rank, the fiber is usually
no longer a manifold. But it can be partitioned into smooth manifolds of different dimensions, called strata,
as illustrated in Figure 2, which charts the solutions of [θ2][θ1 θ′1] = [0 0]. Each stratum represents a
different pattern by which information flows (or fails to flow) through the neural network. As a side effect
of understanding these strata, we will expose some fundamental properties of linear algebra that clarify how
subspaces are mapped from layer to layer and which subspaces ultimately vanish into the nullspaces of
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Figure 1: The fiber µ−1([1]) for the network W3W2W1 = [θ3][θ2][θ1] = [1] = W.
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Figure 2: At left is the fiber µ−1([0 0]) for the network W2W1 = [θ2][θ1 θ′1] = [0 0] = W, partitioned into
three strata: S 00 is the origin; S 10 is the θ2-axis with the origin removed; and S 01 is the plane spanned by
the θ1- and θ′1-axes with the origin removed. The purple arcs show examples of three types of moves: type
o.rk moves modify one of the two matrices (W2 or W1) and increase its rank, thereby moving to a higher-
dimensional stratum; type o.r moves modify one matrix (here, W1) without changing its rank nor leaving
the current stratum, but do change its rowspace; and type o.n moves modify one matrix without changing
its rank or rowspace (or columnspace). At right, the strata are arranged in a dag, which is organized as
a two-dimensional table indexed by the ranks of W1 and W2. Each dag vertex specifies the dimension of
the stratum (dim), the number of degrees of freedom of motion on the fiber (dof), and the number of rank-
increasing degrees of freedom (rdof) that generate o.rk moves off the stratum. Always, dof = dim + rdof.
A directed edge from one stratum to another implies that the former lies in the closure of the latter, so an
infinitesimal move can take you from the former into the latter.

which matrices. This hidden structure has a strong influence on training, though W does not reveal it. (In
Figure 2, the worst place to start training is the origin.)

To understand how the strata are connected to themselves and each other, we study a set of operators we call
moves (purple arcs in Figure 2) that map one network factorization of W to another along carefully chosen
basis directions in weight space. (The basis is different for each point in weight space, which is why the arcs
in Figure 2 don’t look like they’re all from the same basis.) These moves have both theoretical and practical
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motivations. The theoretical motivation is that they provide a great deal of intuition about the geometry and
topology of the fiber of a matrix W. The practical motivation is that although two different neural networks
might compute the same transformation, one might be much more amenable to training than the other. It is
well known that during training, a neural network can fall near a critical point in the cost function that slows
down network training but is “spurious” in the sense that it is not related to the transformation being learned;
it is merely a side effect of how that transformation happens to be encoded in layers. Researchers studying
these phenomena include Trager, Kohn, and Bruna [16]. Spurious critical points appear to be one of the
reasons that deep neural networks typically learn more slowly than shallow ones. Our original motivation
for this paper is that we want to find ways to move away from spurious critical points, thereby speeding up
learning, without changing the function that a network has learned. (This paper doesn’t solve that problem,
but it’s a first step along the way.)

Linear neural networks compute only linear transformations; they are far less powerful than networks with
nonlinear activation functions such as rectified linear units (ReLUs, also known as ramp functions) and sig-
moid functions (also known as logistic functions). Yet linear networks have become a popular object of
study [3, 9, 11, 17]. Why? We cannot fully understand the training of ReLU-based networks—or probably
any neural networks—if we do not understand linear networks [7]. Training a linear neural network with
a gradient descent method is a nonlinear process [13], exhibiting surprising phenomena like implicit accel-
eration of training [1] and implicit regularization [2, 4, 6]. Similar results about implicit regularization due
to the alignment of layer weights during training by gradient descent were found by Ji and Telgarsky [8]
and generalized by Radhakrishnan et al. [12]. Trager, Kohn, and Bruna [16] show that the map µ and the
fiber µ−1(W) play a crucial role in characterizing cost functions of linear neural networks and understanding
critical points in their cost functions. Some results about linear neural networks, especially those about the
function represented by the network, generalize to ReLU networks with minor caveats. For example, Li
and Sompolinsky [10] propose a theory similar to statistical mechanics to study the input-output behavior
of linear neural networks; empirically their theory appears to hold for large classes of ReLU networks.

2 Notation

Let L be the number of matrices—that is, the number of layers of edges (connections) in the network.
Alternating with the edge layers are L + 1 layers of units, numbered from 0 to L, in which layer j has d j

real-valued units that represent a vector in Rd j . Layer 0 is the input layer, layer L is the output layer, and
between them are L − 1 hidden layers. The layers of edges are numbered from 1 to L, and the edge weights
in edge layer j are represented by a real-valued d j × d j−1 matrix W j.

We collect all the neural network’s weights in a weight vector θ = (WL,WL−1, . . . ,W1) ∈ Rdθ , where
dθ = dLdL−1 + dL−1dL−2 + . . . + d1d0 is the number of real-valued weights in the network (i.e., the num-
ber of connections). Recall the function µ(WL,WL−1, . . . ,W2,W1) = WLWL−1 · · ·W2W1; we can abbreviate
it to µ(θ). Given a fixed weight vector θ, our linear neural network takes an input vector x ∈ Rd0 and returns
an output vector y = WLWL−1 · · ·W2W1x, with y ∈ RdL . Hence, the network implicitly computes a linear
transformation specified by the dL × d0 matrix W = µ(θ), yielding y = Wx.

The map µ is not bijective, so we define its preimage to be a set. Let µ−1(W) = {θ : µ(θ) = W} be the set of all
factorizations of W for some fixed dL, dL−1, . . . , d0. We call µ−1(W) the fiber of W, and we will treat it as a
geometric object embedded in the space Rdθ . Note that µ−1(W) is empty if and only if rk W > min1≤ j≤L−1 d j.

Given θ ∈ Rdθ , its subsequence matrices are all the matrices of the form Wk∼i = WkWk−1 · · ·Wi+1. The
notation Wk∼i indicates that this matrix transforms a vector at unit layer i to produce a vector at unit layer
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k. Note that W = WL∼0 and W j = W j∼ j−1. We call each W j a factor matrix. We use the convention that
Wk∼k = Idk×dk , the dk × dk identity matrix.

The rank list for a weight vector θ ∈ Rdθ is a sequence that lists the rank of every subsequence matrix Wk∼i

such that L ≥ k ≥ i ≥ 0. The list includes the unit layer sizes rk Wk∼k = dk. For example, for a network
with L = 3 layers of edges, the rank list is 〈d4, d3, d2, d1, rk W3, rk W2, rk W1, rk W3W2, rk W2W1, rk W〉. No
two strata have the same rank list; the rank list plays a major role as the index that labels each stratum. We
sometimes omit the ranks that are invariant for a specific fiber: the d j’s and rk W. For example, in Figure 2,
the subscripts of S are rk W2 and rk W1, as only these ranks vary.

3 A Foretaste of our Results: Two Matrices

The fiber µ−1(W) is an algebraic variety (again, the set of all solutions of a system of polynomial equations).
In general, the variety is not a manifold. Its local dimension can vary, and it can have points where it
branches (like S 00 in Figure 2) or is otherwise weirdly connected to itself. We address this complication by
partitioning the fiber into a set of manifolds called strata.1 The strata are pairwise disjoint, and the fiber is
the union of these strata. This partition is called a stratification of the variety.

Figures 2 and 3 depict stratifications of two fibers. Figure 2 graphs the variety of solutions to W2W1 =

[θ2][θ1 θ′1] = [0 0] = W, illustrating that a fiber may have a mix of dimensionalities. There are two
ways to achieve W2W1 = [0 0]: we can set W2 = [0] or we can set W1 = [0 0]. The former solutions
lie on the pink plane in Figure 2, and the latter solutions lie on the blue line. In our stratification, we have
chosen to partition the fiber into three parts, with the origin being a 0-dimensional stratum, labeled S 00.
This is motivated by the fact that S 00 is the sole point from which we have three degrees of freedom of
motion on the fiber: two degrees of freedom on the plane, and one on the line. Observe that two of these
degrees of freedom can be combined, and one cannot: if we move along the line, we can change only the
θ2 coordinate, whereas if we move along the plane, we can change both the θ1 and θ′1 coordinates in any
proportion. The stratum S 10 is the θ2-axis with the origin removed; it is a set of points from which only one
degree of freedom of motion along the fiber is available. S 01 is the θ1-θ′1 plane with the origin removed;
from these points, two degrees of freedom are available. The subscripts on each S are rk W2 and rk W1.

One goal of this paper is to provide a basis for all possible degrees of freedom from a point θ ∈ µ−1(W)—that
is, a basis that can express the initial directions of all possible smooth paths on the fiber leaving θ. The tricky
part comes if θ is a point where many strata meet. We ask that for every stratum S adjoining θ, exactly dim S
of the vectors in θ’s basis should suffice to span all possible directions by which a smooth path on S can
leave θ. In Figure 2, the coordinate axes can serve that role at S 00. But in general, the vectors in the basis
cannot always be orthogonal to each other, because strata do not always meet each other at right angles, and
every point on µ−1(W) may need a different basis, because fibers can be curvy.

The purple arcs in Figure 2 and Figure 3 depict moves along basis directions. For any point on the pink
stratum S 01 in Figure 2, the basis consists of one vector that does not change the rowspace of W1 (hence it

1The strata are, in the language of topology, manifolds without boundary, as for every stratum S and every point p ∈ S , there is
an open neighborhood N ⊂ S that contains p and is homeomorphic to a ball of the same dimension as the stratum. Unfortunately,
the term “boundary” has conflicting meanings in topology: the term “manifold without boundary” is defined in a fashion that takes
S to be the entire topological space, with no larger context. However, when we consider S as a point set in the topological space Rdθ ,
the boundary of S is defined to be the set of points that lie in both the closure of S and the closure of Rdθ \ S . But in our context,
the dimension of a stratum S is always less than dθ, so the closure of Rdθ \ S is Rdθ . Therefore, the boundary of a stratum S is the
closure of S , which is typically a strict superset of S . For example, in Figure 2, S 01 is a plane with the origin removed, the closure
of S 01 is the whole plane—hence S 00 lies in the closure of S 01—and the boundary of S 01 also is the whole plane. So our manifolds
without (intrinsic) boundary have (extrinsic) boundaries.
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Figure 3: At left is the variety of solutions to W3W2W1 = [θ3][θ2][θ1] = [0] = W, partitioned into seven
strata: S 000 is the origin; S 001, S 010, and S 100 are the three coordinate axes with the origin removed; and
S 011, S 101, and S 110 are the three coordinate planes with the coordinate axes removed. The purple arcs
show examples of two types of moves: a type o.rk move modifies one of the three matrices (W3, W2, or W1)
and increases its rank, thereby moving to a different stratum; whereas a type o.n move modifies one matrix
without changing its rank nor leaving the current stratum. At right, the strata are arranged in a dag, which is
organized as a three-dimensional table indexed by the ranks of W3, W2, and W1.

points directly away from or toward the origin) and a second vector that does change the rowspace; together
they span S 01. Three types of moves appear in the figure: type o.rk moves increase the rank of a matrix by
one, thereby moving from one stratum to a higher-dimensional stratum; type o.r moves change a matrix’s
rowspace but not its columnspace, so the rank does not increase; and type o.n moves change neither a
rowspace nor a columnspace. The prefix “o” denotes a one-matrix move, which changes only one factor
matrix. There are two other types of moves, not relevant in this example: type o.c moves change some
matrix’s columnspace but not its rowspace, and type t moves are two-matrix moves that change two factor
matrices simultaneously to negotiate the curvature of a stratum. (In Figure 1, for instance, all moves are of
type t.) All of these moves stay on one stratum except the type o.rk moves, which provide us intuition for
how the strata are connected to each other.

At right in Figure 2, we arrange the strata in a directed acyclic graph (dag) with the property that if the dag
contains an edge (S a, S b), then the stratum S a is a subset of the closure of S b.2 (The closure is taken with
respect to the weight space Rdθ .) For each stratum, the table lists the dimension of the stratum (dim), the
number of degrees of freedom along which smooth motion on the fiber is possible (dof), and how many of
those degrees of freedom increase a rank in the rank list (rdof, for “rank-increasing degrees of freedom”).

Figure 3 depicts a second example, in which the fiber µ−1([0]) is the variety of solutions to W3W2W1 =

[θ3][θ2][θ1] = [0] = W. The dag showing how the seven strata are connected is a three-dimensional table:
the strata are indexed by rk W3, rk W2, and rk W1. Ordinarily, three-matrix fibers (L = 3) require five indices
to index the strata, as rk W3W2 and rk W2W1 can vary as well; but as every matrix here is 1 × 1, those two
ranks are uniquely determined by the first three. In the general case, the table is indexed by the rank list. If
we leave out the ranks that don’t change (the d j’s and rk W), the table has L(L + 1)/2 − 1 dimensions and
can have a very complicated shape.

Our third example is a fiber whose dimension is as high as 35 at some points, embedded in a 54-dimensional
weight space. Table 1 depicts a dag that represents a stratification of the fiber µ−1(W) for any 5 × 4 matrix

2If we replace the strata with their closures, then S a is a subset of S b and the dag is a Hasse diagram ordered by inclusion.
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rk W2 = 5
dim: 31 dof: 34 dim: 34 dof: 34
S 51 rdof: 3 S 52 rdof: 0

rk W2 = 4
dim: 29 dof: 37 dim: 33 dof: 36 dim: 35 dof: 35
S 41 rdof: 8 S 42 rdof: 3 S 43 rdof: 0

rk W2 = 3
dim: 25 dof: 40 dim: 30 dof: 38 dim: 33 dof: 36 dim: 34 dof: 34
S 31 rdof: 15 S 32 rdof: 8 S 33 rdof: 3 S 34 rdof: 0

rk W2 = 2
dim: 19 dof: 43 dim: 25 dof: 40 dim: 29 dof: 37 dim: 31 dof: 34
S 21 rdof: 24 S 22 rdof: 15 S 23 rdof: 8 S 24 rdof: 3

rk W2 = 1
dim: 11 dof: 46 dim: 18 dof: 42 dim: 23 dof: 38 dim: 26 dof: 34
S 11 rdof: 35 S 12 rdof: 24 S 13 rdof: 15 S 14 rdof: 8

rk W1 = 1 rk W1 = 2 rk W1 = 3 rk W1 = 4

Table 1: Dag representing the stratification of µ−1(W) for W2 ∈ R
5×6, W1 ∈ R

6×4, and rk W = 1. The dag
edges are omitted, but each stratum S ki has an edge pointing to the stratum S k+1,i immediately above it, and
another edge pointing to the stratum S k,i+1 immediately to its right. The two points in weight space depicted
in Figure 4 lie on the strata S 32 and S 33 in this table.

W with rank 1 and a network with L = 2, d2 = 5, d1 = 6, and d0 = 4. (Two points on this fiber are illustrated
in matrix form in Figure 4.)

In the two-matrix case (L = 2), the general shape for tables like Table 1 is a pentagon. Observe that
the horizontal axis is rk W1 and the vertical axis is rk W2. The left and right boundaries of the table are
determined by rk W1 ∈ [rk W,min{d1, d0}], and the top and bottom boundaries are determined by rk W2 ∈

[rk W,min{d2, d1}]. Sometimes the upper right corner of the table is cut off by a fifth constraint: according to
Sylvester’s inequality, rk W2 + rk W1 ≤ d1 + rk W. This inequality generates the fifth edge of the pentagon.

One goal of this paper is to automate the generation of all the information in dags like Table 1 (given the d j’s
and rk W), plus additional information such as how many rank-increasing degrees of freedom are associated
with each dag edge, and a basis that describes all directions of motion on the fiber at a specified point.

Two-factor fibers (L = 2) are substantially easier to characterize than the general case; we summarize the
moves and their degrees of freedom in Table 2 (without justification until Section 6). Starting from a point
θ = (W2,W1) ∈ µ−1(W), a move on the fiber proceeds in the direction of a displacement ∆θ = (∆W2,∆W1),
chosen from one of the subspaces listed in the table. Each type of move has a different subspace to choose
from. These subspaces are linearly independent of each other, so we can sum the degrees of freedom of each
type to obtain the total number of degrees of freedom of motion from θ on the fiber (“dof”). At the bottom of
Table 2, we give formulae for the degrees of freedom summarized as “dof”, “rdof” (rank-increasing degrees
of freedom), and “dim” (dimension of the stratum that contains θ) in Figure 2 and Table 1.

There are several caveats in interpreting Table 2, which are best appreciated by imagining that the moves are
infinitesimal. First, we assume each move is sufficiently short that neither rk W1 nor rk W2 decreases. (An
infinitesimal perturbation can increase the rank of a matrix, but not decrease it.) Second, the type t moves
follow directions along which the fiber curves, so the displacement (∆W2,∆W1) should be understood to
be the initial direction of motion on a smooth, curved path on the fiber, not the displacement to the final
destination. In Section 6, we explain the distinctions between infinitesimal moves, which are conceptually
useful for understanding the dimensions of strata and how they are connected to each other, and finite moves,
which are actual computations that change a neural network’s weights.

Figure 4 illustrates how the nine different types of moves from Table 2 change the matrices W2 and W1, in
the special case where the subspaces col W2, row W2, col W1, and row W1 (but not col W nor row W) are all
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Move type Displacement Degrees of freedom
o.1 ∆W1 ∈ null W2 ⊗ R

d0 ; ∆W2 = 0 (ω10 + ω11) d0, including:
o.n.1 ∆W1 ∈ (null W2 ∩ col W1) ⊗ row W1 ω10 rk W1
o.c.1 ∆W1 ∈ (null W2 ∩ (null W2 ∩ col W1)⊥) ⊗ row W1 ω11 rk W1
o.r.1 ∆W1 ∈ (null W2 ∩ col W1) ⊗ null W1 ω10 (d0 − rk W1)
o.rk.1 ∆W1 ∈ (null W2 ∩ (null W2 ∩ col W1)⊥) ⊗ null W1 ω11 (d0 − rk W1)

o.2 ∆W2 ∈ R
d2 ⊗ null W>1 ; ∆W1 = 0 (ω21 + ω11) d2, including:

o.n.2 ∆W2 ∈ col W2 ⊗ (row W2 ∩ null W>1 ) ω21 rk W2
o.r.2 ∆W2 ∈ col W2 ⊗ ((row W2 ∩ null W>1 )⊥ ∩ null W>1 ) ω11 rk W2
o.c.2 ∆W2 ∈ null W>2 ⊗ (row W2 ∩ null W>1 ) ω21 (d2 − rk W2)
o.rk.2 ∆W2 ∈ null W>2 ⊗ ((row W2 ∩ null W>1 )⊥ ∩ null W>1 ) ω11 (d2 − rk W2)

t ∆W2 = W2K; ∆W1 = −KW1; where K ∈ row W2 ⊗ col W1 rk W2 · rk W1
Note: ∆W2 ∈ col W2 ⊗ col W1; ∆W1 ∈ row W2 ⊗ row W1

Key: ω10 = rk W1 − rk W; ω21 = rk W2 − rk W; ω11 = d1 − rk W2 − rk W1 + rk W; W = W2W1
Total degrees of freedom at θ: dof = d2d1 + d1d0 − d2 rk W1 − d0 rk W2 + rk W2 · rk W1
Total rank-increasing degrees of freedom at θ: rdof = ω11 (d2 + d0 − rk W2 − rk W1)
Dimension of θ’s stratum: dim = dof − rdof = d2ω21 + d0ω10 + ω11 (rk W2 + rk W1) + rk W2 · rk W1

Table 2: Summary of the types of moves and their degrees of freedom for a two-factor network (L = 2).
Each move starts from a point θ = (W2,W1) ∈ µ−1(W) and moves in the direction of a displacement ∆θ =

(∆W2,∆W1). The tensor product Y ⊗ Z is the subspace of matrices {M : col M ⊆ Y and row M ⊆ Z}.

axis-aligned. This axis alignment permits us to “see” the subspaces listed in Table 2 and count the degrees
of freedom of motion along the fiber of W from (W2,W1). In particular, every number in every green box
in W2 can be changed to arbitrary values without changing the product W (so long as W1 does not change).
The same statement holds for the green boxes in W1 (so long as W2 does not change). The red boxes in W2
and W1 are coupled: in the top half of Figure 4, the red boxes represent six degrees of freedom (not twelve).
The bottom half of Figure 4 shows how the subspaces and degrees of freedom change after W1 is modified
by a rank-increasing move (type o.rk.1), moving us from a stratum S 32 to a different stratum S 33.

4 Subspace Flow through a Linear Neural Network

One of the fundamental concepts of linear algebra is that of the nullspace of a matrix W: the set of
vectors x such that Wx = 0. Given a linear neural network, we can refine the concept by asking, at
what layer does a particular input vector x first disappear? Formally, what is the smallest i such that
WiWi−1 · · ·W2W1x = 0? This question is answered by inspecting the nullspaces of the “part way there”
matrices Wi∼0 = WiWi−1 · · ·W2W1, which form a hierarchy of subspaces

null W ⊇ null WL−1∼0 ⊇ null WL−2∼0 ⊇ . . . ⊇ null W3W2W1 ⊇ null W2W1 ⊇ null W1.

We can extend the concept further by observing that linear neural networks can have unused subspaces in
inner layers—subspaces through which information could flow if it were present, but the earlier layers are
not putting any information into those subspaces. If a left nullspace null W>i is not the trivial subspace {0}
(for example, if unit layer i has more units than the previous layer i − 1), then the space Rdi encoded by
unit layer i has one or more “wasted” dimensions that carry no information about the input x. We ask: if
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Figure 4: Top: a rank-1 matrix W as a product of a rank-3 matrix W2 and a rank-2 matrix W1. This
factorization lies on the stratum S 32 from Table 1. The X’s represent arbitrary real values, so long as the
matrices have the ranks specified. The red and green rectangles show which values can be changed by
each of the nine different types of moves (o.n.2, o.c.2, o.r.2, o.rk.2, o.n.1, o.c.1, o.r.1, o.rk.1, or t). Bottom:
another factorization of W found by applying a type o.rk.1 move to the top network, thereby replacing W1
with a rank-3 matrix W′1 such that W = W2W′1. This factorization lies on the stratum S 33 from Table 1.

information were somehow injected into these left nullspaces, would it affect the network’s output, or would
it be absorbed in the nullspaces of subsequent matrices downstream? The answer is relevant to gradient
descent algorithms for learning.

These questions are motivated by both practice and theory. The main practical motivation comes from
neural network training. Although the wasted dimensions emerging from left nullspaces have no influence
on the linear transformation W that the network computes, they have tremendous influence on whether
a gradient descent algorithm can find weight updates that improve the network’s performance. To illus-

trate this fact, consider the neural network with weight vector θ =

([
1 0
0 0

]
,

[
1 0
0 0

]
,

[
1 0
0 0

])
. This

network computes a linear transformation W of rank 1 and standard gradient descent algorithms can-
not find a search direction that increases the rank above 1. Whereas in the network with weight vector
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θ =

([
1 0
0 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

])
, which computes the same transformation, the subspace null W>1 in hid-

den layer 1 is already connected to the network’s output layer, so gradient descent can easily find a way to
update W1 that increases the ranks of both W1 and W.

The main theoretical motivation arises because the fiber µ−1(W) of a matrix W is not generally a manifold,
but it can be written as a partition into strata, manifolds of various dimensions. We will define one stratum
for each specific state of subspace flow through the network. These different “states of subspace flow”
depend only on the rank list, so they are finite and combinatorial in nature, even though the transformations
that the subspaces undergo are continuous and numerical in nature.

4.1 Interval Multisets and the Basis Flow Diagram

We will see that this state of information flow can be represented as a multiset of intervals, depicted in
Figure 5. An interval is a set of consecutive integers [i, k] = {i, i + 1, . . . , k − 1, k} that identifies some
consecutive unit layers in the network (with 0 ≤ i ≤ k ≤ L). Each interval has a multiplicity ωki, representing
ωki copies of the interval. If an interval is absent from the multiset, we say its multiplicity is zero (setting
ωki = 0).

Think of an interval [i, k] with multiplicity ωki as representing an ωki-dimensional subspace that appears
at unit layer i, being linearly independent of the columnspace of Wi (though not necessarily orthogonal to
col Wi); then the subspace is linearly transformed by propagating through weight layers Wi+1,Wi+2, . . . ,Wk

to reach unit layer k with ωki dimensions still intact, only to disappear into the nullspace of Wk+1 (unless
layer k is the output layer). There is a second interpretation in terms of the transpose network W> =

W>1 W>2 · · ·W
>
L−1W>L : the interval [i, k] represents a (different!) ωki-dimensional subspace that appears at unit

layer k, being linearly independent of the rowspace of Wk+1; then it is transformed by propagating through
weight layers W>k ,W

>
k−1, . . . ,W

>
i+1 to reach unit layer i with ωki dimensions still intact, only to disappear into

the left nullspace of Wi (if i , 0). We will need both interpretations to understand moves on the fiber µ−1(W)
and moves on each stratum.

A multiset of intervals is fully specified by the parameters ωki ≥ 0 for all k and i satisfying L ≥ k ≥ i ≥ 0.
A multiset of intervals is valid for a specified network if it satisfies the constraint that for each unit layer
j ∈ [0, L], the sum of the multiplicities of the intervals that contain j is d j; that is,

d j =

L∑
m= j

j∑
l=0

ωml. (1)

Refer to Figure 5: you can see that verifying whether a multiset of intervals is valid is a simple matter of
counting multiplicities in each unit layer. (We will see that the multiplicity ωki symbolizes ωki basis vectors
for each unit layer j ∈ [i, k], and the full set of d j basis vectors at layer j is a basis for Rd j .) Therefore, only
finitely many multisets are possible for a network with fixed layer sizes d j. Each weight vector θ ∈ Rdθ is
associated with one multiset of intervals that expresses the subspace flows induced by θ, and θ lies on one
stratum associated with that multiset.

Recall the subsequence matrices Wk∼i = WkWk−1 · · ·Wi+1. We will see in Section 4.5 that a multiset of
intervals gives us an easy way to determine the rank of any subsequence matrix: the rank of Wk∼i is the total
multiplicity of the intervals that contain both i and k. That is,

rk Wk∼i =

L∑
m=k

i∑
l=0

ωml. (2)
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Figure 5: The tea clipper ship Basis Flow. The top half is a basis flow diagram that illustrates the flow
of the prebasis subspaces ak ji through the network. Double boxes represent subspaces of dimension 2 and
triple boxes represent subspaces of dimension 3. The bottom half shows the relationships between the
intervals, the layer sizes, and the matrix ranks. The number of units d j in unit layer j equals the sum of
the multiplicities ωml of the intervals that touch layer j (i.e., the dimensions of the prebasis subspaces am jl).
Each matrix rank rk Wk∼i is the sum of the multiplicities of the intervals that touch both layers k and i.
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Refer again to Figure 5: you can easily read the rank of each subsequence matrix off the intervals.

In particular,

rk W = ωL0. (3)

That is, the interval [0, L] always has multiplicity rk W; this interval represents the fact that the subspace
row W at the input layer is mapped by W to col W at the output layer, and both subspaces have dimension
rk W. When we examine the fiber of a specific matrix W, we fix the rank rk W and the multiplicity ωL0,
as well as W j∼ j = d j for j ∈ [0, L]. The other ranks and multiplicities generally vary across different
factorizations of W.

Recall the rank list defined in Section 2. We will see in Section 4.5 that there is a bijection between valid
multisets of intervals and valid rank lists: if we are given a list of interval multiplicities, we can easily
determine the ranks, and if we are given a rank list, we can easily determine the interval multiplicities. A
rank list is valid if there is some weight vector θ ∈ Rdθ that achieves the matrix ranks listed. (We will see
that the invalid rank lists are those with a negative rank and those that imply that one of the multiplicities is
negative.) Our stratification of the fiber µ−1(W) has one stratum for each valid multiset such thatωL0 = rk W;
equivalently, one stratum for each valid rank list having the specified values of rk W and the d j’s.

4.2 Flow Subspaces and Subspace Hierarchies

In this section, we identify subspaces in each unit layer’s space Rd j that represent information flowing
through the linear neural network (or through the transpose network W> = W>1 W>2 · · ·W

>
L−1W>L ), with

special attention to information that does not reach the output layer. We are aided in this effort by the fact
that, at a unit layer j in the network, the fundamental subspaces associated with the subsequence matrices
are nested in hierarchies as follows.

Rd j = row W j∼ j ⊇ row W j+1 ⊇ row W j+2W j+1 ⊇ . . . ⊇ row WL∼ j ⊇ row WL+1∼ j = {0},

{0} = null W j∼ j ⊆ null W j+1 ⊆ null W j+2W j+1 ⊆ . . . ⊆ null WL∼ j ⊆ null WL+1∼ j = Rd j ,

Rd j = col W j∼ j ⊇ col W j ⊇ col W jW j−1 ⊇ . . . ⊇ col W j∼0 ⊇ col W j∼−1 = {0}, and

{0} = null W>j∼ j ⊆ null W>j ⊆ null (W jW j−1)> ⊆ . . . ⊆ null W>j∼0 ⊆ null W>j∼−1 = Rd j .

By the Fundamental Theorem, the subspaces in the first row are orthogonal complements of the correspond-
ing subspaces in the second row, and the subspaces in the third row are orthogonal complements of the
corresponding subspaces in the fourth row. Here, we are using the following conventions for subsequence
matrices.

W j∼ j = Id j×d j (the d j × d j identity matrix).

Hence, row W j∼ j = Rd j = col W j∼ j and null W j∼ j = {0} = null W>j∼ j.

W j∼−1 = 0d j×1 and WL+1∼ j = 01×d j (zero matrices).

Hence, row WL+1∼ j = {0} = col W j∼−1 and null WL+1∼ j = Rd j = null W>j∼−1.

(Note that the last two lines are consistent with imagining that the network WLWL−1 · · ·W1 is sandwiched
between two extra matrices WL+1 = 0 and W0 = 0.)

From these four hierarchies, we define two hierarchies of flow subspaces that give us insight about how
information flows, and sometimes fails to flow, through the network. The flow subspaces of Rd j at unit layer

12



j ∈ [0, L] are

Ak ji = null Wk+1∼ j ∩ col W j∼i, i ∈ [−1, j], k ∈ [ j − 1, L], and

Bk ji = row Wk∼ j ∩ null W>j∼i−1, i ∈ [0, j + 1], k ∈ [ j, L + 1].

For example, A320 = null W4W3∩col W2W1 and B320 = row W3∩null W>2∼−1 = row W3. We will use commas
to separate the subscripts when necessary for clarity; e.g., Ay−1,x+1,−1. Intuitively, Ak ji ∈ R

d j is the subspace
that carries information in unit layer j that has come at least as far as from layer i, but will not survive farther
than layer k. In the transpose network W> = W>1 W>2 · · ·W

>
L−1W>L , Bk ji ∈ R

d j is the subspace that carries
information in unit layer j that has come at least as far as from layer k, but will not survive farther than
layer i.

We need a notation for the dimensions of the flow subspaces. Let

αk ji = dim Ak ji and βk ji = dim Bk ji.

It is easy to see that

Ak ji ⊇ Ak′ ji′ and αk ji ≥ αk′ ji′ if k ≥ k′ and i ≥ i′, assuming j ∈ [0, L], k, k′ ∈ [ j − 1, L], i, i′ ∈ [−1, j].

Bk ji ⊆ Bk′ ji′ and βk ji ≤ βk′ ji′ if k ≥ k′ and i ≥ i′, assuming j ∈ [0, L], k, k′ ∈ [ j, L + 1], i, i′ ∈ [0, j + 1].

Table 3 depicts this relationship and the partial ordering it imposes on the flow subspaces.

Let us consider the relationships between flow subspaces at different unit layers of the network. Given a
matrix W and a subspace A, we define

WA = {Wv : v ∈ A},

which is also a subspace. The simplest flow relationships are that Ak ji = W jAk, j−1,i and Bk, j−1,i = W>j Bk ji,
which exposes why we call them flow subspaces: you may imagine the A subspaces flowing through the
network, being linearly transformed layer by layer; and you may imagine the B subspaces flowing through
the transpose network W> = W>1 W>2 · · ·W

>
L−1W>L , also being transformed at each layer. Figure 6 depicts flow

subspaces at each unit layer of a linear neural network. The following lemma expresses these relationships
in a slightly more general way.

Lemma 1. Ak ji = W j∼xAkxi for all k, j, i, and x that satisfy L ≥ k and k + 1 ≥ j ≥ x ≥ i ≥ 0.

Furthermore, Bk ji = W>y∼ jBkyi for all k, j, i, and y that satisfy L ≥ k ≥ y ≥ j ≥ i − 1 and i ≥ 0.

Proof. By definition, Akii = null Wk+1∼i∩R
di = null Wk+1∼i. Hence Wk+1∼iAkii = {0}. For every z ∈ [i, k + 1],

Wk+1∼zWz∼iAkii = {0} and thus Wz∼iAkii ⊆ null Wk+1∼z. Obviously, Wz∼iAkii ⊆ col Wz∼i. Hence Wz∼iAkii ⊆

null Wk+1∼z ∩ col Wz∼i = Akzi.

To see that the reverse inclusion also holds, consider a vector v ∈ Akzi. As v ∈ col Wz∼i, there is a vector
w ∈ Rdi such that v = Wz∼iw. As v ∈ null Wk+1∼z, we have 0 = Wk+1∼zv = Wk+1∼zWz∼iw = Wk+1∼iw,
so w ∈ null Wk+1∼i = Akii and thus v ∈ Wz∼iAkii. Hence Wz∼iAkii ⊇ Akzi; hence Wz∼iAkii = Akzi for every
z ∈ [i, k + 1].

It follows that

W j∼iAkii = W j∼xWx∼iAkii and

Ak ji = W j∼xAkxi

as claimed. Applying the same proof to the transpose network shows that Bk ji = W>y∼ jBkyi. �
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Rd2 k = 4 A4,2,−1 = {0} ⊆ A420 ⊆ A421 ⊆ A422 = Rd2

⊆ ⊆ ⊆ ⊆

null W4W3 k = 3 A3,2,−1 = {0} ⊆ A320 ⊆ A321 ⊆ A322

⊆ ⊆ ⊆ ⊆

null W3 k = 2 A2,2,−1 = {0} ⊆ A220 ⊆ A221 ⊆ A222
⊆ ⊆ ⊆ ⊆

{0} k = 1 A1,2,−1 = {0} A120 = {0} A121 = {0} A122 = {0}
null Wk+1∼2 i = −1 i = 0 i = 1 i = 2

Ak2i ↗ col W2∼i {0} ⊆ col W2W1 ⊆ col W2 ⊆ Rd2

{0} k = 5 B520 = {0} B521 = {0} B522 = {0} B523 = {0}

⊇ ⊇ ⊇ ⊇

row W4W3 k = 4 B420 ⊇ B421 ⊇ B422 ⊇ B423 = {0}

⊇ ⊇ ⊇ ⊇

row W3 k = 3 B320 ⊇ B321 ⊇ B322 ⊇ B323 = {0}

⊇ ⊇ ⊇ ⊇

Rd2 k = 2 B220 = Rd2 ⊇ B221 ⊇ B222 ⊇ B223 = {0}
row Wk∼2 i = 0 i = 1 i = 2 i = 3

Bk2i ↗ null W2∼i−1 Rd2 ⊇ null (W2W1)> ⊇ null W>2 ⊇ {0}

Table 3: The hierarchical nesting of the flow subspaces at unit layer j = 2 of a network with L = 4 matrices.
Top: Ak2i = null Wk+1∼2 ∩ col W2∼i for each k, i. Bottom: Bk2i = row Wk∼2 ∩ null W2∼i−1 for each k, i.

4.3 Bases and “Prebases” for the Flow Subspaces

In this section, we show how to decompose each unit layer’s space Rd j into a “prebasis” of subspaces. We
assume the reader is familiar with the standard idea from linear algebra of a basis for Rd, comprising d
linearly independent basis vectors. A prebasis is like a basis, but it is made up of subspaces rather than
vectors; see below for a definition. Our prebasis for Rd j includes (as a subset) a prebasis for every flow
subspace Ak ji (where the index j matches Rd j but k and i vary freely). We also define a second prebasis
for Rd j that includes a prebasis for every flow subspace Bk ji (with matching j); this prebasis represents
subspaces that flow through the transpose network W> = W>1 W>2 · · ·W

>
L−1W>L .

Given two subspaces X,Y ∈ Rd, their vector sum is X + Y = {x + y : x ∈ X and y ∈ Y}. If X and Y are
linearly independent—that is, if X ∩ Y = {0}—then X + Y is called a direct sum, sometimes written X ⊕ Y .3

Likewise, given a set of subspaces X = {X1, X2, . . . , Xm}, the direct sum notation X1 ⊕ X2 ⊕ . . . ⊕ Xm implies
that the subspaces in X are linearly independent, meaning that for every i ∈ [1,m], Xi ∩

∑
j,i X j = {0}.

If Rd = X1 ⊕ X2 ⊕ . . . ⊕ Xm, then X = {X1, X2, . . . , Xm} is known as a direct sum decomposition of Rd.
That’s too many syllables, so we will call X a prebasis for Rd throughout this paper. We call each Xi a
prebasis subspace. The linear independence of the prebasis subspaces implies that for every vector v ∈ Rd,
there is only one way to express v as a sum of vectors v =

∑m
i=1 vi such that vi ∈ Xi. It also implies that

d = dim X1 + dim X2 + . . .+ dim Xm. If desired, it is conceptually easy to convert a prebasis into a traditional

3The notation X ⊕Y is weird, because as an operator it produces exactly the same result as X + Y , but the operator notation itself
implies a constraint on the subspaces X and Y: that X ∩ Y = {0}. If X ∩ Y , {0}, X ⊕ Y is undefined.
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Figure 6: Top: an example of flow subspaces Ak ji. Note that the subspace A322 is five-dimensional, so we
cannot easily draw it complete. Instead, we draw A322 ↓ A321, which is a three-dimensional subspace of A322
linearly independent of A321, and we draw the plane A321 separately; A322 is the vector sum of A322 ↓ A321
and A321. Similarly, we draw A222 ↓ A221, a two-dimensional subspace of A222 linearly independent of A221.
A222 is a three-dimensional subspace, the vector sum of the plane A222 ↓ A221 and the line A221. Bottom: an
example of corresponding prebasis subspaces ak ji, forming a flow prebasis.

vector basis: just choose a basis for each Xi, then pool the d vectors together to form a basis for Rd—hence
the name “prebasis.” Why don’t we do that here? Because details like the choice of basis for each prebasis
subspace and the length of each basis vector are irrelevant to our account and would make our presentation
more complicated.

We define a custom operator to help us choose a prebasis. Given two vector subspaces Y ⊆ Z, we define the
set of subspaces

Z ↓ Y = {X ⊆ Z : Z = X ⊕ Y}.

These subspaces all have the same dimension, namely, dim Z − dim Y , and they are all linearly independent
of Y . There are two special cases where Z ↓ Y contains only one element: if Y = {0} then Z ↓ Y = {Z}, and
if Y = Z then Z ↓ Y = {{0}}. Otherwise, Z ↓ Y is an infinite set of subspaces.

Recall the flow subspaces Ak ji and Bk ji from Section 4.2, both of them subspaces of Rd j , and recall that
Ak, j,i−1 ⊆ Ak ji and Ak−1, j,i ⊆ Ak ji, assuming L ≥ k ≥ j ≥ i ≥ 0. It follows that Ak, j,i−1 + Ak−1, j,i ⊆ Ak ji.
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Symmetrically, Bk, j,i+1 + Bk+1, j,i ⊆ Bk ji. For all i, j, and k satisfying L ≥ k ≥ j ≥ i ≥ 0, we choose prebasis
subspaces

ak ji ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i) and

bk ji ∈ Bk ji ↓ (Bk, j,i+1 + Bk+1, j,i).

It is common that some of these prebasis subspaces are simply {0}; these can be omitted from any prebasis.
When applying these definitions, recall that Ak, j,−1 = A j−1, j,i = Bk, j, j+1 = BL+1, j,i = {0} (so for example,
a j j0 = A j j0 and bL j j = BL j j). The bottom half of Figure 6 shows examples of prebasis subspaces chosen
from these sets.

One element in Z ↓ Y is the subspace containing every vector in Z that is orthogonal to every vector in Y
(written Z ∩ Y⊥), and it is tempting to always choose that subspace when we choose ak ji and bk ji, yielding
what we call standard prebases. However, in Section 4.4 we exploit the flexibility that Z ↓ Y gives us to
choose flow prebases instead, so the prebasis subspaces (a’s and b’s) “flow” through the network as the flow
subspaces (A’s and B’s) do, as Figures 5 and 6 depict.

Lemma 3 below states that dim ak ji = dim bk ji, a crucial result that surprised us when we stumbled upon
it. This establishes a pleasing symmetry between flow through a linear neural network and flow through its
transpose network, even though the flow subspaces and their prebases are different. In Figure 5, we could
depict the flow of prebasis subspaces through the transpose neural network simply by replacing each ak ji by
bk ji and reversing the directions of the arrows in the top half of the figure. Lemma 3 also shows that the
dimensions of the prebasis subspaces are easily computed from the dimensions of the flow subspaces. (The
dimensions of the prebasis subspaces do not depend on which ones we choose.)

Two subspaces Y and Z are orthogonal if for every vector y ∈ Y and every z ∈ Z, y>z = 0. The orthogonal
complement of a subspace Z ∈ Rd, denoted Z⊥, is the set of vectors in Rd that are orthogonal to every
vector in Z. Orthogonal complements have complementary dimensions: dim Z + dim Z⊥ = d. Linear
algebra furnishes two classic examples: (row W)⊥ = null W and (col W)⊥ = null W>. The following lemma
prepares us for Lemma 3.

Lemma 2. Consider subspaces J ⊆ K ⊆ Rd and Y ⊆ Z ⊆ Rd. Then

dim(K ∩ Z) − dim(K ∩ Y + J ∩ Z)

= dim(J⊥ ∩ Y⊥) − dim(K⊥ ∩ Y⊥ + J⊥ ∩ Z⊥)

= dim(K ∩ Z) − dim(K ∩ Y) − dim(J ∩ Z) + dim(J ∩ Y)

= dim(J⊥ ∩ Y⊥) − dim(K⊥ ∩ Y⊥) − dim(J⊥ ∩ Z⊥) + dim(K⊥ ∩ Z⊥).

Proof. It is a property of vector subspaces that dim(E +F)+dim(E∩F) = dim E +dim F. Letting E = K∩Y
and F = J∩Z, we have E ∩F = J∩Y , which explains why the first expression equals the third one. Letting
E = K⊥ ∩ Y⊥ and F = J⊥ ∩ Z⊥, we have E ∩ F = K⊥ ∩ Z⊥, which explains why the second expression
equals the fourth one.

To verify that the third expression equals the fourth one, we also use the De Morgan laws (E+F)⊥ = E⊥∩F⊥
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and (E ∩ F)⊥ = E⊥ + F⊥.

dim(J⊥ ∩ Y⊥) − dim(K⊥ ∩ Y⊥) − dim(J⊥ ∩ Z⊥) + dim(K⊥ ∩ Z⊥)

= dim J⊥ + dim Y⊥ − dim(J⊥ + Y⊥) − dim K⊥ − dim Y⊥ + dim(K⊥ + Y⊥)

− dim J⊥ − dim Z⊥ + dim(J⊥ + Z⊥) + dim(K⊥ ∩ Z⊥)

= − dim(J ∩ Y)⊥ − dim K⊥ + dim(K ∩ Y)⊥ − dim Z⊥ + dim(J ∩ Z)⊥ + dim(K + Z)⊥

= −d + dim(J ∩ Y) − d + dim K + d − dim(K ∩ Y) − d + dim Z + d − dim(J ∩ Z) + d − dim(K + Z)

= dim(K ∩ Z) − dim(K ∩ Y) − dim(J ∩ Z) + dim(J ∩ Y).

�

Lemma 3. For L ≥ k ≥ j ≥ i ≥ 0, dim ak ji = dim bk ji = αk ji − αk, j,i−1 − αk−1, j,i + αk−1, j,i−1 = βk ji − βk, j,i+1 −

βk+1, j,i + βk+1, j,i+1 (recalling that αk ji = dim Ak ji and βk ji = dim Bk ji).

Proof. As ak ji ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i), it follows from the definition of the operator ↓ that dim ak ji =

dim Ak ji − dim(Ak, j,i−1 + Ak−1, j,i). Similarly, dim bk ji = dim Bk ji − dim(Bk, j,i+1 + Bk+1, j,i). The result follows
from Lemma 2 by substituting K = null Wk+1∼ j, J = null Wk∼ j, Z = col W j∼i, and Y = col W j∼i−1. (Then
Ak ji = K ∩ Z, Ak, j,i−1 = K ∩ Y , Ak−1, j,i = J ∩ Z, Ak−1, j,i−1 = J ∩ Y , Bk ji = J⊥ ∩ Y⊥, Bk, j,i+1 = J⊥ ∩ Z⊥,
Bk+1, j,i = K⊥ ∩ Y⊥, and Bk+1, j,i+1 = K⊥ ∩ Z⊥.) �

We define two classes of prebases to span the subspaces Ak ji and Bk ji. Let Ak ji be the set containing the
subspaces ak′ ji′ for all k′ ∈ [ j, k], i′ ∈ [0, i]. Let Bk ji be the set containing the subspaces bk′ ji′ for all
k′ ∈ [k, L], i′ ∈ [i, j].

Lemma 4. Given that L ≥ k ≥ j ≥ i ≥ 0,Ak ji is a prebasis for Ak ji and Bk ji is a prebasis for Bk ji.

Proof. We prove the first claim by induction on increasing values of k and i. For the base cases, recall our
convention that Ak, j,−1 = {0} and A j−1, j,i = {0}. The empty set is a prebasis for the subspace {0}, so we
establish a convention thatAk, j,−1 = ∅ andA j−1, j,i = ∅.

For the inductive case—showing that Ak ji is a prebasis for Ak ji—we assume the inductive hypothesis that
Ak, j,i−1 is a prebasis for Ak, j,i−1, Ak−1, j,i is a prebasis for Ak−1, j,i, and Ak−1, j,i−1 is a prebasis for Ak−1, j,i−1.
Most of the work in this proof is to show that Ak, j,i−1 ∪ Ak−1, j,i is a prebasis for Ak, j,i−1 + Ak−1, j,i. Clearly,
Ak, j,i−1 + Ak−1, j,i equals the vector sum of the subspaces inAk, j,i−1 ∪Ak−1, j,i. But we must also show that the
subspaces inAk, j,i−1 ∪Ak−1, j,i are linearly independent of each other.

Suppose for the sake of contradiction that they are linearly dependent. Then there exists a nonempty set V
of nonzero vectors in Rd j with sum zero such that each vector in V comes from a different subspace in
Ak, j,i−1 ∪ Ak−1, j,i. Partition V into two disjoint subsets V ′ and V ′′ such that each vector in V ′ comes from
a different subspace in Ak, j,i−1 and each vector in V ′′ comes from a different subspace in Ak−1, j,i \ Ak, j,i−1.
Let w be the sum of the vectors in V ′. The sum of the vectors in V ′′ is −w. As V is nonempty, at least
one of V ′ or V ′′ is nonempty. As the vectors in V ′ come from a prebasis (Ak, j,i−1) and the vectors in V ′′

come from a prebasis (Ak−1, j,i), w , 0 and both V ′ and V ′′ are nonempty. The vectors in V ′ are all in
the subspace Ak, j,i−1, so w ∈ Ak, j,i−1; and the vectors in V ′′ are all in Ak−1, j,i, so w ∈ Ak−1, j,i. Therefore,
w ∈ Ak, j,i−1 ∩ Ak−1, j,i = null Wk∼ j ∩ col W j∼i−1 = Ak−1, j,i−1. This implies that w is a linear combination of
vectors that come from subspaces in Ak−1, j,i−1, which is a subset of Ak−1, j,i. But this contradicts the fact
thatAk−1, j,i is a prebasis, as we can write the nonzero vector w both as a linear combination of vectors from
subspaces inAk−1, j,i−1 and as a linear combination of vectors from subspaces inAk−1, j,i \Ak, j,i−1, which are
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two disjoint subsets ofAk−1, j,i. It follows from this contradiction that all the subspaces inAk, j,i−1 ∪Ak−1, j,i
are linearly independent of each other. Therefore,Ak, j,i−1 ∪Ak−1, j,i is a prebasis for Ak, j,i−1 + Ak−1, j,i.

Recall that Ak ji ⊇ Ak, j,i−1 + Ak−1, j,i and ak ji ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i). AsAk, j,i−1 ∪Ak−1, j,i is a prebasis for
Ak, j,i−1 + Ak−1, j,i,Ak ji = Ak, j,i−1 ∪Ak−1, j,i ∪ {ak ji} is a prebasis for Ak ji.

A symmetric argument shows that Bk ji is a prebasis for Bk ji. �

Let A j = AL j j; then A j is a prebasis for Rd j (because AL j j = Rd j) that is a superset of all the other A-
prebases for unit layer j. Moreover, AL ji is a prebasis for col W j∼i (because AL ji = col W j∼i) and Ak j j

is a prebasis for null Wk+1∼ j (because Ak j j = null Wk+1∼ j). So we have found a single prebasis A j whose
elements simultaneously span many of the subspaces we are interested in!

Similarly, let B j = B j j0. Then B j is a prebasis for Rd j , Bk j0 is a prebasis for row Wk∼ j, and B j ji is a prebasis
for null W>j∼i−1.

We warn that the prebasis A j cannot, in general, be chosen so its subspaces are mutually orthogonal. (Nor
can B j.) An orthogonal prebasis is ruled out whenever there is some null Wk+1∼ j and some col W j∼i that
meet each other at an oblique angle; see A410 and A311 in Figure 6. Even ifA j is the standard prebasis (i.e.,
every subspace we choose from a set of the form Z ↓ Y is fully orthogonal to Y), we cannot force all the
prebasis subspaces inA j to be mutually orthogonal.

Our prebasis construction permits much flexibility in choosing the prebasis subspaces. But a Fundamen-
tal Theorem of Linear Neural Networks seems more satisfying if we explicitly write out the most natural
candidates, just as the Fundamental Theorem of Linear Algebra specifies the rowspace, the nullspace, the
columnspace, and the left nullspace. Given two subspaces S ,T ∈ Rd, let projS T denote the orthogonal
projection of T onto S . Recall our convention that WL+1∼ j = 0 and W j∼−1 = 0.

Lemma 5. For L ≥ k ≥ j ≥ i ≥ 0, the standard prebasis subspaces are

ak ji = projcol W j∼i
row Wk∼ j ∩ projnull Wk+1∼ j

null W>j∼i−1

= col W j∼i ∩ (row Wk∼ j + null W>j∼i) ∩ null Wk+1∼ j ∩ (row Wk+1∼ j + null W>j∼i−1) and (4)

bk ji = projrow Wk∼ j
col W j∼i ∩ projnull W>j∼i−1

null Wk+1∼ j

= row Wk∼ j ∩ (null Wk∼ j + col W j∼i) ∩ null W>j∼i−1 ∩ (null Wk+1∼ j + col W j∼i−1). (5)

Proof. In the standard prebasis, from each set of the form Z ↓ Y we choose the element Z ∩ Y⊥. Observe
that for two subspaces Z and Y , Z ∩ (Z ∩ Y)⊥ = Z ∩ (Z⊥ + Y⊥) = projZY⊥. Hence

ak ji = Ak ji ∩ (Ak, j,i−1 + Ak−1, j,i)⊥

= Ak ji ∩ A⊥k, j,i−1 ∩ A⊥k−1, j,i

= null Wk+1∼ j ∩ col W j∼i ∩ (null Wk+1∼ j ∩ col W j∼i−1)⊥ ∩ (null Wk∼ j ∩ col W j∼i)⊥

= projnull Wk+1∼ j
(col W j∼i−1)⊥ ∩ projcol W j∼i

(null Wk∼ j)⊥

= projnull Wk+1∼ j
null W>j∼i−1 ∩ projcol W j∼i

row Wk∼ j.
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The third line implies (4). Symmetrically,

bk ji = Bk ji ∩ (Bk, j,i+1 + Bk+1, j,i)⊥

= Bk ji ∩ B⊥k, j,i+1 ∩ B⊥k+1, j,i

= row Wk∼ j ∩ null W>j∼i−1 ∩ (row Wk∼ j ∩ null W>j∼i)
⊥ ∩ (row Wk+1∼ j ∩ null W>j∼i−1)⊥

= projrow Wk∼ j
(null W>j∼i)

⊥ ∩ projnull W>j∼i−1
(row Wk+1∼ j)⊥

= projrow Wk∼ j
col W j∼i ∩ projnull W>j∼i−1

null Wk+1∼ j.

The third line implies (5). �

4.4 Constructing a Prebasis that Flows through the Network

We have flexibility in choosing a prebasis subspace ak ji ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i). Optionally, we can
choose flow prebasis subspaces: that is, for j ∈ [i+1, k], we can always choose ak ji = W jak, j−1,i and bk, j−1,i =

W>j bk ji (after we choose the prebases akii and bkki with full flexibility; for example, we could choose (4) for
akii and (5) for bkki). These subspaces flow through the linear neural network from specific starting layers to
specific stopping layers, thereby outlining how information propagates (or would propagate, if it was there),
as expressed by a basis flow diagram such as Figure 5 (top) or Figure 6 (bottom). Lemma 7, below, shows
that this construction always yields valid prebases. It also shows that—even if we choose prebases that don’t
flow (like the standard prebases)—for a fixed i and k, the dimension of ak ji is the same for every j ∈ [i, k].

Lemma 6. Given that L ≥ k ≥ j ≥ x ≥ i ≥ 0, W j∼xakxi has the same dimension as akxi. Given that
L ≥ k ≥ y ≥ j ≥ i ≥ 0, W>y∼ jbkyi has the same dimension as bkyi.

Proof. By construction, akxi is linearly independent of Ak−1,x,i = null Wk∼x ∩ col Wx∼i. (That is, akxi ∩

Ak−1,x,i = {0}.) But akxi ⊆ Akxi ⊆ col Wx∼i. Hence, every nonzero vector in akxi is in col Wx∼i but not in
null Wk∼x ∩ col Wx∼i; thus no nonzero vector in akxi is in null Wk∼x; thus no nonzero vector in akxi is in
null W j∼x. Therefore, W j∼xakxi has the same dimension as akxi.

A symmetric argument shows that W>y∼ jbkyi has the same dimension as bkyi. �

Lemma 7 (Basis Flow). Given that L ≥ k ≥ j > x ≥ i ≥ 0, W j∼xakxi ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i). (Hence,
we can choose to set ak ji = W j∼xakxi.) Moreover, every subspace in Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i) has the same
dimension as akxi.

Given that L ≥ k ≥ y > j ≥ i ≥ 0, W>y∼ jbkyi ∈ Bk ji ↓ (Bk, j,i+1 + Bk+1, j,i). (Hence, we can choose to set
bk ji = W>y∼ jbkyi.) Moreover, every subspace in Bk ji ↓ (Bk, j,i+1 + Bk+1, j,i) has the same dimension as bkyi.

Proof. By definition, the notation ak ji ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i) is equivalent to saying that Ak ji = ak ji +

Ak, j,i−1 + Ak−1, j,i and ak ji ∩ (Ak, j,i−1 + Ak−1, j,i) = {0}. We wish to show that ak ji = W j∼xakxi has both these
properties.

To show that Ak ji = W j∼xakxi + Ak, j,i−1 + Ak−1, j,i, observe that by Lemma 1, Ak ji = W j∼xAkxi, Ak, j,i−1 =

W j∼xAk,x,i−1, and Ak−1, j,i = W j∼xAk−1,x,i. By assumption, akxi ∈ Akxi ↓ (Ak,x,i−1 + Ak−1,x,i), so Akxi =

akxi + Ak,x,i−1 + Ak−1,x,i. Pre-multiplying both sides of this identity by W j∼x confirms that Ak ji = W j∼xakxi +

Ak, j,i−1 + Ak−1, j,i (the first property).

To show that W j∼xakxi ∩ (Ak, j,i−1 + Ak−1, j,i) = {0}, let v be a vector in W j∼xakxi ∩ (Ak, j,i−1 + Ak−1, j,i). Then
v ∈ W j∼xakxi∩W j∼x(Ak,x,i−1 +Ak−1,x,i). So there exists a vector u ∈ akxi such that v = W j∼xu, and there exist a
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vector s ∈ Ak,x,i−1 and a vector t ∈ Ak−1,x,i such that v = W j∼x(s+t). Thus W j∼x(u−s−t) = 0, so Wk∼ jW j∼x(u−
s − t) = 0 and thus u − s − t ∈ null Wk∼x. Recall that Ak−1,x,i = null Wk∼x ∩ col Wx∼i. So t ∈ null Wk∼x, hence
u − s ∈ null Wk∼x. Moreover, u and s are both in col Wx∼i, so u − s ∈ null Wk∼x ∩ col Wx∼i = Ak−1,x,i and
hence u ∈ Ak,x,i−1 + Ak−1,x,i. Therefore, u ∈ akxi ∩ (Ak,x,i−1 + Ak−1,x,i). But akxi ∈ Akxi ↓ (Ak,x,i−1 + Ak−1,x,i),
so u = 0 and thus v = 0. We have thus shown that every vector in W j∼xakxi ∩ (Ak, j,i−1 + Ak−1, j,i) is 0.

Therefore, W j∼xakxi ∈ Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i), as claimed. To show that every subspace in Ak ji ↓ (Ak, j,i−1 +

Ak−1, j,i) has the same dimension as akxi, we merely add that W j∼xakxi has the same dimension as akxi by
Lemma 6, and the subspaces in Ak ji ↓ (Ak, j,i−1 + Ak−1, j,i) all have the same dimension as each other.

A symmetric argument shows that W>y∼ jbkyi ∈ Bk ji ↓ (Bk, j,i+1 + Bk+1, j,i) and that every subspace in Bk ji ↓

(Bk, j,i+1 + Bk+1, j,i) has the same dimension as bkyi. �

While Figure 5 depicts the flow of the prebasis subspaces ak ji through the linear neural network, we could
depict the transpose flow with nearly the same figure, simply replacing each ak ji by bk ji and reversing the
directions of the arrows. The bottom half of the figure would not change. (To revise Figure 6, we would
also need to replace the subspaces depicted with the Bk ji’s and bk ji’s.)

Observe that even if two prebases ak ji and ak′ ji′ at layer j are orthogonal to each other, the prebases W j+1ak ji

and W j+1ak′ ji′ generally are not orthogonal. Choosing prebases that “flow” entails sacrificing the desire to
choose each layer’s prebasis to be as close to orthogonal as possible (i.e., the standard prebasis). But as
we have already said, a fully orthogonal prebasis is not generally possible anyway (for example, where a
nullspace meets a columnspace obliquely).

4.5 Relationships between Matrix Ranks and Prebasis Subspace Dimensions

This section examines the relationship between the ranks of the subsequence matrices Wy∼x and the dimen-
sions of the prebasis subspaces ak ji and bk ji. A key insight is that if we know all the subsequence matrix
ranks, the dimensions of the prebasis subspaces are uniquely determined, and vice versa (as illustrated at the
bottom of Figure 5). To say it another way, there is a bijection between valid rank lists and valid multisets
of intervals (with “valid” defined as in Section 4.1).

Lemma 7 establishes that the dimension of ak ji is the same for every j ∈ [i, k]. By Lemma 3, the dimension
of bk ji is the same too. So we omit the j indices as we now name this dimension.

Let

ωki = dim ak ji = dim bk ji, for all k, j, i satisfying L ≥ k ≥ j ≥ i ≥ 0.

We have already seen this notation, ωki, at the start of Section 4, where it denotes the multiplicity of an
interval [i, k]. Section 4.4 substantiates that connection. The multiplicity ωki signifies a prebasis subspace
akii of dimension ωki that originates at layer i, flows through the network being linearly transformed into a
sequence of bases ak,i+1,i, ak,i+2,i, . . ., all of dimension ωki, reaches layer k in the form akki, and proceeds no
farther (either because akki is in the nullspace of Wk+1 or because layer k is the output layer), as illustrated
in Figures 5 and 6.

The multiplicity ωki also signifies a prebasis subspace bkki of dimension ωki that originates at layer k and
flows through the transpose network to terminate at layer i in the form bkii. This symmetry surprises us,
as sometimes the bases ak ji and bk ji are necessarily unrelated to each other, except that they have the same
dimension. However, the symmetry seems less surprising and even inevitable when you consider that the
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Figure 7: At left, we reprise the basis flow diagram from Figure 5. At right, we tabulate the values of
the interval multiplicities ωml with boxes that illustrate how the summations compute d1, α322, β321, and
rk W3∼1 = rk W3W2. At the bottom of the figure, we reprise the four summations for reference.

fibers µ−1(W) and µ−1(W>) must be identical (assuming the weight variables are labeled in the right corre-
spondence).

Figure 7 gives a preview of four of the five identities proven in this section—summations that express d j,
rk Wk∼i, αk ji, and βk ji in terms of interval multiplicities ωml—and a visual interpretation of those summa-
tions. The bottom of Figure 5 gives a visual interpretation of the fifth identity, which expresses ωki in terms
of matrix ranks, and a second visual interpretation of the summation for rk Wk∼i. It might be helpful to know
that the multiplicities ωml in Figure 7 are the same as in Figure 5, but they are rotated 135◦.

Lemma 4 states thatAk ji is a prebasis for Ak ji, whereAk ji contains every prebasis subspace ak′ ji′ with k′ ≤ k
and i′ ≤ i. The following lemma states that, as we would expect, the dimension of Ak ji is the sum of the
dimensions of the prebases inAk ji. But the proof does not directly appeal to Lemma 4; Lemma 3 suffices.

Lemma 8. For L ≥ k ≥ j ≥ i ≥ 0, the dimensions αk ji of the flow subspaces Ak ji, the dimensions βk ji of
the flow subspaces Bk ji, and the dimensions ωml of the prebasis subspaces amll and bmll are related by the
identities

αk ji = dim Ak ji =

k∑
m= j

i∑
l=0

ωml and βk ji = dim Bk ji =

L∑
m=k

j∑
l=i

ωml. (6)

Proof. We prove the first claim by induction on increasing values of k and i. For the base cases, recall our
convention that Ak, j,−1 = {0} and A j−1, j,i = {0}; hence αk, j,−1 = α j−1, j,i = α j−1, j,−1 = 0.

21



For the inductive case—the identity for αk ji—we assume the inductive hypothesis that the identity holds for
αk, j,i−1, αk−1, j,i, and αk−1, j,i−1. By Lemma 3, αk ji = ωki + αk, j,i−1 + αk−1, j,i − αk−1, j,i−1. By substituting (6)
into the right-hand side, we obtain (6) on the left-hand side, confirming the claim for αk ji.

A symmetric argument (by induction on decreasing values of k and i), with the identity βk ji = ωki +βk, j,i+1 +

βk+1, j,i − βk+1, j,i+1 from Lemma 3, establishes the identity (6) for βk ji. �

The following corollary states that, as we would expect, the number of units d j in unit layer j equals the sum
of the dimensions of the subspaces in a prebasis for Rd j .

Corollary 9. The number of units in unit layer j is, as formula (1) says,

d j =

L∑
m= j

j∑
l=0

ωml.

Proof. As Rd j = AL j j = B j j0, d j = αL j j = β j j0. The summation follows by identity (6). �

Recall that a rank list is a list of the ranks of all the subsequence matrices (of the form rk Wk∼i), including
those of the form rk W j∼ j = d j, the number of units in unit layer j. The following lemma shows how to map
a rank list to a multiset of intervals (expressed as a list of interval multiplicities ωki) and vice versa. The
bottom of Figure 5 depicts the identities (7) and (8).

Lemma 10. For L ≥ k ≥ i ≥ 0, the ranks of the subsequence matrices are related to the dimensions of the
flow subspaces and the dimensions of the prebasis subspaces by the identities

rk Wk∼i = αLki = βki0 =

L∑
m=k

i∑
l=0

ωml and (7)

ωki = rk Wk∼i − rk Wk∼i−1 − rk Wk+1∼i + rk Wk+1∼i−1, (8)

recalling the conventions that rk W j∼ j = d j and rk WL+1∼x = 0 = rk Wy∼−1.

Proof. We use the Rank-Nullity Theorem to connect the rank of Wk∼i to the dimensions of the flow sub-
spaces, and the formulae (6) to connect those to the interval multiplicities. Recall that ALii = Rdi and
Ak−1,i,i = null Wk∼i ∩ col Wi∼i = null Wk∼i. As Wk∼i is a dk × di matrix,

rk Wk∼i = di − dim null Wk∼i

= dim ALii − dim Ak−1,i,i

= αLii − αk−1,i,i

=

L∑
m=k

i∑
l=0

ωml

= αLki = βki0

as claimed. (Symmetrically, we could obtain the summation (7) by instead starting from rk Wk∼i = dk −

dim null W>k∼i and recalling that Bkk0 = Rdk and Bk,k,i+1 = null W>k∼i. This is how we originally realized that
dim ak ji = dim bk ji, which led us to Lemma 2.)

We can verify the identity rk Wk∼i − rk Wk∼i−1 − rk Wk+1∼i + rk Wk+1∼i−1 = ωki by substituting the summa-
tion (7) into it. �
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Ferdinand Georg Frobenius [5] proved in 1911 that rk Wk∼i − rk Wk∼i−1 − rk Wk+1∼i + rk Wk+1∼i−1 ≥ 0, a
statement called the Frobenius rank inequality. This confirms that every ωml is nonnegative. Our derivations
deepen the Frobenius rank inequality by connecting the slack (8) in the inequality to the dimension of the
subspaces (4) and (5). (We considered calling each interval multiplicity ωml a Frobenius slack.) To put it in
a simpler notation,

rk S T − rk S TU − rk RS T + rk RS TU = dim (projcol T row S ∩ projnull RS null (TU)>)

= dim (projrow S col T ∩ projnull (TU)> null RS ).

Thome [15] offers some generalizations of the Frobenius rank inequality to linear neural networks. He
proves them by induction, but they also follow easily from (7).

4.6 A Fundamental Theorem of Linear Neural Networks?

Matrices have a few crucial properties that Gilbert Strang [14] summarizes as a Fundamental Theorem of
Linear Algebra. For any y × z matrix W, the rowspace of W (denoted row W) is orthogonal to the nullspace
of W (denoted null W) and the sum of their dimensions is z (the latter fact is known as the Rank-Nullity
Theorem). The same observation applies to W>, so the columnspace of W (denoted col W) is orthogonal to
the left nullspace of W (denoted null W>) and the sum of their dimensions is y. The dimensions of row W
and col W are the same (namely rk W). (Strang’s presentation also includes two properties of the singular
value decomposition, not treated here.)

Here, we outline a candidate for an analogous Fundamental Theorem of Linear Neural Networks. That
candidate is the combination of Lemmas 3, 4, 6, and 7, and the formulae (1), (2), (6), (7), and (8), with
the standard basis subspaces (4) and (5) giving us canonical examples of a decomposition of each layer
of units into linearly independent subspaces. If we replace the standard prebasis with a flow prebasis,
our Fundamental Theorem gives us additional insight into the flow of information through a linear neural
network.

These results do not lend themselves to a pithy statement like the Fundamental Theorem of Linear Algebra,
but they are nevertheless useful, as our forthcoming work will demonstrate. This paper was motivated by
our studies of the topology and geometry of the fiber µ−1(W) of a matrix W, where the flow prebases play
a large role in showing how manifolds of different dimensions are knitted together to form the fiber, and in
enumerating the ways we can locally modify the weights of a linear neural network without changing the
linear transformation that the network computes. These insights, in turn, have applications to understanding
critical points in the cost functions used to train neural networks [16], because gradient descent algorithms
sometimes make progress by linking subspace flows together.

5 Determinantal Manifolds, Metadeterminantal Manifolds, and Strata

The fiber µ−1(W) of a matrix W is not generally a manifold, but we claim that we can understand the fiber
by partitioning it into a finite number of disjoint strata, which are manifolds of different dimensions. Each
stratum corresponds to a different rank list—or equivalently, to a different multiset of intervals. Before we
partition the fiber into strata, it is useful to consider how the entire weight space Rdθ can be partitioned into
a set of metadeterminantal manifolds, one for each possible rank list.
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We define the rank list r for a weight vector θ = (WL,WL−1, . . . ,W1) ∈ Rdθ to be a sequence specifying the
ranks of all the subsequence matrices, i.e., r = 〈rk Wk∼i〉L≥k≥i≥0. The rank list includes the unit layer sizes
rk W j∼ j = d j, and we assume these are fixed.

Sometimes we do not want to specify a particular θ, but rather we wish to specify some target ranks; in
this case we let rk∼i denote the target value of rk Wk∼i and we write r = 〈rk∼i〉L≥k≥i≥0. Consider the set of
all points in weight space whose subsequence matrices all match a specified rank list r. We call this set a
metadeterminantal manifold, which we denote

MMr = {θ = (WL, . . . ,W1) ∈ Rdθ : rk Wk∼i = rk∼i for all L ≥ k > i ≥ 0}.

To understand MMr, it helps to examine one matrix at a time. There is a well known algebraic variety called
the determinantal variety, which we denote

DVy×z
r = {M ∈ Ry×z : rk M ≤ r},

the set of all y × z real matrices of rank at most r. The determinantal variety has singular points and thus
is not a manifold (unless the rank is zero; DVy×z

0 contains only the zero matrix). It is well known that the
singular locus of DVy×z

r is DVy×z
r−1. If we omit matrices of rank strictly less than r, we obtain a manifold that

we call the determinantal manifold, denoted

DMy×z
r = DVy×z

r \ DVy×z
r−1 = {M ∈ Ry×z : rk M = r}.

Observe that DVy×z
r is the closure of DMy×z

r . So although DMy×z
r is a manifold, it is not closed with respect

to the weight space. It is well known that both DMy×z
r and DVy×z

r have dimension r(y + z − r).

If a weight vector θ = (WL, . . . ,W1) lies on the metadeterminantal manifold MMr, then W1 must lie on the
determinantal manifold DMr1∼0 , W2 must lie on the determinantal manifold DMr2∼1 , and so on. But we also
have to constrain the ranks of subsequence matrices like W4∼0 that are not factor matrices. The restriction
that θ must satisfy rk W4∼0 = r4∼0 motivates weight-space determinantal manifolds, denoted

WDMk∼i
r = {θ ∈ Rdθ : rk Wk∼i = rk∼i}.

Unfortunately, these are not as well studied as ordinary determinantal manifolds. Each weight-space deter-
minantal manifold is an algebraic variety, as it is the set of solutions of a system of polynomial equations.
These equations are found by setting all the order-(rk∼i + 1) minors of Wk∼i to zero. It is not obvious that
each WDMk∼i

r is a manifold.

A second way to define the metadeterminantal manifold is as the intersection of the weight-space determi-
nantal manifolds:

MMr =
⋂

L≥k>i≥0

WDMk∼i
r .

Every point θ in weight space lies on one metadeterminantal manifold (the one with the correct rank list
for θ), so the metadeterminantal manifolds partition the entire weight space Rdθ into manifolds of various
dimensions. Given a matrix W, we can stratify its fiber µ−1(W) by creating, for each rank list r that is valid
for W, a stratum

S W
r = µ−1(W) ∩ MMr.

That is, S W
r is the set of points θ ∈ Rdθ such that µ(θ) = W and r is the rank list for θ. We claim that S W

r is a
manifold. In the next section, we derive its dimension and its tangent space at θ.

Note that S W
r is empty if rL∼0 , rk W. We only need to consider rank lists that get the rank of W right.
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6 Moves on and off the Fiber

Imagine you are standing at a point θ on a fiber µ−1(W). A move (θ, θ′) is a step you take from θ to another
point θ′, which may or may not be on the fiber. Let ∆θ = θ′ − θ be the displacement of the move. We write

θ′ = (W′L,W
′
L−1, . . . ,W

′
1) ∈ Rdθ and

∆θ = (∆WL,∆WL−1, . . . ,∆W1) ∈ Rdθ .

We use analogous notation for the product W′ = µ(θ′), its displacement ∆W = W′ − W, the modified
subsequence matrices W′j∼i = W′jW

′
j−1 · · ·W

′
i+1, and their displacements ∆W j∼i = W′j∼i −W j∼i.

Not every displacement constitutes a “move.” As we define it, a move requires ∆θ to lie in one of the
subspaces we will define in Section 6.1 and 6.5. (Even this statement has to be modified to account for the
curvature of the fiber also complicates the definition of “move.”) Most of these subspaces are tangent to one
or more strata that adjoin the point θ. They will help us to count the dimensions of strata and geometrically
characterize their connections to other strata.

Two classes of move suffice to characterize strata, their tangent spaces, and their interconnections: one-
matrix moves and two-matrix moves.

• A one-matrix move has at most one nonzero displacement matrix ∆W j. That is, W′z = Wz for all z , j.
Moreover, we require that col ∆W j ⊆ al ji for some prebasis subspace al ji (defined in Section 4.3)
with L ≥ l ≥ j ≥ i ≥ 0, and that row ∆W j ⊆ bk, j−1,h for some prebasis subspace bk, j−1,h with
L ≥ k ≥ j − 1 ≥ h ≥ 0. In a more concise notation, ∆W j ∈ al ji ⊗ bk, j−1,h; we call al ji ⊗ bk, j−1,h a one-
matrix subspace. Some one-matrix moves stay on the fiber (specifically, we will see that W′ = W if
L > l or i > 0) and some move off of it (W′ , W if l = L and i = 0, unless ∆W j = 0). Some of the
one-matrix moves that stay on the fiber also stay on the stratum that contains θ (that is, no subsequence
matrix changes its rank), and some move off of it (some subsequence matrix changes its rank).

One-matrix moves are linear in two senses. First, the displacement ∆W is linear in the displacement
∆W j. Second, as a consequence, if a one-matrix move stays on the fiber (W′ = W), then for all κ ∈ R,
µ(θ + κ∆θ) = W. That is, the line through θ and θ′ is a subset of the fiber. Moreover, if you have a set
of one-matrix displacements that all displace W j and all stay on the fiber, then any linear combination
of those displacements is a displacement that also stays on the fiber. Section 6.1 discusses one-matrix
moves in detail.

• A two-matrix move has exactly two nonzero displacement matrices ∆W j+1 and ∆W j (which are always
consecutive). In a finite two-matrix move, we choose a matrix K ∈ al ji ⊗ bk jh for some al ji with
L ≥ l > j ≥ i ≥ 0 and some bk jh with L ≥ k ≥ j > h ≥ 0, then set W′j+1 = W j+1(I + K) and
W′j = (I + K)−1W j. (We assume that I + K is invertible; it always is if K is sufficiently small.) It is
easy to see that every finite two-matrix move stays on the fiber (W′ = W) and moreover stays on the
same stratum as θ (no subsequence matrix changes its rank).

Unlike in a one-matrix move, often there is no straight path on the fiber from θ to θ′. But there is a
natural choice of a curved path that stays on the fiber, and moreover stays on the same stratum as θ.
Of particular interest to us is the initial direction of motion from θ as you walk along that path—that
is, the direction tangent to the path at θ. That direction is the same as the direction of the displacement
determined by ∆W j+1 = W j+1K and ∆W j = −KW j (ignoring its magnitude). We call a displacement
in that direction a differential two-matrix move. A move in that direction doesn’t stay on the fiber
(because of its curvature), but it stays on a line tangent to the stratum containing θ. By characterizing
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all differential two-matrix moves, we can determine the stratum’s tangent space and the dimension of
the stratum. Section 6.5 discusses two-matrix moves in detail.

We will consider both finite moves, which are simple moves from one point to another, and infinitesimal
moves: moves in the limit as ∆θ becomes infinitesimally small.

Infinitesimal moves are motivated by two considerations. First, an infinitesimal perturbation of a matrix
can increase its rank, but cannot decrease its rank—decreasing the rank entails a finite displacement. By
studying moves that are so small that no subsequence matrix can decrease in rank, we simplify understanding
how strata of different dimensions are connected to each other. For example, in Figure 3, the 0-dimensional
stratum S 000 lies in the closure of the 1-dimensional stratum S 010, and both of those lie in the closure of
the 2-dimensional stratum S 011. Starting from any point θ ∈ S 010, an infinitesimal move can reach some
point θ′ ∈ S 011, which entails an increase in the rank of W1 from 0 to 1. But from θ, an infinitesimal move
does not suffice to reach S 000, as θ is not in the closure of S 000. Recall that at θ, W2 = [θ2], but at S 000,
rk W2 = 0; so the distance from θ to S 000 is |θ2|. In general, decreasing the rank of any subsequence matrix
always entails moving some finite distance.

Infinitesimals have a complicated status in the history of mathematical rigor. To strip away everything that
is not essential, we now define an infinitesimal move to be any move such that every stratum whose closure
contains θ′ also contains θ. That is, you can never enter a stratum’s closure by an infinitesimal move if you’re
not already there. This definition has a counterintuitive consequence: if an infinitesimal move increases the
rank of some subsequence matrix, then the inverse move is not infinitesimal. Moving from S 010 to S 011 is
infinitesimal, but moving back is not. If an infinitesimal move moves from one stratum to a different one,
the latter stratum has higher dimension than the former.

The second motivation is that most fibers have some curvature. In the limit as a displacement ∆θ approaches
zero (while keeping θ′ on the fiber), ∆θ becomes arbitrarily close to tangent to some smooth path on the fiber
adjoining θ. Roughly speaking, we want to characterize the subspace tangent to the fiber at θ. Unfortunately,
the most interesting points on the fiber are the singular points where the fiber is not locally a manifold and
a tangent space is not defined! Fortunately, our stratification partitions the fiber into manifolds (of different
dimensions), and we can characterize the tangent space of each stratum whose closure contains θ. All of
these tangent spaces are subspaces of a particular subspace, the nullspace of the differential map of µ(θ) (see
Section 6.4). We use a combination of infinitesimal one-matrix moves and differential two-matrix moves to
build prebases that span these subspaces.

In this section, we construct prebases in weight space that can express moves that are aligned with the fiber
and each stratum at θ. We identify which infinitesimal one-matrix stay on the same stratum as θ, and which
ones move to another stratum. We will construct three different prebases.

• The one-matrix move prebasis is a prebasis that spans the entire weight space Rdθ . Each member of
the prebasis is a subspace of one-matrix moves.

• The fiber prebasis is a prebasis that spans the nullspace of the differential map of µ(θ). Unlike the
one-matrix move prebasis, the fiber prebasis does not span the entire weight space Rdθ . However, the
nullspace of the differential map includes all lines tangent at θ to a smooth path on the fiber. The
fiber prebasis contains all the one-matrix subspaces whose moves stay on the fiber, excludes all the
one-matrix subspaces whose moves do not, and adds some two-matrix moves that represent directions
tangent to curved paths on the fiber.

The fiber prebasis gives us a practical blueprint for moving on the fiber. For example, one could
modify a linear neural networks’ weights so that it computes the same function as before but it is no
longer close to a spurious critical point, thereby helping gradient descent to run faster.
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• Recall that our stratification partitions the fiber µ−1(W) into strata; let S be the stratum that contains θ.
The stratum prebasis is a prebasis that spans TθS , the tangent space of S at θ. The fiber prebasis
contains all the one-matrix subspaces whose moves stay on the stratum and adds more two-matrix
moves than the fiber prebasis does.

Some one-matrix moves change the ranks of one or more subsequence matrices, thereby moving from one
stratum to another; we call them combinatorial moves. They are particularly interesting, and we study them
in Sections 6.2 and 6.3. There are no combinatorial two-matrix moves; two-matrix moves do not change the
rank of any subsequence matrix. We focus primarily on infinitesimal combinatorial moves, which increase
the rank of at least one subsequence matrix, but cannot decrease any ranks.

A combinatorial move implies that θ′ has a different rank list and a different multiset of intervals than θ, so
θ′ does not lie in the same stratum as θ. An infinitesimal combinatorial move further implies that θ′ lies in
a higher-dimensional stratum that has θ on its relative boundary. We subdivide combinatorial moves into
two categories: connecting moves, which connect two intervals together by increasing the rank of a factor
matrix W j; and swapping moves, which replace two intervals by two different intervals, one longer than both
the replaced intervals, and one shorter than both. A swapping move does not increase the rank of any factor
matrix W j, but both types of moves increase the ranks of one or more subsequence matrices.

6.1 One-Matrix Moves and the One-Matrix Move Prebasis

In a one-matrix move, we choose one finite displacement ∆W j and set ∆Wz = 0 for all z , j. (We permit
∆W j to be zero as well, so our moves include a “move” that doesn’t move.) Thus, we move from a point
θ ∈ µ−1(W) to

θ′ = (WL, . . . ,W j+1,W′j,W j−1, . . . ,W1)

where W′j = W j + ∆W j. Then W′ = µ(θ′) = µ(θ) + WL · · ·W j+1∆W jW j−1 · · ·W1 = W + WL∼ j∆W jW j−1∼0.
A displacement ∆W j has the property that θ′ lies on the fiber µ−1(W) if and only if WL∼ j∆W jW j−1∼0 = 0.
The set of displacements that have this property is the subspace

N j = null WL∼ j ⊗ R
d j−1 + Rd j ⊗ null W>j−1∼0

= AL−1, j, j ⊗ B j−1, j−1,0 + AL j j ⊗ B j−1, j−1,1.

Here, the symbol “⊗” denotes a tensor product. For linear subspaces U ⊆ Ry and V ⊆ Rx,

U ⊗ V = {M ∈ Ry×x : col M ⊆ U and row M ⊆ V}.

That is, U ⊗ V is the set containing every y × x matrix M such that M maps all points in Rx into U and M>

maps all points in Ry into V .

Observe that N j ⊆ R
d j×d j−1 and its dimension is

dim N j = dim (null WL∼ j ⊗ R
d j−1) + dim (Rd j ⊗ null W>j−1∼0) − dim (null WL∼ j ⊗ null W>j−1∼0)

= (d j − rk WL∼ j) · d j−1 + d j · (d j−1 − rk W j−1∼0) − (d j − rk WL∼ j) · (d j−1 − rk W j−1∼0)

= d jd j−1 − rk WL∼ j · rk W j−1∼0.

Recall from Section 4.3 that we decompose each unit layer’s space Rd j into a prebasis—a “basis” made up
of subspaces—which could easily be further decomposed into a basis of vectors (a more familiar concept).
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Here we apply the same idea to the factor matrix spaces Rd j×d j−1 and the weight space Rdθ . Above, we have
expressed N j in terms of some flow subspaces Al j j and B j−1, j−1,h defined in Section 4.2. This gives us a hint
about how we might decompose Rdθ into a prebasis that separates moves that stay on the fiber from those
that do not.

First, we construct a prebasis O j for Rd j×d j−1 . For indices l, k, j, i, and h satisfying L ≥ l ≥ j ≥ i ≥ 0 and
L ≥ k ≥ j − 1 ≥ h ≥ 0, define the prebasis subspace

olk jih = al ji ⊗ bk, j−1,h,

where al ji and bk, j−1,h are the prebasis subspaces defined in Section 4.3. Observe that dim olk jih = dim al ji ·

dim bk, j−1,h = ωli ωkh. For each j ∈ [1, L], define the prebasis

O j = {olk jih , {0} : l ∈ [ j, L], k ∈ [ j − 1, L], i ∈ [0, j], h ∈ [0, j − 1]}.

This prebasis pairs every subspace in the prebasisA j with every subspace in the prebasis B j−1.

Lemma 11. O j is a prebasis for Rd j×d j−1 . In particular, the subspaces in O j are linearly independent.

Proof. �

Note that is is easy to find a basis for olk jih as follows. Let the vectors u1, . . . , uω ∈ Rd j be a basis for al ji

(where ω = ωli is the number of basis vectors) and let v1, . . . , vω′ ∈ Rd j−1 be a basis for bk, j−1,h (where
ω′ = ωkh). Then a basis for olk jih is the set {uiv>j : i ∈ [1, ω], j ∈ [1, ω′]}, which contains ωli ωkh rank-1 outer
product matrices. If we take the union of these bases over every olk jih ∈ O j, we have a total of d jd j−1 basis
“vectors” (matrices) that form a basis for Rd j×d j−1 .

Now we construct a prebasis ΘO for Rdθ that we call the one-matrix move prebasis. The subspaces in ΘO
have the form

φlk jih = {(0, . . . , 0,M, 0, . . . , 0) : M ∈ olk jih}

with M in position j from the right. Let

ΘO = {φlk jih , {0} : L ≥ l ≥ j ≥ i ≥ 0 and L ≥ k ≥ j − 1 ≥ h ≥ 0}.

It is clear that ΘO is a prebasis for Rdθ , as each O j is a prebasis for Rd j×d j−1 .

We are finally ready to define a one-matrix move: it is a move with displacement ∆θ ∈ φlk jih for some
subspace φlk jih ∈ ΘO.

Next, we distinguish one-matrix moves that stay on the fiber from those that move off the fiber. This
motivates the following subsets of O j and ΘO.

OL0
j = {olk jih ∈ O j : l = L and h = 0} = {oLk ji0 , {0} : k ∈ [ j − 1, L], i ∈ [0, j]},

ΘL0
O = {φlk jih ∈ ΘO : l = L and h = 0} = {φLk ji0 , {0} : L ≥ k ≥ j − 1 ≥ 0 and L ≥ j ≥ i ≥ 0},

Ofiber
j = O j \ O

L0
j = {olk jih ∈ O j : L > l or h > 0}, and

Θfiber
O = ΘO \ ΘL0

O = {φlk jih ∈ ΘO : L > l or h > 0}.

We claim that Ofiber
j is a prebasis for N j, and that every displacement ∆θ ∈ φlk jih with φlk jih ∈ Θfiber

O stays on
the fiber; that is, µ(θ + ∆θ) = W. We also claim that every displacement ∆θ ∈ φlk jih \ {0} with φlk jih ∈ ΘL0

O
leaves the fiber; that is, µ(θ + ∆θ) , W.
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Lemma 12. Ofiber
j is a prebasis for N j.

Proof. Recall that N j = AL−1, j, j ⊗ R
d j−1 + Rd j ⊗ B j−1, j−1,1. By Lemma 4,

Rd j = AL j j =

L∑
l= j

j∑
i=0

al ji,

AL−1, j, j =

L−1∑
l= j

j∑
i=0

al ji,

Rd j−1 = B j−1, j−1,0 =

L∑
k= j−1

j−1∑
h=0

bk, j−1,h, and

B j−1, j−1,1 =

L∑
k= j−1

j−1∑
h=1

bk, j−1,h.

Therefore,

AL−1, j, j ⊗ R
d j−1 =

L−1∑
l= j

j∑
i=0

L∑
k= j−1

j−1∑
h=0

al ji ⊗ bk, j−1,h = span {olk jih ∈ O j : L > l},

Rd j ⊗ B j−1, j−1,1 =

L∑
l= j

j∑
i=0

L∑
k= j−1

j−1∑
h=1

al ji ⊗ bk, j−1,h = span {olk jih ∈ O j : h > 0}, and

N j = AL−1, j, j ⊗ R
d j−1 + Rd j ⊗ B j−1, j−1,1 = spanOfiber

j .

By Lemma 12, the subspaces in O j are linearly independent; hence so are the subspaces in Ofiber
j . Therefore,

Ofiber
j is a prebasis for N j. �

The following corollary shows that Θfiber
O represents the one-matrix moves that stay on the fiber, whereas

ΘL0
O represents the one-matrix moves that move off the fiber (plus the move with ∆θ = 0, as every subspace

must include the trivial move).

Corollary 13. For every subspace φlk jih ∈ Θfiber
O and every displacement ∆θ ∈ φlk jih, µ(θ + ∆θ) = W. For

every subspace φlk jih ∈ ΘL0
O and every displacement ∆θ ∈ φlk jih \ {0}, µ(θ + ∆θ) , W.

Proof. Every subspace φlk jih ∈ ΘO is a one-matrix move subspace, so a displacement ∆θ ∈ φlk jih has at
most one nonzero matrix, ∆W j ∈ olk jih. Let θ′ = θ + ∆θ, and recall that µ(θ′) = W + WL∼ j∆W jW j−1∼0. If
φlk jih ∈ Θfiber

O , then ∆W j ∈ N j by Lemma 12, so µ(θ + ∆θ) = W. If φlk jih ∈ ΘL0
O and ∆θ ∈ φlk jih \ {0}, then

∆W j < N j by Lemma 12, so µ(θ + ∆θ) , W. �
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6.2 The Effects of One-Matrix Moves

There is a crucial distinction between one-matrix moves that change the rank of some subsequence matrix—
the combinatorial moves—and one-matrix moves that do not. Following a combinatorial move, θ′ is in a
different stratum than θ (usually of a different dimension), θ′ has a different rank list than θ, θ′ has a different
multiset of intervals than θ, and usually (but not always) the number of degrees of freedom of motion along
the fiber is different at θ′ than at θ.

For each subspace olk jih in the prebasisO j, we ask: which subsequence matrices change when we replace W j

with W′j = W j + ∆W j, where ∆W j ∈ olk jih? Which subsequence matrices undergo a change in rowspace or
columnspace? Which subsequence matrices change rank? The rest of this section answers these questions.
Table 4 summarizes the answers for infinitesimal moves.

Let ∆W j = εpq> for a scalar ε ∈ R and two vectors p ∈ al ji \ {0} and q ∈ bk, j−1,h \ {0}. Then ∆W j ∈ olk jih.
We assume l ≥ j ≥ i and k ≥ j − 1 ≥ h (otherwise al ji or bk, j−1,h is not defined). Let W′j = W j + ∆W j,
let θ = (WL,WL−1, . . . ,W1), and let θ′ be θ with W j replaced by W′j. For each subsequence matrix Wy∼x,
let W′y∼x denote its new value for θ′, and let ∆Wy∼x = W′y∼x −Wy∼x. The following lemma identifies which
subsequence matrices do or do not change.

Lemma 14. Given L ≥ y ≥ x ≥ 0, W′y∼x = Wy∼x if and only if ε = 0 or j < [x + 1, y] or y > l or x < h.

Proof. If j < [x + 1, y], then W′j is not one of the matrices constituting W′y∼x, so W′y∼x = Wy∼x as claimed.

Otherwise, ∆Wy∼x = Wy∼ j∆W jW j−1∼x = εWy∼ j pq>W j−1∼x. Observe that p ∈ al ji ⊆ Al ji ⊆ null Wl+1∼ j and
q ∈ bk, j−1,h ⊆ Bk, j−1,h ⊆ null W>j−1∼h−1. Therefore, if y > l then Wy∼ j p = 0; symmetrically, if x < h then
W>j−1∼xq = 0. Thus if ε = 0 or y > l or x < h, then ∆Wy∼x = 0 and W′y∼x = Wy∼x.

By Lemma 6, p < null Wl∼ j and q < null W>j−1∼h. Hence if ε , 0 and j ∈ [x + 1, y] and y ≤ l and x ≥ h, then
Wy∼ j p , 0, W>j−1∼xq , 0, ∆Wy∼x , 0, and thus W′y∼x , Wy∼x. �

The next lemma is preparation for the lemma that follows it.

Lemma 15. For every vector p ∈ al ji \ {0}, p < null Wl∼ j + col W j∼i−1. Similarly, for every vector q ∈
bk, j−1,h \ {0}, q < row Wk+1∼ j−1 + null W>j−1∼h.

Proof. Observe that null Wl∼ j = Al−1, j, j and col W j∼i−1 = AL, j,i−1. By Lemma 4, AL j j is a prebasis for
AL j j = Rd j ,Al−1, j, j ⊆ AL j j is a prebasis for Al−1, j, j ⊆ R

d j , andAL, j,i−1 ⊆ AL j j is a prebasis for AL, j,i−1 ⊆ R
d j .

As al ji ∈ AL j j and Al−1, j, j ∪ AL, j,i−1 ⊆ AL j j but al ji < Al−1, j, j ∪ AL, j,i−1, the fact that AL j j is a prebasis
implies that al ji is linearly independent of the subspaces inAl−1, j, j∪AL, j,i−1, so al ji∩(Al−1, j, j+AL, j,i−1) = {0}.
Hence, for every p ∈ al ji \ {0}, p < Al−1, j, j + AL, j,i−1 = null Wl∼ j + col W j∼i−1.

A symmetric argument shows the second claim. �

The next lemma identifies which subsequence matrices do or do not have new vectors appear in their row-
spaces or columnspaces.

Lemma 16. Given L ≥ y ≥ x ≥ 0, col ∆Wy∼x ⊆ col Wy∼x (equivalently, col W′y∼x ⊆ col Wy∼x) if and only
if ε = 0 or j < [x + 1, y] or y > l or x < h or x ≥ i. Symmetrically, row ∆Wy∼x ⊆ row Wy∼x (equivalently,
row W′y∼x ⊆ row Wy∼x) if and only if ε = 0 or j < [x + 1, y] or y > l or x < h or y ≤ k.
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W ′y∼x = Wy∼x
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row W′y∼x ⊆ row Wy∼x

W j

W jW j

W ′y∼x = Wy∼x

W ′y∼x , Wy∼x

W ′y∼x = Wy∼x

rk W ′y∼x = rk Wy∼x

col W ′y∼x * col Wy∼x

row W ′y∼x ⊆ row Wy∼x

rk W ′y∼x = rk Wy∼x

row W ′y∼x ⊆ row Wy∼x

col W ′y∼x ⊆ col Wy∼x

W ′y∼x , Wy∼x

W ′y∼x , Wy∼x

col W ′y∼x * col Wy∼x

row W ′y∼x * row Wy∼x

rk W′
y∼x = rk Wy∼x + 1
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W ′
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l + 1

k + 1
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j − 1 j
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x

y

W ′y∼x = Wy∼x

rk W ′y∼x = rk Wy∼x

col W ′y∼x ⊆ col Wy∼x

W ′y∼x , Wy∼x

row W ′y∼x * row Wy∼x

W ′y∼x = Wy∼x

W ′y∼x = Wy∼x

W ′y∼x = Wy∼x

W ′y∼x = Wy∼x

swapping move

Table 4: The influence of an infinitesimal one-matrix move (i.e., ε is sufficiently small) in which the factor
matrix W j undergoes a displacement ∆W j ∈ olk jih. The effects on the subsequence matrix Wy∼x are listed
for every y and x with y ≥ x. These tables are triangular, though it’s not obvious at first: the hatched
region represents an unused zone where y < x. A yellow rectangle indicates which subsequence matrices
increase in rank, constituting a combinatorial (connecting or swapping) move. The black font indicates
where W′y∼x , Wy∼x. The red font indicates where W′y∼x = Wy∼x because the matrix W j is not a factor
in Wy∼x. The blue font indicates where W′y∼x = Wy∼x for deeper reasons. (a) Table for the case where
L > l > k > j − 1 and j > i > h > 0. An example of a swapping move. (b) The third row disappears if
k = j − 1, and the third column disappears if i = j. When both identities hold, the move is a connecting
move. (c) The second row disappears if k ≥ l, and the second column disappears if i ≤ h. If either inequality
holds, the move is not a combinatorial move. The first column disappears if h = 0. (The first row disappears
if l = L, not shown. If h = 0 and l = L, then W′ , W and we move off the fiber.)
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Proof. If ε = 0 or j < [x + 1, y] or y > l or x < h, then ∆Wy∼x = 0 by Lemma 14 and the result follows.
Henceforth, assume that ε , 0 and j ∈ [x + 1, y] and y ≤ l and x ≥ h.

As ∆Wy∼x = εWy∼ j pq>W j−1∼x, col ∆Wy∼x is either {0} or the line spanned by the vector Wy∼ j p. As p ∈
al ji ⊆ col W j∼i, Wy∼ j p ∈ col Wy∼i. If x ≥ i then Wy∼ j p ∈ col Wy∼x, so col ∆Wy∼x ⊆ col Wy∼x as claimed.

Symmetrically, row ∆Wy∼x is either {0} or the line spanned by the vector W>j−1∼xq. As q ∈ bk, j−1,h ⊆

row Wk∼ j−1, W>j−1∼xq ∈ row Wk∼x. If y ≤ k then W>j−1∼xq ∈ row Wy∼x, so row ∆Wy∼x ⊆ row Wy∼x as claimed.

By Lemma 15, p < null Wl∼ j +col W j∼i−1 and q < row Wk+1∼ j−1 +null W>j−1∼h. Therefore, Wl∼ j p < col Wl∼i−1

and W>j−1∼hq < row Wk+1∼h. As y ≤ l, Wy∼ j p < col Wy∼i−1. As x ≥ h, W>j−1∼xq < row Wk+1∼x.

If x < i, col Wy∼i−1 ⊇ col Wy∼x and thus Wy∼ j p < col Wy∼x. We have W>j−1∼xq , 0 because q < null W>j−1∼h,
which means that W>x∼hW>j−1∼xq , 0. Hence col ∆Wy∼x is the line spanned by the vector Wy∼ j p, which is not
in col Wy∼x, so col ∆Wy∼x * col Wy∼x as claimed.

If y > k, row Wk+1∼x ⊇ row Wy∼x and thus W>j−1∼xq < row Wy∼x. We have Wy∼ j p , 0 because p < null Wl∼ j,
which means that Wl∼yWy∼ j p , 0. Hence row ∆Wy∼x is the line spanned by the vector W>j−1∼xq, which is not
in row Wy∼x, so row ∆Wy∼x * row Wy∼x as claimed. �

The next lemma addresses the crucial question of which moves can change the rank of a subsequence
matrix—that is, which moves are combinatorial. It begins with a general statement for both finite and
infinitesimal moves, then gives a stronger statement for infinitesimal moves. This is the only result in this
section (Section 6.2) that treats infinitesimal moves differently than finite ones.

Lemma 17. Given L ≥ y ≥ x ≥ 0, for all ε ∈ R, rk W′y∼x ≤ rk Wy∼x + 1. Moreover, if y > l or y ≤ k or x ≥ i
or x < h, then rk W′y∼x ≤ rk Wy∼x.

Moreover, there exists an ε̂ > 0 such that for all ε ∈ (−ε̂, ε̂), rk W′y∼x = rk Wy∼x + 1 if ε , 0 and l ≥ y > k
and i > x ≥ h, and rk W′y∼x = rk Wy∼x otherwise.

Proof. The displacement ∆Wy∼x = (εWy∼ j p)(q>W j−1∼x) is an outer product of two vectors, so its rank is
one or zero and rk W′y∼x ≤ rk Wy∼x + 1. If y > l or y ≤ k, then row W′y∼x ⊆ row Wy∼x by Lemma 16, so
rk W′y∼x ≤ rk Wy∼x. If x ≥ i or x < h, then col W′y∼x ⊆ col Wy∼x by Lemma 16, and again rk W′y∼x ≤ rk Wy∼x.
If any of those conditions hold (y > l or y ≤ k or x ≥ i or x < h) and moreover ε is sufficiently small, then
rk W′y∼x = rk Wy∼x, as decreasing the rank requires some finite displacement. If ε = 0, then W′y∼x = Wy∼x.

If ε , 0 and l ≥ y > k and i > x ≥ h, then we have j ∈ [x + 1, y] because j ≥ i ≥ x + 1 and j ≤ k + 1 ≤ y.
Then by Lemma 16, col ∆Wy∼x * col Wy∼x and row ∆Wy∼x * row Wy∼x. Therefore, if ε is sufficiently small,
then rk W′y∼x = rk Wy∼x + 1. �

6.3 Infinitesimal Combinatorial Moves

Recall that a move is combinatorial if it changes the rank of one or more of the subsequence matrices. An
infinitesimal move cannot decrease any matrix rank, but it might increase one or more ranks. Hence, the
infinitesimal combinatorial moves are the infinitesimal moves that increase some subsequence matrix rank.
It follows from Lemma 17 that these are the moves in which a displacement ∆W j is chosen from a subspace
olk jih such that l > k and i > h. Lemma 17 shows that the subsequence matrices whose ranks increase are
Wy∼x for all y ∈ [k + 1, l] and x ∈ [h, i − 1] (as Table 4 illustrates). Their ranks all increase by the same
amount: the rank of ∆W j.
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Interestingly, a single move may change the ranks of many subsequence matrices, but at most four interval
multiplicities change. Recall the identity (8), ωts = rk Wt∼s − rk Wt∼s−1 − rk Wt+1∼s + rk Wt+1∼s−1. If all four
ranks increase by rk ∆W j, or exactly two ranks with opposite signs do, then ωts does not change.

It is straightforward to check that ωkh and ωli decrease by rk ∆W j, ωlh and ωki increase by rk ∆W j, and no
other interval multiplicity changes. Hence, the integer multiplicities encode the changes produced by an
infinitesimal combinatorial move more elegantly than the rank list does.

By the definition of ΘO, k + 1 ≥ j ≥ i. In the special case where k + 1 = j = i, we call the infinitesimal
combinatorial move a connecting move. In a connecting move, ωki does not exist (as k < i) and only three
interval multiplicities change. Figure 8 illustrates two examples of connecting moves and offers an intuitive
way to interpret them: a connecting move deletes rk ∆W j copies of the interval [h, k] = [h, j− 1] and rk ∆W j

copies of the interval [i, l] = [ j, l], and replaces them with rk ∆W j copies of the interval [h, l]. We think
of this as connecting the intervals [h, j − 1] and [ j, l] together with an added edge [ j − 1, j] to create an
interval [h, l]; hence the name “connecting move.” (There is much intuition that can be gleaned from a
careful study of the figure that is hard to explain in words.)

A swapping move is an infinitesimal combinatorial move with k ≥ i, which changes four interval multi-
plicities. Figure 9 illustrates two examples of swapping moves. A swapping move splices rk ∆W j copies
of the interval [h, k] with rk ∆W j copies of the interval [i, l], thereby replacing them with rk ∆W j copies of
the interval [h, l] (which is longer than both of the replaced intervals) and rk ∆W j copies of the interval [i, k]
(which is shorter than both).

The ideas of connecting and swapping moves, along with Figures 8 and 9, expose much intuition about how
strata are connected to each other. An infinitesimal move reflects the ways that an infinitesimal perturbation
of a point in weight space can move you from one stratum to another stratum; the former stratum is a subset
of the closure of the latter stratum. One could argue that the strata would better be indexed by the interval
multiplicities than the rank lists, because the interval multiplicities make it easier to see how you can move
from one stratum to another.

We define the following sets of one-matrix subspaces that correspond to combinatorial moves, connecting
moves, and swapping moves.

Θcomb
O = {φlk jih ∈ ΘO : l > k and i > h} = {φlk jih , {0} : L ≥ l ≥ k + 1 ≥ j ≥ i > h ≥ 0},

Θconn
O = {φlk jih ∈ ΘO : l ≥ k + 1 = j = i > h} = {φl, j−1, j, j,h , {0} : L ≥ l ≥ j > h ≥ 0},

Θ
swap
O = {φlk jih ∈ ΘO : l > k ≥ i > h} = {φlk jih , {0} : L ≥ l > k ≥ i > h ≥ 0 and k + 1 ≥ j ≥ i}.

6.4 The Differential Map dµ and its Nullspace

Imagine you are standing at a point θ on a fiber µ−1(W). As µ is a polynomial function of θ, µ is smooth,
but the fiber might not be locally manifold at θ, in which case the fiber is not smooth at θ. Nevertheless,
if you walk on a path on the fiber starting from θ, your initial direction of motion ∆θ is necessarily one
along which the directional derivative µ′

∆θ
(θ) is zero. (Note that this directional derivative is a matrix;

all of its components must be zero.) But the converse does not hold—not every direction with derivative
zero necessarily is associated with some path on the fiber! For example, if you are standing at the origin
(θ ∈ S 00) in Figure 2, the directional derivative of µ is zero for every direction in weight space, but only
some directions stay on the fiber.

To better understand these derivatives, researchers use concepts from differential geometry. Given a neural
network architecture µ : Rdθ → Rdh×d0 and a specific weight vector θ ∈ Rdθ , the differential map dµ(θ) :
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Figure 8: Two examples of connecting moves. The top example is the simplest possible example: W1 has
been perturbed to increase its rank by one. In the bottom example, W2 has been perturbed. In both examples,
the perturbation of W j causes two intervals [h, j−1] and [ j, l] to be replaced by a single interval [h, l]. Three
interval multiplicities change, at three of the four corners of the red rectangle: ωl j and ω j−1,h decrease by
one, and ωlh increases by one. The ranks of the subsequence matrices Wy∼x increase by one for all y ∈ [ j, l]
and x ∈ [h, j − 1] (the ranks inside the red rectangle, including rk W j). Outside the red rectangle, all interval
multiplicities and matrix ranks are unchanged.
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Figure 9: Two examples of swapping moves. In the top example—the simplest possible example—either
W1 or W2 may be perturbed to cause the move. In the bottom example, any of of W2, W3, or W4 may have
been perturbed. Two intervals [h, k] and [i, l] are replaced by an interval [h, l], longer than both original
intervals, and an interval [i, k], shorter than both. Four interval multiplicities change, at the four corners
of the red rectangle: ωkh and ωli decrease by one, and ωlh and ωki increase by one. The ranks of the
subsequence matrices Wy∼x increase by one for all y ∈ [k + 1, l] and x ∈ [h, i − 1] (the ranks inside the red
rectangle). Outside the red rectangle, all interval multiplicities and matrix ranks are unchanged.
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Rdθ → Rdh×d0 is a linear map from weight space to the space of the matrix W. We emphasize the linearity;
think of the differential map as the linear term in a Taylor expansion of µ about θ. In general, we will write
its argument as ∆θ, and apply the map as ∆W = dµ(θ)(∆θ). The notations ∆W and ∆θ reflect a natural
interpretation in terms of perturbations: if you are at a point θ in weight space, yielding a matrix W = µ(θ),
then you perturb θ by an infinitesimal displacement ∆θ, the matrix W is perturbed by an infinitesimal ∆W.

The bare form dµ denotes a map from a weight vector θ to a linear map. This might seem confusing if you
haven’t seen it before—a map that produces a map—and it accounts for the odd notation dµ(θ)(∆θ).

Let ∆θ = (∆WL,∆WL−1, . . . ,∆W1) ∈ Rdθ be a weight perturbation. By the chain rule, the value of the
differential map for µ at a fixed weight vector θ is

dµ(θ)(∆θ) =

L∑
j=1

WL∼ j∆W jW j−1∼0 = ∆WLWL−1∼0 + WL∆WL−1WL−2∼0 + . . . + WL∼1∆W1. (9)

If you walk from θ along a smooth path on the fiber µ−1(W), your initial direction of motion is in the
nullspace of dµ(θ), defined to be

null dµ(θ) = {∆θ ∈ Rdθ : dµ(θ)(∆θ) = 0}.

For that reason, we want to specify a prebasis for null dµ(θ), which we call the fiber prebasis. In Section 6.1
we characterized all the one-matrix moves that stay on the fiber. Recall that we define a one-matrix move
to be a move with displacement ∆θ ∈ φlk jih for some subspace φlk jih ∈ ΘO, and we define Θfiber

O ⊆ ΘO to
contain all the subspaces representing moves that stay on the fiber.

Lemma 18. For every subspace φlk jih ∈ Θfiber
O , φlk jih ⊆ null dµ(θ).

Proof. Consider a perturbation ∆θ ∈ φlk jih; we can write ∆θ = (. . . , 0,∆W j, 0, . . .). By the definition of Θfiber
O ,

either L > l or h > 0. In the former case, WL∼ j∆W j = 0 because row ∆W j ⊆ al ji ⊆ Al ji ⊆ null Wl+1∼ j. In the
latter case, ∆W jW j−1∼0 = 0 because col ∆W j ⊆ bk, j−1,h ⊆ Bk, j−1,h ⊆ null W>j−1∼h−1. In both cases, by the
formula (9), dµ(θ)(∆θ) = WL∼ j∆W jW j−1∼0 = 0. Hence φlk jih ⊆ null dµ(θ). �

Usually Θfiber
O does not suffice to span null dµ(θ). To give a complete prebasis for null dµ(θ), usually we

must add some two-matrix moves. To give a prebasis for the stratum containing the point θ, usually we
must remove some more one-matrix moves (those that move off the stratum) and add some more two-matrix
moves.

Recall that a two-matrix move uses two nonzero displacement matrices ∆W j+1 and ∆W j. In a one-matrix
move that stays on the fiber, every term in the summation (9) is zero. In a two-matrix move (in its differential
form), exactly two terms in the summation (9) are nonzero, offsetting each other so the sum is zero.

6.5 Two-Matrix Moves

A finite two-matrix move is a move that selects an invertible d j × d j matrix M and modifies the factor
matrices W j+1 and W j by setting W′j+1 = W j+1M and W′j = M−1W j. The other factor matrices do not change:
W′z = Wz for all z < { j, j + 1}. Clearly, all finite two-matrix moves stay on the fiber: W′ = µ(θ′) = µ(θ) = W.
Moreover, a finite two-matrix move does not change the rank of any subsequence matrix, so the move stays
on the same stratum. One way to think of this move: an invertible linear transformation changes how hidden
layer j represents information, without otherwise changing anything that the network computes.
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We also define a differential (infinitesimal) version of two-matrix moves. Given a finite two-matrix move
from θ to θ′ as described above, there is typically no straight path on the fiber from θ to θ′, but there is a
natural curved path. Intuitively, we want a differential move to capture the initial direction of a path on the
fiber, without caring where the path ends. That initial direction of movement lies in the nullspace of the
differential map dµ(θ). Therefore, we define a differential move to have a displacement ∆θ ∈ null dµ(θ).
Because of the fiber’s curvature, the point θ+∆θ is not necessarily on the fiber—that is, often µ(θ+∆θ) does
not equal W.

Consider a finite two-matrix move where M = I + εK for an arbitrary, nonzero d j × d j matrix K. For a
sufficiently small ε, M is invertible, so we can draw a smooth path on the fiber leaving θ by varying ε from
zero to some small value. (The curved grid lines in Figure 1 are examples of such paths.) The entire path lies
on the same stratum as θ. To find the line tangent to this path at θ and to generate a differential two-matrix
move, observe that for a small ε, (I + εK)−1 = I − εK + ε2K2 − ε3K3 + . . ., so

d
dε

W′j+1 =
d
dε

(
W j+1(I + εK)

)
= W j+1K and

d
dε

W′j

∣∣∣∣∣
ε=0

=
d
dε

(
(I + εK)−1W j

)∣∣∣∣∣
ε=0

=
d
dε

(
(I − εK + ε2K2 − ε3K3 + . . .)W j

)∣∣∣∣∣
ε=0

= −KW j.

Therefore, we are interested in differential moves with a displacement

∆θ ∝ (0, 0, . . . , 0,W j+1K,−KW j, 0, . . . , 0)

where the components are positioned so that ∆W j+1 ∝ W j+1K and ∆W j ∝ −KW j. As ∆θ is tangent to the
path at θ (assuming ∆θ , 0), it is tangent to the stratum at θ.

A useful way to define subspaces of differential two-matrix moves is to consider matrices K ∈ al ji ⊗ bk jh.
Recall that this means that col K ⊆ al ji and row K ⊆ bk jh. For all l, k, j, i, h that satisfy L > j > 0,
L ≥ l ≥ j ≥ i ≥ 0, and L ≥ k ≥ j ≥ h ≥ 0, the two-matrix subspaces are

τlk jih = {(0, 0, . . . , 0,W j+1K,−KW j, 0, . . . , 0) : K ∈ al ji ⊗ bk jh}. (10)

The dimension of τlk jih is (dim al ji) · (dim bk jh) = ωli ωkh. We define a differential two-matrix move to be a
move with a displacement ∆θ ∈ τlk jih. All such displacements lie in the nullspace of the differential map.

Lemma 19. For all l, k, j, i, h that satisfy L > j > 0, L ≥ l ≥ j ≥ i ≥ 0, and L ≥ k ≥ j ≥ h ≥ 0,
τlk jih ⊆ null dµ(θ).

Proof. Consider a perturbation ∆θ ∈ τlk jih. By the definition (10), there exists some K ∈ al ji ⊗ bk jh such that
∆W j+1 = W j+1K and ∆W j = −KW j; the other matrices in ∆θ are zeros. By the formula (9), dµ(θ)(∆θ) =

WL∼ j+1∆W j+1W j∼0 +WL∼ j∆W jW j−1∼0 = WL∼ j+1W j+1KW j∼0−WL∼ jKW jW j−1∼0 = 0. Hence ∆θ ∈ null dµ(θ)
and τlk jih ⊆ null dµ(θ). �

Let S be the stratum of µ−1(W) that contains θ, where W = µ(θ). Let TθS be the tangent subspace of S at θ.
Every differential two-matrix move has a displacement ∆θ that lies in TθS —that is, ∆θ is tangent to S at θ.

Lemma 20. For all l, k, j, i, h that satisfy L > j > 0, L ≥ l ≥ j ≥ i ≥ 0, and L ≥ k ≥ j ≥ h ≥ 0, τlk jih ⊆ TθS .

Proof. Consider a perturbation ∆θ ∈ τlk jih. There exists some K ∈ al ji ⊗ bk jh such that ∆W j+1 = W j+1K and
∆W j = −KW j. Consider the path

P = {(WL, . . . ,W j+2,W j+1(I + εK), (I + εK)−1W j,W j−1, . . . ,W1 : ε ∈ [0, ε′]}
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where ε′ > 0 is sufficiently small that I + εK is invertible for all ε ∈ [0, ε′]. The path P is connected and
smooth, and θ is one of its endpoints. It satisfies P ⊂ S , as all points θ′ ∈ P satisfy µ(θ′) = µ(θ) and have the
same subsequence matrix ranks as θ. As we have seen, dθ/dε|ε=0 = ∆θ, so ∆θ is tangent to the smooth path
P at θ, which implies that ∆θ is tangent to S at θ. Hence ∆θ ∈ TθS and τlk jih ⊆ TθS . �

Some of the two-matrix subspaces are redundant with the one-matrix subspaces. If l = j then W j+1K = 0
(because col K ⊆ a j ji ⊆ A j ji ⊆ null W j+1), so τ jk jih degenerates to a one-matrix subspace. Likewise, if j = h
then KW j = 0 (because row K ⊆ bk j j ⊆ Bk j j ⊆ null W>j ), so τlk ji j degenerates to a one-matrix subspace.
Degenerate two-matrix subspaces represent directions that are already spanned by Θfiber

O , so from here on
we assume that l > j > h. It is useful to define the set of two-matrix subspaces that are not one-matrix
subspaces,

ΘT = {τlk jih , {0} : L ≥ l > j ≥ i ≥ 0 and L ≥ k ≥ j > h ≥ 0}.

The following lemma shows that the two matrices in a two-matrix subspace in ΘT cannot vary independently.

Lemma 21. Consider a subspace τlk jih ∈ ΘT and a displacement ∆θ ∈ τlk jih; thus we can write ∆θ =

(. . . , 0,∆W j+1,∆W j, 0, . . .). Then ∆W j+1 and ∆W j are either both zero or both nonzero.

Proof. From the definition (10) of τlk jih, there is a K ∈ al ji ⊗ bk jh such that ∆W j+1 = W j+1K and ∆W j =

−KW j. If K = 0 then ∆W j+1 = 0 and ∆W j = 0. By the definition of ΘT, l > j > h. So if K , 0 then
col K * null W j+1 and row K * null W>j ; hence ∆W j+1 , 0 and ∆W j , 0. �

For our purposes, it is best if we choose al ji and bk jh to be flow prebasis subspaces (rather than choosing, say,
the standard prebases), as Lemma 7 says we always can, so that col W j+1K ⊆ al, j+1,i and row KW j ⊆ bk, j−1,h.
Then a displacement ∆θ ∈ τlk jih satisfies

∆W j+1 = W j+1K ∈ ol,k, j+1,i,h and ∆W j = −KW j ∈ olk jih.

That is, each displacement in τlk jih is a sum of two one-matrix displacements in φlk jih and φl,k, j+1,i,h. We
think this is quite an elegant relationship, and it motivates why we define the two-matrix subspaces as we
do. It will be very helpful in constructing a basis for the space tangent to the stratum at θ.

If all the one-matrix moves in φlk jih and φl,k, j+1,i,h stay on the stratum S that contains θ, then the two-matrix
moves in τlk jih add nothing useful. But if the one-matrix moves leave the stratum, then the differential
two-matrix move is interesting and useful, because its displacement ∆θ is tangent to S . If, moreover, the
one-matrix moves leave the nullspace of dµ(θ) (which implies that the moves leave the fiber), the differential
two-matrix move is interesting because its displacement ∆θ lies in null dµ(θ). In the latter case, the two-
matrix displacement satisfies WL∼ j+1∆W j+1W j∼0 +WL∼ j∆W jW j−1∼0 = 0 (recall the proof of Lemma 19), but
those two terms are nonzero.

Recall that one-matrix moves in φl,k, j+1,i,h and φlk jih leave the fiber if and only if l = L and h = 0. One-
matrix moves in φl,k, j+1,i,h and φlk jih leave the stratum if they leave the fiber or if l > k and i > h. (The latter
condition implies a change in the rank of some subsequence matrix, i.e., a combinatorial move.) As every
differential two-matrix move has ∆θ ∈ null dµ(θ) (by Lemma 19) and ∆θ tangent to the stratum S at θ (by
Lemma 20), we are particularly interested in the differential two-matrix moves that combine two one-matrix
moves that lack one or both of those properties, and we will use them to help form a prebasis for null dµ(θ)
and a prebasis for TθS . Hence we define the sets

ΘL0
T = {τLk ji0 ∈ ΘT} = {τLk ji0 , {0} : L ≥ k ≥ j ≥ i ≥ 0 and L > j > 0} and

Θcomb
T = {τlk jih ∈ ΘT : l > k and i > h} = {τlk jih , {0} : L ≥ l > k ≥ j ≥ i > h ≥ 0}.
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Note that the notation Θcomb
T is a bit of a misnomer, as the subspaces in Θcomb

T do not represent combinatorial
moves. (No finite two-matrix move changes the rank of any subsequence matrix.) Rather, they represent
non-combinatorial replacements for the combinatorial subspaces in Θcomb

O .

6.6 The Fiber Prebasis and the Stratum Prebasis

The fiber prebasis at θ is a set of subspaces of Rdθ that spans null dµ(θ). Let S be the stratum of µ−1(W) that
contains θ. Let TθS be the space tangent to S at θ, and note that TθS ⊆ null dµ(θ). The stratum prebasis at θ
is a set of subspaces of Rdθ that spans TθS .

The fiber prebasis is

Θfiber = Θfiber
O ∪ ΘL0

T =
(
ΘO \ ΘL0

O

)
∪ ΘL0

T

=
(
ΘO \ {φlk jih ∈ ΘO : l = L and h = 0}

)
∪ {τlk jih ∈ ΘT : l = L and h = 0}.

The fiber prebasis includes every one-matrix subspace φlk jih such that φlk jih ⊆ null dµ(θ) and φlk jih , {0},
plus some additional two-matrix move subspaces as needed so that Θfiber spans null dµ(θ) (as we will show).
The fiber prebasis excludes the one-matrix subspaces φLk ji0 because they do not lie in null dµ(θ). (A one-
matrix move with displacement ∆θ ∈ φLk ji0 \ {0} moves off the fiber—that is, it changes the value of µ(θ).)
By contrast, every two-matrix subspace satisfies τlk jih ⊆ null dµ(θ). (All differential two-matrix moves stay
on null dµ(θ), and all finite two-matrix moves stay on the fiber and the stratum.)

Recall that a two-matrix subspace τLk ji0 has the property that every displacement ∆θ ∈ τLk ji0 is a linear com-
bination of a displacement from φL,k, j+1,i,0 and a displacement from φLk ji0 (two subspaces we deliberately
omit from Θfiber). Therefore, the two-matrix subspaces in ΘL0

T have the property that span ΘL0
T ⊂ span ΘL0

O .
However, span ΘL0

T is a subset of null dµ(θ) whereas no subspace in ΘL0
O is a subset of null dµ(θ). Observe

that for each k and i satisfying i, k ∈ [0, L] and k ≥ i − 1, we are removing k − i + 2 one-matrix subspaces of
dimension ωLiωk0 and replacing them with k − i + 1 two-matrix subspaces of dimension ωLi ωk0.

The stratum prebasis is

Θstratum =
(
ΘO \ ΘL0

O \ Θcomb
O

)
∪ ΘL0

T ∪ Θcomb
T

=
(
ΘO \ {φlk jih ∈ ΘO : (l = L and h = 0) or (l > k and i > h)}

)
∪

{τlk jih ∈ ΘT : (l = L and h = 0) or (l > k and i > h)}.

The stratum prebasis includes every one-matrix subspace φlk jih , {0} that is tangent to S at θ, plus some
additional two-matrix move subspaces as needed so that Θstratum spans the tangent space TθS . The stratum
prebasis, like the fiber prebasis, excludes the one-matrix subspaces φLk ji0 (because their moves move off the
fiber), but it also excludes all the combinatorial moves (as combinatorial moves move off the stratum, though
they stay on the fiber). The stratum prebasis, like the fiber prebasis, includes the two-matrix subspaces
in ΘL0

T , but it also includes the two-matrix subspaces in Θcomb
T . The latter have the property that span Θcomb

T ⊂

span Θcomb
O . However, span Θcomb

T and span ΘL0
T are subsets of TθS whereas no subspace in span Θcomb

O nor
span ΘL0

O is a subset of TθS . (Again, all differential two-matrix moves stay on null dµ(θ), and all finite
two-matrix moves stay on the stratum.)

The addition of the subspaces in Θcomb
T deserves more explanation. Every subspace in Θcomb

T is related to
swapping moves (not connecting moves). Recall that a swapping move comes from a subspace φlk jih where
l > k ≥ i > h. Given fixed values of l, k, i, and h, let S ′ be the stratum for which ωli and ωkh are one less and
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ωlh andωki are one greater than they are for θ and the other points on S . The subspaces φlk jih with j ∈ [i, k+1]
represent one-matrix moves that all move from θ into the stratum S ′ (by increasing the rank of one or more
subsequence matrices). There are k − i + 2 such subspaces, which we omit from Θstratum. However, for each
j ∈ [i, k], there is a two-matrix subspace τlk jih ⊆ TθS whose members are linear combinations of one-matrix
displacements in φlk jih and φl,k, j+1,i,h; we include it in Θstratum. Observe that for each l, k, i, and h satisfying
L ≥ l > k ≥ i > h ≥ 0, we are removing k − i + 2 one-matrix subspaces of dimension ωliωkh and replacing
them with k − i + 1 two-matrix subspaces of dimension ωli ωkh.

The rest of this section is devoted to showing that Θfiber is a prebasis for null dµ(θ) and Θstratum is a prebasis
for TθS . We know that every subspace in Θfiber is a subset of null dµ(θ) and every subspace in Θstratum

is a subset of TθS . As a second step, Lemma 22 below shows that the subspaces in Θfiber are linearly
independent, and Lemma 24 shows that the subspaces in Θstratum are linearly independent. As a third step,
we will add up the dimensions of the subspaces in Θfiber and see that the total dimension is the dimension
of null dµ. Likewise, the sum of the dimensions of the subspaces in Θstratum is the dimension of TθS . These
three steps together deliver the desired results.

Lemma 22. The subspaces in Θfiber are linearly independent.

Proof. Suppose for the sake of contradiction that Θfiber is not linearly independent. Then we can choose
one vector from each subspace in Θfiber—call them canceling vectors—such that the sum of all the cancel-
ing vectors is zero, and at least two canceling vectors are nonzero. By Lemma 11, the one-matrix move
subspaces φlk jih ∈ ΘO are linearly independent. Therefore, at least one canceling vector from a two-matrix
subspace in ΘL0

T is nonzero. Let v ∈ τLk ji0 be the two-matrix canceling vector with minimum index j such
that v , 0. Let V j be the matrix in the W j position of v. Then V j ∈ oLk ji0. By Lemma 21, V j , 0 (as v , 0).

Let X j be the matrix in the W j position of the sum of all the canceling vectors; by assumption, X j = 0. Then
X j is a sum of V j and contributions from other canceling vectors. However, as φLk ji0 < Θfiber, those other
contributions are linearly independent of V j, with the possible exception of a contribution from a canceling
vector v′ ∈ τL,k, j−1,i,0 (if j > i; otherwise τL,k, j−1,i,0 is not defined). However, we assumed that v ∈ τLk ji0 is
the two-matrix canceling vector with minimum index j such that v , 0; so even if j > i, we have v′ = 0. It
follows that X j is not zero, contradicting the assumption that the sum of the canceling vectors is zero. From
this contradiction, it follows that the subspaces in Θfiber are linearly independent. �

Theorem 23. Θfiber is a prebasis for null dµ(θ). In particular, null dµ(θ) = span Θfiber.

Proof. By Lemma 22, the subspaces in Θfiber are linearly independent. Therefore, the dimension of the
space spanned by Θfiber is equal to the sum of the dimensions of all the subspaces in Θfiber. In Section 6.7,
we will show that this sum is

Dfiber = dθ −
L∑

j=1

rk WL∼ j · rk W j−1∼0 +

L−1∑
j=1

rk WL∼ j · rk W j∼0.

Corollary 35 in Appendix A shows that null dµ(θ) has the same dimension; that is, dim null dµ(θ) = Dfiber.

By Lemmas 18 and 19, each subspace in Θfiber is a subspace of null dµ(θ), so span Θfiber ⊆ null dµ(θ).
As the two spaces have the same dimension, span Θfiber = null dµ(θ). Therefore, Θfiber is a prebasis for
null dµ(θ). �

Lemma 24. The subspaces in Θstratum are linearly independent.
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Proof. Essentially the same as the proof of Lemma 22, with the following changes. Θstratum has fewer one-
matrix subspaces and more two-matrix subspaces related to the omitted one-matrix subspaces; but as in the
proof of Lemma 22, observe that each omitted one-matrix subspace φlk jih can receive contributions from
at most two one-matrix subspaces, τlk jih (if k ≥ j) and τl,k, j−1,i,h (if j > i). Define the canceling vectors
the same way, and let v ∈ τlk jih be the two-matrix canceling vector with minimum index j such that v , 0
(so that the canceling vector from τl,k, j−1,i,h is zero or τl,k, j−1,i,h does not exist.) The logic of the proof is
unchanged: v makes a nonzero contribution to the subspace spanned by φlk jih which is not canceled by any
other subspace, contradicting the assumption that there exist canceling vectors that are not all zero. �

Theorem 25. Θstratum is a prebasis for TθS . In particular, TθS = span Θstratum.

Proof. By Lemma 24, the subspaces in Θstratum are linearly independent. Therefore, the dimension of the
space spanned by Θstratum is equal to the sum of the dimensions of all the subspaces in Θstratum. In Section 6.7,
we will show that this sum is

Dstratum = dθ − ωL0(dL + d0 − ωL0) −
∑

L≥k+1≥i>0

βk+1,i,i αk,k,i−1.

By Lemma 20, each subspace in Θstratum is a subspace of TθS , so span Θstratum ⊆ TθS . Hence the dimension
of TθS is at least Dstratum. However, let NθS ⊂ Rdθ be the subspace normal to S at θ; we can also show that
the dimension of NθS is at least

ωL0(dL + d0 − ωL0) +
∑

L≥k+1≥i>0

βk+1,i,i αk,k,i−1.

The sum of these lower bounds on the dimensions of TθS and NθS is dθ, so both bounds must be tight.
Hence, dim TθS = Dstratum and span Θstratum = TθS . Therefore, Θstratum is a prebasis for TθS . �

6.7 Counting the Degrees of Freedom

Let DO, DL0
O , Dfiber

O , Dcomb
O , DL0

T , Dcomb
T , Dfiber, and Dstratum (and so forth) denote the dimension of the

subspace spanned by the prebasis ΘO, ΘL0
O , Θfiber

O , Θcomb
O , ΘL0

T , Θcomb
T , Θfiber, and Θstratum, respectively. Then

DO = dθ, as the one-matrix move prebasis ΘO spans the entire weight space Rdθ by Lemma 11. Table 5 gives
the definitions of several prebases and the dimensions of the subspaces (of Rdθ) spanned by those prebases.
In this section we derive those dimensions. (See Appendix B for some additional prebases.)

These numbers tell us the number of degrees of freedom of motion from a point θ ∈ µ−1(W) that have
certain properties—for instance, the degrees of freedom of one-matrix moves that stay on the fiber, one-
matrix moves that move off the fiber, or moves (one- and two-matrix) that are tangent to the stratum. Some
of these counts are needed to prove that Θfiber spans null dµ(θ) and Θstratum spans the space tangent to the
stratum containing θ. However, this section makes for mind-numbing reading and can be safely skipped. We
provide it as a reference for anyone who needs to know the dimensions of specific subspaces, who wishes
to check our proofs carefully, or who wishes to extend results and ideas in this paper.

Recall that a one-matrix subspace φlk jih ∈ ΘO or a two-matrix subspace τlk jih ∈ ΘT has dimension ωli ωkh.
If the subspaces in a set (such as Θstratum) are linearly independent, then the dimension of the space they
span is equal to the sum of the dimensions of the subspaces in the set. Therefore, if Θ′ is such a set, the
dimension of the space Θ′ spans is

D′ =
∑

φlk jih∈Θ′

ωli ωkh +
∑

τlk jih∈Θ′

ωli ωkh.
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ΘO = {φlk jih , {0} : L ≥ l ≥ j ≥ i ≥ 0 and L ≥ k ≥ j − 1 ≥ h ≥ 0}

DO = dθ =

L∑
j=1

d jd j−1 (11)

ΘL0
O = {φLk ji0 ∈ ΘO} = {φLk ji0 , {0} : L ≥ k ≥ j − 1 ≥ 0 and L ≥ j ≥ i ≥ 0}

DL0
O =

L∑
j=1

 j∑
i=0

ωLi


 L∑

k= j−1

ωk0

 =

L∑
j=1

rk WL∼ j · rk W j−1∼0 (12)

Θfiber
O = ΘO \ ΘL0

O = {φlk jih ∈ ΘO : L > l or h > 0}

Dfiber
O = DO − DL0

O = dθ −
L∑

j=1

rk WL∼ j · rk W j−1∼0 (13)

Θcomb
O = {φlk jih ∈ ΘO : l > k and i > h} = {φlk jih , {0} : L ≥ l ≥ k + 1 ≥ j ≥ i > h ≥ 0}

Dcomb
O =

∑
L≥k+1≥i>0

(k − i + 2) (rk Wk+1∼i − rk Wk+1∼i−1)︸                          ︷︷                          ︸
βk+1,i,i

(rk Wk∼i−1 − rk Wk+1∼i−1)︸                          ︷︷                          ︸
αk,k,i−1

(14)

Θ
L0,¬comb
O = ΘL0

O \ Θcomb
O = {φLk ji0 ∈ ΘO : L = k or i = 0}

DL0,¬comb
O = ωL0

 L∑
i=1

(L − i + 1)ωLi ωL0 +

L−1∑
k=0

(k + 1)ωL0 ωk0 + LωL0

 (15)

ΘT = {τlk jih , {0} : L ≥ l > j ≥ i ≥ 0 and L ≥ k ≥ j > h ≥ 0}
ΘL0

T = {τLk ji0 ∈ ΘT} = {τLk ji0 , {0} : L ≥ k ≥ j ≥ i ≥ 0 and L > j > 0}

DL0
T =

L−1∑
j=1

 j∑
i=0

ωLi


 L∑

k= j

ωk0

 =

L−1∑
j=1

rk WL∼ j · rk W j∼0 (16)

Θcomb
T = {τlk jih ∈ ΘT : l > k and i > h} = {τlk jih , {0} : L ≥ l > k ≥ j ≥ i > h ≥ 0}

Dcomb
T =

∑
L>k≥i>0

(k − i + 1) (rk Wk+1∼i − rk Wk+1∼i−1)︸                          ︷︷                          ︸
βk+1,i,i

(rk Wk∼i−1 − rk Wk+1∼i−1)︸                          ︷︷                          ︸
αk,k,i−1

(17)

Θ
L0,¬comb
T = ΘL0

T \ Θcomb
T = {τLk ji0 ∈ ΘT : L = k or i = 0}

DL0,¬comb
T = ωL0

L−1∑
i=1

(L − i)ωLi ωL0 +

L−1∑
k=1

kωL0 ωk0 + (L − 1)ωL0

 (18)

Θfiber = Θfiber
O ∪ ΘL0

T =
(
ΘO \ ΘL0

O

)
∪ ΘL0

T

Dfiber = DO − DL0
O + DL0

T = dθ −
L∑

j=1

rk WL∼ j · rk W j−1∼0 +

L−1∑
j=1

rk WL∼ j · rk W j∼0 (19)

Θstratum =
(
ΘO \ Θcomb

O \ ΘL0
O

)
∪ Θcomb

T ∪ ΘL0
T

Dstratum = dθ − rk W (dL + d0 − rk W) −
∑

L≥k+1≥i>0

(rk Wk+1∼i − rk Wk+1∼i−1)︸                          ︷︷                          ︸
βk+1,i,i

(rk Wk∼i−1 − rk Wk+1∼i−1)︸                          ︷︷                          ︸
αk,k,i−1

(20)

Table 5: Sets of subspaces of moves and their total degrees of freedom. See also Table 6.

42



As ΘO is a prebasis by Lemma 11, its members (the one-matrix subspaces) are linearly independent, so we
can apply this formula to any subset of ΘO.

In Section 6.1 we defined ΘL0
O ⊆ ΘO, representing the one-matrix moves that move off the fiber (change

µ(θ)), as a prelude to defining Θfiber
O = ΘO \ ΘL0

O , representing the one-matrix moves that stay on the fiber
(don’t change µ(θ)). ΘL0

O contains all the one-matrix subspaces φlk jih such that l = L and h = 0, and Θfiber
O

contains all the other one-matrix subspaces. From the definition ΘL0
O = {φLk ji0 , {0} : L ≥ k ≥ j− 1 ≥ 0 and

L ≥ j ≥ i ≥ 0}, we obtain the first formula of (12) for DL0
O , the dimension of the space spanned by ΘL0

O (see
Table 5). The second formula of (12) follows from the identity (7).

In Section 6.5 we defined ΘL0
T ⊆ ΘT, which contains all the two-matrix subspaces τlk jih such that l = L

and h = 0. The subspaces in ΘL0
T are linearly independent by Lemma 22, so the dimension DL0

T of the
space spanned by ΘL0

T is equal to the sum of the dimensions of the subspaces in ΘL0
T . From the definition

ΘL0
T = {τLk ji0 , {0} : L ≥ k ≥ j ≥ i ≥ 0 and L > j > 0} and the identity (7), we obtain the formulae (16) for

DL0
T (see Table 5).

The space spanned by Θfiber
O = ΘO \ΘL0

O has dimension Dfiber
O = DO −DL0

O ; see the formula (13). Note that if
we consider only moves in Θfiber

O that change a specific factor matrix W j, the space spanned by those moves
has dimension Dfiber

j = d jd j−1− rk WL∼ j · rk W j−1∼0, which not coincidentally is the dimension of N j (defined
in Section 6.1).

A particularly important prebasis is Θfiber = Θfiber
O ∪ ΘL0

T , which spans null dµ(θ) by Theorem 23. By
Lemma 22, the subspaces in Θfiber

O and in ΘL0
T are (separately and together) linearly independent. Hence,

Dfiber = Dfiber
O + DL0

T , giving us the formula (19). That formula is the same as the dimension of null dµ(θ)
according to Corollary 35—which is how we know that Θfiber spans all of null dµ(θ).

Recall from Section 6.3 that the infinitesimal combinatorial moves are the one-matrix moves with a suffi-
ciently small displacement ∆θ ∈ φlk jih \ {0} where l > k and i > h. The set containing these subspaces is
Θcomb

O = {φlk jih , {0} : L ≥ l ≥ k + 1 ≥ j ≥ i > h ≥ 0}. To derive the dimension of the space spanned
by Θcomb

O , we use the identities (6) and (7) and the fact that in the first summation below, the term ωli ωkh

appears k − i + 2 times—once for each j ∈ [i, k + 1].

Dcomb
O =

∑
L≥l≥k+1≥ j≥i>h≥0

ωli ωkh =
∑

L≥l≥k+1≥i>h≥0

(k − i + 2)ωli ωkh

=
∑

L≥k+1≥i>0

(k − i + 2)

 L∑
l=k+1

ωli


 i−1∑

h=0

ωkh

 =
∑

L≥k+1≥i>0

(k − i + 2) βk+1,i,i αk,k,i−1

=
∑

L≥k+1≥i>0

(k − i + 2) (rk Wk+1∼i − rk Wk+1∼i−1) (rk Wk∼i−1 − rk Wk+1∼i−1).

It follows from Lemma 24 that the subspaces in Θcomb
T are linearly independent. The process of determining

Dcomb
T is nearly the same as for Dcomb

O , but in Θcomb
T = {τlk jih , {0} : L ≥ l > k ≥ j ≥ i > h ≥ 0} the indices

have the constraint k ≥ j (rather than k ≥ j − 1). Hence the term ωli ωkh appears once for each j ∈ [i, k] and

Dcomb
T =

∑
L≥l>k≥ j≥i>h≥0

ωli ωkh =
∑

L≥l>k≥i>h≥0

(k − i + 1)ωli ωkh =
∑

L>k≥i>0

(k − i + 1) βk+1,i,i αk,k,i−1.

When we derive the dimension Dstratum of the stratum that contains θ, we will use the difference between
Dcomb

O and Dcomb
T , which is

Dcomb
O − Dcomb

T =
∑

L≥k+1≥i>0

βk+1,i,i αk,k,i−1.
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Let Θ
L0,¬comb
O = ΘL0

O \Θcomb
O , a prebasis for the moves that move off the fiber but are not combinatorial; that

is, they change µ(θ) but do not change the rank of any subsequence matrix. (We will use Θ
L0,¬comb
O later to

derive Dstratum.) The set Θ
L0,¬comb
O contains every one-matrix subspace φLk ji0 such that k = L or i = 0. The

dimension of the space spanned by Θ
L0,¬comb
O is

DL0,¬comb
O =

∑
L=k≥ j≥i>0 or L≥k+1≥ j>i=0 or L=k≥ j>i=0

ωLi ωk0

=

L∑
i=1

(L − i + 1)ωLi ωL0 +

L−1∑
k=0

(k + 1)ωL0 ωk0 + Lω2
L0,

giving us the formula (15). Analogously, let Θ
L0,¬comb
T = ΘL0

T \ Θcomb
T . This set contains every two-matrix

subspace τLk ji0 such that k = L or i = 0. The dimension of the space spanned by Θ
L0,¬comb
T is

DL0,¬comb
T =

∑
L=k> j≥i>0 or L>k≥ j>i=0 or L=k> j>i=0

ωLi ωk0

=

L−1∑
i=1

(L − i)ωLi ωL0 +

L−1∑
k=1

kωL0 ωk0 + (L − 1)ω2
L0,

giving us the formula (18). Our derivation of Dstratum will use the difference between DL0,¬comb
O and DL0,¬comb

T .
With the help of identity (1), we can simplify this difference to

DL0,¬comb
O − DL0,¬comb

T =

L∑
i=1

ωLi ωL0 +

L−1∑
k=0

ωL0 ωk0 + ω2
L0

= ωL0

 L∑
i=0

ωLi +

L∑
k=0

ωk0 − ωL0


= ωL0(dL + d0 − ωL0).

We now derive the dimension Dstratum of the space spanned by the stratum prebasis Θstratum, which is also
the dimension of the stratum that contains θ.

Dstratum = dim Θstratum

= dim
((

ΘO \ Θcomb
O \ ΘL0

O

)
∪ Θcomb

T ∪ ΘL0
T

)
= dim

((
ΘO \ Θcomb

O \ Θ
L0,¬comb
O

)
∪ Θcomb

T ∪ Θ
L0,¬comb
T

)
= DO − Dcomb

O − DL0,¬comb
O + Dcomb

T + DL0,¬comb
T

= DO −
(
DL0,¬comb

O − DL0,¬comb
T

)
−

(
Dcomb

O − Dcomb
T

)
= dθ − ωL0(dL + d0 − ωL0) −

∑
L≥k+1≥i>0

βk+1,i,i αk,k,i−1,

giving us the formula (20).
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6.8 The Hierarchy of Strata

In order to understand the topology of the fiber, it is necessary to understand the connectivity of the strata
that comprise it. Consider two strata S A and S B with interval diagrams A and B respectively. We already
know that if there exists a sequence of infinitesimal combinatorial moves from S B to S A, then S B is in
the closure of S A, as shown simply in Lemma 26. However, in order to completely characterize the fiber,
we must investigate whether it is always true that whenever S B is in the closure of S A, that there exists a
sequence of infinitesimal combinatorial moves (swapping or connecting moves) that convert B into A. As
we will see in Algorithm 2 and Corollary 33, the answer to this question is yes.

Lemma 26. Consider two strata S A and S B with corresponding interval diagrams A and B. If there exists
a sequence of infinitesimal combinatorial moves from S B to S A, then S B is in the closure of S A.

Proof. Performing a combinatorial move at a stratum S can either cause us to remain on S or to move to a
stratum S ′ such that S is in the closure of S ′, but never the other way. Hence by induction on the sequence of
combinatorial moves, and the transitivity of closure, we conclude that if there is a sequence of infinitesimal
combinatorial moves from S B to S A then S B must be in the closure of S A. �

First we define a relation A ≥r B between interval diagrams which is equivalent to the condition that the
corresponding stratum S B is in the closure of S A. For two interval diagrams A and B of the same neural
network, we say that A ≥r B if the rank of every subsequence product matrix in A is at least as much as the
rank of the corresponding subsequence product matrix in B. Furthermore we define the relationship A ≥s B
on two interval diagrams satisfying A ≥r B if an additional constraint is met. We sort all the interval lengths
of A and B. If one of the two lists of interval lengths is shorter than the other, then it is padded with zeros.
Then if every interval length of B can be matched with a higher interval length of A, then we say that A ≥s B.
Figure 10 shows an example of interval diagrams A and B satisfying both A ≥s B and A ≥r B. Figure 11
shows an example of interval diagrams where A ≥r B is satisfied, but A ≥s B is not satisfied. Figure 12
provides an example of interval diagrams satisfying neither relation. Furthermore, swapping A and B in
Figure 10 and Figure 11 give two additional examples of interval diagrams not satisfying either relation.

Figure 10: A ≥s B. Sorting the lengths of the intervals of B gives (3, 3, 2, 1), and sorting the lengths of the
intervals of A gives (4, 3, 3, 2). Since 4 ≥ 3, 3 ≥ 3, 3 ≥ 2, and 2 ≥ 1, we conclude that A ≥s B.

Figure 10: Interval diagram A. Figure 10: Interval diagram B.

Lemma 27. (Weak Interval Matching Lemma) Consider two interval diagrams A and B of the same neural
network satisfying A ≥r B. If A and B additionally satisfy A ≥s B, then every interval of B can be matched
with a unique sub-interval interval of A, such that the matching function is injective.

Proof. It is sufficient to show that Algorithm 1 produces an injective function M from the intervals of B to
the intervals of A. Assume for contradiction that the interval k ∼ l of B was not matched to any sub-interval
of A. This means that the longest interval of A starting at layer l is of length less than k − l. But then the
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Figure 11: A ≥r B but A �s B. Sorting the lengths of the intervals of B gives (3, 2, 1), and sorting the lengths
of the intervals of A gives (4, 2, 0), so A �s B. The reader can verify that every sub-interval in B exists in A.

Figure 11: Interval diagram A. Figure 11: Interval diagram B.

Figure 12: A �r B. Observe that in A, ω2∼1 = 1, but in B, ω2∼1 = 2, meaning that matrix rank was lost in
going from B to A. Thus A �r B.

Figure 12: Interval diagram A. Figure 12: Interval diagram B.

rank of Wk∼l must be lower in A than it is in B, a contradiction, completing the proof. One way to see that
this will never happen is revealed by analyzing the sorted rank lists LA = (a1, a2, . . .) and LB = (b1, b2, . . .)
of A and B respectively. Since A ≥s B, ai ≥ bi for every i. Then at every step of the innermost for-loop in
Algorithm 1, some ai and its corresponding bi get reduced by the same number simultaneously. The former
happens as unit intervals are removed from A, whereas the latter happens as the corresponding unit intervals
in B are visited. Hence Algorithm 1 cannot result in a state where for some i, ai < bi, meaning that for every
i, ai = 0 only if bi = 0, meaning that the algorithm cannot terminate with unmatched intervals in B.

Algorithm 1: Interval Matching

begin
M ← Initialize mapping from intervals of B to sub-intervals of A
for layer l← 0 to d do
IB,l ← Intervals of B starting at layer l sorted from longest to shortest
for interval (k ∼ l)B ∈ IB do
IA,k,l ← Sub-intervals of A that are supersets of (k ∼ l)A in A
Sort IA,k,l ascending, on interval length
for sub-interval (k′ ∼ l′)A ∈ IA,k,l do

Insert mapping (k ∼ l)B 7→ (k ∼ l)A into M
Remove from A (and thus IA,k,l) one multiplicity of all the unit intervals between k
and l.

if k < d then Remove from A one multiplicity of k + 1 ∼ k
if l > 0 then Remove from A one multiplicity of l ∼ l − 1

end
end

end
return M

end
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Corollary 28. Using the matchings from Lemma 27, we can perform a series of connecting moves to reach
diagram A from B if A ≥s B.

Proof. Iteratively connect two intervals k ∼ l and k′ ∼ l′ of B which are mapped to the same interval a in
A, when there is no interval k′′ ∼ l′′ in B which is mapped to a and k′′ and l′′ both lie between k ∼ l and
k′ ∼ l′. If k ∼ l is the only interval mapped to a, then extend it on both sides until k ∼ l grows to the same
size as a. �

Thus we have a relatively intuitive algorithm in the special case of A ≥s B. The ability to move from one
stratum to another is rather useful both for applications in escaping spurious critical points as well as for
gaining a better theoretical understanding of the topology of the fiber. Hence we would like to extend these
results to the more general case of A ≥r B. First we prove a useful lemma about interval multiplicities and
matrix ranks.

Lemma 29. Let L ≥ l > k ≥ i > h ≥ 0. Then, rk Wl∼h + rk Wk∼i − rk Wl∼i − rk Wk∼h =
∑i

x=h+1
∑l−1

y=k ωyx.

Proof. Recall that rk Wk∼i =
∑i

x=0
∑L

y=k ωyx. The desired result follows immediately. �

It is also useful to work with the difference of interval diagrams D = A − B, where A ≥r B. Denote with
rk W·, rk V·, and ∆rk W· respectively the ranks of the subsequence matrices of A, B, and D, and denote with
ω·, o·, and ∆ω· the interval multiplicities of A, B, and D respectively. Then, for any L ≥ k ≥ i ≥ 0, define
∆ωki = ωki − oki, and define ∆rk Wk∼i = rk Wk∼i − rk Vk∼i.

Lemma 30. Given two interval diagrams A and B such that A ≥r B, the difference interval diagram D =

A − B is well-defined. Furthermore, Lemma 29 holds in D.

Proof. Let L ≥ k ≥ i ≥ 0. Since A ≥r B, it is the case that ∆rk Wk∼i ≥ 0 for all choices of k and i by
definition. Next, observe that

∆rk Wk∼i = rk Wk∼i − rk Vk∼i

=

i∑
x=0

L∑
y=k

ωyx −

i∑
x=0

L∑
y=k

oyx

=

i∑
x=0

L∑
y=k

(ωyx − oyx)

=

i∑
x=0

L∑
y=k

∆ωyx.

This shows that D is a valid interval diagram, and in particular, Lemma 29 holds in it. �

Theorem 31. Consider two interval diagrams A and B of the same neural network satisfying A >r B, but
not necessarily A >s B. We will now show that there exists a sequence of connecting and swapping moves
to a reach diagram A′ from B such that A ≥r A′ >r B.
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Proof. Let ωki represent the interval multiplicities for A, and let oki represent the interval multiplicities for
B. Let L ≥ l > k ≥ i > h ≥ 0. Let ∆ωki = ωki − oki. We will show that if ∆ωki > 0 then there exist l > k
and h < i such that ∆ωlk < 0 and ∆ωih < 0. This naturally leads to a sequence of swapping and connecting
moves that allow us to reach A from B. Let ∆rk Wi = rk Wi − rk Vi, where Wi represents a matrix in A and Vi

represents a matrix in B. The property A >r B is equivalent to the property ∆rk Wi ≥ 0 for all L ≥ i ≥ 1.

Let k ∼ i be the longest interval with ∆ωki > 0 and the smallest k (to break ties). Since ∆ωki > 0, it must
be the case that ∆rk Wk∼i > 0. If ∆ωk−1,i+1 > 0 then performing the move comb(k ∼ i + 1, k − 1 ∼ i) takes
diagram B to A′. Observe that A′ >r B since the rank of Wk∼i increases by exactly 1, and the rank of no other
subsequence matrix changes as a result of this move. Furthermore, A ≥r A′ since ∆rk Wk∼i ≥ 1. However,
if ∆ωk−1,i+1 = 0, then we check if ∆rk Wk∼i+1 > 0. If it is the case, then check ∆ωk−1,i+2. If it is positive
then we can perform the move comb(k ∼ i + 2, k − 1 ∼ i). If ∆ωk−1,i+2 is nonpositive, then we continue
with checking ∆rk Wk∼i+2 and so on until ∆rk Wk∼i+∆i = 0. Note that this must eventually happen, since
∆rk Wk∼k = dk − dk = 0. If ∆ωk−1∼i+∆i > 0 then we can perform a connecting or swapping move as above.
However, when ∆ωk−1∼i+∆i ≤ 0, we know from Lemma 29 that in the difference interval diagram D = A−B,

∆rk Wk−1∼i+∆i−1 = ∆rk Wk∼i+∆i−1 + ∆rk Wk−1∼i+∆i − ∆rk Wk∼i+∆i − ∆ωk−1,i+∆i ≥ 1

since ∆rk Wk∼i+∆i−1 ≥ 1 by assumption, ∆rk Wk−1∼i+∆i ≥ 0 since A ≥r B, ∆rk Wk∼i+∆i = 0 by assumption,
and ∆ωk−1,i+∆i ≤ 0 by assumption. We can show that ∆rk Wk−1∼i+x−1 ≥ 1 for every x that was traversed in the
previous step since since ∆rk Wk∼i+x−1 ≥ 1 by assumption, ∆rk Wk−1∼i+∆i ≥ 0 since A ≥r B, ∆rk Wk∼i+∆i =

0 by assumption, and
∑i+∆i

z=i+x+1
∑k−1

y=k−1 ∆ωyx ≤ 0 since every ∆ωyx in the summation is nonpositive by
assumption.

Thus we can continue searching for a strictly positive ∆ω until we find one and perform a swapping move
as above. If we find none and reach a ∆ω j−1, j for some j, then we can perform the connecting move
comb(k ∼ j, j − 1 ∼ i). This allows us to reach A′ from B. Please refer to Algorithm 2 for a complete
description of this algorithm.

Thus whenever we have two interval diagrams A ≥r B, we can reach a diagram A′ such that A′ > B and
A ≥r A′.

�

Lemma 32. Algorithm 2 runs in time linear in the number of layers in the neural network and always
terminates. Furthermore, it returns an interval diagram A′ satisfying A ≥r A′ >r B.

Proof. At each iteration either k′ or i′ is respectively decremented or incremented, and both variables range
between 0 and L, the number of layers. Constant work is done at each iteration. This shows that the number
of iterations needed prior to termination is linear in L.

It is clear from Theorem 31 that the interval diagram A′ returned by Algorithm 2 satisfies A ≥r A′ >r B. �

Corollary 33. Whenever we have two diagrams A and B satisfying A >r B, there is a sequence of connecting
and swapping moves to reach diagram A from B.

Proof. One can apply the algorithm in Theorem 31 iteratively until A =r A′ to reach diagram A from diagram
B. Due to the strictness of the inequality A′ >r B in the diagram A′ reached by the algorithm, each iteration
is guaranteed to either make progress until A =r A′. �
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Algorithm 2: Interval Shortening

begin
Let k ∼ i be the longest interval with ∆ωki > 0 and the smallest k (to break ties)
Initialize interval diagram A′ ← B
Initialize k′ ← k, i′ ← i
Initialize shorten right← True
while k′ > i′ do

if ∆ωk′−1,i′+1 > 0 then
Perform the swapping move between intervals k ∼ i′ + 1 and k′ − 1 ∼ i in A′

return A′

else if shorten right and ∆rk Wk′∼i′+1 > 0 then
i′ ← i′ + 1

else
/* We have shortened the longest interval in D = B − A from the
right side to obtain the leftmost interval for the required

combinatorial move, now we need to shorten from the left to

obtain the interval on the right. */

shorten right← False

/* By Theorem 31, we conclude that ∆rk Wk′−1,i ≥ 1, . . . ,∆rk Wk′−1,i′ ≥ 1.
Hence we can decrement k′. */

k′ ← k′ − 1
end

end
if k′ = i′ then

Perform the connecting move between intervals k ∼ i′ and k′ ∼ i in A′.
end
return A′

end

A The Dimension of the Nullspace of the Differential

Here we determine the dimension of the nullspace of dµ(θ) (defined in Section 6.4) by relating it to the
image of dµ(θ), defined to be

image dµ(θ) = {dµ(θ)(∆θ) : ∆θ ∈ Rdθ }.

This image is always a vector subspace of Rdh×d0 . The rank of image dµ(θ) is the dimension of image dµ(θ).
Trager, Kohn, and Bruna [16] show (Lemma 3) that

dim image dµ(θ) =

L∑
h=1

rk WL∼h · rk Wh−1∼0 −

L−1∑
h=1

rk WL∼h · rk Wh∼0.

We can determine the dimension of null dµ(θ) from the following observation.

Lemma 34. The dimensions of the nullspace and image of dµ(θ) are related by

dim null dµ(θ) + dim image dµ(θ) = dθ.
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Proof. Let (null dµ(θ))⊥ ⊆ Rdθ denote the subspace of all vectors orthogonal to null dµ(θ). Then dim null dµ(θ)+
dim(null dµ(θ))⊥ = dθ. By the following reasoning, dµ(θ) is a bijection from (null dµ(θ))⊥ to image dµ(θ),
so the two subspaces have the same dimension and the result follows.

Every vector p ∈ Rdθ has a unique decomposition p = p‖ + p⊥ into a vector p‖ ∈ null dµ(θ), parallel
to the nullspace, and a vector p⊥ ∈ (null dµ(θ))⊥, perpendicular to the nullspace. By the linearity of
dµ(θ), dµ(θ)(p) = dµ(θ)(p‖) + dµ(θ)(p⊥) = dµ(θ)(p⊥). Therefore, dµ(θ) is surjective from (null dµ(θ))⊥

to image dµ(θ).

For any two distinct points p1, p2 ∈ (null dµ(θ))⊥, p1 − p2 ∈ (null dµ(θ))⊥ \ {0}. By the linearity of dµ(θ),
dµ(θ)(p1) − dµ(θ)(p2) = dµ(θ)(p1 − p2) , 0. Thus dµ(θ)(p1) , dµ(θ)(p2), and the restriction of dµ(θ) to the
domain (null dµ(θ))⊥ is injective. �

Corollary 35. The dimension of the nullspace of dµ(θ) is

dim null dµ(θ) = dθ −
L∑

i=1

rk WL∼i · rk Wi−1∼0 +

L−1∑
i=1

rk WL∼i · rk Wi∼0.

B Counting More Degrees of Freedom

Table 6 gives the definitions of several prebases that were not important enough to include in Section 6.7,
and the dimensions of the subspaces (of Rdθ) spanned by those prebases.

Let’s count connecting moves. Recall from Section 6.3 that a connecting move is a combinatorial move with
a sufficiently small displacement ∆θ ∈ φlk jih \ {0} where k = j − 1 and i = j. The set of these subspaces is
Θconn

O = {φl, j−1, j, j,h , {0} : L ≥ l ≥ j > h ≥ 0}.

The total number of degrees of freedom of the infinitesimal connecting moves that change W j is

Dconn
j =

 L∑
l= j

ωl j


 j−1∑

h=0

ω j−1,h

 = β j j j α j−1, j−1, j−1 = (d j − rk W j) (d j−1 − rk W j).

Hence, the dimension of the space spanned by Θconn
O is

Dconn
O =

L∑
j=1

Dconn
j =

L∑
j=1

 L∑
l= j

ωl j


 j−1∑

h=0

ω j−1,h

 =

L∑
j=1

β j j j α j−1, j−1, j−1 =

L∑
j=1

(d j − rk W j) (d j−1 − rk W j).

Let’s count swapping moves. Recall from Section 6.3 that a swapping move is a combinatorial move with a
sufficiently small displacement ∆θ ∈ φlk jih \ {0} where k ≥ i (thereby omitting the connecting moves, which
have k = i − 1). The set of these subspaces is Θ

swap
O = {φlk jih ∈ ΘO : l > k ≥ i > h}. The dimension Dswap

O
of the space spanned by Θ

swap
O can be derived exactly as we derived Dcomb

O in Section 6.7, except that we
omit from the count the dimensions of the subspaces where k = i − 1. Thus we obtain the formula (22) (see
Table 6).

Let’s count the degrees of freedom of the infinitesimal combinatorial moves that don’t change µ(θ). These
combinatorial moves move from one stratum to a different stratum of the same fiber. These moves are
represented by the prebasis Θ

fiber,comb
O = Θfiber

O ∩ Θcomb
O . The easiest way to determine the dimension of the

subspace spanned by Θ
fiber,comb
O is to first understand the prebasis Θ

L0,comb
O = ΘL0

O ∩ Θcomb
O , which is the set
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Θconn
O = {φl, j−1, j, j,h , {0} : L ≥ l ≥ j > h ≥ 0}

Dconn
O =

∑
L≥l≥ j>h≥0

ωl j ω j−1,h =

L∑
j=1

(d j − rk W j)︸        ︷︷        ︸
β j j j

(d j−1 − rk W j)︸           ︷︷           ︸
α j−1, j−1, j−1

. (21)

Θ
swap
O = {φlk jih ∈ ΘO : l > k ≥ i > h} = {φlk jih , {0} : L ≥ l > k ≥ i > h ≥ 0 and k + 1 ≥ j ≥ i}

Dswap
O =

∑
L>k≥i>0

(k − i + 2) (rk Wk+1∼i − rk Wk+1∼i−1)︸                          ︷︷                          ︸
βk+1,i,i

(rk Wk∼i−1 − rk Wk+1∼i−1)︸                          ︷︷                          ︸
αk,k,i−1

(22)

Θ
L0,comb
O = ΘL0

O ∩ Θcomb
O = {φLk ji0 , {0} : L ≥ k + 1 ≥ j ≥ i > 0}

DL0,comb
O =

∑
L≥k+1≥i>0

(k − i + 2)ωLi ωk0 (23)

Θ
fiber,comb
O = Θfiber

O ∩ Θcomb
O = Θcomb

O \ ΘL0
O = {φlk jih ∈ Θcomb

O : L > l or h > 0}

Dfiber,comb
O = Dcomb

O − DL0,comb
O =

∑
L≥k+1≥i>0

(k − i + 2) (βk+1,i,i αk,k,i−1 − ωLi ωk0) (24)

Θ
L0,conn
O = ΘL0

O ∩ Θconn
O = {φL, j−1, j, j,0 , {0} : L ≥ j > 0}

DL0,conn
O =

L∑
j=1

ωL j ω j−1,0 =

L∑
j=1

(rk WL∼ j − rk WL∼ j−1)︸                      ︷︷                      ︸
ωL j

(rk W j−1∼0 − rk W j∼0)︸                      ︷︷                      ︸
ω j−1,0

(25)

Θ
fiber,conn
O = Θfiber

O ∩ Θconn
O = Θconn

O \ ΘL0
O = {φl, j−1, j, j,h ∈ Θconn

O : L > l or h > 0}

Dfiber,conn
O =

L∑
j=1

(d j − rk W j)︸        ︷︷        ︸
β j j j

(d j−1 − rk W j)︸           ︷︷           ︸
α j−1, j−1, j−1

− (rk WL∼ j − rk WL∼ j−1)︸                      ︷︷                      ︸
ωL j

(rk W j−1∼0 − rk W j∼0)︸                      ︷︷                      ︸
ω j−1,0

 (26)

Θ
L0,comb
T = ΘL0

T ∩ Θcomb
T = {τLk ji0 , {0} : L > k ≥ j ≥ i > 0}

DL0,comb
T =

∑
L>k≥i>0

(k − i + 1)ωLi ωk0 (27)

Θ
fiber,comb
T = Θcomb

T \ ΘL0
T = {τlk jih ∈ Θcomb

T : L > l or h > 0}

Dfiber,comb
T = Dcomb

T − DL0,comb
T =

∑
L>k≥i>0

(k − i + 1) (βk+1,i,i αk,k,i−1 − ωLi ωk0) (28)

Table 6: More sets of subspaces of moves and their total degrees of freedom. See also Table 5.

of one-matrix subspaces representing combinatorial moves that change µ(θ) (don’t stay on the fiber). As
Θ

L0,comb
O = {φLk ji0 , {0} : L ≥ k + 1 ≥ j ≥ i > 0}, it spans a subspace of dimension

DL0,comb
O =

∑
L≥k+1≥ j≥i>0

ωLi ωk0 =
∑

L≥k+1≥i>0

(k − i + 2)ωLi ωk0,

because the term ωLi ωk0 appears in the first summation once for each j ∈ [i, k + 1]. Analogously, for the set
Θ

L0,comb
T = ΘL0

T ∩ Θcomb
T of two-matrix subspaces,

DL0,comb
T =

∑
L>k≥ j≥i>0

ωLi ωk0 =
∑

L>k≥i>0

(k − i + 1)ωLi ωk0.
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The dimension of the space spanned by Θ
fiber,comb
O is

Dfiber,comb
O = dim Θ

fiber,comb
O

= dim
(
Θcomb

O \ ΘL0
O

)
= dim

(
Θcomb

O \ Θ
L0,comb
O

)
= Dcomb

O − DL0,comb
O ,

from which we obtain the formula (24) in Table 6. Analogously, we define Θ
fiber,comb
T = Θcomb

T \ΘL0
T , which

spans a space of dimension Dfiber,comb
T = Dcomb

T − DL0,comb
T , from which we obtain the formula (28).

A connecting move that changes W j also changes µ(θ) if and only if l = L and h = 0; that is, ∆θ ∈

φL, j−1, j, j,0 \ {0}. The total degrees of freedom of the connecting moves that change both W j and µ(θ) is

DL0,conn
j = ωL j ω j−1,0 = (rk WL∼ j − rk WL∼ j−1) (rk W j−1∼0 − rk W j∼0).

The dimension of the space spanned by Θ
L0,conn
O = ΘL0

O ∩ Θconn
O is

DL0,conn
O =

L∑
j=1

DL0,conn
j =

L∑
j=1

ωL j ω j−1,0 =

L∑
j=1

(rk WL∼ j − rk WL∼ j−1) (rk W j−1∼0 − rk W j∼0).

Let Θ
fiber,conn
O = Θfiber

O ∩ Θconn
O = Θconn

O \ ΘL0
O represent the connecting moves that stay on the fiber. The

dimension of the space spanned by Θ
fiber,conn
O is

Dfiber,conn
O = Dconn

O − DL0,conn
O

=

L∑
j=1

(
(d j − rk W j) (d j−1 − rk W j) − (rk WL∼ j − rk WL∼ j−1) (rk W j−1∼0 − rk W j∼0)

)
.

Perhaps it is worth noting that the triple summation in (12) can be simplified to a double summation, because
the term ωLi ωk0 occurs once for each j ∈ [max{i, 1},min{k + 1, L}]. In (16), the term ωLi ωk0 occurs once
for each j ∈ [max{i, 1},min{k, L − 1}]. Hence, we can write

DL0
O =

L∑
i=0

L∑
k=max{i−1,0}

(min{k + 1, L} −max{i − 1, 0})ωLi ωk0 and

DL0
T =

L−1∑
i=0

L∑
k=max{i,1}

(min{k, L − 1} −max{i − 1, 0})ωLi ωk0.
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