
Building Trusted Execution Environments

Dayeol Lee

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-96

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-96.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Building Trusted Execution Environments

by

Dayeol Lee

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krste Asanović, Chair
Professor Dawn Song

Professor Sanjit A. Seshia
Professor Chia-Che Tsai

Spring 2022

Building Trusted Execution Environments

Copyright 2022
by

Dayeol Lee

1

Abstract

Building Trusted Execution Environments

by

Dayeol Lee

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Trusted Execution Environments (TEEs) offer hardware-based isolation, which protects the in-
tegrity and confidentiality of the in-use data of programs against various threats. Many hardware
vendors have produced various TEE-enabled chips. However, there has been only a little public
research on building TEEs. Building a TEE with different threat models and functionalities relies
on design-space exploration. For example, a TEE must quickly adapt to various evolving threat
models. In addition, a TEE can have different functionality requirements, which should not im-
pact security guarantees. This thesis discusses research challenges in exploring the TEE design
space. First, this thesis motivates why a TEE should not have a fixed threat model by demonstrat-
ing a novel off-chip side-channel attack on a TEE. Next, this thesis proposes Keystone, a software
framework that enables building TEEs based on various needs, such as threat models and func-
tionality requirements. Furthermore, this thesis discusses how to extend TEE functionality without
breaking security guarantees using incremental verification.

i

To my family and my wife.
In loving memory of my grandmother,

Soonkeum Ko (1934-2021),
who will be very proud of me.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Trusted Execution Environments (TEEs) . 1
1.2 Challenges of Building TEEs . 2
1.3 Summary of Research Contributions . 3
1.4 Acknowledgment of Collaborative Work and Funding 4

2 Background 6
2.1 The History of TEEs . 6
2.2 The Key Characteristics of TEEs . 8
2.3 Limitations of Existing TEEs . 10

3 Why Your Threat Model Might Be Wrong 13
3.1 Introduction . 13
3.2 Why an Off-Chip Side Channel Matters? . 17
3.3 Membuster: an Off-Chip Side-Channel Attack on SGX 19
3.4 Increasing Critical Cache Misses . 26
3.5 Extracting Sensitive Access Patterns . 32
3.6 Attack Results . 34
3.7 Implications and Limitations . 40
3.8 Summary . 42

4 Keystone: An Open Framework for Building TEEs 43
4.1 Introduction . 43
4.2 What is a Common Base for Diverse TEEs? . 45
4.3 Keystone Design Overview . 49
4.4 Security Monitor Design for Multiple Threat Models 52
4.5 Modular Runtime Design for Extensive Functionality 60

iii

4.6 Security Analysis . 62
4.7 Evaluation . 64
4.8 Related Work . 73
4.9 Summary . 74

5 Agile and Secure Implementation of New Features 76
5.1 Introduction . 76
5.2 Formal Reasoning about TEE . 78
5.3 Enabling Enclave Memory Sharing . 79
5.4 Formal Model . 84
5.5 Proving Formal Security Guarantees . 94
5.6 Implementation in RISC-V Keystone . 98
5.7 Evaluation . 98
5.8 Implications and Limitations . 103
5.9 Summary . 103

6 Conclusion and Future Work 104
6.1 Contributions . 104
6.2 Future Work . 105

Bibliography 107

iv

List of Figures

1.1 A 2-Dimensional Design Space of TEEs . 2

2.1 The history of Trusted Execution Environments from mobile devices to cloud computing 7
2.2 Traditional vs. TEE based software stacks . 9

3.1 On-chip side channels compared to Membuster. The cache side-channel attack leaks
addresses through a shared cache, whereas the controlled-channel attack uses adver-
sarial memory management. Membuster leaks addresses directly through the off-chip
memory bus. The photo shows an example hardware setup for the attack. 14

3.2 Hardware setup for a memory bus side-channel attack. DIMM interposer collects the
bus signals and sends them to the signal analyzer. The attacker can use the analyzed
signals to learn the memory access pattern of the victim. 20

3.3 The reverse engineered addressing function of the i5-8400 CPU. The function translate
a physical address to the Bank Group (BG), Bank Address (BA), Row (ROW) and Column
(COL) within the DRAM. 23

3.4 The Hunspell code with a data-dependent access pattern 24
3.5 Observable address patterns in Hunspell by different attacks. Controlled-channel at-

tacks only see page-fault addresses without the lower 12 bits, whereas Membuster can
see LLC-miss addresses without the lower 6 bits. 24

3.6 An example attack scenario where a mail server uses Memcached as an index database.
A, B, C and D are the emails. 26

3.7 Techniques used to increase the cache miss rate with minimal performance overhead. . 29
3.8 Implementation of critical page whitelisting and cache squeezing in a modified SGX

driver. To ensure no swapping in the sensitive memory range, EPC pages are set aside
in a separate queue. The attackers can further select the EPC pages based on set indexes
or other logistics. 31

3.9 Hunspell document recovery rate (left) and normalized execution time (right) on two
documents: Random document (Random) and Wizard of Oz (Wizard). The compar-
ison is between without any techniques (None); with cache squeezing(SQ); and with
cache squeezing and cross-core priming (SQ+PR). The Wizard of Oz results also show
the recovery rate of uncommon words only (w/o NLTK). 37

3.10 Simulation results of the attack on Hunspell (top) and Memcached (bottom). 39

v

3.11 The number of useful traces per word and the document recovery rate for each experi-
ment (with or without the hardware prefetcher). 39

4.1 Keystone system with host processes, untrusted OS, security monitor, and multiple
enclaves (each with runtime and eapp) . 47

4.2 Keystone End-to-end Overview. ¶ Platform provider configures the SM. · Keystone
compiles and generates the SM boot image. ¸ Platform provider deploys the SM.
¹ Developer writes an eapp, configures the enclave. º Keystone builds the binaries,
computes measurements. » Untrusted host binary is deployed to the machine. ¼ Host
deploys the RT, the eapp, and initiates the enclave creation. ½ Remote verifier can
attest based on known platform specifications, keys, and SM/enclave measurements. . . 51

4.3 How Keystone uses RISC-V PMP for the flexible, dynamic memory isolation. pmpaddr
and pmpcfg control and status registers (CSRs) are used to specify PMP entries. The
SM uses a few PMP entries to guard its own memory (SM) and enclave memories (E1,
E2). Upon enclave entry, the SM will reconfigure the PMP such that the enclave can
only access its own memory (E1) and the untrusted buffer (U1). 54

4.4 Memory Management Designs (red area is untrusted). (a) Untrusted OS manages
memory, translates virtual-to-physical address. (b) Page tables inside the enclave but
monitor creates mappings. (c) Delegates page management to enclave with its own
page table. (d) Hypervisor for page management, 2 page tables. 56

4.5 Enclave Lifecycle. The enclave memory and the corresponding PMP entry status (ac-
cessible or not) are shown per each operation. For PMP status, This means the PMP
status of the core performing the operation and Others is PMP of other cores. 56

4.6 Measured boot and attestation in Keystone. All of the root-of-trust functions are
trusted, whereas the security monitor functions are trusted given the SM report ver-
ification succeeds. 58

4.7 Memory Model for Various TEE Scenarios. ∅: baseline, C: cache partitioning, O: on-
chip scratchpad, P: enclave self-paging, E: software memory encryption EHW : hard-
ware memory encryption. 58

4.8 Breakdown of operations during the enclave life-cycle. (a) shows enclave validation
and hashing duration, and (b) shows the breakdown of other operations. (b) does not
include duration of size-dependent operations such as measurement in create (Shown
in (a)) and memory cleaning in destroy (4K-11K cycles/page). 67

4.9 IOZone throughput in Keystone for various file and record sizes (e.g., r8 represents
8KB record). 69

4.10 Full-execution time comparison for RV8. Each bar shows the duration of the applica-
tion (user or eapp), and the other overheads (other). Keystone (keyst) and Key-
stone with cache partitioning (keyst-cache) compared to native execution (base). . 70

4.11 Inferencing time for various Torch models. Each bar consists of the duration of the
application (user or eapp), and the other overheads (other). Keystone (keyst) and
Keystone with the dynamic resizing (keyst-dyn) compared to native execution in
(base). 72

vi

5.1 Memory sharing models with varying flexibility. Blue (and white) boxes indicate
shareable (and non-shareable) physical memory region, and circles indicate enclaves.
An edge from an enclave to a physical memory is an access relation stating that an
enclave can access the memory it points to. 80

5.2 A user provisions their (protected) enclave e in the remote enclave platform isolated
from untrusted software. Green/red boxes indicate trusted/untrusted components. . . . 85

5.3 Illustrating the execution of two traces of the platform in the secure measurement,
integrity and confidentiality proofs. Proof obligations for each property are checked
as indicated by ≈L and equal initial condition indicated as ≈L. opi indicates enclave
execution of an operation from O at step i and A indicates an adversary execution. . . 89

5.4 Clone, Snapshot, and Clone with Snapshot. 91
5.5 Parent-child relationship and root snapshot-child relationship of four enclaves in Cer-

berus. Enclave e1 is a snapshot and parent enclave of e2, which is the parent of e3,
which is the parent of e4. Despite the nested parent relationship, the root snapshot of
e2, e3, and e4 are e1. 93

5.6 Model Statistics and Verification Times . 100
5.7 C code to measure fork latency . 101
5.8 The latency of fork with respect to the size of the allocated memory. 101
5.9 Computation Overhead on RV8. Native: native execution of the original RV8, Native

(fork): native execution of the modified RV8 with fork, Keystone: enclave execu-
tion of the original RV8, and Keystone (fork w/ Cerberus): enclave execution of the
modified RV8 with Cerberus. 101

vii

List of Tables

3.1 This work (Membuster) compared to previous side-channel attacks on SGX. The two
boldface rows illustrate the most important distinctions. The colored cell indicates the
attacker has the advantage. 16

3.2 Hardware specification for the experiment . 35
3.3 Membuster results for attacking Memcached on an SGX machine 37

4.1 Trade-offs in existing TEEs/extensions. , , : best to worst respectively. C3-6: re-
silience to software adversary, hardware adversary, side-channel adversary, controlled-
channel adversary respectively. indicates complete protection; confidentiality only; no
protection. C7: zero; thousands LoC; millions LoC. C8: zero; non-zero hardware;
micro-architectural modifications. C9: enclave self resource management; partial; no
flexibility. C10: range of apps supported are maximum; specific class; only written
from scratch. C11: expressiveness includes forking, multi-threading, syscalls, shared
memory; partial; none of these. C12: dev-effort for porting is unmodified binaries;
compiling and/or configuration files; re-writing. 46

4.2 The SBI functions the SM provides, *SM can provide additional functions (e.g., dy-
namic resizing) depending on the platform. 54

4.3 TCB Breakdowns for the Eyrie RT and SM features in LoC. 66
4.4 Hardware specification for each platform. L2 cache latency in FU540 (*) is based on

estimation. 67
4.5 RV8 Overhead for different TEE design instances. ∅: baseline, C: cache partitioning,

O: on-chip scratch pad execution (1MB), P: enclave self-paging, E: software-based
memory encryption. *: does not complete in ~10 hrs. 70

4.6 Torch model specification, workload characteristics, binary object size, and total en-
clave memory usage. 72

5.1 Glossary of Symbols used for Chapter 5 . 83
5.2 Description of TAP State Variables . 88
5.3 Description of TAP EM enclave metadata record . 88

viii

Acknowledgments

My journey toward a Ph.D. has been full of excitement, but also there were lots of challenges
and difficulties. I would not have completed the journey successfully without immeasurable sup-
port and assistance from my colleagues, friends, and family.

First, I would like to express my sincere appreciation to my advisor, Krste Asanović. Krste al-
lowed me to be a part of a great research group and provided his best advice that immensely helped
me. He always encouraged me to do research I am passionate about. Thankful for the advice, I was
able to explore many different exciting topics, including security, architecture, and systems. I am
also deeply indebted to Dawn Song. Dawn was my unofficial adviser, who constantly motivated
and encouraged me throughout my Ph.D. Dawn always inspired me whenever I felt demotivated
or frustrated. Without her encouragement, I would not have gone through the difficulties. I would
like to thank Sanjit A. Seshia and Raluca Ada Popa for providing their best guidance and helpful
feedback on many research projects. Sanjit never hesitated to spend his time giving very detailed
feedback, which helped me gain a lot of insights into formal methods. Raluca made me fascinated
by my first security research project and provided her full support. Without her, I may not have
started security research. I would like to appreciate all faculty for their profound belief in my work
and unparalleled support.

I also would like to thank David Kohlbrenner, Shweta Shinde, and Chia-Che Tsai for being my
academic mentors when they were at UC Berkeley. I was very fortunate to work with them and
learn many things. For example, I learned about coloring diagrams for colorblindness, academic
integrity, and rigorous security analysis from David; writing techniques, presentation skills, and
stress management from Shweta; and engineering skills, critical thinking, and systems knowledge
from Chia-Che. As those who have already gone through Ph.D., David, Shweta, and Chia-Che
shared knowledge and provided valuable advice, not to mention their invaluable contributions to
the papers.

It was a great pleasure to work closely with many great people. I wish to thank Kevin Cheang
for collaboration throughout the writing of the dissertation. He was very dedicated to all of the
projects we collaborated on and provided insightful suggestions and unwavering assistance. He
also prevented my Ph.D. life from being boring. I thank Alexander Thomas, Catherine Lu, Gui
Andrade, and Stephan Kaminsky for contributing to the Keystone project, Ian Fang for contributing
to the Membuster project, and Pranav Gaddamadug and Cameron Rasmussen for contributing to
the formal verification projects. Special thanks to Alex and Cathy for contributing so much to
Keystone and helping me submit a paper during their busiest times.

I would also like to extend my gratitude to incredible people in the ADEPT, RISE, and other
labs, including Alon Amid, David Biancolin, Aditya Chopra, Hasan Genc, Abraham Gonzalez,
Ameer Haj Ali, Qijing Jenny Huang, Adam Izraelevitz, Sagar Karandikar, Hansung Kim, Jack
Koenig, Kyle Kovacs, Seah Kim, Donggyu Kim, Kevin Laeufer, Eric Love, Martin Maas, Albert
Magyar, Howard Mao, Albert Ou, Nathan Pamberton, Arya Reais-Parsi, Colin Schmidt, Edward
Wang, Lisa Wu, and Jerry Zhao. I thank all lab administrators and staff at the EECS department
for creating inclusive and productive working environments.

ix

My internships at Intel and Google have also helped me write this dissertation. I would like
to thank Mona Vij, Anjo Vahldiek-Oberwagner, and Dmitrii Kuvaiski for having me at Intel Labs
and providing me with challenging research projects for TEEs. Special thanks to Mona and Anjo
for continuing collaboration after the internship and giving constructive advice. I thank Satnam
Singh, Jade Philipoom, and Ben Blaxill for having me at Google and allowing me to participate in
the SilverOak project. I could learn a lot about the formal reasoning of low-level software. I also
thank my internship buddy Samuel Gruetter, who spent his valuable time teaching me Coq.

Finally, I dedicate my thesis to my family and my wife. I thank my parents, Gwanhee and
Jeongsook, and my sister, Hajung, for supporting me and believing in me. My parents taught me
to always live my own life and do my best, which made me who I am today. My wife, Seoyeon,
has been standing by me throughout all my struggles, difficulties, and accomplishments. I love
you, I am grateful to have you in my life.

1

Chapter 1

Introduction

1.1 Trusted Execution Environments (TEEs)
Remote computation has gained popularity along with the digitalization of everything. A massive
amount of user data is generated every second, transferred to the cloud, and processed to create
new values. In the last decade, the shift toward cloud computing [14, 25] has also been amplified
not only by its cost efficiency, reliability, and programmability, but also by many resource-hungry
applications such as machine learning and data analytics. The remote computation pandemic has
raised one of the most challenging research problems: protecting remote data during computation.

Researchers have put an immense effort into protecting data in use. Traditionally, privileged
software such as the operating system (OS) protects the in-use data by isolating virtual address
spaces. However, such software-based isolation is not sufficient for remote computation for two
reasons. First, the software could have been modified by someone who can physically access the
remote device. For example, a cloud provider can install an arbitrary OS on their machines and
provide them to customers. Second, even if software is trusted, it could have been compromised
by other tenants or attackers. In either case, the data owners are unable to detect the software
compromise, leading to the complete loss of control over their data. A few promising solutions
are to use cryptographic technologies such as homomorphic encryption (HE) [69] or multi-party
computation (MPC) [71, 223], which allow remote computation while keeping inputs and outputs
encrypted. As they rely on mathematically hard problems, they offer near-perfect confidentiality
and integrity of remote data. However, they are often a few orders of magnitude slower than native
computation, even with state-of-the-art hardware acceleration [170].

Alternatively, Trusted Execution Environments (TEEs) [126, 53, 65, 13, 96, 110, 50] can fill
the gap by combining hardware-based isolation mechanisms with efficient cryptographic schemes.
TEEs are isolation technology that uses various hardware mechanisms, usually combined with
low-level trusted software, to evict unnecessary code from the trusted computing base (TCB).
In a nutshell, TEEs aim to protect code integrity, data integrity, and data confidentiality from
various software adversaries, including a compromised OS. In general, TEEs provide a program
with an exclusive memory region where the program can reside. TEEs use hardware mechanisms

CHAPTER 1. INTRODUCTION 2

Se
cu

rit
y

Functionality

TEE • New Features
• Different Constraints

• New Defenses
• Different Threat Models

Figure 1.1: A 2-Dimensional Design Space of TEEs

to protect the memory so that even privileged software cannot arbitrarily read from or write to the
memory. TEEs also arbitrate all context switches of the program, making the execution context
entirely obscure to the rest of the system. Additionally, most TEEs offer remote attestation, which
allows the user of the TEE to cryptographically verify that the program has been initialized and
isolated. Remote attestation allows the user to securely launch remote programs and provision
secrets without trusting privileged software.

All major CPU vendors have introduced TEE-equipped processors (e.g. ARM Confidential
Compute Architecture [12], Intel SGX [126], and AMD SEV [6]). They differ in some design
decisions, yet share the same idea: hardware-based isolation for a small TCB. Recent years have
seen a wide range of efforts to migrate existing programs into those TEEs [209, 158, 160, 142,
146]. Many studies have also shown that TEEs can protect cloud services [24, 15], databases [160],
big-data computations [178, 57, 33], secure banking [114], blockchain consensus protocols [116,
130, 161], smart contracts [228, 47, 26], machine learning [142, 202, 232, 156, 106], and network
middleboxes [72, 73], to mention a few. The demand for confidential remote computation will
continue to grow and necessitate TEEs in almost all processors in the next decade.

1.2 Challenges of Building TEEs
Although many hardware vendors have already built TEEs in their commercial products, there
has been little public research on designing and building them. On the other hand, building TEEs
involves rigorous security analysis and design-space exploration, which involves many research
questions. How to build a trustworthy TEE without relying on a single company? What is a
reasonable threat model? How to build a TEE resilient to side-channel attacks? How to reduce the
cost of building TEEs? The thesis focuses on a few research challenges in the TEE design space
exploration (Figure 1.1).

CHAPTER 1. INTRODUCTION 3

Threat Model. Each vendor TEE has a particular threat model that fits a specific use case.
However, there is no industrial or academic consensus on what minimum adversary capabilities to
consider for a TEE. Early decisions on the threat model can influence the design for a long time.
For example, Intel SGX [126] insists on not defending against side-channel attacks. As a result,
SGX is broken every year by side-channel attacks, including destructive ones [35, 219, 109, 212,
176, 135, 177, 175].

Customizability. Existing TEEs are delicate to customize, as they do not allow programmers to
customize their TEE based on workload. It is difficult to analyze the trade-offs of different design
decisions. Many workload characteristics, such as memory access pattern, working-set size, and
concurrency, affect workload performance. Thus, a TEE must provide a modular and flexible
design that can benefit wide-ranging workloads.

A Lack of Open Implementation. The lack of research on designing and building TEEs can be
attributed to the lack of open implementation. Most vendor TEEs leverage proprietary hardware
implementations, which prevents researchers from analyzing or modifying the design. Thus, many
studies have relied on a few public documents published by the companies to gain only little
knowledge of internal details. Therefore, exploring the design space is often limited to modifying
a small part of TEE [218, 113] or software around TEE [209, 24, 184, 146]. In addition, a lack
of open implementation means a lack of trust; it is precarious to fully trust a proprietary TEE
implementation driven by a single company.

Secure Modification. Exploring the design space of TEEs involves not only threat models but
also functionality and performance requirements. However, a patch for new functionality or per-
formance improvement should not affect TEE security. Thus, a TEE needs to support an efficient
modification and verification flow to support various workloads and platforms.

1.3 Summary of Research Contributions
The summary of contributions of this thesis are as follows:

• Chapter 2 provides the relevant background of TEEs. The chapter begins with a brief history,
explains the main characteristics, and describes a few limitations.

• Chapter 3 shows that a TEE should not overlook side-channel threats, which are not present
in the threat models of the major vendor TEEs to date. The chapter presents an off-chip
side-channel attack on Intel SGX that is powerful enough to recover most of the sensitive
data in a program. The demonstration of the attack motivates why a TEE design should not
disregard side channels.

• Chapter 4 presents Keystone, which is an open framework for building TEEs. The frame-
work is based on RISC-V instruction set architecture, enabling full transparency of software

CHAPTER 1. INTRODUCTION 4

and hardware. Keystone shows how one can separate security and functionality in a TEE
design to enhance customizability. The chapter presents how Keystone can help explore var-
ious memory protection techniques against different threat models. Keystone is now used by
hundreds of researchers for different prototypes and experiments.

• Chapter 5 proposes an efficient way to formally reason about a TEE modification by showing
how TEE can support simple memory sharing. The chapter shows that incremental verifi-
cation on a high-level specification enables an agile formal verification of a specification,
which can be easily implemented by existing TEEs.

• Chapter 6 concludes the thesis by presenting the implications and potential future work.

1.4 Acknowledgment of Collaborative Work and Funding
I have authored most of the content and figures in this thesis and have adapted some parts from
jointly authored publications or submissions. The detailed contributions of the collaborators fol-
low.

Chapter 3 is based on the submission "An Off-Chip Attack on Hardware Enclaves via the
Memory Bus." [109] Chia-Che Tsai wrote a fuzzy pattern-matching algorithm to extract sensitive
access patterns from the trace. He also collaborated on modifying and debugging QEMU [164],
Graphene [209], and SGX driver for the attack. Dongha Jung collected the trace from the exper-
iments using the memory interposer and the signal analyzer. Ian T. Fang helped with the experi-
ments and participated in discussions to share his brilliant ideas. Raluca Ada Popa and Chia-Che
Tsai provided insightful guidance and feedback throughout the duration of the project.

Chapter 4 is based on the submission "Keystone: an Open Framework for Architecting Trusted
Execution Environments." [110] David Kohlbrenner contributed to Keystone implementation, in-
cluding cache partitioning, edge call interface, fixing many bugs, and improving code quality.
Shweta Shinde extensively analyzed existing TEEs and compared their trade-offs. Both Shweta
Shinde and David Kohlbrenner contributed to making critical design decisions for Keystone and
writing the paper. Krste Asanović and Dawn Song provided valuable feedback throughout the
project.

Chapter 5 is based on the submission "Cerberus: A Formal Approach to Secure and Efficient
Enclave Memory Sharing." Kevin Cheang contributed to formalizing the TAPC model and proving
the SRE property. Pranav Gaddamaduguav contributed to translating the TAP model from Boogie
to UCLID5. His thesis [67] describes the contribution in detail. Alexander Thomas modified
the Darkhttpd benchmark to use Cerberus. Catherine Lu wrote a program with Sqlite3 that uses
Cerberus. Both Alex and Cathy have significant contributions to the implementation of Cerberus.
Anjo Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia, and Krste Asanović provided
guidance and feedback.

The submissions were in part based on work supported and funded by National Science Foun-
dation (NSF) grants CNS-1228839, CNS-1405641, CNS-1700512, NSF CISE Expeditions Award

CHAPTER 1. INTRODUCTION 5

CCF-1730628, TWC-1518899, Center for Long-Term Cybersecurity; DARPA grant N66001-15-
C-4066; ADEPT Lab industrial sponsors and affiliates Intel, HP, Futurewei, Seagate, NVIDIA, and
SK Hynix; and RISE Lab insdustrial sponsors and affiliates Sloan Foundation, Alibaba, Amazon
Web Services, Ant Financial, ARM, Captial One, Ericsson, Facebook, Google, Microsoft, Sco-
tiabank, Splunk, and VMware. I was partly supported and funded by the Kwanjeong Educational
Foundation throughout the writing of this thesis. Any opinions, findings, conclusions, or recom-
mendations in this thesis are solely those of the author and do not necessarily reflect the position
or the policy of the sponsors.

6

Chapter 2

Background

2.1 The History of TEEs
TEEs first appeared in the mobile device industry, where the network operators wanted to put re-
strictions on mobile devices and prevent users from exploiting their networks. Now, TEEs are more
popular for confidential computing in the cloud, where the users want to protect their data against
cloud service providers or other companies while using cloud services. This section describes a
brief history of TEEs by starting with early security solutions based on hardware.

2.1.1 Early Security Solutions Based on Hardware
The early TEEs appeared for mobile platform security in around 2000. The network operators
needed restrictions and protection on end-user devices, which drove the development of hardware-
aided security solutions from mobile chip vendors such as Nokia or Texas Instruments. The initial
TEEs – although they were not named "TEE" back then – leveraged hardware support to protect
International Mobile Equipment Identity (IMEI) or a set of parameters for radio frequency trans-
mission in mobile devices [17, 120]. By relying on hardware that is immutable and has a narrow
interface, mobile systems were able to effectively reduce the attack surface of the security functions
in mobile devices.

On the server-side, commercial products such as Trusted Platform Modules (TPMs) [21, 99] or
crypto co-processors like IBM 4758 [58] had also adopted the idea of leveraging trusted hardware.
They were mainly supplementary pieces of hardware that provided some security functions but
did not have a general computation capability. TPMs implement an attestation protocol to validate
the integrity of the privileged software, which is in charge of most of the security. Thus, any
generic program running on the server can rely on the privileged software and its integrity. Crypto
co-processors have enabled the secure computation of specific operations such as random-number
generation or public-key cryptography.

CHAPTER 2. BACKGROUND 7

-20
03

20
15

20
04

Earl
y H

W
 S

ec
uri

ty
Solu

tio
ns

ARM Tr
us

tZon
e

Int
el

SGX

20
16

AMD S
EV

20
17

AMD S
EV-E

S

20
18

Int
el

SGX2

20
20

AMD S
EV-S

NP

20
21

Int
el

TDX, A
RM C

CA

20
11

Glob
alP

lat
for

m TEE S
tan

da
rd

Mobile TEE

Cloud TEE

Figure 2.1: The history of Trusted Execution Environments from mobile devices to cloud comput-
ing

2.1.2 Rise of Mobile TEEs
In 2004, Arm introduced TrustZone [200], which is a system architecture that separates two parallel
execution worlds (i.e., secure and non-secure worlds) within a single processor [200]. TrustZone
isolated the secure world from the non-secure world using an additional bit in the system address
bus and allowed a general program to run in the secure world’s address space with access to the
non-secure world. Interestingly, the first white paper of TrustZone describes the secure execution
world as a trusted execution environment.

The term TEE had been widely used in the industry for marketing purposes but was not defined
until Open Mobile Terminal Platform (OMTP) first did it in 2009 [1, 145, 207]. The OMTP-defined
role of TEEs is to protect the copyrights of code and data of mobile applications. In 2011, the
term was developed and standardized by GlobalPlatform [198]. GlobalPlatform standardized the
TEE API and described that the TEE offers digital contents protection, authentication of security-
critical code (e.g., digital payments), and integrity of system code (e.g., firmware). Along with
the exponential growth of the mobile market through the mid-2010s, ARM TrustZone-based TEEs
became popular in mobile devices such as smartphones and embedded devices [208, 20, 172]. In
2014, Linaro and ST-Ericsson open-sourced OP-TEE [146], a TEE based on ARM TrustZone that
complies with the GlobalPlatform TEE standard.

2.1.3 Intel SGX and Advances in Academic Research
While industry-driven mobile TEEs were widespread, there was less academic work, presumably
due to a lack of public resources and the limited usage of TEE [17]. In 2013, Intel revealed Se-
cure Guard Extensions (SGX), consisting of additional instructions in Intel processors to support

CHAPTER 2. BACKGROUND 8

TEE [126]. The architecture for SGX was substantially different from mobile TEEs. First, in-
stead of separating secure and non-secure worlds in the entire system, SGX separates secure and
non-secure address spaces within a single process. SGX referred to the secure address space as
an enclave, which became a popular alternative terminology for SGX-like TEEs. SGX allowed
mutually distrusting enclaves to run on the same system with the same security guarantees. Also,
SGX targets generic trusted computing in Intel processors, which means that virtually anyone can
develop any programs using their TEE.

SGX became publicly available in the sixth-generation Intel processors in 2015, and has in-
spired several open-source software frameworks such as Haven (2014) [24], SCONE (2016) [15],
and Graphene-SGX (2017) [209] to support generic computation with SGX. Also, a large body of
research on applications, vulnerabilities, functional or security extensions of SGX emerged.

2.1.4 Confidential Computing with Cloud TEEs
The last few years have seen a rise of cloud TEEs, especially for confidential computing in the
cloud. Most vendors produce chips with various TEEs for confidential computing and cloud ser-
vices. AMD introduced Secure Encrypted Virtualization (SEV) and a series of extensions includ-
ing SEV-ES (Encrypted State) and SEV-SNP (Secure Nested Paging) [6, 96, 7]. SEV technologies
focus on isolating a virtual machine from the rest of the system including the hypervisor installed
by the cloud service provider (CSP). Intel enabled a larger SGX memory size to accommodate
more cloud TEE usage. Intel has also developed Trust Domain Extensions (TDX) [89], which
aims to isolate and encrypt cloud VMs sililar to SEV. The trend shows that both the major server-
class CPU vendors are focusing on the cloud TEE market 1.

Building on this support, TEEs are becoming a popular option for various remote computations
at scale. Many startups such as Opaque 2, Anjuna 3, and Fortanix 4 have started to build practical
TEE-based software systems such as databases, data analytics, and machine learning. Confiden-
tial Computing Consortium (CCC) under the Linux Foundation 5 has initiated an industry-wide
collaboration on standardizing and encouraging TEE-based confidential computing.

2.2 The Key Characteristics of TEEs
This section describes the key characteristics of TEEs. Figure 2.2 compares a TEE-based software
stack with a traditional one to highlight a few promising aspects of TEEs.

1Intel announced that they are dropping SGX from PCs [206]
2https://opaque.co/
3https://www.anjuna.io/
4https://fortanix.com/
5https://confidentialcomputing.io/

CHAPTER 2. BACKGROUND 9

App

OS

Microcode/Firmware

App

Microcode/Firmware
Root of Trust

App App App App

OS

Trusted
Untrusted

Traditional Software Stack TEE-based Software Stack

Figure 2.2: Traditional vs. TEE based software stacks

2.2.1 Hardware-aided Memory Isolation
A key idea of TEEs is to isolate a part of the physical memory by using hardware mechanisms
rather than using software-managed virtual memory. Such techniques are hardware-aided mem-
ory isolation as they use non-traditional hardware components. For example, Intel SGX reserves
Processor Reserved Memory (PRM) in the main memory, which is access-controlled and managed
entirely by the microcode and a hardware extension in the memory controller. ARM TrustZone iso-
lates the secure world from the non-secure world by adding one bit to the system bus and filtering
out memory transactions. Some TEEs also perform encryption on the isolated memory contents
with hardware-owned keys. The hardware-aided memory isolation techniques offer powerful pro-
tection against both software and hardware adversaries depending on the threat model.

2.2.2 Narrow Interface
In a traditional software stack, each of the user programs cannot directly interact with various
hardware resources. Instead, the operating system virtualizes them and provides the user with
an interface, which ends up becoming very wide and includes hundreds of system calls, device
drivers, and shared memory. In contrast, a TEE can be viewed as vertical integration of software
and hardware for security as the program directly interacts with various hardware-level components
such as microcode or firmware via a narrow interface (Figure 2.2). A TEE platform only provides
tens of functions to the user program, to which it is easier to apply strict rules to monitor and
sanitize execution.

2.2.3 Minimized Trusted Computing Base
The trusted computing base (TCB) is the set of all components in a computer system critical to
security. The size of TCB usually refers to the number of lines of code, the number of functions,
or the number of external interfaces. A large TCB does not necessarily but empirically mean a
large attack surface. Thus, reducing the size of TCB usually helps reduce the number of potential

CHAPTER 2. BACKGROUND 10

vulnerabilities. TEEs can reduce the size of TCB from an OS with millions of lines of code to
firmware or microcode with only thousands of lines of code. Thus, a program has a smaller attack
surface in TEEs than in the traditional software stack. In addition, minimizing the complexity of
TCB provides the ease of formal reasoning. For example, applying automated formal reasoning to
a program involves removing unbounded loops or model refinement, which are demanding with
complex TCB [136, 101, 65].

2.2.4 Remote Attestation
Many cloud TEEs support remote attestation to provide cryptographic proof that the program
inside the TEE is in a known state expected by a remote verifier. The remote attestation leverages
the chain of trust constructed by a few cryptographic primitives. The chain of trust is backed by
a silicon root of trust, which contains a tamper-proof secret key or identifier fused in hardware.
The silicon root of trust usually measures the firmware or the boot loader and uses the key to sign
the measurement. The measurement and the signature pair act as cryptographic evidence of the
integrity of the firmware certified by the root of trust. In addition to the remote attestation, the
root of trust often provides trusted functions such as a true random number generator (TRNG), a
monotonically increasing counter, a trusted timer, or side-channel resilient crypto accelerators.

2.3 Limitations of Existing TEEs
This thesis will address the research challenges of building TEEs. However, the TEEs themselves
also have some limitations related to their challenges. This section discusses the limitations of
TEEs and explains how they are related to the later sections.

2.3.1 Missing Common Threat Model
Historically, TEEs have been driven mainly by the industry, with leading companies using the
same term to indicate different technologies. For example, SGX, TDX, SEV, and TrustZone are all
referred to as TEE, whereas their threat models are significantly different from each other. Each
vendor TEE has a specific threat model that fits the product’s business model. For this reason,
means there is no common threat model that everyone should expect from all of the TEEs. This
makes it hard for the users to assess how secure the TEE is and to what extent. Moreover, a
company can change its TEE threat model even within a single line of products. For example, the
early version of Intel SGX has integrity protection on the physical memory, but it was later dropped
to allow larger Enclave Page Cache (EPC) sizes in the Ice Lake server generation [190]. Another
example is AMD’s SEV, where they gradually added protections on register states (SEV-ES) and
physical memory integrity (SEV-SNP) over the course of a few years.

Different threat models have different trade-offs among security, performance, and function-
ality. However, it is hard to explore them with the vendor TEE, as their implementations are
proprietary and assume a fixed threat model (at least within one generation of products). Chapter 4

CHAPTER 2. BACKGROUND 11

discusses why we need a framework to explore different threat models and proposes a flexible
memory-management technique that enables various memory protections modularly added to the
shared codebase. The proposed Keystone framework allows the TEE programmers to analyze
various trade-offs on different threat models and workloads.

2.3.2 Side-Channel Attacks
Although many recent studies unveiled destructive side-channel attacks, vendor TEEs still exclude
side-channel attacks from their threat models. Some of the justifying claims are that side-channel
attacks have a higher bar in practice, and the program can self-mitigate them in many cases [94,
195]. However, a series of side-channel attacks have hinted that some side channels have a lower
bar and higher impact than the claims [35, 219, 212, 176, 135, 177, 175].

Chapter 3 demonstrates Membuster, an off-chip side-channel attack on Intel SGX. With phys-
ical access to the machine, the attacker can snoop on the external memory bus to observe the
memory access pattern of a program and recover the secret data from the access pattern. The at-
tack suggests that it is not ideal to completely exclude side-channel attacks from the threat model
of a TEE.

2.3.3 Vulnerabilities and Patches
Unknown vulnerabilities can still compromise TEEs despite their small TCB. A TEE compromise
could be more detrimental than a typical software compromise as they are likely protecting more
security-critical software. Thus, patches should promptly mitigate any vulnerabilities. However,
as a large portion of TEE implementation is in hardware, it is hard or even impossible to fix the
vulnerabilities in a short time.

Moreover, hardware vendors usually dictate such patches. For example, both SGX and SEV
implementations are in proprietary hardware components such as microcode, which only allows
authenticated updates issued by the vendors. Thus, it is hard to fix the vulnerability before the TEE
vendors release the patches. Also, the patches are not open-source, preventing them from being
publicly reviewed or modified, thus making them less credible than how open-source software
ecosystems handle vulnerabilities.

Keystone (Chapter 4) consists of high-privilege software written in common programming
languages like C. As the chapter will discuss, RISC-V allows Keystone to leverage hardware-
based memory protection while implementing the other features in software. Keystone is fully
open source, significantly lowering the bar of the reviews and the modifications.

2.3.4 Limited Programability
Section 2.2.2 discusses how a narrow interface in TEE helps security. However, this is at the cost
of programmability. A narrow interface means that only a few functions are available to a program.
Thus, many rich functionalities provided by the OS via system calls are likely unavailable in TEEs.

CHAPTER 2. BACKGROUND 12

Thus, many software projects [209, 146] implement the key functionalities via a software wrapper
on top of the TEE.

Chapter 5 will discuss how such an approach can end up with a suboptimal implementation.
The chapter will show a formal approach that enables an agile modification of the TEE interface
to support secure and efficient memory sharing.

13

Chapter 3

Why Your Threat Model Might Be Wrong

This chapter shows how an attacker can break the confidentiality of a hardware enclave using
Membuster, an off-chip side channel attack. Membuster shows that even a carefully designed TEE
can be broken by a side channel, which motivates why a TEE design should consider various threat
models including side-channel attacks.

3.1 Introduction
As Section 2.3.2 discusses, many side-channel attacks against TEEs have been discovered [35, 215,
32, 180, 132, 36]. Side-channel attacks leak sensitive information from enclaves via architectural
or microarchitectural states. For instance, controlled-channel attacks [220] use the OS privilege
to trigger page faults for memory access on different pages, to reconstruct secrets from page-
granularity access patterns inside the victim program. These attacks are categorized as on-chip
side-channel attacks, where the attacker uses adversarial or shared on-chip components to reveal
memory addresses accessed by the victim (Figure 3.1).

An attacker who can physically access the machine can perform an off-chip side-channel at-
tack that directly observes the memory addresses on the memory bus. The memory bus, which
consists of a data bus and an address bus, delivers memory requests from a CPU to an off-chip
DRAM. Although the CPU encrypts the data of an enclave, all the addresses still leave the CPU
unencrypted, allowing the attacker to infer program secrets from the access patterns. Since off-the-
shelf DRAM interfaces do not support address bus encryption, no existing hardware enclave can
prevent physical attackers from observing the memory address bus.

Several studies have hinted at the possibility of attacks based on the memory address bus [119,
49, 85]. Costan et al. [49] suggest the possibility of tapping the address bus, but acknowledge
that they are not aware of any successful example of the attack. Maas et al. [119] suggest that an
attacker who can collect physical memory traces of a database server can distinguish two different
SQL queries operating on the same dataset. However, no work has shown how such a side channel
can be exploited to break the confidentiality of an enclave.

This chapter presents Membuster, an off-chip side-channel attack on the memory address bus.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 14

AttackerVictim

MMU

Cache

DRAM

AttackerVictim

MMU

Cache

DRAM

Victim

MMU

Cache

DRAM

Cache Side Channel Controlled Channel Membuster

Attacker

DRAM

Interposer

Victim Machine Signal Analyzer

Figure 3.1: On-chip side channels compared to Membuster. The cache side-channel attack leaks
addresses through a shared cache, whereas the controlled-channel attack uses adversarial memory
management. Membuster leaks addresses directly through the off-chip memory bus. The photo
shows an example hardware setup for the attack.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 15

Membuster can be a substantial threat to hardware enclaves because of its unique traits compared to
the existing on-chip attacks (Section 3.2.2). The need for off-chip access, despite being a disadvan-
tage, advantages the attacker as it makes Membuster much harder to mitigate with protected-access
solutions (Table 3.1). Recently, a wide range of tools [143, 42, 75, 185, 43] have been developed
for mitigating on-chip side-channel attacks for enclaves with a reasonable overhead. These tools
either partition the resources (e.g., cache) to prevent an attacker from learning information via
shared resources or intercept actions (e.g., page faults) to prevent an attacker from observing the
side channels. At their core, these solutions attempt to protect the memory accesses from an at-
tacker’s sight.

However, these protected-access solutions do not prevent Membuster, which observes the mem-
ory addresses off-chip and thus can bypass the protection of any on-chip solutions. To prevent
Membuster on the current hardware enclave design, one must hide the accessed memory addresses,
by making the enclave execution oblivious to the secret data. This requires either using oblivious
algorithms [216] inside the enclave or running the enclave atop an ORAM [194, 131]. Both mech-
anisms bring significant performance overhead to the enclave. An alternative is to change the CPU
and DRAM design to encrypt the address bus, but implementing a decryption module in DRAM
can be expensive [3, 19].

The challenges to perform a robust off-chip attack are as follows:

1. Address Translation. The attacker needs to translate the DRAM requests into the physi-
cal addresses by reverse-engineering the mapping and to further translate them into virtual
addresses of the victim enclave;

2. Lossy Channel. The attacker only sees DRAM requests when cache misses or write-back
occurs. Since most modern CPUs have a large last-level cache (LLC), a significant portion of
memory accesses do not issue any DRAM requests. Section 3.4 shows why simple methods
such as priming the cache does not incur sufficient cache misses needed for the attack;

3. Unusual Behaviors in SGX. SGX has unique memory behaviors which increase the diffi-
culty of the attack. For example, common architectural features such as disabling the cache
do not work in SGX, and paging in SGX hides most of the memory accesses.

Section 3.3 shows how an attacker can translate the DRAM requests, and can filter out irrel-
evant addresses to leave only the critical addresses that are useful for the attack. Section 3.3.6
shows examples of applications that are susceptible to the attack. Then, Section 3.4 introduces
two techniques, critical page whitelisting (Section 3.4.2) and cache squeezing (Section 3.4.4), to
increase useful cache misses by thwarting page swaps and shrinking the effective cache for the
critical addresses. With more cache misses, the attacker can observe more DRAM requests. These
techniques do not cause detectible interference to the victim, and can be combined with cache
priming to make more memory accesses visible to the attacker. The oracle-based fuzzy matching
algorithm (Section 3.5) can create an oracle of the secret-to-access-pattern mapping, to identify
the sensitive accesses from a sizable memory bus trace. The attacker extracts the sensitive data
from the noisy memory accesses by fuzzy-matching the accesses against the oracle.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 16

B
ra

ss
er

et
al

.[
32

]

Sc
hw

ar
z

et
al

.[
18

0]

C
ac

he
Z

oo
m

[1
32

]

F
L

U
SH

-b
as

ed
[3

6]

C
on

tr
ol

le
d

[2
20

]

M
em

bu
st

er

Software-Only 3 3 3 3 3 7

Protected-Access Fix [143, 42, 75, 185, 43] 3 3 3 3 3 7

Root Adversary 3 7 3 3 3 3

Noiseless 7 7 7 3 3 3

Lossless 7 7 7 3 3 7

Fine-Grained (64B vs. 4KB) 3 3 3 7 7 3

No Interference (e.g., AEX) 3 3 7 7 7 3

Low Overhead 3 3 7 7 7 3

Table 3.1: This work (Membuster) compared to previous side-channel attacks on SGX. The two
boldface rows illustrate the most important distinctions. The colored cell indicates the attacker has
the advantage.

The attack is demonstrated by attaching Dual In-line Memory Module (DIMM) interposer to
a production system with an SGX-enabled Intel processor and a commodity DDR4 DRAM. The
memory bus signals are captured to perform an off-line analysis. The attack is demonstrated by
two applications, Hunspell and Memcached. Finally, the scalability of the techniques is shown by
simulating the attack in modified QEMU [164].

To summarize, this chapter describes the following contributions:

• The setup of an off-chip side-channel attack on hardware enclaves and identification of the
challenges for launching the attack robustly.

• Effective techniques for maximizing the side-channel information with no detectible inter-
ference nor order-of-magnitude performance overhead to the victim program.

• A fuzzy comparison algorithm for converting the address trace collected on the memory bus
to program secrets.

• Demonstration and experimentation of the attack on an actual Intel SGX CPU. It is the first
work that shows the practicality of the attack.

The security implications of the off-chip side-channel attacks can be pervasive because such a
channel exists on almost every secure processor with untrusted memory.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 17

3.2 Why an Off-Chip Side Channel Matters?
This section begins with the background on Intel SGX, and discusses how Membuster can be a
substantial threat to hardware enclaves because of its unique traits. Table 3.1 compares Membuster
with various on-chip side-channel attacks on SGX [32, 132, 180, 36, 220].

3.2.1 Intel SGX
Intel SGX has the most mature implementation and the strongest threat model against untrusted
DRAM. SGX is a set of instructions for supporting hardware enclaves introduced in the Intel
sixth-generation processors. SGX assumes that only the processor package is trusted; all the off-
chip hardware devices, including the DRAM and peripheral devices, are considered potentially
vulnerable or compromised. The threat model of SGX also includes physical attacks such as Cold-
Boot Attacks [80], which can observe sensitive data from residuals inside DRAM.

An Intel CPU with SGX contains a memory encryption engine (MEE), which encrypts and
authenticates the data stored in a dedicated physical memory range called the enclave page cache
(EPC). The MEE encrypts data blocks and generates authentication tags when sending the data
outside the CPU package to be stored inside the DRAM. To prevent roll-back attacks, the MEE
also stores a version tree of the protected data blocks, with the top level of the tree stored inside
the CPU. For Intel SGX, EPC is a limited resource; the largest EPC size currently available on
an existing Intel CPU is 93.5 MB, out of 128 MB Processor’s Reserved Memory (PRM). The
physical pages in EPC, or EPC pages, are mapped to virtual pages in enclave linear address ranges
(ELRANGEs) by the untrusted OS. If all concurrent enclaves require more virtual memory than
the EPC size, the OS needs to swap the encrypted EPC pages into regular pages.

However, even with MEE, Intel SGX does not encrypt the addresses on the memory bus.
As previously discussed, changing the CPU to encrypt the addresses requires implementing the
encryption logic on DRAM, and thus requires new technologies such as Hybrid Memory Cube
(HMC) [3, 19].

The unencrypted address bus opens up a universal threat to hardware enclaves with external
encrypted memory. Komodo [65], ARM CryptoIsland [52], Sanctum [50], and Keystone [110]
do not encrypt data for an external memory by default. AMD SEV [6] allows hypervisor-level
memory encryption, but also does not encrypt addresses.

3.2.2 Side Channel Attacks on SGX
PRIME+PROBE

A shared cache hierarchy allows an adversary to infer memory access patterns of the victim using
known techniques such as PRIME+PROBE [150, 118]. However, in PRIME+PROBE, the attacker
usually cannot reliably distinguish the victim’s accesses from the noise of other processes. The
PRIME+PROBE channels are also lossy, as the attacker may miss some of victim’s accesses while
probing.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 18

Brasser et al. [32] demonstrate PRIME+PROBE on Intel SGX without interfering with the en-
clave, but the attack requires running the victim program repeatedly to compensate for its noise and
signal loss. Schwarz et al. [180] show that the attacker can alleviate the noise by identifying cache
sets that are critical to the attack. This technique can be applied to applications that have data-
dependent accesses in a small number of cache sets. CacheZoom [132] also uses PRIME+PROBE

but minimizes the noise by inducing Asynchronous Exits (AEXs) every few memory accesses
in the victim. This incurs a significant overhead on enclaves, and also makes the attack easily
detectable [43].

Flush-based Side Channels

Other flush-based techniques such as FLUSH+RELOAD [224] and FLUSH+FLUSH [76] use a
shared cache block between the attacker and the victim to create a noiseless and lossless side
channel. However, these techniques cannot be directly applied to enclave memory, because an
enclave does not share the memory with other processes. However, these techniques can still be
used to observe the page table walk for enclave addresses [36]. Specifically, the attacker can mon-
itor the target page tables with a tight FLUSH+RELOAD loop. As soon as the loop detects page
table activities, the attacker interrupts the victim and infers page-granularity addresses. Similar to
CacheZoom, this attack incurs a significant AEX overhead and thus can be detected by the victim.

Controlled Channels

Controlled-channel attacks [220] take advantage of the adversarial memory management of the
untrusted OS, to capture the access patterns of an SGX-protected execution. Even though Intel
SGX masks the lower 12 bits of the page fault addresses to the untrusted OS, controlled-channel
attacks use sequences of virtual page numbers to differentiate memory accesses within the same
page. The controlled channel is noiseless and lossless but can be detected and mitigated as it incurs
a page fault for each sequence of accesses on the same page [185, 143].

3.2.3 Advantages of Membuster
As shown in Table 3.1, Membuster creates a noiseless side channel by filtering out all of the non-
victim memory accesses, leaving only addresses that are useful for the attack. It can observe
memory accesses with cache line granularity. Also, Membuster does not incur interference such
as AEX or page fault to the victim and needs not to incur an order-of-magnitude overhead.

Several recent mechanisms, such as Varys [143], Hyperrace [42], Cloak [75], T-SGX [185], or
Déjà Vu [43], have been proposed to prevent the attacker from observing memory access patterns
in the victim. In general, PRIME+PROBE can be mitigated by partitioning the cache to shield the
victim from on-chip attackers. This does not defeat an off-chip attacker who directly observes
DRAM requests. T-SGX [185] and Déjà Vu [43] have proposed to use the Intel Transactional Syn-
chronization Extensions (TSX) to prevent AEX or page faults from an enclave. These techniques
are based on thwarting the interference (e.g., AEX, page faults) that causes the side channels [132,

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 19

36, 220]. However, Membuster does not incur such interference on enclaves, and thus cannot be
thwarted through similar approaches. Thus, there is no reliable way to detect or mitigate Mem-
buster using existing on-chip measures at the moment.

3.2.4 Related Work
Other On-Chip Attacks

Other on-chip attacks worth mentioning are speculative-based execution side channels like Fore-
shadow [35] or ZombieLoad [179], branch-shadowing side channels [111], denial-of-service at-
tacks (e.g., Rowhammer [91, 213]), or rollback attacks [30, 121].

Other Off-Chip Side-Channel Attack

DRAM row buffers can be exploited as side-channels between cores or CPUs, as demonstrated in
DRAMA [155]. DRAMA shows that by observing the latency of reading or writing to DRAM,
the attacker can infer whether the victim has recently accessed the data stored in the same row.
DRAMA shows how a software-only attacker can use DRAM row buffers as covert channels or
side channels. Membuster further explores how the attacker can directly use the address bus as a
side channel.

3.3 Membuster: an Off-Chip Side-Channel Attack on SGX
This section describes the basic attack model of Membuster. Further sections will refine and im-
prove the attack. At a high level, the attacker first sets up an environment to collect the DRAM
signals and waits until the victim executes some code containing data-dependent memory accesses.
The attacker translates the collected signals into cache-line granularity virtual addresses.

3.3.1 Threat Model
The attack assumes the standard Intel SGX threat model in which nothing but the CPU package
and the victim program is trusted. Everything else, including the OS or other applications, is
untrusted and can be controlled by the attacker. External hardware devices are also untrusted, so
the attacker can tap the address bus to the external DRAM. For the advanced techniques discussed
in Section 3.4, the attacker may also use the root privilege to install the modified SGX driver.

To tap the memory bus, the attacker needs to have physical access to the machine where the
victim is running. Such an assumption eliminates the possibility of remote attacks through either
cloud environments or network connections. The attackers who may perform Membuster could be
one of two types. On the server-side, these may include the employees of a cloud provider, or IT
administrators of an institution, who act as insiders to leak sensitive information. On the client-
side, end users may want to attack the local hardware enclaves, which protect proprietary data (e.g.,
licenses, digital properties, etc). The budget and knowledge requirement for the attack described

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 20

Signal
Analyzer

DDR4 DIMM

Storage

AMPSignal
Repeater

PCIe
Controller

PCB
Board

DATA ADDR/CMD

Interposer

DIMM Socket

Figure 3.2: Hardware setup for a memory bus side-channel attack. DIMM interposer collects the
bus signals and sends them to the signal analyzer. The attacker can use the analyzed signals to
learn the memory access pattern of the victim.

in Section 3.3.2 could be an obstacle for the general public. However, the cost is manageable if the
attacker has a strong motivation for obtaining the data from the enclave.

As in the controlled channel and cache side channels, Membuster assumes that the adver-
sary has knowledge of the victim application, by either consulting the source code or reverse-
engineering the application. The adversary is also aware of the runtime used by the victim ap-
plication for platform support, such as the SDK libraries, library OSes, or shield systems. The
experiments use Graphene-SGX [209] for platform support of the victim applications. Address
Space Layout Randomization (ASLR) in the library OSes or the runtimes may complicate the
extraction of secret information but generally is insufficient to conceal the access patterns com-
pletely [220]. ASLR offered by the host kernel is irrelevant because a hostile host kernel can either
control or monitor the addresses where the victim enclaves are loaded.

3.3.2 Hardware Setup for the Attack
Figure 3.2 shows a detailed hardware setup for the Membuster attack. The hardware setup may
vary on different CPU models and vendors. The attacker installs an interposer on the DIMM
socket prior to system boot. The interposer is a custom printed circuit board (PCB) that can be
placed between the DRAM and the socket. The interposer contains a signal repeater chip which
duplicates the command bus signals and sends them to a signal analyzer. The analyzer amplifies
the signals and then outputs the signals to a storage server through a PCIe interface.

The rest of the section will highlight the key requirements in successfully performing the attack.
Sampling Rate. The sampling rate of the interposer needs to be equal or higher than the clock
rate of the DIMM in order to capture all the memory requests. A standard DDR4 clock rate ranges
from 800 to 1600 MHz, while a DIMM typically supports between 1066 (DDR4-2133) and 1333
(DDR4-2666) MHz. To match with the sampling rate, the attacker can lower the DIMM clock rate
if it is configurable in the BIOS.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 21

Recording Bandwidth. The sampling rate also determines the recording bandwidth. For example,
DDR4-2400 (1200 MHz) has a 32-bit address and a 64-bit data bus, thus the recording bandwidth
for the address bus is 1200 Mbps×32 bits = 4.47 GiB/s. For reference, the data bus of a DDR has
a 2× transfer rate, as well as a 2× transfer size. Hence, the bandwidth for logging all the data on
DDR4-2400 will be 17.88 GiB/s.
Acquisition Time Window. The acquisition time window (i.e., the maximum duration for col-
lecting the memory commands) determines the maximum length of execution that the attacker can
observe. The acquisition time window equals the acquisition depth (i.e., the analyzer’s maximum
capacity of processing a series of contiguous sample) divided by the recording bandwidth of the
interposer. For example, with 64 GiB acquisition depth, the analyzer can process and log the
commands from DDR4-2400 up to 14 seconds.

Several vendors offer DIMM analyzers [93, 162, 163] for purchase or rental. Among them,
the maximum sampling rate can reach 1200-1600 MHz, and the acquisition depth typically ranges
between 4-60 GiB. One of the devices [93] can extend the acquisition time window to more than
1 hour by attaching 16 TB SSD and streaming the compressed log via PCIe at 4.8 GiB/s. Another
device [163] does not disclose the memory depth but specifies that it can capture up to 1G (109)
samples. The cost of the analyzer varies depending on the sampling rate and the acquisition depth.
At the time of writing, Kibra 480 [162] (1200 MHz, 4 GiB) costs $6,500 per month, MA4100 [163]
(1600 MHz, 1G-samples) costs $8,000 per month, and JLA320A [93] (1600 MHz, 64 GiB) costs
$170,000 for purchase.

3.3.3 Interpreting DRAM Commands
Once the attacker has finished setting up the environment, she can collect the DRAM signals at
any point in time, and analyze the trace off-line. As the first step, the attacker interprets the DRAM
commands collected from the interposer.

A modern DRAM contains multiple banks that are separated into bank groups. Within each
bank, data (often of the same size as the cache lines) are located by rows and columns. Each bank
has a row buffer (i.e., a sense amplifier) for temporarily holding the data of a specific row when the
CPU needs to read or write in the row. Because only one row can be accessed in a bank at a time,
the CPU needs to reload the row buffer when accessing a data block in another row.

The log collected from the DRAM interposer typically consists of the following commands:

• ACTIVATE(Rank,Bank,BankGroup,Row): Activating a specific row in the row buffer for
a certain rank, bank, and bank group.

• PRECHARGE(Rank,Bank,BackGroup): Precharging and deactivating the row buffer for a
certain rank, bank, and bank group.

• READ(Rank,Bank,BankGroup,Col): Reading a data block at a specific column in the
row buffer.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 22

• WRITE(Rank,Bank,BankGroup,Col): Writing a data block at a specific column in the
row buffer.

Other commands such as PDX (Power Down Start), PDE (Power Down End), and AUTO
(Auto-recharge) are irrelevant to the attack and thus omitted from the logs.

The DRAM commands are deconstructed into rank, bank, row, and column by simply tracing
the activated row within each bank. Note that the final traces are also time-stamped by the clock
counter of the analyzer. The result of the translation is a sequence of logs containing the timestamp,
access type (read or write), rank, bank, row, and column in the DRAM.

3.3.4 Reverse-engineering DRAM Addressing
A physical address in the CPU does not linearly map to a DRAM address consisting of rank, bank,
row, and column. Instead, the memory controller translates the address to maximize DRAM bank
utilization and minimize the latency. The translation logic heavily depends on the CPU and DRAM
models, and Intel does not disclose any information. Thus, the attacker needs to reverse-engineer
the internal translation rule for the specific set of hardware. This has been also done by a previous
study [155].

The attacker can use the traces collected from the DRAM interposer to reverse-engineer the
addressing algorithm of an Intel CPU. Attacking the enclaves only needs a part of the addressing
algorithm that affects the range of the enclave page cache (EPC). Then, the attacker can write a
program running inside an enclave, which probes the DRAM addresses translated from the EPC
addresses. The probing program allocates a heap space larger than the EPC size (93.5MB). For
every cache line in the range, the program generates cache misses by repeatedly flushing the cache
line and fetching it into the cache. By accessing each cache line multiple times, the attacker can
differentiate the traces caused by probing from other memory accesses in the background and min-
imize the effect of re-ordering by the CPU’s memory controller. The techniques in Section 3.3.5
are also needed for translating the probed virtual addresses to physical addresses.

Using the DRAM traces generated by probing cache lines inside the EPC, the attacker can
create a direct mapping between the physical addresses and DRAM addresses (ranks, banks, bank
groups, rows, and columns). The attacker can further deduce the addressing function of the target
CPU (i5-8400), by observing the changing bits in the physical addresses when DRAM addresses
change. As an example, the addressing function on i5-8400 is as shown in Figure 3.3. Other CPU
models may implement a different addressing function, and reverse-engineering should be done
for each CPU model beforehand.

3.3.5 Translating PA to VA
In order to extract the actual memory access pattern of the victim, the attacker needs to fur-
ther translate the physical addresses into more meaningful virtual addresses. In general, a root-
privileged attacker has multiple ways of obtaining the physical-to-virtual mappings: either by
parsing the proc file /proc/[PID]/pagemap (assuming Linux as the OS), or using a modified

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 23

BG[0]
BG[1]

BA[1]

ROW[15:0] COL[9:3]

15 14 13 7 616171819

BA[0]

32 … …Physical Address

Figure 3.3: The reverse engineered addressing function of the i5-8400 CPU. The function translate
a physical address to the Bank Group (BG), Bank Address (BA), Row (ROW) and Column (COL)
within the DRAM.

driver. However, paging in an enclave is controlled by the SGX driver, and the vanilla driver forbids
poking the physical-to-virtual mappings through the proc file system. Nevertheless, the attacker
can still modify the SGX driver to retrieve the mappings.

Hence, the attacker prints the virtual-to-physical mappings in the dmesg log and ship the log
together with the memory traces. During the offline analysis, the attacker uses the dmesg log as
an input to the attack script. The dmesg log also contains system timings of paging, and can be
further calibrated to the timestamps of the collected traces. Because paging in an enclave needs to
copy the whole pages in and out of the EPC a sequential access pattern of a whole or partial page
will appear in the memory traces. After calibration, the attack can successfully translate all the
physical addresses to virtual addresses.

3.3.6 Membuster-Prone Application Examples
This section shows how Membuster exploits two example applications: (1) spell checking of a
confidential document using Hunspell, and (2) email indexing cache using Memcached.

Hunspell

Hunspell is an open-source spell checker library widely used by LibreOffice, Chrome, Firefox
and so on [86]. The controlled-channel attack [220] has shown that Hunspell is exploitable by
page-granularity access patterns, which motivated us to use it as the first target of Membuster.
Membuster makes the same assumptions as described in [220]; the attacker tries to infer the con-
tents of a confidential document owned by a victim while Hunspell is spell-checking. The attacker
knows the language of the document, and therefore can also obtain the same dictionary, which is
publicly available.

The side-channel attacks on Hunspell are based on observing the access patterns for searching
words in a hash table created from the dictionary. A simplified version of the vulnerable code is

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 24

// add a word to the hash table
int HashMgr::add_word(const std::string& word) {
struct hentry* hp = (void*) malloc(sizeof(struct hentry) + word->size());
struct hentry* dp = tableptr[i]; // Populate hp
while (dp->next != NULL) {
if (strcmp(hp->word, dp->word) == 0) {
free(hp); return 0;

}
dp = dp->next;

}
dp->next = hp;
return 0;

}
// lookup a word in the hash table
struct hentry* HashMgr::lookup(const char* word) {
struct hentry* dp;
if (tableptr) {
dp = tableptr[hash(word)];
for (; dp != NULL; dp = dp->next) {
if (strcmp(word, dp->word) == 0) return dp;

}
}
return NULL;

}

Figure 3.4: The Hunspell code with a data-dependent access pattern

1. Unmasked addresses:

2. Page fault addresses (controlled-channel attacks):

3. Cache miss addresses (Membuster)

bookkeeping

cask

congestion6f68f06f68f0
6c8cc0

tableptr[0]
tableptr[1]

…

bookkeeping

cask

congestion6f60006f6000
6c8000

tableptr[0]
tableptr[1]

…

bookkeeping

cask

congestion6f68c06f68c0
6c8cc0

tableptr[0]
tableptr[1]

…

Figure 3.5: Observable address patterns in Hunspell by different attacks. Controlled-channel at-
tacks only see page-fault addresses without the lower 12 bits, whereas Membuster can see LLC-
miss addresses without the lower 6 bits.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 25

shown in Figure 3.4. The Hunspell execution starts with reading the dictionary file and inserting
the words into the hash table by calling HashMap::add_word(). For each word from the dic-
tionary, HashMap::add_word() allocates a hentry node and inserts it to the end of the linked
list in the corresponding hash bucket. Then, Hunspell reads the words for spell-checking and calls
HashMap::lookup() to search the words in the hash table. Both HashMap::add_word() and
HashMap::lookup() leak the hash bucket of the word currently being inserted or searched, and
all the hentry nodes before the word is found in the linked list.

The controlled-channel attack leaks different access patterns from that Membuster observes,
as the example shown in Figure 3.5. Controlled-channel attacks leak access patterns through page
fault addresses, which are masked by SGX in the lower 12 bits. However, for applications like
Hunspell, controlled-channel attacks can use sequences of page fault addresses to infer more fine-
grained access patterns within a page. For example, although the nodes for bookkeeping and
booklet are on the same page, the controlled-channel attacks can differentiate the accesses by the
page addresses accessed before reading the nodes.

On the other hand, the memory bus channel can leak the addresses of each cache line being
read from and written back to DRAMs, making the attacks more fine-grained than controlled-
channel attacks. The attacks can differentiate the access patterns based on the addresses of each
node accessed during lookups, instead of inferring through the address sequences. The granularity
of memory bus attacks makes it possible to extract sensitive information even if the access patterns
are partially lost due to caching.

Memcached

Memcached [66] is an in-memory key-value database, which is generally used to speed up various
server applications by caching the database. Memcached is used in various services such as Face-
book [139] and YouTube [128]. This example assumes that Memcached runs in an SGX enclave,
as part of a larger secure system (e.g., secure mail server).

This section considers the scenario discussed by Zhang et al. [230], where a mail server indexes
the keywords in each of the emails and the attacker can inject an arbitrary email to the victim’s
inbox by simply sending an email to the victim. As shown in Figure 3.6, the example assumes that
the index data is stored in Memcached running in an SGX enclave. Since the attacker owns the
machine, she can also perform Membuster by observing the memory bus. The attacker’s goal is to
use his abilities to reveal the victim’s secret emails A, B, and C.

Memcached does not have any data-dependent control flow, but the attacker can use the mem-
ory bus side channel to infer the query sent to Memcached. Memcached stores all keys in a single
hash table primary_hashtable defined in assoc.c using the Murmur3 hash of a key as an
index. Each entry of the hash table is linearly indexed by the Murmur3 hash of the key. Thus
Memcached will access an address within the hash table whenever it searches for a key. By ob-
serving the address, the attacker can infer the hash of the key.

Memcached dynamically allocates the hash table at the beginning of the application. The at-
tacker can easily find out the address of the hash table by sending a malicious email to make
Memcached access the hash table. For example in Figure 3.6, the attacker sends an email D which

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 26

Mail Server

Index DB

Memcached

A B C

Thanks: A B
Dear: B C
Investment: B D

D
Search

Indexing

Update

Send
Email

Membuster

Attacker
Victim

Send/Recv.
Emails

A’ B’ C’

Figure 3.6: An example attack scenario where a mail server uses Memcached as an index database.
A, B, C and D are the emails.

contains a word "Investment". Memcached accesses the entry, and the attacker observes the ad-
dress. Since the attacker already knows the hash value of the key, she can easily find out the address
of the hash table.

Next, the attacker keeps observing the memory accesses within the hash table. Once the at-
tacker figures out the hash table address, she can reveal the hash values of the query, by observing
the virtual addresses accessed by Memcached. To match the hash values with words, the attacker
pre-computes some natural words and creates a hash-to-word mapping. Even though hashes can
conflict, the attacker can recover most of the words by just picking a most-common word based on
the statistics.

3.4 Increasing Critical Cache Misses
As previously discussed, the basic attack model of Membuster can observe memory transactions
with cache-line granularity when the memory transactions cause cache misses in the last-level
cache (LLC). Such an attack model is weakened in a modern processor with a large LLC ranging
from 4 MB to 64 MB, causing only a small fraction of memory transactions to be observable on
the DRAM bus.

This section introduces techniques to increase cache misses of the target enclaves. In a realistic
scenario, an attacker only cares about increasing the cache misses within the virtual address range
which leaks the side-channel information. Take the attack on Hunspell for example, the attacker
only needs to observe the access on the nodes which store the dictionary words. A memory address
is critical if the address is useful for the attack. The goal is to increase the cache misses on critical
addresses, to improve the success rate of the Membuster attack.

3.4.1 Can We Disable Caching?
A simple solution to increase cache misses is to disable caching in the processor. On x86, entire
cacheability can be disabled by enabling the CD bit and disabling the NW bit in the control register

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 27

CR0 ([90], Section 11.5.3). Some architectures allow disabling caching for a specific address
range, primarily for serving uncacheable DMA requests or memory-mapped I/Os. For instance,
on x86, users can use the Memory Type Range Register (MTRR) to change the cacheability of a
physical memory range. Newer Intel processors also support page attribute table (PAT) to manage
page cacheability with the attribute field in page table entries.

However, besides disabling the entire cacheability, neither MTRR or PAT can overwrite the
cacheability of SGX’s processor-reserved memory (PRM) [183]. The cacheability of PRM is
specifically controlled by a special register called Processor-Reserved Memory Range Register
(PRMRR), which can be only written by BIOS during booting. Since there is no proprietary BIOS
that allows the user to modify PRMRR, the attacker effectively has no way to change the cacheabil-
ity of the encrypted memory. However, since the BIOS is untrusted in the threat model of SGX, in
theory, one can reverse-engineer the existing BIOS or build a custom BIOS to overwrite PRMRR.
Membuster does not rely on such techniques because disabling cacheability will incur significant
slowdown, making the attack easy to detect by the victim.

3.4.2 Critical Page Whitelisting
After paging (swapping), memory access in the swapped pages becomes unobservable to the at-
tacker. Such a phenomenon is common for SGX since SGX has to rely on the OS to swap pages
in and out of the EPC. Both swap-in and swap-out causes the page to be loaded into the cache
hierarchy (LLC, L2, and L1-D caches), because the SGX instructions for swap-in and swap-out,
i.e., eldu and ewb, require re-encrypting the page from/to a regular physical page [183]. After
the instructions, the cache lines stay in the cache hierarchy until being evicted by other memory
access. Currently, an Intel CPU with SGX only has up to 93.5MB in the EPC, making paging the
primary obstacle to observing critical transactions on the memory bus.

On the other hand, paging also complicates the virtual-to-physical address translation, as the
mappings can change midst execution. Certain observed access patterns can be used to identify
the paging events. However, these patterns can also become unobservable if the page is recently
swapped and most of the cache lines are still in the LLC.

Therefore, to eliminate the side effect of paging, the modified SGX driver pins the EPC pages
for the critical address range. The attacker starts by identifying the critical address range of each
target program. Take the Hunspell program for example. The critical memory transactions come
from accessing the dictionary nodes, which are allocated through malloc(). For simplicity, Ad-
dress Space Layout Randomization (ASLR) is disabled inside the enclave (controlled by the library
OS [209]). ASLR can be defeated by identifying contiguous memory access pattern in the traces.
Next, the attacker calculates the number of EPC pages needed for pinning the critical pages. For a
Hunspell execution using an en_US dictionary, the total malloc() range is 5,604 KB. Finally, the
critical address range is fed into the modified SGX driver. When the driver allocates an EPC page,
it checks if the virtual address is in the critical address range and use an in-kernel flag to indicate
if the page has to be pinned. The driver will never swap out a pinned page.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 28

3.4.3 Priming the Cache
The attacker can incur cache misses by actively contaminating the cache by accessing contentious
addresses. This technique is called cache priming, which is used in the PRIME+PROBE attack [118].
Previous work has established priming techniques for either same-core or cross-core scenarios.
Some priming techniques are restricted by CPU models, especially since many recent CPU models
have employed designs or features that raise the bar for cache-based side-channel attacks. How-
ever, recent studies also show that, even with these defenses, attackers continue to find attack sur-
faces within the CPU micro-architectures, such as priming the cache directory in a non-inclusive
cache [222].

Membuster only uses cross-core priming since same-core priming requires interrupting the
enclaves using AEX or page faults. The usage of cache priming in Membuster is distinctly different
from existing cache-based side-channel attacks since Membuster does not require resetting the
state of the cache or synchronizing with the victim. The goal of cache priming in Membuster
is to simply evict the critical addresses from the cache to increase the cache misses. Also, with
cache squeezing, the attacker only has to prime the cache sets dedicated to the critical addresses.
These differences make it easy to apply multiple priming attacks simultaneously, as long as they
all eventually contribute to increasing cache misses.

Cross-Core Cache Priming Multiple priming processes run on other cores to evict the critical
cache lines from the LLC. These processes will repeatedly access the cache sets that are shared
with the critical addresses of the victim. The attacker will start by identifying the critical addresses
and the cache sets to prime. Then, the attacker starts the priming processes before the victim
enclave, to actively evict the cache lines during execution. Take the Hunspell attack for example.
Since its critical addresses are spread over all cache sets, the attacker needs to repeatedly prime all
cache sets. No synchronization is required between the attack processes and the victim.

A potential hurdle for cross-core priming is to obtain sufficient memory bandwidth to evict the
critical cache lines. Based on the experiments, a priming process that sequentially accesses the
LLC has around 100–200MB/s memory bandwidth. Priming a 9MB LLC with 2,048 sets requires
about 100 milliseconds, which is too slow to evict the critical cache lines before the lines are
accessed by the victim again. For instance, Hunspell accesses a word every 2 thousand DRAM
cycles (< 1 microseconds), and Memcached accesses a word every 5 million DRAM cycles (< 2.5
milliseconds). Section 3.4 will discuss, however, how an attacker can evict all the critical cache
lines within a few milliseconds by pinpointing the priming process to target only 64–128 sets.

Page-Fault Cache Priming Potentially, an attacker can prime the LLC, L2, and L2-D caches on
the same core with the victim, by interrupting the victim periodically. To do so, the attacker can
take a similar approach to the Controlled-Channel Attack: The attacker identifies two code pages
containing code around the critical memory accesses, and then alternatively protects the pages to
trigger page faults. To increase cache misses, the attacker needs not to prime the cache at every
page fault, but rather can prime at a low frequency. However, such a page-fault priming technique
still causes a lot of interference and overhead to the victim, making it easy to detect [132] or to

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 29

pinned

pinned

Virtual Pages EPC Pages LLC Sets

Critical
Pages

conflict
group

OS Pages

(2) Cross-Core Priming(1) Cache Squeezing

Figure 3.7: Techniques used to increase the cache miss rate with minimal performance overhead.

mitigate [185, 43]. For example, priming the cache on every 10-20 page faults incurs about 3×
overhead to the victim. In addition, known countermeasures, such as T-SGX [185], can effec-
tively prevent page faults using transactional instructions. Therefore, Membuster does not use this
technique.

3.4.4 Shrinking the Effective Cache Size with Cache Squeezing
As previously discussed, cache priming alone cannot create sufficient memory access bandwidth
for evicting the critical cache lines in time. Therefore, Membuster leverages a novel technique
called cache squeezing, which shrinks the effective cache size to incur more cache misses for a
specific address range. The technique can be combined with non-intrusive techniques like cross-
core cache priming to make Membuster a more powerful side channel.

Cache Squeezing

As the name suggests, cache squeezing can shrink the effective cache size for a given set of critical
pages. By squeezing the cache that an enclave can use, the attacker can incur both conflict misses
and capacity misses on LLC, therefore becoming able to observe more cache misses on the bus.

In modern processors, the L2 cache and LLC are physically-indexed. The lowest 6 bits of the
physical address are omitted, given that each cache line is 64 bytes. The next s lower bits are taken
as the set index. Each set then consists of W ways to store multiple cache lines of the same set
index. For an enclave, an OS-level attacker can control the physical pages that are mapped to the
enclave’s virtual pages. This allows the attacker to manipulate the physical frame number (PFN)
of each virtual address of the enclave, and subsequently, the higher s − (12 − 6) = s − 6 bits of
the set index.

Figure 3.7(1) shows how cache squeezing works in combination with page pinning. The at-
tacker first defines the critical addresses of the victim, then maps these pages to EPC pages that
share the minimum amount of cache sets. This technique requires cache pinning so that these pages
will never be swapped out from the EPC. Since the OS only controls the higher s−6 bits of the set

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 30

indices, the smallest group of physical pages that will evict each other share exactly 26 = 64 sets.
Such a group of physical pages is a conflict group. Since the maximum size of EPC is 93.5 MB, the
entire cache can be partitioned to 2s−6 conflict groups where each conflict group can accommodate
93.5 MB/4 KB/2s−6 EPC pages. In the experiment, s = 11 (2048 sets) and W = 12, so each
conflict group can accommodate at most 748 pages (2,992 KB). The critical address range of Hun-
spell, for example, is the whole malloc() space, which is 5,604 KB and thus requires two conflict
groups. Finally, the attacker gives the critical address range to a modified SGX driver, which will
only map physical pages from the selected conflict groups to any critical virtual address.

Using cache squeezing to increase cache misses has many benefits. First of all, it does not
require interrupting the victim enclaves, nor does it need to incur more memory accesses in the
background. All memory accesses used to push cache lines out of the L2 cache and LLC are
legitimate accesses from the victim enclaves. Therefore, cache partitioning cannot defeat cache
squeezing because there is no cross-context cache sharing. In fact, way-partitioning features such
as Intel CAT [138] can be exploited to further shrink the effective cache sizes in combination with
cache squeezing.

Cross-Core Priming with Cache Squeezing

As Section 3.4.3 mentioned, cross-core cache priming may not have sufficient bandwidth to evict
the critical cache lines in time. However, cache squeezing makes the priming more effective by
shrinking the effective cache size. Instead of priming all the cache sets, the attacker now only has
to prime the sets of the targeted conflict groups containing the critical addresses (Figure 3.7(2)).
Each group of 64 cache sets contains W × 4KB, allowing the priming process to evict the part of
cache within a millisecond. The priming process can run in parallel and does not affect the victim
execution except causing cache contention.

Limitation

Although cache squeezing can increase the cache misses among critical addresses, it could be less
effective if the victim has only a few critical addresses or a small memory footprint. If the critical
addresses can only fill a small part of a conflict group (W × 4 KB), the victim enclave may not
be able to cause enough cache misses to benefit the attacker. For example, Memcached only has 2
MB (500 pages) of the critical address range. To fill all of the 748 pages, the top 248 frequently-
accessed pages (in addition to the critical addresses) are identified through simulation, and are
assigned to the same conflict group.

Note that the LLC of a modern CPU usually has a cache slice feature that distributes the ad-
dresses across multiple cache banks using an undocumented, model-specific mapping function.
Reverse-engineering the slicing function of the target CPU is useful for further reducing the effec-
tive cache space for an enclave if the enclave has a smaller memory footprint. Reverse-engineering
of slicing functions is already explored by prior papers [222], so this thesis will not discuss this
technique.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 31

ksgxswapd

sgx_add_page_worker

free_list

load_list

⑥ Victim selection:
is it a critical page?

conflict_list

EPC ELRANGE

Critical
Pages

kmap_atomic()
__eadd()
...

__ewb()
kunmap_atomic()
sgx_free_page()

No Yes

② Page allocation:
is it a critical page?

No

Yes

① ③

④

⑤
⑦
⑧

Figure 3.8: Implementation of critical page whitelisting and cache squeezing in a modified SGX
driver. To ensure no swapping in the sensitive memory range, EPC pages are set aside in a separate
queue. The attackers can further select the EPC pages based on set indexes or other logistics.

One can detect the cache squeezing by testing if critical addresses are mapped in an adversarial
way. Since the enclave is not aware of physical address mappings by itself, it needs to exper-
imentally detect such mapping by accessing the addresses and measure latency. However, it is
challenging because (1) the victim needs to know the critical address range to detect the mapping,
and (2) the enclave cannot tell if the mapping was accidental or intentional.

Implementation

Figure 3.8 shows how a modified SGX driver implements both critical page whitelisting and cache
squeezing. The driver accepts parameters to specify a sensitive range within the victim application,
and calculates how many conflict groups are required for the attack. 1©When the driver initializes,
it inserts conflicting EPC pages to a separate queue (i.e., conflict_list). 2© When adding
enclave pages, the driver checks if the virtual page number is in the critical address range. 3© The
driver maps the critical pages to pages popped from conflict_list. 4© All of the mapped pages
are added to the list of loaded pages (load_list). 5© When the driver needs to evict an EPC
page, it searches the victim from the list of loaded pages. 6© If the selected page is a critical page,
it searches again. 7© Only non-critical pages are evicted and the enclave continues to run. Other
enclaves are not affected by the modification and can function normal with marginal overheads.

The change to the SGX driver contains only 290 lines. The SGX driver uses the fault oper-
ation in vm_operations_struct to handle EPC paging. A customized fault function checks
the faulting virtual addresses of the enclave and then applies different paging strategies to critical
and non-critical addresses. The range of critical addresses for each application was hard-coded,
requiring switching the drivers for a different target. Potentially, the driver can export an API to

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 32

the attackers for specifying the critical addresses. The driver also only supports one single victim
enclave at a time. However, the attacker can extend the driver to target multiple enclaves simulta-
neously as long as the total memory usage can fit into the EPC (required for pinning).

3.5 Extracting Sensitive Access Patterns
OS techniques including critical page whitelisting, cache squeezing, and cross-core priming ef-
fectively increase the cache misses on the cache misses on critical addresses. However, the traces
collected from the memory bus are still full of noise and contain no marker for splitting the critical
memory accesses into iterations. Unlike controlled-channel attacks, Membuster cannot rely on re-
peated code addresses (e.g., from a loop) to mark and then split the critical accesses because these
code addresses tend to be accessed too frequently to be evicted by the techniques. Therefore, the
attacker needs to deeply analyze the memory traces offline to distill the sensitive information.

To extract the sensitive access patterns, the attacker uses four techniques for filtering the crit-
ical memory addresses and matching with a known oracle for the target application: (1) offline
simulation; (2) searching the beginning of sensitive accesses; (3) fuzzy pattern matching, and (4)
exploiting cache prefetching. The following sections will explain how to analyze the access pattern
by using the examples from Section 3.3.6.

3.5.1 Offline Simulation
Side-channel attacks often require attackers to have some knowledge about the behaviors of the
victim. For example, the controlled-channel attack on Hunspell requires the attacker to extract the
virtual page addresses of the linked list nodes of each dictionary word, during an online training
phase while attacking the victim. However, Membuster cannot perform online training with the
victim as the analysis of the memory traces is performed offline. Instead, the attacker needs to
generate an oracle of the victim behavior, using offline simulation of the target application.

The attacker can use a deterministic oracle for each application, given that users have adopted
some publicly available data (e.g., the en_US dictionary). For example, during the simulation, A
modified Hunspell runs in an enclave, which prints out the indexes and the addresses of linked list
nodes visited for each word. Then, the output is reused as an oracle for analyzing any traces based
on the same en_US dictionary.

As discussed earlier, ASLR in the enclaves does not invalidate an oracle, since ASLR can be
easily defeated by observing the specific patterns related to binary loading. The addresses in the
oracle can simply be shifted by a certain offset to be usable again.

3.5.2 Searching Sensitive Accesses
Finding the first sensitive access is critical for deciding where to start matching access patterns.
Note that not all accesses to the critical addresses are sensitive. For Hunspell, allocating nodes for
each word emits a long sequence of monotonically increasing virtual addresses that can be used to

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 33

identify the sensitive addresses. The attacker matches the virtual addresses to the oracle, to find
the longest increasing subsequence (LIS) of addresses as accessed in the dictionary order. After
finding the LIS, the next critical access is the beginning of the sensitive addresses.

3.5.3 Fuzzy Pattern Matching
In Membuster, a part of memory addresses in a sensitive access pattern is likely to be missing due
to caching. Even with cache squeezing and cross-core priming, it is almost impossible to force
page misses on every critical memory access. Therefore, to analyze lossy traces, the attacker uses
fuzzy pattern matching to flexibly match the traces with only parts of access patterns. As long as
at least one or a few accesses of a pattern cause LLC misses, the attacker can identify the pattern
as a possible result for recovery.

In fuzzy pattern matching, one address may be parsed as different access patterns of the victim
for two reasons. First, within a data structure such as a linked list or a tree, the same address (an
inner node) may be accessed while traversing or searching other nodes. Second, a cache line may
contain multiple nodes and thus can be accessed when visiting one of the nodes. For either of
the reasons, a single memory trace may be accounted for multiple possible access patterns in the
oracle.

The attacker uses a simple strategy to select the best interpretation for a set of memory traces.
The attacker assigns a score to each possibility based on how complete the traces have matched
with an access pattern in the oracle. For the addresses of a tree or a linked list, the attacker assigns
lower scores to the root and the first few nodes and assign higher scores to nodes that are closer to
leaves or the end of the list. By collecting the top-ranking interpretations of the memory traces, an
attacker can generate a list of the most probable options of the target secret. Potentially, a grammar
checker or any semantic-based heuristic can help to validate or to rank the recovery results.

3.5.4 Exploiting Cache Prefetching
Finally, the cache prefetching features of CPUs can help increase the accuracy of the attack. For
example, a recent Intel CPU includes Next-line Prefetcher and 128-byte Spatial Prefetcher. The
Next-line Prefetcher, belonging to the L2 cache, will preload the cache line next to the one that is
currently accessed. The 128-bit Spatial Prefetcher, which also belongs to the L2 cache, prefetches
the pairing cache line that completes the accessed cache line to a 128-byte aligned chunk into
the LLC. Both prefetchers increase the number of memory accesses relevant to the secret data.
Therefore, the attacker expands the range of pattern matching based on their knowledge of cache
prefetching, including extending the addresses representing each secret by 64 bytes, both backward
and forward. As a result, even if the CPU has cached a line, the prefetched lines may still cause
cache misses and be observed on the memory bus.

Other cache prefetchers such as Stream Prefetcher can monitor an ascending or descending
sequence of addresses from the L1 or L2 cache and can prefetch up to 20 cache lines ahead of the
loaded address. Such a prefetcher generally will not improve the accuracy of the pattern matching.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 34

However, these prefetchers can cause space pressure to caches, making cache squeezing more
effective.

3.6 Attack Results
This section presents the evaluation results of the Membuster attack, based on the two vulnerable
applications described in Section 3.3.6. The evaluation mainly answers the following questions
regarding the Membuster attacks:

• How accurate can Membuster extract the secrets from applications that are vulnerable to
such an attack?

• How do the attack techniques of Membuster impact the attack accuracy?

• How much slowdown (or interference) the various techniques will incur on the applications?

• What is the limitation of Membuster?

• How sensitive are the attack results of Membuster to the last-level cache (LLC) size of the
target CPU?

This section evaluates Membuster in various settings: (1) the basic attack without any tech-
niques (None); (2) the optimized attack with cache squeezing (SQ); (3) the optimized attack with
cache squeezing combined with cross-core cache priming (SQ+PR).

3.6.1 Experiment Setup
This section describes the experimental setup of the Membuster attack. The evaluation uses both
physical and simulated experiments to evaluate the effectiveness of Membuster.

Physical Experiment

Hardware Setup. Table 3.2 shows the hardware setup for the experiment. The experiment
uses a machine equipped with an Intel SGX CPU. The DIMM connects to a signal analyzer via a
DIMM interposer. BIOS was configured to slightly increase the DRAM supply voltage to offset
the voltage drop caused by the interposer. The bus frequency is set to 1066 MHz, so the bandwidth
of the analyzer is 3.97 GiB/s. With a 64 GiB acquisition depth, the attacker can log the memory
bus for up to ∼ 16 seconds. All of the experiments have finished in a few seconds, and thus
the acquisition depth is sufficient for logging all the memory requests. To achieve a wider time
window, the attacker can choose an analyzer which can filter the requests by addresses [163], or
which has a higher acquisition depth [93].
Victim Setup. The victim machine is running Ubuntu 16.04 and Linux kernel 4.4. The un-
modified victim applications run inside enclaves via Graphene-SGX [209]. The victim may also

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 35

CPU
Model Intel i5-8400 (Coffee lake)
LLC Size 9 MB
LLC # Slice 6 Slices
LLC # Associativity 12-way set associative
LLC # Sets 2048

Memory
DIMM Type DDR4-2400 UDIMM (Non-ECC)
Capacity 8 GB
Channel/Rank/Bank/Row 1/1/16/65536
Page Size 8 KB (1 KB/package)
Max Bus Frequency 1200 MHz

Table 3.2: Hardware specification for the experiment

choose other frameworks [15] or port the applications with the SDK [191], but the choices of the
frameworks do not eliminate the patterns since they do not change the program logic of the victim.
Sample Size. SK Hynix collaborated to borrow its proprietary analyzer for the experiments. Due
to the limited access to the device, the attack was conducted only once for each setting. The
experiments ran successfully despite the small sample size because the results match well with the
expectations learned from the simulation.

Microarchitectural Simulation

A software simulator was used to simulate the attack prior to an actual attack because the hardware
setup requires costly devices. This allows the attacker to get preliminary results. The results are
then cross-validated with the results from the actual hardware setup, to verify the functional cor-
rectness of the simulation. QEMU [164], a machine emulator, was used to trace all the physical
memory accesses of the guest. To capture cache misses, a modified QEMU emits all the memory
requests to a cache simulator integrated from Spike [193]. The cache simulation does not imple-
ment any cycle-accurate hardware model as well as cache slicing and pseudo-LRU replacement.
However, the simulation was sufficiently faithful for developing the attack scripts to analyze the
real memory traces.

Enclave Simulation

The experiment simulates an enclave environment without memory encryption, using a modified
Graphene-SGX library OS and a dummy SGX driver. Simulating Intel’s Memory Encryption
Engine (MEE) unnecessary because MEE does not affect the memory addresses accessed within
the EPC. MEE generates additional access patterns for the integrity tree or EPC metadata, both of

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 36

which are stored in the Processor Reserved Memory outside the EPC. The attack does not rely on
any access pattern outside the EPC.

The modified Graphene-SGX library OS and the dummy SGX driver primarily simulate the
transition in and out of the enclave and the paging of enclave memory, to generate similar memory
access patterns as observed on the memory bus. For simulating enclave entry and exit, the modified
user-tier SGX instructions (i.e., EENTER and EEXIT) in the Graphene-SGX runtime directly jump
to addresses that are originally given as the enclave entry. The experiment also simulates the AEX.

To simulate EPC paging, the modified SGX driver replaces the system-tier SGX instructions,
including the ELDU and EWB instructions, which swap and re-encrypt pages in and out of the EPC.
These two instructions are replaced with memory copy without encryption. The memory traces
from the real enclaves and from the simulation match, confirming that the results are identical.

Applications: Hunspell

The experiment uses Hunspell v1.6.2 to evaluate the effectiveness of the Membuster attack. Hun-
spell uses a standard en_US dictionary [192] with two document samples: a random non-repetitive
document with 10,000 words (Random), and a natural-language document Wizard of Oz with
39,342 words (Wizard). For simplicity, the samples are normalized based on en_US dictionary,
by converting non-existing words in the samples to the closet words in the dictionary. Membuster
does not recover words that are reported as misspelt by Hunspell. In addition, the experiment
disabled affix detection in Hunspell.

The experiment uses the pattern matching algorithm described in Section 3.5 to recover the
target document from the DRAM traces collected from the Hunspell program running inside the
enclave. The hardware prefetching was enabled by configuring the BIOS. To verify the result, the
experiment selects an interpretation of the DRAM traces that is closet to the target document, from
a set of highest-ranking results generated from the algorithm.

Application: Memcached

The experiment runs Memcached v1.5.12 as another target of the Membuster attack. In this attack,
the secrets are the data being looked up in the Memcached cache. Enron email dataset [61] was
used as a realistic workload for Memcached. First, the experiment computes the 4-byte hash
of each word that appears in emails in the sent mail directory of each user. In total, there are
about 7000 unique word entries in the dataset, which include articles and propositions. During
the training phase, assuming the attacker is monitoring a Memcached server, the attacker can
determine both the hash table address and the hash value of each word using the traces of a few
queries. Then, during the attack phase, the attacker monitors the memory bus traffic of an enclave-
protected Memcached server receiving caching requests from an trusted email server. The email
server parses emails from a test data set that contains randomly selected emails with around 1000
words in total. As the Memcached server processes the caching requests from the email server, the
attacker can extract the words in the emails using the Membuster attack.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 37

Random Wizard Wizard
(w/o NLTK)

0
20
40
60
80

100
Re

co
ve

ry
 (%

)
None SQ SQ+PR

0.0 0.5
0.8

1.0

1.2

1.4

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

None SQ SQ+PR

Figure 3.9: Hunspell document recovery rate (left) and normalized execution time (right) on two
documents: Random document (Random) and Wizard of Oz (Wizard). The comparison is between
without any techniques (None); with cache squeezing(SQ); and with cache squeezing and cross-
core priming (SQ+PR). The Wizard of Oz results also show the recovery rate of uncommon words
only (w/o NLTK).

Technique Attack Accuracy Normalized Exec. Time
None 34.1% 1.00×

SQ 82.1% 0.92×

Table 3.3: Membuster results for attacking Memcached on an SGX machine

3.6.2 Effectiveness of the Attack
Data Recovery Accuracy

Figure 3.9 (left) and Table 3.3 show the accuracy of Membuster for recovering the victim’s data.
The accuracy is the number of words recovered from the collected traces, compared to the number
of words in the original samples. The recovery rate is higher in a non-repetitive (Random) or high-
interval access pattern (Memcached) than in a repetitive access pattern (Wizard). Even without
any techniques (None), Memcached and Random show 34% and 44% recovery rates, respectively.
Cache squeezing recovers 96% of the random document and 82% of the Memcached query.

However, for Wizard of Oz, None or SQ can only achieve up to 21% recovery rate. The main
reason is that the document contains many repetitive words, including common words such as
“you” and “the” and uncommon words such as “Oz” and “scarecrow”. The memory accesses for
these words are likely to be cached in the LLC cache without emitting any DRAM requests. On
average, each unique word in Wizard of Oz repeats 15.5 times. Without cache squeezing and
cross-core priming, the attack recovers about 0.3 occurrences of each word on average. Even with
cache squeezing, the attack only recovers about 2.6 occurrences.

Since cache squeezing shrinks the effective cache size for the critical addresses, cross-core

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 38

priming becomes more efficient by only priming the sets of the critical addresses. Combining
cache squeezing and cross-core priming (SQ+PR) achieves 85% recovery accuracy on Wizard of
Oz.

Furthermore, the attacker is most likely to need only the uncommon words to be recovered.
Common words are defined by stopwords from the NLTK dataset [140] which includes 179 com-
mon words (e.g., "the"). Excluding the common words allows Membuster to recover Wizard of Oz
up to 95% (Figure 3.9 Wizard w/o NLTK).

Overhead and Interference

Membuster does not incur an orders-of-magnitude overhead that can be distinguishable by the
victim. Figure 3.9 (right) shows the normalized execution time with different attack techniques
with respect to the baseline. In general, both cache squeezing and cross-core priming have a low
performance impact on the victim program, since these techniques do not interrupt the victim
program. For Hunspell, cache squeezing causes up to 21% overhead to the victim, and up to 36%
if combined with cross-core priming. The overheads are mainly caused by the increase of cache
misses inside the victim program.

Table 3.3 also shows the end-to-end execution time of Memcached for processing the whole test
set. Similar to Hunspell, the basic attack incurs no overhead on Memcached. Interestingly, cache
squeezing reduces the execution time by 8% for Memcached. On a physical machine, critical page
whitelisting consistently reduces the average LLC miss rate (2.9% vs. 3.6%) as well as the page
fault rate. Because the physical pages of Memcached’s hash table are pinned inside the enclave,
and thus never get swapped out from the EPC. Thereby, within the hash table, there is no expensive
paging and context switching cost that generally plagues enclave execution.

Scalability on # of Ways

The attack on the simulation environment shows the scalability of Membuster. The number of sets
are fixed to s = 2048 that most Intel CPUs choose to have. Since the simulator does not simulate
the LLC slices, the experiment increases the size of the cache by increasing the number of ways,
W . To clarify, increasing the number of ways does not reflect the actual behavior of LLC with
multiple slices. Even if the LLC has multiple slices, each cache line will compete with W other
cache lines. Thus, increasing W makes the attack much harder, by reducing the chance of eviction
of critical addresses. Note that a typical W value is between 4 and 16.

As shown in Figure 3.10, cache squeezing makes cross-core priming much more effective in
general by reducing the effective cache size. cache squeezing was more scalable on Hunspell than
Memcached, because Hunspell has a larger critical address range. With W = 64, Membuster
recovered up to 83% of the random document in Hunspell and 88% of the emails in Memcached
when both cache squeezing and cross-core priming have been used. Even assuming an unrealistic
number of ways W = 256, which results in 32 MB of LLC, the attack accuracy was 77% and 40%
respectively.

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 39

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Hunpell (random) None PR SQ SQ+PR

4
(0.5MB)

8
(1MB)

16
(2MB)

32
(4MB)

64
(8MB)

128
(16MB)

256
(32MB)

of Ways (LLC Size)

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Memcached None PR SQ SQ+PR

Figure 3.10: Simulation results of the attack on Hunspell (top) and Memcached (bottom).

SQ+PR

SQ

None

Ra
nd

om

Useful Traces per Word Recovery (%)

0 1 2 3 4 5 6

SQ+PR

SQ

None

W
iza

rd

0 20 40 60 80 100

w/ prefetching w/o prefetching

Figure 3.11: The number of useful traces per word and the document recovery rate for each exper-
iment (with or without the hardware prefetcher).

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 40

3.6.3 Per-Application Detailed Analysis
Hunspell: Advantage of Cache Prefetching

Exploiting cache prefetching advantages Membuster. For Hunspell, the attacker recovers each
word based on multiple memory accesses. If the attacker observes more traces relevant to each
word, recovering the word becomes easier. Hence, if the attacker knows the presence of cache
prefetchers in advance, she can use the information to correlate the prefetched addresses with each
word (Section 3.5).

As shown in Figure 3.11, cache prefetching increases the average number of useful traces
per word. Including prefetched addresses increases the recovery rate especially when there are
very few useful traces (None and SQ). Although the improvement is marginal in the experiment,
the attacker can potentially use the additional memory requests made by the cache prefetchers to
extract more information from the victim.

Memcached: Advantage of Fine-Grained Addresses

To show the advantage of observing fine-grained addresses, the experiment simulated the controlled-
channel attack on Memcached example. First, the entire memory trace is obtained from Mem-
cached without simulating the cache. Then the the lower 12-bits of all addresses are masked
assuming each page is 4 KB. The post-processing enabled simulating the memory trace that the
controlled-channel attacker will observe. The experiment also reconstructs the attacker’s hash table
such that each page-granularity address maps to multiple entries in the hash table. If the attacker
sees an address, she simply chooses the most common word among the possible entries.

The simulated controlled-channel attack achieves only 29% accuracy, and the recovered docu-
ment was uninterpretable as it only contained common words such as “the” and “of”. This shows
that Membuster leverages fine-grained addresses by providing more side-channel information than
coarse-grained addresses.

3.7 Implications and Limitations
Potentially, Membuster can be used in two scenarios: (1) a malicious user attacking an end device
to retrieve secret data from a local enclave; (2) a malicious cloud provider or employee attacking
a cloud machine to retrieve secret data from the tenants. The existence of Membuster shows the
importance of physical security to enclaves just on par with software security. Ideally, in a secure
cloud, one may want to separate the person who has physical access to the machine from the
person who has administrative privileges. This may be achieved by a secure boot system that
prevents people who have physical access from overwriting system privileges.

Limitations. Membuster leaks only memory access patterns at LLC misses. Thus, Membuster
cannot observe repeated accesses to the same address within a short period. For instance, the
former RSA implementation of GnuPG [70] is known to leak a private key through code addresses

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 41

in the ElGamal algorithm [224]. This type of attack relies on data-dependent branches, as the
attacker detects different code paths executed inside the victim to infer the secret. However, these
vulnerabilities are difficult to exploit by Membuster, due to these code addresses being frequently
executed and thus cached in the CPU. Even cache priming techniques cannot efficiently evict the
code addresses in time to help the attacker retrieve the secret with high accuracy but keep the
performance impact low.

In general, Membuster is more suitable for leaking data-dependent memory loads over a large
heap or array. For instance, both the attacks on Hunspell and Memcached rely on the access
patterns within a large hash table and/or linked-list objects. If the victim program only has data-
dependent memory access patterns within a small region, or if the memory access is not evenly
distributed, the accuracy of Membuster is likely to worsen. Besides, if the application only leaks
a secret through stores that are dependent on the secret, Membuster may not observe the memory
requests immediately. The reason is that the CPU tends to delay write-back of dirty data until the
cache lines are evicted, making the timing of the memory requests appearing on the memory bus
unpredictable.

Timing Information. Although not explored in the chapter, an attacker may exploit the timing
information to attack the victim. The DRAM analyzer logs a precise timestamp for each memory
request based on counting its clock cycles. Potentially, an attacker can measure the time difference
between two memory traces, to infer the execution time of operation in the victim as a way of
timing attacks.

Traffic Analysis. Potentially, the memory bus traffic recorded by the DRAM analyzer can be
used for traffic analysis if the victim is vulnerable to this type of attacks. For instance, the attacker
may analyze either the density or the volume of requests on a specific address to infer the activ-
ity or secret of the application. A complete mitigation of the attack should eliminate the timing
information and has a constant traffic flow on the memory bus [3].

Multiple DIMMs or Multi-Socket. The current attack does not explore the possibility of having
multiple DIMMs or multiple CPU sockets (currently not supported by SGX). However, potentially,
the attacker can attach multiple DIMM interposers, and then correlate the DRAM traces using
timestamps or common patterns.

Memory Controllers. A memory controller arbitrates all transactions to main memory such that
it maximizes the throughput while minimizing latencies. One of the key features that may make
Membuster more challenging is transaction scheduling where the arbiter reorders the transaction
requests to maximize the performance. In other words, the order of the memory transactions
observed by the attacker may differ from the actual order of memory accesses.

The arbitration of the memory controller does not stop an enclave from leaking sensitive access
patterns. First, even if transactions are reordered, the critical addresses will still eventually appear
on the memory bus. Also, the memory controller only reorders transactions within a very small

CHAPTER 3. WHY YOUR THREAT MODEL MIGHT BE WRONG 42

time window (e.g., tens of bus cycles), which is not enough to obfuscate the critical memory
accesses that occur at least every hundreds of instructions.

Generalization. Intel SGX is not the only platform affected by Membuster. Other existing plat-
forms of hardware enclaves [65, 50, 110, 52] also do not encrypt the addresses on the memory
bus. Thus, these platforms are also vulnerable to Membuster as long as the CPU stores encrypted
data in external memory (e.g., DRAM). The attacker can also use the same techniques such as
cache squeezing to induce cache misses on other platforms. For example, Komodo [65] allows
the OS to affect the virtual address mapping, which enables the attacker to use cache squeezing.
Keystone [110] measures the initial virtual address mapping for attestation, thus cache squeezing
cannot be applied. However, it provides cache partitioning which can reduce the effective cache
size of the enclave.

Mitigations. There are several ways to mitigate Membuster, but they are generally expensive.
Oblivious RAM (ORAM) [194, 174] can make the applications execute in an oblivious manner
so that the attacker cannot infer secret data based on the memory access pattern. The high perfor-
mance overhead of ORAM makes it less attractive for applications that have strong performance
requirements. Alternatively, additional hardware can encrypt the address bus as proposed by In-
visiMem [3] and ObfusMem [19]. However, adding such a feature to commodity DRAM would
be very expensive; take the cost of techniques such as Hybrid Memory Cube (HMC) [154] for an
example. In-package memory such as high bandwidth memory (HBM) may relieve the needs for
protection against untrusted DRAM [104], but remains an expensive alternative for production.

3.8 Summary
This chapter introduced Membuster, which is a non-interference, fine-grained, stealthy physical
side-channel attack on hardware enclaves based on snooping the address lines of the memory bus
off-chip. The key idea is to exploit OS privileges to induce cache misses with minimal perfor-
mance overhead. This chapter also demystified the physical bus-based side channel by reverse-
engineering the internals of several hardware components. Then it developed an algorithm that
can retrieve application secrets from memory bus traces. This chapter demonstrated the attack
on an actual SGX machine; the attack achieved similar accuracy with much lower overhead than
previous attacks such as controlled-channel attacks. The attack technique is prevalent beyond Intel
SGX and can apply to other secure processors or enclave platforms, which do not protect memory
buses.

43

Chapter 4

Keystone: An Open Framework for
Building TEEs

This chapter describes Keystone, an open framework for building TEEs. Keystone uses simple
abstractions provided by the hardware such as memory isolation and a programmable layer under-
neath untrusted components (e.g., OS). By using reusable TEE core primitives, Keystone allows
platform-specific modifications and flexible feature choices.

4.1 Introduction
Each vendor TEE enables only a small portion of the possible design space across threat models,
hardware requirements, resource management, porting effort, and feature compatibility. When a
cloud provider or software developer chooses a target hardware platform they are locked into the
respective TEE design limitations regardless of their actual application needs. Constraints breed
creativity, giving rise to significant research effort in working around these limits. For example,
Intel SGXv1 [126] requires statically sized enclaves, lacks secure I/O and syscall support, and is
vulnerable to significant side-channels [49]. Thus, to execute arbitrary applications, the systems
built on SGXv1 have inflated the Trusted Computing Base (TCB) and are forced to implement
complex workarounds [24, 15, 209]. As only Intel can make changes to the inherent design trade-
offs in SGX, users had to wait for changes like dynamic resizing of enclave virtual memory in
SGXv2 [125]. Unsurprisingly, these and other similar restriction have led to a proliferation of new
TEEs on other ISAs (e.g., OpenSPARC [39], RISC-V [50, 171]). However, each such redesign
requires considerable effort and only provides another fixed design point.

The hardware should provide security primitives instead of point-wise solutions. Thus, this
chapter leverages RISC-V’s primitives to construct highly customizable TEEs. One can draw an
analogy with the move from traditional networking solutions to Software Defined Networking
(SDN), where exposing the packet forwarding primitives to the software has led to far more novel
designs and research. Such a paradigm shift in TEEs will pave the way for low-cost use-case
customization. It will allow the features and the security model to be tuned for each hardware

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 44

platform and use-case from a set of common software components, drawing on ideas from modular
kernel concepts [115, 60, 8]. This motivates the need for Customizable TEEs—an abstraction that
allows entities that create the hardware, operate it, and develop applications to configure and deploy
various TEE designs from the same base. Customizable TEEs promise independent exploration
of gaps/trade-offs in existing designs, quick prototyping of new feature requirements, a shorter
turn-around time for fixes, adaptation to threat models, and usage-specific deployment.

For realizing this vision, the first observation is the need for a highly programmable trusted
layer below the untrusted OS. Second, the TEE must decouple the isolation mechanisms from
decisions of resource management, virtualization, and trust boundaries. A hypervisor solution
results in a trusted layer with a mix of security and virtualization responsibilities, thus complicating
the most critical component. Similarly, firmware and micro-code are not programmable to a degree
that satisfies the requirements. These two requirements help avoid the mistake of using hardware
with a separation mechanism encumbered with a static boundary between what is trusted and
untrusted. Lastly, this thesis draw inspiration from proliferation of commercial (c.f. Intel SGX,
TrustZone) and non-commercial TEEs (c.f. Sanctum [50], Komodo [65]) which demonstrate the
need for a common, portable software base adaptable to ever-changing hardware capabilities and
use-case demands.

To this end, this chapter proposes Keystone—the first open-source framework for building
customized TEEs. Keystone is based on standard RISC-V specifications [217] for physical mem-
ory protection (PMP)—a primitive which allows the programmable machine mode underneath the
OS in RISC-V to specify arbitrary protections on physical memory regions. Keystone uses this
machine mode to execute a trusted security monitor (SM) to provide security boundaries without
needing to perform any resource management. Critically, each enclave operates in its own isolated
physical memory region and has its own supervisor-mode runtime (RT) component to manage the
virtual memory of the enclave and more. With this novel design, any enclave-specific functionality
can be implemented cleanly by its RT while the SM manages hardware-enforced guarantees. An
enclave’s RT implements only the required functionality, communicates with the SM, mediates
communication with the host via shared memory, and services the enclave user-mode application
(eapp).

The choice of RISC-V and the logical separation between SM and RT allows hardware man-
ufacturers, cloud providers, and application developers to configure various design choices such
as TCB, threat models, workloads, and TEE functionality. Specifically, Keystone’s SM uses hard-
ware primitives to provide in-built support for TEE guarantees such as measured boot, memory
isolation, and attestation. The RT then provides functionality modules for system call interfaces,
standard libc support, in-enclave virtual memory management, self-paging, and more inside the
enclave. For strengthening the security, the SM leverages any available configurable hardware to
compose additional security mechanisms. Later sections demonstrate the potential of this with a
highly configurable cache controller to, in concert with PMP, transparently defend against physical
adversaries and cache side-channels.

The implementation of this chapter includes the SM, two RTs (the native RT—Eyrie—and an
off-the-shelf microkernel seL4 [101]), and several modules which together allow enclave-bound
user applications to selectively configure and use the above features (Figure 4.1). Section 4.7 ex-

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 45

tensively benchmarks Keystone on 4 suites with varying workloads: RV8, IOZone, CoreMark, and
Beebs. The section showcases use-case studies where Keystone can be used for secure machine
learning (Torch and FANN frameworks) and cryptographic tasks (libsodium) on embedded de-
vices and cloud servers. Lastly, Keystone is tested on different RISC-V systems: the HiFive Free-
dom Unleashed, 3 in-order cores and 1 out-of-order core via FPGA, and a QEMU emulation—all
without modification. Keystone is fully open-source.

This chapter consists of the following contributions:

• Customizable TEEs. Define a new paradigm wherein the hardware manufacturer, hardware
operator, and the enclave programmer can tailor the TEE design.

• Keystone Framework. Present the first framework to configure, build, and instantiate cus-
tomized TEEs. The principled way of ensuring modularity in Keystone allows one to cus-
tomize the design dimensions of TEE instances as per the requirements.

• Open-source Implementation. Demonstrate advantages of different Keystone TEE configu-
rations that are tailored for minimizing the TCB, adapting to threat models, using hardware
features, handling workloads, or providing rich functionality without any micro-architectural
changes. A typical Keystone instantiated TEE design adds a total TCB of 12-15 K lines of
code (LoC) to an enclave-bound application, of which the SM consists of only 1.6 KLoC
added by Keystone.

• Benchmarking & Real-world Applications. Evaluate Keystone on 4 benchmarks: Core-
Mark, Beebs, and RV8 (< 1% overhead), and IOZone (40%). The evaluation demonstrates
real-world machine learning workloads with Torch in Eyrie (7.35%), FANN (0.36%) with
seL4, and a Keystone-native secure remote computation application. Finally, the evalua-
tion demonstrates defenses against physical adversaries with memory encryption and cache
side-channels.

4.2 What is a Common Base for Diverse TEEs?

4.2.1 Background: Commercial TEEs
Current widely-used TEE systems cater to specific and valuable use-cases but occupy only a small
part of the wide design space (see Table 4.1). Consider the case of a heavy server workload
(databases, ML inference, etc.) running in an untrusted cloud environment. One option is an Intel
SGX-based solution which has a large software stack [24, 209, 15] to extend the supported features.
On the other hand, an AMD SEV-based solution isolates a full VM with a large TCB. If one wants
additional defenses against side-channels it adds further user-space software mechanisms for both
cases. If one considers edge-sensors or IoT applications, the available solutions are TrustZone
based. While more flexible than SGX or SEV, TrustZone supports only a single hardware-enforced
isolated domain called the Secure World. Any further isolation needs multiplexing between secure

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 46

System C
3.

So
ft

w
ar

e
A

dv
er

sa
ry

C
4.

Ph
ys

ic
al

A
dv

er
sa

ry

C
5.

Si
de

-C
ha

nn
el

A
dv

er
sa

ry

C
6.

C
tr

l-C
ha

nn
el

A
dv

er
sa

ry

C
7.

L
ow

So
ft

w
ar

e
T

C
B

C
8.

N
o

H
ar

dw
ar

e
M

od
ifi

ca
tio

n

C
9.

R
es

ou
rc

e
M

an
ag

em
en

t

C
10

.A
ll

A
pp

lic
at

io
ns

C
11

.H
ig

h
E

xp
re

si
ve

ne
ss

C
12

.L
ow

Po
rt

in
g

E
ffo

rt
s

SGX [126]
Haven [24]
Graphene-SGX [209]

Intel

Scone [15]
TrustZone [13]
Komodo [65]
OP-TEE [146]

A
R

M

Sanctuary [31]
SEV [6]

A
M

D SEV-ES [96]
Sanctum [50]
TIMBER-V [171]
MultiZone [134]

R
ISC

-V

Keystone (This thesis)

Table 4.1: Trade-offs in existing TEEs/extensions. , , : best to worst respectively. C3-6:
resilience to software adversary, hardware adversary, side-channel adversary, controlled-channel
adversary respectively. indicates complete protection; confidentiality only; no protection. C7:
zero; thousands LoC; millions LoC. C8: zero; non-zero hardware; micro-architectural modifica-
tions. C9: enclave self resource management; partial; no flexibility. C10: range of apps supported
are maximum; specific class; only written from scratch. C11: expressiveness includes forking,
multi-threading, syscalls, shared memory; partial; none of these. C12: dev-effort for porting is
unmodified binaries; compiling and/or configuration files; re-writing.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 47

Enclave 1Untrusted

User
(U-mode)

Supervisor
(S-mode)

Machine
(M-mode) Security Monitor (SM)

Runtime (RT) 1Operating System
(OS)

Enclave App 1
(Eapp)App App

Enclave 2
… …

Eapp 2

RT 2

Root of TrustOptional H/W Features
Trusted

Hardware RISC-V Cores

H
ig

he
r P

riv
ile

ge

Figure 4.1: Keystone system with host processes, untrusted OS, security monitor, and multiple
enclaves (each with runtime and eapp)

applications via software-based Secure World OS solutions [146]. Thus, irrespective of the TEE,
developers often compromise their requirements (e.g., resort to a large TCB solution, one isolation
domain) or build their custom design. One such emerging direction is to use a thin layer of trusted
software, similar to a reference monitor in kernel designs. These designs protect against a strong
adversary and provide better compatibility while maintaining a low TCB. Several proposals in this
area have demonstrated the feasibility of this approach. Sanctum uses a series of modifications
to hardware to construct user-space enclaves for RISC-V. Komodo takes this concept further and
provides a verified monitor that executes on top of ARM’s TrustZone. While these systems inherit
the limitations of their underlying designs (e.g., hardware changes or only two security domains in
TrustZone), monitor-based TEEs are a very promising direction.

4.2.2 Customizable TEEs
This model is called customizable TEEs. It uses a common software framework to assemble a
specialized TEE specific to the use-case with multiple stakeholders’ inputs. The hardware man-
ufacturer is only required to provide basic primitives. Realizing a specific TEE instance involves
the platform provider’s choice of the hardware interface, the trust model, and the enclave program-
mer’s feature requirements. The entities offload their choices to a framework that composes the
required modules to instantiate a specialized TEE.

A motivation for customizable TEEs is that the threat model may differ depending on the use
case, the application or the hardware platform. Even on the same platform with the same SM, dif-
ferent applications may operate under differing threat models. For this reason, each enclave should
be able to specifiy its configuration of security features. Consider a simple IoT sensor platform that
signs measurements for authenticity guarantees and an adversary using a cache occupancy side-

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 48

channel. In this case, the sensor driver must be protected and requires runtime memory integrity,
but not memory confidentiality. The signing process requires both memory integrity and confiden-
tiality. Thus, a possible configuration would be to have the cryptographic library operate with a
private cache partition enclave while the driver may operate in a basic isolated enclave. An ap-
propriate SM mechanism (e.g. mailboxes) can ensure authenticated communication between these
two enclaves. An adversary using a cache occupancy side-channel against the driver learns only
the public measurements, and cannot learn anything about the cryptographic library. Allowing
each enclave to specify and deploy its own defenses can optimize the use of the available resources
(in this case, limited private cache space) and expensive security mechanisms.

The existing commercial TEE systems offer inflexible threat models linked to the respective
hardware platform. Notably, Intel’s SGX [126] does not support any configuration of its memory
protection systems as would be desirable for use cases not requiring expensive memory encryption.
On the other hand, while offering some software and hardware customization, ARM’s TrustZone
provides an inferior substrate to build a modular TEE. Core to TrustZone’s design is the concept
of only two security domains. A TrustZone TEE implementing multiple enclaves must use the
memory management unit (MMU) for further isolation. This fundamentally limits what opera-
tions enclaves can be allowed to perform and limits enclaves to user-mode. This limitation natu-
rally extends to all TEE systems built using TrustZone as a base like Komodo. On the hardware
side, TrustZone relies on system-wide bus-address filters (e.g., the TZC-400) to separate secure
from insecure DRAM partitions, whereas RISC-V provides per-hardware-thread views of physical
memory via machine-mode and PMP registers. Using RISC-V thus allows multiple concurrent
and potentially multi-threaded enclaves to access disjoint memory partitions while also opening
up supervisor-mode and the MMU for enclave use. This allows an enclave to contain either a
lightweight or even a full supervisor-mode OS as demonstrated in the later sections.

Keystone requires no changes to CPU cores, memory controllers, etc. A secure hardware
platform supporting Keystone requires: a device-specific secret key visible only to the trusted boot
process, a hardware source of randomness, and a trusted boot process. Key provisioning [9] is an
orthogonal problem. Keystone assumes a simple manufacturer provisioned key.

4.2.3 Entities in TEE Lifecycle
There are five logical entities in customizable TEEs:

• Hardware manufacturer designs and fabricates RISC-V hardware including relevant IP for
trusted boot.

• Keystone platform provider purchases manufactured hardware; operates the hardware; makes
it available for use to its customers; configures the SM.

• Keystone programmer develops Keystone software components including SM, RT, and eapps.
Keystone programmer are the respective programmers who develop these specific compo-
nents.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 49

• Keystone user chooses a Keystone configuration of RT and an eapp. They instantiate an
enclave which can execute on hardware provisioned by the Keystone platform provider.

• Eapp user interacts with the eapp executing in an enclave on the TEE instantiated using
Keystone.

In real-world deployments, a single entity can perform multiple roles. For example, consider
Acme Corp. hosts their website on an Apache webserver executing on Bar Corp. manufactured
hardware in a Keystone-based enclave hosted on Cloud Corp. cloud service. In this scenario, Bar
will be the Hardware manufacturer; Cloud will be a Keystone platform provider and can be an RT
programmer and SM programmer; Apache developers will be eapp programmer; Acme Corp. will
be Keystone user, and; the person who uses the website will be the eapp user.

4.3 Keystone Design Overview
Keystone is based on RISC-V, which is an open ISA with multiple open-source core implemen-
tations [16, 38]. It currently supports up to four privilege modes: U-mode (user) for user-space
processes, S-mode (supervisor) for the kernel, H-mode (hypervisor) for the hypervisor, and M-
mode (machine) which directly accesses physical resources (e.g., interrupts, memory, devices). At
the time of writing, H-mode (hypervisor) is not included in the standard specification. Keystone
will also be able to support hypervisor-level isolation when H-mode becomes available.

4.3.1 Design Principles
Customizable TEEs can increase flexibility and reduce effort using the following principles.

1. Leverage programmable layer and isolation primitives below the untrusted code. A ref-
erence monitor style security monitor (SM) enforces TEE guarantees on the platform using
four properties of M-mode: (a) it is programmable by platform providers, (b) it meets the
needs for a minimal highest privilege mode, (c) it controls hardware delegation of the inter-
rupts and exceptions in the system, and (d) M-mode’s control of RISC-V’s Physical Memory
Protection (PMP) standard [217] enables isolation of memory-mapped control features at
runtime.

2. Decouple the resource management and security checks. The SM enforces security policies
with minimal code at the highest privilege. It has few non-security responsibilities. This
keeps the TCB low and allows it to present clean abstractions. The S-mode runtime (RT)
and U-mode enclave application (eapp) both reside in enclave address space and are isolated
from the untrusted OS or other user applications. The RT manages the lifecycle of the user
code executing in the enclave, manages memory, services syscalls, etc. For communication
with the SM, the RT uses a limited set of API functions via the RISC-V supervisor binary
interface (SBI) to exit or pause the enclave (Table 4.2) as well as request SM operations on

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 50

behalf of the eapp (e.g., attestation). Each enclave instance may choose its own RT which is
never shared with any other enclaves.

3. Design modular layers. Keystone uses modularity (SM, RT, eapp) to support a variety of
workloads. It frees Keystone platform providers and Keystone programmers from retrofitting
their requirements and legacy applications into an existing TEE design. Each layer is inde-
pendent, provides a security-aware abstraction to the layers above it, enforces guarantees
which can be easily checked by the lower layers, and is compatible with existing notions of
privilege.

4. Allow fine-grained TCB configuration. Keystone can instantiate TEEs with the minimal
TCB for given specific use-cases. The enclave programmer can further optimize the TCB
via RT choice and eapp libraries using existing user/kernel privilege separation. For example,
if the eapp does not need libc support or dynamic memory management, Keystone will not
include them in the enclave.

4.3.2 Keystone Enclave Workflow
Figure 4.2 details the steps from Keystone provisioning to eapp deployment. The platform provider
instantiates a SM with a proper hardware specification and security extenstions that bring addi-
tional isolation guarantees such as cache partitioning. Independently, the enclave developers use
Keystone tools and libraries to write eapps and RT with rich features such as virtual memory man-
agement and system calls. The RT may use available SM SBI call, but they do not change the
isolation guarantees that the SM enforces.

4.3.3 Writing eapps
Keystone supports 3 ways of writing enclave applications as: (a) standalone Keystone-native eapps,
(b) un-modified RISC-V binaries with RT support, or (c) partitioned applications running selected
parts in the enclave. Future work will allow Keystone to operate as a backend for cross-enclave
SDKs (e.g., OpenEnclave [144], Asylo [158]) to allow for a wide variety of programming models.
Sections 4.7.4, 4.7.3 demonstrate un-modified RISC-V binaries and a manual partitioning.

4.3.4 Threat Model
The Keystone framework trusts the PMP specification as well as the PMP and RISC-V hardware
implementation to be bug-free. The Keystone user trusts the SM only after verifying if the SM
measurement is correct, signed by trusted hardware, and has the expected version. The SM only
trusts the hardware, the host trusts the SM, the RT trusts the SM, the eapp trusts the SM and the
RT.

Keystone can operate under diverse threat models, each requiring different defense mecha-
nisms. For this reason, this section outlines all relevant attackers for Keystone. Keystone allows

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 51

AttestationProvisioning

DeploymentDevelopment

Remote Verifier

Untrusted Machine

Eapp
Sources

Host
Sources

Keystone Framework
(User)

RT Bin.

Enclave
Configs

Eapp Bin.

Untrusted
Host Bin.

Keystone SM

Trusted Platform

Untrusted
OSR

T

R
T

R
T

E
ap

p

E
ap

p

E
ap

p

H
os

t

U
se

r P
ro

c.

U
se

r P
ro

c.

Enclave Hash
(Eapp+RT)

Keystone Libraries

Keystone Framework
(Platform Provider)

Platform
Configs

SM Bin.

RT Sources
(seL4, Eyrie, …)

SM Sources

Keystone Tools

Platform Sources
(e.g., Cache Isolation)

Modules

Platform
PubKey

SM Hash

Platform
Spec.

Platform
PubKey

Platform Spec. C
ha

lle
ng

e

R
es

po
ns

e

Ve
rif

y

❶
❷

❸

❹ ❺

❻
❼

❽

Figure 4.2: Keystone End-to-end Overview. ¶ Platform provider configures the SM. · Keystone
compiles and generates the SM boot image. ¸ Platform provider deploys the SM. ¹ Developer
writes an eapp, configures the enclave. º Keystone builds the binaries, computes measurements.
» Untrusted host binary is deployed to the machine. ¼ Host deploys the RT, the eapp, and initiates
the enclave creation. ½ Remote verifier can attest based on known platform specifications, keys,
and SM/enclave measurements.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 52

the selection of a sub-set of these attackers based on the scenario. For example, if the user is de-
ploying TEEs in their private data centers or home appliances, a physical attacker may not be a
realistic threat and Keystone can be configured to operate without physical adversary protections.
Attacker Models. Keystone protects the confidentiality and integrity of all enclave code and data
at all times after creation. This section defines four classes of attackers who aim to compromise
the security guarantees:

• A physical attacker APhy can intercept, modify, or replay signals that leave the chip package.
The physical attacker does not affect the components inside the chip package. APhyC is for
confidentiality, APhyI is for integrity.

• A software attacker ASW can control host applications, the untrusted OS, network commu-
nications, launch adversarial enclaves, arbitrarily modify any memory not protected by the
TEE, and add/drop/replay enclave messages.

• A side-channel attacker ASC can glean information by observing interactions between the
trusted and the untrusted components via the cache side channel (ACache), the timing side
channel (AT ime) or the controlled channel (ACntrl).

• A denial-of-service attacker ADoS can take down the enclave or the host OS. Keystone allows
the OS to DoS enclaves as the OS can refuse services to user applications at any time.

Scope. Keystone currently has no meaningful mechanisms to protect against speculative execu-
tion attacks [102, 35]. Existing and future defenses against this class of attacks can be retrofitted
into Keystone [29, 221]. Keystone does not natively protect enclaves or the SM against timing
side-channel attacks. Programmers should use existing software solutions to mask timing chan-
nels [68] and hardware manufacturers can supply timing side-channel resistant hardware [100].
Side-channel attacks with off-chip components (e.g., memory bus [109]) are also out-of-scope of
this thesis and they can be orthogonally mitigated by oblivious memory. The SM exposes a limited
API (i.e., SBI) to the host OS and the enclave. Keystone does not provide non-interference guar-
antees for this API [65]. Similarly, the RT can optionally perform untrusted system calls into the
host OS. Keystone assumes that the RT and the eapp have sufficient checks in place to detect Iago
attacks via this untrusted interface [187, 149, 209]. Keystone requires that the SM, RT, and eapp
are bug-free. This is a strong assumption but can be partially achieved with formal verification [65,
136].

4.4 Security Monitor Design for Multiple Threat Models
The core of a Keystone TEE is the Security Monitor (SM). As the SM uses only standard RISC-
V features, it is easily portable to the other RISC-V platforms. In addition, Keystone provides
an easy way of configuring and compiling the SM depending on the underlying platform. With
this design, Keystone integrates with optional hardware to provide additional security guarantees

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 53

such as cache side-channel defenses without any application changes. By design, the SM enforces
isolation and provides security-critical features without the burden of high-level functionality like
virtual memory management. This allows for a simple, and low attack surface, highest-privilege
component.

4.4.1 Memory Isolation
Keystone only requires the RISC-V hardware to provide simple security primitives, assigns re-
source management logic either to the untrusted software or the enclave, and relies on trusted
software executing at the highest privilege (e.g., bootloader, SM) to safely validate their decisions.

Keystone uses physical memory protection (PMP), a feature provided by RISC-V. PMP re-
stricts the physical memory access of S-mode and U-mode to certain regions defined via PMP
entries (See Figure 4.3). Each PMP entry controls the U-mode and S-mode permissions to a
customizable region of physical memory.1 The PMP address registers encode the address of a con-
tiguous physical region, configuration bits specify the r-w-x permissions for U/S-mode, and two
addressing mode bits. PMP has three addressing modes to support various sizes of regions (ar-
bitrary regions and power-of-two aligned regions). PMP entries are statically prioritized with the
lower-numbered PMP entries taking priority over the higher-numbered entries. If U- or S-mode
attempts to access a physical address and it does not match any PMP address range, the hardware
does not grant any access permissions.

PMP makes Keystone memory isolation enforcement flexible in three ways: (a) multiple dis-
contiguous enclave memory regions can coexist instead of reserving one large memory region
shared by all enclaves, (b) PMP entries can cover regions from 4 bytes to all of DRAM allowing
for arbitrarily sized enclaves, (c) PMP entries can be reconfigured during execution to dynamically
create new regions or release a region to the OS.

During the SM boot, Keystone configures the first PMP entry (highest priority) to cover its own
memory region (code, stack, data such as enclave metadata and keys), disallowing access to it from
U-mode and S-mode. It then configures the last PMP entry (lowest priority) to cover all memory
and with all permissions enabled to allow the OS default access to memory not otherwise covered
by a PMP entry.

When a host application requests the OS to create an enclave, the OS finds an appropriate con-
tiguous physical region2 and then calls into the SM. After validating the request, the SM protects
the enclave memory by adding a PMP entry with all permissions disabled. Since the enclave’s
PMP entry has a higher priority than the OS PMP entry (the last in Figure 4.3), the OS and other
user processes cannot access the enclave region. A valid request requires that enclave regions not
overlap with each other or with the SM region.

During control-transfer to an enclave, the SM (for the current core only): (a) enables PMP per-
mission bits of the relevant enclave memory region; and (b) removes all OS PMP entry permissions

1Currently processors have up to 64 M-mode configurable PMP entries [217].
2The Keystone kernel driver uses both the Buddy Allocator and the Contiguous Memory Allocator (CMA) to

dynamically allocate enclave memory with various sizes.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 54

Caller SM SBI Description

OS

create Validate, and measure the enclave
run Start enclave and boot RT
resume Resume enclave execution
destroy Clean & release enclave memory

RT

stop Pause enclave execution
exit Terminate the enclave
attest Get a signed attestation report
random Get secure random values

OS & RT extension* Platform-specific functions

Table 4.2: The SBI functions the SM provides, *SM can provide additional functions (e.g., dy-
namic resizing) depending on the platform.

pmpcfg perm.

Enclave (E1) Context

SM E1 U1

pmpaddr

PMP registers

Untrusted Context

P
rio

rit
y

SM E1

pmpcfg rwx=000
rwx=111

E2 E2
Physical
Memory

…

Figure 4.3: How Keystone uses RISC-V PMP for the flexible, dynamic memory isolation.
pmpaddr and pmpcfg control and status registers (CSRs) are used to specify PMP entries. The
SM uses a few PMP entries to guard its own memory (SM) and enclave memories (E1, E2). Upon
enclave entry, the SM will reconfigure the PMP such that the enclave can only access its own
memory (E1) and the untrusted buffer (U1).

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 55

to protect all other memory from the enclave. This allows the enclave to access its own memory
and no other regions. At a CPU context-switch to non-enclave, the SM disables all permissions for
the enclave region and re-enables the OS PMP entry to allow default access from the OS. Enclave
PMP entries are freed on enclave destruction.

Each core has its own complete set of PMP entries. During enclave creation, PMP changes
must be propagated to all the cores via inter-processor interrupts (IPIs). The SM executing on
each of the cores handles these IPIs by removing the access of other cores to the enclave. During
the enclave execution, changes to the PMP entries (e.g., context switches between the enclave and
the host) are local to the core executing it and need not be propagated to the other cores. PMP
synchronization IPIs are only sent during enclave creation and destruction.

Each allocated enclave (executing or not) requires one PMP entry per isolated memory region it
uses. The OS PMP entry is reused during enclave execution for allowing access to shared memory.
Additional PMP regions are available to enclaves via SM interfaces and are used for cases like
self-paging as described in Section 4.5.1.

Naively, Keystone supports N − 2 simultaneously created enclaves, where N is the number
of PMP entries available. Alternatively, with adjacent allocations by the OS, Keystone can vir-
tualize the PMP entries at the cost of disallowing memory reclamation until all latter enclaves
are destroyed. Future SM and RT features that support relocation may allow for complete virtu-
alization of PMP entries via defragmentation. Similarly, the proposed RISC-V hypervisor mode
(H-mode) would allow for an additional layer of address translation to transparently virtualize PMP
entries [88].

4.4.2 Post-creation In-enclave Page Management
Keystone has a different memory management design from most TEEs (see Figure 4.4). It uses the
OS-generated page tables for initialization and then delegates virtual-to-physical memory mapping
entirely to the enclave during execution. Since RISC-V provides per-hardware-thread views of the
physical memory via the machine-mode and the PMP registers, it allows Keystone to have multiple
concurrent and potentially multi-threaded enclaves to access the disjoint physical memory parti-
tions. With an isolated S-mode inside the enclave, Keystone can execute its own virtual memory
management which manipulates the enclave-specific page tables. Page tables are always inside
the isolated enclave memory space. By leaving the memory management to the enclave Keystone:
(a) allows flexible virtual memory management with several RT modules (see Section 4.5.1); (b)
removes controlled side-channel attacks as the host OS cannot modify or observe the enclave
virtual-to-physical mapping.

4.4.3 Interrupts and Exceptions
During enclave execution, all machine interrupts trap directly to the SM. Exceptions (e.g. page
faults, etc) may be safely delegated to the RT via the RISC-V exception delegation register. The
RT then handles exceptions as needed to implement standard kernel abstractions and may forward
other traps to the untrusted OS via the SM. To avoid the enclave holding a core to DoS the host the

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 56

RT

Enclave

Monitor

App Enclave

 OS

App

OS

App

OS

Enclave

Security MonitorNormal Secure

D
O

M
U

DO
M
0 App

Guest
OS

 VMM

(a) Intel SGX (b) Komodo (c) Keystone (d) Xen

Figure 4.4: Memory Management Designs (red area is untrusted). (a) Untrusted OS manages
memory, translates virtual-to-physical address. (b) Page tables inside the enclave but monitor cre-
ates mappings. (c) Delegates page management to enclave with its own page table. (d) Hypervisor
for page management, 2 page tables.

Unused Memory

RTPT Eapp FreeMem*

RTPT Eapp FreeMem*

RTPT Eapp FreeMem*

Enclave Memory

Enclave Memory

Enclave Memory

0000 …. 0000

Unused Memory

C
re

at
e

Ex
ec

ut
e

De
st

ro
y

Memory Status Core PMP Status
This / Others

Allocate Memory

Load Binaries

Create Enclave

Verify and Measure

Run/Resume Enclave

Stop/Exit Enclave

Dynamic Resizing*

Destroy Enclave

Deallocate Memory

Operations

…

…

…

…

…

…

…

…

…

Figure 4.5: Enclave Lifecycle. The enclave memory and the corresponding PMP entry status
(accessible or not) are shown per each operation. For PMP status, This means the PMP status of
the core performing the operation and Others is PMP of other cores.

4.4.4 Enclave Lifecycle

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 57

SM sets a machine timer before it enters the enclave. When the SM regains control after the timer
interrupt triggers, it may return control to the host OS or request that the enclave cleanly exit.

Keystone enclaves go through three distinct changes during their lifecycle as shown in Fig-
ure 4.5. At creation, Keystone measures the enclave memory to ensure that the OS has loaded the
enclave binaries correctly to the physical memory. Keystone uses the initial virtual memory layout
for the measurement because the physical layout can legitimately vary (within limits) across dif-
ferent executions. For this, the SM expects the OS to initialize the enclave page tables and allocate
physical memory for the enclave. The SM walks the OS-provided page table and checks if there
are invalid mappings and ensures a unique virtual-to-physical mapping. The SM then hashes page
contents along with the virtual addresses and the configuration data. At execution, the SM sets
PMP entries and transfers control to the enclave entry point. On an OS initiated destruction, the
SM clears the enclave memory region before returning the memory to the OS. SM cleans and frees
all the enclave resources, PMP entries, and enclave metadata.

4.4.5 TEE Primitives
This section shows some of standard TEE primitives that Keystone supports.

Keystone requires a root-of-trust (RoT), which is a tamper-proof software and hardware com-
ponent in the platform. A root-of-trust can be implemented in many ways [107, 98] as long as it
provides the followings:

• An entropy source that both the RoT and the SM can read

• A platform key store containing a unique device secret provisioned by a trusted hardware
vendor

• A tamper-proof measured boot procedure described (Figure 4.6).

Keystone does not rely on a specific implementation. For completeness, currently, Keystone sim-
ulates measured boot via a modified first-stage bootloader, with simulated entropy source.

Secure Source of Randomness Keystone provides a secure SM SBI call, random, which returns
a 64-bit random value. Keystone uses a hardware source of randomness if available or can use other
well-known options [133] if applicable.

Measured Boot At each CPU reset, the root-of-trust (a) measures the SM image, (b) generates a
fresh attestation key from a secure source of randomness, (c) stores it to the SM private memory,
and (d) signs the measurement and the public key with a hardware-visible secret (Figure 4.6).
The root of trust must securely pass the generated report to the SM. Finally, the measured boot
procedure must have only one exit point, which jumps to the lowest address of the SM. This
ensures that the platform always runs the SM that is measured by the root of trust.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 58

SM Key Store

Root of Trust
(Measured Boot)

Platform
Key Store

Security Monitor
Initial State

SM Private Key

Entropy Source

Measure()

Sign()

SMKeyProvision()

SM Report

SM Public Key

Measurement

Signature

Security Monitor

Enclave
Initial State

Measure()

Attestation Data

Enclave Report

Measurement

Data Size

DataProduceReport()

Sign() Signature

SM Private Key

Create Enclave

Attest Enclave

BootSM()

Figure 4.6: Measured boot and attestation in Keystone. All of the root-of-trust functions are
trusted, whereas the security monitor functions are trusted given the SM report verification suc-
ceeds.

MEE

Untrusted SM Enclave Enclave (Encrypted)

LLC

DRAM

(a) ∅ (b) C (c) O (d) O,P,E (e) O,P,EHW

Figure 4.7: Memory Model for Various TEE Scenarios. ∅: baseline, C: cache partitioning, O: on-
chip scratchpad, P: enclave self-paging, E: software memory encryption EHW : hardware memory
encryption.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 59

Remote Attestation As shown in Figure 4.6, the Keystone SM performs the measurement and
the attestation based on the provisioned private key. Enclaves may request a signed attestation
from the SM during runtime. The SM produces a report containing the measurement of the en-
clave, and user-provided arbitrary attestation data. The attestation data can be used towards a
standard scheme to bind the attestation with a secure channel construction [65, 107]. For example,
a program can include freshly-generated Diffie-Hellman (DH) key parameters in the attestation
data. Once the enclave report is signed, the report can be passed to a remote verifier such that it
can verify the report and complete the key exchange at the same time. Key distribution [9], revoca-
tion [83], attestation services [95], and anonymous attestation [34] are orthogonal challenges that
this thesis does not cover.

Other Primitives Keystone can support other primitives, if required by the TEE: (a) it allows
enclaves to access the read-only hardware-maintained timer registers via the standard rdcycle
instruction; (b) it can provide monotonic counters by keeping a limited counter state in the SM
memory. The SM can implement trusted timers, rollback defense [49], and sealed storage [9] with
these features.

4.4.6 Platform-Specific Extensions
Keystone can leverage additional security and functionality features exposed by the hardware to
provide stronger security guarantees and/or additional features to the enclave at the cost of various
trade-offs. This section demonstrates several examples of customizing the SM for a specific plat-
form so that it can defend the enclave against a physical attacker or cache side-channel attacks. The
example in this section uses the HiFive Freedom Unleashed [81] RISC-V dev board containing a
Rocket-based quad-core SoC chip (FU540) with a proprietary L2 controller.

Secure On-chip Memory

To protect the enclaves against a physical attacker who has access to the DRAM, Keystone im-
plements an on-chip memory extension (Figure 4.7(c)). It allows the enclave to execute without
the code or the data leaving the chip package. On the FU540, the SM dynamically instantiate
a scratchpad memory of up to 2MB via the L2 memory controller to generate a usable on-chip
memory region. The scratchpad is then allocated exclusively to the requesting enclave for it’s
entire lifetime. An enclave requesting to run in the on-chip memory loads nearly identically to
the standard procedure with the following changes: (a) the host loads the enclave to the OS al-
located memory region with modified initial page tables referencing the final scratchpad address;
and (b) the SM copies the standard enclave memory region into the new scratchpad region before
the measurement. Any context switch to the enclave now results in an execution in the scratchpad
memory. This uses only the basic enclave life-cycle hooks for the platform-specific features and
does not require further modification of the SM. The only other change required was a modifica-
tion of the untrusted enclave loading process to make it aware of the physical address region that
the scratchpad occupies. No modifications to the Eyrie RT or the eapps are required.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 60

Cache Partitioning

Enclaves are vulnerable to cache side-channel attacks from the untrusted OS and other applications
via a shared cache. To this end, Keystone implements a cache partitioning scheme using two hard-
ware capabilities: (a) the L2 cache controller’s waymasking primitive similar to Intel’s CAT [138];
(b) PMP to way-partition the L2 cache transparently to the OS and the enclaves. The resulting
SM enforces effective non-interference between the partitioned domains (Figure 4.7(b)). Upon
a context switch to the enclave, the cache lines in the partition are flushed. During the enclave
execution, only the cache lines from the enclave physical memory are in the partition and are thus
protected by PMP. The adversary cannot insert cache lines in this partition during the enclave ex-
ecution due to the line replacement way-masking mechanism. As a net effect, adversary (ACache)
gains no information about the evictions, the resident lines, or the residency size of the enclave’s
cache. Ways are partitioned at runtime and are available to the host whenever the enclave is not
executing even if paused.

Dynamic Resizing

Statically pre-defined maximum enclave size and subsequent static physical or virtual memory
pre-allocations: (a) prevent the enclave from scaling dynamically based on workload, (b) compli-
cates porting applications to eapps. To this end, Keystone allows the SM to dynamically change
the physical memory boundaries of the enclave. The Eyrie RT may request that the OS make an
extend SBI call to add contiguous physical pages to the enclave memory region. If the OS suc-
ceeds in allocating, the SM increases the enclave’s size by extending the relevant PMP entries and
notifies the RT, which then uses the free memory module to manage the new physical pages (see
Section 4.5.1).

4.5 Modular Runtime Design for Extensive Functionality
As the SM physically isolates each of the enclaves, the enclave can safely run private S-mode
code (i.e., the RT). This enables modular system-level abstraction for eapps (e.g., virtual memory
management). Although the RT is similar in functionality to a kernel inside an enclave, it does not
require most kernel functionality. This section presents a modular exemplar RT—Eyrie—to allow
enclave developers the ability to include only necessary functionality and reduce the TCB.

Given the supervisor capability, implementing selected kernel functionality does not require
modifying user applications. The additional privilege layer allows for further defensive design,
such as only allowing the RT access to the shared memory buffer. Moreover, it enables easy porting
of a full-fledged off-the-shelf microkernel such as seL4 in an enclave. This section introduces key
Keystone RT modules and show how they support various workloads with small TCB.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 61

4.5.1 Enclave Memory Management Modules
Each enclave can run both S-mode and U-mode code. Since they have the privileges to manage
their own memory, they need not cross the host-enclave isolation boundary. By default, Keystone
enclaves occupy a fixed contiguous physical memory allocated by the OS with a statically-mapped
virtual address space at load time. While suitable for some embedded applications, it limits the
memory usage of most legacy applications. To this end, Keystone implements several optional
modules to enable flexible enclave memory management.

Free memory

The free memory module allows the Eyrie RT to perform page table management, after the enclave
reserves unmapped physical memory. Thus, the page mappings need not be pre-defined at creation
time. The unmapped (hence, free) memory region is not included in the enclave measurement and
is zeroed before beginning the eapp execution. The free memory module is required for other more
complex memory modules.

In-Enclave Self Paging

A module implements a generic in-enclave page swapping for the Eyrie RT. It handles the enclave
page-faults and uses a generic page backing-store that manages the evicted page storage and re-
trieval. The module uses a simple random eapp-only page eviction policy. It works in conjunction
with the free memory module for virtual memory management in the Eyrie RT. Put together, they
help to alleviate the tight memory restrictions an enclave may have due to the limited DRAM or
the on-chip memory size [148, 143, 149].

Protecting the Page Content Leaving the Enclave

When the enclave handles its own page fault, it may attempt to evict the pages out of the secure
physical memory (either an on-chip memory or the protected portion of the DRAM). When these
pages have to be copied out, their content needs to be protected. Thus, as part of the in-enclave
page management, Keystone implements a backing-store layer that can include page encryption
and integrity protection to allow for the secure content to be paged out to the insecure storage
(DRAM regions or disk). The protection can be done either in the software as a part of the Key-
stone RT (Figure 4.7(d)) or by a dedicated trusted hardware unit—a memory encryption engine
(MEE) [79]—with the SM’s on-chip memory capability (Figure 4.7). Admittedly, this incurs sig-
nificant design challenges in efficiently storing the metadata and performance optimizations. The
amount of available on-chip memory for integrity data storage will cap the total possible size of the
enclave. Keystone design is agnostic to the specific integrity schemes and can reuse the existing
mechanisms [129, 168].

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 62

4.5.2 Functionality Modules
This section demonstrates various functionality modules in Eyrie.

Edge Call Interface

The eapp cannot access the non-enclave memory in Keystone. If it needs to read/write the data
outside the enclave, the Eyrie RT performs edge calls on its behalf. The edge call, which is
functionally similar to RPC, consists of an index to a function implemented in the untrusted host
application and the parameters to be passed to the function. Eyrie tunnels such a call safely to the
untrusted host, copies the return values of the function back to the enclave, and sends them to the
eapp. The copying mechanism requires Eyrie to have access to a buffer shared with the host. To
enable this: (a) the OS allocates a shared buffer in the host memory space and passes the address
to the SM at enclave creation; (b) the SM passes the address to the enclave so the RT may access
this memory; (c) the SM uses a separate PMP entry to enable OS access to this shared buffer. All
the edge calls have to pass through the Eyrie RT as the eapp does not have access to the shared
memory virtual mappings. This module can be used to add support for syscalls, IPC, enclave-
enclave communication, and so on. As the current edge interface is a straight-forward shared
memory region, it can easily to use alternative methods for dispatching calls such as mailboxes or
HotCalls [218].

Keystone allows the proxying of syscalls from the eapp to the host application by re-using
the edge call interface. The user host application then invokes the syscall on an untrusted OS on
behalf of the eapp, collects the return values, and forwards them to the eapp. Keystone can utilize
existing defenses to prevent Iago attacks [41] via this interface [187, 149, 209]. Keystone resolves
appropriate calls as in-enclave syscalls (e.g., mmap, brk, getrandom). Such calls are handled in
Eyrie and invoke SM interfaces as needed (e.g. getrandom) before returning to the eapp.

Multi-threading

Keystone runs multi-threaded eapps by delegating the thread management to the runtime. Eyrie
RT does not support parallel multi-core enclave execution yet, but this can be implemented by
allowing the SM to invoke enclave execution multiple times in different cores.

4.6 Security Analysis
This section argues the security of the enclave, the OS, and the SM based on the threat model
outlined in Section 4.3.4.

4.6.1 Protection of the Enclave
Keystone attestation ensures that any modification of the SM, RT, and the eapp is visible while
creating the enclave. During the enclave execution, any direct attempt by an ASW to access the

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 63

enclave memory (cached or uncached) is defeated by PMP. All enclave data structures can only
be modified by the enclave or the SM, both are isolated from direct access. Subtle attacks such
as controlled side channels (ACntrl) are not possible in Keystone as enclaves have dedicated page
management and in-enclave page tables. This ensures that any enclave executing with any Key-
stone instantiated TEE is always protected against the above attacks.

Mapping Attacks

The RT is trusted by the eapp, does not intentionally create malicious virtual to physical address
mappings [82] and ensures that the mappings are valid. The RT initializes the page tables either
during the enclave creation or loads the pre-allocated (and SM validated) static mappings. During
the enclave execution, the RT ensures that the layout is not corrupted while updating the mappings
(e.g., via mmap). When the enclave gets new empty pages, say via the dynamic memory resizing,
the RT checks if they are safe to use before mapping them to the enclave. Similarly, if the enclave
is removing any pages, the RT scrubs their content before returning them to the OS.

Syscall Tampering Attacks

If the eapp and the RT invoke untrusted functions implemented in the host process and/or execute
the OS syscalls, they are susceptible to Iago attacks and system call tampering attacks [41, 159].
Keystone can re-use the existing shielding systems [15, 187, 209] as RT modules to defend the
enclave against these attacks.

Side-channel Attacks

Keystone thwarts cache side-channel attacks (Section 4.4.6). Enclaves do not share any state with
the host OS or the user application and hence are not exposed to controlled channel attacks. The
SM performs a clean context switch and flushes the enclave state (e.g., TLB). The enclave can
defend itself against explicit or implicit information leakage via the SM or the edge call API with
known defenses [188, 189]. Only the SM can see other enclave events (e.g., interrupts, faults),
these are not visible to the host OS. Timing attacks against the eapp are out of scope.

4.6.2 Protecting the Host OS
Keystone RTs execute at the same privilege level as the host OS, so an ASW in this case is stronger
than in SGX. The host OS is not susceptible to new attacks from the enclave because the enclave
cannot: (a) reference any memory outside its allocated region due to the SM PMP-enforced isola-
tion; (b) modify page tables belonging to the host user-level application or the host OS; (c) pollute
the host state because the SM performs a complete context switch (TLB, registers, L1-cache, etc.)
when switching between an enclave and the OS; (d) DoS a core as the enclave will be interrupted
by the machine timer set by the SM such that the SM can return the control to the OS.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 64

4.6.3 Protection of the SM
The SM naturally distrusts all the lower-privilege software components (eapps, RTs, host OS, etc.).
It is protected from an ASW because all the SM memory is isolated using PMP and is inaccessible
to any enclave or the host OS. The SM SBI is another potential avenue of attack. Keystone’s
SM presents a narrow, well-defined SBI to the S-mode code. It does not do complex resource
management and is small enough to be formally verified [65, 136]. The SM is only a reference
monitor, it does not require scheduled execution time, so an ADoS is not a concern. The SM can
defend against an ACache and an AT ime with known techniques [68, 100].

4.6.4 Protection Against Physical Attackers
Keystone can protect against a physical adversary via platform features and a proposed modifica-
tion to the bootloader. Similar to Chen et al. [44], the SM uses a scratchpad to store the decrypted
code and data, while the supervisor mode component (Eyrie modules) handles paging enclave
content to DRAM when the scratchpad becomes full.

The enclave itself is protected by the combination of the on-chip memory and the RT’s paging
module, with encryption and integrity protection on the pages leaving the on-chip memory. The
page backing-store is a standard PMP protected physical memory region now containing only the
encrypted pages, similar in concept to the SGX EPC. This fully guarantees the confidentiality and
integrity of the enclave code and data from an attacker with control of DRAM.

The SM should be executed entirely from the on-chip memory. The SM is statically sized and
has a relatively small in-memory footprint (< 150Kb). On the FU540, this would involve repur-
posing a portion of the L2 loosely-integrated memory (LIM) via a modified trusted bootloader.

With these techniques in place, content outside of the chip package is either untrusted (host, OS,
etc.) or is encrypted and integrity protected (e.g., swapped enclave pages). Keystone accomplishes
this with no application modifications.

4.7 Evaluation
This section aims to answer the following questions in the evaluation:

1. Modularity: Is the Keystone framework viable in different configurations for real applica-
tions?

2. TCB: What is the TCB of a Keystone-instantiated TEE in various deployment modes?

3. Performance: How much overhead do simple Keystone TEEs add to eapp execution time?

4. Real-world Applications: Does Keystone provide expressiveness with minimal developer
efforts for eapps?

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 65

4.7.1 Implementation & Experimental Setup
SM was implemented on top of the Berkeley Boot Loader (bbl) [167]. It supports M-mode trap
handling, boot, and other features. The SM implements the initialization at boot as well as the
SBI specified in Table 4.2. Platform-specific extensions have been implemented with hooks in
SBI functions. The SM simulates unavailable hardware primitives such as the random number
generator and the root of trust. All modules in Sections 4.4 and 4.5 are available as compile-time
options.

For the runtimes, Eyrie RT was written from scratch in C. Memory encryption is done via soft-
ware AES-128 [2] and integrity protection is partially implemented. seL4 microkernel [101] was
ported to Keystone by modifying 290 LoC for boot, memory initialization, and interrupt handling.
There is no inherent restriction to these two RTs, thus additional options are expected in the future.

The host user-land interface for interactions with the enclaves is provided via a Linux ker-
nel driver that creates a device endpoint (/dev/Keystone). The untrusted host OS (i.e., Linux)
launches and manages the enclaves via SBI on behalf of the user, and also manages the enclave
ownership and enclave-related OS resources.

Keystone provides several libraries (edge-calls, host-side syscall endpoints, attestation, etc.)
in C and C++ for the host, the eapp, and interaction with the driver-provided Linux device. The
provided tools generate the enclave measurements (hashes) without requiring RISC-V hardware,
customize the Eyrie RT, and package the host application, eapps, and RT into a single binary. A
complete top-level build solution generates a bootable Linux image (based on the tooling for the
HiFive Freedom Unleashed) for QEMU, FPGA softcores, and the HiFive containing the SM, the
driver, and the enclave binaries.

The experiments used four different platforms; the HiFive Freedom Unleashed [81] with a
closed-source FU540 (at 1GHz), and three open-source RISC-V processors: small Rocket (Rocket-
S), default Rocket [16], and Berkeley Out-of-order Machine (BOOM) [38] (See Table 4.4). The
experiment instantiated the open-source processors on cloud FPGAs using FireSim [97] which
simulates the cores at 1GHz. The host OS is buildroot Linux (kernel 4.15). All performance
evaluation was performed on the HiFive and the data is averaged over 10 runs unless otherwise
specified.

4.7.2 Modularity & Support
This section outlines the qualitative measurement of Keystone flexibility in extending features,
reducing TCB, and using the platform features. Table 4.3 shows the TCB breakdown of various
components (required and optional) for the SM and Eyrie RT. Most of the modifications (e.g.,
additional edge-call features) require no changes to the SM, and the eapp programmer may enable
them as needed. Future additions (e.g., ports of interface shields) may be implemented exclusively
in the RT. The implementation also adds support for a new RT by porting seL4 to Keystone and
use it to execute various eapps (See Section 4.7.4). Keystone passes all the tests in seL4 suite and
incurs less than 1% overhead on average over all test cases. The advantage of an easily modifiable
SM layer is noticeable when features require interaction with the core TEE primitives like memory

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 66

SM Component LoC Runtime Component LoC

Base 1100 — 1800
Edge-call Handling 30 — 300
Dynamic Memory 70 — 100

Memory Isolation 500 libc Environment 50
Cache Partitioning 300 In-enclave Paging 300
Measured Boot 170 Syscalls 450
On-chip Memory 50 Free Memory 300

IO Syscall Proxying 300

Table 4.3: TCB Breakdowns for the Eyrie RT and SM features in LoC.

isolation. The SM features were able to take advantage of the L2 cache controller on the FU540 to
offer additional security protections (cache-partitioning and on-chip isolation) without changes to
the RT or eapp.
TCB Breakdown. Keystone comprises of the M-mode components (bbl and SM), the RT, the
untrusted host application, the eapp, and the helper libraries, of which only a fraction is in the
TCB. The M-mode component is 10.7 KLoC: a cryptographic library (4 KLoC), pre-existing trap
handling, boot, and utilities (4.7 KLoC), the baseline SM (1.6 KLoC), and platform-specific code
for FU540 (400 LoC). A minimum Eyrie RT is 1.8 KLoC, with modules adding further code as
shown in Table 4.3 up to a maximum Eyrie RT TCB of 3.6 KLoC. The current maximum TCB for
an eapp running on the SM and Eyrie RT is thus a total of 15 KLoC. TCB calculations were made
using cloc [48] and unifdef [211].

4.7.3 Benchmarks
This section uses 4 standard benchmark suites with a mix of CPU, memory, and file I/O for system-
wide analysis: Beebs, CoreMark, RV8, and IOZone. This section reports the overheads of the
cache partitioning and physical attacker protection with RV8 as an example of Keystone trade-
offs. In all the graphs, ‘other’ refers to the lifecycle costs for enclave creation, destruction, etc. All
benchmarks are run as unmodified RISC-V binaries using an Eyrie runtime with relevant modules
as needed.

Common Operations

Figure 4.8 shows the breakdown of various enclave operations. Initial validation and measurement
dominate the startup with 2M and 7M cycles/page for FU540 and Rocket-S due to an unoptimized
software implementation of SHA-3 [201]. The remaining enclave creation time totals 20k-30k
cycles. Similarly, the attestation is dominated by the ed25519 [59] signing software implemen-

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 67

Platform Core Cache Size Latency # of TLB
(KB) (cycles) Entries

Type L1-I/D L2 L1 L2 L1 L2

Rocket-S 1 in-order 8/8 512 2 24 8 128
Rocket 1 in-order 16/16 512 2 24 32 1024
BOOM 1 OoO 32/32 2048 4 24 32 1024
FU540 4 in-order 32/32 2048 2 12-15* 32 128

Table 4.4: Hardware specification for each platform. L2 cache latency in FU540 (*) is based on
estimation.

Ro
cke

t-S
Ro
cke

t
BO
OM

FU
54
0

0

2000

4000

6000

8000

kc
yc
le
s/
pa

ge

(a)

Ro
cke

t-S
Ro

cke
t

BO
OM

FU
54

0
0

20

40

60

kc
yc

le
s

(b)
SM create
RT boot
SM destroy
SM context

Figure 4.8: Breakdown of operations during the enclave life-cycle. (a) shows enclave validation
and hashing duration, and (b) shows the breakdown of other operations. (b) does not include
duration of size-dependent operations such as measurement in create (Shown in (a)) and memory
cleaning in destroy (4K-11K cycles/page).

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 68

tation (not shown in the graph, 0.7M-1.6M cycles). These are both one-time costs per-enclave
and can be substantially optimized in software or hardware. The most common SM operation,
context switches, currently take between 1.8K(FU540)-2.6K(Rocket-S) cycles depending on the
platform. Notably, creation and destruction of enclaves takes long on the FU540 (4-core) due to
the multi-core PMP synchronization.

Standard Benchmarks as Unmodified eapp Binaries

Beebs, CoreMark, and RV8. As expected, Keystone incurs no meaningful overheads (±0.7%,
excluding enclave creation and destruction) for pure CPU and memory benchmarks.
IOZone. All the target files are located on the untrusted host and Keystone tunnels the I/O
syscalls to the host application. Figure 4.9 shows the throughput plots of common file-content
access patterns. Keystone experiences expected high throughput loss for both write (avg. 36.2%)
and read (avg. 40.9.%). Three factors contribute to the overhead: (a) all the data crossing the
privilege boundary is copied an additional time via the untrusted buffer, (b) each call requires the
RT to go through the edge call interface, incurring a constant overhead, and (c) the untrusted buffer
contends in the cache with the file buffers, incurring an additional throughput loss on re-write (avg.
38.0%), re-read (avg. 41.3%), and record re-write (avg. 55.1%) operations. Since (b) is a fixed
cost per system call, it increases the overhead for the smaller record sizes.

Cache Partitioning

The mix of pure-CPU and large working-set benchmarks in RV8 are ideal to evaluate the impact of
caceh partitioning. The experiment granted 8 of the 16 ways in the L2 cache to the enclave during
execution (see Figure 4.10). Small working-set tests show low overheads from cache flush on
context switches whereas large working-set tests (primes, miniz, aes) show up to 128% overhead
due to a smaller effective cache. Enclave initialization latency is unaffected.

Physical Attacker Protections.

The experiment ran the RV8 suite with on-chip execution, enclave self-paging, page encryption,
and a DRAM backing page store (Table 4.5). A few eapps (sha512, dhrystone), which fit in
the 1MB on-chip memory, incur no overhead and are protected even from APhy. For the larger
working-set-size eapps, the paging overhead increases depending on the memory access pattern.
For example, primes incurs the largest amount of page faults because it allocates and randomly
accesses a 4MB buffer causing a page fault for almost every memory access. Software-based
memory encryption adds 2− 4× more overhead to page faults. These overheads can be alleviated
by the Keystone framework if a larger on-chip memory or dedicated hardware memory encryption
engine is available as Section 4.5 discussed.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 69

200

300

400

Writer

200

400

600
Reader

Baseline_r8
Keystone_r8

Baseline_r128
Keystone_r128

Baseline_r512
Keystone_r512

200

300

400

500
Fwrite

200

300

400

500

Th
ro

ug
hp

ut
(M

B/
s)

Re-writer

200

400

600
Re-reader

200

300

400

500
Re-fwrite

200

300

400

500
Random Write

200

300

400

500

600
Random Read

200

400

Fread

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

400

600

800
Record Rewrite

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

File Size (KB)

200

400

600

800
Stride Read

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

200

400

Re-fread

Figure 4.9: IOZone throughput in Keystone for various file and record sizes (e.g., r8 represents
8KB record).

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 70

primes
miniz aes

bigint
qsort

sha512 norx

dhrystone
0

10

20

30

La
te

nc
y

(s
)

base (other)
base (user)

keyst (other)
keyst (eapp)

keyst-cache (other)
keyst-cache (eapp)

Figure 4.10: Full-execution time comparison for RV8. Each bar shows the duration of the appli-
cation (user or eapp), and the other overheads (other). Keystone (keyst) and Keystone with
cache partitioning (keyst-cache) compared to native execution (base).

Overhead (%) # of Page
Benchmark ∅ C O, P O, P, E Faults
primes -0.9 40.5 65475.5 * 66× 106

miniz 0.1 128.5 80.2 615.5 18341
aes -1.1 66.3 1471.0 4552.7 59716
bigint -0.1 1.6 0.4 12.0 168
qsort -2.8 -1.3 12446.3 26832.3 285147
sha512 -0.1 0.3 -0.1 -0.2 0
norx 0.1 0.9 2590.1 7966.4 58834
dhrystone -0.2 0.3 -0.2 0.2 0

Table 4.5: RV8 Overhead for different TEE design instances. ∅: baseline, C: cache partition-
ing, O: on-chip scratch pad execution (1MB), P: enclave self-paging, E: software-based memory
encryption. *: does not complete in ~10 hrs.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 71

4.7.4 Case Studies
This section demonstrates how Keystone can be adapted for a varied set of devices, workloads, and
application complexities with three case-studies: (a) machine learning workloads for the client and
server-side usage, (b) machine learning for varied RTs, (c) a small secure computation application
written natively for Keystone. The evaluation for these case-studies was performed on the HiFive
board. The case study used the unmodified application code logic, hard-coded all the configura-
tions and arguments for simplicity, and statically linked the binaries against glibc or musl libc
supported by the Eyrie RT. The widely used cryptographic library libsodium can be ported to
both Eyrie and seL4 RT trivially.

Case Study 1: Secure ML Inference with Torch and Eyrie

The case study ran nine Torch-based models of increasing sizes with Eyrie on the Imagenet
dataset [55] (see Table 4.6). They comprise 15.7 and 15.4KLoC of TH [204] and THNN [203]
libraries from Torch compiled with musl libc. Each model has an additional 230 to 13.4 KLoC
of model-specific inference code [202]. The case study performed two sets of experiments: (a)
execute the model inference code with static maximum enclave size; (b) with dynamic resizing
support to allow the enclave size to increase on-demand. Figure 4.11 shows the performance over-
heads for both configurations and non-enclaved execution baseline.
Initialization Overhead is noticeably high for both static size and dynamic resizing. It is propor-
tional to the eapp binary size due to enclave page hashing. Dynamic resizing reduces the initial-
ization latency by 2.9% on average as the RT does not map free memory during enclave creation.
Eapp Execution Overhead was between −3.12%(LeNet) and 7.35%(Densenet) for all the models
with both static size and dynamic resizing. The causes of this are: (a) Keystone loads the entire
binary in physical memory before it beings eapp execution, precluding any page faults for zero-fill-
on-demand or similar behavior, so smaller sized networks like LeNet execute faster in Keystone
and (b) the overhead is primarily proportional to the number of layers in the network, as more lay-
ers results in more memory allocations and increase the number of mmap and brk syscalls. A small
hand-coded test verified that Eyrie RT’s custom mmap is slower than the baseline kernel and incurs
overheads. Densenet, which has the maximum number of layers (910), thus suffers from larger
performance degradation. In summary, for long-running eapps, Keystone incurs a fixed one-time
startup cost and the dynamic resizing is indeed useful for larger eapps.

Case Study 2: Secure ML with FANN and seL4

Keystone can be used for small devices such as IoT sensors and cameras to train models locally as
well as flag events with model inference. The case study ran FANN, a minimal (8KLoC C/C++)
eapp for embedded devices with the seL4 RT to train and test a simple XOR network. The end-to-
end execution overhead is 0.36% over running in seL4 without Keystone.

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 72

Model # of
Layers

of
Param

App
LOC

Binary
Size

Memory
Usage

Wideresnet 93 36.5M 1625 140MB 384MB
Resnext29 102 34.5M 1910 123MB 394MB
Inceptionv3 313 27.2M 5359 92MB 475MB
Resnet50 176 25.6M 3094 98MB 424MB
Densenet 910 8.1M 13399 32MB 570MB
VGG19 55 20.0M 1088 77MB 165MB
Resnet110 552 1.7M 9528 7MB 87MB
Squeezenet 65 1.2M 914 5MB 52MB
LeNet 12 62K 230 0.4MB 2MB

Table 4.6: Torch model specification, workload characteristics, binary object size, and total enclave
memory usage.

wideresnet

resnext29

inceptionv3
resnet50

densenet
vgg19

resnet110

squeezenet
lenet0

200

400

600

La
te

nc
y

(s
)

base (other)
base (user)

keyst (other)
keyst (eapp)

keyst-dyn (other)
keyst-dyn (eapp)

Figure 4.11: Inferencing time for various Torch models. Each bar consists of the duration of the
application (user or eapp), and the other overheads (other). Keystone (keyst) and Keystone
with the dynamic resizing (keyst-dyn) compared to native execution in (base).

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 73

Case Study 3: Secure Remote Computation.

The final case study implemented a secure server eapp (and remote client) to count words in an
input message using the Eyrie and baseline SM. It performs attestation, uses libsodium to bind
a secure channel to the attestation report, then polls the host for encrypted messages using edge-
calls, processes them inside the enclave, and returns an encrypted reply to be sent to the client. The
eapp has secure channel code (60 LoC), the edge-wrapping interface (45 LoC), and other logic (60
LoC). The host is 270 LoC and the remote client is 280 LoC. Keystone takes 45K cycles for a
round-trip with an empty message, secure channel, and message passing overheads. It takes 47K
cycles between the host getting a message and the enclave notifying the host to send a reply.

4.8 Related Work
This section surveys TEEs and design trade-offs that have been explored in existing works.

TEE Architectures & Extensions

Three TEEs are closely related to Keystone: (a) Intel Software Guard Extension (SGX) executes
user-level code in an isolated virtual address space backed by encrypted RAM pages [126]; (b)
ARM TrustZone divides the memory into two worlds (i.e., normal vs. secure) to run applications
in protected memory [13]; and (c) Sanctum uses a machine-mode SM, the memory management
unit (MMU), and cache partitioning to isolate enclave memory and prevent controlled-channel and
cache side-channel attacks [50]. Several other TEEs explore design at layers such as hypervi-
sors [122, 45, 82], physical memory [39, 123, 103], virtual memory [171, 51, 31], and process
isolation [197, 199, 53, 157]. Interested readers can refer to Table 4.1 for a summary of TEE
design choices.

Re-purposing Existing TEEs for Modularity

One way to meet Keystone’s design goal of customizable TEEs is to reuse the TEE solutions
that are available on commodity CPUs. For each TEE, it is possible to enable a subset of program-
ming constructs (e.g., threading, dynamic loading of binaries) by including a software management
component inside the enclave [146, 209, 24]. Alternatively, adding hardware extensions which are
specifically designed and implemented for adding TEE capabilities requires lot of efforts [50, 143].
Another approach is to simulate the programmable layer, say with a trusted hypervisor layer, which
then executes an untrusted OS, but potentially inflates the TCB.

Differences from Trusted Hypervisor

Keystone executes the enclave logic in the supervisor mode (RT) and the user mode (eapp), while
the machine mode code (SM) merely checks and enforces isolation boundaries. Although Key-
stone may seem similar to a trusted hypervisor, it does not implement or perform any resource

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 74

management, virtualization, or scheduling in the SM. It merely checks if the untrusted OS and
the enclave (RT, eapp) are managing the shared resources correctly. Thus, Keystone SM is more
analogous to a reference monitor [10, 8].

TEE Support

Several works enhance existing TEEs. At the SM layer they optimize program-critical tasks [50,
171, 20]. At the hypervisor layer they add support for multiplexing the secure isolation enforced
by hardware or use nested virtualization for isolation [84, 27, 51]. At the RT layer, they target
portability, functionality, security [209, 186, 15, 24, 158, 146, 144]. At the eapp layer they reduce
the developer efforts [18]. Although these systems are a fixed configuration in the TEE design
space, they provide valuable lessons for Keystone features and optimization.

Enhancing the Security of TEEs

Better and secure TEE design has been a long-standing goal, with advocacy for security-by-
design [153, 87]. Keystone is not vulnerable to a large class of side-channel attacks [36, 220]
by design, while speculative execution attacks [102, 35] are limited to out-of-order RISC-V cores
(e.g., BOOM) and do not affect most SOC implementations (e.g., Rocket). Keystone can re-use
known cache side-channel defenses [29, 100] as demonstrated in Section 4.4.6. Lastly, Keystone
can benefit from various RISC-V proposals underway to secure IO operations with PMP [151].
Thus, Keystone either eliminates classes of attacks or allows integration with existing techniques.

Formally Verified Hardware & Software

TEE-like guarantees can be achieved orthogonally by a hardware and software stack which is
formally verified as resistant against all classes of attacks that TEEs prevent. A careful and ground-
up design with verified components [101, 78, 137] may provide stronger guarantees and Keystone
can help explore designs which combine these with hardware protection [65, 196].

Resemblance with traditional kernel designs

Despite being designed for the TEE threat model, Keystone borrows and builds on well-known
principles from a long line of work in OS design. Specifically, the choice of separating isolation
(SM) and functionality (RT) has been explored mainly in micro-kernels [115]. Further, like many
other works, the SM is inspired by the concept of reference monitors [10, 8]. Lastly, the modularity
of abstraction between the host OS, the RT and eapp is similar to exokernels [60].

4.9 Summary
This chapter presented Keystone, the first framework for customizable TEEs. With its modular
design, Keystone showcases several use cases for standard benchmarks and applications on il-

CHAPTER 4. KEYSTONE: AN OPEN FRAMEWORK FOR BUILDING TEES 75

lustrative RTs and various deployment platforms. Keystone serves as a framework for both TEE
research and future deployment of novel TEE designs.

76

Chapter 5

Agile and Secure Implementation of New
Features

As discussed in Chapter 4, an open framework can help explore various TEE threat models with
reasonable performance trade-offs. However, today’s workloads often require new functional ca-
pabilities and performance optimizations. What should one do when the TEE cannot meet such
requirements? How should one reason about security when they make a modification to the TEE?

This chapter chooses one of the most frequently studied limitations of TEEs, the lack of ability
to share memory. Memory sharing is essential for server programs to run efficiently in enclaves,
where existing solutions either incur too much overhead or fail to provide formal reasoning. This
chapter shows one way of enabling secure memory sharing by modifying the TEE itself. Specifi-
cally, it proposes to add two new native operations to the TEE platform. Then, it shows how one
can formally reason about such changes using an abstract model.

5.1 Introduction
The hardware enclave [126, 110, 50, 65, 13, 6, 96] is a promising method of protecting a pro-
gram [209, 158, 160, 142] by allocating a set of physical addresses accessible only from the pro-
gram. The key idea of hardware enclaves is to isolate a part of physical memory by using hardware
mechanisms in addition to a typical memory management unit (MMU). The isolation is based on
a disjoint memory assumption, which constrains each of the isolated physical memory regions to
be owned by a specific enclave. A hardware platform enforces the isolation by using additional
in-memory metadata and hardware primitives. For example, Intel SGX maintains a per-physical-
page metadata called the Enclave Page Cache Map (EPCM) entry, which contains the enclave ID
of the owner [49]. The hardware looks up the entry for each memory access to ensure that the page
is accessible only when the current enclave is the owner.

However, the disjoint memory assumption also significantly limits enclaves in terms of their
performance and programmability. First, the enclave needs to go through an expensive initializa-
tion whenever it launches because the enclave program cannot use shared libraries in the system nor

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 77

clone from an existing process [113]. Each initialization consists of copying the enclave program
into the enclave memory and performing measurements to stamp the initial state of the program.
The initialization latency proportionally increases depending on the size of the program and the
initial data. Second, the programmer needs to be aware of the non-traditional assumptions about
memory. For instance, system calls like fork or clone can no longer rely on efficient copy-on-
write memory, causing significant performance degradation [209, 158].

A few studies have proposed platform extensions to allow memory sharing of enclaves. Yu et
al. [226] proposes Elasticlave, which modifies the platform such that each enclave can own multi-
ple physical memory regions that the enclave can selectively share with other enclaves. An enclave
can map other enclaves’ memory regions to its virtual address space by making a request, followed
by the owner granting the access. Li et al. [113] proposes Plug-In Enclave (PIE), which is an ex-
tension of Intel SGX. PIE enables faster enclave creation by introducing a shared enclave region,
which can be mapped to another enclave by a new SGX instruction EMAP. EMAP maps the entire
virtual address space of a pre-initialized plug-in enclave. Although the prior work shows that mem-
ory sharing can substantially improve performance, they do not provide formal guarantees about
the security of their designs.

Unsurprisingly, the disjoint memory assumption of enclaves is crucial for the security of the
enclave platform and is often used to formally reason about the security of the platform. Many
previous studies [196, 136, 65, 173] formally prove high-level security guarantees of enclave plat-
forms such as non-interference properties, integrity, and confidentiality based on this assumption.
However, to my best knowledge, no model formally verifies the security guarantees of an enclave
platform that allows memory sharing. Memory sharing weakens this disjoint memory assumption,
and as a result, necessitates formal verification under the weakened assumption.

Practical formal verification requires making choices about the right level of abstraction at
which to model and apply automated reasoning. Verification on models that conform to the low-
level implementation [136] or source-level code [101, 5, 46, 182, 189] is often platform-specific, in
that it only provides security guarantees to those implementations and thus does not apply gener-
ally. If one seeks to verify that a memory sharing approach on top of a family of enclave platforms
is secure, it is not easy to reuse verification efforts for specific implementations. This section seeks
an approach that is incremental and also applicable to existing platforms.

Moreover, there are many ways one could design a memory sharing model, each varying in
their complexity and flexibility. Complex models can provide more flexibility to optimize the ap-
plications for performance, but this often comes at the cost of increasing the complexity of formal
verification. However, if memory sharing is too restrictive, it also becomes hard for programmers
to leverage it for performance improvements. Thus, this section seeks a simple sharing model with
a balance between flexibility and ease of verification.

This section presents Cerberus, a formal approach to secure and efficient enclave memory
sharing. Cerberus chooses the single-sharing model (Section 5.3.1), which allows each enclave
to access only one shared memory. This design decision significantly reduces the cost of verifi-
cation by simplifying invariants, as well as the cost of implementation. This chapter formalizes
an enclave platform model that can accurately capture high-level semantics of the extension and
formally verify a property called Secure Remote Execution (SRE) [196]. This section performs in-

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 78

cremental verification by starting from an existing formal model called Trusted Abstract Platform
(TAP) [196] for which the SRE property is already established. Finally, this section shows the
feasibility of Cerberus by implementing it in an existing platform, RISC-V Keystone [110]. Cer-
berus can substantially reduce the initialization latency without incurring significant computational
overhead.

To summarize, the contributions of this chapter are as follows:

• Provide a general formal enclave platform model with memory sharing that weakens the
disjoint memory assumption and captures a family of enclave platforms

• Formally verify that the modified enclave platform model satisfies SRE property via auto-
mated formal verification

• Provide programmable interface functions that can be used with existing system calls

• Implement the extension on an existing enclave platform, and demonstrate that Cerberus
reduces enclave creation latency

5.2 Formal Reasoning about TEE

5.2.1 The Secure Remote Execution Property
As mentioned earlier, much of the prior work identifies integrity and confidentiality as key security
properties for enclave platforms. Thus, this work aims to prove a property that is at least as strong
as these two, which is the SRE property. To provide intuition behind the property, the typical
setting for an enclave user is that the user wishes to execute their enclave program securely on a
remote enclave platform. The remote platform is largely untrusted, with an operating system, a set
of applications, and other enclaves that may potentially be malicious. Thus, it is desirable to create
a secure channel between the enclave program and user in order to set up the enclave program
securely. Consequently, ensuring end-to-end security requires the enclave platform to behave in
the following three ways:

• The measurement of an enclave on the remote platform can guarantee that the enclave is
setup correctly and runs in a deterministic manner,

• each enclave program is integrity-protected from the untrusted entities and thus executes
deterministically,

• and each enclave program is confidentiality-protected to avoid revealing secrets to the un-
trusted entities.

These three behaviors manifest as the secure measurement, integrity and confidentiality properties
as defined in Section 5.5 and are ultimately what the platform model extended with Cerberus
guarantees.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 79

5.2.2 Formal Models of Enclave Platforms
Prior work has formally modeled and verified enclave platform models for both functional cor-
rectness and adherence to safety properties similar to the SRE property. This section discusses the
approaches and explain why Cerberus chooses to extend the TAP model.

Komodo [65] is an approach for attested, on-demand and concurrent isolated enclave program
execution, where the management of enclaves is delegated to a software security monitor. Their
approach uses ARM’s TrustZone [13] to build enclaves and aims to achieve a level of security
similar to the security of Intel’s SGX. They employ formal verification to verify source-level code
to prove functional correctness and prove integrity and confidentiality against an adversary that
controls the operating system and colludes with other enclaves. However, modeling done at the
source code level means that the verification is closely tied to the implementation and makes this
approach less suitable to apply to the extension.

Serval [136] on the other hand, focuses on automating the translations and verification of im-
plementation models at the executable binary level. Serval proves properties such as the absence
of undefined behavior, state-machine refinement and noninterference. The authors apply their ap-
proach to both CertikOS [78, 77] and Komodo. However, working with instruction-level models
to prove high-level security properties is difficult and tedious because of a lack of program infor-
mation passed to the binary level (e.g. variable names). Additionally, this chapter aims to verify
the enclave platform memory sharing approach for a general model that captures the behavior
of a family of enclave platforms and not a specific platform. Thus, Serval is not well suited for
the goals; however, it can complement this chapter’s approach by verifying that a given platform
implementation binary refines the model.

Trusted Abstract Platform model [196] is an abstraction of enclave platforms that was intro-
duced with the SRE property. The SRE property states that enclave execution on a remote platform
follows its expected semantics and is confidentiality-protected from a class of adversaries defined
along with the TAP model. This property provides end-to-end verification of integrity and confi-
dentiality for enclaves running on a remote platform. It has also been formally proven that state-
of-the-art enclave platforms such as Intel’s SGX [126, 49] and MIT’s Sanctum [50, 108] refine the
TAP model and hence satisfy SRE against various adversary models.

To my best knowledge, the TAP is the only model for formal verification that has been used to
capture enclave platforms in a general way. The level of abstraction also makes it readily extensi-
ble. For these reasons, this chapter’s approach extends the TAP model.

5.3 Enabling Enclave Memory Sharing
Several design decisions were made for Cerberus to conform to the design goals. As alluded to
earlier, the memory sharing model and interface designs are crucial for the modeling, verification,
and implementation performance. This section discusses the details of how to design the memory
sharing model and interface below.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 80

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

No Sharing Arbitrary Sharing Capped Sharing Single Sharing

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2

<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

Figure 5.1: Memory sharing models with varying flexibility. Blue (and white) boxes indicate
shareable (and non-shareable) physical memory region, and circles indicate enclaves. An edge
from an enclave to a physical memory is an access relation stating that an enclave can access the
memory it points to.

5.3.1 Memory Sharing Model
Figure 5.1 shows four different memory sharing models with varying levels of flexibility. This sec-
tion discusses the implications for the implementation and the feasibility of formal verification for
each model. This section uses the number of access relationships between enclaves and memory
regions as a metric for the complexity of both verification and implementation.

No Sharing A no-sharing model refers to a model that assumes the disjoint memory assump-
tion. This model is implemented in several state-of-the-art enclaves [126, 110, 65] and has already
been previously formally verified in the TAP model [196]. The no-sharing model strictly disallows
sharing memory and assigns each physical address to only one enclave. As a result, the number
of access relationships is O(max(m,n)) = O(m), where m is the number of physical memory
regions, and n is the number of enclaves. m could be greater than n if there exists more than
one physical memory regions with different properties (e.g., permissions). Thus, no-sharing im-
plementations will require metadata scaling with O(m) to maintain the access relationships. For
instance, each SGX EPC page has a corresponding entry in EPCM, which contains the owner ID
of the page.

Arbitrary Sharing As in Elasticlave, one could completely relax the sharing model and allow
any arbitrary number of enclaves to share memory. The arbitrary-sharing model refers to this
sharing model. In this case, the number of access relationships between enclaves is O(mn). Con-
sequently, arbitrary sharing requires metadata scaling with O(mn). Since this is not scalable, the
feasibility of the implementation often limits the global number of relationships. For example,
Elasticlave caps m by the number of processor’s PMP entries, which cannot usually exceed 64 be-
cause of hardware implementation cost [217]. Formally verifying this model using TAP can also
be complex due to the flexibility of the model. Verifying security properties such as SRE requires
reasoning about safety properties with multiple traces and platform invariants with nested quan-
tifiers. Modeling an arbitrary number of shared enclave memory would add to this complexity.
For example, one inductive invariant needed to prove SRE on TAP is the invariant that memory

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 81

accessible by a given enclave is owned by itself. If the platform allows an arbitrary number of
enclaves to be accessible by a given enclave, one encoding for the extension of this invariant exis-
tentially quantifies over all of the enclaves to state that the owner of the memory accessible to the
given enclave is one of the enclaves that owns the shared memory region (Section 5.5, Eq. (5.8)).
The encoding of this invariant in TAP itself uses first-order logic with the theory of arrays and, in
general, is not decidable [28]. As a result, the introduction of this quantifier further complicates
the invariant. This is discussed in more detail in Section 5.5.

Capped Sharing To achieve scalability in the number of access relationships, one could con-
strain the sharing rule such that each enclave can only access a limited number of shared physical
memory regions. A capped-sharing model refers to this sharing model. In Figure 5.1, capped
sharing shows an example where each enclave is only allowed to access at most two additional
shared physical memory regions. As an example, PIE [113] introduces a new type of enclave
called plug-in enclave, which can be mapped to the virtual address space of a normal enclave. PIE
can improve the performance of dynamically linked programs by having each shareable enclave
contain a shared library, which can be mapped to enclaves using them. This reduces the num-
ber of relationships to O(kn + m), where k is the number of shared physical memory regions
that are allowed to be accessed by an enclave. Despite the limiting constraint in capped sharing,
a formal model capturing any arbitrary limit k would still require modeling an arbitrary number
of the shared enclave memory as in the arbitrary sharing scheme. As a result, formally verify-
ing this design requires the same complicated invariant as the arbitrary-sharing model mentioned
previously.

Single Sharing The single-sharing model only allows an enclave to access the shared memory
regions of a particular enclave. It is a special case of the capped sharing with k = 1. Single sharing
reduces the complexity to O(m), the least of all sharing models. Although the figure depicts a
single shared physical memory region, there can be multiple shared physical memory regions for
single sharing. The single-sharing model significantly reduces the efforts of formal reasoning and
implementation. First, the formal reasoning no longer requires the complex invariant mentioned
in the capped and arbitrary sharing models because memory that can be accessed by an enclave
either belongs to the enclave itself or only one other enclave that is sharing memory. Second, the
implementation becomes much simpler as it requires only one per-enclave metadata to store the
reference to the shared memory. The platform modification becomes also minimal as it checks
one more metadata per memory access. Despite its simplicity, the single-sharing model can still
improve the performance of programs by having all of the shared contents (e.g., shared library,
initial code, and initial data) in the shareable enclave. For these reasons, Cerberus chooses the
single-sharing model.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 82

5.3.2 Interface
Separate from the sharing model, it is important to design an interface of functions such that the
memory sharing can be used by the enclave program. This section describes the new operations
added to the enclave platform for memory sharing.

Elasticlave and PIE introduce explicit operations to map or unmap the shareable physical mem-
ory region to the virtual address space of the enclave. For example, in order for an Elasticlave
memory region to be shared, an enclave program needs to explicitly call map operation to request
access on the region, which will be approved by the owner via share operation. Similarly, PIE al-
lows an enclave to use EMAP and EUNMAP instructions to map and unmap an entire plug-in enclave
memory to the virtual address of the enclave.

Both approaches allow an enclave program to map shareable physical memory regions to its
virtual address space. However, there are a few downsides to the approaches. First, the program-
mers must manually specify which part of the application should be made shareable. The share-
able regions may include text segments, static data segments, and dynamic objects (e.g., a machine
learning model). In most cases, the programmers must completely rewrite a program such that the
shareable part of the program is partitioned into a separate enclave memory. Second, a dynamic
map or unmap requires local attestation, which verifies that the newly mapped memory is in an
expected initial state. Thus, the measurement property of a program relies on the measurement
property of multiple physical memory regions.

Cerberus takes an approach similar to a traditional optimization technique, which is cloning an
address space with copy-on-write, as in system calls like clone and fork. In general, program-
mers expect such system calls to copy the entire virtual address space of a process – no matter what
it contains – to a newly-created process. Using a similar approach will allow the programmers to
write enclave programs with the same expectation. Also, such an interface will not require addi-
tional properties or assumptions on measurements of multiple enclaves. Since the initial code of an
enclave already contains when to share its entire address space, the initial measurement implicitly
includes all memory contents to be shared.

To this end, Cerberus introduces two enclave operations, which are Snapshot and Clone.
Snapshot freezes the entire memory state of an enclave, and Clone creates a logical duplication
of an enclave. Snapshot is only callable from the enclave itself, allowing the enclave to decide
when to share its memory. The adversary can call Clone any time, which does not break the
security (See Section 5.4.5). When the adversary calls Clone on an existing enclave, a new enclave
is created and resumes with a copy-on-write (CoW) memory of the snapshot. Thus, any changes to
each of the enclaves after the Clone are not visible to each other. The following sections formally
discuss the sharing model and the interface of Cerberus, and present security arguments on the
extension in detail.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 83

Symbol Description
N The usual set of natural numbers {1, 2, 3, ...}.
Bool The set of Boolean values {true, false}.
∈ Element of operator in set theory.
⊂ Subset operator in set theory.
.

= By definition symbol. This is not to be confused with the logical equal
operator =.

= Logical equal operator.
⇐⇒ If and only if operator.
⊥ Bottom value. A default value that is only equal to itself.
OS The identifier for the enclave.
einv The invalid enclave ID. A variable assigned with this ID can be viewed as

a null value.
VA Set of virtual addresses.
PA Set of physical addresses.
ACL Permissions for virtual addresses (read, write and execute permissions).
Eid Set of enclave IDs e1, e2, ..., including the operating system ID OS.
EM Enclave metadata type.
∀x ∈ X.expr(x) Forall quantified expression; states for all x ∈ X , expr(x) must be true.
λx.expr Function with argument x; computes expr.
ITE(c, expr1, expr2) If-then-else operator that evaluates expr1 if c is true or otherwise evaluates

expr2.
init(Ee(σ)) Enclave e in state σ has been initialized by Launch and has not yet been

executed using Enter.
sufficient_mem(σ.o) A function that returns whether there is enough memory to allocate given

the memory ownership map.
valid(eid) Returns whether the enclave ID eid is a valid enclave ID. In other words,

not equal to OS nor einv.
mappede(v) Returns whether a virtual address v ∈ VA is mapped for the enclave e.
curr(σ) The ID of the process currently executing in state σ.
S Set of state of TAPC .
I Set of initial states of TAPC .
 Transition relation of TAPC .
Ee(σ) The projection of state σ to the enclave state e.
Ae(σ) The projection of state σ to state that is writable to the adversary.
Ie(σ) Inputs of an enclave at state σ.
Oe(σ) Outputs of an enclave at state σ.
πi The ith state of the platform trace π.
πj Platform trace j; not to be confused with the jth state of the trace.

Table 5.1: Glossary of Symbols used for Chapter 5

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 84

5.4 Formal Model
This section first introduce a threat model in Section 5.4.1 that is consistent with these goals and
the current state-of-the-art enclave threat models. Section 5.4.2 lists and justify the assumptions,
Section 5.4.3 introduces the formal models for the platform and adversary based on these assump-
tions, and Section 5.4.4 introduces the two new operations Snapshot and Clone of Cerberus.
Section 5.4.5 concludes with high-level arguments to justify that the addition of Snapshot and
Clone does not weaken the security guarantees. Figure 5.1 is a glossary of symbols used in the
rest of the chapter.

Section 5.5 uses these formal models to formally verify the SRE [196] property, which is a
critical security property used to prove that enclaves executing in the remote platform are running
as expected and confidentially.

To recap, this section’s formal models extend the TAP model introduced by Subramanyan et
al. [196]. While SRE has been proven on the TAP model, the original TAP model makes a number
of assumptions that are weakened in Cerberus design. For example, Cerberus allows memory
sharing and hence the disjoint memory assumption in the TAP model is weakened.

Additionally, it is not immediately clear that the addition of these two operations clearly pre-
serves SRE. Thus, it is needed to prove that SRE still holds under Cerberus-extended model of TAP.
The rest of the literature refers to the original formal platform model defined by Subramanyan et
al. [196] as the base TAP model and Cerberus-extended model as TAPC .

5.4.1 Threat Model
Cerberus extension follows the typical enclave threat model where the user’s enclave program e
is integrity- and confidentiality-protected over the enclave states (e.g. register values and data
memory owned by the enclave program) against any software adversary running in the remote
enclave platform. The software adversaries of an enclave include the untrusted operating system,
user programs, and the other enclaves as shown in Figure 5.2.

With Cerberus, enclaves may share data or code that were common between enclaves before the
introduction of the Clone. Cerberus assumes that the memory is implicitly not confidential among
these enclaves with shared memory. However, each enclave’s memory should not be observable
by the operating system or other enclaves and applications. Cerberus ensures that the enclaves are
still write-isolated, which means that any modification to the data from one enclave must not be
observable to the other enclaves, even to the enclave that it cloned from. Thus, any secret data
needs to be provisioned after the enclave is cloned. It is the enclave programmer’s responsibility
to make sure that the parent enclave does not contain any secret data that can be leaked through the
children.

Cerberus does not consider the program running in the enclave to be vulnerable or malicious
by itself. For example, a program can generate a secret key in the shared memory, and encrypt
the confidential data of the child with the key. This would break confidentiality among children
enclaves write-isolated from each other because the children will have access to the key in the

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 85

User

I/O

 Enclave <latexit sha1_base64="RmIhIcc96OVgeQ7eZV6aQIOc4wQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJvbLFbfqzkFWiZeTCuRo9MtfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDzFuM8g==</latexit>e Other
Enclaves

Other
Apps

Privileged SW
(OS/Hypervisor)

Enclave Platform

Untrusted Remote Machine

Figure 5.2: A user provisions their (protected) enclave e in the remote enclave platform isolated
from untrusted software. Green/red boxes indicate trusted/untrusted components.

shared memory. This could be easily solved by having programs load secrets to their memory after
they have created the distrusting children.

In some platforms such as Intel R© SGX, side-channel attacks are out-of-scope in their threat
model. Since the main goal is to design a generic extension, Cerberus also does not consider any
type of side-channel attack or architecture-specific attack [124, 37, 102, 117, 35, 212, 176, 220,
132, 215, 180, 109] in this section. Since the base TAP model has also been used to prove side-
channel resiliency on some enclave platforms [110, 50], it is not impossible to extend the proofs to
such adversary models. Denial of service against the enclave is also out of scope of Cerberus; this
is consistent with the threat models for existing state-of-the-art enclave platforms.

A formal model of the threat model is described in more detail in Section 5.4.3 after the formal
definition of the platform.

5.4.2 Assumptions
This section summarizes the list of assumptions about the execution model for simplifying and
abstracting the modeling below, including the assumptions mentioned above:

• Every enclave operation is treated as an atomic operation, consistent with previous work [196].
If an enclave operation returns with an error code, the states of the platform are entirely re-
verted to the state prior to the execution of that operation.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 86

• State continuity of enclaves is out-of-scope of this chapter, consistent with TAP [196], and
can be addressed using alternative methods [152, 92].

• The memory allocation algorithm (e.g. for copy-on-write) is deterministic given that the set
of unallocated memory is the same. This means that given any two execution sequences of
a platform, as long as the page table states are the same, the allocation algorithm will return
the same free memory location to allocate.

• Side-channels are out of scope which is consistent with existing enclave platform adversary
models as mentioned before.

• Enclave programs that wants integrity and confidentiality protection are assumed to be bug-
free and do not inadvertently leak secret information through its outputs.

Next section introduces the formal model describing the platform which extends the existing
TAP model with Snapshot and Clone under these assumptions.

5.4.3 Formal TAPC Platform Model Overview
As mentioned, a user of an enclave platform typically has a program and data that they would like
to run securely in a remote server, isolated from all other processes as shown in Figure 5.2. Such
a program can be run as an enclave e. The remote server provides isolation using its hardware
primitives and software for managing the enclaves, where the software component is typically
firmware or a security monitor. This software component provides an interface for the enclave
user through a set of operations, denoted by O, for managing e. The goal is to guarantee that this
enclave e is protected from all other processes on the platform and running as expected. For the
purpose of understanding the proofs, the protected enclave e refers to the enclave that SRE property
would like to protect. This distinction differentiates e from the adversary-controlled enclaves.

Platform and Enclave State

The platform can be viewed as a transition system M = 〈S, I, 〉 that is always in some state
denoted by σ ∈ S1. Alternatively, σ can be viewed as an assignment to a set of state variables
V . The platform starts in an initial state in the set I and it transitions between states defined by
a transition relation ⊂ S × S, where ⊂ denotes subset and S × S is the Cartesian product of
states. (σ, σ′) ∈ means that the platform can transition from σ to σ′. An execution of the platform
therefore emits a sequence of states π = 〈σ0, σ1, ...σn〉, where (σi, σi+1) ∈ for i ∈ {0, ..., n−1}.
One can write πi = σi interchangeably, but will usually write πi whenever referencing a specific
trace. When an enclave is initially launched, it is in the initial state prior to enclave execution,
which is indicated by the predicate inite(σ) : S → Bool. Next section describes the set of
variables V and enclave state Ee(σ) for TAPC .

1∈ is the usual element of operator in set theory which states the right hand side value σ is an element of the set
S.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 87

TAPC State Variables

Each of the variables in TAPC are shown in Table 5.2. pc : V A2 is an abstraction of the program
counter whose value is a virtual address from the set of virtual addresses V A. ∆rf : N → W is
a register file that is a map 3 from the set of register indices (of natural numbers) N to the set of
words W . Π : PA → W is an abstraction of memory that maps the set of physical addresses PA
to a set of words. One writes Π[a] to represent the memory value at a given physical address a ∈
PA. A page table abstraction defines the mapping of virtual to physical addresses aPA and access
permissions aperm : V A → ACL, where ACL is the set of read, write, and execute permissions.
ACL can be defined as the product V A → Bool × Bool × Bool, where Bool .

= {true, false}
and the value of the map corresponds to the read, write, and execute permissions for a given virtual
address index. ecurr : Eid represents the current enclave that is executing. Eid = N∪{OS}∪{einv}4

is the set of enclave IDs represented by natural numbers and a special identifier OS representing
the untrusted operating system. The identifier einv is reserved to refer to the invalid enclave ID
which can be thought of as a default value that does not refer to any valid enclave. For the ease of
referring to whether an enclave is valid and launched, one can use the predicate valid(eid)

.
= eid 6=

einv∧eid 6= OS that returns whether or not an ID is a valid enclave ID. ∧ refers to the usual logical
and operator. o is a map that describes the ownership of physical addresses, each of which can be
owned by an enclave (with the corresponding enclave ID) or the untrusted operating system.

Lastly, each enclave e has a set of enclave metadataM, which is a record of variables described
in Table 5.3. One can abuse notation and writeMpc[e] to represent the program counterMpc of e
in the record stored in the metadata mapM. The notation [·] is similarly used for other metadata
fields defined in Table 5.3.MEP [e] is the entry point of the enclave that the enclave e starts in after
the Launch and before Enter.MAM

PA [e] is virtual address map of the enclave program.MAM
perm[e]

is map of address permissions for each virtual address. MEV [e] is the map from virtual addresses
to Boolean values representing whether an address is allocated to the enclave.Mpc[e] is the current
program counter of the enclave. Mregs[e] is the saved register file of the enclave. Mpaused is a
Boolean representing whether or not the enclave has been paused and is initially false at launch.

These variables were introduced in the base TAP model and are unmodified in TAPC . Sec-
tion 5.4.4 introduces the remaining four metadata variables required for Cerberus, which are addi-
tional state variables in TAPC that are not defined in the base TAP model.

The state Ee(σ) is a projection of the platform state to the enclave state of e that includes
Mpc[e],Mregs[e], and the projection of enclave memory λv ∈ V A.ITE(MEV [e][v],Π[MAM

PA [v]],⊥).
In the previous expression, λv ∈ VA.E is the usual lambda operator over the set of virtual addresses
v and expression body E, ITE(c, expr1, expr2) is the if then else operator that returns expr1 if con-
dition c is true and expr2 otherwise. ⊥ is the constant bottom value which can be thought of as a
don’t-care or unobservable value. This projection of memory represents all memory accessible to
enclave e, including shared memory and memory owned by enclave e as referenced by the virtual
address mapMAM

PA .
2Write v: T to mean variable v ∈ V has type T
3of type L→ R, where the index type is L and value type is R.
4{·} is the singleton set

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 88

State Var. Type Description
pc V A The program counter.
∆rf N→ W General purpose registers.
Π PA→ W Physical memory.
aPA V A→ PA Page table abstraction; virtual to physical address map.
aperm V A→ ACL Page table abstraction; virtual to their permissions.
ecurr Eid Current enclave. e = OS means the OS is running.
o PA→ Eid Map from physical addresses to the enclave that owns it.
M Eid → EM Map of enclave IDs to enclave metadata. emd[OS] stores a

checkpoint of the OS.

Table 5.2: Description of TAP State Variables

State Var. Type Description of each field
MEP V A Enclave entrypoint.
MAM

PA V A→ PA Enclave’s virtual address map.
MAM

perm V A→ ACL Enclave’s address permissions.
MEV V A→ Bool Set of private virtual addresses.
Mpc V A Saved program counter.
Mregs N→ W Saved registers.
Mpaused Bool Whether enclave is paused.
MIS† Bool Whether the enclave is a snapshot.
MCC† N Number of children enclaves.
MRS† Eid Enclave’s root snapshot.
MPAF † PA→ Bool Map of free physical addresses.

Table 5.3: Description of TAP EM enclave metadata record

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 89

π0
1

π0
2

≈
L

. . .

. . .

≈
L

πi
1

πi
2

πi+1
1

πi+1
2

≈
L

πi+2
1

πi+2
2

≈
L

. . .

. . .

op0

op0

A

A

opi+1

opi+1

Figure 5.3: Illustrating the execution of two traces of the platform in the secure measurement,
integrity and confidentiality proofs. Proof obligations for each property are checked as indicated
by ≈L and equal initial condition indicated as ≈L. opi indicates enclave execution of an operation
from O at step i and A indicates an adversary execution.

Enclave Inputs and Outputs

Communication between an enclave e and external processes for a given state σ are controlled
through e’s inputs Ie(σ) and its outputs Oe(σ). Ie(σ) includes the arguments to the operations
that manage enclave e, areas of memory outside of the enclave that the enclave may access and an
untrusted attacker may write to, and randomness from the platform. Oe(σ) contains the outputs of
enclave e that are writable to by e and accessible to the attacker and the user.

Platform and Enclave Execution

An execution of an enclave e is defined by the set of operations from O, in which the execution of
an operation is deterministic up to its input Ie(σ) and current stateEe(σ). This means that given the
same inputs Ie(σ) and enclave stateEe(σ), the changes to enclave stateEe(σ) is deterministic. The
set of operations for the base TAP model is Obase

.
= {Launch, Destroy, Enter, Exit, Pause,

Resume}. TAPC extends the base set with two additional operations: O .
= Obase ∪ {Snapshot,

Clone}5. One can use the predicate curr(σ) = e to indicate that enclave e is executing at state σ
and curr(σ) = OS to indicate that the operating system is executing 6.

Formal Adversary Model

In the model, untrusted entities such as the OS and untrusted enclaves are represented by an adver-
saryA that can make arbitrary modifications to state outside of the protected enclave e, denoted by
Ae(σ). Consistent with the base TAP model, the untrusted entities and protected enclave e takes
turns executing under interleaving semantics in the formal TAPC model, as illustrated in Figure 5.3.

Conventionally, an adversary can be defined with an observation and tamper function that de-
scribes what the adversary can observe and change in the platform state during its execution to
break integrity and confidentiality. Below describes these two functions.

5∪ is the union operation over sets
6The adversary can execute the operating system or one of its controlled enclaves.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 90

Tamper Function The tamper function is used to model these malicious modifications to plat-
form state by the adversary and is defined over Ae(σ) which includes any memory location that is
not owned by the protected enclave e and page table mappings. The semantics of the model allows
the adversary to make these changes whenever it is executing. The model allows all tampered state
to be unconstrained, which means they can take on any value. This type of adversary tamper func-
tion over-approximates what the threat model can change and is typically referred to as a havocing
adversary [196, 40].

Observation Function The adversary’s observation function is denoted obse(σ). The model
allows the adversary to observe locations of memory that are not owned by the protected enclave
e, described by the set obse(σ)

.
= Oe(σ)

.
= λp ∈ PA.ITE(σ.o[p] 6= e, σ.Π[p],⊥). Intuitively,

obse is a projection of platform state that is observable by the adversary whose differences should
be excluded by the property. For example, if the same enclave program operating over different
secrets reveals secrets through the output, that is a bug in the enclave program, which disagrees
with the TAP assumptions. The adversaries may try to modify or read the enclave state during the
lifetime of the enclave.

Under this threat model, the following section proves that the TAPC model still satisfies the
SRE property.

5.4.4 The Extended Enclave Operations
Cerberus is the extension of enclave platforms with two new operations Snapshot and Clone to
facilitate memory sharing among enclaves. Intuitively, Snapshot converts the enclave executing
the operation into a read-only enclave and Clone creates a child enclave from the parent enclave
being cloned so that the child enclave can read and execute the same memory contents as the parent
at the time of clone.

This extension requires four new metadata state variables that are indicated in Table 5.4.3 with
the † symbol. MIS[e] is a Boolean valued variable indicating whether or not Snapshot has been
called on the enclave e. MCC [e] is the number of children e has, or in other words, the number of
times clone has been called on the enclave e where e is the parent of Clone.MRS[e] is a reference
to the root snapshot of e if one exists, andMPAF [e] is a map of addresses that have been assigned
to e but are not yet allocated memory.

This section defines the semantics of the two new operations introduced in Cerberus.

Clone

Clone creates a clone of an existing logical enclave such that there exists two enclaves with iden-
tical enclave states. Clone alone provides a functionality similar to fork and clone system calls,
no matter whether the platform enables memory sharing. More concretely, the Clone takes in
three arguments: the ID of the existing parent enclave epid ∈ Eid to clone, the enclave ID of the
child enclave ecid ∈ Eid and a set of physical addresses assigned to the enclave xp ⊂ PA. The
assigned physical addresses are marked as free (i.e.,MPAF [ec][p] = true, ∀p ∈ xp), so that they

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 91

Snapshot

Clone()

Launch

Launch

(a) Clone (with arbitrary nesting)
<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

<latexit sha1_base64="0MnHJ1QfzDH7gpRGYENn9VQV3sY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQe1QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+1a1buq1u/rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+7rjYk=</latexit>e2

<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

(b) Snapshot

SnapshotLaunch
<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

(c) Clone with Snapshot

<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

<latexit sha1_base64="0MnHJ1QfzDH7gpRGYENn9VQV3sY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQe1QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+1a1buq1u/rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+7rjYk=</latexit>e2

becomes read-only

<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

Clone()<latexit sha1_base64="ZUJy1ITAc0fHsso1Yt4EiqdHv80=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atXa/e1SqOWx1GEMziHS/DgGhpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPH+1njYg=</latexit>e1

Clone()
<latexit sha1_base64="0MnHJ1QfzDH7gpRGYENn9VQV3sY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQe1QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+1a1buq1u/rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+7rjYk=</latexit>e2

<latexit sha1_base64="0MnHJ1QfzDH7gpRGYENn9VQV3sY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpAQe1QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+1a1buq1u/rlUY9j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+7rjYk=</latexit>e2

<latexit sha1_base64="KF7Xifqe8hNhBLImK6X+v/jJBTs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gP3LfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVrd3XKvVaHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDwb42K</latexit>e3

Figure 5.4: Clone, Snapshot, and Clone with Snapshot.

can be used for copying parent’s memory. The child enclave ec with corresponding enclave ID
ecid is used to create a clone of the parent ep such that Eep(σ) = Eec(σ). In other words, the vir-
tual memory of both enclaves are equal. Eep(σ0) denotes the initial state of the parent such that
init(Eep(σ)).

Clone is a special way of creating an enclave; instead of starting from the initial enclave state
Eep(σ0), Clone allows an enclave to start from an existing enclave ep, which is effectively identical
to creating two enclaves with the same initial state and then executing the same sequence of inputs
up until the point clone was called, as explained in Section 5.4.5.

To prevent the malicious use of clone, Clone requires the condition Eq. 5.1 to hold when it is
called with state σ.

valid(σ.ecurr) ∧ (5.1)
ecid 6= epid ∧
ecid 6= einv ∧ epid 6= einv ∧
∀p ∈ PA.p ∈ xp ⇒ σ.o[p] = OS ∧
sufficient_mem(σ.o)

This condition states that the Clone succeeds if and only if both the parent and child enclave IDs
are valid, both the parent and child enclave IDs do not reference each other, all physical addresses
in xp are owned by the OS (and thus can be allocated to the enclave), and there is sufficient memory
to be allocated to the enclave.

If clone is called successfully, Clone copies all of the data in the virtual address space of ep to
ec to ensure write-isolation. For each virtual address v mapped by ep (mapped), Clone first selects

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 92

a physical address p owned by ec, copies the contents from Π[MAM
PA [ep][v]] to Π[p], and update the

page table of ec such thatMAM
PA [ec][v] = p. This can be implemented in the platform itself (i.e.,

the security monitor firmware in Keystone) or in a local vendor-provided enclave (i.e., similar to
the Quoting Enclave in Intel R© SGX).

In Eq. 5.1, sufficient_mem : PA → Eid → Bool, sufficient_mem can be viewed as a predicate
that determines whether there is enough memory to copy all data. sufficient_mem is modeled
abstractly in the TAPC model to avoid an expensive computation to figure out whether there is
enough memory.

Clone is only called from the untrusted OS, because it requires the OS to allocate resources
for the new enclave. Thus, if an enclave program needs to clone itself, it needs to collaborate with
the OS to have it call Clone on behalf. As the newly-created enclave is still an isolated enclave,
the SRE property on both parent and child enclaves should hold even with a malicious OS.

Snapshot

Clone by itself still requires copying the entire virtual memory to ensure isolation. To enable
memory sharing, Snapshot makes the caller enclave e to be an immutable image (Figure 5.4b).
After calling Snapshot, e becomes a special type of enclave referred to as a snapshot enclave or
the root snapshot of its descendants. e is no longer allowed to execute at this point because all of
its memory becomes read- or execute-only. On the other hand, e can be cloned by Clone, where
the descendants of e are allowed to read directly from the e’s shared data pages. Any writes from
the descendants to physical addresses p ∈ PA owned by e (i.e., σ.o[p] = e) trigger copy-on-write
(CoW). This scheme ensures that the descendant enclaves are still write-isolated from each other.

Like Clone, Snapshot has a success condition described in Eq. (5.2). The condition checks
that the current executing enclave is valid valid(σ.ecurr), e is not (¬) already a snapshot and the
enclave cannot have a root snapshot (which is described in the next section) in the current state σ.

valid(σ.ecurr) ∧ ¬σ.MIS[e] ∧ ¬valid(σ.MRS[σ.ecurr]) (5.2)

If Snapshot is called successfully in a state that satisfies this condition, e is marked as a snapshot
enclave. In the formal model, the metadata stateMIS[e] is to true.

Clone after Snapshot

In order to make Clone work with Snapshot, Clone additionally increments ep’s child count
MCC [ep] by 1, and sets the root snapshot of ec (i.e., MRS[ec]) to either ep or ep’s root snapshot
MRS[ep] if it has one.

With the single-sharing model, arbitrarily nested calls of Clone should still keep only one
shareable enclave. As shown in Figure 5.5, there will be only one root snapshot e1, whose memory
is shared across all the descendants. This means that even though cloning can be arbitrarily nested,
the maximum height of the tree representing the root snapshot to child enclave is one.

To maintain the same functionality, the virtual address space of the parent and the child should
be the same right after Clone. Thus, a descendant enclave memory will diverge from the shared

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 93

<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

<latexit sha1_base64="dbuUAUdgcBNjhllAS/ivlGg0Ui4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gP1av1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD2KY2Z</latexit>e4

Parent Enclave

Root Snapshot

Figure 5.5: Parent-child relationship and root snapshot-child relationship of four enclaves in Cer-
berus. Enclave e1 is a snapshot and parent enclave of e2, which is the parent of e3, which is the
parent of e4. Despite the nested parent relationship, the root snapshot of e2, e3, and e4 are e1.

memory when the descendant writes. Unfortunately, there is no better way than having Clone
copy the diverged memory from the parent to the child. This is a limitation of Cerberus because
the benefit of sharing memory will gradually vanish as the memory of descendant diverges from
the snapshot. However, Cerberus is very effective when the enclaves mostly write to a small part
of memory while sharing the rest. It is the programmer’s responsibility to optimize their program
by choosing the correct place to call Snapshot.

5.4.5 Security Arguments
Security Arguments for Clone Allowing the untrusted OS to clone the enclave any number of
times does not break the security guarantees of the enclave. This becomes more obvious by viewing
cloning as a special way of creating an enclave. No matter how many enclaves the untrusted
adversary creates using Clone, the final machine state Ee(σn) after the operation will look as if
the OS launched multiple enclaves e1 and e2 with the same initial state Ee1(σ0) = Ee2(σ0) and
executed e1 and e2 with the same enclave input sequence for both enclaves such that Ie1(σ0) =
Ie2(σ0), Ie1(σ1) = Ie2(σ1), ..., Ie1(σn) = Ie2(σn) to reach the state Ee1(σn) = Ee2(σn).

The OS is allowed to refuse to clone the enclave upon the enclave’s request, but again, this is
denial of service and is out of scope in the enclave threat model.

There is no uniqueness guarantee with the addition of Clone; for example, the measurement
verifier cannot distinguish two different enclaves with the same nonce. However, this is already
not a property that an enclave provides, and so does not represent the loss of security.

Security Arguments for Snapshot Snapshot is an irreversible operation that each enclave can
call only once. Snapshot can be called only by the enclave itself. Thus, the initial enclave code
needs to contain the code that calls Snapshot. Since the enclave decides when it wants to freeze,
the snapshot enclave is inheritably trusted if the enclave’s initial state is trusted.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 94

5.5 Proving Formal Security Guarantees
To recap, one of this chapter’s goals is to prove that Cerberus extension applied to an enclave
platform does not weaken the high-level security property SRE. This is accomplished by reproving
SRE on TAPC . As per Theorem 3.2 [196], it suffices to show that the triad of properties secure
measurement, integrity and confidentiality hold on TAPC to prove SRE. This section formally
defines each of these properties along with brief justification as to why these properties hold in the
TAPC model against the adversary described in Section 5.4. Each of these properties have been
mechanically7 proven on the base TAP model [196] without Snapshot and Clone, and this work
extends these proofs to provide the same guarantees8 on the extended TAPC model. For brevity,
this section leaves out some of the model implementation details. This section also provides a list
of additional inductive invariants required to prove the properties in the TAPC model at the end of
this section.

5.5.1 Secure Remote Execution
Secure Measurement In any enclave platform, the user desires to know that the enclave program
running remotely is in fact the program that it intends to run. In other words, the platform must be
able to measure the enclave program to allow the user to detect any changes to the program prior to
execution. Intuitively, the first part of the measurement property is formalized as Eq. (5.3) stating
that if any two enclaves e1 and e2 are in their initial states, the measurements of each enclave µ(e1)
and µ(e2) are the same after calling Launch if and only if the enclaves must have identical initial
states. µ is defined to be the measurement function that the user would use to check that their
enclave e is untampered with in the remote platform.

∀σ1, σ2 ∈ S.
(
init(Ee1(σ1)) ∧ init(Ee2(σ2))

)
⇒ (5.3)(

µ(e1) = µ(e2) ⇐⇒ Ee1(σ1) = Ee2(σ2)
)

The second part of measurement ensures that the enclave executes deterministically given an
initial state. This is formalized as Eq. (5.4), which states that any two enclaves e1 and e2 starting
with the same initial states, executing in lock step and with the same inputs at each step, should
have equal enclave states and outputs throughout the execution.

7these mechanical proofs were written in the automated verification toolkit UCLID5 [181, 210] which uses an
SMT solver in the backend.

8Same guarantees for the memory adversary.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 95

∀π1, π2. (5.4)(
Ee1(π

0
1) = Ee2(π

0
2) ∧

∀i.(curr(πi
1) = e1) ⇐⇒ (curr(πi

2) = e2) ∧
∀i.(curr(πi

1) = e1)⇒ Ie1(π
i
1) = Ie2(π

i
2)
)

⇒(
∀.Ee1(π

i
1) = Ee2(π

i
2) ∧Oe1(π

i
1) = Oe2(π

i
2)
)

With the addition of the Clone and Snapshot, the measurement of enclaves does not change
for two reasons. Eq. (5.3) is satisfied because the measurements of the children are copied over
from the parent and is in an equivalent enclave state as the parent. In addition, because each enclave
child executes in a way that is identical to the parent without Clone, the child enclave ec is still
deterministic up to the inputs Iec(σ).

Integrity The second property, integrity, states that the enclave program’s execution cannot be
affected by the adversary beyond the use of inputs Ie at each step and initial state Ee(π

0
1), formal-

ized as Eq. (5.5).

∀π1, π2. (5.5)(
Ee(π

0
1) = Ee(π

0
2) ∧

∀i.(curr(πi
1) = e) ⇐⇒ (curr(πi

2) = e) ∧
∀i.(curr(πi

1) = e)⇒ Ie(π
i
1) = Ie(π

i
2)
)

⇒(
∀.Ee(π

i
1) = Ee(π

i
2) ∧Oe(π

i
1) = Oe(π

i
2)
)

Clone creates a logical copy of the enclave whose behavior matches the parent enclave had it
not been cloned and thus clone does not affect the integrity of the enclave. Snapshot freezes the
enclave state and thus does not affect the integrity vacuously because the state of e after calling
snapshot does not change until its destruction.

Confidentiality Lastly, the confidentiality property states that given the same enclave program
with different secrets represented by e1 and e2 in traces π1 and π2 respectively, if the adversary
starts in the initial state Ae1(π1[0]) and the protected enclave(s) e1 (and e2) is operated with a
(potentially malicious) sequence of inputs Ie1 , the adversary should not learn more than what’s
provided by the observation function obs and hence its state Ae1(σ) and Ae1(σ) should be the
same. The fourth line of Eq. (5.6) requires that any changes by the protected enclave e does not

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 96

affect the observations made by the adversary in the next step. This is to avoid spurious counter
examples where secrets leak through obvious channels such as the enclave output, which is a bug
in the enclave program as explained in Section 5.4.3.

∀π1, π2. (5.6)(
Ae1(π

0
1) = Ae2(π

0
2) ∧

∀i.(curr(πi
1) = curr(πi

2) ∧ Ie1(σi
1) = Ie2(σ

i
2)) ∧

∀i.(curr(πi
1) = e)⇒ obs(πi+1

1) = obs(πi+1
2)

)
⇒(

∀.Ae1(π
i
1) = Ae2(π

i
2)
)

Snapshot alone clearly does not affect the confidentiality of the enclave. Clone on the other
hand, also does not affect confidentiality because it creates a logical duplicate of an enclave. Had
the adversary been able to break the confidentiality of the child ec, it should have been able to
break confidentiality of the parent ep because both should behave in the same way given the same
sequence of input.

5.5.2 Cerberus Platform Invariants
Proving the SRE property on TAPC requires a few key additional platform inductive invariants.
Although the following list is not exhaustive, it provides a summary of the difference between
the invariants in the base TAP model and the TAPC model and explains what precisely makes the
other sharing models more difficult to verify. The invariants are typically over the two traces π1
and π2 in the properties previously mentioned. However, there are single-trace properties, and
unless otherwise noted, it is assumed that single-trace properties defined over a single trace π hold
for both traces π1 and π2 in the properties.

Memory Sharing As explained earlier, allowing the sharing of memory weakens the constraint
that memory is strictly isolated. This means that the memory readable and executable by an enclave
can either belong to itself or its root snapshot. This is true for the entrypoints of the enclave and
the mapped virtual addresses. These are described as Eq. (5.7) and Eq. (5.8) respectively.

Eq. (5.7) states that all enclaves have an entrypoint that belongs to e itself or its snapshot
πi.MRS[e].

∀e ∈ Eid,∀i.
(
valid(e) ⇒ (5.7)(
πi.o[πi.MEP [e]] = e ∨

πi.o[πi.MEP [e]] = πi.MRS[e]
))

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 97

Eq. (5.8) states that every enclave e whose physical address p ∈ PA corresponding to virtual
address v ∈ VA in the page table that is mapped mappede(π[i].aPA[v])9 either belongs to e itself or
the root snapshot πi.MRS[e].

To illustrate the potential complexity of the capped and arbitrary memory sharing models, the
antecedent of this invariant would need to existentially quantify over all the possible snapshot
enclaves that that own the memory as opposed to the current two (the enclave itself or its root
snapshot). This would introduce an alternating quantifier[165] in the formula, making reasoning
with SMT solvers difficult.

∀e ∈ Eid,v ∈ VA, ∀i.
((
valid(e) ∧mappede(πi.aPA[v])

)
⇒ (5.8)(

πi.o[πi.aPA[v]] = e ∨

πi.o[πi.aPA[v]] = πi.MRS[e]
))

Lastly, memory that is marked free for an enclave e is owned by that enclave itself, represented
by Eq. (5.9).

∀e ∈ Eid, p ∈ PA,∀i.
(
πi.MPAF [e][p]⇒ πi.o[p] = e

)
(5.9)

Snapshots The next invariants relate to snapshot enclaves.
First, the root snapshot of an enclave is never itself, represented by Eq. (5.10).

∀e ∈ Eid, ∀i.(πi.MRS[e] 6= e) (5.10)

Snapshots also do not have root snapshots Eq. (5.11). This invariant reflects the property that
the root snapshot to ancestor enclave relationship has a height of at most 1. This is stated as all
enclaves that are snapshots have a root snapshot reference pointing to the invalid enclave ID einv.

∀e ∈ Eid,∀i.
((
valid(e) ∧ πi.MIS[e]

)
⇒ (5.11)

πi.MRS[e] = einv

)

Next, if an enclave has a root snapshot that is not invalid
(i.e. πi.MRS[e] 6= einv), then the root snapshot is a snapshot and the child count is positive. This
is represented as Eq. (5.12).

∀e ∈ Eid,∀i.
(
valid(πi.MRS[e])⇒ (5.12)(

πi.MIS[πi.MRS[e]] ∧

πi.MCC [πi.MRS[e]] > 0
))

9mapped is a function that returns whether a physical address is mapped in enclave e and is equivalent to the valid
function in the previous work [196]

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 98

The last notable invariant says that the currently executing enclave cannot be a snapshot as
described in Eq. (5.13).

∀e ∈ Eid,∀i.(¬π[i].MIS[π[i].ecurr]) (5.13)

Coming up with the exhaustive list of inductive invariants for TAPC took a majority of the
verification effort.

5.6 Implementation in RISC-V Keystone
This section implements Cerberus on Keystone to show feasibility. Keystone is an open-source
framework for building enclave platforms on RISC-V processors. Keystone implements the plat-
form operationsObase in high-privileged firmware called security monitor. This work implemented
additional Snapshot and Clone based on the specification. All fields of the enclave metadata live
within the security monitor memory. The metadata was extended with the variables corresponding
toMIS ,MCC ,MRS , andMPAF .

The implementation complies with the assumptions of the model described in Section 5.4.2.
First, Keystone enclave operations are atomic operations, which update the system state only when
the operation succeeds. Second, the implementation leverages Keystone’s free memory module to
achieve deterministic memory allocation for copy-on-write.

For memory isolation, Keystone uses a RISC-V feature called Physical Memory Protection
(PMP) [217], which allows the platform to allocate a contiguous chunk of physical memory to
each enclave. When an enclave executes, the corresponding PMP region is activated by the security
monitor. The weakened constraints (i.e., Eq. (5.8)) were implemented by activating the snapshot’s
memory region when the platform context switches into the enclave.

In the model, the platform would need to handle the copy-on-write. In Keystone, an enclave
can run with supervisor privilege, which allows the enclave to manage its page table. This was
very useful because the platform does not need to understand the virtual memory mapping of the
enclave. Letting the enclave handle its write faults does not hurt the security because the permis-
sions on physical addresses are still enforced by the platform. One implementation challenge was
that the enclave handler itself would always trigger a write fault because the handler requires some
writable stack to start execution. This work implements a stack-less page table traverse, which al-
lows the enclave to remap the page triggering the write fault without invoking any memory writes.
The final copy-on-write handler is similar to an on-demand fork [231].

5.7 Evaluation
The evaluation goals are as follows:

• Verification Results: Show that the incremental verification approach enables fast formal
reasoning on enclave platform modification.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 99

• Start-up Latency: Show that Cerberus interface can be used with process-creation system
calls to reduce the start-up latency of enclaves

• Computation Overhead: Show that the copy-on-write implementation does not incur sig-
nificant computation overhead

• Programmability: Show that Cerberus provides a programmable interface, which can be
easily used to improve the end-to-end latency of server enclave programs.

The performance evaluation used a SiFive’s FU540 [81] processor running at 1 GHz and an
Azure DC1s_v3 VM instance with an Intel R© Xeon R© Platinum 8370C running at 2.4 GHz to run
Keystone and SGX workloads respectively. Each experiment was averaged over 10 trials.

5.7.1 Verification Results
The TAPC model and proofs can be found at https://github.com/anonymous1721/TAPC.
git.

Porting TAP from Boogie to UCLID5. One other contribution of this work includes the port
of the original TAP model from Boogie [23] to UCLID5 [210, 181] (See [67]). UCLID5 is a
verification toolkit designed to model transition systems modularly, which provides an advantage
over the previous implementation written in the software-focused verification IR Boogie. UCLID5
is advantageous over other state-of-the-art tools [112, 54, 22, 205] because of modularity and
because it provides flexibility in modeling systems both operationally and axiomatically. This
effort took three person-months working approximately 25 hours a week to finish.

Verifying TAPC . The modeling and verification took roughly three person-months to write the
extensions to the TAP model and verify using a scalable approach. This time is substantially less
than it would have taken to rebuild the model from scratch without an existing abstraction.

Figure 5.6 shows the number of procedures #pn, number of (uninterpreted) functions #fn, num-
ber of annotations #an (which include pre- and post-conditions, loop invariants, and system invari-
ants), the number of lines of code #ln. The last column shows the verification time which includes
the time it took UCLID5 to generate verification conditions and print them out in SMTLIB2.0
and verify them using Z3/CVC410. The time discrepancy between the original proofs [196] and
the ones in this effort can be explained by the way all the verification conditions are generated
as SMTLIB on disk before verifying as a way to use other SMT solvers. Also, this work uses
UCLID5 instead of Boogie [23]. The number of lines for Snapshot and Clone is 1110, which
means only 489 lines were used to extend the existing TAP operations and platform model.

Despite the added complexity, each operation for each proof took only a few minutes to verify
individually as shown in the last column of Figure 5.6. This demonstrates that the incremental
verification methodology is practical and consequently reduces the overall time to verify additional
operations at a high level.

10For one of the properties, Z3 would get stuck but CVC4 didn’t.

https://github.com/anonymous1721/TAPC.git
https://github.com/anonymous1721/TAPC.git

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 100

Model/Proof Size Verif.
Time (s)#pr #fn #an #ln

TAP Models
TAP 43 14 225 2100 140
Integrity 2 0 52 525 285
Mem. Conf 3 0 44 838 342

TAPC Models
TAP 45 16 466 3689 1380
Integrity 2 0 109 937 934
Mem. Conf 3 0 119 1307 944

Figure 5.6: Model Statistics and Verification Times

The results show that the single-sharing model makes formal encoding and verification prac-
tical. Also, the results confirm that introducing invariants with alternating existential quantifiers
in the models degraded the verification time and would likely do the same for alternative models.
These attempts heavily influenced the design decisions.

5.7.2 Start-up Latency
This section implements fork and clone system calls based on Cerberus to show the efficacy of
the Cerberus interface. When an enclave program invokes the system calls, it calls Snapshot to
create an immutable image and cooperates with the OS to clone two enclaves from the snapshot us-
ing Clone. This section compares the fork latency on two platforms: SGX-based Graphene [209]
(now Gramine Linux Foundation project [74]) and RISC-V Keystone [110] with Cerberus. Fig-
ure 5.7 shows the program that calls fork after allocating memory with SIZE.

The baseline (Graphene-SGX) latency increases significantly as the allocation size increases
(Figure 5.8). With a 400 MB buffer, it takes more than 6 seconds to complete. Also, each enclave
will take 400 MB of memory at all times, even when most of the content is identical until one of the
enclaves writes. With Cerberus, the latency does not increase with respect to the allocation size,
because the implementation is not copying any of the parent’s memory, including the page tables.
It only took 23 milliseconds to fork on average, with a standard deviation of 16 microseconds.

5.7.3 Computation Overhead
This section measures the computation overhead incurred by CoW invocation. The experiment
uses the RV8 [169] benchmark to see the overhead for various memory sizes and access patterns
RV8 consists of 8 simple applications that perform single-threaded computation. The experiment
omitted bigint because of a known bug in Keystone 11. Since RV8 does not use fork, the exper-

11The provided toolchain was unable to compile C++ binary correctly

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 101

int main() {
char* buf = malloc(SIZE);
clock_t start = clock();
if (!fork()) {clock_t end = clock();} // child
else { return; } // parent

}

Figure 5.7: C code to measure fork latency

50 100 150 200 250 300 350 400
Allocation Size (MB)

0

2

4

6

La
te

nc
y

(s
)

Graphene (SGX) Cerberus (Keystone)

Figure 5.8: The latency of fork with respect to the size of the allocated memory.

dhrystone norx sha512 qsort aes miniz primes0

5

10

15

La
te

nc
y

(s
)

Native
Native (fork)
Keystone
Keystone (fork w/ Cerberus)

Figure 5.9: Computation Overhead on RV8. Native: native execution of the original RV8, Native
(fork): native execution of the modified RV8 with fork, Keystone: enclave execution of the origi-
nal RV8, and Keystone (fork w/ Cerberus): enclave execution of the modified RV8 with Cerberus.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 102

iment modified RV8 such that each of the benchmark forks before the computation begins. Note
that all programs in the benchmark allocate a large buffer, initialize it, and start the computation.
Thus, the experiment inserted a fork right after the allocation so that the computation triggers CoW
on various addresses depending on the memory access pattern.

As shown in Figure 5.9, the average computation overhead of copy-on-write memory over
Keystone was only 3.9%. The worst overhead was 19.0% incurred in qsort, which uses the
largest memory (about 190 MiBs). Memory sharing generally does not benefit such workloads
with a massive dissimilar buffer.

5.7.4 Programmability
This section demonstrates a usage of the Cerberus interface in enclave programming by showing
how server programs can leverage memory sharing to improve their end-to-end performance.

Although Snapshot or Clone are not directly related to fork or clone, their behavior maps
well with Snapshot and Clone. For example, those system calls create a new process with the
same virtual memory, which can be mapped to Clone and optimized by Snapshot. Thus, two
students were provided with the modified fork and clone that use Cerberus interface and asked
to modify the server programs to leverage memory sharing.

A student modified darkhttpd, a single-threaded web server, to fork processes to handle new
HTTP requests inside the event loop. The modification allowed darkhttpd to serve multiple re-
quests concurrently and continue listening for new requests. The experiment measures the latency
of an HTTP request using wget to fetch 0.5 MB of data. The resulting program incurs only a 2.1x
slowdown over the native (non-enclave) execution, in contrast to a 33x slowdown in corresponding
Intel SGX implementation (the same program ran with Graphene). The 2.1x overhead is mainly
due to the slow I/O system calls, which are a well-known limitation of enclaves [218, 110].

Another student implements a simple read-only database server application using Sqlite3, a
single-file SQL library that supports in-memory and file-based databases. The resulting program
serves each query with a fresh child created by fork. The experiment measures the latency of
1,000 SELECT queries served by separate enclaves. The resulting program incurs a 36x slowdown
over the native execution, compared to a 262x slowdown in corresponding Intel SGX implemen-
tation. In SGX, Darkhttpd experiences more overhead than Sqlite3 because Sqlite3 has more data
to copy over (i.e., the entire in-memory database). The 36x slowdown is mainly due to limited
concurrency in Keystone: since Keystone implements memory isolation with a limited number of
PMP entries, it can support only up to 3-4 concurrent enclaves. The limitation is not an inherent
limitation of Cerberus.

Both students did not have any difficulties allowing enclaves to share memory, because they
were already familiar with the expected behavior of the system calls. However, they did not know
the codebase of Darkhttpd nor Sqlite3 prior to work. Darkhttpd required modification of less than
30 out of 2,900 lines of code, which took less than ten person-hours, and Sqlite3 consists of 103
lines of code, which took less than twenty person-hours. The experiment shows that programmers
can use the Cerberus extension easily to improve the end-to-end performance of server programs.

CHAPTER 5. AGILE AND SECURE IMPLEMENTATION OF NEW FEATURES 103

5.8 Implications and Limitations
Verifying the Implementation This work does not verify the implementation of Cerberus in
Keystone. Unsurprisingly, any discrepancy between the model and the implementation can make
the implementation vulnerable. In particular, the enclave page table is abstracted as enclave meta-
data in TAP and TAPC , where it is a part of memory Π in practice. Cerberus in Keystone does not
create any security holes because the page table management is trusted (the enclave manages it).
However, this does not imply that the same argument applies to the other implementations. To for-
mally verify the implementation, one can construct the model for Keystone implementation and do
the refinement proof to show that the model refines the TAP model as described by Subramanyan
et al. [196].

In-Enclave Isolation Instead of modifying the platform, a few approaches [184, 4, 127, 105]
use in-enclave isolation mechanisms to create multiple security domains within a single enclave.
However, security guarantees of such solutions rely on the formal properties of not only the enclave
platform but also the additional techniques used for the isolation. For example, the security of
software fault isolation (SFI) [214] based approaches [184, 4] depends on the correctness and
robustness of the SFI techniques including the shared software implementation and the compiler,
which should be formally reasoned together with the enclave platform. Thus, such approaches will
result in a significant amount of verification efforts.

5.9 Summary
This chapter showed how to formally reason about modifying the enclave platform to allow mem-
ory sharing. The chapter introduces the single-sharing model, which can support secure and effi-
cient memory sharing of enclaves. The chapter also proposed two additional platform operations
similar to existing process-creation system calls. To formally reason about the security properties
of the modification, a generic formal specification was defined by incrementally extending an ex-
isting formal model. The incremental verification allowed quick proof of the security guarantees
of the enclave platform. The implementation of the extension on Keystone open-source enclave
platform brought significant performance improvement to server enclaves.

104

Chapter 6

Conclusion and Future Work

As cloud computing gains more popularity, security and privacy have been the number one concern
for both the users and the service providers. Academia and industry are considering the trusted
execution environment (TEE) as one of the most promising solutions, as it provides better security
than software-based isolation and higher performance than cryptography-based privacy-preserving
schemes. However, designing and building TEEs are dictated by a small number of companies,
leaving only a small room for researchers to verify or improve.

This thesis addressed a few research challenges of designing and building secure TEEs. Sec-
tion 6.1 summarizes the contribution of this thesis. Then, Section 6.2 depicts future research
opportunities based on the lessons learned in this thesis.

6.1 Contributions
Chapter 3 motivated more research on TEE threat models by showing how an off-chip side-channel
attack can break the confidentiality of Intel SGX, an existing commercial TEE. While this thesis
admitted that such side channels are hard to eradicate, it discussed a fundamental question of why
side-channel attacks even matter. As Intel SGX does not defend against side channels by design,
the attack leverages the page table management capability of the attacker that SGX overlooks.
Thus, Chapter 3 urged TEEs to consider side-channel attacks, not to mention other ones [220, 35].
Most importantly, the chapter motivated the need for a better TEE design that can adapt to various
threat models.

Chapter 4 presented the Keystone framework for building TEEs. The chapter explained why
existing vendor TEEs are inefficient for various optimizations. Then, the chapter introduced a
customizable TEE framework instead of a TEE design with a fixed threat model. Based on the
common characteristics that most of the TEEs share, Keystone allows modular software extensions
to add extra functions and security guarantees to the TEE. The modular design makes design
space exploration and trade-off analysis effective while keeping the trusted computing base small.
Keystone allows researchers to customize their TEEs based on various threat models, workloads,
and performance requirements.

CHAPTER 6. CONCLUSION AND FUTURE WORK 105

Chapter 5 suggested a modification of TEE to support secure memory sharing of enclaves. The
chapter showed why a TEE needs memory sharing and why existing solutions fail to provide a
formally verified design. Thus, the chapter suggested incremental verification, which can quickly
verify the security properties of the TEE modification based on an existing abstract model. Allow-
ing the single-sharing model with simple additional operations enables efficient memory sharing
while keeping the entire design formally reasonable. The verified design was implemented in
Keystone introduced in Chapter 4, which improved the performance of server applications.

To summarize, this thesis showed why we need to build a TEE with the right threat model, how
to build a TEE framework such that one can customize their TEE based on their needs, and how to
improve TEE performance while keeping the security properties. The following section discusses
future research directions based on the progress of this thesis.

6.2 Future Work
Although TEEs provide a smaller attack surface via hardware-based isolation, they still suffer from
a few security issues.

• Side-Channel Attacks and Mitigations. Despite the efforts to thwart them, side-channel
attacks have been a continuous threat to TEEs. As Chapter 3 has shown, side channels can
exist everywhere, regardless of whether it’s hardware or software, open-source or closed-
source, and even formally verified or not. TEEs cannot thwart all existing side-channel
attacks, yet they can reduce the risk such that it has a higher bar and lower bandwidth of
leakage even with a successful attack. Promising directions include fundamental defenses
via hardware-software co-design [56, 141, 50], formal reasoning on side-channel attacks [40,
196], and data-oblivious computation techniques [227, 225].

• Trusted Hardware. Most security properties of TEEs rely on trusted hardware designed
and manufactured by trusted parties. In practice, this makes a TEE rely on design deci-
sions and implementation of a company. There are already substantial efforts to fully open-
source hardware, including the silicon root of trust [147], processors [16, 38], and IPs [166].
Open-sourcing hardware will allow the community to inspect and verify the implementation,
leading to more trustworthy hardware. However, fully trusting hardware will require more
research on the entire trusted chip-making process, including synthesis, physical design,
fabrication, and packaging.

• Formal Verification. As Chapter 5 depicted, formal methods are a powerful tool to verify
the functional correctness of the system and high-level security properties like confidentiality
and integrity. However, it usually involves laborious manual efforts such as writing formal
models, reasoning about invariants, and applying various proof techniques. The verifica-
tion efforts can fade away with more automated verification techniques such as automated
synthesis [229, 63], push-button verification [137, 136], and solver-aided languages [205].
Another issue is that it is hard to reason about the TEE as a whole. A TEE involves not only

CHAPTER 6. CONCLUSION AND FUTURE WORK 106

software but hardware components with various microarchitectural details. As a promising
approach, integration verification [62] models the hardware-software interface to verify an
end-to-end system, including hardware and software.

Currently, Keystone is widely used in academia as a framework for prototyping various ideas
in TEEs. However, there are still many research challenges and potential design improvements.

• Scalable Memory Isolation. Keystone relies on Physical Memory Protection (PMP) in
standard RISC-V ISA to implement hardware-based isolation. Because each enclave re-
quires at least one PMP entry, the number of PMP entries in the platform limits the number
of enclaves in a system. Penglai Enclave [64] suggested using Guarded Page Table to enable
page-granularity isolation, which relies on virtual memory with minimal hardware exten-
sion. Such an approaches will make memory isolation scalable, but at the cost of the size and
complexity of the platform and trusted firmware (i.e., security monitor). There are efforts to
address the issue by incorporating software-based isolation with hypervisor extension lever-
aging two-stage address translation, which will require additional hardware mechanisms and
software verification to strengthen the TCB.

• Efficient Memory Encryption. Keystone offers software-based memory encryption and
integrity protection [11], which incurs significant performance degradation. The perfor-
mance degradation is mainly due to frequent page swapping caused by a small on-chip
memory to store plain data. One can improve the performance by (1) expanding on-chip
memory and using specialized hardware accelerators to speed up the page encryption, de-
cryption, and swapping; or (2) a dedicated memory encryption engine baked in the memory
controller. The lack of an open-source, performant memory controller makes the former
option more attractive.

Finally, there are research opportunities around building TEEs and TEE-based applications,
which will allow more TEE adoption.

• Distributed Computation. As more TEEs target cloud rather than mobile or desktop envi-
ronments, there will be a push to protect distributed applications with TEEs. Broad adoption
of TEEs in distributed computing will require efficient communication between distributed
TEEs, secure key management, efficient encryption and authentication techniques for stor-
age and memory, and TEE migration techniques.

• Programming Model. As Section 2 describes, TEE programs can only leverage a narrow
and limited interface. Thus, the programmers often need to completely rewrite the programs,
which can entail manual efforts and human errors. TEE-aware programming languages and
compilers can reduce the programming burden. Also, they will enforce security decisions to
be made by the programmers, reducing the risk of vulnerabilities caused by human errors.

107

Bibliography

[1] ADVANCED TRUSTED ENVIRONMENT: OMTP TR1. http://www.omtp.org/OMTP_
Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf. Last accessed: January 18,
2022. 2009.

[2] AES. https://github.com/B-Con/crypto-algorithms. 2015.

[3] Shaizeen Aga and Satish Narayanasamy. “InvisiMem: Smart Memory Defenses for Mem-
ory Bus Side Channel”. In: Proc. of International Symposium on Computer Architecture
(ISCA). 2017.

[4] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungyoung Lee.
“Chancel: efficient multi-client isolation under adversarial programs”. In: Proc. of Network
and Distributed System Security Symposium (NDSS). 2021.

[5] Sidney Amani et al. “Cogent: Verifying High-Assurance File System Implementations”. In:
Proc. of Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2016.

[6] AMD Secure Encrypted Virtualization. https://developer.amd.com/amd-secure-
memory- encryption- sme- amd- secure- encrypted- virtualization- sev/.
Last accessed: January 1, 2022.

[7] AMD SEV-SNP. https://developer.amd.com/sev/. 2020.

[8] S. r. Ames, R. Schell, and M. Gasser. “Security Kernel Design and Implementation: An
Introduction”. In: Computer 16.07 (1983).

[9] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. “Innovative Tech-
nology for CPU Based Attestation and Sealing”. In: Proc. of Workshop on Hardware and
Architectural support for Security and Privacy (HASP). 2013.

[10] James P Anderson. Computer Security Technology Planning Study. Tech. rep. Anderson
(James P) and Co Fort Washington PA, 1972.

[11] Gui Andrade, Dayeol Lee, David Kohlbrenner, Krste Asanović, and Dawn Song. “Software-
Based Off-Chip Memory Protection for RISC-V Trusted Execution Environments”. In:
Proc. of the Third Workshop on Computer Architecture Research with RISC-V (CARRV).
2020.

http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
https://github.com/B-Con/crypto-algorithms
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/amd-secure-memory-encryption-sme-amd-secure-encrypted-virtualization-sev/
https://developer.amd.com/sev/

BIBLIOGRAPHY 108

[12] Arm Confidential Compute Architecture. https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture.

[13] ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone.
2013.

[14] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. “A view of cloud
computing”. In: Communications of the ACM 53.4 (2010), pp. 50–58.

[15] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In: Proc. of
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2016.

[16] Krste Asanović et al. “The Rocket Chip Generator”. In: UCB/EECS-2016-17 (2016).

[17] N. Asokan. “Hardware-Assisted Trusted Execution Environments: Look Back, Look Ahead”.
In: Proc. of ACM SIGSAC Conference on Computer and Communications Security (CCS).
2019.

[18] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Christian Priebe,
Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter Pietzuch. “LibSEAL:
Revealing Service Integrity Violations Using Trusted Execution”. In: Proc. of European
Conference on Computer Systems (EuroSys). 2018.

[19] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. “ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories”. In: Proc. of International Sympo-
sium on Computer Architecture (ISCA). 2017.

[20] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad Ganesh,
Jia Ma, and Wenbo Shen. “Hypervision Across Worlds: Real-time Kernel Protection from
the ARM TrustZone Secure World”. In: Proc. of ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2014.

[21] Sundeep Bajikar. “Trusted platform module (tpm) based security on notebook pcs-white
paper”. In: Mobile Platforms Group Intel Corporation 1 (2002), p. 20.

[22] Haniel Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In: Pro-
ceedings of International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). 2022.

[23] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLIne, Bart Jacobs, and Rustan Leino. “Boo-
gie: A Modular Reusable Verifier for Object-Oriented Programs”. In: Proc. of Formal
Methods for Components and Objects (FMCO). 2005.

[24] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications from an
Untrusted Cloud with Haven”. In: Proc. of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 2014.

[25] Rachel Bennett. How going digital has impacted cloud adoption. https : / / blogs .
oracle.com/cloud-infrastructure/post/how-going-digital-has-impacted-
cloud-adoption. 2021.

https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/products/security-on-arm/trustzone
https://blogs.oracle.com/cloud-infrastructure/post/how-going-digital-has-impacted-cloud-adoption
https://blogs.oracle.com/cloud-infrastructure/post/how-going-digital-has-impacted-cloud-adoption
https://blogs.oracle.com/cloud-infrastructure/post/how-going-digital-has-impacted-cloud-adoption

BIBLIOGRAPHY 109

[26] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels. “Tesser-
act: Real-Time Cryptocurrency Exchange using Trusted Hardware”. In: Proc. of ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2019.

[27] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel
Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. “The Turtles Project:
Design and Implementation of Nested Virtualization”. In: Proc. of USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 2010.

[28] Boolos, George S. and Burgess, John P. and Jeffrey, Richard C. “The Undecidability of
First-Order Logic”. In: Computability and Logic. 5th ed. Cambridge University Press,
2007.

[29] Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and Srinivas
Devadas. “MI6: Secure Enclaves in a Speculative Out-of-Order Processor”. In: Proc. of
IEEE/ACM International Symposium on Microarchitecture (MICRO). 2019.

[30] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza. “Roll-
back and Forking Detection for Trusted Execution Environments using Lightweight Col-
lective Memory”. In: Proc. of Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 2017.

[31] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel
Stapf. “Sanctuary: ARMing TrustZone with User-space Enclaves”. In: Proc. of Network
and Distributed System Security Symposium (NDSS). 2019.

[32] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. “Software Grand Exposure: SGX Cache Attacks Are Practical”.
In: Proc. of USENIX Workshop on Offensive Technologies (WOOT). 2017.

[33] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz, Christof
Fetzer, Peter Pietzuch, and Rüdiger Kapitza. “SecureKeeper: Confidential ZooKeeper Us-
ing Intel SGX”. In: Proc. of International Middleware Conference (Middleware). 2016.

[34] Ernie Brickell, Jan Camenisch, and Liqun Chen. “Direct Anonymous Attestation”. In:
Proc. of ACM SIGSAC Conference on Computer and Communications Security (CCS).
2004.

[35] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”.
In: Proc. of USENIX Security Symposium. 2018.

[36] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
“Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks on Enclaved
Execution”. In: Proc. of USENIX Security Symposium. 2017.

[37] Claudio Canella et al. “Fallout: Leaking Data on Meltdown-resistant CPUs”. In: Proc. of
ACM SIGSAC Conference on Computer and Communications Security (CCS). 2019.

BIBLIOGRAPHY 110

[38] Christopher Celio, David A. Patterson, and Krste Asanović. The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Pro-
cessor. Tech. rep. UCB/EECS-2015-167. 2015.

[39] David Champagne and Ruby B. Lee. “Scalable architectural support for trusted software”.
In: Proc. of International Symposium on High-Performance Computer Architecture (HPCA).
2010.

[40] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. “A formal
approach to secure speculation”. In: Proc. of IEEE Computer Security Foundations Sym-
posium (CSF). 2019.

[41] Stephen Checkoway and Hovav Shacham. “Iago attacks: why the system call API is a bad
untrusted RPC interface”. In: Proc. of Architectural support for programming languages
and operating systems (ASPLOS). 2013.

[42] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang, XiaoFeng
Wang, Ten-Hwang Lai, and Dongdai Lin. “Racing in Hyperspace: Closing Hyper-Threading
Side Channels on SGX with Contrived Data Races”. In: S&P. 2018.

[43] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. “Detecting Priv-
ileged Side-Channel Attacks in Shielded Execution with DéJà Vu”. In: Proc. of ACM ASIA
Conference on Computer and Communications Security (ASIACCS). 2017.

[44] Xi Chen, Robert P Dick, and Alok Choudhary. “Operating system controlled processor-
memory bus encryption”. In: Proc. of Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2008.

[45] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Wald-
spurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports. “Overshadow: A Virtualization-
Based Approach to Retrofitting Protection in Commodity Operating Systems”. In: Proc. of
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 2008.

[46] Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot Heiser. “The Co-
gent Case for Property-Based Testing”. In: Proc. of Workshop on Programming Languages
and Operating Systems (PLOS). 2017.

[47] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari
Juels, Andrew Miller, and Dawn Song. “Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contracts”. In: Proc. of IEEE European Symposium on
Security and Privacy (EuroS&P). 2019.

[48] cloc - count lines of code. https://github.com/AlDanial/cloc. 2020.

[49] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive, Re-
port 2016/086. 2016.

[50] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal Hardware Exten-
sions for Strong Software Isolation”. In: Proc. of USENIX Security Symposium. 2016.

https://github.com/AlDanial/cloc

BIBLIOGRAPHY 111

[51] John Criswell, Nathan Dautenhahn, and Vikram Adve. “Virtual Ghost: Protecting Applica-
tions from Hostile Operating Systems”. In: Proc. of Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 2014.

[52] ARM Security IP CryptoIsland Family. https://www.arm.com/products/silicon-
ip-security/cryptoisland. Last accessed: December 2, 2019.

[53] Mark Horowitz David Lie Chandramohan A. Thekkath. “Implementing an Untrusted Op-
erating System on Trusted Hardware”. In: Proc. of Symposium on Operating Systems Prin-
ciples (SOSP). 2003.

[54] Leonardo De Moura and Nikolaj Bjorner. “Z3: An Efficient SMT Solver”. In: Proc. of
the Theory and Practice of Software, in 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS/ETAPS). 2008.

[55] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR09. 2009.

[56] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments”. In: Proc. of USENIX
Security Symposium. 2020.

[57] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang
Zhang. “M2R: Enabling Stronger Privacy in MapReduce Computation”. In: Proc. of USENIX
Security Symposium. 2015.

[58] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and S.W. Smith. “Building the
IBM 4758 secure coprocessor”. In: Computer 34.10 (2001), pp. 57–66. DOI: 10.1109/2.
955100.

[59] Ed25519. https://github.com/mit-sanctum/ed25519. 2019.

[60] Dawson R. Engler. “The Exokernel Operating System Architecture”. AAI0800457. PhD
thesis. Cambridge, MA, USA, 1998.

[61] Enron Email Dataset. https://www.cs.cmu.edu/~./enron/. Last accessed: Decem-
ber 2, 2019.

[62] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. “Inte-
gration Verification across Software and Hardware for a Simple Embedded System”. In:
Proc. of ACM SIGPLAN Conference on Programming language design and implementa-
tion (PLDI). 2021.

[63] Grigory Fedyukovich and Rastislav Bodík. “Accelerating syntax-guided invariant synthe-
sis”. In: Proc. of International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 2018.

[64] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang,
and Haibo Chen. “Scalable Memory Protection in the PENGLAI Enclave”. In: Proc. of
USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2021.

https://www.arm.com/products/silicon-ip-security/cryptoisland
https://www.arm.com/products/silicon-ip-security/cryptoisland
https://doi.org/10.1109/2.955100
https://doi.org/10.1109/2.955100
https://github.com/mit-sanctum/ed25519
https://www.cs.cmu.edu/~./enron/

BIBLIOGRAPHY 112

[65] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software”. In: Proc. of Sym-
posium on Operating Systems Principles (SOSP). 2017.

[66] Brad Fitzpatrick. “Distributed caching with memcached”. In: Linux journal 2004.124 (2004),
p. 5.

[67] Pranav Gaddamadugu. “Formally Verifying Trusted Execution Environments with UCLID5”.
MA thesis. EECS Department, University of California, Berkeley, Aug. 2021.

[68] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware”. In: Journal of Crypto-
graphic Engineering (2018).

[69] Craig Gentry. “Computing arbitrary functions of encrypted data”. In: Communications of
the ACM 53.3 (2010), pp. 97–105.

[70] GNU Privacy Guard. http://www.gnupg.org. Last accessed: December 2, 2019.

[71] O. Goldreich, Silvio Micali, and Avi Wigderson. “How to Play ANY Mental Game”. In:
Proc. of ACM symposium on Theory of computing (STOC). 1987.

[72] David Goltzsche et al. “EndBox: Scalable Middlebox Functions Using Client-Side Trusted
Execution”. In: Proc. of Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). 2018.

[73] Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas Sekar, Prateek Saxena, and Min Suk
Kang. “Practical Verifiable In-network Filtering for DDoS defense”. In: Proc. of Interna-
tional Conference on Distributed Computing Systems (ICDCS). 2019.

[74] Gramine. https://github.com/gramineproject/gramine. 2021.

[75] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and Manuel
Costa. “Strong and Efficient Cache Side-Channel Protection using Hardware Transactional
Memory”. In: Proc. of USENIX Security Symposium. 2017.

[76] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. “Flush+Flush: A
Fast and Stealthy Cache Attack”. In: Proc. of Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). 2016.

[77] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman)
Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. “Deep Specifications and Certified
Abstraction Layers”. In: Proc. of ACM Symposium on Principles of Programming Lan-
guages (POPL). 2015.

[78] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and
David Costanzo. “CertiKOS: An Extensible Architecture for Building Certified Concur-
rent OS Kernels”. In: Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2016.

[79] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose Processors.
Cryptology ePrint Archive, Report 2016/204. 2016.

http://www.gnupg.org
https://github.com/gramineproject/gramine

BIBLIOGRAPHY 113

[80] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Cal, Ariel J. Feldman, and Edward W. Felten. “Lest We Remember: Cold Boot
Attacks on Encryption Keys”. In: USENIX Security Symposium. 2008.

[81] HiFive Unleashed. https://www.sifive.com/boards/hifive-unleashed. 2020.

[82] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel.
“InkTag: Secure Applications on an Untrusted Operating System”. In: Proc. of Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
2013.

[83] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List Profile. United States, 2002.

[84] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan. “vTZ:
Virtualizing ARM TrustZone”. In: Proc. of USENIX Security Symposium. 2017.

[85] Andrew Huang. “Keeping Secrets in Hardware: The Microsoft XboxTM Case Study”. In:
Proc. of International Workshop on Cryptographic Hardware and Embedded Systems (CHES).
2003.

[86] Hunspell. http://hunspell.github.io/. Last accessed: December 2, 2019.

[87] Galen Hunt, George Letey, and Ed Nightingale. The Seven Properties of Highly Secure De-
vices. Tech. rep. Mar. 2017. URL: https://www.microsoft.com/en-us/research/
publication/seven-properties-highly-secure-devices/.

[88] Hypervisor draft v0.5. https://github.com/riscv/riscv-isa-manual/releases/
tag/draft-20191030-899457c. 2019.

[89] Intel Trust Domain Extensions. https://www.intel.com/content/dam/develop/
external/us/en/documents/tdx-whitepaper-v4.pdf. Last accessed: January 1,
2022.

[90] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Pro-
gramming Guide, Part 1. https://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-software-developer-
vol-3a-part-1-manual.pdf. Last accessed: December 2, 2019.

[91] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-Bomb: Locking Down
the Processor via Rowhammer Attack”. In: Proc. of Workshop on System Software for
Trusted Execution (SysTEX). 2017.

[92] Mohit Kumar Jangid, Guoxing Chen, Yinqian Zhang, and Zhiqiang Lin. “Towards For-
mal Verification of State Continuity for Enclave Programs”. In: Proc. of USENIX Security
Symposium. 2021.

[93] JKI Inc. JLA320A. https://www.jkic.co.kr/ddr4-protocol-analyzer. Last
accessed: December 2, 2019.

https://www.sifive.com/boards/hifive-unleashed
http://hunspell.github.io/
https://www.microsoft.com/en-us/research/publication/seven-properties-highly-secure-devices/
https://www.microsoft.com/en-us/research/publication/seven-properties-highly-secure-devices/
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20191030-899457c
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20191030-899457c
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.jkic.co.kr/ddr4-protocol-analyzer

BIBLIOGRAPHY 114

[94] Simon Paul Johnson. Intel SGX and Side Channels. https://www.intel.cn/content/
www/cn/zh/developer/articles/technical/intel-sgx-and-side-channels.
html. Last accessed: January 18, 2022.

[95] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel
Software Guard Extensions: EPID Provisioning and Attestation Services. 2016.

[96] David Kaplan. AMD SEV-ES. https://developer.amd.com/sev/. 2017.

[97] Sagar Karandikar et al. “Firesim: FPGA-accelerated Cycle-exact Scale-out System Simula-
tion in the Public Cloud”. In: Proc. of International Symposium on Computer Architecture
(ISCA). 2018.

[98] Pierre Selwan Ken Irving. Revolutionizing the Computing Landscape and Beyond. https:
//content.riscv.org/wp-content/uploads/2018/12/RISC-V-MultiCore-
Secure-Boot-Ken-Irvining-and-Pierre-Selwan.pdf. Dec. 2018.

[99] Steven L Kinney. Trusted platform module basics: using TPM in embedded systems. Else-
vier, 2006.

[100] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel Emer.
“DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors”.
In: Proc. of IEEE/ACM International Symposium on Microarchitecture (MICRO). 2018.

[101] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”. In: Proc. of Symposium
on Operating Systems Principles (SOSP). 2009.

[102] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. “Spectre Attacks:
Exploiting Speculative Execution”. In: Proc. of IEEE Symposium on Security and Privacy
(S&P). 2019.

[103] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan. “TrustLite:
A Security Architecture for Tiny Embedded Devices”. In: Proc. of European Conference
on Computer Systems (EuroSys). 2014.

[104] Oliver Kömmerling and Markus G Kuhn. “Design Principles for Tamper-Resistant Smart-
card Processors.” In: Proc. of Workshop on Smartcard Technology on USENIX Workshop
on Smartcard Technology (WOST). 1999.

[105] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. “SGXBOUNDS: Memory safety for shielded execu-
tion”. In: Proc. of the Twelfth European Conference on Computer Systems (EuroSys). 2017.

[106] Andrew Law, Chester Leung, Rishabh Poddar, Raluca Ada Popa, Chenyu Shi, Octavian
Sima, Chaofan Yu, Xingmeng Zhang, and Wenting Zheng. “Secure collaborative training
and inference for xgboost”. In: Proc. of the Workshop on Privacy-Preserving Machine
Learning in Practice (PPMLP). 2020.

https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-sgx-and-side-channels.html
https://www.intel.cn/content/www/cn/zh/developer/articles/technical/intel-sgx-and-side-channels.html
https://developer.amd.com/sev/
https://content.riscv.org/wp-content/uploads/2018/12/RISC-V-MultiCore-Secure-Boot-Ken-Irvining-and-Pierre-Selwan.pdf
https://content.riscv.org/wp-content/uploads/2018/12/RISC-V-MultiCore-Secure-Boot-Ken-Irvining-and-Pierre-Selwan.pdf
https://content.riscv.org/wp-content/uploads/2018/12/RISC-V-MultiCore-Secure-Boot-Ken-Irvining-and-Pierre-Selwan.pdf

BIBLIOGRAPHY 115

[107] Ilia Lebedev, Kyle Hogan, and Srinivas Devadas. “Secure Boot and Remote Attestation
in the Sanctum Processor”. In: Proc. of IEEE Computer Security Foundations Symposium
(CSF). 2018.

[108] Ilia Lebedev, Kyle Hogan, Jules Drean, David Kohlbrenner, Dayeol Lee, Krste Asanović,
Dawn Song, and Srinivas Devadas. “Sanctorum: A lightweight security monitor for secure
enclaves”. In: Proc. of Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2019.

[109] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa. “An Off-
Chip Attack on Hardware Enclaves via the Memory Bus”. In: Proc. of USENIX Security
Symposium. 2020.

[110] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. “Key-
stone: An Open Framework for Architecting Trusted Execution Environments”. In: Proc.
of European Conference on Computer Systems (EuroSys). 2020.

[111] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
“Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing”. In:
Proc. of USENIX Security Symposium. 2017.

[112] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”.
In: Proc. of Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR). 2010.

[113] Mingyu Li, Yubin Xia, and Haibo Chen. “Confidential Serverless Made Efficient with
Plug-in Enclaves”. In: Proc. of International Symposium on Computer Architecture (ISCA).
2021.

[114] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena. “DroidVault: A Trusted Data Vault
for Android Devices”. In: Proc. of International Conference on Engineering of Complex
Computer Systems (ICECCS). 2014.

[115] J. Liedtke. “On Micro-kernel Construction”. In: Proc. of Symposium on Operating Systems
Principles (SOSP). 1995.

[116] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter Pietzuch.
“Teechain: A Secure Payment Network with Asynchronous Blockchain Access”. In: Proc.
of Symposium on Operating Systems Principles (SOSP). 2019.

[117] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: Proc. of
USENIX Security Symposium. 2018.

[118] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. “Last-Level Cache
Side-Channel Attacks Are Practical”. In: Proc. of IEEE Symposium on Security and Pri-
vacy (S&P). 2015.

BIBLIOGRAPHY 116

[119] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John
Kubiatowicz, and Dawn Song. “PHANTOM: Practical Oblivious Computation in a Se-
cure Processor”. In: Proc. of ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2013.

[120] Saara Matala, Thomas Nyman, and N. Asokan. Historical insight into the development of
Mobile TEEs. http://blog.ssg.aalto.fi/2019/06/historical-insight-
into-development-of.html. 2019.

[121] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur
Gervais, Ari Juels, and Srdjan Capkun. “ROTE: Rollback Protection for Trusted Execu-
tion”. In: Proc. of USENIX Security Symposium. 2017.

[122] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor,
and Adrian Perrig. “TrustVisor: Efficient TCB Reduction and Attestation”. In: Proc. of
IEEE Symposium on Security and Privacy (S&P). 2010.

[123] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi Isozaki.
“Flicker: An execution infrastructure for TCB minimization”. In: Proc. of European Con-
ference on Computer Systems (EuroSys). 2008.

[124] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. “Spectre
is here to stay: An analysis of side-channels and speculative execution”. In: arXiv preprint
arXiv:1902.05178 (2019).

[125] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Rebekah
Leslie-Hurd, and Carlos Rozas. “Intel Software Guard Extensions Support for Dynamic
Memory Management Inside an Enclave”. In: Proc. of Workshop on Hardware and Archi-
tectural support for Security and Privacy (HASP). 2016.

[126] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Ved-
vyas Shanbhogue, and Uday R. Savagaonkar. “Innovative Instructions and Software Model
for Isolated Execution”. In: Proc. of Workshop on Hardware and Architectural support for
Security and Privacy (HASP). 2013.

[127] Marcela S Melara, Michael J Freedman, and Mic Bowman. “EnclaveDom: Privilege sep-
aration for large-TCB applications in trusted execution environments”. In: arXiv preprint
arXiv:1907.13245 (2019).

[128] James Langston. Enhancing the Scalability of Memcached. https://software.intel.
com/en- us/articles/enhancing- the- scalability- of- memcached. Last
accessed: December 2, 2019.

[129] Ralph C Merkle. “A digital signature based on a conventional encryption function”. In:
Proc. of Conference on the Theory and Applications of Cryptographic Techniques (CRYPTO).
1987.

[130] Mitar Milutinovic, Warren He, Howard Wu, and Maxinder Kanwal. “Proof of Luck: an
Efficient Blockchain Consensus Protocol”. In: Proc. of Workshop on System Software for
Trusted Execution (SysTEX). 2016.

http://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
http://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached
https://software.intel.com/en-us/articles/enhancing-the-scalability-of-memcached

BIBLIOGRAPHY 117

[131] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada Popa.
“Oblix: An efficient oblivious search index”. In: Proc. of IEEE Symposium on Security and
Privacy (S&P). 2018.

[132] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “CacheZoom: How SGX Am-
plifies the Power of Cache Attacks”. In: Proc. of Conference on Cryptographic Hardware
and Embedded Systems (CHES). 2017.

[133] Keaton Mowery, Michael Wei, David Kohlbrenner, Hovav Shacham, and Steven Swanson.
“Welcome to the Entropics: Boot-time entropy in embedded devices”. In: Proc. of IEEE
Symposium on Security and Privacy (S&P). 2013.

[134] MultiZone Hex Five Security. https://hex-five.com/. 2020.

[135] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. “Plundervolt: Software-based Fault Injection Attacks against Intel SGX”. In:
Proc. of IEEE Symposium on Security and Privacy (S&P). 2020.

[136] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi
Wang. “Serval: Scaling Symbolic Evaluation for Automated Verification of Systems Code”.
In: Proc. of Symposium on Operating Systems Principles (SOSP). 2019.

[137] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt,
Emina Torlak, and Xi Wang. “Hyperkernel: Push-Button Verification of an OS Kernel”.
In: Proc. of Symposium on Operating Systems Principles (SOSP). 2017.

[138] Khang T Nguyen. Introduction to Cache Allocation Technology in the Intel R© Xeon R© Pro-
cessor E5 v4 Family. Feb. 2016.

[139] Rajesh Nishtala et al. “Scaling Memcache at Facebook”. In: Proc. of the Symposium on
Networked Systems Design and Implementation (NSDI). 2013.

[140] NLTK Data 3.4.5 Documentation. https://www.nltk.org/data.html. Last accessed:
December 2, 2019.

[141] Hyunyoung Oh, Adil Ahmad, Seonghyun Park, Byoungyoung Lee, and Yunheung Paek.
“TRUSTORE: Side-Channel Resistant Storage for SGX Using Intel Hybrid CPU-FPGA”.
In: Proc. of ACM SIGSAC Conference on Computer and Communications Security (CCS).
2020.

[142] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. “Oblivious Multi-Party Machine Learning on Trusted Proces-
sors”. In: Proc. of USENIX Security Symposium. 2016.

[143] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer.
“Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks”. In: Proc. of USENIX
Anual Technical Conference (ATC). 2018.

[144] Open Enclave SDK. https://openenclave.io/sdk/. 2020.

[145] Open mobile terminal platform - Wikipedia. https://en.wikipedia.org/wiki/
Open_Mobile_Terminal_Platform. Last accessed: January 18, 2022.

https://hex-five.com/
https://www.nltk.org/data.html
https://openenclave.io/sdk/
https://en.wikipedia.org/wiki/Open_Mobile_Terminal_Platform
https://en.wikipedia.org/wiki/Open_Mobile_Terminal_Platform

BIBLIOGRAPHY 118

[146] Open Portable TEE. https://www.op-tee.org/. 2020.

[147] OpenTitan: Open Source Silicon Root of Trust. https://opentitan.org/. Last ac-
cessed: Feb 17, 2022.

[148] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. “Eleos: ExitLess
OS Services for SGX Enclaves”. In: Proc. of European Conference on Computer Systems
(EuroSys). 2017.

[149] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silberstein. “CoSMIX: A
Compiler-based System for Secure Memory Instrumentation and Execution in Enclaves”.
In: Proc. of USENIX Anual Technical Conference (ATC). 2019.

[150] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Countermeasures:
The Case of AES”. In: Proc. of Cryptographers’ Track at the RSA Conference (CT-RSA).
2006.

[151] Nate Graff Palmer Dabbelt. SiFive’s Trusted Execution Reference Platform. https://
content.riscv.org/wp- content/uploads/2018/12/SiFives- Trusted-
Execution-Reference-Platform-Palmer-Dabbelt-1-1.pdf. Dec. 2018.

[152] Bryan Parno, Jacob R. Lorch, John R. Douceur, James Mickens, and Jonathan M. McCune.
“Memoir: Practical State Continuity for Protected Modules”. In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2011.

[153] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. “Bootstrapping Trust in Commod-
ity Computers”. In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2010.

[154] J Thomas Pawlowski. “Hybrid Memory Cube (HMC)”. In: 2011 IEEE Hot Chips 23 Sym-
posium (HCS). 2011.

[155] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard.
“DRAMA: Exploiting Dram Addressing for Cross-CPU Attacks”. In: Proc. of USENIX
Security Symposium. 2016.

[156] Raluca Ada Popa. “MC2: A Secure Collaborative Computation Platform”. In: Proc. of the
Workshop on Privacy-Preserving Machine Learning in Practice (PPMLP). 2020.

[157] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C. Hunt.
“Rethinking the Library OS from the Top Down”. In: Proc. of Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 2011.

[158] Nelly Porter and Jason Garms. Advancing confidential computing with Asylo and the Con-
fidential Computing Challenge. Feb. 2019.

[159] Dan R. K. Ports and Tal Garfinkel. “Towards Application Security on Untrusted Operating
Systems”. In: Proc. of Conference on Hot Topics in Security (HOTSEC). 2008.

[160] Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB - A Secure Database
using SGX”. In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2018.

https://www.op-tee.org/
https://opentitan.org/
https://content.riscv.org/wp-content/uploads/2018/12/SiFives-Trusted-Execution-Reference-Platform-Palmer-Dabbelt-1-1.pdf
https://content.riscv.org/wp-content/uploads/2018/12/SiFives-Trusted-Execution-Reference-Platform-Palmer-Dabbelt-1-1.pdf
https://content.riscv.org/wp-content/uploads/2018/12/SiFives-Trusted-Execution-Reference-Platform-Palmer-Dabbelt-1-1.pdf

BIBLIOGRAPHY 119

[161] Proof of Elapsed Time (PoET) 1.0 Specification - Sawtooth v1.0.5 documentation. https:
//sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/
poet.html.

[162] Kibra 480 Analyzer. http://cdn.teledynelecroy.com/files/pdf/lecroy_
kibra480_datasheet.pdf. Last accessed: December 2, 2019.

[163] Nexus Technology MA4100. https : / / www . nexustechnology . com / products /
memory-analyzers/ma4100-series-memory-analyzer/. Last accessed: Decem-
ber 2, 2019.

[164] QEMU, Open Source Processor Emulator. www.qemu.org.

[165] C. R. Reddy and D. W. Loveland. “Presburger Arithmetic with Bounded Quantifier Alter-
nation”. In: Proc. of Annual ACM Symposium on Theory of Computing (STOC). 1978.

[166] RIOSLab. https://rioslab.org/. Last accessed: Feb 17, 2022.

[167] RISC-V Proxy Kernel. https://github.com/riscv/riscv-pk. 2020.

[168] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin. “Using Address Independent Seed
Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-
Friendly”. In: Proc. of IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 2007.

[169] RV8 Benchmark. https://github.com/michaeljclark/rv8-bench. 2017.

[170] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslin-
ski, Christopher Peikert, and Daniel Sanchez. “F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption”. In: Proc. of IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2021.

[171] Samuel Weiser and Mario Werner and Ferdinand Brasser and Maja Malenko and Stefan
Mangard and Ahmad-Reza Sadeghi. “TIMBER-V: Tag-Isolated Memory Bringing Fine-
grained Enclaves to RISC-V”. In: Proc. of Network and Distributed System Security Sym-
posium (NDSS). 2019.

[172] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. “Using ARM Trustzone to
Build a Trusted Language Runtime for Mobile Applications”. In: Proc. of the Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
2014.

[173] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. “Demystifying Attesta-
tion in Intel Trust Domain Extensions via Formal Verification”. In: IEEE Access 9 (2021),
pp. 83067–83079.

[174] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. “ZeroTrace : Oblivious Mem-
ory Primitives from Intel SGX”. In: Proc. of Network and Distributed System Security
Symposium (NDSS). 2017.

[175] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe: How SGX
Fails in Practice. https://sgaxeattack.com/. 2020.

https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
http://cdn.teledynelecroy.com/files/pdf/lecroy_kibra480_datasheet.pdf
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
https://www.nexustechnology.com/products/memory-analyzers/ma4100-series-memory-analyzer/
www.qemu.org
https://rioslab.org/
https://github.com/riscv/riscv-pk
https://github.com/michaeljclark/rv8-bench
https://sgaxeattack.com/

BIBLIOGRAPHY 120

[176] Stephan van Schaik, Alyssa Milburn, Sebastian Asterlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue In-flight Data Load”.
In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2019.

[177] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
“CacheOut: Leaking Data on Intel CPUs via Cache Evictions”. In: Proc. of IEEE Sympo-
sium on Security and Privacy (S&P). 2021.

[178] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado, Glo-
ria Mainar-Ruiz, and Mark Russinovich. “VC3: Trustworthy Data Analytics in the Cloud”.
In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2015.

[179] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data Sampling”. In:
Proc. of ACM SIGSAC Conference on Computer and Communications Security (CCS).
2019.

[180] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: Proc. of Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
2017.

[181] Sanjit A. Seshia and Pramod Subramanyan. “UCLID5: Integrating Modeling, Verifica-
tion, Synthesis and Learning”. In: Proc. of ACM/IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE). 2018.

[182] Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein. “Translation valida-
tion for a verified OS kernel”. In: Proc. of ACM SIGPLAN Conference on Programming
language design and implementation (PLDI). 2013.

[183] Intel Software Guard Extensions Programming Reference. https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf. Last accessed:
December 2, 2019.

[184] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin Xia, and
Shoumeng Yan. “Occlum: Secure and Efficient Multitasking Inside a Single Enclave of
Intel SGX”. In: Proc. of Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 2020.

[185] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs”. In: Proc. of Network and Dis-
tributed System Security Symposium (NDSS). 2017.

[186] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. “Panoply: Low-TCB Linux
Applications With SGX Enclaves”. In: Proc. of Network and Distributed System Security
Symposium (NDSS). 2017.

[187] Shweta Shinde, Shengi Wang, Pinghai Yuan, Aquinas Hobor, Abhik Roychoudhury, and
Prateek Saxena. “BesFS: A POSIX Filesystem for Enclaves with a Mechanized Safety
Proof”. In: Proc. of USENIX Security Symposium. 2020.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

BIBLIOGRAPHY 121

[188] Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit Seshia, Sriram Rajamani, and
Kapil Vaswani. “A Design and Verification Methodology for Secure Isolated Regions”. In:
Proc. of ACM SIGPLAN Conference on Programming language design and implementa-
tion (PLDI). 2016.

[189] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. “Moat: Verifying Confi-
dentiality of Enclave Programs”. In: Proc. of ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2015.

[190] Software Guard eXtensions (SGX). https://www.kernel.org/doc/Documentation/
x86/sgx.rst. Last accessed: January 18, 2022.

[191] Software Guard Extenstion (SGX) SDK for Linux. https://github.com/intel/
linux-sgx. Last accessed: December 2, 2019.

[192] Spell Checker Oriented Word Lists. http://wordlist.aspell.net/. Last accessed:
December 2, 2019.

[193] RISC-V ISA Simulator. https://riscv.org/software- tools/risc- v- isa-
simulator/. Last accessed: December 2, 2019.

[194] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. “Path ORAM: An Extremely Simple Oblivious RAM Protocol”. In:
Proc. of ACM SIGSAC Conference on Computer and Communications Security (CCS).
2013.

[195] Rob Stubbs. Intel SGX Technology and the Impact of Processor Side-Channel Attacks.
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-
impact-of-processor-side-channel-attacks. Last accessed: January 18, 2022.

[196] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A. Se-
shia. “A Formal Foundation for Secure Remote Execution of Enclaves”. In: Proc. of ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2017.

[197] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas. “Design
and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random
Functions”. In: SIGARCH Comput. Archit. News (2005).

[198] The Trusted Execution Environment: Delivering Enhanced Security at a Lower Cost to the
Mobile Market. https://globalplatform.org/wp-content/uploads/2018/
04/GlobalPlatform_TEE_Whitepaper_2015.pdf. Last accessed: January 18, 2022.
2011.

[199] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John
Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tamper Resistant Soft-
ware”. In: Proc. of Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 2000.

https://www.kernel.org/doc/Documentation/x86/sgx.rst
https://www.kernel.org/doc/Documentation/x86/sgx.rst
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
http://wordlist.aspell.net/
https://riscv.org/software-tools/risc-v-isa-simulator/
https://riscv.org/software-tools/risc-v-isa-simulator/
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks
https://globalplatform.org/wp-content/uploads/2018/04/GlobalPlatform_TEE_Whitepaper_2015.pdf
https://globalplatform.org/wp-content/uploads/2018/04/GlobalPlatform_TEE_Whitepaper_2015.pdf

BIBLIOGRAPHY 122

[200] Alves Tiago and Felton Don. “TrustZone: integrated hardware and software security en-
abling trusted computing in embedded system”. In: Government Information Quarterly 3.4
(2004), pp. 18–24.

[201] Tiny SHA3. https://github.com/mjosaarinen/tiny_sha3/. 2016.

[202] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee.
“Privado: Practical and Secure DNN Inference”. In: ArXiv (2018). eprint: 1810.00602.

[203] Torch NNs. https://github.com/torch/nn/tree/master/lib/THNN. 2017.

[204] Torch Tensors. https://github.com/torch/TH. 2015.

[205] Emina Torlak and Rastislav Bodik. “Growing solver-aided languages with Rosette”. In:
Proc. of ACM international symposium on New ideas, new paradigms, and reflections on
programming & software (Onward!) 2013.

[206] Bill Toulas. New Intel chips won’t play Blu-ray disks due to SGX deprecation. https:
//www.bleepingcomputer.com/news/security/new-intel-chips-wont-
play-blu-ray-disks-due-to-sgx-deprecation. Last accessed: January 21, 2022.

[207] Trusted execution environment - Wikipedia. https://en.wikipedia.org/wiki/
Trusted_execution_environment. Last accessed: January 18, 2022.

[208] Trustonic. https://www.trustonic.com. Last accessed: January 18, 2022. 2014.

[209] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library OS
for Unmodified Applications on SGX”. In: Proc. of USENIX Anual Technical Conference
(ATC). 2017.

[210] UCLID5: formal modeling, verification, and synthesis of computational systems. https:
//github.com/uclid-org/uclid. Last accessed: May 13, 2022.

[211] unifdef. http://dotat.at/prog/unifdef/. 2020.

[212] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. “LVI: Hijacking
Transient Execution through Microarchitectural Load Value Injection”. In: Proc. of IEEE
Symposium on Security and Privacy (S&P). 2020.

[213] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clementine
Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida. “Dram-
mer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: Proc. of ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2016.

[214] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. “Efficient software-
based fault isolation”. In: Proc. of Symposium on Operating Systems Principles (SOSP).
1993.

[215] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A. Gunter. “Leaky Cauldron on the Dark Land: Un-
derstanding Memory Side-Channel Hazards in SGX”. In: Proc. of ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS). 2017.

https://github.com/mjosaarinen/tiny_sha3/
1810.00602
https://github.com/torch/nn/tree/master/lib/THNN
https://github.com/torch/TH
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation
https://www.bleepingcomputer.com/news/security/new-intel-chips-wont-play-blu-ray-disks-due-to-sgx-deprecation
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://www.trustonic.com
https://github.com/uclid-org/uclid
https://github.com/uclid-org/uclid
http://dotat.at/prog/unifdef/

BIBLIOGRAPHY 123

[216] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Ste-
fanov, and Yan Huang. “Oblivious Data Structures”. In: Proc. of ACM SIGSAC Conference
on Computer and Communications Security (CCS). 2014.

[217] Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual Volume II:
Privileged Architecture. https : / / github . com / riscv / riscv - isa - manual /
releases/download/Priv- v1.12/riscv- privileged- 20211203.pdf. Dec.
2021.

[218] Ofir Weisse, Valeria Bertacco, and Todd Austin. “Regaining lost cycles with HotCalls: A
fast interface for SGX secure enclaves”. In: Proc. of International Symposium on Computer
Architecture (ISCA). 2017.

[219] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom. Foreshadow-NG:
Breaking the virtual memory abstraction with transient out-of-order execution. Tech. rep.
Technical report, 2018.

[220] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems”. In: Proc. of IEEE Symposium
on Security and Privacy (S&P). 2015.

[221] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W. Fletcher,
and Josep Torrellas. “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy”. In: Proc. of IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 2018.

[222] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell,
and Josep Torrellas. “Attack Directories, Not Caches: Side Channel Attacks in a Non-
Inclusive World”. In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2019.

[223] Andrew C Yao. “Protocols for secure computations”. In: Proc. of IEEE Symposium on
Foundations of Computer Science (SFCS). 1982.

[224] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack”. In: Proc. of USENIX Security Symposium. 2014.

[225] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. “Creating Foun-
dations for Secure Microarchitectures With Data-Oblivious ISA Extensions”. In: IEEE Mi-
cro 40.3 (2020), pp. 99–107. DOI: 10.1109/MM.2020.2985366.

[226] Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and Prateek Saxena. “Elasticlave: An
Efficient Memory Model for Enclaves”. In: Proc. of USENIX Security Symposium. 2022.

[227] Samee Zahur and David Evans. “Obliv-C: A language for extensible data-oblivious com-
putation”. In: Cryptology ePrint Archive (2015).

[228] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. “Town Crier: An
Authenticated Data Feed for Smart Contracts”. In: Proc. of ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2016.

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://doi.org/10.1109/MM.2020.2985366

BIBLIOGRAPHY 124

[229] Hongce Zhang, Weikun Yang, Grigory Fedyukovich, Aarti Gupta, and Sharad Malik. “Syn-
thesizing Environment Invariants for Modular Hardware Verification”. In: Proc. of Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI). 2020.

[230] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. “All Your Queries Are
Belong to Us: The Power of File-Injection Attacks on Searchable Encryption.” In: Proc. of
USENIX Security Symposium. 2016.

[231] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. “On-Demand-Fork: A Microsecond Fork
for Memory-Intensive and Latency-Sensitive Applications”. In: Proc. of the 16th European
Conference on Computer Systems (EuroSys). 2021.

[232] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gonzalez,
and Ion Stoica. “Opaque: An oblivious and encrypted distributed analytics platform”. In:
Proc. of the Symposium on Networked Systems Design and Implementation (NSDI). 2017.

	Contents
	List of Figures
	List of Tables
	Introduction
	Trusted Execution Environments (TEEs)
	Challenges of Building TEEs
	Summary of Research Contributions
	Acknowledgment of Collaborative Work and Funding

	Background
	The History of TEEs
	The Key Characteristics of TEEs
	Limitations of Existing TEEs

	Why Your Threat Model Might Be Wrong
	Introduction
	Why an Off-Chip Side Channel Matters?
	Membuster: an Off-Chip Side-Channel Attack on SGX
	Increasing Critical Cache Misses
	Extracting Sensitive Access Patterns
	Attack Results
	Implications and Limitations
	Summary

	Keystone: An Open Framework for Building TEEs
	Introduction
	What is a Common Base for Diverse TEEs?
	Keystone Design Overview
	Security Monitor Design for Multiple Threat Models
	Modular Runtime Design for Extensive Functionality
	Security Analysis
	Evaluation
	Related Work
	Summary

	Agile and Secure Implementation of New Features
	Introduction
	Formal Reasoning about TEE
	Enabling Enclave Memory Sharing
	Formal Model
	Proving Formal Security Guarantees
	Implementation in RISC-V Keystone
	Evaluation
	Implications and Limitations
	Summary

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography

