
Manipulation and Perception Policies for Robot

Mechanical Search

Michael Danielczuk

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-98

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-98.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Manipulation and Perception Policies for Robot Mechanical Search

by

Michael John Danielczuk

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Ronald Fearing

Assistant Professor Hannah Stuart

Spring 2022

Manipulation and Perception Policies for Robot Mechanical Search

Copyright 2022
by

Michael John Danielczuk

1

Abstract

Manipulation and Perception Policies for Robot Mechanical Search

by

Michael John Danielczuk

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

When operating in unstructured and semi-structured environments such as warehouses,
homes, and retail centers, robots are frequently required to interactively search for and
retrieve specific objects from cluttered bins, shelves, or tables, where the object may be
partially or fully hidden behind other objects. The goal of this task, which we define as
mechanical search, is to retrieve a target object in as few actions as possible. Robustly
perceiving and manipulating objects is challenging in these scenarios due to the presence of
sensor noise, occlusions, and unknown object properties. Because of these perception and
manipulation challenges, learning end-to-end mechanical search policies from data is diffi-
cult. Instead, we break mechanical search policies into three modules, a perception module
that creates an intermediate representation from the input observation, a set of low-level ma-
nipulation primitives, and a high-level action selection policy that iteratively chooses which
low-level primitives to execute based on the output from the perception module. We explore
progress made on manipulation primitives, such as pushing and grasping, segmentation of
scenes with unknown objects and occupancy distribution predictions to infer likely locations
of the target object. Additionally, we demonstrate that using simulated depth images or
point clouds can allow rapid generation of large-scale training datasets for perception net-
works while allowing them to generalize to real-world objects and scenes. We show that
integrating these components can result in an efficient mechanical search policy, improving
the success rate by 15% and reducing the number of actions needed to extract the target
object as compared to baseline policies in both bin and shelf environments across simulated
and physical trials.

i

To Katie, who has been a constant source of encouragement, support, love and fun
throughout my entire academic journey.

ii

Contents

Contents ii

1 Introduction 1
1.1 Manipulation Primitives . 2
1.2 Perception Primitives . 3
1.3 Mechanical Search Policies . 3

I Manipulation Primitives 5

2 REACH: A Robust Efficient Area Contact Model 6
2.1 Related Work . 8

2.1.1 Point Contact Models . 8
2.1.2 Area Contact Models . 8
2.1.3 Grasp Wrench Space Analysis . 9
2.1.4 Grasp Datasets . 9

2.2 Problem Statement . 9
2.2.1 Assumptions . 10
2.2.2 Definitions . 10
2.2.3 Objective . 10

2.3 REACH Model . 11
2.3.1 Contact Area Computation . 12
2.3.2 Wrench Space Constraints . 12

2.4 Experiments . 14
2.4.1 Physical Experiments Dataset . 14
2.4.2 Benchmark Estimators . 16
2.4.3 Metrics . 17
2.4.4 Discussion . 17

2.5 Conclusions . 18

3 6DFC: Efficiently Planning Soft Non-Planar Area Contact Grasps using
6D Friction Cones 19

iii

3.1 Related Work . 21
3.1.1 Contact Models . 21
3.1.2 Grasp Analysis . 21
3.1.3 Grasp Wrench Space Formulation . 22
3.1.4 Contact Wrench Cones . 22

3.2 Problem Statement . 22
3.2.1 Assumptions . 23
3.2.2 Definitions . 23
3.2.3 Objective . 23

3.3 Non-Planar Area Contact Constraints . 24
3.3.1 Background . 24
3.3.2 Friction Cones in 6D . 24
3.3.3 Finding 6D Friction Limit Surface Cone Constraints 25

3.4 Experiments . 28
3.4.1 Baseline Algorithms . 28
3.4.2 Soft Non-Planar Area-Contact Physical Robot Grasps 28
3.4.3 Grasp Planning Results . 29
3.4.4 Sensitivity Analysis . 30

3.5 Discussion and Future Work . 31

4 Linear Push Policies to Increase Grasp Access 33
4.1 Related Work . 34
4.2 Problem Statement . 36

4.2.1 Assumptions . 36
4.2.2 Definitions . 36
4.2.3 Objective . 38

4.3 Push Action Metrics . 39
4.3.1 Mean Object Separation Gain . 39
4.3.2 Parallel Jaw Grasp Quality Gain . 39
4.3.3 Suction Grasp Quality Gain . 40
4.3.4 Overall Grasp Quality Gain . 40

4.4 Push Policies . 41
4.4.1 Quasi-Random Policy . 41
4.4.2 Boundary Shear Policy . 41
4.4.3 Free Space Policy . 42
4.4.4 Maximum Clearance Ratio Policy . 42
4.4.5 Cluster Diffusion Policy . 42

4.5 Simulation Experiments . 43
4.6 Physical Experiments . 47
4.7 Discussion and Future Work . 48

iv

II Perception Primitives 50

5 Segmenting Unknown 3D Objects from Real Depth Images using Mask
R-CNN Trained on Synthetic Data 51
5.1 Related Work . 53
5.2 Problem Statement . 55
5.3 Synthetic Dataset Generation Method . 55
5.4 WISDOM Dataset . 56

5.4.1 WISDOM-Sim . 56
5.4.2 WISDOM-Real . 57

5.5 Synthetic Depth Mask R-CNN . 59
5.6 Experiments . 60

5.6.1 Baselines . 60
5.6.2 Benchmarks . 61
5.6.3 Performance . 61
5.6.4 Robotics Application: Instance-Specific Grasping 62

5.7 Discussion and Future Work . 63

6 Object Rearrangement Using Learned Implicit Collision Functions 65
6.1 Related Work . 67

6.1.1 Robot Collision Detection from Point Clouds 67
6.1.2 Point Cloud Surface Representations 67
6.1.3 Accelerating Collision Detection . 68
6.1.4 Robotic Object Rearrangement . 68

6.2 Problem Statement . 69
6.2.1 Definitions . 69
6.2.2 Objective . 70

6.3 SceneCollisionNet . 70
6.3.1 Dataset Generation and Training . 71
6.3.2 Robot Collision Checking . 71

6.4 Object Rearrangement . 72
6.4.1 Grasps and Placements . 72
6.4.2 MPPI Policy . 72

6.5 SceneCollisionNet Evaluation . 74
6.5.1 Baseline Algorithms . 75
6.5.2 Results . 75

6.6 Policy Evaluation . 76
6.6.1 Simulation Evaluation . 77
6.6.2 Physical Evaluation . 77

6.7 Discussion . 78

v

III Mechanical Search Policies 79

7 Mechanical Search: Multi-Step Retrieval of a Target Object Occluded
by Clutter 80
7.1 Background and Related Work . 82
7.2 Mechanical Search: Problem Formulation . 83
7.3 Perception and Decision System . 85

7.3.1 Perception . 85
7.3.2 Search Policy . 85

7.4 Action Selection Policies . 87
7.5 Experiments . 88

7.5.1 Simulation . 88
7.5.2 Physical . 88
7.5.3 Evaluation Metrics . 89

7.6 Results . 90
7.6.1 Simulation Results . 90
7.6.2 Physical Results . 91
7.6.3 Action-Limited Human Supervisor 92

7.7 Discussion and Future Work . 92

8 X-Ray: Mechanical Search for an Occluded Object by Minimizing Sup-
port of Learned Occupancy Distributions 93
8.1 Related Work . 95

8.1.1 Pose Hypothesis Prediction . 95
8.1.2 Object Search . 95

8.2 Problem Statement . 96
8.2.1 Assumptions . 96
8.2.2 Definitions . 97
8.2.3 Objective . 98
8.2.4 Surrogate Reward . 98

8.3 Learning Occupancy Distributions . 99
8.3.1 Dataset Generation . 99
8.3.2 Occupancy Distribution Model . 100
8.3.3 Simulation Experiments for Occupancy Distributions 101

8.4 X-Ray: Mechanical Search Policy . 102
8.4.1 Simulation Experiments with X-Ray 104
8.4.2 Physical Experiments with X-Ray . 106

8.5 Discussion and Future Work . 107

9 Mechanical Search on Shelves using a Novel “Bluction” Tool 109
9.1 Related Work . 111

9.1.1 Mechanical Search . 111

vi

9.1.2 Suction Grasping . 112
9.2 Problem Statement . 112
9.3 Bluction Tool . 113
9.4 Methods . 114

9.4.1 Lateral-Access Simulation . 115
9.4.2 SLAX-RAY Perception System . 116
9.4.3 SLAX-RAY Mechanical Search Policy 116
9.4.4 Oracle Policies . 117

9.5 Experiments . 118
9.5.1 Simulation Experiments . 118
9.5.2 Physical Experiments . 119

9.6 Conclusion and Future Work . 120

IV Conclusion and Future Work 121

10 Discussion 122
10.1 Overview . 122
10.2 Takeaways . 123

10.2.1 Learning from Simulated Depth Data 123
10.2.2 Intermediate Representations and Manipulation Primitives 123

10.3 Opportunities for Future Work . 124
10.3.1 Contact Modeling . 124
10.3.2 Dex-Net 5.0 . 124
10.3.3 Pushing and Other Action Types . 124
10.3.4 Perception for Mechanical Search . 125
10.3.5 Mechanical Search Environments . 125

10.4 A Broader View of Mechanical Search and Robot Manipulation 125

V Appendices 126

A REACH: A Robust Efficient Area Contact Model 127
A.1 Derivations . 127

A.1.1 fzi,max
Derivation . 127

A.1.2 fti,max
Derivation . 128

A.1.3 τzi,max
Derivation . 128

A.1.4 τzi,max
Lower Bound . 128

A.2 Per-Object Experimental Results . 130

B Segmenting Unknown 3D Objects from Real Depth Images using Mask
R-CNN Trained on Synthetic Data 132

vii

B.1 WISDOM Dataset Statistics . 132
B.2 Precision-Recall Evaluation . 132

C Mechanical Search: Multi-Step Retrieval of a Target Object Occluded
by Clutter 135
C.1 Extended Results . 135
C.2 Siamese Network Implementation Details . 136
C.3 Simulated Heap Generation . 137
C.4 Simulation Policy Parameters . 138
C.5 Physical Policy Parameters . 138

Bibliography 139

viii

Acknowledgments

The research I have been so fortunate to do at Berkeley has been influenced, supported, and
encouraged by so many mentors, colleagues, and friends along the way. To Mr. Barry Moran,
my high school adviser, you taught me that math was a ton of fun through your magic and
imparted so much sage life advice on me. To Mr. Ewen Ross and Ms. Julia Hinchman,
my high school robotics coaches, you were the first to show me the world of robotics, and
allowed Jarrod and I to build innovative and exciting FTC robots. No idea was too crazy
to try, and you let us have full reign over the tools and resources we needed to explore how
software and hardware could grow together (subject to the constraints of the game rules, of
course). Without your leadership and expertise, I would never have developed the passion
for robotics that I have today.

At Princeton, I never had much time for research until my senior thesis. Despite my lack
of experience, I am extremely grateful that Professor James Sturm let me work under Josh
Sanz-Robinson on flexible electronics research. From both of you, I learned the basics of
being a graduate student and you taught me the excitement, joy, and fun of doing research
on a daily basis. I also learned how to adjust project goals and how to assess options at a
higher level when our initial ideas did not always work out. I would also like to thank the late
Dr. Barry Burke and Daniel O’Mara for similarly taking a chance on me and allowing me to
intern in the Advanced Imaging Technology group at MIT Lincoln Labs after my junior year
of college. From you, I learned how to design experiments, test hypotheses, and dig deep
into results when something seemed counterintuitive. Both of these research experiences
were invaluable to me during my college career, and inspired me to continue on to a PhD.
After college, I was fortunate enough to get back into robotics via VirtualApt; I am forever
grateful to Bryan Colin and Filippo Alimonda for hiring me straight out of undergrad to be
one of only a few employees at an ambitious robotics startup. Filippo, you were another
incredible mentor for me and taught me how to manage numerous demo deadlines while
teaching me how to be open to any and all new ideas that could improve our system.

When I arrived at Berkeley, I knew immediately that I wanted to do research in robotics,
despite being admitted as an optoelectronics student. Professor Ken Goldberg was imme-
diately enthusiastic about having me switch advisers and join his lab, recruiting me over a
series of phone calls and breathlessly telling me about all of the exciting and unique project
opportunities. Deciding to join the AUTOLab positively shaped my research career and will
continue to as I transition into industry research. Ken, I am so thankful for your mentorship,
advice, and willingness to get on a phone call at any hour to discuss how we could improve
any and all of the projects I was working on. You taught me to think outside the box, en-
couraged me to connect ideas across different fields and research topics, gave me extremely
thorough comments and advice on all of my papers, talks, and slides, and taught me how to
develop themes and stories that wove through my research. You taught me the importance
of applying all of our problems to the real world, running physical experiments, and being
able to communicate all of our ideas to others in the lab, at Berkeley, and the public. For
all of these reasons, I am very thankful to have had you as my PhD adviser.

ix

After I initially joined the AUTOLab, I was extremely fortunate to be mentored by Jeff
Mahler and collaborate with Matt Matl. Jeff immediately started me on a few projects
that ended up defining much of my PhD and gave me an appreciation for the difficulty of
robot grasping and manipulation, and Matt was always there for help whenever I needed it.
Both of you were very selfless, excellent research role models, and impressed upon me how
to create thorough, probing experiments and constantly come up with research questions.
You are both incredible engineers, and I continue to aspire to reach your combined under-
standing of software and hardware, how to diagnose problems in both, and your understated
efforts to maintain the lab’s infrastructure and resources. In addition, you both knew not
to take everything too seriously as a graduate student, whether by playing records during
experiments or through lab happy hours, and encouraged me to balance my research with
activities outside the lab like running, skiing, or backpacking. I’ll never forget the trip to
MARS 2018 to demo Dex-Net, and I look forward to continuing to work closely with you
both, as well as Steve McKinley and David Gealy, at Ambi in the years to come!

In my time in the AUTOLab, I also had the opportunity to work closely with a huge
number of PhD students, postdocs, undergraduates, and professors at Berkeley. In my mind,
these interactions showed me why Berkeley is at the forefront of academic research in AI and
robotics; I consistently had the pleasure of meeting with and picking the brains of incredible
researchers and kind, thoughtful people. In addition to Jeff and Matt, I would especially like
to thank Ashwin Balakrishna, Jeff Ichnowski, Raven Huang, Daniel Brown, Ajay Tanwani,
Jingyi Xu, Chung Min Kim, Letian Fu, Chris Correa, Andrew Lee, and Andrew Li for their
contributions to the material in this dissertation, as well as for making the lab a place I always
looked forward to being in so I could chat and be around you all. To the undergraduates and
masters students I mentored or co-mentored in addition to those above, including Katherine
Li, Kate Sanders, David Tseng, David Wang, Zach Tam, Vishal Satish, Sona Dolasia, Zisu
Dong, and Shivin Devgon, thank you for your patience as I learned how to balance projects
and learn how to lead. You all taught me so much along the way and I am impressed by your
dedication to research among all of your other commitments. To the PhD students in the
lab that I did not work directly with, especially Carolyn Matl, Daniel Seita, Ryan Hoque,
Brijen Thananjeyan, Bill DeRose, Michael Laskey, Sanjay Krishnan, Yahav Avigal, Justin
Kerr, Ale Escontrela, Simeon Adebola, and Lawrence Chen, I enjoyed all of the times spent
chasing deadlines together, your kindness in editing my papers, and the frequent banter in
the lab. Having all of your support and seeing the excitement on everyone’s faces each day
helped make the tough days of research a little bit easier. Outside of the AUTOLab, I would
like to thank Tae Myung Huh, Monica Li, Eric Chen, Debbie Liang, and Saurabh Gupta
for your collaborations; you helped open me up to a variety of new topics that broadened
my robotics knowledge significantly. I am also grateful to Ron Fearing and Hannah Stuart
for serving on my qualifying exam and dissertation committees and I would like to thank
the Berkeley EECS and BAIR administrators for their work to help me graduate on time
and making my experience at Berkeley amazing, especially Angie Abbatecola and Shirley
Salanio.

Outside of Berkeley, I had the pleasure of working with a large number of academic

x

and industry collaborators who helped to shape and contribute to my research journey. In
particular, I would like to thank Andrey Kurenkov, Roberto Mart́ın-Mart́ın, Animesh Garg,
and Silvio Savarese from Stanford, who worked closely with me to develop the first mechanical
search pipeline, the inspiration for nearly the entirety of my dissertation. They helped to
take the mechanical search project from an idea in a grant proposal to a fully-functioning
real-world system and taught me so much about managing collaborations along the way.
Similarly, Anelia Angelova, Brian Ichter, and Vincent Vanhoucke at Google helped me to
take my research to another level; Anelia worked closely with me to come up with X-Ray and
provided regular feedback and encouragement on the project and all three have continued to
give me excellent feedback as we have extended X-Ray to lateral-access environments. My
internship at NVIDIA would not have been successful without Arsalan Mousavian, Clemens
Eppner and Dieter Fox; Arsalan in particular helped me to find a project that bridged our
interests while connecting cutting-edge research in computer vision with robotics. Despite
being remote the whole time, I enjoyed my internship immensely and I felt so lucky to work
with such experts who could broaden the way I thought about mechanical search and the
intersection of robot perception and manipulation. Juan Aparicio Ojea, Eugen Solowjow,
Shirin Joshi, Eduardo M. C. Rocha and Nuttapong Chentanez also deserve acknowledgment
for their insights and contributions to my projects on exploratory grasping and contact
modeling. I would also like to acknowledge my funding sources, particularly my three years
under the National Science Foundation Graduate Research Fellowship Program, Grant No.
DGE 1752814, and support from the Berkeley AI Research (BAIR) Lab, and the CITRIS
“People and Robots” (CPAR) Initiative, Google, Siemens, Toyota Research Institute and
Autodesk.

Finally, I would like to acknowledge my friends and family for supporting me throughout
my PhD; you all consistently kept me happy and healthy even through a pandemic! There
are so many friends I would love to thank, especially Ryan Kaveh and Saavan Patel for
running with me throughout my PhD, the Wololo crew for providing entertainment when we
could not go outside, Kenny Rayner, Colin Gannon, Alex Mauro and the Strawberry Canyon
Track Club for guiding me through training for my first Boston Marathon, and Campbell
Weaver, Leo Tolias, David Balise, Andrew Shichman and Will Glockner, as well as the rest
of the Tower crew. Last but not least, I would like to thank my parents and family and my
fiancée Katie and her family for their unwavering support while encouraging me to enjoy life
outside of research.

1

Chapter 1

Introduction

Searching for objects in constrained environments is a fundamental, daily problem for hu-
mans, whether it be looking for keys hidden within your house, a pen within a drawer, a
can of soup on a cabinet shelf, or a box of clothes within a closet. At the same time, the
dramatic expansion of e-commerce, fueled both by the COVID-19 pandemic and by growing
expectations of convenient, diverse products that can be rapidly delivered, requires that de-
sired objects must be retrieved efficiently from warehouse storage. In both cases, the desired
object may be of a diverse appearance and shape, may be stored in bins or boxes or stacked
on pallets or shelves, and is often in an unknown orientation. It may be hidden partially or
fully by other objects of similar or completely different shapes, sizes, and textures. Thus,
giving robots the ability to quickly assess where these objects are likely to be located, to
interactively move and shift blocking objects aside, and to recover or extract the object
of interest could have applications in home service of the elderly or disabled, warehousing,
logistics and retail.

This dissertation investigates the problem of robotic “mechanical search” — identifying
and retrieving desired objects from unordered collections of objects, typically performed by
humans. Mechanical search lies at the intersection of robot perception and manipulation
and thus faces the challenges associated with each of these fields in isolation as well as trade-
offs arising from their tight coupling. For example, perception pipelines must be robust to
sensor noise and object occlusions, which can limit the robot’s ability to infer precise object
geometries and poses, or even to see some objects at all. Recent advances in object instance
segmentation [91, 135, 267, 268] and object detection [84, 167, 214, 226, 286] that leverage
deep learning have begun to address some of these challenges, but these methods may still
struggle to generalize to unseen objects or partial observations. Similarly, manipulation
policies must be robust to unknown object properties such as coefficients of friction and
center of mass; coupled with imprecise robot actuation or calibration, robot grippers may
not be able to precisely manipulate even a fully-observed object. Although there has been
significant recent progress in task-agnostic grasping from point clouds or depth images even
in the presence of these challenges [25, 79, 106, 110, 144, 166, 180, 201], these policies
make multiple simplifying assumptions, such as (1) a grasp is successful if it lifts any object

CHAPTER 1. INTRODUCTION 2

in the environment, independent of object identity, purpose or intent, and (2) dynamic
interactions between objects are negligible. By relaxing these assumptions in the context of
the mechanical search problem, we require policies to decide when to trade off exploration
(i.e., moving objects to reduce uncertainty about the desired object’s pose) and exploitation
(i.e., directly moving objects near the best estimate of the desired object’s pose). Mechanical
search requires that policies not only maintain a passive belief state over the current state
of the objects in the scene, but also that policies actively influence their belief states by
interacting directly with the objects to perturb them and reduce uncertainty while inferring
contact locations, forces and torques from partial information.

Because of the above challenges, as well as the sparse-reward, long-horizon nature of the
task, we argue that learning end-to-end mechanical search policies from data may be difficult.
Instead, we propose a modular mechanical search policy made up of three components, a
perception module that creates one or multiple intermediate representations from an input
observation, a set of low-level manipulation primitives, such as grasping or pushing, and a
high-level policy that selects low-level primitives. This dissertation contributes a number of
methods for improving all aspects of a mechanical search policy, focusing on overhead-access
environments, such as bins or tabletops, and lateral-access environments, such as shelves or
cabinets.

1.1 Manipulation Primitives

To interact with the world around it, a robot must be able to robustly manipulate objects,
whether by grasping, lifting, pushing or sliding them. Prior work has shown that grasping
policies can be learned from data using labels gathered by humans [141, 180], by the robot
itself through many interactions [110, 144, 201], or by dynamic simulation [106]. Recently,
Mahler et al. [166] have shown that learning policies from labels generated by analytic grasp
metrics in simulation can also generalize to real-world objects. However, these analytic
grasp metrics do not consider the effects of increased contact area from compliant materials
typically used for parallel-jaw grippers. In Chapters 2 and 3, we build on Mahler et al. [166]
by improving the contact modeling techniques used to generate grasp labels. We introduce
two computationally-efficient contact models that take into account the effects of compliant
grippers deforming around rigid objects by modeling the full six-dimensional wrench applied
at the contact.

Pushing objects is also a common primitive for singulating objects in cluttered environ-
ments so that they can be grasped [34, 60, 92] and can also be used to reorient objects that
cannot be grasped in their current pose [74, 160, 172]. Prior work typically attempts to
maximize separation between objects as a proxy for future grasp success rates. However,
objects may not need to be completely separated to be grasped successfully, especially with
vacuum-based suction grippers. In Chapter 4, we explore the effect of pushing primitives
on grasp success rates directly by measuring predicted increases in parallel-jaw and suction
grasp qualities. We then develop a set of pushing policies that attempt to maximize grasp

CHAPTER 1. INTRODUCTION 3

confidence over a single pushing action.

1.2 Perception Primitives

While manipulation primitives on their own provide a useful abstractions away from con-
tinuous control of the robot arm, they do not allow the robot to reason about relationships
between objects, identify a target object, or reason about a target object’s whereabouts. Per-
ception components such as instance segmentation, object detection and localization, and
target occupancy distributions can be viewed as similar abstractions for the input observa-
tion to the high-level policy, allowing it to understand object relationships without learning
directly from raw pixels. While deep learning has had a major impact on these perception
primitives in recent years, many state-of-the-art networks still rely on massive, hand-labeled
datasets that are expensive to collect and may contain imperfect labels [70, 90, 91].

Chapters 5 and 6 discuss how we can leverage two insights to train perception networks
that can robustly generalize to unseen real-world objects in the context of segmentation and
collision prediction. The first insight is that simulation can provide cheap, accurate labels for
many of these tasks; it can be used at scale to rapidly generate a large training dataset. The
second insight is that simulated depth images can be used to ease transfer from simulation
to reality. Taking inspiration from recent work by Mahler et al. [166], we show that training
using simulated depth images as input can allow for seamless transition to depth images
from real sensors without retraining or finetuning.

1.3 Mechanical Search Policies

Even given robust perception primitives and manipulation primitives, an action selection
policy is needed to guide the mechanical search process. Action selection policies must
reason about both past and future consequences of potential actions as well as relationships
between objects that can be moved within or removed from the environment. Previous work
considers only visual search [7] or known environments [266], or attempts to reconstruct
object geometry [145, 204]. Similar policies have also been explored within environments
with blocks or cylinders [188, 276, 282]. However, many of these policies may struggle to
generalize to perceiving and manipulating unseen real-world objects.

Chapter 7 introduces a set of baseline action selection policies and shows how the ma-
nipulation and perception primitives discussed in Chapters 2 through 6 can be integrated as
part of a mechanical search pipeline in extensive simulated and physical experiments. Addi-
tionally, we quantify how the mechanical search problem difficulty scales with the number of
objects in the scene for these baseline policies in an overhead-access environment. Chapter 8
improves on these baseline policies by leveraging a more powerful intermediate representa-
tion: the target occupancy distribution. We show that directly reasoning about the target
object pose and maximally reducing its uncertainty within the scene can result in a more

CHAPTER 1. INTRODUCTION 4

efficient and more successful mechanical search policy than the previous baselines. Then, in
Chapter 9, we show how the concepts presented in Chapters 7 and 8 can be extended to
the lateral-access settings (i.e., shelves) in cases where objects may not be removed from the
environment.

5

Part I

Manipulation Primitives

6

Chapter 2

REACH: A Robust Efficient Area
Contact Model

Inspired by the success of recent hybrid approaches for grasp planning that train deep neural
networks on large datasets of simulated depth images with grasp labels generated by ana-
lytic grasp metrics, this chapter focuses on improving contact models to account for the area
contacts produced by compliant gripper jaws. We hypothesize that using the less conserva-
tive and more accurate labels produced by efficient area contact models could lead to less
conservative and more accurate grasp quality predictions, thus expanding the set of grasps
on unknown objects in constrained settings like mechanical search.

In nearly all robotic grasping applications, gripper contacts are covered with compliant
material to better resist disturbing wrenches [56, 80]. Compliant gripper fingertips also create
contact areas that can deform around local surface geometry [147]. However, the majority
of research on grasp planning uses a point contact model that does not take contact area
into account [164]. Point contact models can produce a high false-negative rate, predicting
failure for grasps that are successful, especially when grasping objects at edges and corners,
as shown in Fig. 2.1. A high false negative rate may lead to a grasp planner being unable
to find grasps on an object, even when they exist. Additionally, when training a deep
network for grasp planning, a large dataset of true positives and true negatives are needed
to avoid overly confident or conservative predictions [223]. Reducing the contact area to
idealized surfaces [40, 97, 103, 274] or using the Finite Element Method (FEM) [41, 271,
273] are other approaches for modelling the interaction between a compliant gripper and
objects, but the former does not model non-parametric surface geometries, while the latter
is computationally expensive.

In this chapter, we address these issues and propose the REACH model, a novel Robust
Efficient Area Contact Hypothesis model for robot grasping that estimates contact area
through the constructive solid geometry intersection between the object mesh and the com-
pliant volumetric model of each gripper jaw. REACH represents the pressure distribution
using a linear model based on the deformation of the jaw and decomposes the contact sur-
face into a triangular mesh to compute the friction constraints for each triangle based on the

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 7

Figure 2.1: Top: An example of a grasp on the corner of a cube. With a point contact model
(left) the grasp cannot resist the gravity wrench since the contacts slip; however, with the
REACH model (right) the grasp can resist the gravity wrench under perturbations in pose
and material properties as the gripper deforms around the object corners to form a sticking
contact. Bottom: Predicted grasp reliability (red, yellow, green→ low, medium, high) under
the point contact model (left) and under the REACH model (right) for a bracket, illustrating
that the REACH model is far less conservative. The REACH model is significantly more
accurate in predicting the true outcome of physical grasp experiments on this bracket.

ellipsoidal limit surface [97]. “Hypothesis” refers to the inherent uncertainty in these con-
straints for multi-point frictional contacts. The wrench contributions from all triangles form
the grasp wrench space, which is used to predict grasp reliability (probability of success).
As in Dex-Net 1.0 [163], REACH uses Monte-Carlo sampling to evaluate grasp robustness
under perturbations in gripper pose and material properties.

This chapter makes two contributions:

1. REACH, a novel and efficient area contact model that considers full six-dimensional
wrenches applied at the contact by modeling frictional constraints at each triangle.

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 8

2. A labeled dataset from physical experiments with 2,625 grasps of 21 objects by an ABB
YuMi robot with a compliant parallel-jaw gripper, with cross-validation experiments
comparing REACH to point and dynamic contact models across results from physical
experiments.

2.1 Related Work

There is substantial literature on contact modeling for robot grasping, with notable surveys
by Kao, Lynch, and Burdick [114], Rimon and Burdick [215], and Bicchi and Kumar [20].

2.1.1 Point Contact Models

Point contact models provide constraints on forces and torques applied at the contact between
a point and a surface. A point contact can be modeled as frictionless point contact, frictional,
or soft [20, 222]. A frictionless point contact can only exert a force along the inward contact
normal. A frictional point contact can additionally exert a tangential force, and a soft
point contact also applies a pure torsional moment about the inward contact normal. The
tangential force is commonly constrained by Coulomb’s Law, and the torsional moment is
similarly constrained, scaling with a torsional friction coefficient [172]. The tangential force
and torsional moment that a soft point contact exerts can also be jointly constrained by the
so-called friction limit surface (FLS) [76, 147, 186], which Howe et al. approximated with
an ellipsoid for computational efficiency [97].

2.1.2 Area Contact Models

The first area contact models used Hertz’s contact theory [94], which described the contact
profile for two elastic bodies. Xydas et al. extended the model to include materials that are
not linear-elastic [115, 274]. Other compliant contact models have also been introduced [103,
168]. Barbagli et al. [12] provide an excellent summary of several of these models, and how
well each one approximates the human finger. However, these models assume a spherical
or hemispherical object contacting a planar surface, and require finite-element analysis for
nontrivial surfaces [202, 273]. Some work has focused on adapting these models to non-
planar geometries. Ciocarlie et al. applied constraints from the ellipsoidal FLS model to
area contacts by summing over elements in a FEM simulation [41] and by approximating the
contact area with an ellipse and applying Hertzian and Winkler pressure distributions [40].
The 2D ellipse is later generalized to quadric surfaces in Tsuji et al. [248] to approximate
the contact area. Xu et al. [271] analyze a 3D subspace of 6D friction constraints for curved
contact area results from soft-finger grasping, where the contact profile is obtained from a
FEM simulation. Ghafoor et al. applied a different model consisting of circular elastic point
contact contours to find the 6D grasp stiffness matrix, which relates the force applied by the
finger to the 6D wrench applied at the contact [71].

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 9

Of these, Ciocarlie et al.’s work is most similar to the work presented here, but our
work precisely determines the area of contact without approximating the surface. Charusta
et al. also find a patch contact by intersecting the gripper geometry with the object, but
only consider spherical gripper pads and do not consider the pressure distribution formed
by the patch contact [35]. In contrast, we consider arbitrary planar gripper geometries and
explicitly model the pressure distribution created by the patch contact. Sinha and Abel
analyze non-planar contact surfaces through discretization into finite area patches [232], but
they applied their results only to objects with simple geometries (such as cubes and cylinders)
and required a variational approach to solve for a quasi-static equilibrium. In contrast, we
estimate the contact area without a smooth approximation of the object surface or FEM
simulations. The proposed model also considers the full 6D wrench applied at the contact,
whereas Ciocarlie et al. [40] and Charusta et al. [35] consider a 4D wrench and Xu et al.
[271] study a 3D subspace.

2.1.3 Grasp Wrench Space Analysis

Our wrench-space analysis extends the analysis presented by Mahler et al. [165, 166] in
that we characterize a grasp as successful if the grasp resists the gravity wrench. Previous
work has considered many metrics including probability of force closure and ability to resist
any applied disturbing wrenches [42, 216, 260]. Krug et al. perform a complete analysis
of wrench-based grasp quality metrics [132]. In this work, we develop constraints for each
patch contact applied to the object and solve a quadratic program to determine if the forces
applied at the contacts can resist the gravity wrench applied to the object.

2.1.4 Grasp Datasets

Bohg et al. provided a survey of the most commonly-used grasp datasets [21]. Large-scale
datasets for grasping are commonly created via hand-labeling, such as Team MIT-Princeton’s
dataset for the 2017 Amazon Picking Challenge [284] and Lenz et al.’s Cornell Grasping
Dataset [141]. Other training datasets label successful robot grasps either in simulation [106]
or on a physical system [143, 201]. Mahler et al. proposed a hybrid approach, using soft
point contact models to efficiently generate a labeled dataset of millions of grasps for 3D
models in simulation, and training a network on a labeled dataset of simulated grasps [164,
165, 166]. In contrast, to create our physical dataset, we sample grasps in simulation and
gather ground-truth labels on the physical system.

2.2 Problem Statement

We consider the problem of predicting grasp reliability, or probability of grasp success, based
on the ability of the grasp contacts applied by a robot gripper to resist the gravity wrench.

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 10

In this chapter, we consider a parallel-jaw gripper, but the model can be applied to grippers
with any number of jaws.

2.2.1 Assumptions

We make the following assumptions:

1. Quasi-static physics (inertial terms are negligible) and Coulomb friction.

2. Objects to be grasped are rigid with known geometry.

3. The gripper has known geometry and two parallel jaws, each covered with a linear-
elastic material whose geometry can be approximated by an extruded planar polygon.

4. The friction coefficient µ is constant over the contact area.

5. Both gripper jaws make contact simultaneously.

6. The jaw applies a force normal to each triangle’s face in the contact patch.

2.2.2 Definitions

The state x of the grasping scene consists of the geometric, mass, and frictional properties
describing an object O, as well as the pose of the object TO. The set of actions are a
set of grasps U that are available to a robot with a parallel-jaw gripper. Each grasp u ∈
U is parametrized by a nominal grasp center p ∈ R3 and an angle φ ∈ S3. The jaws
close with closing force fC around the grasp center and are oriented according to the grasp
angle. Success is measured through a binary reward function R, where R = 1 if the grasp
successfully lifts the object and R = 0 otherwise. To model uncertainty in state, imprecision
in robot control and imperfect knowledge of external wrenches, we define grasp reliability
as a distribution Q(x,u) = P(R |x,u) that describes the probability of success for a state x
and grasp u [165]. We evaluate reliability in simulated environments by varying object pose,
mass, and frictional properties, and by taking Q(x,u) to be the sample mean of N trials:
Q(x,u) = 1

N

∑N
i=1Ri(x,u).

2.2.3 Objective

Given a nominal state x and grasp u, we seek an accurate, efficiently-computable estimation
of reliability Q(x,u), while optimizing average precision (AP). AP is defined as the weighted
mean of precision values at each recall threshold, with the weights being the increase in recall
from the previous threshold, and measures area under the precision-recall curve. This metric
optimizes binary classification performance for an imbalanced dataset (e.g., more successes
than failures) [221].

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 11

Figure 2.2: (a) Under the REACH model, the contact patch is formed via the constructive
solid geometry intersection between the extruded pad polygon and the object mesh. â
indicates the approach vector of the jaw. Redder colors represent more deformation of the
pad at that point and hence higher pressure. (b) The deformation of the gripper and (c) the
triangle frame for a single triangle in the contact patch. The wrenches that can be applied
at each triangle sum to form the total wrench applied to the object in its frame. (d) The
pressure distribution of the patch under the REACH model and (e) as measured by a Weiss
Robotics WTS tactile sensor [258].

2.3 REACH Model

To efficiently approximate grasp reliability, the REACH model estimates the contact wrenches
a gripper can apply to the object. We first estimate the contact area, which we decompose
into multiple triangles, and the pressure distribution. The wrenches that can be applied
at each triangle are computed individually, and the sum of each triangle’s wrenches forms
the total wrench that the grasp can apply. Each triangle contributes frictional and normal
wrenches, where the frictional wrenches are constrained with an elliptical FLS model [97,
186].

The wrench set that the contacts can exert in the object frame is given by Λ = {w ∈
R6 | w = Gα, α ∈ F}, where α ∈ R6n for n triangles, and G ∈ R6×6n is a set of 6n
basis wrenches in the object frame. If each triangle has m constraints, F ⊆ Rmn is the set of
constraints for the grasp. The contacts then can resist an external wrench w if −w ∈ Λ [132,
165, 186]. In practice, we solve this system using a quadratic program, which modern solvers
can efficiently find an exact solution for given that the set F is defined by linear equality
and inequality constraints. In this section, we describe the REACH model for efficient
computation of the contact profile and the constraints F .

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 12

2.3.1 Contact Area Computation

We model the object’s geometry as a triangular mesh and define the contact area as the
constructive solid geometry intersection of the extruded polygon of the jaw with the object.
To model deformability of the jaw material, we find the gripper deformation depth ddef =
κfC , where κ is a material constant specific to the jaw material and fC is the closing force the
jaw can apply. If the material has a physical limit for how much it can deform, we introduce
this constraint by saturating ddef at this limit. We define the contact distance dcon as the
minimum positive distance before contacting the object and slice the intersection mesh with
planes parallel to the gripper at distances dcon and dcon + ddef along the approach vector,
as shown in Fig. 2.2. If the resulting surface patch(es) on the object have a finite non-zero
area, then the jaw contacts the object.

We define a frame of reference for the object, where the origin lies at the center of mass
of the object and the orientation depends on the object, and a frame of reference for each
triangle in the contact patch, where the origin lies at the barycenter of the triangle, the
z-axis is along the face normal, and the x-axis points to the first vertex. Fig. 2.2 shows these
frames for one triangle in a contact patch. Then, for a deformation function δ : R3 → R that
describes the distance the jaw presses into the object at each point on the contact surface,
we consider a pressure distribution p(r) = kδ(r)(n̂ · â) that scales with deformation and
with the angle between the object surface normal n̂ and approach vector â. The normalizing
constant k is determined by integrating the pressure distribution over the contact area. The
pressure distribution pi : R2 → R in the i-th triangle frame is given by transforming from
object frame into the i-th triangle frame. Note that the pressure distribution in triangle
frame varies only over two coordinates, as the triangle is planar. Fig. 2.2 shows that this
pressure distribution reasonably models that measured by a Weiss Robotics WTS tactile
sensor [258] for the given contact.

2.3.2 Wrench Space Constraints

Once we find the contact patch and its pressure distribution, we construct the ellipsoidal

FLS for each triangle. The 6D wrench
[
fxi fyi fzi τxi τyi τzi

]T
for the i-th triangle in

its local triangle frame is given in terms of the friction coefficient µ, the unit instantaneous

velocities v̂i =
[
vxi vyi vzi

]T
, and the pressure distribution pi(ri) over the triangle area Ai

parametrized by coordinates ri [114]:

fti =

[
fxi
fyi

]
= −

∫
Ai

µ

[
vxi
vyi

]
pi(ri) dAi,

fzi =

∫
Ai

pi(ri) dAi,

τxi = τyi = 0,

τzi = −
∫
Ai

µ‖ri × v̂i‖pi(ri) dAi.

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 13

Note that τxi and τyi are constrained to be zero in the local triangle frame, but are typically
non-zero after transformed into the object frame for the whole contact patch. The torsional
moment and tangent friction force are jointly limited by a 3D ellipsoidal FLS:

‖fti‖2

(fti,max
)2

+
|τzi|2

(τzi,max
)2
≤ 1, (2.3.1)

where fti,max
and τzi,max

are the maximal frictional force and torque, which are determined
by maximizing the integral over the set of possible velocities v̂i. Then the tangential force

has maximum magnitude with v̂i =
[
vxi vyi 0

]T
completely in the tangent plane:

fti =

[
fxi
fyi

]
≤ µ

[
fzivxi
fzivyi

]
,

‖fti‖22 ≤ (µfzi)
2 = (fti,max

)2, with |fzi| ≤ fzi,max,

where fzi,max is the fraction of the closing force fC that is applied normal to the triangle.

The torsional moment is maximized by v̂i =
[
−yi xi 0

]T
/
√
x2i + y2i :

τzi,max
= −

∫
Ai

µ ‖ri × v̂i‖ pi(ri) dAi ≤ µ

∫
Ai

√
x2i + y2i pi(ri) dAi.

Next, we compute the symbolic integrals for fxi,max
, fyi,max

, fzi,max
, and τzi,max

, so that
they can be efficiently computed as a function evaluation at runtime. We determine the
lower bound for τzi,max

, as its constraint integral can only be numerically integrated. This
conservative approximation is used to limit false positives in grasp planning, and by avoiding
numerical integration, we greatly increase efficiency in grasp prediction.

We start by transforming each integral to barycentric coordinates [259]. Given a function
f(r), with r = (x, y, z) in Cartesian coordinates, to integrate over a triangle T with vertices
t1 = (x1, y1, z1), t2 = (x2, y2, z2), t3 = (x3, y3, z3), and area A,∫∫

T

f(r) dA = 2A

∫ 1

0

∫ 1−λ2

0

f(λ1t1 + λ2t2 + (1− λ1 − λ2)t3) dλ1dλ2.

Then, we symbolically compute the maximal normal force of the i-th triangle fzi,max
based

on its pressure distribution pi = aixi + biyi + di, where ai, bi are based on the transform to
triangle frame, and di is an offset from the first point of contact to the barycenter of the i-th
triangle:

fzi,max
=

∫
Ai

k(aixi + biyi + di) dAi

=
Aik

3
(ai(xi,1 + xi,2 + xi,3) + bi(yi,1 + yi,2 + yi,3) + 3di).

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 14

The lower bound of the maximal torsional moment τzi,max
for the i-th triangle is computed

with:

τzi,max
=

∫
Ai

k(aixi + biyi + d)
√
x2i + y2i dAi

≥ k√
2

(∣∣∣∣∫
Ti

xi(aixi + biyi + d) dAi

∣∣∣∣+

∣∣∣∣∫
Ti

yi(aixi + biyi + d) dAi

∣∣∣∣) .
The proof of the lower bound τzi,max

and complete derivations and expressions for fzi,max
,

τzi,max
can be found in Appendix A.

Once these per-triangle integrals are complete, we form the final set of constraints
for each triangle. First, the normalizing constant k is found using the condition that
fC =

∑n
i=1 fzi,max

. This equality follows from the condition that the force applied must
be equivalent to the integral of the pressure distribution over the contact area [114]. We ad-
ditionally introduce equality constraints on k so that the pressure distribution is consistent
across triangles. Next, we linearize the constraint in Equation 2.3.1 by approximating the
ellipsoid with a series of linear constraints found by sampling j points on the ellipsoid [40].
For our implementation, j = 18, so there are m = 23 constraints for each triangle. In the
experiments below, we use the ten triangles with the largest area for our constraints (for a
total of 230 constraints per contact), as we empirically found these accurately describe the
contact patch for nearly all objects without sacrificing prediction accuracy.

2.4 Experiments

2.4.1 Physical Experiments Dataset

To evaluate the precision and recall of the REACH model, we collected a set of 2,625 grasps
across a set of 21 3D-printed objects (seen in Fig. 2.3) on a physical ABB YuMi robot with a
compliant parallel-jaw gripper. These objects test generalization of our method to a diverse
set of object geometries. To generate grasps for each object, we first computed all stable
poses with a probability greater than 1% [73]. Then, in simulation, we placed each object in
each stable pose on a flat workspace and sample parallel-jaw grasps on and around the object
(within a radius equal to the width of the gripper). Grasps are sampled by choosing a point
on the surface of the object and shooting rays along vectors within an angular threshold of
the negative surface normal to find a second point on the surface. Grasps that only contact
at one point or are wider than the maximum gripper width are discarded. Additionally,
grasps that fall within a distance threshold of another grasp are discarded, along with stable
poses that do not have any grasps that can be sampled (for example, the object is too wide
for the gripper in the stable pose). Grasps within the gripper pad width of the object are
sampled by adding uniform noise samples to the generated grasp centers, resulting in a set
of sampled grasps such as those in Fig. 2.1.

When evaluating grasps on the physical system, a stable pose for the object is chosen
from its stable pose distribution. A random grasp for the chosen stable pose is planned in

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 15

Figure 2.3: The 21 objects (top left) used to create the labeled dataset of real-world grasps,
along with the percentage of sampled grasps that succeeded on the physical system for each
object (bottom left). The objects are all 3D printed so that grasps could be indexed from
simulation and were chosen to cover a wide range of geometries and grasp success rates. An
example real-world grasp (right) with our compliant gripper, showing its ability to deform
around complex geometries.

simulation and is executed on the physical system through a point-cloud registration system
built around Super4PCS [173]. The transformation between the simulated point-cloud and
the point-cloud captured on the physical system is applied to the simulated grasp pose,
and grasp success is recorded by a human operator. A grasp is successful if the object is
stably lifted (e.g., does not fall from the jaws during lifting). We sample 25 grasps for each
object and each sampled grasp is repeated 5 times to measure robustness to small errors
in registration and actuation. The 21 objects used and percentage of sampled grasps that
succeeded are shown in Fig. 2.3. The complete dataset of 2625 object and grasp poses with
success labels can be found at https://sites.google.com/berkeley.edu/reach, along
with videos of each grasp trial.

https://sites.google.com/berkeley.edu/reach

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 16

Figure 2.4: An example grasp on object 1 in the Flex dynamic simulator, with perturbations
applied to each trial. We use a prototype GPU rigid-body global solver based on [161] to
move to the grasp pose (left), close the gripper jaws, and lift (right). Success is recorded for
each trial if the object remains in the gripper’s jaws after lifting.

2.4.2 Benchmark Estimators

In addition to the model proposed here, we also benchmark three other models; two analytical
models used in the literature, and a full rigid-body dynamic simulation implemented in
NVIDIA Flex. Robust versions of each of the analytical models are also considered, and
are calculated as described in Sec. 2.2.2 by taking the sample mean of N grasp trials over
perturbations in object pose and frictional properties. Each object mesh contains between
12 and 3400 triangles, with an average of 1200 triangles.

Soft Point Contact Model

The soft point contact model applies a 4D wrench at the contact point, [fx fy fz τz]
T [222].

The constraints on fx and fy are the linearized friction cone, determined by friction coefficient
µ, and fz is constrained by the closing force of the gripper. The torque τz applied at the
contact is determined by a separate torsional coefficient of friction γ and the constraint is
given by γfz.

Elliptical Area Contact Model

The elliptical contact model is adapted from Ciocarlie et al. [40]. It is implemented here by
first fitting a 2D ellipse to the extracted surface patch. The Hertztian pressure distribution
is assumed to compute the maximal frictional force and torque; these constraints are solved
for exactly by Ciocarlie et al. and depend only on the closing force of the gripper and the
ellipse axis lengths. In this case, the linearized 3D ellipsoidal limit surface model for each
contact forms the grasp wrench space.

Flex Simulation

We use a prototype version of a GPU-based rigid-body global solver [161] in NVIDIA Flex
to run a full dynamic simulation of each grasp in the physical dataset. The solver uses a
preconditioned conjugate residual method (PCR) to solve an approximated linear system for

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 17

each outer iteration. We use a time step of 1/60 sec with 2 sub-steps, 6 outer iterations and
40 PCR iterations per each outer iteration, with a relaxation factor of 0.75. Each gripper
consists of 720 triangles, 300 for each finger and 120 for the base. Each trial consists of
the gripper moving to the grasp pose, closing the gripper, and attempting to lift the object.
Since the simulator allows for many simultaneous trials, we run 100 trials of each grasp in
parallel, with perturbations of the same magnitude as we use for our robustness score applied
to each trial. Fig. 2.4 shows an example grasping scene.

2.4.3 Metrics

Average precision (AP) and average recall (AR) are calculated using the ground-truth grasp
labels and each model’s predictions for the dataset of physical grasps. Average Precision
is defined as the mean of the precision at each recall threshold, weighted by the difference
between thresholds. Thus, AP is a measure of the area under the precision-recall curve
and indicates overall performance of a binary classifier. AR is inversely related to the false
negative rate (grasps predicted to fail but succeed) and is calculated as the recall averaged
across 11 equally-spaced prediction thresholds for success from 0.0 to 1.0. Since each model
has several parameters that can be tuned for each object, a cross-validation approach was
used to avoid overfitting the model to the choice of objects. We sampled model parameters
from uniform distributions: U(0.3, 1.5) for the tangential friction coefficient, and U(0.01, 1)
for the point contact model’s torsional friction coefficient or U(0.0001, 0.01) for the area
contact models’ material constant. We performed leave-one-out cross-validation with 100
sets of sampled parameters, choosing the best performing model on the training objects and
applying it to the held-out object. We also measure run time for each model on an Ubuntu
16.04 machine with a 12-core 3.7 GHz i7-8700k processor and a NVIDIA V100 GPU.

2.4.4 Discussion

The results in Tab. 2.1 suggest that the REACH model is able to correctly predict grasps
that are classified as false negatives by the other methods, at the cost of several more false
positive predictions. Full results for each object can be found in Appendix A. The non-robust
REACH model achieves an absolute 17% higher AR than the soft point contact model while
maintaining a similar AP. Adding robustness increases AP for both models, but the REACH
model still increases AR by an absolute 11% over the point contact model. Flex outperforms
both the robust soft point contact model and the REACH model in the AP metric by 4%,
but at the cost of a run time that is 20x that of the REACH model and 250x that of the
robust point contact model. Thus, despite similar AP performance to the robust soft point
contact model, the REACH model shows promise for use in a grasp planner, as it can recall
grasps that the other models are unable to recall.

These results also suggest that robustness can significantly increase average precision;
the AP for both the robust soft point contact model and the REACH model is 6% and 5%
higher than their non-robust counterparts. While these results are limited to our dataset of

CHAPTER 2. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 18

Table 2.1: Average Precision (AP) and Average Recall (AR) for each model’s predictions of
grasp quality, for the 525 grasps collected on the physical robot. We perform leave-one-out
cross validation, and average the AP and AR on each of the held-out folds. The non-robust
REACH and REACH models achieve an absolute 17% and 11% higher AR than the non-
robust and robust point contact models, respectively, with similar AP. Adding robustness
increases AP and still allows the REACH model to recall grasps that the other models
cannot. Flex outperforms all models in AP, but requires 20x more computation time. Full
results for each object can be found in Appendix A.

Model AP AR Run Time (s/grasp)
Point 0.76 0.55 0.006
Point Robust 0.82 0.55 0.040
Elliptical Area 0.73 0.47 0.024
Elliptical Area Robust 0.73 0.47 0.220
Flex Simulation 0.86 0.54 10.300
REACH (non-robust) 0.77 0.72 0.053
REACH 0.82 0.66 0.520

plastic 3D printed objects, adding this robustness could also help the model generalize to
different object masses and frictional properties.

Additionally, we note that the sampled parameters that best fit our physical dataset for
the REACH model often are unrealistic for the physical gripper that we use. In particular,
the sampled material constant often leads to deformation depths much larger than the ma-
terial can actually deform. We hypothesize that this choice of parameters leads to better
performance because more deformation accounts for more dynamic grasps where the object
may rotate slightly into alignment or where one jaw contacts the object first.

2.5 Conclusions

Accurately and efficiently modeling the area contacts produced by interactions between com-
pliant parallel-jaw grippers and rigid objects is crucial for improving analytic grasp quality
labels used to train hybrid grasp quality prediction networks. In this chapter, we introduced
REACH, a Robust Efficient Area Contact Hypothesis model that estimates contact profile
and contact wrench constraints by leveraging triangular mesh models and barycentric inte-
gration for computational efficiency to increase recall over traditional point contact models
by 17%. The remaining false positives and false negative predictions from the REACH model
mainly stem from dynamic effects, such as the object initially slipping before being grasped
and the potential change of object pose due to two jaws not in contact simultaneously.

19

Chapter 3

6DFC: Efficiently Planning Soft
Non-Planar Area Contact Grasps
using 6D Friction Cones

This chapter continues the discussion from the previous chapter on improving contact models
used in analytic grasp quality evaluation to account for the area contacts created by inter-
actions between compliant parallel-jaw grippers and rigid objects. The REACH model in
Chapter 2 can efficiently compute area contact wrench constraints for use in analytic grasp
quality evaluation, but has two main drawbacks: (1) it does not scale gracefully to finer
surface geometries (i.e., meshes with hundreds or thousands of triangles within the contact
region) because it adds linear constraints for each contact triangle, and (2) it can overesti-
mate the total frictional wrench applied at the contact since there is no coupling between
contact triangles. In this chapter, we aim to further improve accuracy and efficiency of the
REACH model by addressing these two drawbacks through the 6DFC (6D friction cone)
model. 6DFC creates only one set of constraints per contact, allowing it to scale more easily
to objects with fine surface geometries, and considers velocity vectors that are consistent
across all triangles in the contact area to avoid overestimating the total contact wrench
constraints.

As stated in the previous chapter, wrench-based grasp quality metrics rely on accurate
estimation of the forces and torques applied at the contacts between the gripper and object
to form the Grasp Wrench Space (GWS), or the set of wrenches that can be applied to the
object by a set of gripper jaws. By computing the GWS, we can determine which wrenches
the grasp can resist. In previous work, area contact models made up of multiple points or
regions have been considered, but these either assume a planar contact area [85, 41, 40] or
can be inefficient for fine surface geometries [50]. In this chapter, we consider non-planar
soft area contacts from a compliant gripper and formulate constraints for the wrenches that
can be applied at each contact, as shown in Figure 3.1. We extend the 6D ellipsoidal model
proposed by Xu et al. [270] by more efficiently sampling wrenches on the 6D friction limit
surface (FLS) without Finite Element Analysis (FEA) and combining the 6D FLS with the

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 20

Figure 3.1: (a) A non-planar area contact is created when a compliant gripper jaw surface contacts
a non-planar object’s surface. (b) An enlarged view of the deformed jaw and the contact profile
obtained by the REACH model [50]. The non-planar contact area consists of triangles and the
redder colors represent higher pressure due to larger deformation of the jaw pad at that point. (c)
A projection of the 6D friction cone that constrains the wrenches that can be applied at the contact.
Each ellipsoid represents a projection of the friction limit surface for a given gripper closing force
and its center corresponds to the wrench created by the contact pressure.

normal wrench imposed at the contact. We present a novel 6D friction cone (6DFC) that fully
constrains the normal and frictional wrenches that can be applied at a contact by varying the
grasp force. We then show how a linearized GWS can be formed from the 6D friction cones
at each contact and can be directly used to evaluate grasp quality as a quadratic program.
We believe that the 6DFC is particularly relevant to the family of compliant grippers both
for grasp planning and for grasp robustness analysis when the exact grasp force is unknown.
6DFC subsumes both the friction cone created from planar contacts from rigid grippers and
grasp analysis with known closing forces.

This chapter provides three contributions:

1. A generalization of the 3D friction cone to a 6D friction cone for grasp reliability
computation.

2. The 6DFC sampling algorithm for efficiently constructing the 6D friction limit surface
and 6D friction cone for a non-planar area contact.

3. Results comparing 1500 physical grasps of 12 3D printed non-planar objects on an
ABB YuMi robot with predictions from 4 algorithms that suggest the 6DFC algorithm

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 21

can decrease false negatives by 17% over soft point contacts and 6% over a previously
proposed area contact model.

3.1 Related Work

3.1.1 Contact Models

The contact between a robot gripper jaw and an object can be described as the jaw exerting
a 6D wrench on the object with 3D force and 3D torque components, expressed in an object
reference frame.

Among the many models introduced [222, 20, 114, 215], the most common models used
in practice are point contact models with friction or soft point contact models [164, 12].
Under the Coulomb friction model, these contacts can exert forces in the plane tangent
to the contact surface and a torsional moment (for soft point contacts) about the contact
normal [97, 113, 115, 41, 40]. The tangential force and torsional moment that a soft point
contact can exert can also be jointly constrained by the FLS [76, 147, 186], which Howe,
Kao, and Cutkosky [97] approximated with an ellipsoid for computational efficiency.

Planar area contact models are used to construct a 3D ellipsoidal FLS [96, 245, 41]; these
area contact models jointly constrain forces in the contact plane and torque about the normal,
but do not consider non-planar area contacts. Xu et al. [271] analyzed a 3D subspace of 6D
friction constraints for curved contact areas and generalized the 3D FLS ellipsoid to 6D to
model friction for non-planar surfaces. The 6D FLS is computed by densely sampling body
twists and fitting the downsampled wrenches with an ellipsoid via convex optimization [270].
We also use a sampling method to form the 6D FLS, but without densely sampling over
the entire space for increased efficiency. Danielczuk et al. [50] considered non-planar soft
contacts by discretizing the area contact as a triangular mesh, but the REACH model did
not consider the coupling between contact triangles, instead formulating constraints for each
triangle independently. This formulation also resulted in slow runtime due to the number
of contact wrench constraints in the grasp optimization problem scaling with the number of
triangles in the contact area.

3.1.2 Grasp Analysis

Evaluating grasp quality requires determining the grasp’s ability to constrain the motion
of the object by applying forces and torques at the contacts to resist external disturbances
without violating the frictional constraints at each contact [19]. To evaluate this quality,
many metrics have been developed based on the grasp wrench space (GWS), or the space of
wrenches that the contacts can apply to the object [216]. For example, force-closure ensures
the contacts can resist any external wrenches with arbitrarily high grasp forces [187, 177,
149]. While metrics analyzing the entire GWS can be useful for unknown tasks [260, 42,
216], force-closure grasps are conservative for many tasks, such as lifting an object, as they

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 22

require the grasp to be able to resist wrenches that will not be applied to the object during
the task.

For unknown or complex tasks, formulating the 6D Task Wrench Space (TWS) ellipsoid
can be complicated [149], but for simple tasks such as lifting an object, the task wrench
space can be formulated as the wrenches applied to the surface of the object (object wrench
space) or its center of mass (mass wrench space) that must be resisted [237, 23, 88, 153].
Mahler et al. used a mass wrench space of the gravity wrench, corresponding to a grasp’s
ability to lift and hold the object [164, 165]. We use the same metric as Mahler et al. in
that we characterize a grasp as successful if the grasp can resist the gravity wrench.

3.1.3 Grasp Wrench Space Formulation

A common approximation of the GWS is to find the convex hull of the union or Minkowski
sum of the discretized friction cones at each contact [177, 23, 66]. Krug, Bekiroglu, and Roa
[132] noted that the independent contact bounds via the Minkowski sum more accurately
represent fully-actuated grippers than that of the sum-bounded union. However, for soft
point contact models or area contact models that consider a 3D friction limit surface, only the
union or Minkowski sum of the ellipsoids created by the maximal normal force is considered
(e.g., the ellipsoids generated by normal forces between zero and the maximal normal force
are ignored) [132, 40, 42]. In contrast, we formulate the GWS using independent contact
bounds and the full 6D friction limit surface ellipsoid for each normal force that can be
applied at the contact. The 6D friction cone captures both normal wrench and frictional
wrench constraints.

3.1.4 Contact Wrench Cones

In addition to grasping applications, contact models are also commonly used to form contact
wrench cones in legged robotics. The contact wrench cone (CWC) describes wrenches acting
on the center of mass of a humanoid robot, determined by the friction cones at discrete
contact points where the robot contacts the ground [11, 209]. Caron, Pham, and Nakamura
[30] built the 6D CWC for non-coplanar contacts using surface contact wrenches. Carpentier
and Mansard [31] approximated the CWC with a 6D cone. While the algorithms in [30, 31]
consider 3D wrench constraints at each point or planar area contact, the proposed 6DFC
models 6D wrench constraints for each non-planar area contact from compliant grippers.

3.2 Problem Statement

We consider the problem of predicting grasp reliability, or probability of grasp success, by
building a 6D friction cone of each non-planar area contact from compliant jaws.

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 23

3.2.1 Assumptions

We make the following assumptions:

1. Quasi-static physics (inertial terms are negligible) and Coulomb friction with constant
friction coefficient µ over the contact area.

2. Objects to be grasped are rigid with known geometry.

3. The gripper has known geometry and two parallel jaws, each with a linear-elastic
material at the tips.

4. Both gripper jaws make contact simultaneously.

5. Force is applied normally to the object surface at each point within the contact area.

3.2.2 Definitions

We define a state x that contains a single objectO (including its geometric, material, and fric-
tional properties) and its pose TO. We also define a parallel-jaw grasp action u parametrized
by a nominal grasp center p ∈ R3 and an angle φ ∈ S3. The jaws close with force of
magnitude fC around the grasp center and are oriented according to the grasp angle. A
binary reward function R describes the grasp success, where R = 1 if the grasp lifts the
object (meaning the contacts resist the wrench applied to the object by gravity) and R = 0
otherwise. To account for uncertainty in the state as well as imprecision in control of the
robot, we consider a grasp reliability distribution Q(x,u) = P(R |x,u) that describes the
probability of grasp success for a state x and action u [165]. We evaluate reliability in
simulated environments by perturbing object pose, mass, and frictional properties and in
physical experiments by repeating the same nominal grasp multiple times under uncertainty
in the robot grasp pose accuracy and object registration. We approximate Q(x,u) with the
sample mean of N Monte Carlo samples: Q(x,u) = 1

N

∑N
i=1Ri(x,u) [163].

3.2.3 Objective

We evaluate the accuracy on a dataset of physical grasp experiments. Specifically, we seek
to maximize average precision (AP), defined as the mean of precision values at each recall
threshold weighted by the difference in recall thresholds, which measures the area under
the precision-recall curve. Additionally, we seek to maximize the average recall (AR) on the
dataset for a given AP, as this metric indicates the ability to correctly predict positive grasps.
Both metrics measure binary classification performance and are commonly used in computer
vision for unbalanced datasets [64]. A combination of high AP and AR indicates that the
algorithm predicts few false positives while also predicting few false negatives. We select AP
and AR as metrics to evaluate the algorithm in reducing false positives and negatives.

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 24

3.3 Non-Planar Area Contact Constraints

3.3.1 Background

We define the 6D wrench that can be applied at the contact as w =
[
fx fy fz τx τy τz

]>
,

which corresponds to a force and torque that can be applied about each axis defined in the
contact frame. The set of these contact wrenches (e.g., all wrenches that can be applied at the
contact) forms the contact wrench space (CWS). Additionally, we define a maximum closing
force fC,max ∈ R+ with which the jaw can contact the object such that 0 ≤ fC ≤ fC,max.

For frictional point contacts using Coloumb friction, we can define the axis for the contact
such that the z-axis is aligned with the negative surface normal and the x and y axes are in
the plane. Then, fz = fC and the CWS is defined by [186]:

W =
{

w ∈ R6 | 0 ≤ fz ≤ fC,max,
√
f 2
x + f 2

y ≤ µfz, τx = τy = τz = 0
}

(3.3.1)

Equation 3.3.1 limits the forces that can be applied at the contact with a 3D friction cone,
as shown in Figure 3.2(a), where the tangential forces fx and fy that can be applied increase
with fz.

This idea can be extended to the case of soft point contacts, where the jaw can also apply
a torque τz around the z-axis. In this case, the torque τz and the tangential forces fx and
fy are jointly constrained by the so-called friction limit surface (FLS) [76, 147, 186], which
can be approximated as a 3D ellipsoid [97]:

W =

{
w ∈ R6

∣∣∣∣ f 2
x + f 2

y

µ2
+
τ 2z
γ2
≤ fC,max, τx = τy = 0

}
In previous work, the largest ellipsoid is used to constrain the wrench applied at the soft
point contact [40, 132]. Thus, the CWS is a 3D ellipsoid. We note that this formulation can
easily be expressed in the same way as the previous case by replacing fC,max with fz and
independently constraining 0 ≤ fz ≤ fC,max, resulting in a 4D cone that extends along the
fz axis and 3D ellipsoidal cross sections at each value of fC as shown in Figure 3.2(b).

In both cases, the CWS can be discretized into k samples:

W = [w1, . . . ,wk]

and the GWS for n contacts is formed either through the convex hull of the union or
Minkowski sum of the n discretized contact wrench spaces [66].

3.3.2 Friction Cones in 6D

In this section, we generalize the friction cone to the 6D space. When considering a non-
planar area contact, the friction wrenches that can be applied at the contact and the wrench
impressed by the normal pressure, defined as the normal wrench, are 6D, as the force and

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 25

Figure 3.2: In each image, warmer colors indicate increasing gripper closing force magnitude fC .
(a) For frictional point contacts, the friction cone is circular and extends along the fz axis. (b) For
soft point contacts, the cone is 4D and elliptical; fx, fy and τz are jointly constrained at each value
of fz by an ellipsoid approximating the friction limit surface. Here we show a projection of the 4D
cone. (c) In the non-planar area contact case, the cone is 6D and may not align with any axis,
resulting in non-axis-aligned 6D ellipsoids approximating the friction limit surface at each value of
the closing force. Here we show a projection of the 6D cone.

torque are both 3D. Xu et al. suggest that the friction wrenches are bounded with a 6D
ellipsoid centered at the origin [270]. We propose that the total wrench applied at a contact
with a grasp force fC can be modeled with a 6D ellipsoid that is centered at the 6D normal
wrench, so that varying the value of fC results in a 6D friction cone, whose center lies along
the vector fN ∈ R6 and has 6D frictional ellipsoids as contours for each value of fC , similar
to the one shown in Figure 3.1. We can express this cone as:

(w − fCfN)>A (w − fCfN) ≤ f 2
C , 0 ≤ fC ≤ fC,max (3.3.2)

Figure 3.2(c) shows a 3D projection of the 6D friction cone that is produced from a non-
planar area contact.

3.3.3 Finding 6D Friction Limit Surface Cone Constraints

For the 3D frictional point contact or 4D soft point contact case discussed above, the ellipsoid
that approximates the 2D or 3D friction limit surface can be easily found, since it is axis-
aligned. Then, by finding the maximum values for fx, fy, and τz (in the soft point contact
case), we can construct the ellipsoid. However, in the 6D case, the ellipsoid that approximates
the friction limit surface may be rotated, since when one friction wrench component reaches
its maximum value, the other dimensions might not be zero. This scenario can occur from an
asymmetric pressure distribution over the contact area or from the geometry of the contact
area itself [96]. Thus, we find an equation that describes the ellipsoid by explicitly sampling

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 26

its surface, then fitting an ellipsoid to the sampled wrenches. We describe this process in
detail in the following sections.

Computation of Friction Wrench Samples

First, we extract the contact area patch on the object using the same method as in Daniel-
czuk et al. [50]: the constructive solid geometry intersection between the gripper pad at its
maximum depth of deformation and the object is the contact area patch. This resulting
contact patch can be discretized into m triangles. However, unlike Danielczuk et al. [50],
which treats each triangle in the discretized patch as a separate planar contact, we find the
6D friction limit surface for the entire patch.

To find the 6D friction limit surface for the patch contact, we sample points that lie on
the surface, similar to Xu et al. [270]. However, unlike Xu et al. [270], we do not evenly
sample axes of rotation at various distances from the contact, since finding extreme points
on the surface requires sampling axes at both small distances from the contact (to maximize
torques) and at infinite distances (to maximize forces) [96]. Thus, we sample wrenches with
large torques or large forces separately.

First, we sample k1 tuples consisting of a unit axis of rotation ωi and a 3D center point
ci, where ωi is sampled uniformly from the unit sphere and ci is sampled randomly within a
radius r of the pressure center of the contact patch. For each tuple, we find the instantaneous
unit velocity vector in the plane normal to ωi at each triangle. We project the unit velocity
vector onto the surface of each triangle to find the projected velocity vector v̂i,t at the t-th
triangle in the contact area patch. For wrenches with maximum forces, we uniformly sample
k2 unit velocities vi, similar to sampling ωi, and project them onto each triangle plane to
find v̂i,t.

Then, we can calculate the magnitude of force that can be resisted in the triangle plane,
depending on the force applied normal to that triangle, denoted as fNt . The force that can
be applied in the frame of the triangle is −µfNtv̂i,t. By transforming each of these forces
into the contact patch frame using the triangle’s adjoint matrix Adt, we can then form the
full 6D wrench that can be applied at the contact:

wi = −
m∑
t=1

µAdtfNtv̂i,t

Fitting the 6D Ellipsoid

Given the k samples {w1,w2, . . . ,wk}, we then fit a 6D ellipsoid to the data using linear
least squares. To fit the ellipsoid, we find the positive semidefinite matrix A∗:

A∗ = arg min
A

k∑
i=1

‖w>i Awi − 1‖22

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 27

We can solve this equation exactly using least squares since it is linear in A. Note that this
method of solving for A∗ is not guaranteed to result in an ellipse if the matrix is not positive
semidefinite (in fact, a hyperboloid could also be returned), so in practice, we first determine
the dimensionality of the data by using principal component analysis (e.g., if the contact
area is planar, then the ellipsoid will only be 3D), then fit an ellipsoid of the determined
dimensionality to the data rotated to the PCA frame. We fill out the remaining dimensions
with axes lengths of a small value ε > 0, then rotate the fitted 6D ellipsoid back to the
original non-PCA frame. Thus, this case subsumes the soft point contact case above; if the
contact is planar, it reduces to the case where the normal wrench is along fz and the FLS is
3D.

Linearizing the Ellipsoidal Constraints

Although the ellipsoidal constraint is itself a convex constraint, quadratic programs with
linear constraints can be solved more efficiently. We formulate a quadratic program to de-
termine if a grasp resists gravity. We approximate the ellipsoid with a set of linear constraints
for computational efficiency.

To find these constraints, we first resample the ellipsoid. For many contacts, the initial
random sampling process results in data that is not evenly sampled due to the geometry
of the contact surfaces; thus, we resample points evenly over the surface of the ellipsoid
to better approximate it. Then, for each resampled point xi on the ellipsoid, its outward-
facing normal vector is given by A∗xi. This normal vector defines the hyperplane tangent
to the ellipsoid at xi; by finding many of these hyperplanes, we can construct a set of linear
constraints that approximate the ellipsoid. The constraint set is of the form:

F =
{
z ∈ R6 : z>A∗xi ≤ x>i A

∗xi = 1,∀i
}

Formulating Cone Constraints

Once the constraints are found for the unit closing force, we can shift the planar constraints
along the normal force vector and scale them by an arbitrary closing force:

F =

{
z ∈ R6 : z>A∗xi − fC(1 + fNA

∗xi) ≤ 0, ∀i
fC ∈ R : 0 ≤ fC ≤ fC,max

}
Note that although the ellipsoidal constraint in Equation 3.3.2 is quadratic, by first approx-
imating the unit closing force ellipse with a set of planes, we can take advantage of the fact
that the ellipse grows linearly with increasing closing force to express the planar constraints
linearly with fC . This set of linear constraints can be used directly in a quadratic program

to determine the ability of contacts that apply wrenches z̃ =
[
z1 fC,1 . . . zn fC,n

]>
to

resist the gravity wrench t:

min
z̃
‖Gz̃ + t‖22 s.t. F z̃ ≤ h (3.3.3)

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 28

Here, F and h are generated by concatenating the constraints F for each contact. The
matrix G ∈ R6×7n transforms z̃ from the contact frames to the object frame.

3.4 Experiments

We evaluate the 6DFC algorithm proposed in Section 3.3.3 against three baseline algorithms
that generate frictional and normal wrench constraints for each contact to determine which
most accurately can predict grasp success.

3.4.1 Baseline Algorithms

Soft Point Contact

As described in Section 3.3.1, this algorithm constrains the wrench applied at the contact
through a 3D ellipsoid representing the friction limit surface corresponding to the maximum
normal force that can be applied at the contact. We linearize these constraints to solve the
quadratic program in Equation 3.3.3.

REACH

The area contact model proposed in Chapter 2 discretizes the contact area into a triangular
mesh and develops constraints of a similar form to the soft point contact model for each
triangle. It can be modified to consider only a maximum number of triangles for each contact
(e.g., the 10 largest triangles), which increases computational efficiency without significantly
reducing accuracy.

Maximum Force Ellipsoid (MFE)

This algorithm constructs the 6D FLS ellipsoid as described in Section 3.3.3, but constrains
the wrench applied at the contact to the ellipsoid generated by the maximum closing force.
This method is similar to that proposed by Xu et al. [270].

3.4.2 Soft Non-Planar Area-Contact Physical Robot Grasps

To evaluate the precision and recall of 6DFC and the baseline algorithms, we use a subset
of 1,500 grasps on 12 3D-printed objects from the Soft Area-Contact Physical Robot Grasp
Dataset, collected on a physical ABB YuMi robot with a compliant parallel-jaw gripper [50].
The exerted forces are not actively controlled, as the gripper does not have force sensors.
The subset of objects chosen from the dataset have non-planar contacts for all grasps. Note
that the assumptions in Section 3.2 do not necessarily hold for the physical grasps that
the algorithms are tested on (e.g., the jaws do not always make contact simultaneously,
quasi-static assumptions do not hold).

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 29

Algorithm Precision Recall
Runtime

(ms/grasp)
Point 0.80± 0.01 0.50± 0.01 13.0± 2.7
REACH 0.83± 0.01 0.61± 0.01 207.1± 35.3
MFE 0.83± 0.02 0.60± 0.01 247.9± 9.6
6DFC 0.82± 0.01 0.67± 0.01 251.6± 14.2

Table 3.1: Mean average precision (mAP) and mean average recall (mAR) and their standard
deviations for each algorithm’s predictions of grasp quality, for 5 runs of the 1,500 grasps collected
on the physical robot. 6DFC outperforms the point, REACH, and MFE algorithms by 17%, 6%,
and 7% in mAR, respectively, suggesting that cone constraints can reduce false negatives on objects
with non-planar surfaces.

We measure both average precision (AP) and average recall (AR) for each object using
the dataset’s ground-truth physical grasp labels and each algorithm’s predictions. We con-
sider a physical grasp to be successful if it lifts and transports an object from a bin to a
receptacle. We measure performance with mean average precision (mAP) and mean aver-
age recall (mAR), which are the AP and AR of the algorithm averaged over all objects to
account for discrepancies in the number of successful grasps for each object. We also mea-
sure runtime per grasp computation for each model on the an Ubuntu 16.04 machine with
a 12-core 3.7 GHz i7-8700k processor. For each algorithm, parameters such as the friction
coefficient, elasticity coefficient, and robustness sample standard deviation were chosen using
leave-one-out cross validation.

The results for each algorithm are shown in Table 3.1. These results suggest that for-
mulating the 6DFC algorithm can increase the number of successful grasps on the physical
system that can be recalled by as much as 17% over existing algorithms while maintaining
a similar number of false positives predicted. We find that grasps found only by 6DFC are
often of the kind shown in Figure 3.1, where the contact area is small with high surface cur-
vature, and the grasp may include slight dynamic effects such as a bowing of the jaws. We
hypothesize that allowing for reduced closing forces in this scenario could more accurately
model the changing contact profile that occurs.

3.4.3 Grasp Planning Results

We also evaluate the reliability of each algorithm as part of a grasp planning policy via a
second experiment. We hypothesize that our algorithm can find grasps in scenarios where a
point contact algorithm would not return any high-quality grasps due to predicted collisions
with other objects, environmental constraints, or motion-planning constraints. To test this
hypothesis, we place each of the 12 objects in their 3 most probable stable poses [73] and
attempt the top 3 grasps that each algorithm labels as the highest reliability grasps for that
stable pose. We remove nearby grasps so that the algorithm cannot choose 3 similar grasps,

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 30

Figure 3.3: Mean average precision (mAP) and mean average recall (mAR) for each algorithm as a
function of (a) the number of robustness samples Nr, (b) the robustness standard deviation σr with
error bars showing the standard deviation of 5 runs of each algorithm with the given parameter
for the dataset of 1500 physical grasps. Adding robustness samples and spreading the samples
increases mAP up to 10 samples and σr = 0.003 m. After this point, mAR continues to decline,
but mAP remains constant or decreases (in the case of σr). (c) Runtime analysis of the sampling
algorithms with different numbers of wrenches, averaged over 1000 runs. 6DFC is up to 30% faster
than [270]. Timing analysis for each algorithm is shown in (d), averaged over 6000 grasps. The
numbers below the REACH algorithm indicate the number of triangles considered in computation.
The 6DFC algorithm is of similar time to the other algorithms that analyze area contacts, but is
85x faster when analyzing the same number of triangles as REACH.

simulating other objects blocking the grasp from being executed. If multiple grasps are
labeled with the same probability, one of them is chosen at random.

We evaluated 875 unique grasps in total for 32 stable poses of the 12 objects. Both
algorithms found successful grasps in at least one stable pose that the other could not
(Figure 3.4 shows two examples), but overall the point grasps surprisingly succeeded more
often (339 successes compared to 272 for the 6DFC algorithm). This result may be due to
an inflation in grasp quality in the 6DFC algorithm; we found that many grasps that had
large contact areas were rated highly but did not succeed, as shown in the bottom row of
Figure 3.4. We will investigate this discrepancy further in future work.

3.4.4 Sensitivity Analysis

As each of the algorithms contains several parameters such as friction and elasticity coef-
ficients, robustness parameters, we include an analysis of each algorithm’s sensitivity to a
subset of these parameters.

Effect of Robustness Parameters

All of the algorithms benefit from “robustness”, or sampling grasp poses around the nominal
pose and averaging the predicted grasp qualities. We sample a random 3D translation from
a zero-mean Gaussian with variance σ2

r and a uniformly random 3D rotation with angle θ

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 31

Figure 3.4: Left: An example where the 6DFC algorithm finds a robust grasp when the Point
algorithm does not. Right: An example where the Point algorithm finds a robust grasp when the
6DFC algorithm does not. In the first case, the thin part of the object results in a low-quality
prediction for the point contact algorithm, whereas in the second case, the large contact area
produces a false positive prediction from the 6DFC algorithm.

proportional to σ2
r and apply them to the nominal grasp. Figure 3.3(a-b) shows sensitivity of

the algorithms to the number of samples Nr and the standard deviation σr. At Nr = 10 and
σr = 0.003, mAP and mAR are maximized. Adding more samples after this point does not
increase mAR and may moderately increase mAP but does result in the standard deviation
(shaded area) decreasing. Increasing σr results in lower mAR as sampled grasps no longer
resemble the nominal grasp.

Effect of Number of Samples and Contact Triangles

Figure 3.3(c) shows the sampling runtime with different number of wrenches and suggests
that the proposed algorithm described in Section 3.3.3 is up to 30% faster than [270]. The
runtime of REACH strongly depends on the number of triangles in the area contact analyzed.
The 6DFC algorithm runtime scales with the number of contacts as opposed to the number
of triangles in each contact, resulting in the 85x faster runtime on the same surface patch
mesh, as shown in Figure 3.3(d).

3.5 Discussion and Future Work

This chapter introduced 6DFC, an algorithm that generalizes 3D friction cones to non-planar
soft area contacts, constraining both the contact normal and frictional wrenches. We sample
the 6D friction cone using projections of instantaneous velocity vectors onto each triangle of
the surface patch mesh. We show 6DFC outperforms baseline point contact and area contact

CHAPTER 3. 6DFC: EFFICIENTLY PLANNING SOFT NON-PLANAR AREA
CONTACT GRASPS USING 6D FRICTION CONES 32

models on a dataset of physical grasps. We note that one reason for predicted false positives
is that the 6DFC algorithm allows different contact forces of each jaw, which is not feasible
with the current physical setup. In future work, we plan to evaluate 6DFC with a three-jaw
gripper that allows fully controllable forces to further investigate this effect. We also plan
to relax the simultaneous jaw contact assumption as part of a dynamic contact analysis and
do a thorough comparison to recent work on fully-dynamic simulation of rigid and soft-body
contacts using the IPC and Flex simulators [123, 62, 100].

33

Chapter 4

Linear Push Policies to Increase
Grasp Access

While the previous two chapters have focused on improving parallel-jaw grasping, this chap-
ter instead focuses on another useful manipulation primitive: pushing. Pushing is a vital
primitive in both overhead-access and lateral-access environments, especially in cases where
objects are large, heavy, or must be rotated or translated in order to be grasped. Pushing
can also be an efficient action to take in the context of mechanical search since it can move
multiple occluding objects away from the target object. Thus, it is important to consider
policies that couple grasping actions with synergistic pushing actions that enable grasps at
proceeding time steps. This chapter explores heuristic linear pushing policies in bin pick-
ing environments and measures pushing policy success by directly computing a difference of
predicted grasp qualities before and after the pushing action is made, unlike previous work,
which typically attempts to maximize object separation as a proxy for future grasp success
rates.

Deep learning methods can enable robots to grasp objects in isolation on a flat workspace,
and these methods have recently been extended to grasping in clutter [106, 141, 162, 164].
Perception in cluttered bin environments remains a difficult problem, and scenarios may arise
where the robot is unable to execute a collision-free grasp due to object proximity to the bin
walls or to other objects [79, 170]. Pushing can change the position or orientation of parts
so that a grasp with a higher probability of success can be executed [34, 74, 109]. It may
not be necessary to completely separate objects for robust grasps to become available, and
a series of pushes may be inefficient. Previous work measures the success of pushes as the
degree of separation between objects and attempts to minimize the number of push actions
to achieve separation [34, 60]. We explore directly using grasp confidence metrics instead of
an indirect metric such as object separation for comparison of push policies, and attempt to
maximize grasp confidence over a single push action.

In this chapter, we explore pushing policies and analyze performance in bin picking
environments. We simulate grasping and pushing policies over a set of 3D CAD models as
sample objects using robust quasi-static analysis and the Bullet physics engine. By dropping

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 34

Figure 4.1: Before (left) and after (right) images of successful pushes in simulation (top) and
in physical experiments with the ABB YuMi (bottom).

objects into a virtual bin and executing sequences of grasping actions, we generate a dataset
of over 1,000 simulated scenarios in which pushing could potentially be useful. For each of
these scenarios, we evaluate five pushing policies against a baseline policy using metrics that
quantify changes in grasp availability.

This chapter makes three contributions:

1. Metrics to measure effectiveness of pushing actions,

2. Two novel push policies based on targeting free space and diffusing clusters,

3. Experimental data from 1,000 simulated and physical bin scenarios where all initial
state grasps generated by Dex-Net 2.0 and 3.0 have low confidence [164, 165].

4.1 Related Work

Mason pioneered research on analytic models of push mechanics [171]. Lynch and Akella
described the mechanics of stable pushing and described how to create a plan for controlled
pushing of an object through a series of obstacles [4, 158, 159, 160]. Recently, both analytic

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 35

and learning techniques have been applied to learn physical pushing models for objects so
they can be guided to a target location [2, 3, 16, 102, 131]. Goldberg and Brost showed that
pushing objects to a location is desirable because it allows for objects to be grasped [26, 75].
Dogar and Srinivasa built on the idea of “push-grasping” to reduce uncertainty in grasping
objects in clutter, using predefined 3D models of the objects to be grasped and attempting
to estimate pose of each object in the scene before planning an action [54, 55]. Kehoe,
Berenson, and Goldberg [119] extended these ideas to model uncertainty in the shape of
the object. In the Amazon Picking Challenge, the Technische Universitat Berlin team used
pushing to enhance suction [63]. Team MIT used “topple” and “push-rotate” primitives to
aid in grasping and bin-clearing [278]. These primitives were designed for a specific scenario
in the competition, where some objects were initially ungraspable.

Another class of related work focuses on pushing heaps of objects for interactive segmen-
tation. Hermans, Rehg, and Bobick [92] reason about boundaries between objects and keep
a “push history” to estimate likelihoods that each cluster in an image is a separate object.
They plan pushes along the object boundaries to attempt to force two nearby objects apart.
While they score potential pushes on workspace boundaries and likelihood of collision with
other clusters, their analysis does not account for scenarios where objects may be lying on
top of one another. Chang, Smith, and Fox [34] also consider interactive singulation of
objects in clutter, pushing clusters of objects away from other clusters so that they can be
grasped. They track clusters between actions to gain evidence of singulation and adapt their
pushing strategy based on the results of the previous pushes. However, their approach relies
on object tracking, which may be sensitive to sensor noise. Several other groups study push-
ing as a means of interactive perception or segmentation, where actions are used to inform
segmentation of objects from the background [116, 121, 146]. These use fixed-length pushes
to distinguish objects from each other or the background, but do not use pushing to aid in
future grasping attempts. In all of these cases, multiple pushing actions are necessary to
confirm singulation of the object. We seek to extend these previous pushing methods for bin
picking applications by introducing a bounded workspace and new push metrics.

“Singulation” applies pushing mechanics and planning to the task of separating or ex-
tracting objects that lie close together, and it is often required for successful object recog-
nition or grasping. Model-based approaches such as the one proposed by Cosgun et al.
[45] planned a series of robot actions to clear space for a target object in two-dimensional,
tabletop pushing scenarios. Without prior knowledge of the objects, it can be challenging
to estimate object geometries, poses, and other physical properties of the objects and en-
vironment [243], which can affect the efficiency of pushing actions [279]. For this reason,
recent work has focused on learning strategies to push objects apart. Laskey et al. have
used learning from demonstrations to successfully singulate and grasp one object in clutter
with continuous push trajectories [138, 139]. Omrčen et al. [190] used many examples of
pushing objects to train a fully-connected two-layer neural network that predicted 3D object
motion for proposed actions. They then used these predictions to push objects to the edge
of a table where they could be grasped. Boularias, Bagnell, and Stentz [24] have also applied
reinforcement learning to the task of pushing and grasping in clutter, extending their appli-

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 36

cation to two objects. Eitel, Hauff, and Burgard [60] explore singulation in clutter using a
push proposal convolutional neural network, showing that they can separate up to 8 objects
with at least a 40% success rate in an average of 11 push actions. In contrast to their work,
which seeks to minimize the number of push actions to separate all objects, we find one push
at each opportunity, take into account bin walls and corners, and analyze push success based
on new metrics in addition to object separation distance.

4.2 Problem Statement

Given a depth image of one or more objects in a bin as input, find the push action that
maximizes the probability of a successful grasp of an object from the bin. A push action is
defined by a line segment at a constant height parallel to the workspace.

4.2.1 Assumptions

We assume a robot with a parallel-jaw gripper or suction end effector, and rigid objects in
clutter resting in a bin. We assume quasi-static physics and soft finger point contacts. All
objects considered are able to be grasped in at least one stable pose. We also assume known
gripper and bin geometries and a single overhead depth camera with known intrinsics. For
purposes of finding free regions in the bin and boundaries between objects, we approximate
distances using object center of mass. This approximation allows for reasonable compu-
tational efficiency in simulation, as finding minimum distances between two meshes is an
expensive operation. In addition, we assumed object distances to be the distance between
each object’s center of mass when determining which objects to push. In physical experi-
ments we approximate the center of mass of each object to be the centroid of each object’s
points from the point cloud.

4.2.2 Definitions

States

Let x = (O, TO) ∈ X be the ground truth state of the heap, where O represents the
geometries and inertial and material properties of all objects in the heap, and TO represents
the poses of the objects with respect to the camera.

Observations

Let y ∈ Y be an observation of the state x which consists of a depth image of height H and
width W taken by the overhead camera.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 37

Actions

Let:

• uj = (p, φ) ∈ R3×S1 be a parallel jaw grasp defined by a center point p = (x, y, z) ∈ R3

between the jaws and an angle in the plane of the table φ ∈ S1 representing the grasp
axis,

• us = (p, φ, θ) ∈ R3×S2 be a suction grasp defined by a target point p = (x, y, z) ∈ R3

and spherical coordinates (φ, θ) ∈ S2 representing the axis of approach,

• ug ∈ Uj ∪Us be a generic grasp action, either a suction grasp or parallel jaw grasp, and

• up = (q, r) ∈ R3 × R3 be a linear pushing action in 3D space defined by a start point
q = (x, y, z) and an end point r = (x′, y′, z′), with respect to the camera

Reward

Let the reward function R ∈ {0, 1} be a binary function that indicates whether an object
has been successfully grasped and removed from the bin. Pushing actions receive a reward
of 0.

Grasp Success Distribution

Let p(R|u,x) be a grasp success distribution that models the ability of a suction or par-
allel jaw grasp to resist gravitational wrenches under uncertainty in sensing, control, and
disturbing wrenches [164, 203].

Grasp Quality Function

Let the grasp quality function Q(u,x) = E[R|u,x] be a function that takes as input a
parallel jaw grasp uj or suction grasp us and the state x and evaluates the probability of
success for that action given the current state. The grasp quality function Q is a continuous
function on the interval [0, 1].

Composite Policy

A composite policy π(x) receives as input a state x and returns either a grasp action ug or
a push action up.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 38

4.2.3 Objective

The high-level goal is to maximize mean picks per hour (MPPH), defined as:

E[ρ] = E

N∑
i=0

R(π(xi),xi)

N∑
i=0

∆(π(xi))

 (4.2.1)

where ∆(π(xi)) is the time spent sensing, planning, and executing the action π(xi). If we
assume a constant execution time for each of N push or grasp actions, Equation 4.2.1 can
be simplified to:

E[ρ] =

N∑
i=0

Q(π(xi),xi)

N∆̄
(4.2.2)

where ∆̄ is the average time needed to execute an action.
Multiple consecutive unsuccessful grasps increase the total number of actions N without

contributing a reward R, decreasing E[ρ]. When grasp quality is low, successful pushing
actions lead to successful grasps, contributing a higher reward over the same number of
actions. We focus on the subtask of choosing a push action to maximize probability of a
robust grasp being available in the next timestep in scenarios where the initial grasp quality
is low.

Let the function f : X × Up → X define the state transition such that xt+1 = f(xt,up,t)
for a pushing action up,t at time t. Then we wish to find:

u∗p,t = arg max
up,t∈Up

Q(u∗g,t+1,xt+1)

where u∗g,t+1 is the grasp that maximizes Q for the next state xt+1.
To consider when a push action would be more efficient than a grasp action at the current

timestep t = 0, we analyze which action u0 maximizes the sum of expected rewards Ψ over
a two-timestep period t = {0, 1}. At time t = 0, we measure the binary reward for grasp
actions and assign a reward of 0 for push actions. At time t = 1 we measure the probability
of success for the best grasp action given the new state of the heap, Q(u∗g,1,x1):

Ψ(u0,x0) = E[R(u0,x0) +R(u∗g,1,x1)] ≈ R(u0,x0) +Q(u∗g,1,x1)

By comparing the sum of expected rewards for both actions at times t = 0 and t = 1, we
determine which action maximizes the total reward over the given period. We formalize this
as follows:

Ψp = Ψ(up,x0) ≈ Q(u∗g,1,xp,1)

Ψg = Ψ(ug,0,x0) ≈ R(ug,0,x0) +Q(u∗g,1,xg,1)

We prefer the push action when Ψp > Ψg.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 39

4.3 Push Action Metrics

We define four metrics to evaluate pushing policies on the dataset of generated heaps in sim-
ulation, where we have ground truth object poses. The first, mean object separation gain, is
a metric based on previous work [34, 60] and rewards pushing policies that create as much
separation between objects as possible. The other three metrics reward pushing policies that
lead to available high-quality grasps in the next timestep, measured using robust gravita-
tional wrench resistance analysis as in [164]. These metrics quantify the change in grasp
quality (probability of a successful grasp) due to a pushing action. In all cases, we approxi-
mate inter-object distance and bin-object distance using centers of mass for computational
efficiency.

4.3.1 Mean Object Separation Gain

Mean Object Separation Gain measures the average degree of separation between objects
in the heap [60]. Prior work has focused on minimizing the number of pushes necessary
to achieve a minimum separation between all objects in the heap; however our goal is to
maximize the expected reward at the next timestep. Highly-successful pushing actions such
as totally separating a single object from a heap might not increase the minimum separation
at all, as other objects in the heap may still be touching. Therefore, we use a normalized
change in the mean object separation for our first metric, and we call this adapted version
of prior object separation metrics mean object separation gain. For n objects, mean object
separation is defined as:

D =

n−2∑
i=0

n−1∑
j=i+1

‖oi − oj‖2 +
n−1∑
i=0

minbj∈B ‖oi − bj‖2(
n
2

)
+ n

where o is a vector of object centroids, and B is the set of bin edges. D is an average of the
pairwise distances between objects and each object’s distance to the bin. Thus, mean object
separation gain is defined as:

∆D =
D1 −D0

max(D0, D1)

where D0 is the initial mean object separation and D1 is the mean object separation after
the push action. We normalize this quantity by the larger mean object separation of the
initial and final states to get a value between -1 and 1.

4.3.2 Parallel Jaw Grasp Quality Gain

Parallel jaw grasp quality gain measures the change in best available parallel jaw grasp,
allowing us to differentiate grasp probabilities of success by end-effector. The parallel jaw

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 40

grasp quality is defined as follows:

Q∗j = max
uj∈Uj

Qj(uj,x)

where Uj is the set of all parallel-jaw grasps available on objects in the heap. We approximate
the grasp set with a finite set of 100 sampled grasps per object. Parallel-jaw grasps are
sampled from approximately antipodal pairs of points on the surface of each object. Parallel
jaw grasp quality gain is then defined as:

∆Q∗j = Q∗j,1 −Q∗j,0

where Q∗j,0 is the initial parallel jaw grasp quality and Q∗j,1 is the parallel jaw grasp quality
after the push action.

4.3.3 Suction Grasp Quality Gain

Suction grasp quality gain measures the change in best available suction grasp, again allowing
us to differentiate grasp probabilities of success by end-effector. The suction grasp quality
is defined as follows:

Q∗s = max
us∈Us

Qs(us,x)

where Us is the set of all suction grasps available on objects in the heap. The grasp set
is approximated in the same way as the parallel-jaw grasps, and suction grasps are sam-
pled uniformly across the surface of each object with approach axes coinciding with surface
normals. Suction grasp quality gain is then defined as:

∆Q∗s = Q∗s,1 −Q∗s,0

where Q∗s,0 is the initial suction grasp quality and Q∗s,1 is the suction grasp quality after the
push action.

4.3.4 Overall Grasp Quality Gain

Overall grasp quality gain measures the change in best available grasp. Overall grasp confi-
dence is defined as:

Q∗o = max
(
Q∗j , Q

∗
s

)
Overall grasp quality gain is then defined as:

∆Q∗o = Q∗o,1 −Q∗o,0

where Q∗o,0 is the initial overall grasp quality and Q∗o,1 is the overall grasp quality after the
push action.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 41

4.4 Push Policies

We compare five policies, two from prior work, two novel and a baseline method. The baseline
method is a quasi-random baseline policy similar to the one used by Hermans et al. [92].
All policies operate on both ground truth state information in simulation or the depth maps
observations described in Section 4.2. For a full state input, we performed collision checking
using the Flexible Collision Library and use the known object centers of mass and poses.
For a depth image input, we transform the depth image to a point cloud, segment the bin
and the objects using the Euclidean Clustering method described in the PointCloud Library
[220], and execute an Image Clearance Checker that checks for object and gripper collisions.
The object center of mass is approximated to be the centroid of the segmented cluster of
points from the point cloud [142]. For the following section, references to “object” can be
replaced with segmented cluster in the case of point cloud inputs. The “free space point”
pi is defined as the point that maximizes the minimum Euclidean distance from object i to
the other objects in the bin and the bin walls, penalizing distance from the starting location
with an L2 regularization term.

4.4.1 Quasi-Random Policy

The Quasi-Random Policy generates a linear push action using the following three steps:

1. Choose one object in the heap at random,

2. Choose a direction at random, and

3. Push for a fixed length at the center of mass toward the chosen object in the chosen
direction.

The push action is clipped to the bounds of the bin so that the gripper will not collide when
executing the action.

4.4.2 Boundary Shear Policy

The boundary shear policy is adapted from the pushing policy introduced in Hermans et al.
in [92]. It aims to separate the two closest objects in the heap by pushing one of them along
the boundary between the two objects.

1. Find the two closest objects in the heap with centers of mass ci and cj,

2. Construct a line cicj connecting the centers of mass of the two closest objects projected
to the plane of the bin bottom, and a line cicj⊥ perpendicular to cicj that defines the
vector approximating the boundary of the two objects,

3. Generate four possible push vectors, two for each object, that extend through the
centers of mass of the objects in the direction cicj⊥, and

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 42

4. Choose the push direction which is closest to the direction of free space and is collision
free.

4.4.3 Free Space Policy

The free space policy aims to separate the two objects in the heap with closest centers of mass
by pushing one of them along a direction toward the most free space, taking into account
bin walls and other objects. It generates the push action using the following steps:

1. Find the two objects in the heap with closest centers of mass ci and cj,

2. For each object, find the free space point pi defined above,

3. Draw lines cipi, cjpj from each of the centers of mass of the two closest objects to the
points p1 and p2, respectively, with each point projected to the plane of the bottom of
the bin,

4. Generate two possible push vectors, one for each object, that extend through the
centers of mass of the objects in the collision-free directions closest to cipi and cjpj,
and

5. Choose from the two possible collision-free push actions based on the minimum distance
from the current center of mass of object i to pi.

4.4.4 Maximum Clearance Ratio Policy

The maximum clearance policy, defined by Chang, Smith, and Fox [34], analyzes the available
space for an object to be pushed into and the cluttered area it is being pushed from.

1. Calculate clearance in front of and behind each object for 16 uniform directions span-
ning angles between 0 and 2π by moving the objects footprint in the given direction
and checking for collisions with other objects or the bin, and

2. Choose push action that maximizes ratio of space in the forward direction to space in
the backward direction and is collision free.

4.4.5 Cluster Diffusion Policy

The cluster diffusion policy groups objects into clusters based on their position. It considers
pushes of objects away from their corresponding cluster centers, along the vector originating
from the cluster center to the object center of mass.

1. Separate objects into clusters of one to three objects and find the centroid of each
cluster mi,

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 43

2. Define pushing vectors mici that connect center of cluster to center of mass ci of each
object in its cluster, and

3. Score each of the potential push actions as their cosine similarity with the direction
of most free space for the given object, and execute the push action with the highest
score.

4.5 Simulation Experiments

We generate heaps of 3D object meshes from the Thingiverse, and the KIT and 3DNet
datasets in a bin. We initialize simulations by sampling over distributions of heap size, 3D
object models, camera pose, and friction coefficients to get an initial state x0. We randomly
drop objects into the bin, and repeatedly execute parallel jaw and suction grasps until the
bin is cleared or the grasping policy described in [162, 164] fails n times in a row or has
confidence below a threshold. If the bin is not cleared, we record the heap. We then roll
out each push policy on the same set of heaps, and measure the performance of each policy
using the metrics in Section 4.3. Algorithm 1 describes the process of grasping objects out of
the bin and marking scenarios during the bin picking simulation when no high-quality grasp
actions are available.

With the dataset of over 1000 pushing scenarios collected, each of the policies described
in Section 4.4 were rolled out on the set of heaps, using PyBullet [46] for simulating gripper-
object and object-object interactions in the bin, and the metrics in Section 4.3 were measured
for each pushing action. We reject heaps where none of the policies (including the quasi-
random policy), were able to generate positive values for Overall Grasp Confidence Gain
either due to object geometry or extreme cases of object positioning in the bin (e.g. object
lying directly in a corner of the bin). These heaps reduce the performance across all policies,
and rejection sampling allows us to focus on cases that highlight differences between the
pushing policies. The remaining 481 pushing scenarios, termed improvable heaps were used
to compare policies to the baseline policy.

Figure 4.2 shows that all five policies studied had positive Overall Grasp Confidence Gain
over the set of improvable heaps by 5 percent, even in cases where they performed poorly
in terms of Mean Object Separation Gain. The Free Space and Boundary Shear policies
performed the best on the improvable heaps, with average Overall Grasp Quality Gains of
17% and 18%, which outperformed the baseline by an absolute 7% and 8%, respectively. We
note that the maximal clearance ratio policy performed best on the mean object separation
gain metric, but the boundary shear and free space policies outperformed it by three times
in overall grasp confidence gain. This result suggests grasp confidence gain is not always
correlated with object separation and could better measure push action success in bin picking.

To analyze the distribution of Overall Grasp Quality Gain, we separately recorded the
Suction Grasp Quality Gain and Parallel Jaw Quality Gain for each pushing action. These
results can be seen in Figure 4.3 and imply that pushing affects the parallel jaw grasps more

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 44

Algorithm 1: Bin Dataset Generation

1 Sample over distributions of heap size, 3D object models, camera pose, and friction
coefficients to create heap;

2 t = 0;
3 consecutive failures = 0;
4 while consecutive failures < max failures && objects in heap > 0 do
5 Randomly sample grasps over all objects in heap to create grasp set U ;
6 Prune U using collision checking and proximity to other grasps;
7 Find best grasps u∗j and u∗s;

8 Find Q∗o;
9 if Q∗o > threshold then

10 Execute best grasp u∗;
11 if grasp succeeded then
12 consecutive failures = 0;
13 else
14 increment consecutive failures;

15 Allow objects to settle;
16 increment t;

17 else
18 Add heap to bin dataset;

than it affects suction grasps. Pushing actions typically move objects around the bin, but
rarely topple them onto a new face or side. Suction relies on sampling grasps on the top
faces of the objects; if the face does not change, then it is unlikely that the suction grasp
confidence will change significantly. However, for the parallel jaws, grasp confidence depends
strongly on available space around the object. Thus, pushing an object to a freer location
can shift the parallel jaw grasp confidence more dramatically.

Next, we hypothesized that the policies would outperform the baseline policy on average
and make higher confidence grasps available to the grasping policies at the next timestep.
We used analysis of variance (ANOVA) and linear regressions to quantify the differences
between policies for each metric. A one-way repeated measures ANOVA was run for each
metric, and at least one policy was determined to be statistically different from the baseline
policy for Mean Object Separation Gain (F(3, 1907) = 19.01, p < 0.001), Overall Grasp
Confidence Gain (F(3, 1205) = 24.81, p < 0.001), and Parallel Jaw Grasp Confidence Gain
(F(3, 1205) = 21.38, p < 0.001). However, none of the policies were determined to be
statistically different from the baseline for the Suction Grasp Confidence Gain metric.

To further analyze the differences between policies statistically, we ran robust linear
regressions over 1907 observations for each metric, controlling for differences between heaps.
The results showed that the free space and boundary shear policies are statistically different

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 45

Figure 4.2: Means and standard errors of the mean for each policy and each metric. All
policies have Overall Grasp Confidence Gain values above 0.1, but Mean Object Separation
Gain values do not correspond to Overall Grasp Confidence Gain values, suggesting objects
do not need to be separated to be grasped.

from the baseline in both Overall Grasp Confidence Gain and Parallel Jaw Confidence Gain
(p < 0.001). Although they are statistically different from the baseline, we notice that the
coefficient is about 0.1 units of grasp confidence, meaning that the baseline policy actually
performs very well under many conditions. We hypothesize that the baseline policy performs
well on average because it always contacts an object. Thus, it always changes the state of
the heap, which can often generate grasps. Additionally, 337 of the 481 improvable heaps
had fewer than four objects, so the baseline policy often planned similar actions to the other
policies since it had fewer options to choose from. The heap sizes are often small since the
original grasping policy which generated the heaps rarely fails consecutively on heaps with
many objects to choose from.

We examined many individual heaps to understand the magnitude and variance of the
policies’ impact. Figure 4.4 shows an example where each policy outperformed the baseline,
while Figure 4.5 depicts an example where the baseline performance exceeds that of each
policy. In Figure 4.4, we can see that the non-baseline policies choose to push one of the
two objects that overlap, and they all achieve a large increase in the parallel jaw metric by
uncovering the red object initially lying underneath another object. The Boundary Shear
and Free Space policies perform especially well, separating all of the objects. Note that the

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 46

Figure 4.3: Means and standard errors of the mean for each policy and each type of end
effector. These results suggest pushing has a larger effect on the parallel jaws. We speculate
that this effect occurs due to suction grasps relying on faces of objects being available, and
are thus less likely to be affected by pushing, whereas parallel jaw grasps are heavily affected
by space around the object.

Baseline Cluster DiffusionBoundary Shear Free Space Max Clearance

Final State

Initial State

Figure 4.4: For this heap, each policy outperforms the baseline with respect to overall grasp
confidence gain. The initial state with the planned action (top row) and final state after
executing the planned action (bottom row) are shown for each policy. The blue arrow
represents the planned push and the the initial gripper position is represented by the tail of
the arrow, while the final position is represented by the head.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 47

Baseline Cluster DiffusionBoundary Shear Free Space Max Clearance

Final State

Initial State

Figure 4.5: The baseline marginally outperforms all the other policies with respect to overall
grasp confidence gain due to object placement. The initial state with the planned action
(top row) and final state after executing the planned action (bottom row) are shown for each
policy. The blue arrow represents the planned push and the the initial gripper position is
represented by the tail of the arrow, while the final position is represented by the head.

object does not need to be completely uncovered for the grasp to be available. This reflects
the difference between measuring grasping metrics and object separations because in this
case, the objects are still touching but a parallel jaw grasp becomes available.

In contrast, in Figure 4.5, we can see that the non-baseline policies fail to find a collision-
free push that can move one of the objects away from the corner of the bin. The baseline
policy’s action is clipped so that it does not collide with the bin, and results in it slightly
increasing the parallel jaw grasp confidence by nudging the green object further from the
other object. The non-baseline policies have no effect on the grasp confidence metrics. This
figure illustrates one of the current failure modes with the pushing policies that we have
implemented. By taking a conservative approach and avoiding collisions at all costs, we are
sometimes unable to plan a push that moves the objects away from the bin edges.

4.6 Physical Experiments

We planned pushes for bin picking on an ABB YuMi using the Boundary Shear policy, the
best performing policy in simulation, over 35 heaps of objects with varying geometry such
as tools, toys, produce, and industrial parts. Each heap contained between two and ten
objects in configurations with few accessible grasps, such as two bottles side-by-side. For
each heap, the robot acquired a point cloud of the bin with a Photoneo PhoXi depth sensor,
segmented the point cloud using Euclidean Cluster Extraction implemented in the Point
Cloud Library [220], and planned a push using point clusters as objects and the cluster
centroid as an estimate of the center of mass of each object. The robot then executed the
push by closing the parallel jaw gripper and following the linear push trajectory. Each push
took approximately 1.0 seconds to plan.

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 48

For each push, we measured the Overall Grasp Quality Gain of parallel-jaw and suction
grasps planned by a Grasp Quality Neural Network policy [164]. We categorized performance
based on the grasp quality for the best grasp in the initial heap (pre-pushing). Heaps with
Qo < 0.25 had an Overall Grasp Quality Gain of 0.24± 0.07, while heaps with Qo < 0.5 had
an Overall Grasp Quality Gain of 0.12± 0.06.

4.7 Discussion and Future Work

Analytic pushing methods can generalize well to heaps of different sizes and geometries on
a tabletop environment, but with the bin as a workspace boundary, the action space for
pushing is much more limited. Thus, in many cases, pushing any of the available objects in
the bin in any direction will yield a change in the state of the heap large enough to change
grasp access and affect grasp metrics. However, we have shown in this chapter that several
policies are statistically different from a baseline when controlling for the difficulty of each
heap, based on new grasp-centric metrics to measure effectiveness of pushing and given the
assumptions in Section 4.2.

In future work, we will further explore how the approximations and assumptions made af-
fect the results presented. For example, we will continue to benchmark the policies presented
here, as well as other policies, on the physical robot in order to determine the effectiveness of
each policy on the physical system and how closely our simulator can represent the physical
system. Further experiments will also provide a larger sample size for statistical analysis on
the physical system. We will also consider different metrics, such as maximum separation
distance, which could better inform the state of each heap. For this analysis, we chose a
two-step time horizon as an approximation of the normalized total expected reward over all
time shown in Equation 4.2.2 because greedy grasping policies have been shown to perform
very well in clutter, suggesting long-term rewards are not strongly correlated to grasp ac-
tions [162, 197]. In our next experiments, we will test this approximation by measuring the
effect of pushing over the course of longer time horizons. Additionally, we made strong as-
sumptions about the boundaries, geometries, and poses of the objects that were analyzed by
representing them as points at their center of mass for finding free space in the bin. We seek
to modify our simulations to calculate minimum distances between meshes more efficiently
while still accounting for the entirety of the objects. We also will look to exploit quicker free
space computation in image space as an alternative to our current object assumptions.

Furthermore, in this work, we assume that if none of the five policies were able to prove
grasp quality, then the heap is not improvable. Some heaps may be improvable by some
policy not tested in this work. In the future, we will determine why some heaps are not able
to be improved and seek a method for determining when heaps can be improved without
testing several policies on them. For example, when objects are entangled, or cannot easily
be pushed due to object pose or shape, we could attempt a different push or grasp action.

As extensions to this work, Kurenkov et al. [137] identified and explored more complex
push policies that include multiple linear segments and continuous motions in the plane and

CHAPTER 4. LINEAR PUSH POLICIES TO INCREASE GRASP ACCESS 49

out of plane (e.g., to topple or flip objects) as part of a visuomotor mechanical search pushing
policy in tabletop environments. We will also explore how push policies can be learned from
human demonstrations [139] and from automated execution data shared via the Cloud [120].

50

Part II

Perception Primitives

51

Chapter 5

Segmenting Unknown 3D Objects
from Real Depth Images using Mask
R-CNN Trained on Synthetic Data

In this part of the dissertation, we explore how intermediate representations such as instance
segmentation and learned implicit collision functions can influence both high-level action
selection policies and low-level manipulation primitives for mechanical search. In addition, we
show that leveraging simulated depth images or point clouds in training not only eliminates
costly hand labeling of datasets, but also can result in learned networks for these tasks
that can robustly generalize to unseen real-world objects and images without finetuning or
retraining.

In this chapter, we show that category-agnostic instance segmentation, or the ability
to mask the pixels belonging to each individual object in a scene regardless of the object’s
class, has potential to enhance robotic perception pipelines for applications, such as instance-
specific grasping, where a target object must be identified and grasped among potentially
unknown distractor objects in a cluttered environment. For example, recent approaches
to grasp planning on unknown objects have used deep learning to generate robot grasping
policies from massive datasets of images, grasps, and reward labels [164, 196]. While
these methods are effective at generalizing across a wide variety of objects, they search for
high-quality grasp affordances across an entire scene and do not distinguish between the
objects they are grasping. Nonetheless, these methods may be extended to plan grasps for
a particular target object by constraining grasp planning to an object mask produced by
category-agnostic instance segmentation. Instance-specific grasping can be seen as a subset
of the mechanical search problem, since it encompasses instances of mechanical search where
the target object is already visible.

Object segmentation without prior models of the objects is difficult due to sensor noise
and occlusions. Computer vision techniques for generating category-agnostic object propos-
als [6, 130] often oversegment and require secondary pruning steps to find a set of valid
independent objects. A variety of recent methods have demonstrated the ability to accu-

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 52

Figure 5.1: Color image (left) and depth image segmented by SD Mask R-CNN (right) for
a heap of objects. Despite clutter, occlusions, and complex geometries, SD Mask R-CNN is
able to correctly mask each of the objects.

rately segment RGB images into pre-defined semantic classes such as humans, bicycles, and
cars by training deep neural networks on massive, hand-labeled datasets [155, 91]. These
techniques require time-consuming human labeling to generate training data [152], and ex-
isting datasets consist of RGB images of natural scenes that are very different from the types
of cluttered scenes commonly encountered in warehouses or fulfillment centers. Adding new
object classes or generating data for new types of environments requires additional manual
labeling. Thus, in robotics, pixel-wise object segmentation is often avoided [104, 283] or
used for a small number of object classes, where semantic segmentation networks [181, 225]
or predefined features [108] can be used.

To address these issues, we present a method and dataset for training Mask R-CNN [91], a
popular instance segmentation network, to perform category-agnostic instance segmentation
on real depth images without training on hand-labeled data – and, in fact, without training
on real data at all. We build on recent research which suggests that networks trained on
synthetic depth images can transfer well from simulation to reality in some domains [107, 164,
217] and that depth cues can enhance instance segmentation in simulated images [228]. To
learn an instance segmentation network that transfers from simulation to reality, we propose
to train on a large synthetic dataset of depth images with domain randomization [246] over
a diverse set of 3D objects, camera poses, and camera intrinsic parameters.

This chapter contributes:

1. A method for rapidly generating a synthetic dataset of depth images and segmentation

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 53

masks using domain randomization for robust transfer from simulation to reality.

2. The Warehouse Instance Segmentation Dataset for Object Manipulation (WISDOM), a
hybrid sim/real dataset designed for training and evaluating category-agnostic instance
segmentation methods in the context of robotic bin picking.

3. Synthetic Depth Mask R-CNN (SD Mask R-CNN), a Mask R-CNN adaptation de-
signed to perform deep category-agnostic object instance segmentation on depth im-
ages, trained on WISDOM-Sim.

4. Experiments evaluating the sim-to-real generalization abilities of SD Mask R-CNN and
performance benchmarks comparing it against a set of baseline instance segmentation
methods.

In an experimental evaluation on WISDOM-Real’s high-resolution dataset, SD Mask R-
CNN achieves significantly higher average precision and recall than baseline learning methods
fine-tuned on WISDOM-Real training images, and also generalizes to a low-resolution sensor.
We employ SD Mask R-CNN as part of an instance-specific grasping pipeline on an ABB
YuMi bimanual industrial robot and find that it can increase success rate by 20% over
standard point cloud segmentation techniques.

5.1 Related Work

This work builds on prior research in region proposal generation, neural architectures for
image segmentation, and use of synthetic data for learning models in computer vision and
robotics. The approach presented here is motivated and informed by robotic grasping, ma-
nipulation, and bin-picking tasks.

Box and Region Proposals Early work in computer vision focused on using bottom-up
cues for generating box and region proposals in images [6, 130, 5, 61, 250]. Such techniques
typically detect contours in images to obtain a hierarchical segmentation. Regions from such
a hierarchical segmentation are combined together and used with low-level objectness cues
to produce a list of regions that cover the objects present in the image. The focus of these
techniques is on getting high recall, and the soup of output region proposals is used with a
classifier to detect or segment objects of interest [32].

More recently, given advances in learning image representations, researchers have used
feature learning techniques (specifically CNN based models) to tackle this problem of pro-
ducing bounding box proposals [134, 214] and region proposals [199, 200]. Unlike bottom-up
segmentation methods, these techniques use data-driven methods to learn high-level seman-
tic markers for proposing and classifying object segments. Some of these learning-based
region proposal techniques [200] have built upon advances in models for image segmentation
and use fine-grained information from early layers in CNNs [155, 86] to produce high quality
regions.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 54

While most work in computer vision has used RGB images to study these problems,
researchers have also studied similar problems with depth data. Once again there are bottom-
up techniques [219, 220, 255, 210, 82, 84] that use low-level geometry-based cues to come up
with region proposals, as well as more recent top-down learning-based techniques to produce
proposals [37] in the form of image segments or 3D bounding boxes that contain objects in the
scene. Shao, Tian, and Bohg [228] combined color and depth modalities, featurizing objects
and clustering the features to produce object instance segmentation masks on simulated
RGB-D images.

A parallel stream of work has tackled the problem of class-specific segmentation. Some
of these works ignore object instances and study semantic segmentation [155, 200, 70, 151],
while others try to distinguish between instances [91, 87]. Similar research has also been
done in context of input from depth sensors [84, 207, 277, 36, 257].

Synthetic Data for Training Models Our research is related to a number of recent ef-
forts for rapidly acquiring large training datasets containing image and ground truth masks
with limited or no human labeling. The most natural way is to augment training with
synthetic color and depth images collected in simulation. This idea has been explored ex-
tensively for training semantic segmentation networks for autonomous driving [107, 217] and
for estimating human and object pose [230, 239]. Another approach is to use self-supervision
to increase training dataset size by first hand-aligning 3D models to images with easy-to-
use interfaces [169] or algorithmically matching a set of 3D CAD models to initial RGB-D
images [283], and then projecting each 3D model into a larger set of images from camera
viewpoints with known 6-DOF poses. In comparison, we generate synthetic training datasets
for category-agnostic object segmentation in a robot bin picking domain.

Robotics Applications Segmentation methods have been applied extensively to grasp-
ing target objects, most notably in the Amazon Robotics Challenge (ARC). Many classical
grasping pipelines consisted of an alignment phase, in which 3D CAD models or scans are
matched to RGB-D point clouds, and an indexing phase, in which precomputed grasps are
executed given the estimated object pose [43]. In the 2015 ARC, the winning team fol-
lowed a similar strategy, using a histogram backprojection method to segment objects from
shelves and point cloud heuristics for grasp planning [63]. In 2016, many teams used deep
learning to segment objects for the alignment phase, training semantic segmentation net-
works with separate classes for each object instance on hand-labeled [226] or self-supervised
datasets [283]. Team ACRV, the winners of the 2017 ARC, fine-tuned RefineNet to segment
and classify 40 unique known objects in a bin, with a system to quickly learn new items
with a semi-automated procedure [181, 176]. In contrast, our method uses deep learning for
category-agnostic segmentation, which can can be used to segment a wide variety of objects
not seen in training.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 55

5.2 Problem Statement

We consider the problem of depth-based category-agnostic instance segmentation, or finding
subsets of pixels corresponding to unique unknown objects in a single depth image.

To formalize category-agnostic instance segmentation, we use the following definitions:

1. States: Let x = {O1, . . . ,Om,B1, . . . ,Bn, C} be a ground truth state which contains
(A) a set of m foreground objects in the environment, (B) a set of n background objects
(e.g. bins, tables), and (C) a depth camera. Here, each object state Oi or Bj is defined
by the object’s geometry and 6-DOF pose, while the camera state C is defined by its
intrinsics matrix K and its 6-DOF pose (R, t) ∈ SE(3).

2. Observations: Let y ∈ RH×W
+ be a depth image observation of the state x generated

from C with height H and width W . Let the pixel space U = [0, H − 1] × [0,W − 1]
be the set of all real-valued pixel coordinates in the depth image.

3. Object Mask: Let Mi ⊆ U be a mask for foreground object Oi, or the set of pixels in
y that were generated by the surface of Oi.

Every state x corresponds to a set of visible foreground object masks : M = {Mi :
Mi 6= ∅, ∀i ∈ {1, . . . ,m}}. The goal of category-agnostic object instance segmentation is to
find M given a depth image y.

5.3 Synthetic Dataset Generation Method

To efficiently learn category-agnostic instance segmentation, we generate a synthetic training
dataset of N paired depth images and ground truth object masks: D = {(yk,Mk)}Nk=1. The
proposed dataset generation method samples training examples using two distributions: a
task-specific state distribution, p(x), that randomizes over a diverse set of object geometries,
object poses, and camera parameters; and an observation distribution, p(y|x), that models
sensor operation and noise.

To sample a single datapoint, we first sample a state xk ∼ p(x) using a dataset of 3D
CAD models, dynamic simulation, and domain randomization [246] over the object states,
camera intrinsic parameters, and camera pose for robust transfer from simulation to reality.
Next, we sample a synthetic depth image yk ∼ p(yk | xk) using rendering. Finally, we
compute the visible object masksMj determining the set of pixels in the depth image with
a corresponding 3D point on the surface of object Oj. Specifically, we render a depth image
of each object in isolation and add a pixel to the mask if it is within a threshold from the
corresponding full-state depth image.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 56

Figure 5.2: Dataset generation procedure for the WISDOM synthetic dataset. A subset of
3D CAD models from a training dataset of 1,600 objects are dropped into a virtual bin using
dynamic simulation with PyBullet. A virtual camera captures both a synthetic depth image
of the scene and object segmentation masks based on the pixelwise projection of each unique
3D object. This process is repeated to generate 50,000 images.

5.4 WISDOM Dataset

To test the effectiveness of this method, we generate the Warehouse Instance Segmentation
Dataset for Object Manipulation (WISDOM), a hybrid sim/real dataset designed to train
and test category-agnostic instance segmentation networks in a robotic bin-picking environ-
ment. WISDOM includes WISDOM-Sim, a large synthetic dataset of depth images generated
using the simulation pipeline, and WISDOM-Real, a set of hand-labeled real RGB-D images
for evaluating performance in the real world.

5.4.1 WISDOM-Sim

For WISDOM-Sim, we consider an environment for robotic bin picking consisting of a table
and a bin full of objects imaged with an overhead depth camera. In general, p(x) can be
represented as a product over distributions on:

1. Foreground and background object counts (m and n): We draw m from a Poisson
distribution with mean λ = 7.5, truncated to a maximum of 10. We set n = 2 since
we use two fixed background objects: a table and a bin.

2. Background object states ({Bj}n1): We set the geometry and pose of the background
objects to fixed values.

3. Foreground object states ({Oj}m1): We sample the m foreground objects uniformly
from a dataset of 1,664 3D triangular mesh models from Thingiverse, including objects
augmented with artificial cardboard backing to mimic common packages. Object poses
are sampled by selecting a random pose above the bin from a uniform distribution,
dropping each object into the bin one-by-one in PyBullet dynamic simulation, and
simulating until all objects come to rest [162].

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 57

4. Camera state (C): We sample camera poses uniformly at random from a bounded set
of spherical coordinates above the bin. We sample intrinsic parameters uniformly at
random from intervals centered on the parameters of a Photoneo PhoXi S industrial
depth camera.

Because the high-resolution depth sensor we use has very little white noise, we fix p(y|x) to
simply perform perspective depth rendering using an OpenGL z-buffer.

We used these distributions to sample a dataset of 50,000 synthetic depth images contain-
ing 320,000 individual ground-truth segmentation masks. Generating 50k datapoints took
approximately 26 hours on a desktop with an Intel i7-6700 3.4 GHz CPU. The synthetic
images are broken into training and validation sets with an 80/20 split, where the split is
both on images as well as objects (i.e., no objects appear in both the training and validation
sets). The training set has 40,000 images of 1,280 unique objects, while the validation set
contains 10,000 images of 320 unique objects.

5.4.2 WISDOM-Real

Figure 5.3: Objects included in the WISDOM-Real dataset. 25 objects were used for fine-
tuning, while a separate set of 25 were held out for evaluation.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 58

Figure 5.4: Example bins from the WISDOM-Real test set. The number of objects in each
bin was chosen from a Poisson distribution with mean 5, with a minimum of two objects per
bin. The highly-varied geometry and occlusions make these bins challenging to segment.

To evaluate the real-world performance of category-agnostic instance segmentation meth-
ods and their ability to generalize to novel objects across different types of depth sensors, we
collected a hand-labeled dataset of real RGB-D images. WISDOM-Real contains a total of
800 hand-labeled RGB-D images of cluttered bins, with 400 from both a high-resolution Pho-
toneo PhoXi industrial sensor (1032x772 with 0.05 mm depth precision) and a low-resolution
Primesense Carmine (640x480 with 1 mm depth precision). Missing depth values were filled
in using fast inpainting [189] with an averaging kernel.

The objects in these bins were sampled from a diverse set of 50 novel objects with
highly-varied geometry, all of which are commonly found around the home (see Figure 5.3),

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 59

and have no corresponding CAD model in WISDOM-Sim. This set of 50 objects was split
randomly into even training and test sets. The training set is reserved for learning methods
that require real training data, while the test set is used to test generalization to novel
objects. We generated 100 bins containing objects from the training set and an additional
300 bins containing objects from the test set. For each bin, a truncated Poisson distribution
(λ = 5) was used to determine the number of objects to be placed in the bin, and the objects
were sampled uniformly at random from the appropriate subset. The sampled objects were
shaken together in a plastic box to randomize their poses and dumped into a large black bin
with identical geometry to the bin used in WISDOM-Sim, and once the objects settled, each
camera took an RGB-D image from above. Sample bins are shown in Figure 5.4.

After dataset collection, all images were hand-labeled to identify unique object masks
using the same tools used to label the COCO dataset [152]. We estimate that labeling the
800 real images took over 35 hours of effort due to time spent collecting images, labeling
object masks, and data cleaning.

5.5 Synthetic Depth Mask R-CNN

To adapt Mask R-CNN to perform category-agnostic instance segmentation on depth images,
we made several modifications:

1. We treat depth images as grayscale images and triplicate the depth values across three
channels to match the input size of the original network.

2. We reduce the number of classes to two. Each proposed instance mask is classified as
background or as a foreground object. Of these, only foreground masks are visualized.

3. We modify the network input to zero-pad the 512x384 pixel images in WISDOM-Sim
to 512x512 images and set the region proposal network anchor scales and ratios to
correspond to the 512x512 image size.

4. For efficiency, we swapped out the ResNet 101 backbone with a smaller ResNet 35
backbone.

5. We set the mean pixel value to be the average pixel value of the simulated dataset.

Training was based on Matterport’s open-source Keras and TensorFlow implementation
of Mask R-CNN from GitHub, which uses a ResNet 101 and FPN backbone [1]. This imple-
mentation closely follows the original Mask R-CNN paper in [91]. We made the modifications
listed above and trained the network on WISDOM-Sim with an 80-20 train-val split for 60
epochs with a learning rate of 0.01, momentum of 0.9, and weight decay of 0.0001 on a Titan
X GPU. On our setup, training took approximately 24 hours and a single forward pass took
105 ms (average of 600 trials). We call the final trained network a Synthetic Depth Mask
R-CNN (SD Mask R-CNN).

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 60

High-Res Low-Res

Method AP AR AP AR

Euclidean Clustering 0.324 0.467 0.183 0.317
Region Growing 0.349 0.574 0.180 0.346
FT Mask R-CNN (Depth) 0.370 0.616 0.331 0.546
FT Mask R-CNN (Color) 0.384 0.608 0.385 0.613
SD Mask R-CNN 0.516 0.647 0.356 0.465

Table 5.1: Average precision and average recall (as defined by COCO benchmarks) on each
dataset for each of the methods considered. SD Mask R-CNN is the highest performing
method, even against Mask R-CNN pretrained on the COCO dataset and fine-tuned on real
color and depth images from WISDOM-Real.

5.6 Experiments

We compare performance of SD-Mask-R-CNN with several baseline methods for category-
agnostic instance segmentation on RGB-D images.

5.6.1 Baselines

We use four baselines: two Point Cloud Library (PCL) methods and two color-based Mask
R-CNNs pre-trained on COCO and fine-tuned on WISDOM-Real images. For fine-tuning,
the image shape and dataset-specific parameters such as mean pixel were set based on the
dataset being trained on (e.g., either color or depth images).

Point Cloud Library Baselines

The Point Cloud Library (PCL), an open-source library for processing 3D data, provides
several methods for segmenting point clouds [220]. We used two of these methods: Eu-
clidean clustering and region-growing segmentation. Euclidean clustering adds points to
clusters based on the Euclidean distance between neighboring points. If a point is within a
sphere of a set radius from its neighbor, then it is added to the cluster [219]. Region-growing
segmentation operates in a similar way to Euclidean clustering, but instead of considering
Euclidean distance between neighboring points, it discriminates clusters based on the differ-
ence of angle between normal vectors and curvature [255, 210]. We tuned the parameters
of each method on the first ten images of the high-res and low-res WISDOM-Real training
sets.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 61

Figure 5.5: Images from both sensors with ground truth and object masks generated by
each method. For the baseline methods, the better performing method was chosen for each
scenario. While the baseline methods tend to undersegment (PCL) or oversegment (Fine-
Tuned Mask R-CNN), SD Mask R-CNN segments the objects correctly.

Fine-Tuned Mask R-CNN Baselines

As deep learning baselines, we used two variants of Mask R-CNN, one trained on color
images and one trained on depth images triplicated across the color channels. Both these
variants were pre-trained on RGB images from the COCO dataset and then fine-tuned using
the 100 color or depth images from the WISDOM-Real high-res training set. All images
were rescaled and padded to be 512 by 512 pixels, and the depth images were treated as
grayscale images. Both implementations were fine-tuned on the 100 images for 10 epochs
with a learning rate of 0.001.

5.6.2 Benchmarks

We compare the category-agnostic instance segmentation performance of all methods using
the widely-used COCO instance segmentation benchmarks [152]. Of the metrics in the
benchmark, we report average precision (AP) over ten IoU thresholds over a range from 0.50
to 0.95 with a step size of 0.05, and we report average recall (AR) given a maximum of 100
detections. Averaging over several IoU thresholds rewards better localization from detectors,
so we report this score as our main benchmark as opposed to simply the average precision
for an IoU threshold of 0.50. All scores are for the segmentation mask IoU calculation.

5.6.3 Performance

We ran each of the methods on three test datasets: 2000 images from the WISDOM-Sim
validation set and 300 real test images each from the Primesense and Phoxi cameras. All
real test images were rescaled and padded to be 512 by 512 pixels. The results are shown in
Table 5.1, and full precision-recall curves for each dataset can be found in Appendix B. The

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 62

SD Mask R-CNN network shows significant improvement over both the PCL baselines and
the fine-tuned Mask R-CNN baselines, and is also robust to sensor noise.

An example of each method’s performance on each of the real datasets can be seen in
Figure 5.5. The visualizations suggest that the PCL baselines tend to undersegment the
scene and cluster nearby objects as a single object. The fine-tuned Mask R-CNN imple-
mentations separate objects more effectively, but the color implementation may incorrectly
predict multiple object segments on different colored pieces of the same object. In contrast,
the SD Mask R-CNN network can group parts of objects that may be slightly discontin-
uous in depth space and is agnostic to color. It is able to segment the scenes with high
accuracy despite significant occlusion and variation in shape. Table 5.1 also shows SD Mask
R-CNN can perform similarly on low-res Primesense images, suggesting that the network
can generalize to other camera intrinsics and poses.

5.6.4 Robotics Application: Instance-Specific Grasping

To demonstrate the usefulness of SD Mask R-CNN in a robotics task, we ran experiments
using category-agnostic instance segmentation as the first phase of an instance-specific grasp-
ing pipeline. In this task, the goal is to identify and grasp a particular target object from a
bin filled with other distractor objects. For these experiments, we used a randomly-selected
subset of ten objects from WISDOM-Real’s test set.

One approach to this problem is to collect real images of the items piled in the bin,
label object masks in each image, and use that data to train or fine-tune a deep neural
network for object classification and segmentation [181, 225]. However, that data collection
process is time consuming and must be re-performed for new object sets, and training and
fine-tuning a Mask R-CNN can also be time consuming. Instead, our experimental pipeline
uses a class-agnostic instance segmentation method followed by a standard CNN classifier,
which is easier to generate training data for and faster to train.

To train the classifier, we collected ten RGB images of each target object in isolation.
Each image was masked and cropped automatically using depth data, and then each crop
was augmented by randomly masking the crop with overlaid planes to simulate occlusions.
From the initial set of 100 images, we produced a dataset of 1,000 images with an 80-20
train-validation split. We then used this dataset to fine-tune the last four layers of a VGG-
16 network [231] pre-trained on Imagenet. Fine-tuning the network for 20 epochs took
less than two minutes on a Titan X GPU, and the only human intervention required was
capturing the initial object images.

We benchmarked SD Mask R-CNN against two segmentation methods across 50 in-
dependent trials. First, we compared against the PCL Euclidean Clustering method to
evaluate baseline performance. Second, we compared with Mask R-CNN fine-tuned on the
WISDOM-Real training dataset to evaluate whether SD Mask R-CNN is competitive with
methods trained on real data.

During each iteration, one object at random was chosen as the target and all of the objects
were shaken, dumped into the black bin, and imaged with the Photoneo PhoXi depth sensor.

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 63

We then segmented the depth image using either SD Mask R-CNN or one of the baseline
methods, colorized the mask using the corresponding RGB sensor image, and then labeled
each mask with the pre-trained classifier. The mask with the highest predicted probability
of being the target was used as a constraint for a Dex-Net 3.0 [164] policy that planned
suction cup grasps, and the planned grasp was executed by an ABB YuMi equipped with a
suction gripper. Each iteration was considered a success if the target object was successfully
grasped, lifted, and removed from the bin, then transported to a nearby receptacle.

The results of these instance-specific grasping experiments are shown in Table 5.2. SD
Mask R-CNN achieved a success rate of 74%, significantly higher than the PCL Euclidean
clustering baseline (56%). Furthermore, SD Mask R-CNN had performance on par with a
Mask R-CNN that was fine-tuned on 100 real color images (78%). SD Mask R-CNN out-
performs the PCL baseline and achieves performance similar to Mask R-CNN fine-tuned
on real data, despite the fact that SD Mask R-CNN was training on only synthetic data.
These results suggest that high-quality instance segmentation can be achieved without ex-
pensive data collection from humans or self-supervision and suggest that the effort needed
to take advantage of object segmentation for new robotic tasks can be significantly reduced
by leveraging synthetic data.

Method Success Rate (%) Prec. @ 0.5 (%) # Corr. Targets

Euclidean Clustering 56± 14 63± 19 35
FT Mask R-CNN (Color) 78± 11 85± 12 44
SD Mask R-CNN 74± 12 87± 11 39

Table 5.2: Results of semantic segmentation experiments, where success is defined as grasping
and lifting the correct object. (Success Rate) Number of successful grasps of the correct
object over 50 trials. (Prec. @ 0.5) Success rate when the classifier was > 50% certain
that the selected segment was the target object. (# Corr. Targets) Number of times the
robot targeted the correct object out of 50 trials.

5.7 Discussion and Future Work

This chapter introduced WISDOM, a dataset of images and object segmentation masks for
the warehouse object manipulation environment, images that are currently unavailable in
other major segmentation datasets. Training SD Mask R-CNN, an adaptation of Mask R-
CNN, on synthetic depth images from WISDOM-Sim enables transfer to real images without
expensive hand-labeling, suggesting that depth alone can encode segmentation cues. SD
Mask R-CNN outperforms PCL segmentation methods and Mask R-CNN fine-tuned on real

CHAPTER 5. SEGMENTING UNKNOWN OBJECTS FROM DEPTH IMAGES 64

Figure 5.6: Effect of increasing synthetic training dataset size (left) and increasing the
number of unique objects (right) on the performance of SD Mask R-CNN on the WISDOM-
Real high-res test set. These results suggest that more data could continue to increase
performance.

color and depth images for the object instance segmentation task, and can be used as part
of a successful instance-specific grasping pipeline.

Figure 5.6 shows preliminary results of the effects of training image dataset size and
training object dataset size on the performance of SD Mask R-CNN. We trained SD Mask
R-CNN on random subsets of the training dataset with sizes {4k, 8k, 20k, 40k} and on four
40k image datasets containing 100, 400, 800, and 1600 unique objects. Both AP and AR
increase with image dataset size and number of unique objects used in training, although the
image dataset size appears to have a stronger correlation with performance. These results
suggest that performance might continue to improve with orders of magnitude more training
data.

65

Chapter 6

Object Rearrangement Using Learned
Implicit Collision Functions

Similar to the previous chapter, we provide another example of a robot task related to me-
chanical search (in this case, object rearrangement [13]) that can benefit from large-scale
simulated datasets of labeled point clouds to predict collisions between objects efficiently.
Rearrangement is a fundamental skill for robot mechanical search, since environments often
may not allow for objects to be removed. Thus, robots must be able to reason about colli-
sions between grasped objects and the rest of the scene and potential collision-free grasping
and placement locations while receiving only partial observations. The majority of existing
approaches rely on known models of the objects and environment to generate collision-free
trajectories for grasping, moving, and placing objects in a scene [124, 98]. When only point
cloud data for the scene and objects are available, these approaches may not correctly reason
about occlusions or quickly react to a changing environment. We focus on a core ability that
enables rearrangement of unknown objects in cluttered unknown environments: collision
checking based on raw sensor measurements.

Existing techniques for collision checking between objects and scenes are limited in that
they either rely on known object models or struggle to reason about occluded areas of a
scene [72, 191, 192]. Recently, the computer vision community has introduced deep learning
techniques with astonishing abilities to represent and reason about fine-grained 3D object
geometries [195, 33, 105]. Unfortunately, these approaches are not efficient enough to handle
the large number of collision queries necessary for efficient trajectory optimization and control
in robotics. In this chapter, we introduce an approach that overcomes these limitations and
provides robust collision checking on point clouds with occlusions at speeds that are beyond
model-based collision checkers used in robotics.

We present a neural network that takes as input raw point clouds of both an object and
a scene and a 6DOF pose of the object in the scene and outputs the likelihood that the
object collides with the scene. We combine point features with voxel features to construct
a scene representation that is both fast and memory efficient. We train the model entirely
in simulation with 1 million randomly generated tabletop scenes and show it can generalize

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 66

Figure 6.1: The rearrangement task consists of four subtasks: reaching for, grasping, lifting,
and placing the object within a placement zone (overlaid in green). In each subtask, the
robot must plan a kinematically feasible, collision-free path with only partial point cloud
observations.

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 67

to real point cloud data. The resulting model can be used in any existing motion planning
framework to generate collision-free motion plans; we demonstrate its capability for object
rearrangement via pick-and-place actions based on point cloud measurements in a model
predictive control framework with no additional learned parameters.

This chapter makes three contributions:

1. SceneCollisionNet: a model architecture and training procedure for collision checking
between point clouds.

2. A rearrangement policy using SceneCollisionNet in a model predictive path integral
controller.

3. Experimental results in simulation and on a real robot platform showing SceneColli-
sionNet achieves 93% accuracy on 2 million object-scene queries, taking only 10 µs per
query, 75x faster than baselines.

6.1 Related Work

6.1.1 Robot Collision Detection from Point Clouds

When mesh models for objects in a scene are known, there exist fast and accurate methods
for checking collisions between robot links and the scene or between objects themselves [191,
72]. However, in scenes containing unknown objects, only partial point cloud data may be
available. One approach to collision checking for point cloud data is to expand each point
as a sphere with a predefined radius [101], but the radius may be difficult to determine
and may affect the resolution of the collision queries. Similarly, voxel-based approaches are
memory-intensive [39] and can suffer from resolution errors due to discretization. Bounding
volume hierarchies that attempt to capture a representation of the shape from the points
have also been considered [67, 125], but again may not capture occluded areas and may not
be robust to noise in the point cloud. Pan, Chitta, and Manocha [192] cast the problem
as a binary classification problem, use an SVM to learn a boundary surface between the
point clouds, and determine collision probability based on the probability of points crossing
the boundary. In contrast, we encode the scene into a set of latent voxel vectors instead of
checking collisions between raw point clouds and show an ability to reason about partially
observable areas in real time.

6.1.2 Point Cloud Surface Representations

Another approach to point cloud collision detection is to derive a representation of the
underlying surface and check collisions against that representation. Adaptive meshes [244]
or alpha shapes [9, 59] convert an unstructured array of 3D points into a triangular or
tetrahedral mesh. Berger et al. [18] provide an excellent survey of surface reconstruction

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 68

methods. Data-driven approaches also reconstruct underlying representations from point
clouds or depth images [234, 77, 47]. They typically encode points using either point [207,
208] or voxel [263, 287] representations, or a combination of the two [154]. Several recent
approaches use fully-connected neural networks to encode an implicit representation of the
surface as a function in 3D space [195, 38, 174], showing an ability to reconstruct objects
with fine geometries. Van der Merwe et al. [251] similarly reconstruct objects from partial
point clouds without optimizing for a latent vector at run time. Jiang et al. [105] and
Chabra et al. [33] further encode the surface into many latent vectors across discrete voxels
as opposed to a single latent vector for the shape for better scene-level performance. We
similarly discretize space into voxels and encode the points in each voxel into a latent vector,
but optimize end-to-end for collision queries instead of reconstructing the underlying object
geometry.

6.1.3 Accelerating Collision Detection

As collision checking is considered one of the bottlenecks in motion planning, several methods
accelerate it using previously calculated collision results [193, 133]. Pan and Manocha [194]
developed a GPU implementation of bounding volume test tree traversal that dramatically
increases the speed of generating collision-free motion plans for a PR2 robot. Fastron [53]
and ClearanceNet [122] generate C-space models for collision checking. ClearanceNet also
batches collision checks and does not need retraining when objects move. Tran, Denny, and
Ekenna [247] use a contractive autoencoder and multi-layer perceptron to predict collisions
in latent space between a robot and axis-aligned boxes. However, each of these methods
assumes knowledge of object geometry whereas our method operates directly on point cloud
data.

6.1.4 Robotic Object Rearrangement

There has been considerable work on planning for object rearrangement in tabletop scenar-
ios [140, 229, 124, 98]; however, these approaches typically rely on known models of both the
environment and the objects in the scene for finding collision-free grasping and placement
motions. Recently, there have been advances in 6-DOF grasping [183, 185] and closed-loop
grasping [233, 180]; Murali et al. [185] learn collisions between grippers and cluttered scenes
centered around a target object, but their method does not easily lend itself to broader
motion planning frameworks. Gualtieri and Platt [78] learn pick and place actions for block,
mug, and bottle objects, but use top-down point clouds and do not account for workspace
dynamics. The Amazon Picking Challenge has also focused development of pick and place
systems [284]. In contrast, we integrate a learned point cloud collision checker into an exist-
ing motion planning framework for both grasping and placement actions. Zeng et al. [285],
Yuan et al. [280], and Haustein et al. [89] learn policies to pick and place or rearrange objects
via grasping or pushing directly from input images similar to our approach [281, 236]. How-

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 69

ever, they consider planar tasks that do not require the robot to reason about 3D collisions
with other objects.

6.2 Problem Statement

We consider a problem setting where a robot with a parallel-jaw gripper iteratively grasps
and places objects on a tabletop to rearrange them. The objective is to rearrange the objects
as quickly as possible while reacting to changes in the environment. Observations of the scene
are given by a single depth sensor with known camera intrinsics pointing toward the table
and robot at an oblique angle.

Figure 6.2: Network architecture for SceneCollisionNet, which predicts collisions between a
scene point cloud and an object point cloud given a relative 6DOF pose of the object within
the scene. Scene points are encoded by voxelizing, featurizing, and convolving the max-
pooled voxels. Object points are encoded using Pointnet++ [208] layers. Collision queries
are created by feeding the concatenated voxel features, object features, and the relative object
transform into a small classifier that predicts the likelihood of collision. Object transforms
are specified relative to the voxel frame such that collision queries across different voxels can
be predicted simultaneously.

6.2.1 Definitions

We define the problem as having:

• States (S): A state sk at time k consists of a valid robot joint configuration qk and
a tabletop containing N objects. No prior information is known about the N objects.

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 70

Sk,free ⊂ S is the set of collision-free states at time k and Gk ⊂ S is the set of goal
grasp or placement states.

• Observations (O): An observation yk ∈ Rn×3 at timestep k consists of a point cloud
with n points from the camera pointing at the scene.

• Actions (A): Actions are defined as a change in the joint configuration of the robot
ak = ∆qk.

• Transitions (T): The transition model T (sk+1 | ak, sk) represents the dynamics of the
scene and robot and is executed by Isaac Gym in simulation [150]. On the physical
system, next states are determined by executing the action on a physical robot.

• Cost Function (C): The cost of a state C(sk) is defined as the minimum L2 distance
from the current robot joint configuration to the goal robot joint configuration: C(sk) =
mingk

‖sk − gk‖2 s.t. gk ∈ Gk.

6.2.2 Objective

The rearrangement objective is to find a policy π that minimizes the total cost of the states
visited during grasping and placement over a finite horizon H subject to kinematic con-
straints and that all states along the trajectory are collision-free:

π∗ = arg min
π

Eak∼π(sk)

H∑
k=1

C(sk) s.t. sk ∈ Sk,free

6.3 SceneCollisionNet

To predict collisions between two point clouds, we propose SceneCollisionNet, a deep neural
network inspired by recent work in implicit surface representations from point clouds. Similar
to Jiang et al. [105] and Chabra et al. [33], we divide space into coarse voxels and use a local
representation for each voxel based on the points contained within that voxel. However,
our experiments show that for collision queries: (1) explicitly reconstructing the underlying
surface within each voxel is unnecessary and (2) scene information must be shared between
voxel representations. We also avoid the costly latent vector optimization, enabling real-time
collision prediction.

Our model divides the scene point cloud into coarse voxels (side length of about 10 cm)
and assigns points to the voxels, normalizing each point within its voxel by subtracting the
voxel’s center. We pass the points through a shared multi-layer perceptron and max-pool
the features of the points per voxel, similar to Pointnet [207]. The max-pooled voxel features
are passed through 3D convolution layers, similar to Liu et al. [154], incorporating global

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 71

information from neighboring voxels. The target object point cloud is featurized separately
using Pointnet++ set abstraction layers [208]. Collision queries consist of the transform of
the object relative to the nearest voxel center, the corresponding voxel features, and the
object features. This approach means the scene and object features are generated only once
per scene point cloud and a large number of collision queries can be made in a single forward
pass through the classifier, which predicts the likelihood of collision for each transformation.
Figure 6.2 shows the network architecture.

6.3.1 Dataset Generation and Training

We train SceneCollisionNet entirely using synthetic point clouds. For each scene, we place
objects drawn from a dataset of 8828 3D mesh models [62] in one of their stable poses with
a uniformly random rotation applied about the world z-axis on a planar surface. Object
positions are chosen uniformly at random such that they do not collide with other objects.
We draw the number of objects from a uniform distribution between 10 and 20. The camera,
which renders a scene point cloud, is aimed at the origin of the scene and its extrinsics are
taken from uniform distributions centered at their nominal values. A query object is also
drawn from the dataset of mesh models; this object is placed at the origin in a random
stable pose, where a point cloud is rendered using the same camera. We then generate q
collision queries by moving the query object along t trajectories through the scene, recording
its relative rotation, translation, and ground truth collisions with the scene using the flexible
collision library (FCL) [191]. The trajectory is formed by linearly interpolating between
the start and end object poses, which are chosen randomly. Generating one scene/target
pair with q = 2048 queries over t = 64 trajectories takes roughly 2 seconds on an Ubuntu
18.04 machine with an Intel Core i7-7800X 3.50GHz CPU. Each epoch of training consists
of 1,000 unique scene/object/trajectory inputs and we train each model for 1000 epochs,
or a total of 1 million unique inputs and just over 2 billion total collision queries. We
adopt a hard negative mining scheme, where we backpropagate the loss only from the 10%
highest loss queries plus 10% random queries, which increases the true positive rate by 6% for
similar accuracy. Training takes about 9 days on an NVIDIA V100 GPU. We use Stochastic
Gradient Descent (SGD) with learning rate 1e− 3 and momentum 0.9.

6.3.2 Robot Collision Checking

For robot collision checking, we pre-sample points from the 3D mesh of each link in the
robot’s kinematic chain and featurize each set of points. This feature set is only generated
once for a given robot. The set of link features and link poses (using forward kinematics for
a given configuration) are input to SceneCollisionNet with the scene features at run time;
collision predictions can then be generated for all links in a single forward pass. The same
method can also be used to predict collisions between other known meshes and a partial
scene point cloud, showcasing the flexibility of our method.

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 72

6.4 Object Rearrangement

Rearrangement of objects is a multi-stage task, so we incorporate a finite state machine into
our policy with 5 states: reaching the pre-grasp pose, attempting the grasp, lifting the object,
placing the object, and releasing the placed object. We use a model predictive path integral
(MPPI) policy for the reaching and placing states and preset actions for reaching from the
pre-grasp to final grasp pose, lifting, and releasing the object. We use SceneCollisionNet to
find both placement positions and collision-free trajectories for grasping and placing.

6.4.1 Grasps and Placements

We modify Contact-GraspNet [240] to predict 6DOF grasps on a region of the raw point
cloud in cluttered environments and the segmentation from Xiang et al. [264]. We use the
Trac IK solver [14] to convert grasp poses to robot configurations. We accept a point cloud
mask that represents an area of the scene where the object should be placed, which by default
includes the entire workspace. Points are sampled uniformly at random within the placement
zone and sorted by height in the scene; SceneCollisionNet classifies whether the object would
be in collision at the given point and the lowest collision-free points are chosen as placement
goals. Figure 6.3 shows placement candidates for both empty and cluttered placement zones
for the object in hand. Final placement goals (purple) must be both collision-free and have
an inverse kinematics solution. Orange points show placement candidates without inverse
kinematics solutions; this decoupling allows for the same placements to be used with a
different robot.

6.4.2 MPPI Policy

We leverage the parallelism provided by SceneCollisionNet in a model predictive path integral
(MPPI) algorithm for object rearrangement in tabletop environments [261]. The advantages
of MPPI in this setting are: 1) the task can be specified entirely in the joint space and
joint constraints can be strictly enforced during trajectories, 2) trajectory costs can easily be
specified using distances in joint space, 3) trajectory generation, cost calculation, collision
checking, and forward kinematics can be parallelized on a GPU for the real-time capability
necessary in closed-loop execution. In contrast, standard motion planning techniques, such
as RRT or PRM, may provide guarantees of completeness and optimality, but are by nature
sequential, require a nearest neighbor search for connecting nodes, and must be adapted for
dynamic environments.

We adapt MPPI such that trajectories are generated by sampling around a linear tra-
jectory between the start and goal joint configurations. Specifically, we create T vectors by
perturbing the straight-line trajectory d with a vector drawn from a normal distribution and
renormalizing: d̃i = N(d +N (0,Σ)). Trajectories consist of H steps along d̃i; actions are
clipped to the robot joint limits at each timestep.

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 73

Figure 6.3: With an uncluttered (left) placement zone (green), collision-free placement goals
with inverse kinematics solutions (purple dots) spread across the zone within reach of the
robot. When the zone is cluttered (right), SceneCollisionNet predicts placements around the
objects. Orange dots represent collision-free placements without IK solutions.

The cost of each trajectory is the cost of its final state as defined in Section 6.2.1. We check
both robot-scene collisions as in 6.3.2 and robot self-collisions using a model that predicts
distance to self-colliding configurations [212] at discrete intervals between each waypoint in
each trajectory. Thus, at each policy call, we make T × H collision checks for each robot
link, which can be computed in a single forward pass using SceneCollisionNet. If there is an
object in hand, collisions between the object and the scene are also checked at each point
in the trajectory. Then, we remove all waypoints after the first colliding waypoint and clip
the trajectory to the waypoint with minimum cost. The minimal cost trajectory is executed
until the policy is called again. Figure 6.4 shows a sampling of four trajectories and their
associated costs.

Importantly, the scene points belonging to the robot or to the target object must be
removed during placement; if they remain in the scene, they will cause all MPPI trajectories
to be in collision. In physical experiments, we combine a learned robot point cloud segmen-

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 74

Figure 6.4: Sampled trajectories from the current robot configuration (solid) to the ending
configuration (transparent) with outline colors indicating the cost of each trajectory. The
lowest cost trajectory is collision-free and brings the object close to the placement area.

tation model and a particle filter to track the robot points and remove them. We segment
the target object before grasping it and remove points within an object-tracking box that is
transformed relative to the end-effector. Note that this approach does not account for any
in-hand motion of the object, but avoids end effector occlusions after grasping. In simulation,
we use ground truth segmentation masks for both the robot and the target object.

6.5 SceneCollisionNet Evaluation

We benchmark SceneCollisionNet against 4 baseline point cloud collision algorithms using
synthetic data on two tasks: (1) a dataset of 1000 scene/object pairs with 2048 queries per
scene/object pair where objects move on 16 linear trajectories through a scene, and (2) a
dataset of 192,000 total grasps using the Franka Panda gripper [62], gathered from 5 scenes

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 75

and four object categories (mugs, cylinders, boxes, and bowls), where each scene has between
7 and 10 objects from the same category. In both tasks, ground truth collisions between the
robot and the scene are calculated using FCL and the mesh models of the objects and robot
in the scene. For each method and task, we compare the overall prediction accuracy and
the computation time per query or grasp. We additionally report average precision (AP)
scores, a weighted mean of precisions achieved at each recall threshold, for the trajectory
benchmark and precision and recall for the grasp benchmark.

6.5.1 Baseline Algorithms

We benchmark SceneCollisionNet against both analytic and learned baselines. Marching
Cubes baseline methods first create a mesh representation of the scene, object, or both
from the raw point clouds [156]. Signed distance function (SDF) methods use the Kaolin
library [69] for mesh to SDF conversion and GPU-based SDF evaluation. The baselines are:

1. Marching Cubes + SDF Scene (MC+SDFS): The points belonging to the object
point cloud are transformed and evaluated using the scene SDF. If any point has a
negative distance, the object is in collision with the scene.

2. Marching Cubes + SDF Object (MC+SDFO): The points belonging to the scene
point cloud are transformed and evaluated using the object SDF. If any point has a
zero or negative distance, the object is in collision with the scene.

3. Marching Cubes + FCL (MC+FCL): Collisions between the scene meshes and
object meshes are determined using the flexible collision library (FCL) [191]. For
a fairer comparison, we parallelize this method across 10 processes. We also show
performance when it receives points directly sampled from the underlying object meshes
(FO).

4. Pointnet Grid: The scene is divided into coarse overlapping voxels; the object and
each voxel are featurized using Pointnet++ set abstraction layers [208], but no voxel
convolution layers, and trained on the same dataset used for SceneCollisionNet. Pre-
dictions are averaged across the 8 corresponding voxels. This algorithm can be viewed
as an ablation of SceneCollisionNet that does not share information between voxels via
voxel convolution.

6.5.2 Results

SceneCollisionNet outperforms all baselines in the linear trajectory collision environment,
as shown in Table 6.1, with 9.8% and 15.8% gains in accuracy and AP score, respectively,
over the FCL baseline. Additionally, SceneCollisionNet is nearly 20 times faster than the
parallelized FCL baseline, taking only about 10 µs per collision query. SceneCollisionNet

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 76

Algorithm Accuracy AP Time / Query (ms)

MC+SDFO 70.2% 0.651 27± 12
MC+SDFS 80.0% 0.781 24± 2
MC+FCL (10x) 75.4% 0.824 0.49± 0.06
MC+FCL (10x, FO) 83.4% 0.832 0.74± 0.13
PointNet Grid 76.7% 0.928 0.026± 0.035
SceneCollisionNet 93.2% 0.990 0.010 ± 0.002

Table 6.1: Benchmark results for 1000 scene/object pairs, with 16 linear trajectories and
2048 queries for each pair (2,048,000 total queries). SceneCollisionNet outperforms paral-
lelized baselines that reconstruct meshes even from fully observed point clouds and a learned
ablation that does not share information between voxels.

can predict over 500,000 queries in a single forward pass on an NVIDIA GeForce RTX 2080
Ti GPU, further reducing the time per query for large batches of queries.

The comparison with Pointnet Grid suggests the benefits of both the coarse voxel repre-
sentation and the ability to share information between voxels via convolution. If the scene
is encoded in the same way as the object (Pointnet++ layers only), the network fails to con-
verge. When encoding coarse independent voxels using Pointnet++ set abstraction layers,
but without using voxel convolutions to share information between them, the accuracy and
AP scores are 16.5% and 6.2% lower, respectively.

Table 6.2 shows the results on the grasping benchmark. In addition to evaluating each
model on the grasp poses, we evaluate the models on pre-grasp poses that are offset along
the approach axis by 5 cm. The baseline methods slightly outperform or show similar per-
formance to SceneCollisionNet on the grasp dataset with no offset, but SceneCollisionNet
outperforms baselines on the 5 cm offset with a 1.5% improvement in accuracy as well as
a 9.4% improvement in precision. These results suggest SceneCollisionNet can struggle to
predict collisions for geometries that are very close to being in or out of collision, but dra-
matically improves with increasing distance between objects and learns underlying structure
beyond the points in the scene, while the other methods are unable to account for gaps in
point cloud data.

6.6 Policy Evaluation

We evaluate the proposed MPPI policy in both simulation and in physical tabletop scenes,
recording the number of successful grasps and placements in each scenario as well as the
time taken for picking and placing each object. We use T = 300, H = 40, and Σ = 0.3 · I
and query the policy at 1 Hz.

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 77

Algorithm Accuracy Precision Recall Time (ms)

MC+SDFO 90.8/81.2 31.1/59.2 95.4/98.9 62
MC+SDFS 94.4/78.2 32.0/63.2 12.0/58.6 37
MC+FCL (10x) 94.4/80.4 27.8/63.6 10.8/68.8 0.27
SceneCollisionNet 92.4/82.7 21.2/73.0 19.3/71.8 0.018

Table 6.2: Benchmark results for 192,000 grasps across 20 scenes of 4 object categories and
offsets of 0 cm / 5cm. The baselines slightly outperform SceneCollisionNet for the 0 cm
offset, but SceneCollisionNet outperforms baselines in both accuracy and precision for the 5
cm offset while recalling over 70% of the collision-free grasps 15x faster.

Algorithm Grasps Placements Time (min)

MC+FCL (10x) 109 92 164
SceneCollisionNet 110 99 100

Table 6.3: Simulation rearrangement results when using SceneCollisionNet and MC+FCL
(10x) as collision checkers in the MPPI policy. SceneCollisionNet speeds up scene interaction
and leads to more placements.

6.6.1 Simulation Evaluation

We compare SceneCollisionNet to MC + FCL (10x), the best performing baseline, as part
of the MPPI policy in 10 simulated scenes with 10 objects each, drawn from a dataset of
bowls, mugs, cylinders, and boxes. The objects are arranged randomly in a stable pose
and not in collision, but may not be graspable. An object order is selected randomly, and
the policy is given grasps on the specified target object to grasp and place that object in a
different location on the table. The policy is given two attempts for each object, and if it
is unable to pick or place the object, it moves on to the next target. In total, the policies
interact with the scenes for 4.5 hours. Results in Table 6.3 suggest that SceneCollisionNet
can dramatically speed up the MPPI policy, which can rearrange over half of the objects.

6.6.2 Physical Evaluation

We additionally evaluate the MPPI policy with SceneCollisionNet on a set of 10 physical
tabletop scenes with a Franka Panda robot and an Intel RealSense LiDAR Camera L515.
We divide the scenes into two categories: barrier scenes and rearrangement scenes, each with
between 3 to 11 YCB objects. Examples are shown in Figures 6.1, 6.3 and 6.4. In barrier
scenes, a tall box divides the scene and objects must iteratively be grasped and placed on

CHAPTER 6. OBJECT REARRANGEMENT USING LEARNED IMPLICIT
COLLISION FUNCTIONS 78

the opposite side of the barrier. Rearrangement scenes are similar to the simulated scenes,
where objects are placed randomly on the table. However, in this case, placement is also
restricted to a single side of the scene and both grasps and placements must be made among
clutter. Placement becomes more difficult later in trials when the zone fills with objects.

In the four barrier scenes, the policy grasps 16/17 objects and places 12/17 objects
successfully. Three failures were due to collisions in the trajectory or incorrect placement
choice, one was due to object motion in the gripper, and one was due to the policy being
unable to find a placement. In the rearrangement scenes, 25/27 grasps and 20/27 placements
were successful. Of these failures, five were due to collision errors in the trajectory or
placement position, with one failure each due to motion in the hand and no placements
found.

The policy’s grasping performance suggests it can consistently generate collision-free
robot trajectories to specified goals in the presence of both clutter and a challenging divider
that requires planning to significantly deviate from a straight-line trajectory. The placement
performance indicates that the addition of checking collisions with an object in the hand
makes finding collision-free trajectories more difficult, but the policy is still able to effectively
reason about collisions along the trajectory and at the placement location.

6.7 Discussion

In this chapter, we presented a learned collision checking model that dramatically increases
collision checking speeds between point clouds for motion planning in real-world rearrange-
ment tasks. While we focus our evaluation on static scenes in this chapter, the supplemen-
tary video also shows a dynamic example where an obstacle is encountered during placement.
While the MPPI and SceneCollisionNet framework can support a higher control frequency
than 1 Hz, the policy reaction time is limited by the segmentation and point cloud processing;
in future work, we will investigate the ability of the policy to react to more dynamic en-
vironments, other ways of generating candidate trajectories, and adaptation to constrained
environments such as shelves and cabinets that are consistent with the lateral-access me-
chanical search problem.

79

Part III

Mechanical Search Policies

80

Chapter 7

Mechanical Search: Multi-Step
Retrieval of a Target Object Occluded
by Clutter

Having explored improvements to both manipulation primitives and perception primitives
relevant to robot mechanical search in the previous chapters, this part aims to connect
the previous parts by formalizing the mechanical search problem and introducing high-level
action selector policies. These high-level policies leverage both the low-level manipulation
primitives discussed in Part I and the perception primitives discussed in Part II to decide
which object or objects to interact with and how to manipulate them to efficiently reveal
and extract the target object. In this chapter, we model the mechanical search problem as a
partially-observed Markov decision process (POMDP) and introduce a set of baseline action
selector policies to show how each of the primitives in the previous parts can be integrated
as part of a mechanical search pipeline and quantify task difficulty in the overhead-access
scenario.

Mechanical search describes a class of tasks where the goal is to locate and extract the
target object, and poses challenges in visual reasoning, task, motion, and grasp planning,
and action execution (see Figure 7.1). Significant progress has been made in recent years
on sub-problems relevant to mechanical search. Deep-learning methods for segmenting and
recognizing objects in images have demonstrated excellent performance in challenging do-
mains [91, 175, 227] and new grasp planning methods have leveraged convolutional neural
networks (CNNs) to plan and execute high-quality grasps directly from sensor data [141, 79,
164]. By combining object segmentation and recognition methods with action selectors that
can effectively choose between different motion primitives in long horizon sequential tasks,
multi-step policies can search for a target object and extract it from clutter.

In this chapter, we propose a framework that integrates perception, action selection,
and manipulation policies to address a version of the mechanical search problem, with 3
contributions:

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 81

Figure 7.1: To locate and extract the target object from the bin, the system selects between
1) grasping objects with a parallel-jaw gripper, 2) pushing objects, or 3) grasping objects
with a suction-cup gripper until the target object is extracted, a time limit is exceeded, or
no high-confidence push or grasp is available.

1. A generalized formulation of the family of mechanical search problems and a specific
version for retrieving occluded target objects from cluttered bins using a series of
parallel jaw grasps, suction grasps and pushes.

2. An implementation of this version, using depth-based object segmentation, single-shot

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 82

image recognition, low-level grasp and push planners, and five action selection policies.

3. Data from simulation and physical experiments evaluating the performance of the five
policies and that of a human supervisor. For simulated experiments, each policy was
evaluated on a set of 1000 heaps of 10-20 objects sampled from 1600 3D object models;
physical experiments used 50 heaps sampled from 75 common household objects.

7.1 Background and Related Work

Perception for Sequential Interaction Searching for an object of interest in a static
image is a central problem in active vision [250, 213, 175]. There has also been work on
optimizing camera positioning for improving visual recognition (i.e., active perception [10,
7]) and embodied interactions to explore (i.e., interactive perception [22, 81]). Mechanical
Search differs from prior works in interactive perception in that it deals with long grasping
sequences.

Recent deep learning based methods achieve remarkable success in segmentation of
RGB [214, 200] and depth images [37], as well as in localizing visual templates in unclut-
tered [127, 254] and cluttered scenes [227, 175]. Furthermore, one-shot learning approaches
using Siamese Networks for matching a novel visual template in images [127, 254] can trans-
late well to pattern recognition in clutter [227, 175]. We build on Mask R-CNN [91] by
training a variant for depth-image based instance segmentation and leverage a Siamese net-
work for target template matching for localization.

Grasping and Manipulation in Clutter Past approaches to this problem can be broadly
characterized as model-based with geometric knowledge of the environment [17, 235, 178] and
model-free with only raw visual input [224, 117, 162]. Recent studies have leveraged CNNs
for casting grasping as a supervised learning problem with impressive results [141, 164, 284,
104, 253, 65, 110]. Pushing and singulation can facilitate grasping in cluttered scenes [34,
92, 48]. Techniques for grasping in clutter, either as open-loop prediction or as closed-loop
continuous control, have been studied but have not dealt with the multi-step plans that
are critical to attain successful grasps on occluded or inaccessible target objects [110, 179].
In contrast, we formulate Mechanical Search as an interactive search problem in significant
clutter, necessitating a multi-step process combining grasping and pushing actions.

Sequential Decision Making Sequential composition of primitives to enable long-term
environment interaction has often been approached through hierarchical decomposition of
control policies to manage task complexity. The idea of using hierarchical models for complex
tasks has been widely explored in both reinforcement learning and robotics [242, 126, 241].
Training such multi-level models can be computationally expensive and has been limited to
either simulated or elementary physical tasks [58, 269].

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 83

Figure 7.2: System architecture. At each timestep, the RGB-D image of the bin is segmented
using a variant of Mask R-CNN trained on synthetic depth images. The colorized masks are
each assigned a probability of belonging to the target object using a Siamese Network as a
pattern comparator. These masks are then fed to an action selector, which chooses which
object to manipulate and passes that object mask as context to all the action policies. These
policies each compute an action with an associated quality score and pass them back to the
action selector, which then chooses an action and executes it on the physical system. This
process continues until the target object is retrieved. In simulation, the perception pipeline
is removed and planners operate on full-state information rather than object masks.

Search Based Methods Traditional task planning approaches abstract away perception
and focus on high-level task plans and low-level state spaces [68, 235]. For instance, in
robotic applications, hierarchical methods have been used to learn task planning strategies
while abstracting away low-level motion planning [198, 235, 262]. However, high-level plan-
ning requires complete domain specification a priori, and complex geometric and free space
reasoning make this approach applicable only to uncluttered environments with few objects,
such as a tabletop with one or two objects.

A similar problem has been studied in the context of mobility under problem domains
of target-driven and semantic visual navigation [288, 184, 83]. These studies look at finding
visual targets in unknown environments without maps through sensory pattern matching.
The work by Gupta et al. [81] is the closest to the approach considered in this chapter.
Their work also considers the problem of searching for a specific object using pushing and
grasping actions, but when the objects are arranged in a shelf. We consider significantly
more cluttered settings, while also executing temporally extended manipulation policies.

7.2 Mechanical Search: Problem Formulation

In mechanical search, the objective is to retrieve a specific target object (x∗) from a physical
environment (E) containing a variety of objects X within task horizon H while minimizing
time. The agent is initially provided with a specification of the target object in the form of
images, text description, a 3D model, or other representation(s). We can frame the general

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 84

problem of mechanical search as a Partially Observable Markov Decision Process (POMDP),
defined by the tuple (S,A, T ,R,Y).

• States (S). A bounded environment E at time t containingN objects st = {O1,t, . . . ,ON,t}.
Each object state Oi,t includes a ground truth triangular mesh defining the object ge-
ometry and pose. Each state also contains the pose and joint states of the robot as
well as the poses of the sensor(s).

• Actions (A). A fixed set of parameterized motion primitives.

• Transitions (T). Unknown transition probability distribution P : S×S×A → [0, ∞).

• Rewards (R). Function given by Rt = R(st, at) → R at time t that estimates the
change in probability of successfully extracting the target object x∗ ∈ X within task
horizon H.

• Observations (Y). Sensor data, such as an RGB-D image, yt from robot’s sensor(s) at
time t (see Figure 7.1).

In this chapter, we focus on a specific version of mechanical search: extracting a target
object specified by a set of k RGB images from a heap of objects in a single bin while mini-
mizing the number of actions needed. For this problem, we precisely specify the observations,
the action set, and the reward function. All other aspects of the problem formulation are
sufficiently captured by the general POMDP formulation above.

• Observations. An RGB-D image from an overhead camera.

• Actions.

– Parallel Jaw Grasping: A center point p = (x, y, z) ∈ R3 between the jaws,
and an angle in the plane of the table φ ∈ S1 representing the grasp axis [164].

– Suction Grasping: A target point p = (x, y, z) ∈ R3 and spherical coordinates
(φ, θ) ∈ S2 representing the axis of approach of the suction cup [165].

– Pushing: A linear motion of the robot end-effector between two points p and
p′ ∈ R3.

• Reward. Let vt, derived from yt, denote the estimated grasp reliability on the target
object. An intuitive reward function would be the increase in estimated grasp reliability
on the target object:

R(st, at) = vt+1 − vt
The policies used in this chapter do not directly optimize this reward function because it
is difficult to compute; instead, they continue to remove and push objects via heuristic
methods until the target object is extracted. In future work, we will develop methods
to approximate this function.

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 85

7.3 Perception and Decision System

As shown in Figure 7.2, we implement the system both in simulation and for physical ex-
periments via a pipeline for perception and policy execution.

7.3.1 Perception

The system first processes the RGB-D image into a set of segmentation masks using an
object instance segmentation pipeline trained on synthetic depth images. Then, a Siamese
network is used to attempt to identify one of the masks as the target object, and a target
mask is returned if a high confidence match is found. If no high confidence match is found,
the perception system reports that no masks match the target object.

Object Instance Segmentation We first compute a mask for each object instance. Each
mask is a binary image with the same dimensions as the input RGB-D image. These masks
are computed with SD Mask R-CNN, a variant of Mask R-CNN trained exclusively on
synthetic depth images [51]. It converts a depth image into a list of unclassified binary
object masks, and generalizes well to arbitrary objects without retraining. Recent results
suggest that depth cues alone may be sufficient for high-performance segmentation, and this
network’s generalization capabilities are beneficial in a scenario where only the target object
is known and many unknown objects may be present.

Target Recognition Next, the set of masks is combined with the RGB image to create
color masks of each object. Each of the m color masks is cropped, scaled, rotated, and com-
pared to each of the k images in the target object image set using a Siamese network [127].
For each pair of inputs, the Siamese network outputs a recognition confidence value between
0 and 1, with a mask’s recognition confidence score set to the maximum recognition confi-
dence value over the k target object images. If the mask with the highest score has a score
above recognition confidence threshold tr, the mask is labeled as the target object. Other-
wise, we report that no masks match the target object. See the appendix for training and
implementation details.

7.3.2 Search Policy

Given the RGB-D image and the output of the perception pipeline, the system executes
the next action in the search procedure by selecting the object to act on and the action to
perform on it. Our approach to the version of Mechanical Search described in Section 7.2
for bin picking includes searching for actions in three continuous spaces (parallel jaw grasp,
suction grasp and push). However, more complex versions of Mechanical Search (e.g., search
for an object in a house) could have even more complex search spaces (e.g., navigation).
To allow our method to scale to these more complex versions, we propose a hierarchical
approach: (1) an action selector that queries a set of action policies on a specific object for

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 86

a particular action and associated quality metric and (2) action policies that correspond to
the possible actions in the problem formulation.

Action Selection The search policy first determines which object masks to send to the ac-
tion policies. Then, using the actions and associated quality metric returned by the low level
policies, the high level planner determines whether to execute the action in the environment.

The action selector takes as input from the perception system the set of all m visible
object masks ([o1, . . . om]), possibly including an object mask that is positively identified as
the target object (oT), from the perception system. It then selects an action policy and a
goal object, ogoal, from [o1, . . . om] and sends the action policy a query q(ogoal). The action
policy pi responds with an action ai = pi(ogoal) and a quality metric Q(ai, ogoal) for the
action, which is used to decide whether to execute the action.

Action Policies Each action policy pi takes as input an object mask from the action
selector (ogoal) and the RGBD image observation and returns an action ai = pi(ogoal) and a
quality metric Q(ai, ogoal). In simulation, the object masks and depth images are generated
from ground-truth renderings of each object, while in physical experiments, depth images are
obtained using a depth sensor and object masks are generated by the perception pipeline.
The set of action policies in our system are:

Parallel Jaw Grasping In simulation, pre-computed grasps are indexed from a Dex-Net
1.0 parallel-jaw grasping policy [163], and the grasp with the highest predicted quality on ogoal
is returned as the action along with an associated quality metric. For physical experiments,
parallel-jaw grasps are planned using a Dex-Net 2.0 Grasp Quality CNN (GQ-CNN) [164].
To plan grasps for a single object in a depth image, grasp candidate sampling is constrained
to the goal object’s segmentation mask. The GQ-CNN evaluates each candidate grasp and
returns the grasp with the highest predicted quality and its associated quality metric.

Suction Grasping For simulation experiments, grasp planning is done with a Dex-Net
1.0 suction grasping policy [163]. For physical experiments, suction cup grasps are planned
with a Dex-Net 3.0 GQ-CNN [164], with mask-based constraints to plan grasps only on the
goal object’s segmentation mask. The GQ-CNN evaluates each candidate grasp and returns
the grasp with the highest predicted quality and its associated quality metric.

Pushing The pushing action policy, similar to that in [48], selects p′ as the most free point
in the bin. This point is computed by taking the signed distance transform of a binary mask
of the bin walls and objects, finding the pixel with the maximum signed distance value, and
deprojecting that pixel back into R3. Given an object to push, p is then selected so that the
gripper is not in collision at p, the line from p to p′ passes through the object’s center of
mass, and the push direction is as close as possible to the direction of the most free point in

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 87

the bin. The pushing policy returns the push satisfying the above constraints as its action
if one exists. The returned quality metric is 1 if a valid push exists and 0 if not.

7.4 Action Selection Policies

All action selection methods use input from the perception system to generate a specific
object priority list. Each action selection method generates a priority list in a different way
but all have the same action execution criteria. For all action selection methods described
here, a grasp action is executed if the quality metric returned by the action policy exceeds
t(o), the grasp confidence threshold for object mask o. The grasp confidence threshold for the
object mask positively identified as the target object oT is given by t(oT) = tthresh. For policies
without pushing, t(o) = tthresh, ∀o, while for policies with pushing, t(o) = thigh,∀o 6= oT .
Policies with pushing can be more conservative in their choice of grasps, so they use a higher
grasp confidence threshold thigh for non-target objects. A push action is performed if a valid
push is found (quality 1). Details on parameters used can be found in the appendix.

Each action selection method iterates through its priority list, queries the grasping action
policies for each object mask, and executes the returned action with the highest quality
metric among the two grasping policies if it satisfies the action execution criteria. If the
target object is grasped, the policy terminates and reports a success. If no grasping action
satisfies the criteria and the policy does not have pushing, the policy terminates and reports
a failure. If the policy does have pushing, it iterates through its priority list, queries the
pushing action policy for each object mask, and executes the first action that satisfies the
criteria. If no pushing action satisfies the criteria, or if a pushing action has been selected
more than three consecutive times, the policy terminates with a failure.

Action Selection Methods The action selection methods are distinguished by whether
or not they have pushing as an available action policy and by their generated object priority
list:

1. Random Search: Prioritizes objects randomly, with no preference for the target
object mask (oT).

2. Preempted Random Search (with and without pushing): Always prioritizes
oT and prioritizes other objects randomly.

3. Largest-First Search (with and without pushing): Always prioritizes oT and
ranks the other objects by their visible area. If the target object isn’t visible, this
strategy will increase the likelihood of removing objects that may be occluding the
target object.

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 88

Termination Criteria In addition to the termination criteria outlined above (terminate
and return success if target object grasped, return failure if no good grasp/valid push found),
we impose two more termination conditions on our policies which cause them to return a
failure: (1) 2N timesteps have elapsed, where N is the initial number of objects in the bin
and (2) The target object is inadvertently removed from the work space when another object
is grasped or pushed.

7.5 Experiments

7.5.1 Simulation

Heap Generation Three datasets of simulated heaps are generated, each containing 1000
heaps of N objects, for N ∈ {10, 15, 20}. Then, using the Bullet Physics Engine [46], sampled
objects are dropped one by one into the bin, and the target object is chosen to be the most
occluded object. Please refer to the appendix for further details.

Rollouts To simulate grasp actions, we use the same approach as in [162]: using wrench
space analysis, we determine whether or not an object can be lifted from the heap [203,
196]. If the object can be lifted, a constant upward force is applied to the object’s center
of mass until it leaves the bin, and the remaining objects are allowed to come to rest. To
simulate push actions, we check that the gripper can be placed in the starting location
without collisions, and only execute pushes if this is the case. Then, we place a 3D model
of the closed gripper in the physics simulator and move it from the start point to the end
point of the push, as in [48].

7.5.2 Physical

Heap Generation We randomly sample 50 heaps of 15 items each from a set of 75 common
household objects with relatively simple shapes, such as boxes and cylinders, as well as more
complex geometries, such as plastic climbing holds and scissors (see Figure 7.3). We also
include several 3D-printed items, which present a challenge for both segmentation and target
object recognition due to their unusual shapes and uniform texture. A target object is chosen
at random from each 15 item heap. Then, in order to generate adversarial bin configurations,
each rollout is initialized by first shaking the target object in a box to randomize its pose
and dumping into the center of the bin, and then shaking the other fourteen objects and
pouring them over the target object.

Policy Rollouts We execute pushing and grasping actions on an ABB YuMi robot equipped
with suction-cup and parallel-jaw grippers (see Figure 7.3). Actions generated by the search
policy are transformed into a sequence of poses for the robot’s end-effectors, and we use
ABB’s RAPID linear motion planner and controller to execute these motions.

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 89

Figure 7.3: (A) Front view of the robot and bin setup. The black bin is the primary bin in
which heaps are initialized, and the white bins provide space for the robot to deposit grasped
items. (B) The 75 objects used in physical experiments. (C) A sample heap of 15 objects
used in the physical experiments.

Human Supervisor Rollouts For comparison, we also benchmark a human supervisor’s
performance as an action selector. At each timestep, the human is asked to draw a mask
in the scene on which to plan a push or a grasp. Then, grasps and pushes are planned and
executed on the specified mask with the same action primitives described above (parallel jaw
grasps, suction grasps, linear pushes). Thus, the human is limited by the available action
primitives, but is allowed to use their own judgement for perceptual reasoning and high level
action planning.

7.5.3 Evaluation Metrics

We evaluate each policy according to its reliability and efficiency in target object retrieval.
Reliability is defined as the frequency at which the target object is successfully extracted,
while efficiency is defined as the mean number of actions taken to successfully extract the
target object. For each experiment, we recorded the number of successes and failures, as
well as statistics regarding the number of actions taken.

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 90

Figure 7.4: Performance of policies on (A) simulated heaps of 10, 15, and 20 objects over
a total of 15,000 simulated rollouts and 300 physical rollouts, (B) simulated heaps of 15
objects, and (C) real heaps of 15 objects. The largest-first search policies are the most
efficient, and are able to extract the target object in the least number of actions. All policies
have similar reliability, although pushing shows potential to avoid more failures in simulation.
The human was allowed to look at the RGBD image inputs and choose an object to push
or grasp. Means and standard deviations for successful extractions are shown in parentheses
for each policy.

7.6 Results

7.6.1 Simulation Results

We tested each action selection policy in simulation with heaps generated using the method
described in Section 7.5 and running until termination on each heap. A total of 15,000
simulation experiments were conducted over all policies. The results for each of the five
policies are shown in Figure 8.6, and a detailed breakdown of each policy can be found in
the appendix. Figure 8.6(A) shows the mean number of actions needed for each policy as
a function of heap size. These results suggest that extracting the target object becomes
more difficult as heap size increases and the mean number of actions needed for each policy
appears to scale linearly with heap size, although the rate of increase is not constant across
policies.

Figure 8.6(B) shows cumulative successful extractions for a given amount of actions (num-
ber of successful extractions in that many actions or fewer). All policies have success rates
of 90% or higher on 15 object heaps. The cumulative success plot suggests that grasping the
target object when possible provides improvement over the random policy, and that priori-
tizing larger object masks when the target object is inaccessible further increases efficiency.
The largest-first policies successfully extract the target object within 5 or fewer actions on
50% of the heaps, while the preempted random and random policies only do so for 30% and
10% of heaps respectively.

Results also suggest that pushing can increase overall success rate, as policies that in-
cluded pushing succeeded on at least 3% more heaps than those without pushing. For policies
with pushing, only 5% of all actions attempted are pushes, as opposed to 29% parallel jaw

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 91

grasps and 66% suction grasps, on ten object heaps. The percentage of push actions de-
creases further when increasing the number of objects to just 3% for 15 object heaps. We
suspect that the reason pushes are selected so rarely is because the pushing primitive is
designed to execute a sequence of linear pushes to singulate a particular object, rather than
flatten a heap of objects. While the former directly addresses the objective of the push,
the latter is much easier to achieve in practice, since in many cases, especially with many
objects in the bin, it may be almost impossible to plan collision-free pushes that successfully
singulate the object of interest.

In simulation, failures account for 6-12% of all rollouts. These failures fall into three
categories: 1) the policy fails to plan an action (e.g., no actions are available on any remaining
objects with a quality metric above the threshold), 2) the target object is inadvertently
removed from the bin, despite an attempted action that was not a grasp on the target
object, or 3) the policy reaches the maximum number of timesteps given to extract the
object (2N timesteps, where N is the initial number of objects in the heap).

Failure mode (1) accounts for 85-90% of all failures, while (2) accounts for nearly all of
the remaining failures. Mode (1) typically happens because objects are moved to the corners
of the bin, making it difficult to plan collision-free grasps. Mode (2) occurs more often for
policies that include pushing actions, since pushing in clutter can occasionally lead to objects
being pushed up and over the bin walls. It is also possible that the target object is removed
from the work space when another object is grasped. Mode (3) never actually occurs in any
of our experiments, and the maximum timesteps cutoff is intentionally set high to exhaust
the policy of actions.

7.6.2 Physical Results

Figure 8.6(C) shows results on the physical system. A total of 300 physical experiments were
conducted over all policies. All policies retrieved the target object within the given number of
timesteps at least 90% of the time, and success rates were not statistically different between
policies. However, the cumulative success curves suggest similar trends to those seen in the
simulation results, with the largest-first policies outperforming the preempted random and
random policies in terms of efficiency. The largest-first policies again successfully extract the
target object within 5 or fewer actions on on 50% of the heaps, while the preempted random
and random policies only do so for 40% and 10% of heaps respectively.

Stochasticity in the initial bin state in physical experiments can result in varying difficulty
for different policies on the same heap. For example, a target object may be completely
covered by other objects when one policy is presented with a given heap, but for another
policy, the target may be partially or fully visible in the initial state. Thus, policies may
occasionally get “lucky” or “unlucky” with respect to the target object visibility in the initial
state, which may account for some increased variance in the physical results.

Failure cases for the physical heaps are very similar to those in simulation: 93% of failures
arise from the policy being unable to plan an action. However, in physical experiments, out
of the 300 heaps evaluated for all policies, only 1 rollout failed due to timing out. Failure

CHAPTER 7. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 92

to plan actions is almost always due to the target object lying flat on the bottom of the bin
(e.g., the dice, sharpie pens, or another blister-pack object), making it difficult to obtain
accurate segmentation. Another common reason for failure to plan actions is when no mask
is identified as the target object, which often occurs for 3D printed objects.

7.6.3 Action-Limited Human Supervisor

The human supervisor outperforms all policies presented here, requiring an average of just
3.1 actions to extract the target object due to more intelligent action selection. Specifically,
we noticed that a human operator chose to push far more frequently (26% of all actions,
compared to 6% for the other action policies with pushing), especially when objects were
heaped in the center of the bin and the target was not visible. These pushes tend to spread
many objects out over the bottom of the bin, as opposed to a grasping action that would
remove only a single object from the top of the heap.

7.7 Discussion and Future Work

In this chapter, we presented a general formulation for mechanical search problems and
described a framework for solving the specific problem of extracting a target object from a
cluttered bin. While the best action selection method (largest-first) is much more efficient
than random search and provides a solid baseline, a human selecting the low-level actions
can still achieve 37% higher efficiency by pushing significantly more effectively and often. We
will explore how reinforcement learning in simulation can address this gap. We conjecture
that more effective push primitives can be learned from simulation.

93

Chapter 8

X-Ray: Mechanical Search for an
Occluded Object by Minimizing
Support of Learned Occupancy
Distributions

Although the mechanical search policies in the previous chapter can efficiently extract a
target object from cluttered heaps, the heuristic action selector policies lack an intuition
for where the target object is likely to be hidden. For humans, much of this intuition
comes from familiarity with everyday objects; our priors of object geometries and semantics
are developed over years of interactions with a diverse set of objects. In this chapter, we
aim to improve on the mechanical search policies presented in the previous chapter via the
X-Ray policy, which builds an explicit representation for object occlusions and predicts a
distribution over likely locations for the target object. We draw on recent work on shape
completion to reason about occluded objects [252, 204] and work on predicting multiple
pose hypotheses [167, 218]. X-Ray combines occlusion inference and hypothesis predictions
to estimate an occupancy distribution for the bounding box most similar to the target
object to estimate likely poses – translations and rotations in the image plane. X-Ray can
efficiently extract the target object from a heap where it is fully occluded or partially occluded
(Figure 8.1). We show that X-Ray shifts the mechanical search burden from the action
selector policy towards perception: the occupancy distribution is a powerful intermediate
representation that densifies the mechanical search reward and induces a simple policy based
on an imagewise dot product of segmentation masks and occupancy distribution images.

This chapter makes four contributions:

1. X-Ray (maXimize Reduction in support Area of occupancY distribution): a mechanical
search policy that minimizes support of learned occupancy distributions.

2. An algorithm for estimating target object occupancy distributions using a set of neural
networks trained on a dataset of synthetic images that transfers seamlessly to real

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 94

Figure 8.1: Mechanical search with a fully occluded target object (top row) and a partially
occluded target object (bottom row). We predict the target object occupancy distribution,
which depends on the target object’s visibility and the heap (second column). Each pixel
value in the distribution image corresponds to the likelihood of that pixel containing part of
the target object. X-Ray plans a grasp on the object that minimizes the estimated support
of the resulting occupancy distribution to minimize the number of actions to extract the
target object. We show two nearly-identical heaps; in the fully occluded case, X-Ray grasps
the mustard bottle whereas in the partially occluded case, the policy grasps the face lotion
(third column), resulting in the respective next states (fourth column).

images.

3. A synthetic dataset generation method and 100,000 RGBD images of heaps labeled
with occupancy distributions for a single partially or fully occluded target object,
constructed for transfer to real images.

4. Experiments comparing the mechanical search policy against two baselines in 1,000
simulated and 20 physical heaps that suggest the policy can reduce the median number
of actions needed to extract the target object by 20% with a simulated success rate of
87% and physical success rate of 100%.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 95

8.1 Related Work

8.1.1 Pose Hypothesis Prediction

There is a substantial amount of related work in computer vision on 3D and 6D pose pre-
diction of both known and unknown objects in RGB, depth, and RGBD images [118, 265,
148, 95]. Many of these papers assume that the target objects are either fully visible or
have minor occlusions. In addition, many assume that there is no ambiguity in object pose
due to self-occlusion or rotational symmetry of the object, as these factors can significantly
decrease performance for neural network-based approaches [44]. Recent work has attempted
to address the pose ambiguity that results from object geometry or occlusions by restricting
the range of rotations [211] predicting multiple hypotheses for each detected object [218,
167]. Rupprecht et al. [218] find that refining multiple pose hypotheses to a 6D predic-
tion outperforms single hypothesis predictions on a variety of vision tasks, such as human
pose estimation, object classification, and frame prediction. Manhardt et al. [167] note that
directly regressing to a rotation for objects with rotational symmetries can result in an av-
eraging effect where the predicted pose does not match any of the possible poses; thus, they
predict multiple pose hypotheses for objects with pose ambiguities to better predict the un-
derlying pose and show Bingham distributions of the predicted hypotheses. However, only
minor occlusions are considered and since ground truth pose distributions are not available
for these images and objects, comparisons for continuous distributions can only be made
qualitatively. Predicting multiple hypotheses or a distribution to model ambiguity has also
been applied to gaze prediction from facial images [206], segmentation [128], and monocular
depth prediction [275]. In contrast to these works, we learn occupancy distributions in a
supervised manner.

8.1.2 Object Search

There has been a diverse set of approaches to grasping in cluttered environments, includ-
ing methods that use geometric knowledge of the objects in the environment to perform
wrench-based grasp metric calculations, nearest-neighbor lookup in a precomputed database,
or template matching [17, 178, 163], as well as methods using only raw sensor data [117,
224], commonly leveraging convolutional neural networks [111, 104, 141]. While multi-step
bin-picking techniques have been studied, they do not take a specific target object into
account [162].

Kostrikov, Erhan, and Levine [129] learn a critic-only reinforcement learning policy to
push blocks in a simulated environment to uncover an occluded MNIST block. Zeng et
al. [282] train joint deep fully-convolutional neural networks to predict both pushing and
grasping affordances from heightmaps of a scene containing multicolored blocks, then show
that the resulting policy (VPG) can separate and grasp novel objects in cluttered heaps. The
policy can be efficiently trained on both simulated and physical systems, and can quickly
learn elegant pushes to expand the set of available grasps in the scene. Yang, Liang, and Choi

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 96

[276] train similar grasping and pushing networks as well as separate explorer and coordinator
networks to address the exploration/exploitation tradeoff for uncovering a target object.
Their policy learns to push through heaps of objects to find the target and then coordinate
grasping and pushing actions to extract it, outperforming a target-centered VPG baseline
in success rate and number of actions. Both approaches can generalize to objects outside
the training distribution, although they are evaluated on a limited set of novel objects, and
Yang, Liang, and Choi [276] separate the cases where the target object is partially occluded
and fully occluded. Additionally, we focus only on grasping actions, as some mechanical
search environments may be constrained or objects may be fragile.

Recently, several approaches to the mechanical search problem have been proposed, both
in tabletop and bin picking environments. Price, Jin, and Berenson [204] propose a shape
completion approach that predicts occlusion regions for objects to guide exploration in a
tabletop scene, while Xiao et al. [266] implement a particle filter approach and POMDP
solver to attempt to track all visible and occluded objects in the scene. However, 75% of the
objects in Price, Jin, and Berenson [204]’s evaluation scenes are seen in training and Xiao
et al. [266]’s method requires models of each of the objects in the scene. We benchmark
our policy on a variety of non-rigid, non-convex household objects not seen in training
and require no object models. In previous work, Danielczuk et al. [49] proposed a general
mechanical search problem formulation and introduced a two-stage perception and search
policy pipeline. In contrast, we introduce a novel perception network and policy based on
minimizing support of occupancy distributions that outperforms the methods introduced
in [49].

8.2 Problem Statement

We consider an instance of the mechanical search problem where a robot must extract a
known target object from a heap of unknown objects by iteratively grasping to remove non-
target objects. The objective is to extract the target object using the fewest number of
grasps.

8.2.1 Assumptions

• One known target object, fully or partially occluded by unknown objects in a heap on
a planar workspace.

• A robot with a gripper, an overhead RGBD sensor with known camera intrinsics and
pose relative to the robot.

• A maximum of one object is grasped per timestep.

• A target object detector that can return a binary mask of visible target object pixels
when queried.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 97

Figure 8.2: Training dataset generation for learning the occupancy distribution function.
Each dataset image is generated by sampling N = 14 object models from a dataset of 1296
CAD models. The target object (colored red) is dropped, followed by the N other objects
(colored gray), into a planar workspace using dynamic simulation. Camera intrinsics and
pose are sampled from uniform distributions centered around their nominal values and an
RGBD image is rendered of the scene. The augmented depth image (top right), consisting
of a binary target object modal mask and a two-channel depth image, is the only input used
for training for seamless transfer from simulation to real images. The ground truth target
object distribution is generated by summing all shifted amodal target object masks whose
modal masks correspond with the target object modal mask.

8.2.2 Definitions

We define the problem as a partially-observable Markov decision process (POMDP) with the
7-tuple (S,A, T,R,Ω, O, γ) and a maximum horizon H:

• States (S): A state sk at timestep k consists of the robot, a static overhead RGBD
camera, and a static bin containing N + 1 objects, target object Ot and distractor
objects {O1,k,O2,k, . . . ,ON,k}. No prior information is known about the N distractor
objects.

• Actions (A): A grasp action ak at timestep k executed by the robot’s gripper.

• Transitions (T): In simulation, the transition model T (sk+1 | ak, sk) is equivalent to
that used by Mahler et al. [162] and uses PyBullet [46] for dynamics. On the physical
system, next states are determined by executing the action on a physical robot and
waiting until objects come to rest.

• Rewards (R): The reward rk = R(sk, ak, sk+1) ∈ {0, 1} is 1 if the target object is
successfully grasped and lifted from the bin, otherwise the reward is 0.

• Observations (Ω): An observation yk ∈ Rh×w×4
+ at timestep k consists of an RGBD

image with width w and height h taken by the overhead camera.

• Observation Model (O): A deterministic observation model O(yk | sk) is defined by
known camera intrinsics and extrinsics.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 98

• Discount Factor (γ): To encourage efficient extraction of the target object, 0 < γ <
1.

We also define the following terms:

• Modal Segmentation Mask (Mm,i): the region(s) of pixels in an image corresponding
to object Oi which are visible [112].

• Amodal Segmentation Mask (Ma,i): the region(s) of pixels in an image corresponding
to objectOi which are visible or invisible (occluded by other objects in the image) [112].

• The oriented minimum bounding box is the 3D box with the minimum volume that
encloses the object, subject to no orientation constraints. We use this box to determine
scale and aspect ratio for a target object.

• The occupancy distribution ρ ∈ P is the unnormalized distribution describing the
likelihood that a given pixel in the observation image contains some part of the target
object’s amodal segmentation mask.

8.2.3 Objective

Given this problem definition and assumptions, the objective is to find a policy π∗θ with
parameters θ that maximizes the expected discounted sum of rewards:

θ∗ = arg max
θ

Ep(τ |θ)

[
H−1∑
k=0

γkR(sk, πθ(yk), sk+1)

]

where p(τ | θ) = P(s0)Π
H−1
k=0 T (sk+1 | πθ(yk), sk)O(yk | sk) is the distribution of state trajec-

tories τ induced by a policy πθ [162]. Maximizing this objective corresponds to removing
the target object in the fewest number of actions.

8.2.4 Surrogate Reward

Because the reward defined in Section 8.2.2 is sparse and the transition function relies on
complex inter-object and grasp contact dynamics, it is difficult to directly optimize for πθ.
Thus, we instead introduce a dense surrogate reward R̃ describing the reduction of the
support of the target object’s occupancy distribution:

R̃(yk,yk+1) = |supp(fρ(yk))| − |supp(fρ(yk+1))|,

where fρ : Ω −→ P is a function that takes an observation yk and produces the corresponding
occupancy distribution ρk for a given bounding box and supp(ρ) = {(i, j) ∈ {0, . . . , h− 1}×
{0, . . . , w − 1} | ρ(i, j) 6= 0 is the support of the occupancy distribution. Then, |supp(ρ)| is
the number of nonzero pixels in ρ. Section 8.3 discusses a data-driven approximation for the
function fρ while Section 8.4 discusses a greedy policy using the learned fρ and R̃.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 99

8.3 Learning Occupancy Distributions

We describe a method for estimating the function fρ via a deep neural network. Each
pixel in the occupancy distribution ρ ∈ [0, 1]h×w has a value representing the likelihood of
it containing part of the target object’s amodal segmentation mask, or the likelihood that
some part of the object, in some planar translation or rotation, would occupy that pixel
without any occlusions from other objects. We train this pixelwise distribution network on
a dataset of augmented depth images and ground-truth occupancy distributions.

Aspect
Ratio

Test Lid Domino Flute
Bal. Acc. IoU Bal. Acc. IoU Bal. Acc. IoU Bal. Acc. IoU

1:1 98% 0.91 93% 0.70 92% 0.74 71% 0.30
2:1 97% 0.90 79% 0.44 96% 0.81 84% 0.44
5:1 97% 0.90 66% 0.23 96% 0.83 86% 0.49
10:1 97% 0.87 84% 0.49 82% 0.58 82% 0.41

Table 8.1: Balanced accuracy (Bal. Acc.) and Intersection over Union (IoU) metrics for
networks trained on various aspect ratio target boxes. The first column is the respective set
of 2,000 test images for the network’s training dataset. The other columns show how the
networks can generalize to unseen objects outside the training distribution. Each dataset
contains 1,000 test images for the lid, domino, and flute objects, respectively. These objects
are shown in Figure 8.4 and have approximate aspect ratios of 1:1, 2:1, and 5:1, respectively.
Each network performs very well when estimating distributions for its training target object
and makes reasonable predictions for target objects with similar bounding box aspect ratios,
even for novel target objects at different scales and in the presence of new occluding objects.
However, a network trained on a small aspect ratio does not generalize well to higher aspect
ratio objects, as it tends to overestimate the occupancy distribution.

8.3.1 Dataset Generation

We generate a dataset of 10,000 synthetic augmented depth images labeled with target object
occupancy distributions for a rectangular box target object. We choose 10 box targets of
various dimensions ranging from 3cm×3cm×5mm to 9.5cm×0.95cm×5mm (aspect ratios
varying from 1:1 to 10:1) with equal volume and generate a dataset for each, resulting in a
total of 100,000 dataset images. We choose a relatively small thickness for the target so that
it is more likely to be occluded in heaps of objects, as it tends to lie flat on the workspace.
We sample a state s0 by uniformly sampling a set of N 3D CAD models as well as a heap
center and 2D offsets for each object from a 2D truncated gaussian. First, Ot is dropped from
a fixed height above the workspace, then the other N objects are dropped one by one from

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 100

a fixed height and dynamic simulation is run until all objects come to rest (all velocities are
zero). Any objects that fall outside of the workspace are removed. N is drawn from a Poisson
distribution (λ = 12) truncated such that N ∈ [10, 15]. The 3D CAD models are drawn from
a dataset of 1296 models available on Thingiverse, including “packaged” models, where the
original model has been augmented with a rectangular backing, as in [166]. The camera
position is drawn from a uniform distribution over a viewsphere and camera intrinsics are
sampled uniformly from a range around their nominal values. We use the Photoneo Phoxi S
datasheet intrinsics and a camera pose where the camera points straight down at the heap
at a height of 0.8m for the nominal values. An RGBD image is rendered and augmented
depth images are created by concatenating a binary modal mask of the target object with
the depth image. Note that if the target object is not visible, the image is equivalent to a
two-channel depth image, as the first channel is all zeros. We find that training on these
images, as opposed to training on RGBD images directly, allows for seamless transfer between
simulated and real images.

To generate the ground-truth occupancy distribution, we find the set of translations and
rotations in the image plane for the target object such that an image rendered from the
same camera pose with all other objects in the scene in the same respective poses will yield
the same target object modal segmentation mask. Thus, when the object is fully visible,
the distribution’s support collapses to the pixels of the target object modal segmentation
mask. However, when the object is partially or fully occluded, then multiple target object
translations or rotations may result in the same image and the distribution will spread
to reflect where the target could hypothetically be hiding. In practice, we generate this
distribution by discretizing the set of possible translations into a 64× 48 grid (every 8 pixels
in the image) and rotations into 16 bins, then shifting and rotating a target-only depth image
to each point on the grid, offsetting by the depth of the bottom of the workspace at that
point. By comparing the depths for the set of these shifted and rotated depth images to
original depth image, we can determine the modal segmentation mask for the target object
as if it were at each location. Any location for which there is intersection-over-union (IoU)
greater than 0.9 (or, in cases where the target object has a blank modal mask due to full
occlusion, any location for which the modal mask is also blank) is considered to result in
the same image. Then, the amodal target object masks from all locations resulting in the
same image are summed and the resulting normalized single-channel image is the ground
truth occupancy distribution. A visualization of this process is shown in Figure 8.2. Dataset
generation for 10,000 images took about 5 hours on an Ubuntu 16.04 machine with a 12-core
3.7 GHz i7-8700k processor.

8.3.2 Occupancy Distribution Model

We split each dataset of 10,000 images image-wise and object-wise into training and test
sets (8,000 training images and 2,000 test images, where objects are also split such that
training objects only appear in training images and test objects only appear in test images).
We train a fully-convolutional network with a ResNet-50 backbone [155] using a pixelwise

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 101

mean-squared-error loss for 40 epochs with a learning rate of 10−5, momentum of 0.99, and
weight decay of 0.0005. The input images were preprocessed by subtracting the mean pixel
values calculated over the dataset and transposing to BGR. Training took approximately
2.5 hours on an NVIDIA V100 GPU and a single forward pass took 6 ms on average as
compared to 1.5 s for generating the ground-truth distribution.

8.3.3 Simulation Experiments for Occupancy Distributions

We benchmark the trained model on the full set of 2,000 test images as well as on 1,000
images with three other simulated target objects shown in Figure 8.4 - a lid, a domino, and
a flute - to test generalization to object shapes, aspect ratios and scales not seen during
training. We chose these target objects due to their diversity in scale and object aspect
ratio (e.g., the flute is longer, thinner, and deeper, while the lid is nearly square and flat).
We report two metrics: balanced accuracy, the mean of pixelwise accuracies on positive
and negative pixel labels, and intersection-over-union, the sum of positive pixels in both
the ground truth and predicted distribution divided by the sum of total positive pixels in
either distribution. We consider true positives as the ground truth pixel having normalized
value greater than 0.1 and the predicted value being within 0.2 of the ground truth value.
Similarly, we consider true negatives as the ground truth pixel having normalized value less
than 0.1 and the predicted value being within 0.2 of the ground truth value. Results are
shown in Table 8.1.

Target Object Scale. For objects of different scale than the training target object,
we scale the input image by a factor equal to the difference in scale between the box target
object and the other target object, feed it through the network, and then rescale the output
distribution. We find that this scaling dramatically improves performance with minimal
preprocessing of the input image; for example, when testing on the lid object, which is about
twice as large as the training box object, we increase balanced accuracy and IoU from 63.0%
and 0.186 to 93.1% and 0.697, respectively.

Target Aspect Ratios. We found that, while our network performed well on objects
with similar aspect ratios, longer and thinner objects with higher aspect ratios resulted in the
model overestimating the support of the distribution. This effect can be seen in Figure 8.3,
which shows ground truth occupancy distributions for target objects of different aspect ratios
in the same heap image. Table 8.1 suggests that the trained networks can accurately predict
occupancy distributions for target objects that have similar aspect ratios to the training
boxes, but do not perform as well when tasked with predicting a distribution for objects
with dramatically different aspect ratios. In particular, the network trained with a 1:1 box
target object tends to overestimate the support for target objects with high aspect ratios,
leading to a drop in metrics. This effect is especially visible along corners of occluding
objects, where more rotations of a low aspect ratio object are possible, while only one or two
rotations of a high aspect ratio object are possible.

Figure 8.4 shows occupancy distribution predictions with ground truth distributions for
the three unseen objects using the network trained on the closest aspect ratio target object

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 102

Figure 8.3: The ground truth occupancy distributions for a target object of various aspect
ratios for the same heap image.

and scaled appropriately. Results suggest that the network is able to accurately predict
diverse distributions when occluding objects not seen in training are present. Figure 8.4
suggests not only that the network can predict the correct distribution spanning multiple
occluding objects in unimodal and multimodal cases when the target object is fully occluded,
but also that it can correctly collapse the distribution to a small area around the visible part
of the target object when it is only partially occluded.

8.4 X-Ray: Mechanical Search Policy

Using the learned occupancy distribution function fρ, we propose X-Ray, a mechanical search
policy that optimizes for the objective and surrogate reward R̃ defined in Section 8.2. We
create both simulated and physical object heaps and generate overhead camera images using
an observation model based on the Photoneo PhoXi S depth camera. The heap RGBD image
and target object are inputs to the perception system, which uses the network trained on the
most similar bounding box to the target object to predict an occupancy distribution for the

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 103

Figure 8.4: Example predicted target object occupancy distributions for three target objects,
a lid, domino, and flute, unseen during training (far left). Warmer colors indicate a higher
likelihood of that pixel containing part of the target object’s amodal mask. The network is
able to accurately predict a distribution across many objects, a collapsed distribution when
the object is partially visible, and multimodal distributions when there are gaps between
objects (top three rows). The final row shows a failure mode where the network spuriously
predicts an extra mode for the distribution when the target object is partially occluded.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 104

Figure 8.5: The perception stage takes as input an RGBD image of the scene and outputs an
occupancy distribution prediction using a network based on the target object bounding box
dimensions and the created augmented depth image. The perception stage also produces a
set of segmentation masks. The X-Ray mechanical search policy then finds the mask that
has the most overlap with the occupancy distribution (colored yellow in the grasp scores
image) and plans a grasp on that mask.

target. The policy takes the predicted distribution and a set of modal segmentation masks
for the scene and computes a grasping action that would maximally reduce the support of
the subsequent distribution. Specifically, the policy takes an element-wise product of each
segmentation mask with the predicted occupancy distribution and sums over all entries in
the resulting image, leading to a score for each of the segmentation masks. The policy
then plans a grasp on the object mask with the highest score and executes it, as shown in
Figure 8.5.

8.4.1 Simulation Experiments with X-Ray

We first evaluate the mechanical search policy with simulated heaps of novel objects. To
further test the ability of the learned network to generalize to unseen occluding objects, we
use a set of objects unseen in training and validation: 46 YCB objects [28] and 13 “packaged”
YCB objects (augmented in the same way as described in Section 8.3). Initial states were
generated as explained in Section 8.3, first dropping the target object, followed by the other
N objects. We use N = 14 so each heap initially contained 15 total objects, colorreda
similar or larger size to previous bin-picking work [162, 179]. As the focus of this work
was not instance segmentation or target detection, we use ground truth segmentation masks
and target binary masks in simulation, although we note that any class-agnostic instance
segmentation network [135, 51] or object detection network [286] can be substituted. For each
grasp, either a parallel jaw or suction cup grasp, we use wrench space analysis to determine
whether it would result in the object being lifted from the workspace under quasi-static
conditions [203, 163, 164]. If the grasp is collision-free and the object can be lifted, the object

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 105

Policy Success Rate Number of Actions Quartiles

Random 42% 4 7 9
Largest 67% 4 5 7
X-Ray 82% 3 5 6

Table 8.2: Evaluation metrics for each policy over 1,000 simulated rollouts. The lower
quartiles, medians, and upper quartiles for number of actions are reported for successful
rollouts. X-Ray extracts the target at a higher success rate with significantly fewer actions.

is lifted until the remaining objects come to rest using dynamic simulation implemented in
PyBullet, resulting in the next state. Otherwise the state remains unchanged.

In addition to the policy proposed here, we evaluate two previously proposed baseline
policies, Random and Largest [49]. The Random policy that first attempts to grasp the
target object, and, if no grasps are available on the target object, grasps an object chosen
uniformly at random from the bin. The Largest policy that first attempts to grasp the
target object, and, if no grasps are available on the target object, iteratively attempts to
grasp the objects in the bin according to the size of their modal segmentation mask.

Each policy was rolled out on 1,000 total heaps until either the target object was grasped
(successful rollout) or the horizon H = 10 was reached (failed rollout). We benchmark each
policy using two metrics: success rate of the policy and mean number of actions taken to
extract the target object in successful rollouts. Table 8.2 and Figure 8.6 show these metrics
and the distribution of successful rollouts over the number of actions taken to extract the
target object, respectively.

While the Random and Largest policies occasionally are able to quickly extract the target
object, X-Ray consistently extracts the target in fewer actions and succeeds in 15% more
heaps than the best-performing baseline. Largest is a reasonable heuristic for these heaps,
as shown in [49], as large objects typically have a greater chance of occluding the target,
but X-Ray combines this intuition with superior performance when the object is partially
occluded. X-Ray outperforms the Largest policy on heaps where the target object is partially
occluded by a thin or small object (such as a fork or dice) at some point during the rollout.
In these scenarios, a robust grasp is often not available on the target object, and while X-Ray
can correctly identify that the occluding object should be removed, the Largest policy will
often grasp a larger object further from the target object. In scenarios where there are many
large objects, but some are lying to the side, X-Ray will typically grasp objects that are in
the more cluttered area of the bin, since they are more likely to reveal the target object.
This behavior is a function of weighting the object area by the predicted distribution, which
encourages the policy to ignore solitary objects.

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 106

Figure 8.6: Histogram of the number of actions taken to extract the target object over the
1,000 simulated rollouts for the three policies tested. The median number of actions for each
policy is shown by the corresponding vertical line.

8.4.2 Physical Experiments with X-Ray

We also evaluate X-Ray with heaps of novel household objects on a physical ABB YuMi robot
with a suction cup and parallel jaw gripper, using two target objects. Some examples of the
objects used can be seen in Figures 8.1 and 8.5. Initial states were generated by placing the
target object on the workspace, filling a bin with the N other objects, and then dumping the
bin on top of the target object. In these heaps, N = 24 was used so that each heap initially
contained 25 total objects. We chose 25 total objects because it has been commonly used in
cluttered bin-picking environments [166] and objects tend to disperse further on the physical
setup. For segmentation masks, we used the class-agnostic instance segmentation network
from [51], and for grasp quality analysis, we used FC-GQCNN [223]. To generate binary
target masks, we use HSV color segmentation from OpenCV and use red target objects.
While we make this assumption for simplicity, we note that we could substitute this process
with a target object segmentation method that uses visual features, semantics and shape,
such as the one described in [51].

We perform 20 rollouts for each of the three policies. Each policy was rolled out until
either the target object was grasped (successful rollout) or the horizon H = 10 was reached

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 107

Policy Success Rate Number of Actions Quartiles

Random 85% 4 6 7
Largest 85% 4 6 7
X-Ray 100% 4 5 5.25

Table 8.3: Evaluation metrics for each policy over 20 physical rollouts. The lower quartiles,
medians, and upper quartiles for the number of actions are reported across successful rollouts.
X-Ray extracts the target with significantly fewer actions, always extracting it within 10
actions.

(failed rollout). We report the same metrics as in the simulated experiments in Table 8.3.
We find that X-Ray outperforms both baselines, extracting the target object in a median

5 actions over the 20 rollouts as compared to 6 actions for the Largest and Random policies
while succeeding in extracting the target object within 10 actions in each case. These results
suggest that X-Ray not only can extract the target more efficiently than the baseline policies,
but also has lower variance. The Largest policy performed comparatively worse with more
objects in the heap than in simulation, as it relies heavily on accurate segmentation masks.
However, when objects are densely clustered together, segmentation masks are often merged,
leading to grasps on smaller objects that do not uncover the target. In this case or in the case
of spurious segmentation masks that do not cover objects, X-Ray reduces this reliance on
accurate segmentation masks, as the occupancy distribution and segmentation are combined
to create a score for the mask. This property of X-Ray causes it to compare favorably to a
policy that directly scores segmentation masks based on their relationship to the target object
geometry. X-Ray also reduces reliance on the target object binary mask being accurate; if
the detector cannot see enough of the target object to generate a detection even when it is
partially visible, X-Ray will continue to try and uncover it according to the fully occluded
occupancy distribution until more of the target is revealed.

8.5 Discussion and Future Work

In this chapter, we presented X-Ray, a mechanical search algorithm that minimizes support
of a learned occupancy distribution. We showed that a model trained only on a synthetic
dataset of augmented depth images labeled with ground truth distributions learns to accu-
rately predict occupancy distributions for target objects unseen in training. We benchmark
X-Ray in both simulated and physical experiments, showing that it can efficiently extract the
target object from challenging heaps containing 15-25 objects that fully occlude the target
object in 82% - 100% of heaps using a median of just 5 actions.

In future work, we will address some of the failure modes of the system, especially for
objects that are significantly non-planar. Currently, the assumption that the object is flat

CHAPTER 8. X-RAY: MECHANICAL SEARCH FOR AN OCCLUDED OBJECT BY
MINIMIZING SUPPORT OF LEARNED OCCUPANCY DISTRIBUTIONS 108

can result in incorrect occupancy distributions for taller objects. Additionally, we will look to
add memory to the policy so that if objects shift into previously free space, the distribution
will not cover that area, and explore reinforcement learning policies based on a reward of
target object visibility.

109

Chapter 9

Mechanical Search on Shelves using a
Novel “Bluction” Tool

While the majority of the dissertation has focused on applying manipulation primitives,
perception primitives, and action selection policies to overhead-access mechanical search in
bins or tabletop environments, this chapter extends these ideas to lateral-access environ-
ments such as shelves. In contrast with the overhead-access bin settings explored in prior
work [49, 137, 276, 282], where objects can be heaped in arbitrary poses, objects on shelves
consistently rest in stable poses. If a target object is occluded on a shelf, other objects must
be carefully moved without toppling to reveal the target. Lateral-access environments may
restrict available parallel jaw grasps, as there may not be sufficient space between objects
to insert gripper jaws. Prior work on mechanical search in lateral-access environments has
used pushing actions, executed with a wrist-mounted blade [99]. This chapter introduces a
novel end-effector that combines a blade for pushing and a suction cup for grasping. The
blade and suction cup are mounted on a thin shaft that can be rotated to maximize camera
visibility. We call this end-effector a bluction tool (a pormanteau of “blade” and “suction”).

The expanded action set afforded by the bluction tool is beneficial when objects are close
together or close to the shelf wall. In prior work [99], these objects would likely be immovable
as the robot would have no space to place its end-effector to reach and push them, and some
pushes could result in irrecoverable failures. Thus, even moderately dense scenes could make
target extraction impossible. Suction grasping can resolve these issues, but requires new
planning algorithms that aim to balance pushing and suction grasping actions to efficiently
reveal the target object.

This chapter introduces Suction Lateral Access maXimal Reduction in support Area of
occupancY distribution (SLAX-RAY), which extends the lateral-access mechanical search
policies introduced in LAX-RAY [99] to include both suction and pushing actions executed
with the novel bluction tool.

This chapter makes four contributions:

1. The bluction tool: the design and evaluation of a novel robot end-effector.

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 110

camera on mount
suction cup

shaft

robot mount pushing blade

Figure 9.1: Bluction Tool: CAD (top) and physical implementation (middle). Using the
bluction tool, the SLAX-RAY policy performs pushing and suction actions (bottom) to
reveal the green cylinder target object among occluding objects within the shelf. Suction
actions increase the robot search efficiency and can reveal the target object in scenes where
no pushing actions are available. The shelf coordinate system is shown in the bottom right.

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 111

2. A simulation pipeline with 300 % speedup compared to LAX-RAY [99] that uses ray-
casting and 2D Minkowski sums to guarantee a fully-occluded target across a dataset
of 100,000 random shelf configurations.

3. Bluction-DAR: a lateral-access mechanical search policy using the bluction tool, which
uses a combination of suction and pushing actions to recover the target object.

4. Experimental data from 2000 simulated trials with 4 – 10 occluding objects and 18
physical trials with a Fetch robot with 8 – 12 occluding objects, that suggest the
SLAX-RAY search policy with a bluction tool can improve the average success rate in
absolute values by 26 % in simulation and 67 % in physical compared to pushing-only
baseline policies.

9.1 Related Work

9.1.1 Mechanical Search

For mechanical search for a specific target object in an overhead-access environment (e.g.,
a tabletop or bin), the robot uses an overhead camera to acquire color, depth, or RGBD
images of the scene and performs top-down grasps then pushes to reveal and extract the
target object. Danielczuk et al. [49] formulate the mechanical search problem and introduce
a two-stage perception and search policy pipeline that uses heuristic policies to guide pushing
and grasping within the bin. Kurenkov et al. [137] extend this work by introducing a learned,
non-linear pushing action to uncover the target. Zeng et al. [282], Novkovic et al. [188], and
Yang, Liang, and Choi [276] jointly learn coordinated pushing and grasping strategies. One
approach for mechanical search is to statistically estimate target object locations. Xiao et al.
[266] and Price, Jin, and Berenson [204] attempt to model the object locations using particle
filters and shape completion. Danielczuk et al. [52] learn such a distribution from a synthetic
dataset of depth images and target object occupancy distributions. The target occupancy
distributions represent all locations of the target object that would result in the rendered
depth image. They train a neural network to estimate this distribution for multiple target
object aspect ratios and show it can transfer to physical scenes as part of an overhead-access
mechanical search policy.

However, the lateral-access shelf environment introduces new challenges and constraints,
particularly for motion planning. Zeng et al. [283] use pick-and-place actions in a shelf
environment during the Amazon Picking Challenge, but do not rearrange objects within the
shelf. Many prior works [182, 15] focus on scenarios where the target object is partially
observable or the robot camera sweeps freely across the shelf opening, whereas we consider
the case where the target object is initially occluded and the robot camera position is fixed.
Lou, Yang, and Choi [157] estimate collisions between the robot and the environment with
a learned Collision-Aware Reachability Predictor. Wang, Miao, and Bekris [256] propose a
new solver for rearranging objects in shelves with a global planner. Li, Hsu, and Lee [145] use

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 112

a POMDP solver in sparse simulated shelf environments. Gupta et al. [81] introduce a multi-
step object search algorithm that discretizes objects placements within shelf and searches for
objects using pushing or pick-and-place actions; in contrast, we do not discretize the shelf for
objects placements. Huang et al. [99] introduce LAX-RAY with two pushing policies for the
shelf environment. The LAX-RAY policies leverage a history encoding of target occupancy
distributions and multi-step lookahead to efficiently reveal a target object on a shelf with
up to eight occluding objects. This chapter introduces the bluction tool for suction grasping
actions in addition to pushing actions and a bluction-based policy that maximally reduces
distribution area at each timestep.

9.1.2 Suction Grasping

Suction grasps have been heavily utilized in prior robotics works ranging from the Amazon
Picking Challenge [283, 181] and grasping [165, 166, 249] to underwater manipulation [238]
and wall climbing [8]. Suction-based end-effectors apply vacuum force on a single point of
contact with the target object. Most works consider suction grasps in an overhead scenario,
where the suction cup’s vacuum force mainly resists the gravitational force along its grasp
approach axes [166]. However, shear forces are rare. In this chapter, we instead focus on
suction grasps with approach axes perpendicular to gravity, which results in higher shear
forces that the suction cup must resist.

Suction grasps can be directly planned on a point cloud of the scene, using heuristic
methods or by sampling a range of candidate grasps and ranking them using a quality
metric. For the former, common approaches are grasping near estimated centroids of flat
surfaces [278], grasping along inward surface normals towards an object centroid [93], or
pushing objects from the top or side until a suction seal is formed [63].

Suction grasp planning can also leverage geometric models: Domae et al. [57] use a
geometric model that assesses planarity by convolving a contact template with the image.
Cartman [181], which won the 2017 Amazon Picking Challenge, ranked grasps according to
their distance from object boundaries. Zeng et al. [283] and Cao et al. [29] use large, labeled
datasets of real images to train a neural network that predicts grasp affordances directly
from RGBD images or point clouds. Similarly, Mahler et al. [165] use a hybrid approach
where suction grasps are modeled in wrench space and labeled on simulated depth images.
A network trained on these simulated grasps is applied to real depth images.

9.2 Problem Statement

A set of non-stacked objects rest in stable poses within a shelf, with one object designated
as the target to be revealed. Only the target is of known color and geometry. The robot
views the shelf from the open side using an RGBD camera that is attached to its arm.

We additionally assume:

• The shelf and camera poses are static with respect to the robot.

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 113

• All objects are cylinders or rectangular prisms with a flat face resting on the shelf
surface. All rectangular prisms are axis-aligned with the shelf.

• Actions will not topple objects or move multiple objects simultaneously.

At any time t ∈ {1, . . . , H}, where H is a user-specified time limit, let yt ∈ Rw×h×4

be the observation from an RGBD camera of the arrangement of objects on the shelf. At
time t, the robot performs an action at ∈ A, where A = Ap ∪ As, the union of pushing and
suction actions. The search terminates in failure after H steps, and in success when the
robot observes a threshold visibility v% of the target object.

Pushing actions in Ap, parametrized as at = (O, dx), start with the blade at left or right
edge of object O and push a signed distance dx ∈ R along the x-axis of the shelf frame,
which is shown in Fig. 9.1.

Suction actions in As, parametrized as at = (O, dx, dy), start with the robot forming
a seal between the suction cup and object O, followed by four linear motions: (1) lifting
the object along the shelf z-axis, (2) pulling the object towards the camera along the shelf
−y-axis, (3) translating the object along the shelf x-axis by dx, and (4) pushing the object
along the shelf y-axis into its final placement pose at a distance dy ∈ R into the shelf.

The goal is to terminate the search in success by revealing v% of the target, while
minimizing the total action cost np + ψns, where np and ns are the number of pushing and
suction actions respectively. ψ > 1 is an action cost ratio that accounts for the increased
motion planning and execution time for suction actions as compared to pushing actions. By
measuring action planning and execution times during physical experiments, we empirically
estimate ψ = 1.3.

9.3 Bluction Tool

The bluction tool is a combination of a blade and a suction cup. It attaches to the robot
wrist, enabling pushing actions with the blade, and suction actions with the suction cup,
as shown in Fig. 9.1. Our specific design for the Fetch robot includes a 0.40 m aluminum
vacuum tube with a diameter of 0.03 m that allows the robot to reach deep into a shelf
without losing pressure while avoiding undesirable collisions between the robot wrist and
the environment. The blade has a width of 0.065 m and a height of 0.075 m. The suction
cup at the end has a diameter of 0.03 m. The bluction tool includes a manually-adjustable
camera mount, and allows for autonomous rotation to facilitate camera visibility. Attached
to the camera mount is a RealSense L515 LiDAR Camera.

The bluction tool enables a wider set of actions than considered by suction-only [49] and
push-only [99, 137] mechanical search policies. To push an object with the blade, the robot
inserts the flat face of the blade next to the object and pushes along the x-axis of shelf. In
contrast to pushing using the shaft, the blade flat face increases contact area, thus reducing
object rotation during pushing. To perform a suction action, the robot rotates the pushing
blade upwards to avoid collision with the shelf, and contacts object with the suction cup.

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 114

Figure 9.2: SLAX-RAY Simulation Pipeline: (a) A random set of occluding objects are
placed in stable poses such that they do not collide with each other or the shelf. (b) We find
the visibility polygon given a projected scene from the camera perspective. (c) We calculate
the Minkowski sum of the visibility polygon and the projected target object, which yields
a set of candidate target object placements (light green). (d) By casting 3D rays from the
camera to all non-colliding candidate target placements, we find the set of all fully hidden
target object placements (dark green). (e-f) We project the target object points from each
hidden placement into the camera to get a 2D distribution over target locations in image
space, then project this 2D distribution to a 1D distribution along the image x-axis.

To take an image of the shelf, the robot rotates the shaft to avoid occlusion of the view by
the blade.

9.4 Methods

X-RAY (maXimize Reduction in support Area of occupancY distribution) [52] and LAX-
RAY (Lateral Access X-RAY) [99] introduce mechanical search policies that attempt to
maximally reduce either support area or entropy of an estimated target occupancy distribu-
tion. The target occupancy distribution encodes target object likelihoods within an RGBD
image observation, and is estimated using a deep neural network trained on a dataset of
simulated depth images and target object segmentation masks with corresponding ground-
truth occupancy distributions. To perform lateral-access mechanical search with the bluction
tool, we propose Suction LAX-RAY (SLAX-RAY). SLAX-RAY improves the full LAX-RAY
pipeline, including scene generation, perception system, and search policies. First, SLAX-
RAY simulates scenes that resemble cluttered shelf scenarios it might encounter. SLAX-RAY
then uses these scenes to train a perception system that predicts the occupancy distribution
for a target object. The search policies use this occupancy distribution to determine which
action to execute.

To assess the effects of state uncertainty, object arrangement, and available actions on
the complexity of the lateral-access mechanical search problem, we also propose an oracle

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 115

policy that uses full state knowledge to upper-bound policy performance given a scene and
available action set.

9.4.1 Lateral-Access Simulation

The SLAX-RAY simulator uses scene generation both to train the perception system and
to evaluate policies in simulation experiments. The intent is to generate a set of scenes
with random clutter on a shelf, and to render depth images and their corresponding target
object occupancy distributions, as in prior work [99]. SLAX-RAY improves on prior work
by increasing the computational efficiency of the scene generation process and guaranteeing
that target objects are completely occluded in all generated scenes. This improvement in
scene generation results both in a more accurate occupancy distribution model and a larger
simulated evaluation dataset. This new method uses a hybrid approach that relies on 2D
polygon visibility calculations, Minkowski sums, and 3D ray-casting.

To generate a dataset, the scene generator first samples N ∈ [2 . . 12] 3D cuboids or
cylinders from 6 cm to 20 cm in width, depth, and height. It places these objects in one of
their stable poses on the shelf iteratively, drawing their 2D positions uniformly at random
and rejecting positions that are in collision with the shelf or previously placed objects. Next,
it projects the objects to the support surface of the shelf and calculates the 2D visibility of the
scene from the perspective of the camera using the CGAL [205] implementation of Bungiu
et al. [27] (Fig. 9.2(b)). Given that it knows the projected target object, it calculates
a Minkowski sum of the visibility polygon and the convex hull of the target’s projected
vertices (the red shaded area in Fig. 9.2(c)). By sampling in the remaining 2D positions of
the shelf, it generates a set of candidate target placements (light green area in Fig. 9.2(c)).
To take the target object height into account, candidate placements are refined by casting
rays from the camera to a set of 3D points sampled from the target mesh transformed to
each location; if any ray from the camera to the transformed point does not first intersect
with the scene, the target object would be visible at that location. The non-intersecting
locations are removed resulting in the final set of target locations in dark green shown in
Fig. 9.2(d). Given this set of 2D target locations and a set of sampled mesh points that
are transformed to each possible target location, we can directly generate a 2D distribution
over possible target object locations in camera frame by projecting the set of target points
into the camera (Fig. 9.2(e)). Then, by further projecting this 2D distribution to the image
x-axis, we can reduce it to a 1D distribution (Fig. 9.2(f)). In comparison to prior work [99],
which exhaustively transformed the object across a grid of 3D locations in the shelf, this
method is over 300 % faster, with generation of a SLAX-RAY training dataset of 100,000
scenes taking only 4 hours on an Ubuntu 20.04 machine with an Intel i7 12-core processor
and NVIDIA Titan X GPU. The training dataset is generated with random camera positions
sampled from a sphere centered around the shelf center.

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 116

Figure 9.3: Bluction tool camera view with overlaid occupancy distribution and
actions. At each timestep, Bluction-DAR computes the minimum of the predicted target
occupancy distribution at the current timestep and that from the previous timestep (left,
light blue overlay). It executes the pushing action (top, green) or suction action (bottom,
blue) that maximally reduces the support area of the distribution. The dotted arrows repre-
sent the motion of the end-effector from the lighter colored box to the darker color. Suction
actions are advantageous when moving objects that are very close. They follow the piecewise
linear trajectory described in Sec. 9.2, as in the bottom row.

9.4.2 SLAX-RAY Perception System

Based on the neural network architecture and training pipeline in Danielczuk et al. [52],
the SLAX-RAY perception system provides the search policy with information on where the
target object may be hidden by computing a target occupancy distribution from a depth
image. It also segments the scene into object instances using the input depth image. We
assume that target objects can have three different aspect ratios (target objects of size
0.06×0.06×0.03 m3, 0.06×0.06×0.06 m3, and 0.06×0.06×0.12 m3). The neural network is
trained on a dataset of 100,000 depth image and occupancy distribution pairs for those three
target aspect ratios. Each training example contains a single target object and loss for each
predicted distribution is only enforced on the network head that outputs the prediction of
the aspect ratio corresponding to the target. By training in this way, the network learns to
predict a target occupancy distribution for a set of target aspect ratios for each input image.
Training takes approximately 18 hours on a Titan X GPU. At run time, the network takes in a
depth image from the physical system and we take the output that corresponds to the aspect
ratio of the known target object. SLAX-RAY projects the 2D image-space target occupancy
distribution into a 1D distribution along the image x-axis, using the assumption that objects
rest on the shelf (Sec. 9.2). Specifically, the 1D distribution is Pt(x) =

∑h−1
y=0 pt(x, y), where

pt(x, y) is the 2D occupancy distribution at pixel location (x, y).

9.4.3 SLAX-RAY Mechanical Search Policy

We propose a novel mechanical search policy: Bluction-DAR (Distribution Area Reduction).
Bluction-DAR takes actions at each timestep that attempt to maximally reduce the target

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 117

occupancy distribution until v% of the target is revealed. The policy operates on the full
action space of pushing Ap and suction As actions using the bluction tool. The policy con-
siders the suction action space As to be all combinations of a collision-free grasp, extraction
and placement, which expands the total action space of the problem beyond the pushing
actions previously considered and allows for revealing the target object in scenarios where
the blade cannot be inserted between any pair of objects. The policy rejects actions that
would cause collisions among the gripper, objects and the shelf. For pushing actions, an
object can only be pushed next to the closest object on its left or right such that it does not
collide with other objects in the shelf or result in simultaneous pushing of multiple objects,
as stated in Sec. 9.2. For suction actions, we generate the dx, dy candidates by discretizing
the x and y axis of the shelf uniformly into 50 and 8 segments, respectively. We restrict suc-
tion actions to the piecewise-linear action described in Sec. 9.2 to prevent collisions between
objects in the shelf. After all actions are generated, we check for collisions between the shelf
environment (pointcloud from depth image) and the bluction tool trajectory.

To track search progress and help inform subsequent actions, as in Huang et al. [99], we
encode the history of previous observations via the minimum of the current 1D predicted
distribution and the previous encoding: P ′t(x) = min

{
Pt(x), P ′t−1(x)

}
. For the first timestep,

we set P ′0(x) = P0(x). We define the support of the occupancy distribution of each object
Oi, rt(Oi) =

∑ri
x=li

P ′t(x), where li, ri is the x coordinate of left and right edge of the object
segmentation mask. We further define the reduction of support as ∆rt(Oi) = rt(Oi) −
rt+1(Oi), where rt+1(Oi) is calculated with the segmentation mask of object Oi after applying
the action. The updated segmentation mask is obtained by deprojecting into the camera
frame, applying the action and projecting back to the image frame. Note that if an action
increases the support of the distribution, ∆rt may be negative. We measure ∆rt for each
action candidate, weighting suction actions by 1/ψ to account for the action cost ratio defined
in Sec. 9.2. Thus, for each suction action, ∆rst = ∆rt/ψ, while the reduction of support for
the pushing action is kept the same: ∆rpt = ∆rt. Bluction-DAR returns the list of actions

sorted by decreasing ∆r
(·)
t , and executes the first kinematically feasible action from the list.

9.4.4 Oracle Policies

We quantify the difficulty of each generated shelf environment and upper-bound policy per-
formance for a given action set by measuring the number of actions taken by oracle policies
that use full-state information to reveal the target object. Although policy success is defined
in Sec. 9.2 as target object visibility above v, the oracle policies search for a series of ac-
tions that fully reveals the target. Since all objects are assumed to be cylinders or cuboids,
clearing a visibility triangle (from the camera to the front face of the target object in a
projected overhead view) is equivalent to solving the 3D visibility problem. Therefore, for
computational efficiency, the oracle policies project the 3D shelf scene into a 2D overhead
representation and evaluate actions using the projected representation. While oracle policies
have full-state knowledge, their action sets are equivalent to the non-oracle policies (e.g.,
they will not push unreachable objects).

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 118

Oracle Huang et al. [99] Bluction

No. Metric Oracle-P Oracle-P+S DAR DER-3 Bluction-DAR

4
Success Rate 100% 100% 77% 83% 96%

Median Steps (IQR) 1.5 (1.0 – 2.0) 1.5 (1.0 – 2.0) 2.0 (1.0 – 3.0) 2.0 (1.0 – 3.0) 2.0 (1.0 – 2.5)

6
Success Rate 100% 100% 68% 72% 92%

Median Steps (IQR) 3.0 (2.0 – 3.0) 2.0 (2.0 – 3.0) 3.0 (1.8 – 5.0) 3.0 (1.0 – 4.3) 2.0 (2.0 – 4.0)

8
Success Rate 99% 100% 45% 50% 88%

Median Steps (IQR) 3.0 (2.0 – 4.0) 2.5 (2.0 – 3.0) 3.0 (1.0 – 4.0) 3.0 (2.0 – 4.0) 3.0 (2.0 – 5.0)

10
Success Rate 94% 100% 24% 34% 67%

Median Steps (IQR) 4.0 (3.0 – 6.0) 3.0 (2.0 – 4.0) 4.5 (2.0 – 6.0) 3.0 (2.0 – 5.0) 6.0 (3.0 – 8.0)

All
Success Rate 98% 100% 54% 60% 86%

Median Steps (IQR) 3.0 (2.0 – 4.0) 2.0 (1.0 – 3.0) 2.0 (1.0 – 4.0) 3.0 (1.0 – 4.0) 3.0 (2.0 – 4.0)

Table 9.1: Simulated policy rollouts: 100 trials were executed for 4, 6, 8, and 10 occluding
objects; in total, 2000 trials. For each, we show the Success Rate followed by the Median
and Interquartile Range (IQR) for the number of steps taken to reveal the target. Results
suggest that suction actions allow the Bluction-DAR policy to succeed between 13% and 38%
more often in densely cluttered environments than the best-performing pushing baselines.

We define two versions of the oracle policy: Oracle-P (pushing actions only), and
Oracle-P+S (pushing and suction actions). Given the visibility triangle to be cleared,
the policy exhaustively generates all valid action trees (capped at a maximum of H actions)
that would result in this area being free of objects. The action trees are sorted by the number
of distinct actions and the policy executes the action tree with the fewest actions. Suction
actions are weighted by ψ.

9.5 Experiments

We evaluate SLAX-RAY in both simulated and physical shelf environments. In simulation,
the shelf is 0.60 m wide by 0.60 m deep by 0.60 m high. In physical environments, the shelf
is 0.80 m wide by 0.50 m deep by 0.50 m high. In both experiments, we use the perception
pipeline in Sec. 9.4.2 to estimate the target occupancy distribution.

9.5.1 Simulation Experiments

The simulated experiments use the First Order Shelf Simulator (FOSS) from Huang et al.
[99] where the actions are deterministic. We generate 400 total environments with 4, 6, 8,
and 10 occluding objects. For these experiments, we set the maximum number of steps to
H = 2n, where n is the number of objects.

We evaluate Bluction-DAR on the set of 400 shelves along with two baselines from [99]:
DAR (Distribution Area Reduction) and DER-3 (Distribution Entropy Reduction over 3

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 119

steps) are lateral-access mechanical search policies based on target occupancy distribution
predictions. DAR is an ablation of Bluction-DAR that greedily reduces the target object
distribution support area and DER-3 is a policy with 3-step lookahead that takes the action
with least predicted entropy after the 3 steps. Both DAR and DER-3 only use pushing
actions. For these experiments, we use the target object of size 0.06×0.06×0.06 m3 and set
the target visibility threshold to v = 80 %.

Table 9.1 shows the results. Bluction-DAR succeeds in revealing the target more than
baselines across all scenes, with a 13 % and 33 % improvement over the best-performing
pushing-only baseline for 4 object scenes and 10 object scenes, respectively. Bluction-DAR
also maintains success rates of at least 67 % even in 10 object scenes, suggesting it scales
better to more dense arrangements than baselines. Bluction-DAR gains a considerable ad-
vantage in denser scenes because of the additional object mobility. Since objects may not
be pushed behind other objects (as to not risk collisions with obscured objects), pushing
policies are extremely limited in scenes with many objects. Neighboring objects can block
large parts of the scene and it may be difficult or impossible to align the small window of
visibility with the target object. Suction actions enable the movement of occluders without
having to clear a substantial pushing path. As compared to previous work [99], DAR and
DER-3 success rates are lower due to the relaxation of the assumption that objects must be
separated from each other and the shelf walls by at least the blade width.

The performance of the oracle policies in Table 9.1 suggests that while pushing actions
can reveal the target object reliably in less cluttered shelves of 4, 6, or 8 occluding ob-
jects, as shelves become more densely packed, the upper bound of pushing policies begins
to drop. However, when using both pushing and suction actions, it remains possible to suc-
ceed in 100 % of environments. These experiments further explain the performance gain of
Bluction-DAR over pushing-only baselines and suggest that the bluction tool and associated
new actions may be necessary to reveal target objects in increasingly dense scenes. The
Oracle-P+S policy outperforms Bluction-DAR by 12 % and 33 % in scenes with 8 and 10
objects, respectively, which suggests that the Bluction-DAR policy can be further improved
to approach success rates over 90 % even in denser scenes.

9.5.2 Physical Experiments

We evaluate SLAX-RAY and the DER-3 policy in 9 physical shelf environments with 8, 10,
and 12 objects like the one shown in Fig. 9.1. We randomly place the household kitchen and
bathroom objects with an occluded target of size 0.06×0.06×0.03 m3 on a shelf and execute
the pushing and suction actions using a Fetch robot with the bluction tool. We use the Intel
RealSense LiDAR Camera L515 for the RGBD observations. The results in Table 9.2 suggest
that Bluction-DAR performs consistently better than DER-3 across these scenes. A benefit
of the suction action is that Bluction-DAR is more robust to the perception noise. For 3 out
of 9 trials, DER-3 fails to find the available actions when the segmentation mask is narrower
than the actual object since it would produce a false collision detection. Bluction-DAR still
finds available actions via suction actions. Bluction-DAR is also more robust to manipulation

CHAPTER 9. MECHANICAL SEARCH ON SHELVES USING A NOVEL
“BLUCTION” TOOL 120

No. Metric DER-3 Bluction-DAR

8
Successes 0/3 3/3
No. Steps (-) 3, 4, 4

10
Successes 2/3 3/3
No. Steps 7, 4 4, 5, 4

12
Successes 1/3 3/3
No. Steps 4 6, 7, 7

All
Success Rate 33 % 100 %

Median Steps (IQR) 4.0 (4.0 – 5.5) 4.0 (4.0 – 6.0)

Table 9.2: Physical experiment results. We evaluate DER-3 and Bluction-DAR across 3
scenes with 8, 10, and 12 objects each. Bluction-DAR outperforms DER-3 in physical scenes
consistently.

or trajectory planning deviations. When the robot accidentally pushes objects against other
objects or to the wall, Bluction-DAR searches for viable suction actions. Bluction-DAR can
find the target in scenes which are unsolvable for pushing-only policies, such as scenes where
the target is hidden behind two objects with no large gap in between for blade insertion.

9.6 Conclusion and Future Work

This chapter presented SLAX-RAY, a lateral-access mechanical search pipeline. SLAX-RAY
uses the bluction tool with a new search policy Bluction-DAR, which uses both pushing and
suction actions to reveal a target object in a shelf environment. Simulation and physical
experiments demonstrate that the increased action set improves the average success rate
by 26 % and 67 %, respectively, over pushing-only baselines. In future work, we will explore
actions that move multiple objects simultaneously, plan collisions between objects to “nudge”
occluders out of the way, extend to objects beyond cylinders or rectangular prisms and
explore scenes with stacked objects. We will also improve SLAX-RAY searching policies
by incorporating future predictions and exploring different action selection policies such as
information gain instead of support reduction.

121

Part IV

Conclusion and Future Work

122

Chapter 10

Discussion

10.1 Overview

This dissertation formalizes the problem of robot mechanical search and contributes to three
areas of a mechanical search pipeline: manipulation primitives, perception primitives, and
action selection policies. We show that while impressive progress has been made towards
grasping singulated objects or objects in clutter as well as in object detection and segmenta-
tion, mechanical search policies can benefit from taking a modular approach and improving
along each of these vectors.

In Chapters 2 and 3, we presented REACH and 6DFC, two area contact models that
can efficiently provide contact wrench constraints for the 6D wrench applied by a compliant
gripper jaw on the surface of a rigid object. We showed that explicitly modeling these
soft area contacts results in higher recall for grasp quality predictions than baselines with
a moderate increase in computation cost. As these contact models have been successfully
incorporated into training pipelines for hybrid grasping models, their improvement could
lead to more precise grasping policies in the mechanical search context, especially in cases
where few grasps are available. In Chapter 4, we showed that coupling pushing policies with
predicted grasp qualities can lead to successful pushes even in cases where objects may not
be fully singulated. We also explored trading off pushing actions with grasping actions based
on a success threshold for grasping.

In Chapter 5, we delved into category-agnostic instance segmentation and trained SD
Mask R-CNN using a large dataset of simulated depth images. In comparison to baseline
methods, our method shows impressive generalization both across the sim-to-real gap and
to real objects unseen in training, with some capability to generalize to novel cameras as
well. Chapter 6 again showed that leveraging ideas from computer vision on learning implicit
functions, combined with training on simulated data, can result in fast, collision-free motion
plans even with unknown objects in hand.

Finally, in Chapters 7, 8, and 9, we showed how the modules introduced in the earlier
parts of the dissertation could be integrated together as part of a real-world mechanical

CHAPTER 10. DISCUSSION 123

search pipeline in tabletop, bin, and shelf environments. We showed that shifting policy
burden onto perception by predicting an occupancy distribution for the target object can
increase success rate while decreasing the number of actions taken. When considering shelf
environments, we explored new challenges and constraints afforded and introduced history
encodings based on a 1D occupancy distribution prediction to account for object movement
within the shelf.

10.2 Takeaways

A few common threads run through the mechanical search policies for bins, shelves, and
tabletops presented in this dissertation. Here, we revisit some of the themes of this disser-
tation that can be applied outside of the mechanical search task.

10.2.1 Learning from Simulated Depth Data

In chapters 5, 6, and 8, we leverage large simulated datasets of labeled depth images or point
clouds to train deep neural networks. Although we only extend these hypotheses as far as the
robots, cameras, and objects that we trained and evaluated on, the success of each of these
methods suggests that training with simulated depth image or point cloud data: (1) can ease
transfer from simulated data to real-world sensor data, (2) can readily provide generalization
to unseen objects of diverse colors and textures, and (3) can significantly decrease human
costs associated with labeling datasets while allowing for customization to different tasks and
settings. These three positives make training using simulated data attractive for many vision-
based tasks. However, some tasks may still benefit from being trained solely on real-world
data or a mixture of simulated and real-world data, especially in cases where ground-truth
labels are difficult to specify in simulation or simulation capabilities diverge too far from
real-world behavior.

10.2.2 Intermediate Representations and Manipulation
Primitives

Chapter 8 shows the power of an effective intermediate representation for mechanical search,
as the concept of a target occupancy distribution captures much of the intuition behind
searching for a hidden object from a geometric perspective. The object instance segmen-
tation network discussed in Chapter 5 also provides a useful abstraction and a higher-level
understanding of objects in the scene than raw pixel observations. In this dissertation, we
argue that providing structure for an action selection policy may be beneficial due to the long
horizon and sparse reward in mechanical search. By learning intermediate representations
and manipulation primitives, we can leverage the progress in multiple robotics subfields and
more efficiently reuse data from other tasks for a high-level mechanical search policy.

CHAPTER 10. DISCUSSION 124

10.3 Opportunities for Future Work

There are a number of exciting areas to explore in future work related to each of the chapters
of this dissertation. We discuss future work related to efficient compliant contact models
in Section 10.3.1, grasping in Section 10.3.2, pushing policies for mechanical search in Sec-
tion 10.3.3, perception and manipulation primitives in Section 10.3.4, and mechanical search
policies and environments in Section 10.3.5.

10.3.1 Contact Modeling

Although the area contact models presented in this dissertation are some of the first to model
interactions between compliant gripper jaws and rigid objects in computationally-efficient
manner, they remain limited to a quasistatic analysis and do not consider contacts between
deformable objects and compliant grippers. Some work has already begun on incorporating
dynamics [123] and grasping deformable objects [272, 100], but can these models be made
more efficient? What role can improved simulation have in grasp quality prediction using
hybrid training methods? Furthermore, we observed in experiments that the plastic support
behind each gripper jaw slightly cantilevers outward when grasping, which may be modeled
with Bernoulli beam theory.

10.3.2 Dex-Net 5.0

A large part of my graduate study has been devoted to robot grasping, especially viewed
through the lens of contact modeling. Recently, I have led an effort to update, build up, and
maintain the code infrastructure for the publicly-available GQ-CNN, Dex-Net, and contact
modeling repositories. Our goal is to allow seamless generation of grasp datasets with an-
alytic quality labels, generation of labeled grasp images, training of GQ-CNN models, and
execution of Dex-Net grasp planning policies across a variety of objects, contact models,
sensors, and robots. I hope that the code and documentation for this project will be avail-
able soon so that researchers across the globe can benefit from and contribute to the next
generation of the Dex-Net project.

10.3.3 Pushing and Other Action Types

Pushing policies can be difficult to analyze, especially in bins and on tabletops, where push-
ing affects multiple objects. However, Chapter 7 suggests that it can be a valuable primitive
in mechanical search, increasing success rates by creating access to more grasps as well as
increasing efficiency in cases where a push can dislodge multiple occluding objects. Con-
tinuous rummaging or sweeping actions that more closely mirror those of humans may also
benefit mechanical search policies. Can the complexity of the analysis around these actions
be reduced or simplified so that they can be incorporated into future mechanical search poli-
cies? Are there other actions (perhaps with different grippers or robot morphologies) that

CHAPTER 10. DISCUSSION 125

would further increase efficiency for this task? Can tactile data be effectively incorporated
into these actions to increase control and robot’s abilities to react to changing contact forces?

10.3.4 Perception for Mechanical Search

Although this dissertation introduces several intermediate representations for mechanical
search, there is certainly still room for growth in this area. Is an occupancy distribution
the most efficient way to represent likely locations for the target object? Can we extend
the representations introduced in this dissertation to the three-dimensional space? Is it
in fact best to allow an action selection policy to learn its own representations from raw
observations?

10.3.5 Mechanical Search Environments

While this dissertation has explored mechanical search on tabletops and on bins and shelves,
the task of mechanical search can encompass a much wider array of environments. Searching
rooms, entire homes or office spaces, or environments with dynamics might require a hier-
archy of policies [136] as well as entirely new abstractions and policies. Semantics may also
play a role in these policies as they scale to larger and larger environments; humans often
structure their homes and warehouses in semantically meaningful ways. How can semantic
reasoning be incorporated into mechanical search policies? Some progress has already been
made on this front [136], but robots can still gain a greater understanding of semantic object
relationships to inform search.

10.4 A Broader View of Mechanical Search and

Robot Manipulation

While significant progress has been made over the last few years towards robot manipulation
of unknown and challenging objects, open problems still remain. Unlike in the fields of
computer vision or natural language processing, where large datasets of real world data
are common and systems can often be learned from data, real world labeled data is often
expensive or impossible to collect for many robotics tasks. While I have hope that deep
learning can continue to improve robotic manipulation policies, I think that this dissertation
suggests that integrating deep learning at crucial stages in a pipeline might be an efficient
way of applying it to robotics. Additionally, scalable data collection for these tasks might
be possible through simulation, and continual improvement and investment into building
realistic simulators augmented with automated data generation pipelines may combat the
relative lack of real-world data available. I hope that this dissertation provides both a base
for future research on the mechanical search problem, which uniquely integrates robotic
perception and manipulation, as well as inspiring future work on scalable data collection
and coupling machine learning with analytic methods.

126

Part V

Appendices

127

Appendix A

REACH: A Robust Efficient Area
Contact Model

This appendix provides full derivations and full results for each test object for the material
in Chapter 2.

A.1 Derivations

For the i-th triangle, we show full derivations for the maximal normal force fzi,max
, the

maximal tangential friction force fti,max
, and the maximal torsional moment τzi,max

and its
lower bound in the following sections.

A.1.1 fzi,max
Derivation

This derivation gives an example of the process used to compute fzi,max
, fxi,max

, fyi,max
, and

τzi,max
for each triangle. First, the integral is converted to barycentric coordinates, then

evaluated. The final result is a symbolic representation that can be evaluated with the
triangle vertices and transform at run time.

APPENDIX A. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 128

fzi,max
=

∫
Ai

k(aixi + biyi + di) dAi

= 2Aik

∫ 1

0

∫ 1−λ2

0

λ1(aixi,1 + biyi,1) + λ2(aixi,2 + biyi,2)

+ (1− λ1 − λ2)(aixi,3 + biyi,3) + di dλ1dλ2

= 2Aik

∫ 1

0

1

2
(1− 2λ2 + λ22)(aixi,1 + biyi,1) +

(
λ2 − λ22

)
(aixi,2 + biyi,2)

+
1

2

(
2− 4λ2 + λ22

)
(aixi,3 + biyi,3) + (1− λ2) di dλ2

=
Aik

3
(ai(xi,1 + xi,2 + xi,3) + bi(yi,1 + yi,2 + yi,3) + 3di)

A.1.2 fti,max
Derivation

This derivation shows how we extract bounds for the tangential frictional force fti the triangle
can resist in terms of the previously defined fzi . fti is maximized when the instantaneous
velocity vector v̂i is entirely in the tangent plane:

fti =

[
fxi
fyi

]
= −

∫
Ai

µ

[
vxi
vyi

]
pi(ri) dAi ≤ µ

[
fzivxi
fzivyi

]
‖fti‖22 ≤ (µfzivxi)

2 + (µfzivyi)
2

= (µfzi)
2 = (fti,max

)2, |fzi| ≤ fzi,max

A.1.3 τzi,max
Derivation

This derivation shows how we extract bounds for the torsional friction τti . τti is maximized

when the instantaneous velocity vector v̂i is equal to
[
−yi xi 0

]T
/
√
x2i + y2i :

τzi,max
= −

∫
Ai

µ‖ri × v̂i‖pi(ri) dAi

≤ µ

∫
Ai

‖
[
xi yi 0

]T × [−yi xi 0
]T
/
√
x2i + y2i ‖pi(xi, yi) dAi

= µ

∫
Ai

√
x2i + y2i pi(xi, yi) dAi

A.1.4 τzi,max
Lower Bound

It is non-trivial to integrate τzi,max
symbolically, as we did for fzi,max

in Sec. A.1.1, since
it contains an elliptic integral. We therefore compute its lower bound as a conservative

APPENDIX A. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 129

approximation:

τzi,max
=

∫
Ai

k(aixi + biyi + di)
√
x2i + y2i dAi

≥ k√
2

(∣∣∣∣∫
Ai

xi(aixi + biyi + di) dAi

∣∣∣∣+

∣∣∣∣∫∫
Ti

yi(aixi + biyi + di) dAi

∣∣∣∣)
=

1√
2

(
|τyi,max

|+ |τxi,max
|
)

where

(τx)i,max =

∫
Ai

kyi(aixi + biyi + di) dAi

=
Aik

12
(2aixi,1yi,1 + aixi,1yi,2 + aixi,1yi,3 + aixi,2yi,1 + 2aixi,2yi,2

+ aixi,2yi,3 + aixi,3yi,1 + aixi,3yi,2 + 2aixi,3yi,3 + 2biy
2
i,1

+ 2biyi,1yi,2 + 2biyi,1yi,3 + 2biy
2
i,2 + 2biyi,2yi,3 + 2biy

2
i,3

+ 4dyi,1 + 4dyi,2 + 4dyi,3)

(τy)i,max =

∫
Ai

kxi(aixi + biyi + di) dAi

=
Aik

12
(2aix

2
i,1 + 2aixi,1xi,2 + 2aixi,1xi,3 + 2aix

2
i,2 + 2aixi,2xi,3

+ 2aix
2
i,3 + 2bixi,1yi,1 + bixi,1yi,2 + bixi,1yi,3 + bixi,2yi,1

+ 2bixi,2yi,2 + bixi,2yi,3 + bixi,3yi,1 + bixi,3yi,2 + 2bixi,3yi,3

+ 4dxi,1 + 4dxi,2 + 4dxi,3)

through the same process that we used in Sec. A.1.1. We give the proof of this lower bound
in the following proposition.

Proposition 1√
2

(|(τy)i,max|+ |(τx)i,max|) ≤ (τz)i,max, (aixi + biyi + di) > 0

APPENDIX A. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 130

Proof.

(τz)i,max =

∫
Ti

k(aixi + biyi + di)
√
x2i + y2i dAi

≥ 1√
2

∫
Ai

k(aixi + biyi + di) (|xi|+ |yi|) dAi

(follows from Cauchy-Schwarz)

=
1√
2

∫
Ai

k (|xi(aixi + biyi + di)|+ |yi(aixi + biyi + di)|) dAi

for aixi + biyi + di > 0

≥ 1√
2

(∣∣∣∣∫
Ai

kxi(aixi + biyi + di) dAi

∣∣∣∣+

∣∣∣∣∫∫
Ti

kyi(aixi + biyi + di) dAi

∣∣∣∣)
=

1√
2

(|(τy)i,max|+ |(τx)i,max|)

A.2 Per-Object Experimental Results

Tab. A.1 contains an expanded version of the results, with AP and AR metrics for each
of the objects tested. Here, EACH is the non-robust REACH model and REACH is the
proposed model.

APPENDIX A. REACH: A ROBUST EFFICIENT AREA CONTACT MODEL 131

Object
Point

Point
Robust

Ellipse
Ellipse
Robust

EACH REACH Flex

AP AR AP AR AP AR AP AR AP AR AP AR AP AR

Bar Clamp 0.94 0.74 0.96 0.71 0.82 0.30 0.84 0.32 0.84 0.95 0.86 0.95 1.00 0.91
Book 0.99 0.89 0.99 0.86 0.91 0.09 0.86 0.33 0.91 1.00 0.95 1.00 1.00 0.93
Bowl 0.98 0.91 1.00 0.88 0.75 0.09 0.75 0.09 0.75 0.38 0.88 0.47 1.00 0.94
Cat 0.57 0.24 0.70 0.28 0.54 0.55 0.56 0.53 0.70 0.47 0.72 0.32 1.00 0.93
Cube 0.89 0.50 0.92 0.41 0.83 0.73 0.88 0.82 0.81 1.00 0.74 0.93 1.00 0.92
Endstop Holder 1.00 0.86 1.00 0.84 0.99 0.09 0.99 0.15 0.99 0.82 0.99 0.83 1.00 0.95
Engine Part 0.83 0.46 0.92 0.52 0.78 0.49 0.82 0.41 0.72 0.64 0.82 0.62 0.98 0.84
Fan Extruder 0.88 0.40 0.90 0.40 0.87 0.51 0.87 0.79 0.82 0.82 0.88 0.76 0.97 0.69
Gearbox 0.80 0.40 0.89 0.43 0.82 0.45 0.83 0.49 0.81 0.87 0.89 0.82 0.94 0.55
Large Marker 0.60 0.33 0.79 0.25 0.62 0.74 0.86 0.91 0.86 0.79 0.92 0.77 0.93 0.41
Mount1 0.69 0.57 0.80 0.55 0.74 0.45 0.78 0.52 0.61 0.67 0.80 0.67 0.90 0.20
Mug 0.92 0.94 0.99 0.94 0.69 0.09 0.68 0.10 0.83 0.51 0.89 0.40 0.91 0.23
Nozzle 0.81 0.28 0.81 0.32 0.91 0.86 0.89 0.78 0.95 0.81 0.95 0.78 0.87 0.34
Part1 0.86 0.45 0.89 0.49 0.79 0.31 0.87 0.41 0.90 0.64 0.91 0.56 0.83 0.34
Part3 0.73 0.52 0.80 0.45 0.61 0.59 0.68 0.70 0.69 0.75 0.78 0.57 0.72 0.34
Pawn 0.43 0.60 0.39 0.55 0.32 0.49 0.33 0.52 0.43 0.60 0.62 0.55 0.80 0.40
Pear 0.66 0.94 0.81 0.87 0.69 0.80 0.71 0.69 0.70 0.81 0.86 0.67 0.73 0.33
Pipe Connector 0.67 0.54 0.77 0.61 0.46 0.76 0.54 0.63 0.76 0.65 0.74 0.56 0.68 0.17
Sardines 0.94 0.41 0.97 0.56 0.91 0.46 0.96 0.46 0.93 0.92 0.98 0.93 0.78 0.25
Sulfur Neutron 0.13 0.09 0.13 0.09 0.40 0.38 0.40 0.38 0.67 0.66 0.26 0.16 0.86 0.21
Vase 0.72 0.49 0.81 0.49 0.64 0.30 0.72 0.41 0.68 0.46 0.74 0.49 0.87 0.22

Table A.1: Per-object AP and AR scores for each of the models tested.

132

Appendix B

Segmenting Unknown 3D Objects
from Real Depth Images using Mask
R-CNN Trained on Synthetic Data

This appendix contains dataset statistics and experiments that supplement the segmentation
dataset generation and network discussed in Chapter 5.

B.1 WISDOM Dataset Statistics

The real dataset has 3849 total instances with an average of 4.8 object instances per image,
fewer than the 7.7 instances per image in the Common Objects in Context (COCO) dataset
and the 6.5 instances per image in WISDOM-Sim, but more instances per image than both
ImageNet and PASCAL VOC (3.0 and 2.3, respectively). Additionally, it has many more
instances that are close to, overlapping with, or occluding other instances, thus making it a
more representative dataset for tasks such as bin picking in cluttered environments. Since
it is designed for manipulation tasks, most of the objects are much smaller in area than in
the COCO dataset, which aims to more evenly distribute instance areas. In the WISDOM
dataset, instances take up only 2.28% of total image area in the simulated images, 1.60% of
the total image area on average for the high-res images, and 0.94% of the total image area
for the low-res images. Figure B.1 compares the distributions of these metrics to the COCO
dataset.

B.2 Precision-Recall Evaluation

We performed additional experiments to analyze the precision-recall performance of SD
Mask R-CNN along with the baseline methods for category-agnostic instance segmentation
on RGB-D images: RGB object proposals [6, 130], cluster-based geometric segmentation

APPENDIX B. SEGMENTING UNKNOWN 3D OBJECTS FROM REAL DEPTH
IMAGES USING MASK R-CNN TRAINED ON SYNTHETIC DATA 133

Figure B.1: Distributions of the instances per image and instance size for the WISDOM
dataset, with comparisons to the COCO dataset. Average number of instances are listed in
parentheses next to each dataset. The number of instances and relative object size make
this dataset more applicable to manipulation tasks.

methods from PCL [220], and Mask R-CNN fine-tuned for instance segmentation from the
WISDOM-Real dataset. We also include a variant of SD Mask R-CNN fine-tuned on real
depth images from WISDOM-Real. We evaluate performance using the widely-used COCO
instance segmentation benchmarks [152].

The RGB object proposal baselines were based on two algorithms: Geodesic Object
Proposals (GOP) [130] and Multi-scale Combinatorial Grouping (MCG) [6]. GOP identifies
critical level sets in signed geodesic distance transforms of the original color images and
generates object proposal masks based on these [130]. MCG employs combinatorial grouping
of multi-scale segmentation masks and ranks object proposals in the image. For each of these
methods, we take the top 100 detections. We then remove masks where less than half of the
area of the mask overlaps with the foreground segmentation mask of the image and apply
non-max suppression with a threshold of 0.5 Intersection-over-Union (IoU).

Figure B.2 shows precision-recall curves on three test datasets: 2000 images from the
WISDOM-Sim validation set and 300 test images each from the Primesense and Phoxi cam-
eras.Our learning-based method produces a ranked list of regions, that can be operated at
different operating points. Not only does SD Mask-RCNN achieve higher precision at the
same operating point than PCL, it is able to achieve a much higher overall recall without
any compromise in precision at the cost of only a handful of extra regions.

We also evaluate the performance of SD Mask R-CNN and several baseline on the
WISDOM-Sim test set.

APPENDIX B. SEGMENTING UNKNOWN 3D OBJECTS FROM REAL DEPTH
IMAGES USING MASK R-CNN TRAINED ON SYNTHETIC DATA 134

Figure B.2: Average Jaccard Index, Average Recall, and Precision-Recall (at IoU = 0.5)
curves for each method and the high-res (top row) and low-res (bottom row) dataset, using
segmentation metrics. The fine-tuned SD Mask R-CNN implementation outperforms all
baselines on both sensors in the WISDOM-real dataset. The precision-recall curves suggest
that the dataset contains some hard instances that are unable to be recalled by any method.
These instances are likely heavily occluded objects whose masks get merged with the adjacent
mask or flat objects that cannot be distinguished from the bottom of the bin.

Method AP AR

Euclidean Clustering 0.161 0.252
Region Growing 0.172 0.274
SD Mask R-CNN 0.664 0.748

Table B.1: Average precision and average recall (as defined by COCO benchmarks) on the
WISDOM-Sim dataset for the PCL baselines SD Mask R-CNN.

135

Appendix C

Mechanical Search: Multi-Step
Retrieval of a Target Object Occluded
by Clutter

This appendix contains extended results and implementation details for Chapter 7.

C.1 Extended Results

Tables C.1, C.2, C.3, and C.4 give a detailed breakdown of each policies selected actions
and success rate over the 1000 simulated trials and 50 trials on the physical robot for each
policy on 15 object heaps. In simulation, pushing actions result in higher success rates. On
the physical system, the human policy selects pushing actions much more frequently to clear
multiple occluding objects from the target object. We will explore this discrepancy further
in future work.

Simulation Policy Success Rate Mean Actions

Random 88.8% 11.26± 0.15
Preempted Random 89.7% 8.55± 0.16
Preempted Random + Pushing 94.3% 8.87± 0.15
Largest-First 90.3% 6.35± 0.14
Largest-First + Pushing 93.3% 6.51± 0.14

Table C.1: Success rate and mean number of actions (with standard error of the mean) for
extraction for 1000 trials of each policy tested in simulation. The largest-first policies extract
the target most efficiently, and pushing shows ability to increase overall success rate.

APPENDIX C. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 136

Simulation Policy Suction Parallel-Jaw Push

Random 7015 4467 0
Preempted Random 6168 2870 0
Preempted Random + Pushing 6180 2825 274
Largest-First 5266 1718 0
Largest-First + Pushing 5116 1706 259

Table C.2: Breakdown of action selection for each policy in simulation over 1000 trials.
Policies typically attempt many more suction grasps due to better accessibility in clutter,
and only attempt pushes a small fraction of the time.

Physical Policy Success Rate Mean Actions

Random 92% 10.87± 0.66
Preempted Random 90% 6.71± 0.61
Preempted Random + Pushing 98% 6.31± 0.63
Largest-First 94% 4.85± 0.51
Largest-First + Pushing 96% 6.00± 0.63
Human 98% 3.06± 0.32

Table C.3: Success rate and mean number of actions (with standard error of the mean) for
extraction for 50 trials of each policy tested on the physical system. All policies achieve
success rates of over 90% due to effective low-level grasping policies, but the human outper-
forms the best policy by 37% in terms of mean number of actions, suggesting that there is
considerable room for action selection policy improvement.

C.2 Siamese Network Implementation Details

The Siamese network architecture involves first passing each input 512 × 512 RGB image
through a ResNet-50 architecture pretrained on ImageNet. During training of the Siamese
network, these weights remained fixed. The featurizations of the input images are then
concatenated and passed through two dense, fully connected layers: the first with 1024
neurons and ReLU activations, and the second with a single output neuron and sigmoid
activation, whose output represents the probability that the two input images are of the
same object. The motivation for this architecture is to allow the Siamese network to learn
a distance metric over the ResNet-50 featurizations. The training dataset for the Siamese
network consists of 5 views of each of the objects used in physical experiments. For each view,
we generated a total of 10 additional images: 5 randomly rotated versions of the original
image as well as 5 rotated versions that are partially occluded. To simulate occlusions, we

APPENDIX C. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 137

Physical Policy Suction Parallel-Jaw Push

Random 275 300 0
Preempted Random 282 76 0
Preempted Random + Pushing 250 58 19
Largest-First 222 47 0
Largest-First + Pushing 244 59 18
Human 99 27 44

Table C.4: Breakdown of action selection for each policy in 50 physical trials. The human
pushes much more frequently than the other policies, especially to clear multiple occluding
objects at the beginning of the trial.

took randomly rotated and scaled binary masks of a dataset of synthetic objects, and overlay
the masks on the original object. We only used occlusions that covered at least 20% and at
most 80% of the original pixels of the object. For training, we sampled 10,000 positive and
10,000 negative image pairs, where a positive image pair consists of an original image of an
object and one of the 10 augmented images and a negative image pair consists of an original
image of an object and one of the 10 augmented images of an entirely different object. The
network is then trained with a contrastive loss function for 10 epochs using a batch size
of 64 and the Adam optimizer with a learning rate of 0.0001. For physical experiments, a
recognition confidence threshold tr = 0.9 was used.

C.3 Simulated Heap Generation

Simulated heaps are generated by sampling: 1) N objects from a dataset of over 1600 3D
models, 2) a heap center around the center of the bin, and 3) planar pose offsets for each
object around the heap center. Then, using the Bullet Physics Engine, sampled objects are
dropped one by one into the bin from a fixed height at their pose offset from the heap center,
and all objects are allowed to come to rest (i.e. all velocities of all objects go to zero). Once
all objects have been added to the heap, the modal and amodal segmentation masks for each
object are rendered from the camera’s perspective. The modal segmentation mask of an
object is a segmentation mask of the portion of the object visible from the perspective of the
camera (accounting for occlusions), while the amodal segmentation mask of an object is a
segmentation mask of the object’s exact position in the scene given ground truth information
from the simulation environment. Using these masks, the target object is chosen to be the
object with the smallest ratio between modal and amodal segmentation mask area (i.e., the
least visible object in the bin). This metric is used as a proxy for finding the most occluded
object.

APPENDIX C. MECHANICAL SEARCH: MULTI-STEP RETRIEVAL OF A TARGET
OBJECT OCCLUDED BY CLUTTER 138

C.4 Simulation Policy Parameters

Grasp confidence thresholds of tthresh = 0.15 and thigh = 0.3 are used in simulation for the
high-level action selector to determine whether to execute grasp actions from the low level
grasp policies. In experimental trials, these values were found to provide a balance between
avoiding grasp failures and quickly clearing objects from the bin as soon as sufficiently good
grasps become available.

C.5 Physical Policy Parameters

In physical experiments, grasp confidence thresholds of tthresh = 0.1 and thigh = 0.3 were used
for action selection to determine whether to execute grasp action plans from the low-level
grasp action policies. These values are similar to those used in simulation, but tthresh is
made slightly lower for physical experiments since it we observed that low confidence grasps
succeeded more often in physical experiments than in simulation, which was designed to be
conservative to encourage good transfer to reality. Additionally, thigh = 0.5 was used for
policies that included low-level pushing action policies, so that pushing would be further
encouraged over low-quality grasp actions.

139

Bibliography

[1] Waleed Abdulla. Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow. https://github.com/matterport/Mask_RCNN/. 2017.

[2] Wisdom C Agboh and Mehmet R Dogar. “Pushing Fast and Slow: Task-Adaptive
MPC for Pushing Manipulation Under Uncertainty”. In: Workshop on the Algorithmic
Foundation of Robotics (WAFR). 2018.

[3] Pulkit Agrawal et al. “Learning to poke by poking: Experiential learning of intuitive
physics”. In: Proc. Conf. on Neural Information Processing Systems (NeurIPS). 2016,
pp. 5074–5082.

[4] Srinivas Akella and Matthew T Mason. “Posing polygonal objects in the plane by
pushing”. In: Int. Journal of Robotics Research (IJRR) 17.1 (1998), pp. 70–88.

[5] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. “Measuring the objectness of
image windows”. In: IEEE Trans. Pattern Analysis and Machine Intelligence 34.11
(2012), pp. 2189–2202.

[6] Pablo Arbeláez et al. “Multiscale combinatorial grouping”. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2014, pp. 328–335.

[7] Alper Aydemir et al. “Search in the real world: Active visual object search based on
spatial relations”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2011,
pp. 2818–2824.

[8] Behnam Bahr, Yingjie Li, and Mahmoud Najafi. “Design and suction cup analysis of
a wall climbing robot”. In: Computers & electrical engineering 22.3 (1996), pp. 193–
209.

[9] Chandrajit L Bajaj, Fausto Bernardini, and Guoliang Xu. “Automatic reconstruction
of surfaces and scalar fields from 3D scans”. In: Proc. Conf. on Computer graphics
and interactive techniques. 1995, pp. 109–118.

[10] Ruzena Bajcsy. “Active perception”. In: Proceedings of the IEEE 76.8 (1988), pp. 966–
1005.

[11] Devin J Balkcom and Jeffrey C Trinkle. “Computing wrench cones for planar rigid
body contact tasks”. In: Int. Journal of Robotics Research (IJRR) 21.12 (2002),
pp. 1053–1066.

https://github.com/matterport/Mask_RCNN/

BIBLIOGRAPHY 140

[12] Federico Barbagli et al. “Simulating human fingers: a soft finger proxy model and
algorithm”. In: Proc. IEEE Int. S. on Haptic Interfaces for Virtual Environment and
Teleoperator Systems. 2004.

[13] Dhruv Batra et al. “Rearrangement: A challenge for embodied ai”. In: arXiv preprint
arXiv:2011.01975 (2020).

[14] Patrick Beeson and Barrett Ames. “TRAC-IK: An open-source library for improved
solving of generic inverse kinematics”. In: Proc. IEEE-RAS Int. Conf. on Humanoid
Robots. 2015, pp. 928–935.

[15] Wissam Bejjani et al. “Occlusion-Aware Search for Object Retrieval in Clutter”. In:
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2021.

[16] Wissam Bejjani et al. “Planning with a receding horizon for manipulation in clutter
using a learned value function”. In: Proc. IEEE-RAS Int. Conf. on Humanoid Robots.
2018, pp. 1–9.

[17] Dmitry Berenson and Siddhartha S Srinivasa. “Grasp synthesis in cluttered environ-
ments for dexterous hands”. In: Proc. IEEE-RAS Int. Conf. on Humanoid Robots.
2008, pp. 189–196.

[18] Matthew Berger et al. “A survey of surface reconstruction from point clouds”. In:
Computer Graphics Forum. Vol. 36. 1. 2017, pp. 301–329.

[19] Antonio Bicchi. “On the closure properties of robotic grasping”. In: Int. Journal of
Robotics Research (IJRR) 14.4 (1995), pp. 319–334.

[20] Antonio Bicchi and Vijay Kumar. “Robotic grasping and contact: A review”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). 2000.

[21] Jeannette Bohg et al. “Data-driven grasp synthesis – a survey”. In: IEEE Trans.
Robotics 30.2 (2014).

[22] Jeannette Bohg et al. “Interactive perception: Leveraging action in perception and
perception in action”. In: IEEE Trans. Robotics 33.6 (2017), pp. 1273–1291.

[23] Ch Borst, Max Fischer, and Gerd Hirzinger. “Grasp planning: How to choose a suit-
able task wrench space”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
Vol. 1. 2004, pp. 319–325.

[24] Abdeslam Boularias, James Andrew Bagnell, and Anthony Stentz. “Learning to Ma-
nipulate Unknown Objects in Clutter by Reinforcement.” In: Proc. AAAI Conf. on
Artificial Intelligence. 2015, pp. 1336–1342.

[25] Konstantinos Bousmalis et al. “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping”. In: Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA). 2018, pp. 4243–4250.

[26] Randy C Brost. “Automatic grasp planning in the presence of uncertainty”. In: Int.
Journal of Robotics Research (IJRR) 7.1 (1988), pp. 3–17.

BIBLIOGRAPHY 141

[27] Francisc Bungiu et al. “Efficient computation of visibility polygons”. In: arXiv preprint
arXiv:1403.3905 (2014).

[28] Berk Calli et al. “The ycb object and model set: Towards common benchmarks for
manipulation research”. In: Proc. IEEE Int. Conf. Advanced Robotics (ICAR). 2015,
pp. 510–517.

[29] Hanwen Cao et al. “Suctionnet-1billion: A large-scale benchmark for suction grasp-
ing”. In: IEEE Robotics & Automation Letters 6.4 (2021), pp. 8718–8725.

[30] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. “Leveraging Cone
Double Description for Multi-contact Stability of Humanoids with Applications to
Statics and Dynamics”. In: Proc. Robotics: Science and Systems (RSS). 2015.

[31] Justin Carpentier and Nicolas Mansard. “Multicontact locomotion of legged robots”.
In: IEEE Trans. Robotics 34.6 (2018), pp. 1441–1460.

[32] Joao Carreira et al. “Semantic segmentation with second-order pooling”. In: Proc.
European Conf. on Computer Vision (ICCV). 2012, pp. 430–443.

[33] Rohan Chabra et al. “Deep Local Shapes: Learning Local SDF Priors for Detailed
3D Reconstruction”. In: Proc. European Conf. on Computer Vision (ICCV). 2020.

[34] Lillian Chang, Joshua R Smith, and Dieter Fox. “Interactive singulation of objects
from a pile”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2012,
pp. 3875–3882.

[35] Krzysztof Charusta et al. “Independent contact regions based on a patch contact
model”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2012.

[36] Yi-Ting Chen, Xiaokai Liu, and Ming-Hsuan Yang. “Multi-instance object segmenta-
tion with occlusion handling”. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 3470–3478.

[37] Xiaozhi Chen et al. “3d object proposals using stereo imagery for accurate object class
detection”. In: IEEE Trans. Pattern Analysis and Machine Intelligence 40.5 (2018),
pp. 1259–1272.

[38] Zhiqin Chen and Hao Zhang. “Learning implicit fields for generative shape modeling”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 5939–5948.

[39] Özgün Çiçek et al. “3D U-Net: learning dense volumetric segmentation from sparse
annotation”. In: Int. Conf. Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI). 2016, pp. 424–432.

[40] Matei Ciocarlie, Claire Lackner, and Peter Allen. “Soft finger model with adaptive
contact geometry for grasping and manipulation tasks”. In: Proc. IEEE Eurohaptics
Conf. and S. on Haptic Interfaces for Virtual Environment and Teleoperator Systems.
2007.

BIBLIOGRAPHY 142

[41] Matei Ciocarlie, Andrew Miller, and Peter Allen. “Grasp analysis using deformable
fingers”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
2005.

[42] Matei Ciocarlie et al. “Functional analysis of finger contact locations during grasping”.
In: Proc. IEEE Eurohaptics Conf. and S. on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems. 2009.

[43] Matei Ciocarlie et al. “Towards reliable grasping and manipulation in household en-
vironments”. In: Int. S. Experimental Robotics (ISER). 2014, pp. 241–252.

[44] Enric Corona, Kaustav Kundu, and Sanja Fidler. “Pose estimation for objects with
rotational symmetry”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS). 2018, pp. 7215–7222.

[45] Akansel Cosgun et al. “Push planning for object placement on cluttered table sur-
faces”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
2011, pp. 4627–4632.

[46] Erwin Coumans and Yunfei Bai. pybullet, a Python module for physics simulation,
games, robotics and machine learning. http://pybullet.org/. 2017.

[47] Angela Dai and Matthias Nießner. “Scan2mesh: From unstructured range scans to 3d
meshes”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 5574–5583.

[48] Michael Danielczuk et al. “Linear Push Policies to Increase Grasp Access for Robot
Bin Picking”. In: Proc. IEEE Conf. on Automation Science and Engineering (CASE).
2018.

[49] Michael Danielczuk et al. “Mechanical Search: Multi-Step Retrieval of a Target Object
Occluded by Clutter”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2019, pp. 1614–1621.

[50] Michael Danielczuk et al. “REACH: Reducing False Negatives in Robot Grasp Plan-
ning with a Robust Efficient Area Contact Hypothesis Model”. In: Int. S. Robotics
Research (ISRR). 2019.

[51] Michael Danielczuk et al. “Segmenting unknown 3d objects from real depth images
using mask r-cnn trained on synthetic data”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2019, pp. 7283–7290.

[52] Michael Danielczuk et al. “X-Ray: Mechanical Search for an Occluded Object by
Minimizing Support of Learned Occupancy Distributions”. In: Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS). 2020.

[53] Nikhil Das and Michael Yip. “Learning-based proxy collision detection for robot mo-
tion planning applications”. In: IEEE Trans. Robotics (2020).

[54] M Dogar et al. “Physics-based grasp planning through clutter”. In: Proc. Robotics:
Science and Systems (RSS). 2012.

http://pybullet.org/

BIBLIOGRAPHY 143

[55] Mehmet R Dogar and Siddhartha S Srinivasa. “Push-grasping with dexterous hands:
Mechanics and a method”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). 2010, pp. 2123–2130.

[56] Aaron M Dollar and Robert D Howe. “The highly adaptive SDM hand: Design and
performance evaluation”. In: Int. Journal of Robotics Research (IJRR) 29.5 (2010).

[57] Yukiyasu Domae et al. “Fast graspability evaluation on single depth maps for bin
picking with general grippers”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2014, pp. 1997–2004.

[58] Yan Duan et al. “One-shot imitation learning”. In: Proc. Conf. on Neural Information
Processing Systems (NeurIPS) 30 (2017).

[59] Herbert Edelsbrunner and Ernst P Mücke. “Three-dimensional alpha shapes”. In:
ACM Trans. Graphics (TOG) 13.1 (1994), pp. 43–72.

[60] Andreas Eitel, Nico Hauff, and Wolfram Burgard. “Learning to Singulate Objects
using a Push Proposal Network”. In: Int. S. Robotics Research (ISRR). 2017.

[61] Ian Endres and Derek Hoiem. “Category independent object proposals”. In: Proc.
European Conf. on Computer Vision (ICCV). 2010, pp. 575–588.

[62] Clemens Eppner, Arsalan Mousavian, and Fox Dieter. “ACRONYM: A Large-Scale
Grasp Dataset Based on Simulation”. In: Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA) (2021).

[63] Clemens Eppner et al. “Lessons from the Amazon Picking Challenge: Four Aspects
of Building Robotic Systems.” In: Proc. Robotics: Science and Systems (RSS). 2016.

[64] Mark Everingham et al. “The pascal visual object classes (voc) challenge”. In: Int.
journal of computer vision 88.2 (2010), pp. 303–338.

[65] Kuan Fang et al. “Learning Task-Oriented Grasping for Tool Manipulation from
Simulated Self-Supervision”. In: Proc. Robotics: Science and Systems (RSS). 2018.

[66] Carlo Ferrari and John Canny. “Planning optimal grasps”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 1992.

[67] Mauro Figueiredo et al. “Collision Detection for Point Cloud Models With Bounding
Spheres Hierarchies”. In: Int. Journal of Virtual Reality 11.2 (2012), pp. 37–43.

[68] Richard E Fikes and Nils J Nilsson. “STRIPS: A new approach to the application of
theorem proving to problem solving”. In: Artificial intelligence 2.3-4 (1971), pp. 189–
208.

[69] Clement Fuji Tsang et al. Kaolin: A Pytorch Library for Accelerating 3D Deep Learn-
ing Research. https://github.com/NVIDIAGameWorks/kaolin. 2022.

[70] Alberto Garcia-Garcia et al. “A review on deep learning techniques applied to seman-
tic segmentation”. In: arXiv preprint arXiv:1704.06857 (2017).

https://github.com/NVIDIAGameWorks/kaolin

BIBLIOGRAPHY 144

[71] Abdul Ghafoor, Jian S Dai, and Joseph Duffy. “Stiffness modeling of the soft-finger
contact in robotic grasping”. In: Journal of mechanical design 126.4 (2004).

[72] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional space”. In:
IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–203.

[73] Ken Goldberg et al. “Part pose statistics: Estimators and experiments”. In: IEEE
Trans. Robotics and Automation 15.5 (1999).

[74] Kenneth Y Goldberg. “Orienting polygonal parts without sensors”. In: Algorithmica
10.2-4 (1993), pp. 201–225.

[75] Kenneth Yigael Goldberg. “Stochastic plans for robotic manipulation”. PhD thesis.
Carnegie Mellon University, 1991.

[76] Suresh Goyal, Andy Ruina, and Jim Papadopoulos. “Planar sliding with dry friction
part 1. limit surface and moment function”. In: Wear 143.2 (1991).

[77] Thibault Groueix et al. “A papier-mâché approach to learning 3d surface generation”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 216–224.

[78] Marcus Gualtieri and Robert Platt. “Learning 6-dof grasping and pick-place using
attention focus”. In: Conf. on Robot Learning (CoRL). 2018, pp. 477–486.

[79] Marcus Gualtieri et al. “High precision grasp pose detection in dense clutter”. In: Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2016, pp. 598–605.

[80] Menglong Guo et al. “Design of parallel-jaw gripper tip surfaces for robust grasping”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2017.

[81] Megha Gupta et al. “Interactive environment exploration in clutter”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS). 2013, pp. 5265–5272.

[82] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. “Perceptual organization and
recognition of indoor scenes from RGB-D images”. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 2013, pp. 564–571.

[83] Saurabh Gupta et al. “Cognitive mapping and planning for visual navigation”. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2616–
2625.

[84] Saurabh Gupta et al. “Learning rich features from RGB-D images for object detection
and segmentation”. In: Proc. European Conf. on Computer Vision (ICCV). 2014,
pp. 345–360.

[85] Kensuke Harada et al. “Stability of soft-finger grasp under gravity”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). 2014, pp. 883–888.

[86] Bharath Hariharan et al. “Hypercolumns for object segmentation and fine-grained
localization”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 447–456.

BIBLIOGRAPHY 145

[87] Bharath Hariharan et al. “Simultaneous detection and segmentation”. In: Proc. Eu-
ropean Conf. on Computer Vision (ICCV). 2014, pp. 297–312.

[88] Robert Haschke et al. “Task-oriented quality measures for dextrous grasping.” In:
Cira. 2005, pp. 689–694.

[89] Joshua A Haustein et al. “Learning Manipulation States and Actions for Efficient Non-
prehensile Rearrangement Planning”. In: arXiv preprint arXiv:1901.03557 (2019).

[90] Kaiming He et al. “Deep residual learning for image recognition”. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[91] Kaiming He et al. “Mask r-cnn”. In: Proc. IEEE Int. Conf. on Computer Vision
(ICCV). 2017, pp. 2961–2969.

[92] Tucker Hermans, James M Rehg, and Aaron Bobick. “Guided pushing for object sin-
gulation”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
2012, pp. 4783–4790.

[93] Carlos Hernandez et al. “Team delft’s robot winner of the amazon picking challenge
2016”. In: Robot World Cup. 2016, pp. 613–624.

[94] Heinrich Rudolf Hertz. “Uber die Beruhrung fester elastischer Korper und Uber die
Harte”. In: Verhandlung des Vereins zur Beforderung des GewerbefleiBes, Berlin
(1882).

[95] Stefan Hinterstoisser et al. “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes”. In: Proc. Asian Conf. on Com-
puter Vision (ACCV). 2012, pp. 548–562.

[96] Robert D Howe and Mark R Cutkosky. “Practical force-motion models for sliding
manipulation”. In: Int. Journal of Robotics Research (IJRR) 15.6 (1996), pp. 557–
572.

[97] Robert D Howe, Imin Kao, and Mark R Cutkosky. “The sliding of robot fingers
under combined torsion and shear loading”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 1988, pp. 103–105.

[98] Eric Huang, Zhenzhong Jia, and Matthew T Mason. “Large-scale multi-object re-
arrangement”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019,
pp. 211–218.

[99] Huang Huang et al. “Mechanical Search on Shelves using Lateral Access X-RAY”.
In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). 2021.

[100] Isabella Huang et al. “DefGraspSim: Physics-based simulation of grasp outcomes for
3D deformable objects”. In: IEEE Robotics & Automation Letters (2022).

[101] Philip M Hubbard. “Approximating polyhedra with spheres for time-critical collision
detection”. In: ACM Trans. Graphics (TOG) 15.3 (1996), pp. 179–210.

BIBLIOGRAPHY 146

[102] Kao-Shing Hwang, JL Ling, and Wei-Han Wang. “Adaptive reinforcement learning in
box-pushing robots”. In: Proc. IEEE Conf. on Automation Science and Engineering
(CASE). 2014, pp. 1182–1187.

[103] Takahiro Inoue and Shinichi Hirai. “Elastic model of deformable fingertip for soft-
fingered manipulation”. In: IEEE Trans. Robotics 22.6 (2006).

[104] Eric Jang et al. “End-to-End Learning of Semantic Grasping”. In: Conf. on Robot
Learning (CoRL) (2017).

[105] Chiyu Jiang et al. “Local implicit grid representations for 3d scenes”. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 6001–6010.

[106] Edward Johns, Stefan Leutenegger, and Andrew J Davison. “Deep learning a grasp
function for grasping under gripper pose uncertainty”. In: Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS). 2016, pp. 4461–4468.

[107] Matthew Johnson-Roberson et al. “Driving in the matrix: Can virtual worlds re-
place human-generated annotations for real world tasks?” In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2017, pp. 746–753.

[108] Rico Jonschkowski et al. “Probabilistic multi-class segmentation for the amazon pick-
ing challenge”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 2016, pp. 1–7.

[109] Krishnanand N Kaipa et al. “Enhancing robotic unstructured bin-picking performance
by enabling remote human interventions in challenging perception scenarios”. In:
Proc. IEEE Conf. on Automation Science and Engineering (CASE). 2016, pp. 639–
645.

[110] Dmitry Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for Vision-
Based Robotic Manipulation”. In: Conf. on Robot Learning (CoRL). 2018.

[111] Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: Conf. on Robot Learning (CoRL). 2018, pp. 651–673.

[112] Gaetano Kanizsa. Organization in vision: Essays on Gestalt perception. 1979.

[113] Imin Kao and Mark R Cutkosky. “Quasistatic manipulation with compliance and
sliding”. In: Int. Journal of Robotics Research (IJRR) 11.1 (1992), pp. 20–40.

[114] Imin Kao, Kevin Lynch, and Joel W Burdick. “Contact modeling and manipulation”.
In: Springer Handbook of Robotics. 2008.

[115] Imin Kao and Fuqian Yang. “Stiffness and contact mechanics for soft fingers in
grasping and manipulation”. In: IEEE Trans. Robotics and Automation 20.1 (2004),
pp. 132–135.

[116] Dov Katz et al. “Clearing a pile of unknown objects using interactive perception”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2013, pp. 154–161.

BIBLIOGRAPHY 147

[117] Dov Katz et al. “Perceiving, learning, and exploiting object affordances for autonomous
pile manipulation”. In: Autonomous Robots 37.4 (2014), pp. 369–382.

[118] Wadim Kehl et al. “SSD-6D: Making RGB-based 3D detection and 6D pose estimation
great again”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). 2017, pp. 1521–
1529.

[119] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2012,
pp. 576–583.

[120] Ben Kehoe et al. “A survey of research on cloud robotics and automation”. In: IEEE
Trans. Automation Science and Engineering 12.2 (2015), pp. 398–409.

[121] Jacqueline Kenney, Thomas Buckley, and Oliver Brock. “Interactive segmentation
for manipulation in unstructured environments”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2009, pp. 1377–1382.

[122] J. Chase Kew et al. “Neural Collision Clearance Estimator for Fast Robot Motion
Planning”. In: arXiv preprint arXiv:1910.05917 (2019).

[123] Chung Min Kim et al. “Simulation of Parallel-Jaw Grasping using Incremental Poten-
tial Contact Models”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2022.

[124] Jennifer E King, Marco Cognetti, and Siddhartha S Srinivasa. “Rearrangement plan-
ning using object-centric and robot-centric action spaces”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2016, pp. 3940–3947.

[125] Jan Klein and Gabriel Zachmann. “Point cloud collision detection”. In: Computer
Graphics Forum. Vol. 23. 3. 2004, pp. 567–576.

[126] Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics:
A survey”. In: Int. Journal of Robotics Research (IJRR) 32.11 (2013), pp. 1238–1274.

[127] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese neural networks
for one-shot image recognition”. In: ICML Deep Learning Workshop. Vol. 2. 2015.

[128] Simon Kohl et al. “A probabilistic u-net for segmentation of ambiguous images”. In:
Proc. Conf. on Neural Information Processing Systems (NeurIPS). 2018, pp. 6965–
6975.

[129] Ilya Kostrikov, Dumitru Erhan, and Sergey Levine. “End to end active perception”.
In: (2016).

[130] Philipp Krähenbühl and Vladlen Koltun. “Geodesic object proposals”. In: Proc. Eu-
ropean Conf. on Computer Vision (ICCV). 2014, pp. 725–739.

[131] Senka Krivic, Emre Ugur, and Justus Piater. “A robust pushing skill for object deliv-
ery between obstacles”. In: Proc. IEEE Conf. on Automation Science and Engineering
(CASE). 2016, pp. 1184–1189.

BIBLIOGRAPHY 148

[132] Robert Krug, Yasemin Bekiroglu, and Máximo A Roa. “Grasp quality evaluation
done right: How assumed contact force bounds affect wrench-based quality metrics”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2017.

[133] Sumit Kumar, Shushman Choudhary, and Siddhartha Srinivasa. “Learning Config-
uration Space Belief Model from Collision Checks for Motion Planning”. In: arXiv
preprint arXiv:1901.07646 (2019).

[134] Weicheng Kuo, Bharath Hariharan, and Jitendra Malik. “Deepbox: Learning object-
ness with convolutional networks”. In: Proc. IEEE Int. Conf. on Computer Vision
(ICCV). 2015, pp. 2479–2487.

[135] Weicheng Kuo et al. “Shapemask: Learning to segment novel objects by refining shape
priors”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). 2019, pp. 9207–9216.

[136] Andrey Kurenkov et al. “Semantic and geometric modeling with neural message pass-
ing in 3d scene graphs for hierarchical mechanical search”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2021, pp. 11227–11233.

[137] Andrey Kurenkov et al. “Visuomotor mechanical search: Learning to retrieve target
objects in clutter”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 2020, pp. 8408–8414.

[138] Michael Laskey et al. “Comparing human-centric and robot-centric sampling for robot
deep learning from demonstrations”. In: Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA). 2017, pp. 358–365.

[139] Michael Laskey et al. “Robot grasping in clutter: Using a hierarchy of supervisors
for learning from demonstrations”. In: Proc. IEEE Conf. on Automation Science and
Engineering (CASE). 2016, pp. 827–834.

[140] Jinhwi Lee et al. “Efficient obstacle rearrangement for object manipulation tasks in
cluttered environments”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2019, pp. 183–189.

[141] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: Int. Journal of Robotics Research (IJRR) 34.4-5 (2015), pp. 705–724.

[142] Mark Levi. The mathematical mechanic: using physical reasoning to solve problems.
2009.

[143] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: Int. Journal of Robotics Research (IJRR)
37.4-5 (2018), pp. 421–436.

[144] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with large-
scale data collection”. In: Int. S. Experimental Robotics (ISER). 2016, pp. 173–184.

[145] Jue Kun Li, David Hsu, and Wee Sun Lee. “Act to see and see to act: POMDP
planning for objects search in clutter”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 2016, pp. 5701–5707.

BIBLIOGRAPHY 149

[146] Wai Ho Li and Lindsay Kleeman. “Autonomous segmentation of near-symmetric ob-
jects through vision and robotic nudging”. In: Proc. IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS). 2008, pp. 3604–3609.

[147] Yanmei Li and Imin Kao. “A review of modeling of soft-contact fingers and stiffness
control for dextrous manipulation in robotics”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). Vol. 3. 2001, pp. 3055–3060.

[148] Yi Li et al. “Deepim: Deep iterative matching for 6d pose estimation”. In: Proc.
European Conf. on Computer Vision (ICCV). 2018, pp. 683–698.

[149] Zexiang Li and S Shankar Sastry. “Task-oriented optimal grasping by multifingered
robot hands”. In: IEEE Journal on Robotics and Automation 4.1 (1988), pp. 32–44.

[150] Jacky Liang et al. “GPU-accelerated robotic simulation for distributed reinforcement
learning”. In: Conf. on Robot Learning (CoRL). 2018.

[151] Guosheng Lin et al. “Refinenet: Multi-path refinement networks for high-resolution se-
mantic segmentation”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). 2017.

[152] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Proc. European
Conf. on Computer Vision (ICCV). 2014, pp. 740–755.

[153] Yun Lin and Yu Sun. “Grasp planning to maximize task coverage”. In: Int. Journal
of Robotics Research (IJRR) 34.9 (2015), pp. 1195–1210.

[154] Zhijian Liu et al. “Point-Voxel CNN for efficient 3D deep learning”. In: Proc. Conf.
on Neural Information Processing Systems (NeurIPS). 2019, pp. 965–975.

[155] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 3431–3440.

[156] William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D sur-
face construction algorithm”. In: ACM SIGGRAPH Computer Graphics 21.4 (1987),
pp. 163–169.

[157] Xibai Lou, Yang Yang, and Changhyun Choi. “Collision-Aware Target-Driven Object
Grasping in Constrained Environments”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2021.

[158] Kevin M Lynch. “The mechanics of fine manipulation by pushing”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). 1992, pp. 2269–2276.

[159] Kevin M Lynch and Matthew T Mason. “Controllability of pushing”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). Vol. 1. 1995, pp. 112–119.

[160] Kevin M Lynch and Matthew T Mason. “Stable pushing: Mechanics, controllability,
and planning”. In: Int. Journal of Robotics Research (IJRR) 15.6 (1996), pp. 533–556.

BIBLIOGRAPHY 150

[161] Miles Macklin et al. “Non-Smooth Newton Methods for Deformable Multi-Body Dy-
namics”. In: ACM Trans. Graphics (TOG) 38.5 (2019).

[162] Jeffrey Mahler and Ken Goldberg. “Learning deep policies for robot bin picking by
simulating robust grasping sequences”. In: Conf. on Robot Learning (CoRL). 2017,
pp. 515–524.

[163] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). 2016, pp. 1957–1964.

[164] Jeffrey Mahler et al. “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Syn-
thetic Point Clouds and Analytic Grasp Metrics”. In: Proc. Robotics: Science and
Systems (RSS). 2017.

[165] Jeffrey Mahler et al. “Dex-net 3.0: Computing robust vacuum suction grasp targets
in point clouds using a new analytic model and deep learning”. In: Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). 2018, pp. 5620–5627.

[166] Jeffrey Mahler et al. “Learning ambidextrous robot grasping policies”. In: Science
Robotics 4.26 (2019), eaau4984.

[167] Fabian Manhardt et al. “Explaining the Ambiguity of Object Detection and 6D Pose
from Visual Data”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). 2019.

[168] Duane W Marhefka and David E Orin. “A compliant contact model with nonlinear
damping for simulation of robotic systems”. In: IEEE Trans. on Systems, Man, and
Cybernetics-Part A: Systems and Humans 29.6 (1999).

[169] Pat Marion et al. “LabelFusion: A pipeline for generating ground truth labels for real
rgbd data of cluttered scenes”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2018.

[170] Jeremy A Marvel et al. “Technology readiness levels for randomized bin picking”. In:
Proc. Workshop on Performance Metrics for Intelligent Systems. 2012, pp. 109–113.

[171] Matthew T Mason. Mechanics of robotic manipulation. 2001.

[172] Matthew T Mason and J Kenneth Salisbury Jr. Robot hands and the mechanics of
manipulation. 1985.

[173] Nicolas Mellado, Dror Aiger, and Niloy J Mitra. “Super 4pcs fast global pointcloud
registration via smart indexing”. In: Computer Graphics Forum. Vol. 33. 5. 2014.

[174] Lars Mescheder et al. “Occupancy networks: Learning 3d reconstruction in function
space”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 4460–4470.

[175] Claudio Michaelis, Matthias Bethge, and Alexander Ecker. “One-shot segmentation
in clutter”. In: Proc. Int. Conf. on Machine Learning (ICML). 2018, pp. 3549–3558.

BIBLIOGRAPHY 151

[176] Anton Milan et al. “Semantic segmentation from limited training data”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). 2018, pp. 1908–1915.

[177] Bhubaneswar Mishra, Jacob T Schwartz, and Micha Sharir. “On the existence and
synthesis of multifinger positive grips”. In: Algorithmica 2.1-4 (1987), pp. 541–558.

[178] Mark Moll, Lydia Kavraki, Jan Rosell, et al. “Randomized physics-based motion
planning for grasping in cluttered and uncertain environments”. In: IEEE Robotics &
Automation Letters 3.2 (2017), pp. 712–719.

[179] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach”. In: Proc. Robotics:
Science and Systems (RSS). 2018.

[180] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Learning robust, real-time, re-
active robotic grasping”. In: Int. Journal of Robotics Research (IJRR) 39.2-3 (2020),
pp. 183–201.

[181] Douglas Morrison et al. “Cartman: The low-cost cartesian manipulator that won
the amazon robotics challenge”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2018, pp. 7757–7764.

[182] Tomohiro Motoda et al. “Bimanual Shelf Picking Planner Based on Collapse Predic-
tion”. In: Proc. IEEE Conf. on Automation Science and Engineering (CASE). 2021,
pp. 510–515.

[183] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-dof graspnet: Variational
grasp generation for object manipulation”. In: Proc. IEEE Int. Conf. on Computer
Vision (ICCV). 2019, pp. 2901–2910.

[184] Arsalan Mousavian et al. “Visual representations for semantic target driven naviga-
tion”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019, pp. 8846–
8852.

[185] Adithyavairavan Murali et al. “6-DOF Grasping for Target-driven Object Manipula-
tion in Clutter”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020,
pp. 6232–6238.

[186] Richard M Murray. A mathematical introduction to robotic manipulation. 2017.

[187] Van-Duc Nguyen. “Constructing force-closure grasps”. In: Int. Journal of Robotics
Research (IJRR) 7.3 (1988), pp. 3–16.

[188] Tonci Novkovic et al. “Object finding in cluttered scenes using interactive perception”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020, pp. 8338–8344.

[189] Manuel M Oliveira et al. “Fast digital image inpainting”. In: Proc. Int. Conf. on
Visualization, Imaging and Image Processing (VIIP). 2001, pp. 106–107.

[190] Damir Omrčen et al. “Autonomous acquisition of pushing actions to support object
grasping with a humanoid robot”. In: Proc. IEEE-RAS Int. Conf. on Humanoid
Robots. 2009, pp. 277–283.

BIBLIOGRAPHY 152

[191] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose library for
collision and proximity queries”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2012, pp. 3859–3866.

[192] Jia Pan, Sachin Chitta, and Dinesh Manocha. “Probabilistic collision detection be-
tween noisy point clouds using robust classification”. In: Int. S. Robotics Research
(ISRR). 2011, pp. 77–94.

[193] Jia Pan and Dinesh Manocha. “Fast probabilistic collision checking for sampling-
based motion planning using locality-sensitive hashing”. In: Int. Journal of Robotics
Research (IJRR) 35.12 (2016), pp. 1477–1496.

[194] Jia Pan and Dinesh Manocha. “GPU-based parallel collision detection for fast motion
planning”. In: Int. Journal of Robotics Research (IJRR) 31.2 (2012), pp. 187–200.

[195] Jeong Joon Park et al. “Deepsdf: Learning continuous signed distance functions for
shape representation”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). 2019, pp. 165–174.

[196] Andreas ten Pas and Robert Platt. “Using geometry to detect grasp poses in 3d point
clouds”. In: Proc. Robotics: Science and Systems (RSS). 2018, pp. 307–324.

[197] Andreas ten Pas et al. “Grasp pose detection in point clouds”. In: Int. Journal of
Robotics Research (IJRR) 36.13-14 (2017), pp. 1455–1473.

[198] Chris Paxton et al. “Do what i want, not what i did: Imitation of skills by plan-
ning sequences of actions”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). 2016.

[199] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollár. “Learning to segment object
candidates”. In: Proc. Conf. on Neural Information Processing Systems (NeurIPS).
2015, pp. 1990–1998.

[200] Pedro O Pinheiro et al. “Learning to refine object segments”. In: Proc. European
Conf. on Computer Vision (ICCV). 2016, pp. 75–91.

[201] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours”. In: Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA). 2016, pp. 3406–3413.

[202] Mamy Pouliquen et al. “Real-time finite element finger pinch grasp simulation”. In:
Proc. IEEE Eurohaptics Conf. and S. on Haptic Interfaces for Virtual Environment
and Teleoperator Systems. 2005.

[203] Domenico Prattichizzo and Jeffrey C Trinkle. “Grasping”. In: Springer handbook of
robotics. 2008, pp. 671–700.

[204] Andrew Price, Linyi Jin, and Dmitry Berenson. “Inferring occluded geometry im-
proves performance when retrieving an object from dense clutter”. In: Int. S. Robotics
Research (ISRR). 2019.

BIBLIOGRAPHY 153

[205] The CGAL Project. CGAL User and Reference Manual. 5.3. 2021. url: https :

//doc.cgal.org/5.3/Manual/packages.html.

[206] Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. “Deep directional statistics:
Pose estimation with uncertainty quantification”. In: Proc. European Conf. on Com-
puter Vision (ICCV). 2018, pp. 534–551.

[207] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). Vol. 1. 2. 2017, pp. 652–660.

[208] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space”. In: Proc. Conf. on Neural Information Processing Sys-
tems (NeurIPS). 2017, pp. 5099–5108.

[209] Zhapeng Qiu et al. “Human motions analysis and simulation based on a general
criterion of stability”. In: International Symposium on Digital Human Modeling. 2011,
pp. 1–8.

[210] Tahir Rabbani, Frank Van Den Heuvel, and George Vosselmann. “Segmentation of
point clouds using smoothness constraint”. In: International archives of photogram-
metry, remote sensing and spatial information sciences 36.5 (2006), pp. 248–253.

[211] Mahdi Rad and Vincent Lepetit. “Bb8: A scalable, accurate, robust to partial occlu-
sion method for predicting the 3d poses of challenging objects without using depth”.
In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). 2017, pp. 3828–3836.

[212] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “RelaxedIK: Real-time Synthesis of
Accurate and Feasible Robot Arm Motion”. In: Proc. Robotics: Science and Systems
(RSS). 2018, pp. 26–30.

[213] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 779–788.

[214] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region pro-
posal networks”. In: Proc. Conf. on Neural Information Processing Systems (NeurIPS).
2015, pp. 91–99.

[215] Elon Rimon and Joel Burdick. The Mechanics of Robot Grasping. 2019.

[216] Máximo A Roa and Raúl Suárez. “Grasp quality measures: review and performance”.
In: Autonomous robots 38.1 (2015), pp. 65–88.

[217] German Ros et al. “The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes”. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2016, pp. 3234–3243.

[218] Christian Rupprecht et al. “Learning in an uncertain world: Representing ambigu-
ity through multiple hypotheses”. In: Proc. IEEE Int. Conf. on Computer Vision
(ICCV). 2017, pp. 3591–3600.

https://doc.cgal.org/5.3/Manual/packages.html
https://doc.cgal.org/5.3/Manual/packages.html

BIBLIOGRAPHY 154

[219] Radu Bogdan Rusu. “Semantic 3D object maps for everyday manipulation in human
living environments”. In: KI-Künstliche Intelligenz 24.4 (2010), pp. 345–348.

[220] Radu Bogdan Rusu and Steve Cousins. “3d is here: Point cloud library (pcl)”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2011, pp. 1–4.

[221] Takaya Saito and Marc Rehmsmeier. “The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets”. In:
PLOS One 10.3 (2015).

[222] J Kenneth Salisbury and B Roth. “Kinematic and force analysis of articulated me-
chanical hands”. In: Journal of Mechanisms, Transmissions, and Automation in De-
sign 105.1 (1983).

[223] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. “On-policy dataset synthesis for
learning robot grasping policies using fully convolutional deep networks”. In: IEEE
Robotics & Automation Letters 4.2 (2019), pp. 1357–1364.

[224] Ashutosh Saxena, Lawson LS Wong, and Andrew Y Ng. “Learning Grasp Strategies
with Partial Shape Information”. In: Proc. AAAI Conf. on Artificial Intelligence.
Vol. 3. 2. 2008, pp. 1491–1494.

[225] Max Schwarz et al. “NimbRo Picking: Versatile part handling for warehouse automa-
tion”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2017, pp. 3032–
3039.

[226] Max Schwarz et al. “RGB-D object detection and semantic segmentation for au-
tonomous manipulation in clutter”. In: Int. Journal of Robotics Research (IJRR)
(2016), p. 0278364917713117.

[227] Amirreza Shaban et al. “One-shot learning for semantic segmentation”. In: British
Machine Vision Conference (BMVC). 2017.

[228] Lin Shao, Ye Tian, and Jeannette Bohg. “ClusterNet: Instance Segmentation in RGB-
D Images”. In: arXiv preprint arXiv:1807.08894 (2018).

[229] Rahul Shome et al. “Fast, high-quality dual-arm rearrangement in synchronous, mono-
tone tabletop setups”. In: Workshop on the Algorithmic Foundation of Robotics (WAFR).
2018, pp. 778–795.

[230] Jamie Shotton et al. “Real-time human pose recognition in parts from single depth
images”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2011, pp. 1297–1304.

[231] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[232] Pramath R Sinha and Jacob M Abel. “A contact stress model for multifingered grasps
of rough objects”. In: IEEE Trans. Robotics and Automation 8.1 (1992).

[233] Shuran Song et al. “Grasping in the Wild: Learning 6DoF Closed-Loop Grasping from
Low-Cost Demonstrations”. In: IEEE Robotics & Automation Letters (2020).

BIBLIOGRAPHY 155

[234] Shuran Song et al. “Semantic scene completion from a single depth image”. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 1746–
1754.

[235] Siddharth Srivastava et al. “Combined task and motion planning through an exten-
sible planner-independent interface layer”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2014, pp. 639–646.

[236] Stefan Stevšić, Sammy Christen, and Otmar Hilliges. “Learning to assemble: Esti-
mating 6D poses for robotic object-object manipulation”. In: IEEE Robotics & Au-
tomation Letters 5.2 (2020), pp. 1159–1166.

[237] Morten Strandberg. “A grasp evaluation procedure based on disturbance forces”. In:
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Vol. 2. 2002,
pp. 1699–1704.

[238] Hannah S Stuart et al. “Suction helps in a pinch: Improving underwater manipulation
with gentle suction flow”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). 2015, pp. 2279–2284.

[239] Hao Su et al. “Render for cnn: Viewpoint estimation in images using cnns trained with
rendered 3d model views”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).
2015, pp. 2686–2694.

[240] Martin Sundermeyer et al. “Contact-GraspNet: Efficient 6-DoF Grasp Generation
in Cluttered Scenes”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA)
(2021).

[241] Jaeyong Sung, Bart Selman, and Ashutosh Saxena. “Learning sequences of controllers
for complex manipulation tasks”. In: Proc. Int. Conf. on Machine Learning (ICML).
2013.

[242] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence 112.1-2 (1999), pp. 181–211.

[243] Zhou Teng and Jing Xiao. “Surface-Based Detection and 6-DoF Pose Estimation of
3-D Objects in Cluttered Scenes”. In: IEEE Trans. Robotics 32.6 (2016), pp. 1347–
1361.

[244] Demetri Terzopoulos and Manuela Vasilescu. “Sampling and reconstruction with
adaptive meshes.” In: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). Vol. 91. 1991, pp. 70–75.

[245] Paolo Tiezzi and Imin Kao. “Modeling of viscoelastic contacts and evolution of limit
surface for robotic contact interface”. In: IEEE Trans. Robotics 23.2 (2007), pp. 206–
217.

BIBLIOGRAPHY 156

[246] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS). 2017, pp. 23–30.

[247] Tuan Tran, Jory Denny, and Chinwe Ekenna. “Predicting Sample Collision with Neu-
ral Networks”. In: arXiv preprint arXiv:2006.16868 (2020).

[248] Tokuo Tsuji et al. “Grasp planning for constricted parts of objects approximated with
quadric surfaces”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 2014.

[249] Angel J Valencia et al. “A 3D vision based approach for optimal grasp of vacuum
grippers”. In: IEEE Int. Workshop of electronics, control, measurement, signals and
their application to mechatronics (ECMSM). 2017, pp. 1–6.

[250] Koen EA Van de Sande et al. “Segmentation as selective search for object recogni-
tion”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV). 2011, pp. 1879–1886.

[251] Mark Van der Merwe et al. “Learning continuous 3d reconstructions for geometrically
aware grasping”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020,
pp. 11516–11522.

[252] Jacob Varley et al. “Shape completion enabled robotic grasping”. In: Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS). 2017, pp. 2442–2447.

[253] Ulrich Viereck et al. “Learning a visuomotor controller for real world robotic grasping
using simulated depth images”. In: Conf. on Robot Learning (CoRL). 2017, pp. 291–
300.

[254] Oriol Vinyals et al. “Matching networks for one shot learning”. In: Proc. Conf. on
Neural Information Processing Systems (NeurIPS). 2016, pp. 3630–3638.

[255] Anh-Vu Vo et al. “Octree-based region growing for point cloud segmentation”. In:
ISPRS Journal of Photogrammetry and Remote Sensing 104 (2015), pp. 88–100.

[256] Rui Wang, Yinglong Miao, and Kostas E Bekris. “Efficient and High-quality Prehen-
sile Rearrangement in Cluttered and Confined Spaces”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2022.

[257] Weiyue Wang et al. “SGPN: Similarity Group Proposal Network for 3D Point Cloud
Instance Segmentation”. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2018.

[258] Weiss robotics tactile sensor. url: https : / / www . weiss - robotics . com / en /

produkte/unkategorisiert/wts-en (visited on 08/26/2019).

[259] Eric W Weisstein. “Barycentric coordinates”. In: MathWorld – A Wolfram Web Re-
source (2003).

[260] Jonathan Weisz and Peter K Allen. “Pose error robust grasping from contact wrench
space metrics”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2012.

https://www.weiss-robotics.com/en/produkte/unkategorisiert/wts-en
https://www.weiss-robotics.com/en/produkte/unkategorisiert/wts-en

BIBLIOGRAPHY 157

[261] Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. “Model predictive
path integral control: From theory to parallel computation”. In: Journal of Guidance,
Control, and Dynamics 40.2 (2017), pp. 344–357.

[262] Jason Wolfe, Bhaskara Marthi, and Stuart J Russell. “Combined Task and Motion
Planning for Mobile Manipulation”. In: Proc. Int. Conf. on Automated Planning and
Scheduling (ICAPS). 2010.

[263] Zhirong Wu et al. “3d shapenets: A deep representation for volumetric shapes”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1912–1920.

[264] Yu Xiang et al. “Learning RGB-D Feature Embeddings for Unseen Object Instance
Segmentation”. In: Conf. on Robot Learning (CoRL). 2020.

[265] Yu Xiang et al. “PoseCNN: A Convolutional Neural Network for 6D Object Pose
Estimation in Cluttered Scenes”. In: Proc. Robotics: Science and Systems (RSS).
2018.

[266] Yuchen Xiao et al. “Online Planning for Target Object Search in Clutter under Partial
Observability”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019,
pp. 8241–8247.

[267] Chris Xie et al. “Rice: Refining instance masks in cluttered environments with graph
neural networks”. In: Conf. on Robot Learning (CoRL). 2022, pp. 1655–1665.

[268] Christopher Xie et al. “Unseen object instance segmentation for robotic environ-
ments”. In: IEEE Trans. Robotics 37.5 (2021), pp. 1343–1359.

[269] Danfei Xu et al. “Neural task programming: Learning to generalize across hierarchical
tasks”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2018.

[270] Jingyi Xu et al. “6DLS: Modeling Nonplanar Frictional Surface Contacts for Grasping
Using 6-D Limit Surfaces”. In: IEEE Trans. Robotics 37.6 (2021), pp. 2099–2116.

[271] Jingyi Xu et al. “Grasping posture estimation for a two-finger parallel gripper with
soft material jaws using a curved contact area friction model.” In: Proc. IEEE Int.
Conf. Robotics and Automation (ICRA). 2017, pp. 2253–2260.

[272] Jingyi Xu et al. “Minimal work: A grasp quality metric for deformable hollow objects”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020, pp. 1546–1552.

[273] Nicholas Xydas, Milind Bhagavat, and Imin Kao. “Study of soft-finger contact me-
chanics using finite elements analysis and experiments”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2000.

[274] Nicholas Xydas and Imin Kao. “Modeling of contact mechanics and friction limit
surfaces for soft fingers in robotics, with experimental results”. In: Int. Journal of
Robotics Research (IJRR) 18.9 (1999).

BIBLIOGRAPHY 158

[275] Gengshan Yang, Peiyun Hu, and Deva Ramanan. “Inferring Distributions Over Depth
from a Single Image”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS). 2019.

[276] Yang Yang, Hengyue Liang, and Changhyun Choi. “A deep learning approach to
grasping the invisible”. In: IEEE Robotics & Automation Letters 5.2 (2020), pp. 2232–
2239.

[277] Linwei Ye, Zhi Liu, and Yang Wang. “Depth-aware object instance segmentation”.
In: IEEE Int. Conf. on Image Processing (ICIP). 2017, pp. 325–329.

[278] Kuan-Ting Yu et al. “A Summary of Team MIT’s Approach to the Amazon Picking
Challenge 2015”. In: arXiv preprint arXiv:1604.03639 (2016).

[279] Kuan-Ting Yu et al. “More than a million ways to be pushed. a high-fidelity exper-
imental dataset of planar pushing”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 2016, pp. 30–37.

[280] Weihao Yuan et al. “Rearrangement with nonprehensile manipulation using deep
reinforcement learning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2018, pp. 270–277.

[281] Kevin Zakka et al. “Form2fit: Learning shape priors for generalizable assembly from
disassembly”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020,
pp. 9404–9410.

[282] Andy Zeng et al. “Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS). 2018, pp. 4238–4245.

[283] Andy Zeng et al. “Multi-view self-supervised deep learning for 6d pose estimation in
the amazon picking challenge”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2017, pp. 1386–1383.

[284] Andy Zeng et al. “Robotic pick-and-place of novel objects in clutter with multi-
affordance grasping and cross-domain image matching”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2018, pp. 1–8.

[285] Andy Zeng et al. “Transporter Networks: Rearranging the Visual World for Robotic
Manipulation”. In: Conf. on Robot Learning (CoRL). 2020.

[286] Zhong-Qiu Zhao et al. “Object detection with deep learning: A review”. In: IEEE
Trans. Neural Networks and Learning Systems 30.11 (2019), pp. 3212–3232.

[287] Yin Zhou and Oncel Tuzel. “Voxelnet: End-to-end learning for point cloud based 3d
object detection”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2018, pp. 4490–4499.

[288] Yuke Zhu et al. “Target-driven visual navigation in indoor scenes using deep rein-
forcement learning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
2017, pp. 3357–3364.

	Contents
	Introduction
	Manipulation Primitives
	Perception Primitives
	Mechanical Search Policies

	Manipulation Primitives
	REACH: A Robust Efficient Area Contact Model
	Related Work
	Point Contact Models
	Area Contact Models
	Grasp Wrench Space Analysis
	Grasp Datasets

	Problem Statement
	Assumptions
	Definitions
	Objective

	REACH Model
	Contact Area Computation
	Wrench Space Constraints

	Experiments
	Physical Experiments Dataset
	Benchmark Estimators
	Metrics
	Discussion

	Conclusions

	6DFC: Efficiently Planning Soft Non-Planar Area Contact Grasps using 6D Friction Cones
	Related Work
	Contact Models
	Grasp Analysis
	Grasp Wrench Space Formulation
	Contact Wrench Cones

	Problem Statement
	Assumptions
	Definitions
	Objective

	Non-Planar Area Contact Constraints
	Background
	Friction Cones in 6D
	Finding 6D Friction Limit Surface Cone Constraints

	Experiments
	Baseline Algorithms
	Soft Non-Planar Area-Contact Physical Robot Grasps
	Grasp Planning Results
	Sensitivity Analysis

	Discussion and Future Work

	Linear Push Policies to Increase Grasp Access
	Related Work
	Problem Statement
	Assumptions
	Definitions
	Objective

	Push Action Metrics
	Mean Object Separation Gain
	Parallel Jaw Grasp Quality Gain
	Suction Grasp Quality Gain
	Overall Grasp Quality Gain

	Push Policies
	Quasi-Random Policy
	Boundary Shear Policy
	Free Space Policy
	Maximum Clearance Ratio Policy
	Cluster Diffusion Policy

	Simulation Experiments
	Physical Experiments
	Discussion and Future Work

	Perception Primitives
	Segmenting Unknown 3D Objects from Real Depth Images using Mask R-CNN Trained on Synthetic Data
	Related Work
	Problem Statement
	Synthetic Dataset Generation Method
	WISDOM Dataset
	WISDOM-Sim
	WISDOM-Real

	Synthetic Depth Mask R-CNN
	Experiments
	Baselines
	Benchmarks
	Performance
	Robotics Application: Instance-Specific Grasping

	Discussion and Future Work

	Object Rearrangement Using Learned Implicit Collision Functions
	Related Work
	Robot Collision Detection from Point Clouds
	Point Cloud Surface Representations
	Accelerating Collision Detection
	Robotic Object Rearrangement

	Problem Statement
	Definitions
	Objective

	SceneCollisionNet
	Dataset Generation and Training
	Robot Collision Checking

	Object Rearrangement
	Grasps and Placements
	MPPI Policy

	SceneCollisionNet Evaluation
	Baseline Algorithms
	Results

	Policy Evaluation
	Simulation Evaluation
	Physical Evaluation

	Discussion

	Mechanical Search Policies
	Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter
	Background and Related Work
	Mechanical Search: Problem Formulation
	Perception and Decision System
	Perception
	Search Policy

	Action Selection Policies
	Experiments
	Simulation
	Physical
	Evaluation Metrics

	Results
	Simulation Results
	Physical Results
	Action-Limited Human Supervisor

	Discussion and Future Work

	X-Ray: Mechanical Search for an Occluded Object by Minimizing Support of Learned Occupancy Distributions
	Related Work
	Pose Hypothesis Prediction
	Object Search

	Problem Statement
	Assumptions
	Definitions
	Objective
	Surrogate Reward

	Learning Occupancy Distributions
	Dataset Generation
	Occupancy Distribution Model
	Simulation Experiments for Occupancy Distributions

	X-Ray: Mechanical Search Policy
	Simulation Experiments with X-Ray
	Physical Experiments with X-Ray

	Discussion and Future Work

	Mechanical Search on Shelves using a Novel ``Bluction'' Tool
	Related Work
	Mechanical Search
	Suction Grasping

	Problem Statement
	Bluction Tool
	Methods
	Lateral-Access Simulation
	SLAX-RAY Perception System
	SLAX-RAY Mechanical Search Policy
	Oracle Policies

	Experiments
	Simulation Experiments
	Physical Experiments

	Conclusion and Future Work

	Conclusion and Future Work
	Discussion
	Overview
	Takeaways
	Learning from Simulated Depth Data
	Intermediate Representations and Manipulation Primitives

	Opportunities for Future Work
	Contact Modeling
	Dex-Net 5.0
	Pushing and Other Action Types
	Perception for Mechanical Search
	Mechanical Search Environments

	A Broader View of Mechanical Search and Robot Manipulation

	Appendices
	REACH: A Robust Efficient Area Contact Model
	Derivations
	fzi,max Derivation
	fti,max Derivation
	zi,max Derivation
	zi,max Lower Bound

	Per-Object Experimental Results

	Segmenting Unknown 3D Objects from Real Depth Images using Mask R-CNN Trained on Synthetic Data
	WISDOM Dataset Statistics
	Precision-Recall Evaluation

	Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter
	Extended Results
	Siamese Network Implementation Details
	Simulated Heap Generation
	Simulation Policy Parameters
	Physical Policy Parameters

	Bibliography

