
The Algebra of Contracts

Inigo Incer

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-99

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-99.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Algebra of Contracts

by

Inigo Xabier Incer Romeo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Albert Benveniste
Professor Francesco Borrelli
Professor Sanjit A. Seshia

Spring 2022

The Algebra of Contracts

Copyright 2022
by

Inigo Xabier Incer Romeo

1

Abstract

The Algebra of Contracts

by

Inigo Xabier Incer Romeo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Today systems industries face significant challenges to bring products to market. Compa-
nies struggle to integrate into complex designs a large number of subsystems designed by
various manufacturers. The number of recent high-profile recalls afflicting the automotive
and avionics industries is a testament to the difficulty of system design.

The theory of contracts has been proposed to address these issues. Assume-guarantee (AG)
contracts are specifications for components in a system that state what is expected from
the environment in which the component operates and what is required from the object
under specification provided that the environment meets the assumptions of the contract. A
contract can thus be expressed as a pair C = (A,G) of formal properties: the assumptions
A made on the environment and the guarantees G required from the component. By asking
a third-party to implement a formal specification given as a contract, a system integrator
knows a priori that the resulting system will meet its specifications. Thus, contracts can
serve as the technical counterpart of the legal bindings between parties in a supply chain.

As AG contracts are specifications for components, the theory must offer means of ma-
nipulating specifications corresponding to tasks carried out in system design. There were
three operations known on contracts before the work presented in this thesis: composition,
conjunction, and disjunction. Composition is the algebraic operation which enables com-
positional design. It gives us the specification of a system built by components that obey
the specifications being composed. Conjunction allows for concurrent design of the same
object. When different groups are in charge of designing or characterizing different aspects,
or viewpoints, of the same design element, they will produce specifications corresponding to
the various viewpoints of that object. The operation of conjunction allows us to generate
one specification that summarizes these diverse specifications.

Over the course of the research that led to this thesis, we introduced the operation of
merging, or strong merging, which gives the specification of an object consisting of multiple

2

viewpoints when each viewpoint’s guarantees is required to hold simultaneously. In addition,
we obtained adjoint operations for all previously mentioned operations. For example, the
adjoint of composition, called quotient, yields the most relaxed specification which can be
composed with the specification of a partial implementation of the design in order to meet
a top-level spec. As a result of the work presented here, today we know eight operations on
AG contracts and their closed-form expressions.

AG contracts require that the assumptions and guarantees of the pair (A,G) be specified as
what in formal methods are called trace properties. This type of properties can express many
requirements, such as safety (i.e., bad things don’t happen) and liveness (i.e., good things
eventually happen), but there are many statements we would like to make over systems
that these properties cannot express. For instance, it has been shown that several security
attributes, such as non-interference and observational determinism, cannot be expressed as
trace properties. To express them, we need hyperproperties.

In this context, we introduce in this thesis the concept of hypercontracts. Hypercontracts are
a fully-developed AG theory which allows us to reason compositionally about systems using
pairs (A,G) of arbitrary hyperproperties. This theory extends the reach of AG reasoning to
all system attributes we know how to formalize. This includes all known properties used in
security and in machine learning.

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Challenges of system design . 2
1.2 Formalizing system design . 5
1.3 This thesis . 6

2 Introduction to contracts 9
2.1 Historical background . 9
2.2 Problems addressed by contracts . 14
2.3 Behavioral modeling . 15
2.4 Assume-guarantee contracts . 18

3 Quotient for assume-guarantee Contracts 22
3.1 Introduction . 22
3.2 Quotient of Assume-Guarantee Contracts . 24
3.3 Quotient in the Meta-Theory of Contracts 31
3.4 Examples . 34
3.5 Summary . 41

4 Equations over Preorders 42
4.1 Introduction . 42
4.2 Preordered heaps . 45
4.3 Additional instances of preordered heaps . 50
4.4 Sieved heaps . 52
4.5 Sieved heaps and language inequalities . 55
4.6 Summary . 58

5 Contract merging and separation 59

ii

5.1 A revised notion of contract merging . 59
5.2 Composition, merging, and the contract lattice 61
5.3 Decomposition of contracts and separation of viewpoints 62
5.4 Multiviewpoint design . 67

6 The algebra of assume-guarantee contracts 70
6.1 Introduction . 70
6.2 AG Contracts . 71
6.3 Order . 72
6.4 Duality . 72
6.5 Conjunction and disjunction . 73
6.6 Composition . 73
6.7 Strong merging (or merging) . 74
6.8 Adjoints . 75
6.9 Summary of binary operations . 77
6.10 Algebraic structures within contracts . 78
6.11 Actions . 88
6.12 Contract abstractions . 92

7 Syntax and the AG algebra 94
7.1 The role of assumptions . 94
7.2 Contracts in standard form . 97
7.3 Computing the composition operation . 100
7.4 Computing the quotient . 106
7.5 Constraints as partial orders . 107

8 Hypercontracts 112
8.1 Introduction . 112
8.2 The theory of hypercontracts . 115
8.3 Representation of compsets and hypercontracts 125
8.4 Behavioral modeling . 126
8.5 Receptive languages and interface hypercontracts 130
8.6 Summary . 136

9 Conclusions 138

Bibliography 141

A Additional proofs 159
A.1 Receptive languages and hypercontracts . 159

iii

List of Figures

2.1 Examples of engineering systems to be modeled behaviorally 16

3.1 ALU circuit used to illustrate the contract quotient 35
3.2 Contract decomposition in Cooperative Adaptive Cruise Control 38

5.1 Effecting viewpoint merging using the conjunction and merging operations . . . 60
5.2 Order of conjunction, disjunction, composition, and merging 62
5.3 The adjunctions composition-quotient and separation-merging 63
5.4 The Brake System Control Unit [49] . 67

7.1 Contract saturation is not injective . 94
7.2 The contract syntax carries more information than its denotations 96
7.3 A series connection of amplifiers illustrates intuitive system specification 101
7.4 Composing contracts & feedback . 105
7.5 Computing top-level specification in sample system 110

8.1 Information-flow and hypercontracts . 114

iv

List of Tables

5.1 Behavior of composition, quotient, merging, and separation with respect to the
distinguished elements of the theory of contracts 66

5.2 Some properties of composition, merging, and their adjoints 66

6.1 Duality relations . 77
6.2 Closed-form expressions of contract operations 78
6.3 Closed-form expressions of operations for contracts over a Boolean algebra . . . 78
6.4 Contract operations and the distinguished elements 79
6.5 Distributivity of contract operations . 83
6.6 Identities for the left and right actions of a Boolean algebra B over its contract

algebra . 89

v

List of Algorithms

1 Overview of computation of the composition of AG contracts 104
2 Computation of the composition of IO contracts 105
3 Overview of computation of the quotient of AG contracts 107
4 Computation of the quotient of IO contracts 108
5 RefineWithSupport . 108
6 AbstractWithSupport . 110

vi

Acknowledgments

I am grateful to my advisor, Alberto Sangiovanni-Vincentelli, and to the members of my
committee, Albert Benveniste, Francesco Borrelli, and Sanjit A. Seshia, for their guidance
and support. I thank Alberto for his trust in welcoming me to his team. I am influenced by
his research vision for system design. I benefited from several conversations with Albert; he
suggested many research directions. Sanjit pointed out key research questions addressed in
this thesis. Edward A. Lee chaired the committee of my quals exam, for which I am grateful.

My time at Berkeley has been filled with much joy. Shirley Salanio, Susanne Kauer,
and Jessica Gamble were always very kind to me and answered my administrative questions
thoroughly. I am privileged to have met my fellow graduate students and postdocs.

I thank the institutions that funded the completion of this work: UC Berkeley, NSF,
DARPA, and Toyota. I thank the University of Verona and the Embassy of France in the
United States for grants that enabled me to spend time working in Verona and Rennes,
respectively.

1

Chapter 1

Introduction

In the late 1950s, A. W. Wymore was carrying out research in numerical analysis at the
University of Arizona. He recalls a visit from his dean and hearing from him:

I have just returned from an exciting meeting of the American Society for En-
gineering Education where I heard a paper on the new discipline of systems
engineering. It is no longer sufficient for engineers merely to design boxes such as
computers with the expectation that they would become components of larger,
more complex systems. . .We must learn how to design large-scale, complex sys-
tems from the top down so that the specification for each component is deriv-
able from the requirements for the overall system. We must also take a much
larger view of systems. We must design the man-machine interfaces and even the
system-society interfaces [205].

Wymore was then asked to create the first academic department in systems engineering,
which began operations in 1960. Trained in mathematics, he sought first to define formalisms
to reason about systems [205]. For this he drew inspiration from Automata Studies, edited by
Shannon and McCarthy [186]. After modeling, he faced the issue of unspecified requirements
in system design. This came up vividly during a visit to Lockheed-Georgia as a consultant
in 1969. Thus, Wymore came across two key issues of system design.

A third fundamental challenge is system integration. After all, systems are, by definition,
comprised of parts, or as Sage and Lynch put it, “it is the integration of subsystems and
components that give systems their superiority over a set of elements that do not work
together without integration” [173].

We now discuss these three aspects of the field, namely, modeling, specification, and
integration.

CHAPTER 1. INTRODUCTION 2

1.1 Challenges of system design

1.1.1 Modeling

Mathematical models are used to virtually analyze and compose a system before it is ac-
tualized in the physical world. By not requiring physical changes to the design in order to
yield insight, models enable faster virtual design iterations than could be achieved otherwise.
Models enable engineering organizations to analyze a design and understand tradeoffs among
competing requirements before the designs are implemented.

In all cases, the purpose of a model is to simulate what would happen to the object
adhering to such model when in performs in a setting corresponding to the type of analysis
being effected. The quality of the analyses that can be carried out with engineering models
depends on the models’s faithfulness to reality. If a model matches reality poorly, the analysis
effected using such model may not be representative of how the implementation would behave
in the real world.

Modeling thus sits at the kernel of system design. One fundamental challenge of system
modeling has been the addition of software to systems whose main purpose was not com-
putational, such as transportation media and energy extraction and distribution systems.
System capabilities have been greatly increased through the addition of software, but so has
their complexity and their potential for displaying undesired behaviors1. Designs involv-
ing both computational and physical processes whose behavior is determined by both cyber
and physical components are called cyber-physical systems2 [130]. Conceptually, the most
important contribution of the intellectual enterprise of cyber-physical systems has been to
bring to the forefront the challenge of analyzing the interconnection of components modeled
using discrete transitions with those using differential equations. It is the opposition be-
tween the discrete and the continuous, which René Thom calls “the fundamental aporia of
mathematics.”

1For several examples of system errors in which software was directly involved, see Leveson [133]. She
writes, “many of the system safety techniques that have been developed to aid in building electromechanical
systems with minimal risk do not seem to apply when computers are introduced. The major reasons appear
to stem from the differences between hardware and software and from the lack of system-level approaches
to building software-controlled systems.” Henzinger and Sifakis say, “the shortcomings of current design,
validation, and maintenance processes make software the most costly and least reliable part of embedded
applications. . .We see the main culprit as the lack of rigorous techniques for embedded systems design. At one
extreme, computer science research has largely ignored embedded systems, using abstractions that actually
remove physical constraints from consideration. At the other, embedded systems design goes beyond the
traditional expertise of electrical engineers because computation and software are integral parts of embedded
systems” [85].

2For reflections on the modeling challenges posed by cyber-physical systems, we refer the reader to the
work of E. Lee [123–127]

CHAPTER 1. INTRODUCTION 3

1.1.2 Specification

D. Hitchins [86] claims that most system engineering practitioners see system design as
a process with the following parts: (i) describe the system at the most abstract level, (ii)
decompose the requirements functionally, (iii) map decomposed requirements to architecture,
and (iv) develop physical elements and integrate. Three of these steps directly address
requirements or specifications.

Specifications are syntactic expressions that the design process should map to an engi-
neering deliverable. This deliverable can be an object actualized in the physical world, a
software routine, or a mathematical model. Practitioners consistently rank the generation of
specifications for a project among the top challenges in system design [151,173]. The defini-
tion of requirements can be an arduous process involving multiple stakeholders; as customers
learn new information and react to market conditions, requirements may also change3.

Requirements can be formal or informal. Specifications in industry are normally writ-
ten in long documents expressed in natural languages. Writing conflicting or incomplete
requirements is not uncommon. Ideally, teams working on different components on a system
should be able to interconnect their components if they develop their implementations to
meet the component specification. However, if the interfaces are not sufficiently constrained,
there may be enough design freedom such that a correct implementation of the component
specifications does not allow the implementations to interact with one another. In order to
avoid ambiguity, academia argues that formal specifications should replace natural language
requirements. Work is needed to bridge formal requirements and statements that would be
natural to a designer, so that they are usable.

Formal specifications have well-defined mathematical meaning. They are used in three
tasks: verification, synthesis, and testing. In verification, we are interested in proving
whether an engineering model satisfies a specification. In synthesis, we pursue algorithms
that generate engineering models which are guaranteed to meet the specification. In testing,
we subject an engineering model or the implementation to stimuli for which the specification
stipulates how the object under test should behave; if the unit under test does not behave
according to the specification, we have a violation. These three tasks have probabilistic
variants. One can speak of a component having a certain property with some probability or
failing a test with some probability.

The task of formally verifying software was first enunciated by Turing in 19494. The
program-verification agenda gained force and focus some twenty years later with Floyd [68]
and Hoare [87]. An important part of the verification effort is writing the specifications that
programs should satisfy. A methodology for this was already reported by Parnas in 1972

3For an overview of challenges in requirement engineering, see [80].
4His three-page document starts with a familiar paradigm: “How can one check a routine in the sense

of making sure that it is right? In order that the man who checks may not have too difficult a task the
programmer should make a number of definite assertions which can be checked individually, and from which
the correctness of the whole programme easily follows” [195].

CHAPTER 1. INTRODUCTION 4

[159]. Languages for writing formal specifications were developed5. Concurrency introduced
a new angle to writing specifications: it is not sufficient anymore to specify an input/output
relation for a concurrently-executing routine, as this maintains an ongoing relation with
its environment. This realization led to the definition of a reactive system by Harel and
Pnueli in 1985 [81]. In the late 90s, it was further recognized that a similar formalism (the
behavioral approach) can be used to specify other aspects of complex engineering systems.
W. Damm [48] argued that in an engineering design we can consider specifications as “rich
components,” i.e., collections of specifications of multiple aspects of a design element, like
functionality, timing, and power.

1.1.3 Integration

Integration has seen steep increases in magnitude in the 20th century, bringing technical
challenges to engineering (how do we design, build, and maintain such systems?)6 and
organizational challenges to the business landscape (how does the organization change to
support the development, construction, and maintenance of such systems?)7. The organiza-

5For example, Pnueli’s LTL [166], Clarke and Emerson’s CTL [44], Koymans’s MTL [109], and Maler
and Nickovic’s STL [142]

6We read, for example: “We are increasingly experiencing a new type of accident that arises in the
interactions among components (electromechanical, digital, and human) rather than in the failure of in-
dividual components” [132]. “Almost all SI [system integration] failures occur at interfaces primarily due
to incomplete, inconsistent, or misunderstood specifications” [141]. “System specification and integration
is particularly critical for Original Equipment Manufacturers (OEM) managing the integration and mainte-
nance process with subsystems that come from different suppliers who use different design methods, different
software architectures, and different hardware platforms. . . even inside an OEM itself, complex systems in-
volve a number of different aspects or viewpoints that are generally handled by different teams using different
paradigms and tools” [19]. “It is no longer feasible for an individual to fully comprehend and tightly control
all the details of design of a complex, electromechanical system. . . This recognition has led to two trends with
unfortunate side effects: (a) an increase in specialization among system engineers. . . and (b) an increasing
use of integrated product teams (IPTs) to bring these sub-specialties together. . . The increasing specializa-
tion has resulted in smaller engineering units and introduced barriers to communication among and across
design organizations. Concomitantly, the complexity of modern designs has produced a loss of emphasis
on core engineering fundamentals. This effect is evident in the poor translation of user requirements into
achievable system specifications; inadequate design for manufacturing and test; and fundamental weakness
in addressing design factors that drive system reliability and availability” [152].

7Hobday et al. [89] argue that “systems integration has evolved beyond its original technical and oper-
ational tasks to encompass a strategic business dimension becoming, therefore, a core capability of many
high-technology corporations. . . The more complex, high-technology, and high cost the product, the more
significant systems integration becomes to the productive activity of the firm. . . Systems integration capabili-
ties are inextricably linked to decisions on whether to make in-house, outsource, or collaborate in production
and competition.” The authors conclude that “in high-volume products. . . firms use their capabilities to
achieve competitive advantage by exploiting upstream component supplier relations in ways which differ
according to the particular phase of each product life cycle. By contrast, in low-volume, high-cost capital
goods, manufacturing firms are focusing more on exploiting downstream relationships with system users by
integrating services such as maintenance, finance, consultancy, and operations within their product offerings.
In both cases, systems integration capability enables firms to move selectively, and simultaneously, up- and

CHAPTER 1. INTRODUCTION 5

tional challenges of systems engineering are so salient that some authors categorize the field
as a branch of management [65,97].

Some challenges with integration intersect the other topics of systems engineering: How
can we use the properties of components to understand the properties of the system? Under
what conditions can we obtain emergent phenomena, i.e., system behaviors that could not be
anticipated from the components? How can we specify components to make sure that when
they are implemented, they will integrate correctly into the system? How do we manage
a supply chain with multiple components modeled using various tools/formats and coming
from multiple manufacturers?

An important aspect of integration is reuse. Many systems are made of components
with similar characteristics. The task of characterizing components so that they can be
incorporated in new designs is enticing—but easier said than done [24]. A success story in
this venue is digital IC design, in which a library of characterized gates is built and reused
across several IC projects.

1.2 Formalizing system design

In order to address the challenges discussed, the literature has proposed a combination of
methodologies and mathematical formalisms8. Methodologies help to structure the design
process, from both a technical and organizational standpoint9. They enable a separation
of concerns, so engineers can focus their energies on specific aspects of the design, without
being distracted by others. Formalisms provide mathematical grounding to design; they go
hand in hand with methodologies. Our focus from now on will be on formalisms.

Mathematics mainly takes place on top of two ground theories: set theory and category
theory. Georg Cantor introduced the first in the 19th century [31], and Samuel Eilenberg
and Saunders Mac Lane introduced the second in the 1940s [64]. Cantor was motivated

downstream to gain advantages in the marketplace.” Davies et al. [52] argue that “the ability to integrate a
range of components from a variety of internal and external suppliers is becoming the core activity required
to provide integrated solutions. The traditional advantages of the vertically-integrated systems seller offering
single-vendor designed systems is no longer a major source of competitive advantage in many industries.”

8A. Sangiovanni-Vincentelli suggests a program [174]: “to deal with system-level problems. . . the issue to
address is. . . understanding of the principles of system design, the necessary change to design methodologies,
and the dynamics of the supply chain.” He also calls for more rigor in the design process: “I share. . . the
strong belief that a new design science must be developed to address the challenges listed above where the
physical is married to the abstract, where the world of analog signals is coupled with the one of digital pro-
cessors, and where ubiquitous sensing and actuation make our entire environment safer and more responsive
to our needs. SLD [system-level design] should be based on the new design science to address our needs
in a fundamental way.” J. Sifakis characterized design science “as a formal process encompassing the three
stages of requirements expression, proceduralization and materialization” [188]

9For example, component-based design [4,129,190], platform-based design [57,67,105,174–176], rigorous
design [22, 187, 189], platform-based engineering [139, 158], elegant design [76, 140, 200], model-based design
[66,98,171,204], set-based design [185,191], interface-based design [5,172], and contract-based design [18,19,
156,177].

CHAPTER 1. INTRODUCTION 6

to develop set theory based on his studies of infinity, while Eilenberg and Mac by Lane by
problems in algebraic topology10 [137].

The main compositional modeling formalism used in engineering and computer science
we can call the behavioral model. In it, we understand components by the behaviors they
can exhibit. A component is a set of behaviors. The composition of components is given by
set intersection. In the late 1960s, Wymore developed a specification mechanism for systems
engineering in which one provides input and output trajectories and an eligibility function
that relates inputs to outputs [205]—this is akin to behavioral modeling. In the late 70s, Jan
Willems [201, 202] from the controls community pointed out that system modeling should
not a priory impose notions of inputs and outputs on signals, and proposed using a sets of
behaviors to represent and manipulate components in control systems. In computer science,
referring to a paper by Dijkstra from 1965 [59], Lamport writes, “Dijkstra was aware from
the beginning of how subtle concurrent algorithms are and how easy it is to get them wrong.
He wrote a careful proof of his algorithm. The computational model implicit in his reasoning
is that an execution is represented as a sequence of states . . . I have found this to be the most
generally useful model of computation—for example, it underlies a Turing machine. I like
to call it the standard model” [116]. In the 70s, both A. Pnueli [166] and R. Keller [104]
represented state transition systems using the standard model, and C. A. R. Hoare [88]
defined processes as the set of traces they generate, showing that various set operations on
processes yield other processes. E. A. Lee and A. Sangiovanni-Vincentelli [128] introduced
the Tagged Signal Model (TSM) in the second half of the 90s. The TSM defines behaviors
with special structure. Using it, they were able to provide formal definitions for slippery
concepts, such as synchronicity, which are often hard to discuss due to lack of agreement
about their meaning.

The behavioral model is set theoretic. It is the denotation of formal specifications in
computer science. There are recent efforts to embed behavioral modeling within frame-
works based on category theory [2,3,12,108,111,131,192,207]. Other authors have provided
algebraic formalisms to handle the system design process [9, 23,35,150].

1.3 This thesis

This thesis is about the theory of contracts, a formalism that addresses the specification and
integration challenges we discussed. This first chapter discussed fundamental challenges in
system design. Chapter 2 introduces contracts and discusses the development of the theory
and some applications outside the work described in this thesis. The description of historical
developments partially comes from

[162]. Passerone, R., Incer, I., and Sangiovanni-Vincentelli, A. L.

10For Eilenberg and Mac Lane, the category was not the main concept of their theory. They say, “it should
be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are
essentially those of a functor and of a natural transformation” [64].

CHAPTER 1. INTRODUCTION 7

Contract model operators for composition and merging: extensions and proofs.
Technical Report DISI-19-004, Dipartimento di Ingegneria e Scienza dell’Informazione,
University of Trento, August 2019

In Chapter 3, we begin to discuss the contributions that form part of this thesis. The
focus of the chapter is a binary operation called quotient. Assume-guarantee contracts have
a notion of composition. This operation produces the specification of a system formed by
components obeying the contracts being composed. Quotient is the adjoint of composition.
Given a top-level specification and the specification of a partial implementation of the design,
the quotient gives the most relaxed specification whose composition with the existing partial
specification refines the top-level contract. It was not known whether the quotient operation
exists for contracts, and here we answer the question affirmatively and provide its closed-form
expression and examples of its use. The contents of this chapter are based on the following
document:

[96]. Incer, I., Sangiovanni-Vincentelli, A. L., Lin, C.-W., and Kang,
E. Quotient for assume-guarantee contracts. In 16th ACM-IEEE International
Conference on Formal Methods and Models for System Design (October 2018),
MEMOCODE’18, pp. 67–77

After discussing the quotient of AG contracts, we present in Chapter 4 a general study of
the quotient operation in compositional theories. The chapter begins with the intriguing ob-
servation that the quotient formulas in several algebraic theories are very similar despite the
fact that the theories may be quite different. In other words, it is common in compositional
theories to have inequalities of the form A · x ≤ B, where · is the notion of composition,
and ≤ is a notion of refinement. We often want to solve for the largest x that satisfies the
inequality; this largest x is called quotient. It turns out in many theories this quotient obeys
the syntactic expression γ (γ(A) ·B), where γ is an involution. We propose an algebraic
structure called preheap that is guaranteed to have closed-form expressions for the quotient.
Many existing compositional theories are preheaps. This discussion is based on the following
paper:

[95]. Incer, I., Mangeruca, L., Villa, T., and Sangiovanni-Vincentelli,
A. L. The quotient in preorder theories. In Proceedings 11th International
Symposium on Games, Automata, Logics, and Formal Verification, Brussels,
Belgium, September 21-22, 2020 (Brussels, Belgium, 2020), J.-F. Raskin and
D. Bresolin, Eds., vol. 326 of Electronic Proceedings in Theoretical Computer
Science, Open Publishing Association, pp. 216–233

One of the central aspects of assume-guarantee contracts is their ability to represent
and handle several viewpoints, or aspects, of a design. To the same component we can
assign several contracts, one for each viewpoint. The publication that introduced assume-
guarantee contracts [18] argued that we can summarize multiple contract viewpoints into a

CHAPTER 1. INTRODUCTION 8

single contract through the operation of conjunction. Chapter 5 discusses another binary
operation, called merging, which sometimes produces a merger of viewpoints in a way that
is more intuitive for designers. We also discuss the adjoint operation to merging, called
separation, and present examples of the use of both operations. The chapter is based on

[161]. Passerone, R., Incer, I., and Sangiovanni-Vincentelli, A. L.
Coherent extension, composition, and merging operators in contract models for
system design. ACM Trans. Embed. Comput. Syst. 18, 5s (Oct. 2019)

Chapter 6 summarizes the algebraic aspects of assume-guarantee contracts. It can be
used as a self-contained reference to all known binary operations on contracts. Two opera-
tions, implication and coimplication, which are the adjoints of conjunction and disjunction,
respectively, have not been published before, as far as I know. This chapter also studies var-
ious algebraic structures—monoids and semirings—within contracts, and the maps between
these structures. Much of this chapter is new material. After having considered the algebraic
aspects of assume-guarantee contracts, Chapter 7 discusses the syntactic representation of
contracts and algorithms to manipulate contracts using such representations. The content
is new.

As a result of the work presented here, today we know eight operations on AG contracts
and their closed-form expressions. The following diagram shows these operations on AG
contracts. Two are derived from the partial order of contracts, and two are generated
axiomatically. The five operations shown bold were introduced (reintroduced, in the case of
merging) in the work covered in this thesis.

Conjunction ∧ Implication →

Order

Disjunction ∨ Coimplication ↛

Dual

Right adjoint

Left adjoint

Dual

Composition ∥ Quotient /

Axiom

Merging • Separation ÷
Dual

Right adjoint

Left adjoint

Dual

We shift gears in Chapter 8. Up to this point, we have treated contracts as represented
by a pair of trace properties. While powerful, trace properties are unable to express certain
important requirements, such as observational determinism and secure information flow—
key properties studied in security. We introduce the concept of hypercontracts to represent
environments and guarantees using arbitrary structured hyperproperties. The amount of
structure in the hyperproperties is left to the user. The content in this chapter is taken from
the following documents:

[94]. Incer, I., Benveniste, A., Sangiovanni-Vincentelli, A. L., and
Seshia, S. A. Hypercontracts. In NASA Formal Methods (Cham, 2022), J. Desh-
mukh, K. Havelund, and I. Perez, Eds., Springer International Publishing

[93]. Incer, I., Benveniste, A., Sangiovanni-Vincentelli, A. L., and
Seshia, S. A. Hypercontracts. arXiv preprint arXiv:2106.02449 (2021)

There is one appendix containing proofs skipped in the main body of the text.

9

Chapter 2

Introduction to contracts

This chapter introduces assume-guarantee contracts and contract-based design and discusses
the work carried out on the theory outside the work presented in this thesis.

2.1 Historical background

2.1.1 Assume-guarantee reasoning

The notion of contracts derives from the theory of abstract data types and was first sug-
gested by Meyer in the context of the programming language Eiffel [148, 149], following the
original ideas introduced by Floyd and Hoare [68,87] to assign logical meaning to sequential
imperative programs in the form of triples of assertions. A Hoare triple {A}c{B} consists
of properties A and B and a program c. The program is correct if B holds after the ex-
ecution of c, assuming that A holds before this execution. Meyer introduces preconditions
and postconditions as assertions or specifications for the methods of a class, and invariants
for the class itself. Preconditions correspond to the assumptions under which the method
operates, while postconditions express the promises at method termination, provided that
the assumptions are satisfied. Promises must be guaranteed only if the assumptions are
satisfied. Invariants, on the other hands, are conditions that must be true of the state of the
class regardless of any assumption. The notion of class inheritance, in this case, is used as a
refinement, or sub-typing, relation. To guarantee safe substitutability, a subclass is only al-
lowed to weaken assumptions and to strengthen promises and invariants. Similar ideas were
already present in seminal work by Dijkstra [60] and Lamport [115] on weakest preconditions
and predicate transformers for sequential and concurrent programs, and in more recent work
by Back and von Wright, who introduce contracts in the refinement calculus [11]. In this
formalism, processes are described with guarded commands operating on shared variables.
Contracts are composed of assertions (higher-order state predicates) and state transformers.
These contracts are of a very different nature, since there is no clear indication of the role
(assumption or promise) a state predicate or a state transformer may play. This formalism

CHAPTER 2. INTRODUCTION TO CONTRACTS 10

is best suited to reason about discrete, un-timed process behavior.
The work of Dill on asynchronous trace structures was the first to differentiate between

acceptable and non-acceptable uses of a component [61]. Behaviors, or traces, can be either
accepted as successes, or rejected as failures. The failures, which are still possible behaviors
of the system, correspond to unacceptable inputs from the environment, and are therefore
the complement of the assumptions. Safe substitutability is expressed as trace containment
between the successes and failures of the specification and the implementation. The con-
ditions obtained by Dill are equivalent to requiring that the implementation weaken the
assumptions of the specification while strengthening the promises. Composition is taken as
the product with requirement relaxation. The relaxation mechanism is obtained through a
process called autofailure manifestation and failure exclusion, which yield a maximal inter-
face. Wolf later extended the same technique to a discrete synchronous model [203]. The
trace structures developed by Dill and Wolf address the problem of receptiveness, or input
completeness, by proving closure properties and by giving decision procedures. Finally, Pro-
cess Spaces [154] is a more general model proposed by Negulescu following the work of Dill
and Wolf, and is based on pairs of sets: X is the set of possible behaviors, and Y is the set
of acceptable behaviors. A process has the requirement that X ∪ Y = B. Process Spaces
define the operations of product and exclusive sum, which are syntactically the same as the
contract operations of parallel composition and merging, respectively. Product is used to
compose design elements, but no insight is given into the use of exclusive sum.

Since the late 70s, L. Lamport worked actively on writing specifications for computer
programs. He quickly noticed the importance of separating specifications into what the
component is supposed to do and the assumptions that the component makes on its en-
vironment in order to operate correctly. He says, “to write a specification, there must be
an object to be specified and a well-defined interface between the object and its environ-
ment” [114]. The work of M. Abadi and L. Lamport [1] made the fundamental contribution
of providing a principle that tells how to compose two specifications of components written
in such a way that they split responsibilities between the design component and the envi-
ronment in which it is instantiated. In this work, the authors focus on the formulation of
the specification as an implication. In particular, while a specification is allowed to make
assumptions, it is not interpreted as constraining the environment, or else the specification
is considered unrealizable. At the same time, however, and following the work of Dill [61],
realizability is defined as a game, a technique that would later be employed in other popular
interface models, such as interface automata [54]. Of greater significance, when defining
the refinement relation, the authors insist that assumptions be weakened, which is unnec-
essary for implications, thus effectively obtaining the equivalent of an interface model. The
main result of Abadi and Lamport is a full set of proof rules that show when the parallel
composition of components satisfies a given property, under a set of assumptions. These
proof rules have later been reformulated in similar ways in several other contract models and
tools [15,42,63,74]. Composition, expressed as intersection of behaviors, takes primarily the
view of the component.

CHAPTER 2. INTRODUCTION TO CONTRACTS 11

2.1.2 Interface theories

In 1998, de Alfaro and Henzinger introduced interface automata, a “light-weight formalism
for capturing temporal aspects of software component interfaces which are beyond the reach
of traditional type systems” [54]. The formalism used by the authors has several distinguish-
ing traits: the choice of an automata-based language, the partition of symbols into inputs and
outputs, a new refinement relation, the separation of concerns between assumptions from
the environment and responsibilities of the object under specification, and an optimistic
approach to composing automata. Syntactically, interface automata are indistinguishable
from IO automata [136]. They differ in their associated semantic concepts of refinement and
parallel composition. In contrast to IO automata, which require their implementations to
be receptive to input actions, IA state the assumptions on the environments in which valid
implementations run. In other words, certain moves by the environment may not be allowed
by the IA. The notion of refinement for interface automata is the alternating simulation of
Alur et al. [6]. Compared to the usual definition of simulation for automata, alternating
simulation builds on a game view of automata, in which inputs are seen as adversarial. IA
are composed according to an optimistic approach: for two IA to be composed, it suffices
that there be an environment that allows both to operate.

Interface automata gave rise to a series of interface theories which extended IA in multiple
ways, for example, modal I/O automata [119], resource interfaces [37], timed interfaces [56],
timed IO automata [51], permissive interfaces [84], modal interfaces [170], and interfaces
with support for component reuse [62]. Moreover, interface automata influenced approaches
to formally design and analyze cyber-physical systems.

The classic Interface Automata [54] and HRC [20,50] models are similar to synchronous
trace structures, where failures are implicitly all the traces that are not accepted. Thus, the
interface is maximal. Composition is defined on automata, rather than on traces, and requires
a procedure similar to requirement relaxation (and therefore to autofailure manifestation)
in order to maintain maximality.

These concepts were subsequently developed to maturity by giving rise to MDE (Model
Driven Engineering) [103, 122, 180]. In this context, interfaces are described as part of the
system architecture and comprise typed ports, parameters and attributes. Contracts on in-
terfaces are typically formulated in terms of constraints on the entities of components, using
the Object Constraint Language (OCL) [77, 198]. Roughly speaking, an OCL statement
refers to a context for the considered statement, and expresses properties to be satisfied by
this context (e.g., if the context is a class, a property might be an attribute). Arithmetic
or set-theoretic operations can be used in expressing these properties. To account for be-
havior and performance, the classical approach in MDE consists in enriching components
with methods that can be invoked from outside, and/or state machines. Attributes on port
methods have been used to represent non-functional requirements or provisions of a compo-
nent [30]. The effect of a method is made precise by the actual code that is executed when
calling this method. The state machine description and the methods together provide di-
rectly an implementation for the component—several MDE related tools, such as GME and

CHAPTER 2. INTRODUCTION TO CONTRACTS 12

Rational Rose, automatically generate executable code from this specification. The notion of
refinement is replaced by the concept of class inheritance. Inheritance, however, is unable to
cover aspects related to behavior refinement, since it is limited to constraining the signature
of the method, rather than their behavior. Nor is it made precise what it means to take the
conjunction of interfaces, only approximated by multiple inheritance, or to compose them.
Liskov and Wing [134] address some of these shortcomings by strengthening Meyer’s contract
model to include the specification of extra methods in the subtype, which may change the
object state, and to account for the preservation of history properties.

2.1.3 Algebraic interface theories

Bauer et al. [15] present a meta-theory for interface-based design. The objective is to provide
a method with which to construct a contract framework given a specification framework
with sufficient reasonable properties. The idea is to devise a set of axiomatic definitions
for the contract operators and relations, with provable compositional properties, which can
be instantiated given a specification theory. The work focuses on the relation of refinement
and defines operators for composition, conjunction, and quotient. In particular, they show
how to constructively define the composition operator. Their method is based on the use of
canonical forms, and treats environments and implementations asymmetrically. The modal
specification model introduced by Raclet et al. [170] is used as a case study.

Chilton et al. [40] develop an algebraic theory of interface automata which is also useful
to shed light on the properties of the operators and relations. The formalism is reminiscent
of Dill’s trace structures, and extends that work with additional operators, such as quotient.
The authors also address issues of progress in the context of finite traces, unlike trace struc-
tures which use infinite traces. Of particular interest is the definition of refinement, which
allows the refining component to have signatures with different sets of inputs and outputs.
Consequently, conjunction can also be defined on components with different signatures. This
facilitates a multiple viewpoint approach.

2.1.4 From software to cyber-physical systems

The control community had developed since the early 1990’s a Cyber Physical System (CPS)
modeling approach based on ODEs plus discrete-time dynamical systems, exemplified by the
Simulink tool. Solution trajectories of such models turn out to be traces in the computer
science setting. Similarly, the tradition of making statements over the behaviors (i.e. the
standard model) became well established in computer science during the 1970s. The trace
was the object that enabled us to conclude whether a program satisfied a certain require-
ment. Traces were given convenient syntactical representations with temporal logics, notably
Pnueli’s LTL [166] and Clarke and Emerson’s CTL [44]. Many algebraic formalisms were also
introduced to reason about systems whose components were modeled as collections of traces.
Thus, the concept of trace crosses the different communities contributing to the design of
CPSs.

https://www.mathworks.com/products/simulink.html

CHAPTER 2. INTRODUCTION TO CONTRACTS 13

One of the contributions of interface automata was to refocus on the interfaces of reactive
systems; this way, it brought new vigor to research in compositional design. Damm [48]
introduced to systems engineering the notion of a rich component : one can carry out model-
based design using functional and non-functional aspects of the design. This idea motivated
the agenda of applying the techniques of formal methods to any kind of CPS, a theory and
methodology called contract-based design [18,177].

Building on top of trace-based modeling, Assume-Guarantee (AG) contracts [18,19] pro-
vide a formal framework to contract-based design, in which assumptions and guarantees are
first-class citizens. AG contracts assume that all functional and non-functional behaviors of
the system have been modeled in advance. We assume an underlying set B of behaviors,
generalizing traces or executions dealt with in the computer science literature. The mathe-
matical bases of AG contracts are the same as those for process spaces [153]. While Negulescu
thought of process spaces as representing specifications for arbitrary software components,
AG contracts were introduced to model arbitrary functional and non-functional aspects of
CPSs.

More specifically, contracts are behavioral specifications C = (A,G) such that A∪G = B.
They are assigned to components in a design such that components are required to meet their
guarantees G when the environment in which they are instantiated meets the assumptions A.
Contracts support, among others, an operation of composition, which yields the specification
of the concurrent operation of two components adhering to two different contracts, and an
operation of “viewpoint merging,” which yields a single specification when two specifications
are provided for the same design element. Contracts also have a refinement relation, which
tells when one contract specification is more specific than another. If a component adheres
to a strict specification, it adheres to any more relaxed specification. Later, Benveniste et al.
introduced a meta-theory of contracts to frame several models in the same formalism [19],
and discuss their operators.

Tripakis et al. [194] also study the connection between different kinds of interface spec-
ifications. In particular, they show how to transform Relational Interfaces [193], which are
not input complete (or receptive), into an equivalent set of input complete specifications, in
order to avoid game-theoretic methods and have a more efficient analysis. We believe this
procedure is akin to going from Interface Automata to Trace Structures. Similarly, Carmona
and Kleijn [32] explore the issue of compatibility in a general multi-component settings. This
work deals primarily with questions of receptiveness, progress and deadlock freedom. How-
ever, the authors do not develop a full interface or contract model, but express assumptions
implicitly in terms of the actions which are enabled at each state of the components.

Damm et al. [49] make a distinction between weak and strong assumptions. Mangeruca
et al. [145] use a similar notion, called precondition, to define the conditions under which
the promises must hold, in a form similar to implications. The authors use this concept to
define the completeness of a contract relative to the requirements, and avoid implementations
that vacuously satisfy their contract. The formalism is also used to define extensions of the
contract, by properly combining the promises and their preconditions. The authors also
provide an operator to override a promise by another promise.

CHAPTER 2. INTRODUCTION TO CONTRACTS 14

P. Nuzzo et al. show how to use contracts and currently-available tools in the design of
complex systems [155–157]. A. Iannopollo et al. [91,92] describe a software package capable
of finding refinements for a contract expressed in LTL by composing objects from a library
of LTL contracts.

2.2 Problems addressed by contracts

Having considered the historical development of contracts, we now detail the issues addressed
by assume-guarantee contracts for system analysis and design. Chapter 1 discussed major
challenges in system design: modeling, specification, and integration. Assume-guarantee
contracts are formal specifications attached to components in a system; these specifications
have structure: they state (i) what is assumed from the environment and (ii) what is required
from the component when the environment meets the contract’s specifications. Contracts
directly address system specification and integration. Assume-guarantee contracts are or-
thogonal to modeling. Contracts begin to exist after modeling decisions about components
have been effected.

Contracts can be embedded within the design methodology of platform-based design
[174]. In platform-based design, a top-level specification is mapped to an implementation in a
sequence of refinement steps, each adding increasing amounts of detail to the implementation.
At each step, a specification is mapped to a composition of elements from a library. If the level
of abstraction at that step (or platform) permits the designer to capture all necessary details,
the design process ends at that platform; otherwise, the output from that implementation
step becomes the specification for the next one. In platform-based design, it is possible
for one platform to lack enough elements to implement a given specification. When that
happens, we identify a missing component that needs to be added to the library so that the
specification is implemented.

In contract-based design [177], the specifications just mentioned are expressed as con-
tracts, as are the elements from the library of components. Thus, we can implement a
system by focusing on the specifications of the devices comprising the system. This yields
two questions: when a family of contracts from the library is chosen as the “implementation”
of the top-level step, what do we mean formally? When a family of contracts is selected to
implement a top-level spec, what is the contract of the system they generate?

The answer to the first question requires the theory to have a way of comparing contracts;
this will tell us when a contract specification is more specific, or more stringent, than another.
This notion will be called refinement. The second question forces the theory of contracts to
provide a binary operation on contracts which yields the system obtained by the simultaneous
operation of objects adhering to the contracts being composed. This last sentence also means
that we must have ways of relating components to contracts, so that we can check whether
they are valid implementations of the specification.

In the sense we discussed, we keep specifications separate because they correspond to
different components. A different reason for keeping contracts separate is the handling of

CHAPTER 2. INTRODUCTION TO CONTRACTS 15

viewpoints. It can be the case the several groups work on different aspects of the same design
element. For example, one group may be in charge of developing the functionality specifica-
tion of the object, while another develops the specification corresponding to the performance
characterization of the object. We end up with two specifications corresponding to the same
design element. Contracts have an operation, called conjunction, which summarizes into a
single contract all the specifications of the same design element.

We now proceed to discuss the theory of contracts. As contracts as formal specifications,
we first describe the behavioral modeling formalism.

2.3 Behavioral modeling

Behavioral modeling understands components as the set of behaviors they can display. What
is a behavior? We can say that it is a formalized execution of a component, an instance of
the component operating. Any type of component used in engineering design supports
a mathematical description. To illustrate the notion of a behavior, consider the voltage
amplifier shown on the left in Figure 2.1. The device has input x and output y. The amount
of detail that should be present in modeling is always just that which enables us to answer
the questions we have—not more. Suppose we are only interested in the static operation of
the amplifier. In that case, the notion of time is not needed in our description. If we had a
perfect amplifier whose output is exactly equal to its input, we could say that the behaviors
are all pairs of real numbers (x, y) such that y = x. In this case, each of these pairs is a
behavior. Formally, we would express the amplifier as

M =
{
(x, y) ∈ R2

∣∣ y = x
}
.

If we were interested in expressing dynamic attributes of a component, i.e., how it changes
over time, the behaviors we just used would be insufficient. Now we would need to tell how
the inputs and outputs, and possibly state variables, vary over time. If we assume that time
is a continuous variable that takes values in the nonnegative real numbers, R≥0, then each
behavior of the amplifier could be expressed as a function with domain R≥0 and codomain
R2 (for the variables x and y). We could write the amplifier as

M =
{
f ∈ R≥0 → R2

∣∣ f1(t) = f2(t) for all t ∈ R≥0
}
,

where the subscript notation means the projection of the codomain R2 to the corresponding
component (we assume the first component is x, and the second y).

The examples we considered are continuous, but we can also behaviorally model discrete
systems, such asM ′′, shown on the right in Figure 2.1. Here the indicated variables could be
thought of as floating point numbers, and the operations as arithmetic over these numbers;
the flops capture the state of the variables at certain times. M ′′ can be written as

M ′′ =

{
f ∈ N→ F 4

∣∣∣∣∣ For all t ∈ N,
f3(t+ 1) = f1(t) + f2(t) and

f4(i+ 2) = f3(i+ 1)f2(i)

}
,

CHAPTER 2. INTRODUCTION TO CONTRACTS 16

Figure 2.1: Examples of engineering systems to be modeled behaviorally

where F is the set of floating-point numbers.
Observe that the functional notation for the representation of behaviors allows us to ab-

stract whether the behaviors are continuous or discrete, whether their domain is bounded
or not. Having available the notion of a component, we discuss the notion of a property.
Properties, like components, are usually defined as sets of behaviors. The difference is se-
mantics: a property tells the kinds of behaviors which, according to a criterion, are deemed
acceptable. For example, we may place into a property all behaviors deemed safe or respon-
sive. A component M is said to satisfy a property P if all its behaviors are members of
said property, i.e., if M is a subset of P . Given a property P and a model M , the task of
determining whether M ⊆ P is called model-checking, an important and extensive subject
which is not the scope of the present chapter. We suggest [43] as a reference.

The purpose of modeling components is to obtain insight from them or from the systems
we can build out of them. Model checking would yield information about components. In
order to reason about systems out of components, we need two notions: a notion to relate
components to each other and another to represent systems obtained from the composition of
multiple components. We will now increase the formality of our exposition to set the theory
of contracts on a firm basis, and the definitions above will give us the language needed
to discuss these concepts. First, contracts will provide logical machinery to reason about
specifications; thus, we assume that the modeling tasks have been completed, and we have
decided on the types of behaviors over which we want to make predicates. This brings us to
our first definition:

Definition 2.3.1. Let B be a set whose elements we call behaviors.

By defining this set, we assume that we have already decided on the formalism we use to
model our components and the types of properties we wish to verify for those components.
The notions of a component, and of a property, follow immediately:

Definition 2.3.2. A component is a subset of B. Similarly, a property is a subset of B.

The difference between a component and a property is how we use them: we think
of components as sets containing the behaviors that a design entity can display, and we

CHAPTER 2. INTRODUCTION TO CONTRACTS 17

understand a property as the collection of behaviors having a quality of interest, like safety
or liveness. When we speak of a component having a property, we mean this:

Definition 2.3.3. Suppose M is a component, and P a property. We say M satisfies P ,
written M |= P , when

M ⊆ P.

In other words, M satisfies the property when all behaviors of M have a quality of
interest. This notion allows us to define an order for components:

Definition 2.3.4. Let M and M ′ be components. We say that M is a subcomponent of M ′,
written M ≤M ′, when M satisfies all properties of M ′, i.e., when

M ⊆M ′.

We understand a subcomponent as one meeting more stringent requirements. Recall our
component M from Figure 2.1. A refinement of this contract would be, for example, the
component {

f ∈ R≥0 → R2
∣∣ f1(t) = f2(t) and f1(t) ≤ 5 for all t ∈ R≥0

}
.

One may verify that the behaviors of this component belong to those of the amplifier.
Now that we have the notion of refinement, we consider the construction of systems. We

model systems as components interacting with one another. The notion of composition in
behavioral modeling is as follows.

Definition 2.3.5. Let M and M ′ be components. The composite of M and M ′, denoted
M ∥M ′, is the component

M ∥M ′ =M ∩M ′.

If we interpret M as the behaviors satisfying a certain constraint, and M ′ as those
satisfying another, the composite is the component containing the behaviors satisfying both
constraints simultaneously. This notion of composition is independent of the topology of
the connection between M and M ′; the topology is implicitly included in the collections of
behaviors of each component.

Consider components M and M ′ from Figure 2.1. When we discuss the composition
of components, it is necessary that all their behaviors be defined with respect to the same
variables, that is, both M and M ′ must refer to variables x, y, z. Thus, we could express
components M and M ′ as follows:

M =
{
f ∈ R≥0 → R3

∣∣ f1(t) = f2(t) for all t ∈ R≥0
}

M ′ =
{
f ∈ R≥0 → R3

∣∣ f2(t) = f3(t) for all t ∈ R≥0
}
.

CHAPTER 2. INTRODUCTION TO CONTRACTS 18

Observe that M imposes no restrictions on the third component (corresponding to vari-
able z), and M ′ imposes no restrictions on the first (corresponding to variable x). The
composition of these two objects is

M ∥M ′ =
{
f ∈ R≥0 → R3

∣∣ f1(t) = f2(t) and f2(t) = f3(t) for all t ∈ R≥0
}
,

which corresponds to our understanding that z = y = x when the two components are used
concurrently. Observe that the variables used by the components determine the connection
between them, i.e., due to the fact the output of M is y and the input of M ′ is y, the
composition of M and M ′ connects the output of M to the input of M ′.

Now we consider the notion of component replacement in a system.

Proposition 2.3.6. Let M be a component and Ms be a subcomponent of M . For any
component M ′,

M ′ ∥Ms ≤M ′ ∥M.

This proposition is a direct consequence of the monotonicity of set intersection with
respect to the subset order and has important implications. It says that if we build a system
as the composite M ′ ∥ M , in this system we can replace M with its subcomponent Ms,
and the new system will satisfy all properties it satisfied before the component replacement
happened.

2.4 Assume-guarantee contracts

Assume-guarantee contracts are a pairs of properties C = (A,G), where A,G ⊆ B, the
universe of behaviors. We call A the assumptions of the contract, and G the guarantees of
the contract. We say that a component E is an environment for a contract C = (A,G) if E
satisfies the assumptions of the contract (i.e., E |= A). We say that a component M is an
implementation for a contract C if M satisfies the guarantees of the contract, provided that
it operates in an environment of the contract (i.e., M ∥ E |= G for all E |= A).

We split formal specifications into assumptions and guarantees implementations can only
make promises when some conditions hold on the environments in which they operate. By
splitting a specification into assumptions and guarantees, we partially characterize the con-
text of operations of implementations, and we state that implementations should fulfill their
promises at least in those contexts.

Contracts provide formal structure to support two key system tasks: compositional de-
sign and indepedent analysis. Compositional design has to do with building a whole using
constituents. Independent analysis means that contracts allows engineers to use for a given
kind of analysis only the amount of detail necessary to carry out that task.

2.4.1 Compositional design

As we pointed out at the beginning of the chapter, we need two concepts to implement
compositional design with contracts:

CHAPTER 2. INTRODUCTION TO CONTRACTS 19

� a way to compare contracts and

� an operation to obtain system specifications from the specifications of subsystems.

The notion of order for contracts is called refinement.

Definition 2.4.1. Given contracts C = (A,G) and C ′ = (A′, G′), we say that C refines C ′,
written C ≤ C ′, if the environments of C ′ are environments of C and the implementations of
C are implementations of C ′.

In terms of the components of the contracts, we have C ≤ C ′ when

A′ ≤ A and G∪ ¬A ≤ G′ ∪ ¬A′.

The notion of refinement allows to say that two contracts are equivalent when they
have the same environments and the same implementations. We observe that a contract
C = (A,G) is equivalent to the contract (A,G∪¬A). When the pair (A,G) = (A,G∪¬A),
we say that the contract is in saturated, or canonical, form. Algebraically, contract operations
are cleanest when we assume that the contracts are given in canonical form. Thus, from now
on, we assume that all contracts are in this form, unless we say otherwise.

When we have a top-level specification C we wish to implement, and we have implemented
a system with specification Cs. The question of whether our system spec meets the top-level
is whether Cs ≤ C.

The second notion we needed to implement a compositional design methodology is an
operation of composition. The definition of composition follows the Abadi-Lamport compo-
sition axiom [1].

Definition 2.4.2. Given contracts C and C ′, their composition, written C ∥ C ′, is the smallest
contract in the refinement order such that

� any composition of implementations of the contracts being composed is an implemen-
tation of the composite specification;

� any composition of an implementation of C with an environment of the system-level
contract is an environment for C ′;

� the same for C.

The closed form expression for this operation is

C ∥ C ′ = (A∩ A′ ∪ ¬(G∩G′), G∩G′) .

Composition is commutative and associative. The operation of composition together
with the refinement relation are the formal keys to compositional, independent design. For
example, suppose an OEM wishes to implement a system with top-level specification C.

CHAPTER 2. INTRODUCTION TO CONTRACTS 20

The OEM identifies a sequence of subsystems obeying specifications {Ci}Ni=1 such that the
composition of these specifications refines the top-level contract:

C1 ∥ . . . ∥ CN ≤ C.

Then the OEM can hand out the subsystem contracts to independent suppliers. The suppli-
ers can generate implementations for each subcontract. Contract theory guarantees that the
system obtained when composing the various implementations will implement the original
top-level spec, C. Thus, contracts can formalize interactions between various players in a
supply chain.

2.4.2 Independent analysis

The third concept we discussed in the introduction was handling multiple viewpoints. In
general, we can associate several specifications to a design element, representing various
aspects of the same object. For example, for the same element, we can have a specification
Cf for functionality and Ct for timing. The overall specification for the object is one which
enforces both specifications simultaneously, namely the conjunction in the refinement order:

Cf ∧ Ct.

This conjunction operation is the least-upper bound of the refinement order. If we write
C = (A,G) and C ′ = (A′, G′), the closed form for this operation is

C ∧ C ′ = (A∪ A′, G∩G′).

Now suppose we build a system using two components with specifications C1 and C2.
Each of these specifications consists of a functionality and a timing spec, i.e., Ci = Cfi ∧ Cti .
The resulting system is

C1 ∥ C2 = (Cf1 ∧ Ct1) ∥ (C
f
2 ∧ Ct2).

Property 6 in Ch 4 of [19] tells us that the previous expression can be bounded as

C1 ∥ C2 ≤ (Cf1 ∥ C
f
2) ∧ (Ct1 ∥ Ct2).

In other words, using contracts, we can carry out analysis using only the viewpoints that
we are interested in analyzing. The resulting contracts obtained in this way are a correct
abstraction of the system specification.

2.4.3 Product lines

The operation of conjunction was derived from the partial order of contracts. The partial
order generates a second binary operation, disjunction (or the least upper bound), computed
as follows:

C ∨ C ′ = (A∩ A′, G∪G′).

CHAPTER 2. INTRODUCTION TO CONTRACTS 21

This operation plays a role in product lines. Suppose we have several products belonging
to the same family of products. Each of the products has its own contract. Then the
disjunction of these contracts yields the specification of the product family1.

1We thank Jean-Marc Jézéquel for pointing out during a talk at Inria Rennes that disjunction finds
application in product families.

22

Chapter 3

Quotient for assume-guarantee
Contracts

This chapter discusses the notion of quotient set for a pair of contracts and the operation of
quotient for assume-guarantee contracts. The quotient set and its related operation can be
used in any compositional methodology where design requirements are mapped into a set of
components in a library. In particular, they can be used for the so called missing component
problem, where the given components are not capable of discharging the obligations of the
requirements. In this case, the quotient operation identifies the contract for a component
that, if added to the original set, makes the resulting system fulfill the requirements.

3.1 Introduction

Decomposing specifications is a recurrent step in reuse-based, meet-in-the-middle design
methodologies such as Platform-Based Design (e.g., see [13]). In these methodologies that
are fairly common in industry, during the top-down phase, the specification for a system
is decomposed into a set of refined specifications of sub-components, i.e., the high-level
architecture of the design is determined. This step fits in a refinement-driven process where
higher level specifications are mapped into lower level implementations. This decomposition
is “guided” by the existence of a set of predefined components in a library, the bottom-up
part of the methodology.

More formally, suppose a designer wishes to implement a system that satisfies a top-
level specification T , and will use in this design a set of n components from a library with
specifications F = (Ti)ni=1. If the composition of these n design elements refines the top
level specification T , the design assembled from the components satisfies the specification.
However, if this is not the case, the designer must add at least one element to the library.
In other words, the designer must identify a specification TM such that its composition with
the composition of (Ti)ni=1 refines T .

This problem corresponds to identifying the missing (unknown) component in a library

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 23

(e.g., see [197] and references therein). In the language of contract-based design, we need
to compute the contract quotient that guarantees that TM is as “large” a specification as
possible in the refinement order so that whoever is in charge of adding the element to the
library has the maximum degree of freedom in its implementation. In industry, this problem
is in general tackled heuristically. The notion of quotient for assume-guarantee contracts
aims at finding a rigorous procedure for the determination of the largest specification of the
missing component.
Related work. In [121], Le et al. address the problem of fixing a decomposition so that
it refines a specification: given a top-level contract C and family of contracts (Ci)ni=1 whose
composition may not refine C, find a family (C ′i)ni=1 such that C ′i ≤ Ci for all i and ∥ni=1

C ′i ≤ C. In this setting, the designer begins with a high-level specification C and an initial
decomposition of the specification into various components, but the specification, Ci, of any
component may need to be corrected to C ′i.

Notions similar to quotients have been previously investigated in the context of various
behavioral formalisms. Chilton et al. formulate in [41] an assume-guarantee framework for
reasoning about components modeled as a variant of interface automata introduced by Chen
et al. [38], including quotient operations. Similarly, Bhaduri and Ramesh [21] investigate the
problem of synthesizing, given P and Q as interface automata, R such that the composition
of R and P refines Q; they provide a game-theoretic formulation of the problem as computing
winning strategies over a game between P and Q. In addition, Raclet [168] introduces the
concept of a residual specification in the context of modal automata.

Another related line of research is on assumption generation in the context of composi-
tional verification [7, 25, 46]: Given a component M and a desired property P , what is the
weakest assumption A that M can make about its environment such that M ⊕ A |= P?
These works typically assume M and A to be labelled transition systems, and exploit their
structures as part of a learning algorithm (e.g., L* [8]).

Compared to the contributions mentioned above, our approach differs in that we provide
a general form for the contract quotient for assume-guarantee contracts, i.e., a formulation
that holds for all variants of assume-guarantee contracts. Furthermore, as far as we know,
our approach is the first to introduce the notion of a quotient set in the context of assume-
guarantee contracts. This defines a range of contracts that can be composed with C1 to yield
the largest contract that refines C.
Specific Contributions. Benveniste et al. in their comprehensive review of contract based
design [19], on page 188, state that “no Least Upper Bound and no quotient are known
for AG contracts.” This chapter provides an explicit form for the quotient operation of AG
contracts (Theorem 3.2.5 in Section 3.2). We point out that notions similar to quotients have
been proposed for AG contracts before, but these operations are defined when contracts are
expressed in specific formalisms [41,46,71].

We also introduce the notion of the quotient set (Definition 3.2.6), a set that contains all
contracts C ′ such that C ′ ∥ C1 = (C/C1) ∥ C1 for given contracts C and C1. The quotient set
tells us which contracts extend C1 into C in the largest way possible. We fully characterize
the quotient set in Theorem 3.2.7 (Section 3.2).

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 24

A further contribution of this chapter is an alternate definition of the quotient opera-
tion for the meta-theory of contracts (Section 3.3). The new definition makes the quotient
operation an obvious analog of the composition operation and makes the derivation of the
quotient for AG contracts almost immediate.

Finally, we show a methodology and examples of the use of the quotient operation in
the design of an ALU and of an automotive system (Section 3.4). We believe the theory in
this chapter can significantly improve the integration process in practical system design. For
example, it can assist automotive Original Equipment Manufacturers (OEMs) in defining the
specification of a component to be implemented1. We show that with appropriate automation
tools, which are left as future work, the process can be formal but still efficient.

3.2 Quotient of Assume-Guarantee Contracts

Assume that C = (A,G) is the top-level specification we wish to implement and that
C1 = (A1, G1) is the specification of a component that will be used in the design. We are
interested in the part of the specification that is not discharged by C1, and in the maximal
specification we can form by composing C1 with a missing specification with the result refin-
ing C. We introduce the quotient operation of assume-guarantee contracts in Section 3.2.1.
We introduce in Section 3.2.2 the quotient set (Definition 3.2.6), a notion that expresses
what we need to do to complement C1 to satisfy C in a maximal way in the refinement order.
Theorems 3.2.5 and 3.2.7 are our main results in this section. Theorem 3.2.5 provides an
explicit formula for the quotient operation for assume-guarantee contracts, and Theorem
3.2.7 provides a complete characterization of the quotient set as an interval of contracts.
Throughout this section, we assume all AG contracts are given in saturated form. We ob-
serve that this is not restrictive since a contract can always be saturated through the mapping
(A,G) 7−→ (A,G∪ ¬A). A contract is semantically equivalent to its saturated form. In our
manipulations, we evaluate set-theoretic operators in the order ¬, ∩, ∪. Missing proofs are
given in the appendix.

3.2.1 Quotient Operation of AG Contracts

In this section we introduce the quotient operation of AG contracts. Given contracts C and
C1, the quotient C/C1 is the largest contract whose composition with C1 refines C, i.e.,

C ′ ≤ C/C1 ⇐⇒ C ′ ∥ C1 ≤ C. (3.1)

The explicit formulation of the quotient is not known for AG contracts [19]. One of our key
contributions is the explicit expression for this quotient.

1In industrial designs, OEMs generally keep most of the components and only change as few components
as possible when a new design is developed. The task here is to perform the minimum amount of work
needed to identify and implement the new components

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 25

To obtain the quotient, we first define contract R. Lemma 3.2.4 shows that R has
properties akin to those of the quotient operation, and Theorem 3.2.5 uses this result to
provide the quotient operation.

Definition 3.2.1. Let C = (A,G) be an AG contract. We use the notation a(C) and g(C)
to refer to the sets of assumptions and guarantees of C, respectively, i.e., (A,G) Aa

and (A,G) G
g

.

We provide various bounds on a saturated contract C ′ that satisfies C ′ ∥ C1 ≤ C.

Lemma 3.2.2. Let C = (A,G), C1 = (A1, G1), and C ′ = (A′, G′) be saturated AG contracts
such that C ′ ∥ C1 ≤ C. Then

g(C ′) ⊆ ¬G1 ∪G, (3.2)

g(C ′ ∥ C1) ⊆ G1 ∩G, (3.3)

A∪ ¬G1 ⊆ a(C ′ ∥ C1), and (3.4)

A∩G1 ⊆ a(C ′). (3.5)

Proof. Suppose G′ ̸⊆ G∪¬G1, i.e., ∅ ≠ G′∩¬(G∪¬G1) = G′∩¬G∩G1. Then G
′∩G1 ̸⊆ G,

which contradicts C ′ ∥ C1 ≤ C. Thus, G′ ⊆ G ∪ ¬G1, proving (3.2), and G′ ∩ G1 ⊆ (G ∪
¬G1)∩G1 = G∩G1, and (3.3) holds. Now we prove (3.4). Since C ′ ∥ C1 ≤ C, we have

A ⊆ (A1 ∩ A′)∪ ¬G1 ∪ ¬G′ (3.6)

For (3.6) to hold, we must have

¬G′ ⊇ A∩ ¬ ((A1 ∩ A′)∪ ¬G1)

= A∩G1 ∩ (¬A1 ∪ ¬A′).

Equation (3.6) becomes

(A1 ∩ A′)∪ ¬G1 ∪ ¬G′

⊇ (A1 ∩ A′)∪ ¬G1 ∪ (A∩G1 ∩ ¬(A1 ∩ A′))

= (A1 ∩ A′)∪ ¬G1 ∪ (A∩G1 ∩ ¬(A1 ∩ A′))

∪ (A∩G1)∪ A = A∪ ¬G1 ∪ (A1 ∩ A′) ⊇ A∪ ¬G1,

proving (3.4). Now, from (3.6), A ∩ G′ ∩ G1 ⊆ A1 ∩ A′ ⇒ A ∩ G′ ∩ G1 ⊆ A′. Due to the
saturation of C ′, we also have A′ ⊇ ¬G′; then A′ ⊇ A ∩G′ ∩G1 ∪ ¬G′ = A ∩G1 ∪ ¬G′ ⇒
A′ ⊇ A∩G1, proving (3.5).

We proceed to define contract R, which is computed from C and C ′. We show in
Lemma 3.2.4 that contract R has properties that resemble those of the quotient operation,
and in Theorem 3.2.5 we use this result to provide the quotient operation.

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 26

Definition 3.2.3. Let C = (A,G) and C1 = (A1, G1) be saturated contracts. We define the
contract

R(C, C1) := (A∩G1, G∪ ¬G1) .

When the context of C and C1 is clear, we may use the notation R = R(C, C1).

Lemma 3.2.4. Let C, C1, and C ′ be saturated contracts. The following statements are
equivalent:

i. C ′ ∥ C1 ≤ C and

ii. C ′ ≤ R and A∩G′ ⊆ A1.

Proof. (i. ⇒ ii.). Let C ′ be a saturated contract such that C ′ ∥ C1 ≤ C. From Lemma 3.2.2,
g(C ′) ⊆ G ∪ ¬G1 = g(R) and a(C ′) ⊇ A ∩ G1 = a(R), i.e., C ′ ≤ R. Moreover, from i.,
A ⊆ A1∩A′∪¬G1∪¬G′ ⊆ A1∪¬G′. Intersecting both sides with G′, we obtain A∩G′ ⊆ A1.

(ii. ⇒ i.). Assume C ′ ≤ R and A ∩ G′ ⊆ A1. Then g(C ′ ∥ C1) = g(C ′) ∩ G1 ⊆ g(R) ∩
G1 ⊆ g(C). From ii., we have A ∩ G′ ⊆ A1 and A ∩ G1 = a(R) ⊆ a(C ′) = A′; thus,
A1 ∩A′ ⊇ A∩G′ ∩G1. Therefore, we can write A1 ∩A′ = A1 ∩A′ ∪A∩G′ ∩G1 (since we
are just adding a subset). With this identity, we have a(C ′ ∥ C1) = A1 ∩ A′ ∪ ¬G′ ∪ ¬G1 =
A1 ∩ A′ ∪ ¬G′ ∪ ¬G1 ∪ A∩G′ ∩G1 ⊇ A = a(C). We conclude that C ′ ∥ C1 ≤ C.

Theorem 3.2.5 (Quotient of AG contracts). Given saturated contracts C and C1, the oper-
ation defined as

C/C1 := (A∩G1, A1 ∩G∪ ¬(A∩G1)) (3.7)

is the quotient in the formalism of assume-guarantee contracts.

Proof. We observe that the operation just defined produces a contract in saturated form.
We wish to show that this operation satisfies (3.1).

(⇐) in (3.1). Suppose C ′ is a saturated contract such that C1 ∥ C ′ ≤ C. By Lemma 3.2.4,
A ∩ g(C ′) ⊆ A1 ⇒ g(C ′) ⊆ A1 ∪ ¬A and C ′ ≤ R ⇒ g(C ′) ⊆ G ∪ ¬G1. Thus, g(C ′) ⊆ (A1 ∪
¬A)∩(G∪¬G1) = g(C/C1). Moreover, since C ′ ≤ R, it follows that a(C ′) ⊇ A∩G1 = a(C/C1).
We thus conclude that C ′ ≤ C/C1.

(⇒) in (3.1). Suppose C ′ is a saturated contract such that C ′ ≤ C/C1. We have
g ((C/C1) ∥ C1) = G1∩A1∩G∪G1∩¬A ⊆ g(C). We also have a ((C/C1) ∥ C1) = A1∩A∩G1∪
¬G1 ∪ A∩G1 ∩ (¬A1 ∪ ¬G) ⊇ A = a(C). We conclude that C ≥ (C/C1) ∥ C1 ≥ C ′ ∥ C1.

We can develop intuition about the expression we derived. A component which is designed
to the specifications of the quotient can use the assumptions of C and can assume that C1
will meet its guarantees; thus the assumptions of the quotient are A ∩ G1. On the side of
guarantees, the component built to the quotient specifications must provide the guarantees
of C and the assumptions of C1 (to make sure C1 can meet its guarantees); however, the
component can relax its guarantees by the assumptions of C and by the guarantees of C1.
This results in the guarantees we derived for the quotient.

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 27

3.2.2 Quotient Set of AG Contracts

We introduce the concept of quotient set to answer two questions:

� When designing a system to meet a specification C, what is the biggest specification
achievable if a component with specification C1 must be used in the design? That is,
we seek to characterize the contracts whose compositions with C1 result in the biggest
possible contract that refines C.

� Given a contract C1 and a contract C that is the result of the composition of C1 with
another contract, what are all contracts C ′ that satisfy C = C1 ∥ C ′? In this case, we
solve the inverse problem to composition.

We call the set of such contracts the quotient set. We begin our quest for the quotient
set with an observation: suppose that C ′ is a saturated contract that satisfies C ′ ∥ C1 ≤ C.
Then C ′ ≤ C/C1. This last statement implies that C ′ ∥ C1 ≤ C/C1 ∥ C1. Thus, the greatest
resulting contract achievable by composing C1 with a contract with the result refining C is
C1 ∥ C/C1. A quick computation reveals that

C1 ∥ C/C1 = (A∪ ¬G1, G1 ∩ (A1 ∩G∪ ¬A)) .

Thus, we define a set Q whose elements are saturated contracts whose composition with C1 is
equal to the composition we just derived (Definition 3.2.6). We then show in Theorem 3.2.7
that the quotient set is completely characterized as an interval of contracts. After providing
this result, we discuss a special and important case of contract decomposition which allows
us to simplify many expressions.

Definition 3.2.6. Let C = (A,G) and C1 = (A1, G1) be saturated contracts. We define the
quotient set Q(C, C1) as

Q(C, C1) := {C ′ | C ′ is saturated,
g(C ′ ∥ C1) = G1 ∩ (A1 ∩G∪ ¬A),
a(C ′ ∥ C1) = A∪ ¬G1}.

We also define the lower quotient operation (C/C1)− as

(C/C1)− := (A∪ ¬G1 ∪ ¬A1, G1 ∩ (A1 ∩G∪ ¬A)).

Theorem 3.2.7. Let C = (A,G) and C1 = (A1, G1) be saturated contracts. Then Q(C, C1) =
[(C/C1)−, C/C1].

Proof. (⇐) Let C ′ be a saturated contract with (C/C1)− ≤ C ′ ≤ C/C1. We wish to show
that C ′ ∈ Q. A quick calculation shows that C/C1, (C/C1)− ∈ Q, which means that C1 ∥
(C/C1)− = C1 ∥ C/C1 = C1 ∥ C ′′ for any C ′′ ∈ Q. Composing our assumption with C1 results

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 28

in C1 ∥ (C/C1)− ≤ C1 ∥ C ′ ≤ C1 ∥ C/C1; therefore, C1 ∥ C ′ = C1 ∥ C ′′, which implies that
C ′ ∈ Q.

(⇒) Let C ′ = (A′, G′) ∈ Q. From the definition of Q, it follows immediately that
C1 ∥ C ′ ≤ C. Thus, C ′ ≤ C/C1. We need to show that (C/C1)− ≤ C ′. Expanding C1 ∥ C ′ and
using the fact that C ′ ∈ Q gives

A∪ ¬G1 = a(C1 ∥ C ′) = A1 ∩ A′ ∪ ¬G1 ∪ ¬G′ and (3.8)

G1 ∩ (A1 ∩G∪ ¬A) = g(C1 ∥ C ′) = G1 ∩G′. (3.9)

Equation (3.9) gives the following bounds:

G1 ∩ (A1 ∩G∪ ¬A) ⊆ G′ ⊆ A1 ∩G∪ ¬A∪ ¬G1.

Plugging any of these bounds in (3.8) results in A∪¬G1 = A1∩A′∪¬G1∪¬G∪A∩¬A1.
From this expression, we get the bound A′ ⊆ A ∪ ¬G1 ∪ ¬A1 = a ((C/C1)−). Moreover, we
note that the leftmost expression of (3.9) is g ((C/C1)−); thus, (3.9) gives us g ((C/C1)−) ⊆ G′.
We conclude that (C/C1)− ≤ C ′.

It should be emphasized that Theorem 3.2.7 gives a full characterization of the quotient
set, which tells the contracts extending C1 into C in the largest way possible. The bounds
we obtained are the quotient operation and the lower quotient. We understand what the
quotient operation gives us (the part of the top-level spec C that C1 is missing). But what is
the lower quotient? We start by recalling that Q contains the contracts whose composition
with C1 gives the biggest possible contract that refines C; the result of this composition
is C1 ∥ C/C1 since the quotient gives the largest extension of C1 into C. We showed that
(C/C1)− ∈ Q, so C1 ∥ (C/C1)− is the biggest contract achievable by using C1 while refining C.
We observe that the assumptions of the lower quotient are A ∪ ¬G1 ∪ ¬A1, i.e., the lower
quotient must fulfill its guarantees when the assumptions of C are met, when the assumptions
of C1 are not met, or when the guarantees of C1 are not met; this means that if C1 fails to
behave as it promised, (C/C1)−’s guarantees are in force. And what are these guarantees? If
A holds, these guarantees are G1 ∩A1 ∩G, i.e., the contract meets the guarantees of C and
meets the assumptions and guarantees of C1; if A does not hold, these guarantees are G1.
Thus, we interpret (C/C1)− as the contract whose implementations are maximally redundant
with respect to contract C1 while completing C1 in the largest possible way. In contrast, C/C1
relies completely on the fact that C1 will behave as it promises.

3.2.2.1 A simplification of the quotient

Now we consider a simplification that occurs to the quotient operation when A ∩ G ⊆ A1.
This condition holds when, for instance, all inputs of C1 can be mapped directly to either
compatible inputs or compatible outputs of C; note that in this case we are interpreting the
assumptions and guarantees of C1 in terms of IO behavior. The following corollary shows
how the quotient set and its bound simplify when A∩G ⊆ G1:

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 29

Corollary 3.2.8. Let C = (A,G) and C1 = (A1, G1) be saturated contracts. If A∩G ⊆ A1,
the quotient set simplifies to

Q(C, C1) := {C ′ | C ′ is saturated,
g(C ′ ∥ C1) = G1 ∩G,

a(C ′ ∥ C1) = A∪ ¬G1},

the quotient operation becomes C/C1 = R(C, C1), and the lower quotient becomes (C/C1)− =
L(C, C1), where

L(C, C1) := (A∪ ¬(G1 ∩ A1), G∩G1) .

Proof. Let A∩G ⊂ A1. Then G1∩(A1∩G∪¬A) = G1∩(A1∩G∪¬A∪G∩¬A1) = G1∩G.
Therefore, we have

Q(C, C1) =

C ′
∣∣∣∣∣∣∣
C ′ is saturated,
g(C ′ ∥ C1) = G1 ∩ (A1 ∩G∪ ¬A),
a(C ′ ∥ C1) = A∪ ¬G1

=

C ′
∣∣∣∣∣∣∣
C ′ is saturated,
g(C ′ ∥ C1) = G1 ∩G,

a(C ′ ∥ C1) = A∪ ¬G1

 .

Moreover, (C/C1)− = (A∪¬G1∪¬A1, G1∩(A1∩G∪¬A)) = (A∪¬G1∪¬A1, G1∩G) = L.
Finally, we observe that A1 ∩ G ∪ ¬(A ∩ G1) = A1 ∩ G ∪ ¬A ∪ ¬G1 = A1 ∩ G ∪

¬A ∪ ¬G1 ∪G ∩ ¬A1 = G ∪ ¬G1. We thus have C/C1 = (A∩G1, A1 ∩G∪ ¬(A∩G1)) =
(A∩G1, G∪ ¬G1) = R(C, C1).

Corollary 3.2.8 tells us that R is equal to the quotient operation and L is equal to
the lower quotient when the condition A ∩ G ⊆ A1 holds. Observe the form of R: R =
(A∩G1, G∪ ¬G1). It assumes the assumptions of C and the guarantees of C1, and it guar-
antees g(C) relaxed by whatever C1 guarantees. This is a very intuitive notion of the quotient.
And what is L? Note that L = (A∪ ¬(G1 ∩ A1), G∩G1). This contract is responsible for
its guarantees when either the assumptions of C are in force or when either the assumptions
or guarantees of C1 are not met (i.e., when C1 fails). And the guarantees of L are G ∩ G1,
i.e., L provides the guarantees of both C1 and C. Thus, L is correlated with a maximally
redundant design.

We now consider a simple example that demonstrates the use of these concepts.

3.2.3 An Illustrative Example

Suppose we are designing a system with a Boolean input r and Boolean outputs s and
p. Upon the assertion of r, the purpose of this system is to eventually assert s and to

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 30

eventually assert p as long as the environment respects reasonable physical constraints. That
is, the system must guarantee G(r −→ Fs ∧ Fp), subject to the assumptions e ∈ E (i.e., a
continuous environment variable is within some acceptable set). The top level contract is

C = (A,G) = (e ∈ E,G(r −→ Fs ∧ Fp) ∨ e ̸∈ E) .

Suppose a component to be used in the design guarantees the assertion of s one time event
after the assertion of r. Moreover, suppose that this component has laxer requirements on
the environment than the top-level spec. It follows this component obeys the contract

C1 = (A1, G1) = (e ∈ E1,G(r −→ Xs) ∨ e ̸∈ E1) ,

where E1 ⊇ E.
If a component with contract C1 is used to build a design that meets the spec C, we

compute the quotient to determine how much of the top-level spec C1 is missing. Intuitively,
what do we expect the quotient to give us? We see that C1 can satisfy the Fs part of C.
Thus, we expect the quotient to only have to guarantee G(r −→ Fp). We now carry out the
computation.

Since A ⊆ A1, it follows that R is the contract quotient C/C1 (Corollary 3.2.8). We
compute R = (A∩G1, G∪ ¬G1):

a(R) =e ∈ E ∧G(r −→ Xs) ∨ e ∈ E ∧ e ̸∈ E1

g(R) =G(r −→ Fs ∧ Fp)

∨ e ̸∈ E ∨ ¬G(r −→ Xs) ∧ e ∈ E1.

Since E ⊆ E1, we can simplify the assumptions to a(R) = e ∈ E ∧ G(r −→ Xs). The
guarantees become

g(R) =G(r −→ Fs ∧ Fp) ∨ e ̸∈ E ∨ ¬G(r −→ Xs)

=G (r −→ Fs ∧ Fp) ∧G (r −→ Xs)

∨ e ̸∈ E ∨ ¬G(r −→ Xs)

=G ((r −→ Fs ∧ Fp) ∧ (r −→ Xs))

∨ e ̸∈ E ∨ ¬G(r −→ Xs)

=G(r −→ Xs ∧ Fp)

∨ e ̸∈ E ∨ ¬G(r −→ Xs)

=G(r −→ Fp) ∨ e ̸∈ E ∨ ¬G(r −→ Xs).

R is (up to saturation) what we posited was missing: G(r −→ Fp).
Computing L = (A∪¬(A1∩G1), G∩G1) results in a(L) = e ∈ E∨e ̸∈ E1∨¬G(r −→ Xs)

and g(L) = G(r −→ Xs∧Fp)∨G(r −→ Xs)∧e ̸∈ E∨e ̸∈ E1. As we discussed before, L has
the characteristic of providing the guarantees of C and of C1, i.e., L provides a specification
with redundancy.

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 31

3.3 Quotient in the Meta-Theory of Contracts

In this section, we consider contracts at their most general level, i.e., we stop considering
the assume-guarantee framework and operate on our contracts as defined in the meta-theory
of contracts. Our contributions are a new definition for the quotient operation and the
introduction of the quotient set in the meta-theory. Our purpose in introducing a new (but
equivalent) definition of the quotient operation is that the new formulation is an obvious
adjoint of the composition operation, making the definition of quotient symmetrical to the
definition of composition. From our definition, the derivation of the quotient operation in
the assume-guarantee framework comes readily. Hence, at the end of the section we provide
a second derivation of the AG quotient.

3.3.1 What is the Meta-Theory of Contracts?

Before discussing various contract theories, Benveniste et al. [19] introduce a meta-theory of
contracts. This meta-theory defines contracts on a set of primitives and allows for a birds-eye
view of the subject, focusing on semantic concepts. Several key facts can be proved at this
level. We can interpret other contract theories, like assume-guarantee and interface theories,
as specializations of the meta-theory.

In the meta-theory, the most primitive concept is the component. Composition, ×, is
a partial binary operation on components. We say components M1 and M2 are composable
if M1 ×M2 is well-defined. We say a component E is an environment for component M if
M × E is well-defined. A contract C has semantics given by (E ,M), where E and M are
sets of components which are valid environments and implementations, respectively, of the
contract C.

A contract C is called consistent if M ≠ ∅ and compatible if E ̸= ∅. We say that a
component M is an implementation of contract C (M |=M C) iff M ∈ M; we say that a
component E is an environment of contract C (E |=E C) iff E ∈ E .

Refinement in the meta-theory is defined as follows: we say contract C ′ = (E ′,M′) is a
refinement of contract C = (E ,M) if E ′ ⊇ E andM′ ⊆M. For contracts C and C ′, C∧C ′ and
C ∨ C ′ are the Greatest Lower Bound (GLB) and Least Upper Bound (LSB), respectively, in
the refinement order. In the meta-theory, we make the following assumption:

Assumption 3.3.1. Both the GLB and LUB are well-defined.

Now we get to composition. The composition of contracts C1 = (E1,M1) and C ′ =
(E ′,M′) is defined as follows: C1 ∥ C ′ is well-defined if M1 and M ′ are composable for all
M1 ∈M1 and M ′ ∈M′. If it is well-defined, this composition is C1 ∥ C ′ = ∧CC1,C′ , where

CC1,C′ =

C
∣∣∣∣∣∣∣∣∣∣
M1 × E |=E C ′, M ′ × E |=E C1,
and M ′ ×M1 |=M C for all

E,M1,M
′ such that E |=E C,

M1 |=M C1, and M ′ |=M C ′

 .

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 32

The quotient operation is defined as C/C1 = ∨{C ′ | C ′ ∥ C1 ≤ C}, i.e., the greatest C ′ such
that C ′ ∥ C1 refines C. Any contract that refines the quotient also refines C when composed
with C1 and vice versa, as expressed in (3.1).

3.3.2 The Quotients in the Meta-Theory

We define the following sets of contracts:

Definition 3.3.1. Given contracts C and C1, let

� S := {C ′ | C ′ ∥ C1 ≤ C}. Contracts whose composition with C1 refines C.

� U := {C ′ ∥ C1 | C ′ ∈ S}. The compositions of C1 that refine C.

� Q := {C ′ | C ′ ∥ C1 = ∨U}. Quotient set: contracts whose composition with C1 is largest
while refining C.

The definition of quotient in the meta-theory is given by C/C1 = ∨S. From the definitions
we introduced, it is clear that C/C1 = ∨Q. We now introduce another set of contracts which
we will show is equivalent to S (Lemma 3.3.3).

Definition 3.3.2. Given contracts C and C1, we define the following set of contracts:

CC/C1 :=

C
′

∣∣∣∣∣∣∣∣∣∣
M1 × E |=E C ′, M ′ × E |=E C1,
and M ′ ×M1 |=M C for all

E,M1,M
′ such that E |=E C,

M1 |=M C1, and M ′ |=M C ′

 .

Lemma 3.3.3. CC/C1 = S.

Proof. We have S = {C ′ | C ′ ∥ C1 ≤ C}. We observe we can write S as

S =

C ′

∣∣∣∣∣∣∣∣∣∣∣∣

C ′ ∥ C1 ≤ C,
M1 × E |=E C ′, M ′ × E |=E C1,
and M ′ ×M1 |=M C1 ∥ C ′ for all
E,M1,M

′ such that E |=E C1 ∥ C ′,
M1 |=M C1, and M ′ |=M C ′

since we have just conjoined a true statement to the conditions that define the set. Now,
since C1 ∥ C ′ ≤ C within the conditions of S, E |=E C ⇒ E |=E C1 ∥ C ′. Therefore, for
any M1 |=M C1, M ′ |=M C ′, and E |=E C, we have M1 × E |=E C ′, M ′ × E |=E C1, and

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 33

M ′×M1 |=M C1 ∥ C ′. Using again the fact that C1 ∥ C ′ ≤ C givesM ′×M1 |=M C. Therefore,
S becomes

S =

C ′

∣∣∣∣∣∣∣∣∣∣∣∣

C ′ ∥ C1 ≤ C,
M1 × E |=E C ′, M ′ × E |=E C1,
and M ′ ×M1 |=M C for all

E,M1,M
′ such that E |=E C,

M1 |=M C1, and M ′ |=M C ′

.

We observe that the second condition means that C ∈ CC1,C′ . This implies that C1 ∥ C ′ =
∧CC1,C′ ≤ C, which means that the first condition is redundant. We can thus write S as

S =

C
′

∣∣∣∣∣∣∣∣∣∣
M1 × E |=E C ′, M ′ × E |=E C1,
and M ′ ×M1 |=M C for all

E,M1,M
′ such that E |=E C,

M1 |=M C1, and M ′ |=M C ′

 ,

that is, S = CC/C1 .

It follows that we can define the contract in the meta-theory as C/C1 = ∨CC/C1 . This
definition is analogous to the definition of composition (C1 ∥ C ′ = ∧CC1,C′). Finally, we
can define the lower quotient operation for the meta-theory as (C/C1)− = ∧Q. We now
show that this definition of quotient in the meta-theory readily leads to a derivation of the
quotient operation for assume-guarantee contracts.

3.3.3 A second derivation of the quotient operation of
assume-guarantee contracts

We use the new definition of the contract quotient to derive the quotient operation of AG
contracts. The key is expressing CC/C1 in the AG framework. We do this in the following
lemma:

Lemma 3.3.4. Let C, C1, and C ′ be saturated contracts. CC/C1 in the AG framework is given
as follows:

CC/C1 =

(A′, G′)

∣∣∣∣∣∣∣∣∣
(A′, G′) is saturated,

A∩G′ ⊆ A1,

A∩G1 ⊆ A′, and

G′ ∩G1 ⊆ G

 . (3.10)

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 34

Proof. (This proof follows closely that of Lemma 4 in [19].)
(⊆). Let C ′ = (A′, G′) be a saturated contract in CC/C1 . Let E = A, M1 = G1, and

M ′ = G′. Since C ′ ∈ CC/C1 , we have M1 × E |=E C ′, M ′ × E |=E C1, and M ′ ×M1 |=M C.
These three expressions are equivalent to G1 ∩ A ⊆ A′, G′ ∩ A ⊆ A1, and G′ ∩ G1 ⊆ G,
respectively. Hence, C ′ belongs to the set on the right hand side of 3.10.

(⊇). Let C ′ = (A′, G′) belong to the set on the right hand side of 3.10. Let E ⊆ A,
M1 ⊆ G′, and M1 ⊆ G1. We have

E ×M1 = E ∩M1 ⊆ A∩G1 ⊆ A′ ⇒ E ×M1 |=E C ′

E ×M ′ = E ∩M ′ ⊆ A∩G′ ⊆ A1 ⇒ E ×M ′ |=E C1
M1 ×M ′ =M1 ∩M ′ ⊆ G1 ∩G′ ⊆ G

⇒M1 ×M ′ |=M C.

Thus, C ′ ∈ CC/C1 , proving the left set inclusion.

We said we can define the quotient operation as C/C1 = ∨CC/C1 . Using Lemma 3.3.4 we
obtain another derivation of the AG quotient operation. First we write the quotient in the
AG framework:

C/C1 = max

(A′, G′)

∣∣∣∣∣∣∣∣∣
(A′, G′) is saturated,

A∩G′ ⊆ A1,

A∩G1 ⊆ A′, and

G′ ∩G1 ⊆ G

 .

From this expression, we obtain the assumptions and guarantees:

a(C/C1) = A∩G1 and

g(C/C1) = max

{
G′

∣∣∣∣∣ G′ ∩ A ⊆ A1 and

G′ ∩G1 ⊆ G

}
= (A1 ∪ ¬A)∩ (G∪ ¬G1)

= A1 ∩G∪ ¬(A∩G1).

This derivation of the quotient operation was possible due to the new definition of the
contract operation in the meta-theory of contracts.

3.4 Examples

Theorem 3.2.5 can be used as the basis of a decomposition methodology with contracts:
suppose we have a top-level contract C = (A,G), and one component with contract C1 =
(A1, G1) will be used in the design. Then the set of refinements of C/C1 is the same as the
set of contracts that, when composed with C1, refine C. Consequently, in order to synthesize
a new contract C ′ with the property C ′ ∥ C1 ≤ C, we can compute C/C1, and we know that

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 35

add()

mult()

outFalse

True

a

b

inst

out_int

r

Figure 3.1: ALU diagram of example 3.4.1. The ALU is required to output either the sum or the
product of the inputs a and b, according to the value of the input inst: if inst is deasserted,
the output is the sum; otherwise, it is the product. Suppose there is a component available that
implements the addition part of the specification. We expect the quotient to indicate that the
multiplication remains to be implemented. We use monospace font to refer to constants, variables,
and functions.

any refinement of C/C1 will have the property we seek. Moreover, if we wish to synthesize C ′,
we can seek a refinement of the quotient which is expressible with few parameters in order
to make synthesis efficient.

We provide two examples of contract decomposition using the quotient. The first is a
logic design example dealing with an Arithmetic Logic Unit (ALU), and the second is an
automotive application dealing with Cooperative Adaptive Cruise Control (CACC). Our
intention is to show that the operations we derived do indeed provide what one would intuit
are the missing specifications in a design, assuming that a given component will be used in
the final system. To simplify our presentation, both of our examples meet the requirement
that A∩G ⊆ A1, so according to Corollary 3.2.8, the quotient operation (3.7) becomes equal
to R(C, C1) (see Definition 3.2.3); thus, we will repeatedly refer to R as the quotient in these
examples. Finally, both examples are given in LTL, but we show the propositions explicitly
in order to carry out simplifications.

3.4.1 Implementing an ALU

Consider an ALU with the functionality shown in Figure 3.1. The design receives as input
numbers a and b, a trigger signal r, and an instruction inst. When r is asserted, within n
time units the output out is equal to either the sum or the multiplication of a and b, according

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 36

to the value of inst. For this ALU, we can write the top-level contract C = (A,G), with

G =
n∨

i=1

{(
(r∧¬inst)→ Xiout = add(a,b)

)
∧

(
(r ∧ inst)→ Xiout = mult(a,b)

)}
∨ ¬A

and A = r→
(n∧

i=1

(Xi¬r) ∧ (Xia = a) ∧ (Xib = b)

∧ (Xiinst = inst)

)
,

i.e., we assume that once r asserts, r will remain deasserted during the next n time ticks,
and all other input signals will not change value during this time; the contract guarantees
that at some point during the next n clock ticks, the output will be equal to the addition or
multiplication of a and b, according to the value of inst.

Now suppose we have a component which outputs the addition of a and b at the n-th
time tick after the assertion of r. If we use this component in our design, we expect only
the multiplication remains to be implemented. The component we are using in the design
obeys the contract C1 = (A1, G1) defined as follows:

G1 = (r→ Xnout int = add(a,b)) ∨ ¬A1 and

A1 = r→
(n∧

i=1

(Xi¬r) ∧ (Xia = a) ∧ (Xib = b)

)
.

C1 guarantees that the output out int will be equal to the addition of the inputs a and b n
ticks after the assertion of r. Since C1 guarantees the addition part of the guarantees of C,
we expect the quotient operation to allow us to find a contract that only guarantees the mul-
tiplication of the inputs since this is what C1 is missing from C. Let α = r →

∧n
i=1(X

iinst =
inst). We observe that A = α∧A1, so A ⊆ A1 ⊆ A1∪¬G1, meaning that R(C, C1) = (A2, G2)
is the quotient operation (Corollary 3.2.8). Define β = (r→ Xnout int = add(a,b)). We
compute

A2 =A1 ∧ α ∧ β and

G2 =
n∨

i=1

{(
(r ∧ ¬inst)→ Xiout = add(a,b)

)
∧

(
(r ∧ inst)→ Xiout = mult(a,b)

)}
∨ ¬A2.

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 37

Now we rewrite G2 as

G2 =
n−1∨
i=1

{(
(r ∧ ¬inst)→ Xiout = add(a,b)

)
∧

(
(r ∧ inst)→ Xiout = mult(a,b)

)}
∨{(

(r ∧ ¬inst)→ Xnout = Xnout int
)
∧

(
(r ∧ inst)→ Xnout = mult(a,b)

)}
∨ ¬A2.

Since A ⊆ A1 ∪¬G, any refinement of R refines C when composed with C1. We propose the
refinement C ′ = (A′, G′) with

G′ =
(
(r ∧ ¬inst)→ Xnout = Xnout int

)
∧(

(r ∧ inst)→ Xnout = mult(a,b)
)
∨ ¬A′ and

A′ =A1 ∧ α.

Contract C ′ is saturated and satisfies C ′ ≤ R. Since we also have A ⊆ A1∪¬G, Corollary 3.2.8
guarantees that C ′ ∥ C1 ≤ C. We observe that C ′ only guarantees the multiplication of a and
b, as we intuited, and that it does not make any assumption about out int; in particular,
while R keeps a complete description of the arithmetic relationship between out int and
the inputs a and b, this information is hidden from C ′.

3.4.2 Connected Vehicles

Connectivity with other vehicles or with the infrastructure can be used to extend the capa-
bilities of a vehicle by increasing the number, types, and quality of sensors that it can access,
or by providing more computational capabilities that the vehicle can use to tackle a task.

We consider the application of connectivity to Cooperative Adaptive Cruise Control
(CACC). The scenario is that of Figure 3.2: a vehicle Va, moving with velocity va, attempts to
drive on the highway at a certain distance from vehicle Vb. As the top-level spec C = (A,G),
we ask that the distance dr between the two vehicles be contained in intervals that depend
on the speed at which Va moves. Thus, we have the guarantees

G =
∧
i∈I

va ∈ Vi → dr ∈ [L−
i , L

+
i] ∨ ¬A,

where Vi stand for ranges of velocities indexed over a set I; L+
i and L−

i are real numbers
which serve as the limits of dr for various values of the speed va.

We observe that vehicle Va, in order to follow vehicle Vb, must know something about
its own state and the state of Vb. Let xi be the state of vehicle Vi. Assume that x̂i are the

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 38

Figure 3.2: In Cooperative Adaptive Cruise Control, the vehicle on the left, Va, attempts to keep
a fixed distance from the other vehicle, Vb. To run its control algorithm, Va must use estimates
of its own state and of the state of vehicle Vb: the more faithful the estimates, the more reliable
the functionality. Suppose that Vb can estimate its own state much better than Va can estimate it.
Vb can share wirelessly the measurements of its state with Va for the latter to make better control
decisions.

observations which vehicle Va makes of the states of each car and which it uses to make control
decisions. Note that the xi are the actual state variables that correspond to reality, but the
x̂i are the state observations that Va can access either by making the measurement using its
sensors or by receiving data from external sources (Vb in this case). These observations are
affected by the intrinsic accuracy of the sensors, and by the time delays which exist from the
analog-to-digital converters that capture physical data to the processors that implement the
CACC. These time delays are crucial since, for instance, even if Va has access to an extremely
accurate velocity measurement of Vb that was captured 10 minutes ago, the measurement is
useless for the purposes of CACC, which operates in real-time.

In order to be able to guarantee its behavior G, Va must assume that the states of
the vehicles are constrained to reasonable values (e.g., that the speeds of the vehicles are
bounded) and that the state observations made by Va are faithful to the reality up to a
known tolerance. Then, we can write the assumptions for the contract (we assume that
operations are evaluated in the order ¬, ∧, →, ∨):

A =e ∈ E ∧ xa ∈ Xa ∧ xb ∈ Xb∧∧
i∈I

va ∈ Vi → D ∈ [L−
i , L

+
i].

In these expressions, e represents the current state of the environment; E is a set of restric-
tions of possible behaviors of the environment; the Xj are restrictions on possible behaviors
of the states of the cars; and D is a setting configured by the user and which determines how
closely she wishes car Va to follow Vb. Note that the contract assumes that the user sets D
to a value bounded by the limits L−

i and L+
i .

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 39

In summary, contract C assumes that the environment and vehicles behave within certain
limits (given by the sets), and guarantees that the relative distance between the cars will be
bounded by a certain interval, according to the velocity of the first car. We observe that dr
and vi can be derived from the state variables xi.

Suppose that when the driver sets the value of D, the CACC controller of Va is capable
of making Va stay at a distance D from vehicle Vb up to a tolerance fε, i.e., the CACC
guarantees |dr − D| < fε. This tolerance fε reflects the capability of the CACC control
system and depends on the states of both vehicles and on how well the sensors of Va match
reality. The dependence of fε on the states is obvious since it should be harder to keep a fixed
distance to a moving target when that target is accelerating, for instance. The dependence
of fε on the state observations reflects the fact that the more faithfully the estimates match
reality, the more reliably the control system behaves. Therefore, fε is a function of many
arguments: fε = fε(∥xa− x̂a∥, ∥xb− x̂b∥, xa, xb, e), where ∥ ·∥ is a semi-norm used to tell how
well the observations x̂i match reality xi. To shorten our expressions, we will simply use fε
for fε(∥xa − x̂a∥, ∥xb − x̂b∥, xa, xb, e). We can write a contract C1 = (A1, G1) for Va:

A1 =A, and

G1 =|dr −D| < fε ∨ ¬A,

Since A ⊆ A1 ∪ ¬G, the refinements of R = (AR, GR) also refine C in composition with C1.
We compute

AR =A ∧ |dr −D| < fε and

GR =
∧
i∈I

va ∈ Vi → dr ∈ [L−
i , L

+
i] ∧ |dr −D| < fε

∨ ¬AR.

Now that we have computed the quotient, we know that R contains the part of C not
met by C1. Observe that up to this point all manipulations have been mechanical: we have
simply computed the quotient starting from the specifications. We are interested, however,
in a refinement of the quotient that we can implement, and to find this good refinement we
need knowledge from the designer. As designers, we introduce a clause in the guarantees to
bound the value of the tolerance. Define the proposition c as follows:

c = fε < min(L+
i −D,D − L−

i).

We can now write a contract C ′ = (A′, G′) that refines R using this clause:

A′ =AR and

G′ =
∧
i∈I

va ∈ Vi → dr ∈ [L−
i , L

+
i] ∧ |dr −D| < fε ∧ c

∨ ¬A′,

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 40

We observe that A ⊆ A′; thus, A′ contains the clause va ∈ Vi → D ∈ [L−
i , L

+
i] for all

i ∈ I. We can use this clause to rewrite G′ as follows:

G′ =
∧
i∈I

va ∈ Vi →

dr ∈ [L−

i , L
+
i] ∧

|dr −D| < fε ∧
fε < min(L+

i −D,D − L−
i) ∧

D ∈ [L−
i , L

+
i]

∨ ¬A′.

The clause dr ∈ [L−
i , L

+
i] is redundant and can thus be eliminated, resulting in

G′ =
∧
i∈I

va ∈ Vi →

|dr −D| < fε ∧
fε < min(L+

i −D,D − L−
i) ∧

D ∈ [L−
i , L

+
i]

∨ ¬A′.

Finally, since A′ contains the clauses va ∈ Vi → D ∈ [L−
i , L

+
i] and |dr − D| < fε, we can

write G′ as

G′ =
∧
i∈I

va ∈ Vi → fε < min(L+
i −D,D − L−

i) ∨ ¬A′.

We observe that the guarantees of G′ do not directly refer to dr; thus, we can further
refine C ′ with a contract C ′′ = (A′′, G′′) as follows:

A′′ =A and

G′′ =
∧
i∈I

va ∈ Vi → fε < min(L+
i −D,D − L−

i) ∨ ¬A′′.

Since C ′′ is a refinement of the quotient, we know it can be used to complete the design.
But now we ask, how can we implement contract C ′′? We started from a high level require-
ment on the relative distance between the two vehicles and through the quotient obtained
a restriction on fε = fε(∥xa − x̂a∥, ∥xb − x̂b∥, xa, xb, e), the bounds on Va’s ability to stay
close to Vb. From a design standpoint, a design external to Va has no control over the states
of the vehicles xi or over the environment e; however, an external component can impact
∥xb − x̂b∥, i.e., how closely vehicle Va can track the state of Vb. While a component of the
observation error of xb by Va is comprised of the sensors used, contract C ′′ can potentially
be implemented by guaranteeing that network latency stays within acceptable bounds; that
is, the network guarantees that vehicle Va always maintains updated information about the
state of Vb, enabling the control system of Va to make better control decisions.

CHAPTER 3. QUOTIENT FOR ASSUME-GUARANTEE CONTRACTS 41

3.4.3 Observations

We now discuss some commonalities that emerged in the manipulation of contracts in our
examples.

1. Once the quotient Cq = (Aq, Gq) is computed, the next step in a decomposition method-
ology is to compute a refinement C ′ of Cq (recall that in composition with C1 (the given
component contract), this contract is guaranteed to refine C). To do this, we ma-
nipulate the contract Cq by adding and removing clauses. First, we observe that Aq

can often be expressed as a conjunction of clauses, i.e., Aq =
∧

i ai, and in our ALU
and automotive examples Gq is of the form Gq =

∧
j(pj → sj) ∨ ¬Aq. Observe that

p → s ∨ ¬a = p → s ∧ a ∨ ¬a. This equivalence was used to insert an assumption
clause into the guarantees in the examples in order to carry out simplifications in s∧a.
Further, conjoining clauses to s results in a subset of Gq, providing a refinement of Cq.

2. The saturation of the quotient implies that Gq contains all the information needed to
carry out simplifications, i.e., no other clauses are needed.

3. Refining the contract quotient involves a notion of what constitutes a good refinement,
and set-theoretic operations enriched with simplifications allowed in the formalism in
which assumptions and requirements are expressed. The former sets the goal of the
simplification process (and thus needs guidance from the designer), while the latter
is a systematic mechanism which can be automated. The mechanization of this task
is correlated with the identification of the platforms that a given industrial vertical
segment will adopt to specify contracts. Here we anticipate that the availability of
tools supporting design for a given formalism would stimulate industry adoption. At
the same time, a determination of the platforms to be used in an industrial vertical
domain would encourage academic research to develop the “right” formalism needed to
manipulate contracts for that platform. The question now is how to spark this win-win
interaction.

3.5 Summary

We have introduced the notion of quotient set for the theory of contracts, and an explicit
formula to compute the quotient operation between two assume-guarantee contracts. We
illustrated a decomposition methodology of high-level specifications based on the AG quo-
tient operation. Some lines of future research are the use of the lower quotient operation
to devise specifications with redundancy (to ensure reliability) and the creation of software
tools that exploit these concepts to decompose specifications.

42

Chapter 4

Equations over Preorders

The previous chapter discussed the notion of quotient for AG contracts. We now study
this notion in a more general setting. Seeking the largest solution to an expression of the
form Ax ≤ B is a common task in several domains of engineering and computer science.
This largest solution is commonly called quotient. Across domains, the meanings of the
binary operation and the preorder are quite different, yet the syntax for computing the
largest solution is remarkably similar. This chapter is about finding a common framework to
reason about quotients. We only assume we operate on a preorder endowed with an abstract
monotonic multiplication and an involution. We provide a condition, called admissibility,
which guarantees the existence of the quotient, and which yields its closed form. We call
preordered heaps those structures satisfying the admissibility condition. We show that many
existing theories in computer science are preordered heaps, and we are thus able to derive
a quotient for them, subsuming existing solutions when available in the literature. We
introduce the concept of sieved heaps to deal with structures which are given over multiple
domains of definition. We show that sieved heaps also have well-defined quotients.

4.1 Introduction

The identification of missing objects is a common task in engineering. Suppose an engineer
wishes to implement a design with a mathematical description B, and will use a component
with a description A to implement this design. In order to find out what needs to be added
to A in order to implement B, the engineer seeks a component x in an expression of the
form A • x = B, where • is an operator yielding the composite of two design elements.
Many compositional theories include the notion of a preorder, usually called refinement.
The statement A ≤ C usually reads “A refines C” or “A is more specific than C.” In this
setting, the problem is recast as finding an x such that A • x ≤ B. It is often assumed that
the composition operation is monotonic with respect to this preorder. Therefore, if x is a
solution, so is any y satisfying y ≤ x. This focuses our attention on finding the largest x
that satisfies the expression. The literature often calls this largest solution quotient.

CHAPTER 4. EQUATIONS OVER PREORDERS 43

4.1.1 Background

The logic synthesis community has been a pioneer in defining and solving special cases of the
quotient problem for combinational and sequential logic circuit design [36,107] under names
like circuit rectification or engineering change or component replacement. In combinational
synthesis, much work has been reported to support algebraic and Boolean division: given
dividend f and divisor g, find the quotient q and remainder r such f = q · g + r (for ·,+
standard Boolean operators AND and OR, respectively), as key operation to restructure
multi-level Boolean networks [69]. The quotient problem for combinational circuits was
formulated as a general replacement problem in [29]: given the combinational circuits A
and C whose synchronous composition produces the circuit specification B, what are the
legal replacements of C that are consistent with the input-output relation of B? The valid
replacements for C were defined as the combinational circuits x such that A ◦ x ⊆ B, and

the largest solution for x was characterized by the closed formula x =
(
A ◦B⊥)⊥, where (·)⊥

is a unary operator that complements the input-output relation of the circuit to which it is
applied (switching the inputs and outputs), while a hiding operation gets rid of the internal
signals.

In sequential optimization, the typical question addressed was, given a finite-state ma-
chine (FSM) A, find an FSM x such that their synchronous composition produces an FSM be-
haviorally equivalent to a specification FSM B, i.e., solve over FSMs the equation A◦x = B,
where ◦ is synchronous composition and equality is FSM input-output equivalence. Various
topologies were solved, starting with serial composition where the unknown was either the
head or tail machine, to more complex interconnections with feedback. As a matter of fact,
sometimes both A and x were known, but the goal was to change them into FSMs yielding
better logical implementations, while preserving their composition, with the objective to
optimize a sequential circuit by computing and exploiting the flexibility due to its modular
structure and its environment (see [69,82,181]). An alternative formulation of FSM network
synthesis was provided by encoding the problem in the logic WS1S (Weak Second-Order
Logic of 1 Successor), which enables to characterize the set of permissible behaviors at a
node of a given network of FSMs by WS1S formulas [10], corresponding to regular languages
and so to effective operations on finite state automata. 1

Another stream of contributions has been motivated by component-based design of par-
allel systems with an interleaving semantics (denoted in our exposition by the composition
operator ⋄). The problem is stated by Merlin and Bochmann [147] as follows: “Given a com-
plete specification of a given module and the specifications of some submodules, the method
described below provides the specification of an additional submodule that, together with
the other submodules, will provide a system that satisfies the specification of the given mod-
ule.” The problem was reduced to solving equations or inequalities over process languages,
which are usually prefix-closed regular languages represented by labeled transition systems.
A closed-form solution of the inequality A ⋄ x ⊆ B over prefix-closed regular languages,

1A detailed survey of previous work in this area can be found in [102,197].

CHAPTER 4. EQUATIONS OVER PREORDERS 44

written as projx(A ⋄ B) − projx(A ⋄ B) (where projx is a projection over the alphabet of
x), was given in [78, 147].2 This approach to solve the equation A ⋄ x = B has been further
extended to obtain restricted solutions that satisfy properties such as safety and liveness, or
are restricted to be FSM languages, which need to be input-progressive and avoid divergence
(see [26,78,197]). The quotient problem has been investigated also for delay-insensitive pro-
cesses to model asynchronous sequential circuits, see [39, 143, 154]. Equations of the form
A⋄x ≤ B were defined, and their largest closed-form solutions were written as x = (A ⋄B∼)∼,
where (·)∼ is a suitable unary operation.

An important application from discrete control theory is the model matching problem: de-
sign a controller whose composition with a plant matches a given specification (see [14,58]).
Another significant application of the quotient computation has been the protocol design
problem, and in particular, the protocol conversion problem (see [34,75,79,110,113,160,163,
199]). Protocol converter synthesis has been studied also over a variant of Input/Output
Automata (IOA, [136]), called Interface Automata (IA, [53, 54]), yielding a similar quotient

equation A ⋄IA x ⊆ B and closed-form solution
(
A ⋄IA B⊥)⊥, where ⋄IA is an appropriate

interleaving composition defined for interface automata, and (·)⊥ is again a unary opera-
tion [21].

Some research focused on modal specifications represented by automata whose transitions
are typed with may and must modalities, as in [117, 170], with a solution of the quotient
problem for nondeterministic automata provided in [17]. It is outside the scope of this
chapter to address the quotient problem for real-time and hybrid systems (see [27, 33] for
verification and control in such settings).

As seen above, the quotient problem was studied by different research communities work-
ing on various application domains and formalisms. Often similar formulations and solutions
were reached albeit obfuscated by the different notations and objectives of the synthesis pro-
cess. This motivated a concentrated effort to distill the core of the problem, modeling it
as solving equations over languages of the form A ∥ x ⪯ B, where A and B are known
components and x is unknown, ∥ is a composition operator, and ⪯ is a conformance relation
(see [196] and the monograph [197] for full accounts). The notion of language was chosen as
the most basic formalism to specify the components of the equation, and language contain-
ment ⊆ was selected as conformance relation. Two basic composition operators were defined
each encapsulating a family of variants: synchronous composition (•) modeling the classical
step-lock coordination, and interleaving composition (⋄) modeling asynchrony by which com-
ponents may progress at different rates (there are subtle issues in comparing the two types,
as mentioned in [112, 206]). Therefore two language equations were defined: A • x ⊆ B
and A ⋄ x ⊆ B, where the details of the operations to convert alphabets according to the
interconnection topologies are hidden in the formula. It turned out that the largest solutions

have the same structure, respectively, A •B and A ⋄B. This led to investigate the algebraic
properties required by the composition operators to deliver the previous largest closed-form

2For a discussion about the maximality of this solution and for more references, we refer to [197], Sec.
5.2.1.

CHAPTER 4. EQUATIONS OVER PREORDERS 45

solutions to unify the two formulas [196]. This effort assumed that the underlying objects
were sets, and that their operations were given in terms of set operations. This work, thus,
could not account for quotient computations in more complex theories.

As a parallel development, in recent years we have seen the growth of a rigorous theory of
system design based on the algebra of contracts (see the monograph [19]). In this theory, a
strategic role is played by assume-guarantee (AG) contracts, in which the missing component
problem arises: when the given components are not capable of discharging the obligations of
the requirements, define a quotient operation that computes the contract for a component,
so that by its addition to the original set the resulting system fulfills the requirements.
The quotient of AG contracts was completely characterized very recently by a closed-form
solution proved in [96]. Once again, the syntax of the quotient has the form (A ∥ B−1)

−1
for

contracts A and B and standard contract operations.
In summary, even though the concrete models of the components, composition operators,

conformance relations and inversion functions vary significantly across chosen models and
application domains, the quotient formulas have similar syntax across theories.

4.1.2 Motivation and contributions

The motivation of this chapter is to propose the underlying mathematical structure common
to all these instances of quotient computation to be able to derive directly the solution formula
for any equation satisfying the properties of this common structure.

We show that we can compute the quotient by only assuming the axioms of a preorder,
enriched with a binary operation of source multiplication and a unary involution operation.
In particular we introduce the new algebraic notion of preordered heaps characterized by a
condition, called admissibility, which guarantees the existence of the solution and yields a
closed form for it. Then we show that a number of theories in computer science meet this
condition, e.g., Boolean lattices and AG contracts; so for all of them we are able to (re-)derive
axiomatically the formulas that compute their related quotients. We also introduce the
concept of sieved heaps to deal with structures defined over multiple domains, and we show
that the equations A•x ≤ B admit a solution also over sieved heaps, generalizing the known
solutions of equations on languages over multiple alphabets with respect to synchronous and
interleaving composition, well studied in the literature.

4.2 Preordered heaps

In this section we introduce an algebraic structure for which the existence of quotients is
guaranteed. First we introduce the notation we will use:

� Let P be a set and let µ : P × P → P be a binary operation on P . For any element
a ∈ P , we let µa : P → P be the function µa = µ ◦ (a × id), where id is the identity
operator and (a × id) : P → P 2 is the unary function (a × id) : b 7→ (a, b). Similarly, we

CHAPTER 4. EQUATIONS OVER PREORDERS 46

let µa = µ ◦ (id × a). If we call µ multiplication, µa is left multiplication by a, and µa is
right multiplication by a.

� For any set P , we let the mapping Flip : P × P → P × P be Flip(a, b) = (b, a) (a, b ∈ P).

� Consider a set P and a binary relation ≤ on P . Then ≤ is a preorder if it is reflexive and
transitive; i.e., for all a, b and c in P , we have a ≤ a (reflexivity) and if a ≤ b and b ≤
c then a ≤ c (transitivity). If a preorder is antisymmetric, (a ≤ b and b ≤ a implies a = b),
then it is a partial order.

� Let (P,≤) be a preorder and let a, b ∈ P . If a ≤ b and b ≤ a, we write a ≃ b.

� Let F : P → P . We say that F is monotonic or order-preserving if a ≤ b⇒ Fa ≤ Fb for
all a, b ∈ P . Similarly, we say that F is antitone or order-reversing if a ≤ b ⇒ Fb ≤ Fa
for all a, b ∈ P .

� Suppose that L,R : P → P are two monotonic maps on P . We say that (L,R) form an
adjoint pair, or that L is the left adjoint of R (R is respectively the right adjoint of L),
or that the pair (L,R) forms a Galois connection when for all b, c ∈ P , we have Lb ≤ c if
and only if b ≤ Rc.

� Let F,G : P → P be functions on a preorder P . We say that F ≤ G when Fa ≤ Ga for
all a ∈ P .

4.2.1 The concept of preordered heap

As we discussed in the introduction, many times in engineering and computer science one
encounters expressions of the form A • x ≤ B, and one wishes to solve for the largest x that
satisfies the expression. The symbols have different specific meanings in the various domains,
yet in all applications we know, the syntax for computing the quotient always has the form

A •B, where (·) is an involution (i.e., a unary operator which is its own inverse). To give
meaning to the inequality, at a minimum we need a preorder and a binary operation; to give
meaning to the quotient expression, we need to assume the existence of an involution. In
all compositional theories, the refinement order has the connotation of specificity: if a ≤ b
then a is a refinement of b. The binary operation is usually interpreted as composition.
The product a • b is understood as the design obtained when operating both a and b in a
topology given by the mathematical description of each component. The unary operation
is sometimes understood as giving an external view on an object. If a component has
mathematical description a, then a gives the view that the environment has of the design
element. In Boolean algebras, this unary operation is negation. In interface theories, it’s
usually an operation which switches inputs and output behaviors.

We thus introduce an algebraic structure consisting of a preorder, a binary operation
which is monotonic in both arguments, and an involution which is antitone. We have called
the binary operation source multiplication for reasons having to do with category theory:

CHAPTER 4. EQUATIONS OVER PREORDERS 47

we will show that this operation serves as the left functor of an adjunction. Therefore, its
application to an object of the preorder yields the source of one of the two arrows in the
adjunction. Why not simply call it multiplication? Because source multiplication together
with the involution generate another binary operation. This second operation we call target
multiplication because its application to an object yields the target of one of the arrows in
the adjunction. The unary operation will simply be called involution.

The algebraic structure will be called preordered heap. The inspiration came from engi-
neering design. In some design methodologies, design elements at the same level of abstrac-
tion are not comparable in the refinement order. Indeed, a refinement of a design element
usually yields a design element in a more concrete layer. But we are placing all components
under the same mathematical structure. This suggested the name heap. We add the adjec-
tive preorder simply to differentiate the concept from existing algebraic heaps. We are ready
for the definition:

Definition 4.2.1. A preordered heap is a structure (P,≤, µ, γ), where (P,≤) is a preorder;
µ : P × P → P is a binary operation on P , monotonic in both arguments, called source
multiplication; and γ : P → P is an antitone operation on P called involution. These
operations satisfy the following axioms:

� A1: γ2 = id.

� A2a (left admissibility): µa ◦ γ ◦ µa ◦ γ ≤ id (a ∈ P).

� A2b (right admissibility): µa ◦ γ ◦ µa ◦ γ ≤ id (a ∈ P).

Note 4.2.1. In Definition 4.2.1, we did not assume commutativity in µ. If µ is commutative,
we have µ = µ ◦Flip, so µa = µ ◦ (a× id) = µ ◦Flip ◦ (a× id) = µ ◦ (id× a) = µa. It follows
that for a commutative preordered heap, axioms A2a and A2b become

(µa ◦ γ)2 ≤ id. (4.1)

We have discussed all elements in the definition of a preordered heap, except for the
admissibility conditions. What are they? Consider left admissibility: µa ◦γ ◦µa ◦γ ≤ id. Let
b ∈ P and set B = (γ ◦ µa ◦ γ)(b). Left admissibility means that B satisfies the expression
µ(a, x) ≤ b. Similarly, set C = (γ ◦ µa ◦ γ)(b). Right admissibility means that C satisfies
µ(x, a) ≤ b. When µ is commutative, we of course have B = C. We will soon show a
surprising fact: the axioms of a preordered heap are sufficient to guarantee that B and C
are in fact the largest solutions to both expressions, i.e., B and C are the quotients for left
and right source multiplication, respectively. We show this immediately after introducing an
important binary operation called target multiplication, but first we consider an example.

Example 4.2.2. Consider a Boolean lattice B. The lattice is clearly a preorder. Take
the involution to be the negation operator. This is an antitone operator and satisfies A1:
¬¬b = b for all b ∈ B. Take source multiplication to be the meet of the lattice (i.e., logical

CHAPTER 4. EQUATIONS OVER PREORDERS 48

AND). This operation is monotonic in the preorder. Since this source multiplication is
commutative, the admissibility conditions reduce to checking (4.1). For a, b ∈ B, we have
(µa ◦ γ)2b = a ∧ ¬(a ∧ ¬b) = a ∧ (¬a ∨ b) = a ∧ b ≤ b. Thus, the Boolean lattice satisfies the
admissibility conditions, making it a preordered heap. □

4.2.2 Target multiplication

For the rest of this section, let (P,≤, µ, γ) be a preordered heap. We define the target
multiplication τ : P × P → P as τ = γ ◦ µ ◦ (γ × γ). Since γ2 = id (axiom A1), we can also

write µ = γ ◦ τ ◦ (γ × γ), i.e., the diagram
P × P P

P × P P

γ×γ

µ

τ

γ commutes.

We could have defined a preordered heap in terms of target multiplication instead of
source multiplication. The two operations are closely linked. In fact, we will see in the next
section that these operations form an adjoint pair.

Example 4.2.3. We showed that Boolean lattices are preordered heaps. For B a Boolean
lattice and a, b ∈ B, we have τ(a, b) = γ ◦ µ(γa, γb) = ¬(¬a ∧ ¬b) = a ∨ b. This suggests
that the relation between source and target multiplications is a generalization of De Morgan’s
identities for Boolean algebras. □

We will use the following identities: for a ∈ P ,

µa = γ ◦ τ ◦ (γ × γ) ◦ (a× id) = γ ◦ τ ◦ (γa× id) ◦ γ = γ ◦ τγa ◦ γ and

µa = γ ◦ τ ◦ (γ × γ) ◦ (id× a) = γ ◦ τ ◦ (id× γa) ◦ γ = γ ◦ τ γa ◦ γ.
(4.2)

4.2.3 Solving inequalities in preordered heaps

For a, b ∈ P , we are interested in the conditions under which we can find the largest x ∈ P
such that µ(a, x) ≤ b. The following theorem says that source multiplication in a preordered
heap is “invertible.”

Theorem 4.2.4. Let (P,≤, µ, γ) be a preordered heap and let τ be its target multiplication.
Then for a ∈ P , (µa, τ

γa) and (µa, τγa) are adjoint pairs.

Proof. Let b, c ∈ P with b ≤ τ γa(c). We have µa(b) ≤ (µa ◦ τ γa)(c) = (µa ◦ γ ◦ µa ◦ γ)(c) ≤ c,
by left admissibility (by A2a).

Conversely, assume that µa(b) ≤ c. Then

µa ◦ γ2(b) ≤ c (by A1)

γ ◦ (µa ◦ γ)(γb) ≥ γ(c)

(µa ◦ γ) ◦ (µa ◦ γ)(γb) ≥ (µa ◦ γ)(c)
(γb) ≥ (µa ◦ γ)(c) (by A2b)

b ≤ (γ ◦ µa ◦ γ)(c) = τ γa(c). (by A1)

CHAPTER 4. EQUATIONS OVER PREORDERS 49

The adjointness of (µa, τγa) follows from a similar reasoning.

The fact that (µa, τ
γa) is an adjoint pair means that left source multiplication by a is

“inverted” by right target multiplication by γa, i.e.,

µ(a, x) ≤ b if and only if x ≤ τ(b, γa).

In other words, the largest solution of µ(a, x) ≤ b is x = τ(b, γa). Using the familiar
multiplicative notation for source multiplication, and (·)/a = τ γa for “right division by a,”
we have shown that the largest solution of ax ≤ b is x = b/a. Calling a\(·) = τγa “left
division by a,” we have shown that the largest solution of xa ≤ b is x = a\b. These two
divisions are related as follows:

Corollary 4.2.5 (Isolating the unknown). Let P be a preordered heap and a, x, y ∈ P . Then
y ≤ a/x if and only if x ≤ y\a.

Proof. By two applications of Theorem 4.2.4, we obtain y ≤ a/x = τ γx(a)⇔ µ(x, y) ≤ a⇔
x ≤ τγy(a) = y\a.

Theorem 4.2.4 is our main result. It shows that preordered heaps have sufficient structure
for the computation of quotients. When we prove that a structure is a preordered heap, this
theorem immediately yields the existence of an adjoint for multiplication, and its closed
form.

In general, to show that a theory is a preordered heap, we must identify its involution
and source multiplication. Then we have to verify the admissibility conditions. How difficult
is that? Our original problem was identifying the largest x satisfying µ(a, x) ≤ b for some
notion of multiplication µ, involution γ, and preorder ≤. As we discussed, left admissibility
requires that τ γab satisfies the inequality µ(a, x) ≤ b, and right admissibility requires that
τγab satisfies µ(x, a) ≤ b. What the theorem tells us is that they are the largest solutions to
µ(a, x) ≤ b and µ(x, a) ≤ b, respectively. In other words, the theorem saves us the effort of
making an argument for the optimality of the solutions.

Theorem 4.2.4 also suggests the following observation. For a given a ∈ P , we have
adjoint pairs (µa, τ

γa) and (µa, τγa). As we noticed, this means we can find the largest x
such that µ(a, x) ≤ b or µ(x, a) ≤ b. But it also means that we can find the smallest x
such that b ≤ τ(a, x) or b ≤ τ(x, a). This is because, µγa is the left adjoint of τa, and
µγa is the left adjoint of τa. For all examples we will discuss, source multiplication plays
the role of the usual composition operation of the theory. But preordered heaps make it
clear that µ and τ are closely related operations. In fact, preordered heaps generalize De
Morgan’s identities (see Section 4.2.2). Thus, while inequalities of the form µ(a, x) ≤ b are
more common in the literature, preordered heaps indicate that we can also solve inequalities
of the form b ≤ τ(a, x). As we will see, for some theories there is clear understanding of how
target multiplication can be used, but for others its use is unknown.

CHAPTER 4. EQUATIONS OVER PREORDERS 50

Example 4.2.6. In the case of a Boolean lattice B, what is the quotient? We showed in
previous examples that B is a preordered heap, and we identified its target multiplication.
For a, b ∈ B, we can write an expression of the form µ(a, x) ≤ b. By Theorem 4.2.4, we
know the largest x that satisfies this expression is τ γab = τ(b,¬a) = b∨¬a, i.e., the quotient
is the implication a→ b. □

4.2.4 Preordered heaps with identity

In the definition of a preordered heap, we did not assume that source multiplication has an
identity. Here we consider briefly what happens when it does. Multiplicative identities are
common, and in fact, there exists a multiplicative identity in all compositional theories we
know.

Suppose P is a preordered heap and e ∈ P is a left identity for source multiplication, i.e.,
µe ≃ id. By Theorem 4.2.4, (id, τ γe) is an adjoint pair. The right adjoint of id is id. Since
adjoints are unique up to isomorphism, τ γe ≃ id. This means that γe is a right identity
element for τ . Moreover, in view of (4.2), τγe ≃ id. By Theorem 4.2.4, (µe, id) is an adjoint
pair. By the same reasoning just followed, we must have µe ≃ id. We record this result:

Corollary 4.2.7. Let (P,≤, µ, γ) be a preordered heap. If e ∈ P is a left (or right) identity
for source multiplication, it is a double-sided identity for source multiplication, and γe is
a double-sided identity for target multiplication. Analogously, if e ∈ P is a left (or right)
identity for target multiplication, it is a double-sided identity for target multiplication, and
γe is a double-sided identity for source multiplication.

Example 4.2.8. Let B be a Boolean lattice. The top element of the lattice, usually denoted
1, is an identity for source multiplication: 1 ∧ a = a for all a ∈ B. The previous corollary
tells us that ¬1 = 0 is a double sided identity for target multiplication, which we identified
to be disjunction. □

4.3 Additional instances of preordered heaps

As described in Section 4.2, as soon as we verify that a theory is a preordered heap, we
know how to compute quotients for that theory. Here we show that assume-guarantee (AG)
contracts are preordered heaps. We first define the algebraic aspects of the theory, and
then we proceed to show that it is a preordered heap, which involves verifying the axioms
of Definition 4.2.1. After we do this, we invoke Theorem 4.2.4 to express its quotient in
closed-form. We limit ourself to defining the theory of assume-guarantee contracts. To learn
about their uses and the design methodologies based on them, we suggest [19].

CHAPTER 4. EQUATIONS OVER PREORDERS 51

4.3.1 AG contracts

Assume-guarantee contracts are an algebra and a methodology to support compositional
system design and analysis. Fix once and for all a set B whose elements we call behaviors.
Subsets of B are referred to as behavioral properties or trace properties. An AG contract is
a pair of properties C = (A,G) satisfying A∪G = B. Contracts are used as specifications:
a component adheres to contract C if it meets the guarantees G when instantiated in an
environment that satisfies the assumptions A. The specific form of these properties is not
our concern now; we are only interested in the algebraic definitions. The algebra of assume-
guarantee contracts was introduced by R. Negulescu [154] (there called process spaces) to deal
with assume-guarantee reasoning for concurrent programs. The algebra was reintroduced,
together with a methodology for system design, by Benveniste et al. [18] to apply assume-
guarantee reasoning to the design and analysis of any engineered system. Now we describe
the operations of this algebra.

For C ′ = (A′, G′) another contract, the partial order of AG contracts, called refinement,
is given by C ≤ C ′ when G ⊆ G′ and A ⊇ A′. The involution of AG contracts, called recipro-
cal, is given by γC = (G,A). This operation is clearly antitone and meets axiom A1. Source
multiplication is contract composition: µ(C,C ′) = (A∩ A′ ∪ ¬(G∩G′), G∩G′). This op-
eration yields the tightest contract obeyed by the composition of two design elements, each
obeying contracts C and C ′, respectively. Composition is monotonic in the refinement order
of AG contracts. We need to verify the admissibility conditions. Since source multiplication
for AG contracts is commutative, we verify (4.1):

(µC ◦ γ)2C ′ = (µC ◦ γ) ◦ (µC)(G
′, A′) = µC(G∩ A′, A∩G′ ∪ ¬(G∩ A′))

= (A∩G∩ A′ ∪ ¬G∪ ¬(A∩G′ ∪ ¬A′), G∩ (A∩G′ ∪ ¬A′))

= (A∩ A′ ∪ ¬G∪ ¬A∩ A′ ∪ ¬G′ ∩ A′, G∩ (A∩G′ ∪ ¬A′))

= (A′ ∪ ¬G,G∩ (A∩G′ ∪ ¬A′)) ≤ (A′, G′) = C ′,

where in the last step we used the fact that ¬A′ ⊆ G′, which follows from A′ ∪G′ = B. We
conclude that AG contracts satisfy the admissibility conditions, and thus have preordered
heap structure.

What is target multiplication for AG contracts? From its definition, we have τ(C,C ′) =
γ ◦ µ ◦ (γC, γC ′) = γ ◦ µ ((G,A), (G′, A′)) = (A∩ A′, G∩G′ ∪ ¬(A∩ A′)). This is an
operation on contracts called merging. One of the main objectives of the theory of assume-
guarantee contracts is to deal with multiple viewpoints, i.e., a multiplicity of design concerns,
each having a contract representing the specification for that concern (e.g., functionality,
timing, etc.). In [161], it is argued that the operation of merging is used to bring multiple
viewpoint specifications into a single contract object.

Since AG contracts are preordered heaps, we get their quotient formulas from Theo-
rem 4.2.4. The adjoint of µC′ is τ γC

′
= γ ◦ µC′ ◦ γ. Applying this to C yields τ γC

′
(C) =

γ ◦ µC′
(G,A) = (A ∩ G′, G ∩ A′ ∪ ¬(A ∩ G′)). This closed-form expression for the quo-

tient of AG contracts was first reported in [96]. Also by Theorem 4.2.4, the left ad-
joint of merging by a fixed contract C ′ is the operation µ(C, γC ′) = µ ((A,G), (G′, A′)) =

CHAPTER 4. EQUATIONS OVER PREORDERS 52

(A∩G′ ∪ ¬(G∩ A′), G∩ A′). This operation was recently introduced under the name of
separation in [161].

4.4 Sieved heaps

Some theories in computer science require manipulating objects which are not defined over
the same domain. For example, consider a language L1 defined over an alphabet Σ1. Let Σ2

be another alphabet for which L2 is a language. The powerset of a set is a Boolean lattice,
so we have two preordered heaps PΣ1 = 2Σ

∗
1 and PΣ2 = 2Σ

∗
2 whose source multiplications and

involutions are intersection and negation (∗ is the Kleene star—we will define operations
carefully in the section on languages). With the theory of preordered heaps, we know how
to solve inequalities for PΣ1 and for PΣ2 . Suppose we define an operation that allows us
to compose L1 ∈ PΣ1 with L2 ∈ PΣ2 . How do we solve inequalities involving L1 and L2

then? These languages belong to different preordered heaps. It is natural to define such an
operation by mapping L1 and L2 to a common preordered heap, which by definition, has
its own notion of source multiplication. We need a notion of mapping between preordered
heaps:

Definition 4.4.1. Let (P,≤, µ, γ) and (P ′,≤′, µ′, γ′) be two preordered heaps. A preordered
heap homomorphism f : P → P ′ is an order-preserving map which commutes with the source

multiplications and involutions, i.e.,
P × P P ′ × P ′

P P ′

f×f

µ µ′

f

and
P P ′

P P ′

f

γ γ′

f

commute.

Preordered heaps PΣ1 and PΣ2 are indexed by alphabets. The common preordered heap
where L1 and L2 can be mapped is determined by Σ1 and Σ2. As we will see in the next
section, one option is to say that they generate the alphabet Σc = Σ1 ∪ Σ2, and we can
define maps ι1 : PΣ1 → PΣc and ι2 : PΣ2 → PΣc that embed languages over Σ1 and Σ2

to those defined under Σc. This observation tells us that we can use a structure S in
order to index preordered heaps; this structure must have a binary operation defined in
it. This operation will fulfill the role of identifying the alphabets where two languages can
meet. Call this structure S, and let · be its binary operation. If we have two languages
defined over the same alphabet, we should not need to move to another alphabet to compute
the source multiplication of the two languages; thus, the binary operation of S should be
idempotent. We will also require the operation to be commutative since it makes no difference
whether we go to the language generated by Σ1 and Σ2 or to that generated by Σ2 and
Σ1. A similar reasoning leads us to require associativity. Thus, S is endowed with an
associative, commutative, idempotent binary operation, which means it is a semilattice. We
make the choice to interpret it as an upper semi-lattice because we have the intuition that
the languages generated by two smaller languages should be larger than any of the two, but
this interpretation does not impose any algebraic limitations: an upper semilattice can be
turned into a lower semilattice simply by flipping it upside-down.

CHAPTER 4. EQUATIONS OVER PREORDERS 53

We introduce the notion of a sieved, preordered heap (sieved heap, for short) that allows
us to move objects between different domains of definition or different levels of abstraction.
A sieved heap is a collection of preordered heaps indexed by an upper semilattice S together
with mappings between the preordered heaps. We call these mappings concretizations. An
upper semilattice can be interpreted as a partial order: for a, b ∈ S, we say that a ≤ ab. Thus,
the shortest definition for a sieved heap is that it is a functor from the preorder category S
to PreHeap, the preordered heap category, whose objects are preordered heaps and whose
arrows are preordered heap homomorphisms. We will give a longer definition. But first,
why the adjective sieved? A sieved heap consists of a collection of preordered heaps and
maps between them. We interpret these preordered heaps as structures containing varying
amounts of detail about an object. This varying granularity motivated the name. This is
the definition of this composite structure:

Definition 4.4.2. Let S be a semilattice. Let {(Px,≤x, µx, γx)}x∈S be a collection of pre-
ordered heaps such that for every x, y, z ∈ S we have a unique preordered heap homomorphism

ι : Px → Pxy referred to as a concretization and making
Pxy

Px Pxyz

ι′
ι

ι′′
commute. We require

the concretization ι : Px → Px to be the identity. Let P = ⊕x∈SPx, where ⊕ stands for
disjoint union. We call (P,≤, µ, γ) an S-sieved heap, where µ : P × P → P is an operation
called source multiplication, and γ : P → P is called involution. Let a ∈ Px and b ∈ Py, and
let ιx : Px → Pxy and ιy : Py → Pxy be concretizations. These operations are given by

µ(a, b) = µxy (ιx(a), ιy(b)) and γ(a) = γx(a).

Moreover, we say that a ≤ b if and only if there exists z ∈ S and concretizations ι : Px → Pz

and ι′ : Py → Pz such that ι(a) ≤z ι
′(b), where ≤z is the preorder of Pz.

Target multiplication τ for P is defined in a similar way: τ(a, b) = τxy (ιx(a), ιy(b)), where
τxy is the target multiplication of the preordered heap Pxy.

4.4.1 Sieved heaps are preordered heaps

Now we show that a sieved heap is itself a preordered heap. To do this, we must show
that the relation ≤ over sieved heaps is a preorder, that source multiplication defined for a
sieved heap is monotonic, that its involution is antitone, and that it meets the admissibility
conditions. The following statements show that sieved heaps have these properties.

Lemma 4.4.3. The relation ≤ on an S-sieved heap P is a preorder.

Proof. Reflexivity. Let a ∈ Px. Let ι be the concretization ι : Px → Px. Then ιa ≤x ιa
because ≤x is a preorder in Px; this means that a ≤ a in P .

Transitivity. Let b ∈ Py and c ∈ Pz and suppose that a ≤ b and b ≤ c. Then there exist

v, w ∈ S such that ιxa ≤v ιyb and ι
′
yb ≤w ιzc, where the diagram

Pv Pvw Pw

Px Py Pz

ιv ιw

ιx
ιy ι′y

ιz shows

CHAPTER 4. EQUATIONS OVER PREORDERS 54

the relevant concretization maps (these diagrams commute per Definition 4.4.2). We obtain
immediately ιv ◦ ιxa ≤vw ιv ◦ ιyb and ιw ◦ ι′yb ≤vw ιw ◦ ιzc. From the diagram, ιv ◦ ιy = ιw ◦ ι′y,
which means that ιv ◦ ιxa ≤vw ιw ◦ ιzc, which means that a ≤ c.

Lemma 4.4.4. Source multiplication on P is monotonic in both arguments.

Proof. Let a, b, c ∈ P with a ≤ c. Suppose that a ∈ Px, b ∈ Py, and c ∈ Pz. Since a ≤ c,
there exist u ∈ S such that ιxa ≤u ιzc for concretizations ιx : Px → Pu and ιz : Pz → Pu.
Note that this means there exist u′, u′′ ∈ S such that u = xu′ and u = zu′′. But this
implies that uy = xyu′ and uy = yzu′′. Thus, there exist concretizations ιxy : Pxy → Puy and
ιyz : Pyz → Puy, and

Py

Pxy Puy Pyz

Px Pu Pz

ι′y
ιy

ι′′y

ιxy ιyz

ι′x
ιx

ιu ι′z
ιz

(4.3)

commutes. Since a ≤ c, we have

µuy (ιu ◦ ιxa, ιyb) ≤uy µuy (ιu ◦ ιzc, ιyb) . (4.4)

By the commutativity of the diagram, ιy = ιxy ◦ ι′y = ιyz ◦ ι′′y and ιu ◦ ιx = ιxy ◦ ι′x and
ιu ◦ ιz = ιyz ◦ ι′z. Using these identities, we can rewrite (4.4) as

µuy

(
ιxy ◦ ι′xa, ιxy ◦ ι′yb

)
≤uy µuy

(
ιyz ◦ ι′zc, ιyz ◦ ι′′yb

)
, which implies that

ιxy ◦ µxy

(
ι′xa, ι

′
yb
)
≤uy ιyz ◦ µyz

(
ι′zc, ι

′′
yb
)
and thus ιxy ◦ µ (a, b) ≤uy ιyz ◦ µ (c, b) .

This shows that µ (a, b) ≤ µ (c, b). Monotonicity in the second argument is proved in the
same way.

Theorem 4.4.5. An S-sieved heap P is a preordered heap.

Proof. By lemma 4.4.3, we know that (P,≤) is a preorder. By lemma 4.4.4, we know that
source multiplication for P is monotonic. From the definition of involution γ for P , it is
immediate that this operation is antitone and that γ2 = id. We must show the admissibility
conditions. Let a ∈ Px and b ∈ Py. Using the notation of (4.3), we have µ(a, γ ◦ µ(γb, a)) =
µ(a, γ ◦ µxy(ι

′
y ◦ γb, ι′xa)) = µxy(ι

′
xa, γ ◦ µxy(γ ◦ ι′yb, ι′xa)) ≤ ι′yb, where we used the left

admissibility of the preordered heap Pxy. But this means that µ(a, γ ◦ µ(γb, a)) ≤ b. We
conclude that P meets the left admissibility condition. Applying the same procedure tells
us that P also has right admissibility. Thus, P is a preordered heap.

Now that we know that sieved heaps are preordered heaps, we can compute quotients
in these structures. We will now consider the solution of inequalities over languages as an
application of sieved heaps.

CHAPTER 4. EQUATIONS OVER PREORDERS 55

4.5 Sieved heaps and language inequalities

Language inequalities arise as the formalization of the problem of synthesizing an unknown
component in hardware and software systems. In this section, we provide preliminaries
on languages and discuss their properties and operations. A fuller treatment of language
properties can be found in [197, 206]. Our objective is to show that commonly studied
language structures are sieved heaps, which allows us to axiomatically find their quotients
per the results of Section 4.4.

4.5.1 Operations on languages

An alphabet is a finite set of symbols. The set of all finite strings over a fixed alphabet X
is denoted by X⋆. X⋆ includes the empty string ϵ. A subset L ⊆ X⋆ is called a language
over alphabet X. [90] is a standard reference on this subject.

A substitution f is a mapping of an alphabet Σ to subsets of ∆⋆ for some alphabet ∆.
The substitution f is extended to strings by setting f(ϵ) = {ϵ} and f(xa) = f(x)f(a). The
following are well-studied language operations.

� Given a language L over alphabet X and an alphabet V , consider the substitution l : X →
2(X×V)⋆ defined as l(x) = {(x, v) | v ∈ V } . Then the language L↑V = ∪α∈Ll(α) over
alphabet X × V is the lifting of language L to alphabet V .

� Given a language L over alphabet X and an alphabet V , consider the mapping e : X →
2(X∪V)⋆ defined as e(x) = {αxβ | α, β ∈ (V −X)⋆} . Then the language L⇑V = ∪α∈Le(α)
over alphabet X ∪ V is the expansion of language L to alphabet V , i.e., words in L⇑V
are obtained from those in L by inserting anywhere in them words from (V −X)⋆. Notice
that e is not a substitution and that e(ϵ) = {α | α ∈ V ⋆}.

The following proposition states that language liftings and expansions meet the properties of
concretization maps of a sieved heap. These results will be used in the next section dealing
with inequalities over languages.

Proposition 4.5.1. Liftings and expansions are order-preserving and commute with inter-
section and complementation.

Proof. Let L,L1, L2 be languages over alphabet X, we need to show that the following
properties hold:

a. L1 ⊆ L2 implies L1 ↑V ⊆ L2 ↑V ;

b. L1 ⊆ L2 implies L1 ⇑V ⊆ L2 ⇑V ;

c. (L1 ∩ L2)↑V = L1 ↑V ∩ L2 ↑V ;

d. (L1 ∩ L2)⇑V = L1 ⇑V ∩ L2 ⇑V ;

CHAPTER 4. EQUATIONS OVER PREORDERS 56

e. L↑V = L↑V ; and

f. L⇑V = L⇑V .

(a) and (b) are a consequence of the fact that L1 ⊆ L2 implies L1 ∪ L2 = L2. Observe
that L1↑V = ∪α∈L1l(α) ⊆ ∪α∈L1∪L2l(α) = ∪α∈L2l(α) = L2↑V and L1⇑V = ∪α∈L1e(α) ⊆
∪α∈L1∪L2e(α) = ∪α∈L2e(α) = L2⇑V .
Parts (c) and (d) are proved by Proposition 2.2 in [206].
(e) α1 ̸= α2 implies l(α1)∩ l(α2) = ∅, then

L↑V ∩ L↑V = (∪α∈Ll(α))∩ (∪α∈Ll(α)) = ∅.

Moreover, we have L↑V ∪ L↑V = (∪α∈Ll(α))∪ (∪α∈Ll(α)) = (X × V)⋆. Hence, L↑V = (X ×
V)⋆ − L↑V = L↑V .
(f) In a similar way, since α1 ̸= α2 implies e(α1)∩ e(α2) = ∅, then

L⇑V ∩ L⇑V = (∪α∈Le(α))∩ (∪α∈Le(α)) = ∅.

We also have L⇑V ∪L⇑V = (∪α∈Le(α))∪ (∪α∈Le(α)) = (X ∪V)⋆. Hence, L⇑V = (X ∪V)⋆−
L⇑V = L⇑V .

4.5.2 Composition of languages and inequalities involving
languages

Consider two systems A and B with associated languages L(A) and L(B). The systems
communicate with each other by a channel U and with the environment by channels I and O.
The following two well-studied operators describe the external behavior of the composition
of L(A) and L(B).

Definition 4.5.2. Given the disjoint alphabets I, U,O, a language L1 over I × U , and a
language L2 over U × O, the synchronous composition of languages L1 and L2 is the
language (L1)↑O ∩ (L2)↑I , denoted by L1 • L2, defined over I × U ×O.

Definition 4.5.3. Given the disjoint alphabets I, U,O, a language L1 over I ∪ U , and a
language L2 over U ∪O, the parallel composition of languages L1 and L2 is the language
(L1)⇑O ∩ (L2)⇑I , denoted by L1 ⋄ L2, defined over I ∪ U ∪O.

Example. Let L1 = {a, aa} be a language of the alphabet Σ1 = {a, b}, and Σ2 = {c, d} be
another alphabet for which L2 = {c} is a language. Then L1 • L2 = {(a, c)} and L1 ⋄ L2 =
{ac, ca, caa, aca, aac}.

Synchronous composition abstracts the parallel execution of modules in lock step, assum-
ing a global clock and instant communication by a broadcasting mechanism, modeling the
product semantics common in the hardware community. In asynchronous composition mod-
ules execute independently at different speeds assuming clocks which progress at arbitrary

CHAPTER 4. EQUATIONS OVER PREORDERS 57

rates relative to one another, modeling the interleaving semantics common in the software
community. A comparison can be found in [112]. Now we show that we can interpret the
above products as the source multiplication of a sieved heap. For each product, we first need
to identify a suitable indexing semilattice. Then we need to build the appropriate preordered
heaps and their maps.

4.5.2.1 Synchronous equations

Semilattice. Suppose we have a disjoint family F = {Σi}1≤i≤n of alphabets for some
positive integer n, and let S = 2F . Then S is a semilattice under the operation of set union,
i.e., if x, y ∈ S, we have xy = x∪ y.
Preordered heaps. For any x ∈ S, let |x| be the cardinality of x. There exist natural
numbers k1, . . . , k|x| such that x = {Σkj}1≤j≤|x| ⊆ F and 1 ≤ ki < kj ≤ n for i < j. We map
each x to a preordered heap as follows. We define the alphabet over x as α(x) = Σk1 × · · · ×
Σk|x| , and we set Px = 2α(x)

∗
. Source multiplication µx for Px is intersection, and involution

γx is complementation. (Px,≤x, µx, γx) is a Boolean lattice, thus a preordered heap, as shown
in Section 4.2.
Concretizations. For x, y ∈ S, Pxy is clearly a preordered heap because xy ∈ S. We also
define the preordered heap Px,y = 2Σ

∗
x,y for Σx,y = α(x)×α(y−x) with source multiplication

equal to set intersection and involution equal to complementation. Note that the only
difference between Pxy and Px,y is the order in which the alphabets Σi appear in each: Pxy

contains all sets of finite strings over the alphabet α(xy), and Px,y contains all sets of finite
strings over the alphabet α(x) × α(y − x). Thus, Pxy and Px,y are isomorphic as sets. Let
β : Px,y → Pxy be this isomorphism, which is easily seen to be a preordered heap isomorphism.

This allows us to define the concretization ιx as follows:
Pxy

Px Px,y

β

(·)↑α(y−x)

ιx .

From Proposition 4.5.1, we know that (·) ↑α(y−x) is a preordered heap map. Thus, we have
an S-sieved heap {(Px,≤x, µx, γx)}x∈S. Since sieved heaps are preordered heaps (Theorem
4.4.5), for A ∈ Px and B ∈ Py, an equation of the form A • z ≤ B has the largest solution
Z ∈ Pxy with

Z = ¬
(
¬β′ (B ↑α(x−y)

)
∩ β′′ (A ↑α(y−x)

))
,

where β′ : Py,x → Pxy and β′′ : Px,y → Pxy are extensions of the alphabet permutations to
languages, as described above.

Example 4.5.4. Let I, U , and O be disjoint alphabets. Then S consists of all subsets of
{I, O, U}. Let i = {I}, u = {U}, and o = {O}. The preordered heap Piu consists of all
languages over the alphabet I × U . Puo consists of all languages over U × O. If L1 ∈ Piu,
the concretization ι : Piu → piuo maps L1 to a language over I × U × O. Observe that the
order in which each alphabet appears is important and set from the beginning; this eliminates
any potential ambiguities with the ordering of the alphabets (e.g., is it the alphabet I × U or
U×I?). By definition, this concretization map is (·) ↑O. In the same way, the concretization

CHAPTER 4. EQUATIONS OVER PREORDERS 58

ι′ : Puo → piuo is β◦(·) ↑I , where β : Puo,i → Piuo permutes the symbols of the language so that
they appear in the order (a, b, c) with a ∈ I, b ∈ U , and c ∈ O. Thus, source multiplication
is µ(L1, L2) = L1 ↑O ∩β (L2 ↑I), which is the synchronous product. □

4.5.2.2 Asynchronous equations

Now we form a semilattice S whose elements are abstract sets and whose operation is set

union. Let x ∈ S, and define Px = 2x
∗
. For y ∈ S, the concretization Px Pxy

ι is

ι = (·) ⇑y−x. Proposition 4.5.1 shows that ι is a preordered heap map. Thus, we have a
sieved heap {(Px,≤x, µx, γx)}x∈S.

Since sieved heaps are preordered heaps (Theorem 4.4.5), we are in a position to solve
language equations under asynchronous composition. Let x, y ∈ S, A ∈ Px and B ∈ Py. The
largest solution to the equation A ⋄ z ≤ B yields Z ∈ Pxy with Z = ¬ (¬B ⇑x−y ∩ A ⇑y−x).

Example 4.5.5. As before, let I, U , and O be disjoint alphabets, and let I, U,O ∈ S, where
S is a semilattice with the operation of set union. The preordered heap PIU consists of all
languages over I∪U . Similarly, the preordered heap PUO consists of all languages over U∪O.
The embedding ι : PIU → PIUO is simply (·) ⇑O, and the embedding ι′ : PUO → PIUO is (·) ⇑I .
Thus, for L1 ∈ PIU and L2 ∈ PUO, source multiplication is µ(L1, L2) = L1 ⇑O ∩L2 ⇑I , which
is the asynchronous product. □

4.6 Summary

The comparison of the closed form computation of quotients ranging from language equations
to AG contracts suggested a new algebraic structure, called preordered heap, endowed with
the axioms of preorders, together with a monotonic multiplication and an involution. We
showed that an admissibility condition allows to solve equations over preordered heaps,
and we gave the closed form of the solution. We showed that various theories qualify as
preordered heaps and therefore admit such explicit solution. In particular, we showed that
the conditions for being preordered heaps hold for Boolean lattices and assume-guarantee
contracts: in both cases we were able to derive axiomatically the quotients, which had been
previously obtained by specific analysis of each theory. Finally we defined equations over
sieved heaps to handle components defined over multiple alphabets, and rederived as special
cases the solution of language equations known in the literature.

59

Chapter 5

Contract merging and separation

Besides parallel composition, there is another binary operation we would like to carry out on
pairs of contracts. Assume two contracts specify different aspects of the same component.
One contract could specify, for example, how the component behaves functionally, and an-
other could describe its timing or power characteristics. We call these aspects viewpoints.
The operation of viewpoint merging consists in combining various contracts describing dif-
ferent aspects of the same component into a single contract object. A natural choice for
merging, and one that is followed by most of the literature on contracts, is the conjunction
operation [18, 19]. We here show, however, that conjunction is not always the answer to
viewpoint merging.

5.1 A revised notion of contract merging

Suppose a device guarantees to output data at certain rate Ro provided the data rate ri of the
input is higher than some minimum RL. Suppose the same device guarantees it will consume
less than P units of power if the temperature is bounded above by TH . The contract rejects
environments that do not satisfy such requirements. We can write the following functional
and power contracts for this device:

CF = (ri > RL, ro = Ro) and CP = (T < TH , p < P).

We can take their conjunction after inverse projecting to equalize the alphabets. From a
syntactic standpoint, inverse projection has no impact on the definition of the contract: if
a variable is added to the requirements or guarantees, the proposition added must allow
the variable to take any value in its domain, which is a true proposition. For example, the
requirements of CF can be extended with the proposition 0 < T < ∞, which is always true
since T is a non-negative real number. The extended requirements are shown graphically
in Figure 5.1.a and 5.1.b. Before carrying out conjunction, it is necessary to saturate both

CHAPTER 5. CONTRACT MERGING AND SEPARATION 60

𝑅" 𝑟$

𝑇&

𝑇

𝑅" 𝑟$

𝑇&

𝑇

𝑅" 𝑟$

𝑇&

𝑇

a. 𝐼(requirements b. 𝐼(requirements c. 𝐼)*+, requirements

Figure 5.1: Requirements: rate, temperature, and their union

contracts. We obtain

CF = (ri > RL, ro = Ro ∨ ¬(ri > RL)) and

CP = (T < TH , p < P ∨ ¬(T < TH)).

The conjunction is given by

Cconj = (ri > RL ∨ T < TH ,

(ro = Ro ∧ p < P) ∨ (ro = Ro ∧ T ≥ TH) ∨
(p < P ∧ ri ≤ RL) ∨ (T ≥ TH ∧ ri ≤ RL).

The resulting contract allows a satisfying component to guarantee either the guarantees of
both viewpoints (i.e., ro = Ro∧p < P) or the guarantees of only one of the viewpoints when
the assumptions of only one of them holds (e.g., ro = Ro ∧ T ≥ TH) or to guarantee nothing
when none of the assumptions hold (i.e., T ≥ TH ∧ ri ≤ RL). The requirements of the
conjunction, shown in Figure 5.1.c, are computed as the union and include the entire shaded
area. These requirements appear too permissive, as a satisfying component must now be
able to accept environments that produce rates below RL, and must work at temperatures
potentially higher than TH . The problem lies in the inverse projection combined with the
union. Ideally, we would like instead to consider only the intersection, which corresponds to
only the green area in Figure 5.1.c. This must be regarded as a new operator, since the form
of conjunction depends on the refinement order, and cannot simply be redefined.

The idea is that viewpoint merging should tell us what all viewpoints guarantee simul-
taneously since the contract for each viewpoint demands that its assumptions be met. Thus,
contract merging is defined as product with guarantee relaxation:

Definition 5.1.1 (Merging). Let C1 and C2 be contracts. Then C is the result of merging C1
and C2, written C = C1 • C2, if and only if

G = (G1 ∩G2)∪ ¬ (A1 ∩ A2) and A = A1 ∩ A2.

CHAPTER 5. CONTRACT MERGING AND SEPARATION 61

Applying the merging operator to our example yields:

CF • CP =(ri > RL ∧ T < TH , (ro = Ro ∨ ¬(ri > RL))∧
(p < P ∨ ¬(T < TH)) ∨ ri ≤ RL ∨ T ≥ TH)

= (RL < ri ∧ T < TH ,

(ro = Ro ∧ p < P) ∨ T ≥ TH ∨ ri ≤ RL) .

The guarantees of CF •CP now require that the guarantees of both contracts hold; moreover,
this contract forces the environment to meet the requirements of both contracts. Thus, the
merging operation correctly captures the intuitive notion of viewpoint merging. In what
follows, we discuss the properties of the operator and how it fits coherently in the overall
contract theory.

5.2 Composition, merging, and the contract lattice

At this point, contracts have two binary operations introduced by axiom and with semantic
meaning: composition and merging. The contract model, however, is a partial order on
refinement with well defined lattice operations. How are merging and composition related to
the contract lattice? The following theorem tells us that merging is one of the components
of the GLB.

Theorem 5.2.1. Let C = (A,G) and C ′ = (A′, G′) be contracts. Then the contract C ∧ C ′ is
equal to the conjunction of the following three contracts:

1. (A− A′, G∪ ¬ (A− A′))

2. (A′ − A,G′ ∪ ¬ (A′ − A))

3. (A∩ A′, G∩G′ ∪ ¬ (A∩ A′))

Proof. The union of the requirements of the three contracts clearly yields A∪A′. We compute
the intersection of the guarantees:

(G∪ A′)∩ (G′ ∪ A)∩ (G∩G′ ∪ ¬ (A∩ A′))

= (G∪ A′)∩ ((G∩G′)∪ (G′ ∩ ¬A)∪ (G′ ∩ ¬A′)∪ (A∩ ¬A′))

= (G∪ A′)∩ ((G∩G′)∪ ¬A′) (since G∩ ¬A′ ≤ G∩G′)

= ((G∩G′)∪ (G∩ ¬A′)) = G∩G′,

which are the guarantees of the conjunction.

We think of Theorem 5.2.1 as providing a factorization of the conjunction of two contracts
into three contracts. The first two contracts of this factorization require the environment to
support the environments of only one of C or C ′, and provide the guarantees only of one of

CHAPTER 5. CONTRACT MERGING AND SEPARATION 62

C

C ∧ C ′ C ∥ C ′ C • C ′ C ∨ C ′

C ′

Figure 5.2: Given contracts C and C′, their operations of conjunction, disjunction, composition,
and merging are ordered.

the contracts. The third contract, on the other hand, which corresponds to merging, requires
the environment to support the assumptions of both contracts simultaneously, and provides
the guarantees of both contracts. The use of the first two contracts in the factorization is
likely to be limited. The third contract, however, represents what the component does when
both viewpoints being conjoined are active simultaneously. As we discussed, this corresponds
exactly to the notion of viewpoint merging, hence the name of the operation.

We now observe that composition is, dually to merging, a component of the factorization
of the disjunction of two contracts.

Theorem 5.2.2. Let C = (A,G) and C ′ = (A′, G′) be contracts. Then the contract C ∨ C ′ is
equal to the disjunction of the following three contracts:

1. (A∪ ¬ (G−G′) , G−G′)

2. (A′ ∪ ¬ (G′ −G) , G′ −G)

3. (A∩ A′ ∪ ¬ (G∩G′) , G∩G′)

Proof. Obtained by dualizing the proof of Theorem 5.2.1.

As with merging, composition is the third element of this factorization of the LUB. These
two factorizations show that there is great symmetry between the notions of composition
and merging. Both operations appear as a component of the factorizations of elementary
operations of contracts, namely conjunction and disjunction, operations which are generated
from the contract partial order. Figure 5.2 shows how merging, composition, conjunction,
and disjunction are ordered.

5.3 Decomposition of contracts and separation of

viewpoints

In the last chapter, we discussed the operation of quotient. In order to support a modular
design process, the ability to decompose contracts into simpler ones is crucial; we called

CHAPTER 5. CONTRACT MERGING AND SEPARATION 63

QC C

C ′ PC ′

Q

α

P

β

(a) Composition and quotient

SC C

C ′ MC ′
γ

S

δ

M

(b) Merging and separation

Figure 5.3: Let I1 be a contract and define the functors P I = I ∥ I1, M I = I • I1, Q I = I / I1,
and S I = I ÷ I1. Then P is a left adjoint of Q, andM is a right adjoint of S.

quotient the operation that allows us to carry out decomposition. The quotient is defined
in terms of composition and refinement. The output of the quotient, denoted C / C1, has
the property that its composition with C1 refines C, and is maximal for this property in the
refinement order:

∀C ′. C ′ ∥ C1 ≤ C ⇐⇒ C ′ ≤ C / C1. (5.1)

Suppose C corresponds to a top-level specification, and C1 to the specification of a component
that will be used in the design. The quotient C / C1 yields the specification of the functionality
that C1 is missing for it to refine C. Thus, the quotient is key in the decomposition of
specifications.

We use the language of categories to describe some transformations between contracts.
Categories are composed of objects and arrows between these objects. For instance, in
the category of sets, objects are sets, and arrows are functions between sets. Functors are
transformations between categories; they map objects to objects and arrows to arrows. Since
refinement is a partial order for contracts, we can speak about a category of contracts, in
which objects are contracts and an arrow from contract C to contract C ′ exists if and only if
C ≤ C ′. We use the language of category theory to point out that some operations we have
discussed have deep connections to each other (i.e., are not arbitrary definitions). For an
in-depth treatment of category theory, see Mac Lane [138].

Let C1 be a contract. Let P(C) = C ∥ C1 be an endofunctor (i.e., a transformation of
objects within the same category) in the category of contracts. Let Q(C) = C / C1 be an-
other endofunctor. Then the definition (5.1) can be represented graphically as the universal
property that the arrow α exists if and only if β exists in the diagram shown in Figure 5.3a.
This means that P is a left adjoint to the functor Q. From this universal property of the
quotient, we can derive a closed-form expression which permits its calculation:

Theorem 5.3.1 (Theorem 4.2.5). Let C and C1 be contracts. Then Cq is the quotient between
contracts C and C1, written Cq = C / C1, if and only if

Gq = G∩ A1 ∪ ¬ (A∩G1) and Aq = A∩G1.

There exists a dual operation related to merging. We call separation the operation that
allows us to separate a viewpoint from a given merged contract. Given a merged contract C

CHAPTER 5. CONTRACT MERGING AND SEPARATION 64

and a viewpoint C1, the separation C ÷ C1 is defined as follows:

∀C ′. C ≤ C ′ • C1 ⇐⇒ C ÷ C1 ≤ C ′. (5.2)

In the category of contracts, if we letM be the endofunctorM(C) = C • C1 and S(C) =
C ÷ C1, we observe that the given universal property (5.2) means that, in Figure 5.3b, arrow
γ exists if and only if arrow δ exists. It follows that S is a left adjoint of the functor M .
From the universal property of separation, we can obtain an explicit form that enables its
computation:

Theorem 5.3.2 (Separation). Let C and C1 be contracts. Then Cs is the separation of
contracts C and C1, written Cs = C ÷ C1, if and only if

Gs = G∩ A1 and As = A∩G1 ∪ ¬ (G∩ A1) .

Proof. We wish to show that Cs satisfies

∀C ′. C ≤ C ′ • C1 ⇐⇒ Cs ≤ C ′.

Suppose Cs ≤ C ′ for a contract C ′. Let C2 = C1 • Cs. Expanding, we have

A2 = A1 ∩ (G1 ∩ A∪ ¬G) and

G2 = G∪ ¬A1.

Clearly, A2 ≤ A and G ≤ G2, so C ≤ C2. Since merging is monotonic with respect to
refinement, C ≤ C2 ≤ C ′ ∥ C1.

Conversely, suppose C ≤ C ′′ for C ′′ = C ′ • C1. We wish to show that Cs ≤ C ′. From the
assumption C ≤ C ′′, we observe that

G ≤ G′′ = G′ ∩G1 ∪ ¬ (A′ ∩ A1) ≤ G′ ∪ ¬A1

∴ Gs = G∩ A1 ≤ G′. (5.3)

Rewriting the left-hand side of (5.3), we have

¬ (G′ ∩G1)∩ (A′ ∩ A1) ≤ ¬G
∴ A′ ≤ ¬G∪ (G′ ∩G1)∪ ¬A1 ≤ ¬G∪G1. (5.4)

From the hypothesis C ≤ C ′′, we have A′∩A1 ≤ A. This constraint together with (5.4) gives
us

A′ ≤ (¬G∪G1)∩ (A∪ ¬A1) = A∩G1 ∪ ¬ (G∩ A1) = As.

This result and (5.3) imply that Cs ≤ C ′.

CHAPTER 5. CONTRACT MERGING AND SEPARATION 65

Note the duality between quotient and separation. Suppose we are given a high level
specification C of a design, and the specification C ′ of a component which will be used in the
design. The quotient represents the most relaxed missing specification, C/C ′, such that this
missing specification in composition with C ′ refines C. Merging, on the contrary, works as
follows: suppose we are given a specification C and suppose we are told that a specification
C ′ is part of a covering of C (i.e., a set of specifications whose merging is refined by C);
separation gives us the strictest specification which, when merged with intf ′, is refined by
C. In other words, quotient is used to find decompositions, while separation is used to find
coverings (e.g., abstractions) of specifications.

To illustrate quotient and separation, suppose we have a top level specification C =
(A,G1 ∩ G2 ∪ ¬A). This top level specification requires environments to satisfy A, and
components to satisfy G1 ∩G2 ∪ ¬A. Suppose an existing component satisfies the contract
C ′ = (A′, G1 ∪ ¬A′), where A ⊆ A′, i.e., this component provides part of the requirements
of the top-level contract. We expect the quotient to tell that we need another component
which implements the guarantees G2. The quotient yields

C / C ′ = (A∩G1, G2 ∪ ¬ (A∩G1)),

as we expected. Note that the quotient allows its implementations to make use of the
guarantees G1 as an assumption. In other words, the quotient allows its implementations to
expect that the components satisfying the specification C ′ will do their job.

Now consider the following application of separation. Instead of looking for decomposi-
tions of a specification, we look for coverings of a specification. Suppose we have a top-level
specification C ′ = (A,G ∪ ¬A) that we wish to implement, say, through synthesis. Sup-
pose the implementation resulting from synthesis has the specification C = (A ∩ Ae, G

′ ∪
¬ (A∩ Ae)), where G

′ ∪ ¬ (A∩ Ae) ⊆ G ∪ ¬ (A∩ Ae). That is, the implementation fails
to be a refinement of the top-level specification because the implementation uses more as-
sumptions. Note that this scenario is rather typical: top-level specifications often fail to
include assumptions which are necessary for an implementation to work. These additional
requirements are captured by Ae. We wish to compute the smallest specification we need to
add to C ′ so that C ′ merged with this missing specification covers C. Computing separation
yields

C ÷ C ′ = (Ae ∪ ¬ (A) , G′ ∩ A∪ ¬ (Ae ∪ ¬A)).

We can abstract this separation result to the contract (Ae, G
′ ∪ ¬Ae) (verification that this

is indeed an abstraction is left to the reader). This contract adds the missing requirements
and enforces the stricter guarantees G′. If the previous guarantees were acceptable, one can
abstract this contract even further to (Ae,B(Σ)), where B(Σ) is the set of all behaviors under
consideration.

The operations we have introduced have identities that characterize them in the contract
lattice.

CHAPTER 5. CONTRACT MERGING AND SEPARATION 66

C ∥ ⊥ = ⊥ C ∥ ⊤ = (¬ (G) , G) C ∥ 1 = C
C • ⊥ = (A,¬ (A)) C • ⊤ = ⊤ C • 1 = C

C /⊥ = ⊤ C /⊤ = (A,¬ (A)) C / 1 = C
⊥ / C = (G,¬ (G)) ⊤ / C = ⊤ 1 / C = (G,A)

C ÷ ⊥ = (¬ (G) , G) C ÷ ⊤ = ⊥ C ÷ 1 = C
⊥ ÷ C = ⊥ ⊤ ÷ C = (¬ (A) , A) 1 ÷ C = (G,A)

Table 5.1: Behavior of composition, quotient, merging, and separation with respect to the distin-
guished elements of the theory of contracts

Definition 5.3.3 (Composition and merging identity). A composition identity, denoted 1c,
is a contract such that C ∥ 1c = 1c ∥ C = C. Likewise, a merging identity, denoted 1m,
satisfies C • 1m = 1m • C = C.

The definition of the identities does not imply their uniqueness. The following lemma
settles this issue:

Lemma 5.3.4. Let Σ be the union of all alphabets over which components are defined. The
contract identities just introduced and the contracts ⊥ and ⊤ have the following explicit
forms: ⊤ = (∅,B(Σ)), ⊥ = (B(Σ), ∅), and 1m = 1c = (B(Σ),B(Σ)). Since both identities
are equal, we call 1 = 1c = 1m the identity.

How do these distinguished elements behave with respect to the contract operations?
These relations are shown in Table 5.1. We observe in this table that taking the quotient or
separation from the identity results in a contract with flipped requirements and guarantees.
This behavior motivates the following definition:

Definition 5.3.5 (Reciprocal). Let I = (A,G). Its reciprocal, denoted I−1, is given by
I−1 = 1 / C = 1 ÷ C = (G,A).

Finally, let C = (A,G) be a contract defined over an alphabet Σ. Table 5.2 provides some
identities pertaining merging and composition and their adjoint operations.

C ∥ C = C C / C = (A∩G,B(Σ)) C / C ′ = C • C ′−1

C • C = C C ÷ C = (B(Σ), A∩G) C ÷ C ′ = C ∥ C ′−1

Table 5.2: Some properties of composition, merging, and their adjoints

The operation of reciprocal allows us to create a contract representing the perspective of
the environment in which the design operates (as the reciprocal flips requirements and guar-
antees). We obtained several identities showing how the reciprocal interacts with the other

CHAPTER 5. CONTRACT MERGING AND SEPARATION 67

contract operations. It will be future work to better understand the role of the reciprocal in
system design methodologies.

5.4 Multiviewpoint design

We can use the device of merging to analyze systems described under different viewpoints,
and derive stronger combined results. To illustrate the procedure, we employ the case study
introduced by Damm et al. [49] and there solved by manually combining a timing and a safety
specification. We show that the application of our operators produces a more accurate result,
which refines the one derived there.

The example consists of a redundant wheel brake system composed of a dual Brake Sys-
tem Control Unit (BSCU) and a Hydraulic actuator. We will be concerned mainly with the
BSCU, which is shown schematically in Figure 5.4. The two units receive information regard-

Monitor	 1

Command	 1

Monitor	 2

Command	 2CMD	 Select

PedalPos1 PedalPos2

Cmd

Cmd1 Cmd2

BSCU

BS
CU
1

BS
CU
2

Valid1 Valid2

Figure 5.4: The Brake System Control Unit [49]

ing the position of the brake pedal, and deliver a brake command. The switch determines
which of the two versions of the command to forward on the basis of the valid signals coming
from the monitoring components. Without going into the details, the unit can sustain a
single fault (at least one unit will have a valid signal), and must produce a command within
5 ms from a change in the pedal position. The specification makes use of the Requirements
Specification Language, a natural-looking formal pattern-based assertion language. The tim-
ing and the safety analysis produce two contracts of the form C = ((H,R), (A,G)), where
H is the universe of behaviors (the requirements make no assumptions), R are the strong

CHAPTER 5. CONTRACT MERGING AND SEPARATION 68

assumptions, A are the weak assumptions and G are the guarantees1. The contracts for the
above properties are:

Safety contract
R: fail(PedalPos1) and fail(PedalPos2) do not occur
A: No double fault
G: Valid1 or Valid2

Timing contract
R: PedalPos1 == PedalPos2
A: Valid1 or Valid2
G: Delay from change(PedalPos1) or change(PedalPos2)

to change(Cmd) within [0, 5] ms

Merging the two contracts requires taking the intersection of the requirements after inverse
projection, as well as the intersection of the guarantees, which we extend with the comple-
ment of the weak assumptions to obtain a canonical form. The addition of the complement
of the requirements is not shown for brevity, as the semantics of the contract is not changed.

Merged contract
R: fail(PedalPos1) and fail(PedalPos2) do not occur and

PedalPos1 == PedalPos2
A: null

G: ((Valid1 or Valid2) or No double fault) and
((Delay. . .) or (Valid1 or Valid2))

By logical manipulation, simplification and extracting the weak assumptions, we obtain:

Merged contract
R: fail(PedalPos1) and fail(PedalPos2) do not occur and

PedalPos1 == PedalPos2
A: (Valid1 or Valid2) or No double fault
G: ((Valid1 or Valid2) and (Delay. . .))

The result shows that under the assumption that the inputs are correct, and if there is no
double fault, the system guarantees the stated delay between the change of the pedal position
and the braking command. While the results in the original paper are only informally
stated, they do appear to lack the first term of the weak assumption, making ours a more
refined contract (it accepts more environments). The first term is necessary, as the original
specification only expressed the forward implication (no double fault implies at least one valid
signal is asserted), but not the converse. Having a coherent theory is therefore fundamental

1In the original paper [49], the strong assumptions were denoted by A, the weak assumptions by B and
the guarantees by G.

CHAPTER 5. CONTRACT MERGING AND SEPARATION 69

to ensure correctness, and to cover all corner cases. In this case, the risk is to have contract
satisfaction despite a possible double failure. This may or may not be important in the
context of the system, but we believe the designer should be aware of the possibility and
take action as required.

Separation can be used to go back to the individual contracts. For instance, if we separate
the timing viewpoint and project away its variables we reconstruct the safety contract:

Separating timing viewpoint from merged contract
R: fail(PedalPos1) and fail(PedalPos2) do not oc-

cur
A: No double fault or (Valid1 or Valid2)
G: (Valid1 or Valid2)

Again, the result is a refinement of the original contract, recovering the implicit single im-
plication.

70

Chapter 6

The algebra of assume-guarantee
contracts

This chapter summarizes the algebra of assume-guarantee contracts. It defines AG contracts,
provides all their known operations, and shows all known ways in which these operations are
related. The chapter has the character of a fast tutorial on AG contracts. In addition, the
chapter studies monoid and semiring structures for a contract algebra, and the mappings
between such structures. Some of these mappings are used to define an action of a Boolean
algebra on its contract algebra.

6.1 Introduction

AG contracts can be understood as specifications split in two pieces: (i) assumptions made on
the environment, and (ii) responsibilities assigned to the object adhering to the specification
when it is instantiated in an environment which meets the assumptions of the contract.
Contracts were introduced to streamline the integration of complex systems and to support
concurrent design. System integration pertains the composition of multiple design objects
into a coherent whole. Suppose a company wishes to implement a system with a specification
C; they may realize that there are two sub-specifications C1 and C2 such that the composition
of their implementations always yields an implementation for the top level spec. In the
language of AG contracts, we would say that the composition of C1 and C2, written C1 ∥ C2,
refines C. This company may now develop an implementation M1 for C1, and provide C2
to a third-party OEM in order for them to develop an implementation M2. If M2 is an
implementation for C2, the original company knows that M1 and M2 can be composed and
that this composition meets the top-level specification C.

In this setting, frictions in the supply chain are alleviated as companies exchange formal
specifications expressed as contracts. It is also a common design task to find missing com-
ponents. Suppose our company again wants to implement a system with a specification C
and suppose they know that to implement this design they will use a component M1 with

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 71

specification C1. Contracts provide an operation called quotient which yields the specifica-
tion whose implementations are exactly those components M ′ such that M1 composed with
M ′ meets the spec C. The operation of quotient has uses in synthesis (when we have made
incremental progress towards meeting a goal) and in every situation where we need to find
missing components.

To say that contracts support concurrent design refers to another aspect of the design
process. The design of some components involves multiple engineers working on different
aspects of the same object. For example, a team may work on the functionality aspects of an
IC, while another works on its timing characterization. If the functionality team generates
a spec Cf , and the timing team generates a spec Ct, the two teams can combine their specs
into a single contract object C through an operation called merging. In the contract theory,
these various aspects of a component are called viewpoints.

This chapter defines AG contracts and summarizes their known operations.

6.2 AG Contracts

To define AG contracts, our starting point is the notion of properties. Thus, before talking
about contracts, we assume we have chosen a formalism to model our components and the
metrics we wish to verify in our system (properties).

Definition 6.2.1. A contract C is a pair of properties C = (A,G). We call A assumptions,
and G guarantees.

We now define what it means for a component to be an environment and an implemen-
tation for a contract.

Definition 6.2.2. Let C = (A,G) be a contract. We say that a component E is an environ-
ment for C, written E |=E C, if E |= A.

Environments are those components which meet the assumptions of a contract. Im-
plementations are those which meet the guarantees of the contract when operating in an
environment accepted by the contract:

Definition 6.2.3. Let C = (A,G) be a contract. We say that a component M is an imple-
mentation for C, written M |=M C, if M ∥ E |= G for every environment E of C.

Now that we have definitions for environments and implementations, we define a relation
on contracts that declares two contracts equivalent when they have the same environments
and the same implementations:

Definition 6.2.4. Let C and C ′ be two contracts. We say they are equivalent when

E |=E C if and only if E |=E C ′ and
M |=M C if and only if M |=M C ′.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 72

This means that for C = (A,G) and C ′ = (A′, G′) to be equivalent, we must have A = A′

and G∩ A = G′ ∩ A′ = G′ ∩ A (because A′ = A). The largest G′ meeting this condition is
G′ = G ∪ ¬A (the complement is taken with respect to B). Enforcing this constraint for a
contract allows us to have a unique mathematical object for each set of environments and
implementations. We thus define an AG contract in canonical form as follows:

Definition 6.2.5. A contract in canonical form is a contract C = (A,G) satisfying A∪G =
B.

From now on, we assume all contracts are in canonical form.

6.3 Order

Suppose C and C ′ are two contracts. We say that C is a refinement of C ′, written C ≤ C ′,
when all implementations of C are implementations of C ′ and all environments of C ′ are
environments of C, i.e.,

M |=M C ⇒M |=M C ′ and
E |=E C ′ ⇒ E |=E C.

The association we make of a specification being a refinement is that it is harder to meet
than another. This is why we say that a specification accepting more environments is a
refinement of one accepting less. We can express this order relation using assumptions and
guarantees.

Let C = (A,G) and C ′ = (A′, G′) be two contracts. Then C ≤ C ′ when

G ⊆ G′ and A′ ⊆ A.

6.4 Duality

There is a unary operation which is quite helpful in revealing structure for AG contracts.
Let C = (A,G) be a contract. We define a unary operation called reciprocal as follows:

C−1 = (G,A).

This operation flips environments and implementations, i.e., it gives us the “environment
view” of the specification C. Note that the reciprocal is a well-defined operation on AG
contracts because A∪ ¬G = ¬(¬A∩G) = ¬¬A = A.

Let ◦ and ⋆ be two binary operations on AG contracts, we say that the operations are
dual when

C ◦ C ′ =
(
C−1 ⋆ C ′−1

)−1
.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 73

6.5 Conjunction and disjunction

The notion of order provides a lattice structure to AG contracts. Given contracts C = (A,G)
and C ′ = (A′, G′), their meet (GLB) and join (LUB) are given by

C ∧ C ′ = (A∪ A′, G∩G′) and

C ∨ C ′ = (A∩ A′, G∪G′).

We leave it to the reader to verify that conjunction and disjunction are monotonic with
respect to the refinement order. Also, we observe that conjunction is the dual of disjunction:

C ∧ C ′ = (G∩G′, A∪ A′)−1 = ((G,A) ∨ (G′, A′))
−1

=
(
C−1 ∨ C ′−1

)−1
.

6.6 Composition

The notion of composition of AG contracts yields the specification of systems obtained from
composing implementations of each of the contracts being composed. This operation is
defined by axiom as follows:

Suppose C1 and C2 are two specifications to be composed. Call C the composite specifi-
cation. Let M1 and M2 be arbitrary implementations of C1 and C2, respectively, and let E
be any environment of C. We define C to be the smallest contract satisfying the following
constraints:

� The composite M1 ∥M2 is an implementation of C;

� the composite M1 ∥ E is an environment of C2; and

� the composite M2 ∥ E is an environment of C1.

The first requirement states that composing implementations of the specs being com-
posed yields an implementation of the composite spec. The second requirement states that
instantiating an implementation of C1 in an environment of the composite spec yields an en-
vironment for C2. And the last requirement is the analogous statement for C1. This principle,
which states how to compose specifications split between environment and implementation
requirements, was stated for the first time by M. Abadi and L. Lamport [1].

We can obtain a closed-form expression of this principle for AG contracts:

Proposition 6.6.1. Let C1 = (A1, G1) and C2 = (A2, G2) be two AG contracts. Their
composition, denoted C1 ∥ C2, is given by

C1 ∥ C2 = (A1 ∩ A2 ∪ ¬(G1 ∩G2), G1 ∩G2) .

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 74

Proof. The following statement instantiates the composition principle using the symbols we
just defined:

C1 ∥ C2 =
∧C

∣∣∣∣∣∣∣
M1 ∥M2 |=M C
M1 ∥ E |=E C2
M2 ∥ E |=E C1

 for all

M1 |=M C1
M2 |=M C2
E |=E C

 .

Now we plug-in definitions:

C1 ∥ C2 =
∧C

∣∣∣∣∣∣∣
M1 ∥M2 |=M C
M1 ∥ E ⊆ A2

M2 ∥ E ⊆ A1

 for all

M1 ⊆ G1

M2 ⊆ G2

E |=E C

=
∧{

C

∣∣∣∣∣
[
G1 ∩G2 |=M C
E ⊆ (A2 ∪ ¬G1)∩ (A1 ∪ ¬G2)

]
for all E |=E C

}
.

Since a contract (A,G) satisfies G ⊇ ¬A, it also satisfies A ⊇ ¬G, which means that the
upper bound on E can be written (A2∪¬G1)∩ (A1∪¬G2) = A1∩A2∪¬(G1∩G2). Thus,

C1 ∥ C2 =
∧{

C

∣∣∣∣∣
[
G1 ∩G2 |=M C
E ⊆ A1 ∩ A2 ∪ ¬(G1 ∩G2)

]
for all E |=E C

}
.

The expression imposes a lower-bounded to the guarantees of C and an upper bound to
the assumptions. The GLB requires us to find C with the smallest guarantees and largest
assumptions. The contract simultaneously satisfying those constraints is

(A1 ∩ A2 ∪ ¬(G1 ∩G2), G1 ∩G2) .

But we observe that this contract satisfies the constraint of a contract. Thus, the closed-form
expression stated in the proposition yields the composition according to the principle.

We state without proof an important property of composition:

Proposition 6.6.2. Composition of AG contracts is monotonic with respect to the refine-
ment order.

6.7 Strong merging (or merging)

We said that AG contracts are used not only to handle the specifications of multiple com-
ponents comprising a system, but also the various viewpoints of the same design element.
Suppose C1 and C2 are specifications corresponding to different aspects to the same design
object, e.g., functionality and power. We define their merger, denoted C1 • C2, to be the

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 75

contract which guarantees the guarantees of both specifications when the assumptions of
both specifications are respected, that is,

C1 • C2 = (A1 ∩ A2, G1 ∩G2 ∪ ¬(A1 ∩ A2)) .

Observe that this contract is equivalent to the contract (A1 ∩ A2, G1 ∩G2), which is exactly
what we defined merging to be.

Moreover, merging and composition are duals.

6.8 Adjoints

We have introduced four operations on AG contracts: two were obtained from the partial
order, and two by axiom. Now we obtain the adjoints of these operations.

6.8.1 Quotient (or residual)

Let C and C ′ be two AG contracts. The quotient1, denoted C/C ′, is defined as the largest
AG contract C ′′ satisfying

C ′ ∥ C ′′ ≤ C.

Due to the fact that the quotient is the largest contract with this property, Proposition
6.6.2 tells us that any of its refinements also has this property.

If we interpret C as a top-level spec that our system has to meet (e.g., the spec of a
vehicle), and C ′ as the specification of a subset of the design for which we already have an
implementation (e.g., a powertrain), then the quotient is the specification whose implemen-
tations are exactly those components which, if added to our partial design, would yield a
system meeting the top-level specification. The following proposition gives us a closed-form
expression for the quotient of AG contracts:

Proposition 6.8.1 (Theorem 4.2.5). Let C = (A,G) and C ′ = (A′, G′) be two AG contracts.
The quotient, denoted C/C ′, is given by

C/C ′ = (A∩G′, G∩ A′ ∪ ¬(A∩G′)) .

For examples of the use of the quotient to identify missing components, see Sections
4.3.3 and 4.5. For an in-depth study of the notion of a quotient across several compositional
theories, see Chapter 4.

We can readily show that

C/C ′ = C • (C ′)−1. (6.1)

1Also called residual in the literature.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 76

6.8.2 Separation

Just like composition has an adjoint operation (the quotient), merging has an adjoint. For
contracts C and C ′, we define the operation of separation, denoted C ÷ C ′, as the smallest
contract C ′′ satisfying

C ≤ C ′ • C ′′.

This operation has a closed-form solution:

Proposition 6.8.2 (Theorem 5.3.2). Let C = (A,G) and C ′ = (A′, G′) be two AG contracts.
Then

C ÷ C ′ = (A∩G′ ∪ ¬(G∩ A′), G∩ A′) .

Separation obeys the identity:

C ÷ C ′ = C ∥ (C ′)−1.

From this identity and (6.1), it follows that quotient and separation are duals. For
examples of merging and separation, see Chapter 5.

6.8.3 Implication and coimplication

Given contracts C and C ′, the definition of implication, denoted C ′ → C, in a lattice is as
follows:

∀C ′′. C ′′ ∧ C ′ ≤ C ⇔ C ′′ ≤ (C ′ → C).

In other words, C ′ → C is the largest contract C ′′ satisfying C ′′ ∧ C ′ ≤ C. The following
proposition tells us how to compute this object:

Proposition 6.8.3. Let C = (A,G) and C ′ = (A′, G′) be two contracts. Implication has the
closed form expression

C ′ → C = ((A∩ ¬A′)∪ (G′ ∩ ¬G), G∪ ¬G′) .

Proof. Let Ci be the contract stated in the proposition. Observe that Ci ∧C ′ = C ∧C ′. Thus,
by the monotonicity of conjunction, if C ′′ ≤ Ci, then C ′′ ∧ C ′ ≤ C.

Now write C ′′ as C ′′ = (A′′, G′′) and assume that C ′′ ∧ C ′ ≤ C. Then

G′′ ∩G′ ≤ G and

A′′ ∪ A′ ≥ A.

From this we conclude that

G′′ ≤ G∪ ¬G′ and (6.2)

A′′ ≥ A∩ ¬A′. (6.3)

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 77

From (6.2) and the fact that A′′ ≥ ¬G′′ (which follows from the definition of AG contracts),
we obtain A′′ ≥ G′ ∩ ¬G. This result and (6.3) yield

A′′ ≥ (A∩ ¬A′)∪ (G′ ∩ ¬G).

This expression and (6.2) mean that C ′′ ≤ Ci, completing the proof.

Dually, we can ask what is the smallest contract C ′′ satisfying

C ′′ ∨ C ′ ≥ C.

We will denote this object C ′ ↛ C. A similar proof yields the following proposition.

Proposition 6.8.4. Let C = (A,G) and C ′ = (A′, G′) be two contracts. The smallest contract
C ′′ satisfying C ′′ ∨ C ′ ≥ C has the closed form expression

C ′ ↛ C = (A∪ ¬A′, (G∩ ¬G′)∪ (A′ ∩ ¬A)) .

We observe that

C ′ → C = (G∪ ¬G′, (A∩ ¬A′)∪ (G′ ∩ ¬G))−1
=
(
(C ′)−1 ↛ C−1

)−1
,

which shows that implication and coimplication are duals.

6.9 Summary of binary operations

The following diagram shows how all AG contract operations are related.

Conjunction ∧ Implication →

Order

Disjunction ∨ Coimplication ↛

Dual

Right adjoint

Left adjoint

Dual

Composition ∥ Quotient /

Axiom

Merging • Separation ÷
Dual

Right adjoint

Left adjoint

Dual

Tables 6.1 and 6.2 show the closed-form expressions and the duality relations for all
operations.

Composition and merging C1 ∥ C2 =
(
C−1
1 • C−1

2

)−1 C1 • C2 =
(
C−1
1 ∥ C−1

2

)−1

Quotient and separation C/C ′ = (C−1 ÷ (C ′)−1)
−1 C ÷ C ′ = (C−1/(C ′)−1)

−1

Conjunction and disjunction C1 ∧ C2 =
(
C−1
1 ∨ C−1

2

)−1 C1 ∨ C2 =
(
C−1
1 ∧ C−1

2

)−1

Implication an coimplication C ′ → C = ((C ′)−1 ↛ C−1)
−1 C ′ ↛ C = ((C ′)−1 → C−1)

−1

Table 6.1: Duality relations

Moreover, we have the following relations between composition, quotient, merging, and
separation: C/C ′ = C • (C ′)−1 C ÷ C ′ = C ∥ (C ′)−1

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 78

Conjunction Disjunction
C ∧ C′ = (A∪A′, G∩G′) C ∨ C′ = (A∩A′, G∪G′)
Composition Merging
C1 ∥ C2 = (A1 ∩A2 ∪ ¬(G1 ∩G2), G1 ∩G2) C1 • C2 = (A1 ∩A2, G1 ∩G2 ∪ ¬(A1 ∩A2))
Quotient Separation
C/C′ = (A∩G′, G∩A′ ∪ ¬(A∩G′)) C ÷ C′ = (A∩G′ ∪ ¬(G∩A′), G∩A′)
Implication Coimplication
C′ → C = ((A∩ ¬A′)∪ (G′ ∩ ¬G), G∪ ¬G′) C′ ↛ C = (A∪ ¬A′, (G∩ ¬G′)∪ (A′ ∩ ¬A))

Table 6.2: Closed-form expressions of contract operations

Conjunction Disjunction
C ∧ C′ = (a ∨ a′, g ∧ g′) C ∨ C′ = (a ∧ a′, g ∨ g′)
Composition Merging
C1 ∥ C2 = (a1 ∧ a2 ∨ ¬(g1 ∧ g2), g1 ∧ g2) C1 • C2 = (a1 ∧ a2, g1 ∧ g2 ∨ ¬(a1 ∧ a2))
Quotient Separation
C/C′ = (a ∧ g′, g ∧ a′ ∨ ¬(a ∧ g′)) C ÷ C′ = (a ∧ g′ ∨ ¬(g ∧ a′), g ∧ a′)
Implication Coimplication
C′ → C = ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′) C′ ↛ C = (a ∨ ¬a′, (g ∧ ¬g′) ∨ (a′ ∧ ¬a))

Table 6.3: Closed-form expressions of operations for contracts over a Boolean algebra

6.10 Algebraic structures within contracts

Inspection of the various binary formulas for AG contracts (Table 6.2) suggests that contracts
can be defined over any Boolean algebra, not just that corresponding to properties over a
set of behaviors. Thus, for any Boolean algebra B, we have an associated contract algebra
C(B) whose elements are all pairs (a, b) ∈ B2 such that a ∨ b = 1. The notions of order
and the binary operations work exactly the same as for AG contracts over sets of behaviors.
Table 6.3 summarizes these operations.

Let 0B and 1B be the bottom and top elements, respectively, of the Boolean algebra
B. The contract 1 = (0B, 1B) is larger than any contract. 0 = (1B, 0B) is smaller than
any contract. The contract id = (1B, 1B) is an identity for composition and merging. 1 is
an identity for conjunction, and 0 for disjunction. Table 6.4 shows how various operations
behave with respect to the distinguished elements.

6.10.1 Monoids

We recall that a monoid is a semigroup with identity, i.e., a set together with an associative
binary operation and an identity element for that operation. A contract algebra contains
several monoids:

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 79

0 1 id

Conjunction C ∧ 0 = 0 C ∧ 1 = C (a, g) ∧ id = (1B , g)
Disjunction C ∨ 0 = C C ∨ 1 = 1 (a, g) ∨ id = (a, 1B)
Composition C ∥ 0 = 0 (a, g) ∥ 1 = (¬g, g) C ∥ id = C
Merging (a, g) • 0 = (a,¬a) C • 1 = 1 C • id = C

Quotient C/0 = 1 (a, g)/1 = (a,¬a) C/id = C
0/(a, g) = (g,¬g) 1/C = 1 id/C = C−1

Separation (a, g)÷ 0 = (¬g, g) C ÷ 1 = 0 C ÷ id = C
0÷ C = 0 1÷ (a, g) = (¬a, a) id÷ C = C−1

Implication (a, g)→ 0 = (g,¬g) C → 1 = 1 (a, g)→ id = (¬a, 1B)
0→ C = 1 1→ C = C id→ (a, g) = (¬g, g)

Coimplication C ↛ 0 = 0 (a, g) ↛ 1 = (¬a, a) (a, g) ↛ id = (1B ,¬g)
0 ↛ C = C 1 ↛ C = 0 id ↛ (a, g) = (a,¬a)

Table 6.4: Contract operations and the distinguished elements

Proposition 6.10.1. CM∧ (B) = (C(B),∧, 1B), CM∨ (B) = (C(B),∨, 0B), CM∥ (B) = (C(B), ∥
, id), and CM• (B) = (C(B), •, id) are idempotent, commutative monoids.

Proof. We already know that 1 and 0 are, respectively, the identity elements of conjunc-
tion and disjunction. id is the identity for composition and merging. The idempotence of
these operations follows immediately from their definitions. It remains to show that these
operations are associative.

Let C = (a, g), C ′ = (a′, g′), and C ′′ = (a′′, g′′) be contracts.

� Conjunction.

C ∧ (C ′ ∧ C ′′) = (a, g) ∧ (a′ ∨ a′′, g′ ∧ g′′)
= (a ∨ (a′ ∨ a′′), g ∧ (g′ ∧ g′′)) = ((a ∨ a′) ∨ a′′, (g ∧ g′) ∧ g′′)
= (a ∨ a′, g ∧ g′) ∧ C ′′ = (C ∧ C ′) ∧ C ′′

� Disjunction.

C ∨ (C ′ ∨ C ′′) =
(
C−1 ∧ ((C ′)−1 ∧ (C ′′)−1)

)−1
=
(
(C−1 ∧ (C ′)−1) ∧ (C ′′)−1

)−1

= (C ∨ C ′) ∨ C ′′

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 80

� Composition.

C ∥ (C ′ ∥ C ′′) = (a, g) ∥ (¬g′ ∨ ¬g′′ ∨ (a′ ∧ a′′), g′ ∧ g′′)
= (¬g ∨ ¬g′ ∨ ¬g′′ ∨ (a ∧ a′ ∧ a′′), g ∧ (g′ ∧ g′′))
= (¬g ∨ ¬g′ ∨ ¬g′′ ∨ ((a ∧ a′) ∧ a′′), (g ∧ g′) ∧ g′′)
= (¬g ∨ ¬g′ ∨ (a ∧ a′), g ∧ g′) ∥ C ′′ = (C ∥ C ′) ∥ C ′′

� Merging.

C • (C ′ • C ′′) =
(
C−1 ∥ ((C ′)−1 ∥ (C ′′)−1)

)−1
=
(
(C−1 ∥ (C ′)−1) ∥ (C ′′)−1

)−1

= (C • C ′) • C ′′

It turns out these monoids are isomorphic:

Proposition 6.10.2. The monoids CM∧ (B), CM∨ (B), CM∥ (B), and CM• (B) are isomorphic.

Proof. Due to the duality relations between conjunction and disjunction and between compo-
sition and merging, the reciprocal map provides monoid isomorphisms between (C(B),∧, 1)
and (C(B),∨, 0) and between (C(B), ∥, id) and (C(B), •, id).

We now show that the map θg : C∥(B)→ C∧(B) defined as

θg : (a, g) 7→ (¬(a ∧ g), g)

is a monoid isomorphism.
Observe that θ2g(a, g) = θg(¬(a∧g), g) = (¬(¬(a∧g)∧g), g) = (a, g), so θg is an involution.

Now we show it is a monoid homomorphism. Let C = (a, g) and C ′ = (a′, g′).

� θg(id) = θg(1, 1) = (0, 1) = 1

� We verify whether θg commutes with the multiplications:

θg(C ∥ C ′) = θg(¬(g ∧ g′) ∨ (a ∧ a′), g ∧ g′)
= (¬(a ∧ g ∧ a′ ∧ g′), g ∧ g′) = (¬(a ∧ g) ∨ ¬(a′ ∧ g′), g ∧ g′)
= (¬(a ∧ g), g) ∧ (¬(a′ ∧ g′), g′) = θg(C) ∧ θg(C ′).

As θg is an involution, we have to check that it is a monoid map from C∧(B) to C∥(B).

θg(C ∧ C ′) = θg(a ∨ a′, g ∧ g′)
= (¬(g ∧ g′ ∧ (a ∨ a′)), g ∧ g′) = (¬(g ∧ g′) ∨ (¬a ∧ ¬a′), g ∧ g′)
= (¬(g ∧ g′) ∨ (¬(a ∧ g) ∧ ¬(a′ ∧ g′)) , g ∧ g′) = (¬(a ∧ g), g) ∥ (¬(a′ ∧ g′), g′)
= θg(C) ∥ θg(C ′)

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 81

The following diagram summarizes the isomorphisms of the four contract monoids:

CM∧ (B) CM∨ (B)

CM∥ (B) CM• (B)

θg

≃

(·)−1

≃

θa≃

(·)−1

≃

The isomorphism θa is defined using the diagram, i.e.,

θa(a, g) =
(
θg(a, g)

−1
)−1

= (θg(g, a))
−1 = (¬(a ∧ g), a)−1 = (a,¬(a ∧ g)).

Now suppose we have two Boolean algebras, B and B′. We will study the structure
of the maps between the contract monoids associated with each Boolean algebra. Due to
Proposition 6.10.2, it is sufficient to study the structure of the maps between the contract
monoids CM∥ (B) and CM∥ (B′). First we study maps that allow us to construct and split
contracts. We use these maps to construct general maps:

6.10.1.1 Elementary maps.

Let BM
∧ and BM

∨ be the monoids BM
∧ = (B,∧, 1B) and BM

∨ = (B,∨, 0B). We define the two
monoid maps

ιa : B
M
∧ → CM∥ a 7→ (a, 1B)

ιg : B
M
∧ → CM∥ g 7→ (1B, g).

These maps generate an epic monoid map π : BM
∧ ×BM

∧ → CM∥ (B) defined as

(a, g) 7→ ιa(a) ∥ ιg(g) = (g → a, g).

Similarly, we have monoid maps that allow us to split a contract:

πg : CM∥ → BM
∧ πg(a, g) = g

πa : CM∧ → BM
∨ πa(a, g) = a.

We use the monoid isomorphisms to obtain a map CM∧ → BM
∧ from the last morphism:

¬ ◦ πa ◦ θg : CM∥ → BM
∧

(a, g) 7→ a ∧ g.

The two maps CM∥ → BM
∧ yield the monic monoid map

ι : CM∥ → B∧ ×B∧

(a, g) 7→ (a ∧ g, g).

This map is left-invertible:
π ◦ ι = id.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 82

6.10.1.2 General maps.

The elementary maps just described enable us to find the general structure between the
monoid maps between the parallel monoids corresponding to two Boolean algebras. This is
our main result in this section:

Theorem 6.10.3. Let f : CM∥ (B)→ CM∥ (B′). There exists a unique f ♭ : BM
∧ ×BM

∧ → BM ′
∧ ×

BM ′
∧ making the following diagram commute:

BM
∧ ×BM

∧ BM ′
∧ ×BM ′

∧

CM∥ (B) CM∥ (B′)

π

f♭

π

f

ι ι

The structure of f ♭ is given by

f ♭ = (la(ag)lg(g)ra(ag)rg(g), ra(ag)rg(g)) ,

where la, lg, ra, rg : B
M
∧ → BM ′

∧ are monoid morphisms.

Proof. Because ι is monic, f generates a unique monoid map f#:

BM
∧ ×BM

∧ BM ′
∧ ×BM ′

∧

CM∥ (B) CM∥ (B′)

π

f

f#
ι

Because π is epic, f# generates a unique monoid map f ♭

BM
∧ ×BM

∧ BM ′
∧ ×BM ′

∧

CM∥ (B) CM∥ (B′)

π

f♭

f

f#
ι

Thus, we have the diagram

BM
∧ ×BM

∧ BM ′
∧ ×BM ′

∧

CM∥ (B) CM∥ (B′)

π

f♭

π

f

f#
ι ι (6.4)

f ♭ can be factored as the product of two maps

BM
∧ ×BM

∧ → BM ′

∧ .

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 83

We also observe that f ♭(a, g) = f ♭((a, 1) ∧ (1, g)) = f ♭(a, 1) ∧ f ♭(1, g). This means there are
monoid maps la, lg, ra, rg : B

M
∧ → BM ′

∧ such that

f ♭(a, g) = (la(a)lg(g), ra(a)rg(g)) .

To obtain further restrictions on these maps, we use (6.4):

f ♭(a, g) = ι ◦ f ◦ π(a, g) = ι ◦ π ◦ f ♭ ◦ ι ◦ π(a, g)
= (la(ag)lg(g)ra(ag)rg(g), ra(ag)rg(g))

6.10.2 Semirings

Now that we have four monoids, we look for additional algebraic structure. First we study
the distributivity of the binary operations.

Conjunction Disjunction Composition Merging

Conjunction
C ∧ (C′ ∧ C′′) =
(C ∧ C′) ∧ (C ∧ C′′)

C ∧ (C′ ∨ C′′) =
(C ∧ C′) ∨ (C ∧ C′′)

C ∧ (C′ ∥ C′′) =
(C ∧ C′) ∥ (C ∧ C′′)

id ∧ (1 • 0) ̸=
(id ∧ 1) • (id ∧ 0)

Disjunction
C ∨ (C′ ∧ C′′) =
(C ∨ C′) ∧ (C ∨ C′′)

C ∨ (C′ ∨ C′′) =
(C ∨ C′) ∨ (C ∨ C′′)

id ∨ (1 ∥ 0) ̸=
(id ∨ 1) ∥ (id ∨ 0)

C ∨ (C′ • C′′) =
(C ∨ C′) • (C ∨ C′′)

Compostion
C ∥ (C′ ∧ C′′) =
(C ∥ C′) ∧ (C ∥ C′′)

C ∥ (C′ ∨ C′′) =
(C ∥ C′) ∨ (C ∥ C′′)

C ∥ (C′ ∥ C′′) =
(C ∥ C′) ∥ (C ∥ C′′)

1 ∥ (0 • id) ̸=
(1 ∥ 0) • (1 ∥ id)

Merging
C • (C′ ∧ C′′) =
(C • C′) ∧ (C • C′′)

C • (C′ ∨ C′′) =
(C • C′) ∨ (C • C′′)

0 • (1 ∥ id) ̸=
(0 • 1) ∥ (0 • id)

C • (C′ • C′′) =
(C • C′) • (C • C′′)

Table 6.5: Distributivity of contract operations

Proposition 6.10.4. Table 6.5 shows whether the binary operations displayed in the rows
distribute over the binary operations in the columns.

Proof. Let C = (a, g), C ′ = (a′, g′), and C ′′ = (a′′, g′′) be contracts.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 84

� Conjunction.

C ∧ (C ′ ∨ C ′′) = (a, g) ∧ (a′ ∧ a′′, g′ ∨ g′′) = ((a ∨ a′) ∧ (a ∨ a′′), (g ∧ g′) ∨ (g ∧ g′′))
= (C ∧ C ′) ∨ (C ∧ C ′′)

C ∧ (C ′ ∥ C ′′) = (a, g) ∧ ((g′ ∧ g′′)→ (a′ ∧ a′′), g′ ∧ g′′)
= (a ∨ (a′ ∧ a′′) ∨ ¬g′ ∨ ¬g′′, g ∧ g′ ∧ g′′)
= (a ∨ ¬g ∨ (a′ ∧ a′′) ∨ ¬g′ ∨ ¬g′′, g ∧ g′ ∧ g′′)
= ((g ∧ g′ ∧ g′′)→ ((a ∨ a′) ∧ (a ∨ a′′)), g ∧ g′ ∧ g′′)
= (a ∨ a′, g ∧ g′) ∥ (a ∨ a′′, g ∧ g′′) = (C ∧ C ′) ∥ (C ∧ C ′′)

id ∧ (1 • 0) = id ∧ 1 = id ̸= 0 = id • 0 = (id ∧ 1) • (id ∧ 0)

� Disjunction.

C ∨ (C ′ ∧ C ′′) =
(
C−1 ∧ ((C ′)−1 ∨ (C ′′)−1)

)−1

=
(
(C−1 ∧ (C ′)−1) ∨ (C−1 ∧ (C ′′)−1)

)−1

= (C ∨ C ′) ∧ (C ∨ C ′′)

C ∨ (C ′ • C ′′) =
(
C−1 ∧ ((C ′)−1 ∥ (C ′′)−1)

)−1

=
(
(C−1 ∧ (C ′)−1) ∥ (C−1 ∧ (C ′′)−1)

)−1

= (C ∨ C ′) • (C ∨ C ′′)
id ∨ (1 ∥ 0) = id ∨ 0 = id ̸= 1 = 1 ∥ id = (id ∨ 1) ∥ (id ∨ 0)

� Composition.

C ∥ (C ′ ∧ C ′′) = (a, g) ∥ (a′ ∨ a′′, g′ ∧ g′′)
= (¬(g ∧ g′) ∨ ¬(g ∧ g′′) ∨ (a ∧ a′) ∨ (a ∧ a′′), (g ∧ g′) ∧ (g ∧ g′′))
= ((g ∧ g′)→ (a ∧ a′), (g ∧ g′)) ∧ ((g ∧ g′′)→ (a ∧ a′′), (g ∧ g′′))
= (C ∥ C ′) ∧ (C ∥ C ′′)

C ∥ (C ′ ∨ C ′′) = (a, g) ∥ (a′ ∧ a′′, g′ ∨ g′′)
= (¬(g ∧ g′) ∧ ¬(g ∧ g′′) ∨ ((a ∧ a′) ∧ (a ∧ a′′)), (g ∧ g′) ∨ (g ∧ g′′))
= ((¬(g ∧ g′) ∨ (a ∧ a′)) ∧ (¬(g ∧ g′′) ∨ (a ∧ a′′)) , (g ∧ g′) ∨ (g ∧ g′′))
= ((g ∧ g′)→ (a ∧ a′), (g ∧ g′)) ∨ ((g ∧ g′′)→ (a ∧ a′′), (g ∧ g′′))
= (C ∥ C ′) ∨ (C ∥ C ′′)

1 ∥ (0 • id) = 1 ∥ 0 = 0 ̸= 1 = 0 • 1 = (1 ∥ 0) • (1 ∥ id)

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 85

� Merging.

C • (C ′ ∧ C ′′) =
(
C−1 ∥ ((C ′)−1 ∨ (C ′′)−1)

)−1

=
(
(C−1 ∥ (C ′)−1) ∨ (C−1 ∥ (C ′′)−1)

)−1

= (C • C ′) ∧ (C • C ′′)

C • (C ′ ∨ C ′′) =
(
C−1 ∥ ((C ′)−1 ∧ (C ′′)−1)

)−1

=
(
(C−1 ∥ (C ′)−1) ∧ (C−1 ∥ (C ′′)−1)

)−1

= (C • C ′) ∨ (C • C ′′)
0 • (1 ∥ id) = 0 • 1 = 1 ̸= 0 = 1 ∥ 0 = (0 • 1) ∥ (0 • id)

One can find a notion of sub-distributivity for contracts in [19]. The distributivity of
composition over conjunction can be found in [144].

We will use the distributivity results to look for semiring structure within the algebra of
contracts. We recall the definition of a semiring (see, e.g., [73]):

Definition 6.10.5. A semiring (R, ·,+, 1R, 0R) is a nonempty set R with operations of
multiplication and addition satisfying

a. (R,+, 0R) is a commutative monoid

b. (R, ·, 1R) is a monoid

c. r(s+ t) = rs+ rt and (s+ t)r = sr + tr for all r, s, t ∈ R

d. r · 0R = 0R · r = 0R for all r ∈ R

e. 0R ̸= 1R.

A map of semirings f : (R, ·,+, 1R, 0R)→ (R′, ·,+, 1R′ , 0R′) satisfies

� f(0R) = f(0R′)

� f(1R) = f(1R′)

� f(r + s) = f(r) + f(s)

� f(r · s) = f(r) · f(s).

The following result provides the semiring structures available in the contract algebra.

Proposition 6.10.6. Using the operations of conjunction, disjunction, composition, and
merging, we have exactly four semirings:

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 86

� The conjunction semiring. C∧(B) = (C(B),∧,∨, 1, 0)

� The disjunction semiring. C∨(B) = (C(B),∨,∧, 0, 1)

� The composition semiring. C∥(B) = (C(B), ∥,∨, id, 0)

� The merging semiring. C•(B) = (C(B), •,∧, id, 1)

Proof. Tables 6.4 and 6.5 tell, respectively, how operations behave with respect to the dis-
tinguished elements and how operations distribute.

Suppose conjunction is the multiplication operation. Since C ∧ id ̸= id, neither merg-
ing nor composition can be the addition operations. On the other hand, C ∧ 0 = 0, and
conjunction distributes over disjunction. Thus, (C(B),∧,∨, 1, 0) is a semiring.

Now we assume disjunction is the multiplication operation. Since C ∨ id ̸= id, neither
merging nor composition can be the addition operations. However, C∨1 = 1, and disjunction
distributes over conjunction. Thus, (C(B),∨,∧, 0, 1) is a semiring.

Suppose composition is the multiplication operation. Since composition does not dis-
tribute over merging, merging cannot be addition. Since C ∥ 1 ̸= 1, conjunction cannot
be addition. However, C ∥ 0 = 0 and composition distributes over disjunction. Thus,
(C(B), ∥,∨, id, 0) is a semiring.

Now suppose that merging is the multiplication. Since merging does not distribute over
composition, composition cannot be addition. Also, since C•0 ̸= 0, conjunction cannot be ad-
dition. However, C •1 = 1 and merging distributes over conjunction. Thus, (C(B), •,∧, id, 1)
is a semiring.

The reciprocal map of contracts generates the following isomorphisms:

� The conjunction and disjunction semirings are isomorphic.

� The composition and merging semirings are isomorphic.

Let B∧ and B∨ be, respectively, the semirings (B,∧,∨, 1, 0) and (B,∨,∧, 0, 1). We first
observe that complementation is a semiring isomorphism for B∧ and B∨. We define maps
∆g : B∧ → C∧ and ιg : B∧ → C∥ as follows:

∆g(b) = (¬b, b), and
ιg(b) = (1B, b).

Proposition 6.10.7. ∆g and ιg are semiring homomorphisms.

Proof. Let b, b′ ∈ B.

� ∆g(0B) = (1B, 0B) = 0 and ∆g(1B) = (0B, 1B) = 1

� ∆g(b ∧ b′) = (¬(b ∧ b′), b ∧ b′) = (¬b ∨ ¬b′, b ∧ b′) = ∆g(b) ∧∆g(b
′)

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 87

� ∆g(b ∨ b′) = (¬(b ∨ b′), b ∨ b′) = (¬b ∧ ¬b′, b ∨ b′) = ∆g(b) ∨∆g(b
′) .

This shows that ∆g is a semiring homomorphism. Now we study ιg:

� ιg(0B) = (1B, 0B) = 0 and ιg(1B) = (1B, 1B) = id

� ιg(b ∧ b′) = (1B, b ∧ b′) = (1B, b) ∥ (1B, b′) = ιg(b) ∥ ιg(b′)

� ιg(b ∨ b′) = (1, b ∨ b′) = (1B, b) ∨ (1B, b
′) = ιg(b) ∨ ιg(b′) .

We conclude that ιg is a semiring homomorphism as well.

Observe that ∆g can be used to obtain a semiring map from B∨ to C∨ using the semiring
isomorphisms ¬ : B∧

∼−→ B∨ and (·)−1 : C∧(B)
∼−→ C∨(B) as follows:

B∨ B∧ C∧(B) C∨(B)

b ¬b (b,¬b) (¬b, b)

¬ ∆g (·)−1

This means that ∆g is also a semiring homomorphism B∨ C∨(B)
∆g

. The following

diagram commutes in the category of semirings:

B∧ B∨

C∧(B) C∨(B)

∆g

¬
≃

∆g∆a

(·)−1

≃

The commutativity of the diagram gives rise to the diagonal arrow ∆a = (·)−1 ◦ ∆g =
∆g ◦ ¬. This map is a semiring homomorphism from B∧ to C∨(B) and from B∨ to C∧(B).
Explicitly, this map is

∆ab = (∆g(b))
−1 = (¬b, b)−1 = (b,¬b) (b ∈ B).

Now, if we use the map ιg, we can obtain a map ι′a : B∨ → C•(B) as follows:

B∨ B∧ C∥(B) C∨(B)

b ¬b (1B,¬b) (¬b, 1B)

¬ ιg (·)−1

We obtain the diagram below.

B∧ B∨

C∥(B) C•(B)

ιg

¬
≃

ιa
ι′a

ι′g

(·)−1

≃

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 88

The commutativity of the diagram provides the semiring maps B∧ C•(B)
ιa and

B∨ C∥(B)
ι′g

given by ιa = (·)−1 ◦ ιg and ι′g = ιg ◦ ¬.
Now we consider maps to B∧. The map

πg : (a, g) 7→ g

is a semiring homomorphism from C∧(B) to B∧ and from C∥(B) to B∧. Similarly, the map

π′
a : (a, g) 7→ ¬a

is a semiring homomorphism from C∧(B) to B∧. The following diagrams commute and define
the maps not specified before.

B∧ B∨

C∥(B) C•(B)

πg

¬
≃

πa

π′
aπ′

g

(·)−1

≃

B∧ B∨

C∧(B) C∨(B)

πg

¬
≃

πa

π′
aπ′

g

(·)−1

≃

B∧ B∨

C∧(B) C∨(B)

π′
a

¬
≃

π′
g

πg
πa

(·)−1

≃

6.11 Actions

The semiring maps just described can be used to generate actions of the semirings B∧ and
B∨ over the contract semirings. Consider, for example the map ∆g : B∧ → C∧(B). For a
contract C = (a, g), we have

∆g(b) ∧ C = (¬b, b) ∧ (a, g) = (b→ a, b ∧ g).

Now consider the map ιg : B∧ → C∥(B):

ιg(b) ∥ C = (1B, b) ∥ (a, g) = ((b ∧ g)→ a, b ∧ g) = (b→ a, b ∧ g).

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 89

Order
b · C ≥ C C · b ≤ C

Reciprocal
(b · C)−1 = C−1 · b

Associativity
(b ∧ b′) · C = b · (b′ · C) C · (b ∧ b′) = (C · b) · b′

Distributivity over the Boolean algebra
(b ∨ b′) · C = (b · C) ∧ (b′ · C) C · (b ∨ b′) = (C · b) ∨ (C · b′)

Actions and the contract operations
b · (C ∧ C′) = b · C ∧ b · C′ (C ∧ C′) · b = C · b ∧ C′
b · (C ∨ C′) = b · C ∨ C′ (C ∨ C′) · b = C · b ∨ C′ · b
b · (C ∥ C′) = b · C ∥ b · C′ (C ∥ C′) · b = C · b ∥ C′
b · (C • C′) = b · C • C′ (C • C′) · b = C · b • C′ · b

Actions and the adjoint operations
b · (C/C′) = C/(C′ · b) = (b · C)/C′ (C/C′) · b = (C · b)/(b · C′)
b · (C ÷ C′) = (b · C)÷ (C′ · b) (C ÷ C′) · b = (C · b)÷ C′ = C ÷ (b · C′)
b · (C′ → C) = C′ → b · C = C′ · b→ C (C′ → C) · b = b · C′ → C · b
b · (C′ ↛ C) = C′ · b ↛ b · C (C′ ↛ C) · b = C′ ↛ C · b = b · C′ ↛ C

Table 6.6: Identities for the left and right actions of a Boolean algebra B over its contract algebra
(b, b′ ∈ B and C, C′ ∈ C(B))

We observe that elements of B act in the same way on the semirings C∧(B) and C∥(B).
We define the right action of B on C(B) as

(a, g) · b = (b→ a, b ∧ g). (6.5)

Similarly, the semiring map ∆a : B∧ → C∨(B) yields

∆a(b) ∨ C = (b,¬b) ∨ (a, g) = (b ∧ a, b→ g),

and the semiring map ιa : B∧ → C•(B) results in

ιa(b) • C = (b, 1B) • (a, g) = (b ∧ a, b→ g).

We thus define the left action of B on C(B) as

b · (a, g) = (b ∧ a, b→ g). (6.6)

The following proposition shows several properties of these actions.

Proposition 6.11.1. The identities for the left and right actions shown in Table 6.6 hold.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 90

Proof. Let b, b′ ∈ B, C = (a, g), and C ′ = (a′, g′). We have the following properties:

� Order.

b · C = b · (a, g) = (b ∧ a, b→ g) ≥ (a, g) = C
C · b = (a, g) · b = (b→ a, b ∧ g) ≤ (a, g) = C

� Reciprocal.

(b · C)−1 = (b ∧ a, b→ g)−1 = (b→ g, b ∧ a) = (g, a) · b = C−1 · b

� Associativity.

(b ∧ b′) · C = ((b ∧ b′) ∧ a, (b ∧ b′)→ g) = (b ∧ (b′ ∧ a), b→ (b′ → g)) = b · (b′ · (a, g))
= b · (b′ · C)

C · (b ∧ b′) =
(
(b ∧ b′) · C−1

)−1
=
(
(b′ ∧ b) · C−1

)−1
=
(
b′ ·
(
b · C−1

))−1

=
(
b · C−1

)−1 · b′ = (C · b) · b′

� Distributivity over the Boolean algebra B.

(b ∨ b′) · C = ((b ∨ b′) ∧ a, (b ∨ b′)→ g) = ((b ∧ a) ∨ (b′ ∧ a), (b→ g) ∧ (b′ → g))

= (b · C) ∧ (b′ · C)

C · (b ∨ b′) =
(
(b ∨ b′) · C−1

)−1
=
(
b · C−1 ∧ b′ · C−1

)−1
= C · b ∨ C · b′

� Distributivity over the contract operations.

– Conjunction.

b · (C ∧ C ′) = (b ∧ (a ∨ a′), b→ (g ∧ g′)) = ((b ∧ a) ∨ (b ∧ a′), (b→ g) ∧ (b→ g′))

= b · C ∧ b · C ′

(C ∧ C ′) · b = (b→ (a ∨ a′), b ∧ (g ∧ g′)) = ((b→ a) ∨ a′, (b ∧ g) ∧ g′)
= (C · b) ∧ C ′

– Disjunction.

b · (C ∨ C ′) =
((
C−1 ∧ (C ′)−1

)
· b
)−1

=
(
C−1 · b ∧ (C ′)−1

)−1
= b · C ∨ C ′

(C ∨ C ′) · b =
(
b ·
(
C−1 ∧ (C ′)−1

))−1
=
(
b · C−1 ∧ b · (C ′)−1

)−1
= C · b ∨ C ′ · b

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 91

– Composition.

b · (C ∥ C ′) = (b ∧ ((g ∧ g′)→ (a ∧ a′)) , b→ (g ∧ g′))
= ((b→ (g ∧ g′))→ (b ∧ a ∧ a′), b→ (g ∧ g′))
= (((b→ g) ∧ (b→ g′))→ ((b ∧ a) ∧ (b ∧ a′)), (b→ g) ∧ (b→ g′))

= b · C ∥ b · C ′

(C ∥ C ′) · b = (b→ ((g ∧ g′)→ (a ∧ a′)) , b ∧ g ∧ g′)
= ((b ∧ g ∧ g′)→ (a ∧ a′) , b ∧ g ∧ g′)
= ((b ∧ g ∧ g′)→ ((b→ a) ∧ a′) , b ∧ g ∧ g′)
= (C · b) ∥ C ′

– Merging.

b · (C • C ′) =
(
(C−1 ∥ (C ′)−1) · b

)−1
=
(
C−1 · b ∥ (C ′)−1

)−1
= b · C • C ′

(C • C ′) · b =
(
b · (C−1 ∥ (C ′)−1)

)−1
=
(
b · C−1 ∥ b · (C ′)−1

)−1
= C · b • C ′ · b

� Distributivity over the adjoint operations.

– Quotient.

b · (C/C ′) = b · (C • (C ′)−1) = b · C • (C ′)−1

= (b · C)/(C ′)
b · (C/C ′) = b · (C • (C ′)−1) = C • b · (C ′)−1 = C • (C ′ · b)−1

= C/(C ′ · b)
(C/C ′) · b = (C • (C ′)−1) · b = C · b • (C ′)−1 · b = C · b • (b · C ′)−1

= (C · b)/(b · C ′)

– Separation.

b · (C ÷ C ′) = b · (C ∥ (C ′)−1) = b · C ∥ b · (C ′)−1 = b · C ∥ (C ′ · b)−1

= (b · C)÷ (C ′ · b)
(C ÷ C ′) · b = (C ∥ (C ′)−1) · b = C · b ∥ (C ′)−1 = (C · b)÷ C ′

(C ÷ C ′) · b = (C ∥ (C ′)−1) · b = C ∥ (C ′)−1 · b = C ÷ (b · C ′)

– Implication.

b · (C ′ → C) = b · ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′)
= (b ∧ (a ∧ ¬a′) ∨ (b ∧ g′ ∧ ¬g), (b→ g) ∨ ¬g′)
= (((b ∧ a) ∧ ¬a′) ∨ (g′ ∧ ¬(b→ g)), (b→ g) ∨ ¬g′)

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 92

= C ′ → b · C
b · (C ′ → C) = b · ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′)

= ((a ∧ ¬(b→ a′)) ∨ (b ∧ g′ ∧ ¬g), (b ∧ g′)→ g)

= C ′ · b→ C
(C ′ → C) · b = ((a ∧ ¬a′) ∨ (g′ ∧ ¬g), g ∨ ¬g′) · b

= ((b→ (a ∧ ¬a′)) ∨ (b→ (g′ ∧ ¬g)), (b ∧ g) ∨ ¬(b→ g′))

= ((b→ a) ∧ ¬(b ∧ a′) ∨ (b→ g′) ∧ ¬(b ∧ g), (b ∧ g) ∨ ¬(b→ g′))

= b · C ′ → C · b

– Coimplication.

b · (C ′ ↛ C) =
(
((C ′)−1 → C−1) · b

)−1
=
(
b · (C ′)−1 → C−1 · b

)−1

= C ′ · b↛ b · C

(C ′ ↛ C) · b =
(
b · ((C ′)−1 → C−1)

)−1

=
(
(C ′)−1 → b · C−1

)−1
= C ′ ↛ C · b

=
(
(C ′)−1 · b→ C−1

)−1
= b · C ′ ↛ C

6.12 Contract abstractions

It is often useful to vary the level of detail used to represent objects. More detail may be
needed to carry out some analysis tasks, but too much detail may hinder computation. We
will explore abstract interpretation for contracts.

First, suppose we have two Boolean algebras B and B′ and a Boolean algebra map
f : B → B′. f induces a map f ∗ : C(B)→ C(B′) between their contract algebras given by

f ∗(a, g) = (f(a), f(g)).

Observe that f(a) ∨ f(g) = f(a ∨ g) = f(1B) = 1B′ . As f commutes with the Boolean
algebra operations, f ∗ commutes with the contract operations. Thus f ∗ is well-defined.

Suppose we have abstract and concrete domains given by Boolean algebras Ba and Bc,
respectively. Moreover, suppose there are Boolean algebra maps γ : Ba → Bc and α : Bc →
Ba which we will call concretization and abstraction, respectively. These maps generate
contract maps

C(Ba) C(Bc)
γ∗

and C(Bc) C(Ba),
α∗

as described before.

CHAPTER 6. THE ALGEBRA OF ASSUME-GUARANTEE CONTRACTS 93

We are interested in exploring the conditions needed for these maps to form a Galois
connection. Specifically, for Ca = (aa, ga) ∈ C(Ba) and Cc = (ac, gc) ∈ C(Bc), we want

α∗(Cc) ≤ Ca if and only if Cc ≤ γ∗(Ca).

This means that

(αac, αgc) ≤ (aa, ga) if and only if (ac, gc) ≤ (γaa, γga).

If we set ac = 1Bc and aa = 1Ba , we get

αgc ≤ ga if and only if gc ≤ γga,

and if we set gc = 1Bc and ga = 1Ba , we obtain

aa ≤ αac if and only if γaa ≤ ac.

This means that α and γ must be simultaneously the left and right adjoints of each other.
By setting gc = γga and ac = γaa in the equations above, we obtain that α ◦γ is the identity
map. Similarly, by setting ga = αgc and aa = αac, we get that γ ◦ α is the identity map.
This means that Ba and Bc are isomorphic. We conclude that contract Galois connections
generated from Boolean algebra maps impose very rigid constraints on the Boolean algebras
over which the contracts are defined.

94

Chapter 7

Syntax and the AG algebra

We have discussed the various algebraic operations one may carry on AG contracts. In this
chapter we consider aspects of the implementation of these operations in a methodology. In
particular, we carefully consider the role of the assumptions and guarantees in the design
process.

7.1 The role of assumptions

Suppose we are asked to provide an implementation for a contract C = (A,G). We intuit
that the more assumptions we make, the easier the design process should be. For example, if
everything we are required to do is provided in the assumptions, the contract should tell that
there is nothing left to do. In this case, we would have A ≤ G, and C would be equivalent to
the contract (A,B). In other words, any component satisfies the guarantees, which means
there is nothing left to implement. How can syntactic manipulations on contracts allow us
to conclude this?

Contracts (A,G) and (A′, G′) are equivalent when

A = A′ and G∪ ¬A = G′ ∪ ¬A′.

Figure 7.1: Given a contract C = (A,G), one may compute the contracts (A,G∩A) and (A,G∪¬A),
but these mappings are not invertible.

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 95

This means that a contract C = (A,G) is equivalent to C ′ = (A,G∩A) and to C ′′ = (A,G∪
¬A). Observe that C ′ and C ′′ have the smallest and largest sets of guarantees among contracts
in the same equivalence class. It is possible to compute C ′ and C ′′ from C, but we cannot
go the other way around. Figure 7.1 illustrates this point. However, when we use syntactic
expressions to represent assumptions and guarantees, the resulting formulas carry additional
information which allow us to recover structure that would be lost by exclusively operating
on sets.

Figure 7.2 shows a voltage amplifier with input i and output o. This component obeys the
contract C with assumptions the input voltage has magnitude smaller than 2 and guarantees
the output voltage is equal to the input, i.e.,

C = (|i| < 2, o = i) .

Observe that we are using syntactic expressions to denote assumptions and guarantees.
For example, the assumptions of C are

A =
{
(i, o) ∈ R2

∣∣ |i| < 2
}
.

Using syntax to denote properties offers the advantage that properties just need to refer
to the variables on which they impose constraints. Note, for example, how the expression
|i| < 2 used for the assumptions does not refer to the variable o, but its denotation is over
all behaviors of systems variables, including o.

Now observe that the contract C is expressed in a way which is natural for a designer.
Conder the equivalent contract C ′ with minimum guarantees:

C ′ = (|i| < 2, (o = i) ∧ (|i| < 2)).

The assumptions are the same as before, but the guarantees now read, the output voltage is
equal to the input, and the input voltage has magnitude less than 2. While this is logically
correct, why should a device need to guarantee that “the input voltage has magnitude less
than 2” when this is already provided by the assumptions of the contract? Similarly, the
contract which is equivalent to C and which has the largest set of guarantees is

C ′′ = (|i| < 2, (o = i) ∨ ¬(|i| < 2)).

This contract has the same assumptions as C, but the guarantees read, the output voltage is
equal to the input, or the input voltage has magnitude larger than or equal to 2. Again, while
this is logically correct, the implementation can assume it operates in a regime in which the
input voltage is less than 2, so the second part we added to the original guarantees does not
add information. Thus, in order to communicate specifications, we claim that the preferable
contract is C. In other words, a contract’s guarantees should not impose constraints that
the assumptions already impose. This does not yield the contract with smaller guarantees;
it yields guarantees represented with fewer terms. Observe how we can simplify contract C ′:

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 96

Figure 7.2: An amplifier with input i and output o obeying a contract C

C ′ = (|i| < 2, (o = i) ∧ (|i| < 2)) ≡ (|i| < 2, (o = i) ∧ (|i| < 2) ∨ ¬(|i| < 2))

= (|i| < 2, (o = i) ∨ ¬(|i| < 2))︸ ︷︷ ︸
C′′

≡ (|i| < 2, (o = i)) = C.

The first equivalence follows from contract saturation. The second equality is an appli-
cation of the simplification rule

g ∨ ¬a = g ∧ a ∨ ¬a

from Boolean algebra. This rule is very useful to simplify contracts. It enables us to remove
from the guarantees any constraints imposed by the assumptions while maintain-
ing logical equivalence. The final equivalence is also obtained through saturation. We
will record this result.

Proposition 7.1.1. Let C = (A,G) be a contract and let a and g be sets of constraints such
that A =

∧
a∈a a and G =

∧
g∈g g. Let G

′ =
∧

g∈g−a g. Then

C ≡ (A,G′).

This example also shows that using syntax enabled us to recover G by having knowledge
of G ∩ A and A, which is not possible to do by exclusively using the contract denotations,
as illustrated in Figure 7.1.

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 97

7.2 Contracts in standard form

Proposition 7.1.1 applies to contracts whose assumptions and guarantees are given as lists
of requirements. We claim that this is the most natural way to express assumptions and
guarantees. It is common in industry to state a list of requirements that must hold in order
for a device to deliver on its promises, also given as a list of constraints. In this section we
will discuss the expression of contracts in this form.

7.2.1 Behaviors and terms

The most primitive element in system modeling is the variable. A variable is a named entity
in our system having a progression of valuations. The notion of progression is given by a
partial order, and valuations are provided by a topological space. We define a variable as
the tuple

(V,XV ,PV ,BV),
where V is a name for the variable, XV is a topological space where the variable takes values,
and PV is a partial order giving a notion of a progression. BV is the type of the variable: a
subset of PV → XV , the set of functions from PV to XV . We will use interchangeably the
variable name and the tuple.

Example 7.2.1. Suppose S is a variable that denotes the average temperature on the surface
of the engine of a vehicle. We assume that temperature can be represented by any real
number. Moreover, if we assume that S can take values for any real number, then we can
set BS = C(R,R), i.e., any continuous function from the reals to the reals. Thus, the tuple
representing this variable is

(S,R,R, C(R,R)).

Example 7.2.2. Suppose A is a variable used to model the behavior of a label in a state
machine. The valuations of A are Boolean, and A takes values over a countable sequence.
Thus, this variable is given by

(A, {0, 1},N,N→ {0, 1}).

Example 7.2.3. Suppose D is a variable used to model a constant in the system. The
valuations of D are real. This variable is given by

(D,R, {•}, {•} → R).

For a set of variables Vars, the set of system behaviors is defined as

B =
∏

V ∈Vars

BV .

For the set of behaviors B, the set of trace properties 2B is a Boolean algebra (i.e., it is
closed under set intersection, union, and complementation). Having access to syntax means

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 98

having access to a set T of terms whose denotations are properties. We require the set of
terms to be closed under the Boolean operations ∧, ∨, and ¬. The denotation map must

commute with these operations. Thus, there is a denotation map, T 2BDen , which
respects Boolean algebra structure:

T×2 T

(
2B
)×2

2B

∧

Den×2 Den

∩

t, t′ t ∧ t′

Den(t),Den(t′) Den(t)∩Den(t′)

T×2 T

(
2B
)×2

2B

∨

Den×2 Den

∪

t, t′ t ∨ t′

Den(t),Den(t′) Den(t)∪Den(t′)

T T

2B 2B

¬

Den Den

¬

t ¬t

Den(t) ¬Den(t)

We also assume there is a way to query the variables on which a term imposes constraints.
We introduce a map V : T → 2Vars which returns a set of variables referenced in the term.
This map is additive with respect to the term algebra:

T×2 T

(
2B
)×2

2B

∧

V ×2 V

∪

t, t′ t ∧ t′

V (t), V (t′) V (t)∪ V (t′)

T×2 T

(
2B
)×2

2B

∨

V ×2 V

∪

t, t′ t ∨ t′

V (t), V (t′) V (t)∪ V (t′)

T T

2B 2B

¬

V V

id

t ¬t

V (t) V (t)

We will also assume the existence of a map Vars×2 Hom(T, T)r such that v, v′ 7→
rv

′
v , a map from T to T that commutes with the Boolean structure of T . We understand
the map rv

′
v as an operator that replaces references to v with references to v′, provided the

variables are of the same type. These maps have the following properties:

rvv = id,

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 99

i.e., renaming a variable with the same variable is the identity operator. We also have

rv
′′′

v′′ r
v′

v =

rv

′′′
v v′′ = v′

rv
′

v v′′ = v

rv
′

v r
v′′′

v′′ otherwise

Commutation with the term operations means that

rv
′

v (t ∧ t′) = rv
′

v t ∧ rv
′

v t
′,

rv
′

v (t ∨ t′) = rv
′

v t ∨ rv
′

v t
′, and

rv
′

v (¬t) = ¬(rv
′

v t).

7.2.2 Standard form

A contract is defined as a pair of properties, C = (A,G), where A,G ⊆ B. But we do not
express properties using sets, but syntax. If we use terms from T in order to write properties,
we can also write C directly using the terms of the syntax: C = (a, g), where a, g ∈ T and

Den(a) = A and Den(b) = B. Finally, we consider a map, 2T T∧ , from sets of terms
to behaviors, defined as

t 7→
∧
t∈t

t,

i.e., we take the conjunction of all terms in the set. This map allows us to extend the variable
and denotations map to sets of terms:

2B

2T T

2Vars

∧

Den

V

Now we can think of assumptions and guarantees of contracts as sets of terms. We can thus
write C = (a, g), where A =

∧
a∈a Den(a), and the same goes for the guarantees. We will

say that contracts expressed in this way are contracts in standard form.
The operations we would like to compute on assume-guarantee contracts are summarized

in Table 6.2. We will consider how composition and quotient affect contracts expressed in
standard form. Take the case of the composition of contracts C = (a, g) and C ′ = (a′, g′)
with their properties expressed with terms. The closed-form expression is

C ∥ C ′ = ((a ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′), (g ∩ g′) ∨ (g ∧ ¬a′) ∨ (g′ ∧ ¬a) ∨ (¬a ∧ ¬a′)) .

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 100

We observe that both assumptions and guarantees are not expressed as conjunctions of terms,
meaning that we would need to perform additional work to get the contracts in this form.
The same happens with the other operations. However, we can make progress if we recall
the meaning of composition.

Composition is an operation on contracts that provides the smallest specification observed
by a system built out of components obeying their own contracts. This means that the
system will also observe any specification which is looser than the contract provided by the
composition operation. Thus, if the composition operation yields a contract with undesirable
properties, we can seek abstractions which have the properties of interest. Similarly, quotient
is the largest specification that we must compose with an existing specification so that
the result meets a top-level spec. Thus, any specification smaller than the quotient will
also complete our system. Merging and separation are, respectively, largest and smallest
operations for other criteria.

So far we have argued that (i) the standard form of contracts has the desirable property
that assumptions and guarantees are expressed as sets of terms or constraints, all of which
must hold simultaneously, that (ii) standard contract operations yield results that break this
standard form, and that (iii) perhaps there is additional processing we may do to the results
of the operations in order to bring contracts to standard form. In the next section we see
how these considerations apply to contract composition.

7.3 Computing the composition operation

Let’s consider the situation described in Figure 7.3. There we have two amplifiers,M andM ′

connected in series. Suppose we are interested only in static behaviors. Then the universe
of behaviors would be

B = R3,

where the elements of R3 correspond to variables i, o, and o′, respectively. These components
obey the specifications C and C ′, respectively, where

C = (|i| < 2, o = i) and

C ′ = (|o| < 1, o′ = o) .
(7.1)

We will explore how assumptions and guarantees can interact in order to yield useful
abstractions and refinements of a contract.

Suppose we wish to provide a specification for the system represented by the series con-
nection. Intuitively, we wish the specification to behave in such a way that the assumptions
of both contracts are met. This would ensure that both components operate within their
guarantees. Judging from the contracts we stated, we would like the system specification to
be

Cw = (|i| < 1, o′ = i) ,

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 101

M M ′i o o′

Figure 7.3: Two amplifiers, M and M ′, connected in series

as this contract says that, in order for both contract specifications to operate within their
guarantees, the input needs to be restricted to |i| < 1. This is our wanted contract Cw.
This contract has the characteristic that assumptions are only given in terms of variables
controlled by the environment, and guarantees are given in terms of variables controlled by
the environment and by the component. No internal variables appear in assumptions or
guarantees.

In order to find the specification of the system, the theory of contracts tells we should
use the operation of composition. This operation yields the contract Cc = (ac, gc) (we will
use lowercase to mean that assumptions and guarantees are given using syntactic expressions
instead of denotations), where

ac = (|i| < 2 ∧ |o| < 1) ∨ (|i| < 2 ∧ o ̸= i) ∨ (|o| < 1 ∧ o′ ̸= o) and

gc = (|i| < 2→ o = i) ∧ (|o| < 1→ o′ = o).

This result poses two challenges. First, the assumptions include terms in which com-
ponent specifications are violated, e.g., |i| < 2 ∧ o ̸= i. If there is a behavior that meets
this property, then this behavior won’t be part of the intersection of the guarantees of the
contracts being composed, i.e., it won’t be part of (|i| < 2 → o = i). Second, even if the
assumptions and guarantees of the contracts being composed are given in conjunctive normal
form, the “logical or” in the assumptions of the contract breaks this form. How can we go
from Cc to Cw through a sequence of abstractions?

Suppose we have two contracts C and C ′ whose assumptions and guarantees are given as

C = (a, g) and

C ′ = (a′, g′).

We understand the assumptions and guarantees of these contracts as conjunctions of
formulas, i.e., a =

∧
k rk, where the rk are requirements. This matches how specifications

are usually written. Also, the contracts C and C ′ just stated are not given in saturated form.
Composing these contracts yields Cc = (ac, gc) with

ac = (a ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′) and
gc = (a→ g) ∧ (a′ → g′) = g ∧ g′ ∨ ¬ac.

(7.2)

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 102

7.3.1 Refining the assumptions

We focus on the assumptions. As we said earlier, we wish the resulting system specification
to operate in the regime in which the assumptions of both contracts are met. Thus, we refer
to the term a∧a′ as the stem of the assumptions, the region where we want to operate. The
terms a ∧ ¬g and a′ ∧ ¬g′ in the assumptions are not particularly useful as an end result
of the system specification, as they represent situations in which components don’t do what
they are supposed to do when the assumptions were met. But these terms are not useless,
either. We use these terms in order to rewrite the stem. The following result enables us to
find refinements of the assumptions of the composition operation.

Proposition 7.3.1. Let ac be as in (7.2). Suppose there exist ā such that ā ∧ g′ ≤ a ∧ g′.
Then

ā ∧ a′ ≤ ac.

Moreover, if the inequality is satisfied as equality,

(ā ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′) = ac.

Proof.

ac = (a ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′)
= (a ∧ g′ ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′)
≥ (ā ∧ g′ ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′)
= (ā ∧ a′) ∨ (a ∧ ¬g) ∨ (a′ ∧ ¬g′).

Proposition 7.3.1 allows us to find a refinement of the assumptions of the composition op-
eration as a conjunction of terms. It also says that if we transform a into a′ while maintaining
a∧ g′ = ā∧ g′, then the assumptions ā∧ a′ are equivalent to ac up to the unnecessary terms,
i.e., the error terms a ∧ ¬g and a′ ∧ ¬g′. It is interesting to observe that Proposition 7.3.1
tells that we can use g′ to transform a or g to transform a′. Can we do both transformations
simultaneously? The following is a counterexample:

Example 7.3.2. Let g = g′ = False. We can set ā = ā′ = True since False = ā ∧ g′ ≤
a ∧ g′ = False and False = ā′ ∧ g ≤ a′ ∧ g = False. In this case, we have ac = a ∨ a′, but
ā ∧ ā′ = True fails to be a subset of ac.

7.3.2 Loosening the guarantees

Now that we have obtained a refinement of the assumptions, we pursue an abstraction of
the guarantees.

Proposition 7.3.3. Let Cc be as in (7.2) and ā as in Proposition 7.3.1. Let ḡ be such that
ḡ ∧ a′ ∧ ā ≥ g ∧ g′ ∧ a′ ∧ ā. Then

C̄c = (ā ∧ a′, ḡ).
is an abstraction of Cc.

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 103

Proof. From Proposition 7.3.1, we know that ā ∧ a′ ≤ ac. We also have

gc = (g ∧ g′) ∨ ¬ac

≤ (g ∧ g′) ∨ ¬(ā ∧ a′)
= (g ∧ g′ ∧ a ∧ a′) ∨ ¬(ā ∧ a′)
≤ ḡ ∨ ¬(ā ∧ a′).

It follows that (ā ∧ a′, ḡ) ≤ Cc.

Algorithm 1 computes the composition of two assume-guarantee contracts given in stan-
dard form, providing a result in standard form. The correctness of its output follows from
Propositions 7.3.3 and 7.3.1. We make the following observations:

� Lines 1 and 4 make use of Proposition 7.3.3 to refine the assumptions. As observed
earlier, we can either use g to simplify a′ or g′ to simplify a, but not both. The
decision of which assumptions should be simplified (Lines 1 and 4) must be done using
considerations outside the algebra of AG contracts. For example, the topology of the
connection between the subsystems that implement the contracts may make the use of
the guarantees of one of the contracts preferable. In Figure 7.3, one could argue that
there is more benefit to be reaped by using the guarantees of M ’s contract to refine
the assumptions of the contract C ′ of M ′ than by using the guarantees of C ′ to refine
the assumptions of C.

� The routines RefineWithSupport and AbstractWithSupport both take two
lists of terms and generate a new list: the output ā = RefineWithSupport(a, g′) is
such that

(∧ā) ∧ (∧g′) ≤ (∧a) ∧ (∧g′),

and the output ḡ = AbstractWithSupport(g, ac) is such that

(∧ḡ) ∧ (∧ac) ≥ (∧g) ∧ (∧ac).

� These routines make use of the specific syntax of the constraints in order to carry out
simplifications and abstractions of term lists.

7.3.3 Adding structure to contracts

Our discussion of Algorithm 1 revealed that the algebra of contracts does not contain enough
information to make the decision needed in lines 1 and 4. We will introduce additional
structure that will provide a selection criterion: the controllability of variables.

Many engineering components come with a notion of controllability of variables. For
example, the component in Figure 7.2 is able to control variable o and unable to control i.

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 104

Algorithm 1 Overview of computation of the composition of AG contracts

Input: Contracts C = (a, g) and C ′ = (a′, g′)
Output: Abstraction of composition (ac, gc)

1: if Refining a using g′ then
2: ā← RefineWithSupport(a, g′) ▷ Find ā such that (∧ā) ∧ (∧g′) ≤ (∧a) ∧ (∧g′)
3: ac ← ā∪ a′

4: else if Refining a′ using g then
5: ā′ ← RefineWithSupport(a′, g) ▷ Find ā′ such that (∧ā′)∧ (∧g) ≤ (∧a′)∧ (∧g)
6: ac ← ā′ ∪ a
7: end if
▷ Find gc such that (∧gc) ∧ (∧ac) ≥ (∧g) ∧ (∧g′) ∧ (∧ac)

8: gc ← AbstractWithSupport(g∪ g′, ac)
9: return (ac, gc)

For a specification of this component, it is not reasonable to make assumptions over o. The
guarantees can impose constraints on the controlled variables when the uncontrolled variables
meet certain conditions. In other words, the guarantees of a contract make prescriptive
statements about controlled variables and descriptive statements of uncontrolled variables.
We have the following definition:

Definition 7.3.4. An IO contract is a tuple (I, O, C), where I, O ⊆ Vars are disjoint sets of
input and output variables and C = (a, g) is a contract in standard form such that V (a) ⊆ I
and V (g) ⊆ I ∪O.

The composition of IO contracts is well-defined if the sets of output variables of the
contracts being composed are disjoint. Algorithm 2 computes the composition of two IO
contracts. Observe that the undefined lines 1 and 4 of Algorithm 1 are now replaced by
checks that use the input and output variables of the contracts. If the outputs of C feed
into the inputs of C ′, but not the opposite, then the guarantees of C are used to simplify
the assumptions of C ′. Similarly, if the outputs of C ′ feed into the inputs of C, but not
the opposite, then the guarantees of C ′ are used to simplify the assumptions of C. If both
contracts have outputs that feed into the inputs of the other contract, we proceed as follows:
we rename the outputs of C that feed into the inputs of C ′ to variables having names that
haven’t been used before. This renaming yields a contract C̄ having no outputs that feed
into the inputs of C ′. We compose the contracts C̄ and C ′. Afterwards, we compose the result
of this composition with a contract having true assumptions, and whose guarantees make
the new variables equal to the variables they replaced. Figure 7.4 illustrates this process.

The routinesRefineWithSupport andAbstractWithSupport have been extended
with a third argument, a set of variables. This argument is used to indicate to the routines the
variables that they should keep when carrying out simplifications—it’s okay to eliminate all

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 105

Figure 7.4: Two Amplifiers drive each others’s inputs. To compose their contracts, we rename the
output of the first amplifier o. This allows us to compose the contracts. Afterwards, we compose
the composed contract with a contract that has True assumptions and whose guarantees make
i1 = o.

other variables. Observe that simplifications need an objective. We thus use as objectives the
elimination of undesired variables and the reduction of the total number of terms. Usually,
our interest is in eliminating from the assumptions internal and output variables, and in
eliminating from the guarantees internal variables.

Algorithm 2 Computation of the composition of IO contracts

Input: IO contracts (I, O, (a, g)) and (I ′, O′, (a′, g′))
Output: Abstraction of composition (ac, gc)

1: N ← (I ∩O′)∪ (I ′ ∩O) ▷ Internal signals
2: Oc ← (O ∪O′)−N
3: Ic ← (I ∪ I ′)−N
4: if O ∩O′ ̸= ∅ then
5: return Error: Contracts are not composable
6: else if O′ ∩ I ̸= ∅ and O ∩ I ′ = ∅ then

▷ Refining a using g′

7: ā← RefineWithSupport(a, g′, Ic) ▷ Find ā s.t. (∧ā) ∧ (∧g′) ≤ (∧a) ∧ (∧g′)
8: ac ← ā∪ a′

9: else if O′ ∩ I = ∅ and O ∩ I ′ ̸= ∅ then
▷ Refining a′ using g

10: ā′ ← RefineWithSupport(a′, g, Ic) ▷ Find ā′ s.t. (∧ā′) ∧ (∧g) ≤ (∧a′) ∧ (∧g)
11: ac ← ā′ ∪ a
12: else if O′ ∩ I = ∅ and O ∩ I ′ = ∅ then

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 106

13: ac ← a∪ a′

14: else if O′ ∩ I ̸= ∅ and O ∩ I ′ ̸= ∅ then
15: ReplaceVars← O ∩ I ′

16: NewVars← {}
17: OldToNew← {}
18: for v ∈ ReplaceVars do
19: v′ ← NewVariableOfType(v)
20: g← rv

′
v (g)

21: NewVars← NewVars∪ {v′}
22: OldToNew[v]← v′

23: end for
24: O ← (O − ReplaceVars)∪ NewVars
25: (Ī , Ō, (ā, ḡ))← ContractCompose((I, O, (a, g)), (I ′, O′, (a′, g′)))
26: for v ∈ ReplaceVars do
27: v′ ← OldToNew[v]
28: ḡ← rvv′(ḡ)
29: ā← rvv′(ā)
30: end for
31: ac ← RefineWithSupport(ā, ḡ, Ic)
32: gc ← AbstractWithSupport(ḡ, āc, Ic ∪Oc)
33: return (Ic, Oc, (ac, gc))
34: end if

▷ Find gc such that (∧gc) ∧ (∧ac) ≥ (∧g) ∧ (∧g′) ∧ (∧ac)
35: gc ← AbstractWithSupport(g∪ g′, ac, Ic ∪Oc)
36: return (Ic, Oc, (ac, gc))

7.4 Computing the quotient

Now we apply similar considerations to the computation of the quotient. Suppose we have
two contacts C = (a, g) and C ′ = (a′, g′). The objective is to compute C/C ′ = (aq, gq). The
expressions are

aq = a ∧ (¬a′ ∨ g′) and
gq = (a′ ∧ g) ∨ ¬a ∨ (a′ ∧ ¬g′).

Proposition 7.4.1. Suppose we have two contacts C = (a, g) and C ′ = (a′, g′). Let ã ≥ a, ḡ
be such that g ∧ g′ ≥ ḡ ∧ g′, and g̃ such that a′ ∧ ḡ ∧ a ≥ g̃ ∧ a. Then (ã, g̃) ≤ C/C ′.

Proof. We have ã ≥ a. Moreover,

gq = (a′ ∧ g) ∨ ¬a ∨ (a′ ∧ ¬g′)
= (a′ ∧ g ∧ g′) ∨ ¬a ∨ (a′ ∧ ¬g′)

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 107

≥ (a′ ∧ ḡ ∧ g′) ∨ ¬a ∨ (a′ ∧ ¬g′)
= (a′ ∧ ḡ ∧ a) ∨ ¬a ∨ (a′ ∧ ¬g′)
≥ (g̃ ∧ a) ∨ ¬a ∨ (a′ ∧ ¬g′)
= g̃ ∨ ¬a ∨ (a′ ∧ ¬g′)
≤ g̃ ∨ ¬ã.

It follows that (ã, g̃) ≤ C/C ′.

Algorithm 3 Overview of computation of the quotient of AG contracts

Input: Contracts C = (a, g) and C ′ = (a′, g′)
Output: Refinement of the quotient (aqgq)

1: aq ← Abstract(a)
2: ḡ← RefineWithSupport(g, g′)
3: gq ← RefineWithSupport(a′ ∪ ḡ, a)
4: return (aq, gq)

This proposition provides a way of obtaining a refinement of the quotient whose assump-
tions and guarantees are expressed in standard form. Algorithm 3 shows this procedure
explicitly. Not reflected in the algorithm are mechanisms for carrying out the abstractions
and refinements of specifications. As discussed when we considered the composition opera-
tion, additional data is needed to guide these routines. Possible goals of simplifications are
elimination of variables in the assumptions or guarantees and reductions in the number of
terms.

Now we consider the quotient using IO contracts. The outputs of C ′ must be disjoint
from the inputs of C, as the inputs of C are controlled by the environment. The outputs of
the quotient must be either (i) the outputs of the top level contract that C ′ does not generate
or (ii) the inputs to C ′ which are not inputs to C. Similarly, the inputs of the quotient can be
(i) the inputs of C or (ii) the outputs of C ′ which are not outputs of C. These considerations
are observed in Algorithm 4.

7.5 Constraints as partial orders

In this section we dedicate further attention to the structure of the terms in which our
constraints are written. The set of terms T is a freely-generated Boolean algebra over a set
of predicates, i.e.,

⟨term⟩ |= ⟨pred⟩ | ⟨term⟩ ∧ ⟨term⟩ | ⟨term⟩ ∨ ⟨term⟩ | ¬⟨term⟩

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 108

Algorithm 4 Computation of the quotient of IO contracts

Input: Contracts (I, O, (a, g)) and (I ′, O′, (a′, g′))
Output: Refinement of the quotient (aqgq)

1: if I ∩O′ ̸= ∅ then
2: return Error: The quotient is not defined
3: end if
4: Oq = (O −O′)∪ (I ′ − I)
5: Iq = (O′ −O)∪ (I)
6: aq ← Abstract(a, Iq)
7: ḡ← RefineWithSupport(g, g′, Iq ∪Oq)
8: gq ← RefineWithSupport(a′ ∪ ḡ, a, Iq ∪Oq)
9: return (aq, gq)

The predicates are statements that can be judged to be true or false. We will consider
predicates having the syntax of a partial order:

⟨pred⟩ |= ⟨expr⟩ = ⟨expr⟩ | ⟨expr⟩ ≤ ⟨expr⟩

Observe that predicates assert relations between expressions. Our expressions will be
either variables or real numbers:

⟨expr⟩ |= ⟨var⟩ | ⟨real⟩

Having access to this syntax, we explore how the routines RefineWithSupport and
AbstractWithSupport can be defined.

Algorithm 5 RefineWithSupport

Input: Set of terms c to be refined, set of terms s to aid the refinement,
and set K of variables to keep
Output: Set of terms c̄

▷ Build a graph whose vertices are expressions and whose edges exist
▷ if there is a term that makes the two expressions equal

1: procedure GetEqualityGraph(t) do
2: R,E ← ∅
3: for t ∈ t do
4: if TermType(t) = Pred and PredType(t) = Equality then
5: E ← E ∪ {V (t)}

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 109

6: R← R ∪ V (t)
7: return (R,E)
8: end if
9: end for
10: end procedure
11: c̄← c

▷ Replace variables with those we want to keep
12: (R,E)← GetEqualityGraph(c̄)
13: for c ∈ ConnectedComponents(R,E) do
14: if c∩K ̸= ∅ then
15: v′ ← Choose(c∩K)
16: else
17: v′ ← Choose(c)
18: end if
19: for v ∈ c−K do
20: c̄← rv

′
v c̄

21: end for
22: end for
23: (R,E)← GetEqualityGraph(s)
24: for c ∈ ConnectedComponents(R,E) do
25: if c∩K ̸= ∅ then
26: v′ ← Choose(c∩K)
27: else
28: v′ ← Choose(c)
29: end if
30: for v ∈ c−K do
31: c̄← rv

′
v c̄

32: s← rv
′

v s
33: end for
34: end for
35: return c̄

Algorithms 5 and 6 show the routines that carry out refinements and abstractions. The
refinement routine looks for ways of renaming variables that can be eliminated with variables
that can be kept. The abstraction routine eliminates terms with forbidden variables after
having carried out a renaming operation. A further simplification we can carry out pertains
the transitivity of the ≤ relation.

Our definition of the syntax for terms supports general constraints. Our definition of
expressions is limited, supporting variable names and constants. By expanding the expres-
sions to, e.g., linear expressions, we could increase the types of specifications to which these
techniques can be applied. Similarly, by adding temporal operators to predicates, we could
make statements over progressions of valuations.

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 110

Algorithm 6 AbstractWithSupport

Input: Set of terms c to be refined, set of terms s to aid the refinement,
and set K of variables to keep
Output: Set of terms c̄

1: c̄← RefineWithSupport(c, s)
2: for t ∈ c̄set do
3: if V (t)∩ ¬K ̸= ∅ then
4: c̄← −{t}
5: end if
6: end for
7: return c

M M ′ M ′′i o o′ o′′

Figure 7.5: Sample system

7.5.1 Application

Consider the block diagram with three components shown in Figure 7.5. The contracts
obeyed by the three components are

C = (i < 2, o = i),

C ′ = (o < 1, o′ = o), and

C ′′ = (o′ < 0, o′′ = o).

We implemented simplification and contract operations, as described above. Our program
receives the following input in order to represent the contracts just described:

iVar = Var("i")

oVar = Var("o")

assumptions = TermList({Term.LT(iVar, 2)})

guarantees = TermList({Term.EQ(oVar, iVar)})

cont = IoContract(assumptions, guarantees, {iVar}, {oVar})

opVar = Var("o’")

assumptions = TermList({Term.LT(oVar, 1)})

guarantees = TermList({Term.EQ(opVar, oVar)})

contp = IoContract(assumptions, guarantees, {oVar}, {opVar})

CHAPTER 7. SYNTAX AND THE AG ALGEBRA 111

oppVar = Var("o’’")

assumptions = TermList({Term.LT(opVar, 0)})

guarantees = TermList({Term.EQ(oppVar, opVar)})

contpp = IoContract(assumptions, guarantees, {opVar}, {oppVar})

print("Their composition is")

print(contp.compose(cont.compose(contpp)))

Executing the program yields the composition

A: (i < 0)

G: (o’’ = i),

which represents our desired outcome of the composition operation.

112

Chapter 8

Hypercontracts

Assume-guarantee contracts, as presented in Chapter 2, are pairs of assumptions and guaran-
tees expressed as trace properties. There are many important system attributes that cannot
be modeled with trace properties. This chapter introduces hypercontracts, an assume guar-
antee theory which can support the expression of hyperproperties and in which we are able
to instantiate several existing contract theories.

8.1 Introduction

The need for compositional algebraic frameworks to design and analyze reactive systems is
widely accepted. The aim is to support distributed and decentralized system design based on
a proper definition of interfaces supporting the specification of subsystems having a partially
specified context of operation, and subsequently guaranteeing safe system integration. Over
the last few decades, we have seen the introduction of several formalisms to do this: interface
automata [28,54,55,62,135], process spaces [154], modal interfaces [16,118–120,169], assume-
guarantee (AG) contracts [18], rely-guarantee reasoning [47, 83, 100, 101], and variants of
these.

Since many contract frameworks have been proposed, there have also been efforts to sys-
tematize this knowledge by building high-level theories of which existing contract theories
are instantiations. Bauer et al. [15] describe how to build a contract theory if one has a
specification theory available. Benveniste et al. [19] provide a meta-theory that builds con-
tracts starting from an algebra of components. They provide several operations on contracts
and show how this meta-theory can describe, among others, interface automata, assume-
guarantee contracts, modal interfaces, and rely-guarantee reasoning. This meta-theory is,
however, low-level, specifying contracts as unstructured sets of environments and implemen-
tations. As a consequence, important concepts such as parallel composition and quotient of
contracts are expressed in terms that are considered too abstract—see [19], chapter 4. For
example, no closed form formula is given for the quotient besides its abstract definition as
adjoint of parallel composition. This chapter introduces a theory, called hypercontracts, that

CHAPTER 8. HYPERCONTRACTS 113

will address these drawbacks.
Among the various contract theories proposed so far, assume-guarantee (AG) contracts

[18] require users to state the assumptions and guarantees of the specification explicitly,
while interface theories express a specification as a game played between the specification
environments and implementations. Experience tells that engineers in industry find the ex-
plicit expression of a contract’s assumptions and guarantees natural (see [19] chapter 12),
while interface theories are perceived as a less intuitive mechanism for writing specifica-
tions; however, interface theories in general come with the most efficient algorithms, making
them excellent candidates for internal representations of specifications. Some authors ([19]
chapter 10) have therefore proposed to translate contracts expressed as pairs (assumptions,
guarantees) into some interface model, where algorithms are applied. This approach has
the drawback that results cannot be traced back to the original (assumptions, guarantees)
formulation.

One of the difficulties with AG contracts is they only support environments and imple-
mentations that can be expressed using trace properties. While many attributes of interest
can be expressed using trace properties, there are many important system attributes, such
as non-interference, that need hyperproperties to be expressed. Hypercontracts allow envi-
ronments and implementations to be expressed using arbitrary hyperproperties [45].

Hyperproperties are subsets of 2B. Recall that each element of 2B defines a semantically-
unique component. Thus, a componentM satisfies a hyperproperty H ifM ∈ H. One of our
key contributions is an assume-guarantee theory that supports the expression of arbitrary
hyperproperties. As we present our theory, we will use the following running example.

Example 8.1.1 (Running example). Consider the digital system shown in Figure 8.1a; this
system is similar to those presented in [146, 167] to illustrate the non-interference property
in security. Here, we have an s-bit secret data input S and an n-bit public input P . The
system has an output O. There is also an input H that is equal to zero when the system is
being accessed by a user with low-privileges, i.e., a user not allowed to use the secret data,
and equal to one otherwise. We wish the overall system to satisfy the property that for all
environments with H = 0, the implementations can only make the output O depend on P ,
the public data, not on the secret input S.

A prerequisite for writing this requirement is to be able to express the property that “the
output O depends on P , the public data, not on the secret input S”. We claim that this
property cannot be captured by a trace property. To see this, suppose for simplicity that all
variables are 1-bit-long. A trace property that aims at expressing the independence from the
secret for O = P is

P =

(P = 1, S = 1, O = 1),
(P = 0, S = 1, O = 0),
(P = 1, S = 0, O = 1),
(P = 0, S = 0, O = 0)

 .

CHAPTER 8. HYPERCONTRACTS 114

(a) (b) (c)

Figure 8.1: (a) A digital system with a secret input S and a public input P . The overall system
must meet the requirement that the secret input does not affect the value of the output O when
the signal H is deasserted (this signal is asserted when a privileged user uses the system). Our
agenda for this running example is the following: (b) we will start with two components C1 and C2

satisfying respective hypercontracts C1 and C2 characterizing information-flow properties of their
own; (c) the composition of these two hypercontracts, Cc, will be derived. Through the quotient
hypercontract Cq, we will discover the functionality that needs to be added in order for the design
to meet the top-level information-flow specification C.

A valid implementation M ⊆ P is the following set of traces:

M =

{
(P = 1, S = 1, O = 1),
(P = 0, S = 0, O = 0)

}
.

However, the component M leaks the value of S in its output. We conclude that the inde-
pendence does not behave as a trace property, and therefore, neither does non-interference.
To overcome this, simply list all the subsets of P that satisfy the independence requirement:

(P=1, S=1, O=1),
(P=0, S=1, O=0),
(P=1, S=0, O=1),
(P=0, S=0, O=0)

 ,

{
(P=1, S=1, O=1),
(P=1, S=0, O=1)

}
,

{
(P=0, S=1, O=0),
(P=0, S=0, O=0)

}

This precisely defines a subset of 2B, i.e., a hyperproperty.
In our development, we will use hypercontracts first to express this top-level, assume-

guarantee requirement, and then to find a component that added to a partial implementation
of the system results in a design that meets the top-level specification. □

Contributions. In this chapter, we provide a theory of contracts, called hypercontracts,
which generalizes existing theories of contracts while treating assumptions and guarantees
as first-class citizens. This new AG theory supports arbitrary structured hyperproperties,
including, e.g., non-interference and robustness.

The theory of hypercontracts is built in three stages. We begin with a theory of com-
ponents. Then we state what are the sets of components that our theory can express;
we call such objects compsets—compsets boil down to hyperproperties in behavioral for-
malisms [146]. From these compsets, we build hypercontracts. We provide closed-form

CHAPTER 8. HYPERCONTRACTS 115

expressions for hypercontract manipulations. Then we show how the hypercontract theory
applies to two specific cases: downward-closed hypercontracts and interface hypercontracts
(equivalent to interface automata). The main difference between hypercontracts and the
meta-theory of contracts [19] is that hypercontracts are more structured: the meta-theory
of contracts defines a theory of components, and uses these components in order to define
contracts. Hypercontracts use the theory of components to define compsets, which are the
types of properties that we are interested in representing in a specific theory. Hypercontracts
are built out of compsets, not out of components.

To summarize, our contributions are the following: (i) a new model of hypercontracts
possessing a richer algebra than the metatheory of [19] and capable of expressing any lattice
of hyperproperties and (ii) a calculus of conic hypercontracts offering finite representations
of downward-closed hypercontracts.

8.2 The theory of hypercontracts

Our objective is to develop a theory of assume-guarantee reasoning for any kind of attribute
of reactive systems. We do this in three steps:

1. we consider components coming with notions of preorder (e.g., simulation) and parallel
composition;

2. we introduce the notion of a compset, a variation of the notion of hyperproperty,
equipped with substantial algebraic structure;

3. we build hypercontracts as pairs of compsets with additional structure specifying legal
environments and implementations.

8.2.1 Components

In the theory of hypercontracts, the most primitive concept is the component. Let (M,≤) be
a preorder. The elements M ∈M are called components. We say that M is a subcomponent
of M ′ when M ≤ M ′. If we represented components as automata, the statement “is a
subcomponent of” would correspond to “is simulated by.”

There exists a partial binary operation, ∥: M,M → M, monotonic in both arguments,
called composition. If M ∥ M ′ is not defined, we say that M and M ′ are non-composable
(and composable otherwise). A component E is an environment for component M if E and
M are composable. We assume that composition is associative and commutative.

Example 8.2.1 (running example, cont’d). In order to reason about possible decompositions
of the system shown in Figure 8.1a, we introduce the internal variables O1 and O2, as shown
in Figure 8.1b. They have lengths o1 and o2, respectively. The output O has length o. For
simplicity, we will assume that the behaviors of the entire system are stateless. In that case,
the underlying set of components M must contain at least the following components:

CHAPTER 8. HYPERCONTRACTS 116

� For i ∈ {1, 2}, components with inputs H, S, P , and output Oi, i.e.,

{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2s × 2n → 2oi). Oi = f(H,S, P)} .

� Components with inputs H, S, P , O1, O2, and output O, i.e.,

{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2s × 2n × 2o1 × 2o2 → 2o). O = f(H,S, P,O1, O2)} .

� Any subset of these components, as these correspond to restricting inputs to subsets of
their domains.

In this theory of components, composition is carried out via set intersection. So for ex-
ample, if for i ∈ {1, 2} we have functions fi ∈ (21 × 2s × 2n → 2oi) and components
Mi = {(H,S, P,O1, O2, O) | Oi = fi(H,S, P)}, the composition of these objects is

M1 ∥M2 =

{
(H,S, P,O1, O2, O)

∣∣∣∣ O1 = f1(H,S, P)
O2 = f2(H,S, P)

}
,

which is the set intersection of the components’s behaviors. □

8.2.2 Compsets

CmpSet is a lattice whose objects, called compsets, are sets of components. The order of
CmpSet is set inclusion. In general, not every set of components is an object of CmpSet.
Compsets boil down to hyperproperties when the underlying component theory represents
components as sets of behaviors. Since we assume CmpSet is a lattice, the greatest lower
bounds and least upper bounds of finite sets are defined. Observe, however, that although
the partial order of CmpSet is given by subsetting, the meet and join of CmpSet are
not necessarily intersection and union, respectively, as the union or intersection of any two
elements are not necessarily elements of CmpSet.

CmpSet comes with a notion of satisfaction. Suppose M ∈M and H is a compset. We
say that M satisfies H or conforms to H, written M |= H, when M ∈ H. For compsets
H,H ′, we say that H refines H ′, written H ≤ H ′, when M |= H ⇒ M |= H ′, i.e., when
H ⊆ H ′.

Since we assume CmpSet is a lattice, the greatest lower bounds and least upper bounds
of finite sets are defined. Observe, however, that although the partial order of CmpSet is
given by subsetting, the meet and join of CmpSet are not necessarily intersection and union,
respectively, as the union or intersection of any two elements are not necessarily elements of
CmpSet.

Example 8.2.2 (Running example: security). Non-interference, introduced by Goguen and
Meseguer [72], is a common information-flow attribute, a prototypical example of a design
quality which trace properties are unable to capture [45]. It can be expressed with hyperprop-
erties, and is in fact one reason behind their introduction.

CHAPTER 8. HYPERCONTRACTS 117

Suppose σ is one of the behaviors that our system can display, understood as the state of
memory locations through time. Some of those memory locations we call privileged, some
unprivileged. Let L0(σ) and Lf (σ) be the projections of the behavior σ to the unprivileged
memory locations of the system, at time zero, and at the final time (when execution is done).
We say that a component M meets the non-interference hyperproperty when

∀σ, σ′ ∈M. L0(σ) = L0(σ
′)⇒ Lf (σ) = Lf (σ

′),

i.e., if two traces begin with the unprivileged locations in the same state, the final state of the
unprivileged locations matches.

Non-interference is a downward-closed hyperproperty [146,167], and a 2-safety hyperprop-
erty. Hyperproperties called k-safety are those for the refutation of which one must provide
at least k traces. In our example, to refute the hyperproperty, it suffices to show two traces
that share the same unprivileged initial state, but which differ in the unprivileged final state.

Regarding the system shown in Figure 8.1a, we require the top level component to generate
the output O independently from the secret input S. We build our theory of compsets by
letting the set 2M be the set of elements of CmpSet. This means that any set of components
is a valid compset. The components meeting the top-level non-interference property are those
belonging to the compset {(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2n → 2o). O = f(H,P)}, i.e.,
those components for which H and P are sufficient to evaluate O. This corresponds exactly
to those components that are insensitive to the secret input S. The join and meet of these
compsets is given by set union and intersection, respectively. □

8.2.2.1 Composition and quotient

Composition in CmpSet is element-wise:

H ∥ H ′ =

{
M ∥M ′

∣∣∣∣∣ M |= H, M ′ |= H ′, and

M and M ′ are composable

}
. (8.1)

Composition is total and monotonic, i.e., if H ′ ≤ H ′′, then H ∥ H ′ ≤ H ∥ H ′′. It is
also commutative and associative, by the commutativity and associativity, respectively, of
component composition.

We assume the existence of a second (but partial) binary operation on the objects of
CmpSet. This operation is the right adjoint of composition: for compsets H and H ′, the
residual H/H ′ (also called quotient), is defined by the universal property of the quotient.
From the definition of composition, we must have

H/H ′ = {M ∈M | {M} ∥ H ′ ⊆ H} . (8.2)

The definition of quotient for compsets does not require a notion of quotient for compo-
nents. However, when such a notion exists, and depending on the structure of CmpSet, it
can be used to simplify the computation of (8.2).

CHAPTER 8. HYPERCONTRACTS 118

8.2.2.2 Convexity, co-convexity, and flatness

A compset H is convex if M,M ′ |= H ⇒ M ∥ M ′ |= H. In other words, H is convex if
H ∥ H ≤ H. A compset H is co-convex if H ≤ H ∥ H.

If a compset is both convex and co-convex, it is called flat. Flat compsets H are pre-
cisely those that satisfy H = H ∥ H. If all compsets are flat, composition in CmpSet is
idempotent.

Proposition 8.2.3. Convexity, co-convexity, and flatness are preserved under composition.

Proof. Suppose H and H ′ are convex compsets. Then (H ∥ H ′) ∥ (H ∥ H ′) = (H ∥ H) ∥
(H ′ ∥ H ′) ≤ H ∥ H ′, so their composition is convex. If H and H ′ are co-convex compsets,
H ∥ H ′ ≤ (H ∥ H) ∥ (H ′ ∥ H ′) = (H ∥ H ′) ∥ (H ∥ H ′), so their composition is co-convex.
The preservation of flatness follows from the preservation of convexity and co-convexity.

Proposition 8.2.4. If component composition is idempotent, all elements of CmpSet are
co-convex.

Proof. Suppose H is a compset and M |= H. Since component composition is idempotent,
M =M ∥M , so M |= H ∥ H.

8.2.2.3 Downward-closed compsets

The set of components was introduced with a partial order. We say that a compset H is
downward-closed when M ′ ≤M and M |= H imply M ′ |= H, i.e., if a component satisfies a
downward-closed compset, so does its subcomponent. Section 8.4.4 treats downward-closed
compsets in detail.

8.2.3 Hypercontracts

A hypercontract is a specification for a design element that tells what is required from
the design element when it operates in an environment that meets the expectations of the
hypercontract. Several ways of specifying hypercontracts can be considered.
Hypercontracts as pairs (environments, closed-system specification). In this set-
ting, a hypercontract is a pair of compsets:

C = (E ,S) = (environments, closed-system specification).

E states the environments in which the object being specified must adhere to the specifica-
tion. S states the requirements that the design element must fulfill when operating in an
environment which meets the expectations of the hypercontract. We say that a component E
is an environment of hypercontract C, written E |=E C, if E |= E . We say that a component
M is an implementation of C, written M |=I C, when M ∥ E |= S for all E |= E . We thus

CHAPTER 8. HYPERCONTRACTS 119

define the set of implementations I of C as the compset containing all implementations, i.e.,
as the quotient:

implementations = I = S/E .
A hypercontract with a nonempty set of environments is called compatible. If it has a
nonempty set of implementations, it is called consistent. For S and I as above, the compset
E ′ defined as E ′ = S/I contains all environments in which the implementations of C satisfy
the specifications of the hypercontract. Thus, we say that a hypercontract is saturated if
its environments compset is as large as possible in the sense that adding more environments
to the hypercontract would reduce its implementations. This means that C satisfies the
following fixpoint equation: E = S/I = S/(S/E).

At a first sight, this notion of saturation may seem to go against what for assume-
guarantee contracts are called contracts in canonical or saturated form, as we make the
definition based on the environments instead of on the implementations. However, the two
definitions for AG contracts and hypercontracts agree. Indeed, for AG contracts, this notion
means that the contract C = (A,G) satisfies G = G ∪ ¬A. For this AG contract, we can
form a hypercontract as follows: if we take the set of environments to be E = 2A (i.e., all
subsets of A) and the closed system specs to be S = 2G, we get a hypercontract whose set
of implementations is 2G∪¬A, which means that the hypercontract (2A, 2G) is saturated.
Hypercontracts as pairs (environments, implementations). Another way to interpret a hyper-
contract is by telling explicitly which environments and implementations it supports. Thus,
we would write the hypercontract as C = (E , I). Assume-guarantee theories can differ as
to the most convenient representation for their hypercontracts. Moreover, some operations
on hypercontracts find their most convenient expression in terms of implementations (e.g.,
parallel composition), and some in terms of the closed system specifications (e.g., strong
merging).

The lattice Contr of hypercontracts. Just as with CmpSet, we define Contr as a lattice
formed by putting together two compsets in one of the above two ways. Not every pair of
compsets is necessarily a valid hypercontract. We will define soon the operations that give
rise to this lattice.

8.2.3.1 Preorder

We define a preorder on hypercontracts as follows: we say that C refines C ′, written C ≤ C ′,
when every environment of C ′ is an environment of C, and every implementation of C is an
implementation of C ′, i.e., E |=E C ′ ⇒ E |=E C and M |=I C ⇒ M |=I C ′. We can express
this as

E ′ ≤ E and S/E = I ≤ I ′ = S ′/E ′.
Any two C, C ′ with C ≤ C ′ and C ′ ≤ C are said to be equivalent since they have the same
environments and the same implementations. We now obtain some operations using pre-
orders which are defined as the LUB or GLB of Contr. We point out that the expressions
we obtain are unique up to the preorder, i.e., up to hypercontract equivalence.

CHAPTER 8. HYPERCONTRACTS 120

8.2.3.2 GLB and LUB

From the preorder just defined, the GLB of C and C ′ satisfies: M |=I C ∧ C ′ if and only if
M |=I C and M |=I C ′; and E |=E C ∧ C ′ if and only if E |=E C or E |=E C ′.

Conversely, the least upper bound satisfiesM |=I C∨C ′ if and only ifM |=I C orM |=I C ′,
and E |=E C ∨ C ′ if and only if E |=E C and E |=E C ′.

The lattice Contr has hypercontracts for objects (up to contract equivalence), and meet
and join as just described.

8.2.3.3 Parallel composition

The composition of hypercontracts Ci = (Ei, Ii) for 1 ≤ i ≤ n, denoted ∥i Ci, is the smallest
hypercontract C ′ = (E ′, I ′) (up to equivalence) meeting the following requirements:

� any composition of implementations of all Ci is an implementation of C ′; and

� for any 1 ≤ j ≤ n, any composition of an environment of C ′ with implementations of all
Ci (for i ̸= j) yields an environment for Cj.

These requirements were stated for the first time by Abadi and Lamport [1]. Using our
notation, this composition principle becomes

C ∥ C ′ =
∧(E ′, I ′)

∈ Contr

∣∣∣∣∣∣
 I1 ∥ . . . ∥ In ≤ I ′, andE ′ ∥ I1 ∥ . . . ∥ Îj ∥ . . . ∥ In ≤ Ej

for all 1 ≤ j ≤ n

=
∧{

(E ′, I ′)
∈ Contr

∣∣∣∣∣
[
I1 ∥ . . . ∥ In ≤ I ′, and
E ′ ≤

∧
1≤j≤n

Ej
I1∥...∥Îj∥...∥In

]}
, (8.3)

where the notation Îj indicates that the composition I1 ∥ . . . ∥ Îj ∥ . . . ∥ In includes all
terms Ii, except for Ij.

Example 8.2.5 (Running example, parallel composition). Coming back to the example
shown in Figure 8.1, we want to state a requirement for the top-level component that for
all environments with H = 0, the implementations can only make the output O depend on
P , the public data. We will write a hypercontract for the top-level. We let C = (E , I), where

E = {M ∈M | ∀(H,S, P,O1, O2, O) ∈M.H = 0}
I ={M ∈M | ∃f∈(2n → 2o).∀(H,S, P,O1, O2, O) ∈M.H = 0→ O=f(P)}.

The environments are all those components only defined for H = 0. The implementations
are those such that the output is a function of P when H = 0.

Let f ∗ : 2n → 2o. Suppose we have two hypercontracts that require their implementations
to satisfy the function Oi = f ∗(P), one implements it when S = 0, and the other when S ̸= 0.
For simplicity of syntax, let s1 and s2 be the propositions S = 0 and S ̸= 0, respectively.

CHAPTER 8. HYPERCONTRACTS 121

Let the two hypercontracts be Ci = (Ei, Ii) for i ∈ {1, 2}. We won’t place restrictions on the
environments for these hypercontracts, so we obtain Ei = M and

Ii ={M ∈M | ∀(H,S, P,O1, O2, O) ∈M.si → Oi=f
∗(P)}.

We now evaluate the composition of these two hypercontracts: Cc = C1 ∥ C2 = (Ec , Ic),
yielding Ec = M and

Ic ={M ∈M | ∀(H,S, P,O1, O2, O) ∈M.

(s1 → O1=f
∗(P)) ∧ (s2 → O2=f

∗(P))}.

8.2.3.4 Mirror or reciprocal

We assume we have an additional operation on hypercontracts, called both mirror and
reciprocal, which flips the environments and implementations of a hypercontract: C−1 =
(E , I)−1 = (I, E) and C−1 = (E ,S)−1 = (S/E ,S). This notion gives us, so to say, the hy-
percontract obeyed by the environment. The introduction of this operation assumes that
for every hypercontract C, its reciprocal is also an element of Contr. Moreover, we assume
that, when the infimum of a collection of hypercontracts exists, the following identity holds:

(
∧

i Ci)
−1 =

∨
i Ci

−1. (8.4)

8.2.3.5 Hypercontract quotient

The quotient or residual for hypercontracts C = (E , I) and C ′′ = (E ′′, I ′′), written C ′′/C, has
the universal property of the quotient, namely ∀C ′. C ∥ C ′ ≤ C ′′ if and only if C ′ ≤ C ′′/C. We
can obtain a closed-form expression using the reciprocal:

Proposition 8.2.6. The hypercontract quotient obeys C ′′/C = ((C ′′)−1 ∥ C)−1
.

Proof.

C ′′/C =
∨
{C ′ | C ∥ C ′ ≤ C ′′} =

∨(E ′, I ′)

∣∣∣∣∣∣
 I ∥ I ′ ≤ I ′′,E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E

=

∨(E ′, I ′)

∣∣∣∣∣∣
 I ∥ I ′ ≤ I ′′,E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E

−1−1

(8.4)
=

∧(I ′, E ′)

∣∣∣∣∣∣
 I ∥ I ′ ≤ I ′′,E ′′ ∥ I ≤ E ′, and
E ′′ ∥ I ′ ≤ E

−1

=

∧(I ′, E ′)

∣∣∣∣∣∣
 E ′′ ∥ I ≤ E ′,I ′ ∥ I ≤ I ′′, and
I ′ ∥ E ′′ ≤ E

−1

CHAPTER 8. HYPERCONTRACTS 122

=
(
(C ′′)−1 ∥ C

)−1
.

Example 8.2.7 (Running example, quotient). We use the quotient to find the specification
of the component that we need to add to the system shown in Figure 8.1c in order to meet
the top level contract C. To compute the quotient, we use (8.8). We let C/Cc = (Eq, Iq) and
obtain Eq = E ∧ Ic and

Iq ={M ∈M | ∃f ∈ (2n → 2o)∀(H,S, P,O1, O2, O)

∈M. ((s1 → O1=f
∗(P)) ∧ (s2 → O2=f

∗(P)))→ (H = 0→ O=f(P))}.

We can refine the quotient by lifting any restrictions on the environments, and picking from
the implementations the term with f = f ∗. Observe that f ∗ is a valid choice for f . This
yields the hypercontract C3 = (E3, I3), defined as E3 = M and

I3 ={M ∈M | ∀(H,S, P,O1, O2, O) ∈M.

((s1 → O1=f
∗(P)) ∧ (s2 → O2=f

∗(P)))→ O=f ∗(P)}.

A further refinement of this hypercontract is Cr = (Er, Ir), where Er = M and

Ir ={M ∈M | ∀(H,S, P,O1, O2, O) ∈M. ((s1 → O=O1) ∧ (s2 → O=O2))}.

By the properties of the quotient, composing this hypercontract, which knows nothing about
f ∗, with Cc will yield a hypercontract which meets the non-interference hypercontract C. Note
that this hypercontract is consistent, i.e., it has implementations (in general, refining may
lead to inconsistency). □

8.2.3.6 Merging

The composition of two hypercontracts yields the specification of a system comprised of
two design objects, each adhering to one of the hypercontracts being composed. Another
important operation on hypercontracts is viewpoint merging, or merging for short. It can
be the case that the same design element is assigned multiple specifications corresponding
to multiple viewpoints, or design concerns [18, 161] (e.g., functionality and a performance
criterion). Suppose C1 = (E1,S1) and C2 = (E2,S2) are the hypercontracts we wish to merge.
Two slightly different operations can be considered as candidates for formalizing viewpoint
merging:

� A weak merge which is the GLB; and

� A strong merge which states that environments of the merger should be environments of
both C1 and C2 and that the closed systems of the merger are closed systems of both C1 and
C2. If we let C1 • C2 = (E , I), we have

CHAPTER 8. HYPERCONTRACTS 123

E = ∨{E ′ ∈ CmpSet | E ′ ≤ E1 ∧ E2 and ∃ C ′′ = (E ′′, I ′′) ∈ Contr. E ′ = E ′′}

I = ∨

{
I ′ ∈ CmpSet

∣∣∣∣∣ I ′ ≤ (S1 ∧ S2)/E and

(E , I) ∈ Contr

}
.

The difference is that, whereas the commitment to satisfy S2 survives under the weak merge
when the environment fails to satisfy E1, no obligation survives under the strong merge. This
distinction was proposed in [177] under the name of weak/strong assumptions.

8.2.4 An example on robustness

Now we explore assume-guarantee specifications of autonomous vehicles. We will deal with
their safety and the robustness of their perception components. In order to consider the
perception components, we will build our model using a pair (X,O), where X ∈ S is the
input image, belonging to a set S of images, and O ∈ CS is the classification of the image X,
an element of the classification space CS. To deal with safety, we will consider pairs (v,∆s),
where v represents the state of the vehicle with domain SP, and ∆s is the maximum amount
of time that it takes the vehicle to come to a full stop. Thus, every component M ∈M is of
the form

M =
{
(X,O, v,∆s) ∈ S × CS× SP× R+

∣∣ ∃f ∈ S → CS. O = f(X)
}
.

As discussed in Seshia et al. [183], certain robustness properties of data-driven compo-
nents are hyperproperties. Robustness properties usually take the form d(x, y) < δ ⇒
D(f(x), f(y)) < ε, where d and D are distance functions. The property says that points
that are close should have similar classifications. As two points are needed to provide ev-
idence that a function is not robust, these are 2-safety hyperproperties. We will state a
specification for our vehicles that requires their perception components to be robust. Sup-
pose the input space S is partitioned in sets Si. We want our vehicle to meet the following
top-level specification:

C =

M,

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε

 .

Suppose our vehicle obeys the specification Ca given by

Ca =

M,

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ εi

 .

This specification says that the perception component in each region Si should have a ro-
bustness εi. Suppose that there is a j ∈ N such that εi ≤ ε for all i ≤ j and εi > ε otherwise.

CHAPTER 8. HYPERCONTRACTS 124

The contract quotient is Cq = (Eq, Iq), where Eq = Ia and

Iq =

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.∧
i

xk, xl ∈ Si → |ok − ol| ≤ εi

,

where we used the horizontal bar to denote the compset quotient. By the definition of the
contract quotient, any refinement of Cq is a solution to our problem, namely, what is the
specification that we have to compose with a specification Ca in order for the result to meet
a goal specification C. We thus compute a refinement of the quotient that we just obtained:

Cb =

M,

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.∧
i>j

xk, xl ∈ Si → |ok − ol| ≤ ε

 .

Observe how using the quotient we were able to obtain a specification Cb that contains
exactly what needs to be fixed in the component adhering to hypercontract Ca in order for
it to meet the top-level specification C. Moreover, the specification Cb does not contain any
information about Ca.

One of the uses of hypercontracts is in handling multiple viewpoints. Suppose that the
robust perception specification is given to a vehicle on top of other specifications, such as
safety. For example, suppose there is a specification that says that if the state of the vehicle
v is inside a safety set T , then the amount of time ∆s that it takes the vehicle to come to a
full stop is a most P . We can write the spec

Cs = (v ∈ T,∆s < P) .

By using strong merging, we can get into a single top-level hypercontract the specification
of the perception and the safety viewpoints, as follows:v ∈ T,

M ∈M

∣∣∣∣∣∣
∀(xk, ok, vk,∆sk), (xl, ol, vl,∆sl) ∈M.

∆sk,∆sl < P ∧
∧
i

xk, xl ∈ Si → |ok − ol| ≤ ε

 .

This specification summarizes the perception and safety viewpoints of the vehicle. As ro-
bustness is a hyperproperty, we cannot use AG contracts to reason about the specifications
in this example, but hypercontracts enable us to do so.

CHAPTER 8. HYPERCONTRACTS 125

8.3 Representation of compsets and hypercontracts

We have laid out the theory of hypercontracts, built in three stages. We now discuss the
issue of syntactically representing these objects. Up to now, we have written compsets
explicitly as sets. Doing this, however, results in a problem of portability. Consider again
the example shown in Figure 8.1. In our running example, we found out that we could
express the property of non-interference for the top-level component through the expression
{(H,S, P,O1, O2, O) | ∃f ∈ (21 × 2n → 2o). O = f(H,P)}. What would happen if we added
more internal variables to the system? Suppose, for example, that we have an additional
variable O3. In that case, the theory of components needs to define component behaviors also
over the variable O3, and the compset in question becomes {(H,S, P,O1, O2, O3, O) | ∃f ∈
(21 × 2n → 2o). O = f(H,P)}. This makes it clear that compsets change when the theory
of components modifies its variables. Yet, we would agree that the two compsets we wrote
represent the same components.

In order to have a representation of compsets which is invariant to adding new variable
names to the theory of components, we assume we have a logic Ψ whose formulas are denoted
by compsets. We require Ψ to be a lattice and the denotation map

Den : Ψ→ CmpSet

to be a lattice map. This means that Den(ψ ∧ ψ′) = Den(ψ) ∧ Den(ψ′) and Den(ψ ∨
ψ′) = Den(ψ) ∨ Den(ψ′). The Den map also provides us with the means to represent
hypercontracts, as these are given by a pair of compsets.

Example 8.3.1. As an example, suppose we have a theory with only one component: a
voltage amplifier with an output O having the same real value as its input I. The component
is given by M = {(I, O) ∈ R2 | O = I}. The theory of compsets has two elements: ∅ and
{M}. Suppose we have a logic Ψ with symbols i, o in which the formula ψ := i = o is well
defined and has a denotation Den(ψ) = {C ∈M | ∀(I, O) ∈ C. I = O} = {M}.

Now suppose we alter the component theory so that it has an additional real variable T .
Now the componentM becomesM ′ = {(I, O, T) ∈ R3 | O = I}. Observe that the description
of the component M has changed; yet, we could say that M ′ is completely independent of
T . Now suppose we have a logic Ψ′ with symbols i, o, t in which the formula ψ := i = o
is also well-defined. We can build a denotation map Den′ : Ψ′ → CmpSet such that
Den′(ψ) = {C ∈M | ∀(I, O, T) ∈ C. I = O} = {M ′}. □

We observe in this example that we were able to use the same formula ψ in order to
represent a compset, even when we modified the underlying symbols on which objects were
defined. In other words, representations allow us to define compsets by only using “local
knowledge” about the interfaces of the components described by the compset, despite the
fact that components are denoted on the set of behaviors of the entire system.

CHAPTER 8. HYPERCONTRACTS 126

8.4 Behavioral modeling

In the behavioral approach to system modeling, we start with a set B whose elements we call
behaviors. Components are defined as subsets of B. They contain the behaviors they can
display. A component M is a subcomponent of M ′ if M ′ contains all the behaviors of M ,

i.e., if M ⊆ M ′. Component composition is given by set intersection: M ×M ′ def
= M ∩M ′.

If we represent the components as M = {b ∈ B | ϕ(b)} and M ′ = {b ∈ B | ϕ′(b)} for some
constraints ϕ and ϕ′, then composition isM×M ′ = {b ∈ B | ϕ(b) ∧ ϕ′(b)}, i.e., the behaviors
that simultaneously meet the constraints of M and M ′. This notion of composition is
independent of the connection topology: the topology is inferred from the behaviors of the
components.

We will consider two contract theories we can build with these components. The first
is based on unconstrained hyperproperties; the second is based on downward-closed hyper-
properties.

8.4.1 Assume-guarantee contracts

Now we express AG contracts using hypercontracts. We can instantiate trace properties as
a CmpSet lattice. Each compset is of the form H = 2M for some component M ⊆ B.
Observe that the satisfaction of a compset by a component M ′ ∈ 2M happens if and only
if M ′ ≤ M . The meet of two compsets 2M ∧ 2M

′
is 2M∩M ′

= 2M ∩ 2M
′
, but the join of

two elements 2M ∨ 2M
′
is 2M∪M ′ ̸= 2M ∪ 2M

′
. The composition of two compsets is given by

2M × 2M
′
= 2M∩M ′

, and the quotient is 2M/2M
′
= 2M/M ′

.
Assume-guarantee contracts are often given as a pair of trace-properties (A,G), where

A states the assumptions made on the environment, and G states what the component in
question should guarantee when operating in a valid environment (i.e., one that meets the
assumptions). We observe that any closed system obtained using environments that meet
the assumptions is restricted to G ∩ A; thus, we set the closed-system spec to S = 2A∩G.
Define the hypercontract C = (2A, 2A∩G). The environments are E = 2A, namely, all E ⊆ A,
and the implementations are I = 2(A∩G)/A = 2G/A, that is, all M ⊆ G/A. Observe that
S/I = E , so C is saturated. Now suppose we have another hypercontract C ′ = (2A

′
, 2A

′∩G′
)

with environments E ′ and implementations I ′. We observe that E ≤ E ′ if and only if A ⊆ A′;
moreover, I ′ ≤ I if and only if G′/A′ ≤ G/A. This means that C ′ ≤ C if and only if the
assume-guarantee contracts (A,G) and (A′, G′) satisfy (A′, G′) ≤ (A,G).

Suppose we have a second hypercontract C ′ = (2A
′
, 2G

′/A′
). Applying (8.3), we obtain a

composition formula for these hypercontracts: C ∥ C ′ =
(
2A

′/(G/A) ∧ 2A/(G′/A′), 2G/A ∧ 2G
′/A′)

,
whose environments and implementations are exactly those obtained from the composition
of the assume-guarantee contracts (A,G) and (A′, G′) [18].

Given two assume-guarantee contracts (Ai, Gi) for i = 1, 2, we consider the merging
of their hypercontracts. We have (2A1 , 2A1∩G1) • (2A2 , 2A2∩G2) = (2A1∩A2 , 2A1∩G1∩A2∩G2).
Observe that this last hypercontract has environments 2A1∩A2 . The implementations of the

CHAPTER 8. HYPERCONTRACTS 127

hypercontract are 2(G1∩G2)/(A1∩A2). This is the definition of merging for assume-guarantee
contracts [161].

8.4.2 Interval AG contracts

Now we explore AG contracts with a must modality. We will assume that elements of
CmpSet are property intervals. In other words, if H is a compset, we can find components
L,R ∈ M such that H = {M ∈M | L ≤M ≤ R}. We will refer to such compsets as
modal or interval compsets, and we write them as H = [L,R]. The name modal is used
to indicate that a component satisfying a modal compset must implement some behaviors
(those contained in L) and is only allowed to implement certain behaviors (those contained
in R).

Let H = [L,R] and H ′ = [L′, R′]. The operations on compsets are given by

H ∥ H ′ = {M ∥M ′ | L ≤M ≤ R and L′ ≤M ′ ≤ R′} = [L∩ L′, R ∩R′],

H ∧H ′ = {M | L ≤M ≤ R and L′ ≤M ≤ R′} = [L∪ L′, R ∩R′],

H ∨H ′ = {M | L ≤M ≤ R or L′ ≤M ≤ R′} = [L∩ L′, R ∪R′], and

H/H ′ = ∨ {[L′′, R′′] | H ′ ∥ [L′′, R′′] ≤ H}
= ∨ {[L′′, R′′] | [L′ ∩ L′′, R′ ∩R′′] ≤ H}
=[L,R ∪ ¬R′] (only defined when L ≤ L′).

We now state the expressions for composition and quotient.

Proposition 8.4.1. Suppose C = (E , I) and C ′ = (E ′, I ′) with E = [Le, Re], I = [Li, Ri],
E ′ = [L′

e, R
′
e], and I ′ = [L′

i, R
′
i]. The composition of these hypercontracts is only defined when

Le = Li = L′
e = L′

i. Set L = Le. Then the composition C ∥ C ′ = (Ec, Ic) is of the form

Ec = [L, (Re ∩R′
e)∪ (R′

e ∩ ¬R′
i)∪ (Re ∩ ¬Ri)] and

Ic = [L, (Ri ∪ ¬Re)∩ (R′
i ∪ ¬R′

e)].

Now suppose C = (E , I) and C ′′ = (E ′′, I ′′) with E ′′ = [L′′
e , R

′′
e], I ′′ = [L′′

i , R
′′
i], E = [Le, Re],

and I = [Li, Ri]. The residual C ′′/C = (Er, Ir) is only defined when L′′
i ≤ Li = Le ≤ L′′

e .
Call L = Li. The components of the quotient have the form

Er =[L,R′′
e ∩ (Ri ∪ ¬Re)] and

Ir =[L, (Re ∩R′′
i)∪ ¬R′′

e ∪ (Re ∩ ¬Ri)].

Proof. We consider contract composition. Let C = (E , I) and C ′ = (E ′, I ′) with E = [Le, Re],
I = [Li, Ri], E ′ = [L′

e, R
′
e], and I ′ = [L′

i, R
′
i]. Their composition of these two contracts

C ∥ C ′ = (Ec, Ic) requires us to compute

Ec = (E ′/(I/E)) ∧ (E/(I ′/E ′)) and Ic = ((I/E) ∥ (I ′/E ′)) /Ec.

CHAPTER 8. HYPERCONTRACTS 128

Since we have to compute I/E , we must have Li ≤ Le. Similarly, to compute I ′/E ′,
we need L′

i ≤ L′
e. Now, to compute E ′/(I/E) and E/(I ′/E ′), we must have L′

e ≤ Li and
Le ≤ L′

i. Then

L′
e ≤ Li ≤ Le and Le ≤ L′

i ≤ L′
e,

so we must have Le = Li = L′
i = L′

e for contract composition to be well defined. To simplify
notation, let L = Le = Li = L′

i = L′
e. We obtain

Ec = (E ′/(I/E)) ∧ (E/(I ′/E ′)) = (E ′/([L,Ri ∪ ¬Re])) ∧ (E/([L,R′
i ∪ ¬R′

e]))

= [L,R′
e ∪ ¬ (Ri ∪ ¬Re)] ∧ [L,Re ∪ ¬ (R′

i ∪ ¬R′
e)]

= [L, (Re ∩R′
e)∪ (R′

e ∩ ¬R′
i)∪ (Re ∩ ¬Ri)]

and

Ic = ((I/E) ∥ (I ′/E ′)) /Ec = ([L,Ri ∪ ¬Re] ∥ [L,R′
i ∪ ¬R′

e]) /Ec
= ([L, (Ri ∪ ¬Re)∩ (R′

i ∪ ¬R′
e)]) /Ec = [L, (Ri ∪ ¬Re)∩ (R′

i ∪ ¬R′
e)].

Finally, we seek expressions for the residual. Let C = (E , I) and C ′′ = (E ′′, I ′′) with
E ′′ = [L′′

e , R
′′
e], I ′′ = [L′′

i , R
′′
i], E = [Le, Re], and I = [Li, Ri]. The residual C ′′/C = (Er, Ir) is

given by

Er = E ′′ ∥ (I/E) and Ir = ((E/E ′′) ∧ ((I ′′/E ′′)/(I/E))) /Er.

To compute I/E , E/E ′′, and I ′′/E ′′, we must have

Li ≤ Le ≤ L′′
e , and L

′′
i ≤ L′′

e .

We compute

Er = E ′′ ∥ [Li, Ri ∪ ¬Re] = [Li, R
′′
e ∩ (Ri ∪ ¬Re)] and

Ir = ((E/E ′′) ∧ ((I ′′/E ′′)/(I/E))) /Er =
([Le, Re ∪ ¬R′′

e] ∧ ([L′′
i , R

′′
i ∪ ¬R′′

e]/[Li, Ri ∪ ¬Re])) /Er.

We have the further constraint L′′
i ≤ Li. Thus, L

′′
i ≤ Li ≤ Le ≤ L′′

e and

Ir =([Le, Re ∪ ¬R′′
e] ∧ [L′′

i , (R
′′
i ∪ ¬R′′

e)∪ (Re ∩ ¬Ri)]) /Er
=[Le ∪ L′′

i , (Re ∪ ¬R′′
e)∩ ((R′′

i ∪ ¬R′′
e)∪ (Re ∩ ¬Ri))]/Er

=[Le, (Re ∩R′′
i)∪ ¬R′′

e ∪ (Re ∩ ¬Ri)]/[Li, R
′′
e ∩ (Ri ∪ ¬Re)].

We have the additional constrraint Le ≤ Li. Thus, we have Le = Li = L, and we have
L′′
i ≤ L ≤ L′′

e and

Ir =[L, (Re ∩R′′
i)∪ ¬R′′

e ∪ (Re ∩ ¬Ri)].

CHAPTER 8. HYPERCONTRACTS 129

8.4.3 General hypercontracts

The most expressive behavioral theory of hypercontracts is obtained when we place no re-
strictions on the structure of compsets and hypercontracts. In this case, the elements of
CmpSet are all objects H ∈ 22

B
, i.e., all hyperproperties. The meet and join of compsets

are set intersection and union, respectively, and their composition and quotient are given
by (8.1) and (8.2), respectively. Hypercontracts are of the form C = (E , I) with all extrema
achieved in the binary operations, i.e., for a second hypercontract C ′ = (E ′, I ′), the meet,
join, and composition (8.3) are, respectively, C∧C ′ = (E∪E ′, I∩I ′), C∨C ′ = (E∩E ′, I∪I ′),
and C ∥ C ′ =

(E ′

I ∩ E
I′ , I ∥ I ′

)
. From these follow the operations of quotient, and merging.

8.4.4 Conic (or downward-closed) hypercontracts

We assume that CmpSet contains exclusively downward-closed hyperproperties. Let H ∈
CmpSet. We say thatM |= H is a maximal component of H when H contains no set bigger
than M , i.e., if ∀M ′ |= H. M ≤M ′ ⇒M ′ =M .

We let H be the set of maximal components of H:

H = {M |= H | ∀M ′ |= H. M ≤M ′ ⇒M ′ =M} .

Due to the fact H is downward-closed, the set of maximal components is a unique represen-
tation of H. We can express H as

H =
⋃

M∈H 2M .

We say that H is k-conic if the cardinality of H is finite and equal to k, and we write this

H = ⟨M1, . . . ,Mk⟩, where H = {M1, . . . ,Mk}.

8.4.4.1 Order

The notion of order on CmpSet can be expressed using this notation as follows: suppose
H ′ = ⟨M ′⟩M ′∈H′ . Then

H ′ ≤ H if and only if ∀M ′ ∈ H ′ ∃M ∈ H. M ′ ≤M.

8.4.4.2 Composition

Composition in CmpSet becomes

H ×H ′ =
⋃

M∈H
M ′∈H′

2M∩M ′
= ⟨M ∩M ′⟩ M∈H

M ′∈H′
. (8.5)

Therefore, if H and H ′ are, respectively, k- and k′-conic, H ×H ′ is at most kk′-conic.

CHAPTER 8. HYPERCONTRACTS 130

8.4.4.3 Quotient

Suppose Hq satisfies
H ′ ×Hq ≤ H.

Let Mq ∈ Hq. We must have

Mq ×M ′ |= H for every M ′ ∈ H ′
,

which means that for each M ′ ∈ H ′
there must exist an M ∈ H such that Mq ×M ′ ≤ M ;

let us denote by M(M ′) a choice M ′ 7→M satisfying this condition. Therefore, we have

Mq ≤
∧

M ′∈H′
M(M ′)
M ′ , (8.6)

Clearly, the largest such Mq is obtained by making (8.6) an equality. Thus, the cardinality
of the quotient is bounded from above by kk

′
since we have

Hq =
〈∧

M ′∈H′
M(M ′)
M ′

〉
M(M ′)∈H
∀M ′∈H′

. (8.7)

8.4.4.4 Contracts

Now we assume that the objects of CmpSet are pairs of downward-closed compsets. If we
have two hypercontracts C = (E , I) and C ′ = (E ′, I ′), their composition and quotient are,
respectively,

C ∥ C ′ =
(
E
I ′
∧ E

′

I
, I × I ′

)
and C/C ′ =

(
E × I ′, I

I ′
∧ E

′

E

)
. (8.8)

8.5 Receptive languages and interface hypercontracts

In this section we connect the notion of a hypercontract with specifications expressed as
interface automata [54]. With interface theories, we bring in the notion of input-output pro-
files as an extra typing for components—so far, this was not considered in our development.
This effectively partitions M into sets containing components sharing the same profile.

Our theory of components is constructed from a new notion called receptive languages.
These objects can be understood as the trace denotations of receptive I/O automata [136].
We will consider downward-closed, 1-conic compsets, see Section 8.4.4. And interface hyper-
contracts will be pairs of these with a very specific structure. At the end of the section we
show how the denotation of interface automata is captured by interface hypercontracts. One
novelty of our approach is that the computation of the composition of hypercontracts, which
matches that of interface automata (as we will see), is inherited from our general theory by
specializing the component and compset operations.

CHAPTER 8. HYPERCONTRACTS 131

8.5.1 The components are receptive languages

Fix once and for all an alphabet Σ. When we operate on words of Σ∗, we will use ◦ for word
concatenation, and we’ll let Pre(w) be the set of prefixes of a word w. These operations are
extended to languages:

L ◦ L′ = {w ◦ w′ | w ∈ L and w′ ∈ L′} ,
and Pre(L) =

⋃
w∈L Pre(w). An input-output signature of Σ (or simply an IO signature

when the alphabet is understood), denoted (I, O), is a partition of Σ in sets I and O, i.e., I
and O are disjoint sets whose union is Σ.

Definition 8.5.1. Let (I, O) be an IO signature. A language L of Σ is an I-receptive
language if

� L is prefix-closed; and

� if w ∈ L and w′ ∈ I∗ then w ◦ w′ ∈ L.

The set of all I-receptive languages is denoted LI .

Proposition 8.5.2. Let (I, O) be an IO signature. Then LI is closed under intersection
and union.

Under the subset order, LI is a lattice with intersection as the meet and union as the
join. Further, the smallest and largest elements of LI are, respectively, 0 = I∗ and 1 = Σ∗.
It so happens that LI is a Heyting algebra. To prove this, it remains to be shown that it
has exponentiation (i.e., that the meet has a right adjoint).

Proposition 8.5.3. Let L,L′ ∈ LI . The object

L′ → L = {w ∈ Σ∗ | Pre(w)∩ L′ ⊆ L}
is an element of LI and satisfies the property of the exponential.

We further explore the structure of the exponential. To do this, it will be useful to
define the following set: for languages L,L′ and a set Γ ⊆ Σ, we define the set of missing
Γ-extensions of L′ with respect to L as

MissExt(L,L′,Γ) = (((L∩ L′) ◦ Γ)− L′) ◦ Σ∗ .

The elements of this set are all words of the form w ◦ σ ◦ w′, where w ∈ L∩ L′, σ ∈ Γ, and
w′ ∈ Σ∗. These words satisfy the condition w ◦ σ ̸∈ L′. In other words, we find the words
of L ∩ L′ which, when extended by a symbol of Γ, leave the language L′, and extend these
words by the symbols that make them leave L′ and then by every possible word of Σ∗.

Proposition 8.5.4. Let L,L′ ∈ LI . The exponential is given by

L′ → L = L∪MissExt(L,L′, O).

At this point, it has been established that each LI is a Heyting algebra. Now we move
to composition and quotient, which involve languages of different IO signatures.

CHAPTER 8. HYPERCONTRACTS 132

8.5.2 Composition and quotient of receptive languages

To every I ⊆ Σ, we have associated the set of languages LI . Suppose I
′ ⊆ I. Then L ∈ LI if

it is prefix-closed, and the extension of any word of L by any word of I∗ remains in L. But
since I ′ ⊆ I, this means that the extension of any word of L by any word of (I ′)∗ remains
in L, so L ∈ LI′ . We have shown that I ⊆ I ′ ⇒ LI′ ≤ LI . Thus, the map I 7→ LI is a

contravariant functor 2Σ → 22
Σ∗
.

Since I ′ ⊆ I implies that LI ≤ LI′ , we define the embedding ι : LI → LI′ which maps a
language of LI to the same language, but interpreted as an element of LI′ ,

Let (I, O) and (I ′, O′) be IO signatures of Σ, L ∈ LI , and L
′ ∈ LI′ . The composition of

structures with labeled inputs and outputs traditionally requires that objects to be composed
can’t share outputs. We say that IO signatures (I, O) and (I ′, O′) are compatible when
O∩O′ = ∅. This is equivalent to requiring that I ∪ I ′ = Σ. Moreover, the object generated
by the composition should have as outputs the union of the outputs of the objects being
composed. This reasoning leads us to the definition of composition:

Definition 8.5.5 (composition). Let (I, O) and (I ′, O′) be compatible IO signatures of Σ.
Let L ∈ LI and L′ ∈ LI′. The operation of language composition, × : LI ,LI′ → LI∩I′, is
given by

L× L′ = ιL ∧ ι′L′,

for the embeddings ι : LI → LI∩I′ and ι
′ : LI′ → LI∩I′.

The adjoint of this operation is the quotient. We will investigate when the quotient is
defined. Let I, I ′ ⊆ Σ with I ⊆ I ′, L ∈ LI , and L′ ∈ LI′ . Suppose there is Ir ⊆ Σ such
that the composition rule × : LI′ ,LIr → LI is defined. This means that I ′ ∪ Ir = Σ and
I ′ ∩ Ir = I. Solving yields Ir = I ∪ ¬I ′ = I ∪O′.

Observe that the smallest element of LIr is I
∗
r . Thus, the existence of a language L

′′ ∈ LIr

such that L′′ × L′ ≤ L requires that L′ ∩ I∗r ⊆ L. Clearly, not every pair L,L′ satisfies this
property since we can take, for example, L = I∗ and L′ = Σ∗ to obtain L′∩ I∗r = (I∪O′)∗ ̸⊆
I∗, provided I ′ ̸= Σ.

We proceed to obtain a closed-form expression for the quotient, but first we define a new
operator. For languages L,L′ and sets Γ,∆ ⊆ Σ, the following set of (L′,Γ,∆)-uncontrollable
extensions of L∩ L′

Unc(L,L′,Γ,∆) = w ∈
L∩L′

∣∣∣∣∣∣∣
∃w′ ∈ (Γ∪∆)∗ ∧ σ∈Γ.
w◦w′ ∈ L∩L′ ∧
w◦w′◦σ ∈ L′−L

 ◦ Σ∗. (8.9)

contains: (i) all words of L ∩ L′ which can be uncontrollably extended to a word of L′ − L
by appending a word of (Γ ∪ ∆)∗ and a symbol of Γ, and (ii) all suffixes of such words.
Equivalently, Unc(L,L′,Γ,∆) contains all extensions of the words w ∈ L∩L′ such that there

CHAPTER 8. HYPERCONTRACTS 133

are extensions of w by words w′ ∈ (Γ∪∆)∗ that land in L′ but not in L after appending to
the extensions w ◦ w′ a symbol of Γ.

Proposition 8.5.6. Let (I, O) and (I ′, O′) be IO signatures of Σ such that I ⊆ I ′. Let
L ∈ LI and L′ ∈ LI′. Let Ir = I ∪ O′, and assume that L′ ∩ I∗r ⊆ L. Then the largest
L′′ ∈ LIr such that L′′ ∥ L′ ≤ L is denoted L/L′ and is given by

L/L′ =(L∩ L′ ∪MissExt (L,L′, O′))− Unc(L,L′, O′, I).

We have defined receptive languages together with a preorder and a composition op-
eration with its adjoint. These objects will constitute our theory of components, i.e.,
M = ⊕I∈2ΣLI .

8.5.3 Compsets and interface hypercontracts

Using the set of components just defined, we proceed to build compsets and hypercontracts.
The compsets contain components adhering to the same IO signature. Thus, again the
notion of an IO signature will partition the set of compsets (and the same will happen with
hypercontracts). This means that for every compset H, there will always be an I ⊆ Σ such
that H ⊆ LI .

For I ⊆ Σ, and L ∈ LI , we will consider compsets of the form{
M ∈ 2L

∣∣ I∗ ⊆M
}
, denoted by [0, L] ,

where 0 is I∗, the smallest element of LI , i.e., the compsets are all I-receptive languages
smaller than L. We will focus on hypercontracts whose implementations have signature (I, O)
and whose environments have (O, I). Thus, hypercontracts will consist of pairs C = (E ,S)
of O- and ∅-receptive compsets, respectively. We will let

S = [0, S] = {M ∈ L∅ | M ⊆ S}

for some S ∈ L∅. We will restrict the environments E ∈ E to those that never extend a word
of S by an input symbol that S does not accept. The largest such environment is given by

ES = S ∪MissExt(S, S,O). (8.10)

Since S is prefix-closed, so is ES. Moreover, observe that ES adds to S all those strings that
are obtained by continuations of words of S by an output symbol that S does not produce.
This makes ES O-receptive. The set of environments is thus E = [O∗, ES].

Having obtained the largest environment, we can find the implementations. These are
given by I = [I∗,MS] for MS = S/ES. Plugging the definition, we have

MS = (S ∩ ES ∪MissExt(S,ES, I))− Unc(S,ES, I, ∅).

CHAPTER 8. HYPERCONTRACTS 134

There is no word of I∗ which can extend a word of S into ES − S. Thus,

MS = S ∪MissExt(S, S, I).

Observe that S and MissExt(S, S, I) are disjoint (same for MissExt(S, S,O)). Thus, ES ×
MS = S. In summary, we observe that our hypercontracts are highly structured. They are
in 1-1 correspondence with a language S ∈ L∅ and an input alphabet I ⊆ Σ, i.e., there is a
set isomorphism

L∅, 2
Σ ∼−→ Contr . (8.11)

Indeed, given S and I, we build ES by extending S by Σ− I = O, and MS by extending S
by I. After this, the hypercontract has environments, closed systems, and implementations
[O∗, ES], [∅, S], and [I∗,MS], respectively.

8.5.4 Hypercontract composition

Let S, S ′ ∈ L∅. We consider the composition of the interface hypercontracts CR = CS ∥ CS′ ,
where CS = ([0, ES], [0, S]), CS′ = ([0, ES′], [0, S ′]) and ES and ES′ have signatures (O, I) and
(O′, I ′), respectively. From the structure of interface hypercontracts, we have the relations

ES = S ∪MissExt(S, S,O) and

ES′ = S ′ ∪MissExt(S ′, S ′, O′).

Moreover, the implementations of C,C ′ are, respectively, I = [I∗,MS] and I ′ = [I ′∗,MS′],
where

MS = S ∪MissExt(S, S, I) and

MS′ = S ′ ∪MissExt(S ′, S ′, I ′).

The composition of these hypercontracts is defined if (I, O) and (I ′, O′) have compatible sig-
natures. Suppose CR = CS ∥ CS′ = ([0, ER], [0, R]) for some R ∈ L∅. Then the environments
must have signature (O ∪O′, I ∩ I ′), and the implementations (I ∩ I ′, O ∪O′).

Finally, as usual, ER = R∪MissExt(R,R,O∪O′) and MR = R∪MissExt(R,R, I ∩ I ′)
are the maximal environment and implementation. R is determined as follows:

Proposition 8.5.7. Let CS and CS′ be interface hypercontracts and let CR
def
= CS ∥ CS′. Then

R is given by the expression

R = (S ∩ S ′)− [Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)] .

The quotient for interface hypercontracts follows from Proposition 8.2.6.

CHAPTER 8. HYPERCONTRACTS 135

8.5.5 Connection with interface automata

Now we explore the relation of interface hypercontracts with interface automata. Let (I, O)
be an IO signature. An I-interface automaton [54] is a tuple A = (Q, q0,→), where Q is a
finite set whose elements we call states, q0 ∈ Q is the initial state, and →⊆ Q× Σ×Q is a
deterministic transition relation (there is at most one next state for every symbol of Σ). We
let AI be the class of I-interface automata, and A = ⊕I∈2ΣAI . In the language of interface
automata, input and output symbols are referred to as actions.

Given two interface automata (IA) Ai = (Qi, qi,0,→i) ∈ AI for i ∈ {1, 2}, we say that
the state q1 ∈ Q1 refines q2 ∈ Q2, written q1 ≤ q2, if

� ∀σ ∈ O, q′1 ∈ Q1. q1
σ→1 q

′
1 ⇒ ∃q′2 ∈ Q2. q2

σ→2 q
′
2 and q′1 ≤ q′2 and

� ∀σ ∈ I, q′2 ∈ Q2. q2
σ→2 q

′
2 ⇒ ∃q′1 ∈ Q1. q1

σ→1 q
′
1 and q′1 ≤ q′2.

We say that A1 refines A2, written A1 ≤ A2, if q1,0 ≤ q2,0. This defines a preorder in AI .

8.5.5.1 Mapping to interface hypercontracts

Suppose A = (Q, q0,→) ∈ AI . We define the language of A, denoted ℓ (A), as the set of
words obtained by “playing out” the transition relation, i.e.,

ℓ (A) =
{
σ0σ1 . . . σn

∣∣∣ ∃q1, . . . , qn−1. qi
σi→ qi+1 for 0 ≤ i < n

}
.

Since ℓ (A) is prefix-closed, it is an element of L∅.
From Section 8.5.3, we know that interface hypercontracts are isomorphic to a language

S of L∅ and an IO signature I. The operation A 7→ ℓ (A) maps an I-receptive interface
automaton A to a language of L∅. Composing this map with the map (8.11) discussed in
Section 8.5.3, we have maps A → L∅, 2

Σ ∼−→ Contr.
Thus, the interface hypercontract associated to A ∈ AI is CA = ([0, Eℓ(A)], [0, ℓ (A)]),

where Eℓ(A) ∈ LO is given by (8.10). The following result tells us that refinement of interface
automata is equivalent to refinement of their associated hypercontracts.

Proposition 8.5.8. Let A1, A2 ∈ AI . Then A1 ≤ A2 if and only if CA1 ≤ CA2.

8.5.5.2 Composition

Let A1 = (Q1, q1,0,→1) ∈ AI1 and A2 = (Q2, q2,0,→2) ∈ AI2 . The composition of the two
IA is defined if I1 ∪ I2 = Σ. In that case, the resulting IA, A1 ∥ A2, has IO signature
(I1 ∩ I2, O1 ∪ O2). The elements of the composite IA are (Q, (q1,0, q2,0),→c), where the set
of states and the transition relation are obtained through the following algorithm:

� Initialize Q := Q1 ×Q2. For every σ ∈ Σ, (q1, q2)
σ→c (q

′
1, q

′
2) if q1

σ→1 q
′
1 and q2

σ→2 q
′
2.

CHAPTER 8. HYPERCONTRACTS 136

� Initialize the set of invalid states to those states where one interface automaton can gen-
erate an output action which the other interface automaton does not accept:

N :=

(q1, q2) ∈
Q1 ×Q2

∣∣∣∣∣∣∣∣∣∣∣

∃ q′2 ∈ Q2, σ ∈ O2 ∀q′1 ∈ Q1.

q2
σ→2 q

′
2 ∧ ¬

(
q1

σ→1 q
′
1

)
or

∃ q′1 ∈ Q1, σ ∈ O1 ∀q′2 ∈ Q2.

q1
σ→1 q

′
1 ∧ ¬

(
q2

σ→2 q
′
2

)

.

� Also deem invalid a state such that an output action of one of the interface automata
makes a transition to an invalid state, i.e., iterate the following rule until convergence:

N := N ∪
{
(q1, q2) ∈
Q1 ×Q2

∣∣∣∣∣ ∃ (q
′
1, q

′
2) ∈ N, σ ∈ O1 ∪O2.

(q1, q2)
σ→c (q

′
1, q

′
2)

}
.

� Now remove the invalid states from the IA:

Q := Q−N and

→c := →c −{(q, σ, q′) ∈→c | q ∈ N or q′ ∈ N} .

It turns out that composing IA is equivalent to composing their associated hypercontracts:

Proposition 8.5.9. Let A1, A2 ∈ AI . Then CA1∥A2 = CA1 ∥ CA2.

Propositions 8.5.8 and 8.5.9 express that our model of interface hypercontracts is equiv-
alent to Interface Automata. We observe that the definition for the parallel composition
of interface hypercontracts is straightforward, unlike for the Interface Automata (the latter
involves the iterative pruning of invalid states). In fact, in our case this pruning is hidden
behind the formula (8.9) defining the set Unc().

8.6 Summary

We proposed hypercontracts, a generic model of contracts providing a richer algebra than
the metatheory of [19]. Hypercontracts keep the separation of assumptions and guaran-
tees explicit, as we have found this is the way that is most intuitive for applications. We
started from a generic model of components equipped with a simulation preorder and parallel
composition. On top of them, we considered compsets (or hyperproperties, for behavioral
formalisms), which are lattices of sets of components equipped with parallel composition and
quotient; compsets are our generic model formalizing “properties.” Hypercontracts are then
defined as pairs of compsets specifying the allowed environments and either the obligations
of the closed system or the set of allowed implementations—both forms are useful.

CHAPTER 8. HYPERCONTRACTS 137

We specialized hypercontracts by restricting them to conic hypercontracts, whose en-
vironments and closed systems are described by a finite number of components. Conic
hypercontracts include assume-guarantee contracts as a specialization. Specializing them in
a different direction provided us with a compact and elegant model of interface hypercon-
tracts, which are conic hypercontracts built on top of input/output components specified
as receptive languages. We showed that interface hypercontracts coincide with interface
automata; however, our formulas for the parallel composition are direct and do not need
the iterative procedure of state pruning, needed in interface automata. We illustrated the
versatility of our model on the definition of contracts for information flow in security and
robustness of data-driven components.

138

Chapter 9

Conclusions

This thesis began by considering contracts defined as pairs of properties coming from a
universe of behaviors. We studied the binary operations that exist on AG contracts. We then
studied algebraic structures contained in an AG algebra arising from any Boolean algebra.
After considering syntactic issues in contract manipulations, we extended AG reasoning to
hyperproperties by introducing hypercontracts.

Algebraic aspects of AG contracts

The immediate predecessors of our work on assume-guarantee contracts from an algebraic
standpoint are [18, 19, 154]. The following diagram shows the known contract operations
from these papers, and the way these operations are related. Conjunction and disjunction
come from a notion of order, and composition is proposed by axiom.

Conjunction ∧

Order

Disjunction ∨

Composition ∥

Axiom

Merging •
Dual

We list merging as a known operation because its closed form appears in [154]. One of our
contributions was to realize that this operation has a role to play in merging viewpoints [161].
After the work reported in this thesis, the diagram is as follows:

Conjunction ∧ Implication →

Order

Disjunction ∨ Coimplication ↛

Dual

Right adjoint

Left adjoint

Dual

Composition ∥ Quotient /

Axiom

Merging • Separation ÷
Dual

Right adjoint

Left adjoint

Dual

We identified four contract monoids in a contract algebra and realized that they are all
isomorphic. We identified four semirings in the contract algebra and realized that there are
two isomorphic pairs. It remains to be verified whether an additional isomorphism exists.
The more isomorphisms there are, the less work is needed to characterize maps between

CHAPTER 9. CONCLUSIONS 139

algebraic contract structures arising from different Boolean algebras. The characterization
of maps between contract monoids is complete. Work remains to be done on the characteri-
zation of semiring and partial order morphisms between contract structures. The last point
is particularly relevant for a general characterization of Galois connections for contracts.

Our identification of contract actions opened the door to linear algebra on AG contracts.
The application of a contract linear algebra in a design methodology is material for future
work.

Algebraic structures that resemble assume-guarantee contracts have recently been studied
by universal algebraists. In some of their work, quotients are provided for certain notions of
composition [70]. The link between these theories and contracts has not been explored yet.

Methodology and tools

Chapter 7 provided some considerations for the implementation of the algebraic operations of
contracts. A key observation was that the contract operations are all defined as an optimum.
This does not mean that they are the final product that we want to provide to an engineer
or to a tool for the next processing step, as shown in our examples. The implementation of
tools based on these ideas is a matter of future work.

Our description of algebraic operations did not consider the issue of the original genera-
tion of the contracts. We assumed we had contracts available for us to compose, merge, etc.
Inductive synthesis has enjoyed success in the inference of specifications, and we anticipate
it will continue to play a key role in contract-based design [92,99,182].

Results on contracts have also been recently obtained in the domain of control systems.
Kim et al. [106] connect assume-guarantee reasoning with small-gain theorems for composi-
tional design. Phan-Minh and Murray [164, 165] introduce the notion of reactive contracts.
Saoud et al. [178,179] propose a framework of assume-guarantee contracts for input/output
discrete or continuous time systems. Assumptions vs. guarantees are properties stated on
inputs vs. outputs; with this restriction, reactive contracts are considered and an elegant
formula is proposed for the parallel composition of contracts. Shali et al. [184] use linear
systems to express the assumptions and guarantees of dynamical systems. They define a
conjunction operation to merge specifications and a refinement relation to compare them.
The unification of the algebra of contracts presented in this thesis with these lines of work
remains to be effected.

Hypercontracts

Hypercontracts extend the scope of AG reasoning to structured hyperproperties. The flexi-
bility and power of hypercontracts suggests that a number of directions that were opened in
the standard contract reference [19], but not explored to their end, can now be re-investigated
with more powerful tools: contracts and testing, subcontract synthesis (for requirement en-

CHAPTER 9. CONCLUSIONS 140

gineering), contracts and abstract interpretation, and contracts in physical system modeling.
Indeed, the Simulink and Modelica tools propose requirements toolboxes in which require-
ments are physical system properties that can be tested on a given system model, thus
providing a limited form of contract. This motivates the development of a richer contract
framework helping for requirement engineering in Cyber-Physical Systems design.

141

Bibliography

[1] Abadi, M., and Lamport, L. Composing specifications. ACM Transactions on
Programming Languages and Systems 15, 1 (Jan. 1993), 73–132.

[2] Adam, E. M. Systems, generativity and interactional effects. PhD thesis, Mas-
sachusetts Institute of Technology, 2017.

[3] Adam, E. M., and Dahleh, M. A. On the abstract structure of the behavioral
approach to systems theory. arXiv preprint arXiv:1911.10398 (2019).

[4] Alfaro, L. d., and Henzinger, T. A. Interface theories for component-based
design. In International Workshop on Embedded Software (2001), Springer, pp. 148–
165.

[5] Alfaro, L. d., and Henzinger, T. A. Interface-based design. In Engineering
theories of software intensive systems. Springer, 2005, pp. 83–104.

[6] Alur, R., Henzinger, T. A., Kupferman, O., and Vardi, M. Y. Alternating
refinement relations. In CONCUR’98 Concurrency Theory (Berlin, Heidelberg, 1998),
D. Sangiorgi and R. de Simone, Eds., Springer Berlin Heidelberg, pp. 163–178.

[7] Alur, R., Madhusudan, P., and Nam, W. Symbolic compositional verification by
learning assumptions. In Computer Aided Verification, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings (2005), pp. 548–
562.

[8] Angluin, D. Learning regular sets from queries and counterexamples. Inf. Comput.
75, 2 (1987), 87–106.

[9] Attie, P., Baranov, E., Bliudze, S., Jaber, M., and Sifakis, J. A general
framework for architecture composability. Formal Aspects of Computing 28, 2 (2016),
207–231.

[10] Aziz, A., Balarin, F., Brayton, R., and Sangiovanni-Vincentelli, A. L.
Sequential synthesis using S1S. IEEE Transactions on Computer-Aided Design 19, 10
(Oct. 2000), 1149–1162.

BIBLIOGRAPHY 142

[11] Back, R.-J., and von Wright, J. Contracts, games, and refinement. Information
and communication 156 (2000), 25–45.

[12] Bakirtzis, G., Fleming, C. H., and Vasilakopoulou, C. Categorical semantics
of cyber-physical systems theory. ACM Transactions on Cyber-Physical Systems 5, 3
(2021), 1–32.

[13] Balarin, F., D’Angelo, M., Davare, A., Densmore, D., Meyerowitz, T.,
Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A. L., Simalatsar, A.,
Watanabe, Y., Yang, G., and Zhu, Q. Chapter 10. platform-based design and
frameworks. In Model-Based Design for Embedded Systems, G. Nicolescu and P. J.
Mosterman, Eds. CRC Press, Cham, 2009, pp. 259–322.

[14] Barrett, G., and Lafortune, S. Bisimulation, the supervisory control problem
and strong model matching for finite state machines. Discrete Event Dynamic Systems:
Theory & Applications 8, 4 (Dec. 1998), 377–429.

[15] Bauer, S. S., David, A., Hennicker, R., Larsen, K. G., Legay, A., Nyman,
U., and Wasowski, A. Moving from specifications to contracts in component-based
design. In Fundamental Approaches to Software Engineering: 15th International Con-
ference, FASE 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Pro-
ceedings, J. de Lara and A. Zisman, Eds. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012, pp. 43–58.

[16] Bauer, S. S., Larsen, K. G., Legay, A., Nyman, U., and Wasowski, A.
A modal specification theory for components with data. Sci. Comput. Program. 83
(2014), 106–128.

[17] Beneš, N., Delahaye, B., Fahrenberg, U., Křet́ınský, J., and Legay, A.
Hennessy-milner logic with greatest fixed points as a complete behavioural specification
theory. In CONCUR 2013 – Concurrency Theory (Berlin, Heidelberg, 2013), P. R.
D’Argenio and H. Melgratti, Eds., Springer Berlin Heidelberg, pp. 76–90.

[18] Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R.,
and Sofronis, C. Multiple viewpoint contract-based specification and design. In
Formal Methods for Components and Objects, 6th International Symposium (FMCO
2007), Amsterdam, The Netherlands, October 24–26, 2007, Revised Papers, F. S. de
Boer, M. M. Bonsangue, S. Graf, and Willem-Paul de Roever, Eds., vol. 5382 of Lecture
Notes in Computer Science. Springer Verlag, Berlin Heidelberg, 2008, pp. 200–225.

[19] Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A. L., Damm, W., Henzinger,
T. A., and Larsen, K. G. Contracts for system design. Foundations and Trends®

in Electronic Design Automation 12, 2-3 (2018), 124–400.

BIBLIOGRAPHY 143

[20] Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R.,
and Sofronis, C. A contract-based formalism for the specification of heterogeneous
systems. In Proceedings of the Forum on Specification & Design Languages (FDL08)
(Stuttgart, Germany, September 23–25, 2008), pp. 142–147.

[21] Bhaduri, P., and Ramesh, S. Interface synthesis and protocol conversion. Formal
Asp. Comput. 20, 2 (2008), 205–224.

[22] Bliudze, S., Furic, S., Sifakis, J., and Viel, A. Rigorous design of cyber-
physical systems. Software & Systems Modeling 18, 3 (2019), 1613–1636.

[23] Bliudze, S., and Sifakis, J. Causal semantics for the algebra of connectors. Formal
methods in system design 36, 2 (2010), 167–194.

[24] Boas, R., Cameron, B. G., and Crawley, E. F. Divergence and lifecycle offsets
in product families with commonality. Systems Engineering 16, 2 (2013), 175–192.

[25] Bobaru, M. G., Pasareanu, C. S., and Giannakopoulou, D. Automated
assume-guarantee reasoning by abstraction refinement. In Computer Aided Verifica-
tion, 20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008,
Proceedings (2008), pp. 135–148.

[26] Bochmann, G. Using logic to solve the submodule construction problem. Discrete
Event Dynamic Systems 23, 1 (2013), 27–59.

[27] Bouyer, P., Cassez, F., and Laroussinie, F. Timed modal logics for real-
time systems - specification, verification and control. Journal of Logic, Language and
Information 20, 2 (2011), 169–203.

[28] Bujtor, F., and Vogler, W. Error-pruning in interface automata. In 40th Inter-
national Conference on Current Trends in Theory and Practice of Computer Science
(Nový Smokovec, Slovakia, January 26-29, 2014), SOFSEM 2014, pp. 162–173.

[29] Burch, J., Dill, D., Wolf, E., and DeMicheli, G. Modelling hierarchical com-
binational circuits. In The Proceedings of the International Conference on Computer-
Aided Design (Nov. 1993), pp. 612–617.

[30] Cancila, D., Passerone, R., Vardanega, T., and Panunzio, M. Toward cor-
rectness in the specification and handling of non-functional attributes of high-integrity
real-time embedded systems. IEEE Transactions on Industrial Informatics 6, 2 (May
2010), 181–194.

[31] Cantor, G. Ueber eine eigenschaft des inbegriffs aller reellen algebraischen zahlen.
Journal für die reine und angewandte Mathematik 77 (1874), 258–262.

BIBLIOGRAPHY 144

[32] Carmona, J., and Kleijn, J. Compatibility in a multi-component environment.
Theoretical Computer Science 484 (May 2013), 1–15.

[33] Cassez, F., and Laroussinie, F. Model-checking for hybrid systems by quotienting
and constraints solving. In Computer Aided Verification (Berlin, Heidelberg, 2000),
E. A. Emerson and A. P. Sistla, Eds., Springer Berlin Heidelberg, pp. 373–388.

[34] Castagnetti, G., Piccolo, M., Villa, T., Yevtushenko, N., Brayton,
R. K., and Mishchenko, A. Automated synthesis of protocol converters with
BALM-II. In Software Engineering and Formal Methods. SEFM 2015 Collocated Work-
shops: ATSE, HOFM, MoKMaSD, and VERY*SCART. York, UK, September 7-8,
2015 (Sep 2015), D. Bianculli, R. Calinescu, and B. Rumpe, Eds., pp. 281–296.

[35] Censi, A. A mathematical theory of co-design. CoRR abs/1512.08055 (2015).

[36] Cerny, E., and Marin, M. An approach to unified methodology of combinational
switching circuits. IEEE Transactions on Computers vol. C-26, 8 (Aug. 1977), 745–756.

[37] Chakrabarti, A., de Alfaro, L., Henzinger, T. A., and Stoelinga, M.
Resource interfaces. In Embedded Software (Berlin, Heidelberg, 2003), R. Alur and
I. Lee, Eds., Springer Berlin Heidelberg, pp. 117–133.

[38] Chen, T., Chilton, C., Jonsson, B., and Kwiatkowska, M. A composi-
tional specification theory for component behaviours. In Programming Languages and
Systems: 21st European Symposium on Programming, ESOP 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, H. Seidl, Ed. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 148–168.

[39] Chen, W., Udding, J., and Verhoeff, T. Networks of communicating processes
and their (de-)composition. In Mathematics of Program Construction, J. van de Snep-
scheut, Ed., vol. 375 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1989, pp. 174–196.

[40] Chilton, C., Jonsson, B., and Kwiatkowska, M. An algebraic theory of inter-
face automata. Theoretical Computer Science 549 (September 2014), 146–174.

[41] Chilton, C., Jonsson, B., and Kwiatkowska, M. Compositional assume-
guarantee reasoning for input/output component theories. Science of Computer Pro-
gramming 91 (2014), 115–137. Special Issue on Formal Aspects of Component Software
(Selected Papers from FACS’12).

[42] Cimatti, A., and Tonetta, S. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming 97, Part 3 (2015), 333–
348.

BIBLIOGRAPHY 145

[43] Clarke, E., Grumberg, O., Kroening, D., Peled, D., and Veith, H. Model
Checking, second edition. Cyber Physical Systems Series. MIT Press, 2018.

[44] Clarke, E. M., and Emerson, E. A. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs
(1981), Springer, pp. 52–71.

[45] Clarkson, M. R., and Schneider, F. B. Hyperproperties. Journal of Computer
Security 18, 6 (2010), 1157–1210.

[46] Cobleigh, J. M., Giannakopoulou, D., and Pasareanu, C. S. Learning as-
sumptions for compositional verification. In Tools and Algorithms for the Construction
and Analysis of Systems, 9th International Conference, TACAS 2003, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7-11, 2003, Proceedings (2003), pp. 331–346.

[47] Coleman, J. W., and Jones, C. B. A structural proof of the soundness of
rely/guarantee rules. J. Log. Comput. 17, 4 (2007), 807–841.

[48] Damm, W. Controlling speculative design processes using rich component models.
In Fifth International Conference on Application of Concurrency to System Design
(ACSD’05) (June 2005), pp. 118–119.

[49] Damm, W., Hungar, H., Josko, B., Peikenkamp, T., and Stierand, I. Using
contract-based component specifications for virtual integration testing and architec-
ture design. In Design, Automation Test in Europe Conference Exhibition (DATE11)
(Grenoble, France, March 14–18, 2011), pp. 1–6.

[50] Damm, W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T., and
Böde, E. Boosting re-use of embedded automotive applications through rich compo-
nents. In Foundations of Interface Technologies (2005), FIT’05.

[51] David, A., Larsen, K. G., Legay, A., Nyman, U., and Wasowski, A. Timed
I/O automata: A complete specification theory for real-time systems. In Proceedings of
the 13th ACM International Conference on Hybrid Systems: Computation and Control
(New York, NY, USA, 2010), HSCC ’10, Association for Computing Machinery, pp. 91–
100.

[52] Davies, A., Brady, T., and Hobday, M. Organizing for solutions: Systems seller
vs. systems integrator. Industrial marketing management 36, 2 (2007), 183–193.

[53] de Alfaro, L. Game models for open systems. In Verification: Theory and Practice
(2003), N. Dershowitz, Ed., vol. 2772 of Lecture Notes in Computer Science, Springer
Verlag, pp. 269–289.

BIBLIOGRAPHY 146

[54] de Alfaro, L., and Henzinger, T. A. Interface automata. In Proceedings of the
8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (New York, NY,
USA, 2001), ESEC/FSE-9, Association for Computing Machinery, pp. 109–120.

[55] de Alfaro, L., and Henzinger, T. A. Interface theories for component-based
design. In EMSOFT (2001), T. A. Henzinger and C. M. Kirsch, Eds., vol. 2211 of
Lecture Notes in Computer Science, Springer, pp. 148–165.

[56] de Alfaro, L., Henzinger, T. A., and Stoelinga, M. Timed interfaces. In Em-
bedded Software (Berlin, Heidelberg, 2002), A. Sangiovanni-Vincentelli and J. Sifakis,
Eds., Springer Berlin Heidelberg, pp. 108–122.

[57] Densmore, D., and Passerone, R. A platform-based taxonomy for esl design.
IEEE Design & Test of Computers 23, 5 (2006), 359–374.

[58] Di Benedetto, M. D., Sangiovanni-Vincentelli, A. L., and Villa, T. Model
Matching for Finite State Machines. IEEE Transactions on Automatic Control 46, 11
(Dec. 2001), 1726–1743.

[59] Dijkstra, E. W. Solution of a problem in concurrent programming control. Commun.
ACM 8, 9 (sep 1965), 569.

[60] Dijkstra, E. W. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18, 8 (August 1975), 453–457.

[61] Dill, D. L. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[62] Doyen, L., Henzinger, T. A., Jobstmann, B., and Petrov, T. Interface the-
ories with component reuse. In Proceedings of the 8th ACM International Conference
on Embedded Software (New York, NY, USA, 2008), EMSOFT ’08, Association for
Computing Machinery, pp. 79–88.

[63] Dragomir, I., Ober, I., and Percebois, C. Contract-based modeling and ver-
ification of timed safety requirements within SysML. Software & Systems Modeling
(2015), 1–38.

[64] Eilenberg, S., and MacLane, S. General theory of natural equivalences. Trans-
actions of the American Mathematical Society 58, 2 (1945), 231–294.

[65] Emes, M., Smith, A., and Cowper, D. Confronting an identity crisis—how to
“brand” systems engineering. Systems Engineering 8, 2 (2005), 164–186.

[66] Estefan, J. A., et al. Survey of model-based systems engineering (mbse) method-
ologies. Incose MBSE Focus Group 25, 8 (2007), 1–12.

BIBLIOGRAPHY 147

[67] Ferrari, A., and Sangiovanni-Vincentelli, A. System design: Traditional
concepts and new paradigms. In Proceedings 1999 IEEE International Conference on
Computer Design: VLSI in Computers and Processors (Cat. No. 99CB37040) (1999),
IEEE, pp. 2–12.

[68] Floyd, R. W. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics 19 (1967), 19–32.

[69] Fujita, M., Matsunaga, Y., and Ciesielski, M. Multi-level logic optimization.
In Logic Synthesis and Verification (2001), R. Brayton, S. Hassoun, and T. Sasao,
Eds., Kluwer, pp. 29–63.

[70] Galatos, N., and Raftery, J. Idempotent residuated structures: some category
equivalences and their applications. Transactions of the American Mathematical Soci-
ety 367, 5 (2015), 3189–3223.

[71] Giannakopoulou, D., Pasareanu, C. S., and Barringer, H. Assumption
generation for software component verification. In 17th IEEE International Conference
on Automated Software Engineering (ASE 2002), 23-27 September 2002, Edinburgh,
Scotland, UK (2002), pp. 3–12.

[72] Goguen, J. A., and Meseguer, J. Security policies and security models. In 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982
(Oakland, CA, USA, 1982), IEEE Computer Society, pp. 11–20.

[73] Golan, J. S. Semirings and their Applications, 1st ed ed. Springer, Dordrecht, 1999.

[74] Graf, S., Passerone, R., and Quinton, S. Contract-based reasoning for compo-
nent systems with rich interactions. In Embedded Systems Development: From Func-
tional Models to Implementations, A. L. Sangiovanni-Vincentelli, H. Zeng, M. D. Na-
tale, and P. Marwedel, Eds., vol. 20 of Embedded Systems. Springer New York, 2014,
ch. 8, pp. 139–154.

[75] Green, P. Protocol conversion. IEEE Transactions on Communications 34, 3 (Mar
1986), 257–268.

[76] Griffin, M. D. How do we fix systems engineering? In 61st international astronau-
tical congress (2010), vol. 27.

[77] Group, O. M. Object constraint language, version 2.0, May 2006.

[78] Haghverdi, E., and Ural, H. Submodule construction from concurrent system
specifications. Information and Software Technology 41, 8 (June 1999), 499–506.

BIBLIOGRAPHY 148

[79] Hallal, H., Negulescu, R., and Petrenko, A. Design of divergence-free proto-
col converters using supervisory control techniques. In 7th IEEE International Confer-
ence on Electronics, Circuits and Systems, ICECS 2000 (Dec. 2000), vol. 2, pp. 705–
708.

[80] Hansen, S., Berente, N., and Lyytinen, K. Requirements in the 21st cen-
tury: Current practice and emerging trends. In Design Requirements Engineering: A
Ten-Year Perspective (Berlin, Heidelberg, 2009), K. Lyytinen, P. Loucopoulos, J. My-
lopoulos, and B. Robinson, Eds., Springer Berlin Heidelberg, pp. 44–87.

[81] Harel, D., and Pnueli, A. On the development of reactive systems. In Logics and
Models of Concurrent Systems (Berlin, Heidelberg, 1985), K. R. Apt, Ed., Springer
Berlin Heidelberg, pp. 477–498.

[82] Hassoun, S., and Villa, T. Optimization of synchronous circuits. In Logic Syn-
thesis and Verification (2001), R. Brayton, S. Hassoun, and T. Sasao, Eds., Kluwer,
pp. 225–253.

[83] Hayes, I. J., and Jones, C. B. A guide to rely/guarantee thinking. In Engineering
Trustworthy Software Systems - Third International School, SETSS 2017, Chongqing,
China, April 17-22, 2017, Tutorial Lectures (2017), J. P. Bowen, Z. Liu, and Z. Zhang,
Eds., vol. 11174 of Lecture Notes in Computer Science, Springer, pp. 1–38.

[84] Henzinger, T. A., Jhala, R., and Majumdar, R. Permissive interfaces. SIG-
SOFT Softw. Eng. Notes 30, 5 (sep 2005), 31–40.

[85] Henzinger, T. A., and Sifakis, J. The discipline of embedded systems design.
Computer 40, 10 (2007), 32–40.

[86] Hitchins, D. K. Putting systems to work, vol. 325. Wiley Chichester, 1992.

[87] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM
12, 10 (Oct. 1969), 576–580.

[88] Hoare, C. A. R. A model for communicating sequential process. Tech. Rep. PRG-22,
Oxford University, Programming Research Group, 1981.

[89] Hobday, M., Davies, A., and Prencipe, A. Systems integration: a core capability
of the modern corporation. Industrial and corporate change 14, 6 (2005), 1109–1143.

[90] Hopcroft, J., Motwani, R., and Ullman, J. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Company, 2001.

[91] Iannopollo, A. A Platform-Based Approach to Verification and Synthesis of Linear
Temporal Logic Specifications. PhD thesis, UC Berkeley, 2018.

BIBLIOGRAPHY 149

[92] Iannopollo, A., Tripakis, S., and Sangiovanni-Vincentelli, A. Constrained
synthesis from component libraries. Science of Computer Programming 171 (2019),
21–41.

[93] Incer, I., Benveniste, A., Sangiovanni-Vincentelli, A. L., and Seshia,
S. A. Hypercontracts. arXiv preprint arXiv:2106.02449 (2021).

[94] Incer, I., Benveniste, A., Sangiovanni-Vincentelli, A. L., and Seshia,
S. A. Hypercontracts. In NASA Formal Methods (Cham, 2022), J. Deshmukh,
K. Havelund, and I. Perez, Eds., Springer International Publishing.

[95] Incer, I., Mangeruca, L., Villa, T., and Sangiovanni-Vincentelli, A. L.
The quotient in preorder theories. In Proceedings 11th International Symposium on
Games, Automata, Logics, and Formal Verification, Brussels, Belgium, September 21-
22, 2020 (Brussels, Belgium, 2020), J.-F. Raskin and D. Bresolin, Eds., vol. 326 of
Electronic Proceedings in Theoretical Computer Science, Open Publishing Association,
pp. 216–233.

[96] Incer, I., Sangiovanni-Vincentelli, A. L., Lin, C.-W., and Kang, E. Quo-
tient for assume-guarantee contracts. In 16th ACM-IEEE International Conference
on Formal Methods and Models for System Design (October 2018), MEMOCODE’18,
pp. 67–77.

[97] Jackson, S. Memo to industry: The crisis in systems engineering. INSIGHT 13, 1
(2010), 43–43.

[98] Jensen, J. C., Chang, D. H., and Lee, E. A. A model-based design methodology
for cyber-physical systems. In 2011 7th international wireless communications and
mobile computing conference (2011), IEEE, pp. 1666–1671.

[99] Jha, S., and Seshia, S. A. A Theory of Formal Synthesis via Inductive Learning.
Acta Informatica 54, 7 (2017), 693–726.

[100] Jones, C. B. Specification and design of (parallel) programs. In IFIP Congress
(Paris, France, 1983), pp. 321–332.

[101] Jones, C. B. Wanted: a compositional approach to concurrency. In Programming
Methodology (New York, NY, 2003), A. McIver and C. Morgan, Eds., Springer New
York, pp. 5–15.

[102] Kam, T., Villa, T., Brayton, R. K., and Sangiovanni-Vincentelli, A. L.
Synthesis of FSMs: Functional Optimization. Kluwer Academic Publishers, Boston,
1997.

[103] Karsai, G., Sztipanovitz, J., Ledczi, A., and Bapty, T. Model-integrated
development of embedded software. Proceedings of the IEEE 91, 1 (January 2003).

BIBLIOGRAPHY 150

[104] Keller, R. M. Formal verification of parallel programs. Commun. ACM 19, 7 (July
1976), 371–384.

[105] Keutzer, K., Newton, A. R., Rabaey, J. M., and Sangiovanni-
Vincentelli, A. System-level design: Orthogonalization of concerns and platform-
based design. IEEE transactions on computer-aided design of integrated circuits and
systems 19, 12 (2000), 1523–1543.

[106] Kim, E. S., Arcak, M., and Seshia, S. A. A small gain theorem for parametric
assume-guarantee contracts. In Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control (New York, NY, USA, 2017), HSCC ’17,
Association for Computing Machinery, pp. 207–216.

[107] Kim, J., and Newborn, M. The simplification of sequential machines with input
restrictions. IRE Transactions on Electronic Computers (Dec. 1972), 1440–1443.

[108] Kovalyov, S. P. Methods of the category theory in digital design of heterogeneous
cyber-physical systems. Informatika i Ee Primeneniya [Informatics and its Applica-
tions] 15, 1 (2021), 23–29.

[109] Koymans, R. Specifying real-time properties with metric temporal logic. Real-Time
Systems 2, 4 (Nov 1990), 255–299.

[110] Kumar, R., Nelvagal, S., and Marcus, S. A discrete event systems approach
for protocol conversion. Discrete Event Dynamic Systems: Theory & Applications 7,
3 (June 1997), 295–315.

[111] Kunnummel, V. A conceptual modelling framework for evaluation of cyber-physical
systems based on applied category theory and metamodeling. In PoEM Doctoral Con-
sortium (2018), pp. 74–85.

[112] Kurshan, R., Merritt, M., Orda, A., and Sachs, S. Modelling asynchrony
with a synchronous model. Formal Methods in System Design vol. 15, no. 3 (Nov.
1999), 175–199.

[113] Lam, S. S. Protocol conversion. IEEE Trans. Softw. Eng. 14, 3 (Mar. 1988), 353–362.

[114] Lamport, L. What it means for a concurrent program to satisfy a specification: Why
no one has specified priority. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (New York, NY, USA, 1985),
POPL ’85, Association for Computing Machinery, pp. 78–83.

[115] Lamport, L. win and sin: Predicate transformers for concurrency. ACM Transactions
on Programming Languages and Systems 12, 3 (July 1990), 396–428.

BIBLIOGRAPHY 151

[116] Lamport, L. The computer science of concurrency: The early years. Commun. ACM
58, 6 (may 2015), 71–76.

[117] Larsen, K., and Xinxin, L. Equation solving using modal transition systems. In
Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Sympo-
sium on e (Jun 1990), pp. 108–117.

[118] Larsen, K. G., Nyman, U., and Wasowski, A. Interface Input/Output Au-
tomata. In FM (2006), pp. 82–97.

[119] Larsen, K. G., Nyman, U., and Wasowski, A. Modal I/O Automata for Interface
and Product Line Theories. In Programming Languages and Systems, 16th European
Symposium on Programming, ESOP’07 (2007), vol. 4421 of Lecture Notes in Computer
Science, Springer, pp. 64–79.

[120] Larsen, K. G., Nyman, U., and Wasowski, A. On Modal Refinement and
Consistency. In Proc. of the 18th International Conference on Concurrency Theory
(CONCUR’07) (2007), Springer, pp. 105–119.

[121] Le, T. T. H., Passerone, R., Fahrenberg, U., and Legay, A. Contract-
based requirement modularization via synthesis of correct decompositions. ACM Trans.
Embed. Comput. Syst. 15, 2 (Feb. 2016), 33:1–33:26.

[122] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprin-
kle, J., and Karsai, G. Composing domain-specific design environments. IEEE
Computer 34, 11 (November 2001), 44 –51.

[123] Lee, E. A. Cyber-physical systems-are computing foundations adequate. In Position
paper for NSF workshop on cyber-physical systems: research motivation, techniques
and roadmap (2006), vol. 2, pp. 1–9.

[124] Lee, E. A. Cyber physical systems: Design challenges. In 2008 11th IEEE inter-
national symposium on object and component-oriented real-time distributed computing
(ISORC) (2008), IEEE, pp. 363–369.

[125] Lee, E. A. Constructive models of discrete and continuous physical phenomena.
IEEE Access 2 (2014), 797–821.

[126] Lee, E. A. The past, present and future of cyber-physical systems: A focus on models.
Sensors 15, 3 (2015), 4837–4869.

[127] Lee, E. A. Fundamental limits of cyber-physical systems modeling. ACM Transac-
tions on Cyber-Physical Systems 1, 1 (2016), 1–26.

[128] Lee, E. A., and Sangiovanni-Vincentelli, A. A framework for comparing mod-
els of computation. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 17, 12 (Dec 1998), 1217–1229.

BIBLIOGRAPHY 152

[129] Lee, E. A., and Sangiovanni-Vincentelli, A. L. Component-based design for
the future. In 2011 Design, Automation & Test in Europe (2011), IEEE, pp. 1–5.

[130] Lee, E. A., and Seshia, S. A. Introduction to embedded systems: A cyber-physical
systems approach. MIT Press, 2016.

[131] Legatiuk, D., Theiler, M., Dragos, K., and Smarsly, K. A categorical
approach towards metamodeling cyber-physical systems. In Proceedings of the 11th
International Workshop on Structural Health Monitoring (IWSHM). Stanford, CA,
USA (2017), vol. 9.

[132] Leveson, N. A new accident model for engineering safer systems. Safety Science 42,
4 (2004), 237–270.

[133] Leveson, N. G. Software safety: Why, what, and how. ACM Comput. Surv. 18, 2
(jun 1986), 125–163.

[134] Liskov, B. H., and Wing, J. M. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems 16, 6 (November 1994), 1811–1841.

[135] Lüttgen, G., and Vogler, W. Modal interface automata. Logical Methods in
Computer Science 9, 3 (2013).

[136] Lynch, N. A., and Tuttle, M. R. An introduction to input/output automata.
CWI Quarterly 2 (1989), 219–246.

[137] Mac Lane, S. Concepts and categories in perspective. Duren P, A century of
mathematics in America Part 3 (1988), 353–365.

[138] Mac Lane, S. Categories for the working mathematician. 2nd ed., 2nd ed ed., vol. 5.
New York, NY: Springer, 1998.

[139] Madni, A. M. Adaptable platform-based engineering: Key enablers and outlook for
the future. Systems Engineering 15, 1 (2012), 95–107.

[140] Madni, A. M. Elegant systems design: Creative fusion of simplicity and power.
Systems Engineering 15, 3 (2012), 347–354.

[141] Madni, A. M., and Sievers, M. Systems integration: Key perspectives, experi-
ences, and challenges. Systems Engineering 17, 1 (2014), 37–51.

[142] Maler, O., and Nickovic, D. Monitoring temporal properties of continuous sig-
nals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems (Berlin, Heidelberg, 2004), Y. Lakhnech and S. Yovine, Eds., Springer Berlin
Heidelberg, pp. 152–166.

BIBLIOGRAPHY 153

[143] Mallon, W., Tijmen, J., and Verhoeff, T. Analysis and applications of the XDI
model. In International Symposium on Advanced Research in Asynchronous Circuits
and Systems (1999), pp. 231–242.

[144] Mallozzi, P., Nuzzo, P., and Pelliccione, P. Incremental refinement of goal
models with contracts. In Fundamentals of Software Engineering (Cham, 2021), H. Ho-
jjat and M. Massink, Eds., Springer International Publishing, pp. 35–50.

[145] Mangeruca, L., Ferrante, O., and Ferrari, A. Formalization and complete-
ness of evolving requirements using contracts. In Proceedings of the 8th IEEE Inter-
national Symposium on Industrial Embedded Systems (Porto, Portugal, June 19–21
2013), SIES 2013, pp. 120–129.

[146] Mastroeni, I., and Pasqua, M. Verifying bounded subset-closed hyperproperties.
In Static Analysis (Cham, 2018), A. Podelski, Ed., Springer International Publishing,
pp. 263–283.

[147] Merlin, P., and v. Bochmann, G. On the construction of submodule specifications
and communication protocols. ACM Transactions on Programming Languages and
Systems 5, 1 (Jan. 1983), 1–25.

[148] Meyer, B. Applying “design by contract”. IEEE Computer 25, 10 (October 1992),
40–51.

[149] Meyer, B. Touch of Class: Learning to Program Well Using Object Technology and
Design by Contracts. Springer, Software Engineering, 2009.

[150] Mordecai, Y., Fairbanks, J., and Crawley, E. F. Category-theoretic formu-
lation of the model-based systems architecting cognitive-computational cycle. Applied
Sciences 11, 4 (2021), 1945.

[151] National Defense Industrial Association and others. Top systems engineer-
ing issues in US defense industry. Systems Engineering Division Task Group Report
(2016).

[152] Neches, R., and Madni, A. M. Towards affordably adaptable and effective systems.
Systems Engineering 16, 2 (2013), 224–234.

[153] Negulescu, R. Process spacess. Tech. Rep. CS-95-48, University of Waterloo, 1995.

[154] Negulescu, R. Process spaces. In Proceedings of CONCUR 2000, 11th International
Conference on Concurrency Theory (2000), C. Palamidessi, Ed., vol. 1877 of LNCS,
Springer-Verlag, pp. 199–213.

[155] Nuzzo, P. Compositional design of cyber-physical systems using contracts. PhD thesis,
UC Berkeley, 2015.

BIBLIOGRAPHY 154

[156] Nuzzo, P., Sangiovanni-Vincentelli, A. L., Bresolin, D., Geretti, L., and
Villa, T. A platform-based design methodology with contracts and related tools for
the design of cyber-physical systems. Proceedings of the IEEE 103, 11 (2015), 2104–
2132.

[157] Nuzzo, P., Xu, H., Ozay, N., Finn, J. B., Sangiovanni-Vincentelli, A. L.,
Murray, R. M., Donzé, A., and Seshia, S. A. A contract-based methodology
for aircraft electric power system design. IEEE Access 2 (2014), 1–25.

[158] Oster, C., and Wade, J. Ecosystem requirements for composability and reuse: An
investigation into ecosystem factors that support adoption of composable practices for
engineering design. Systems Engineering 16, 4 (2013), 439–452.

[159] Parnas, D. L. A technique for software module specification with examples. Com-
mun. ACM 15, 5 (may 1972), 330–336.

[160] Passerone, R., de Alfaro, L., Henzinger, T. A., and Sangiovanni-
Vincentelli, A. L. Convertibility verification and converter synthesis: two faces
of the same coin. In ICCAD (2002), L. T. Pileggi and A. Kuehlmann, Eds., ACM,
pp. 132–139.

[161] Passerone, R., Incer, I., and Sangiovanni-Vincentelli, A. L. Coherent ex-
tension, composition, and merging operators in contract models for system design.
ACM Trans. Embed. Comput. Syst. 18, 5s (Oct. 2019).

[162] Passerone, R., Incer, I., and Sangiovanni-Vincentelli, A. L. Contract model
operators for composition and merging: extensions and proofs. Technical Report DISI-
19-004, Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento,
August 2019.

[163] Passerone, R., Rowson, J. A., and Sangiovanni-Vincentelli, A. L. Auto-
matic synthesis of interfaces between incompatible protocols. In DAC (1998), pp. 8–13.

[164] Phan-Minh, T. Contract-Based Design: Theories and Applications. PhD thesis,
California Institute of Technology, 2021.

[165] Phan-Minh, T., and Murray, R. M. Contracts of reactivity. Tech. rep., California
Institute of Technology, 2019.

[166] Pnueli, A. The temporal logic of programs. In 18th Annual Symposium on Founda-
tions of Computer Science (sfcs 1977)(FOCS) (Sept 1977), pp. 46–57.

[167] Rabe, M. N. A temporal logic approach to information-flow control. PhD thesis,
Universität des Saarlandes, 2016.

BIBLIOGRAPHY 155

[168] Raclet, J. Residual for component specifications. Electr. Notes Theor. Comput. Sci.
215 (2008), 93–110.

[169] Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., and
Passerone, R. Modal interfaces: Unifying interface automata and modal specifi-
cations. In Proceedings of the Seventh ACM International Conference on Embedded
Software (New York, NY, USA, 2009), EMSOFT ’09, Association for Computing Ma-
chinery, pp. 87–96.

[170] Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., and
Passerone, R. A modal interface theory for component-based design. Fundamenta
Informaticae 108, 1–2 (2011), 119–149.

[171] Ramos, A. L., Ferreira, J. V., and Barceló, J. Model-based systems engi-
neering: An emerging approach for modern systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 42, 1 (2011), 101–111.

[172] Rowson, J. A., and Sangiovanni-Vincentelli, A. Interface-based design. In
Proceedings of the 34th annual Design Automation Conference (1997), pp. 178–183.

[173] Sage, A. P., and Lynch, C. L. Systems integration and architecting: An overview
of principles, practices, and perspectives. Systems Engineering: The Journal of The
International Council on Systems Engineering 1, 3 (1998), 176–227.

[174] Sangiovanni-Vincentelli, A. Quo vadis, SLD? Reasoning about the trends and
challenges of system level design. Proceedings of the IEEE 95, 3 (March 2007), 467–506.

[175] Sangiovanni-Vincentelli, A., Carloni, L., De Bernardinis, F., and Sgroi,
M. Benefits and challenges for platform-based design. In Proceedings of the 41st
Annual Design Automation Conference (2004), pp. 409–414.

[176] Sangiovanni-Vincentelli, A., and Martin, G. Platform-based design and soft-
ware design methodology for embedded systems. IEEE Design & Test of computers
18, 6 (2001), 23–33.

[177] Sangiovanni-Vincentelli, A. L., Damm, W., and Passerone, R. Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems. European Journal
of Control 18, 3 (2012), 217 – 238.

[178] Saoud, A., Girard, A., and Fribourg, L. On the composition of discrete and
continuous-time assume-guarantee contracts for invariance. In 16th European Control
Conference, ECC, June 12-15, 2018 (Limassol, Cyprus, 2018), IEEE, pp. 435–440.

[179] Saoud, A., Girard, A., and Fribourg, L. Assume-guarantee contracts for
continuous-time systems. working paper or preprint, Feb. 2021.

BIBLIOGRAPHY 156

[180] Schmidt, D. Model-driven engineering. IEEE Computer (February 2006), 25–31.

[181] Sentovich, E., and Brand, D. Flexibility in logic. In Logic Synthesis and Verifi-
cation (2001), R. Brayton, S. Hassoun, and T. Sasao, Eds., Kluwer, pp. 65–88.

[182] Seshia, S. A. Combining induction, deduction, and structure for verification and
synthesis. Proceedings of the IEEE 103, 11 (2015), 2036–2051.

[183] Seshia, S. A., Desai, A., Dreossi, T., Fremont, D. J., Ghosh, S., Kim, E.,
Shivakumar, S., Vazquez-Chanlatte, M., and Yue, X. Formal specification for
deep neural networks. In Automated Technology for Verification and Analysis (Cham,
2018), S. K. Lahiri and C. Wang, Eds., Springer International Publishing, pp. 20–34.

[184] Shali, B. M., van der Schaft, A. J., and Besselink, B. Behavioural assume-
guarantee contracts for linear dynamical systems, 2021.

[185] Shallcross, N., Parnell, G. S., Pohl, E., and Specking, E. Set-based design:
The state-of-practice and research opportunities. Systems Engineering 23, 5 (2020),
557–578.

[186] Shannon, C. E., and McCarthy, J., Eds. Automata studies, vol. 11. Princeton
University Press Princeton, 1956.

[187] Sifakis, J. Rigorous system design. Foundations and Trends® in Electronic Design
Automation 6, 4 (2013), 293–362.

[188] Sifakis, J. Toward a system design science. In From Programs to Systems. The
Systems perspective in Computing. Springer, 2014, pp. 225–234.

[189] Sifakis, J. System design automation: Challenges and limitations. Proceedings of the
IEEE 103, 11 (2015), 2093–2103.

[190] Sifakis, J., Bensalem, S., Bliudze, S., and Bozga, M. A theory agenda for
component-based design. In Software, Services, and Systems. Springer, 2015, pp. 409–
439.

[191] Singer, D. J., Doerry, N., and Buckley, M. E. What is set-based design?
Naval Engineers Journal 121, 4 (Oct 2009), 31–43.

[192] Speranzon, A., Spivak, D. I., and Varadarajan, S. Abstraction, composition
and contracts: A sheaf theoretic approach, 2018.

[193] Tripakis, S., Lickly, B., Henzinger, T. A., and Lee, E. A. A theory of
synchronous relational interfaces. ACM Transactions on Programming Languages and
Systems 33, 4 (July 2011).

BIBLIOGRAPHY 157

[194] Tripakis, S., Stergiou, C., Broy, M., and Lee, E. A. Error-completion in
interface theories. In Model Checking Software, E. Bartocci and C. Ramakrishnan,
Eds., vol. 7976 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 358–375.

[195] Turing, A. M. On checking a large routine. In Report of a Conference on High-
Speed Automatic Calculating Machines (Cambridge, 1949), University Mathematical
Laboratory, pp. 67–69.

[196] Villa, T., Petrenko, A., Yevtushenko, N., Mishchenko, A., and Brayton,
R. K. Component-based design by solving language equations. Proceedings of the
IEEE 103, 11 (Nov 2015), 2152–2167.

[197] Villa, T., Yevtushenko, N., Brayton, R., Mishchenko, A., Petrenko, A.,
and Sangiovanni-Vincentelli, A. The Unknown Component Problem: Theory
and Applications. Springer, 2012.

[198] Warmer, J., and Kleppe, A. The Object Constraint Language: Getting Your Mod-
els Ready for MDA, 2nd ed. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[199] Watanabe, S., Seto, K., Ishikawa, Y., Komatsu, S., and Fujita, M. Pro-
tocol transducer synthesis using divide and conquer approach. In Design Automation
Conference, 2007. ASP-DAC ’07. Asia and South Pacific (January 2007), pp. 280–285.

[200] Watson, M. D., Griffin, M., Farrington, P. A., Burns, L., Colley, W.,
Collopy, P., Doty, J., Johnson, S. B., Malak, R., Shelton, J., et al.
Building a path to elegant design. In Proceedings of the International Annual Confer-
ence of the American Society for Engineering Management. (2014), American Society
for Engineering Management (ASEM), p. 1.

[201] Willems, J. C. System Theoretic Foundations for Modelling Physical Systems.
Springer Vienna, Vienna, 1980, pp. 279–289.

[202] Willems, J. C. The behavioral approach to open and interconnected systems. IEEE
Control Systems Magazine 27, 6 (Dec 2007), 46–99.

[203] Wolf, E. S. Hierarchical Models of Synchronous Circuits for Formal Verification
and Substitution. PhD thesis, Department of Computer Science, Stanford University,
October 1995.

[204] Wymore, A. W. Model-based systems engineering. CRC press, 1993.

[205] Wymore, A. W. Systems movement: Autobiographical retrospectives. International
Journal of General Systems 33, 6 (2004), 593–610.

BIBLIOGRAPHY 158

[206] Yevtushenko, N., Villa, T., Brayton, R. K., Mishchenko, A., and
Sangiovanni-Vincentelli, A. L. Composition operators in language equations.
In International Workshop on Logic and Synthesis (June 2004), pp. 409–415.

[207] Zardini, G., Spivak, D. I., Censi, A., and Frazzoli, E. A compositional sheaf-
theoretic framework for event-based systems. Electronic Proceedings in Theoretical
Computer Science 333 (feb 2021), 139–153.

159

Appendix A

Additional proofs

A.1 Receptive languages and hypercontracts

Proof of Proposition 8.5.2. Suppose L,L′ ∈ LI . If w is contained in L∩L′, and wp is a prefix
of w, then w is contained in both L and L′, and so is wp, which means intersection is prefix-
closed. Moreover, for any w′ ∈ I∗, we have w ◦ w′ ∈ L and w ◦ w′ ∈ L′, so w ◦ w′ ∈ L∩ L′.
We conclude that L∩ L′ ∈ LI .

Similarly, if w is contained in L∪L′, then we may assume that w ∈ L. Any prefix wp of
w is also contained in L, so wp ∈ L ∪ L′, meaning that union is prefix-closed. In addition,
for every w′ ∈ I∗, we have w ◦w′ ∈ L, so w ◦w′ ∈ L∪L′. This means that L∪L′ ∈ LI .

Proof of Proposition 8.5.3. First we show that L′ → L ∈ LI . Let w ∈ L′ → L. If wp is a
prefix of w then Pre(wp)∩ L′ ⊆ Pre(w)∩ L′ ⊆ L, so L′ → L is prefix-closed.

Now suppose w ∈ L′ → L and w ∈ L. Then for wI ∈ I∗, w ◦wI ∈ L, so Pre(w ◦wI) ⊆ L.
Suppose w ∈ L′ → L and w ̸∈ L. Let n be the length of w. Since w ̸∈ L, n > 0 (the empty
string is in L). Write w = σ1 . . . σn for σi ∈ Σ. Let k ≤ n be the largest natural number
such that σ1 . . . σk ∈ L′ (note that k can be zero). If k = n, then w ∈ L′ ∩ Pre(w) ⊆ L,
which is forbidden by our assumption that w ̸∈ L. Thus, k < n. Define wp = σ1 . . . σk+1.
Clearly, wp ̸∈ L′. For any wΣ ∈ Σ∗, since L′ is prefix-closed, we must have Pre(w ◦ wΣ) ∩
L′ = Pre(wp) ∩ L′ = Pre(w) ∩ L′ ⊆ L. We showed that any word of L′ → L extended by a
word of I∗ remains in L′ → L. We conclude that L′ → L ∈ LI .

Now we show that L′ → L has the properties of the exponential. Suppose L′′∈LI is such
that L′∩L′′ ⊆ L. Let w∈L′′. Then Pre(w) ∩ L′ ⊆ L, which means that L′′ ≤ L′ → L. On
the other hand,

L′ ∩ (L′ → L) = L′ ∩ {w ∈ Σ∗ | Pre(w)∩ L′ ⊆ L} ⊆ L.

Thus, any L′′ ≤ L′ → L satisfies L′′ ∩ L′ ≤ L. This concludes the proof.

Proof of Proposition 8.5.4. From Prop. 8.5.3, it is clear that L ⊆ L′ → L. Suppose w ∈ L′∩
L. Since L and L′ are I-receptive, w ◦ σ ∈ L ∩ L′ for σ ∈ I. Assume σ ∈ O. If w ◦ σ ̸∈ L′,

APPENDIX A. ADDITIONAL PROOFS 160

then we can extend w ◦ σ by any word w′ ∈ Σ∗, and this will satisfy Pre(w ◦ σ ◦ w′)∩ L′ =
Pre(w)∩L′ ⊆ L due to the fact L′ is prefix-closed. If w◦σ ∈ L′−L, then w ̸∈ L′ → L. Thus,
we can express the exponential using the closed-form expression of the proposition.

Proof of Proposition 8.5.6. Suppose w ∈ L/L′ and w ∈ L∩ L′. We have not lost generality
because ϵ ∈ L∩ L′. We consider extensions of w by a symbol σ:

a. If σ ∈ I, σ is an input symbol for both L′ and the quotient.

i. L is receptive to I, so w ◦ σ ∈ L;
ii. L′ is receptive to I ⊆ I ′, so w ◦ σ ∈ L′; and

iii. L/L′ must contain w ◦ σ because the quotient is Ir-receptive.

b. If σ ∈ O ∩ I ′, then σ is an output of the quotient, and an input of L′.

i. L′ is I ′-receptive, so w ◦ σ ∈ L′;

ii. σ is an output symbol for both L and L/L′, so none of them is required to contain
w ◦ σ; and

iii. if w ◦ σ ∈ L′ − L, the extension w ◦ σ cannot be in the quotient. Otherwise, it
can.

c. If σ ∈ O′, σ is an output for L′ and an input for the quotient.

i. Neither L nor L′ are O′-receptive;

ii. L/L′ is O′-receptive, so we must have w ◦ σ ∈ L/L′; and

iii. if w ◦ σ ∈ L′ − L, we cannot have w ◦ σ ∈ L/L′.

Starting with a word w in the quotient, statements a and b allow or disallow extensions of
that word to be in the quotient. However, statements c.ii and c.iii impose a requirement on
the word w itself, i.e., if c.iii is violated, c.ii implies that w is not in the quotient. Statements
a.iii and c.ii impose an obligation on the quotient to accept extensions by symbols of I and
O′; and those extensions may lead to a violation of c.iii. Thus, we remove from the quotient
all words such that extensions of those words by elements of I ∪ O′ end up in L′ − L. The
expression of the proposition follows from these considerations.

Proof of Proposition 8.5.7. From the principle of hypercontract composition, we must have

ER ≤ U
def
= (ES′/MS) ∧ (ES/MS′) and (A.1)

L
def
= MS′ ×MS ≤MR. (A.2)

APPENDIX A. ADDITIONAL PROOFS 161

Observe that the quotients ES′/MS and ES/MS′ both have IO signature O ∪ O′, so the
conjunction in (A.1) is well-defined as an operation of the Heyting algebra LO∪O′ . We study
the first element:

ES′/MS =(ES′ ∩MS ∪MissExt(ES′ ,MS, O))−
Unc(ES′ ,MS, O,O

′).

We attempt to simplify the terms. Suppose w ∈ ES′ ∩ (MS − S). Then all extensions of w
lie in MS − S. This means that MissExt(ES′ ,MS, O) = MissExt(ES′ , S, O). Moreover, if a
word is an element of ES′ − S ′, all its extensions are in this set, as well (i.e., it is impossible
to escape this set by extending words). Thus, Unc(ES′ ,MS, O,O

′) = Unc(S ′,MS, O,O
′).

We have

ES′/MS =(ES′ ∩MS ∪MissExt(ES′ , S, O))−
Unc(S ′,MS, O,O

′).

Now we can write

U =

[
(ES′ ∩MS ∪MissExt(ES′ , S, O))∩
(ES ∩MS′ ∪MissExt(ES, S

′, O′))

]
−

[Unc(S ′,MS, O,O
′)∪ Unc(S,MS′ , O′, O)] .

Observe that

ES′ ∩MS ∩MissExt(ES, S
′, O′)

= (S ′ ∪MissExt(S ′, S ′, O′))∩MS ∩MissExt(ES, S
′, O′)

=MS ∩MissExt(ES, S
′, O′) =MS ∩MissExt(S, S ′, O′).

The last equality comes from the following fact: if a word of MissExt(ES, S
′, O′) is obtained

by extending a word of (ES − S) ∩ S ′ by O′, the resulting word is still an element of ES,
which means it cannot be an element of MS because MS and ES are disjoint outside of S.
Therefore,

U =

(S ∩ S ′)∪
(MS ∩MissExt(S, S ′, O′))∪
(MS′ ∩MissExt(S ′, S, O))∪
(MissExt(ES′ , S, O)∩MissExt(ES, S

′, O′))

−
[Unc(S ′,MS, O,O

′)∪ Unc(S,MS′ , O′, O)] .

(A.3)

We can write

MissExt(ES′ , S, O)∩MissExt(ES, S
′, O′) =

MissExt(ES′ , S, O)∩MissExt(S, S ′, O′) ∪
MissExt(S ′, S, O)∩MissExt(ES, S

′, O′) ∪(
MissExt(MissExt(S ′, S ′, O′), S, O)∩
MissExt(MissExt(S, S,O), S ′, O′)

)
.

APPENDIX A. ADDITIONAL PROOFS 162

Note that MissExt(ES′ , S, O) ∩MissExt(S, S ′, O′) = MissExt(S, S,O) ∩MissExt(S, S ′, O′).
Hence

(MS ∩MissExt(S, S ′, O′))∪
(MissExt(ES′ , S, O)∩MissExt(S, S ′, O′))

= MissExt(S, S ′, O′)∩ (MS ∪MissExt(ES′ , S, O))

= MissExt(S, S ′, O′)∩ (MS ∪MissExt(S, S,O))

= MissExt(S, S ′, O′).

Finally, we observe that the set

MissExt(MissExt(S ′, S ′, O′), S, O)∩MissExt(MissExt(S, S,O), S ′, O′)

must be empty since the words of the first term have prefixes in S − S ′, and the second in
S ′ − S. These considerations allow us to conclude that

U ≤

 (S ∩ S ′) ∪
MissExt(S, S ′, O′) ∪
MissExt(S ′, S, O).

−
[
Unc(S ′,MS, O,O

′)∪ Unc(S,MS′ , O′, O)
]
.

To simplify the expression a step further, suppose w ∈ Unc(S ′,MS, O,O
′) and has a prefix

in S ′ ∩ (MS − S). Then w ̸∈ S ∩ S ′. The words of MissExt(S, S ′, O′) do not have prefixes
in S ′ − S, so w ̸∈ MissExt(S, S ′, O′). The words of MissExt(S ′, S, O) belong to ES, which is
disjoint from MS outside of S. Thus, w ̸∈ MissExt(S ′, S, O).

We just learned that the words of Unc(S ′,MS, O,O
′) having a prefix in S ′ ∩ (MS − S)

are irrelevant for the inequality above. Now consider a word w of Unc(S ′,MS, O,O
′) with no

prefix in S ′∩ (MS−S). Let wp be the longest prefix of w which is in S∩S ′. There is a word
w′ ∈ (O∪O′)∗ and a symbol σ ∈ O such that wp ◦w′ ∈ S ′ ∩MS and wp ◦w′ ◦ σ ∈MS − S ′.
Suppose w′ is not the empty string. Then we can let σ′ be the first symbol of w′. Then
wp ◦ σ′ ∈ MS − S, so σ′ ∈ O′. But this means that w ∈ Unc(S, S ′, O′, O). If w′ is empty,
wp ∈ S ∩ S ′ and wp ◦ σ′ ∈MS − S ′. Since σ ∈ O, wp ◦ σ ∈ ∩MS if and only if it belongs to
S. Thus, wp ◦ σ′ ∈ S − S ′, which means that w ∈ Unc(S ′, S, O,O′). We can thus simplify
the upper bound on ER to

U =

 (S ∩ S ′) ∪
MissExt(S, S ′, O′) ∪
MissExt(S ′, S, O)

−
[Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)] .

(A.4)

APPENDIX A. ADDITIONAL PROOFS 163

Define R̂
def
= (S ∩ S ′)− [Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)]. We want to show that U=

R̂ ∪MissExt(R̂, R̂, O ∪O′). Note that we only have to prove that

MissExt(R̂, R̂, O ∪O′) =[
MissExt(S, S ′, O′) ∪
MissExt(S ′, S, O)

]
−

[Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)] .

(A.5)

Proof of (A.5). Suppose w ∈ MissExt(S, S ′, O′) − [Unc(S ′, S, O,O′) ∪ Unc(S, S ′, O′, O)].
Write w = wp ◦ σ ◦ w′, where wp is the longest prefix of w which lies in S ∩ S ′, σ ∈ O′, and
w′ ∈ Σ∗. wp ̸∈ [Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)] because all its extensions would be in

this set if wp were in this set, and we know that w is not in this set. It follows that wp ∈ R̂
and since wp ◦ σ ̸∈ R̂, wp ◦ σ and all its extensions are in R̂∪MissExt(R̂, R̂, O ∪O′). Thus,

w ∈ R̂ ∪MissExt(R̂, R̂, O ∪O′)
The same argument applies when

w ∈ MissExt(S ′, S, O)− [Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)]

. We conclude that the right hand side of (A.5) is a subset of the left hand side.
Now suppose that w ∈ MissExt(R̂, R̂, O ∪ O′) and write w = wp ◦ σ ◦ w′, where wp is

the longest prefix of w contained in R̂, σ ∈ O ∪ O′, and w′ ∈ Σ∗. From the definition of R̂,
wp ∈ S ∩ S ′. Suppose wp ◦ σ ∈ S ∩ S ′. Then

wp ◦ σ ∈ [Unc(S ′, S, O,O′)∪ Unc(S, S ′, O′, O)] ,

which means that wp also belongs to this set (because σ ∈ O∪O′). This contradicts the fact

that wp ∈ R̂, so our assumption that wp ◦ σ ∈ S ∩ S ′ is wrong. Then wp is also the longest
prefix of w contained in S ∩ S ′.

Without loss of generality, assume σ ∈ O. Suppose wp ◦ σ ̸∈ S. We obtain w ∈
MissExt(S ′, S, O). Moreover, since wp ∈ R̂, wp ◦ σ ̸∈ [Unc(S ′, S, O,O′) ∪ Unc(S, S ′, O′, O)].
Since wp ◦ σ ̸∈ S ∩ S ′, we have w ̸∈ [Unc(S ′, S, O,O′)∪Unc(S, S ′, O′, O)]. Thus, w is in the
right hand set of (A.5).

Now suppose wp ◦ σ ̸∈ S ′. If wp ◦ σ ∈ S, then wp ∈ Unc(S ′, S, O,O′), which contradicts
the fact that wp ∈ R. We must have wp ◦ σ ̸∈ S, which we already showed implies that w is
in the right hand set of (A.5).

An analogous reasoning applies to σ ∈ O′. We conclude that the right hand side of (A.5)
is a subset of the left hand side, and this finishes the proof of their equality.

This result and (A.1) tell us that ER ≤ R̂∪MissExt(R̂, R̂, O∪O′). Now we study the con-
straint (A.2). We want to show that R̂ yields the tightest bound L ≤ R̂∪MissExt(R̂, R̂, I∩I ′)
which also respects the bound (A.1).

APPENDIX A. ADDITIONAL PROOFS 164

Proof. Observe that L = (S ′ ∪MissExt(S ′, S ′, I ′)) ∩ (S ∪MissExt(S, S, I)). First we will
show that L ⊆ R̂ ∪ MissExt(R̂, R̂, I ∩ I ′). Suppose w ∈ L. Then w belongs to at
least one of the sets (1) S ∩ S ′, (2) S ∩ MissExt(S ′, S ′, I ′), (3) S ′ ∩ MissExt(S, S, I), or
(4) MissExt(S, S, I)∩MissExt(S ′, S ′, I ′). We analyze each case:

1. Suppose w ∈ S ∩ S ′. If w ∈ R̂, then clearly w ∈ R̂ ∪MissExt(R̂, R̂, I ∩ I ′). Suppose
w ̸∈ R̂. Then there is word w′ ∈ (O ∪ O′)∗ and either a symbol σ ∈ O such that
w ◦w′ ◦σ ∈ S−S ′ or a symbol σ ∈ O′ such that w ◦w′ ◦σ ∈ S ′−S. Write w = wp ◦w′′

such that w′′ is the longest suffix of w which belongs to O ∪ O′. It follows that the
last symbol of wp is an element of I ∩ I ′. Since w ̸∈ R̂, neither does wp. This shows

that for every word wr ◦ σr ∈ S ∩ S ′ such that wr ∈ R̂ but wr ◦ σr ̸∈ R̂, we must have
σr ∈ I ∩ I ′.

Let w′
p be the longest prefix of wp which lies in R̂. By assumption, R̂ is not empty. If we

write w = w′
p ◦w′′, the first symbol of w′′ is in I ∩ I ′. Thus, w ∈ MissExt(R̂, R̂, I ∩ I ′).

2. Observe that

MissExt(S ′, S ′, I ′) = MissExt(S ′, S ′, I ′ ∩ I)∪MissExt(S ′, S ′, I ′ ∩O).

Moreover,

S ∩MissExt(S ′, S ′, I ∩ I ′) ⊆MissExt(S ∩ S ′, S ∩ S ′, I ∩ I ′) (A.6)

⊆ MissExt(R̂, R̂, I ∩ I ′). (A.7)

Suppose w ∈ S ∩MissExt(S ′, S ′, I ′ ∩ O). Then w ∈ Unc(S ′, S, O,O′), so w ̸∈ R̂. Let
wi be the longest prefix of w which lies in S ∩ S ′. Then wi ̸∈ R̂, either. Let wp be the

longest prefix of wi which is in R̂. Then wi ∈ MissExt(R̂, R̂, I ∩ I ′), and therefore, so
does w.

3. If w ∈ S ′ ∩MissExt(S, S, I), an analogous reasoning applies.

4. Suppose
w ∈ MissExt(S, S, I)∩MissExt(S ′, S ′, I ′).

If w has a prefix in S ′ ∩MissExt(S, S, I) or S ∩MissExt(S ′, S ′, I ′), then the reasoning
of the last two points applies, and we have w ∈ MissExt(R̂, R̂, I ∩ I ′). Suppose w has
no such a prefix, and write w = wp ◦ w′, where wp is the longest prefix of w which
lies in S ∩ S ′. Let σ be the first symbol of w′. Then wp ◦ σ ∈ MissExt(S, S, I) ∩
MissExt(S ′, S ′, I ′), which means that σ ∈ I∩I ′. Thus, w ∈ MissExt(S∩S ′, S∩S ′, I∩
I ′) ⊆ MissExt(R̂, R̂, I ∩ I ′).

We have shown that L ⊆ R̂∪MissExt(R̂, R̂, I∩I ′). Now suppose w ∈ R̂∪MissExt(R̂, R̂, I∩
I ′). If w ∈ R̂ then clearly w ∈ S ∩S ′ ⊆ L. Suppose w ∈ MissExt(R̂, R̂, I ∩ I ′) and let wr be

APPENDIX A. ADDITIONAL PROOFS 165

the longest prefix of w contained in R̂ and σr the symbol that comes immediately after wr

in w. Clearly σr ∈ I ∩ I ′.
If wr ◦ σr ∈ S − S ′, then wr ◦ σr cannot be an element of R̂. If it were, we would have

ER̂ × S ̸⊆ ES′ , violating the bound (A.1). The same applies when wr ◦ σr ∈ S ′ − S.
If wr ◦ σr ̸∈ S ∪ S ′, then w ◦ σr ∈ MissExt(S ′, S ′, I ′)∩MissExt(S, S, I) ⊆ L.
If wr ◦σr ∈ S∩S ′, then wr ◦σr ∈ Unc(S ′, S, O,O′)∪Unc(S, S ′, O′, O), which means that

wr ◦ σr is not allowed to be an element of R̂; otherwise, there would be a contradiction of
(A.1).

We conclude that R = R̂.

Proof of Proposition 8.5.8. Suppose that A1 ≤ A2. We want to show that Mℓ(A1) ≤ Mℓ(A2)

and Eℓ(A2) ≤ Eℓ(A1). We proceed by induction in the length n of words, i.e., we will show
that this relations hold for words of arbitrary length.

Consider the case n = 1. Suppose σ ∈ Mℓ(A1) ∩ Σ. If σ ∈ I, then σ ∈ Mℓ(A2) because of

I-receptivity. If σ ∈ O, then σ ∈ ℓ (A), so there exists q1 ∈ Q1 such that q1,0
σ→1 q1, which

means that there exists q2 ∈ Q2 such that q2,0
σ→2 q2. Thus, σ ∈ ℓ (A2) ⊆ Mℓ(A2). We have

shown that Mℓ(A1) ⊆Mℓ(A2) for n = 1. An analogous reasoning shows that Eℓ(A2) ⊆ Eℓ(A1)

Suppose the statement is true for words of length n. Let w ◦ σ ∈ Mℓ(A1), where w ∈ Σ∗

is a word of length n, and σ ∈ Σ. By the inductive assumption, w ∈Mℓ(A2).

� If σ ∈ I, then w ◦ σ ∈Mℓ(A2) due to I-receptiveness.

� Let σ ∈ O and w ̸∈ ℓ (A1). Then we can write w = wp ◦w′, where wp is the longest prefix
of w which lies in ℓ (A1) (suppose it has length l). Let σ′ be the first symbol of w′; clearly
σ′ ∈ I. Since w ∈ ℓ (A2) and this set is prefix-closed, wp ∈ ℓ (A2). Since wp ∈ ℓ (A1)∩ ℓ (A2),

there exist {qj,i ∈ Qj}ki=1 (for j ∈ {1, 2}) such that qj,i−1
wi→j qj,i for 0 < i ≤ k, where wi

is the i-th symbol of wp. Since the IA are deterministic, we must have q1,i ≤ q2,i. Suppose

there were a q2 ∈ Q2 such that q2,k
σ′
→2 q2; since q1,k ≤ q2,k and σ′ ∈ I, this would mean

that there exists q1 ∈ Q1 such that q1,k
σ′
→1 q1, which would mean that wp ◦ σ′ ∈ ℓ (A1), a

contradiction. We conclude that such q2 does not exist, which means that wp ◦ σ′ ̸∈ ℓ (A2),
which means that w ◦ σ ∈Mℓ(A2) because of I-receptiveness.

� Finally, if σ ∈ O and w ∈ ℓ (A1), then there exist {q1,i ∈ Q1}ni=1 such that q1,i−1
wi→1 q1,i

for 0 < i ≤ n, where wi is the i-th symbol of w. Since w ◦ σ ∈ Mℓ(A1), w ∈ ℓ (A1), and
σ ∈ O, we must have w ◦σ ∈ ℓ (A1). This means that there must exist q1,n+1 ∈ Q1 such that

q1,n
σ→1 q1,n+1. We know that w ∈ Mℓ(A2) by the induction assumption. If w ̸∈ ℓ (A2), then

clearly w ◦ σ ∈ Mℓ(A2). If w ∈ ℓ (A2), there are states {q2,i ∈ Q2}ni=1 such that q2,i−1
wi→2 q2,i

for 0 < i ≤ n. Moreover, there exists qn+1 ∈ Q1 such that qn
σ→1 qn+1 and q1,n ≤ q2,n, there

must be a q2,n+1 ∈ Q2 such that q2,n
σ→2 q2,n+1, which means that w ◦ σ ∈Mℓ(A2).

We have shown that Mℓ(A1) ⊆Mℓ(A2). An analogous argument proves that Eℓ(A2) ⊆ Eℓ(A1).

APPENDIX A. ADDITIONAL PROOFS 166

Now suppose thatMℓ(A1) ⊆Mℓ(A2) and Eℓ(A2) ⊆ Eℓ(A1). We want to show that q1,0 ≤ q2,0.
We proceed by coinduction.

Let n be a natural number. Suppose there exist sets {qj,i ∈ Qj}ni=1 with j ∈ {1, 2} such
that q1,i ≤ q2,i for all i and a word w of length n such that qj,i−1

wi→j qj,i for 0 < i ≤ n. Suppose

there exists q1,n+1 ∈ Q1 and σ ∈ O such that q1,n
σ→1 q1,n+1. Then w ◦ σ ∈ Mℓ(A1) ⊆ Mℓ(A2).

Observe that w ∈ ℓ (A2), so we must have w ◦ σ ∈ ℓ (A2). This means there must be a
q2,n+1 ∈ Q2 such that q2,n

σ→2 q2,n+1. We assume that q1,n+1 ≤ q2,n+1. Similarly, suppose

there exists q′2,n+1 ∈ Q2 and σ ∈ I such that q2,n
σ→2 q

′
2,n+1. Then w ◦ σ ∈ Eℓ(A2) ⊆ Eℓ(A1).

Since w ∈ ℓ (A1), we must have w ◦ σ ∈ ℓ (A1). Thus, there must exist q′1,n+1 ∈ Q1 such that

q1,n
σ→1 q

′
1,n+1. We assume that q1,n+1 ≤ q2,n+1. This finished the coinductive proof.

Proof of Proposition 8.5.9. Let Ai have IO signatures (Ii, Oi) for i ∈ {1, 2}. For composition
to be defined, we need I1 ∪ I2 = Σ. Let CAi

be the interface contract associated with Ai.
From Proposition 8.5.7 and Section 8.5.3, the composition CA1 ∥ CA2 is isomorphic to I1 ∩ I2
and the L∅ language

R = (ℓ (A1)∩ ℓ (A2))− [Unc(ℓ (A1) , ℓ (A2) , O2, O1)∪ Unc(ℓ (A2) , ℓ (A1) , O1, O2)] .

From Section 8.5.5.2, we deduce that ℓ (A1 ∥ A2) = R. The proposition follows.

	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges of system design
	Formalizing system design
	This thesis

	Introduction to contracts
	Historical background
	Problems addressed by contracts
	Behavioral modeling
	Assume-guarantee contracts

	Quotient for assume-guarantee Contracts
	Introduction
	Quotient of Assume-Guarantee Contracts
	Quotient in the Meta-Theory of Contracts
	Examples
	Summary

	Equations over Preorders
	Introduction
	Preordered heaps
	Additional instances of preordered heaps
	Sieved heaps
	Sieved heaps and language inequalities
	Summary

	Contract merging and separation
	A revised notion of contract merging
	Composition, merging, and the contract lattice
	Decomposition of contracts and separation of viewpoints
	Multiviewpoint design

	The algebra of assume-guarantee contracts
	Introduction
	AG Contracts
	Order
	Duality
	Conjunction and disjunction
	Composition
	Strong merging (or merging)
	Adjoints
	Summary of binary operations
	Algebraic structures within contracts
	Actions
	Contract abstractions

	Syntax and the AG algebra
	The role of assumptions
	Contracts in standard form
	Computing the composition operation
	Computing the quotient
	Constraints as partial orders

	Hypercontracts
	Introduction
	The theory of hypercontracts
	Representation of compsets and hypercontracts
	Behavioral modeling
	Receptive languages and interface hypercontracts
	Summary

	Conclusions
	Bibliography
	Additional proofs
	Receptive languages and hypercontracts

