
Ashera; Neural Guided Optimization Modulo Theory

Justin Wong
Pei-Wei Chen
Tianjun Zhang
Joseph Gonzalez
Yuandong Tian
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-103

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-103.html

May 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by NSF CISE Expeditions Award CCF-
1730628, NSF NRI \#2024675 and under the NSF AI4OPT Center. UC
Berkeley research is also supported by gifts from Alibaba, Amazon Web
Services,
Ant Financial, CapitalOne, Ericsson, Meta, Futurewei, Google, Intel,
Microsoft, Nvidia, Sco
tiabank, Splunk and VMware.

Ashera: Neural Optimization Modulo Theory

Justin Wong*1, Pei-Wei Chen*1, Tianjun Zhang1,
Joseph E. Gonzalez1, Yuandong Tian2, Sanjit A. Seshia1

1University of California, Berkeley 2Meta AI Research

Abstract

Applications of Satisfiability Modulo Theories (SMT) within1

design automation and software/hardware verification often2

require finding models whose quantitative cost objective is3

guaranteed to be optimal. As an example, in worst-case ex-4

ecution time analysis, it does not suffice to simply discover5

a feasible execution trace; we are instead interested in prov-6

ing properties on the longest execution trace. Such problems7

can be formulated as Optimization Modulo Theory (OMT),8

and solving them is much more challenging than both SMT9

problems and unconstrained optimization. Current solutions10

struggle to scale to problems of large size, because they11

require experts to tune solvers and carefully craft problem12

encodings. This approach is not only problem-specific but13

also requires manual effort. Recent progress in neural tech-14

niques have been successfully applied to Mixed Integer Lin-15

ear Programming (MILP) and certain instances of the Travel-16

ing Salesman Problem (TSP). We make the case for learning-17

based solvers in OMT and present Ashera, a neural-guided18

OMT solver. Ashera innovates on prior art by introducing19

Logical Neighborhood Search and neural-based warm start-20

ing. Additionally, we introduce new benchmarks for learning-21

based OMT techniques, targeted at real-world applications22

including scheduling and multi-agent TSP. Ashera exhibits as23

much as a 3x speedup and shows improved scaling compared24

to MILP approximation as used in industry and state-of-the-25

art OMT solvers.26

1 Introduction27

Analysis of worst-case execution time (WCET) of soft-28

ware and hardware requires not only identifying valid ex-29

ecutions of a program but also finding a provably slowest30

execution. Existing solvers for Satisfiability Modulo Theo-31

ries (SMT) have found remarkable practical success in pro-32

viding guarantees on previously feasibility problems in do-33

mains such as software and hardware verification (Dutertre34

and De Moura 2006; Moura and Bjørner 2008; Leino 2010;35

Katz et al. 2017). However, there has been limited progress36

on Optimization Modulo Theories (OMT) problems like37

WCET (Henry et al. 2014) that require provably cost-38

optimal solutions not just feasible solutions. In these sce-39

narios, ranging from software security(Bertolissi, Dos San-40

tos, and Ranise 2018; Henry et al. 2014) to scheduling and41

*These authors contributed equally.

planning(Leofante et al. 2017; Kovásznai, Biró, and Erdélyi 42

2017), require OMT to support an objective function. 43

While OMT is a more general optimization framework, 44

solving it becomes more difficult. There are two major chal- 45

lenges. First, existing approaches to OMT either use the Big 46

M approximation to reduce the problem to Integer Linear 47

Programming ILP (Gurobi Optimization, LLC 2021) or do 48

iterative calls to SMT (Sebastiani and Trentin 2015; Bjørner, 49

Phan, and Fleckenstein 2015), which scales poorly. Second, 50

the solvers are designed to be general purpose and problem 51

agnostic. To address poor scalability in a per application ba- 52

sis, experts manually tune hyperparameters and problem en- 53

codings which often improves the solving time from days to 54

a matter of minutes. Such solutions, while feasible, are often 55

expensive and time-consuming, and ignore the past experi- 56

ence of solved problems. 57

In this paper, we present a codesigned neural OMT solver, 58

called Ashera to address these two challenges by introducing 59

two components: an OMT engine and a neural diver. 60

First, our OMT engine in Ashera iterates between calling 61

an SMT solver and an optimality-aware theory solver, TS∗. 62

Because we use SMT to decompose disjunctions into guided 63

search over conjunctive cases, we can avoid using Big M. In 64

SMT, theory solvers (TS) are domain specific subsolvers for 65

a conjunction of constraints. For instance, for LIA theory 66

specific properties to prune and speed up the enumeration 67

such as x > 0∧ x < 1 indicates no integer x is feasible. We 68

introduce optimality-aware theory solver, TS∗, which addi- 69

tionally has awareness of the optimization objective. More 70

concretely for Linear Integer Arithmetic (LIA), we use Z3 71

for quantifier-free LIA SMT and Gurobi for ILP. 72

Second, our neural diver learns to directly predict promis- 73

ing partial assignments that lead to a better cost when ex- 74

tended to full assignments. We do this by training a Graph 75

Neural Network (GNN) on existing solutions of related 76

problems, extracting the knowledge from past experience. 77

Then, the same SMT solver used in our OMT engine is 78

used to check the validity of these candidate assignments 79

to guarantee soundness. Our approach is inspired by the re- 80

cent success of (Nair et al. 2020) that applies similar idea to 81

Mixed Integer Linear Programming (MILP). The efficiency 82

of existing solvers can be substantially improved by trans- 83

ferring knowledge of solving one problem instance to an- 84

other similar one. We observe that in practice, optimiza- 85

tions are done repeatedly on similar instances drawn from86

an underlying distribution, for example on a monthly basis87

for network planning (Zhu et al. 2021). As such, the prob-88

lems to be solved regularly differ only slightly, but the op-89

timization procedure needs to be redone, as modified con-90

straints change the solution space. As a result, learning from91

previous solved problems can speed up the next optimiza-92

tion without any manual human input. Our approach dif-93

fers from existing work that learn end-to-end a solver to94

replace existing systems (e.g., learned query optimization95

(Yang et al. 2022) and chip placement (Mirhoseini et al.96

2020)). In contrast, we co-design our OMT approach to con-97

tribute a new generalized solver while exploiting opportuni-98

ties for learning-based components.99

As existing benchmarks provide dozens of diverse OMT100

problems, we build a benchmark for evaluating learning-101

based OMT solvers. Our benchmark provides over 58, 000102

OMT problems from two families of problems: task103

scheduling and multi-agent Traveling Salesman Problem104

(TSP). Using this benchmark we demonstrate that Ashera105

can learn on problems with less variables and constraints106

and generalize to larger problems within the same problem107

class.108

Our work makes the following contributions:109

• A benchmark for evaluating learning-based OMT solv-110

ing with problem families in scheduling and multi-agent111

traveling salesman problems.112

• To our knowledge, we present the first learning-based113

OMT solver in Ashera. The solver focuses on support114

for Linear Integer Arithmetic (LIA), but the framework115

generalizes to other theories.116

• For scheduling, Ashera in contrast is 3x faster and solves117

three more problems than the widely-used commercial118

solver, Gurobi, on problems with 10 and 11 tasks, re-119

spectively. OptiMathSAT and Z3 are unable to solve any120

problems of 11 tasks within 1 hour timeout.121

• Ashera is 18% faster than OptiMathSAT on multiagent122

TSP with 15 waypoints, where Gurobi and Z3 timeout.123

2 Related works124

2.1 Solvers for OMT125

The last decade has produced two prominent Optimiza-126

tion Modulo Theory (OMT) solvers: 1) OptiMathSAT (Se-127

bastiani and Trentin 2015), which applies a binary search128

approach to discovering the optimal solution, and 2)129

vZ (Bjørner, Phan, and Fleckenstein 2015), which itera-130

tively uses SMT to find a strictly better feasible solution131

and locally improve it by coordinate-wise search for strictly132

improving boundary solutions. OptiMathSAT further uses133

sorting networks to decouple the Boolean reasoning from134

the arithmetic solving. vZ exploits carefully engineered135

MaxSMT and pseudo Boolean solvers to provide compet-136

itive performance when the OMT problem lies within these137

domains. Neither of these works perform well at scale and138

applications are largely dominated by ILP approximations.139

Similar to OMT, Inez (Manolios, Pais, and Papavasileiou140

2015), a solver for Mathematical Programming Modulo141

Theory, integrates ILP solvers with solvers for first order 142

theories. However, Inez relies on the Big M encoding or built 143

in constraint handlers in ILP solvers to reason about disjunc- 144

tions and instead focus on extending ILP solvers to support 145

uninterpreted functions and support for user-provided ax- 146

ioms. Ashera explicitly reasons about disjunctions arising 147

from the logic structure of OMT problems. 148

2.2 Neural Guidance for Combinatorial 149

Optimization 150

The Integer Linear Program (ILP) is a well-studied class of 151

optimization problems in large part due to its prominence in 152

operations research, computer vision, scheduling, and other 153

domains. Branch and bound, one particular tree search algo- 154

rithm, is the best known approach for solving ILPs. Branch 155

and bound is able to incrementally establish a lower and up- 156

per bound via a feasible point and a solution to a linear re- 157

laxation of the ILP respectively until tightness is achieved. 158

In (Balcan et al. 2018), the authors propose to replace 159

empirical heuristics for selecting variables to branch with a 160

data-driven methodology that achieves provable complexity 161

bounds. The authors show that they can learn a convex com- 162

bination of scoring rules (which each determine the ordering 163

of node branching) that is nearly optimal in expectation over 164

a distribution of original ILPs. Furthermore, the optimiza- 165

tion process over scoring rules can be seen as performing 166

empirical risk minimization (ERM) of the original optimiza- 167

tion objective subject to the input variable constraints. 168

Another approach taken by Wu et al. (Wu et al. 2021a) is 169

to train a model to reconstruct locally optimal solutions. This 170

model is trained by taking feasible solutions and resolving 171

the optimization with a random subset of variables masked 172

out. The model learns how to improve solutions locally and 173

recognize strategies that generalize to adjacent regions in 174

the feasible set. However, this approach fails to recognize 175

that due to combinatorial explosion subproblem optimiza- 176

tion is often negligible and the real challenge is identifying 177

and proving optimal the global optima not local optimas. 178

The approach taken by Nair et al. (Nair et al. 2020) ex- 179

tends Balcan et al. (Balcan et al. 2018)’s approach with a 180

neural diver, which takes the bipartite graph representation 181

of variables and constraints to predict plausible partial as- 182

signments. These partial assignments can then be explored 183

in parallel by instantiating Mixed Integer Linear Program- 184

ming (MILP) instances over a smaller variable space. Our 185

neural diver extends Nair et al. to support OMT problems. 186

2.3 Neural Guidance for Combinatorial 187

Applications 188

Using neural networks to solve TSP (Bello et al. 2016) has 189

been extensively studied dating back to the development of 190

Hopfield neural networks in 1985 (Hopfield and Tank 2004). 191

More recent efforts such as Selsam et al. (Selsam et al. 2019) 192

have attempted to learn end-to-end models for SAT solvers. 193

Alternatively, a presolve phase is employed before solv- 194

ing to explore promising regions. This approach is exempli- 195

fied by NeuroPlan (Zhu et al. 2021), which applies neural 196

guidance to large-scale network planning problem. These 197

problems often takes days or weeks for integer linear pro-198

gramming (ILP) to find even a feasible solution. For this,199

NeuroPlan learns an RL agent to predict a good initial so-200

lution to large-scale network planning problem modeled as201

ILP. The RL agent constructs the solution progressively by202

picking which network connection to be used to increase the203

capacity between two nodes to satisfy the communication204

requirements, and verify the feasibility via efficient checking205

techniques, reusing previous computational results. Once206

the initial solution is found, a follow-up ILP solving be-207

comes much faster.208

3 Preliminaries209

In this section, we provide some background on OMT and210

graph neural network architectures used in Ashera.211

3.1 Optimization Modulo Theories (OMT)212

Optimization Modulo Theories (OMT) extends SMT, guar-213

anteeing that an optimal feasible solution is returned. In ad-214

dition to the satisfaction formula, an OMT problem includes215

an objective function C which maps assignments to a total216

ordered set. When the domain of C is real or floating point,217

a tolerance δ must be specified.218

A Satisfiability Modulo Theory (SMT) problem decides219

the satisfiability of a first-order formula within a theory (Bar-220

rett et al. 2009). We focus on the theory of Linear Inte-221

ger Arithmetic (LIA), but note that SMT and OMT extend222

to other theories, for instance, arrays and strings. For LIA,223

consider atomic formulas as linear inequalities of the form:224

atomi ≜ a⃗i · x⃗ ▷◁ bi where ▷◁ ≜ {<,≤, >,≥,=}. These225

atoms may differ when considering different theories, and226

we denote a theory literal as an atomic formula or the nega-227

tion of one.228

We build up clauses and subsequently formulas in Con-
junctive Normal Form (CNF) from these atoms as

clausej ≜
∨
i

literali formula ≜
∧
j

clausej .

With the standard interpretation of atoms, a model or assign-229

ment that satisfies a formula is one where the evaluation of230

the formula is True. We denote partial assignments as α and231

full assignments as A.232

We define a Boolean backbone B as the set of literals233

where the polarity of each literal depends on the truth value234

of the corresponding atom when applying a full assignment235

A, i.e. a literal is in positive polarity if the corresponding236

atom valuates to true. A Boolean (backbone) assignment is237

the truth value assignment to all literals in the formula. Note238

that an assignment uniquely specifies a Boolean backbone239

but multiple assignments can share a common backbone.240

Lazy SMT solves with a two stage iterative process. First,241

a SAT solver identifies a candidate Boolean assignment,242

viewing clauses as simple Boolean functions. Then, once a243

Boolean assignment is chosen, the formula can be expressed244

as a conjunct of atomic theory constraints. As such, the con-245

straints can then be passed along to a specialized theory246

solver that identifies a feasible solution that satisfies the con-247

junct of constraints. If this is not feasible, the solver picks248

another Boolean assignment factoring in the learned con- 249

flict. In some sense, this can be viewed as a two level search 250

problem where Boolean backbone identifies a logical neigh- 251

borhood for the theory solver to search in. 252

Even though SMT is designed to efficiently explore dis- 253

junctive logic structures exploiting structure and symmetry 254

in the encoding, the satisfiability task only requires reason- 255

ing about feasibility. In contrast, an OMT solver must search 256

for other solutions once after identifying a feasible solution 257

potentially with differing Boolean backbone. 258

In the notation as introduced for SMT, we solve problems 259

of minimizing cost, C(x⃗) such that the CNF formula holds, 260

where in the theory of LIA variables are constrained to be 261

integral and C(x⃗) a linear function with integral coefficients. 262

OMT raises the specific challenges of both explicitly rea- 263

soning about disjunctions and optimizing a cost function. 264

Particularly, disjunctions lead to local optimas which may 265

not be connected since there are no convexity guarantees. 266

3.2 Integer Linear Programming (ILP) 267

A Integer Linear Programming (ILP) problem is parameter- 268

ized by the tuple (A, b⃗, c⃗). The objective is to solve for an 269

optimal choice of x⃗ such that c⃗ · x⃗ is minimized. However, 270

x⃗ is constrained to satisfy Ax⃗ ≤ b⃗, where ≤ represents el- 271

ement wise less than or equal to. Further, these vectors can 272

be over a mixture of real numbers and integers. We note that 273

strict inequalities a⃗i ·x⃗ < bi can be encoded as a⃗i ·x⃗ ≤ bi−1. 274

Although MILP does not explicitly support disjunctions,
Big M encoding can allow practitioners to implicitly approx-
imate disjunctions by adding an additional decision variable.
Disjunctions of inequalities that appear in the original en-
coding, (LHS1 ≤ RHS1) ∨ (LHS2 ≤ RHS2) can be encoded
by adding the decision binary variable α. Since MILP must
be expressed as a list of constraints that always hold, a large
constant M is then added to the inequality to trivialize the
constraints when α deselects the literal. For our example,
the disjunction becomes encoded as the following two con-
straints:

LHS1 ≤ RHS1 + αM

LHS2 ≤ RHS2 + (1− α)M

By using this encoding strategy, the assignment of α results 275

in the selection of which clause must hold. 276

3.3 Graph Neural Network (GNN) 277

Recent progress in machine learning for optimization prob- 278

lems have been enabled by graph neural networks. In this 279

section, we provide a brief introduction and key intuition be- 280

hind these models. Interested readers can refer to (Wu et al. 281

2021b) for more details. 282

Graph Neural Networks (GNNs) are deep neural networks 283

that take graph structured inputs and make predictions on 284

both individual nodes or edges and the entire graph. As for- 285

malized by (Gilmer et al. 2017), these models output a graph 286

or node representation (i.e., a high-dimensional vector), via 287

message passing over the graph structure. The GNN takes 288

node features xv and applies i rounds of message passing 289

where the hidden state hi
v of each node is updated based a 290

Figure 1: Ashera workflow. The neural diver serves as a warm-starter providing an initial low cost feasible solution. After neural
diving, the OMT engine in Ashera alternates between a Optimization-aware Theory Solver (TS∗) for optimization and an SMT
solver for verification. Each invocation of TS∗ returns a tighter blocking clause, restricting the SMT solver to search for strictly
lower cost solutions than the current model.

learned function parameterized by θ on it’s neighbors’ hid-291

den states and the edge features: mt+1
v fθ(h

i
w, evw) where292

w is a neighbor in the neighborhood of v, N(v). The new293

hidden state is then hi1
v = Agg(hi

v,
∑

w∈N(v) m
t+1
v).294

Inspired by Convolutional Neural Networks (CNNs),295

which exploit the inductive bias that neighboring pixels are296

often related, Graph Convolutional Networks, or GCN (Kipf297

and Welling 2016), employ the same learned function across298

the same layer of the neural network irrespective of nodes.299

Analogous to computer vision, the shared function encour-300

ages the network to learn to recognize the same pattern oc-301

curing in connected subgraphs. This approach has seen wide302

success from analyzing social media graphs (Fan et al. 2022)303

to predicting molecule properties (Gilmer et al. 2017) and304

within combinatorial optimization has been used for net-305

work planning (Zhu et al. 2021) and chip placement (Mirho-306

seini et al. 2020).307

Graph encoding for constrained programming. As done308

in (Gasse et al. 2019) and Nair et al. (Nair et al. 2020), one309

common graph representation for constrained programming310

is a graph, in which nodes represent constraints and vari-311

ables. Edge between constraint nodes and variable nodes312

encode the coefficient of variables that appear in the con-313

straint. Then, the message passing from variable to con-314

straint in the graph neural network can be interpreted as how315

the variable embedding influence the constraint embedding316

(and vice versa). In practice, 2-3 rounds of massage passing317

suffice to model higher-order constraints, e.g., two variables318

in the same constraint, etc.319

4 Method Overview320

In this section, we provide an overview of our method, illus-321

trated in Fig.1. Ashera consists of two main components: an322

OMT engine (Section 5) and a neural diver (Section 6).323

The neural diver generates an initial feasible assignments324

A0 by first using a neural heuristic trained on solutions325

of similar OMT problems. Given a A0, the assignment326

uniquely specifies a cost C0 and a boolean backbone B0. The327

initial feasible solution provides a warm start to the OMT328

engine. We elaborate on how the neural diver is trained and329

how it selects initial feasible assignment in Section 6.330

Given the tuple (A0,B0, C0), the OMT engine generates a331

blocking clause: C(x) < C0. This restricts the engine to only 332

search for lower cost assignments. Using the boolean back- 333

bone, our OMT engine iterates between an optimizer that 334

searches for a lower cost solution than the current assign- 335

ment Ai, and a verifier that checks if the optimized assign- 336

ment A′
i is optimal. In a counterexample-guided fashion, the 337

optimizer utilizes feasible solutions returned by the verifier 338

to refine the search. We elaborate on the optimizer and ver- 339

ifier in Section 5. When the verifier returns unsat, Ashera 340

returns the best assignment, A∗, and best cost, C∗. 341

Ashera can be run in a cold-start settings when solutions 342

to similar OMT problems are not available, or as a way to 343

solve related OMT problems that are then used for training. 344

In this setting, the neural diver can be replaced by a SMT 345

solver. Although Ashera will not be able to learn from past 346

examples, the SMT solver will still provide a valid albeit 347

likely high cost assignment to the OMT engine. 348

5 OMT Engine 349

For exposition purposes, we first detail the cold-start setting 350

of our OMT algorithm in this section, in which the neural 351

diver is substituted with an SMT solver. In Section 6, we in- 352

troduce the full Ashera algorithm, including the neural diver 353

and introduce Logical Neighborhood Search. 354

5.1 Logical Neighborhood Search 355

Efforts like Wu et al. (Wu et al. 2021a) approach opti- 356

mization problems as a large neighborhood search problem 357

where the optimizer first discovers feasible solutions. Then, 358

it explores assignments which differ from the feasible as- 359

signment by a ϵ-ball. Our approach identifies a more natural 360

notion of logical locality for OMT. 361

After obtaining the tuple (Ai,Bi, Ci) from the SMT 362

solver, we perform optimization with an optimality-aware 363

theory solver TS∗ which takes in a Boolean backbone B as 364

input. Unlike existing approaches to neighborhood search, 365

we aim to search for solutions that have similar logic struc- 366

ture (i.e. preserves the same Boolean literal backbone). This 367

definition of locality allows us to use an off-the-shelf ILP 368

solver as the optimality-aware theory solver to conduct the 369

neighborhood search. 370

Algorithm 1: Ashera: OMT Solver
Input: ϕ: OMT formula
Returns: A∗, C∗: best assignment and cost w.r.t. objective

1: A∗, C∗ := ∅,∞
2: partialAssignSamples := neuralDiver(ϕ)
3: SMT problem := createSMT (ϕ)
4: for all α in partialAssignSamples do
5: isSat, (A,B, C) := solve(SMT problem, α)
6: if C < C∗ and isSat then
7: A∗, C∗ := A, C
8: while True do
9: blocker := (cost ≤ C∗ − δ)

10: isSat,A,B, C := solve(SMT problem, blocker)
11: if not isSat then
12: break
13: ILP problem = createILP (B)
14: A∗, C∗ := solve(ILP problem)

return A∗, C∗

For each literal in the Boolean backbone Bi, we add the371

negation of the false literal as an ILP constraint and the lit-372

eral itself for true literals in the backbone. In this way, we do373

not need to encode disjunctions into the ILP encoding using374

Big M or convex hull. In section A.5, we discuss some sound375

optimizations that can be done with this constraint genera-376

tion process. By restricting to the convex region around the377

feasible solution, we can express the optimization purely as378

the conjunction of literals in Bi. As we have identified a fea-379

sible solution Ai, we effectively use ILP to improve on the380

found solution within the neighborhood which maintains the381

same logic assignment. Note that the search is localized to a382

connected region specified by the constraints, in which at383

least one feasible solution can be found (i.e., the current384

solution Ai). However, unlike a LIA theory solver, ILP is385

cost-aware and able to optimize with respect to our objective386

function. The ILP solver produces a tuple (A′
i, C′

i) as output,387

where A′
i is an assignment that achieves the optimized cost388

C′
i within the neighborhood.389

To reach another disconnected region, we query SMT390

with the optimized cost C′
i for a feasible solution that’s391

strictly better than the solution A′
i discovered by the last it-392

eration of ILP. If this results in an unsatisfiable result, we393

terminate knowing there exists no better feasible solution to394

the OMT problem. Given ILP discovered the optimal solu-395

tion for the particular logic backbone, the SMT solver will396

find a feasible solution with a different logic backbone.397

We present our algorithm in full in Algorithm 1 noting398

that a tolerance, δ, can be set depending on the user’s domain399

expertise. For our integer example, δ = 1 is natural.400

6 Neural Diving401

Inspired by work by Nair et al. (Nair et al. 2020), we adopt a402

neural diver which can be thought of as a warm-starter that403

identifies promising initial feasible solutions.404

Figure 2: Graph representation. We represent the OMT prob-
lem as a graph with edges connecting variable nodes and
constraint/cost nodes. The logic structure is represented sim-
ilarly to an abstract syntax tree (AST), with the AST leaf
nodes coinciding with the atomic constraint nodes.

6.1 Graph Representation 405

We translate an OMT problem into a graph by encoding each 406

variable as a node; we encode the variables and atomic for- 407

mula as is done in (Gasse et al. 2019). We encode the ele- 408

ments of a⃗ij as weights on edges between variables and con- 409

straints. We add b⃗ij as node attributes for constraint nodes 410

and variable names as node attributes on variable nodes. We 411

also have a cost node connected to each of the variable nodes 412

with weights corresponding to c⃗. Each atomic formula node 413

serves as leaves in an adjoining tree representing the clauses 414

and final formula. 415

Taking from the approach in (Nair et al. 2020), we imple- 416

ment a neural partial assignment generator based on a graph 417

convolutional neural network (GCN). As shown in Fig. 2, 418

we build a graph connecting variable nodes and literal/con- 419

straint nodes with the edge weights indicating the linear co- 420

efficients in the literal. Finally, we encode the cost objective 421

as special literal node, with the coefficients as edge weights. 422

In contrast to the encoding for Nair et al. (Nair et al. 423

2020), OMT also includes disjunctions over the literals. As 424

such, we encode the disjunction as a tree over the literal 425

nodes. Disjunction and conjunction nodes pass information 426

between related clauses in rounds of message passing. 427

6.2 Formulating the Learning Problem 428

We consider the setting where an OMT solver is repeatedly 429

solving similar problems. This means we can curate a train- 430

ing set of problems in this distribution based on historical 431

queries or in simulation. Further, by design, our OMT en- 432

gine can be run without the neural diver by replacing it with 433

an initial SMT call. The cold-start OMT engine can be used 434

to label training examples with optimal models. Using this 435

labeled training set, we seek to reduce the required time to 436

solve unseen problems from the same distribution. 437

With the graph encoding, call it G, our goal is to learn 438

a function, f that estimates for each variable a probability 439

distribution over potential values. We do this with a stan- 440

dard graph convolutional network (GCN) (Kipf and Welling 441

2016). We learn this function f over examples Gi labeled 442

with x∗
i , a cost optimal variable assignment. We treat inte- 443

ger variable values as independent classes train the model to 444

classify each variable. 445

We use a GCN to learn an embedding for each variable,446

which we then pass through a linear layer to predict the class447

corresponding to the variable assignment. We find it suffi-448

cient to run two rounds of message passing for this appli-449

cation. With two rounds, the variables nodes can be aggre-450

gate information from two hop neighbors allowing the fi-451

nal learned embedding of the variable to be both influenced452

by variables that it shares an atomic constraint with and the453

clause that it belongs to.454

Using the learned embedding, we optimize the following455

cross entropy loss: L = −
∑m

i=1 x
∗
i log p(xi|G) where x∗

i is456

the optimal assignment of the i-th variable and log p(xi|G)457

is the probability of the assignment generated by the func-458

tion f .459

This loss intuitively maximizes the probability that the460

optimal assignment is selected. Note for each variable the461

GCN effectively approximate the probability distribution462

over variable assignments conditioned on G, p(x|G). This463

is the desired f we sought to learn.464

6.3 Partial Assignment Warm-Start465

When the neural diver is used to solve a problem of interest,466

the diver makes a prediction based on the input problem G.467

This inference results in an estimated probability P (x|G)468

returned as output logits. We sample variable assignments469

based on these logits and use the KL divergence to a unifrom470

distribution to estimate confidence. If the KL divergence is471

larger than a confidence threshold, C, we abstain from as-472

signing (see Appendix A.7 for implementation details). This473

results in partial assignments αi as only variables that are474

easy to predict have assignments. To get full feasible solu-475

tions Ai, we call an SMT solver on each partial assignment476

to get a complete feasible assignment. We do this by adding477

to the existing OMT formula equality constraints x = k478

where x is a variable and k is the sampled assignment from479

the partial assignment generator.480

We then use Ray (Moritz et al. 2018) to search for a valid481

assignment in parallel for a user specified time, T , with K482

parallel threads. If a thread discovers an unsatisfiable par-483

tial assignment, it continues searching with another sample484

from the generative model until the time expires. After run-485

ning for T , the diver returns the best assignment discovered.486

In the case that it does not find any feasible solutions, the487

OMT engine runs SMT first to get a feasible assignment. By488

default Ashera uses T = 5s, K = 5, and C = 1, but these489

parameters can be tuned on a validation set in practice for490

each problem family.491

7 Experiment Setup492

For this work, we look at two families of real-world OMT493

problems: 1) DAG job scheduling, and 2) multi-agent trav-494

eling salesman problem (TSP). Disjunctions native to these495

two families are particularly challenging as they result in a496

disconnected feasible set and a redundancy of equally opti-497

mal solutions. For instance, in DAG scheduling, the each as-498

signment of tasks to resources defines a nontrivial schedul-499

ing subproblem, that tend to be similar but not identical500

to each other. We describe the dataset generation, baseline501

solvers in this section, and include experimental details such 502

as hardware setup in Appendix A.6. 503

Dataset Generation. In order to train and evaluate a 504

learning-based OMT solver, we generate instances for each 505

family of problems labeled with their optimal assignment. 506

Baseline Solvers. To compare with existing ILP solvers 507

(e.g., Gurobi), we encode the OMT benchmarks as ILP prob- 508

lems using the standard Big M encoding to approximate the 509

disjunctions. Big M encoding introduces an additional bi- 510

nary choice variable α to determine which clause in the dis- 511

junction is enforced as an ILP constraint. This increases the 512

number of variables combinatorially in the number of dis- 513

junctions and and requires the ILP solver to optimize over 514

all disjunctive branch simultaneously. 515

For a fair comparison, the models were evaluated with- 516

out GPU assistance, but we expect improved performance 517

if accelerators are available at inference time. As Gurobi is 518

highly parallelized, to make fair comparison of algorithmic 519

cost, we compare results based on process time unless oth- 520

erwise noted and impose a 1 hr limit for experiments. We 521

do not include training time in our comparison as it required 522

only 2 hour on a single GPU and depends heavily on the 523

amount of data. Further, targeted applications of repeated 524

OMT solves occur on a weekly basis allowing for training 525

between invocations. 526

8 Results 527

In this section, we present our empirical results of existing 528

OMT tools, vZ, OptiMathSAT, Gurobi (ILP with Big M), 529

and Ashera. Our results show that Ashera scales to larger 530

problems, outperforming all three baselines by as much as 531

5x compared to the next best solver on the scheduling and 532

multi-agent TSP tasks. We compare performances with Par- 533

2 score, which is the solving time for solved instances and 534

two times timeout for unsolved ones. 535

8.1 Task Scheduling for Directed Acyclic Graphs 536

We generate a total of 43,596 similar DAG scheduling prob- 537

lems using the same problem encoding but varying the num- 538

ber of tasks and CPUs. We split up the evaluation based on 539

the number of tasks in the scheduling problem. For a realis- 540

tic setting, we consider two GPUs, and we have all the task 541

with the same expected runtime of 15 seconds and release 542

times of 2. This symmetry is notoriously difficult for tradi- 543

tional ILP solutions. To further make the instances compara- 544

ble and always feasible, we scale up the deadline as the num- 545

ber of tasks increase, and only have one randomly placed de- 546

pendency between two tasks in the taskset. All task within 547

a problem instance have the same deadline as reported in 548

Table 4. In this section, we only consider Ashera trained 549

and tested on the same number of tasks and defer analysis 550

Ashera’s ability to adapt to tasks sizes not seen in training in 551

Section 8.3. We use T = 1m for 10 tasks and default values 552

otherwise. 553

We report the performance of baseline solvers and Ashera 554

in Table 1 categorized by the number of tasks in the prob- 555

lem instance. The table indicates that existing baselines Op- 556

tiMathSAT has the best performance until 8 tasks while vZ 557

Table 1: OMT Solver Performance on Scheduling. We report
PAR-2 scores of process time to account for timeouts and
provide number of solved problems in parenthesis.

Number Average PAR-2 Score in Seconds (Number Solved in 1 hr)
of Tasks Gurobi vZ OptiMathSAT Ashera Ashera Cold-start

5 2.21 (20) 0.02 (20) 0.02 (20) 2.25 (20) 2.35 (20)
6 2.30 (20) 0.11 (20) 0.03 (20) 2.31 (20) 2.40 (20)
7 2.78 (20) 1.00 (20) 0.17 (20) 2.33 (20) 2.50 (20)
8 3.84 (20) 16.27 (20) 1.28 (20) 3.04 (20) 3.44 (20)
9 26.29 (20) 149.39 (20) 31.17 (20) 16.78 (20) 13.95 (20)
10 400.01 (20) 5246.23 (9) 841.21 (20) 135.97 (20) 181.34 (20)
11 3562.15 (15) 7200.00 (0) 7200.00 (0) 3204.00 (18) 2924.77 (18)

performs badly on 10 tasks. Gurobi however, continues to558

solve instances with 11 tasks where vZ and OptiMathSAT559

timeout. Ashera in contrast is 3x faster and solves three560

more problems than Gurobi on problems with 10 and 11561

tasks, respectively. The results demonstrates the effective-562

ness of Ashera when the problem size scales. This suggests563

the benefit of applying Ashera to large-scale real-world ap-564

plications, which typically have hundreds of variables.565

8.2 Multi-agent TSP566

In our multi-agent TSP benchmark, we generate 2500 in-567

stances of TSP with two clusters of waypoints arranged in a568

polygon, and additionally 22 problems for testing. We vary569

the distance between the center of the cluster and the ori-570

gin where the vehicles start and vary the radius of the poly-571

gon. For simplicity, we provide as many vehicles as there are572

clusters and ensure restrictions on weight are not constrain-573

ing. Additionally, the first waypoint is always the starting574

point for the vehicles.575

Table 2 shows Ashera outperforms all three baselines on576

the largest problems, solving faster than OptiMathSAT while577

Gurobi and vZ solve none. In Table 2, we report Ashera’s578

performance when trained on instances with the same num-579

ber of waypoints as those of the test set. We use C = 0.5580

and otherwise use default parameters.581

8.3 Cold-Start Ashera582

We ablate the learned component of Ashera and see that583

Ashera performs faster on scheduling problems with 5 to584

8 tasks. We attribute this to a 2 second overhead incurred585

in order to perform neural network inference on CPU and586

initialize Ray (Moritz et al. 2018). We leave for future587

work improvements afforded by hardware accelerators such588

as GPUs. Cold-start Ashera outperforms neural Ashera on589

scheduling problems with 11 tasks. For multi-agent TSP,590

Table 2 shows neural diving provides modest improvement591

compared to cold-start due to a larger number of variables592

and constraints. We note that Cold-start Ashera already out-593

performs or matches performances of the baselines.594

8.4 Neural Diver Performance595

One important aspect for neural-based solvers is its perfor-596

mance to transfer to similar but new problems. Specifically,597

0We generated scheduling benchmarks of 11 to 20 tasks but all
methods timeout with 1 hour at 11 tasks. Our benchmark contains
multi-agent TSP problems of 8 to 10 waypoints per cluster but all
methods timeout with 1 hour at 8 waypoints per cluster.

Table 2: OMT Solver Performance on Multi-Agent TSP. We
report PAR-2 scores of process time to account for timeouts
and provide number of solved problems in parenthesis.

Waypoints Average PAR-2 Score in Seconds (Number Solved in 1 hr)
per Cluster Gurobi vZ OptiMathSAT Ashera Ashera Cold-start

3 0.91 (22) 0.16 (22) 0.12 (22) 2.48(22) 3.93 (22)
4 76.51 (22) 0.80 (22) 0.94 (22) 4.51(22) 7.89 (22)
5 5154.00 (10) 5.74 (22) 7.85 (22) 20.50(22) 24.29 (22)
6 7200.00 (0) 7200.00 (0) 90.54 (22) 104.00(22) 102.91 (22)
7 7200.00 (0) 7200.00 (0) 919.26 (22) 754.33 (22) 793.88 (22)

Table 3: Ablation on Neural Diving. We both test perfor-
mance transfer to larger problems trained on smaller prob-
lems (Curriculum) and applying neural diving on existing
solvers (Neural Diver + Gurobi/OptiMathSAT).

Average PAR-2 score in Seconds (Number Solved in 1 hr)
Number Neural Diver Neural Diver Ashera Ashera
of Tasks + Gurobi + OptiMathSAT Curriculum

5 2.34 (20) 2.37 (20) 2.25 (20) -1

6 2.42 (20) 2.43 (20) 2.31 (20) 2.28 (20)
7 2.66 (20) 2.44 (20) 2.33 (20) 2.30 (20)
8 4.00 (20) 3.24 (20) 3.04 (20) 2.36 (20)
9 19.44 (20) 12.03 (20) 16.78 (20) 13.97 (20)

10 288.09 (20) 288.09 (20) 135.97 (20) 174.19 (20)
11 2649.02 (17) 5728.87 (9) 3204.00 (18) 3118.62(17)

we look at two settings: 1) the performance of Ashera when 598

tested on larger problems than seen in training, and 2) the 599

neural diver applied to Gurobi and OptiMathSAT. 600

Performance transfer to larger problems. In this setting, 601

Ashera is trained only on problems that are smaller than 602

the test-time number of task. On scheduling, Table 3 shows 603

Ashera performs comparably to when it is trained on the 604

same sized problems. On TSP, the performance is also com- 605

parable (see Appendix). This ablation indicates that Ashera 606

can be trained on smaller problems from the same family to 607

scale to larger problems of interest. 608

Neural Gurobi and Neural OptiMathSAT. We further 609

consider the performance of the learned neural diver on 610

Gurobi and OptiMathSAT. For this setting, we replace the 611

Ashera OMT engine with Gurobi or OptiMathSAT. As the 612

diver provides a Z3 verified upper bound on the cost, all 613

OMT solvers are compatible and can use the upper bound as 614

a hint. On problems with 11 tasks, OptiMathSAT can solve 615

9 problems compared to none before and Gurobi can solve 616

two additional problems. This demonstrates the use of neu- 617

ral guidance on OMT problems extends beyond our specific 618

solver design. 619

9 Conclusions 620

Our work presents Ashera, a neural OMT solver, which per- 621

forms up to 3x faster and solves three more problems than 622

the widely-used commercial solver, Gurobi, on problems 623

with 10 and 11 tasks, respectively. Traditional solvers, Op- 624

tiMathSAT and Z3, are unable to solve any problems of 11 625

tasks within 1 hour timeout. Further, Ashera is 18% faster 626

than OptiMathSAT on multiagent TSP with 15 waypoints, 627

where Gurobi and Z3 timeout. As OMT problems solved in 628

1We do not evaluate on 5 tasks as there are no smaller problems.

practice tend be solved on a regular basis, we make the case629

for learned-based OMT solver that train on a set of simi-630

lar problems encountered previously in the application or631

in simulation. We contribute benchmark of problem fami-632

lies including DAG task scheduling and multi-agent TSP for633

evaluating learning-based OMT solvers.634

10 Acknowledgements635

This research is supported in part by NSF CISE Expedi-636

tions Award CCF-1730628, NSF NRI #2024675 and under637

the NSF AI4OPT Center. UC Berkeley research is also sup-638

ported by gifts from Alibaba, Amazon Web Services, Ant639

Financial, CapitalOne, Ericsson, Meta, Futurewei, Google,640

Intel, Microsoft, Nvidia, Sco tiabank, Splunk and VMware.641

References642

Balcan, M.; Dick, T.; Sandholm, T.; and Vitercik, E. 2018.643

Learning to Branch. CoRR, abs/1803.10150.644

Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.645

2009. Satisfiability Modulo Theories. In Biere, A.; van646

Maaren, H.; and Walsh, T., eds., Handbook of Satisfiability,647

chapter 26, 825–885. IOS Press.648

Beauchemin, M. 2014. Apache Airflow.649

Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,650

S. 2016. Neural combinatorial optimization with reinforce-651

ment learning. arXiv preprint arXiv:1611.09940.652

Bertolissi, C.; Dos Santos, D. R.; and Ranise, S. 2018. Solv-653

ing multi-objective workflow satisfiability problems with654

optimization modulo theories techniques. In Proceedings655

of the 23nd ACM on Symposium on Access Control Models656

and Technologies, 117–128.657

Bjørner, N.; Phan, A.-D.; and Fleckenstein, L. 2015. νZ -658

An Optimizing SMT Solver. In Baier, C.; and Tinelli, C.,659

eds., Tools and Algorithms for the Construction and Analy-660

sis of Systems, 194–199. Berlin, Heidelberg: Springer Berlin661

Heidelberg. ISBN 978-3-662-46681-0.662

De Moura, L.; and Bjørner, N. 2008. Z3: An efficient663

SMT solver. In International conference on Tools and Algo-664

rithms for the Construction and Analysis of Systems, 337–665

340. Springer.666

Dutertre, B.; and De Moura, L. 2006. The yices smt solver.667

Tool paper at http://yices. csl. sri. com/tool-paper. pdf, 2(2):668

1–2.669

Fan, W.; Ma, Y.; Li, Q.; Wang, J.; Cai, G.; Tang, J.; and Yin,670

D. 2022. A Graph Neural Network Framework for Social671

Recommendations. IEEE Transactions on Knowledge and672

Data Engineering, 34(5): 2033–2047.673

Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and674

Lodi, A. 2019. Exact combinatorial optimization with675

graph convolutional neural networks. arXiv preprint676

arXiv:1906.01629.677

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and678

Dahl, G. E. 2017. Neural message passing for quantum679

chemistry. In International conference on machine learn-680

ing, 1263–1272. PMLR.681

Gog, I.; Kalra, S.; Schafhalter, P.; Gonzalez, J. E.; and Sto- 682

ica, I. 2022. D3: A Dynamic Deadline-Driven Approach 683

for Building Autonomous Vehicles. In Proceedings of the 684

Seventeenth European Conference on Computer Systems, 685

453–471. Association for Computing Machinery. 686

Gurobi Optimization, LLC. 2021. Gurobi Optimizer Refer- 687

ence Manual. 688

Henry, J.; Asavoae, M.; Monniaux, D.; and Maı̈za, C. 2014. 689

How to Compute Worst-Case Execution Time by Optimiza- 690

tion modulo Theory and a Clever Encoding of Program Se- 691

mantics. LCTES ’14, 43–52. Association for Computing 692

Machinery. 693

Hopfield, J. J.; and Tank, D. W. 2004. “Neural” computation 694

of decisions in optimization problems. Biological Cybernet- 695

ics, 52: 141–152. 696

Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen- 697

derfer, M. J. 2017. Reluplex: An efficient SMT solver for 698

verifying deep neural networks. In International conference 699

on computer aided verification, 97–117. Springer. 700

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi- 701

fication with graph convolutional networks. arXiv preprint 702

arXiv:1609.02907. 703

Kovásznai, G.; Biró, C.; and Erdélyi, B. 2017. Generating 704

Optimal Scheduling for Wireless Sensor Networks by Using 705

Optimization Modulo Theories Solvers. In SMT, 15–27. 706

Leino, K. R. M. 2010. Dafny: An automatic program verifier 707

for functional correctness. In International conference on 708

logic for programming artificial intelligence and reasoning, 709

348–370. Springer. 710

Leofante, F.; Ábrahám, E.; Niemueller, T.; Lakemeyer, G.; 711

and Tacchella, A. 2017. On the synthesis of guaranteed- 712

quality plans for robot fleets in logistics scenarios via opti- 713

mization modulo theories. In 2017 IEEE International Con- 714

ference on Information Reuse and Integration (IRI), 403– 715

410. IEEE. 716

Manolios, P.; Pais, J.; and Papavasileiou, V. 2015. The Inez 717

Mathematical Programming Modulo Theories Framework. 718

In Kroening, D.; and Păsăreanu, C. S., eds., Computer Aided 719

Verification, 53–69. Springer International Publishing. 720

Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.; Songhori, 721

E.; Wang, S.; Lee, Y.-J.; Johnson, E.; Pathak, O.; Bae, S.; 722

et al. 2020. Chip placement with deep reinforcement learn- 723

ing. arXiv preprint arXiv:2004.10746. 724

Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; 725

Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M. I.; and 726

Stoica, I. 2018. Ray: A Distributed Framework for Emerging 727

AI Applications. In 13th USENIX Symposium on Operating 728

Systems Design and Implementation (OSDI 18), 561–577. 729

Moura, L. d.; and Bjørner, N. 2008. Z3: An efficient SMT 730

solver. In International conference on Tools and Algo- 731

rithms for the Construction and Analysis of Systems, 337– 732

340. Springer. 733

Nair, V.; Bartunov, S.; Gimeno, F.; von Glehn, I.; Lichocki, 734

P.; Lobov, I.; O’Donoghue, B.; Sonnerat, N.; Tjandraat- 735

madja, C.; Wang, P.; et al. 2020. Solving Mixed In- 736

teger Programs Using Neural Networks. arXiv preprint 737

arXiv:2012.13349. 738

Sebastiani, R.; and Trentin, P. 2015. OptiMathSAT: A Tool739

for Optimization Modulo Theories. In Kroening, D.; and740

Păsăreanu, C. S., eds., Computer Aided Verification, 447–741

454. Springer International Publishing.742

Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;743

and Dill, D. L. 2019. Learning a SAT Solver from Single-Bit744

Supervision. In 7th International Conference on Learning745

Representations, ICLR 2019, New Orleans, LA, USA, May746

6-9, 2019.747

Wu, Y.; Song, W.; Cao, Z.; and Zhang, J. 2021a. Learn-748

ing Large Neighborhood Search Policy for Integer Program-749

ming. In Advances in Neural Information Processing Sys-750

tems.751

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu,752

P. S. 2021b. A Comprehensive Survey on Graph Neural Net-753

works. IEEE Transactions on Neural Networks and Learn-754

ing Systems, 32(1): 4–24.755

Yang, Z.; Chiang, W.-L.; Luan, S.; Mittal, G.; Luo, M.; and756

Stoica, I. 2022. Balsa: Learning a query optimizer without757

expert demonstrations. arXiv preprint arXiv:2201.01441.758

Zhu, H.; Gupta, V.; Ahuja, S. S.; Tian, Y.; Zhang, Y.; and759

Jin, X. 2021. Network Planning with Deep Reinforcement760

Learning. In Proceedings of the 2021 ACM SIGCOMM761

2021 Conference, SIGCOMM ’21, 258–271. Association762

for Computing Machinery.763

Appendix A764

A.1 DAG Scheduling with Deadlines765

The scheduling problem belongs to a widely applicable fam-766

ily of scheduling problems. It requires discovering the opti-767

mal placement of tasks to resources as well as assigning start768

times to tasks. Further, assignments must satisfy constraints769

on both resources and dependencies between tasks. We de-770

sire to maximize slack – the buffer time before the deadline771

that a task is expected to complete. As such it’s often non-772

trivial to find any feasible schedule, much less an optimal773

one.774

This family of problems appears in both the workflow775

management platform Apache Airflow (Beauchemin 2014)776

and in the DAG scheduler used for the dynamic deadline-777

driven execution model for self driving (Gog et al. 2022).778

We consider a set of N tasks, T = {ti|i ∈ [1, N]}, and a779

dependency matrix M where Mij = 1 if ti must complete780

before tj otherwise 0. We further consider a set of deadlines781

and expected runtimes denoted as di and ei, respectively.782

In addition to runtime, we also consider resource require-783

ments and placements. We denote ri to be 1 if ti requires a784

GPU and 0 otherwise.785

We seek to optimize with respect to two sets of variables786

si and pi which denote the start time and placement of ti. Let787

NG and NC be the number of GPUs and CPUs, respectively.788

We encode pi = k to be in [1, NG] if it’s placed on the kth789

GPUs of NG and (k−NG)
th CPU if it’s in [NG, NG+NC].790

Our cost objective is

N∑
i=0

di − (si + ei)

with the following constraints:791

• Basic constraints. For all i, 0 ≤ si and 0 < pi.792

• Finish before deadline. For all i, si + ei ≤ di.793

• Placement constraints. For all i, if ri = 1, 1 ≤ pi ≤794

NG. Otherwise, ri = 0, 1 ≤ pi ≤ NG +NC .795

• Dependency Respecting. For all i, j, if Mij = 1, si +796

ei ≤ sj .797

• Exclusion. For all i, j, pi = pj =⇒ (si + ei ≤ sj ∨798

sj + ej ≤ si).799

Big M for Scheduling. Unfortunately, the exclusion con-800

straint requires a disjunction. In order to compare against801

ILP solvers, we use the Big M strategy as presented in 2. We802

introduce an additional two variables per pair of tasks i, j to803

1) choose if task i and task j utilize the same resources and804

2) choose if task i completes execution before task j begins805

or vice versa. We provide the Big M version of the exclusion806

constrain in Appendix A.3.807

A.2 Multi-Agent Traveling Salesman Problem808

The multi-agent Traveling Salesman Problem (TSP) appears
in practical route planning applications including package
deliveries in warehouse operations. A multi-agent TSP is
specified by the distances between the W waypoints and the
number of vehicles V . In this problem, the optimizer must

find an ordering oi in which waypoint, i, is visited by vehi-
cle, vi. We denote the starting waypoint as s. Our objective
is to minimize the sum of the times ti when a waypoint is
visited:

N∑
i=0

ti

Due to space constraints, we highlight the following con- 809

straints and present the full encoding for multi-agent TSP in 810

Appendix A.4: 811

• Visited. All waypoints w must be visited by at least one 812

vehicle. 813

• Deterministic. After visiting a waypoint, w, a vehicle 814

visits at most one waypoint w′ immediately afterwards. 815

• Ordering. The starting waypoint has os = 0. For all 816

waypoints, w, visited in order, ow, the waypoint’s prede- 817

cessor pw must have order opw
= ow − 1. This prevents 818

tours that do not include the starting point. 819

• Weight Constraint. The sum of the weights of the ve- 820

hicles is less than a given value M . 821

• Visit Time. For all waypoints w, the visit time tw if ve- 822

hicle vw visits it is at least the tpw
+ τv,p,w where tp is 823

the time when the preceding waypoint was visited and τ 824

is the travel time from p to w by vehicle v. 825

• Exclusion. If vehicle v is traveling from w to w′ from tw 826

to tw′ , there cannot be a waypoint w′′ visited by v while 827

it’s traveling. 828

A.3 Big M for multi-agent TSP. 829

We again use the Big M encoding to encode disjunctions.
The most complex disjunction requiring the disjunction of
conjunctions is the ordering condition for a waypoint w:∨

w′∈W,v∈V

Mv,w′,w ∧ (ow′,v = ow,v − 1)

In the disjunction of conjuncts, all the inequalities in the con- 830

juct share the same choice variable, ensuring that all con- 831

straints in the disjunctive case hold simultaneously if cho- 832

sen. 833

Big M Exclusion Constraint We use Big M to encode the
exclusion constraint for MILP. The implication

pi = pj =⇒ (si + ei ≤ sj ∨ sj + ej ≤ si)

can be encoded as
(pi < pj) ∨ (pj < pi) ∨ (si + ei ≤ sj) ∨ (sj + ej ≤ si).

By creating two binary variables αi,j and βi,j per con- 834

straint, we introduce the following constraints in replace- 835

ment using Big M: 836

• Case 1 (αi,j = 0, βi,j = 0) :
pi − pj < Mαi,j +Mβi,j

• Case 2 (αi,j = 0, βi,j = 1) :
pj − pi < Mαi,j +M(1− βi,j)

• Case 3 (αi,j = 1, βi,j = 0) :
si + ei − sj ≤ M(1− αi,j) +Mβi,j

• Case 4 (αi,j = 1, βi,j = 0) :
sj + ej − si ≤ M(1− αi,j) +M(1− βi,j)

A.4 Multi-Agent Traveling Salesman Problem837

Full Encoding838

The multi-agent traveling salesman problem can be defined839

as an optimization problem where the aggregation over the840

time when the waypoints are visited is minimized.841

We index the vehicles and waypoints respectively from842

0 to |V | − 1 and |W | − 1, where V and W are the set of843

vehicles and waypoints and |·| denotes the cardinality of a844

set. The constraints are defined over the following variables:845

• uv - whether or not a vehicle is being used846

• Mv,w,w′ - a Boolean 3D array indicating if vehicle v847

travels from waypoint w to waypoint w′848

• pw - the preceding waypoint from which the vehicle vis-849

its w850

• xw - the vehicle that visits waypoint w851

• h - starting waypoint852

• ow - order that waypoint w is visited by a vehicle v. Note853

that this is an ordering per vehicle not globally for all854

vehicles.855

• tw - the time when waypoint w is visited856

• mmax - total mass allowed857

We get the following constants from an oracle.858

• τv,w,w′ - time for agent v to travel from w to w’859

• cv,w,w′ - energy consumption860

• γv - vehicle weight.861

Our optimization seeks to minimize the aggregated time862

t when the waypoints are visited under the following con-863

straints:864

1. Each waypoint except the harbor must be visited by a
vehicle:

∀w′ ∈ W \ {h}.
∑

v∈V,w∈W

Mv,w,w′ = 1

The harbor has to be visited by the vehicles that are used.

∀v ∈ V.
∑
w∈W

Mv,w,h = uv

2. From one waypoint only one other waypoint is visited865

next (determinism), and according to fixed order:866

∀w ∈ W \ {h}.
∑

v∈V,w′∈W\{h}

Mv,w,w′ = 1

Vehicles that are used should leave the harbor.

∀v ∈ V.
∑

w′∈W

Mv,h,w′ = uv

3. No self loop allowed.

∀v ∈ V,w ∈ W.Mv,w,w

4. If a point has order o then it must have been reach from
another point with order o − 1. For the harbor starting
point we have,

∀v ∈ V. oh,v = 0

for ow,v where v is unused we similarly constrain it to be 867

zero: 868

∀w ∈ W \ {h}, v ∈ V .

(ow,v = 0) ∨
∨

w′∈W

Mv,w,w′

and also 869

∀w ∈ W \ {h}.∨
w′∈W,v∈V

(Mv,w′,w ∧ ow′,v = ow,v − 1)

5. For each waypoint w, a vehicle must visit another way-
point w′ from w if it travels from some waypoint w′′ to
w:

∀v ∈ V,w ∈ W.

(
∑

w′′∈W

Mv,w′′,w = 1 →
∑

w′∈W

Mv,w,w′ = 1)

6. Constraint for pw:

∀w ∈ W. pw =
∑

v∈V,w′∈W

w′ ·Mv,w′,w

7. Constraint for xw:

∀w ∈ W. xw =
∑

v∈V,w′∈W

v ·Mv,w′,w

8. A vehicle is used when:

∀v ∈ V .(uv ↔
∨

w,w′∈W

Mv,w,w′)

9. The total weight is less than a given value:∑
v∈V

uv · γv < mmax

10. The total time each agent takes is equal to t, which is in
the minimization problem:∑

v∈V,w∈W,w′∈W\{h}

Mv,w,w′ · τv,w,w′ = t

A.5 Literal Dropping 870

To further improve performance, we recognize that literals 871

can be dropped safely if the formula is expressed as nega- 872

tion normal form (NNF), in which the negation operator is 873

only applied to atoms and the only allowed Boolean opera- 874

tors are conjunction and disjunction. We formally state the 875

observation as follows. 876

Observation 1. Given a satisfying assignment A to an SMT 877

formula ϕ in NNF over LIA, let L+ and L− be the sets of true 878

and false (theory) literal that appear in ϕ by applying A. 879

Literals l ∈ L+ define a valid solution space for variables 880

in ϕ. That is, l ∈ L− can be dropped while maintaining 881

soundness. 882

Proof. First, observe that removing false literals l ∈ L− in883

an NNF ϕ does not affect the satisfiability of ϕ (for l ∈ L+884

alone satisfies ϕ). Thus, passing L+ to an LIA theory solver,885

any solution returned by the theory solver must satisfy l ∈886

L+ and hence will satisfy ϕ.887

Moreover, since L+ ∪ L− imposes more constraints than888

L+ does, the optimal value found in L+ can be greater (resp.889

smaller) than that found in L+∪L− when maximizing (resp.890

minimizing) an objective. This allows us to push bounds891

even further in the ILP solving phase.892

Summary of Benchmarks Table 4 and Table 5 provide a893

summary of the number of variables and constraints for each894

size of problem in DAG scheduling and multiagent TSP, re-895

spectively.896

Table 4: Scheduling Benchmark Summary.

Number Number of Number of Average Average Deadline
of Tasks2 Training Cases Test Cases Variable Count Constraint Count

5 811 20 16 48 50
6 1459 20 19 63 57
7 2383 20 22 80 65
8 3630 20 25 99 72
9 5250 20 28 120 80

10 7291 20 31 143 87
11 9801 20 - - -
12 12831 20 - - -

Table 5: Multi-Agent TSP Benchmark Summary.

Waypoints Number of Number of Average Average
per Cluster Training Cases Test Cases Variable Count Constraint Count

3 2500 22 137 428
4 2500 22 211 654
5 2500 22 301 928
6 2500 22 401 1250
7 2500 22 519 1620
8 2500 22 - -

A.6 Hardware Setup and Software Versions897

For evaluation, we used c5.xlarge AWS cloud instances,898

which have 3.0 GHz Intel Xeon Platinum processors with899

4 vCPUs and 8 GiB of RAM. For training, we used two900

Quadro GV100 GPUs with 32GB GPU Memory. We imple-901

mented parallel assignment search using Ray 1.10 (Moritz902

et al. 2018), a distributed programming framework. Our903

evaluation uses the following solver versions as base-904

lines: Gurobi v9.5.1 (Gurobi Optimization, LLC 2021), Z3905

4.8.16 (De Moura and Bjørner 2008), and OptiMathSAT906

1.7.3 (Sebastiani and Trentin 2015). The same version of907

Gurobi is used for Logical Neighborhood Search and like-908

wise of Z3 as the verifier in completing partial assignments909

and verifying soundness in the OMT engine.910

A.7 Implementation details of diver.911

KL divergence. We use the KL divergence to compare our912

learned distribution from a uniform distribution over the al-913

lowed variables values. We use static analysis to extract sin-914

gle variable inequalities (k < x) to obtain simple upper and915

lower bounds.916

If the learned distribution is similar to this restricted uni-917

form distribution it is likely the variable is symmetric in the918

data and an assignment to the variable is likely to precipitate 919

simpler subproblems. 920

Parallel search. To augment the parallel search, we addi- 921

tionally ran a thread that simply ran the OMT engine in par- 922

allel with the diving exploration. This way if the problem is 923

small and easy to solve, the solver will not be penalized to 924

severely for diving. 925

The diver on the other hand explored up to 5 partial as- 926

signments at a time as sampled from the generative model. 927

This pool of partial assignments always includes the highest 928

probability partial assignment. This assignment is gotten by 929

taking the highest probability class from generative model 930

using an argmax. We found this practically useful as this as- 931

signment is an often promising partial assignment but as the 932

number of predicted variables increases the odds of getting 933

this particular sample decreases. 934

