
Generative Models of Images and Neural Networks

Bill Peebles

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-108

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-108.html

May 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Generative Models of Images and Neural Networks

By

William Smith Peebles

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alexei A. Efros, Chair
Professor Jitendra Malik
Professor Sergey Levine

Professor Antonio Torralba

Spring 2023

Generative Models of Images and Neural Networks

Copyright 2023
by

William Smith Peebles

1

Abstract

Generative Models of Images and Neural Networks

by

William Smith Peebles

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

Large-scale generative models have fueled recent progress in artificial intelligence.
Armed with scaling laws that accurately predict model performance as invested
compute increases, NLP has become the gold standard for all disciplines of AI.
Given a new task, pre-trained generative models can either solve it zero-shot or be
efficiently fine-tuned on a small amount of task-specific training examples. However,
the widespread adoption of generative models has lagged in other domains—such as
vision and meta-learning. In this thesis, we study ways to train improved, scalable
generative models of two modalities—images and neural network parameters. We
also examine how pre-trained generative models can be leveraged to tackle additional
downstream tasks.

We begin by introducing a new, powerful class of generative models—Diffusion
Transformers (DiTs). We show that transformers—with one small yet critically-
important modification—retain their excellent scaling properties for diffusion-based
image generation and outperform convolutional neural networks that have previously
dominated the area. DiT outperforms all prior generative models on the class-
conditional ImageNet generation benchmark.

Next, we introduce a novel framework for learning to learn based on building
generative models of a new data source—neural network checkpoints. We create
datasets containing hundreds of thousands of deep learning training runs and use it

2

to train generative models of neural network checkpoints. Given a starting parameter
vector and a target loss, error or reward, loss-conditional diffusion models trained on
this data can sample parameter updates that achieve a desired metric. We apply
our framework to problems in vision and reinforcement learning.

Finally, we explore how pre-trained image-level generative models can be used
to tackle downstream tasks in vision without requiring task-specific training data.
We show that pre-trained GAN generators can be used to create an infinite data
stream to train networks for the dense visual correspondence problem—without
requiring any human-annotated supervision like keypoints. Networks trained on
this completely GAN-generated data generalize zero-shot to real images, and they
outperform previous self-supervised and keypoint-supervised approaches that train
on real data.

i

To my parents and brother

ii

Contents

List of Figures iv

List of Tables ix

Acknowledgments x

1 Introduction 1

2 Scalable Diffusion Models with Transformers 3
2.1 Introduction . 3
2.2 Related Work . 5
2.3 Diffusion Transformers . 7

2.3.1 Preliminaries . 7
2.3.2 Diffusion Transformer Design Space 8

2.4 Experimental Setup . 13
2.5 Experiments . 14

2.5.1 State-of-the-Art Diffusion Models 18
2.5.2 Scaling Model vs. Sampling Compute 19

2.6 Conclusion . 19

3 Learning to Learn with Generative Models of Neural Network
Checkpoints 24
3.1 Introduction . 24
3.2 Generative Pre-training from Neural Network Checkpoints 26

3.2.1 A Dataset of Neural Network Checkpoints 26
3.2.2 Generative Models of Neural Network Checkpoints 27

3.3 Implementation Details . 30
3.4 Experiments . 32

3.4.1 Comparison to Hand-Designed Optimizers 32
3.4.2 Prompting for Losses, Errors and Returns 33

Contents iii

3.4.3 Generalization to Out-of-Distribution Initializations 33
3.4.4 Scaling Model and Data Size 34
3.4.5 Diversity of Generated Parameters 35
3.4.6 Dataset Design Decisions . 35

3.5 Memorization Versus Generalization 36
3.6 Related Work . 38

3.6.1 Pre-training from Large-Scale Data 38
3.6.2 Learning to Learn . 38

3.7 Discussion . 39

4 Perception from Pre-trained Generative Models 40
4.1 Introduction . 40
4.2 Related Work . 42
4.3 GAN-Supervised Learning . 43

4.3.1 Dense Visual Alignment . 43
4.3.2 Joint Alignment and Clustering 46

4.4 Experiments . 47
4.4.1 Propagation from Congealed Space 48
4.4.2 Direct Image-to-Image Correspondence 51
4.4.3 Automated GAN Dataset Pre-Processing 53

4.5 Limitations and Discussion . 55

5 Discussion 56

Bibliography 58

iv

List of Figures

2.1 Diffusion models with transformer backbones achieve state-of-
the-art image quality. We show selected samples from two of our
class-conditional DiT-XL/2 models trained on ImageNet at 512×512 and
256×256 resolution, respectively. 4

2.2 ImageNet generation with Diffusion Transformers (DiTs). Bubble
area indicates the flops of the diffusion model. Left: FID-50K (lower
is better) of our DiT models at 400K training iterations. Performance
steadily improves in FID as model flops increase. Right: Our best model,
DiT-XL/2, is compute-efficient and outperforms all prior U-Net-based
diffusion models, like ADM and LDM. 5

2.3 The Diffusion Transformer (DiT) architecture. Left: We train
conditional latent DiT models. The input latent is decomposed into
patches and processed by several DiT blocks. Right: Details of our DiT
blocks. We experiment with variants of standard transformer blocks that
incorporate conditioning via adaptive layer norm, cross-attention and
extra input tokens. Adaptive layer norm works best. 6

2.4 Input specifications for DiT. Given patch size p×p, a spatial represen-
tation (the noised latent from the VAE) of shape I × I ×C is “patchified"
into a sequence of length T = (I/p)2 with hidden dimension d. A smaller
patch size p results in a longer sequence length and thus more Gflops. . . 9

2.5 Comparing different conditioning strategies. adaLN-Zero outper-
forms cross-attention and in-context conditioning at all stages of training. 10

2.6 Scaling the DiT model improves FID at all stages of training. We
show FID-50K over training iterations for 12 of our DiT models. Top row:
We compare FID holding patch size constant. Bottom row: We compare
FID holding model size constant. Scaling the transformer backbone yields
better generative models across all model sizes and patch sizes. 12

List of Figures v

2.7 Increasing transformer forward pass Gflops increases sample
quality. Best viewed zoomed-in. We sample from all 12 of our DiT models
after 400K training steps using the same input latent noise and class label.
Increasing the Gflops in the model—either by increasing transformer
depth/width or increasing the number of input tokens—yields significant
improvements in visual fidelity. 15

2.8 Transformer Gflops are strongly correlated with FID. We plot
the Gflops of each of our DiT models and each model’s FID-50K after
400K training steps. 16

2.9 DiT scaling behavior on several generative modeling metrics.
Left: We plot model performance as a function of total training compute
for FID, sFID, Inception Score, Precision and Recall. Right: We plot
model performance at 400K training steps for all 12 DiT variants against
transformer Gflops, finding strong correlations across metrics. All values
were computed using the ft-MSE VAE decoder. 17

2.10 Larger DiT models use large compute more efficiently. We plot
FID as a function of total training compute. 18

2.11 Scaling-up sampling compute does not compensate for a lack of
model compute. For each of our DiT models trained for 400K iterations,
we compute FID-10K using [16, 32, 64, 128, 256, 1000] sampling steps.
For each number of steps, we plot the FID as well as the Gflops used to
sample each image. Small models cannot close the performance gap with
our large models, even if they sample with more test-time Gflops than
the large models. 19

2.12 DiT-XL/2 samples. Classifier-free guidance scale = 4.0 Label = “arctic
wolf" (270) Resolution = 512× 512 . 20

2.13 DiT-XL/2 samples. Classifier-free guidance scale = 4.0 Label =
“sulphur-crested cockatoo" (89) Resolution = 512× 512 20

2.14 DiT-XL/2 samples. Classifier-free guidance scale = 4.0 Label = “cliff
drop-off" (972) Resolution = 512× 512 21

2.15 DiT-XL/2 samples. Classifier-free guidance scale = 4.0 Label = “bal-
loon" (417) Resolution = 512× 512 . 21

List of Figures vi

3.1 Generative pre-training from checkpoints. Left: We build a dataset
of neural network checkpoints from many training runs. Each checkpoint
includes the neural network’s parameters and relevant metadata (test
losses and test errors for supervised learning tasks, returns for RL tasks).
Right: G.pt, a generative model of checkpoints. G.pt takes a param-
eter vector and a loss/error/return prompt as input and predicts the
distribution over updated parameters that achieve the prompt. 25

3.2 The G.pt architecture. During training, we sample two checkpoints
from the same run—a “starting" network’s parameters and a “future" net-
work’s parameters from later in the run—as well as their losses/errors/returns.
Each layer’s parameters are flattened and linearly encoded. The future
network’s parameters are noised via a diffusion forward process prior to
encoding. 28

3.3 G.pt optimizes unseen network parameters in one step. We
compare performance after a single update from G.pt versus a single step
of gradient-based optimizers. Error bars are computed over five input
parameter vectors, all of which are randomly-initialized. 30

3.4 Optimization curves. We compare one step of G.pt optimization to
training curves produced by SGD and Adam. Error bars are computed
over five initializations. 31

3.5 Achieved returns, losses and errors across a range of input G.pt
prompts. G.pt can train unseen neural network parameters to a range of
desired values in one update. Each blue curve corresponds to a different
randomly-initialized input parameter vector. We also show the best value
of each metric present in the training split of the checkpoint dataset. . . 32

3.6 G.pt generalizes to out-of-distribution parameter initializations.
We query G.pt with randomly-initialized weights sampled from a different
distribution than those in our MNIST checkpoint dataset. By recursively
applying G.pt to its own output and prompting for low test error, we
rapidly optimize out-of-distribution random initializations. 34

3.7 G.pt Scaling. 35
3.8 G.pt learns a multimodal distribution over local error minima.

We visualize the test error landscape for an MNIST MLP via parameter
space PCA directions [1]. The dots are samples from G.pt when prompted
for low test error; the two plots use different MLP initializations. With
fixed inputs, G.pt samples diverse solutions that cover distinct positive-
curvature regions of the error landscape. We show G.pt samples that
reconstruct accurately from PCA encoding. 36

List of Figures vii

3.9 G.pt predictions on held-out (unseen) random initializations tend
to lie closer to the ground truth outcome of SGD/Adam than
any parameter vector from our checkpoint dataset’s training
split. For each test run in our dataset, we feed the initial parameters
and a metric prompt to G.pt, and we sample a prediction. We count the
percentage of runs for which the prediction is closer to one of the 200
checkpoints in that same test run than all checkpoints in the training
split (Cartpole has 10M training split checkpoints, CIFAR-10 has 11.3M
and MNIST has 2.1M). Each plot corresponds to a different G.pt model,
and we repeat the test for a wide range of prompts. 37

4.1 Given an input dataset of unaligned images, our GANgealing algorithm
discovers dense correspondences between all images. Top row: Images
from LSUN Cats and the dataset’s average image. Second row: Our
learned transformations of the input images. Third row: Dense corre-
spondences learned by GANgealing. Bottom row: By annotating the
average transformed image, we can propagate user edits to images and
videos. Please see our project page for detailed video results:
www.wpeebles.com/gangealing. 41

4.2 GANgealing Overview. We first train a generator G on unaligned data.
We create a synthetically-generated dataset for alignment by learning a
mode c in the generator’s latent space. We use this dataset to train a
Spatial Transformer Network T to map from unaligned to corresponding
aligned images using a perceptual loss [2]. The Spatial Transformer
generalizes to align real images automatically. 44

4.3 Dense correspondence results on eight datasets. For each dataset,
the top row shows unaligned images and the dataset average image. The
middle row shows our learned alignment of the input images. The bottom
row shows dense correspondences between the images. For our clustering
models (LSUN Horses and Cars), we show results for one selected cluster. 48

4.4 Image editing with GANgealing. By annotating just a single image
per-category (our average transformed image), a user can propagate their
edits to any image or video in the same category. 49

4.5 PCK@αbbox on various SPair-71K categories for αbbox between
10−1 and 10−2. We report the average threshold (maximum distance
for a correspondence to be deemed correct) in pixels for 256×256 images
beneath each plot. GANgealing outperforms state-of-the-art supervised
methods for very precise thresholds (< 2 pixel error tolerance), sometimes
by substantial margins. 50

www.wpeebles.com/gangealing

List of Figures viii

4.6 GANgealing alignment improves downstream GAN training. We
show random, untruncated samples from StyleGAN2 trained on LSUN
Cats versus our aligned LSUN Cats (both models trained from scratch).
Our method improves visual fidelity. 53

4.7 Various failure modes: significant out-of-plane rotation and complex
poses poorly modeled by GANs. 55

ix

List of Tables

2.1 Details of DiT models. We follow ViT [3] model configurations for the
Small (S), Base (B) and Large (L) variants; we also introduce an XLarge
(XL) config as our largest model. 11

2.2 Benchmarking class-conditional image generation on ImageNet
256×256. DiT-XL/2 achieves state-of-the-art FID. 23

2.3 Benchmarking class-conditional image generation on ImageNet
512×512. Note that prior work [4] measures Precision and Recall using
1000 real samples for 512× 512 resolution; for consistency, we do the same. 23

4.1 PCK-Transfer@αbbox = 0.1 results on SPair-71K categories (test
split). 52

4.2 PCK-Transfer@0.1 on CUB. Numbers for the 3D methods are reported
from [5]. We sample 10,000 random pairs from the CUB validation split
as in [5]. 54

4.3 GANgealing ablations for LSUN Cats. We evaluate on SPair-71K
Cats using αbbox = 0.1. SSL refers to using a self-supervised VGG-16 as
the perceptual loss ℓ. N refers to the number of W space PCA coeffi-
cients learned when optimizing c. Note that the LSUN Cats StyleGAN2
generator has 14 layers. 54

x

Acknowledgments

I am extremely fortunate to have been able to dive into AI research at Berkeley
for four years, especially during a time of such rapid progress. Nobody has made
those four years more fulfilling and fun than my advisor, Alyosha Efros. Alyosha’s
enthusiasm is infectious; every three hour chat with him feels like 20 minutes and
gets me excited to jump back into my research. I will always look back fondly on our
debates over the power and limits of generative modeling (we’ll see who ends up being
right!). Alyosha has exquisite taste in Trader Joes snacks and paper introductions
alike. He is selfless, prioritizing his students’ well-being above all else. I’m so grateful
for all of his guidance over the years. Actually, I think the existence of Alyosha
disproves his claim that everything is “just nearest neighbor mumbo jumbo"; he is a
one-of-a-kind advisor, and he definitely has no nearby neighbors!

I am so grateful to Antonio Torralba for taking me on as an undergrad at MIT
and giving me complete leeway to pursue any research idea I was excited about.
During my time at MIT, the highlight of every week was meeting with Antonio;
whatever crazy idea I had in mind, Antonio would dive into the technical details to
help make it happen and give encouraging advice.

I couldn’t have asked for a better mentor at MIT than Jun-Yan Zhu who was
Antonio’s postdoc at the time. I was ecstatic when Antonio mentioned that Jun-Yan
was starting a postdoc in his group and we could work on a project together. His
Pix2Pix and CycleGAN papers inspired my early interest in generative models. As a
mentor, Jun-Yan showed me the ropes of deep learning and shaped how I do research
from scratch. He was accessible, kind, patient and gave fantastic research advice. I
seriously hit the jackpot with him as a mentor and friend. A big thanks as well to
David Bau and Sanja Fidler for being phenomenal mentors during my MIT days.

I did three internships during my time at Berkeley (two at Adobe Research
and one at FAIR), and I had great mentors each time. Thanks to Eli Shechtman
and Richard Zhang for being awesome collaborators at Adobe; they made the two
internships exciting and rewarding despite the pandemic. Another big thanks to
Saining Xie, my mentor at FAIR. Saining helped me develop more methodical
research habits, and it was very exciting to work together on DiT, a project that was

Acknowledgments xi

at the exact intersection of our interests (generative modeling and scalable vision).
I’m very grateful to many Berkeley faculty members who have given me great

advice (on research and life): Jitendra Malik, Sergey Levine, Pieter Abbeel, Trevor
Darrell, Angjoo Kanazawa and Ren Ng. I’m also thankful to my fellow Berkeley
PhD students and postdocs for great conversations and support over the years. To
list just a few individuals: Anastasios Angelopoulos, Medhini Narasimhan, Hang
Gao, Karttikeya Mangalam, Taesung Park, Allan Jabri, Boyi Li, Evonne Ng, Ajay
Jain, Amir Bar, Jathushan Rajasegaran, Shiry Ginosar, Michael Janner, Aravind
Srinivas, Rudy Corona, Olivia Watkins, Shubham Goel, Ruilong Li, Suzie Petryk,
Assaf Shocher, Aleksander Holynski, Matt Tancik, Dave Epstein, Yu Sun, Jasmine
Collins, Ashish Kumar, Yossi Gandelsman, Toru Lin, Vongani Maluleke, Sasha
Sax, Georgios Pavlakos, Vickie Ye and Ethan Weber. A massive thanks as well to
Jean Nguyen and Angie Abbatecola; I would not be able to graduate without their
invaluable help navigating BAIR and Berkeley.

I’d like to give a special shout-out to Ilija Radosavovic, Tete Xiao and Tim Brooks
for being amazing friends and fellow PhD students over the past few years. As the
pandemic was clearing-up, I got dinner with Ilija and Tete almost everyday, and our
research discussions were super valuable. Our dinner conversations and debates on
scaling, meta-learning, FLOPs, etc. strongly influenced my later research. They are
the best collaborators anybody could hope to work with. I can’t wait to see what
else they do at Berkeley. I’m so grateful that I got to be a PhD student at the same
time with Tim. We are very aligned on research directions and interests; it was great
to have a soundboard for any generative modeling idea that popped-up. He also
throws great dumpling parties. I hope we get to work on more stuff together in the
future.

A huge thanks to my parents for their unwavering love, dedication and support
over the years. I give an especially big shout-out to my brother, John, for being
an awesome collaborator and teaching me Java a decade ago. Finally, thanks to
my incredible dogs for participating in some of my research demos, and for getting
me through the pandemic with most of my sanity intact: Dakota (golden retriever),
Theo (labradoodle) and Winston (boxer mix).

1

Chapter 1

Introduction

Deep generative models—trained on massive datasets with huge compute invest-
ments—have ushered in the era of scaling within artificial intelligence. This paradigm
has led to considerable progress on many problems in AI, with the field of natural
language processing (NLP) being the largest beneficiary. Generative models of natural
language have demonstrated a number of appealing properties. They can be trained
on any source of text data with or without additional human-level supervision. They
can often solve new tasks zero-shot, without requiring additional task-specific training
or fine-tuning [6]. Most importantly, they scale remarkably well with increasing
training compute and data [6, 7]. Armed with these properties, deep generative
models have fueled the recent meteoric progress in NLP.

Other domains, like vision, have benefited from generative models as well, but not
nearly to the same extent as NLP. For example, image-level generative models are
usually only used for graphics tasks; approaches to perception remain dominated by
task-specific discriminative models supervised with human labels [8, 9]. Additionally,
many classes of image-level generative models are not known to scale as effectively
as language models [10], and they commonly rely on older, convolution-based archi-
tectures instead of modern backbones like transformers [11] which lie at the core
of NLP’s successes. Resolving these discrepancies is of great interest to the field of
computer vision and all other disciplines of AI. In this thesis, we study these issues
in the context of vision as well as meta-learning.

In Chapter 2, we introduce a new class of generative models for general continuous
data. We study diffusion models [12,13]—which have previously been shown to be
highly effective generative models of images [14]—and modernize them by replacing
their convolutional backbones with transformers. Done naively, vanilla transformers
yield suboptimal performance as backbones of diffusion models. We introduce one
small—yet critically-important—tweak to the standard transformer design that

2

enables Diffusion Transformers (DiTs) to become an extremely powerful and scalable
class of generative models. We analyze DiT as an image-level generative model and
show that it scales effectively over a large range of model sizes and token counts. DiT
outperforms all prior generative models on the class-conditional ImageNet generation
benchmark across several metrics.

In Chapter 3, we explore generative models as a novel framework for learning to
learn. We collect a dataset of deep learning training runs and train generative models
of neural network parameters. We demonstrate that generative models can act as
learned optimizers by simply training loss-conditional diffusion models of neural
network checkpoints. By querying for a small loss, our generative models can generate
parameter updates that achieve the desired metric. Our approach overcomes many
of the difficulties of previous meta-learning algorithms [15,16]—it can optimize non-
differentiable objectives and dispenses with unstable unrolled optimization techniques.
Unlike iterative, gradient-based optimizers like SGD and Adam which cannot learn
from their previous optimization histories, our generative models can optimize neural
networks from random initialization with just one generated parameter update. We
show that DiTs again scale effectively in both model size and data size in this new
regime.

Finally, in Chapter 4 we discuss how image-level generative models can be
used to solve a task in vision—dense visual correspondence—without requiring any
task-specific training data or supervision. We show that pre-trained generative
models already know how to perform certain tasks on generated images—like visual
alignment—and that this knowledge can be distilled into a discriminative model to
directly align real images. To this end, we use a pre-trained generative adversarial
network (GAN) [17] to generate an infinite stream of paired (x, y) training data:
(unaligned image, aligned image). We train a task-specific neural network on this
paired data, simultaneously optimizing its parameters with the latent codes that
control the alignment of the generated training data. At test time, our GAN-
Supervised model automatically generalizes to align real images zero-shot. We show
that our approach outperforms prior self-supervised and fully-supervised approaches
alike which train models using real images and human-labeled annotations.

3

Chapter 2

Scalable Diffusion Models with
Transformers

2.1 Introduction
Machine learning is experiencing a renaissance powered by transformers. Over the

past five years, neural architectures for natural language processing [19,20], vision [3]
and several other domains have largely been subsumed by transformers [11]. Many
classes of image-level generative models remain holdouts to the trend, though—while
transformers see widespread use in autoregressive models [6, 21–23], they have seen
less adoption in other generative modeling frameworks. For example, diffusion models
have been at the forefront of recent advances in image-level generative models [4,14];
yet, they all adopt a convolutional U-Net architecture as the de-facto choice of
backbone.

The seminal work of Ho et al. [13] first introduced the U-Net backbone for diffusion
models. Having initially seen success within pixel-level autoregressive models and
conditional GANs [24], the U-Net was inherited from PixelCNN++ [25,26] with a few
changes. The model is convolutional, comprised primarily of ResNet [27] blocks. In
contrast to the standard U-Net [28], additional spatial self-attention blocks, which are
essential components in transformers, are interspersed at lower resolutions. Dhariwal
and Nichol [4] ablated several architecture choices for the U-Net, such as the use
of adaptive normalization layers [29] to inject conditional information and channel
counts for convolutional layers. However, the high-level design of the U-Net from Ho
et al. has largely remained intact.

This work originally appeared on arXiv [18].

2.1. INTRODUCTION 4

Figure 2.1: Diffusion models with transformer backbones achieve state-of-
the-art image quality. We show selected samples from two of our class-conditional
DiT-XL/2 models trained on ImageNet at 512×512 and 256×256 resolution, respec-
tively.

In this section, we aim to demystify the significance of architectural choices in
diffusion models and offer empirical baselines for future generative modeling research.
We show that the U-Net inductive bias is not crucial to the performance of diffusion
models, and they can be readily replaced with standard designs such as transformers.
As a result, diffusion models are well-poised to benefit from the recent trend of
architecture unification—e.g., by inheriting best practices and training recipes from
other domains, as well as retaining favorable properties like scalability, robustness
and efficiency. A standardized architecture would also open up new possibilities for
cross-domain research.

We focus on a new class of diffusion models based on transformers. We call
them Diffusion Transformers, or DiTs for short. DiTs adhere to the best practices of
Vision Transformers (ViTs) [3], which have been shown to scale more effectively for
visual recognition than traditional convolutional networks (e.g., ResNet [27]).

More specifically, we study the scaling behavior of transformers with respect to
network complexity vs. sample quality. We show that by constructing and benchmark-
ing the DiT design space under the Latent Diffusion Models (LDMs) [30] framework,
where diffusion models are trained within a VAE’s latent space, we can successfully
replace the U-Net backbone with a transformer. We further show that DiTs are

2.2. RELATED WORK 5

5 20 80 320
Gflops

Diameter

Figure 2.2: ImageNet generation with Diffusion Transformers (DiTs). Bubble
area indicates the flops of the diffusion model. Left: FID-50K (lower is better) of
our DiT models at 400K training iterations. Performance steadily improves in FID
as model flops increase. Right: Our best model, DiT-XL/2, is compute-efficient and
outperforms all prior U-Net-based diffusion models, like ADM and LDM.

scalable architectures for diffusion models: there is a strong correlation between the
network complexity (measured by Gflops) vs. sample quality (measured by FID).
By simply scaling-up DiT and training an LDM with a high-capacity backbone
(118.6 Gflops), we are able to achieve a state-of-the-art result of 2.27 FID on the
class-conditional 256× 256 ImageNet generation benchmark.

2.2 Related Work
Transformers. Transformers [11] have replaced domain-specific architectures
across language, vision [3], reinforcement learning [31, 32] and meta-learning [33].
They have shown remarkable scaling properties under increasing model size, training
compute and data in the language domain [7], as generic autoregressive models [34]
and as ViTs [35]. Beyond language, transformers have been trained to autoregressively
predict pixels [22, 36, 37]. They have also been trained on discrete codebooks [38]
as both autoregressive models [23, 39] and masked generative models [40, 41]; the
former has shown excellent scaling behavior up to 20B parameters [42]. Finally,
transformers have been explored in DDPMs to synthesize non-spatial data; e.g.,
to generate CLIP image embeddings in DALL·E 2 [14, 43]. We study the scaling
properties of transformers when used as the backbone of diffusion models of images.

2.2. RELATED WORK 6

Multi-Head
Self-Attention

Layer Norm

Scale, Shift

MLP

Pointwise
Feedforward

Layer Norm

Scale, Shift

Scale

+

+

Scale

𝛾!,𝛽!

𝛼!

𝛾",𝛽"

𝛼"

Input Tokens Conditioning

DiT Block with adaLN-ZeroLatent Diffusion Transformer

Timestep 𝑡

Label 𝑦

DiT BlockN x

Patchify

Layer Norm

Linear and Reshape

Embed

Noise Σ
32 x 32 x 4 32 x 32 x 4

Noised
Latent

32 x 32 x 4

Multi-Head
Self-Attention

Layer Norm

Pointwise
Feedforward

Layer Norm

+

+

Input Tokens Conditioning

DiT Block with Cross-Attention

Multi-Head
Cross-Attention

Layer Norm

+

Multi-Head
Self-Attention

Layer Norm

Pointwise
Feedforward

+

+

Input Tokens Conditioning

DiT Block with In-Context Conditioning

Layer Norm

Concatenate
on Sequence

Dimension

Figure 2.3: The Diffusion Transformer (DiT) architecture. Left: We train
conditional latent DiT models. The input latent is decomposed into patches and
processed by several DiT blocks. Right: Details of our DiT blocks. We experiment
with variants of standard transformer blocks that incorporate conditioning via
adaptive layer norm, cross-attention and extra input tokens. Adaptive layer norm
works best.

Denoising diffusion probabilistic models (DDPMs). Diffusion [12,13] and
score-based generative models [44,45] have been particularly successful as generative
models of images [10, 14,30,46], in many cases outperforming generative adversarial
networks (GANs) [17] which had previously been state-of-the-art. Improvements
in DDPMs over the past two years have largely been driven by improved sampling
techniques [13,47,48], most notably classifier-free guidance [49], reformulating dif-
fusion models to predict noise instead of pixels [13] and using cascaded DDPM
pipelines where low-resolution base diffusion models are trained in parallel with
upsamplers [4,50]. For all the diffusion models listed above, convolutional U-Nets [28]
are the de-facto choice of backbone architecture. Concurrent work [51] introduced
a novel, efficient architecture based on attention for DDPMs; we explore pure
transformers.

Architecture complexity. When evaluating architecture complexity in the image
generation literature, it is fairly common practice to use parameter counts. In
general, parameter counts can be poor proxies for the complexity of image models
since they do not account for, e.g., image resolution which significantly impacts
performance [52, 53]. Instead, much of the model complexity analysis in this section
is through the lens of theoretical Gflops. This brings us in-line with the architecture
design literature where Gflops are widely-used to gauge complexity. In practice,

2.3. DIFFUSION TRANSFORMERS 7

the golden complexity metric is still up for debate as it frequently depends on
particular application scenarios. Nichol and Dhariwal’s seminal work improving
diffusion models [4,54] is most related to us—there, they analyzed the scalability and
Gflop properties of the U-Net architecture class. Here, we focus on the transformer
class.

2.3 Diffusion Transformers

2.3.1 Preliminaries

Diffusion formulation. Before introducing our architecture, we briefly review
some basic concepts needed to understand diffusion models (DDPMs) [12, 13]. Gaus-
sian diffusion models assume a forward noising process which gradually applies
noise to real data x0: q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where constants ᾱt

are hyperparameters. By applying the reparameterization trick, we can sample
xt =

√
ᾱtx0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, I).

Diffusion models are trained to learn the reverse process that inverts forward
process corruptions: pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)), where neural networks are
used to predict the statistics of pθ. The reverse process model is trained with
the variational lower bound [55] of the log-likelihood of x0, which reduces to
L(θ) = −p(x0|x1) +

∑
tDKL(q

∗(xt−1|xt, x0)||pθ(xt−1|xt)), excluding an additional
term irrelevant for training. Since both q∗ and pθ are Gaussian, DKL can be evalu-
ated with the mean and covariance of the two distributions. By reparameterizing µθ

as a noise prediction network ϵθ, the model can be trained using simple mean-squared
error between the predicted noise ϵθ(xt) and the ground truth sampled Gaussian
noise ϵt: Lsimple(θ) = ||ϵθ(xt) − ϵt||22. But, in order to train diffusion models with
a learned reverse process covariance Σθ, the full DKL term needs to be optimized.
We follow Nichol and Dhariwal’s approach [54]: train ϵθ with Lsimple, and train
Σθ with the full L. Once pθ is trained, new images can be sampled by initializing
xtmax ∼ N (0, I) and sampling xt−1 ∼ pθ(xt−1|xt) via the reparameterization trick.

Classifier-free guidance. Conditional diffusion models take extra information as
input, such as a class label c. In this case, the reverse process becomes pθ(xt−1|xt, c),
where ϵθ and Σθ are conditioned on c. In this setting, classifier-free guidance
can be used to encourage the sampling procedure to find x such that log p(c|x) is
high [49]. By Bayes Rule, log p(c|x) ∝ log p(x|c)−log p(x), and hence ∇x log p(c|x) ∝
∇x log p(x|c) − ∇x log p(x). By interpreting the output of diffusion models as the
score function, the DDPM sampling procedure can be guided to sample x with high

2.3. DIFFUSION TRANSFORMERS 8

p(x|c) by: ϵ̂θ(xt, c) = ϵθ(xt, ∅) + s · ∇x log p(x|c) ∝ ϵθ(xt, ∅) + s · (ϵθ(xt, c)− ϵθ(xt, ∅)),
where s > 1 indicates the scale of the guidance (note that s = 1 recovers standard
sampling). Evaluating the diffusion model with c = ∅ is done by randomly dropping
out c during training and replacing it with a learned “null" embedding ∅. Classifier-
free guidance is widely-known to yield significantly improved samples over generic
sampling techniques [14,46,49], and the trend holds for our DiT models.

Latent diffusion models. Training diffusion models directly in high-resolution
pixel space can be computationally prohibitive. Latent diffusion models (LDMs) [30]
tackle this issue with a two-stage approach: (1) learn an autoencoder that compresses
images into smaller spatial representations with a learned encoder E; (2) train a
diffusion model of representations z = E(x) instead of a diffusion model of images
x (E is frozen). New images can then be generated by sampling a representation z
from the diffusion model and subsequently decoding it to an image with the learned
decoder x = D(z).

As shown in Figure 2.2, LDMs achieve good performance while using a fraction
of the Gflops of pixel space diffusion models like ADM. Since we are concerned with
compute efficiency, this makes them an appealing starting point for architecture
exploration. In this work, we apply DiTs to latent space, although they could
be applied to pixel space without modification as well. This makes our image
generation pipeline a hybrid-based approach; we use off-the-shelf convolutional VAEs
and transformer-based DDPMs.

2.3.2 Diffusion Transformer Design Space

We introduce Diffusion Transformers (DiTs), a new architecture for diffusion
models. We aim to be as faithful to the standard transformer architecture as
possible to retain its scaling properties. Since our focus is training DDPMs of
images (specifically, spatial representations of images), DiT is based on the Vision
Transformer (ViT) architecture which operates on sequences of patches [3]. DiT
retains many of the best practices of ViTs. Figure 2.3 shows an overview of the
complete DiT architecture. In this section, we describe the forward pass of DiT, as
well as the components of the design space of the DiT class.

Patchify. The input to DiT is a spatial representation z (for 256× 256× 3 images,
z has shape 32 × 32 × 4). The first layer of DiT is “patchify," which converts the
spatial input into a sequence of T tokens, each of dimension d, by linearly embedding
each patch in the input. Following patchify, we apply standard ViT frequency-based
positional embeddings (the sine-cosine version) to all input tokens. The number

2.3. DIFFUSION TRANSFORMERS 9

𝑝

𝐼

𝑝

𝐼

𝑇 = 𝐼/𝑝 !

Noised Latent
I × I × C

Input Tokens T × d

DiT Block

Figure 2.4: Input specifications for DiT. Given patch size p × p, a spatial
representation (the noised latent from the VAE) of shape I × I × C is “patchified"
into a sequence of length T = (I/p)2 with hidden dimension d. A smaller patch size
p results in a longer sequence length and thus more Gflops.

2.3. DIFFUSION TRANSFORMERS 10

100K 200K 300K 400K
Training Steps

20

40

60

80

100

FI
D-

50
K

XL/2 In-Context
XL/2 Cross-Attention
XL/2 adaLN
XL/2 adaLN-Zero

Figure 2.5: Comparing different conditioning strategies. adaLN-Zero outper-
forms cross-attention and in-context conditioning at all stages of training.

of tokens T created by patchify is determined by the patch size hyperparameter p.
As shown in Figure 2.4, halving p will quadruple T , and thus at least quadruple
total transformer Gflops. Although it has a significant impact on Gflops, note that
changing p has no meaningful impact on downstream parameter counts.

We add p = 2, 4, 8 to the DiT design space.

DiT block design. Following patchify, the input tokens are processed by a
sequence of transformer blocks. In addition to noised image inputs, diffusion models
sometimes process additional conditional information such as noise timesteps t, class
labels c, natural language, etc. We explore four variants of transformer blocks that
process conditional inputs differently. The designs introduce small, but important,
modifications to the standard ViT block design. The designs of all blocks are shown
in Figure 2.3.

– In-context conditioning. We simply append the vector embeddings of t and c
as two additional tokens in the input sequence, treating them no differently
from the image tokens. This is similar to cls tokens in ViTs, and it allows us
to use standard ViT blocks without modification. After the final block, we
remove the conditioning tokens from the sequence. This approach introduces
negligible new Gflops to the model.

– Cross-attention block. We concatenate the embeddings of t and c into a length-
two sequence, separate from the image token sequence. The transformer block
is modified to include an additional multi-head cross-attention layer following
the multi-head self-attention block, similar to the original design from Vaswani
et al. [11], and also similar to the one used by LDM for conditioning on class

2.3. DIFFUSION TRANSFORMERS 11

Model Layers N Hidden size d Heads Gflops (I=32, p=4)

DiT-S 12 384 6 1.4
DiT-B 12 768 12 5.6
DiT-L 24 1024 16 19.7
DiT-XL 28 1152 16 29.1

Table 2.1: Details of DiT models. We follow ViT [3] model configurations for
the Small (S), Base (B) and Large (L) variants; we also introduce an XLarge (XL)
config as our largest model.

labels. Cross-attention adds the most Gflops to the model, roughly a 15%
overhead.

– Adaptive layer norm (adaLN) block. Following the widespread usage of adaptive
normalization layers [29] in GANs [56, 57] and diffusion models with U-Net
backbones [4], we explore replacing standard layer norm layers in transformer
blocks with adaptive layer norm (adaLN). Rather than directly learn dimension-
wise scale and shift parameters γ and β, we regress them from the sum of the
embedding vectors of t and c. Of the three block designs we explore, adaLN
adds the least Gflops and is thus the most compute-efficient. It is also the only
conditioning mechanism that is restricted to apply the same function to all
tokens.

– adaLN-Zero block. Prior work on ResNets has found that initializing each
residual block as the identity function is beneficial. For example, Goyal et al.
found that zero-initializing the final batch norm scale factor γ in each block
accelerates large-scale training in the supervised learning setting [58]. Diffusion
U-Net models use a similar initialization strategy, zero-initializing the final
convolutional layer in each block prior to any residual connections. We explore
a modification of the adaLN DiT block which does the same. In addition
to regressing γ and β, we also regress dimension-wise scaling parameters α
that are applied immediately prior to any residual connections within the DiT
block. We initialize the MLP to output the zero-vector for all α; this initializes
the full DiT block as the identity function. As with the vanilla adaLN block,
adaLN-Zero adds negligible Gflops to the model.

We include the in-context, cross-attention, adaptive layer norm and adaLN-Zero
blocks in the DiT design space.

2.3. DIFFUSION TRANSFORMERS 12

Figure 2.6: Scaling the DiT model improves FID at all stages of training.
We show FID-50K over training iterations for 12 of our DiT models. Top row: We
compare FID holding patch size constant. Bottom row: We compare FID holding
model size constant. Scaling the transformer backbone yields better generative
models across all model sizes and patch sizes.

Model size. We apply a sequence of N DiT blocks, each operating at the hidden
dimension size d. Following ViT, we use standard transformer configs that jointly
scale N , d and attention heads [3,35]. Specifically, we use four configs: DiT-S, DiT-B,
DiT-L and DiT-XL. They cover a wide range of model sizes and flop allocations,
from 0.3 to 118.6 Gflops, allowing us to gauge scaling performance. Table 2.1 gives
details of the configs.

We add B, S, L and XL configs to the DiT design space.

Transformer decoder. After the final DiT block, we need to decode our sequence
of image tokens into an output noise prediction and an output diagonal covariance
prediction. Both of these outputs have shape equal to the original spatial input. We
use a standard linear decoder to do this; we apply the final layer norm (adaptive if
using adaLN) and linearly decode each token into a p×p×2C tensor, where C is the
number of channels in the spatial input to DiT. Finally, we rearrange the decoded
tokens into their original spatial layout to get the predicted noise and covariance.

The complete DiT design space we explore is patch size, transformer block archi-
tecture and model size.

2.4. EXPERIMENTAL SETUP 13

2.4 Experimental Setup
We explore the DiT design space and study the scaling properties of our model

class. Our models are named according to their configs and latent patch sizes p; for
example, DiT-XL/2 refers to the XLarge config and p = 2.

Training. We train class-conditional latent DiT models at 256× 256 and 512×
512 image resolution on the ImageNet dataset [8], a highly-competitive generative
modeling benchmark. We initialize the final linear layer with zeros and otherwise
use standard weight initialization techniques from ViT. We train all models with
AdamW [59,60]. We use a constant learning rate of 1× 10−4, no weight decay and a
batch size of 256. The only data augmentation we use is horizontal flips. Unlike much
prior work with ViTs [61,62], we did not find learning rate warmup nor regularization
necessary to train DiTs to high performance. Even without these techniques, training
was highly stable across all model configs and we did not observe any loss spikes
commonly seen when training transformers. Following common practice in the
generative modeling literature, we maintain an exponential moving average (EMA)
of DiT weights over training with a decay of 0.9999. All results reported use the
EMA model. We use identical training hyperparameters across all DiT model sizes
and patch sizes. Our training hyperparameters are almost entirely retained from
ADM. We did not tune learning rates, decay/warm-up schedules, Adam β1/β2 or
weight decays.

Diffusion. We use an off-the-shelf pre-trained variational autoencoder (VAE)
model [55] from Stable Diffusion [30]. The VAE encoder has a downsample factor of
8—given an RGB image x with shape 256× 256× 3, z = E(x) has shape 32× 32× 4.
Across all experiments in this section, our diffusion models operate in this Z-space.
After sampling a new latent from our diffusion model, we decode it to pixels using
the VAE decoder x = D(z). We retain diffusion hyperparameters from ADM [4];
specifically, we use a tmax = 1000 linear variance schedule ranging from 1 × 10−4

to 2 × 10−2, ADM’s parameterization of the covariance Σθ and their method for
embedding input timesteps and labels.
Evaluation metrics. We measure scaling performance with Fréchet Inception
Distance (FID) [63], the standard metric for evaluating generative models of images.
We follow convention when comparing against prior works and report FID-50K using
250 DDPM sampling steps. FID is known to be sensitive to small implementation
details [64]; to ensure accurate comparisons, all values reported are obtained by
exporting samples and using ADM’s TensorFlow evaluation suite [4]. FID numbers re-
ported in this section do not use classifier-free guidance except where otherwise stated.

2.5. EXPERIMENTS 14

We additionally report Inception Score [65], sFID [66] and Precision/Recall [67] as
secondary metrics.

Compute. We implement all models in JAX [68] and train them using TPU-
v3 pods. DiT-XL/2, our most compute-intensive model, trains at roughly 5.7
iterations/second on a TPU v3-256 pod with a global batch size of 256.

2.5 Experiments
DiT block design. We train four of our highest Gflop DiT-XL/2 models, each
using a different block design—in-context (119.4 Gflops), cross-attention (137.6
Gflops), adaptive layer norm (adaLN, 118.6 Gflops) or adaLN-zero (118.6 Gflops).
We measure FID over the course of training. Figure 2.5 shows the results. The adaLN-
Zero block yields lower FID than both cross-attention and in-context conditioning
while being the most compute-efficient. At 400K training iterations, the FID achieved
with the adaLN-Zero model is nearly half that of the in-context model, demonstrating
that the conditioning mechanism critically affects model quality. Initialization is also
important—adaLN-Zero, which initializes each DiT block as the identity function,
significantly outperforms vanilla adaLN. For the rest of this section, all models will
use adaLN-Zero DiT blocks.

Scaling model size and patch size. We train 12 DiT models, sweeping over
model configs (S, B, L, XL) and patch sizes (8, 4, 2). Note that DiT-L and DiT-XL
are significantly closer to each other in terms of relative Gflops than other configs.
Figure 2.2 (left) gives an overview of the Gflops of each model and their FID at 400K
training iterations. In all cases, we find that increasing model size and decreasing
patch size yields considerably improved diffusion models.

Figure 3.7 (top) demonstrates how FID changes as model size is increased and
patch size is held constant. Across all four configs, significant improvements in
FID are obtained over all stages of training by making the transformer deeper and
wider. Similarly, Figure 3.7 (bottom) shows FID as patch size is decreased and model
size is held constant. We again observe considerable FID improvements throughout
training by simply scaling the number of tokens processed by DiT, holding parameters
approximately fixed.

DiT Gflops are critical to improving performance. The results of Figure 3.7
suggest that parameter counts do not uniquely determine the quality of a DiT model.
As model size is held constant and patch size is decreased, the transformer’s total
parameters are effectively unchanged (actually, total parameters slightly decrease),

2.5. EXPERIMENTS 15

Increasing transformer size

D
ec

re
as

in
g

pa
tc

h
si

ze

Figure 2.7: Increasing transformer forward pass Gflops increases sample
quality. Best viewed zoomed-in. We sample from all 12 of our DiT models after
400K training steps using the same input latent noise and class label. Increasing the
Gflops in the model—either by increasing transformer depth/width or increasing the
number of input tokens—yields significant improvements in visual fidelity.

2.5. EXPERIMENTS 16

100 101 102

Transformer Gflops

20

40

60

80

100

120

140

160

FI
D-

50
K

Correlation: -0.93

S/8
S/4
S/2

B/8
B/4
B/2

L/8
L/4
L/2

XL/8
XL/4
XL/2

Figure 2.8: Transformer Gflops are strongly correlated with FID. We plot
the Gflops of each of our DiT models and each model’s FID-50K after 400K training
steps.

and only Gflops are increased. These results indicate that scaling model Gflops is
actually the key to improved performance. To investigate this further, we plot the
FID-50K at 400K training steps against model Gflops in Figure 2.8. The results
demonstrate that different DiT configs obtain similar FID values when their total
Gflops are similar (e.g., DiT-S/2 and DiT-B/4). We find a strong negative correlation
between model Gflops and FID-50K, suggesting that additional model compute is
the critical ingredient for improved DiT models. In Figure 2.9, we find that this
trend holds for other metrics such as Inception Score.

Larger DiT models are more compute-efficient. In Figure 2.10, we plot
FID as a function of total training compute for all DiT models. We estimate training
compute as model Gflops · batch size · training steps · 3, where the factor of 3
roughly approximates the backwards pass as being twice as compute-heavy as the
forward pass. We find that small DiT models, even when trained longer, eventually
become compute-inefficient relative to larger DiT models trained for fewer steps.
Similarly, we find that models that are identical except for patch size have different
performance profiles even when controlling for training Gflops. For example, XL/4
is outperformed by XL/2 after roughly 1010 Gflops.

Visualizing scaling. We visualize the effect of scaling on sample quality in
Figure 2.7. At 400K training steps, we sample an image from each of our 12 DiT
models using identical starting noise xtmax , sampling noise and class labels. This lets
us visually interpret how scaling affects DiT sample quality. Indeed, scaling both
model size and the number of tokens yields notable improvements in visual quality.

2.5. EXPERIMENTS 17

Figure 2.9: DiT scaling behavior on several generative modeling metrics.
Left: We plot model performance as a function of total training compute for FID,
sFID, Inception Score, Precision and Recall. Right: We plot model performance
at 400K training steps for all 12 DiT variants against transformer Gflops, finding
strong correlations across metrics. All values were computed using the ft-MSE VAE
decoder.

2.5. EXPERIMENTS 18

107 108 109 1010 1011 1012

Training Compute (Gflops)

0
25
50
75

100
125
150
175
200

FI
D-

50
K

10

15

20

25

30

S/8
S/4
S/2

B/8
B/4
B/2

L/8
L/4
L/2

XL/8
XL/4
XL/2

Figure 2.10: Larger DiT models use large compute more efficiently. We plot
FID as a function of total training compute.

2.5.1 State-of-the-Art Diffusion Models

256×256 ImageNet. Following our scaling analysis, we continue training our
highest Gflop model, DiT-XL/2, for 7M steps. We show samples from the model
in Figures 4.1, and we compare against state-of-the-art class-conditional generative
models. We report results in Table 2.2. When using classifier-free guidance, DiT-
XL/2 outperforms all prior diffusion models, decreasing the previous best FID-50K
of 3.60 achieved by LDM to 2.27. Figure 2.2 (right) shows that DiT-XL/2 (118.6
Gflops) is compute-efficient relative to latent space U-Net models like LDM-4 (103.6
Gflops) and substantially more efficient than pixel space U-Net models such as ADM
(1120 Gflops) or ADM-U (742 Gflops). Our method achieves the lowest FID of all
prior generative models, including the previous state-of-the-art StyleGAN-XL [69].
Finally, we also observe that DiT-XL/2 achieves higher recall values at all tested
classifier-free guidance scales compared to LDM-4 and LDM-8. When trained for
only 2.35M steps (similar to ADM), XL/2 still outperforms all prior diffusion models
with an FID of 2.55.

512×512 ImageNet. We train a new DiT-XL/2 model on ImageNet at 512× 512
resolution for 3M iterations with identical hyperparameters as the 256× 256 model.
With a patch size of 2, this XL/2 model processes a total of 1024 tokens after
patchifying the 64× 64× 4 input latent (524.6 Gflops). Table 2.3 shows comparisons
against state-of-the-art methods. XL/2 again outperforms all prior diffusion models
at this resolution, improving the previous best FID of 3.85 achieved by ADM to
3.04. Even with the increased number of tokens, XL/2 remains compute-efficient.
For example, ADM uses 1983 Gflops and ADM-U uses 2813 Gflops; XL/2 uses 524.6
Gflops. We show samples from the high-resolution XL/2 model in Figure 4.1 and

2.6. CONCLUSION 19

101 102 103 104 105

Sampling Compute (Gflops)

20
40
60
80

100
120
140
160
180

FI
D-

10
K

S/8
S/4
S/2

B/8
B/4
B/2

L/8
L/4
L/2

XL/8
XL/4
XL/2

Figure 2.11: Scaling-up sampling compute does not compensate for a lack
of model compute. For each of our DiT models trained for 400K iterations, we
compute FID-10K using [16, 32, 64, 128, 256, 1000] sampling steps. For each number
of steps, we plot the FID as well as the Gflops used to sample each image. Small
models cannot close the performance gap with our large models, even if they sample
with more test-time Gflops than the large models.

Figures 2.12 through 2.15.

2.5.2 Scaling Model vs. Sampling Compute

Diffusion models are unique in that they can use additional compute after training
by increasing the number of sampling steps when generating an image. Given the
impact of model Gflops on sample quality, in this section we study if smaller-model
compute DiTs can outperform larger ones by using more sampling compute. We
compute FID for all 12 of our DiT models after 400K training steps, using [16, 32,
64, 128, 256, 1000] sampling steps per-image. The main results are in Figure 2.11.
Consider DiT-L/2 using 1000 sampling steps versus DiT-XL/2 using 128 steps. In
this case, L/2 uses 80.7 Tflops to sample each image; XL/2 uses 5× less compute—
15.2 Tflops—to sample each image. Nonetheless, XL/2 has the better FID-10K (23.7
vs 25.9). In general, scaling-up sampling compute cannot compensate for a lack of
model compute.

2.6 Conclusion
We introduce Diffusion Transformers (DiTs), a simple transformer-based backbone

for diffusion models that outperforms prior U-Net models and inherits the excellent
scaling properties of the transformer model class. Given our promising scaling results,
future work should continue to scale DiTs to larger models and token counts. DiT

2.6. CONCLUSION 20

Figure 2.12: DiT-XL/2 samples.
Classifier-free guidance scale = 4.0
Label = “arctic wolf" (270)
Resolution = 512× 512

Figure 2.13: DiT-XL/2 samples.
Classifier-free guidance scale = 4.0
Label = “sulphur-crested cockatoo" (89)
Resolution = 512× 512

2.6. CONCLUSION 21

Figure 2.14: DiT-XL/2 samples.
Classifier-free guidance scale = 4.0
Label = “cliff drop-off" (972)
Resolution = 512× 512

Figure 2.15: DiT-XL/2 samples.
Classifier-free guidance scale = 4.0
Label = “balloon" (417)
Resolution = 512× 512

2.6. CONCLUSION 22

could also be explored as a drop-in backbone for text-to-image models like DALL·E
2 and Stable Diffusion.

2.6. CONCLUSION 23

Class-Conditional ImageNet 256×256

Model FID↓ sFID↓ IS↑ Precision↑ Recall↑
BigGAN-deep [56] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [69] 2.30 4.02 265.12 0.78 0.53

ADM [4] 10.94 6.02 100.98 0.69 0.63
ADM-U 7.49 5.13 127.49 0.72 0.63
ADM-G 4.59 5.25 186.70 0.82 0.52
ADM-G, ADM-U 3.94 6.14 215.84 0.83 0.53

CDM [50] 4.88 - 158.71 - -

LDM-8 [30] 15.51 - 79.03 0.65 0.63
LDM-8-G 7.76 - 209.52 0.84 0.35
LDM-4 10.56 - 103.49 0.71 0.62
LDM-4-G (cfg=1.25) 3.95 - 178.22 0.81 0.55
LDM-4-G (cfg=1.50) 3.60 - 247.67 0.87 0.48

DiT-XL/2 9.62 6.85 121.50 0.67 0.67
DiT-XL/2-G (cfg=1.25) 3.22 5.28 201.77 0.76 0.62
DiT-XL/2-G (cfg=1.50) 2.27 4.60 278.24 0.83 0.57

Table 2.2: Benchmarking class-conditional image generation on ImageNet
256×256. DiT-XL/2 achieves state-of-the-art FID.

Class-Conditional ImageNet 512×512

Model FID↓ sFID↓ IS↑ Precision↑ Recall↑
BigGAN-deep [56] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [69] 2.41 4.06 267.75 0.77 0.52

ADM [4] 23.24 10.19 58.06 0.73 0.60
ADM-U 9.96 5.62 121.78 0.75 0.64
ADM-G 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U 3.85 5.86 221.72 0.84 0.53

DiT-XL/2 12.03 7.12 105.25 0.75 0.64
DiT-XL/2-G (cfg=1.25) 4.64 5.77 174.77 0.81 0.57
DiT-XL/2-G (cfg=1.50) 3.04 5.02 240.82 0.84 0.54

Table 2.3: Benchmarking class-conditional image generation on ImageNet
512×512. Note that prior work [4] measures Precision and Recall using 1000 real
samples for 512× 512 resolution; for consistency, we do the same.

24

Chapter 3

Learning to Learn with Generative
Models of Neural Network
Checkpoints

3.1 Introduction
Gradient-based optimization is the fuel of modern deep learning. Techniques of

this class, such as SGD [70] and Adam [60], are easy to implement, scale reasonably
well and converge to surprisingly good solutions—even in high-dimensional, non-
convex neural network loss landscapes. Over the past decade, they have enabled
impressive results in computer vision [8, 9], natural language processing [11,19] and
audio generation [71].

While these manual optimization techniques have led to large advances, they
suffer from an important limitation: they are unable to improve from past experience.
For example, SGD will not converge any faster when used to optimize the same
neural network architecture from the same initialization the 100th time versus the
first time. Learned optimizers capable of leveraging their past experiences have the
potential to overcome this limitation and may accelerate future progress in deep
learning.

Of course, the concept of learning improved optimizers is not new and dates back
to the 1980s, if not earlier, following early work from Schmidhuber [72] and Bengio et.
al [73]. In recent years, significant effort has been spent on designing algorithms that

This work originally appeared on arXiv [33].

3.1. INTRODUCTION 25

𝜃! Loss = 2.3

Loss = 1.6

()
𝜃"#

…

Loss = 0.18𝜃$

Error = 90%

Error = 63%

Error = 5%

)

)

(

(

Updated 𝜃

G.pt

Prompted Loss
(or Error)Starting 𝜃

Pre-training dataset of neural network checkpoints A generative model of checkpoints

Figure 3.1: Generative pre-training from checkpoints. Left: We build a dataset
of neural network checkpoints from many training runs. Each checkpoint includes
the neural network’s parameters and relevant metadata (test losses and test errors for
supervised learning tasks, returns for RL tasks). Right: G.pt, a generative model of
checkpoints. G.pt takes a parameter vector and a loss/error/return prompt as input
and predicts the distribution over updated parameters that achieve the prompt.

learn via nested meta-optimization, where the inner loop optimizes the task-level
objective and the outer loop learns the optimizer [15,16,74]. In some instances, these
approaches outperform manual optimizers. However, they are challenging to train in
practice due to a reliance on unrolled optimization and reinforcement learning.

Taking a modern deep learning perspective suggests a simple, scalable and
data-driven approach to this problem. Over the past decade, our community has
trained a massive number of checkpoints. These checkpoints contain a wealth of
information: diverse parameter configurations and rich metrics such as test losses,
classification errors and RL returns that describe the quality of the checkpoint.
Instead of leveraging large-scale datasets of images or text, we propose learning from
large-scale datasets of checkpoints recorded over the course of many training runs.

To this end, we create a dataset of neural network checkpoints (Figure 3.1,
left). Our dataset consists of 23 million checkpoints from over a hundred thousand
training runs. We collect data from supervised learning tasks (MNIST, CIFAR-10) as
well as reinforcement learning tasks (Cartpole), and across different neural network
architectures (MLPs, CNNs). In addition to parameters, we record relevant task-level
metrics in each checkpoint, such as test losses and classification errors.

Given this data, we explore generative pre-training directly in parameter space
(Figure 3.1, right). Specifically, we train transformer-based diffusion models of neural
network parameters. Given an initial input parameter vector and a target loss,

3.2. GENERATIVE PRE-TRAINING FROM NEURAL NETWORK
CHECKPOINTS 26

error or return, these models are trained to predict the distribution over updated
parameter vectors for a single network architecture that achieve the target metric.
Our method is trained with standard generative modeling techniques instead of
unrolled optimization and reinforcement learning algorithms. We call our model
G.pt1.

We show that our approach has a number of favorable properties. First, it is able
to rapidly train neural networks from unseen initializations with just one parameter
update (Figure 3.3). Second, it can generate parameters that achieve a wide range
of prompted losses, errors and returns (Figure 3.5). Third, it is able to generalize
to out-of-distribution weight initialization algorithms (Figure 3.6). Fourth, as a
generative model, it is able to sample diverse solutions (Figure 3.8). Finally, it can
optimize non-differentiable objectives, such as RL returns or classification errors.

3.2 Generative Pre-training from Neural Network
Checkpoints

We pre-train a generative model G.pt on neural network checkpoints. At test
time, we use it to generate parameters for neural networks that solve a downstream
task.

3.2.1 A Dataset of Neural Network Checkpoints

In order to train G.pt, we build a dataset of neural network checkpoints. Each
checkpoint contains neural network parameters and relevant task-level metrics like
train losses, test errors or returns. We use standard optimizers like Adam and SGD
with momentum to generate the parameters, and we randomly save a subset of
checkpoints from each training run. Our methodology for generating each individual
training run is explained in detail in Algorithm 1. See Section 3.3 for additional
details.

Augmenting datasets of neural networks. To offset the computational cost
of collecting checkpoints, we use data augmentation in neural network parameter
space. Given a checkpoint (θ, ℓ), we construct augmented tuples (T (θ), ℓ), where
T (·) is the parameter-level augmentation. In order for these augmented tuples to
be valid, we need fT (θ)(x) = fθ(x) for all parameter vectors θ and all inputs to the
neural network x. One type of augmentation that meets this criteria is permutation
augmentation. Consider an MLP. If we apply some permutation to the outgoing

1G and .pt refer to generative models and checkpoint extensions, respectively.

3.2. GENERATIVE PRE-TRAINING FROM NEURAL NETWORK
CHECKPOINTS 27

Algorithm 1 Checkpoint Data Genera-
tion
1: Input: Dataset or simulator D, neural

network f , loss function L, task metric,
meta data store S.

2: Initialize: Learnable parameters θ for f
3: for t = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: {inputs, labels}t ∼ D
6: # Compute the predictions
7: predictions← fθ(inputs)
8: # Compute the loss
9: loss← L(predictions, labels)

10: # Update the model’s parameters
11: θt+1 ← update(loss; θ)
12: # Compute the task metric
13: ℓt ← metric(predictions, labels)
14: # Save the checkpoint
15: S ← S ∪ {θt, ℓt}
16: end for

Algorithm 2 Pre-training from Check-
points

1: Input: Number of training runs K,
checkpoint dataset runs {Sk}Kk=1, G.pt,
diffusion process length J , diffusion cu-
mulative variance schedule ᾱ.

2: Initialize: Learnable parameters ϕ for G
3: for i = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: {θt1 , θt2 , ℓt1 , ℓt2}i ∼ Sk

6: # Noise future parameters
7: j ∼ U({1, ..., J})
8: θ̃t2 ∼ N (

√
ᾱjθt2 , (1− ᾱj)I)

9: # Compute the predictions
10: θ̂t2 ← Gϕ(θ̃t2 , θt1 , ℓt2 , ℓt1 , j)
11: # Compute the loss
12: loss← ||θ̂t2 − θt2 ||22
13: # Update G.pt’s parameters
14: ϕi+1 ← update(loss;ϕ)
15: end for

weights (and biases) of the input layer and to the incoming weights of the next layer,
the output of the neural network will be preserved [75,76]. Different permutations
can be sampled for each layer up to the output layer. This technique is generic and
can be applied to MLPs and CNNs alike. We apply the same permutation to both
the input and target parameters during pre-training.

3.2.2 Generative Models of Neural Network Checkpoints

Using our dataset of checkpoints, we train a generative model G that learns
to rapidly train other neural networks. Specifically, G predicts the distribution of
updated parameters pG(θ∗|θ, ℓ∗, ℓ), where θ is the starting (potentially random) neural
network parameters, ℓ is the starting loss/error/return and ℓ∗ is a user’s prompted
loss/error/return. Conditioning on ℓ∗ allows G.pt to learn from checkpoints with
good and bad performance alike. In this section, we describe an instantiation of our
approach based on diffusion and transformers.

3.2. GENERATIVE PRE-TRAINING FROM NEURAL NETWORK
CHECKPOINTS 28

Diffusion Transformer

Future Loss
(or Return)

Starting Loss
(or Return)

Diffusion
Timestep

Predicted Future 𝜃

Per-token
Encoding

Per-token
Decoding

…

Noise and Tokenize

…

Tokenize

Starting 𝜃Future 𝜃

Figure 3.2: The G.pt architecture. During training, we sample two checkpoints
from the same run—a “starting" network’s parameters and a “future" network’s
parameters from later in the run—as well as their losses/errors/returns. Each layer’s
parameters are flattened and linearly encoded. The future network’s parameters are
noised via a diffusion forward process prior to encoding.

Pre-training Objective: Diffusion of Neural Network Checkpoints

We use diffusion [12] as our generative pre-training task. Diffusion is a good
generative modeling framework for neural network parameters since the number of
forward passes required to sample a novel parameter vector is set by the length of the
diffusion process J as opposed to the dimensionality of the data. This instantiation
of G.pt samples parameters by gradually denoising the future (updated) parameters
θ∗.

Parameterization. Given an input corrupted with noise, diffusion models can
be parameterized to predict either the signal or the noise [13, 54]. Prior work in
the image domain has shown that noise prediction outperforms signal prediction.
We find that signal prediction works better in our setting empirically, and so we
parameterize G to output parameters. We use fixed variances as in [13].

Training. Our model takes two parameter vectors as input: a starting θ and
a noised future parameter vector θ∗j , where j denotes the timestep in the diffusion
forward noising process. We minimize the simplified variational lower bound, which
reduces to predicting the denoised future parameters:

L(G) = E
[
||θ∗ −G(θ∗j , θ, ℓ

∗, ℓ, j)||22
]

(3.1)

Algorithm 2 details our full training procedure. Note that we need tuples of
data (θ∗, θ, ℓ∗, ℓ) to compute L. We sample these tuples from our checkpoint dataset.
First, we sample a training run uniformly at random. Then, θ and θ∗ are sampled

3.2. GENERATIVE PRE-TRAINING FROM NEURAL NETWORK
CHECKPOINTS 29

uniformly at random from the checkpoints saved within the selected training run.
We enforce that θ is always from an earlier training step than θ∗. Note that θ and
θ∗ can be arbitrarily distant, even the initial and final checkpoints from a run.

Sampling. After pre-training, we sample updated parameters θ∗ by query-
ing G with an input parameter vector θ, its loss/error/return ℓ and a prompted
loss/error/return ℓ∗. Sampling begins by feeding-in Gaussian noise as the θ∗ input
and gradually denoising it. We use DDPM sampling.

Architecture

Our generative model is a transformer [11] that operates over parameter tokens
from both θ and θ∗ (Figure 3.2). It uses few domain-specific inductive biases beyond
tokenization.

Parameter tokenizers. Before being processed by G.pt, the two input param-
eter vectors θ and θ∗j each need to be decomposed into several tokens. In general,
a task-level network fθ will contain many unique layers, each with a potentially
different number of parameters. We define the i-th token as the flattened parameter
vector of the i-th layer. Layers with multiple parameter groups (e.g., layers with both
a weight and a bias) are decomposed into separate tokens. Note that these tokens
will usually be of different dimensionality. We call this layer-by-layer tokenization.

Parameter tokenizers for big neural networks. For larger networks, we find
that it is beneficial to decompose a single layer’s parameters into multiple tokens.
We do this with layer chunking. We define a hyperparameter M , the maximum
number of parameters a single token can have. Layers containing more than M total
parameters are flattened and chunked into multiple tokens, each with at-most M
parameters. For example, if M = 1000, a weight matrix with 10× 768 parameters
will be decomposed into eight tokens, seven containing 1000 parameters and one
containing 680 parameters. We set M to be smaller than the hidden size of the
Transformer to avoid lossy compression.

Metric tokenizers. We also feed the scalar input metrics ℓ and ℓ∗ (loss, error,
return, etc.) and diffusion timestep j as individual tokens to the transformer. We
project each scalar to a vector representation using a frequency-based encoding
scheme [77].

Per-token encoders. After tokenizing fθ’s layers and the input scalars, we
project each token to the hidden size of the transformer. We explored more compli-
cated encoders, but find that a simple linear layer works well. Each token’s encoder
has a unique set of weights.

Transformer. The core of the G.pt architecture is a transformer which operates
on the set of input parameters and metrics, linearly-encoded into tokens. Our

3.3. IMPLEMENTATION DETAILS 30

AdamW
Momentum

SGD NAG RMSprop
Ours

Cartpole

0

100

200

300

400

500

Re
tu
rn

AdamW
Momentum

SGD NAG RMSprop
Ours

MNIST

0.0

0.5

1.0

1.5

2.0

Lo
ss

AdamW
Momentum

SGD NAG RMSprop
Ours

CIFAR−10

40

50

60

70

80

90

Er
ro
r

Figure 3.3: G.pt optimizes unseen network parameters in one step. We
compare performance after a single update from G.pt versus a single step of gradient-
based optimizers. Error bars are computed over five input parameter vectors, all of
which are randomly-initialized.

transformer is a version of GPT-2 [21]. We omit causal masking as our model is not
autoregressive across tokens.

Per-token decoders. The final layer of G.pt is a decoder from the transformer’s
output to the future parameter vector. The i-th token is linearly decoded from
the transformer’s hidden size back to the original size of the i-th layer’s flattened
parameter vector. Note that only the output tokens for the noised future parameter
vector θ∗j are decoded to predictions. Our decoders do not share weights.

Global residual connection. Finally, we find that it is beneficial to add a
residual connection [27] to the input θ at the very end of G.pt. This amounts to
predicting the parameter update θ∗ − θ instead of directly predicting θ∗ itself. This
residual connection also allows us to initialize G to perform the identity function by
initializing the decoder weights to zero. Empirically, the global residual connection
in conjunction with the identity initialization significantly accelerates training.

3.3 Implementation Details
We consider both supervised and reinforcement learning tasks. In all cases, we

generate a large collection of training runs in order to pre-train a generative model.
Pre-training data for supervised learning. We create datasets of MNIST

and CIFAR-10 network checkpoints. For MNIST, the task-level model is a two-layer
MLP with 10 hidden units; for CIFAR-10, the model has two conv layers followed
by global average pooling and a fully-connected layer. Both models use ReLU
activations. We train the MNIST models for 25 epochs and CIFAR-10 models for
50 epochs, each with half-period cosine annealing. We use SGD with momentum of
0.9, a learning rate of 0.1 and a weight decay of 5e-4. We train approximately 10K
MNIST models and 55K CIFAR-10 models from different random initializations. We

3.3. IMPLEMENTATION DETAILS 31

0 2K 4K 6K 8K
Steps

0

100

200

300

400

500

Re
tu
rn

Cartpole
SGD
Adam
Ours

0 2K 4K 6K 8K 10K 12K
Steps

0.2

0.3

0.4

0.5

0.6

Lo
ss

MNIST
SGD
Adam
Ours

0 5K 10K 15K 20K
Steps

40

50

60

70

80

90

Er
ro
r

CIFAR−10
SGD
Adam
Ours

Figure 3.4: Optimization curves. We compare one step of G.pt optimization to
training curves produced by SGD and Adam. Error bars are computed over five
initializations.

select 200 checkpoints to save each run: the initial checkpoint (before training), the
final checkpoint and intermediate checkpoints at random iterations. In total, this
results in 2M trained MNIST MLPs and 11M trained CIFAR-10 CNNs.

Pre-training data for reinforcement learning. For our reinforcement learning
(RL) experiments, we train policies for the Cartpole task using the IsaacGym
simulator [78]. Our policy is a three-layer MLP with 32 hidden units and SeLU
activations. We also train a separate critic network with the same architecture as
the policy; we only model the policy’s parameters in our G.pt experiments. We train
for 500 iterations using PPO [79] and Adam [60] with β1 = 0.9 and β2 = 0.999. We
train 50K models and record 200 checkpoints in each. This results in a dataset of
10M trained policies.

Model pre-training. We train G.pt with AdamW [59]. We maintain an
exponential moving average (EMA) of G.pt weights over the course of training.
Our transformer uses a hidden dimension between 1536 and 2048 depending on
dataset and has 12 hidden layers with 12-16 heads for self-attention. We use learned
positional embeddings across all tokens, initialized to zero. We train one G.pt model
per-metric, dataset and architecture (e.g., an error-conditional MNIST MLP model).

Parameter normalization. We follow DALL·E 2’s [14] normalization scheme,
where the data is scaled such that the variance of the marginal distribution matches
the variance of ImageNet pixels scaled to [-1, 1], for which diffusion hyperparameters
have been tuned. We find that this normalization ensures the forward noising process
destroys nearly all signal in θ∗J ; the KL divergence against a standard normal is
roughly 8× 10−6 bits/dim across our experiments.

3.4. EXPERIMENTS 32

0 100 200 300 400 500
Prompted Return

0

100

200

300

400

500

Ac
hi

ev
ed

 R
et

ur
n Cartpole

Generated
Identity
Data Best

0.0 0.5 1.0 1.5 2.0
Prompted Loss

0.0

0.5

1.0

1.5

2.0

Ac
hi

ev
ed

 L
os

s

MNIST
Generated
Identity
Data Best

40 50 60 70 80 90
Prompted Error

40

50

60

70

80

90

Ac
hi

ev
ed

 E
rro

r CIFAR−10
Generated
Identity
Data Best

Figure 3.5: Achieved returns, losses and errors across a range of input G.pt
prompts. G.pt can train unseen neural network parameters to a range of desired
values in one update. Each blue curve corresponds to a different randomly-initialized
input parameter vector. We also show the best value of each metric present in the
training split of the checkpoint dataset.

3.4 Experiments
We compare our method to hand-designed optimizers and study the properties of

our approach. We always report optimization of G.pt on unseen network parameters.

3.4.1 Comparison to Hand-Designed Optimizers

Training in one step. Figure 3.3 demonstrates G.pt’s ability to train unseen
neural network parameters in one update. This property is unique compared to
gradient-based optimizers like SGD and Adam which usually require thousands, if not
millions, of updates to achieve good performance. We compare against several of these
traditional optimizers with tuned learning rates and weight decays2. Note that we
did not systematically tune training hyperparameters for checkpoints in our dataset.
For each method, we measure performance after applying one update to randomly-
initialized network parameters and average results over five seeds. We prompt G.pt
by setting ℓ∗ near the best return/loss/error in our dataset (for some tasks, asking
for a value slightly above or below the best value in the dataset works better).
G.pt outperforms gradient-based optimizers in this regime across tasks (control,
image classification), datasets (Cartpole, MNIST, CIFAR-10) and conditioning
metrics (return, test loss, test error). Additionally, G.pt successfully optimizes
non-differentiable metrics (CIFAR-10 test error) whereas baseline optimizers must
use smoothed surrogates.

2We perform a grid search over three learning rates (the PyTorch default and 10× above/below)
and three weight decay values (0, 5× 10−5, 5× 10−4) for each baseline optimizer.

3.4. EXPERIMENTS 33

Training in multiple steps. We compare one step of G.pt to multiple steps
of SGD and Adam in Figure 3.4. SGD and Adam use tuned learning rates and
weight decays. The baseline optimizers require thousands of iterations to match the
performance of one step of G.pt. With tuned hyperparameters and a sufficiently large
number of updates, gradient-based optimizers supersede one-step G.pt optimization.
Our model can also be used as an iterative optimizer with recursive prompting. In this
setting, we repeatedly feed G.pt’s predicted θ∗ back in as its input θ and ask for low
loss/error or high returns. Interestingly, we find that the best performance is usually
realized with one-step prompting (recursive prompting usually brings only minor
improvements). However, we find that recursive prompting leads to considerably
better results when the input neural network comes from an out-of-distribution
initialization algorithm not present in our checkpoint dataset (see Figure 3.6 below).

3.4.2 Prompting for Losses, Errors and Returns

By prompting for various desired losses, errors, or returns, G.pt can sample
different parameter updates that achieve a range of performance levels. In Figure 3.5,
we show that G.pt successfully learns to generate parameters corresponding to a
large range of prompted values. We pass G.pt randomly-initialized neural network
parameters and ask it to optimize them in one step to a range of losses/errors/returns.
We show results for several different starting parameters. Across different tasks
and metrics, G.pt generates parameter updates that are well-correlated with the
prompted value. While our model is able to achieve a range of prompted values,
we note that it currently shows limited ability to extrapolate to values beyond the
limits of the pre-training dataset.

3.4.3 Generalization to Out-of-Distribution Initializations

The networks in our checkpoint dataset are initialized with a single weight
initialization scheme. For MNIST, they are sampled θ ∼ U [− 1√

n
, 1√

n
], where n is

the fan-in of a layer. In Figure 3.6, we evaluate G.pt’s ability to generalize to
randomly-initialized input parameter vectors θ, where the weights are sampled from
different distributions [80–82] not present in our dataset. While one step prompting
performance is degraded, recursive prompting significantly improves results. G.pt
is able to rapidly optimize out-of-distribution weights in ten or fewer parameter
updates.

3.4. EXPERIMENTS 34

0

20

40

60

80

100

Er
ro

r

In-Distribution Initialization Xavier Normal Xavier Uniform Orthogonal

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

0

20

40

60

80

100

Er
ro

r

Kaiming Normal (Fan-In)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Normal (Fan-Out)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Uniform (Fan-In)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Uniform (Fan-Out)

Figure 3.6: G.pt generalizes to out-of-distribution parameter initializations.
We query G.pt with randomly-initialized weights sampled from a different distribution
than those in our MNIST checkpoint dataset. By recursively applying G.pt to its
own output and prompting for low test error, we rapidly optimize out-of-distribution
random initializations.

3.4.4 Scaling Model and Data Size

Performance metric. We use prompt alignment to measure scaling perfor-
mance. We define it as the R2 coefficient of determination between a set of input
loss/error/return prompts and the actual loss/error/return achieved by the parame-
ters sampled from G.pt. We compute R2 values over 20 regularly-sampled prompts
and average results over 128 neural networks. The optimal score is +1, which
indicates that G.pt perfectly listens to loss prompts. Randomly-initialized G.pt
score around −2.7. We use unseen, randomly-initialized input networks in order to
gauge generalization capabilities. Empirically, we find that prompt alignment is a
more reliable quality metric than diffusion mean-squared error on unseen parameter
vectors.

Model scale. We analyze the impact of increasing the number of G.pt parame-
ters in Figure 3.7 (top). We train six models with transformer hidden sizes in [64,
128, 256, 512, 1024, 2048]; the smallest model is approximately 2M parameters while
the largest is 858M parameters. We evaluate the G.pt checkpoint that attains the
highest prompt alignment score over training. We find that larger models generalize
much more effectively than smaller models. Small models (<60M parameters) largely
fail to generalize to unseen parameter vectors. Even at roughly 109 parameters, we
find that G.pt has not saturated its model scaling curve.

3.4. EXPERIMENTS 35

106 107 108 109

G.pt Size (Parameters)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Pr
om

pt
 A

lig
nm

en
t

104 105 106 107 108

Dataset Size (Checkpoints)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Pr
om

pt
 A

lig
nm

en
t

Figure 3.7: G.pt Scal-
ing.

Data scale. Next, we analyze the impact of increasing
the number of training checkpoints in Figure 3.7 (bottom).
We train our largest 858M parameter model on [500,
5K, 10K, 25K, 55K] runs, with each run containing 200
checkpoints. Performance improves substantially as the
number of training checkpoints is scaled from 100K to 5M.
We do not observe significant improvement when further
increasing from 5M to 10M checkpoints. This may be a
result of G.pt requiring additional model scale to benefit
from a larger pre-training dataset.

3.4.5 Diversity of Generated Parameters

The mapping of loss values to neural network param-
eters is one-to-many. As a generative model, G.pt is able
to sample diverse parameter solutions given a loss prompt.
By fixing all G.pt inputs (including θ) and varying sampling noise, we can sample
multimodal solutions that cover distinct error minima (Figure 3.8). Visual inspection
of generated first-layer weights suggests that sampling noise controls subtle variations
in individual filters as well as the specific ordering of filters.

Intuitively, conditioning on a starting θ should narrow the space of possible
parameter solutions (in other words, initialization should have some bearing on
where optimization converge). Indeed, we find that the most significant variation is
obtained by re-sampling the starting θ.

3.4.6 Dataset Design Decisions

Parameter augmentation aids generalization. In the absence of permutation
augmentation, we observe that G.pt can aggressively overfit the training set and
fail to generalize to new networks (i.e., it exhibits poor prompt alignment when
taking unseen networks as input). Training with parameter augmentation alleviates
overfitting in our Cartpole G.pt model.

Training on intermediate checkpoints improves one step training. Given
the redundancy in neural network parameters over a single training run, it is worth
asking if there is value in training G.pt on 200 intermediate checkpoints per-run.
Instead, we could train G.pt exclusively on the initial and final checkpoint from
each run. We find that this setup degrades one step training capabilities by over
50%: average test loss when prompting with ℓ∗ = 0 worsens from 0.2 to 0.32. G.pt

3.5. MEMORIZATION VERSUS GENERALIZATION 36

Figure 3.8: G.pt learns a multimodal distribution over local error minima.
We visualize the test error landscape for an MNIST MLP via parameter space PCA
directions [1]. The dots are samples from G.pt when prompted for low test error; the
two plots use different MLP initializations. With fixed inputs, G.pt samples diverse
solutions that cover distinct positive-curvature regions of the error landscape. We
show G.pt samples that reconstruct accurately from PCA encoding.

significantly benefits from training on a large number of checkpoints, even those from
the same run.

3.5 Memorization Versus Generalization
Next, we investigate the extent to which G.pt memorizes solutions from the

training set. This is a challenging topic to address for any generative model, and
there is no universally-accepted methodology to measure it. For generative models of
images, one popular methodology is to visualize the nearest neighbors of generated
images in the training set. Visualizing parameters is challenging for deep networks
beyond the first layer, so we instead provide a basic way to quantify memorization.

Experimental setup. Our approach is also based on nearest neighbors. We feed
G.pt an unseen, randomly-initialized parameter vector from a test run and sample
a corresponding solution θ∗ from our model. If G.pt is memorizing parameters
from the training set, then the sampled θ∗ should be closer to one of the millions of
parameter vectors across all runs in the training split than the 200 “ground truth"
parameter vectors in the same test run from which we took the randomly-initialized
input parameters. On the other hand, if θ∗ is closer to one of these 200 held-out
checkpoints, it suggests that it is accurately predicting the outcome of gradient-based
optimization (i.e., there is some level of meaningful generalization). For simplicity,

3.5. MEMORIZATION VERSUS GENERALIZATION 37

��
��
��
�� ��	 ���
�" �!$���� ##

	

�	

�	

�	

�	

		

��
��
�
"�
���

�

������
	

�	 	 �	 �	 �	 �	
�" �!$����"" "

������
	

� 	��
�� ��� ��� ��
�#!�"%�����%&#

�

�

��

��

��

	��

��
��
�!
#�
���

�

��#%"!��

��� �� 	�� 	�
��
�#!�"%����!$$

�����

� �� �� ��
�#!�"%����##!#

�����

Figure 3.9: G.pt predictions on held-out (unseen) random initializations
tend to lie closer to the ground truth outcome of SGD/Adam than any
parameter vector from our checkpoint dataset’s training split. For each test
run in our dataset, we feed the initial parameters and a metric prompt to G.pt, and
we sample a prediction. We count the percentage of runs for which the prediction is
closer to one of the 200 checkpoints in that same test run than all checkpoints in the
training split (Cartpole has 10M training split checkpoints, CIFAR-10 has 11.3M
and MNIST has 2.1M). Each plot corresponds to a different G.pt model, and we
repeat the test for a wide range of prompts.

we compute distances in Euclidean space. We count the percentage of test runs
for which G.pt generates a solution closer to any of the 200 checkpoints in the test
run than all checkpoints in the training split of our dataset (Cartpole has 10M
training split checkpoints, CIFAR-10 has 11.3M and MNIST has 2.1M). We call this
percentage the nearest neighbor score. A score of 100% suggests G.pt is perfectly
generalizing. We repeat this test for a range of loss, error and return prompts.

Results. Figure 3.9 shows nearest neighbor scores for all five of our G.pt models.
Our models appear to accurately generalize under a large number of loss, error and
return prompts. Our Cartpole and CIFAR-10 models exhibit perfect scores (100%)
for all input prompts. Interestingly, while our MNIST models also have perfect
scores for the majority of loss/error prompts, they have lower scores for smaller
prompts (decreasing to about 15-20%). A speculative explanation is that our MNIST

3.6. RELATED WORK 38

models were trained with about a fifth of the number of training runs compared
to our Cartpole and CIFAR-10 models; this could possibly degrade generalization
capabilities. Overall, this test provides some initial evidence that G.pt is generalizing
and not just memorizing training set parameters.

3.6 Related Work

3.6.1 Pre-training from Large-Scale Data

Transformers for X. Transformers [11] were initially developed for language
but have been shown to be well-suited for a wide range of domains. They have
achieved strong results in vision [3], language modeling [6,19,21], coding [83,84], ,
reinforcement learning [31,32], image synthesis [23,39,42] and protein folding [85].
Likewise, we show that transformers can be used for learning to learn by generative
pre-training from neural network parameters.

Diffusion. Diffusion models [12] have recently been shown to be highly effective
for images [4, 10, 13, 14, 45, 50, 54]. In this section, we show that diffusion models can
be used for meta-learning by generating neural network parameters.

Pre-training. Large scale pre-training has led to significant advances in vision [8,
9], natural language processing [6,19–21] and audio understanding [71,86]. We explore
pre-training from datasets of neural networks instead of datasets of images and text.

Datasets of neural networks. Past works have constructed datasets of neural
networks and used them in various settings: analyzing population-level trends [52,53],
benchmarking neural architecture search [87], training hypernetworks [88], predicting
model properties [76] and dataset distillation [89, 90]. We share the goal of using
datasets of neural networks, but for the novel meta-learning approach of pre-training
a generative model from trained neural network checkpoints.

3.6.2 Learning to Learn

Learning optimizers. Past works have explored parameterizing optimization
update rules with neural networks in place of hand-designed rules like Adam. These
rules can be parameterized implicitly as neural networks that take gradients as input
and output an improved parameter update. They are typically trained with unrolled
optimization [15,91–98] or reinforcement learning [74,99].

Hypernetworks. Rather than parameterizing update rules, neural networks can
be used to directly output or modify other neural networks’ parameters [100–102].
For example, hypernetworks [103] train parameter regression networks end-to-end

3.7. DISCUSSION 39

with the task objective. Hypernetworks have subsequently been extended to support
sampling different parameter solutions [104–106].

Model-agnostic meta-learning. MAML learns a parameter initialization that
is rapidly adaptable to new tasks [16]. Subsequent work has built simple probabilistic
models over learned MAML initializations [107]. These methods possess similar
characteristics as learned optimizers—they rely on unrolled optimization and require
differentiable task-level objectives.

Learning hyperparameters. A large body of prior work has explored learning
hyperparameters of standard optimizers [108,109]. For example, learning rates, weight
decays and weight initializations can all be learned via hypergradient descent [110–
112], Bayesian optimization [113] and reinforcement learning [114–117].

Learning to learn as pre-training. In contrast to learned optimizers, hyper-
networks and MAML, G.pt pre-trains from vast amounts of trained neural network
checkpoints. Our method does not backpropagate through task-level losses and, as
a result, does not require the task metric being optimized for to be differentiable.
This allow us to train with standard generative modeling techniques instead of
reinforcement learning or unrolled optimization which can be unstable [118].

3.7 Discussion
Limitations. The current instantiation of our method has several limitations.

First, the model sometimes exhibits signs of underfitting the full loss/error landscape,
such as with CIFAR-10. Second, our current G.pt models struggle to extrapolate to
losses and errors not present in the pre-training data. Third, our work only pre-trains
from single-architecture and single-task data. Finally, we consider relatively simple
datasets of neural networks with static optimizer hyperparameters.

Conclusion. We propose generative pre-training from neural network check-
points. We show that our approach enables rapid optimization of neural networks
across tasks (supervised and reinforcement learning) and metrics (losses, errors,
returns). Learning algorithms designed by humans have led to large advancements
across different areas of artificial intelligence. We hope that our work serves as a
step towards learning learning algorithms from data using modern deep learning
techniques.

40

Chapter 4

Perception from Pre-trained
Generative Models

In the previous sections, we explored methods for building improved generative
models of various modalities. In this section, we explore how to leverage powerful
pre-trained generative models to tackle downstream tasks. There are many ways
one could go about using, e.g., pre-trained image-level generative models to tackle
tasks in perception. We explore one promising approach in this section—generating
infinite datasets of highly-customizable (and end-to-end learnable) inputs and labels
for the dense visual alignment/correspondence task. A notable advantage of this
approach is that it obviates the need to collect expensive task-specific annotations
from humans while producing unlimited amounts of training data. As we will see,
our approach outperforms fully-supervised and self-supervised baselines that train
models on real data.

4.1 Introduction
Visual alignment, also known as the correspondence or registration problem, is

a critical element in much of computer vision, including optical flow, 3D matching,
medical imaging, tracking and augmented reality. While much recent progress has
been made on pairwise alignment (aligning image A to image B) [120–132], the
problem of global joint alignment (aligning all images across a dataset) has not
received as much attention. Yet, joint alignment is crucial for tasks requiring a
common reference frame, such as automatic keypoint annotation, augmented reality
or edit propagation (see Figure 4.1 bottom row). There is also evidence that training

This work originally appeared in CVPR 2022 [119].

4.1. INTRODUCTION 41

Average Image

Input
Images

Congealed
Images

Correspondence
Visualization

Edit
Propagation

Figure 4.1: Given an input dataset of unaligned images, our GANgealing algorithm
discovers dense correspondences between all images. Top row: Images from LSUN
Cats and the dataset’s average image. Second row: Our learned transformations
of the input images. Third row: Dense correspondences learned by GANgealing.
Bottom row: By annotating the average transformed image, we can propagate user
edits to images and videos. Please see our project page for detailed video
results: www.wpeebles.com/gangealing.

on jointly aligned datasets (such as FFHQ [57], AFHQ [133], CelebA-HQ [134]) can
produce higher quality generative models than training on unaligned data.

In this section, we take inspiration from a series of classic works on automatic joint
image set alignment. In particular, we are motivated by the seminal unsupervised
Congealing method of Learned-Miller [135] which showed that a set of images could
be brought into alignment by continually warping them toward a common, updating
mode. While Congealing can work surprisingly well on simple binary images, such
as MNIST digits, the direct pixel-level alignment is not powerful enough to handle
most datasets with significant appearance and pose variation.

To address these limitations, we propose GANgealing: a GAN-Supervised algo-
rithm that learns transformations of input images to bring them into better joint
alignment. The key is in employing the latent space of a GAN (trained on the
unaligned data) to automatically generate paired training data for a Spatial Trans-
former [136]. Crucially, in our proposed GAN-Supervised Learning framework, both
the Spatial Transformer and the target images are learned jointly. Our Spatial
Transformer is trained exclusively with GAN images and generalizes to real images
at test time.

We show results spanning eight datasets—LSUN Bicycles, Cats, Cars, Dogs,
Horses and TVs [137], In-The-Wild CelebA [138] and CUB [139]—that demonstrate

www.wpeebles.com/gangealing

4.2. RELATED WORK 42

our GANgealing algorithm is able to discover accurate, dense correspondences
across datasets. We show our Spatial Transformers are useful in image editing and
augmented reality tasks. Quantitatively, GANgealing significantly outperforms past
self-supervised dense correspondence methods, nearly doubling key point transfer
accuracy (PCK [140]) on many SPair-71K [141] categories. Moreover, GANgealing
sometimes matches and even exceeds state-of-the-art correspondence-supervised
methods.

4.2 Related Work
Pre-Trained GANs for Vision. Prior work has explored the use of GANs [142,
143] in vision tasks such as classification [144–148], segmentation [149–152] and
representation learning [153–157], as well as 3D vision and graphics tasks [158–161].
Likewise, we share the goal of leveraging the power of pre-trained deep generative
models for vision tasks. However, the relevant past methods follow a common
two-stage paradigm of (1) synthesizing a GAN-generated dataset and (2) training a
discriminative model on the fixed dataset. In contrast, our GAN-Supervised Learning
approach learns both the discriminative model as well as the GAN-generated data
jointly end-to-end. We do not rely on hand-crafted pixel space augmentations [144,
155], human-labeled data [151,152,158,160,161] or post-processing of GAN-generated
datasets using domain knowledge [146,149,150,160].

Joint Image Set Alignment. Average images have long been used to visualize
joint alignment of image sets of the same semantic content (e.g., [162,163]), with the
seminal work of Congealing [135,164] establishing unsupervised joint alignment as a
research problem. Congealing uses sequential optimization to gradually minimize
the entropy of the intensity distribution of a set of images by continuously warping
each image via a parametric transformation (e.g., affine). It produces impressive
results on well-structured datasets, such as digits, but struggles on more complex
data. Subsequent work assumes the data lies on a low-rank subspace [165,166] or
factorizes images as a composition of color, appearance and shape [167] to establish
dense correspondences between instances of the same object category. FlowWeb [168]
uses cycle consistency constraints to estimate a fully-connected correspondence flow
graph. Every method above assumes that it is possible to align all images to a
single central mode in the data. Joint visual alignment and clustering was proposed
in AverageExplorer [163] but as a user-driven data interaction tool. Bounding
box supervision has been used to align and cluster multiple modes within object
categories [169]. Automated transformation-invariant clustering methods [170–172]
can align images in a collection before comparing them but work only in limited

4.3. GAN-SUPERVISED LEARNING 43

domains. Recently, Monnier et al. [173] showed that warps could be predicted with
a network instead, removing the need for per-image optimization; this opened the
door for simultaneous alignment and clustering of large-scale collections. Unlike our
approach, these methods assume images can be aligned with simple (e.g., affine)
color transformations; this assumption breaks down for complex datasets like LSUN.

Spatial Transformer Networks (STNs). A Spatial Transformer module [136]
is one way to incorporate learnable geometric transformations in a deep learning
framework. It regresses a set of warp parameters, where the warp and grid sampling
functions are differentiable to enable backpropagation. STNs have seen success
in discriminative tasks (e.g., classification) and applications such as robust filter
learning [174, 175], view synthesis [176–178] and 3D representation learning [179–
181]. Inverse Compositional STNs (IC-STNs) [182] advocate an iterative image
alignment framework in the spirit of the classical Lukas-Kanade algorithm [183,
184]. Prior work has incorporated STNs in generative models for geometry-texture
disentanglement [185] and image compositing [186]. In contrast, we use a generative
model to directly produce training data for STNs.

4.3 GAN-Supervised Learning
In this section, we present GAN-Supervised Learning. Under this framework,

(x, y) pairs are sampled from a pre-trained GAN generator, where x is a random
sample from the GAN and y is the sample obtained by applying a learned latent
manipulation to x’s latent code. These pairs are used to train a network fθ : x→ y.
This framework minimizes the following loss:

L(fθ,y) = ℓ(fθ(x),y), (4.1)

where ℓ is a reconstruction loss. In vanilla supervised learning, fθ is learned on fixed
(x,y) pairs. In contrast, in GAN-Supervised Learning, both fθ and the targets y are
learned jointly end-to-end. At test time, we are free to evaluate fθ on real inputs.

4.3.1 Dense Visual Alignment

Here, we show how GAN-Supervised Learning can be applied to Congealing [135]—
a classic unsupervised alignment algorithm. In this instantiation, fθ is a Spatial
Transformer Network [136] T , and we describe our parameterization of inputs x and
learned targets y below. We call our algorithm GANgealing. We present an overview
in Figure 4.2.

4.3. GAN-SUPERVISED LEARNING 44

Perceptual
Loss

Perceptual
Loss

Perceptual
Loss

Update spatial transformer and learned mode

𝐺 𝑇

𝐺

𝐺

𝑇

𝑇

𝒘𝟎

𝒘𝟏

𝒘𝟐

𝒄

𝐺

𝐺

𝐺

Figure 4.2: GANgealing Overview. We first train a generator G on unaligned
data. We create a synthetically-generated dataset for alignment by learning a mode
c in the generator’s latent space. We use this dataset to train a Spatial Transformer
Network T to map from unaligned to corresponding aligned images using a perceptual
loss [2]. The Spatial Transformer generalizes to align real images automatically.

GANgealing begins by training a latent variable generative model G on an
unaligned input dataset. We refer to the input latent vector to G as w ∈ R512. With
G trained, we are free to draw samples from the unaligned distribution by computing
x = G(w) for randomly sampled w ∼ W, where W denotes the distribution over
latents. Now, consider a fixed latent vector c ∈ R512. This vector corresponds to
a fixed synthetic image G(c) from the original unaligned distribution. A simple
idea in the vein of traditional Congealing is to use G(c) as the target mode y—i.e.,
we learn a Spatial Transformer T that is trained to warp every random unaligned
image x = G(w) to the same target image y = G(c). Since G is differentiable in
its input, we can optimize c and hence learn the target we wish to congeal towards.
Specifically, we can optimize the following loss with respect to both T ’s parameters
and the target image’s latent vector c jointly:

Lalign(T, c) = ℓ(T (G(w)), G(c)), (4.2)

where ℓ is some distance function between two images. By minimizing L with respect
to the target latent vector c, GANgealing encourages c to find a pose that makes T ’s
job as easy as possible. If the current value of c corresponds to a pose that cannot
be reached from most images via the transformations predicted by T , then it can

4.3. GAN-SUPERVISED LEARNING 45

be adjusted via gradient descent to a different vector that is “reachable" by more
images.

This simple approach is reasonable for datasets with limited diversity; however,
in the presence of significant appearance and pose variation, it is not reasonable
to expect that every unaligned sample can be aligned to the exact same target
image. Hence, optimizing the above loss does not produce good results in general
(see Table 4.3). Instead of using the same target G(c) for every randomly sampled
image G(w), it would be ideal if we could construct a per-sample target that retains
the appearance of G(w) but where the pose and orientation of the object in the
target image is roughly identical across targets. To accomplish this, given G(w), we
produce the corresponding target by setting just a portion of the w vector equal
to the target vector c. Specifically, let mix(c,w) ∈ R512 refer to the latent vector
whose first entries are taken from c and remaining entries are taken from w. By
sampling new w vectors, we can create an infinite pool of paired data where the
input is the unaligned image x = G(w) and the target y = G(mix(c,w)) shares the
appearance of G(w) but is in a learned, fixed pose. This gives rise to the GANgealing
loss function:

Lalign(T, c) = ℓ(T (G(w)︸ ︷︷ ︸
x

), G(mix(c,w))︸ ︷︷ ︸
y

), (4.3)

where ℓ is a perceptual loss function [2]. In this work, we opt to use StyleGAN2 [187]
as our choice of G, but in principle other GAN architectures could be used with
our method. An advantage of using StyleGAN2 is that it possesses some innate
style-pose disentanglement that we can leverage to construct the per-image target
described above. Specifically, we can construct the per-sample targets G(mix(c,w))
by using style mixing [57]—c is supplied to the first few inputs to the synthesis
generator that roughly control pose and w is fed into the later layers that roughly
control texture. See Table 4.3 for a quantitative ablation of the mixing "cutoff point"
where we begin to feed in w (i.e., the cutoff point is chosen as a layer index in W+

space [188]).

Spatial Transformer Parameterization. Recall that a Spatial Transformer
T takes as input an image and regresses and applies a (reverse) sampling grid
G ∈ RH×W×2 to the input image. Hence, one must choose how to constrain the
G regressed by T . Here, we explore a T that performs similarity transformations
(rotation, uniform scale, horizontal shift and vertical shift). We also explore an
arbitrarily expressive T that directly regresses unconstrained per-pixel flow fields
G. Our final T is a composition of the similarity Spatial Transformer into the

4.3. GAN-SUPERVISED LEARNING 46

unconstrained Spatial Transformer, which we found worked best. In contrast to
prior work [173, 186], we do not find multi-stage training necessary and train our
composed T end-to-end. Finally, our Spatial Transformer is also capable of performing
horizontal flips at test time.

When using the unconstrained T , it can be beneficial to add a total variation
regularizer that encourages the predicted flow to be smooth to mitigate degenerate
solutions: LTV(T) = LHuber(∆xG) + LHuber(∆yG), where LHuber denotes the Huber
loss and ∆x and ∆y denote the partial derivative w.r.t. x and y coordinates under
finite differences. We also use a regularizer that encourages the flow to not deviate
from the identity transformation: LI(T) = ||G||22.

Parameterization of c. In practice, we do not backpropagate gradients directly
into c. Instead, we parameterize c as a linear combination of the top-N principal
directions of W space [189,190]:

c = w̄ +
N∑
i=1

αidi, (4.4)

where w̄ is the empirical mean w vector, di is the i-th principal direction and αi is the
learned scalar coefficient of the direction. Instead of optimizing L w.r.t. c directly, we
optimize it w.r.t. the coefficients {αi}Ni=1. The motivation for this reparameterization
is that StyleGAN’s W space is highly expressive. Hence, in the absence of additional
constraints, naive optimization of c can yield poor target images off the manifold
of natural images. Decreasing N keeps c on the manifold and prevents degenerate
solutions. See Table 4.3 for an ablation of N .

Our final GANgealing objective is given by:

L(T, c) = Ew∼W [Lalign(T, c) + λTVLTV(T) + λILI(T)]. (4.5)

We set the loss weighting λTV at either 1000 or 2500 (depending on choice of ℓ) and
the loss weighting λI at 1.

4.3.2 Joint Alignment and Clustering

GANgealing as described so far can handle highly-multimodal data (e.g., LSUN
Bicycles, Cats, etc.). Some datasets, such as LSUN Horses, feature extremely diverse
poses that cannot be represented well by a single mode in the data. To handle this
situation, GANgealing can be adapted into a clustering algorithm by simply learning
more than one target latent c. Let K refer to the number of c vectors (clusters) we
wish to learn. Since each c captures a specific mode in the data, learning multiple

4.4. EXPERIMENTS 47

{ck}Kk=1 would enable us to learn multiple modes. Now, each ck will learn its own
set of α coefficients. Similarly, we will now have K Spatial Transformers, one for
each mode being learned. This variant of GANgealing amounts to simultaneously
clustering the data and learning dense correspondence between all images within
each cluster. To encourage each ck and Tk pair to specialize in a particular mode,
we include a hard-assignment step to assign unaligned synthetic images to modes:

LK
align(T, c) = min

k
Lalign(Tk, ck) (4.6)

Note that the K = 1 case is equivalent to the previously described unimodal case. At
test time, we can assign an input fake image G(w) to its corresponding cluster index
k∗ = argmink Lalign(Tk, ck). Then, we can warp it with the Spatial Transformer
Tk∗ . However, a problem arises in that we cannot compute this cluster assignment
for input real images—the assignment step requires computing Lalign, which itself
requires knowledge of the input image’s corresponding w vector. The most obvious
solution to this problem is to perform GAN inversion [191–193] on input real images
x to obtain a latent vector w such that G(w) ≈ x. However, accurate GAN
inversion for non-face datasets remains somewhat challenging and slow, despite
recent progress [194,195]. Instead, we opt to train a classifier that directly predicts
the cluster assignment of an input image. We train the classifier using a standard
cross-entropy loss on (input fake image, target cluster) pairs (G(w), k∗), where k∗

is obtained using the above assignment step. We initialize the classifier with the
weights of T (replacing the warp head with a randomly-initialized classification head).
As with the Spatial Transformer, the classifier generalizes well to real images despite
being trained exclusively on fake samples.

4.4 Experiments
In this section, we present quantitative and qualitative results of GANgealing on

eight datasets: LSUN Bicycles, Cats, Cars, Dogs, Horses and TVs [137], In-The-Wild
CelebA [138] and CUB-200-2011 [139]. These datasets feature significant diversity
in appearance, pose and occlusion of objects. Only LSUN Cars and Horses use
clustering (K = 4)1; for all other datasets we use unimodal GANgealing (K = 1).
Note that all figures except Figure 4.2 show our method applied to real images—not
GAN samples. Please see www.wpeebles.com/gangealing for full results.

1K is a hyperparameter that can be set by the user. We found K = 4 to be a good default
choice for our clustering models.

www.wpeebles.com/gangealing

4.4. EXPERIMENTS 48
LS

U
N

 B
ic

yc
le

s
LS

U
N

 D
og

s
LS

U
N

 H
or

se
s

In
-T

he
-W

ild
 C

el
eb

A
C

U
B

LSU
N

 C
ats

LSU
N

 C
ars

LSU
N

 TV M
onitors

Figure 4.3: Dense correspondence results on eight datasets. For each dataset,
the top row shows unaligned images and the dataset average image. The middle
row shows our learned alignment of the input images. The bottom row shows dense
correspondences between the images. For our clustering models (LSUN Horses and
Cars), we show results for one selected cluster.

4.4.1 Propagation from Congealed Space

With the Spatial Transformer T trained, it is trivial to identify dense corre-
spondences between real input images x. A particularly convenient way to find
dense correspondences between a set of images is by propagating from our congealed
coordinate space. As described earlier, T both regresses and applies a sampling grid
G to an input image. Because we use reverse sampling, this grid tells us where
each point in the congealed image T (x) maps to in the original image x. This

4.4. EXPERIMENTS 49

Figure 4.4: Image editing with GANgealing. By annotating just a single image
per-category (our average transformed image), a user can propagate their edits to
any image or video in the same category.

4.4. EXPERIMENTS 50

𝛼bbox𝛼bbox 𝛼bbox 𝛼bbox16 pix 1.6 pix 19 pix 1.9 pix 15 pix 1.5 pix 14 pix 1.4 pix

Figure 4.5: PCK@αbbox on various SPair-71K categories for αbbox between
10−1 and 10−2. We report the average threshold (maximum distance for a corre-
spondence to be deemed correct) in pixels for 256×256 images beneath each plot.
GANgealing outperforms state-of-the-art supervised methods for very precise thresh-
olds (< 2 pixel error tolerance), sometimes by substantial margins.

enables us to propagate anything from the congealed coordinate space—dense labels,
sparse keypoints, etc. If a user annotates a single congealed image (or the average
congealed image) they can then propagate those labels to an entire dataset by simply
predicting the grid G for each image x in their dataset via a forward pass through
T . Figures 4.1 and 4.3 show visual results for all eight datasets—our method can
find accurate dense correspondences in the presence of significant appearance and
pose diversity. GANgealing accurately handles diverse morphologies of birds, cats
with varying facial expressions and bikes in different orientations.

Image Editing. Our average congealed image is a template that can propagate
any user edit to images of the same category. For example, by drawing cartoon eyes
or overlaying a Batman mask on our average congealed cat, a user can effortlessly
propagate their edits to massive numbers of cat images with forward passes of T .
We show editing results on several datasets in Figures 4.4 and 4.1.

Augmented Reality. Just as we can propagate dense correspondences to images,
we can also propagate to individual video frames. Surprisingly, we find that GANgeal-
ing yields remarkably smooth and consistent results when applied out-of-the-box to
videos per-frame without leveraging any temporal information. This enables mixed
reality applications like dense tracking and filters. GANgealing can outperform
supervised methods like RAFT [132]—please see www.wpeebles.com/gangealing
for results.

www.wpeebles.com/gangealing

4.4. EXPERIMENTS 51

4.4.2 Direct Image-to-Image Correspondence

In addition to propagating correspondences from congealed space to unaligned
images, we can also find dense correspondences directly between any pair of images
xA and xB. At a high level, this merely involves applying the forward warp that
maps points in xA to points in T (xA) and composing it with the reverse warp that
maps points in the congealed coordinate space back to xB.

Quantitative Results. We evaluate GANgealing with PCK-Transfer. Given a
source image xA, target image xB and ground-truth keypoints for both images,
PCK-Transfer measures the percentage of keypoints transferred from xA to xB that
lie within a certain radius of the ground-truth keypoints in xB.

We evaluate PCK on SPair-71K [141] and CUB. For SPair, we use the αbbox

threshold in keeping with prior works. Under this threshold, a predicted keypoint is
deemed to be correctly transferred if it is within a radius αbbox max(Hbbox,Wbbox)
of the ground truth, where Hbbox and Wbbox are the height and width of the object
bounding box in the target image. For each SPair category, we train a StyleGAN2
on the corresponding LSUN category2—the GANs are trained on 256× 256 center-
cropped images. We then train a Spatial Transformer using GANgealing and directly
evaluate on SPair. For CUB, we first pre-train a StyleGAN2 with ADA [196] on the
NABirds dataset [197] and fine-tune it with FreezeD [198] on the training split of
CUB, using the same image pre-processing and dataset splits as ACSM [5] for a fair
comparison. When T performs a horizontal flip for one image in a pair, we permute
our model’s predictions for keypoints with a left versus right distinction.

SPair-71K Results. We compare against several self-supervised and state-of-the-
art supervised methods on the challenging SPair-71K dataset in Table 4.1, using
the standard αbbox = 0.1 threshold. Our method significantly outperforms prior
self-supervised methods on several categories, nearly doubling the best prior self-
supervised method’s PCK on SPair Bicycles and Cats. GANgealing performs on
par with and even outperforms state-of-the-art correspondence-supervised methods on
several categories. We increase the previous best PCK on Bicycles achieved by Cost
Aggregation Transformers [127] from 34.7% to 37.5% and perform comparably on
Cats and TVs.

High-Precision SPair-71K Results. The usual αbbox = 0.1 threshold reported
by most papers using SPair deems a correspondence correct if it is localized within

2We use off-the-shelf StyleGAN2 models for LSUN Cats, Dogs and Horses. Note that we do not
evaluate PCK on our clustering models (LSUN Cars and Horses) as these models can only transfer
points between images in the same cluster.

4.4. EXPERIMENTS 52

Method Correspondence Supervision
SPair-71K Category

Bicycle Cat Dog TV
HPF [125] matching pairs + keypoints 18.9 52.9 32.8 35.6
DHPF [126] matching pairs + keypoints 23.8 61.6 46.1 46.5
SCOT [123] matching pairs + keypoints* 20.7 63.1 42.5 40.8
CHM [129] matching pairs + keypoints 29.3 64.9 56.1 55.6
CATs [127] matching pairs + keypoints 34.7 66.5 56.5 58.0
WeakAlign [121] matching image pairs 17.6 31.8 22.6 35.1
NC-Net [122] matching image pairs 12.2 39.2 18.8 31.1
CNNgeo [120] self-supervised 16.7 32.7 22.8 34.1
A2Net [124] self-supervised 18.5 35.6 24.3 36.5
GANgealing GAN-supervised 37.5 67.0 23.1 57.9

Table 4.1: PCK-Transfer@αbbox = 0.1 results on SPair-71K categories (test
split).

roughly 10 to 20 pixels of the ground truth for 256× 256 images (depending on the
SPair category). In Figure 4.5, we evaluate performance over a range of thresholds
between 0.1 and 0.01 (the latter of which affords a roughly 1 to 2 pixel error tolerance,
again depending on category). GANgealing outperforms all supervised methods at
these high-precision thresholds across all four categories tested. Notably, our LSUN
Cats model improves the previous best SPair Cats PCK@αbbox = 0.01 achieved by
SCOT [123] from 5.4% to 18.5%. On SPair TVs, we improve the best supervised PCK
achieved by Dynamic Hyperpixel Flow [126] from 2.1% to 3.0%. Even on SPair Dogs,
where GANgealing is outperformed by every supervised method at low-precision
thresholds, we marginally outperform all baselines at the 0.01 threshold.

CUB Results. Table 4.2 shows PCK results on CUB, comparing against several 2D
and 3D correspondence methods that use varying amounts of supervision. GANgeal-
ing achieves 57.5% PCK, outperforming all past methods that require instance mask
supervision and performing comparably with the best correspondence-supervised
baseline (58.5%).

Ablations. We ablate several components of GANgealing in Table 4.3. We find
that learning the target mode c is critical for complex datasets; fixing c = w̄
dramatically degrades PCK from 67% to 10.6% for our LSUN Cats model. This
highlights the value of our GAN-Supervised Learning framework where both the
discriminative model and targets are learned jointly. We additionally find that our
baseline inspired by traditional Congealing (using a single learned target G(c) for

4.4. EXPERIMENTS 53
LS

U
N

 C
at

s
Al

ig
ne

d
LS

U
N

 C
at

s

Figure 4.6: GANgealing alignment improves downstream GAN training.
We show random, untruncated samples from StyleGAN2 trained on LSUN Cats
versus our aligned LSUN Cats (both models trained from scratch). Our method
improves visual fidelity.

all inputs) is highly unstable and degrades PCK to as little as 7.7%. This result
demonstrates the importance of our per-input alignment targets. We also ablate
two choices of the perceptual loss ℓ: an off-the-shelf supervised option (LPIPS [199])
and a fully-unsupervised VGG-16 [200] pre-trained with SimCLR [201] on ImageNet-
1K [202] (SSL)—there is no significant difference in performance between the two
(±0.2%). Please see Table 4.3 for more ablations.

4.4.3 Automated GAN Dataset Pre-Processing

An exciting application of GANgealing is automated dataset pre-processing.
Dataset alignment is an important yet costly step for many machine learning methods.
GAN training in particular benefits from carefully-aligned and filtered datasets, such
as FFHQ [57], AFHQ [133] and CelebA-HQ [134]. We can align input datasets using
our similarity Spatial Transformer T to train generators with higher visual fidelity.
We show results in Figure 4.6: training StyleGAN2 from scratch with our learned
pre-processing of LSUN Cats yields high-quality samples reminiscent of AFHQ.
Empirically, we find that our pre-processing accelerates GAN training significantly.

4.4. EXPERIMENTS 54

Method
Supervision Required

PCK@0.1Inst. Mask Keypoints
Rigid-CSM (with keypoints) [203] ✓ ✓ 45.8
ACSM (with keypoints) [5] ✓ ✓ 51.0
IMR (with keypoints) [204] ✓ ✓ 58.5
Dense Equivariance [205] ✓ 33.5
Rigid-CSM [203] ✓ 36.4
ACSM [5] ✓ 42.6
IMR [204] ✓ 53.4
Neural Best Buddies [128] 35.1
Neural Best Buddies (with flip heuristic) 37.8
GANgealing 57.5

Table 4.2: PCK-Transfer@0.1 on CUB. Numbers for the 3D methods are reported
from [5]. We sample 10,000 random pairs from the CUB validation split as in [5].

Ablation Description Loss (ℓ) W+ cutoff λTV N PCK
Don’t learn c (fix c = w̄) SSL 5 1000 0 10.6
Unconstrained c optimization SSL 5 1000 512 0.34
Early style mixing cutoff SSL 4 1000 1 60.5
Late style mixing cutoff SSL 6 1000 1 65.0
No style mixing SSL 14 1000 1 25.9
No style mixing (LPIPS) LPIPS 14 1000 1 7.74
No LTV regularizer SSL 5 0 1 59.0
Lower λTV (LPIPS) LPIPS 5 1000 1 66.7
Complete model (SSL) SSL 5 1000 1 67.2
Complete model (LPIPS) LPIPS 5 2500 1 67.0

Table 4.3: GANgealing ablations for LSUN Cats. We evaluate on SPair-
71K Cats using αbbox = 0.1. SSL refers to using a self-supervised VGG-16 as the
perceptual loss ℓ. N refers to the number of W space PCA coefficients learned when
optimizing c. Note that the LSUN Cats StyleGAN2 generator has 14 layers.

4.5. LIMITATIONS AND DISCUSSION 55

Figure 4.7: Various failure modes: significant out-of-plane rotation and complex
poses poorly modeled by GANs.

4.5 Limitations and Discussion
Our Spatial Transformer has a few notable failure modes as demonstrated in

Figure 4.7. One limitation with GANgealing is that we can only reliably propagate
correspondences that are visible in our learned target mode. For example, the
learned mode of our LSUN Dogs model is the upper-body of a dog—this particular
model is thus incapable of finding correspondences between, e.g., paws. A potential
solution to this problem is to initialize the learned mode with a user-chosen image
via GAN inversion that covers all points of interest. Despite this limitation, we
obtain competitive results on SPair for some categories where many keypoints are
not visible in the learned mode (e.g., cats).

In this section, we showed that GANs can be used to train highly competitive
dense correspondence algorithms from scratch with our proposed GAN-Supervised
Learning framework. We hope this work will lead to increased adoption of GAN-
Supervision for other challenging tasks.

56

Chapter 5

Discussion

In this thesis, we introduced a scalable new generative modeling framework and
explored ways to leverage pre-trained generative models to tackle problems in vision
and meta-learning. To wrap-up, we discuss a few potential further avenues for
research.

Generative Models as Broadly-Useful, Generic Meta-Learners While we
found that loss-conditional diffusion models can serve as a powerful class of learned
optimizers, our initial experiments in this direction considered single-architecture and
single-task settings. In order to make this method broadly useful, a single diffusion
model should be trained to optimize any downstream neural network for any task.
The two main obstacles to realizing this goal are data collection and model scale. It
is unclear if there are currently a sufficient number of neural network checkpoints
floating around the internet to train such a model, and how large the resulting
diffusion model would need to be to successfully optimize, e.g., 175 billion parameter
downstream language models. However, there are many reasons to believe this is a
promising research direction. Training remains the most resource-intensive aspect of
deep learning pipelines, and future training runs do not benefit from the massive
quantity of intermediate data generated from prior runs. Learned optimizers that
can leverage their past experiences are clearly the solution to this problem. Second,
generative models have been shown to work exceptionally well across a breadth of
domains—provided sufficient scale and data. History suggests the same will hold
true for generative models of neural networks.

The Scaling Behavior of Synthetic Datasets from Generative Models
Although we’ve shown that pre-trained image models are capable of generating high
quality training data for a downstream task-specific network, it remains to be shown

57

how such a setup can most effectively be scaled. In this regime, both the downstream
task-level model as well as the dataset-producing generative model can be scaled.
Understanding how to allocate a fixed compute budget to scaling the two models is
an important direction for future work in this space. Similarly, future work should
study how quality metrics of the generative model (like FID, training loss, etc.)
translate to performance of the downstream task-specific model.

Formal Scaling Laws for Image Synthesis and Meta-Learning In this thesis,
we quantified the compute-based scaling behavior of Diffusion Transformer (DiT)
models in a couple of modalities. While initial results are promising, data points at
larger Gflop scale may be needed before reliable scaling laws can be developed. In
general, a promising avenue for future work is scaling-up DiT by several additional
orders of magnitude.

58

Bibliography

[1] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in NeurIPS, 2018.

[2] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in ECCV, 2016.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image
is worth 16x16 words: Transformers for image recognition at scale,” in ICLR,
2020.

[4] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,”
in NeurIPS, 2021.

[5] N. Kulkarni, A. Gupta, D. F. Fouhey, and S. Tulsiani, “Articulation-aware
canonical surface mapping,” in CVPR, 2020.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are
few-shot learners,” in NeurIPS, 2020.

[7] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language
models,” arXiv:2001.08361, 2020.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in NeurIPS, 2012.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in CVPR, 2014.

[10] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S.
Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho,

BIBLIOGRAPHY 59

D. J. Fleet, and M. Norouzi, “Photorealistic text-to-image diffusion models
with deep language understanding,” arXiv:2205.11487, 2022.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

[12] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in ICML, 2015.

[13] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in
NeurIPS, 2020.

[14] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv:2204.06125, 2022.

[15] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. de Freitas, “Learning to learn by gradient descent by
gradient descent,” in NeurIPS, 2016.

[16] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in ICML, 2017.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

[18] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” arXiv
preprint arXiv:2212.09748, 2022.

[19] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-HCT,
2019.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” 2019.

[22] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in ICML, 2020.

[23] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” in ICML, 2021.

BIBLIOGRAPHY 60

[24] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1125–1134, 2017.

[25] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++: Im-
proving the pixelcnn with discretized logistic mixture likelihood and other
modifications,” arXiv preprint arXiv:1701.05517, 2017.

[26] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al.,
“Conditional image generation with pixelcnn decoders,” Advances in neural
information processing systems, vol. 29, 2016.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

[29] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual
reasoning with a general conditioning layer,” in AAAI, 2018.

[30] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in CVPR, 2022.

[31] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,
A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement learning
via sequence modeling,” in NeurIPS, 2021.

[32] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one big
sequence modeling problem,” in NeurIPS, 2021.

[33] W. Peebles, I. Radosavovic, T. Brooks, A. Efros, and J. Malik, “Learning to
learn with generative models of neural network checkpoints,” arXiv preprint
arXiv:2209.12892, 2022.

[34] T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun, T. B.
Brown, P. Dhariwal, S. Gray, et al., “Scaling laws for autoregressive generative
modeling,” arXiv preprint arXiv:2010.14701, 2020.

[35] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision transformers,”
in CVPR, 2022.

BIBLIOGRAPHY 61

[36] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” in International conference on machine learning,
pp. 4055–4064, PMLR, 2018.

[37] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences
with sparse transformers,” arXiv preprint arXiv:1904.10509, 2019.

[38] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,”
Advances in neural information processing systems, vol. 30, 2017.

[39] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution
image synthesis,” 2020.

[40] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman, “Maskgit: Masked
generative image transformer,” in CVPR, pp. 11315–11325, 2022.

[41] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and B. Guo, “Vec-
tor quantized diffusion model for text-to-image synthesis,” in CVPR, pp. 10696–
10706, 2022.

[42] J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan, A. Ku,
Y. Yang, B. K. Ayan, et al., “Scaling autoregressive models for content-rich
text-to-image generation,” arXiv:2206.10789, 2022.

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models
from natural language supervision,” in ICML, 2021.

[44] A. Hyvärinen and P. Dayan, “Estimation of non-normalized statistical models
by score matching.,” Journal of Machine Learning Research, vol. 6, no. 4, 2005.

[45] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the
data distribution,” in NeurIPS, 2019.

[46] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image generation
and editing with text-guided diffusion models,” arXiv:2112.10741, 2021.

[47] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv:2010.02502, 2020.

[48] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of
diffusion-based generative models,” in Proc. NeurIPS, 2022.

BIBLIOGRAPHY 62

[49] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS 2021
Workshop on Deep Generative Models and Downstream Applications, 2021.

[50] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cas-
caded diffusion models for high fidelity image generation,” arXiv:2106.15282,
2021.

[51] A. Jabri, D. Fleet, and T. Chen, “Scalable adaptive computation for iterative
generation,” arXiv preprint arXiv:2212.11972, 2022.

[52] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, “On network
design spaces for visual recognition,” in ICCV, 2019.

[53] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing
network design spaces,” in CVPR, 2020.

[54] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic
models,” in ICML, 2021.

[55] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[56] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high
fidelity natural image synthesis,” in ICLR, 2019.

[57] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in CVPR, 2019.

[58] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv:1706.02677, 2017.

[59] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv:1711.05101, 2017.

[60] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

[61] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer,
“How to train your ViT? data, augmentation, and regularization in vision
transformers,” TMLR, 2022.

[62] T. Xiao, P. Dollar, M. Singh, E. Mintun, T. Darrell, and R. Girshick, “Early
convolutions help transformers see better,” in NeurIPS, 2021.

BIBLIOGRAPHY 63

[63] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium,”
2017.

[64] G. Parmar, R. Zhang, and J.-Y. Zhu, “On aliased resizing and surprising
subtleties in gan evaluation,” in CVPR, 2022.

[65] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,
and X. Chen, “Improved techniques for training GANs,” in NeurIPS, 2016.

[66] C. Nash, J. Menick, S. Dieleman, and P. W. Battaglia, “Generating images
with sparse representations,” arXiv preprint arXiv:2103.03841, 2021.

[67] T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila, “Improved
precision and recall metric for assessing generative models,” in NeurIPS, 2019.

[68] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy programs,” 2018.

[69] A. Sauer, K. Schwarz, and A. Geiger, “Stylegan-xl: Scaling stylegan to large
diverse datasets,” in SIGGRAPH, 2022.

[70] H. Robbins and S. Monro, “A stochastic approximation method,” The annals
of mathematical statistics, 1951.

[71] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio.,” SSW, 2016.

[72] J. Schmidhuber, “Evolutionary principles in self-referential learning,” 1987.

[73] Y. Bengio, S. Bengio, and J. Cloutier, “Learning a synaptic learning rule,” in
IJCNN, 1991.

[74] K. Li and J. Malik, “Learning to optimize,” arXiv:1606.01885, 2016.

[75] G. Roeder, L. Metz, and D. Kingma, “On linear identifiability of learned
representations,” in ICML, 2021.

[76] K. Schürholt, D. Kostadinov, and D. Borth, “Self-supervised representa-
tion learning on neural network weights for model characteristic prediction,”
NeurIPS, 2021.

BIBLIOGRAPHY 64

[77] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
in ECCV, 2020.

[78] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym: High perfor-
mance gpu-based physics simulation for robot learning,” in NeurIPS, 2021.

[79] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv:1707.06347, 2017.

[80] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in AISTATS, 2010.

[81] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” arXiv:1312.6120, 2013.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in ICCV, 2015.

[83] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large language models
trained on code,” arXiv:2107.03374, 2021.

[84] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles,
J. Keeling, F. Gimeno, A. D. Lago, et al., “Competition-level code generation
with alphacode,” arXiv:2203.07814, 2022.

[85] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al., “Highly accurate
protein structure prediction with alphafold,” Nature, 2021.

[86] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” arXiv:2005.00341, 2020.

[87] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“Nas-bench-101: Towards reproducible neural architecture search,” in ICML,
2019.

[88] B. Knyazev, M. Drozdzal, G. W. Taylor, and A. Romero-Soriano, “Parameter
prediction for unseen deep architectures,” in NeurIPS, 2021.

BIBLIOGRAPHY 65

[89] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros, “Dataset distillation,”
arXiv:1811.10959, 2018.

[90] G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J.-Y. Zhu, “Dataset
distillation by matching training trajectories,” in CVPR, 2022.

[91] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn using
gradient descent,” in ICANN, 2001.

[92] A. S. Younger, S. Hochreiter, and P. R. Conwell, “Meta-learning with back-
propagation,” in IJCNN, 2001.

[93] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in
ICML, 2010.

[94] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in
ICLR, 2017.

[95] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo,
M. Denil, N. de Freitas, and J. Sohl-Dickstein, “Learned optimizers that scale
and generalize,” in ICML, 2017.

[96] K. Lv, S. Jiang, and J. Li, “Learning gradient descent: Better generalization
and longer horizons,” in ICML, 2017.

[97] L. Metz, N. Maheswaranathan, J. Nixon, D. Freeman, and J. Sohl-Dickstein,
“Understanding and correcting pathologies in the training of learned optimizers,”
in ICML, 2019.

[98] L. Metz, C. D. Freeman, J. Harrison, N. Maheswaranathan, and J. Sohl-
Dickstein, “Practical tradeoffs between memory, compute, and performance in
learned optimizers,” arXiv:2203.11860, 2022.

[99] K. Li and J. Malik, “Learning to optimize neural nets,” arXiv:1703.00441,
2017.

[100] J. Schmidhuber, “Learning to control fast-weight memories: An alternative to
dynamic recurrent networks,” Neural Computation, 1992.

[101] J. Schmidhuber, “A ‘self-referential’ weight matrix,” in ICANN, 1993.

[102] G. E. Hinton and D. C. Plaut, “Using fast weights to deblur old memories,” in
In Proceedings of the 9th Annual Conference of the Cognitive Science Society,
1987.

BIBLIOGRAPHY 66

[103] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in ICLR, 2017.

[104] D. Krueger, C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A. Courville,
“Bayesian hypernetworks,” arXiv:1710.04759, 2017.

[105] L. Deutsch, E. Nijkamp, and Y. Yang, “A generative model for sampling
high-performance and diverse weights for neural networks,” arXiv preprint
arXiv:1905.02898, 2019.

[106] N. Ratzlaff and L. Fuxin, “Hypergan: A generative model for diverse, perfor-
mant neural networks,” in ICML, 2019.

[107] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-learning,”
in NeurIPS, 2018.

[108] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” NeurIPS, 2011.

[109] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated ma-
chine learning, 2019.

[110] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperparameter
optimization through reversible learning,” in ICML, 2015.

[111] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood, “Online
learning rate adaptation with hypergradient descent,” arXiv:1703.04782, 2017.

[112] H. Drucker and Y. Le Cun, “Improving generalization performance using double
backpropagation,” IEEE Transactions on Neural Networks, 1992.

[113] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” NeurIPS, 2012.

[114] C. Daniel, J. Taylor, and S. Nowozin, “Learning step size controllers for robust
neural network training,” 2016.

[115] C. Xu, T. Qin, G. Wang, and T.-Y. Liu, “Reinforcement learning for learning
rate control,” arXiv:1705.11159, 2017.

[116] Z. Xu, A. M. Dai, J. Kemp, and L. Metz, “Learning an adaptive learning rate
schedule,” arXiv:1909.09712, 2019.

[117] D. Almeida, C. Winter, J. Tang, and W. Zaremba, “A generalizable approach
to learning optimizers,” arXiv:2106.00958, 2021.

BIBLIOGRAPHY 67

[118] L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman, “Gradients are
not all you need,” arXiv:2111.05803, 2021.

[119] W. Peebles, J.-Y. Zhu, R. Zhang, A. Torralba, A. Efros, and E. Shechtman,
“Gan-supervised dense visual alignment,” in CVPR, 2022.

[120] I. Rocco, R. Arandjelovic, and J. Sivic, “Convolutional neural network archi-
tecture for geometric matching,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6148–6157, 2017.

[121] I. Rocco, R. Arandjelović, and J. Sivic, “End-to-end weakly-supervised semantic
alignment,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6917–6925, 2018.

[122] I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla, and J. Sivic, “Neigh-
bourhood consensus networks,” in Advances in Neural Information Processing
Systems, vol. 31, 2018.

[123] Y. Liu, L. Zhu, M. Yamada, and Y. Yang, “Semantic correspondence as an
optimal transport problem,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[124] P. H. Seo, J. Lee, D. Jung, B. Han, and M. Cho, “Attentive semantic alignment
with offset-aware correlation kernels,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 349–364, 2018.

[125] J. Min, J. Lee, J. Ponce, and M. Cho, “Hyperpixel flow: Semantic corre-
spondence with multi-layer neural features,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 3395–3404, 2019.

[126] J. Min, J. Lee, J. Ponce, and M. Cho, “Learning to compose hypercolumns
for visual correspondence,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16,
pp. 346–363, Springer, 2020.

[127] S. Cho, S. Hong, S. Jeon, Y. Lee, K. Sohn, and S. Kim, “Cats: Cost aggregation
transformers for visual correspondence,” in Thirty-Fifth Conference on Neural
Information Processing Systems, 2021.

[128] K. Aberman, J. Liao, M. Shi, D. Lischinski, B. Chen, and D. Cohen-Or, “Neural
best-buddies: Sparse cross-domain correspondence,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, p. 69, 2018.

BIBLIOGRAPHY 68

[129] J. Min and M. Cho, “Convolutional hough matching networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2940–2950, June 2021.

[130] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with
convolutional networks,” in Proceedings of the IEEE international conference
on computer vision, pp. 2758–2766, 2015.

[131] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2462–2470,
2017.

[132] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical
flow,” in European Conference on Computer Vision, pp. 402–419, Springer,
2020.

[133] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image synthesis
for multiple domains,” in CVPR, 2020.

[134] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” in ICLR, 2018.

[135] E. G. Learned-Miller, “Data driven image models through continuous joint
alignment,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 236–
250, 2006.

[136] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer networks,”
pp. 2017–2025, 2015.

[137] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun: Con-
struction of a large-scale image dataset using deep learning with humans in
the loop,” arXiv preprint arXiv:1506.03365, 2015.

[138] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the
wild,” in ICCV, December 2015.

[139] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-
UCSD Birds-200-2011 Dataset,” Tech. Rep. CNS-TR-2011-001, California
Institute of Technology, 2011.

BIBLIOGRAPHY 69

[140] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose
estimation: New benchmark and state of the art analysis,” in Proceedings of the
IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693,
2014.

[141] J. Min, J. Lee, J. Ponce, and M. Cho, “Spair-71k: A large-scale benchmark for
semantic correspondence,” arXiv preprint arXiv:1908.10543, 2019.

[142] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in NeurIPS, 2014.

[143] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” in ICLR, 2016.

[144] L. Chai, J.-Y. Zhu, E. Shechtman, P. Isola, and R. Zhang, “Ensembling
with deep generative views,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14997–15007, 2021.

[145] C. Mao, A. Cha, A. Gupta, H. Wang, J. Yang, and C. Vondrick, “Generative
interventions for causal learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3947–3956, 2021.

[146] V. Besnier, H. Jain, A. Bursuc, M. Cord, and P. Pérez, “This dataset does
not exist: training models from generated images,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5, IEEE, 2020.

[147] F. H. K. d. S. Tanaka and C. Aranha, “Data augmentation using gans,” arXiv
preprint arXiv:1904.09135, 2019.

[148] E. Wu, K. Wu, D. Cox, and W. Lotter, “Conditional infilling gans for data
augmentation in mammogram classification,” in Image analysis for moving
organ, breast, and thoracic images, pp. 98–106, Springer, 2018.

[149] A. Voynov, S. Morozov, and A. Babenko, “Big gans are watching you: Towards
unsupervised object segmentation with off-the-shelf generative models,” arXiv
preprint arXiv:2006.04988, 2020.

[150] L. Melas-Kyriazi, C. Rupprecht, I. Laina, and A. Vedaldi, “Finding an unsuper-
vised image segmenter in each of your deep generative models,” arXiv preprint
arXiv:2105.08127, 2021.

BIBLIOGRAPHY 70

[151] Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Torralba,
and S. Fidler, “Datasetgan: Efficient labeled data factory with minimal human
effort,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10145–10155, 2021.

[152] N. Tritrong, P. Rewatbowornwong, and S. Suwajanakorn, “Repurposing gans
for one-shot semantic part segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4475–4485, 2021.

[153] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in
ICLR, 2017.

[154] J. Donahue and K. Simonyan, “Large scale adversarial representation learning,”
arXiv preprint arXiv:1907.02544, 2019.

[155] A. Jahanian, X. Puig, Y. Tian, and P. Isola, “Generative models as a data
source for multiview representation learning,” arXiv preprint arXiv:2106.05258,
2021.

[156] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro,
and A. Courville, “Adversarially learned inference,” in ICLR, 2017.

[157] M. Baradad, J. Wulff, T. Wang, P. Isola, and A. Torralba, “Learning to see by
looking at noise,” arXiv preprint arXiv:2106.05963, 2021.

[158] Y. Shi, D. Aggarwal, and A. K. Jain, “Lifting 2d stylegan for 3d-aware face
generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6258–6266, 2021.

[159] X. Pan, B. Dai, Z. Liu, C. C. Loy, and P. Luo, “Do 2d gans know 3d shape?
unsupervised 3d shape reconstruction from 2d image gans,” in International
Conference on Learning Representations, 2021.

[160] Y. Zhang, W. Chen, H. Ling, J. Gao, Y. Zhang, A. Torralba, and S. Fidler,
“Image gans meet differentiable rendering for inverse graphics and interpretable
3d neural rendering,” arXiv preprint arXiv:2010.09125, 2020.

[161] Z. Hao, A. Mallya, S. Belongie, and M.-Y. Liu, “GANcraft: Unsupervised 3D
Neural Rendering of Minecraft Worlds,” in ICCV, 2021.

[162] A. Torralba, “http://people.csail.mit.edu/torralba/gallery/,” 2001.

BIBLIOGRAPHY 71

[163] J.-Y. Zhu, Y. J. Lee, and A. A. Efros, “Averageexplorer: Interactive exploration
and alignment of visual data collections,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 1–11, 2014.

[164] G. B. Huang, V. Jain, and E. Learned-Miller, “Unsupervised joint alignment of
complex images,” in 2007 IEEE 11th International Conference on Computer
Vision, 2007.

[165] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: robust alignment
by sparse and low-rank decomposition for linearly correlated images,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2233–2246, 2012.

[166] I. Kemelmacher-Shlizerman and S. M. Seitz, “Collection flow,” in Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 1792–
1799, IEEE, 2012.

[167] H. Mobahi, C. Liu, and W. T. Freeman, “A compositional model for low-
dimensional image set representation,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, pp. 1322–1329, IEEE Computer Society, 2014.

[168] T. Zhou, Y. J. Lee, S. Yu, and A. A. Efros, “Flowweb: Joint image set alignment
by weaving consistent, pixel-wise correspondences,” in CVPR, 2015.

[169] S. Divvala, A. Efros, and M. Hebert, “Object instance sharing by enhanced
bounding box correspondence,” in BMVC, 2012.

[170] J. B. Frey and N. Jojic, “Estimating mixture models of images and inferring
spatial transformations using the em algorithm,” in CVPR, 1999.

[171] B. J. Frey and N. Jojic, “Transformation-invariant clustering using the EM
algorithm,” vol. 25, no. 1, pp. 1–17, 2003.

[172] M. A. Mattar, A. R. Hanson, and E. G. Learned-Miller, “Unsupervised joint
alignment and clustering using bayesian nonparametrics,” in UAI, 2012.

[173] T. Monnier, T. Groueix, and M. Aubry, “Deep transformation-invariant clus-
tering,” in Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 7945–7955,
Curran Associates, Inc., 2020.

[174] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” arXiv preprint arXiv:1703.06211, 2017.

BIBLIOGRAPHY 72

[175] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter
networks,” in Advances in Neural Information Processing Systems, pp. 667–675,
2016.

[176] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis by
appearance flow,” ECCV, 2016.

[177] Y. Ganin, D. Kononenko, D. Sungatullina, and V. Lempitsky, “Deepwarp:
Photorealistic image resynthesis for gaze manipulation,” in European Conference
on Computer Vision, pp. 311–326, Springer, 2016.

[178] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg, “Transformation-
grounded image generation network for novel 3d view synthesis,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[179] A. Kanazawa, D. W. Jacobs, and M. Chandraker, “Warpnet: Weakly supervised
matching for single-view reconstruction,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3253–3261, 2016.

[180] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspective transformer
nets: Learning single-view 3d object reconstruction without 3d supervision,”
in Advances in Neural Information Processing Systems, pp. 1696–1704, 2016.

[181] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of
depth and ego-motion from video,” arXiv preprint arXiv:1704.07813, 2017.

[182] C.-H. Lin and S. Lucey, “Inverse compositional spatial transformer networks,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[183] B. D. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” in Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, IJCAI’81, pp. 674–679, 1981.

[184] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”
International journal of computer vision, vol. 56, no. 3, pp. 221–255, 2004.

[185] X. Xing, R. Gao, T. Han, S.-C. Zhu, and Y. N. Wu, “Deformable generator
network: Unsupervised disentanglement of appearance and geometry,” arXiv
preprint arXiv:1806.06298, 2018.

BIBLIOGRAPHY 73

[186] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey, “St-gan: Spatial
transformer generative adversarial networks for image compositing,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9455–9464, 2018.

[187] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing
and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

[188] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan: How to embed images into
the stylegan latent space?,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4432–4441, 2019.

[189] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris, “Ganspace: Discovering
interpretable gan controls,” arXiv preprint arXiv:2004.02546, 2020.

[190] Y. Tian, J. Ren, M. Chai, K. Olszewski, X. Peng, D. N. Metaxas, and
S. Tulyakov, “A good image generator is what you need for high-resolution
video synthesis,” in International Conference on Learning Representations,
2021.

[191] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual
manipulation on the natural image manifold,” in ECCV, 2016.

[192] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo editing with
introspective adversarial networks,” in ICLR, 2017.

[193] D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J. Zhu, and A. Tor-
ralba, “Semantic photo manipulation with a generative image prior,” ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH), vol. 38, no. 4,
2019.

[194] Y. Alaluf, O. Patashnik, and D. Cohen-Or, “Restyle: A residual-based stylegan
encoder via iterative refinement,” arXiv preprint arXiv:2104.02699, 2021.

[195] M. Huh, R. Zhang, J.-Y. Zhu, S. Paris, and A. Hertzmann, “Transforming and
projecting images to class-conditional generative networks,” in ECCV, 2020.

[196] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training
generative adversarial networks with limited data,” arXiv, 2020.

BIBLIOGRAPHY 74

[197] G. Van Horn, S. Branson, R. Farrell, S. Haber, J. Barry, P. Ipeirotis, P. Perona,
and S. Belongie, “Building a bird recognition app and large scale dataset with
citizen scientists: The fine print in fine-grained dataset collection,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 595–604, 2015.

[198] S. Mo, M. Cho, and J. Shin, “Freeze the discriminator: a simple baseline for
fine-tuning gans,” arXiv preprint arXiv:2002.10964, 2020.

[199] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
effectiveness of deep features as a perceptual metric,” in CVPR, 2018.

[200] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” 2014.

[201] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” in International conference on
machine learning, pp. 1597–1607, PMLR, 2020.

[202] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in CVPR, 2009.

[203] N. Kulkarni, A. Gupta, and S. Tulsiani, “Canonical surface mapping via
geometric cycle consistency,” ICCV, 2019.

[204] S. Tulsiani, N. Kulkarni, and A. Gupta, “Implicit mesh reconstruction from
unannotated image collections,” 2020.

[205] J. Thewlis, A. Vedaldi, and H. Bilen, “Unsupervised object learning from dense
equivariant image labelling,” 2017.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Scalable Diffusion Models with Transformers
	Introduction
	Related Work
	Diffusion Transformers
	Preliminaries
	Diffusion Transformer Design Space

	Experimental Setup
	Experiments
	State-of-the-Art Diffusion Models
	Scaling Model vs. Sampling Compute

	Conclusion

	Learning to Learn with Generative Models of Neural Network Checkpoints
	Introduction
	Generative Pre-training from Neural Network Checkpoints
	A Dataset of Neural Network Checkpoints
	Generative Models of Neural Network Checkpoints

	Implementation Details
	Experiments
	Comparison to Hand-Designed Optimizers
	Prompting for Losses, Errors and Returns
	Generalization to Out-of-Distribution Initializations
	Scaling Model and Data Size
	Diversity of Generated Parameters
	Dataset Design Decisions

	Memorization Versus Generalization
	Related Work
	Pre-training from Large-Scale Data
	Learning to Learn

	Discussion

	Perception from Pre-trained Generative Models
	Introduction
	Related Work
	GAN-Supervised Learning
	Dense Visual Alignment
	Joint Alignment and Clustering

	Experiments
	Propagation from Congealed Space
	Direct Image-to-Image Correspondence
	Automated GAN Dataset Pre-Processing

	Limitations and Discussion

	Discussion
	Bibliography

