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Abstract

Codon Usage Bias Regulates the Dynamics of Protein Translation

by

Frank Liu

Masters of Science in Electrical Engineering & Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Proteins are produced by a process called translation, wherein particles called ribosomes
move along mRNAs and assemble together polypeptide chains, one amino acid at a time.
The speed at which they do so (referred to as elongation rate) is a crucial determinant of
how fast and how much protein is produced at a time, and therefore is of biological and
medical interest. With the advent of new experimental technology, it has become possible to
probe the positions of ribosomes across mRNAs (through a protocol called Riboseq), possibly
allowing inference of and new insights into these elongation rates. In this project, we devised
and implemented a novel algorithm that infers codon-specific and coding sequence (CDS)
position-specific elongation rates accurately. The algorithm is capable of outperforming
state-of-the-art machine learning methods, while still exhibiting favorable runtime. Using
the inferred elongation rates, we quantitatively disentangled the role played by synonymous
codon usage bias and amino acid choice in explaining variance in smoothed elongation rates.
Furthermore, we demonstrated a prominent role played by codon usage bias in regulating
the dynamics of protein translation, by optimizing translation efficiency in early regions of
the CDS.
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Chapter 1

Introduction

1.1 Background

Proteins are produced by a process called translation, wherein particles called ribosomes
move along mRNA molecules and assemble together polypeptide chains, one amino acid at a
time. The speed at which they do so (referred to as elongation rate) is a crucial determinant
of how fast and how much protein is produced, and therefore is of biological and medical
interest. Elongation rate is known to vary depending on various factors such as the identity
of the codon (and hence amino acid) being translated, the position of that codon along
the length of the mRNA coding sequence (CDS), secondary structure within the mRNA
molecule, and biophysical properties of the nascent polypeptide [20] [4].

It has also been widely observed that codon usage follows non-uniform trends throughout
the coding portions of the genome (i.e. some codons are used more frequently than others)
[16]. This phenomenon is termed codon usage bias. It has been postulated that differences
in codon usage frequency are attributable to differences in tRNA abundance, such that
the more frequently used codons are decoded by tRNA molecules whose concentrations are
more abundant within the cell [7]. This would serve to optimize translation efficiency and
reduce the quantity of ribosomes necessary to produce the same amount of protein product.
This hypothesis is supported by previous studies which have shown that synonymous coding
mutations, upregulation of tRNAs, and mutations within tRNAs can have dramatic effects
of protein expression, folding, and stability [19] [12] [9] [13]. Codon usage bias has also been
shown to exhibit broader impacts beyond just regulation of translation elongation speed.
For example, codon usage has been demonstrated to regulate protein structure and function
as a consequence of regulating translation elongation speed [21]. Slower translation may also
destabilize mRNAs and thus decrease protein expression [17] [1].

With the advent of Riboseq [11], a new experimental technology, it has become pos-
sible to probe the positions of ribosomes across genes. Riboseq, also known as ribosome
profiling, involves isolating and sequencing fragments of mRNA that are protected by ribo-
somes during translation. The resulting data (known as ribosome footprints) can be used
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to determine which regions of mRNA are being translated. Meanwhile, RNA-seq is an-
other high-throughput sequencing technique used to study the transcriptome of a cell or
tissue. Data from RNA-seq experiments can be used to quantify gene expression levels.
In particular, normalizing ribosome footprint counts by the quantity of mRNA sequences
for that transcript (as determined by RNA-seq) allows one to determine ribosome density
measurements at various loci within the translatome.

A frequently-used mathematical model for studying the dynamics of ribosome movement
along mRNA molecules during protein translation is the Totally Asymmetric Simple Ex-
clusion Process (TASEP) [14] [24] [25]. The model consists of a one-dimensional lattice of
sites, each of which can be either empty or occupied by a particle. The particles move in a
single direction (from left to right) and can only occupy empty neighboring sites. The name
“totally asymmetric” refers to the fact that the particles can only move in one direction, and
“simple exclusion” refers to the fact that each site can only be occupied by one particle at
a time.

Figure 1.1: Visualization of the TASEP model. Figure borrowed from [5].

The TASEP model can be applied towards studying the process of translation. Ribosomes
enter the mRNA lattice with rate α, progress forward with elongation rate λi (which varies
depending on the position i), and exit the mRNA lattice with rate β. Furthermore, the
variable ρi in the TASEP model represents the density of particles at any given locus i along
the lattice. Here in our project, ρi also corresponds to the experimentally observed ribosome
density measurement at locus i.

Using formulas derived from the TASEP model (see equation (2.1) through (2.3) in Meth-
ods) [5], smoothed ribosome density measurements ρi can be inverted to recover smoothed
elongation rates λi along with initiation rate α and termination rate β. (Here, “smoothed”
refers to taking the arithmetic mean of values within every consecutive window of 10 codons).
In the current project, we use experimentally-gathered Riboseq and RNA-seq data from S.
cerevisae [20] along with various vertebrate species (human, macaque, mouse, opossum,
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chicken) [22] in order to calculate ρi and λi for all genes in each dataset. Afterwards, we
deconvolve the smoothed elongation rates λi in order to recover codon-specific and CDS
position-specific elongation rates. We may then use these novel inferred elongation rates
to quantitatively assess the role played by codon usage bias in regulating the dynamics of
translation.

Being able to infer codon-specific and CDS position-specific elongation rates has many
practical applications in the realm of optimizing codon sequences for efficient protein syn-
thesis. It is well-known that the biological language for mapping codons to amino acids is
degenerate; in other words there often exist multiple synonymous codons that code for the
same amino acid. Therefore, the same polypeptide sequence can be coded through mRNA
in multiple different ways. Judicious choice of which synonymous codons to use can have
large impacts on the rate at which a protein is synthesized, and its corresponding abundance
within the cell. One example of a medical application for this idea relates to optimizing the
sequence design for the COVID-19 mRNA vaccine.

1.2 Related Work

Multiple studies in the past have attempted to tackle a similar problem of detecting codon-
specific elongation rates. Early studies in 2012 and 2013 aligned ribosome footprint reads
to the reference genome to identify the 10 codons found within each footprint, tabulated
the frequency of each codon appearing in each position, and did not detect codon-specific
differences in decoding rates [6] [3]. However, this method of analysis was criticized for over-
weighting highly-expressed genes and failing to define the right normalizations to compensate
for differences in gene expression, gene length, sequence composition, etc [7].

In 2014, Gardin et al. [7] measured average decoding rates for each of the 61 sense codons
in E. coli from ribosome profiling data. Their approach is as follows: for each of the 61 sense
codons, the authors first identify all translated regions in the genome where that particular
codon uniquely appears at the center of a 19 codon-wide window. For ribosome footprints
that are 10 codons long, there are exactly 10 classes of footprints that can fit entirely within
this window. The authors calculate the relative frequency with which each of these 10
classes are observed, and average these frequencies across thousands of relevant windows
in the transcriptome. Finally, the authors invert these frequencies to compute an average
“ribosome residence time” (RRT) metric for each of the 61 sense codons, which represents
the average amount of time a ribosome spends decoding that codon. The authors used their
inferred elongation rates to conclude that frequent codons are decoded more quickly than
rare codons.

In 2018, Duc et al. [4] used probabilistic modeling to estimate initiation and local elon-
gation rates from ribosome profiling data. Briefly, their procedure approximates position-
specific elongation rates by taking the inverse of the observed footprint number, and then
using simulation to search over the initiation rate that minimizes the difference between
the experimental detected-ribosome density and the one obtained from simulation. This is
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followed by a procedure for detecting and fixing “error sites” where the difference between
absolute density and simulated density exceeds a certain threshold. Using these inferred
elongation rates, the authros conclude that biophysical features, such as the amount of elec-
tric charges and the hydrophobic properties of the nascent polypeptide explain observed
variation in translation elongation rates.

In 2018, Tunney et al. [19] worked on solving a similar task of predicting ribosome
densities from codon sequence information in the Weinberg et al. dataset [20]. By training a
simple feedforward neural network and incorporating RNA secondary structure information
into their predictions, they were able to achieve a 0.57 Pearson correlation between predicted
vs experimentally observed ribosome densities. While this approach does not return codon-
specific elongation rates, it does demonstrate the capacity for accurate prediction of ribosome
densities from codon sequence information alone.
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Chapter 2

Methods

2.1 Elongation Inference Procedure

The elongation inference procedure begins with a set of G genes (a training dataset) from
which we learn to infer codon-specific and CDS position-specific elongation rates. For each
gene g ∈ G having codon sequence Cg of length Lg, Riboseq and RNA-seq experimental
data provide an empirically observed ribosome densities vector of length Lg. The ribosome
densities vector is then smoothed (i.e. its values are averaged by taking the arithmetic mean
within every consecutive window of 10 codons). Henceforth, ρg (having length Lg − 9) shall
denote the smoothed ribosome densities vector for gene g.

The TASEP model provides us with equation (2.1), (2.2), and (2.3) for inverting ρg to
recover αg, βg, λg [5], where αg is a scalar denoting the gene-specific initiation rate, βg is
a scalar denoting the gene-specific termination rate, and λg is a vector (having the same
length as ρg) denoting smoothed elongation rate at each window position along the CDS.
The superscript i denotes the value of the vector at window position i. In equation (2.3),
ρ1+g is a special symbol denoting the terminal entry in the non-smoothed ribosome densities
vector.

λi
g =

1− (ℓ− 1)ρig
ρig(1− ℓρig)

(2.1)

αg =
1

1− ℓρ0g
(2.2)

βg =
1

ρ1+g
(2.3)

In our protocol, we also truncate all codon sequences past codon position 599 due to the
sparsity of available data in regions of the CDS that are further downstream past this point.
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Next, we introduce several foundational assumptions of our model. Based upon previous
reports that different codons have different average ribosome densities (and thus different
elongation rates) due to varying cognate tRNA abundances, and that mean elongation rates
exhibit non-uniform trends across the length of the CDS [20] [7] [4], we model this system by
introducing unique codon-specific and CDS position-specific elongation rates for each of the
64 codons (61 sense codons + 3 nonsense codons). Let ric denote the elongation rate of codon
c appearing at CDS position i. In defining ric we assume that within a particular dataset, a
given codon appearing at a given CDS position will always have the same elongation rate,
regardless of the gene in which it appears. The goal of our model is to learn these unknown
ric values. However, to prevent overfitting, we choose to aggregate together certain regions of
the CDS that are distal from the 5’ end of the mRNA, such that all CDS positions within the
specified regions share the same set of 64 codon-specific elongation rates. The choice to do
so is consistent with prior observations that mean ribosome densities (and thus elongation
rates) across genes exhibit lesser variance in latter regions of the CDS [20]. Assuming 0-
indexing of codon positions, the aggregated regions we choose to set are: codon positions 100
to 149 inclusive, 150 to 349 inclusive, and 350 to 599 inclusive. The total number of unknown
ric values is thus 64× 100 + 64× 3 = 6592. See Figure 2.1 below for a visual representation
of the regions, where alternating blue/orange colors indicate successive regions of the CDS,
each with their own unique set of 64 codon-specific elongation rates.

Figure 2.1: Visualization of region boundaries. The alternating blue and orange colors assist
with distinguishing neighboring regions from one another.

The next key model assumption is that λi
g (the smoothed elongation rate for gene g at

window position i) can be represented as:

λi
g = τg ×

1

10

(
9∑

j=0

ri+j

Ci+j
g

+ ϵ

)
, (2.4)

where τg is a gene-specific time scaling factor, Ci+j
g denotes the identity of the codon at index

i + j in the codon sequence Cg, and ϵ is some zero-mean Gaussian random noise. Simply
put, equation (2.4) states that the smoothed elongation rate for gene g at window position
i can be approximated by the arithmetic mean of the ten codon and CDS position-specific
elongation rates within the window, times a gene-specific scaling factor τg. Equation (2.4)
also suggests that some modified version of linear regression can be used to jointly infer the
unknown ric and τg values.

To solve for the unknown ric and τg values, we employ a coordinate-ascent algorithmic
approach. We start by assuming (temporarily) that the τg values are known, in order to
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recover the optimal values for r. In this case, we can rearrange equation (2.4) as shown:

Λi
g :=

λi
g

τg
=

1

10

(
9∑

j=0

ri+j

Ci+j
g

+ ϵ

)
. (2.5)

Here we define Λi
g as being equal to λi

g normalized by τg, or in other words the smoothed
homogenized elongation rate. We then further simplify:

10Λi
g =

9∑
j=0

ri+j

Ci+j
g

+ ϵ. (2.6)

By writing out equation (2.6) for every window within every gene from the transcriptome,
we can create a system of linear equations from which one can solve for unknown ric values.
To simplify notation, we rewrite this system of equations in linear-algebraic form as

y = Xr + ϵ, (2.7)

where y is defined as a vector containing the concatenation of all 10Λi
g entries from the left

hand side of equation (2.6), r is a vector of length 6592 containing the concatenation of all
ric elongation rates, and X is a design matrix having number of rows equal to

∑
g∈G

Lg − 9 and

number of columns equal to 6592. Each row of X corresponds to a window from the training
dataset, and entries within that row enumerate the number of times each codon from each
CDS region appears within the given window of interest. Thus, the sum of entries in each
row of X is 10, since there are exactly 10 codons per window. Notably, the X matrix is
sparse (i.e. contains many zeros), and can thus be stored in Scipy’s CSR matrix format for
space efficiency. Lastly, ϵ refers to some Gaussian random noise, distributed according to
N (0, σ2I) with unknown variance term σ2.

Although we could proceed to recover r through non-negative least squares regression
applied on equation (2.7), we can reduce overfitting in the final result by using FUSED-
LASSO regression instead. FUSED-LASSO augments the traditional mean squared error
objective function with an additional L1 penalty term, as shown below:

min
r
∥Xr − y∥22 + γ

98∑
k=0

∥rk − rk+1∥1, (2.8)

where γ > 0 is a hyperparameter that can be tuned via cross-validation, and rk denotes the
vector of 64 codon-specific elongation rates at CDS position k. Intuitively, the additional
L1 penalty term prevents the ric values from varying excessively between successive CDS
positions in the first 100 codons of the CDS. The entries of the r vector are then recovered
using CVXPY optimization software.

Now that we have established the procedure for inferring r given τg, we address the other
problem of inferring τg given r. To do so, we use the maximum likelihood estimation (MLE)
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approach. Before we begin, we reparameterize the linear regression problem by modifying it
slightly to simplify the process of calculating derivatives. We multiply both sides of equation
(2.7) by the gene-specific τ scalars, resulting in the following form:

ỹ = τXr + ϵ̃, (2.9)

where ỹ equals τ × y and ϵ̃ ∼ N (0, σ̃2I) for some adjusted variance term σ̃2.
We wish to maximize the likelihood (or equivalently, minimize the negative log-likelihood)

of the ϵ̃i ∼ N (0, σ̃2) terms. Under the assumption that ϵ̃i values are independent across all
windows, the likelihood function Lg (for each gene g) that we seek to maximize is

Lg =

Lg−9∏
i=0

1√
2πσ̃

exp

{
(ỹig − τg(Xr)ig)

2

2σ̃2

}
. (2.10)

Note that ỹig simply denotes the entry of the ỹ vector for gene g at index i, and (Xr)ig is
similarly defined. We can then rewrite the equation above as:

Lg =

Lg−9∏
i=0

1√
2πσ̃

exp

{
(10λi

g − τg(Xr)ig)
2

2σ̃2

}
. (2.11)

We then take the negative natural log of Lg to get

− log(Lg) =

Lg−9∑
i=0

− log

(
1√
2πσ̃

)
−

(10λi
g − τg(Xr)ig)

2

2σ̃2
. (2.12)

We then proceed to take the partial derivative of the function above with respect to τg and
set it equal to 0 in order to recover its optimal value.

−∂ log(Lg)

∂τg
=

Lg−9∑
i=0

−1

2σ̃2
2(10λi

g − τg(Xr)ig)(−(Xr)ig) = 0. (2.13)

Canceling out constants and simplifying yields

Lg−9∑
i=0

10λi
g(Xr)ig − τg((Xr)ig)

2 = 0. (2.14)

Lastly, solving for τg yields the final equation

τg =

Lg−9∑
i=0

10λi
g(Xr)ig

Lg−9∑
i=0

((Xr)ig)
2

. (2.15)
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We have now accomplished a procedure for recovering τg given r, alongside a procedure for
recovering τg given r. In order to initiate the coordinate ascent procedure, we start with a

heuristic value for τg, set equal to
1

Lg−9

Lg−9∑
i=0

λi
g (in essence, the mean value of the λg vector).

We can proceed with the coordinate ascent procedure until we reach convergence in estimates
for r and τg. Empirically, we have found that only one iteration each of inferring r from τg
and inferring τg from r is needed to reach convergence.

2.2 Variable Definitions

All variable definitions can be found in Table 2.1 below. All of the variable definitions (with
the exception of ℓ, r, ric) can be subscripted with the letter g to make them gene-specific.
Capitalized Greek letters denote homogenized versions of their (heterogeneous) lowercase
counterparts, and variables with a hat over them have been reconstructed using the inferred
elongation rates.
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Table 2.1: Variable Definitions

Variable Definition
ℓ constant that equals 10, denoting the width (in codons) of a typical

ribosome footprint
C codon sequence
Ci

g codon located at CDS position i of gene g
L length (in codons) of a particular gene
ρ vector of smoothed ribosome densities, gathered from Ribo-seq and

RNA-seq experimental data
ρ0 first entry in ρ vector
ρ1 last entry in ρ vector
λ vector of smoothed elongation rates, recovered from applying the

TASEP model onto ρ vectors
λi
g smoothed elongation rate at window position i of gene g

λ0 first entry in λ vector
λ1 last entry in λ vector
λmin minimum entry in λ vector
τ time-scaling factor. Normalizing by this gene-specific constant

brings translation rates into the homogeneous setting
Λ defined as being equal to λ/τ , it is the homogenized version of λ
r vector of codon and CDS position-specific elongation rates, re-

turned by elongation inference procedure
ric elongation rate for codon c at CDS position i

Λ̂ predicted values for Λ vector, where predictions are made by aver-
aging codon and CDS position-specific elongation rates from the r
vector within consecutive windows of 10 codons

ρ̂ predicted values for ρ vector, where predictions are made by using
the TASEP model to invert Λ̂

α heterogeneous initiation rate
A homogenized initiation rate, defined as α/τ
β heterogeneous termination rate
B homogenized termination rate, defined as β/τ
X design matrix in FUSED-LASSO regression problem
y vector of labels in FUSED-LASSO regression problem. Defined as

the concatenation of all Λ vectors, times ℓ.
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Chapter 3

Results

3.1 Validating Accuracy of Inferred Elongation Rates

In order to assess the accuracy of our protocol, we used our inferred codon-specific and CDS
position-specific elongation rates r to predict ρ vectors for each gene. Then we correlated
predicted ribosome densities vs experimentally observed ribosome densities ρ in the S. cere-
visiae dataset gathered from [4] in Figure 3.1. The model was trained on 80% of the genes
from the dataset, and model performance was evaluated on the remaining held out 20% of
genes.

Figure 3.1: Correlating predicted vs ground truth ribosome densities ρ in a train (left) and
test (right) subset of the Weinberg et al. dataset. Elongation rates were calculated using
the FUSED-LASSO procedure detailed in the methods section with γ = 1
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The black dashed lines in Figure 3.1 above indicates the y = x diagonal. Furthermore,
there exists a 0.625 Pearson correlation between predicted and experimentally observed ρ
in the train dataset, and a 0.602 Pearson correlation in the test dataset. We find these
correlations to be highly encouraging, as they supercede the performance reported by state-
of-the-art neural network models on the same dataset [19].

While the previous plot demonstrates good correlation amongst predicted vs experimen-
tally observed ribosome densities that have been aggregated together across genes, it leaves
unclear whether or not there exists good correlation at a gene-by-gene level. Therefore, we
sought to assess such correlation in Figure 3.2.

Figure 3.2: Histogram of predicted vs ground truth ribosome densities ρ, on a gene-by-gene
basis, in a train subset (left) and test subset (right) of the Weinberg et. al dataset. Elongation
rates were calculated using the FUSED-LASSO procedure detailed in the methods section
with γ = 1

Each entry in the histograms above corresponds to the Pearson correlation between the
predicted vs experimentally observed ρ vectors for one particular gene, in either the train
subset (left) or test subset (right). In the train dataset, the mean and median Pearson
correlations were both 0.436. In the test dataset, the mean Pearson correlation was 0.42 and
the median Pearson correlation was 0.426. Once again, we assess this to be a fairly strong
performance.

Another method for validating the accuracy of our method involves using the inferred
elongation rates to predict Λ̂ and ρ̂ for each gene, and comparing these predictions against
experimentally observed ρ (and correspondingly inferred Λ, see equation (2.1)). Residual
vectors were calculated by subtracting Λ̂ from Λ, and subtracting ρ̂ from ρ. Mean residual
values per window position were then calculated by taking the mean of residual values across



CHAPTER 3. RESULTS 13

all genes, within each window position, in the test subset of the Weinberg et. al dataset [20].
Results are depicted in Figure 3.3 below.

Figure 3.3: (Upper) Comparing mean Λ residual per window position (blue line) vs mean
Λ value per window position (black line) in a test subset of the Weinberg et. al dataset.
(Lower) Comparing mean ρ residual per window position (blue line) vs mean ρ value per
window position (black line) in a test subset of the Weinberg et. al dataset. Elongation rates
here were calculated using the FUSED-LASSO procedure detailed in the methods section
with γ = 1.

Although the mean Λ residual is somewhat noisier within the first 10 windows of the
CDS and the latter 3’ regions of the CDS, it is fairly stable and unbiased throughout much
of the CDS as desired. It should be noted that the early 5’ region of a gene is typically
where regulation of translation occurs [8] [10], so it may not be altogether surprising that
codon identity and CDS position alone are insufficient to precisely predict elongation rates in
this region. Furthermore, there are fewer genes and therefore less data in the latter regions
of the CDS, which may contribute to the greater amount of noise observed in that region.
Similarly, the mean ρ residuals appear to exhibit a slight positive bias within the first 150
window positions of the CDS, before stabilizing and becoming fairly unbiased in latter regions
of the CDS that are further downstream. This may be attributable to the non-negativity
constraint from our convex optimization procedure, which removes the statistical guarantee
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of unbiasedness. The black lines in the figure above allow us to compare the magnitude
of the mean residuals per window position with the magnitude of the mean experimentally
observed ρ or Λ. In both cases, the former is comfortably smaller than the latter.

In addition to conducting this analysis in yeast, we sought to assess how the model
performs with Riboseq and RNA-sequencing data gathered from vertebrate species. The
results can be seen in Figure 3.4:

Figure 3.4: Mean Λ residual per window position across various vertebrate species datasets.
Elongation rates here were calculated using the FUSED-LASSO procedure detailed in the
methods section with γ = 1.

Each colored line in the plot above indicates the mean Λ residual vector per window
position for a given vertebrate species/tissue pair. The central black line indicates the mean
across all of the colored lines. With the slight exception of the first 10 window positions, the
black line indicates that mean Λ residuals remain remarkably stable and unbiased throughout
the bulk of the CDS.

While calculating mean Λ residual vectors for each vertebrate species/tissue pair, we
observed an interesting trend, shown in Figure 3.5 below.

Once again, the central black lines in each plot indicate the mean across all of the colored
lines. The trends observed in the mean Λ residual per window position vectors appear to
segregate distinctly depending upon tissue of origin. The trends in liver and testis look
similar to one another, whereas the trends in brain look distinct. Furthermore, in Figure
3.5 we confined the range of the x-axis to only examine window positions 0-40, since this is
where the most noise typically appears in the Λ residual vectors. More future work is needed
to understand why the trends above exhibit segregation by tissue type.
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Figure 3.5: Mean Λ residual per window position across various vertebrate species, segregated
by tissue type. Elongation rates here were calculated using the FUSED-LASSO procedure
detailed in the methods section with γ = 1.

3.2 Variation in Λ Is Attributable to Both

Synonymous Codon Choice and Amino Acid

Choice

Due to the lack of precise elongation rate estimates that existed prior to our work, dis-
entangling the relative contributions of synonymous codon choice vs amino acid choice in
regulating variance in smoothed elongation rates Λ has remained elusive. The codon-specific
elongation rates returned by our novel protocol have allowed us to probe this question in
more depth by quantifying the fraction of variance in Λ that is explained by each. Fig-
ure 3.6 below visualizes the range of elongation rates achieved by various amino acids and
synonymous codons in CDS position 50 of the Weinberg et. al dataset.

As indicated in Figure 3.6, there exists a considerable amount of variance in elongation
rate across amino acids, and across synonymous codons that code for the same amino acid.
It is also worth mentioning that the scatterplot in Figure 3.6 is merely a representative
example; similar patterns can be easily observed in other CDS positions and within other
vertebrate species/tissue pairs.

While the previous figure qualitatively confirmed that variation in elongation rate can
be attributable to either synonymous codon choice or amino acid choice, we also sought to
quantitatively disentangle relative contributions from the two. In order to do so, we devised
a variance decomposition method based upon the Law of Total Variance. For reference, the
Law of Total Variance for two arbitrary random variables X, Y is stated below:

VarY (Y ) = EX [VarY (Y |X)] + VarX(EY [Y |X])

. If we conceptualize X as a random variable representing amino acid identity at some codon
position, and Y as representing the inferred elongation rate at that same codon position,
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Figure 3.6: Weinberg codon-specific elongation rates at CDS position 50. The amino acids
presented on the x-axis are sorted in order of increasing mean elongation rate. Elongation
rates here were calculated using the FUSED-LASSO procedure detailed in the methods
section with γ = 1.

then it becomes clear that the first term EX [VarY (Y |X)] represents the variance in inferred
elongation rates that is attributable to synonymous codon choice, and the second term
VarX(EY [Y |X]) represents the variance in inferred elongation rates that is attributable to
amino acid choice. Both of these quantities are plotted in Figure 3.7 below.

Figure 3.7 not only indicates that there is a greater magnitude of variance in inferred
elongation rates within early regions of the CDS (roughly CDS positions 0-25), but it also
indicates that synonymous codon choice plays a more prominent role in regulating elongation
rates within this early region of the CDS, as compared to latter regions.

We next sought to extend this variance decomposition analysis to other vertebrate species/tissue
pairs to see if similar trends persist outside of the human brain dataset. We also extended
this analysis by decomposing variance in smoothed elongation rates Λ̂, which are dependent
on the identity of the 10 amino acids within a given window. Once again, starting from the
Law of Total Variance:

VarY (Y ) = EX [VarY (Y |X)] + VarX(EY [Y |X])

. Setting X equal to the identity of the 10 amino acids within some window, and setting
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Figure 3.7: (Left) Decomposition of variance amongst inferred human brain elongation rates.
The blue line indicates total variance in inferred elongation rate per codon position, the
orange line indicates variance attributable to synonymous codon choice, and the green line
indicates variance attributable to amino acid choice. (Right) Fraction of variance attributable
to synonymous codon choice. This is calculated as the ratio of the values in the orange line
over the values in the blue line.

Y equal to the predicted smoothed elongation rate Λ̂ within that same window allows us to
assess the fraction of variance in Λ̂ that is attributable to synonymous codon choice. The
results of this analysis are shown for each species/tissue pair in Figure 3.8.

With a few exceptions, the trends observed in Figure 3.8 generally corroborate the conclu-
sions made from the previous figure – that synonymous codon choice plays a more prominent
role in regulating elongation rates within early regions of the CDS.

3.3 Codon Usage Bias Optimizes Translation

Efficiency in Early Regions of the CDS

Codon usage bias has been observed to occur across many different biological organisms.
Furthermore, previous literature in the field has reported that amongst other purposes,
codon bias serves the useful purpose of optimizing translation efficiency by tuning elongation
rates, which has impacts on gene expression [16] [2] [15] [18] [23] [7]. Using the codon-specific
elongation rates inferred from our procedure, we sought to test this hypothesis quantitatively.

In order to address this question, we started by computing absolute and synonymous
codon usage frequencies for each of the 64 codons in each of the first 100 CDS positions.
The absolute codon usage frequency of codon c at CDS position x is defined as the fraction
of codons at position x in translated regions of the genome that are equal to c. Thus, the
sum of absolute codon usage frequencies for all 64 codons c at a given CDS position x equals
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1. Synonymous codon usage frequencies are simply a scaled version of the absolute codon
usage frequencies. They are scaled in such a way that for any set C of synonymous codons
coding for the same amino acid, the sum of synonymous codon usage frequencies across all
elements of C equals 1.

If codon usage bias serves the purpose of optimizing overall translation efficiency, then
it would make sense for faster codons to generally be used more frequently. Therefore, we
produced scatterplots correlating codon elongation rate vs absolute codon usage frequency
or synonymous codon usage frequency. The results are shown below in Figure 3.9.

We were inspired by the statistically significant positive Spearman correlation seen in the
left panel of Figure 3.9, as it indicated that faster codons do tend to be used more frequently
within the first 20 codon positions of the CDS. Similarly, in the right panel of Figure 3.9,
there was a 0.256 Spearman correlation between elongation rate and synonymous codon
usage frequency for codons that coded for 2-fold degenerate amino acids, 0.457 Spearman
correlation for codons that coded for 4-fold degenerate amino acids, and a 0.527 Spearman
correlation for codons that coded for 6-fold degenerate amino acids. Therefore, it seems that
as the fold degeneracy of an amino acid increases, the tendency to use faster variants of the
synonymous codons becomes more prominent.

We then wanted to gain a better understanding of the locality of this phenomenon –
are faster codons used more frequently throughout the entire CDS, or is this trend only
confined to certain regions of the CDS? To address this question, we calculated the Spearman
correlation between inferred elongation rates r and absolute codon usage frequency at each
CDS position x in the range 0 through 99 inclusive. The results of this analysis are shown
in Figure 3.10 below:

In Figure 3.10, the blue line indicates Spearman correlation value, the orange line indi-
cates the associated p-value of the correlation, and the red dashed line indicates the 0.05
threshold cutoff for significance. Clearly, the positive correlation between elongation rate
and absolute codon frequency is strongest within the first 10 codon positions, before de-
caying in strength and becoming statistically insignificant past CDS position 20. This is
consistent with biological expectation, as the elongation rates in the first 10 CDS positions
determine the value for λ0, which is known to play a critical role in regulating the current J
of ribosomes trafficking through a given position in time [5].

While the previous figure makes clear that faster codons are used more frequently within
the first 10-20 codon positions of the CDS, it remains unclear whether or not synonymous
codon usage bias plays a role in manifesting this trend. In other words, amongst synonymous
codons coding for the same amino acid, are faster synonymous codons used more frequently
than slower synonymous codons to promote faster translation? To address this question,
we first needed to calculate codon usage frequencies solely within the λ0 windows across all
genes. After computing these, we produced scatterplots of inferred elongation rates r vs
codon usage frequencies in λ0 for each amino acid separately. Points are color-coded based
upon the identity of the synonymous codon, and results are shown in Figure 3.11.

As can be observed within each window panel of Figure 3.11, there typically exists a
strong positive Spearman correlation between inferred elongation rates r and absolute codon
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usage frequency, which confirms our suspicion that synonymous codon usage bias plays a
prominent role in selecting for the usage of faster codons within the first 10 CDS positions.
There are a few exceptions to this trend, however. Amino acids that are large and nonpolar
(such as F, I, K, V, Y) tend to exhibit a negative correlation instead, and more work is
needed to understand why these exceptions exist.
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Figure 3.8: Var(Λ̂) Decomposition Across Various Vertebrate Species/Tissue Pairs. The
blue, green, and orange lines represent different replicates of the same species/tissue pair.
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Figure 3.9: (Left) Scatterplot of absolute codon usage frequency vs elongation rate in the
first 20 CDS positions. There are a total of 64 × 20 points in the scatterplot, one for each
unique codon in each unique CDS position. (Right) Scatterplot of synonymous codon usage
frequency vs elongation rate in the first 20 CDS positions, with point color corresponding to
the degeneracy of the corresponding amino acid.



CHAPTER 3. RESULTS 22

Figure 3.10: Spearman correlations and their corresponding p-values between inferred elon-
gation rate and absolute codon usage frequency at each CDS position in the range 0 through
99 inclusive.
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Figure 3.11: Scatterplots of inferred elongation rates r vs absolute codon usage frequency in
the first 10 CDS positions, for each of the 20 amino acids. Points are color-coded based on
synonymous codon identity. Trends for the M and W amino acids should be ignored as they
are non-degenerate.
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Chapter 4

Conclusion

4.1 Summary

We developed a novel algorithm for inferring codon-specific and CDS position-specific elon-
gation rates r from Riboseq and RNA-sequencing data. By using these inferred elongation
rates to predict λ and ρ vectors for genes, we found that predictions recovered from our
inferred elongation rates exhibited strong correlations with their experimentally observed
ground-truth counterparts, and that our method was capable of outperforming state-of-the-
art machine learning methods on the task of predicting ribosome densities [19]. Using the
inferred elongation rates, we were able to confirm qualitatively that elongation rates vary
widely across different amino acids and different synonymous codons that code for the same
amino acid. Furthermore, by employing a variance decomposition approach, we were able
to quantitatively disentangle relative contributions from synonymous codon usage bias and
amino acid choice in explaining observed variance amongst smoothed elongation rates Λ̂.
Using our inferred elongation rates, we also found that faster codons tend to be used more
frequently in early regions of the CDS, particularly within the first 10 codon positions that
regulate λ0.

4.2 Future Work

Work is currently in progress on implementing a new version of the elongation rate protocol.
This newest version models the Riboseq and RNAseq counts as independent Poisson random
variables whose rates both depend on a common ground truth (but unobserved) quantity of
mRNA transcripts that exist for a particular gene within the cell. Similar to before, the new
protocol then uses statistical MLE inference to recover codon-specific and CDS position-
specific elongation rates. Preliminary results from using this approach suggest that it is
even more powerful than the original version presented in this project, in that it is capable
of achieving an even stronger correlation between predicted and experimentally observed ρ, λ
vectors and removes the occurrence of codons with zero elongation rate. We look forward to
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running this new protocol on all vertebrate and yeast datasets in the near future and seeing
whether the new results are capable of providing even stronger evidence to bolster biological
conclusions we made.

In addition, we would like to correlate protein abundance levels (as determined by mass-
spectrometry) with strength of codon usage bias in order to lend further support to our claim
that codon usage bias optimizes translation efficiency. For example, we hypothesize that
genes whose protein products are more highly expressed should exhibit a greater Spearman
correlation between codon usage frequency and elongation rate (in other words, exhibit a
greater tendency to use faster codons more frequently).

Future experiments will also study the role played by positional information in regulating
elongation rates and therefore translation dynamics. For example, if one were to randomly
sample codons in order to form a protein sequence, and use the inferred elongation rates to
predict ρ̂ and Λ̂, would the associated ribosome densities and smoothed elongation rates for
this synthetic gene still exhibit common features of translation such as the 5’ ramp? Simi-
larly, variance decompositions could be performed to assess the contributions of synonymous
codon choice, amino acid choice, and positional information in explaining observed variance
amongst smoothed elongation rates.
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