
STraP: Self-Training for Proteins

Arbaaz Muslim
Nilah Ioannidis

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-110

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-110.html

May 11, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to Professor Nilah Ioannidis for giving me the opportunity to
pursue my deep interest in machine learning in biology. Her invaluable
insights and support throughout were crucial to this project.
Thank you to eyes robson for being as generous with their time as they
were with their knowledge.
Thank you to my family and friends, who made this more of a group effort
than the title page makes it seem.

2

STraP: Self-Training for Proteins

Arbaaz Muslim

Research Project

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, in partial satisfaction of
the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee

Nilah Ioannidis

(Date)

? ? ? ? ? ? ?

Laura Waller

(Date)

5/7/23

Nilah Ioannidis
5/11/23

Arbaaz

STraP: Self-Training for Proteins

by

Arbaaz Muslim

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Spring 2023

STraP: Self-Training for Proteins

Copyright 2023
by

Arbaaz Muslim

1

Abstract

STraP: Self-Training for Proteins

by

Arbaaz Muslim

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nilah Ioannidis, Chair

Protein engineering is a field with the potential for immense impact in a broad
range of fields such as agriculture, medicine, and manufacturing. However, manually
searching for proteins (or equivalently, amino acid sequences) with desirable proper-
ties by generating and testing large numbers of candidate sequences in experimental
assays is incredibly resource-intensive. Computational approaches to model protein
fitness, particularly few-shot learning approaches that can leverage a limited quan-
tity of experimental assay-labeled data for training, are therefore highly desirable. In
this work, we explore a computational approach that combines prior work in protein
language modeling using large language models with the few-shot learning technique
of self-training, which iteratively generates pseudo-labels for unlabelled sequences
during fine-tuning to enhance the accuracy of a model’s predictions despite sparsely
available labeled data. Here, we perform initial tests of self-training for proteins and
propose follow-up studies to further explore this approach.

i

To my family

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Methods 4

2.1 Data . 4
2.2 Self Training Algorithm . 7
2.3 ESM Models . 8
2.4 Hyperparameter selection . 9
2.5 Establishing a baseline . 9
2.6 Metrics . 10
2.7 Previous Implementations . 12

3 Results 15

3.1 Initial implementation . 15
3.2 Comparing self-training to fine-tuning 15
3.3 Examining Spearman rank correlation progress over the course of self-

training . 21
3.4 Examining the impact of unlabelled data magnitude 23

4 Conclusion 28

4.1 Future Work . 28

Bibliography 32

iii

List of Figures

2.1 Overview of experimental design. Each path through the decision tree
denotes one experiment. 4

2.2 Overview of initial implementation attempts. Arrows that are compound
colors indicate the data sources that constitute the ”new labeled dataset”
created by combining the truly labeled data and pseudolabeled data. Ar-
rows of compound colors are ordered in chronological order of implemen-
tation from left to right. 12

3.1 Comparison of Spearman rank correlation with and without self-training
using ESM-1v embeddings and an SVM regressor. Results are reported
over 3 random seeds. 16

3.2 Comparison of Spearman rank correlation when applying self-training
and standard fine-tuning. Model strength/complexity increases from left
to right, and the number of unlabelled sequences increases from top to
bottom. On every plot, each point is annotated with the improvement
provided by using self-training. 18

3.3 Comparison of NDCG when applying self-training and standard fine-
tuning. Model strength/complexity increases from left to right, and the
number of unlabelled sequences increases from top to bottom. On every
plot, each point is annotated with the improvement provided by using
self-training. 20

3.4 Comparison of mean squared error when applying self-training and stan-
dard fine-tuning. Model strength/complexity increases from left to right,
and the number of unlabelled sequences increases from top to bottom.
On every plot, each point is annotated with MSEself�training�MSEbaseline. 22

3.5 Change in Spearman rank correlation over the course of self-training for
the 6-layer ESM-2 model with 8 million parameters. The number of
labelled sequences used from training increases from left to right. The
number of unlabelled sequences available in the dataset increases from
top to bottom. 24

iv

3.6 Change in Spearman rank correlation over the course of self-training for
the 6-layer ESM-1 model with 43 million parameters. The number of
labelled sequences used from training increases from left to right. The
number of unlabelled sequences available in the dataset increases from
top to bottom. 25

3.7 Change in Spearman rank correlation over the course of self-training for
the 12-layer ESM-1 model with 85 million parameters. The number of
labelled sequences used from training increases from left to right. The
number of unlabelled sequences available in the dataset increases from
top to bottom. 26

3.8 Linear regression to determine the correlation between magnitude of un-
labelled data and di↵erence in Spearman rank correlation produced by
self-training. Model complexity increases from top to bottom. 27

v

List of Tables

2.1 Chosen datasets for experiments . 5
2.2 Information on ESM models used in this work [7]. 8
2.3 Chosen hyperparameter values for experiments 9

vi

Acknowledgments

Thank you to Professor Nilah Ioannidis for giving me the opportunity to pursue my
deep interest in machine learning in biology. Her invaluable insights and support
throughout were crucial to this project.

Thank you to eyes robson for being as generous with their time as they were with
their knowledge.

Thank you to my family and friends, who made this more of a group e↵ort than
the title page makes it seem.

1

Chapter 1

Introduction

We owe our everyday lives to proteins - from catalysts to antibodies, proteins are
crucial to sustaining human life. The ability to e�ciently engineer proteins tailored to
particular use cases would have a large impact in fields such as medicine, agriculture,
and manufacturing (among others) [1]. The ”directed evolution” approach to protein
engineering relies on generating a large number of candidate amino acid sequences
and then repeatedly performing experimental assays on these sequences [1]. Such
assays quantify a candidate protein’s e↵ectiveness at accomplishing a target task.
The general term for this quantity is ”fitness”. In e↵ect, assays can be thought of as
algorithms that take in an amino acid as input and provide fitness as an output.

A critical aspect of protein engineering is navigating the trade-o↵ between an
assay’s fidelity (how accurately the resulting fitness value represents the target task
in the real world) with its throughput (how many proteins can undergo the assay at
one time). The two factors are inversely related - high fidelity assays typically require
more resources, and therefore have low throughput, and vice versa. As a result of
this inverse relationship, assays are performed iteratively. An initial, large number
of candidate proteins undergo relatively simple assays that are easier to carry out.
Those with acceptable fitness values then move onto the next round, where more
resource-intensive, higher fidelity assays are performed [1].

However, cost is a major limiting factor for this approach. Developing and per-
forming assays is an inherently expensive procedure in terms of time, e↵ort, and
money. Another shortcoming is the gap between a protein’s perceived fitness in the
lab and its actual performance when applied to its real-world target task. Due to
the nature of assays being controlled processes that occur in a lab, a protein’s fitness
is a proxy for its real-world e↵ectiveness. The process of protein engineering aims
to optimize fitness as measured by the available assay, which often times does not
accurately reflect its performance on the actual target task [1]. In addition, many

CHAPTER 1. INTRODUCTION 2

classes of proteins have no associated assays [1].
We mentioned earlier that assays can be thought of as algorithms that take in

an amino acid sequence as input and produce fitness as an output. Thus, in a
computational approach to protein engineering, directed evolution in the lab could be
augmented (and potentially replaced) by a machine learning algorithm that predicts
fitness labels for inputted amino acid sequences. At first glance, it would seem
that this approach is subject to the same constraints as with directed evolution -
machine learning models require a set of training data, which in this case would have
to come from assays performed in the lab. Therefore, we need a machine learning
approach such as few-shot learning, which is a form of machine learning that relies
on limited training data. It would also be ideal to leverage unlabelled sequences to
enhance performance by using semi-supervised learning, an approach that involves a
relatively small quantity of labelled data and a relatively large quantity of unlabelled
data in model training.

Thus, our desired machine learning approach would be few-shot, so that it can
leverage a small number of labelled sequences, and simultaneously semi-supervised,
so that it can leverage a large number of unlabelled sequences. Self-training [10] is
a technique that fulfills both requirements and has been applied to a variety of nat-
ural language datasets. Notably, [10] shows that applying self-training to the SNLI
dataset with only 8 labeled examples produces an accuracy improvement of 21.3%
using the standard BERT model and an improvement of 26.2% using BERTLARGE.
The authors of [10] summarize self-training as the following:

...at each iteration, the base model is fine-tuned using the available labeled
data for the target task. Then, the resulting model’s predictions on unla-
beled examples are used as pseudo-labels to augment the original labeled
data set. The newly formed labeled data set is then used to learn a better
model in the next iteration, and this procedure is repeated for a number
of iterations until a stopping criterion is reached.

In order to translate this natural language technique to a protein engineering
context, we make a number of modifications. In contrast to the BERT models used
in [10], we use Evolutionary Scale Modeling transformers (for the specific models,
see Methods) provided by Facebook AI Research. These are large language models
like BERT that have been pre-trained on protein sequence data and accept amino
acid sequences as input. In addition, in contrast to the natural language datasets
used in [10], we use a subset of the protein fitness datasets from [4]. These datasets
span a variety of biological contexts, such as transcriptional activity, peptide binding,
and ampicillin resistance, among others. Each dataset includes the fitness value of

CHAPTER 1. INTRODUCTION 3

the wild-type protein as well as fitness values for a number of mutant sequences
with single site substitutions. The UBE4B dataset includes mutant sequences with
multiple mutations as well. In addition, each dataset includes a multiple sequence
alignment (MSA) featuring sequences that share evolutionary history with the wild-
type sequence. The MSA for each dataset was used as our source of unlabelled data
when applying self-training. For more details on the datasets, see Methods.

4

Chapter 2

Methods

2.1 Data

Datasets

We use a subset of the data from [4]. There were two main considerations in de-
termining which datasets to use - ensuring that a variety of biological contexts were
represented in our subset and ensuring that performing self-training on the chosen
data conformed with time and computational constraints.

For every dataset, we ran experiments using 64, 128, 256, and 512 labelled se-
quences. This meant that the dominant factor that determined training time for
self-training was the number of unlabelled sequences. In order to ensure computa-

Figure 2.1: Overview of experimental design. Each path through the decision tree
denotes one experiment.

CHAPTER 2. METHODS 5

tional feasibility, we chose the 5 datasets with the smallest numbers of unlabelled
sequences as described below.

Protein Measurement UniProt ID Total # of labeled sequences Total # of MSA sequences Reference

UBE4B (U-box domain) Ligase activity UBE4B MOUSE 32290 6533 Starita et. al., PNAS, 2013
�-lactamase Ampicillin resistance BLAT ECOLX 4807 7701 Sti✏er et. al., Cell, 2015

YAP1 (WW domain 1) Peptide binding YAP1 HUMAN 319 8707 Araya et. al., PNAS, 2012
Ubiquitin Growth RL401 YEAST 1161 10145 Roscoe et. al., JMB, 2013

GAl4 (DNA-binding domain) Transcriptional activity GAL4 YEAST 1123 11681 Kitzmann et. al., Nature Methods, 2015

Table 2.1: Chosen datasets for experiments

Sourcing unlabelled sequences

The use of unlabelled sequences is the definitive distinguishing factor between stan-
dard fine-tuning and self-training. Based o↵ of [10], we know that self-training works
best when the number of unlabelled sequences is significantly larger than the num-
ber of labelled sequences (”M << N” [10]) and when the unlabelled sequences come
from the same distribution as the labelled sequences.

We had three options for potential sources of unlabelled sequences. The first
option was to discard the labels for the labeled sequences that were not included
in training. We did not proceed with this method as the amount of unlabelled se-
quences it produced was often only slightly larger than the labelled sequences we
trained on. The second option was to generate sequences by artificially inserting
mutations into the wild-type amino acid sequence. While this method did not usu-
ally su↵er from the issue of lacking magnitude, it was not guaranteed to produce
sequences corresponding to naturally occurring proteins. This meant that it was
not guaranteed to produce sequences that were ”in distribution” compared to our la-
belled datasets. The final option was to extract sequences from the provided multiple
sequence alignment (MSA) for each protein. This option consistently satisfied the
magnitude constraint. In addition, the data we obtained from [4] filtered its labeled
sequences to ”exclude sequences with mutations at positions that have more than
30% gaps in MSAs to focus on regions with su�cient evolutionary data” [4]. We
interpreted the inclusion of evolutionary data as a best-e↵ort attempt at satisfying
the distribution constraint. For these reasons, we used MSA sequences as the sources
for the unlabelled sequences in our experiments.

Some pre-processing was applied to the MSA sequences before they were used
in self-training. Spaces were removed and the ensuing duplicate sequences were
dropped. These pre-processing steps led to values in Table 2.1 that di↵ered from the
MSA sizes reported in [4].

CHAPTER 2. METHODS 6

Defining ”few shot”

In order to determine a viable definition of few shot for this work, we needed labelled
datasets that were limited in size yet large enough for the resulting validation datasets
to be able to convey informative Spearman rank correlation values for the purposes
of early stopping.

We drew on [10]’s labelled dataset sizes in order to determine appropriate dataset
sizes for our own work. [10] used 8 labelled samples for the data regime that its
authors explicitly labelled as ”few shot.” It also reported results on a logarithmic
scale from 8 to 512 in a separate section. We elected to use a logarithmic scale as
well, hoping to illustrate the e↵ects of self-training over a wide variety of labelled
dataset sizes. However, the nature of Spearman rank correlation motivated us to
begin our logarithmic scale at 64 rather than 8. Since we use 20% of our labelled
dataset as a validation set, choosing 8 labelled samples would have resulted in a
validation observation rather than a validation dataset. A ranking metric would
provide no useful information with this setup. We included experiments with a
labelled dataset size of 64 more for illustrative purposes than analytical ones, as
the validation dataset in that scenario only spans 12 observations. This is also a
comparatively trivial size over which to compute Spearman rank correlation.

Ultimately, we were able to determine dataset sizes that were limited in size
and capable of providing information-rich Spearman rank correlation values, thereby
faithfully recreating a few-shot context that provided a relatively high resolution
view of model performance.

Data splits

The way in which we split our data was another point of departure from [10]. Since
the experimental setup of both this work and [10] uses early stopping to determine
the number of self-training iterations and the number of fine-tuning iterations, both
require a set of data for validation purposes. In [10]’s case, this requirement was
fulfilled through a labelled development set that was separate from the training set.
In this work, we set aside a portion of the already limited training set to serve as
a validation set. We chose this setup in order to more accurately reflect the nature
of a few-shot learning context, where labelled data is sparse, no matter its intended
purpose.

For each dataset, we used 20% of the total labelled sequences available as the test
set. We selected a small number of samples (either 64, 128, 256, or 512) from the
remaining 80% of labelled sequences and then performed an 80/20 train/val split on
this small number.

CHAPTER 2. METHODS 7

2.2 Self Training Algorithm

In order to implement our self-training algorithm, we follow the general algorithm
provided in [10].

The self-training algorithm from [10]

One major di↵erence in the experimental setup between [10] and this work was
the target task, which a↵ected the choice of evaluation metric. [10] tackled a classi-
fication task, making accuracy the target metric. This allowed model training with
a cross-entropy loss function. In contrast, this work’s target metric was Spearman
rank correlation. This metric’s reliance on rank clearly makes it a non-di↵erentiable
function; therefore, we draw upon [4] and adapt its method to ”fine-tune the entire
Transformer model with fitness labels as done by Rives et al., using the [pseudo log

CHAPTER 2. METHODS 8

Model ID Number of parameters Number of layers Pre-training dataset

esm2 t6 8M UR50D 8M 6 UniRef50/D 2021 04
esm1 t6 43M UR50S 43M 6 UniRef50/S 2018 03
esm1 t12 85M UR50S 85M 12 UniRef50/S 2018 03

Table 2.2: Information on ESM models used in this work [7].

likelihood] di↵erence between the mutant and the wild-type as a predictor for fitness”
[4, 9].

We use at most 20 self-training iterations maximum in contrast to the 100 used
in [10] and 5 maximum fine-tuning iterations in contrast to the 20 used in [4]. These
decisions were motivated by computational constraints, but we believe they are jus-
tified due to the use of significantly smaller models.

In addition, we use early stopping for both self-training and fine-tuning, relying on
the Spearman rank correlation on the validation dataset to determine the number of
actual iterations. The importance of doing so is underscored by [4]: ”Using Spearman
correlation as opposed to validation loss for early stopping is crucial for performance,
especially on small data sizes.”

2.3 ESM Models

The choice of base model was repeatedly emphasized as a key causal factor for
the impressive performance gains provided by self-training in [10]: ”an important
ingredient in self-training algorithms is the base model f0 (author’s note: see self-
training algorithm in 2.2). Successful self-training typically requires a good base
model, which can provide a large proportion of “correct” predictions or pseudolabels
on unlabeled examples; otherwise, errors can be propagated or magnified in later
stages of self-training.”

Using the number of parameters in models as a proxy quantity to represent model
strength, we experimented with models of three di↵erent strengths in order to exam-
ine this claim in the context of protein language modeling. All of these models were
Evolutionary Scale Modeling transformer models provided by Facebook AI Research
[7].

Time and compute constraints were also considerations in the choice of models.
These constraints prevented us from using larger ESM models that were closer to
the size of the BERT models used in [10], such as the ESM-1b model that was used
in [4]. This leaves the door open for a fascinating avenue of further exploration.

CHAPTER 2. METHODS 9

2.4 Hyperparameter selection

The two main hyperparameters that needed to be determined for training were learn-
ing rate and batch size. Values for both were determined using automatic Pytorch
Lightning tuning, using the Spearman rank correlation of the validation dataset as
a target metric. In order to address the previously discussed issue posed by using
a ranking metric in a few-shot learning context, hyperparameter values were found
for each combination of model and dataset using a labelled dataset size (M) of 512
(the maximum labelled dataset size used for experiments). This prevented the issue
of incorrectly choosing hyperparameter values based on performance metrics derived
from trivially small validation sets. We present the chosen hyperparameter values
for each experiment in Table 2.3.

Model ID Abbreviated Dataset name Learning Rate Batch size

esm2 t6 8M UR50D

UBE4B MOUSE 2.2908676527677735e-7

410

BLAT ECOLX 3e-7
YAP1 HUMAN 3e-7
RL401 YEAST 7.585775750291837e-8
GAL4 YEAST 2.2908676527677725e-5

esm1 t6 43M UR50S

UBE4B MOUSE 3e-7
BLAT ECOLX 3e-7
YAP1 HUMAN 3e-7
RL401 YEAST 7.585775750291837e-8
GAL4 YEAST 7.585775750291837e-8

esm1 t12 85M UR50S

UBE4B MOUSE 2.2908676527677735e-7
BLAT ECOLX 1.5848931924611133e-7
YAP1 HUMAN 3e-7
RL401 YEAST 1.2022644346174132e-6
GAL4 YEAST 9.120108393559096e-8

Table 2.3: Chosen hyperparameter values for experiments

2.5 Establishing a baseline

We chose to use standard fine-tuning with early stopping as a baseline method.
This baseline method di↵ered from self-training in that it only used the set of truly
labelled data. We used the same number (5) of maximum fine-tuning iterations
for the baseline method and the fine-tuning that occurred within each iteration of
self-training.

CHAPTER 2. METHODS 10

An earlier experimental design performed fine-tuning by retrieving the embed-
dings from ESM models and then passing them through a separate neural network
that predicted a fitness value. In this setup, both the ESM model and the ensuing
neural network were trained (i.e. none of the weights involved were frozen). However,
this method required much more time and compute and was ultimately abandoned
in favor of the method used in [4].

2.6 Metrics

A variety of metrics were used to analyze the impact of self-training. Of these,
Spearman rank correlation was the primary metric for measuring success, as it has
been established as a standard mode of evaluation for protein fitness in past works
[2, 4].

Spearman Rank Correlation

⇢ = 1� 6
P

d2i
n(n2�1) where

di = the di↵erence between the two ranks of the ith observation
n = the number of samples

Spearman rank correlation is a common metric used to evaluate models in protein
fitness prediction. Given that the aim is to augment or replace the intensive nature of
protein assays, it may seem odd that a ranking metric is used instead of some kind of
loss function that captures the distance between assay values that are predicted com-
putationally and assay values that are obtained experimentally. However, in most
protein engineering contexts, the aim is to determine which sequences among a pool
of search candidates are the best at performing a desired task. In other words, the
real-world use case that motivates computational protein fitness prediction defines
success in relative terms, making a ranking metric a natural fit.

The use of a ranking-based target metric poses a unique challenge in the context
of few-shot learning - the smaller a dataset, the less information a ranking metric
conveys. It is trivially simple to correctly (or incorrectly) rank a handful of obser-
vations. In such scenarios, Spearman rank correlation provides a very low-resolution
view of a model’s performance. This side e↵ect of choosing Spearman rank correla-
tion as a target metric influenced this work’s interpretation of the term ”few-shot”
and the way in which we performed data splits.

CHAPTER 2. METHODS 11

Normalized Discounted Cumulative Gain

For a query, the normalized discounted cumulative gain, or NDCG, at a particular
rank p is computed as:

NDCGp =
DCGp

IDCGp

DCGp =
Pp

i=1
ranki

log2(i+1) = rel1 +
Pp

i=2
ranki

log2(i+1)

IDCGp =
Pp

i=1
ranki

log2(i+1)

[5]

In contrast to the relatively egalitarian Spearman rank correlation, normalized dis-
counted cumulative gain (NDCG) is a ranking metric that gives higher weight to
values that have high true ranks [4]. This means that observations that are correctly
ranked highly will result in a larger increase in NDCG than correctly ranked lower
observations. The opposite is true for incorrectly ranked observations. In the context
of protein engineering, NDCG is a useful metric when the focus is on finding protein
sequences specifically resulting in the most enhanced fitness relative to the wild-type
sequence. In this scenario, when candidate sequences are ranked by fitness, only the
topmost ones are of interest, making NDCG a logical metric for measuring perfor-
mance. Despite the di↵erence in weighting, NDCG and Spearman rank correlation
are both ranking metrics at their core. This means that there is often a high degree
of correlation between both metrics when they are used to evaluate the same set of
results.

Mean Squared Error

MSE =
PN

i=1(ypred � ytrue)2

Since Spearman rank correlation and NDCG are ranking measures that reflect rela-
tive accuracy, we also included mean squared error as a means of measuring how well
the models were able to predict protein fitness in a more objective sense. While this
metric is not traditionally used for protein fitness measurement in machine learn-
ing, it could help evaluate the models’ e↵ectiveness in situations where researchers
would want to determine a single protein’s fitness value independent of other can-
didate sequences. In this context, the model’s utility would be measured solely by
the di↵erence between the actual assay value and the model’s output, much like the
quantity that mean squared error produces.

CHAPTER 2. METHODS 12

Figure 2.2: Overview of initial implementation attempts. Arrows that are compound
colors indicate the data sources that constitute the ”new labeled dataset” created
by combining the truly labeled data and pseudolabeled data. Arrows of compound
colors are ordered in chronological order of implementation from left to right.

2.7 Previous Implementations

The implementation of self-training used in this work went through a number of itera-
tions (https://github.com/arbaazm1/selftrain-proteins, https://github.com/
arbaazm1/pl-st-proteins) before the authors committed to the one described

CHAPTER 2. METHODS 13

above.
The very first iteration was an extremely bare-bones, naive implementation of

self-training which used embeddings from the pre-trained ESM-1v model as input
to an SVM regressor. Importantly, the ESM-1v model’s weights remained frozen
throughout the implementation - only the SVM was undergoing self-training. This
method featured the use of only labelled data (directly from the DeepSeq paper [8]),
which was preprocessed by removing duplicate sequences and sequences with NaN
labels. Instead of the MSA sequences we ultimately used for unlabelled data, we
selected 512 labelled sequences from the set of all preprocessed labelled data and
then discarded the labels for the rest, in e↵ect creating a set of unlabelled data. This
approach unsurprisingly yielded unimpressive results, and we conjectured that this
was because the use of a strong base model was a major contributing factor to the
success of self-training in [10]. In comparison, the SVM used in this implementation
was nowhere near as complex.

In subsequent iterations, we aimed to tackle the underlying issue of lacking model
complexity by using small neural networks (1-2 hidden layers). These yielded similar
results. We then decide to make a change in the data being used as we realized [10]
mentioned using a set of unlabelled sequences that was significantly larger than the
set of labelled sequences (M << N). Our label-discarded set of unlabelled sequences
did not follow this rule in most cases.

To tackle the issue of lacking unlabelled data, we used MSA sequences from [8]
instead of the sequences with discarded labels that we were using earlier. The MSA
sequences were pre-processed by removing MSA-specific symbols (., -, and spaces)
and dropping duplicates from the resulting set of sequences. Labelled sequences were
pre-processed in the same way as before, by removing sequences with NaN labels and
duplicated sequences. The results of this approach illustrated that our choice of base
model was still sorely lacking - the BERT models used in [10] (where all of the
parameters were being fine-tuned) dwarfed the ESM-1v and multilayer perceptron
combination we were using (where only the MLP weights were being fine-tuned, with
ESM-1v weights remaining frozen).

We decided to tackle this by leaving no weight frozen in the ESM-1v and MLP
combination setup. However, this led to infeasible training times, with only a few
self-training iterations being accomplished in a matter of days. There was an attempt
to alleviate this issue by re-implementing via Pytorch Lightning (https://github.
com/arbaazm1/pl-st-proteins), but this ultimately yielded unresolvable out-of-
memory errors.

This training time infeasibility motivated another literature review to find other
methods of fine-tuning ESM models in particular. This literature review was par-
ticularly fruitful, as it provided new methods addressing both prior issues - model

CHAPTER 2. METHODS 14

size and data availability. We decided to use smaller ESM models than ESM-1v
to address the training time issue. Despite the decrease in model size, the chosen
models were still markedly more complex than the SVMs and multilayer perceptrons
used earlier, [4] yielded a method of fine-tuning ESM models on fitness data as well
as the fitness data that was ultimately used.

15

Chapter 3

Results

3.1 Initial implementation

We begin by illustrating the results of initial attempts at implementing self-training.
These results motivated experimental design changes that culminated in the choices
described inMethods. The figures in this section show results for the BLAT ECOLX
dataset. Since these initial attempts discarded labels from a subset of the labeled
dataset to create an unlabeled set, the BLAT ECOLX dataset is particularly il-
lustrative since it had one of the highest ratios of unlabelled to labelled samples.
Despite being initial attempts, the number of self-training iterations and the method
of splitting the data into training, validation, and testing sets match the final im-
plementation. The results illustrated in this section are all averaged over 3 random
seeds.

The first attempt used embeddings from ESM-1v with frozen weights and fed
these embeddings into an SVM regressor (Figure 3.1). This method provided no
significant improvement compared to standard fitting and predicting. The Spearman
rank correlations in both scenarios (and therefore the plots) are almost identical. This
lack of performance gain can be attributed to a number of shortcomings, which are
mentioned in Methods.

Future attempts involved replacing the SVM regressor with a small multilayer
perceptron. These attempts also did not illustrate much promise with self-training.

3.2 Comparing self-training to fine-tuning

We now compare the performance of self-training using the full approach described
in Methods to the performance of standard fine-tuning for 5 iterations across 3

CHAPTER 3. RESULTS 16

Figure 3.1: Comparison of Spearman rank correlation with and without self-training
using ESM-1v embeddings and an SVM regressor. Results are reported over 3 ran-
dom seeds.

CHAPTER 3. RESULTS 17

di↵erent metrics - Spearman rank correlation (Figure 3.2), normalized discounted
cumulative gain (NDCG) (Figure 3.3), and mean squared error (MSE) (Figure 3.4).

E↵ects on Spearman rank correlation

Overall, self-training does not appear to provide the impressive performance gains
with this experimental setup as it did in [10]. In most cases, self-training nearly
matches or underperforms compared to the baseline fine-tuning procedure. When
the computational costs of self-training are taken into account (i.e. many multiples
of the time and e↵ort involved in standard fine-tuning), the occasional modest gains
provided by self-training are even more insignificant.

This may be attributable to a di↵erence in experimental setup between this
project and [10] - while [10] used a development set separate from its training set
for validation purposes, this work used a subset of the training data for these pur-
poses. The authors of [10] conjecture that real-world low-resource environments in
which separate development sets are unattainable may lead to ”lower accuracy in
each self-training iteration, [with] these errors [being] compound[ed] through later
iterations.” However, it is worth noting that the real-world few-shot exploration in
[10] still provided nontrivial gains, albeit ones that were worse than when a separate
development set was used. We posit that the lack of any notable gains in this setup
were due to a combination of two factors - the lack of a development set during
self-training and lacking magnitudes in the models and datasets used.

Despite the UBE4B MOUSE Klevit2013-nscor log2 ratio being the only dataset
that includes higher-order mutants, it does not appear as if this leads to a pronounced
di↵erence in performance. As with other datasets, self-training usually underper-
forms and occasionally slightly outperforms the baseline fine-tuning method. The
only di↵erence is decreased performance when comparing the 6-layer ESM-2 model
with 8 million parameters to the 6-layer ESM-1 model with 43 million parameters.
As with the trend in other datasets, we expected both baseline and self-training
performance to increase with increased model complexity, but it appears that going
from the 6-layer ESM-2 model with 8 million parameters to the 6-layer ESM-1 model
with 43 million parameters did not follow this trend.

The e↵ect of increasing model size on Spearman rank correlation is apparent -
for every dataset, increasing model complexity leads to improved performance for
both self-training and the baseline fine-tuning method. This is visible in Fig 3.2 go-
ing from left to right for every row. The e↵ect is particularly striking for the datasets
YAP1 HUMAN Fields2012-singles-linear and RL401 YEAST Bolon2013-selection coe�cient,
with baseline Spearman rank correlation rising around 0.4 for the former and around

CHAPTER 3. RESULTS 18

Figure 3.2: Comparison of Spearman rank correlation when applying self-training
and standard fine-tuning. Model strength/complexity increases from left to right,
and the number of unlabelled sequences increases from top to bottom. On every
plot, each point is annotated with the improvement provided by using self-training.

CHAPTER 3. RESULTS 19

0.2 for the latter when comparing the 6-layer ESM-2 model with 8 million parameters
to the 6-layer ESM-1 model with 43 million parameters.

E↵ects on normalized discounted cumulative gain

The trend for NDCG is similar to that of Spearman rank correlation - performance
either matches or underperforms that of standard fine-tuning. Once again, when tak-
ing the cost disparity between the methods into account, we conclude that what may
appear to be matching performance in terms of the performance metric is actually
an underperformance when viewed holistically.

The high correlation between self-training’s impacts on Spearman rank correla-
tion and self-training’s impacts on NDCG are expected, as both are ranking metrics.
However, the two metrics di↵er in the way that they weigh higher-ranked data points.
Spearman rank correlation is a relatively egalitarian measure, with (mis)matches
holding equal weight no matter their position in the ranking. In contrast, NDCG
places greater weight on higher-ranked data points. Correctly or incorrectly ranking
data points with higher true rankings has a greater impact on the resulting met-
ric than when the same is true of data points with lower true rankings [4]. This
means that comparing the impact of self-training on Spearman rank correlation with
the impact of self-training on NDCG can yield insights on how self-training a↵ects
prediction of protein sequences with higher fitness values.

Overall, it seems that self-training is worse at correctly predicting that proteins
have enhanced fitness (i.e. correctly predicting highly ranked proteins), as there are
multiple instances of self-training NDCG scores underperforming baseline NDCG
scores where the opposite was true when viewed through the lens of Spearman rank
correlation. This is visible when 512 labelled sequences from UBE4B MOUSE Klevit2013-
nscor log2 ratio were used to train the 12-layer ESM-1 model with 85 million pa-
rameters, when the 6-layer ESM-1 model with 43 million parameters is trained on
BLAT ECOLX Ranganathan2015-2500, when the 12-layer ESM-1 model with 85
million parameters is trained on RL401 YEAST Bolon2013-selection coe�cient, and
when the 6-layer ESM-2 model with 8 million parameters is trained on YAP1 HUMAN Fields2012-
singles-linear. The last of these examples is particularly notable, as the NDCG is
negative compared to the positive Spearman rank correlation for the same runs.

In addition, the disparity between self-training and standard fine-tuning is more
pronounced when viewed through the lens of NDCG. Di↵erences in Spearman rank
correlation between the two methods are magnified when NDCG is considered in-
stead.

CHAPTER 3. RESULTS 20

Figure 3.3: Comparison of NDCG when applying self-training and standard fine-
tuning. Model strength/complexity increases from left to right, and the number of
unlabelled sequences increases from top to bottom. On every plot, each point is
annotated with the improvement provided by using self-training.

CHAPTER 3. RESULTS 21

E↵ects on mean squared error

In most instances, the mean squared error between both methods was fairly close,
with that of self-training being slightly larger. There is relatively high correlation
between the Spearman rank correlation and mean squared error, as well as a few
cases where self-training had both a lower mean squared error and a lower Spearman
rank correlation (see 12-layer ESM-1 model with 85 million parameters trained on
RL401 YEAST Bolon2013-selection coe�cient).

3.3 Examining Spearman rank correlation

progress over the course of self-training

We next sought to explore whether the predictive power of self-training is a monotonic
function of the number of iterations, whether the models increase in predictive power
over the course of self-training, and how changing the number of maximum self-
training iterations a↵ects performance. These questions can all be addressed by
observing the training and validation losses over time. We present these results in
Figs. 3.5, 3.6, and 3.7.

The Spearman correlation trajectories show that the improvement provided by
self-training is not always a monotonic function of the number of self-training iter-
ations. On the contrary, there are a number of experiments where the validation
Spearman correlation is either flat or follows a cyclic pattern. The latter case illus-
trates the importance of using early stopping to determine the number of self-training
iterations.

In some instances the model seemingly learns nothing at all, as the training and
validation curves are completely flat. Experiments training the 6-layer ESM-2 model
with 8 million parameters have the highest proportion of such runs (Fig. 3.5) and
this proportion decreases as the number of parameters in the model increases. This
suggests that the experiments where no learning occurred are due to lacking model
capacity - the model was not capable of capturing the complexity of the data. This
is further supported when examining runs involving the 12-layer ESM-1 model with
85 million parameters. For any experiment in which it does not seem to learn, the
corresponding experiments with the lower capacity models either follow the same
(lack of) a trajectory or they learn and ultimately achieve a validation Spearman
correlation that is lower than the correlation that the 85 million parameter model
starts (and stays) at. It is also possible that this e↵ect is due to the particular
training and validation sets corresponding to the random seed. Future experiments
can control for this variable by averaging results over multiple random seeds.

CHAPTER 3. RESULTS 22

Figure 3.4: Comparison of mean squared error when applying self-training and stan-
dard fine-tuning. Model strength/complexity increases from left to right, and the
number of unlabelled sequences increases from top to bottom. On every plot, each
point is annotated with MSEself�training �MSEbaseline.

CHAPTER 3. RESULTS 23

Another interesting aspect revealed by these plots is the seemingly low corre-
lation between validation Spearman correlation and test Spearman correlation. In
order to perform this analysis, we consider only those experiments with validation
Spearman correlations that have meaningful (i.e. not flat) trajectories. We expected
that whenever the self-training validation Spearman correlation would be lower than
the baseline’s test Spearman correlation, the self-training test Spearman correla-
tion would also be lower. This assumption ended up being correct for multiple
experiments. However, there were a number of experiments where the self-training
validation Spearman correlation was markedly higher than the baseline’s test Spear-
man correlation and yet the self-training test Spearman correlation was at or below
the baseline. This suggests that performing early stopping based on Spearman cor-
relation may not be ideal. Further experiments could be performed in which the
pseudo-log likelihood metric used in model training is also used for early stopping,
in contrast to this work’s use of the Spearman correlation for early stopping.

3.4 Examining the impact of unlabelled data

magnitude

A major decision in this work’s experimental design was using multiple sequence
alignments as the source of unlabelled data. This decision was largely driven by the
requirement that the number of unlabelled sequences should be significantly larger
than the number of labelled sequences (M << N [10]). This decision may have
resulted in the use of sequences that were from a di↵erent distribution than the
labelled data. Fig. 3.8 illustrates how the magnitude of unlabelled data correlated
with the impact of self-training. While there is no correlation with the smallest
ESM model, there is a slightly negative correlation with the 6-layer ESM-1 model
with 43 million parameters and a positive correlation with the largest model. It
should also be emphasized that despite the positive correlation in the final case, the
regression line captures mostly negative improvement due to self-training. However,
the positive correlation serves as evidence that with a higher ratio of unlabelled to
labelled data or a more complex model (or both), self-training would lead to more
impressive results.

CHAPTER 3. RESULTS 24

Figure 3.5: Change in Spearman rank correlation over the course of self-training
for the 6-layer ESM-2 model with 8 million parameters. The number of labelled
sequences used from training increases from left to right. The number of unlabelled
sequences available in the dataset increases from top to bottom.

CHAPTER 3. RESULTS 25

Figure 3.6: Change in Spearman rank correlation over the course of self-training
for the 6-layer ESM-1 model with 43 million parameters. The number of labelled
sequences used from training increases from left to right. The number of unlabelled
sequences available in the dataset increases from top to bottom.

CHAPTER 3. RESULTS 26

Figure 3.7: Change in Spearman rank correlation over the course of self-training
for the 12-layer ESM-1 model with 85 million parameters. The number of labelled
sequences used from training increases from left to right. The number of unlabelled
sequences available in the dataset increases from top to bottom.

CHAPTER 3. RESULTS 27

Figure 3.8: Linear regression to determine the correlation between magnitude of un-
labelled data and di↵erence in Spearman rank correlation produced by self-training.
Model complexity increases from top to bottom.

28

Chapter 4

Conclusion

Overall, our initial tests of applying self-training to protein fitness prediction are
underwhelming. Performance increases compared to standard fine-tuning are un-
common, and when they are present, they are modest. The computational cost of
applying self-training is many times that of standard fine-tuning, as self-training is
essentially the repeated applications of a modified form of fine-tuning. Increased
computational costs come also from the fact that this modified form of fine-tuning
takes in a much greater magnitude of data as input (M << N). Therefore, the
marginal utility of these modest performance gains is extremely low. We note that
these results are a reflection of the particular choices made in designing the ex-
periments (e.g. number of self-training iterations, number of fine-tuning iterations,
models used) for this project. Changes in experimental design choices, such as those
outlined below, may improve downstream results.

4.1 Future Work

Increasing time and compute

With less limitations on time and computational power, experiments could be run
with multiple random seeds, which would provide for replicability and further confi-
dence in the results. In addition, this would also allow us to design experiments with
parameters that are closer to the experiments in the STraTA paper[10]. Specifically,
it would allow us to run self-training with more self-training iterations, more fine-
tuning iterations, larger models (such as ESM-1b), and larger datasets whose sizes
are closer to the ones used there.

CHAPTER 4. CONCLUSION 29

Random restarts

The authors of the STraTA paper mention that they ”perform 10 random restarts
where there are less than 10K training examples and report the mean and standard
deviation”[10]. They mention that this choice is made since ”fine-tuning BERT can
be unstable on small datasets”[10]. This method could potentially benefit every
experiment included in this project, as the datasets trained upon were chosen to
minimize the number of training samples as a result of compute limitations. However,
since the models we chose were markedly smaller than BERT, it’s also possible that
the instability that applies to BERT would not apply to these experiments. This
ambiguity caused by opposing factors makes the use of random restarts a promising
direction for future research.

Intermediate fine-tuning

Previous work by He et al. also mentions how performing another step of fine-tuning
on only the labelled dataset after fine-tuning on the combined true labels and pseu-
dolabels improves performance [3, 10]. Due to compute limitations, we opted to forgo
this step in this work’s experiments. However, including it (either indiscriminately
for all runs or selectively based on validation data) within the self-training algo-
rithm could yield better results. Drawing an analogy from the mechanism coined by
Biswas et. al., intermediate fine-tuning could potentially serve to guide the model’s
knowledge towards sequences that more closely mirror the wild-type sequence of the
labelled dataset being fine-tuned upon [1].

Distributions of unlabelled sequences

Within this work, MSA sequences were used as unlabelled sequences. Other options
included discarding labels for assay-labelled sequences to create a set of ”unlabelled”
sequences, artificially inserting single mutations into the wild-type sequences, or some
combination of the above approaches. The MSA sequences were chosen for these
experiments for two reasons - they were known to be naturally occurring and having
evolutionary history with the wild-type sequence and the number of MSA sequences
fulfilled the ”M << N” relation between the labelled and unlabelled datasets.

The STraTA paper mentions the importance of using unlabelled data that is of the
same distribution as the labelled data, particularly stating how ”using OOD (out of
domain/distribution) unlabeled examples typically leads to worse self-training results
compared to using in-domain unlabeled examples except for [one case], and combin-
ing the two types of unlabeled examples does not bring further improvements...”

CHAPTER 4. CONCLUSION 30

[10]. A further avenue of exploration of how to apply these findings to proteins has
the potential to yield better self-training results but also a greater understanding of
what it means for protein sequences to be ”of the same distribution”.

Biological task augmentation

A major direction for future research comes from the title of the STraTA paper
itself - task augmentation in a biological context. In the words of the authors, “task
augmentation exploits unlabeled texts from the domain of a given target task to
simulate a large amount of in-domain training data for [an] auxiliary task... which
is then used to train a given model before applying it to the target task” [10]. This
direction for future work naturally follows from the previous suggestion, as both
directions relate to the distributions of protein data. The results of previous work
clearly indicate that using task augmentation and self-training in tandem result in
greatly increased performance. However, applying this two-pronged approach to
protein fitness prediction would require first determining a suitable auxiliary task.

STraTA’s Low Resource Setting

One major way in which this work di↵ers from the approach taken by STraTA is in
the lack of a development set. For this project, we opted to split the labelled data
into training and validation sets. This means that in all reported results, only a
fraction of the reported n was used for training. This experimental design decision
was made in an attempt to remain true to the spirit of few-shot learning. In contrast,
the authors of the STraTA paper used all of their reported n for training, using a
separate development set for early stopping and validation purposes. The authors
acknowledge that using a development set is infeasible in real-world low-resource
scenarios, and propose an alternate approach in which they fine-tune each model for
a fixed number of 512 steps, checkpoint every 30 steps, and evaluate a single model
obtained by averaging the last 5 model checkpoints. They use a fixed number of
30 self-training iterations, each following the previously described same fine-tuning
procedure [10]. The context to which this modified self-training algorithm applies
closely matches the real-world scenario regarding protein assay labels to which this
work applies. Therefore, applying this modified self-training algorithm could lead to
increased performance.

CHAPTER 4. CONCLUSION 31

Filtering pseudolabels

The authors of STraTA attribute the use of a broad distribution of pseudolabels
as a major factor in the impressive performance gains provided by self-training.
While earlier self-training approaches only included pseudolabels that the model was
su�ciently confident about [10], STraTA’s approach di↵ers in that the authors opt
to perform no filtering on the pseudolabels, creating a broad distribution for the
model to train on. This decision is rooted in a previous finding that ”large language
models like BERT are overconfident and poorly calibrated” [6, 10]. However, as
neither of these works deal with protein sequences, it is possible that ESM models
are not susceptible to the same issue. Therefore, filtering pseudolabels by model
confidence may lead to improved performance in the case of self-training for protein
fitness inference.

Using benchmark tasks from FLIP

Finally, it would be informative to apply self-training to the benchmark tasks de-
scribed by Dallago et. al. in the FLIP paper [2]. This would allow for further evalu-
ation of self-training on standardized benchmark tasks that utilize publicly available
data.

32

Bibliography

[1] Surojit Biswas et al. “Low-N protein engineering with data-e�cient deep learn-
ing”. In: Nature methods 18.4 (2021), pp. 389–396.

[2] Christian Dallago et al. “FLIP: Benchmark tasks in fitness landscape inference
for proteins”. In: bioRxiv (2021), pp. 2021–11.

[3] Xuanli He et al. “Generate, annotate, and learn: Nlp with synthetic text”. In:
arXiv preprint arXiv:2106.06168 (2021).

[4] Chloe Hsu et al. “Learning protein fitness models from evolutionary and assay-
labeled data”. In: Nature biotechnology 40.7 (2022), pp. 1114–1122.

[5] Introduction to Information Retrieval - Evaluation. https://web.stanford.
edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf. Apr.
2013.

[6] Zhengbao Jiang et al. “How can we know what language models know?”
In: Transactions of the Association for Computational Linguistics 8 (2020),
pp. 423–438.

[7] Facebook AI Research. Evolutionary Scale Modeling. https://github.com/
facebookresearch/esm.

[8] Adam J Riesselman, John B Ingraham, and Debora S Marks. “Deep genera-
tive models of genetic variation capture the e↵ects of mutations”. In: Nature
methods 15.10 (2018), pp. 816–822.

[9] Alexander Rives et al. “Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences”. In: Proceedings of the
National Academy of Sciences 118.15 (2021), e2016239118.

[10] Tu Vu et al. “Strata: Self-training with task augmentation for better few-shot
learning”. In: arXiv preprint arXiv:2109.06270 (2021).

