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Abstract

Toward Platform-based Building Design

by

Yu-Wen Lin

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

The building industry is responsible for over 40% of the world’s energy consumption, making
it imperative to develop more efficient building designs to reduce energy usage and minimize
environmental impact. However, the current building design process is highly fragmented,
resulting in inefficient and sub-optimal designs. Although the digitalization of the building
industry happened nearly at the same time as the electronics industry, the latter has become
fully automated, whereas the building industry still lags behind.

This dissertation identifies the challenges in the building design process that hinder automa-
tion and proposes a platform-based approach as part of the solution. Platform-based design
enables the development of common interfaces for greater consistency and efficiency in the
design process, along with modularity that breaks down complex systems into smaller, more
manageable modules. This facilitates easier design iteration and adaptation to changing re-
quirements, while also allowing for the reuse of design components across different projects,
saving time and resources.

In addition, the dissertation explores the potential of levels of abstraction in building energy
models to better support the design process without requiring a full building model at early
design stages. This can help reduce design iterations and save time and costs. Finally, we
streamline the process of constructing building models as a step towards automated design.
Although fully automated design is yet to be realized, this streamlined process serves as a
potential starting point for achieving automation in the future.
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Chapter 1

Introduction

1.1 Motivation

Climate change is a global crisis that significantly impacts the environment, human health,
and the economy. It is causing more frequent and severe weather events, such as floods,
droughts, and wildfires, which can have devastating consequences for communities and in-
frastructure [72]. These events are also leading to food and water shortages, displacement
of people, and loss of biodiversity [155]. Carbon emissions are a major contributor to cli-
mate change, and their levels are increasing every year [80]. Burning fossil fuels for energy,
transportation, and industrial processes releases carbon dioxide and other Greenhouse Gas
(GHG) into the atmosphere. These gases trap heat and lead to global warming, causing
severe impacts on the planet. As a result, there is a need to reduce energy consumption and
carbon emission worldwide. These can be achieved by reducing GHG emissions, improving
energy efficiency, transitioning to cleaner and more sustainable energy sources, and restoring
forests.

Buildings and the construction industry are pivotal in energy consumption and carbon
emissions in the United States. They account for approximately 40 % of energy consumption
and carbon emissions in the country [4] as shown in Figure 1.1. A major contributor to
building energy consumption is Heating, Ventilation, and Air-Conditioning (HVAC) systems,
which are responsible for over 50% of energy usage in buildings [2, 3] as shown in Figure
1.2. Other factors that contribute to energy consumption in buildings include lighting,
refrigeration, appliances, and electronics. Buildings are not only responsible for the energy
used in the operation stage but also during their construction, renovation, and demolition
phases. Therefore, reducing energy consumption and carbon emissions in the building sector
is essential to combat climate change.
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Figure 1.1: 2022 U.S. Energy consumption (left) and carbon emission (right) by sector [4].
The building construction industry sector is estimated based on [106].

Figure 1.2: 2015 U.S. residential site energy consumption by end-use (left) [2] and 2022
commercial site energy consumption by end-use [3].

1.2 Background

To reduce the carbon footprint and energy consumption of the building sector, research has
focused on various areas, including building design, renewable energy, energy storage, smart
building technologies, occupants’ behavior, and building retrofitting.
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Building Design

Research on building design can help in developing energy-efficient buildings that require
less energy to heat, cool, and operate. This can be achieved through the use of passive
design strategies such as shading, insulation, and natural ventilation. The orientation, shape,
and shading of a building impact the amount of radiation that its surface is exposed to,
potentially leading to an increase in cooling needs [189]. The building envelope, such as roofs,
walls, and doors, is another factor that plays an important role in regulating the internal
temperature [138]. For example, a well-insulated roof can help to reduce heat loss during
the winter months, while walls with high thermal mass can help to absorb and store heat
during the day and gradually release it at night, helping to maintain a comfortable internal
temperature. Additionally, properly sealed doors and windows can prevent drafts and heat
loss, improving the overall energy efficiency of the building. In recent decades, researchers
have also explored the application of Phase Change Materials (PCMs) in building envelopes
as a promising approach for thermal energy storage in buildings [195]. As a result, optimizing
building envelope parameters can minimize heating load and improve energy efficiency. Other
passive techniques include ventilation, nocturnal convective cooling, radiant cooling, direct
and indirect evaporative cooling [90]. These methods offer sustainable and energy-efficient
ways to cool buildings without relying heavily on mechanical cooling systems.

Sustainable building materials can further reduce carbon emissions, making them a cru-
cial aspect of modern building design. GHG labeling [204] is increasingly important as it
provides stakeholders with information on the amount of carbon emitted during material
production and transportation, allowing designers to make informed decisions about the en-
vironmental impact of materials used at the early stages of design. By selecting appropriate
materials, designers can considerably reduce the environmental impact of a building. In addi-
tion, green building certification programs, such as Leadership in Energy and Environmental
Design (LEED) and Building Research Establishment Environmental Assessment Method
(BREEAM), encourage the adoption of sustainable practices and help building owners and
operators makes informed decisions to reduce energy consumption and carbon emissions.

The above-mentioned design strategies emphasize how the early stages of building design
affect its energy performance and carbon emission. The MacLeamy Curve [136], as shown in
Fig 1.3, describes that the ability to impact the cost and function of a building design is the
highest during the early stages of design. During these stages, design decisions can greatly
impact the energy efficiency and the overall performance of the building, while changes can
be made relatively easily and at a lower cost. As the design progresses to the later stages,
the ability to make substantial changes decreases while the cost to make changes increases.
Therefore, it is crucial to consider environmental impacts and energy efficiency throughout
the entire design process, with a focus on the early stages to maximize the benefits of design
decisions on building performance.
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Figure 1.3: The MacLeamy Curve [60].

Renewable Energy

Renewable energy is increasingly recognized as an essential resource for reducing reliance
on fossil fuels and mitigating carbon emissions in the building sector. Among the strategies
employed to achieve carbon reduction, Net-Zero Energy Building (NZEB) is gaining ample
attention. NZEB is a building that produces the same amount of energy it consumes over
a period of time [158]. NZEBs utilize renewable energy sources, such as solar panels, wind
turbines, and geothermal systems to generate electricity and heat. The energy produced by
these sources is typically used to power the building’s lighting, heating, and cooling systems,
appliances, and other electrical equipment. By reducing or even eliminating the building’s
dependence on fossil fuels, NZEBs offer a promising opportunity to reduce GHG emissions
and address climate change. Governments worldwide have also introduced new policies and
regulations aimed at promoting NZEBs. For example, California has set a target to make all
new commercial construction NZEBs by 2030 [54]. International Energy Agency (IEA) has
also published a report detailing the roadmap to reach net zero by 2050, limiting the rise in
global temperature to 1.5◦C [6]. With continued efforts and commitments from governments
and industries, NZEBs can play a vital role in achieving a sustainable future.
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Energy Storage

The integration of renewable energy sources into the electric grid has created a need for en-
ergy storage systems that can store excess energy when it is available and release it when it is
needed. Renewable energy sources are often intermittent because their availability fluctuates
depending on the weather conditions. As a result, energy storage systems have become a
critical component of the energy infrastructure, enabling the effective use of renewable en-
ergy sources and reducing the reliance on grid electricity [97]. Energy storage systems come
in various types, including batteries and thermal storage. Batteries are commonly used in
smaller-scale energy storage applications, such as residential and commercial buildings [142].
They are efficient, reliable, and can be easily installed. Thermal storage, on the other hand,
stores thermal energy in materials. For example, thermal storage can be implemented in
building envelopes, ventilation systems, and solar-thermal systems via PCMs [143]. PCMs
store large amounts of thermal energy by changing their state, such as from a solid to a
liquid, or vice versa. When the temperature of a PCM rises above a certain threshold, it
changes state and stores the excess thermal energy. Later, when the temperature falls below
the threshold, the PCM releases the stored thermal energy. This process can be repeated
over and over again, making PCMs an effective energy storage solution. Energy storage
systems are crucial to the integration of renewable energy sources into the electric grid.

Smart Building Technologies

The Internet of Things (IoT) has brought about opportunities for integrating real-time sensor
data with BIM, enabling real-time monitoring of buildings [179]. IoT devices can collect
real-time data on various aspects of buildings, such as temperature, humidity, occupancy,
and lighting. For example, IoT devices can sense occupancy and human activity, resulting
in improved energy consumption estimation, intrusion detection in residential homes, and
regulation of lighting and temperature based on occupancy [208, 157]. Furthermore, data-
driven algorithms can analyze the collected data to identify patterns and trends, providing
valuable insights into the performance of building systems. For instance, machine learning
algorithms are used for predictive maintenance in the Mechanical, Electrical, and Plumbing
(MEP) systems of a building [49]. These algorithms identify and address potential issues
before they become critical, reducing energy waste caused by inefficient equipment operation.
Additionally, the collected data can be used to train control algorithms that optimize building
operation, such as HVAC [109] and lighting systems [206] to optimize energy consumption
and occupant comfort. These algorithms continuously adapt the control strategies based
on real-time data, resulting in more efficient operation. IoT also enables participation in
demand response programs, where buildings can respond to utility signals to reduce or
shift energy usage during peak demand periods [94]. This helps in reducing strain on the
electric grid and avoiding the need for additional power generation, which can contribute to
lower carbon emissions. Smart building technologies empower building operators to make
informed decisions based on data, optimize energy usage, identify and address inefficiencies,
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and minimize energy waste. This ultimately results in improved energy efficiency and reduced
carbon emissions.

Occupants’ Behavior Change

IoT devices can also be utilized to actively engage and educate building occupants about their
energy usage patterns and behaviors, offering feedback and recommendations for adopting
more sustainable energy practices. Furthermore, they can be integrated with gamification
techniques to incentivize and motivate occupants to adopt more sustainable energy prac-
tices. Konstantakopoulos et. al. [118] introduced a social game framework that encourages
occupants to actively participate in energy-saving activities and compete with each other
to achieve energy-saving goals. Moreover, IoT devices can provide educational resources to
occupants, such as tips, tutorials, and information on energy-saving practices [42]. Occu-
pants can access this information through user-friendly interfaces on their devices, providing
them with the knowledge and tools to make informed decisions about their energy usage.
In 2022, California experienced a severe heat wave, which resulted in an emergency alert
being sent to millions of phones, urging occupants to conserve energy [176]. During ex-
treme weather conditions, the demands for electricity to power air conditioning systems and
other cooling devices surge, putting a strain on the power grid. To avoid power outages and
blackouts, emergency alerts are issued to the public, requesting them to reduce their en-
ergy consumption and conserve energy. This situation underscores the significance of human
active participation in energy conservation efforts.

Building Retrofitting

Retrofitting is a process that upgrades or modifies existing buildings with energy-efficient
technologies, systems, and practices to enhance their performance and reduce their envi-
ronmental impact. As energy efficiency requirements evolve over time, older buildings con-
structed under less stringent regulations tend to have lower energy efficiency compared to
newly constructed buildings. This is due to advancements in building codes and standards,
as well as the availability of more energy-efficient technologies. Therefore, retrofits play
a vital role in improving energy efficiency by bringing older buildings up to modern en-
ergy efficiency standards [7]. It is particularly important when it comes to space heating
and cooling, as these systems account for a large portion of a building’s energy consump-
tion, as depicted in Figure 1.2. Therefore, retrofitting HVAC systems with energy-efficient
technologies can greatly improve a building’s energy efficiency and reduce its carbon emis-
sions [44]. Furthermore, retrofitting can also encompass the installation of renewable energy
systems, improvements in lighting systems, and enhancements to the building envelope to
optimize energy use and reduce environmental impact [15]. By upgrading and modifying
older buildings with energy-efficient technologies, retrofits can contribute to energy savings
and environmental sustainability.
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1.3 Research Gaps

The process of building design involves multiple parties, but it is often not streamlined,
resulting in redundant efforts from various research groups. Despite the availability of nu-
merous energy-efficient technologies and practices, the lack of interoperability and integration
among them poses challenges in implementing a unified approach to achieve optimal build-
ing performance. The foremost problem that requires resolution is a standardized platform
that can seamlessly integrate different technologies and practices. For example, building
geometry, HVAC systems, performance simulation programs, and renewable energy systems
may operate in silos without a common platform for data exchange, communication, and
coordination. Although data standards such as Industry Foundation Classes (IFC) [107]
and Green Building XML (gbXML) [86] exist for data exchange, they do not fully represent
all aspects of building systems. Autodesk Revit, a Building Information Modeling (BIM)
software, has emerged as a promising common platform for integrating various systems, al-
lowing other software to function as plug-ins within Revit. Despite its potential, there are
still limitations that hinder its full realization, primarily revolving around interoperability
between Revit and other software applications. This can result in sub-optimal performance,
and due to the lack of integration, the potential for energy savings may be limited. This
dissertation seeks to identify and address some challenges that hinder the transformation of
fragmented building design into an integrated platform-based design.

1.4 Research Questions

The dissertation looks to answer the following research questions.

1. What are the key challenges and obstacles that prevent building design from being
fully automated, and how can these be addressed?

The electronic design industry has undergone a remarkable transformation from traditional
hand-drawn designs to modern automated design processes. In the 1960s, the first Computer-
Aided Design (CAD) tools emerged [178], revolutionizing the way designs were created by
introducing graphical interfaces and enabling more efficient and precise drafting. Over time,
technologies have evolved to encompass simulation, verification, and high-level synthesis,
allowing for faster and more accurate design iterations.

In contrast, the Building Information Modeling (BIM) concept, which emerged in the
1970s, aimed to bring similar advancements to the fields of building design [68]. BIM is
a digital representation of a building’s physical and functional characteristics, including its
geometry, spatial relationships, materials, and performance data. It is intended to enable
collaboration, coordination, and data-driven decision-making throughout the entire building
lifecycle, from design and construction to operation and maintenance. However, despite the
potential benefits of BIM, the building design process has not yet been fully automated.
While BIM tools have become widely adopted in the construction industry, the process
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of creating and managing building models still requires notable manual effort. Architects,
engineers, and other stakeholders often need to input data, interpret and analyze information,
and make subjective decisions based on their expertise and experience. The complexity of
building design, with its diverse requirements, regulations, and stakeholder interactions,
presents challenges for achieving full automation.

Chapter 2 of this dissertation will delve into this research question by drawing a com-
parison between the Electronic Design Automation (EDA) industry and the building design
industry. Through this comparison, gaps in the building design industry will be identified,
and frameworks and examples based on a modular and platform-based approach will be
proposed as a potential solution.

2. What is the appropriate level of abstraction for building energy models to effectively
assist in the design process?

One of the reasons why electronic design has been able to achieve across the board
automation compared to building design is the clear definition of the level of abstraction
in the various design stages from system to layout design. Its process involves well-defined
design protocols, with clear hierarchies and abstraction layers. On the other hand, a building
design process does not have a standardized design protocol and often varies from firm to firm
and location to location. Building projects are unique and involve diverse stakeholders with
different design preferences, construction practices, and regulatory requirements. The non-
uniformity and variability in design practices create difficulties in achieving full automation
in building design. In order to progress towards automation in building design, it is crucial
to have simulation tools that can support various stages of the design process. Although
energy simulation tools for buildings do exist, they often rely on detailed parameters such
as building geometry, building envelope, and HVAC systems, which may not be consistently
available during the early design stages. As a consequence, accurately estimating the energy
performance of a design at an early stage becomes tedious and challenging. In Chapter 3, we
propose a modeling approach that utilizes sensitivity analysis and probability to facilitate
informed decision-making, with the objective of optimizing energy consumption throughout
the entire design process.

3. How to streamline the process of constructing building models from existing data
structures?

Computer models that capture the various aspects of building performance play a crucial
role in the design and operation of buildings, allowing for the simulation of various what-
if scenarios to assess their performance. These models can be categorized as white box,
gray box, or black box models, each with its level of detail and complexity. However, the
process of model construction often requires significant manual efforts, from data mapping
to parameter calibration. This can be time-consuming and labor-intensive, requiring expert
knowledge and expertise. Moreover, building models are not always consistently maintained
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from the design phase to the operation phase, resulting in discrepancies and inconsistencies
in their performance predictions. There are also no clear criteria to determine the most
suitable model for a specific application.

In Chapter 4, our aim is to streamline the building model construction process by lever-
aging available data structures and a platform-based design framework, reducing manual
efforts and minimizing errors. Furthermore, we develop a performance metric example that
can assist in determining the most suitable model for a given approach. The metric considers
factors such as accuracy, execution time, measurement granularity, prediction horizon, and
output resolution. This will help designers and researchers in selecting the most appropriate
building model for their specific needs, ensuring that the right model is used for the right
purpose, and enhancing the overall effectiveness of building models.
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Chapter 2

From Electronic Design Automation
to Building Design Automation

1

2.1 Background

Design automation refers to the utilization of software tools to aid designers in creating
and delivering products more efficiently by eliminating the need for manual labor that was
required with traditional design methods. It has gained prominence in several industries, in-
cluding electronics [137], automotive [125], aerospace [166], and manufacturing [134], where it
has enabled significant advancements in product development and manufacturing efficiency.
However, in the building industry, design automation has not been adequately utilized and
has yet to become a standard part of the design process.

The building design process involves several parties, including architects, engineers, build-
ing authorities, clients, financial institutions, and constructors. Traditionally, different de-
velopment disciplines are siloed from each other and each section is assembled after the
product is set in stone. However, this separate independent design results in not only per-
sonnel dependencies that increase the time of the critical path from initial design to complete
development but also in objective inefficiencies that result from a lack of communication dur-
ing the development process. Stronger communication between all the stakeholders would
be essential to improve the development process for energy-efficient buildings.

Reed et al. [153] developed an integrative building design framework to guide involved
parties to communicate more efficiently. Leadership in Energy and Environmental Design
(LEED), a green building rating system, also promotes an integrative process by providing
one point in credit to encourage synergies between different disciplines during the design
process. Though Building Information Modeling (BIM) and the integrative framework exist
for more than a decade, the current building industry still has yet to adapt to the inte-
grative design process. Challenges include integration between different software and tools,

1This chapter is a modified and extended version of manuscripts that are preparing for submission with
the preprints available in reference [130, 132].
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building complexity, communication barriers between different design teams, and limited
standardization for building design practices.

The building design process shares several similarities with the electronic design process.
They both require an initial concept or idea to be developed and refined through multiple
stages of design and prototyping. In both cases, the design must consider various technical
requirements, such as functionality, safety, and durability. Additionally, both building and
electronic design require collaboration among different professionals, including engineers and
designers. Furthermore, both design processes often involve the use of specialized software
and tools to aid in the creation and testing of the design. However, while the electronic
industry has evolved from hand-drawn design to Electronic Design Automation (EDA), the
building industry has yet to fully utilize design automation technologies.

Although there has been research on design automation techniques in subsystems of
building design, such as structural form [209], floor plan [12, 202, 77], façade [193, 184,
145], and HVAC [24, 215], these techniques are rarely applied in the current building in-
dustry. One of the main reasons is the absence of standardized input-output relationships
for each component. This lack of standardization makes it challenging to reuse components
across different designs. Consequently, it becomes difficult to remove and replace a specific
component or technique in another design, as there is no assurance that the inputs and
outputs will align correctly. Additionally, each building type has its unique requirements,
constraints, and regulations, resulting in a tailored design process for each specific type and
location. However, by leveraging automation, designers can complete tasks more efficiently
and accurately, reduce errors and inconsistencies, reduce or eliminate manual labor, ensure
that design standards and procedures are consistently followed, enable easy modification and
adjustment of designs, and experiment with new and innovative design ideas.

In this chapter, we explore existing design automation efforts in the building industry,
use EDA as a reference to identify the areas where building design falls short in realizing
automation, and propose modular and platform-based approaches to bridge the gaps and
accelerate the adoption of automation in building design processes.

2.2 Related Work

Traditional design approaches are often limited by the experiences and knowledge of human
designers. Key design decisions are often already made before assessment due to budget,
time constraints, and project requirements. In addition, design evaluations primarily serve to
meet building codes such as energy standards, ASHRAE 90.1 [95], and thermal environmental
conditions, ASHRAE 55 [17]. Building design has the potential to be further optimized in
order to create a more energy-efficient and environmentally-friendly solution. Advances
in computing technologies and machine learning algorithms have enabled the possibility of
exploring a larger design space that may be overlooked by designers. For example, Generative
Adversarial Network (GAN) can be used to generate new building designs [177, 203], Genetic
Algorithms (GAs) can be used to optimize building parameters and configurations with
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an objective of energy efficiency and thermal comfort [187, 126], and Natural Language
Processing (NLP) algorithms can analyze building codes and regulations [214, 62]. Existing
BIM software, such as Autodesk Revit 2021 [88], has the capacity to implement Generative
Design (GD) for building geometry. It allows users to input design goals and constraints,
and employs GD techniques to generate multiple design options to meet those objectives. It
can be used to optimize building designs for structural performance, energy efficiency, and
sustainability. However, limitations exist in the user interface, data availability, complex
structures, and processing speed.

By utilizing advanced computational tools, designers can generate a set of high-quality
solutions that meet design objectives and constraints, such as energy efficiency, functional
performance, and cost-effectiveness. The process can help accelerate the design processes,
reduce costs, and improve the overall quality of building design. The following section re-
viewed prior studies of design optimization and automation in different disciplines of building
design including building structure and layout, Mechanical, Electrical, and Plumbing (MEP)
systems, and construction.

Building Structure and Layout

The building design process starts with an understanding of the project goals, scope, and
budget. Then the design team conducts a preliminary analysis of the building site and ex-
plores different design options. Once the architect proposes a design concept for the building,
which is then reviewed by the structural engineer to ensure that it meets requirements for
structural feasibility and compliance with relevant building codes. The communication be-
tween architects and engineers involves back-and-forth communications to arrive at a final
design decision that meets both the aesthetic and functional requirements of the building.
There is little to no real-time feedback when architects design the building. The back-and-
forth communications between architects and engineers can be reduced through dynamic
feedback on design tools. With real-time feedback, architects can quickly evaluate the im-
pact of their design choices on structural soundness, carbon footprint, energy efficiency, and
cost-effectiveness. Furthermore, if designers can get recommendations on potential design
solutions with a better energy or carbon perspective, it not only saves design effort by im-
proving the design pipeline but also creates a more sustainable design. While the role of
structural engineer can’t be fully replaced, machine learning can assist in performing struc-
tural analysis, optimizing building parameters and functional performance, and estimating
cost.

Building structural design consists of form, floor plan, façde, and structural components
such as acoustic design and fire-resistant integration. The structural systems are responsible
for energy and carbon emissions through the production and assembly of structural materials
[9]. As a result, it is crucial to take carbon emissions into account during construction design
and material selections. Hammond et al. [96] created a database of 200 construction mate-
rials with their carbon and energy emission values. The database can facilitate estimating
the carbon intensity of a building structure at the early stage of building design. However,
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existing databases are sparse and are often constrained by building types, locations, and pro-
duction companies. To address the issue, Weber et al. [197] use a GD approach to perform
carbon analysis of steel framing systems based on building massing with 17% error margin
compared to actual buildings. Rather than providing an early-stage carbon assessment of a
building, other research used optimization techniques to identify optimal building structural
form.

The term “building structural form” refers to the overall shape, configuration, and style of
a building. It involves the design of the physical appearance of a building. Computer-Aided
Design and Engineering (CAD/E) software has the capability to automatically generate
different options for building forms based on design constraints [210]. Additionally, GA is
also used to explore a wide range of design options and find optimal building forms based
on energy performance [209, 39, 188]. Zhang and Blasetti applied GAN to study a style
transfer of two buildings to inspire architects in various building forms [211].

Once the structural form is established, the floor plan is developed. Designers sought
automation during layout design for the purpose of faster design, design exploration, visual
comforts, material effectiveness, and optimization [196]. The algorithms take building area
or boundary as an input and output the program layout. The existing optimization methods
include physically based [12], evolution algorithm [202], and Simulated Annealing (SA) [77].
However, challenges still exist in encoding social equity into a machine learn-able language.
As a result, floor plan generation methods at the current stage can’t replace experienced
human designers completely, but rather, serve as a guide to the designer.

Façade design is another important element in the architectural design of a building. A
façade is the exterior wall or face of a building. It is pivotal not only in the aesthetic aspect
of a building but also in energy efficiency, weather resistance, thermal and acoustic insula-
tion, and lighting regulation. Wang et al. [193] used a parametric optimization method to
discover optimal façade design of naturally ventilated residential buildings for better thermal
comfort and energy savings. Torres and Sakamoto [184] determined optimal façade design
for daylight performance in a building using GA. Weber et al. [198] explored exoskeleton
façade design with parametric models based on different shading strategies for passive solar
gain control and embodied carbon of materials. GAN is also used in generating a visual-
ization of facçade with existing facçade design image as training inputs [145]. Though the
mentioned studies showed promising results in achieving a better design of façade, most
research didn’t consider all objectives when forming an optimization problem. If all factors,
such as aesthetic, energy, thermal, acoustic, and daylight, are considered, the formulated
problem may become infeasible. The trade-offs between different objectives are crucial in
the design decision.

Structural components are physical elements that make up the building’s structure, such
as beams, columns, walls, slabs, and foundations. At this stage, the process entails the
selection of structural components that meet design constraints. Adeli and Park [1] applied
a neural dynamics technique to design space trusses with the objective of minimizing the
materials’ weight. Bennage and Dhingra [27] used SA to optimize cross-sectional areas of
trusses. Garrett and Fenves [85] proposed a knowledge-based method to generate the detailed



CHAPTER 2. FROM ELECTRONIC DESIGN AUTOMATION TO BUILDING
DESIGN AUTOMATION 14

design of structural components. Caldas and Norford [40] studied GAs on optimal or near-
optimal selections of construction materials. Due to the availability of various construction
materials, there could be several ideal solutions that meet the requirements for environmental
performance. Nevertheless, the final design decision still requires the expertise of designers.
Although the approach can offer useful information to designers, certain limitations exist,
such as high computational expenses for a bigger design area, infeasible solutions, and the
absence of a comprehensive global construction materials database.

MEP Systems

Mechanical, Electrical, and Plumbing (MEP) systems are the next integral part of building
design. The mechanical systems include HVAC systems that regulate temperature, humidity,
and air quality in the building. The electrical systems include lighting, power distribution,
and fire alarm systems. The plumbing systems include water supply, drainage, and waste
management systems.

Optimizing the design of HVAC systems is crucial for achieving energy efficiency in build-
ings, as these systems are responsible for using over 50% of the electrical energy in buildings
[52]. One challenge in the current design of HVAC systems is that the system is often
oversized due to design safety factors and a lack of accurate building load calculations [63].
Oversizing the HVAC units has a major impact on energy inefficiency, cost, and thermal
comfort. Trace 700 [186] is currently the most widely used HVAC sizing tool in the in-
dustry. Once the system is sized, little to no automation exists in the industry during the
HVAC design process. Research studies have attempted to automate the design process of
HVAC systems in component selection, topology, and duct design. Zhang et. al. developed
an automatic HVAC configuration of a two-zone model using GA [215]. The problem is
formulated by optimizing three sub-systems: the decision of system type, the selection of
components, and the choice of control strategies. However, one of the existing recommended
HVAC configurations developed by ASHRAE [154] still outperforms the resulting synthesis
through optimization. Another limitation is that the optimization problem may become in-
feasible for a larger system than the provided example. Asiedu et al. also use GA to optimize
HVAC air duct system design with the objective of minimizing the life-cycle cost [18]. While
achieving complete automation in HVAC design is not feasible at present due to the lack
of standardization in HVAC design practices across different regions and non-uniformity in
HVAC components and pricing, machines can assist in performing repetitive tasks such as
duct routing and offering suggestions to designers. Furthermore, the rule-based approach
used in HVAC design guidelines presents a potential avenue for future design automation in
the field. The coordination between the three systems (mechanical, electrical, and plumbing)
also poses a challenge during the MEP system design. Lu et al. [133] proposed a rule-based
engine via Revit to facilitate the routing of the three systems. Designing and integrating
MEP systems into a building is critical to ensure safety, thermal comfort, and functionality
for its occupants. Furthermore, proper design and installation of MEP systems can also
result in energy savings, lower operating costs, and carbon reduction.
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Building Construction

BIM systems are often not fully utilized in the construction industry, even though the con-
struction process is recorded in BIM, tremendous amounts of time and money can be saved.
One reason that this hasn’t been done is that BIM requires specific hardware specs for full
functionalities and the equipment is often challenging at the construction site. Although the
industry is working toward creating more agile apps for on site applications in construction,
the functionalities for data exchange and management are still limited. Another reason is
that manually inputting construction progress is tedious and time-consuming. However, with
the advance in Artificial Intelligence (AI) and Internet of Things (IoT) systems, automatic
data collection on-site during construction becomes possible. Technologies that have been
applied to the automated data acquisition on the construction site include enhanced IT,
geo-spatial positioning systems, 3D imaging, and augmented reality [147]. Asadi et al. [16]
proposed utilizing Unmanned Aerial/Ground Vehicles (UAV/UGV) to map the construction
environment for accessing the current progress. Zhang et al. [212] explored automation
between BIM and robotics in the construction process. They proposed a framework for
re-standardizing information flow during the construction process to enable automation for
planning and executions. Cheng et al. [50] used real-time positioning sensors to moni-
tor dynamic resources such as personnel, equipment, and materials for safety during field
operations.

Other than using AI or IoT technologies, in recent decades, the concept of modular
buildings has been prevalent in the construction industry due to its higher efficiency and
productivity. Modular building is a concept that fabricates modules off-site as units and
assembles the units on-site [87]. The benefits include reducing construction time, producing
less waste, causing less disruption in the surroundings, reducing labor requirements, and
providing more flexibility for dynamic building layout adjustments during the progress [31].
Research has shown that with a modular design of a building, the construction process can
become greatly streamlined in planning, off-site prefabrication, transportation, and on-site
assembly with minimal human interventions [22]. There are still limitations and obsta-
cles for the current construction industry to become fully automated. Transitioning from a
well-developed traditional construction practice to an AI-based modular approach requires
additional risk, cost, and safety assessments. In addition, design guidelines for building
modules need to be standardized for enabling wide applications of the pre-fabricated mod-
ular structures. Standardized guidelines allow architects and engineers to expand modular
libraries to further create flexibility in the design process. Lastly, coordination and manage-
ment of robots on construction sites are still a challenging task [89]. Though full automation
in construction is still at an early stage in development, existing technologies show promising
results in realizing automated construction.
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2.3 Building Design Process

Figure 2.1: Building Design Workflow

Building design has a significant impact on energy consumption and the worldwide carbon
footprint. The following sections discuss the state-of-the-art building design workflow, com-
mon software tools used in building design, and the negative consequences of poor building
design.

Design Workflow

The building design workflow is a complex and iterative process that involves various stages
and stakeholders. It is generally split into six different stages: concept, schematic design,
design development, construction documents, bidding and negotiation, and construction as
shown in Figure 2.1. The absence of an arrow connecting to each node suggests that the
building design process is not a linear left-to-right process but rather an iterative one. This
means that the design goes through several stages and can backtrack to previous stages for
refinement at any point in the process. For example, during the construction of a building
that may take several years, the building codes or regulations may change, necessitating
design changes in the early design stages. Therefore, the design process requires a flexible
approach to accommodate changes in requirements and constraints, ensuring that the final
design meets the necessary standards and regulations.

The concept design stage involves gathering information about the project’s goals, site,
budget, and other constraints. It may also include conducting site analysis and surveys and
reviewing zoning regulations. The schematic design involves developing preliminary design
concepts, sketches, and drawings that capture the client’s requirements and vision. Gener-
ally, the building’s form, size, and general layout are defined at this stage. In the design
development stage, the preliminary design is further developed, refined, and detailed. It
includes more detailed drawings, specifications, and material selections. During the con-
struction documents stage, all the design documents are prepared into detailed construction
documents that include detailed drawings, specifications, and instructions for the contrac-
tors to follow. After completing the construction documents, the next step entails soliciting
bids from contractors and engaging in contract negotiations. Lastly, the construction stage
involves overseeing the construction process to ensure that the project is built according to
its design and specifications.

Throughout the process, the building designers will work with various stakeholders, in-
cluding the client, engineers, contractors, and government officials, to ensure that the project
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meets the client’s requirements, complies with regulations and standards, and is constructed
safely and efficiently. The process is often iterative, with the designer revising the design as
new information and feedback are received.

Building Design Software Tools

The building design process relies heavily on software tools to aid in the creation, man-
agement, and execution of design projects. Some of the most common software tools used
in building design include Computer-Aided Design (CAD) software, BIM software, energy
modeling software, project management software, and other analysis software. CAD soft-
ware is used to create detailed 2D and 3D designs of building components. BIM software
is a collaborative tool that allows architects, engineers, and contractors to work together in
an integrated platform. This software provides a shared space for design and construction
data, enabling all parties to view, edit, and comment on the project in real-time. The most
common ones are Autodesk Revit [20], ArchiCAD [92], and Bently OpenBuildings Designer
[28]. There are various data structures used to store information in BIM software. Luo et al.
[135] have summarized 24 different data tools for representing and managing building data.
These data tools help to organize and structure information in the BIM, enabling more
efficient and accurate design, construction, and maintenance processes. Energy modeling
software plays a crucial role in simulating building energy use and identifying opportunities
for energy optimization and savings. By using these tools, designers can make informed
decisions about building materials, heating and cooling systems, and lighting to improve
energy efficiency and reduce costs. The most common energy simulation software tools for
the building include EnergyPlus [56], IESVE [127], and eQUEST [71]. Attia et al. [19] also
conducted a comparative analysis of ten common energy simulation tools that are typically
used in the early design stages of buildings. Project management software is used to manage
the building design process from start to finish. This software allows project managers to
create schedules, assign tasks, and track progress, ensuring that projects are completed on
time and within budget. Other analysis software is also used to assess and optimize various
aspects of building design, such as structural analysis, acoustics, and lighting. However,
there are limitations in existing software tools. One major issue is their complexity, which
can require significant training and expertise to use effectively, making them inaccessible to
small firms or individual designers. Integration issues can also arise when working with dif-
ferent software tools, leading to errors and inconsistencies when data is manually transferred
between software. The accuracy of simulation software can also be limited by incomplete or
inaccurate data. Despite these challenges, software tools remain essential for creating high-
quality, efficient, and cost-effective building designs. By leveraging these tools, designers can
improve collaboration and communication among team members, streamline workflows, and
ultimately create better building designs.
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Negative Impacts of Poor Building Design

Poor building design can have significant negative impacts on the building occupants, the
environment, and the economy. One of the most immediate and visible consequences of
poor building design is the impact on occupants’ health and comfort [170, 74, 33, 32]. Poor
ventilation, lighting, acoustics, and thermal comfort can all contribute to health problems
such as allergies, asthma, headaches, and stress. These problems can lead to decreased
productivity and reduced quality of life for building occupants. Another negative impact of
poor building design is its effect on the environment. Buildings are responsible for more than
40% of energy consumption worldwide [4] and 40% of total global Greenhouse Gas (GHG)
emissions from operations and the manufacture of building materials [106], and poor design
can exacerbate these problems [53]. For example, buildings that are poorly insulated, have
inefficient heating and cooling systems, or use energy-intensive materials can contribute to
higher energy consumption and carbon emissions. Another example is that the HVAC system
in a building is often oversized due to design safety factors and a lack of accurate building
load calculations [63]. This not only contributes to global climate change but can also lead
to higher energy costs for building owners and occupants. Lastly, poor building design can
have negative economic impacts [194]. Inefficient buildings can lead to higher energy bills
and maintenance costs, reducing the economic value of the building. Poor building design
can have far-reaching negative impacts on human health and comfort, the environment, and
the economy. It is essential to prioritize good design practices, including the incorporation
of automation tools, to create buildings that are efficient, sustainable, and safe for their
occupants.

2.4 Electronic Design Automation

While looking at the present status of the design workflow for buildings, it is instructive
to compare it to that of the Electronic Design Automation (EDA) referring to the use of
software tools and algorithms to automate various aspects of designing and manufacturing
complex electronic components, including today’s state of the art Integrated Circuits (ICs).
EDA involves the use of computer programs that assist designers in creating, verifying, and
testing electronic systems, ranging from individual circuits to complex integrated circuits
and systems. Design automation aims to improve the efficiency and productivity of the
design process by reducing the time and effort required for manual tasks and by enabling
designers to explore more design options and trade-offs in a shorter amount of time. The
following section describes the design process of electronics, the evolution of the EDA, and
the current state of EDA and its impact.
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Electronic Design Workflow

Figure 2.2: Electronic Design Workflow

The process of electronic design can vary depending on the project size and specifications,
but generally, for an IC, it follows a top-down design process [35] as shown in figure 2.2.
The first step is to define the system specifications, which include the desired performance,
functionality, and power consumption of the system. Based on these specifications, a high-
level block diagram is created to define the system-level architecture and interconnections
between the functional components. Once the architecture is defined, the next step is design
capture, which involves creating a high-level design description of the system using a Hard-
ware Description Language (HDL). This is followed by logic synthesis, where the captured
design is transformed into a gate-level netlist that describes the circuit’s logic in terms of
logical gates, flip-flops, and other standard cells. Next, circuit simulation and verification
are performed to verify the circuit’s functionality. This can involve some iterations to make
sure that the simulated results meet the desired specifications. The next level of design is
the physical design. Floor planning involves determining the physical location of the various
functional blocks in the design. The placement and routing step follows where the physical
locations of individual gates and components are determined and the connections between
them are established by routing wires. After placement and routing, the circuit layout is
extracted and used for simulation and verification. This involves ensuring that the physical
layout matches the intended design and verifying the functionality and performance of the
circuit. Any issues found during this step may require adjustments to the design, placement,
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or routing before final verification and fabrication. Lastly, the design is ready for fabrica-
tion, where it is physically manufactured using the digital description of the final design.
The above process emphasizes that electronic design is an iterative, yet highly streamlined
process aimed at ensuring that the functionality meets the desired specifications. Moreover,
each design phase represents a distinct and well defined level of abstraction, enabling effective
analysis.

As technology continues to advance, electronic design has become more complex, result-
ing in the emergence of new design protocols. One such process is the System on a Chip
(SoC) design [139], which involves integrating multiple components onto a single chip. This
process requires specialized design tools and methodologies, including co-design, Intellectual
Property (IP) reuse, and system-level verification, to ensure that the individual components
work together effectively. Another emerging design process is 3D IC design [117], which
involves stacking multiple layers of chips vertically to increase performance and reduce size.
This process involves several new challenges, including thermal management, power distri-
bution, and signal integrity. However, for the purpose of this paper, we will mainly focus
on the top-down approach in electronic design, which is more similar to the current building
design process.

Evolution of EDA

Figure 2.3: Timeline of Key Developments of EDA

EDA has a significant impact on the semiconductor industry by enabling faster, more effi-
cient, and more reliable designs of electronic systems. EDA tools provide designers with a
range of features and capabilities that simplify and automate the design process, enabling
them to create complex designs more quickly and accurately. Fig 2.3 shows the timeline of
key developments of EDA from interactive design support to design automation. The de-
velopment of EDA tools began in the 1960s when researchers developed the first CAD tools
[178] designed to assist engineers in analyzing and designing circuits and boards. It transits
from a traditional hand-drawn design to a digital design. Later, Simulation Program with
Integrated Circuit Emphasis (SPICE) emerged in the early 1970s [191] as a student project,
but became an industry standard simulation software for IC Design.
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In the late 1970s and early 1980s, two major technologies emerged: standard cell design
and HDL [165]. The concept of standard cells involves pre-designed circuit blocks that
contain a specific logic function, such as an AND gate or a flip-flop. These standard cells can
be combined to create more complex circuits. The introduction of standard cells separates
the transistor-level design from the logic design. On the other hand, HDLs, such as VHDL
and Verilog, provide a high-level language for describing digital circuits, enabling designers to
specify the behavior of a circuit without having to worry about the details of the underlying
hardware.

In the 1990s, EDA tools continued to evolve, with the introduction of new tools and
methodologies such as Field Programmable Gate Array (FPGA) [120] and SoC design [139].
FPGAs were programmable devices that could be used to implement custom logic functions,
while SoC design involved the integration of multiple functions onto a single chip. Further-
more, the industry developed standard ASCII formats, Library Exchange Format (LEF) and
Data Exchange Format (DEF) [37], for representing library and design data in order to share
and reuse design data across different tools and platforms.

In the 2000s, High-Level Synthesis (HLS) and hardware/software co-design are intro-
duced. HLS allowed designers to describe hardware using a high-level programming language,
which could then be synthesized into hardware. Hardware/software co-design involved the
simultaneous design of hardware and software components, enabling the design of more
complex systems that integrated both hardware and software.

Current State of EDA and its Impact

The current state-of-the-art in EDA includes advanced technologies that enable designers to
create complex semiconductor chips with high performance, high reliability, and low power
consumption. HLS technology [84] allows designers to specify chip functionality at a higher
level of abstraction, which reduces the time and effort required for manual coding. Machine
learning methods [105] are also applied in EDA industry to optimize design parameters to
further improve design quality. Furthermore, cloud computing [36] allows designers to access
on-demand computing resources to perform tasks that required high computational power
without having to invest in expensive hardware and software infrastructure. Advanced veri-
fication and validation techniques [65], such as formal verification, simulation, and emulation
ensured the reliability and correctness of complex designs. Lastly, as chips become smaller
and more complex, the placement and routing of components on the chip become more
challenging for EDA tools. As a result, placing and routing algorithms [164] are constantly
evolving to incorporate new design methodologies that can help designers to optimize chip
layouts for power, performance, and manufacturability.

Automation is necessary to handle the immense complexity of semiconductor chips, which
can have over a billion circuit elements that can interact in subtle ways. Manufacturing
variations can introduce further complexities and changes in circuit behavior. Errors in
manufactured chips can be disastrous and often cannot be fixed. Re-designing and Re-
manufacturing the entire chip is time-consuming and expensive, which can lead to project
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failure. EDA technology provides the critical automation needed to manage the complexity,
making it possible to design and manufacture modern semiconductor devices with a high
level of accuracy and efficiency.

2.5 Comparison between EDA and the current

Building Design Process

While the current building industry has yet to reach a high threshold for design automation,
we can learn from the development of EDA to identify the key aspects needed to make it
a reality. Figure 2.4 outlines the comparison between electronic design and building design.
We will examine three key aspects: design process, design tools, and industry, and compare
the similarities and differences between them in greater detail in the following sections.

Figure 2.4: Comparison between electronic design and building design.

Design process

Both electronic design and building design begin with specifying the project requirements
and constraints, which usually include functionality and performance. Additionally, both
processes involve the contribution of multiple team players to complete the design. In elec-
tronic design, this may include designers, engineers, and other specialists, while building
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design usually involves architects, engineers, consultants, contractors, and constructors. Ef-
fective collaboration among stakeholders is essential for achieving an optimal design. Both
processes are iterative, where certain stages are repeated until the optimal design is achieved.
The iterative process allows designers to refine and optimize the design over time, making
adjustments to accommodate changing requirements or constraints. This also helps identify
potential issues early on, reducing the risk of errors in later stages of the design. Furthermore,
both design processes involve component-based design, where components are selected and
integrated into the design as a whole. In building design, this includes various building com-
ponents, such as walls, windows, doors, and HVAC components, while in electronic design,
it involves components such as sensors and devices depending on the level of abstraction.

However, building design often employs a component-based design approach at the sub-
system level, such as for HVAC system or structural component design. This approach is
rarely available at the system level, primarily due to the lack of a common platform in the
building design domain. Design and simulation tools used in building design are often in-
compatible with each other, making it difficult to integrate designs into a single platform.
This lack of integration can lead to errors, duplication of effort, and increased design time.
The current efforts in BIM have helped to address some of these challenges by providing a
platform for integrating various building design tools and facilitating the exchange of infor-
mation between stakeholders. However, there are still limitations in software compatibility
and data management. Furthermore, the lack of clear definitions for different development
objectives and levels of abstractions during different design stages can further complicate
the design process. In contrast, the electronic industry benefits from clear and standardized
input-output requirements.

The existing Level of Detail (LoD) framework of BIM developed by the American Institute
of Architects (AIA) [14] is defined in Table 2.1.

Table 2.1: The LoD for BIM [14].

LoD Model Descriptions

LoD 100
Approximate graphical representation of the entire building
based on spatial requirements

LoD 200
Determine approximate floor plans and space boundaries (walls,
elevation, and columns)

LoD 300 Detailed design for actual construction

LoD 400
Precise model for fabrication, structure, electrical, mechanical,
and plumbing systems

LoD 500 Complete design, which represents the actual building

LoD defines the amount and degree of building information that needs to be in the BIM
at different stages. It is developed for construction purposes and is not directly applicable to
all disciplines during the design stages. The broad definition requires elaboration to fit into
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design purposes to allow the development of design automation in the building industry. The
building design is often limited by site-specificity, which can make it difficult to develop a
clear design process. Each building project has unique site requirements, such as topography,
climate, and local regulations. These factors can have a significant impact on the design
decisions and may require adjustments to the design throughout the process. As a result,
the design process in building design can be more complex and time-consuming than in
electronic design, where products can be developed independently at a specific site.

Another difference in the design process between electronics and buildings is the per-
formance quantification aspect. In electronic design, the performance metrics can be easily
obtained through calculations in timing and energy performance. However, in the building
industry, several aspects need to be considered, such as energy efficiency, indoor air quality,
visual comfort, thermal comfort, acoustic lighting, and water efficiency. These aspects are
not always straightforward to quantify, resulting in discrepancies among designers. Addi-
tionally, due to various constraints, design trade-offs become more complex and harder to
make in building design.

Lastly, the level of attention to the occupant experience and the important of aesthetics of
building design are vastly different from electronic design. Unlike electronic design, building
design has to take into account the physical environment and how the building will fit into
the surrounding landscape. Designers have to consider the impact of the building on the
environment, the local culture, and the community it will serve. In contrast, electronic
design focuses almost entirely on functionality and efficiency. While the aesthetic portion of
building design is challenging to fit into design automation applications, other areas such as
structural design and construction planning can benefit greatly from automation.

Design Tools

CAD and simulation tools are commonly used in both electronic design and building design.
These tools can provide interactive support and simulation capabilities to help designers
explore design options, identify potential problems, and optimize design solutions.

In electronic design, simulation tools are highly standardized, with well-established input-
output relationships that enable designers to quickly and easily model electronic circuits, test
different design scenarios, and verify design performance. There is also a common platform
for simulation tools, which allows designers to use different simulation tools with similar
syntax, enabling the transfer of simulation models between different software programs.

In contrast, building design lacks a universal standard for simulation tools, which can
make it challenging for designers to choose the right tool for their specific design problem.
Energy simulation software, for example, may require different inputs for different programs,
making it difficult to have a common platform for simulation tools. Furthermore, there are
limited data standards that cover all simulation tools, and data conversion between tools
often requires manual adjustment. Building designers or engineers often need to adapt to
different software programs, such as structure, energy, and lighting simulations, for different
design purposes, which results in a fragmented design process. Interoperability is a widely
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known issue in the building industry [104]. Data standards, such as Industry Foundation
Classes (IFC) [107] and Green Building XML (gbXML) [86], exist in the building industry.
IFC is used to exchange building data, including geometry, spatial elements, and sensor
information. A subset of IFC, Model View Definition (MVD), has been developed to apply
to specific applications in building [102]. It defines which IFC entities, attributes, and
relationships are required to support a specific use case or task. The gbXML format is
more specifically used in the energy simulation domain. It facilitates the exchange of data
between CAD and energy analysis tools. Other data tools in the building industry are
summarized in [135]. However, the above-mentioned data standards have yet to be applied
to all building applications. Extensions or adaptations are still required to apply to specific
building applications or regions [82].

On the other hand, electronic data standards, LEF and DEF [37], are well-established
in exchanging data between different software programs. LEF is used to exchange library
data, while DEF is used to exchange design data. Building data standards need to have
broad adoption across the industry and cover all relevant disciplines. Different from LEF
and DEF, it needs to be designed to be flexible and adaptable to different use cases and
applications in building. Moreover, a library data standard needs to exist to store different
application modules within the building industry. Its primary purpose is to enable seamless
data exchange between different software applications used in building design, construction,
and operation. By doing so, it enables the industry to create a shared library that allows
for efficient sharing and reusing of data for future design processes.

In addition to the challenges of standardization and interoperability, another pivotal issue
in building design is maintaining up-to-date, high-quality data throughout the design process
and among stakeholders. Failure to keep data updated can result in miscommunication, ad-
ditional time required, and increased costs. Having the data updated is especially important
during the construction process, where delays and errors can have significant impacts on
project time and costs [216]. Therefore, having an efficient and effective data management
system is also vital for building design.

A comparison between the Building and the Electronics Industries

In building design, it can be challenging to estimate project costs upfront, which can lead to
difficulties in accurately estimating the overall project cost. The cost is determined through
a construction bidding process. As a result, the cost of sub-systems is usually not publicly
available. Several researchers have explored various methods to improve cost estimation
in the building industry [103], including the use of historical cost data and cost modeling
techniques. Similarly, in the electronic industry, cost estimation is also challenging due to
the competitive nature of the industry. For in-house manufacturing products, the cost is
generally easier to estimate because the manufacturing process is known and predictable.
On the other hand, the cost of custom chip designs that are outsourced for manufacturing
can be more challenging to estimate, as it may depend on factors such as the complexity of
the design, the choice of manufacturing partners, and the timing of the project.
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One major difference between the two industries is the nature of the products produced.
Electronic design often involves mass-produced products, while building design usually in-
volves idiosyncratic designs. In electronic design, products are typically manufactured in
large quantities, with standardized components and design processes, which can lead to
more streamlined production and lower costs. Building design, on the other hand, is of-
ten unique to each project and requires more customized solutions. As a result, the design
process needs to be flexible to accommodate a wide range of project types and requirements.

There is also a notable difference in the scale and timeline of outcomes between electronic
design and building design. In electronic design, products are often smaller in scale and
require shorter development cycles due to the nature of the industry. This allows for rapid
prototyping, testing, and production, which can result in more agile and iterative design
processes. On the other hand, building design projects involve larger-scale outcomes that
often require longer timelines due to the complex nature of the construction process. This
can result in a less agile design process, with greater risks and costs associated with design
changes over time.

Another significant difference is the supply chain. The electronic design industry often
relies on a global supply chain, with components sourced from all over the world. In contrast,
the building design industry tends to rely more on local suppliers and materials, which can
vary depending on the region or location of the project. Although building elements, such
as raw materials, prefabricated components, and equipment, can be sourced globally, local
supply sources are often preferred for their positive impact on the environment and economy.
This can influence factors such as availability, cost, and quality of materials, as well as the
overall design and construction process.

2.6 Module-based Building Design

In this section, we propose a modular design flow that segregates various disciplines in
building design into separate modules, aimed at facilitating the development of libraries and
enabling design automation.

The building design process is generally split into five different design stages: concept,
schematic design, design development, construction documents, and construction. However,
no clear objectives are defined at each stage. The ambiguity in defining different stages of
building design arises from a lack of standardization, variation in project scope and com-
plexity, and overlapping and iterative nature of the design process. Due to the ambiguous
definitions and varying inputs and outputs across different research groups, research in dif-
ferent disciplines of building design has become fragmented, making it difficult to integrate
research into current industry practices. Identifying the gaps between research and the build-
ing industry is therefore essential to bring them closer together and bridge the divide. Our
aim is to minimize these gaps and facilitate the transfer of knowledge and research findings
to the industry.
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Figure 2.5: Proposed module-based approach for design automation in the building design
process.
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Fig 2.5 describes the proposed module-based approach of the design process that in-
tegrates design automation techniques of different disciplines into a design flow. Different
disciplines of the building design process are split into different modules: structural form,
floor plan, façade, structural components, HVAC, electrical, plumbing, assessment, docu-
mentation, planning, fabrication, transportation, and installation. Each module contains
design automation methods with specific input-output specifications as shown in Table 2.2
and 2.3. The objective is not to create a comprehensive review of design automation studies,
but to offer instances of commonly employed techniques in research communities. Modules
are connected to one another to demonstrate the design sequence and they are bounded
by design rules. The design rules are generally established through physical constraints,
building codes, safety standards, environmental regulations, and budget constraints.

The building design process commences by creating the structural form of the building
based on client requirements, building objectives, and design criteria for the site, while ad-
hering to structural constraints and energy building codes. Then, the floor plan is developed
by integrating inputs from the structural form and space planning design criteria. However,
it is subject to MEP design rules to ensure sufficient space for MEP equipment. Following
the floor plan is designed, façade and structural components are determined to finalize the
architectural design of the building. Subsequently, HVAC, electrical, and plumbing systems
are designed in a coordinated manner to meet the occupants’ needs and spatial requirements.
Once the MEP system is in place, an assessment module performs a final check of the building
code before creating the construction documents. The construction planning module then
facilitates planning for fabrication, transportation, and installation during the construction
stage. Lastly, those modules in the construction stage implement the construction plan to
complete the building design.

Although the figure shows that the modules are linked, there is still a discrepancy be-
tween the outputs of one module and the inputs of the connected module. Currently, the
linked connection requires manual intervention to ensure a proper information flow between
modules, and the backbone of the information flow is BIM. Several researchers have been
working on extending the data structure, such as IFC [107], to fit different applications’
needs [82]. However, the current data structure still hasn’t addressed design automation ap-
plications completely. Additionally, the proposed design flow is not a single iteration process
from left to right. Revisions or adjustments from previous modules may be necessary to en-
sure compatibility and proper functioning of the overall system. However, over time, design
rules can be expanded by incorporating feedback from professional experts and by collecting
more data and information to better address the needs and constraints of the project. They
can facilitate reducing the number of iterations needed to create an optimal building design.
Lastly, the proposed approach is not intended to replace architects and engineers completely,
but rather, to offer design suggestions and enhance communication between designers and
engineers during the design process.

The design process is designed to be flexible to accommodate regional, climatic, and firm-
specific variations in the building design process. Furthermore, the design process encourages
researchers to reconsider the necessity of standardizing information flow between different
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disciplines, allowing designers to easily compare and contrast the results of various methods.

2.7 Platform-based Building Design

In the previous section, we provided an overview of the building design flow at a higher level.
In this section, we delve into a more detailed view on how each module can be implemented
using Platform-based Design (PBD) methodology. PBD [78] refers to an approach in the
design paradigm where a common base or platform is used as a foundation for creating
multiple variations or derivatives of a design. It emphasizes the reuse of components across
different designs, allowing for faster and more efficient product development. While EDA
is a prime example, PBD has also been successfully applied in other industries, including
automotive [169], aerospace [25], and healthcare [207]. In PBD, a platform is defined as a
collection of components and their accompanying rules for combining them, which can be
utilized to create a design at a specific level of abstraction. Jia et al. [110] proposed a PBD
approach specifically tailored for smart building design. The approach focuses on promoting
the reuse of hardware and software components on shared infrastructures. They present a
case study of retrofitting the HVAC system in a smart building by deploying sensors and
actuators to enhance energy efficiency and occupants’ comfort. The PBD approach enables
the reuse of sensors and actuators across different smart building designs, leading to more
cost-effective and sustainable solutions. We follow a similar approach, but instead of applying
to building retrofit applications, we apply the technique to building design, specifically for
the HVAC systems.

A new Workflow for Building Design

The approach follows closely to the design flow developed from [110], with the adaptations to
suit the building design process. The concept is to begin with high-level design specifications
and gradually refine the model in subsequent steps, leading to the implementation of the
design at different levels of abstraction. This design flow does not strictly follow a top-down
or bottom-up approach, but instead adopts a meet-in-the-middle approach that combines
elements of both processes. The bottom-up approach begins with detailed components or
subsystems and builds up to a higher-level design.

The design flow is a multi-layered process that involves the functional design layer, the
module design layer, and the implementation design layer, as depicted in Figure 2.6. Each
layer is accompanied by corresponding libraries that aid in the design process. The libraries
that correspond to each layer are a virtual design platform, a module platform, and an
implementation platform, respectively.

The virtual design platform is composed of several components, including design tem-
plates and generative algorithms. Design templates are created based on building codes or
previous building projects, and provide a suggested layout for a specific design specification.
On the other hand, generative algorithms utilize AI to generate alternative design sugges-
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Table 2.2: Architectural Design Modules

Module Behavioral Model Extra-Functional
Model

object Method Inputs Outputs Objective

Structural Form
CAD/E [210] Design ob-

jectives and
constraints

Building forms N/A

GD [197] Building out-
line, loading,
span

Structure model of
steel framing sys-
tems and structural
material quantities

Embodied Carbon

GA [209] Building size Building forms Energy performance

Floor Plan

Physically based [12] Spaces and
shape

Space topology Adjacency, separation, ori-
entation, alignment, area,
proportion

Evolution Algorithm
[202]

Floor area,
room ratios,
adjacency pref-
erence matrix

Space topology Budget, adjacency prefer-
ences and space function

Agent-based modeling,
SA [77]

Simulated occu-
pants’ behavior

Space layout Mobility, accessibility, and
coziness

Agent-based modeling,
Linear/Quadratic Pro-
gramming [29]

Building spaces Optimal assign-
ment of building
spaces

Occupants’ flow, satisfac-
tion, and energy efficiency

Façade
Parametric Model [193] Building geome-

try
U-values of façades Thermal comfort and en-

ergy savings

GA [184] Geometric pa-
rameters

Parameters’ value Daylight performance

GAN [145] existing facçade
design images

facçade design N/A

Structural
Components

Knowledge-based
Method [85]

Building struc-
ture

Detailed design of
structural compo-
nents

N/A

Neural Network [1] Loading condi-
tion

Cross-sectional ar-
eas of trusses

Material weight

SA [27] Loading condi-
tion

Cross-sectional ar-
eas of trusses

Material Weight

GA [40] Building struc-
ture

Construction mate-
rials properties

Thermal and lighting per-
formance
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Table 2.3: Engineering and Construction Design Modules

Module Behavioral Model Extra-Functional
Model

object Method Inputs Outputs Objective

HVAC
Physics-based (BPS)
[24]

Building struc-
ture and layout

duct and radiant
systems placement

Cost, GHG emissions, life-
cycle

GA [215] Building struc-
ture and layout

HVAC component
selections and
topology

Energy efficiency

Assessment Rule-based [13] BIM Report documents Green building assessment

Planning
Computer Integral
Manufacturing [149]

BIM Off-site prefabrica-
tion plan

Time, transportation,
market, legal, economic

Mixed-Integer Pro-
gramming [11]

BIM Transportation
plan (Truck assign-
ment and delivery
day)

Cost

Imaged-based 3D mod-
eling [61]

BIM, robot
property, task

Assembly plan Time

Data Collection

UAV/UGV [16] Construction
site

Construction envi-
ronment map

Surveying, monitoring,
and inspection

RF/RFID [144] Construction
site

Labor locations Project performance

Positioning sensors [50] Construction
site

Dynamic resources
quantities

Real-time resource avail-
ability

3D laser scanning [10] Construction
site

3D point clouds Quality Control
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tions based on the input data and specification. The libraries enable designers to explore
various design options and select the most suitable one based on the specifications, thus
enabling them to advance to the next level of abstraction. The functional design layer yields
the topology prototype design, which depicts the interconnections between different compo-
nents. Subsequently, the module design layer comprises component and simulation modules.
This layer facilitates designers to experiment with different components and conduct sim-
ulation studies to evaluate hypothetical scenarios of the resulting design. The outcome of
this layer is a 3D Prototype design, which is a more detailed representation design. In the
implementation platform, the design undergoes verification and documentation processes
using verification and documentation modules. These modules aid in verifying the design’s
functionality and producing documentation to describe the design’s specifications.

Figure 2.6: An overview of the proposed design flow adapted from [110].

Platform-based Building Design Case Study

We present a case study to demonstrate the practical application of the PBD framework in
the design of HVAC systems for a building. Assuming we are given a BIM that contains
building form and floor plan information, the design specification consists of the desired
design cost, comfort requirements, and maximum energy consumption value.

In the functional design layer, the HVAC configuration templates developed by ASHRAE
[154] are utilized to match the design specifications. These templates are selected based on
the building type and typical heat load of the zones and the building. Although researchers
have attempted to develop new HVAC topologies using GA, Zhang et al. [215] found that the
existing configurations still outperform the new generative alternatives. However, if future



CHAPTER 2. FROM ELECTRONIC DESIGN AUTOMATION TO BUILDING
DESIGN AUTOMATION 33

generative studies succeed in outperforming the existing configurations, they can be stored in
the virtual design platform. Once the appropriate configurations are selected, the component
modules stored in the module platform are used to select the best-suited components for the
design. Additionally, 2D topology is converted to 3D by applying duct layout modules
that fit the air ducting system to the building floor plan. The resulting design is then
sent to the implementation layer for implementation. The implementation layer consists of
a final verification stage, where the design is checked for compliance with building codes
and feasibility for implementation. Once validated, the documentation module is used to
generate the final construction documents required for bidding purposes.

2.8 Chapter Summary

Buildings are complicated systems that consist of different layers of sub-systems. In addi-
tion, decisions made in the early stages of building projects have an important impact on
material and energy efficiency. It is a challenging task to frame and solve one multi-objective
optimization problem for finding an optimal design solution for a building. There is a need
to develop a standardized information flow specifically for different disciplines. This chapter
identifies the shortcomings in the building design process and proposes a modular-based and
a PBD approaches.

Despite ongoing research efforts to streamline the building design process, the industry
has been slow to adopt new technologies and approaches. One of the key obstacles to
widespread adoption is the lack of a universally defined design workflow in the industry.
Building design practices can vary significantly based on factors such as location, building
type, and project scope, making it challenging for companies to invest in optimization and
co-optimization techniques during the design phase. Many optimization techniques may
not be applicable to all projects, leading to concerns about cost-effectiveness and return on
investment.

To overcome this challenge, the industry may need to focus on developing more standard-
ized approaches to building design, with greater emphasis on collaboration and knowledge-
sharing among stakeholders. This could include the development of a platform-based or
modular-based approach that is flexible and adaptable to different project types and scopes.
Modularization involves dividing buildings into assemblies of components that have standard-
ized interfaces for communication, making it possible to combine and reconfigure components
to meet different design requirements. This allows for a more flexible design to meet users’
preferences and performance requirements. This approach offers several benefits, including
greater flexibility in design, more efficient use of resources, and improved cost-effectiveness.

Additionally, to facilitate more efficient and collaborative building design, it is necessary
to create a design backbone that enables single-platform integration. First, data exchange
standards should be revised to ensure they are applicable to all disciplines involved in building
design. This will help ensure that information can flow smoothly between different software
applications and enable effective collaboration. Next, a BIM software, such as Revit, can be
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Figure 2.7: A detailed overview of the PBD design flow of an HVAC system.
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used as a common platform for communication between different software tools. By inte-
grating all existing software tools into the BIM software through support plug-in application
modules, designers can access all the necessary information in one place, improving efficiency
and reducing errors.

Building design requires a more comprehensive approach that considers several aspects
of performance, including energy efficiency, indoor air quality, visual comfort, thermal com-
fort, acoustic lighting, and water efficiency. There is a need to define and standardize a
performance quantification framework for each aspect of concern in the building industry.
While building codes and standards exist to facilitate better building designs, there is still
a lack of a comprehensive framework in certain areas, such as visual comfort. Ongoing ef-
forts are made in the research domain. For example, Cavieres [43] established a framework
that allows the functional and behavioral systems of the building to interact in an interface.
This framework involves mapping the specific systems needed to calculate the relevant per-
formance measures, which in turn helps designers make more informed design choices. By
quantifying and standardizing various aspects of building performance, designers can better
understand the trade-offs between different design options.

Lastly, risk assessment is another important aspect to address in building design. Al-
though innovative designs can lead to reduced energy consumption and GHG emissions, there
is no guarantee that the desired outcomes will be achieved during construction. If the design
conditions cannot be met, construction costs can increase significantly, and contractors may
be unwilling to take on the project. A risk assessment module can help mitigate these risks
by simulating various design scenarios and estimating the uncertainty associated with each
design. This will allow stakeholders to make informed decisions and select designs that are
more likely to succeed in the construction phase.

The implementation of standardization, performance quantification, and risk assessment
modules is necessary to move building design toward automation. Standardization pro-
motes a more structured approach to building design, allowing for better data exchange
and knowledge-sharing between stakeholders. By implementing performance quantification
frameworks, designers can make more informed decisions regarding various aspects of build-
ing design. Risk assessment can help mitigate potential issues during the design process,
preventing costly and time-consuming delays during construction. The use of these tools
not only streamlines the design process but also leads to more sustainable building designs
that meet performance and safety standards. The ultimate goal is partial design automation,
where designers and engineers can leverage technology to optimize building performance and
minimize the environmental impact.
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Chapter 3

Defining Levels of Abstraction for
Building Energy Models

1

3.1 Background

Building models are designed to emulate actual physical buildings that serve various ap-
plications, including design [150], indoor environment quality assessment and control [100,
115], Heating, Ventilation, and Air-Conditioning (HVAC) control [26], diagnosis [140, 217],
and demand response [119]. They aim to reduce building energy consumption, maintain
occupants’ comfort, correctly size the HVAC, and provide services to the power grid. Build-
ing Performance Simulation (BPS) tools were initially developed in the 1970s to help make
better design choices during the design phase of a building [121]. The objective of simula-
tion models in the design phase is to optimize performance requirements through optimal
choices for various design parameters, such as construction materials, shading strategies,
zone layout, and plant sizing. Research shows that better design for new buildings may
result in substantial energy savings [53]. With BPS tools, designers can better understand
hypothetical scenarios when selecting different design options. In addition, they have the
potential to identify imperceptible internal system problems, such as poor indoor air quality
and structural cracks. In recent decades, BPS tools have also been used to monitor and
improve building operations.

However, BPS tools are often not carried over from the design phase to the operation
phase. The challenges in building modeling include the performance gap between the es-
timated building performance in the design stage and the actual performance during the
operation stage and the interoperability between different simulation tools [104]. Two ways
to address the challenges are to define the levels of abstraction of building models from the
design phase to the building operation phase and establish a communication standard be-
tween Building Information Modeling (BIM) and BPS tools. BIM is a digital representation

1This chapter is a modified version of a manuscript that is preparing for submission with the preprint
available in reference [129].
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of a building that contains information such as the building’s geometry, structure, materials,
HVAC, lighting, plumbing, and electrical systems [113].

Defining a clear level of abstraction for building models can provide a structured approach
to developing building models and facilitate automation in building model generation. The
level of abstraction refers to the amount of complexity with which a system is viewed or
programmed. Higher levels of abstraction involve less detail, while lower levels involve more
detail. This concept is illustrated in integrated circuit design, where different levels of de-
tail, from less detailed to more detailed, are used, such as system level, chip level, register
level, gate level, circuit level, and layout level [199]. By defining the levels of abstraction
for building models, designers can establish a systematic approach to model development,
allowing for consistency and efficiency in the modeling process. This can aid in automating
certain aspects of building modeling, leading to faster and more accurate model generation.
Clear deliverables at each level of abstraction can also help establish responsibilities for de-
signers at different stages of the design process, ensuring that the appropriate level of detail
is considered at each stage.

In addition to defining the level of abstraction, interoperability between BPS tools is
important. There are numerous BPS tools available, each with its own strengths and ca-
pabilities for building modeling. However, there is often a need for manual conversion of
information between different tools, which can be time-consuming and error-prone. Al-
though data exchange standards such as Industry Foundation Classes (IFC) [107] and Green
Building XML (gbXML) [86] exist, they may not be widely applicable to all BPS tools, and
information loss may occur during the data exchange process. Efforts towards improving
interoperability between BPS tools can lead to more seamless data exchange, allowing for
smoother integration of different modeling approaches and tools.

This chapter aims to address the crucial role of BPS, specifically in relation to energy
aspects, throughout the entire building life cycle. It discusses the current level of abstraction
in building modeling and its limitations, and proposes potential levels of building energy
models based on sensitivity analysis and the building design process.

3.2 Related Work

Sensitivity analysis has been widely used in Building Energy Modeling (BEM) to assess the
impact of different parameters or variables on the performance of the model. It enables the
identification of key parameters in a model that have a significant impact on the defined
outcome, and helps in understanding their relative importance and interactions. This allows
designers to focus on the most important parameters when making design decisions, and pri-
oritize design strategies accordingly. Tian provides an in-depth review of sensitivity analysis
methods for building energy models [200].

For example, Heiselberg et al. [99] found that lighting control and the amount of ven-
tilation contribute the most to a building’s total energy consumption. However, they also
noted that if the analysis is not based on total energy consumption, but rather separately
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on heating or cooling demand, the ranking of parameters changes significantly. Delgarm et
al. [59] explored the effect of a simulated multi-story building in the different climate zones
of Iran, including warm-dry, warm-humid, and cold climates. They found that window size
was the most influential variable for total building energy assessment. Gagnon et al. [83] ap-
plied sensitivity analysis at different stages of the design process to understand the outcome
of fixing variables throughout the design stages. In their studies, they evaluated 30 design
variables that affect energy consumption and thermal comfort of a real-world 5-story office
building, and found that parameters such as relative humidity set point, window-to-wall
ratio, and solar heat gain coefficient were among the most significant factors. Eisenhower et
al. [70] generated a meta-model using EnergyPlus of an existing mixed office-gym building
to analyze over 1000 parameters to optimize building energy. Among analyzing these param-
eters, they found that schedules for load, outdoor air fraction, and supply air temperature
set point have a substantial impact on comfort and energy consumption in a building.

Despite several studies that have been carried out in sensitivity analysis of building energy
models, few have focused on the fact that the importance of parameters changes based on
building typology and location. Furthermore, most studies examine energy simulations as a
whole and do not apply them to different design stages to assist in informed design decision-
making. Although Gagnon et al. [83] apply sensitivity analysis at various design stages, they
only studied one building in one climate zone. Our study focuses on sensitivity analysis of
small office buildings at different design stages across all climate zones in the United States.
We aim to provide insights on how different abstraction models throughout the design process
can assist designers in making informed decisions.

Existing Data Standards

BIM is a digital representation of the physical characteristics of a building, encompassing
information such as building geometry, materials, spatial relationships, and electrical com-
ponents. BIM models are typically created and managed using specialized software such
as Autodesk Revit [20], GraphiSoft Archicad [92], Bentley OpenBuildings Designer (for-
merly AECOsim) [28], and Siemens Ecodomus [167]. These BIM software tools allow for the
creation, visualization, and analysis of detailed building models, and support collaborative
workflows among stakeholders. BIM software typically supports importing and exporting of
data in one or more standard data formats, allowing for interoperability and exchange of
information among different software tools.

The standard non-proprietary data exchange formats commonly used for BIM are the IFC
[107] and gbXML [86]. IFC stores building data, including geometry, spatial elements, and
sensor information, and allows for the exchange of comprehensive and rich data related to
building components, systems, and properties. IFC supports various shapes and geometries,
allowing for detailed and complex building representations. Construction Operation Building
Information Exchange (COBie) [67], a subset of IFC, is a performance-based specification
that includes equipment and spaces. It is commonly used for data exchange related to
facility management, operation, and maintenance. gbXML, on the other hand, is a format
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specifically used in the energy simulation domain. It facilitates the exchange of data between
CAD and energy analysis tools, allowing for the transfer of building geometry, materials,
and other relevant data for energy performance analysis. However, gbXML only supports
rectangular shapes for building geometry or objects, whereas IFC can record any shape,
making IFC more versatile for complex building representations. The data structures of the
IFC and gbXML are shown in Figure 3.1.

Figure 3.1: Data structures for the IFC and gbXML format.

Although the communication between BIM and BPS is established, it is not yet fully
developed. The process of transferring data between these tools may not be fully auto-
matic and may require manual alterations when applied to different software platforms. For
instance, in BIM software like Revit, the thickness of a building element can be defined
for each material. However, when transferring the model to an energy simulation tool like
EnergyPlus, a new material input may be required for each defined thickness, which can
be cumbersome and time-consuming [41]. This limitation in interoperability between BIM
and BPS tools highlights the need for further advancements in data exchange standards and
processes.

Level of Detail of BIM

While the level of abstraction for BEM may not be well-defined, the concept of the Level of
Detail (LoD) framework in BIM has been developed by the American Institute of Architects
(AIA) [14] as shown in Table 2.1 in the previous section. LoD defines the amount and
degree of building information that needs to be included in the BIM at different stages of
the project.

The LoD framework, originally developed for construction purposes, is not directly ap-
plicable to energy models. For example, BPS tools separate spaces into different thermal
zones rather than rooms and floor plans. In addition, estimated occupancy schedules, which



CHAPTER 3. DEFINING LEVELS OF ABSTRACTION FOR BUILDING ENERGY
MODELS 40

are important factors affecting energy performance, are not included as part of the model
description [104]. Despite these limitations, the differences between construction and energy
analysis purposes can be managed within the same framework.

3.3 The Role of BPS Tools in the Building Design

Process

In this section, we examine the significance of BPS tools at various stages of the building
design process, including concept, schematic design, design development, construction, and
operations, as illustrated in Table 3.1 [153].

Concept

This stage encompasses the preparation and evaluation stages of the integrative design pro-
cess. Its main objective is to benchmark energy performance against similar buildings in
the same area, and assess overall energy strategies based on climate data, requirements, and
building end-use. A simplified energy massing model is typically used at this stage to explore
passive energy-saving strategies, such as configuration and orientation options. Commonly
used BPS tools for the early design stage include ENERGY STAR Target Finder [175],
Sefaira [161], and cove.tool [183].

Schematic Design

During the schematic design stage, the overall energy performance goals of the building are
refined into subsystems’ energy performance goals, such as cooling, heating, lighting, and
plug-load systems. Additionally, an appropriate baseline of energy performance is determined
for comparison. The model can inform design choices related to thermal envelope parameters
and load reduction strategies, with the aim of reducing load and cost while maintaining
indoor environmental quality.

Design Development

The building geometry is firmly established by this stage. Iterative parametric modeling
is performed to explore the options in Mechanical, Electrical, and Plumbing (MEP) sys-
tems. Designers can make informed decisions based on simulation outcomes, allowing for
optimization of MEP system designs to achieve desired energy performance targets.

Construction

By the end of the design development stage, the building model is fully established. However,
during the construction phase, variations in materials, geometry, and other factors may
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deviate from the design phase. Therefore, continuous monitoring and updating of the model
are necessary to facilitate informed decisions, if needed, during construction to ensure that
the as-built building aligns with the intended energy performance goals.

Operation

After the building is constructed and occupied, real-time data can be collected from the
actual building to calibrate the energy model. This allows for addressing and identifying
any potential performance gaps between the model and the actual building. Furthermore,
optimizing the building’s operation while maintaining occupant comfort can lead to further
energy reduction. Moreover, the energy model can be utilized for various applications,
such as fault detection and grid response, enhancing its usefulness beyond just design and
construction stages.

Gaps

There are energy performance tools at early design stages to estimate energy consumption
based on similar buildings in the same climate zone. However, throughout the design stages,
there are still gaps that need to be addressed to improve the accuracy and usability of BEM
tools. One of the gaps in existing BEM tools is the absence of partial BEM tools that allow
for estimation of energy performance without the need to build a full model. Currently,
designers are required to create a complete BEM model, which can be time-consuming and
resource-intensive, even during early design stages when only rough estimates are needed.
This creates unnecessary complexity and can hinder the design process. Another challenge
is the uncertainty of parameters in BEM tools. Many input parameters, such as occupancy
patterns, weather data, and equipment efficiencies, are subject to uncertainty. However,
existing BEM tools often do not adequately account for the uncertainty of these parameters,
which can lead to overly optimistic or pessimistic energy performance estimates. Uncertainty
analysis is crucial in evaluating the overall energy performance of a building and providing
designers with holistic information for decision-making. Therefore, incorporating robust
methods to account for uncertainty in BEM tools is a necessary improvement. Furthermore,
the lack of clear guidance on model selection throughout the design stages is another limita-
tion. Designers often struggle to determine which BEM tool or approach is most appropriate
for their specific needs at different stages of design development. This can lead to incon-
sistencies and inaccuracies in energy performance estimation, impacting the final building’s
performance.

In the following sections, we aim to address the gaps in developing partial building energy
models and reducing uncertainty to better support designers in creating energy-efficient
buildings.
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3.4 Methodology

Building Models

We utilized prototype building models developed by the Department of Energy (DOE)2.
These models are created in EnergyPlus [57], a widely used BEM tool, and encompass a
diverse range of building types, including both commercial and residential buildings, across
eight different climate zones in the United States. Specifically, our analysis focused on small
office buildings in all eight climate zones, which include hot-humid, hot-dry, mixed-humid,
mixed-dry, cold, very cold, subarctic, and marine regions as depicted in Figure 3.2 (Note that
the subarctic region (Alaska) is not shown in the Figure). These prototype building models
provide a standardized and representative basis for evaluating the energy performance of
small office buildings in various climatic conditions, allowing for consistent and comparable
analyses across different regions.

Figure 3.2: United States Climate Zone Map. Note: the subarctic zone (Alaska) is not shown
on the map [122].

The small office building consists of one central room with four rooms adjacent to its
side as shown in Figure 3.3. To gain insights into energy consumption and identify critical
parameters, sensitivity analysis is conducted throughout the design stages, as parameters
are decided during the process. This analysis is performed across all climate zones, allowing
designers to understand the impact of different parameters on energy performance in various
environmental conditions.

2https://www.energycodes.gov/prototype-building-models

https://www.energycodes.gov/prototype-building-models
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Figure 3.3: Small office building

Sensitivity Analysis Method

The Morris method [141], implemented in Python using SALib library [101], is used for
performing sensitivity analysis. It is a type of global sensitivity analysis that follows a one-
factor-at-a-time (OAT) approach. In this approach, random perturbations are applied to
one input parameter at a time to create trajectories. The model output is then evaluated for
each trajectory, and the sensitivity value is calculated based on the magnitude of changes in
the model output. One of the major advantages of the Morris method is its computational
efficiency, making it suitable for running sensitivity analyses with a large number of param-
eters. This method can provide useful insights into the impact of each parameter on the
model output, indicating whether a parameter has minimal impact, behaves in a linear and
additive manner, or exhibits non-linear effects or interactions with other input parameters.

The Morris method employs statistical measures such as average and standard deviation
to quantify the sensitivity of each input parameter. The average sensitivity measure, denoted
as µ∗ is calculated as follows:

µ∗ =
1

N

N∑
i=i

|y′i − yi|
∆

(3.1)

where N is the number of trajectories, y′i is the model output for the perturbed input param-
eter, yi is the model output for the unperturbed input parameter, and ∆ is the perturbation
size. The standard deviation sensitivity measure, denoted as σ, is calculated as follows:

σ =

√√√√ 1

N − 1

N∑
i=1

(
|y′i − yi|

∆
− µ∗)2 (3.2)
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By examining the relationship between µ∗ and σ, the Morris method can provide valuable
insights into the relative importance and interactions between input parameters. If µ∗ is high
and σ is low, this indicates that the parameter has a significant linear effect on the model
output. If both µ∗ and σ are high, this indicates that the parameter has a significant non-
linear effect on the model output. Changes in this input parameter result in unpredictable
and non-linear changes in the model output. If both µ∗ and σ are low, this suggests that the
input parameter has minimal impact on the model output and there is no interaction with
other parameters. Finally, if µ∗ is low and σ is high, this suggests that the input parameter
may be interacting with other parameters in a non-linear way, leading to unpredictable
changes in the model output.

Approach

We conducted a sensitivity analysis on small office building EnergyPlus models in eight
distinct climate zones within the United States. We aim to investigate how climate conditions
influence the relative importance of various parameters in whole building energy models.
Next, we divided the parameters into five stages based on the typical design process, with
further details provided in the Results section. At each stage, we fixed the design variables
and performed sensitivity analysis on the remaining parameters to understand their impact
on the model outcomes. Our approach builds upon similar studies conducted by Gagnon
et al. in [83], but expands the concept by considering various climate zones in the United
States. Additionally, we investigate how the results of our sensitivity analysis can be utilized
for design optimization of these parameters, and provide insights into the levels of abstraction
in building energy models.

Input Parameters

The selection of parameters for sensitivity analysis is crucial as it directly impacts the out-
comes and reliability of the analysis. Here, we describe how the parameters are chosen and
how the range is decided. In this study, we carefully chose parameters based on previous
research findings that demonstrated their significant impact on building energy outcomes,
including building envelope properties, loads, window properties, HVAC efficiency, and tem-
perature set points [59, 70, 83, 99]. These parameters will be the main focus of our sensitivity
analysis. The schedule of operations, such as working hours and occupancy patterns, was
not included as a parameter in this study. This decision was mainly due to the typically
fixed schedule of office spaces and the challenges associated with changing working hours
in real-world office buildings. However, we acknowledge that the schedule of operations can
also impact building energy performance, and its exclusion from our sensitivity analysis may
introduce limitations in our analysis.

The orientation of the building is set between 0 and 90 degrees due to the building’s
symmetry. The window properties, including U-factor (uw), Solar Heat Gain Coefficient
(SHGC), and Window-to-Wall Ratio (WWR), are also important factors. According to
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ASHRAE 90.1 [69], typical ranges for uw are 0.2 to 1.2, and for SHGC, 0.1 to 0.45. It’s
worth noting that material cost is not considered in this analysis. For instance, a U-factor
of 0.2 is considered expensive, while a U-factor of 1.2 is considered subpar. SHGC is a
parameter that describes the amount of solar heat that can pass through a window, with
lower values indicating less heat transfer. Sayadi et al. [159] and Goia et al. [91] found
that the ideal WWR is between 30% to 50%, but in different climate zones, the typical
WWR can range from 20% to 70%. Insulation layers, including the resistance of the roof
and exterior walls, are other important properties in determining the energy consumption of
a building. The resistance range is calculated based on the R-values in ASHRAE 90.1 [69].
The infiltration rate, which specifically relates to exterior door openings, is set between 0.6
and 4.5 m3/s based on recommendations from Cho et al. [51]. Parameters related to HVAC
systems are also considered. The Coefficient of Performance (COP) is used as a measure of
efficiency for cooling and heating systems, with typical ranges of 1 to 3.4 for cooling and 1
to 4 for heating [152]. The heating and cooling set points for indoor air temperature are
recommended by ASHRAE 55-2010 [17], and the heating and cooling supply air temperature
ranges are based on recommendations from Gagnon et al. [83]. The fan efficiency ranges are
defined by TRANE [185]. Finally, loads of lighting, electric equipment, and occupancy are
estimated based on data from ASHRAE 2021 Handbook [154].

Table 3.2: Input parameters list for sensitivity analysis.

Index Symbol Description Range Reference

0 uw U-factor of window [W/m2K] [0.2, 1.2] [69]
1 SHGC Solar heat gain coefficient of window [-] [0.1, 0.45] [69]
2 θ Orientation of the building [◦] [0, 90]
3-6 WWR Window-to-wall ratio of each wall facet [%] [20, 70] [91, 159]
7 Rins Thermal resistance of the exterior wall insulation layer [m2K/W ] [0.3, 6] [69]
8 Rroof Thermal resistance of the roof insulation layer [m2K/W ] [0.6164, 10] [69]
9 Qinf Exterior door infiltration rate [m3/s] [0.6, 4.5] [51]
10 COPc Gross rated cooling coefficient of performance [W/W] [1, 3.4] [152]
11 COPh Gross rated heating coefficient of performance [W/W] [1, 4] [152]
12 ηfan Fan total efficiency [-] [0.4, 0.9] [185]
13 ηm,fan Fan motor efficiency [-] [0.6, 0.9] [185]
14 A Zone floor area per person [m2/person] [7.9, 15.5] [154]
15 LPD Lighting power densities [W/m2] [6.6, 8.0] [154]
16 Pelec Electric equipment loads [W/m2] [3.67, 12.3] [154]
17 Tsup, c Cooling design supply air temperature [◦C] [12, 18] [83]
18 Tsup, h Heating design supply air temperature [◦C] [30, 40] [83]
19 Tset, c Cooling set point air temperature [◦C] [25, 27] [17]
20 Tset, h Heating set point air temperature [◦C] [19, 23] [17]



CHAPTER 3. DEFINING LEVELS OF ABSTRACTION FOR BUILDING ENERGY
MODELS 47

3.5 Results

Sensitivity Analysis across All Parameters

Figure 3.4 illustrates the outcomes of sensitivity analysis conducted across eight distinct
climate zones. The findings indicate that for hot-dry and hot-humid climates, the key pa-
rameters with substantial impact on energy consumption are cooling effectiveness (COPc),
equipment loads (Pelec), and Solar Heat Gain Coefficient (SHGC). In hotter climates, solar ra-
diation is an important factor that affects energy consumption, making SHGC an important
parameter for blocking heat transmission to indoor space. Moreover, cooling effectiveness
becomes crucial in ensuring efficient cooling operations in such climates. In addition to
SHGC and COPc, equipment loads (Pelec) also plays a crucial role in hotter climates. As
equipment emits heat during operation, proper management of heat produced by the equip-
ment is important to reduce energy consumption. In mixed-dry and mix-humid climates, the
most influential parameters are Pelec and Rroof . Lastly, in colder climates such as marine,
cold, very cold, and subarctic, the building envelope parameters, including roof insulation
(Rroof ), exterior wall insulation (Rext), and infiltration rate (Qinf ), have the most notable
impact on energy consumption. This is because, in colder climates, better insulation of the
building envelope can help prevent heat from escaping and reduce the need for excessive
heating, resulting in lower energy consumption and improved energy efficiency.

Figure 3.5 illustrates the distribution of yearly energy consumption across various pa-
rameters, as outlined in Table 3.2, for all eight different climates. In the majority of cli-
mates, the energy consumption falls within the range of 100 to 400 kWhr/m2/annum.
However, in colder climates, the energy consumption tends to be higher, ranging up to 700
kWhr/m2/annum. This observation underscores the significance of considering energy con-
sumption during the initial stages of design, particularly in colder climates where energy
demands tend to be higher.

Sensitivity Analysis throughout the Design Stages

In the previous section, we utilized sensitivity analysis to identify the most influential vari-
ables with respect to energy consumption in building models. In this section, we have further
divided the design parameters to align with the different stages of building design, following
the typical order in which designers make decisions. We have categorized them into five
decision sets, labeled as S0 to S4, as depicted in Figure 3.6. During each decision-making
stage, certain parameters are determined, while others remain undecided. These undecided
parameters will undergo additional sensitivity analysis to assess how the decisions made on
some parameters impact the remaining parameters and ultimately affect the energy outcomes
of the building. We begin with all 21 variables, as listed in Table 3.2.

In decision set S1, which occurs after the concept stage, the building orientation is typ-
ically determined. Additionally, based on the building type, estimations of load, lighting,
occupancy, and infiltration can be established. Moving on to the schematic design stage, in
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Figure 3.4: Sensitivity analysis of all parameters across eight different climate zones.



CHAPTER 3. DEFINING LEVELS OF ABSTRACTION FOR BUILDING ENERGY
MODELS 49

Figure 3.5: Energy distribution for eight different climate zones, including hot-dry, mixed-
dry, hot-humid, mix-humid, marine, cold, very cold, and subarctic climate zones.
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Figure 3.6: Parameters decisions throughout the design stages.

decision set S2, the WWRs for all four facing walls are determined. Furthermore, in decision
set S3, building envelope parameters such as U-factor (uw) and SHGC of windows, as well
as resistance values of roof materials and exterior wall materials, are decided. Finally, in
decision set S4, HVAC parameters are defined, including the efficiency of fans (ηfan and
ηm,fan) and the COP of coolers and heaters.

For illustrative purposes, we apply sensitivity analysis throughout different stages of
design in a hot-dry climate. The results of sensitivity analysis are presented in Figure 3.7.
We also examined the energy distribution at each decision set, as shown in Figure 3.8.
In decision set S1, we found that only one influential parameter, Pelec, had a significant
impact on the total energy consumption of the building, while the other parameters had
less influence. While Pelec is an estimation based on the building type, it emphasizes the
importance of accurately estimating this parameter in order to obtain an accurate prediction
of energy consumption. In decision set S2 and S3, the selected variables did not contribute
significantly to the energy outcomes of the building. As shown in Figure 3.8, the range of
energy outcomes did not change significantly. However, in decision set S4, which involves the
most important design parameters, the decisions made had a significant impact on overall
energy consumption. It’s also important to note that after fixing some variables at each
stage, the significance of parameters may change slightly due to the interdependencies among
variables and the context of the specific design scenario. This highlights the dynamic nature
of the design process and the need for continuous evaluation and refinement throughout
different stages of design.
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Figure 3.7: u∗ of each variable at different design-decision stages for a small office building
in a hot-dry climate zone.

Figure 3.8: Energy distribution at each design stage.
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Sequential Design Optimization

Building design is a complex and iterative process that involves making decisions sequentially,
taking into consideration the outcomes of previous decisions. The decisions made at earlier
stages of the design process can have a significant impact on the decisions made at later
stages, and the overall performance of the building. Our goal is to provide a comprehensive
understanding of the energy outcomes associated with each decision made at different stages
of the design process.

To achieve this, we assign parameters at different levels of abstraction throughout the
design process. This allows researchers to create models that can support decision-making at
each level without the need for a full building model. As shown in Figure 3.9, each decision
set corresponds to a model that provides information on how energy distribution changes
based on the decisions made regarding the parameters.

Figure 3.9: Levels of abstraction for building energy models.

Data-driven methods and causal inference techniques have shown promising potential in
developing such models, enabling us to capture the complex interactions and dependencies
among various design parameters and their impact on energy outcomes [45, 46]. While we
currently perform exhaustive searches on a whole building energy model to meet energy
objectives, in the future, sequential design optimization techniques can be applied once each
model stage is well-defined. This would enable us to optimize the design decisions in a
sequential manner, taking into account the outcomes of previous decisions, and iteratively
refining the design to achieve optimal energy performance.
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3.6 Chapter Summary

Building design involves a multi-stage process that requires decisions to be made at different
design stages. These decisions impact the overall performance of the building, and optimizing
them can lead to more energy-efficient and sustainable designs. However, currently, there is
no clear definition of levels of abstraction for each design stage, which results in disorganized
building energy models throughout the design process. In this chapter, we attempt to apply
sensitivity analysis at different stages of the design process to understand the sensitivity
of building performance to various design decisions and help create different levels of ab-
straction for building models. The results of sensitivity analysis can guide decision-making
by prioritizing the most important parameters and focusing resources on optimizing their
values.

However, it’s important to note that even for the same building type, the significant
parameters can differ based on the climate zones, making it difficult to provide a standardized
approach. Nonetheless, the decision-making process in building design should align with one
another to some extent, and building energy models can be the first step to realizing levels
of abstraction in order to better support decision-making. This can streamline the modeling
process and provide probabilistic estimates of expected energy consumption at each stage,
showing how decisions on various parameters can impact energy performance.

While this study provides valuable insights into the sensitivity of building design decisions
to selected parameters, it is important to note that not all parameters were evaluated. Build-
ing form and shading, for example, can have a significant impact on building performance,
and their inclusion in future studies could provide a more comprehensive understanding of
the sensitivity of building design decisions. Moreover, it is important to acknowledge that the
Morris method used in this study is limited to linear relationships and does not capture in-
teractions between parameters. To gain a better understanding of parameter interactions, it
may be necessary to explore other sensitivity analysis techniques, such as the Sobol method,
that can account for nonlinear relationships and interactions between parameters. Further-
more, it is important to analyze different building typologies to fully understand how building
designs respond to parameter changes, as the type of building can also significantly affect
its performance. Each building type may require a unique focus on different parameters to
optimize its design, and an analysis of these requirements could inform more effective de-
sign decision-making. Future research could also focus on developing decision support tools
that integrate different levels of abstraction into the design process, providing designers with
real-time feedback and recommendations for optimizing design decisions. This could help
bridge the gap between the theoretical concept of levels of abstraction and their practical
application in building design decision-making. Lastly, building energy models can also be
further improved to incorporate other building performance factors, such as comfort and
indoor air quality, to provide better trades-off among multiple objectives.
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Chapter 4

Synthesis of Building Models
1

4.1 Background

In the previous chapter, we analyzed building models throughout the design stages. In this
chapter, our focus shifts to synthesizing building models for existing buildings by incorpo-
rating data from real-time sensors, commonly known as Digital Twins (DTs).

The term DT emerged in 2012, where it was defined as a virtual space that fully describes
the corresponding physical system [93]. In other words, a DT allows us to obtain information
from the physical space through its virtual counterpart, and the data between the two
remains in sync, ensuring real-time accuracy. The concept of twin systems originated from
NASA, where a physical twin was maintained on the ground to assist in troubleshooting issues
that may arise in space [160]. Subsequently, it was first implemented in GE Research [148]
for jet engines, where sensors connected information between physical and virtual systems to
monitor system faults and maintenance needs effectively. DT technology opens up significant
opportunities for monitoring energy consumption in existing buildings and facilitating the
transition to Net-Zero Energy Buildings (NZEBs). This advancement has the potential to
revolutionize the way buildings are managed and maintained, leading to more sustainable
and energy-efficient building practices.

DT applications lie broadly in product design, production, prognostics, and health man-
agement [181]. DT facilitates manufacturers by enabling them to make more accurate pre-
dictions and informed decisions, and reduce human errors by providing well-rounded infor-
mation. Currently, most DT research has been focusing on smart manufacturing, where they
use DT to improve product planning and fault detection. Tao et. al. studied data fusion
techniques of a DT shop floor between the physical and virtual space [180]. Cai et. al.
developed a DT of vertical milling machine by integrating manufacturing and sensor data
[38].

Limited research studies have been made for DTs of the built environment. There are
research studies that build DTs of energy management in a smart city where they monitor

1This chapter is a modified and extended version from references [128, 131].
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smart meter electricity data of buildings [79]. However, besides electricity consumption, no
other information is available for buildings in this study. In addition, most existing research
discusses the framework of building a DT, but lacks empirical experiments on the topic.

There are three different modeling approaches commonly used for building DTs in the
built environment: white box, black box, and gray box models. The white box model in-
volves employing first-principle modeling techniques to capture the dynamics of the physical
systems, taking into account their internal behavior and structure. In contrast, the black
box model neglects the internal behavior of the system and focuses solely on data-driven
approaches, often using machine learning algorithms to create a virtual representation based
on observed data. The gray box model finds a balance between accuracy and complexity by
incorporating both first-principles and data-driven approaches. Each modeling approach has
its strengths and weaknesses, and the choice of modeling approach depends on the specific
application, available data, and desired level of accuracy and complexity for the DT.

Table 4.1: Comparison between white box, black box, and gray box approaches.

Advantages Disadvantages

White Box
High fidelity Difficult to Construct

High interpretability Computational expensive
Extrapolation capacity High uncertain parameters

Black Box
Easier to construct Low interpretability

Less uncertain parameters Risk over-fitting
Limited extrapolation capacity

Gray Box
Can construct at the proper level of abstraction
Reduce the number of uncertain parameters Can be computational expensive

Moderate interpretability Lack of a common platform

In the context of DTs, the white box approach, which involves building a virtual rep-
resentation of the entire system in detail, is less commonly used. This is primarily due
to the complexity of systems, which often require a multitude of parameters and make it
challenging to achieve scalability or generalizability. However, there are some examples in
the literature where physics-based models have been developed for specific applications. For
instance, Aivaliotis et. al. developed a physics-based model of an industrial robot hand
for predictive maintenance [8], while Prawiranto et. al. developed a physics-based DT to
monitor solar drying processes [151]. Furthermore, there are several BPS tools that support
energy consumption estimation of a building by capturing all the physical properties of the
system and calculating the energy consumption based on heat balance equations. However,
most of them are not specifically designed for DT purposes where parameters are in sync
with the physical system, but rather for construction planning and energy consumption pre-
diction. Additionally, they often require parameters that may not be readily available in the
physical system, resulting in a large amount of uncertainty in parameter estimation.

On the other hand, several companies developed DT using a top-down approach that
involves data integration and data fusion. Companies such as Johnson Control [55], Enertiv
[190], and Willow [182] have developed DTs that incorporate spatial information, static
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information, and real-time sensor data for remote monitoring and fault detection purposes.
Siemens has also developed DTs for power grids in Finland to improve data utilization and
optimize operations [168]. Microsoft has created a platform, Azure Digital Twins, which
supports modeling of various environments and enables connections to IoT devices, allowing
for the integration of real-time data [174]. These approaches are often more scalable and
adaptable to different systems compared to physics-based models, as they leverage data-
driven techniques to capture system behavior in real-world scenarios.

While white box models have advantages in high fidelity, interpretability, and extrapo-
lation capacity, building a physics-based model requires a deep understanding of a system’s
structures and operations and is therefore often difficult to construct. Additionally, when
constructing a white box model, obtaining every required parameter from the physical system
can be difficult. This increases the number of uncertainty parameters and can be computa-
tionally expensive to solve the systems of equations. In juxtaposition with white box models,
black box models are easier to construct and can be created based on available sensor data.
However, black box models are rarely physically interpretable, may suffer from over-fitting,
and have limited extrapolation capacity. In contrast, gray box models find a middle ground
between white box and black box models, leveraging available sensor data while also incor-
porating some level of physics-based understanding. Table 4.1 summarizes the advantages
and disadvantages of the three different approaches.

Despite the availability of various modeling techniques for building systems, there is a
notable gap in comprehensive performance indicators for these models, leading to uncertainty
when it comes to selecting the most suitable model for a particular application. Most studies
tend to focus solely on accuracy as the primary performance metric, without considering
other important attributes of model performance.

In this chapter, we compare three different types of models in terms of multiple perfor-
mance criteria. These criteria include accuracy, execution time, measurement cost, prediction
horizon, and output resolution. By considering these diverse aspects of model performance,
we aim to provide a more holistic and comprehensive evaluation of the different modeling
techniques used in the field of building systems. Furthermore, we present a platform-based
design framework for constructing building models. This framework provides a structured
approach to model building at an appropriate level of abstraction for a specific application.

4.2 Modeling Types

In the context of buildings, white box, black box, and gray box models are further elaborated
below.

“White Box” Modeling

The white box model involves employing first-principle modeling techniques to capture the
dynamics of the physical systems in detail. It is based on fundamental laws of physics and
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engineering principles and typically requires a deep understanding of the system’s internal
behavior and structure. The main mathematical equations that are used in building modeling
include heat transfer equations, energy conservation equations, mass flow equations, and
control equations [154].

In building modeling, an accurate representation of heat transfer processes is essential
for predicting the thermal behavior of buildings under different conditions, such as varying
outdoor temperatures, solar radiation, and internal loads. Heat transfer equations, such as
conduction, convection, and radiation, are used to model the heat flow through walls, roofs,
windows, and other building components. Conduction heat is the transfer of thermal energy
through a solid, the equation is shown as follows:

qcon = k
(Ts1 − Ts2)A

L
(4.1)

where k is thermal conductivity (W/mK), Ts1 and Ts2 are temperatures of the contacted
surfaces, L is the thickness (m), and A is the contact area (m2). Convective heat transfer is
the transfer of thermal energy between a surface and a fluid, equation is shown as follows:

qcov = hcA(Ts − Ta) (4.2)

where hc is the convective heat transfer coefficient (W/m2K), A is the heat transfer area of
the surface (m2), Ts is the temperature of a surface (◦C), and Ta is the temperature of a fluid
(◦C). Lastly, radiation is the transfer of heat energy from one object to another through
electromagnetic waves, without the need for any intervening medium. Its equation is shown
as follows:

qr = hrAs(Ts − Tsurr) (4.3)

where hr is the radiation heat transfer coefficient that equals to ση(T 2
s + T 2

surr)(Ts + Tsurr),
As is the surface area, Ts and Tsurr are the temperatures of the surface and its surroundings.

The energy conservation equation states that energy cannot be created nor destroyed but
only transferred or converted from one to another. It is used to balance energy flows in and
out of a building, accounting for various energy sources, sinks, and losses.

The mass flow rate equation is based on the fundamental principle of the conservation
of mass, which states that mass cannot be created or destroyed, only transferred from one
location to another. This equation is particularly useful in predicting the movement and
distribution of air and water within a building, as it provides an accurate means of calculating
the amount of mass that is moving through a given area over a specified period of time. The
mass flow rate is calculated by:

ṁ =

∫
ρvdA = constant (4.4)

where ṁ is the mass flow rate (kg/s) across an area, v is the fluid velocity normal to
differential area dA, and ρ is the fluid density. The use of mass flow rate is to prevent the
influence of density and temperature in the calculation.
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Lastly, control equations used in building modeling are also essential for accurately rep-
resenting building behavior, particularly in managing HVAC system actions. These control
strategies can include set point adjustments, scheduling, occupancy-based controls, demand-
based controls, weather-based controls, and other rules or algorithms that dictate how the
building systems should operate to achieve performance objectives, such as maintaining occu-
pant comfort and minimizing energy consumption. The commonly used control algorithms
in building modeling include Proportional-Integral-Derivative (PID) [173] control, Model
Predictive Control (MPC) [5], Deep Reinforcement Learning (DRL) control [109].

Although white box models can provide a comprehensive representation of the physical
system, they can be complex, difficult to calibrate, and computationally demanding. Ener-
gyPlus [57], TRNSYS [172], ESP-r [73], and Modelica [81] are popular simulation tools used
for physics-based modeling in the field of building simulations.

“Black Box” Modeling

Black box models use data-driven methods to create a model based on observed data, without
explicitly considering the underlying physical processes. With the advent of IoT technology,
buildings are equipped with sensors that continuously collect measurements from various
locations, reflecting real-time operations. This presents an opportunity to develop data-
driven models for various building applications. For instance, building load prediction using
black box models has emerged as a crucial aspect of improving building energy performance.
Such predictions find applications in control optimization, fault diagnosis, and demand side
management [213]. The most common methods used for building load prediction encom-
pass various techniques such as regression, time-series forecasting, Artificial Neural Network
(ANN), Support Vector Machine (SVM), and ensemble methods [162].

Black box models, while relatively simple to construct, have inherent limitations that
need to be considered. One such limitation is their reliance on large amounts of data, which
may be challenging to obtain or maintain in certain cases. Moreover, the accuracy and
reliability of black box models are highly sensitive to the quality of the data used for training
and validation, and their performance may deteriorate if the data quality is compromised.
Another limitation is their fragility, as they may produce results that are not physically
feasible, leading to unreliable outcomes. Black box models may also struggle in unseen or
novel conditions, where their lack of adaptability and generalization capability may become
evident. Additionally, black box models often lack interpretability, making it difficult to
understand and explain their decision-making processes. Lastly, some black box models can
be computationally expensive, requiring significant computational resources for training and
inference. These limitations should be carefully considered when utilizing black box models
in building modeling applications, and appropriate measures should be taken to mitigate
these challenges.
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“Gray Box” Modeling

Gray box models encompass various modeling approaches that fall between white box and
black box models, and their definitions may vary depending on the context. Gray box models
aim to preserve the relevant physical properties of the system while also incorporating data-
driven techniques to capture system behavior. This allows for a more flexible and adaptive
modeling approach that leverages both domain knowledge and available data for improved
accuracy and predictive capability.

The Resistor-Capacitor (RC) thermal network is one of the most widely used modeling
methods in the gray box approach because it provides a simplified representation of a build-
ing’s thermal behavior and captures the essential dynamics of heat transfer and thermal
storage in a computationally efficient manner. The model uses lumped parameters, such as
resistance and capacitance, to represent thermal properties of the building elements, such as
walls, roofs, and heaters, and their interactions with the indoor and outdoor environments.
This simplification allows for efficient calculations of the building’s thermal response over
time, making it practical for real-time or near-real-time applications, such as building control
[146, 171]. Although RC thermal networks have been widely used in building modeling, the
design of an accurate thermal model is still challenging. The optimal selection of the number
of resistors and capacitors for the model is not well-defined, and there is no clear consensus
on the most appropriate configuration. Bacher et al. [21] conducted a study where they
analyzed various model selections and found that the 3R3C model provided the best fit for
a 120m2 building located in Denmark. However, it remains uncertain whether the same
model configuration would accurately represent buildings of similar size and use in different
locations or under different conditions.

The physics-based neural network is another modeling approach that falls under the
category of gray box models. It combines the principles of physics-based modeling with
the capabilities of neural networks. This hybrid approach aims to overcome some of the
limitations of purely black box models by incorporating physical knowledge into the model
structure. In a physics-based neural network, the architecture of the neural network is
designed in such a way that it captures the underlying physics or fundamental principles
of the system being modeled. This can be achieved by incorporating physical information
through initialization [163], constraints [58], or model architecture [111]. By doing so, the
model can learn from both data and prior knowledge of the system’s physics, resulting in
a more interpretable and physically meaningful model compared to fully black box models.
However, there are limited studies that have explored the application of physics-based neural
networks to the building modeling domain. One of the challenges is that they require a good
understanding of the underlying physics and system behavior to design the appropriate
neural network architecture and incorporate relevant physical constraints. Additionally, the
availability and quality of data for training and validation can also impact the model’s
performance. Lastly, the computational cost of training and using neural networks can be
higher compared to simpler modeling approaches.

Lastly, researchers also attempt to enhance physics-based models through data-driven
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techniques. First principle models often suffer from high levels of uncertainty. Data-driven
methods can help compensate for these uncertainties and improve the overall prediction
accuracy of the models. By incorporating data-driven approaches, such as machine learn-
ing or statistical methods, into physics-based models, researchers can leverage the power
of data to calibrate and validate the models, resulting in more accurate predictions and a
better understanding of the system behavior. For example, data-driven models are utilized
in exploring the parameter space of physics models to calibrate and fine-tune them [124].
Additionally, some researchers employ data-driven models to construct reduced-order models
by building black box surrogate models of partial systems, thereby reducing the complexity
of a physics-based model [98, 112, 205]. Moreover, data-driven models can assist in speeding
up the computational process of physics-based simulations [116]. By leveraging data-driven
techniques in conjunction with physics-based models, researchers can enhance the accuracy,
efficiency, and computational performance of building modeling approaches, leading to im-
proved predictions, reduced computational costs, and an increased understanding of system
behavior.

4.3 Creating a Digital Twin

Our goal is to establish a live connection between the physical and virtual space via sensor
data in the built environment for the purpose of energy efficiency and occupants’ comfort.
Additionally, we seek to develop a performance metric system that can aid in determining the
most suitable model to use for a specific application or purpose. We segment the development
of DTs of the dynamic behavior of the HVAC system of a building into three distinct phases
as shown in Figure 4.1. In phase I, we identify the components required to build the model of
the physical systems. This involves identifying building elements and their interconnections.
In phase II, we perform parameter identification and validation to match the model with
the physical entity. This involves estimating the parameters of the model using available
data from the physical system. The process of cycling between Phase I and Phase II may
be repeated until the DT model can represent the physical system at a proper level of
abstraction. Lastly, in phase III, we build the connection between the model and the physical
systems for continuous monitoring and updates. The details for each phase are described.

Phase I: Model Construction

In the first phase, we identify the components that are required to create a complete system.
To be university applicable to all building systems, we use the Brick schema [23] as data
format to map the building components to models. Brick schema is a data schema that
provides a hierarchical and extensible framework for describing the various components,
systems, and properties of a building. An example data hierarchy is shown in Figure 4.2.

The Brick schema includes a rich set of classes and properties that allow for the repre-
sentation of building elements, such as floors, rooms, zones, and HVAC systems, as well as
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Figure 4.1: The three phases for developing a DT of a building.

Figure 4.2: Brick Model Example [34]

the sensors and data points associated with these elements. It helps streamline the process
of mapping sensor data to appropriate model parameters.

During the model construction process, our focus is on leveraging parameters that are
directly available from the sensors in the physical system. However, we also acknowledge
that there may be other parameters that are essential for accurate modeling but are not
directly accessible without additional effort. To effectively model the physical system, we
aim to break down the components into functional sub-blocks at an appropriate level of
granularity. This allows us to represent each component as a white box, black box, or gray
box based on the level of knowledge we have about its internal systems.

By categorizing the components into these different representations, we can effectively
utilize the information we have from the physical system to create accurate and reliable



CHAPTER 4. SYNTHESIS OF BUILDING MODELS 62

models. This approach allows us to balance the trade-offs between model complexity and
accuracy, taking into consideration the availability of information from the physical system
during the model construction process.

Phase II: Model Identification

In the second phase, we identify and extract the parameters that are needed for the model
from the physical systems. For black-box models, where we do not have knowledge of the
internal system structure and only have access to the inputs and outputs of a particular
component, we will employ machine learning techniques for function approximation. This
involves using experimental data to train a machine learning model, such as a neural net-
work with one or two hidden layers, to approximate the input-output relationship of the
component. However, we need to be cautious about overfitting issues when fitting the data
into the model to ensure its accuracy and reliability.

For gray box models, we will utilize both physics and machine learning techniques to
estimate the values of the parameters. For instance, obtaining accurate physical properties,
such as wall materials and resistance, of the walls in a room can be challenging. In such
cases, we can create a gray box model using simple thermal circuit equations to estimate
the envelope wall resistance of the room, leveraging the available information. To estimate
the unknown parameters in the thermal circuit model, we can use techniques such as the
unscented Kalman filter [192], which continually updates the mathematical model based on
new measurements. This filter uses real-time measurements to correct the model’s predic-
tions, allowing us to refine the estimated parameter values and improve the accuracy of the
model.

When dealing with complex models, especially white box models, there may be a large
number of uncertain parameters that can influence the model’s performance. To help identify
which parameters are most critical, sensitivity analysis is often carried out. This involves
varying the values of individual parameters while keeping all other parameters constant,
to assess their impact on the model’s output. We use the Morris method [141], a popular
sensitivity analysis technique, implemented using the open-source Python Library, SALib
[101]. This allows us to assess the sensitivity of the model to different parameters and
prioritize calibration efforts accordingly. Once the uncertain parameters are identified, we
perform calibration to match the model more closely with the physical space, ensuring its
accuracy and reliability in representing the real-world system.

Phase III: Connecting a model to a phical building through Data

Lastly, we need to establish a connection between the physical entity and the model. The
modeling parameters should be continuously updated with the gathered sensor data at an
experimentally determined frequency. Figure 4.3 shows the data flow between the physical
entity and the DT model. Ideally, when input values such as room set point temperature
and supply air temperature are provided to both physical and virtual systems, the resulting
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Figure 4.3: The block diagram showing the data stream between the physical entity and the
digital twin model.

impacts on the overall system should be mirrored. The DT model will also receive additional
inputs from the physical entity that are not the settings of the system, such as intermediate
sensor data, occupancy, and equipment usage. The output values such as energy consumption
will then be compared for further tuning or monitoring of the physical space. This ensures
that the DT model continuously adapts to changes in the physical environment, minimizing
model deviation. Moreover, DT can act as a platform for testing control algorithms and
supporting decision-making in the physical system.

4.4 Experimental Example

Physical Testbed

Measurements are taken in a well-instrumented testbed located in Singapore. The indoor
environment is shown in Figure 4.4. The testbed has the capability for high precision control
and operations and the indoor environment is well-regulated. The size of the testbed is 25
m2 with a height of 2.6m. In contrast with a regular room in a building, the testbed is
insulated from the outdoor weather. However, there exists an outdoor air emulator which
emulates the outdoor environmental conditions.

There are more than 100 different kinds of sensors located in various places in the testbed.
Table 4.2 shows a list of available sensors in the testbed. Note that this is not an exhaustive
list, the sensors of different categories are placed in several locations throughout the entire
system. We divided the placement of the sensors into four different categories: room water
loop, Air Handling Unit (AHU) water loop, and Outdoor Air Emulator (OAE). The sensor
data is automatically uploaded to the PI system2, a software developed by OSIsoft that

2https://www.osisoft.com/pi-system
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Figure 4.4: The indoor space of the testbed located in Singapore is used for creating a digital
twin.

connects sensor data to a cloud environment to allow remote access. The data was collected
at 1-minute intervals.

In particular, we’re interested in developing a digital twin of the HVAC system of the
physical testbed. The structure of the air system in the testbed is shown in Figure 4.5. First,
the outdoor air is mixed with the return air from the room. Then the mixed air is passed
through the AHU which consists of a cooling coil and fan. Next, the air will go through a
heater and Variable Air Volume (VAV) to accurately control the air temperature and flow
rate of the room. It may seem that the structure of the testbed is energy inefficient as the
air goes through a cooling coil and a heater afterwards, but this is due to the testbed nature
ensuring accurate and refine control of the room environment. Although real buildings do
not have as refined control and sensory deployment as the testbed has, the testbed acts as
a basis for creating DTs of the indoor built environment.

Data Preprocessing

Data used in building models often suffers from poor quality and noise, which can signifi-
cantly impact the accuracy and reliability of the analysis or modeling results [75]. Therefore,
preprocessing techniques play a crucial role in improving the quality of data before it is used
for model development. In our study, we address missing values, outliers, and high-frequency
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Table 4.2: Available sensor measurements for the testbed.

Category Parameters

Room Water Loop

Water Flow Rate
Bypass Valve Opening

Chilled Water Supply Temperature
Chilled Water Return Temperature

AHU Water Loop

Water Pressure
Water Flow Rate

Bypass Valve Opening
Chilled Water Supply Temperature
Chilled Water Return Temperature

Air System

Temperature
Relative Humidity
CO2 Concentration

Air Flow Rate
Air Damper Opening
Static Air Pressure

OAE

Temperature
Relative Humidity
Air Flow Rate

Static Air Pressure

noise. We use interpolation to estimate and fill in missing values in the data. Missing values
can occur due to various reasons, such as sensor failures or data collection errors. Next, we
remove outliers by identifying and eliminating data points that deviate significantly from the
expected patterns. Outliers can distort the statistical properties of the data and adversely
affect the model’s performance [64]. Lastly, high-frequency noise is identified in the collected
data as depicted in Fig 4.6.
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Figure 4.5: The air system of the testbed. The sensors placement is shown as a red pin point
where temperature, relative humidity and CO2 concentration are measured. The red box
represents an electric heater. The Variable Air Volume (VAV) controls the air flow rate to
the room.

Figure 4.6: Frequency domain of cooling load measurements showing high-frequency noise
at 350 Hz.

High-frequency noise can arise from various sources, such as electromagnetic inference
and sensor noise. Low-pass filters are applied to smooth out the data by attenuating the
high-frequency components while preserving the low-frequency components. Fig 4.7 shows
the origin and filtered cooling load data.
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Figure 4.7: Comparison of original and filtered data in the frequency domain, demonstrating
the reduction of high-frequency noise through low-pass filtering.

4.5 Comparing Modeling Types: Case Studies

In this section, we present case studies involving three different types of models: a white
box model, a black box model, and a hybrid model created at a proper level of abstraction,
using the experimental data. We will compare and contrast these models in terms of their
performance and evaluate their strengths and weaknesses.

Modelica Model (White box)

Modelica [81] is used for the white box model of the testbed. Modelica is a high-level, object-
oriented, and equation-based modeling language used for modeling and simulating complex
physical systems. Additionally, Modelica Building Library [201] developed by Lawrence
Berkeley National Laboratory was used to create the model. The model is created based
on the interconnections of components as described in the brick schema. The constructed
model is shown in Figure 4.8.

Table 4.3 presents the key parameters defined in the Modelica model. Please note that
this list is not exhaustive, as there may be other parameters, such as cooling coil conductance
and PID values of the controllers, that are not included. The table focuses on the major
parameters that are of particular interest for our study. A sensitivity analysis was conducted
to identify important parameters for calibration. The parameters listed in Table 4.3 were
used for the analysis, with the parameter ranges chosen based on typical values used in
HVAC systems in hot climate areas. The Morris method was employed with 13 parameters
(θ1 to θ13), 80 trajectories, and 12 levels for the analysis.

The results of the Morris method are evaluated by comparing the mean (µ) and standard
deviation (σ) of each input parameter. Figure 4.9 shows a plot of µ∗ against σ for each
parameter. A higher µ∗ value implies that the parameter is more sensitive to the output of
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Figure 4.8: The Modelica White Box Model

the model, whereas a higher σ value implies that there are possible interactions with other
parameters. Parameters that are not labeled on the plot are located towards the bottom left
of the graph, corresponding to nearly zero mean and zero standard deviation values, and are
considered insignificant variables. The plot shows that nominal supply air temperature (θ2),
room set point temperature (θ3), internal heat gain (θ5), nominal cooling load of the coil
(θ6), water supply temperature (θ8), water return temperature (θ9), nominal water mass flow
rate (θ10) are the most influential parameters to the model. Parameters θ2, θ3, θ8, and θ9 can
be obtained from the testbed, which allows us to focus on tuning the remaining parameters,
namely θ5, θ6, and θ10, in our calibration efforts.

After calibration, the result of the cooling load comparison between the measured data
and the output of the Modelica is shown in Figure 4.10. The Mean Squared Error (MSE) is
0.65 kW .
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Table 4.3: List of model parameters and their range.

Model Parameter Symbol min max

Envelope Wall Conductance (W/K) θ1 100 300
Nominal Supply Air Temperature (◦C) θ2 13 16
Room Set Point Temperature (◦C) θ3 22 26

Nominal Outlet Air Temperature (◦C) θ4 25 30
Internal Heat Gain (W ) θ5 100 1500

Nominal Cooling Load (W ) θ6 1000 3000
Nominal Air Flow Rate (kg/s) θ7 0.1 0.3
Water Supply Temperature (◦C) θ8 6 8
Water Return Temperature (◦C) θ9 10 12

Nominal Water Mass Flow Rate (kg/s) θ10 2 4
Outdoor Temperature (◦C) θ11 22 26

Change in Water Pressure (Pa) θ12 30 100
Change in Air Pressure (Pa) θ13 500 1000

Figure 4.9: Graphical plot for sensitive measure µ∗ and σ. Parameters closer to the upper
right quadrant are more sensitive to the output.
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Figure 4.10: Comparison of measured and estimated cooling load data. The blue line repre-
sents the measured cooling load data, while the orange line represents the estimated cooling
load data based on the Modelica model. The vertical red dotted line separates the calibrat-
ing (left) and validation (right) data.

Machine Learning Model (Black Box)

The Random Forest (RF) model has shown promising results in building load forecasting [66,
123, 76]. It is an ensemble learning method that combines the predictions of multiple decision
trees to produce a more accurate and stable prediction. In a RF model, a large number of
decision trees are trained on different subsets of the training data, using random subsets of
features at each node to avoid overfitting. During the prediction stage, each decision tree in
the forest generates its prediction, and the final output is determined by taking the majority
vote of all the individual decision trees.

The cooling load comparison in Figure 4.11 shows that the RF model is able to accurately
predict cooling load up to a certain time horizon before the accuracy starts to deteriorate
over time. The vertical red dotted line separating the training and validation data indicates
that the model was trained on the left side of the line and validated on the right side. The
MSE is 0.8 kW . However, the observation that the model’s accuracy deteriorates over time
suggests that the model may not be capturing all of the underlying dynamics of the system.

Hybrid Model (Gray Box)

In the hybrid modeling approach, we utilize all three types of modeling, white box, black
box, and gray box model to create a model at the level of abstraction of the available sensor
data. Figure 4.12 shows a block diagram of the resulting model. The AHU, which contains
a cooling coil and a fan, is modeled as a white box model.

The electric heater and VAV are modeled together as a black box model. The black
box model is created through a two-hidden-layer neural network [156] that captures the
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Figure 4.11: Comparison of measured and estimated cooling load data. The blue line repre-
sents the measured cooling load data, while the orange line represents the estimated cooling
load data based on the RF model. The vertical red dotted line separates the training (left)
and validation (right) data.

Figure 4.12: A block diagram that shows the white, black, and gray box model of each
component in the air system of the room.
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relationship between the inputs and outputs of the components. ReLu function, which is
defined as relu(x) = max(x, 0), was used to introduce non-linearity in the model. Given the
input x, the output f(x) is given by

f(x) = relu(w1x+ b1) · w2 + b2 (4.5)

Parameters w1, b1, w2, b2 are learned during gradient descent. The ML model is trained with
a month’s worth of past data and results in a MSE of 0.097 ◦C.

The properties of the room are modeled as a RC thermal network. The PID feedback
controller controlled the chilled water supply flow rate through the cooling coil to indirectly
maintain the room set point temperature. The controller is modeled as a white box model.
The design choices are made by the information available from the physical testbed to reduce
the number of uncertain parameters.

Figure 4.13: Comparison of measured and estimated cooling load data. The blue line repre-
sents the measured cooling load data, while the orange line represents the estimated cooling
load data based on the hybrid model. The vertical red dotted line separates the calibrating
(left) and validation (right) data.

The MSE between the actual and estimated values is 0.2 kW . The hybrid model has
improved prediction accuracy and also is able to predict the temperature over a long period
of the horizon. It combines the strength of both black box and white box models based on
the information known in the system.

4.6 Model Performance Metrics

Although case studies have shown that the hybrid model provides excellent prediction re-
sults, it’s important to note that other factors need to be taken into account to accurately
quantify the model’s performance. In addition to accuracy, factors such as execution time,
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measurement cost, prediction horizon, and output resolution are also critical in understand-
ing a model’s performance.

As mentioned earlier, accuracy is typically defined as the MSE over a given period of time.
Execution time, on the other hand, refers to the amount of time required for the model to
predict a certain period of data, such as a week’s worth of information. Measurement cost
indicates the level of detail required in the input data to build the model, and prediction
horizon is the amount of time into the future the model can accurately predict without losing
accuracy. Finally, output resolution refers to the number of variables that the model can
predict.

To better understand the relative importance of these factors, we provide a table of
boundary values specific to a small office space in Table 4.4. It’s important to note that
these boundary values may vary depending on the size and complexity of the model being
used. Our goal is to emphasize that accuracy is just one of many factors that should be
considered when selecting the most suitable model for a given application, and that it’s
essential to find the most appropriate level of abstraction when evaluating and comparing
different models.

Table 4.4: Model Performance Metric

Model Attribute Description 1 (Bad) 2 3 4 5 (Good)

Accuracy MSE [kW ] > 2 < 2 < 1 < 0.7 < 0.1
Execution Time Time taken for the

model to predict a
week’s worth of data
[min]

> 10 < 10 < 5 < 3 < 1

Measurement Cost Measurements require-
ments to build the
model

> 20 < 20 < 15 < 10 < 5

Prediction Horizon How long the model
can predict into the fu-
ture without losing ac-
curacy [day]

< 6hr < 1 < 2 < 5 > 5

Output Resolution The number of vari-
ables the model can
predict

1 < 3 < 5 < 10 < 15

Figure 4.14 presents the ranking of three models based on various attributes. Although
their accuracies are comparable, the hybrid model achieves the best accuracy, which is crucial
considering the unit of cooling load is kiloWatts. The execution time of all three models is
relatively fast, as the models are small-scale (two-zone model). However, for multi-zone
models, the execution time may significantly differ, with the white box model taking the
longest time, while the black box model taking the shortest. The black box model requires
the least amount of measurements to construct, whereas the Modelica model requires a
higher level of detail about the system to create an accurate model. The hybrid model lies
between the two in terms of measurement requirements. Both Modelica and hybrid models
have a long prediction horizon due to their underlying understanding of physics, while black
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box models do not benefit from this knowledge. Lastly, the output resolution of the Modelica
model is high due to its complex nature, allowing retrieval of temperature, mass flow rate,
or humidity values between each component throughout time. On the other hand, black box
models usually only train on a given output or specified outputs. The hybrid models lie in
between based on the available information.

Figure 4.14: Model performance comparison between Modelica, black box, and hybrid models
based on model attributes including accuracy, execution time, measurement cost, prediction
horizon, and output resolution.

Different applications often have distinct requirements regarding model performance, and
it’s essential to consider various attributes to identify the most appropriate model for a spe-
cific application. For instance, a highly accurate model that takes a long time to execute
may not be suitable for a real-time application, where rapid predictions are critical. More-
over, evaluating different model attributes allows for a more comprehensive understanding
of the strengths and weaknesses of various models. It helps to identify trade-offs and enables
one to choose the most suitable model based on the specific needs of the application. For
example, a model with a lower level of accuracy may be preferred if it executes quickly and
has a longer prediction horizon, as it may still provide useful insights for the application.
This section serves as a starting point for improving the evaluation of model performance
beyond simply comparing energy consumption outcomes. The ultimate goal is to establish
standardized performance quantification metrics for model selection, allowing researchers to
develop the most suitable model for their specific applications.
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4.7 Platform-based Building Model Design

As mentioned in Chapter 2, the PBD approach is a crucial step towards achieving automa-
tion. In this section, we apply the PBD methodology to generate building models.

Building performance simulation software can serve as a platform for generating building
models, and an example of such software is Modelica [81] simulation environment. Modelica
is an object-oriented language for modeling complex systems. To aid in building modeling,
Lawrence Berkeley National Lab (LBNL) developed the Modelica building library [201] for
building modeling that contains white box and gray box models. While the platform has
facilitated streamlining the construction of building models, it lacks black box models for
design. Furthermore, there is still much progress that needs to be made towards achieving
the automatic generation of designs. The Functional Mock-up Interface (FMI), a standard
for exchanging dynamic simulation models, may be a potential solution for addressing these
gaps.

In addition to FMI, other research efforts toward a common platform mostly center
around developing control strategies. For example, the Building Optimization Testing Frame-
work (BOPTEST) [30] is a platform that allows users to test various control strategies, while
Chen et al. [47] developed a platform in Matlab for HVAC control analysis. Another ap-
proach is the PBD approach, as suggested by Jia et al. [110] for smart building systems, which
leverages shared infrastructures for software and hardware components. They demonstrate
the effectiveness of their approach through a case study of retrofitting the HVAC system in a
smart building, which involved installing sensors and actuators to enhance energy efficiency
and improve comfort for occupants.

Our goal is to streamline the process of creating building models for a range of appli-
cations. Figure 4.15 illustrates the proposed design flow, which consists of two layers: the
functional design layer and the module design layer. Each layer has its own library, which
includes the virtual design platform and module platform. The hourglass design in each
layer represents a “meet-in-the-middle” strategy, rather than a strictly top-down or bottom-
up approach. The design flow begins with a high-level functional specification that outlines
the input-output requirements of the model. In the functional design layer, these specifi-
cations are mapped to a prototype design using white, black, and gray box models, with
the topology provided by the input data model. In the module design layer, the prototype
design serves as the specification for further refinement. The final model is constructed by
exploring different modules, such as the schedule module, control module, and data analytic
module. One key aspect of this design flow is the input data model, which should include
the topology of the system to facilitate the design process. Existing data models, such as
Brick [23], can be utilized in this process.

To map a function to components, it is necessary to have performance metrics for building
models. Typically, these metrics involve comparing the accuracy of the models by comparing
predicted and actual energy consumption or cooling load. However, different applications
may require different levels of model detail. For example, black box models may suffice
for building load forecasting for demand response applications [48, 108], while more complex



CHAPTER 4. SYNTHESIS OF BUILDING MODELS 76

Figure 4.15: An overview of the proposed PBD design flow. The components that are colored
in black, gray, and white in the virtual design platforms represent the black box, gray box,
and white box models, respectively.

models may be necessary for fault diagnosis [114]. Therefore, performance metrics developed
in the previous section can be useful to determine whether a model is appropriate for a specific
application.

Data Model

The Brick schema offers designers a way to understand the connections between building
systems, which can simplify the development of building models. A demonstration of this can
be seen in Figure 4.16, where the air system of the testbed as shown in Figure 4.5 is displayed
in the Brick schema. The schema enables designers to locate building equipment and their
interconnections, as well as identify the sensors available within the system. This information
can then be utilized in the virtual design platform to determine the most suitable model
types, whether white, black, or gray box models, based on the available sensor measurements.

4.8 Discussion

The limitations of the case studies are addressed as follows. Measurements under testbed
conditions are increasingly facile compared to real-life office spaces due to the substantial
concentration of sensors in the testbed, relative to an average office building. However, in
real life, a more generalizable model must be realized in order to properly model a given
physical entity with a much smaller sensor density. We use the testbed as a starting point to
create a DT because of the large amount of sensors that are already deployed in the testbed.
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Figure 4.16: The Brick schema of the air system in Figure 4.5.
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This aids in simplifying the experiment but can be extended to creating a DT in a real office
building. For example, essential parameters can be identified beforehand and we limit the
number of sensors that are needed to be deployed in a real office building to reduce costs and
human effort. In addition, we want to identify Modelica as a potent stepping stone usable
for creating an actual DT. It can act as a platform to contain white box, black box, and
gray box components of buildings.

Whether Modelica models can be easily scaled or generalized is still ongoing research.
Building a hybrid model with Modelica may be time-consuming and also computationally
expensive. However, it has the potential to be easily scaled and generalized into multi-
zone environments. Another limitation is that if we focus on analyzing the steady state
of the experiment, there may exist more deviations with the transient state. Furthermore,
comparing the cooling load between a physical entity and the DTmodel does not imperatively
equate to the model’s accuracy or precision. Rather, the cooling load comparison shown is
indicative of the Modelica-based hybrid approach as a supporting feature in DT development.
Additionally, the performance metrics developed are based on small office spaces and may
not be suitable for all building sizes and types. Therefore, there is a need to develop more
diverse and comprehensive performance metrics that can be applied to a wider range of
applications and building types.

Lastly, the proposed design flow offers a methodology that aims to streamline the pro-
cess of generating building models for various applications. However, automating this process
fully presents challenges, such as mapping the data model towards the simulation environ-
ment and developing a common platform that contains libraries for white box, black box,
and gray box models. One of the major challenges is standardization. Standardization is
vital to facilitate the reuse of components and improve the efficiency of the design process.
The lack of standardization can lead to inefficiencies in modeling and simulation, which can
result in suboptimal designs. Thus, there is an urgent need to develop data and library
standardization in the building industry. In this study, we partially realize the PBD frame-
work by developing hybrid models that utilize white box, black box, and gray box models.
This approach demonstrates the potential of using these three strategies to create models
at an appropriate level of abstraction. However, the current development process is still
tedious, as connecting a black box model to a gray or white box model may be difficult due
to input-output constraints between components.

4.9 Chapter Summary

In this chapter, we focused on the development and comparison of various building energy
models, including white box, black box, and gray box models, using a testbed in Singapore
as a case study. These models were created based on existing data standards, such as Brick,
to streamline the model creation process and make it more transferable to other buildings.
Additionally, we developed a model performance metric to objectively compare the strengths
and weaknesses of different models. Finally, we discussed a platform-based approach for
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generating building models.
The white box model involves detailed knowledge of the building components, systems,

and operations. It requires a high level of input data and incorporates physical laws and
equations to simulate the energy performance of the building. The black box model uses
empirical data and statistical methods to model the building’s energy performance without
explicit knowledge of the building’s components or systems. It is the simplest and most
scalable model, but may sacrifice accuracy. Lastly, the gray box model, on the other hand,
uses a combination of detailed and aggregated data, with some components represented in a
simplified manner. It enables the creation of models at different levels of abstraction based
on the availability of data.

To compare the performance of these models, we also develop a model performance
metric that takes into account factors such as accuracy, execution time, measurement cost,
prediction horizon, and output resolution. By evaluating the models using this metric,
designers can objectively assess their strengths and weaknesses, and identify which type of
model may be more suitable for their specific applications.

One of the challenges in developing these models is that the process is not entirely au-
tomatic. It requires manual efforts to combine various components into a single platform,
especially when using a mix of white, gray, and black box approaches. However, the avail-
ability of co-simulation platforms that allow different software programs to interact with each
other has paved the way for developing an automatic approach to creating building energy
models. These platforms enable the integration of different model types and facilitate the
exchange of data and information among them, which can streamline the model creation pro-
cess. Furthermore, the platform-based approach provides a solid foundation for developing
models at different levels of abstraction, which can be tailored to specific applications.
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Chapter 5

Conclusions

5.1 Summary

This dissertation presents a pioneering platform-based design framework for the building de-
sign process with the overarching objective of streamlining the design process and providing
enhanced support to designers for informed decision-making. In order to address the chal-
lenges associated with building design, we specifically focus on investigating building energy
models at both the design and operation phases of the building life cycle.

Chapter 2 identifies key challenges in achieving design automation in the building design
process, drawing parallels with the Electronic Design Automation (EDA) industry. These
challenges include the need for data and process standardization, accurate performance quan-
tification, and improved communication among stakeholders involved in the design process.
To address these challenges, we propose a platform-based and modular approach as a progres-
sive step towards automation in building design. By leveraging a platform-based approach,
we can create a unified and standardized framework that integrates different building design
tools and models into a cohesive system. This platform acts as a centralized hub where
designers can access and utilize various building design tools, data, and models in a seamless
manner. Moreover, our proposed approach emphasizes a modular approach, where different
components of the building design process can be treated as interchangeable modules. These
modules can be updated, modified, or replaced independently, allowing for greater flexibility
and adaptability in the design process. This modular approach enables designers to easily
swap out different components, such as structural forms and HVAC components, based on
their specific design needs and requirements.

Chapter 3 introduces the concept of levels of abstraction for building energy models,
which are based on parametric models created using EnergyPlus. These levels of abstraction
allow for different levels of detail and complexity in the representation of building energy
performance, depending on the design stage and decision-making needs. To understand the
impact of design decisions at different stages, sensitivity analysis is applied to each level of
abstraction. Sensitivity analysis helps in identifying the sensitivity of building energy perfor-
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mance to changes in design parameters, providing insights into the most influential factors
affecting energy consumption. Through the sensitivity analysis process, it is discovered that
HVAC system parameters have the most significant impact on building performance in hot
climate weather, while building envelope parameters have the most significant impact in cold
climate weather. This finding highlights the importance of considering different parameters
when designing buildings in different climate zones. Furthermore, the energy distribution of
these parametric building energy models is illustrated, providing visual support for decision-
making. This distribution of energy consumption across different parameters and design
options can aid designers in identifying patterns, trends, and trade-offs. This information
can guide designers in making more informed decisions about the design choices that have
the most significant impact on energy performance.

Chapter 4 focuses on streamlining the process of creating building energy models by
leveraging existing data standards, specifically Brick, and utilizing a testbed located in Sin-
gapore. The chapter presents the development of models at different levels of abstraction,
including white box, black box, and gray box models, to cater to diverse application needs.
The ultimate goal of this research is to create a platform that empowers designers to create
building energy models at various levels of abstraction based on their specific application
requirements. In addition, a performance metric is developed to compare the advantages
of different types of models. This metric provides a quantitative basis for evaluating the
performance of different building energy models, providing researchers and designers with a
quantitative framework for assessing the suitability of different models for their particular
needs.

5.2 Addressing the Research Questions

1. What are the key challenges and obstacles that prevent building design from being
fully automated, and how can these be addressed?

The lack of a common platform that supports various design options and the absence of
standardization in data communication are the main challenges preventing the automation
of the building design process. In Chapter 2, we addressed these challenges by proposing a
platform-based and modular approach to integrate into building design. This approach not
only streamlines the design process but also allows researchers to explore the design space,
which can be seamlessly exchanged with other components within the platform, reducing
redundant efforts in the research community. However, there is still a need to define data
standardization in the libraries to allow seamless integration. While we are still far from
achieving complete automation, streamlining the process can improve design and communi-
cation, and ultimately lead to more efficient buildings.

2. What is the appropriate level of abstraction for building energy models to effectively
assist in the design process?
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We investigated the levels of abstraction of building energy models in Chapter 3, focusing
on parametric models, and identified the significant parameters throughout the design phases.
The appropriate level of abstraction should support the design process without requiring the
construction of an entire building simulation model. Our proposed abstraction level closely
aligns with the design process, which is divided into five stages. At each stage, the abstraction
model takes inputs on design parameters and outputs the change in energy distribution
resulting from decisions on these parameters. This provides designers with insight into how
parameter decisions affect energy consumption outcomes. The ultimate goal is to have a
model that can generate an ideal building design based solely on the specifications provided
by the designers. However, the current state of the art is far from achieving this goal. By
providing decision support throughout the design phases, we can provide instant feedback to
designers at each stage, minimizing changes at later stages and resulting in reduced design
iterations, time, and cost.

3. What approaches and techniques can be used to synthesize building models from ex-
isting data structures, and how do they compare in terms of accuracy, efficiency, and
scalability?

The Brick model serves as a useful data structure for efficiently mapping sensor data
to model components, while also ensuring proper configuration and connectivity of these
components. In Chapter 4, we explored the benefits of constructing building models at
different levels of abstraction, including white box, gray box, and black box models, each
with their own specific applications. However, the current challenge in streamlining the
model construction process is the lack of a common platform that integrates various building
components at different levels of abstraction. Such a platform could greatly facilitate the
model-building process. Co-simulation platforms currently exist in the building modeling
domain and have shown promise in automating the process. The next step is to establish
input-output relationships between different components so that they can be seamlessly
connected to one another and facilitate design space exploration and automation.

5.3 Limitations and Future Work

A platform-based approach allows streamlining and reuse of components and techniques.
However, it doesn’t solve everything to realize automation in the building design process
We only present partial solutions to the problem from the perspective of energy simulations.
Among the challenges, two are the most important to solve at hand. First is the need for
advancing data standardization that addresses all different disciplines. Data standardization
is important so that input-output relationships between components can be well-defined.
This can greatly reduce the redundant work that research communities are experiencing and
allow researchers to reuse already-developed algorithms and components. This also allows
plug-and-chug of different design strategies from buildings to buildings, which facilitates
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streamlining the design process. Another challenge is to have a uniform framework for
performance quantifications in all aspects of concerns in the building such as energy efficiency,
indoor air quality, visual comfort, thermal comfort, acoustic, lighting, and water efficiency.
This is important so that engineers and designers are on the same page when analyzing these
preferences for subsystems.

As shown in Chapter 3, even the same building type in different climate zones requires
attention to different parameters during the design phase. The differences will be even more
significant for different building typologies. However, certain building types may lend them-
selves more readily to automation and standardization than others. For example, repetitive
building types, such as hospitals, hotels, and multi-family residential buildings, can be good
candidates to explore automation as their layouts and systems are often similar and repeti-
tive. This similarity makes it easier to establish design templates and automate the design
process for these building types. Another potential area for automation is prefabricated
building systems, where buildings or parts of buildings can be designed and engineered
using pre-designed components. This particular research area has gained a lot of atten-
tion in the community and is called modular building, where buildings are assembled with
pre-fabricated blocks. These modular systems can be designed and manufactured off-site,
allowing for greater quality control, faster construction times, and reduced waste.

Lastly, it may be challenging for a new design paradigm to replace existing standard
practices. Therefore, there is a need to have a seamless change to apply the new design
process in the industry. This can be done by integrating new methods into existing software
and structures. For example, developing plug-ins for existing BIM software can allow design-
ers to change the design flow with minimal effort while providing better interactive support
that helps in the design process. In addition, risk assessments will need to be established
to allow constructors to understand the risks associated with innovative design processes.
This understanding can help minimize plan changes during the construction phase and al-
low contractors to be more willing to adapt to new changes. Furthermore, there is a need
to establish industry-wide standards and guidelines for the building design process. These
standards can help ensure consistency in the design process and promote interoperability
between different software and systems.
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placement of façade shading systems”. In: Energy and Buildings 140 (2017), pp. 458–
479.

https://doi.org/https://doi.org/10.1016/j.autcon.2019.01.020
https://doi.org/https://doi.org/10.1016/j.autcon.2019.01.020
https://www.sciencedirect.com/science/article/pii/S0926580518305764
https://www.sciencedirect.com/science/article/pii/S0926580518305764
https://doi.org/10.1109/ACCESS.2017.2756069
https://doi.org/10.1109/TII.2018.2873186
https://www.willowinc.com/2019/10/18/unlocking-a-new-era-of-smart-buildings-through-the-digital-twin/
https://www.willowinc.com/2019/10/18/unlocking-a-new-era-of-smart-buildings-through-the-digital-twin/
https://www.willowinc.com/2019/10/18/unlocking-a-new-era-of-smart-buildings-through-the-digital-twin/
https://www.cove.tools/
https://www.trane.com/Commercial/Uploads/HTML/1136/t700.html##Release60
https://www.trane.com/Commercial/Uploads/HTML/1136/t700.html##Release60


BIBLIOGRAPHY 98

[190] Urvashi Verma. Enertiv’s smart building digital twin saves building owners 20%. https:
//inbuildingtech.com/smart-buildings/digital-twin-smart-building/. Accessed: 2020-
02-03. 2018.

[191] Andrei Vladimirescu, Arthur Richard Newton, and Donald O Pederson. SPICE Ver-
sion 2G. 1 user’s Guide. University of California Berkeley, Ca, 1980.

[192] Eric AWan and Rudolph Van Der Merwe. “The unscented Kalman filter”. In: Kalman
filtering and neural networks (2001), pp. 221–280.

[193] Liping Wang, Hien Wong Nyuk, and Shuo Li. “Facade design optimization for nat-
urally ventilated residential buildings in Singapore”. In: Energy and Buildings 39.8
(2007), pp. 954–961.

[194] Nengmou Wang and Hojjat Adeli. “Sustainable building design”. In: Journal of civil
engineering and management 20.1 (2014), pp. 1–10.

[195] Xin Wang et al. “Review on thermal performance of phase change energy storage
building envelope”. In: Chinese science bulletin 54 (2009), pp. 920–928.

[196] Ramon Elias Weber, Caitlin Mueller, and Christoph Reinhart. “Automated floor-
plan generation in architectural design: A review of methods and applications”. In:
Automation in Construction 140 (2022), p. 104385.

[197] Ramon Elias Weber, Caitlin Mueller, and Christoph Reinhart. “Generative structural
design for embodied carbon estimation”. In: Proceedings of IASS Annual Symposia.
Vol. 2020. 8. International Association for Shell and Spatial Structures (IASS). 2020,
pp. 1–12.

[198] Ramon Elias Weber, Caitlin Mueller, and Christoph Reinhart. “Solar exoskeletons–An
integrated building system combining solar gain control with structural efficiency”.
In: Solar Energy 240 (2022), pp. 301–314.

[199] Tiago Oliveira Weber and Wilhelmus AM Van Noije. “Design of analog integrated
circuits using simulated annealing/quenching with crossovers and particle swarm op-
timization”. In: Simulated Annealing-Advances, Applications and Hybridizations 71
(2012).

[200] Tian Wei. “A review of sensitivity analysis methods in building energy analysis”.
In: Renewable and Sustainable Energy Reviews 20 (Apr. 2013), pp. 411–419. issn:
1364-0321. doi: 10.1016/J.RSER.2012.12.014.

[201] Michael Wetter et al. “Modelica Buildings library”. In: Journal of Building Perfor-
mance Simulation 7.4 (2014), pp. 253–270. doi: 10 . 1080/19401493 . 2013 . 765506.
eprint: https://doi.org/10.1080/19401493.2013.765506. url: https://doi.org/10.
1080/19401493.2013.765506.

[202] Samuel SY Wong and Keith CC Chan. “EvoArch: An evolutionary algorithm for
architectural layout design”. In: Computer-Aided Design 41.9 (2009), pp. 649–667.

https://inbuildingtech.com/smart-buildings/digital-twin-smart-building/
https://inbuildingtech.com/smart-buildings/digital-twin-smart-building/
https://doi.org/10.1016/J.RSER.2012.12.014
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.1080/19401493.2013.765506


BIBLIOGRAPHY 99

[203] Abraham Noah Wu, Rudi Stouffs, and Filip Biljecki. “Generative Adversarial Net-
works in the built environment: A comprehensive review of the application of GANs
across data types and scales”. In: Building and Environment (2022), p. 109477.

[204] Peng Wu et al. “The past, present and future of carbon labelling for construction
materials–a review”. In: Building and Environment 77 (2014), pp. 160–168.

[205] Dunhui Xiao et al. “A reduced order model for turbulent flows in the urban environ-
ment using machine learning”. In: Building and Environment 148 (2019), pp. 323–
337.

[206] Weitao Xu et al. “The design, implementation, and deployment of a smart light-
ing system for smart buildings”. In: IEEE Internet of Things Journal 6.4 (2019),
pp. 7266–7281.

[207] Geng Yang et al. “A health-IoT platform based on the integration of intelligent pack-
aging, unobtrusive bio-sensor, and intelligent medicine box”. In: IEEE transactions
on industrial informatics 10.4 (2014), pp. 2180–2191.

[208] Jianfei Yang et al. “Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT
Devices for Smart Homes”. In: IEEE Internet of Things Journal 5.5 (2018), pp. 3991–
4002. doi: 10.1109/JIOT.2018.2849655.

[209] Yun Kyu Yi and Ali M Malkawi. “Optimizing building form for energy performance
based on hierarchical geometry relation”. In: Automation in Construction 18.6 (2009),
pp. 825–833.

[210] Malgorzata A Zboinska. “Hybrid CAD/E platform supporting exploratory architec-
tural design”. In: Computer-Aided Design 59 (2015), pp. 64–84.

[211] Hang Zhang and Ezio Blasetti. “3D architectural form style transfer through machine
learning”. In: (2020).

[212] Jiale Zhang, Hanbin Luo, and Jie Xu. “Towards fully BIM-enabled building automa-
tion and robotics: A perspective of lifecycle information flow”. In: Computers in In-
dustry 135 (2022), p. 103570.

[213] Liang Zhang et al. “A review of machine learning in building load prediction”. In:
Applied Energy 285 (2021), p. 116452.

[214] Ruichuan Zhang and Nora El-Gohary. “A deep neural network-based method for
deep information extraction using transfer learning strategies to support automated
compliance checking”. In: Automation in Construction 132 (2021), p. 103834.

[215] Yi Zhang. “Synthesis of optimum HVAC system configurations by evolutionary algo-
rithm”. PhD thesis. Loughborough University, 2005.

[216] Jianyu Zhao et al. “Real-time resource tracking for analyzing value-adding time in
construction”. In: Automation in Construction 104 (2019), pp. 52–65.

https://doi.org/10.1109/JIOT.2018.2849655


BIBLIOGRAPHY 100

[217] Qiang Zhou, Shengwei Wang, and Zhenjun Ma. “A model-based fault detection and
diagnosis strategy for HVAC systems”. In: International journal of energy research
33.10 (2009), pp. 903–918.


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Research Gaps
	Research Questions

	From Electronic Design Automation to Building Design Automation
	Background
	Related Work
	Building Design Process
	Electronic Design Automation
	Comparison between EDA and the current Building Design Process
	Module-based Building Design
	Platform-based Building Design
	Chapter Summary

	Defining Levels of Abstraction for Building Energy Models
	Background
	Related Work
	The Role of BPS Tools in the Building Design Process
	Methodology
	Results
	Chapter Summary

	Synthesis of Building Models
	Background
	Modeling Types
	Creating a Digital Twin
	Experimental Example
	Comparing Modeling Types: Case Studies
	Model Performance Metrics
	Platform-based Building Model Design
	Discussion
	Chapter Summary

	Conclusions
	Summary
	Addressing the Research Questions
	Limitations and Future Work

	Bibliography

