
Query Aware Synthetic Data Generation

Zoey Sun
Alvin Cheung, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-124

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-124.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I express my profound gratitude to Professor Alvin Cheung and Xiaoxuan
Liu for their invaluable assistance in my research endeavors. I am truly
grateful for all the research insights, comments, and advice that they've
provided me along the journey.

Query Aware Synthetic Data Generation

Mengzhu Sun

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,
Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Alvin Cheung
Research Advisor

 Date:

* * * * * * *

Aditya Parameswaran
Second Reader

 Date:

akcheung
5/11/2023

Query Aware Synthetic Data Generation
Mengzhu Sun

University of California, Berkeley

zoey_1124@berkeley.edu

ABSTRACT
Evaluating query workload on relational database is an essential

task for many developers and researchers, but it is challenging

to acquire relational data due to data privacy and confidentiality

reasons. Query-aware synthetic data generation for database man-

agement system (DBMS) becomes crucial for benchmark testing.

In order to ensure data fidelity, the synthetic data has to conform

query cardinality constraints as well as properties of the database

schema. Unfortunately, prior work for data generation either made

simple assumptions about queries and database schema or fail to

scale with large query workloads.

In this paper, we propose ezGen, a synthetic data generator

for web application frameworks. ezGen decomposes complicates

queries, especially subqueries, into cardinality constraints as data

generator’s input, then generating data using a probability approx-

imation model. ezGen leverages a heuristic rule-based method to

translate and decouple query-based cardinality into attribute-based

cardinality. In addition, different from prior work, we aim to gener-

ate synthetic data for real-world database-backed web application

testing by exploiting integrity data constraints extracted from ap-

plication source code to further ensure the generated data fidelity.

Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zoey1124/Touchstone_dev.

1 INTRODUCTION
Data generation in database management systems has been exten-

sively studied in recent years [6, 11, 12, 14, 16, 17, 19], driven by the

growing need to test database application performance. Synthetic

data generation has emerged as a powerful technique for addressing

privacy concerns and ensuring data confidentiality when evaluating

database-backed applications. Query-aware synthetic data gener-

ation represents a particularly promising approach, as it enables

the generation of synthetic data that not only preserves the sta-

tistical properties of the original data, but also incorporates the

semantics of the queries that will be applied to the database. In this

paper, we investigate popular prior approaches for query-aware

synthetic data generation methods, and propose ezGen, a synthetic

data generator tool that handles complex queries found in real-

world database-backed applications and scale linearly with the size

of generated data. We leverage data generation method from an

approximation probabilistic model to capture the data distribution

and intra-table dependencies from various queries.

The conventional approach for generating query-aware syn-

thetic data for databases involved building a symbolic database

under constraint followed by utilizing a constraint solver during

the data instantiation phase. [6, 7, 11, 16]. For example, QAGen

[7] focuses on using symbolic database targeting at a specific fixed

query, and it is the motivation for many subsequent work [6, 11, 16].

MyBenchmark [16] leverages QAGen as a black-box processing

each query and builds a bipartite graph to integrate symbolic data-

base. Then the problem of instantiating symbolic data is reduced to

a liner programming (LP) problem, and MyBenchmark uses a LP

solver to find a solution. Because QAGen and MyBenchmark fail

to produce a single database satisfying multiple query constraints,

DataSynth [6] proposes to use a set of equations with variables to

express cardinality constraints from all queries, and resolve the vari-

able values with a LP solver to output one final database. However,

LP-solver-based methods in general are subject to scalability limita-

tions as the number of variables in the linear programming problem

increase exponentially with the number of queries and generating

data size. On the other hand, SAM [19] builds a supervised machine

learning model from an existing database query workload, learning

the cardinality constraints for data distribution. Nevertheless, de-

velopers might not have the access to original database workload,

and learning data distribution from an existing database facing the

risk of leaking data privacy and confidentiality. The state-of-art

work for data generation problem is Touchstone [14], which adopts

a new method based on a random column value generator using

constraint chains. It is the most practical one to use because of its

linear scalability with respect to the number of queries and number

of generated records, the ability to generating data in parallel on

different machines, as well as the austere memory consumption.

Unfortunately, Touchstone [14] fails to generate synthetic data

for real-word database-backed applications for several reasons.

While being able to handle testing benchmarks like TPC-H [5],

real-world applications break some assumptions that TPC-H work-

loads hold like more complicated query logic and data integrity

constraints extracted from web applications. This is because web

applications will introduce more logic in source code when insert-

ing a record into database [13, 15]. For example, application source

code can require certain attribute data to follow special patterns or

remain a unique value by checking the data record before inserting

it into the database. In addition, a user has to manually analyze each

query into query execution trees to use Touchstone, which makes

it impractical for using it with large-scaled query workloads with

hundreds or thousands of queries. Furthermore, Touchstone fails to

handle complicated query logic, including query with complicated

filter constraints, set operations, and subqueries.

To overcome the challenges mentioned above, here we present

ezGen, a query-aware data generator that can handle thousands of

complicated queries for web application databases. ezGen addresses

the problem of data generator scalability with query workload

and incorporates data integrity constraints from web application

frameworks. In this paper, we claim the following contributions:

• Query analyzer. We introduce an innovative way to ana-

lyze query and extract information that related for cardinal-

ity constraints for query-aware data generation. We extract

https://github.com/zoey1124/Touchstone_dev

basic operations in a query like filter, primary key join, and

foreign key join to cardinality constraints that will be feed

into the data generator. This allows users to directly throws

queries they obtained to ezGen without any pre-processing

steps, making ezGen easy to use.

• Complicated query logic handling. ezGen provide a set

of case-by-case rule-based algorithm to handle complicated

query logic including nested filter logic, set operations,

and subqueries. The query analyzer eventually translates

complicated queries into a series of cardinality constraints

representing basic operations, i.e., filter and join.

• Integrity data constraint handling. ezGen allows user

to specify data integrity constraints that are extracted from

web application source code, including specifying attribute

values to all be unique, not null, or from a certain predefined

fixed value pool.

2 BACKGROUND
2.1 Problem Statement
In this work, we consider the input to our tool as a list of SQL

queries𝑄 = {𝑄1, ..., 𝑄𝑛} and a database schema 𝐻 describing infor-

mation for tables 𝑇 = {𝑇1, ...,𝑇𝑘 }. Every query 𝑄𝑖 ∈ 𝑄 is assigned

a selectivity value to represent its cardinality requirement, as speci-

fied in the subsequent section. For each table 𝑇𝑖 ∈ 𝐻 , there is a set

of data constraints on each attribute, specifying data type, value

range, null percentage, average data length, as well as table size.

The schema input 𝐻 also provides relations between represented

by table primary key and foreign key(s). In contrast to prior work

[17, 19], we assume that we have no access to the original data in

the database for user data privacy reason. It is reasonable to assume

that each query 𝑄𝑖 may either contain pre-defined concrete values

or undefined variables parameters denoted by 𝑃 𝑗 , as actions initi-

ated on the application front-end (e.g., web page) are often mapped

into queries, and the parameters in queries are instantiated with

customized values based on user input.

Our goal is to populate all tables 𝑇 such that queries return

reasonable results, and the parameterized variables in queries are

initiated. Under ideal cases, when executing large-scale testing

queries, we expect query output to be non-zero for every query,

such that the returned data records can well represent query per-

formance for database testing and evaluation. However, in reality,

some queries are naturally conflicting and cannot be satisfied at the

same time. For example, if query 𝑄1 contains WHERE users.age
> 10 and 𝑄2 contains WHERE users.age < 10, it is impossible

to satisfy |𝑄1 | > 0 and |𝑄2 | > 0, where |𝑄𝑖 | denotes the result

cardinality of query 𝑄𝑖 . Therefore, given 𝑄 and 𝐻 as input, ezGen

will generate synthetic data to populate all 𝑇𝑖 ∈ 𝑇 and instantiated

all parameters 𝑃 . The generated database should satisfy |𝑄𝑖 | > 0

for as many 𝑄𝑖 as possible.

2.2 Approximation with Probabilistic Model
The biggest challenge for generating data to satisfy all cardinality

constraints implied by queries is capturing the probabilistic distri-

bution over multiple attributes on the filter nodes and join nodes

in the query execution plan [10]. The query result cardinality is

decided by such joint distribution on each node in the query exe-

cution tree. Notice that most of the database workload evaluation

involves tuning the scale factor and changing the cardinality of

generated relations for scalability test purpose. With the varying

table size, we will use selectivity instead of cardinality to capture

the result query size. Throughout this paper, we define selectivity

on execution operation level instead of query level. For a given

query 𝑄 , we first decompose 𝑄 into an execution tree with basic

operations: filter on a set of relation attributes and foreign-key

join operations. For filter operation(s) on table 𝑇𝑖 , filter operation

selectivity is defined with

𝑆𝜎 =
|𝜎 (𝑇𝑖) |
|𝑇𝑖 |

For a join operation on primary key attribute 𝑡 of table𝑇 and foreign

key 𝑠 from table 𝑆 , selectivity is defined as

𝑆Z =
|𝑇1 Z(𝑇1 .𝑎=𝑇2 .𝑏) 𝑇2 |

|𝑇2 |
The selectivity definition is closely connected with data generation

methods. Here for join selectivity, the denominator only involved

foreign-key table 𝑇2 because the foreign key attribute data will

be generated after the primary-key data. The data for each table

according to their partial order on primary-key/foreign key rela-

tionship. We make the assumption that the filter operations are on

non-key attributes and join operations are on key attributes like

many other related works [6, 10, 11, 14].

Selectivity value 𝑆 should be provided by users. Users can specify

a different selectivity value 𝑆 for each execution node of each query

or use a default selectivity value for all queries (e.g. set 𝑆 = 0.5 for all

𝑄). Notice that with thousands of queries, there will be thousands

of nodes in query execution trees, and some of the query cardinality

requirements are naturally conflicted as mentioned in section 2.1.

For a pair of conflicting queries, when the final cardinality of one

goes down, the other goes up. Observing the reversed relationship

for conflicting queries, while MyBenchmark [16] choose to come up

with multiple database instances satisfy each subgroup, we choose

to consider all queries as a whole group. If there are any specific

non-conflicting query subset that matters, user can also pull out the

query subset and feed data generator. Also if we don’t have access

to original data, it is impossible to leverage "explain query" feature

in database to see and calculate the selectivity for each node in the

execution plan as mentioned in [14].

2.3 Cardinality Constraint
Cardinality constraints captures the expected outcome of a query

executed over a database. It is crucial to translate queries into a

set of formally defined cardinality constraints with expressiveness

for data generator [6]. ezGen extract cardinality constraints form

queries and adopts the similar notation from [14]. Let 𝐴, 𝐵 ∈ 𝑇 , for
cardinality constraints extracted from all queries (i.e., ∀𝑐𝑖 ∈ 𝐶), we
assume each 𝑐𝑖 belongs to one of the following three categories:

(1) Filter constraint contains table information, attribute in-

formation, filter expression with parameters or values, and

selectivity, denoted by 𝐶𝜎 = (𝐴, 𝜎attr op 𝑃 , 𝑆). Notice that
the filter expression could contain one or more filter opera-

tions, connected by logical operators AND/OR.

2

Figure 1: Execution plan for the basic query in listing 1.

(2) Primary key join constraint contains primary key table

and join condition for an attribute from a table, denoted by

𝐶Z
𝑃

= (𝐴,Z𝐴.𝑎=𝐵.𝑏).
(3) Foreign key join constraint contains foreign key table,

join condition, and selectivity, denoted by

𝐶Z
𝐹
= (𝐵,Z𝐴.𝑎=𝐵.𝑏 , 𝑆).

Let us illustrate with the query in listing 1. The corresponding

query execution plan is shown in figure 1, which contains two

filter conditions on table users and table emails respectively, and a

join operation on both of the tables. We can extract 4 cardinality

constraints as the following:

• 𝑐1 = (users, users.type IN (P1, P2), 0.5)
• 𝑐2 = (users, users JOIN emails ON id = user_id)

• 𝑐3 = (emails, emails.sender = ’John’, 0.5)

• 𝑐4 = (emails, users JOIN emails ON id = user_id, 0.5)

Listing 1: An example query extracted from Redmine
1 SELECT count(users .*) FROM users

2 INNER JOIN emails ON emails.user_id = user.id

3 WHERE users.type IN (P1, P2) and emails.sender LIKE 'John

';

Extracting cardinality constraints from queries allows us to ex-

press the information we need from "query-centric" to "attribute-

centric". Then, we can group all cardinality constraint by each table

attribute and build a column data generator based on that. The

attribute-based generator adjust its value distribution for generated

data in order to meet the expectation requirements from cardinality

constraints, which will be explained in section 2.4. Therefore, it is

important to separate constraints for each table attribute from the

queries. For instance, there might be hundreds of queries targeting

at the same attribute users.age in Redmine, with each constraints

requiring for different values and ranges. By using our cardinality

constraint, we can gather all relevant constraints on users.age
attribute, and adjust the generator value distribution accordingly.

2.4 Adjusting Column Value Generator
The overall data generation process is shown in 2. The column value

generator receives inputs in the form of cardinality constraints

with selectivity values. For a non-key attribute, we can think of its

value distribution as a histogram. Each value 𝑣𝑖 is assigned with

a probability 𝑃 (𝑣𝑖) such that

∑
𝑖 𝑃 (𝑣𝑖) = 1. With the filter cardi-

nality constraints we defined above, the column value generator

can adjust the distribution for each attribute to meet the selectivity

expectation [14]. This is achieved by minimizing a global error,

which is calculated as the difference between expected and actual

Figure 2: Overview of Data Generation Process

cardinality outputs for a given query. In other words, the column

value generator processes all filter cardinality constraints 𝐶𝜎
and

data type information for each attribute form schema as inputs,

and returns a column value generator with the optimal value dis-

tribution to serve for run-time data generation. Then, during the

run-time data generation, each data record is generated row by row,

and the join cardinality constraints 𝐶Z are checked to meet the

expectation of join distribution.

2.5 Subqueries and Set Operations
While it is straightforward to extract cardinality constraints from

basic queries by analyze operations like filter and join, the process

becomes more intricate when dealing with complicated queries

that incorporate set operations and subqueries. A subquery is a

query that nested in a main query after clauses including FROM,
JOIN, WHERE, etc. During query processing, the results of subquery

is executed first, and the results are used by the outer query to

determine the final result set. Hence, one cannot directly analyze

cardinality constraints from such queries to ensure a non-zero

results from the outer query. On the other hand, SQL set operations

contains more than one independent queries, with a set operation

from UNION, INTERSECT, and EXCEPT. We introduce a rule-based

methods to parse and translate complicated logic in these queries

into equivalent cardinality constraints in Section 3.

2.6 Web Framework and Data Integrity
Constraint

In this work, we broaden the focus of query workload from the

TPC-H industry benchmark to real-world database-backed object-

relational mapping (ORM) applications [15] like Django [1], Ruby

on Rails [4], and Hibernate [2]. ORM applications adopt a Model-

View-Controller (MVC) logic pattern [18], with the Model part

responsible for defining each class object to a table and maintaining

the mapping between them. For example, for the two tables (i.e.,

users and emails) shown up in SQL query from listing 1, there

will be two corresponding classes in application model. Inserting

a record into the table users is reflected through user = new User()

inside model layer.

The utilization of database in ORM web frameworks has been

identified as a potential cause for the introduction of additional data

3

Table 1: Data Integrity Constraints with Code Examples

Integrity Data
Constraint Code Example

Unique validate_uniqueness_of: attr
Not Null validates_presence_of: attr
Foreign Key has_many; belong_to

Inclusive validates_inclusion_of: attr in value_list

integrity constraints via application source code, as stated by previ-

ous research [13, 15]. These data integrity constraints may include

not are not limited to not null, foreign key, unique, and inclusive,
which is listed in table 4. For example, in Ruby on Rails[4], unique
constraint is only defined in application Model level, but is not

enforced in database level. Due to the presence of two abstraction

levels between application control and database management, it

becomes challenging to maintain data quality that satisfies both lev-

els of data constraints, and noncompliance with these constraints

may result in severe consequences such as application crash or

data corruption [8, 13]. Therefore, our work aims to enhance data

fidelity from synthetic data generation by incorporating data in-

tegrity constraints extracted by tools from [13, 15].

3 QUERY ANALYZER
This section introduces the query analyzer for ezGen, which takes

queries and output corresponding cardinality constraints we de-

fined in section 2.3, so that the cardinality constraints can be used

for data generator. One objective of the query analyzer is to decom-

pose the cardinality constraints from queries into constraints on

table attributes, incorporating selectivity in the process. By incor-

porating filter and join cardinality constraints, the data generator

can be constructed initially with value distributions for all non-key

attributes. This construction approach allows join cardinality con-

straints to be utilized at runtime to satisfy equality constraints over

the join when generating data. Furthermore, the query analyzer

assigns a selectivity value to each cardinality constraint. Recall that

the selectivity of each node in the query execution tree represents

the output/input size ratio. The selectivity value assigned to each

cardinality constraint dominates the probability distribution for the

data generator.

The functioning of the query analyzer involves an initial step of

determining if the input query features set operations or subqueries

(as discussed in section 4), followed by the application of specific

rules for each case. Different rules are subsequently applied based

on the type of operation identified. Further evidence is provided to

demonstrate that the fulfillment of the extracted cardinality con-

straints can approximately meet the desired outcome of a populated

database in the optimal way.

3.1 Query Analyzing without Nested Structure
Let us start with analyzing simple queries. Here, we use the word

“simple query” to refer a standalone query without nested statement

or set operation as defined in 3.1. The approach for analyzing simple

queries involves constructing a hierarchy of Java classes for each

query, followed by a visitor pattern that traverses through all class

objects in the hierarchy to extract constraints on table attributes

after SQL keywords like WHERE, JOIN, HAVING, etc. Notice that for
aggregation queries, the pattern visitor only focuses on GROUPBY
and HAVING clauses.

Definition 3.1 (Simple Query). A query is called asimple query if

it is a plain select query without set operations or any nested query

structures (no subqueries).

For simple queries, ezGen query analyzer does not look into

aggregation and projection because these operations will not af-

fect basic row selections. The query analyzer also disregards filter

constraints on primary-key attribute(s). This is because most of

web applications default to use an auto-incrementing integer value

as relation primary key (e.g., table_Id) for simplicity, immutability,

and uniqueness purpose [9]. When ezGen generates primary key

attribute, it also assigns an auto-incrementing integer to each new

record. Therefore, a valid filter operation on primary key attribute

will always return a unique record, and we can only focus on the

join cardinality constraints on primary-key attributes.

3.2 Complex Filter Expression
Although simple queries contains no subquery, they could con-

tain complex filter expressions like using nested parenthesis with

AND/OR binary operator to connect a series of filter operations.

For example, in listing 2, consider the WHERE expression from a

query involving only a table𝑇 . We use lowercase letter (i.e, a - g) in

this expression represents a basic filter operation like users.age > 20

on a table 𝑇 , and the equivalent math expression shows its nested

parenthesis and/or logic. ezGen proposes a precise way to capture

the complex filter logic for calculating probability distribution of

the column data generators and decide whether a generated record

satisfy the filter logic.

3.2.1 Get probability of a filter expression. Let 𝐸 represents the

overall filter expressions which can followed by SQL keywords

WHERE or HAVING, and let a lowercase letter represent a basic filter

operation with a general form "attribute op value" (e.g., age > 20),

where we call the op in the basic filter operation a boolean logical
operator (e.g., "=", "<", etc.). Given each basic filter operation is

satisfied with probability 𝑥 (e.g., 𝑃 (age > 20) = 0.5), we can calculate

the overall probability 𝑃 (𝐸) with algorithm 1. For example, let 𝐸1 be

the filter expression in listing 2 and each basic operation is satisfied

with probability 𝑥 , then:

𝑃 (𝐸1) = (1 − 𝑥3) × (1 − 𝑥4)

Algorithm 1 cannot fully capture the precise probability model

on each attribute since we don’t have information about whether

each pair of columns are mutually exclusive or not. However, it is

a great approximation as the value of 𝑃 (𝐸) is guaranteed between

0 and 1. This can easily be shown through induction: for basic case

where 𝐸 only has one filter operation, 𝑃 (𝐸) = 𝑥 ∈ (0, 1). With our

induction hypothesis be 𝑃 (𝐸
left) , 𝑃 (𝐸right) ∈ (0, 1), we can get the

inductive step that 𝑃 (𝐸) is always a valid probability value between
0 and 1. Using algorithm 1, we can get more precise probability for

filter expressions.

Listing 2: An example query with complicated filter logics
1 -- filter clause from an example query

4

2 WHERE (users.name <> 'John' or (users.age > 20 and users.

is_valid = TRUE)) and ((users.age < 20 and users.

is_valid = FALSE) or (users.bit > 100 and users.name

= 'Bob'))

3

4 -- extract filter logic

5 WHERE (a or (b and c)) and ((d and e) or (f and g))

Algorithm 1 Get probability of a filter expression

Input: Filter expression 𝐸 consists of 𝐸𝑙𝑒 𝑓 𝑡 , op, and 𝐸𝑟𝑖𝑔ℎ𝑡 ;
The probability for each basic filter operation 𝐸𝑖 , i.e., 𝑃 (𝐸𝑖) = 𝑥𝑖
for 𝐸𝑖 ∈ 𝐸.

Output: Overall probability for filer expression, i.e., 𝑃 (𝐸).
function getProbability(𝐸)

𝐸𝑙𝑒 𝑓 𝑡 , op, 𝐸𝑟𝑖𝑔ℎ𝑡 ← 𝐸

if op is boolean logical operator then
return 𝑥𝑖

else if op is binary operator then
𝑃 (𝐸𝑙𝑒 𝑓 𝑡) = getProbability(𝐸𝑙𝑒 𝑓 𝑡)

𝑃 (𝐸𝑟𝑖𝑔ℎ𝑡) = getProbability(𝐸𝑟𝑖𝑔ℎ𝑡)

if op == AND then
return 𝑃 (𝐸𝑙𝑒 𝑓 𝑡) × 𝑃 (𝐸𝑟𝑖𝑔ℎ𝑡)

else if op == OR then
return 1 − 𝑃 (𝐸𝑙𝑒 𝑓 𝑡) × 𝑃 (𝐸𝑟𝑖𝑔ℎ𝑡)

end if
end if

end function

3.2.2 Evaluate a filter expression. During data generation process,

after the non-key columns are generated, we need to check if the

corresponding filter expression is satisfied for each query in order

to control the join distribution. Here we propose algorithm 2 to

evaluate the complex filter expression and return a boolean value.

Let 𝑓 (𝐸) represents a boolean value after evaluating filter expres-

sion 𝐸. If 𝐸 only contains one filter operation, we pass the generated

data value to the evaluate the filter operation. The proof of this

algorithm is similar to the proof for algorithm 1, where we start

from a single filter operation and build induction on that.

Algorithm 2 Determine if a filter expression is satisfied with gen-

erated data

Input: Filter expression 𝐸 on table 𝑇 ;

A row record 𝑟 for table 𝑇 with generated value for all attributes

involved in 𝐸.

Output: A boolean value 𝑓 (𝐸) represents whether 𝐸 is satisfied or

not. i.e., 𝑓 (𝐸) = 1 if 𝐸 is satisfied, otherwise 0.

function isSatisfied(𝐸)

𝐸𝑙𝑒 𝑓 𝑡 , op, 𝐸𝑟𝑖𝑔ℎ𝑡 ← 𝐸

if op == AND then
return 𝑓 (𝐸𝑙𝑒 𝑓 𝑡) · 𝑓 (𝐸𝑟𝑖𝑔ℎ𝑡)

else if op == OR then
return 𝑓 (𝐸𝑙𝑒 𝑓 𝑡) + 𝑓 (𝐸𝑟𝑖𝑔ℎ𝑡)

end if
end function

3.3 Set Operations
Query set operations can be performed on more than one query,

treating results from two queries separately as two sets. We use the

query analyzer strategy mentioned above and collect cardinality

constraints from each query. However, unlike the simple query case

discussed in Section 3.1, extra logic is required to ensure that the

resulting cardinality is non-zero after performing the set operation

on the results of each query.

Notice that while set operators only require to operate on re-

lations with the same number of attributes with corresponding

same attribute datatype respectively, our algorithm cannot accom-

modate non-key columns originating from different relations. The

algorithm relies on the assumption that queries involved in the set

operation will either return the same attributes from same table(s)

or primary/foreign-key attributes after projection.

There are three keywords for set operations in SQL language

connect a pair of queries: UNION, EXCEPT, and INTERSECT. We in-

troduce the analysis algorithm for each case in detail the following

section, and summarize at the end in table 2.

3.3.1 Set Union. In the context of queries results union, it is straight-
forward that if we satisfy the cardinality constraint of both queries,

then their union will contain results. Thus, we can treat them as

distinct queries, analyze each one separately, and ensure that the

selectivity value is greater than zero. i.e., the cardinality constraints

for query 𝑄 = 𝑄1∪𝑄2 is 𝐶 = 𝐶1∪𝐶2, where 𝐶1 and 𝐶2 are cardinal-

ity constraints for 𝑄1 and 𝑄2 separately.

3.3.2 Set Difference. The EXCEPT keyword connecting two queries
𝑄1 and𝑄2 returns all rows from result of𝑄1 but are not from𝑄2 [3],

which is also referred as set difference between two queries. Here,

our goal is to ensure that the the set difference between first query

𝑄1 and second query |𝑄2 | is not empty, i.e., |𝑄 | = |𝑄1 | − |𝑄2 | > 0.

To achieve this, we transform both queries into a set of cardi-

nality constraints. Let 𝐶1, 𝐶2 be the cardinality sets for 𝑄1 and 𝑄2

respectively. We will keep the selectivity for the first query while

change the selectivity for the second one to be a value close to 0

(default to 0). i.e, Change selectivity 𝑠 to 0 ∀ 𝑐𝑖 ∈ 𝐶2. Then, we take

the union of cardinality constraints as 𝐶 = 𝐶1 ∪𝐶2. For example,

after analyzing the query in listing 3, we will get the following

cardinality constraints:

• 𝑐1 = (users, users.login IN (P1, P2), 0.5)
• 𝑐2 = (users, users.age > P3, 0.0)

• 𝑐3 = (users, users JOIN projects ON id = user_id)

• 𝑐4 = (projects, users JOIN projects ON id = user_id, 0.0)

Among 𝑐𝑖 ∈ 𝐶 , 𝑐1 ∈ 𝐶1, and 𝑐2, 𝑐3, 𝑐4 ∈ 𝐶2. We can see that only 𝑐1
has a selectivity bigger than 0.

Listing 3: Queries with except operations
1 (SELECT users.* FROM users WHERE users.login IN (P1, P2))

2 EXCEPT

3 (SELECT users.* FROM users INNER JOIN projects ON users.

id = projects.user_is WHERE users.age > P3);

3.3.3 Set Intersection. The case of two queries connected by INTERSECT
keyword presents a different challenge from the previous two cases,

5

Table 2: Set Operation Analyzing Methods

Set Operation How to extract cardinality constraint
Union 𝐶 = 𝐶1 ∪𝐶2

Except 𝐶 = 𝐶1 ∪𝐶2 with 𝑠 = 0 ∀𝑠 ∈ 𝐶2

Intersect 𝐶 = 𝐶′ where 𝐶′ is for transformed query 𝑄 ′

as it requires that the intersection of the query results is non-

zero. That is, given two queries, 𝑄1 and 𝑄2, our goal is to ensure

|𝑄1 ∩𝑄2 | > 0.

To achieve this, we analyze the cardinality constraints from both

queries and combine them together. Notice that this is different

from take a union set of 𝐶1 and 𝐶2, as the filter operations are

compressed into one cardinality constraint for each table. Also,

if different tables are introduced from 𝑄1 and 𝑄2, we will put a

join cardinality constraint to express their overlapping results. The

methods here only work under our assumption that the projection

attributes from 𝑄1 and 𝑄2 are the same or they are correspond-

ing primary/foreign key pairs. This method does not apply to the

general "union-compatible" attributes, meaning that they should

return the same number of columns with compatible data types [3].

For example, we can extract cardinality constraints from query in

listing 4 as the following (set selectivity as default value 𝑠 = 0.5):
• 𝑐1 = (users, users.login IN (P1, P2) AND users.age > P3, 0.5)

• 𝑐2 = (users, users JOIN projects ON id = user_id)

• 𝑐3 = (projects, users JOIN projects ON id = user_id, 0.5)

Listing 4: Queries with intersect operations
1 (SELECT users.* FROM users WHERE users.login IN (P1, P2))

INTERSECT

2 (SELECT users.* FROM users INNER JOIN projects ON users.

id = projects.user_is WHERE users.age > P3);

3

4 -- transformed query Q'

5 SELECT users.* FROM users

6 INNER JOIN projects ON users.id = projects.user_id

7 WHERE users.login IN (P1, P2) AND users.age > P3;

Notice that 𝑐1 ∉ 𝐶1 and 𝑐1 ∉ 𝐶2, rather, 𝑐1 combines the filter

constraints from 𝑄1 and 𝑄2. In face, 𝐶′ = {𝑐1, 𝑐2, 𝑐3} represents
the cardinality constraint for the transformed query 𝑄 ′. Since 𝑄 ′

represents the intersection part from the original set operation

query 𝑄 , |𝑄 ′ | > 0⇒ |𝑄 | > 0.

In summary, the overall strategy to deal with set operations is

summarized in table 2.

4 SUBQUERY ANALYZER OVERVIEW
Subquery analyzer is a part of query analyzer that deals with sub-

queries. Same as the previous section, the goal of subquery analyzer

is taking SQL queries and analyze them into cardinality constraints

for data generator. Because subquery contains nested query struc-

ture, generating temporary views on the fly to perform operations

in multiple steps for the main query, it is not as easy to extract filter

and join cardinality constraints from subqueries. Therefore, for

subqueries, we come up with a case-by-case method that first finds

an alternative simple query𝑄 ′, then analyze and extract cardinality

constraints from 𝑄 ′ for the data generator. We will argue that as

long as the cardinality constraints 𝐶′ of alternative query 𝑄 ′ can

Table 3: Subquery cases

Pattern Example Characteristics

Subquery Expression

(NOT) EXISTS,
(NOT) IN, ANY,
ALL

Return a boolean re-

sult

Table Expressions FROM Return a virtual table

Value Expressions

SELECT, aggre-

gation

Return a scalar value

be satisfied, the cardinality of original query results is non-zero,

i.e., |𝑄 | > 0.

Let𝑄 be a query that contains at lease 1 subquery.While different

rules are applied for each subquery case, the general process is

described as the following:

(1) Analyze input query𝑄 , decidewhich subquery case(s) apply

to 𝑄 ;

(2) Based on the rules for each case, return a list of cardinality

constraints;

(3) Check any extra logical to combine with the outer main

query;

(4) Return a list of cardinality constraints.

The subquery type is divided into three fundamental categories:

subquery for row comparison expression, subquery for value ex-

pression, and subquery for table expression. For each case, we

summarize their keywords patterns and characteristics in table 3.

Let analyze(Q) be the general function that analyzes a query.

The overall algorithm of analyze is illustrated in algorithm 3, in

which we first detecting all possible cases of set operations or sub-

queries, then apply corresponding rules on each of them to return

cardinality constraints. If there are nested queries or multi-layer

nested subqueries, algorithm in function analyze recursively ap-

plies the same logic to each. In the following sections, we provide

detailed explanations for each subquery category and their corre-

sponding analyze rules.

Algorithm 3 Overall algorithm to process a query

Input: A SQL query 𝑄

Output: A list of cardinality constraints 𝐶

function analyze(𝑄)

𝐶 = {}
if 𝑄 ∈ simple query then

𝐶+ = analyze(𝑄)

else if 𝑄 ∈ set operation query then
for each 𝑞 ∈ 𝑄 do

𝐶+ = analyze(𝑄)

end for
else if 𝑄 ∈ subquery then

𝑆 ← 𝑄 ⊲ Get all subquery clauses from original query

for each 𝑠 ∈ 𝑆 do
𝐶+ = analyze(s)

end for
end if
return 𝐶

end function

6

5 SUBQUERY FOR ROW COMPARISON
EXPRESSION

In this section, we discuss the method to analyze subquery into

cardinality constraints for row comparison expressions. Row com-

parison expressions are the query clause that follows WHERE and

HAVING keywords. The expression will return a boolean (true/false)

value to decide if the filter condition is satisfied for a query result

row. A subquery might embed after row comparison keywords

including (NOT) IN, (NOT) EXISTS, ANY, SOME, ALL.

5.1 Semi-join Transformation
EXISTS and IN are boolean operators that accept a subquery

argument in the format of op (subquery). Boolean operators

evaluate to true depending on the results returned by the subquery.

One example of subqueries following the boolean operator is shown

in list 6. Let 𝑆 denotes the subquery in 𝑄 , one key insight is that 𝑆

imposes extra filter constraints and join constraints for main query

𝑄 to find a match on table attributes. By leveraging this insight, we

can transform original query𝑄 with nested query structure into an

alternative query 𝑄 ′ that incorporate constraints derived from the

subquery 𝑆 . Let 𝑇1 be the table set that is involved in outer main

query, 𝑇2 be the table set that is involved in inner subquery, 𝐶 be

the returned cardinality constraints, and analyze be the function

that analyzes a query for general case. The algorithm is shown in

4, which we first check if there is any additional tables in 𝑆 , then

extract cardinality constraints.

Algorithm 4 Extract cardinality constraints from a subquery fol-

lowing EXISTS

Input: A query 𝑄 contains subquery 𝑆 with pattern EXISTS (𝑆)
Output: A list of cardinality constraints 𝐶

1: function analyzeExists(𝑄)

2: 𝑇𝑄 ← a set of tables in outer main query

3: 𝑇𝑆 ← a set of tables in subquery 𝑆

4: if 𝑇𝑄 ∩𝑇𝑆 = ∅ then
5: 𝐶𝑆 = analyze(𝑆) ⊲ Treat 𝑆 as a separate query

6: return 𝐶 = 𝐶𝑄 ∪𝐶𝑆
7: else if 𝑇𝑄 = 𝑇𝑆 then
8: Combine filter cardinality constraints from 𝑆 to get 𝐶 .

9: return 𝐶 .

10: else if 𝑇𝑄 ∩𝑇𝑆 ≠ ∅ then
11: Get alternative 𝑄 ′ from 𝑄 by semi-join transformation.

12: Extract 𝐶′ from 𝑄 ′.
13: return 𝐶𝑄 ′ .

14: end if
15: end function

Semi-join Transformation in algorithm 4 line 11 is a common

pattern used in query prepare-time optimization for better execu-

tion performance. When𝑇𝑆 ∩𝑇𝑄 ≠ ∅, the outer query refers to one

or more columns from tables that are only available in subquery to

perform row comparison. For such case, we call the subquery 𝑆 is

not independent from the main query.

Definition 5.1. For a query 𝑄 that contains a subquery 𝑆 , we call

the subquery 𝑆 is independent from the main query 𝑄 if 𝑆 does not

Figure 3: Venn diagram for semi-join transformation

refer any column from 𝑄 and outer query does not refer to any

columns that are only available in subquery 𝑆 . I.e., 𝑆 can be execute

without the context of the main query 𝑄 .

The general query pattern where the subquery 𝑆 is dependent

from the main query is shown in listing 5, where 𝑜𝑡𝑖 and 𝑖𝑡𝑖 repre-

sents outer tables and inner tables respectively, 𝑜𝑒𝑖 and 𝑖𝑒𝑖 repre-

sents expressions refers to attributes in outer and inner table, and

op ∈ {EXIST, IN}. Let 𝑇𝑄 = {𝑜𝑡𝑖 } be the set of tables that are only
used in the outer query, and 𝑇𝑆 = {𝑖𝑡𝑖 } be the set of tables that

are only used in subquery 𝑆 . 𝑆 is dependent from 𝑄 implies that

𝑇𝑄 ∩𝑇𝑆 ≠ ∅, and one or more attributes from 𝑇𝑆 are compared or

matched values with attributes from 𝑇𝑄 . The relationship of sets

of 𝑇𝑄 and 𝑇𝑆 is shown in figure 3, and this association can also be

articulated via semi-join operation on 𝑇𝑄 .

Listing 5: General pattern for Query Satisfies a JOIN trans-
formation

1 -- Q: original query

2 SELECT ... FROM ot1 , ... WHERE (oe1 , ...) op (SELECT ie1 ,

... FROM it1 , ...);

3 -- Q': semi -join transformed query

4 SELECT ... FROM ot1 , it1 , ... WHERE (oe1 , ie1 , ...);

We provide an example from listing 6 for better illustration.

Here, 𝑇1 = { products }, 𝑇2 = { products, suppliers }, so 𝑇1 ∩
𝑇2 = { products } ≠ ∅. Apply the pattern from listing 6, we then

can transform 𝑄 into 𝑄 ′ by build a JOIN relationship on the key

attributes products.id and suppliers.product_id. Then, we analyze

cardinality constraints 𝐶′ from 𝑄 ′ as the following (using default
selectivity 𝑠 = 0.5:

• 𝑐1 = (products, price < 20, 0.5)

• 𝑐2 = (products, products JOIN suppliers ON products.id =

suppliers.product_id)

• 𝑐3 = (suppliers, products JOIN suppliers ON products.id =

suppliers.product_id, 0.5)

For IN keyword, we will use the exactly same logic mentioned

above in algorithm 4 except switch the operation keyword to IN.

Listing 6: Example of subquery lives EXISTS expression
1 -- original query Q with nested query structure

2 SELECT * FROM suppliers WHERE EXISTS

3 (SELECT products.name FROM products WHERE products.id =

suppliers.product_id AND products.price < 20);

4

5 -- alternative query Q' without subquery inside

6 SELECT * FROM products JOIN suppliers ON products.id =

suppliers.product_id AND products.price < 20;

7

5.2 Anti-join Transformation
Compared with EXISTS and IN, boolean compactors NOT EXISTS
and NOT IN followed by a subquery describes an anti-join operation,
which returns no match for the target attribute. Our objective is to

ensure that the final outcome of these queries is non-zero through

analyzing the query into cardinality constraints. As shown in listing

5, the overall logic for analyzing subquery after NOT EXISTS and
NOT IN key words is very similar to the previous section, but with a

twist of negating conditions in 𝑆 to ensure the results from subquery

to be empty in line 6, 9, and 12.

Algorithm 5 Extract cardinality constraints from a subquery fol-

lowing NOT EXISTS

Input: A query 𝑄 contains subquery 𝑆 with pattern NOT EXISTS
(𝑆)

Output: A list of cardinality constraints 𝐶

1: function analyzeNotExists(𝑄)

2: 𝑇𝑄 ← a set of tables in outer main query

3: 𝑇𝑆 ← a set of tables in subquery 𝑆

4: if 𝑇𝑄 ∩𝑇𝑆 = ∅ then
5: 𝐶𝑆 = analyze(𝑆) ⊲ Treat 𝑆 as a separate query

6: Set all selectivity 𝑠 in 𝐶𝑆 to 0.

7: return 𝐶 = 𝐶𝑄 ∪𝐶𝑆 .
8: else if 𝑇𝑄 = 𝑇𝑆 then
9: Negate all operators for filter cardinality constraints

from 𝑆 , combine 𝑆 to outer query constraints to get 𝐶 .

10: return 𝐶 .

11: else if 𝑇𝑄 ∩𝑇𝑆 ≠ ∅ then
12: Get alternative 𝑄 ′ from 𝑄 by anti-join transformation.

13: Extract 𝐶′ from 𝑄 ′.
14: return 𝐶′.
15: end if
16: end function

Anti-join Transformation is similar to semi-join transforma-

tion. For a subquery 𝑆 that is dependent from main outer query 𝑄 ,

we can "flatten" subquery 𝑆 through JOIN operations to 𝑄 ′ with
negating all filter conditions from 𝑆 . For example, one can extract

cardinality constraints from listing 7 as the following, which corre-

sponds to an alternative query 𝑄 ′ without nested subquery struc-

ture.

• 𝑐1 = (products, NOT (products.price < 20), 0.5)

• 𝑐2 = (products, products JOIN suppliers ON products.id =

suppliers.product_id)

• 𝑐3 = (suppliers, products JOIN suppliers ON products.id =

suppliers.product_id, 0.5)

Listing 7: Example of subquery lives EXISTS expression
1 -- original query Q with nested query structure

2 SELECT * FROM suppliers WHERE NOT EXISTS

3 (SELECT products.name FROM products WHERE products.id =

suppliers.product_id AND products.price < 20);

4

5 -- alternative query Q' without subquery inside

6 SELECT * FROM products JOIN suppliers ON products.id =

suppliers.product_id AND NOT (products.price < 20);

5.3 Comparison Operator
In the case of subqueries following comparison operators, only

aggregation formats (such as AVE, MIN, MAX, and SUM) are allowed for
the subquery 𝑄 , as the subquery must produce a value expression

formatchingmain query rows. The subquery is typically in the form

of expression op (subquery), where the comparison operator

op includes >, =, <, and so on. Notice that if the aggregation is MIN or
MAX, we can think of the filter expression as sorting the column and

return the top value, which would naturally return a non-zero result

for the query. For other aggregation operations, in order to make

the the final returned result is non-zero, we have to first obtain

the results from subquery in order to take the aggregation results

into account as a condition for outer main query. This observation

gives us an intuition about the column generation order. When

generating data at the run-time, the data generator will follow the

column partial order implied by the subquery after comparison

operators.

6 SUBQUERY FOR VALUE EXPRESSION
In this section, we argue that subquery for value expression will

not influence the final result size of a query, therefore can be safely

disregarded. In a query statement, value expression is used for

listing or calculating the query results, such as a field selection

expression or a aggregation function call [3]. If the value expression

is in the form of a subquery, it can only appear in the following

two patterns (Let S represents the subquery):

• SELECT (S)
• SELECT aggregation_function(S)

In the context of queries, a value expression typically yields a

single value and is therefore also known as a scalar expression. It

is important to note that a value expression operates only on the

returned values and does not modify them. As a result, the focus of

analysis should be on the input values to the value expression to

ensure their relevance, while the analysis of the value expression

itself may be disregarded.

7 SUBQUERY FOR TABLE EXPRESSION
Table expression returns an intermediate table view. We elaborate

the analysis methods for these two patterns in the following such

that the analyzed constraint can ensure the query result is non-zero.

One common pattern of subquery serves as table expression

is in the format of expression FROM (subquery), as shown in

listing 8 where a subquery 𝑆 is utilized as a temporary derived

table or a view expression. The outer main query will use final

result table expression executed from subquery. To analyze subqery

following FROM keyword, we address from its correlation with the

outer main query. If there is no other new table introduced in the

outer main query, then we only need to analyze all constraints from

the table involved in subquery. The algorithm to analyze subquery

following FROM keyword in shown in listing 6. We first check if a

subquery 𝑆 is independent from the outer main query 𝑄 (line 4),

and if there are any additional predicate conditions or aggregations

on the tables 𝑇𝑆 employed by the inner subquery (line 6, 9). One

key insight for the table expression subquery is that we can first

materialize intermediate virtual table generated by the subquery

8

(i.e., table_alias in listing 6), populate data for it, then combine

data from intermediate table with schema table at the end.

Listing 8: Common pattern for subquery following FROM
keyword

1 SELECT ... FROM (SELECT ie1 , ie2 FROM it1 WHERE

predicate_i) as table_alias , ot1 WHERE predicate_o;

Algorithm 6 Extract cardinality constraints from a subquery fol-

lowing FORM

Input: A query 𝑄 contains subquery 𝑆 with pattern FROM (𝑆)
Output: A list of cardinality constraints 𝐶

1: function analyzeFrom(𝑄)

2: 𝑇𝑄 ← a set of tables in outer main query

3: 𝑇𝑆 ← a set of tables in subquery 𝑆

4: if 𝑇𝑄 = ∅ & no predicate on 𝑇𝑄 in outer query then
5: return analyze(S)

6: else if 𝑇𝑄 ≠ ∅ and outer predicate only involves 𝑇𝑄 then
7: 𝐶 =analyze(𝑆) ∪ analyze(Q)

8: return 𝐶

9: else if outer predicate involved 𝑇𝑄 and 𝑇𝑆 then
10: Materialize virtual table generated by 𝑆 as 𝑇𝑎𝑙𝑖𝑎𝑠
11: Transform 𝑄 to 𝑄 ′ with 𝑇𝑎𝑙𝑖𝑎𝑠
12: 𝐶 = analyze(𝑄 ′)
13: Combine data from 𝑇𝑎𝑙𝑖𝑎𝑠 to 𝑇𝑄 ,𝑇𝑆
14: return 𝐶

15: end if
16: end function

8 INCORPORATE DATA INTEGRITY
Besides cardinality requirement from query, generating meaning-

ful data from web application database also requires the data to

conform integrity constraints introduced by web application frame-

works. As mentioned in section 2, data integrity introduced by web

application framework matters a lot for data fidelity, and main-

taining framework data integrity constraint can greatly improve

the quality of generated data. We will leverage the integrity data

constraints and constraint extractor introduced in [13] and [15] to

help us further improve generated data quality.

For every data type within a database, a corresponding data

generation function is present, designed to produce a data index,

which is subsequently mapped to data from a particular value do-

main. With more data integrity constraint added, the value domain

shrinks with more strict rules apply to the data generation function,

as shown in table 4. We elaborate each integrity constraint in the

following.

Unique. A unique constraint dictates that every value can only

appear once within a corresponding table attribute. When a unique

constraint is identified for a particular table attribute, the data gen-

erator establishes a set to monitor used values, thereby preventing

the generation of duplicate values for that column.

Not Null. The not null constraint is relatively straightforward,

limiting the table attribute from containing null values. To guaran-

tee compliance with the not null constraint, the null ratio within

the data generation function is set to zero.

Figure 4: Foreign key constraints example from Redmine.

Table 4: Data Generation Function to conform Data Integrity
Constraints

Data Integrity
Constraint Data Generation Function

Unique Set a pool for used values

Not Null Set Null ratio to be 0

Inclusion
Set value pool to be the fixed inclusion val-

ues

Foreign Key
Maintain generating partial order between

attributes, set value pool from the primary-

key column

Inclusion. In the case of an inclusion constraint, an attribute

value is constrained to a limited set of values [15]. Upon the detec-

tion of an attribute with an inclusion constraint, the set of allowable

values is provided and passed on to the data generation function.

Within the data generation function, a value pool is established,

guaranteeing that all generated data is selected from the inclusion

value pool.

Foreign Key. For the attributes with foreign key constraints,

their value depend on the primary key column in another table. In

Ruby on Rails web framework, foreign key constraints is maintained

by declaring has_many and belong_to key words. Figure 4 shows an ex-

ample between the table Project and table Version. In this example,

attribute "default_version" in table Project is refers to primary key

column in table Version, and "project_id" attribute in table Version

refers to primary key column in table Project. To incorporate for-

eign key constraints during run-time data generation, we only need

to make sure columns with foreign key constraints are generated

after the primary columns in another table, and then we can take

values from those primary-key columns.

9 EVALUATION
For experiment setup, we run ezGen on a single MacBook Pro

machine with Apple M1 chip and 8 GiB memory; the disk space is

relatively limited (20GB left), which blocks running the very large

scale experiments for data generation.

We select two workloads for experiment purpose:

• TPC-H, a decision-support benchmark and Redmine, a database-

backed web application. TPC-H benchmark offers a set of

bussiness oriented ad-hoc queries, and a database consists

of 8 tables. The table size breakdown of TPC-H with sf=1

(scale factor) is shown in table 5, and TPC-H queries covers

the majority scenario we covered in this paper, including

queries that contain subquery structure following various

keywords including FROM, NOT IN, EXISTS, etc.

9

Table 5: TPC-H Generation Table Size

Table Name Size
customer 150,000

lineitem 6,000,000

nation 2,500

orders 1,500,000

part 200,000

partsupp 200,000

region 500

supplier 10,000

• Redmine is a popular project management web application

with 3.7k GitHub stars, and it is built on the Ruby on Rails

framework and comprises a total of 54 tables, with the

average number of fields across all tables in Redmine as 8.

9.1 Comparison with Touchstone
We conducted a comparison of ezGen and Touchstone on the TPC-H

benchmark with sf = 1. Figure 5 presents the results of our compar-

ison. We acknowledge that Touchstone has limitations as it cannot

take raw queries as inputs. Instead, users are required to manually

convert queries into cardinality constraints. Our comparison results

indicate that for Touchstone, queries 2, 4, 9, 11, and 15 have cardinal-

ity results of zero, primarily because these queries contain nested

query structures that Touchstone fails to satisfy their cardinality

requirements. On the contrast, ezGen is able to generate a database

that not only satisfy cardinality requirements for simple queries

but also for queries with embedded subqueries inside. Notice that

y-axis in figure 5 is displayed in log-scaled due to the significant

variation in query result sizes. This is because some queries are

executes on very small tables while others on giant tables. For ex-

ample, query 2 is executed on table region, which only contains 500

rows of records.

Furthermore, we compare end-to-end data generation time for

Touchstone and ezGen. The total data generation time for Touch-

stone was 10.5s, while the total data generation time for ezGen

was 10.7s, and hence the time for ezGen includes the overhead for

parsing queries into cardinality constraints is very little.

9.2 Scalability Evaluation
Scalability on generated data size. In this experiment, we explore

the scalability of ezGen as the size of requested data increases. We

use TPC-H workload to generate data with sf=1, 10, 100, and 100.

Larger scale factor is limited by themachine disk space.We compute

the end-to-end data generation time, which includes time to analyze

query into cardinality constraints, time to build column generator,

and final data generation time. The results is shown in table 6, from

which we can see the total time increases as data size increases in

a linear rate, while other parts of ezGen (i.e., query analysis time

and time to build column generator) remain relatively constant and

constitute a minor proportion of the overall runtime.

Scalability on query workload size. To assess the scalability of

ezGen in managing large-scale query workloads, we run experi-

ments on Redmine. The queries are extracted from Redmine using

Figure 5: Compare cardinality result: Touchstone v.s. ezGen

query number

qu
er

y
re

su
lt

ca
rd

in
al

ity

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Touchstone ezGen

Table 6: TPC-H Data generation runtime breakdown
(Unit: in seconds)

Scale
Factor

Query
Analyze
Time

Building
Generator
Time

Generation
Time

Total
Time

1 0.11 0.03 10.39 10.54

10 0.10 0.03 89.86 90.00

20 0.23 0.05 181.98 182.26

100 0.11 0.08 891.98 892.19

Figure 6: Query analyze time w.r.t. query size

query size

an
al

yz
e

tim
e

(in
 m

ill
is

ec
on

ds
)

0

250

500

750

1000

10 50 100 200

a method proposed in [15], which involved executing test cases

for different Redmine features and collecting the queries from the

resulting log file. Approximately half of Redmine’s query contains

nested query structure as shown in 7. We set the data size for each

table in Redmine to 2,000 and configured the selectivity of each

query to be 𝑠 = 0.5. The query analyze time is shown in figure 6.

From the graph, we can see that the time query analyzer consumes

is approximately linear with respect to the number of SQL queries.

10 CONCLUSION
This paper presents ezGen, a synthetic data generator that is ca-

pable of handling complex queries, including those featuring set

operations and subqueries, as well as incorporating data integrity

constraints from database-backed web applications.

10

Figure 7: Redmine query decomposition

subquery
48.6%

simple query
51.4%

We frame our data generating problem as an approximate proba-

bilistic model, designed to fulfill cardinality requirements as defined

by queries. Filter and join cardinality constraints are established,

and the cardinality requirement of each query is converted into

selectivity for each cardinality constraint. The definition of cardi-

nality constraint and data generation method is closely connected

as we need the filter cardinality constraints to build a data gener-

ator and tune the value distribution for each table attribute, then

the join cardinality constraints ensures the join requirements are

met during run-time data generation. Following the problem state-

ment and definition is our detailed design for analysing complex

queries into cardinality constraints. We introduced case-by-case

rules for set operations and subqueries, with the key insights as

using semi-join transformation and anti-join transformation. Then,

we run experiements to show that ezGen can satisfy cardinality

requirements for TPC-H database workload and web applications

with a linear runtime with respect to data size and query size. To

sum up, ezGen demonstrate great ability in terms of generating

synthetic data for real-life application database.

REFERENCES
[1] [n.d.]. Django user manual. https://docs.djangoproject.com/en/. Last accessed

18 April 2023..

[2] [n.d.]. Hibernate user manual. https://hibernate.org/orm/documentation/. Last

accessed 18 April 2023..

[3] [n.d.]. PostgreSQL manual. https://www.postgresql.org/docs/current/queries-

union.html. Last accessed 18 April 2023..

[4] [n.d.]. Rails Backend Database. https://guides.rubyonrails.org/v2.3/getting_

started.html#configuring-a-database. Last accessed 18 February 2023..

[5] [n.d.]. TPC-H. https://www.tpc.org/tpch/. Last accessed 18 April 2023..

[6] Arvind Arasu, Raghav Kaushik, and Jian Li. 2011. Data Generation Using Declar-

ative Constraints. Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/1989323.1989395

[7] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen:

Generating Query-Aware Test Databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (Beijing, China) (SIGMOD ’07).
Association for Computing Machinery, New York, NY, USA, 341–352. https:

//doi.org/10.1145/1247480.1247520

[8] Nedyalko Borisov and Shivnath Babu. 2011. Proactive Detection and Repair of

Data Corruption: Towards a Hassle-Free Declarative Approach with Amulet.

Proc. VLDB Endow. 4, 12 (aug 2011), 1403–1406. https://doi.org/10.14778/3402755.

3402781

[9] Kenneth J. Dueker and J. Allison Butler. 1997. GIS-T ENTERPRISE DATAMODEL

WITH SUGGESTED IMPLEMENTATION CHOICES.

[10] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation

Using Probabilistic Models. SIGMOD Rec. 30, 2 (may 2001), 461–472. https:

//doi.org/10.1145/376284.375727

[11] Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. 2021. Synthesizing

Linked Data Under Cardinality and Integrity Constraints. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 619–631.

https://doi.org/10.1145/3448016.3457242

[12] Joseph E. Hoag and Craig W. Thompson. 2007. A Parallel General-Purpose

Synthetic Data Generator. SIGMOD Rec. 36, 1 (mar 2007), 19–24. https://doi.org/

10.1145/1276301.1276305

[13] Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. 2023. Protecting

Data Integrity of Web Applications with Database Constraints Inferred from

Application Code. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for ComputingMachinery,

New York, NY, USA, 632–645. https://doi.org/10.1145/3575693.3575699

[14] Yuming Li, Rong Zhang, Xiaoyan Yang, Zhenjie Zhang, and Aoying Zhou. 2018.

Touchstone: Generating Enormous Query-Aware Test Databases. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,

575–586. https://www.usenix.org/conference/atc18/presentation/li-yuming

[15] Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sicheng Pan, Ge Li, Siddharth

Jha, Cong Yan, Junwen Yang, Shan Lu, and Alvin Cheung. 2022. Leveraging

Application Data Constraints to Optimize Database-Backed Web Applications.

arXiv:2205.02954 [cs.DB]

[16] Eric Lo, Nick Cheng, and Wing-Kai Hon. 2010. Generating Databases for Query

Workloads. Proc. VLDB Endow. 3, 1–2 (sep 2010), 848–859. https://doi.org/10.

14778/1920841.1920950

[17] Luyi Qu, Yuming Li, Rong Zhang, Ting Chen, Ke Shu, Weining Qian, and Aoying

Zhou. 2022. Application-Oriented Workload Generation for Transactional Data-

base Performance Evaluation. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 420–432. https://doi.org/10.1109/ICDE53745.2022.00036

[18] D.M. Selfa, M. Carrillo, and M. Del Rocio Boone. 2006. A Database and Web

Application Based on MVC Architecture. In 16th International Conference on
Electronics, Communications and Computers (CONIELECOMP’06). 48–48. https:

//doi.org/10.1109/CONIELECOMP.2006.6

[19] Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, and Xiao He. 2022. SAM:

Database Generation from Query Workloads with Supervised Autoregressive

Models. In Proceedings of the 2022 International Conference onManagement of Data
(Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery,

New York, NY, USA, 1542–1555. https://doi.org/10.1145/3514221.3526168

11

https://docs.djangoproject.com/en/
https://hibernate.org/orm/documentation/
https://www.postgresql.org/docs/current/queries-union.html
https://www.postgresql.org/docs/current/queries-union.html
https://guides.rubyonrails.org/v2.3/getting_started.html#configuring-a-database
https://guides.rubyonrails.org/v2.3/getting_started.html#configuring-a-database
https://www.tpc.org/tpch/
https://doi.org/10.1145/1989323.1989395
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.14778/3402755.3402781
https://doi.org/10.14778/3402755.3402781
https://doi.org/10.1145/376284.375727
https://doi.org/10.1145/376284.375727
https://doi.org/10.1145/3448016.3457242
https://doi.org/10.1145/1276301.1276305
https://doi.org/10.1145/1276301.1276305
https://doi.org/10.1145/3575693.3575699
https://www.usenix.org/conference/atc18/presentation/li-yuming
https://arxiv.org/abs/2205.02954
https://doi.org/10.14778/1920841.1920950
https://doi.org/10.14778/1920841.1920950
https://doi.org/10.1109/ICDE53745.2022.00036
https://doi.org/10.1109/CONIELECOMP.2006.6
https://doi.org/10.1109/CONIELECOMP.2006.6
https://doi.org/10.1145/3514221.3526168

	Signature-page (1)
	Master_Thesis___Query_aware_Synthetic_Data_Generation
	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 Approximation with Probabilistic Model
	2.3 Cardinality Constraint
	2.4 Adjusting Column Value Generator
	2.5 Subqueries and Set Operations
	2.6 Web Framework and Data Integrity Constraint

	3 Query Analyzer
	3.1 Query Analyzing without Nested Structure
	3.2 Complex Filter Expression
	3.3 Set Operations

	4 Subquery Analyzer Overview
	5 Subquery for Row Comparison Expression
	5.1 Semi-join Transformation
	5.2 Anti-join Transformation
	5.3 Comparison Operator

	6 Subquery for Value Expression
	7 Subquery for Table Expression
	8 Incorporate Data Integrity
	9 Evaluation
	9.1 Comparison with Touchstone
	9.2 Scalability Evaluation

	10 Conclusion
	References

