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Abstract

Exploring the Limits of Small Language Models

by

Nicholas Z Lee

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

With the emergence of a plethora of Large Language Models (LLMs) to date, the future
of having LLMs run locally at the edge has come closer and closer with every passing day.
However, there has not been as much work on smaller language models that can potentially
solve tasks where it would be inefficient to run a full LLM at scale. In this paper, we ex-
plore Small Language Models (SLMs) and how we can make them more efficient at the edge
without sacrificing performance. Pruning or simplifying SLMs can cause a significant degra-
dation of downstream performance. To this end, we investigate weight reparameterization
and knowledge distillation as two avenues for these small language models to mitigate these
pitfalls. This study investigates the structure of the FFN module in the transformer archi-
tecture in order to improve the inference speed of these language models for short sequence
length tasks. We also investigate whether we can distill from these LLMs into significantly
smaller SLMs in order to take advantage of the plethora of pretrained models available to
the public. We find that when simplifying the FFN module, one can use weight reparameter-
ization at training time to help the model converge and improve downstream accuracy. We
also find that knowledge distillation may not be a surefire way to improve the downstream
model performance as the difference between the model capacities of these LLMs and small
language models may be difficult to overcome.
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Chapter 1

Introduction

In the last couple of months, we have seen a variety of research into Large Language Models
come onto the scene pushing the frontier of what kinds of large language models can be run
reliably and efficiently. What began with the release of LLaMa [34] has expanded to include
the release of many variants trained on top of LLaMa such as Alpaca [31], Koala [13] and
Vicuna [3] as well as other publicly released models such as Pythia [1] and Stability LM [29].
This Cambrian Explosion of different large language models has led to an increased interest
in the idea of running LLMs locally, instead of going to the cloud. This could allow for many
different applications where data cannot leave the device such as in legal or medical settings
or in resource constrained applications such as on edge devices or personal computers.

In this work, we investigate small language models (<1B parameters) and in particular,
investigate how we can make these models run more efficiently without sacrificing perfor-
mance. To this end, we investigate two main avenues of interest:

• Weight Reparameterization ([11],[12],[10]) is a technique where the neural network has
a complex structure during pretraining that can be collapsed down to a more efficient
structure at inference time. While we pay an increased cost at training time, being able
to reduce the footprint of these models at inference time will lead to reduced latency
and power costs during the lifetime of the model.

• Knowledge Distillation [16] is a technique where the information from a teacher model
is distilled into a smaller model by providing pseudo-labels for the inputs. With the
advent of so many new LLMs coming into the fray, being able to take advantage of
these models in order to supercharge smaller models at the edge would prove to be
useful at allowing SLMs to handle tasks in a cost or resource constrained environment.

We make the following contributions:

• We investigate the extent to which these small language models have been trained and
investigate the FFN module, as it takes up most of the latency for short sequence
length applications [19]. We find that one can remove the FFN module and cut the
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model size and FLOPs by two-thirds, but we also see a significant drop in test time
performance.

• We investigate ways to use weight reparameterization to improve the performance of
these small architectures without reducing model performance or accuracy at test time.
We find that weight reparameterization can mitigate these drawbacks of pruning the
FFN module.

• We use KD to test the efficacy of distilling from these large language models. We find
that while KD can improve the performance of these models, it may not be straightfor-
ward to distill from much larger language models as the model capacity of the student
models may not be enough to emulate the teacher.
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Chapter 2

Background and Prior Work

2.1 T5

T5 [26] is a Transformer LLM released by Google. Unlike current GPT-style LLMs [2] which
are decode-only or BERT-like [9] encoder-only architectures, T5 uses an encoder-decoder
style architecture similar to that of the original Transformer [35] architecture. Since the
initial release, several variants of T5 have been built on-top of the original architecture. mT5
[41] is a multilingual variant of T5 pretrained on data covering over 100 languages. ByT5
[40] is a token-free model that uses the byte representation of text as the vocabulary. Flan-
T5 [6] was one of the first instruction-finetuned LLMs built on-top of T5 that dramatically
improved its performance on a variety of different NLP benchmarks.

A similar publication in the direction of this work is [32], which analyzed the effect of
both model size and model shape of T5 on both the upstream pretraining loss and the
downstream finetuning performance. The upstream task was i.i.d. denoising on the C4
dataset [26] and the downstream tasks were performance on a multitude of different NLP
tasks such as GLUE [36] and SQuAD [27]. This paper found that upstream pretraining loss
did not directly correlate with downstream performance. It instead found that at different
model sizes, the shape of the model played a significant role in the final accuracy of the
model after finetuning. While this work was primarily focused on scaling towards larger and
larger variants of T5, in this project, we will instead go the opposite direction, and see what
can be gained at the smaller end of the spectrum.

2.2 Efficient Transformers

There have been many papers over the years exploring the realm of efficient transformers
such as [30, 18, 22, 7, 9]. Many follow the vein of finding more efficient attention mechanisms:
[21, 37, 42, 33, 5, 39, 15, 8, 24, 25, 28, 17, 23]. These works find more efficient approximations
or implementations of attention so that for long form content, the quadratic complexity of
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the attention mechanism can be reduced or linearized to become more efficient. Some like
[23] even replace the attention mechanism all together.

While these works mainly target the attention mechanism, the attention mechanism does
not dominate the runtime of these large language models at every scale. A recent survey
paper [19] found that the latency of these large language models is dominated by the large
matrix multiplications of the FFN modules of the transformer architecture for sequence
lengths less than 1024. In fact, for sequences of length 128, the FFN module dominates over
half of the latency of BERT-Base. For this reason, we investigate the structure of the FFN
module in these language models to see if we can improve their performance for these short
sequence length scenarios.

2.3 Reparameterization

Reparameterization is a general technique when at training time, the neural network has a
more complex architecture that can be collapsed into a simpler and more efficient mechanism
at inference time with no loss to performance. The standard example is the scale and bias
parameters of a normalization layer, which is commonly absorbed into the subsequent FFN
layer. Reparameterization is commonly used in computer vision, e.g. [11], [12], and [10].

While this structure can be reduced with no loss to accuracy, it is still important for this
kind of structure to exist during pretraining as it helps the model converge. For example, in
[20], the authors found that removing an extra normalization term in between blocks resulted
in worse performance overall. The key was that while the back to back normalization had
no effect, the difference between the scale and bias terms of the activations that go into the
skip connection and the activations that go into the attention module significantly affected
downstream performance.

2.4 Distillation

Knowledge Distillation [16] is a method to transfer information and knowledge from a pre-
trained teacher model to a smaller student model. The standard distillation methodology is
to run the input through both the pretrained teacher model as well as the student model.
Then the logits of the output of the teacher model are used as pseudo-labels for the input and
can be used in conjunction with the ground truth from the dataset. Knowledge Distillation
have been used to augment the training language models in the past, such as in [30] and
[38]. For a more comprehensive survey of knowledge distillation, see [14].

With the advent of so many LLMs being released to the public, it would be good to
study whether we can distill the performance from these very large models down to smaller
language models in order to get an easy boost to performance. It should be noted that KD
is not always beneficial to the training of neural networks. In [4], the authors launched a
study of KD in vision with an emphasis on analyzing the relationship between teacher model
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performance and size with student model downstream performance. The authors found that
KD can hinder the downstream performance of the student model. In addition, they found
that increasing the size and improving the performance of the teacher model did not correlate
to improvement of the student model. In essence, they hypothesize that there is a disconnect
between the training objective of learning from the teacher and the downstream task itself.
Furthermore, it is conjectured that the smaller student models may not have the capacity to
emulate and learn from the teacher model. The authors find ways of circumventing this by
using smaller teacher models, stopping distillation early, and using early stopped teachers.
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Chapter 3

Methodology

Following [32], we utilize the smaller T5 variants in order to run our ablations. The ar-
chitecture parameters are shown in Table 3.1. We are interested in how we can make the
extremely small T5-Tiny and T5-Small models perform better. In particular, we would like
to see what the upper limit in performance of these models is, modulo training resources
and time.

3.1 FFN

The FFN module in the transformer architecture typically consists of an expansion layer
from dmodel to dff , an activation function, and then a projection layer from dff to dmodel.
Taking into account the insights from [19], we focus on ablating the FFN module of T5 to
see how we can improve the efficiency of the model. To this end, we see how the model
performs under the following adjustments:

1. Skipping the FFN altogether: Since the model is so small, the W0 component of the

Model NL dff dmodel dkv NH #Params
Tiny 4/4 1024 256 32 4 16M
Mini 4/4 1536 384 32 8 31M
Small 6/6 2048 512 32 8 60M
Base 12/12 3072 768 64 12 220M

Table 3.1: T5 Model Sizes from [32]. In this case, NL represents the number of layers in the
encoder and decoder parts of the model. For example, 4/4 means that there are 4 encoder
and 4 decoder blocks. dff is the dimension of the feed forward module, dmodel is the hidden
dimension of the model, dkv is the dimension of the attention heads and NH is the number
of attention heads.
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Figure 3.1: Diagram of proposed weight reparameterization methodology. On the very left
is the standard FFN module in a transformer (with ReLU as a stand in for the activation
function). The second and third and proposed architectures that reduce the FLOPs require-
ment of the model significantly. The fourth and fifth at inference time will have the same
number of parameters and FLOPs as the second, but the weight reparameterization can help
stabilize training.

attention mechanism acts like a pseudo-FFN already, just without the skip connection.

2. Adjusting Head Dimensions

3. Weight Reparameterization

With respect to item 3, we would like to see if we can simplify the FFN module for tiny
models by removing the expansion and contraction component of the module. However,
since this may have adverse effect on the performance of the model, we use weight reparam-
eterization in order to stabilize the training of the model. Figure 3.1 shows the proposed
ablations for the FFN module. Each of the 4 on the right would reduce the number of
parameters and FLOPs of the FFN layer significantly.

3.2 Knowledge Distillation

We apply knowledge distillation to T5-mini and T5-tiny from T5-Small and T5-Base. Given
a temperature T and logits l(x), we can define the smoothed probability distribution

pTj (x) =
exp(lj(x)/T )∑
k exp(lk(x)/T )

(3.1)
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where pTj (x) is the probability of token j given input x. Given the smoothed teacher distri-
bution ptk and the smoothed student distribution psk, the total loss would be

L = αLcls + (1− α)LKD (3.2)

where
LKD = −T 2

∑
k

ptk(x) log p
s
k(x) (3.3)

is the KD loss and Lcls is the standard cross entropy loss.
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Chapter 4

Results and Analysis

4.1 Experimental Setup

In the following experiments, we follow the baseline methodology for pretraining and fine-
tuning the models as in [32] and [26]. We train with a batch size of 128 and pretrained
for 524,288 Steps with an inverse square root learning rate scheduler on the i.i.d. denoising
task on the C4 dataset. During finetuning, we finetune on GLUE for 262,144 steps with a
constant 10−3 learning rate.

While pretraining and finetuning these models, we found that these smaller models suffer
from instability. As seen in Figure 4.1, some of the runs fail to converge during pretraining
and subsequently have poor performance during finetuning. We hypothesize that this is due
to poor initialization, as restarting training from an intermediate checkpoint did not yield any
of this high variance behavior. Interestingly, we did not see this behavior when pretraining
T5-Base or T5-Small which suggests that this is an issue that affect only models at this
scale. Across many runs, the behavior is that the outlier always performs poorly compared
to the base model. In order to mitigate this issue, we did extensive hyperparameter tuning
and found that for smaller models, using a linear warmup of 20,000 steps (compared to a
constant warmup of 10,000 steps from [26]) manages to reduce the variance across the board.

In the following results, we always report the maximum result across 5 runs in order
to eliminate the effect that this outlier has on our results. This comes from the fact that
we never found an outlier that performed better than the other runs, only worse. We report
our results using MNLI-mm (mismatched) from the GLUE test suite.

4.2 Architecture Ablations

In order to establish a baseline on what kind of improvements we can gain, we first experiment
with removing the FFN module in Table 4.1. Based on this, we can see that removing the
FFNmodule completely from the model only results in a 2.7 drop in performance, in exchange
for a hefty drop in parameter count and FLOPs.
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Figure 4.1: On the left is a pretraining loss curve for T5-Mini on the exact same settings
but 5 different random seeds. Early on, one of the runs fails to converge and this leads to
degraded performance downstream. We mitigate this by treating that run as an outlier and
reporting only the maximum value across all 5 runs.

Taking a step further, we also experiment with training for more steps. The results in
Table 4.2 show there are diminishing returns to training longer on the model. These results
align themselves well with [26] in that it shows that the baseline model is pretrained sub-
optimally. We also explored adjusting the head size and head dimensions of the attention
module in Table 4.3. While increasing the number of heads and the size of the heads improves
performance overall, it also comes with a non-trivial increase in parameter count and FLOPs.

Table 4.4 shows the results of the weight reparameterization experiments on T5-mini. As
we can see, replacing the FFN module with just one weight matrix leads to a 33% drop in
FLOPs and parameters, but leads to significant degradation in performance. However, by us-
ing weight reparameterization with two or three weight matrices that can be re-parameterized
at inference time, we can recover some of the performance back. Overall, this shows that
we can cut the parameters and FLOPs of this model in exchange for only a 1 point drop in
MNLI-mm.

Going further, we experimented on changing the FFN expansion rate of the FFN module
for the 3 weight reparameterization scheme. The idea here is that the second weight matrix
of size dff ×dff can have a significant impact on pretraining, so reducing the expansion rate
from 4x can help make this method more lightweight for pretraining. As seen in Table 4.5,
the FFN expansion can have some effect on the final finetuning performance. Reducing the
FFN expansion too much led to degraded performance as after reducing beyond 1.5x− 1.2x
expansion, the model now performs worse than just having two weight matrices. This shows
that having a large expansion factor is still important for pretraining even if the weights will
be reparameterized at runtime.
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MNLI-mm Improvement (+) FLOPs(M) Parameters (M)
Baseline 78.2 0.0 1.909 15.351
Skip FFN 75.5 -2.7 0.682 5.907

Skip Encoder FFN 76.1 -2.1 1.296 10.629

Table 4.1: Performance of T5-Mini after removing the FFN from the whole model and from
just the encoder. Surprisingly, we can remove the FFN completely with only a 2.7 drop in
performance. This establishes a lower bound for our FFN experiments and guides our plan
to recover this accuracy.

Steps MNLI-mm Improvement (+) Training Tokens
Baseline 500k 78.2 0.0 34B

1M 79.0 +0.8 68B
2M 79.4 +1.2 136B
5M 80.1 +1.9 340B

Table 4.2: Training T5-Mini for more and more steps. Similarly to [32] and [26], we find
that the baseline model is undertrained.

MNLI-mm Improvement (+) FLOPS (M) Parameters (M)
Baseline 78.2 0.0 1.909 15.351

1.5x Heads (NH = 12) 79.2 1.0 2.246 16.530
2x Head Size (dkv = 64) 79.2 1.0 2.245 16.530
1.5x Heads, 2x Head Size 80.0 1.8 2.741 18.273

Table 4.3: Training T5-Mini with different head dimensions. Increasing the head size or head
dimension improves performance significantly, but increases the cost of running the model.

4.3 Knowledge Distillation

Table 4.6 shows the results from the knowledge distillation experiments. As we can see,
distillation manages to improve the downstream performance of the T5-Mini and T5-Tiny
models. However, we see that distilling from T5-Small rather than T5-Base manages to
significantly reduce the variance of the result while also maintaining or even improving on the
downstream performance of the model. This aligns well with the results from [4], and shows
evidence that distilling from a larger language model can have limited results if the smaller
language model does not have the capacity to replicate the larger model’s representations.
Going forward, it seems like it is important to consider the relative size differences between
the teacher and student models when using knowledge distillation.
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Weights MNLI-mm Improvement (+) FLOPS (M) Parameters (M)
Baseline 78.2 0.0 1.909 15.351

1W 76.5 -1.7 1.291 10.626
1W + ReLU 76.1 -2.1 1.299 10.626

2W 76.7 -1.5 1.291 10.626
3W 77.2 -1.0 1.291 10.626

Table 4.4: Training T5-Mini with different weight reparameterization techniques. The exper-
iments with 2 and 3 weight matrices show that weight reparameterization indeed improves
the model’s downstream performance.

MNLI-mm Improvement (+) FLOPS (M) Parameters (M)
Baseline 78.2 0.0 1.909 15.351

4x Expansion, 3W 77.2 -1.0 1.291 10.626
2x Expansion, 3W 77.3 -0.9 1.291 10.626
1.5x Expansion, 3W 76.7 -1.5 1.291 10.626
1.2x Expansion, 3W 76.6 -1.6 1.291 10.626

Table 4.5: Training T5-Mini three weight matrices and different expansion rates. FFN
expansion is important during training, but can be collapsed during deployment for efficient
inference.

Setup MNLI-mm Stdev Improvement (+) α T
Mini (Baseline) 78.2 0.32
Small→Mini 79.5 0.56 +1.3 0.1 3
Base→Mini 79.4 2.18 +1.2 0.9 4

Tiny (Baseline) 76.3 0.39
Small→Tiny 77.7 0.99 +1.4 0.1 2
Base→Tiny 77.7 3.35 +1.4 0.9 4

Table 4.6: Distillation results for T5-Mini and T5-Small. As you can see, distilling from
a smaller model reduced the variance of the downstream performance of the model while
maintaining or improving on the performance compared to distilling from the T5-Base model.
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Chapter 5

Conclusion

In conclusion, we have investigated very small language models and found some interesting
results. The FFN can be removed from the model completely in order to achieve a two-thirds
drop in parameter count and FLOPs, while only giving up a 2.7 drop in finetuning accuracy.
Reducing the FFN layer to a simple projection layer can reduce the parameter count by one-
third and the use of weight reparameterization can reduce the performance derogation from
1.7 to 1.0 points on MNLI-mm. We have also investigated the use of distillation in language
models. While KD improves the performance of the model, it is also important to take into
account the relative difference between the capacities and models sizes of the teacher and
students models in order to achieve good performance. In particular, we found that while
distilling from T5-Base model improved performance on T5-Mini and T5-Tiny by 1.2 and
1.4 points respectively, distilling from T5-Small resulted in improved performance by 1.3
and 1.4 points respectively while also significantly reducing the variance of the distillation
experiments. These results can help us develop newer and more efficient architectures that
can run more efficiently at inference time.

In the future, further work can be done to see what kind of changes can be done in the
small model regime. One idea would be to somehow merge the MHA and FFN modules into
one. The output layer of the MHA layer is a projection layer that looks very similar to the
1 weight matrix FFN variant, except that that variant includes a skip connection from the
input to the MHA layer. It would be interesting to see if we can develop a model without
this skip connection, which would improve the memory and computation costs of the model
at runtime.
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