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Abstract

Bridging the Gap between Humans and Machines in 3D Object Perception

by

Jasmine Collins

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Humans possess a remarkable ability to extract general object representations from a single
image, capturing not only shape and texture, but also 3D form. In contrast, 3D reasoning
in many computer vision systems is often limited. This thesis present three efforts aimed
towards bridging this gap in 3D object perception. First we introduce a new dataset that
focuses on real-world, object-centered 3D understanding. The dataset provides a diverse set
of objects corresponding to real household objects, with varying geometries and physically-
based rendering materials. It also includes additional annotations describing each object,
making it a valuable resource for training and evaluating computer vision models. Next,
we design a method for automatically inferring the articulation of 3D objects. The method
enables the interaction of 3D objects and can be used to generate more realistic and dynamic
scenes. By understanding how different parts of an object move and interact, computer vision
systems can better model and reason about complex 3D scenes in simulation. Finally, we
investigate the effectiveness of contrastive learning with 3D data augmentation to generate
multiple views of objects, a departure from the typical method of training single view images.
We show that generating multiple views of objects can help computer vision systems learn
better representations and improve their overall object understanding in terms of classifica-
tion and shape perception. These contributions represent efforts towards bridging the gap
between human and machine 3D object perception, ultimately enabling them to understand
3D objects from single images in ways that are more aligned with human perception.
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Chapter 1

Introduction

The field of artificial intelligence (AI) has made remarkable progress in recent years with
rapid progress across a wide range of applications, from computer vision and natural lan-
guage processing to robotics and healthcare. These advancements have been driven by the
development of new deep learning architectures, the availability of large-scale datasets, and
improvements in computing power, leading to a surge of interest and investment in the field.

In many areas, this technology has caught up to or even surpassed the ability of humans.
Large language models trained on massive amounts of text data are able to generate coherent
and grammatically correct sentences that are often indistinguishable from those written by
humans [14, 21, 149, 116, 152]. This has led to exciting new applications in chatbots,
language translation services, and content generation tools. Within computer vision, the
advancement of generative models has enabled us to generate convincingly photorealistic
images of almost anything, revolutionizing the field of image generation [13, 70, 60, 127].

Despite this impressive progress, there is still a large gap in the ability to represent images
of arbitrary 3D objects. Methods for single-view 3D reconstruction [179, 103, 46] and neural
rendering [104, 40, 5] have come a long way, yet currently only work well on a limited set
of objects or are category-specific. The same is true for models trained on 2D object-centric
data. When probed on out-of-distribution evaluation sets, state-of-the-art object recognition
models still display large performance gaps compared to humans [42, 58]. We have yet to
develop a computational model with object-centric representations that are aligned with the
types of representations humans have.

This thesis makes an effort to study precisely some of those discrepancies between human
and neural network-based object representations, and takes steps towards bridging that gap.
In Part I we discuss major differences in human and machine perception, as well as efforts
to compare the two in unified environments. Part I ends with proposing possible reasons
for the differences between the visual representations of humans and neural network models.
Part II dives into three efforts towards closing the gap between human and neural network
performance, specifically on object perception tasks.
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Part I: Human vs. Machine Perception This part highlights a set of results from
cognitive and developmental psychology, measuring how humans (adults and children) per-
form on various reasoning and perceptual tasks. In many cases, we can directly compare
the performance of computational models trained for a specific domain with that of humans.
In Chapter 2, we discuss the tradition of using humans (typically adults) as baselines in AI
research, and how this has led to algorithmic advancements that sometimes even surpass
human performance. We then consider the merits of using children (rather than adults) as
comparison points for computational models - namely because they reflect a human check-
point with less explicit supervision, and often have more creative and exploratory behavior.
The chapter reviews some recent work comparing children and AI agents in unified virtual
environments. This approach has the benefit of being a 1:1 comparison, where computational
baselines can actually be used to better understand and characterize the children’s elusive
behaviors. Chapter 3 focuses specifically on 3D object perception, the main topic of this
thesis. This chapter covers relevant literature studying 3D object perception infants, young
children, and adults. We also introduce a new study on object completion, replicating the
results of the previous literature as well as extending them to measure preference for bilateral
symmetry in 3D objects. We are also the first, to our knowledge, to compare directly to
ImageNet trained ResNet models on the task of 3D object completion, and find that while
ImageNet trained models have similar preferences to humans on volumetric completion, they
do not share the same 3D symmetry biases. This raises the question of where and how these
biases from, which leads into Chapter 4.

Chapter 4 is a brief discussion on some of the differences between the kinds of “input
data” infant and toddler visual systems are developed on, compared to the typical kind of
training datasets that are used for training neural networks. Namely, we highlight three key
components in how children learn that are lacking in our typical training of computational
systems: realistic training data, interaction with objects, and multiple views of objects with
mostly self-directed play and sparse labels. The second part of this thesis introduces work
that is inspired by making progress in each of these aspects.

Part II: Towards Bridging the Gap In Part II, we focus on efforts to bridge the gap
between human and machine perception, making progress in more realistic 3D datasets,
understanding articulated objects, and generating multi-view images for contrastive feature
learning. Chapter 5 introduces ABO, a more realistic dataset for 3D object understanding
based on product listings. Compared to existing datasets, ABO contains more realistic
meshes that actually correspond to real objects that can be purchased on Amazon, and and
physically based rendering materials so they can be rendered photorealistically. In this work
we also introduce a set of benchmarks in single-view 3D reconstruction, material prediction,
and multi-view cross-domain object retrieval. We show that ABO can be used to better
understand the performance of state-of-the-art single-view 3D reconstruction methods, as
well as be used as a training set for material prediction and image retrieval that generalizes
better to real-world images.
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In Chapter 6 we introduce an approach to solve the problem of single-view articulation
transfer. That is, given a mesh in its rest-state and an image example of how it can articulate,
automatically predict a 3D part segmentation and motion parameters such that the rest-
state mesh can be articulated to match the input image. This work can be thought of as
introducing a new shape understanding task, but also as a method for extending 3D assets
with motion annotations without requiring expert artists (i.e. automatic dataset creation).
Realistic 3D mesh models that can articulate could be valuable for downstream robotics
applications and learning how to interact with and better represent household objects.

Chapter 7 is inspired by the idea that children learn robust object representations from
observing many diverse viewpoints of the same object, with little supervision. In Chapter 7
we introduce a way to generate novel views of ImageNet images that can be used for training
contrastive learning models. This 3D data augmentation leads to better overall performance
on ImageNet accuracy (via fitting a linear probe) and higher accuracy on out-of-distribution
downstream evaluations.

Taken together, the work in this thesis represents progress towards understanding the
types of object-centric 3D representations humans have and takes steps towards building
these ideals into computational systems.



4

Part I

Human vs. Machine Perception



5

Chapter 2

Comparing Humans and Machines
with Unified Evaluations

Figure 2.1: Comparing children and AI agents in first-person maze environments. Par-
ticipant using the Arduino-based controller to explore a maze in DeepMind Lab (left). The maze
that the child sees on the screen (middle). Top-down view of maze layout (right).

In this chapter we discuss experiments to compare the abilities of AI agents and pretrained
models with that of humans. We cover literature that uses adults as baselines for model
performance, as well as computational tools to better understand the behavior of children.

Human Performance as a Baseline

Prior work has shown that using human behavior as a comparison point for agents is useful
in various settings. For example, human baselines on Atari games [108] have been a key
component in progressing deep reinforcement learning (RL). Setting such baselines in deep
RL serves as a North Star goal and has led to the development of algorithms with super-
human performance. In computer vision, ImageNet [29] pretrained models are commonly
tested against human recognition performance subject to various image distortions [41] and
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cue-conflict stimuli [42]. Even within the distribution of natural training images, ImageNet-
A [58] contains an evaluation set of natural adversarial examples for which humans can
classify effortlessly, but ImageNet trained models have high error on.

Rosenfeld et al. [128] measure retrieval performance of state-of-the-art vision models
on the “totally-looks-like” dataset, where humans typically agree on pairs of images with
surprising levels perceptual similarity. They find that measuring image similarity with neural
network-based features does not reproduce human rankings. The Winoground dataset [150]
is another example of a task that humans perform extremely well on, correctly matching
captions describing different spatial and compositional relationships with their respective
image. Even the highest performing vision and language model shows a performance gap of
∼70% compared to human performance.

Children vs. Adults

While most existing human baselines are established using adults [108, 42, 128, 150], children
can also serve as direct inspiration for AI model capabilities. Most human learning takes
place during childhood, and young children explore new environments widely and effectively
with little direct training [134, 27, 87, 133, 132], making their behavior an interesting bench-
mark for navigation and reasoning tasks. Interestingly, Bambach et al. [4] even found that
training a neural network with training data derived from a head camera placed on toddlers
outperformed data derived from adults.

Comparing Children and Machines

In work with Kosoy et al. [77], we present a methodology based on DeepMind Lab [7] for
directly comparing child and agent behavior in a simulated maze exploration task, allowing
us to precisely test questions about how children explore, how agents explore, and how and
why they differ. An overview of the 3D first-person maze environment is shown in Figure 2.1.

We use this environment to first show differences in exploration behavior based on “no-
goal” and “goal” conditioning. In the no-goal condition, the children are simply told to
explore freely, whereas in the goal condition they are told to search for a “gummy” (the
goal). We find that children exhibit a wide range of variability in how much they explore
in the no-goal setting, and that those who explore more in the no-goal setting are able to
find the goal faster in the goal setting condition. This may suggest that the “high explorers”
build a mental model of the maze in the no-goal condition that enables them to perform more
efficient navigation during the goal condition. We also find that children’s search strategies
between the two conditions differ. We compared children’s behavior to that of a depth-first
search (DFS) agent and found that in the no-goal condition, children made choices consistent
with DFS 90% of the time, whereas in the goal condition children made choices consistent
with DFS 96% of the time. This suggests that children’s behavior becomes more systematic
and efficient in the goal condition.
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In a follow up study [78] we compare the ability of children and various RL agents
to reason about causal overhypotheses in a unified, simulated environment based on the
classical “blicket machine” [47]. The environment setup consists of a hierarchical casual
structure where the higher-level structure determines the number of objects (i.e. blickets)
that are needed to light-up the detector, and the lower-level structure describes which of
the objects in this task correspond to blickets. Similar to the setup in Lucas et al. [102],
we consider two possible higher-level causal hypotheses: conjunctive and disjunctive. In the
conjunctive condition, a pair of blickets placed on the machine together cause it to activate.
In the disjunctive case, any individual object that is a blicket can light the machine on its own
(or in combination with other blickets). Children were given demonstrations depicting two
blicket detectors (conjunctive and disjunctive) and asked to figure out how a third detector
works, by trying out different object combinations. We compared the action sequences of
children with various optimal policies based on information gain [114, 113, 24] and found
that while children often take many more actions than is optimal, they are largely able to
disambiguate between conjuntive and disjunctive blicket detectors. Further, they appeared
to be optimizing for a diverse set of possible overhypotheses, beyond the two that were
specified. How to construct a computational model that can also be creative and expand on
the possible space of overhypotheses remains and interesting question for future work.

These works are first attempts to better understand children’s behavior in comparison
to computational models using unified environments, for maze exploration and navigation,
as well as causal reasoning with a virtual blicket detector. In the next chapter, we compare
the performance of children (and adults) to computational models in the domain of visual
object perception using a novel 3D object completion task [176].
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Chapter 3

Three-Dimensional Object Perception

Three-dimensional objects pose a challenge for our visual system, since we can only view
objects from a single limited perspective at a given moment. Previous work found that
given a limited perspective, infants represent 3D objects as complete volumes. Our study
replicated this finding in 4- to 7-year-olds and adults, using an explicit prediction measure
rather than looking times. We also explored whether humans have a bias to represent visually
limited 3D objects as symmetrical rather than asymmetrical across shape, size, texture, and
color. Overall, there was an above-chance preference for full volumetric and symmetrical
object completion that increased with age. Low-level perceptual similarity of choices did not
predict participants’ choices. Moreover, we evaluated ImageNet trained ResNet-50 models on
the same tasks: they represented objects as complete volumes, but did not show substantial
preference for symmetrical 3D representations. This raises the possibility that incorporating
human symmetry biases could improve computer vision.

3.1 Motivation

Humans can extract a general representation of a 3D object from a single perspective or im-
age. This ability helps us to recognize objects, reason about object affordances, interact with
objects, and understand scenes. However, it raises a puzzle. Given the limited information
from a single perspective, how do we infer what the unrevealed portions of objects will look
like? In this chapter, we aim to, first, investigate if the finding that infants prefer complete
volumetric representations of objects from limited viewpoints [141, 140] applies to older chil-
dren and adults viewing more diverse novel 3D objects, and second, examine preference for
symmetrical completions of these novel objects in children and adults. We further compare
participants’ responses against the predictions made by ResNet-50 [55] models trained on
ImageNet [29]. We tested three forms of the neural network: one that is supervised and

This chapter contains work that was first published as Three-Dimensional Object Completion in Humans
and Computational Models in CogSci, 2022 [176].
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trained on ImageNet, one that is self-supervised and trained on ImageNet as well, and one
that is untrained serving as a random feature baseline.

Understanding human priors that underlie the 3D object completion from limited per-
spectives may also be relevant to computer vision. In neural network training, the ability to
recognize objects from multiple viewpoints is acquired through an abundance of 2D images
displayed from different viewpoints for each object category. There is often neither a direct
transfer of 3D competence across categories, nor extracted or built-in priors about what
novel views of objects should look like. Further, state-of-the-art detection and segmentation
methods are only capable of recognizing and localizing visible object parts [55, 74].

We hypothesize that older humans, like infants, prefer complete volumes, and may like-
wise prefer symmetry to asymmetry in their object completion. In particular, they may
care more about symmetry in geometry than in material, since many studies have shown
that both children and adults have a shape bias. The shape bias refers to the inclination
to classify, sort, and name objects on the basis of shape rather than other object elements
such as color or texture [85, 139]. In contrast, an ImageNet trained neural network may
not necessarily show preferences for complete volumes and geometric symmetry in 3D object
completion, but it may show preference for material symmetry: like many standard convo-
lutional neural networks, the training of the model may lead it to be more texture-biased
than shape-biased [42, 126].

3.2 Background

Humans are able to conceive general representations of objects, and can make amodal comple-
tions of objects even when they are partially occluded [15]. Previous work showed that when
presented with occluded two-dimensional surfaces [95] or self-occluded three-dimensional ob-
jects [94], adults prefer global as opposed to local completions. Furthermore, young infants
represent simple 3D objects as complete and solid volumes instead of incomplete and hollow
volumes even when they see a limited perspective that is compatible with either interpreta-
tion [141, 140]. Soska, Adolph, and Johnson [140] further suggested that the visuo-manual
exploratory skills and self-sitting experience of infants facilitate their ability to complete 3D
objects as solid volumes.

All these findings across different paradigms provide evidence that humans hold certain
prior expectations about objects whose forms are not fully revealed, and those expectations
influence their inferences about the unseen parts of objects. However, it is unclear what
other sorts of predictions underpin human 3D object completion, beyond global completions
for 2D surfaces and solid volumes for 3D objects. One potential perceptual bias that has not
been explored is symmetry.

Objects in our visual world, natural or manmade, commonly exhibit mirror and/or rota-
tional symmetries [28, 154]. It has been argued that much of our understanding of objects
is guided by the perception and recognition of repeated or common patterns [148]. In fact,
symmetry is a salient cue in human perception from early development. 4-month-old infants
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Figure 3.1: Object completion task. A test trial involving two possible options (1 and 3), and
one impossible option (2).

can discriminate bilaterally symmetrical patterns from asymmetrical forms [36, 120]. Not
only can infants process bilaterally symmetrical patterns more immediately than asymmetri-
cal patterns [10], but they also develop faster and more accurate recognition memory for the
former [11]. There have been theories suggesting that this ability to appreciate symmetry
confers cognitive and evolutionary advantages. Symmetry in physical ornaments and motor
patterns of living organisms also serves as an indicator of fitness in mate selection [33, 177].
It is thus interesting to explore the role symmetry plays in human 3D object completion and
representation. When we approach a novel object from a single viewpoint, do we generally
expect it to be symmetrical rather than asymmetrical? Does this expectation vary across
development? What kinds of symmetry, such as symmetry in material (color and texture)
and geometry (shape and size), do humans incorporate in their object completion? Are they
equally favored, or are some kinds of symmetry more preferred than others?

3.3 Experiment 1

In Experiment 1, we expanded Soska and Johnson’s infant study [141, 140] in three ways:
one, we evaluated preferences for 3D solid volumetric completion in older children and adults;
two, we tested more diverse and complex 3D stimuli; three, we tested explicit predictions
about the object’s appearance, rather than the more implicit infant looking-time measures.
In addition to presenting participants with two possible options as in the original study,
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we introduced a physically impossible distractor option that conflicted with the limited
viewpoint to ensure participants were not merely making random guesses.

Methods

Participants 38 child participants aged between 4 years old and 7 years old (Mage =
5.94 years, SD = 1.16, 20 females) were recruited and tested at children’s museums. More
specifically, the sample comprises 10 4-year-olds (Mage = 4.53 years, SD = .36), 10 5-year-
olds (Mage = 5.44 years, SD = .36), 9 6-year-olds (Mage = 6.48 years, SD = .32) and 9
7-year-olds (Mage = 7.49 years, SD = .25). An additional 4-year-old was tested but excluded
from the sample analysis due to selecting impossible distractors in 1/3 of the test trials. In
addition, 40 adult participants (Mage = 28.70, SD = 6.88; 20 females) were recruited on
Prolific to complete the same task. The same experimental stimuli were also tested on a
self-supervised, supervised, and untrained ResNet-50.

Stimuli and Procedure The study was performed on a computer screen. Participants
were introduced to two virtual characters exploring a toy store, and were told that the toys
were located on a shelf that was too high for them to reach, and so these objects could only
be viewed from a limited perspective with their back parts being occluded. Participants were
asked by the experimenter to help predict what 14 novel and abstract 3D toys would look
like if they were taken off the shelf and turned around. The 14 objects were divided between
2 practice trials and 12 test trials. All objects were downloaded from Thingi10K, a large
dataset of 3D printing models [180], and were further edited in Blender (an open-source 3D
computer graphics software) for adaptation to the experiment.

Practice Trials The practice trials were designed to ensure that the participants under-
stood the basic object completion task. In each of the 2 practice trials, participants saw
a novel object on the shelf from a limited viewpoint followed by two 15° pivoting options
representing what the two characters respectively thought the object would look like if it was
turned around. Only one of the two options was physically possible and did not conflict with
the limited viewpoint in terms of shape, size, texture, and color. Critically, the experimenter
asked the participant, “See this object on the shelf? If you take if off the shelf and turn it
around, will it look like [pointing to the two options] this or this?” After they selected one
view, participants saw a full 360° rotation video of the object and were told whether their
response was correct. All participants went through both practice trials before proceeding
to the test trials.

Test Trials In each of the 12 test trials, participants were shown a novel object on the
shelf from a limited viewpoint as in the practice trials. This time, the experimenter asked the
same question, but participants had to decide among three instead of two different options,
“See this object on the shelf? If you take it off the shelf and turn it around, will it look
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Figure 3.2: Object completion accuracy of humans and ResNets. Mean object completion
accuracy of humans (left) and ResNets (right). Error bars show 1 standard error. Horizontal lines
indicate chance-level accuracy (66.7%).

like 1, 2, or 3?” The choices included a possible complete volumetric option, a possible
incomplete volumetric option, and an impossible distractor option that conflicted with the
limited viewpoint of the object. They were presented in a randomized, counterbalanced
order. The test trial setup can be seen in Figure 3.1.

Similar to the practice trials, these options in the test trials pivoted by 15° to facilitate
the perception of the depth and three-dimensionality of the object, but the full rotation was
not revealed. Once participants made a choice, they were rewarded with encouragement
irrespective of what they chose. The goal was to motivate younger children to continue with
the task without shaping their responses.

While all children, adults, and neural network were tested on the same stimuli, the task
was administered in slightly different formats. Child participants were guided through the
experiment by a human experimenter, whereas adult participants finished the task in the
form of a Qualtrics survey (the experimenter’s questions and instructions were written out
in words). Since the neural network models were trained with static 2D images, they were
fed with the center frame of each 15-degree pivoting option for evaluation. In each trial,
we extracted the feature representation from each neural network for the limited viewpoint
image and each option image, and considered the option with the highest cosine similarity
with the limited viewpoint as the model’s choice.

Results and Discussion

Object Completion Accuracy First, we determined participants’ object completion ac-
curacy to evaluate their ability to understand our task and to complete the rest of each
object with a form that was not physically impossible. This was computed as the proportion
of test trials in which participants did not choose the distractor options. In other words, we
tested whether participants preferred the possible choices to the impossible distractor option.
Children scored a mean of 97.4% (SE = .89%); age effects were not observed from 4 to 7
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Figure 3.3: Mean complete volumetric preference of humans and ResNets. Mean complete
volumetric preference of humans (left) and ResNets (right). Error bars show 1 standard error.
Horizontal lines indicate no preference (50%).

years old. Adults scored a mean of 99.2% (SE = .50%) (Figure 3.2, left). The high accuracy
scores in objection completion confirm that both children and adults could demonstrate ob-
ject completion and the task was appropriate for both age groups. The Welch’s two-sample,
two-tailed t-test showed that adults’ scores were marginally higher than children’s, t(77) =
1.75, p = .084; Cohen’s effect size d = .40 suggested small significance. The self-supervised
and supervised ResNet-50 scored 100%; even the untrained ResNet-50 (random baseline)
scored 91.7% (Figure 3.2, right), suggesting that even random pixel-level features capture
the information needed to solve the task.

Complete Volumetric Preference Complete volumetric preference refers to the pro-
portion of test trials in which the complete volumetric option was selected out of the total
number of trials in which the distractor option was not chosen. We dropped one child
who selected the distractor options in 4 out of the 12 trials. All adults passed this critical
requirement and were considered in the analysis.

Both children and adults chose the complete volumetric option significantly above the
chance level of 50% (symmetrical option vs. asymmetrical option). Children had a mean
complete volumetric preference score of 58.6% (SE = 4.27%), while adults had a mean score of
82.7% (SE = 3.18%) (Figure 3.3, left). While age effects were not observed from 4 to 7 years
old, the Welch’s two-sample, two-tailed t-test on children and adults revealed significantly
stronger preference in adults, t(77), p < .001. Cohen’s effect size d = 1.03 suggested high
practical significance. Thus, our complete volumetric preference continues to strengthen past
the age of 7, potentially through increasing exposure to the visual statistics of objects (for
instance, noticing there are more objects with complete volumes in the environment).

Like human participants, all three forms of ResNet-50 also showed preference for complete
volumes over incomplete volumes: the self-supervised network showed a complete volumetric
preference of 83.3%, the supervised network 91.7%, and the untrained network 81.8%. The
incomplete objects possessed convex surfaces which often had darker shadings than the
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Figure 3.4: Sample stimuli for studying bilateral symmetry preference. Four types of
asymmetrical edits (circled) for the same object (from left to right, top to bottom): shape, size,
color, and texture, as presented in the test trials.

surfaces of the reference object in the shelf. This might have prompted ResNet-50, even in
its untrained form, to eliminate the incomplete option.

3.4 Experiment 2

We adopted the same paradigm in Experiment 1 to study another potential preference in
3D object completion: bilateral symmetry.

Methods

Participants 82 child participants aged between 4 years old and 7 years old (Mage =
5.90 years, SD = 1.13, 40 females) were recruited and tested at children’s museums. More
specifically, the sample comprised 16 4-year-olds (Mage = 4.29 years, SD = .27), 22 5-year-olds
(Mage = 5.25 years, SD = .29), 22 6-year-olds (Mage = 6.31 years, SD = .22) and 22 7-year-
olds (Mage = 7.29 years, SD = .28). Sixteen additional children were tested but excluded
from the sample analysis as they selected the incorrect distractors in at least 1/3 of the test
trials. This could be due to inattention, language comprehension issues, or simply inability
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Figure 3.5: Mean object completion accuracy on symmetry stimuli. Mean object com-
pletion accuracy of (from left to right) children, adults, self-supervised, supervised, and untrained
ResNet-50 in geometry and material conditions. Error bars show 1 standard error. Horizontal lines
indicate chance-level accuracy (66.7%).

to understand the task. Again, the same task was also tested on 40 adult participants (Mage

= 23.65, SD = 4.94; 31 females) who were recruited on Prolific and on ResNet-50.

Stimuli and Procedure The task design and objects used in Experiment 2 were identical
to those used in Experiment 1, but the available options were different. In Experiment 2,
the choices included a possible symmetrical option, a possible asymmetrical option, and
an impossible distractor option. The asymmetrical option could be asymmetrical in its
geometry (shape or size) or material (color or texture). To prevent the inherent differences
between objects from confounding with the type of asymmetry presented, each object was
edited for asymmetry in all four conditions (shape, size, color, and texture) (Figure 3.4).
These four types of edits of the same object were then allocated to four separate test sets.
Participants were randomly assigned to one of the test sets and thus only saw each object
once. This enabled preferences for the different types of asymmetry to be assessed and
compared across the same set of objects. In other words, the 12 test trials were comprised
of 3 trials with asymmetrical shape options, 3 trials with asymmetrical size options, 3 trials
with asymmetrical color options, and 3 trials with asymmetrical texture options. The order
of options was randomized.

Results and Discussion

Object Completion Accuracy One-sample, two-tailed t-tests on children and adults
respectively showed significantly above-chance accuracy (66.7%) across all conditions (p ¡
.001). Children had mean accuracy scores 96.4% in shape (SE = .58%), 96.5% in size (SE
= .63%), 96.0% in color (SE =.71%), and 96.4% in texture (SE = .59%). Adults also scored
highly above chance for shape (M = 99.4%, SE = .35%), size (M = 100%, SE = 0%), color
(M = 100%, SE = 0%), and texture (M = 98.1%, SE = .56%) as well (Figure 3.5). In
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Figure 3.6: Mean symmetry preference of humans and ResNets. Mean symmetry preference
of (from left to right) children, adults, self-supervised, supervised, and untrained ResNet-50 in
geometry and material conditions. Error bars show 1 standard error. Horizontal lines indicate no
preference (50%).

contrast, the neural network models demonstrated poorer performance than humans on the
task. The self-supervised ResNet-50 scored a mean accuracy of 83.3% in shape and color,
100% in size, and 91.7% in texture; the supervised ResNet-50 scored 83.3% in shape, color,
and texture, and 91.7% in size; the untrained ResNet-50 did not show any capability of
completing 3D objects: it scored 33.0% in shape, 58.4% in size, 66.7% in color, and 58.4%
in texture (Figure 3.5).

Symmetry Preference across Conditions We measured participants’ symmetry prefer-
ence by computing the proportion of test trials in which the symmetrical option was selected
out of the total number of trials in which the distractor option was not chosen. We dropped
sixteen children who selected the distractor options beyond chance level in at least 4 out of
the 12 trials, retaining only those with an accuracy score above 66.7% for our analysis of
symmetry preference. Again, all adults passed this critical requirement and were considered
in the analysis. Both children and adults chose the symmetrical option significantly above
the chance level of 50% (Figure 3.6). Children attained mean symmetry scores of 58.1% in
shape (SE = 3.13%), 66.7% in size (SE = 2.82%), 80.1% in color (SE = 3.00%), and 68.3%
in texture (SE = 3.49%). Meanwhile, adults had mean symmetry scores of 80.8% in shape
(SE = 3.89%), 95.0% in size (SE = 2.25%), 86.7% in color (SE = 2.61%), and 92.9% in
texture (SE = 3.32%).

Children and adults respectively revealed significantly above-chance symmetry preference
across all conditions (p < .001), but there was an exception: children as a group did not show
symmetry preference for shape beyond chance level, p = .12. Unlike human participants,
the neural network models showed much weaker symmetry preference: the self-supervised
ResNet-50 scored 50.0% in shape and size, 60.0% in color, and 54.5% in texture; the super-
vised ResNet-50 scored 50.0% in shape and texture, 54.5% in size and 70.0% in color; the
untrained ResNet-50 scored 50.0% in shape, 71.4% in size, 37.5% in color, and 28.6% in tex-
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ture (Figure 3.6). Overall, none of the neural networks showed a substantial preference for
completing objects in a symmetrical fashion as our human participants did. Perhaps under-
standing symmetry in objects requires 3D reasoning that cannot be acquired from training
on ImageNet. Unlike in Experiment 1, the symmetric option cannot be deduced from 2D
cues alone.

A within-subjects ANOVA with condition (shape, size, color, texture) as the independent
variable and symmetry preference as the dependent variable yielded a main effect of condition
in both children, F(3,324) = 8.82, p < .001, and adults, F(3,117) = 7.36, p < .001. We used
Bonferroni corrections, leading to an adjusted alpha of .0125 in our multiple comparisons.
We found that children had greater symmetrical completion preference for color than for
shape t(81) = 5.06, p < .001, and size, t(81) = 3.26, p < .01. Adults on the other hand,
exhibited significantly stronger symmetrical completion preference for size than for shape,
t(39) = 3.15, p < .05. The differences in preferences between the types of symmetries are
more flattened out in adulthood than in childhood, as adults preferences approach ceiling.

Symmetry Preference and Age Overall, the results of the study suggest a general
increase in preference for symmetrical object completions across age. Mean symmetrical
preference across conditions increased from a mean of 61.5% (SE = 2.92%) among the 4-
year-olds (Mage = 4.29 years, SD = .27) to a mean of 77.3% (SE = 3.07%) among the
7-year-olds (Mage = 7.29 years, SD = .28). In an exploratory analysis, given the few number
of trials per condition, we compared symmetry preferences for geometry (shape and size
combined) (M = 61.7%, SE = 2.03%) and material (color and texture combined) (M =
73.5%, SE = 2.57%). We found that there is a significantly positive correlation between age
and symmetry preference for both geometry, r(81) = .34, p < .01, and material, r(81) = .35,
p < .01, respectively. The developmental progression of symmetry preferences in both the
material and geometry conditions appear to be similar, with material symmetry preference
being stronger than geometry symmetry, t(81) = 3.58, p < .001, Cohen’s effect size d =
.56 suggested medium significance. When comparing the symmetry preferences in each of
these four symmetry conditions between all child participants and all adult participants
(with Bonferroni corrections applied, leading to an adjusted alpha of .025), we found that
adults showed a higher symmetry preference than children for shape, t(120) = 4.54, p <
.001), size, t(120) = 7.86, p < .001, and texture, t(120) = 5.11, p < .001, but not for color,
t(120) = 1.66, p = .10. This suggests that from childhood to adulthood, there is further
strengthening of symmetry preferences in object completion with regards to shape, size, and
texture. The older we get, the more biased towards symmetry we are when we imagine the
occluded surfaces of 3D objects.

3.5 Discussion

The present study provides initial evidence that both children aged 4-7 years old and adults
incorporate a preference for complete volumes and symmetry into their completion of novel
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objects from limited perspectives. Our task asks participants to select what is most plausi-
ble to them within a given set of possibilities, so it does not probe what participants might
expect outside these options. Nevertheless, this finding complements the existing work on
object completion and further demonstrates how priors or expectations concerning the oc-
cluded parts of objects may shift across development. The preference for completing novel
objects as solid, complete volumes is evident in the looking times of infants [141], and we
showed via an explicit prediction measure that this preference continues to strengthen with
increasing age. Similarly, completing objects in a symmetrical fashion is observed in early
childhood, but adults show an even stronger preference for doing so. This implies that
complete volumetric and symmetrical completion preferences are not rigid, built-in priors.
Infants’ self-sitting experience and visual-manual exploration of objects predicted their look-
ing longer at a volumetrically incomplete object than a volumetrically completion object in
3D object completion [140]. Preferences may continue to develop through dynamic interac-
tions with objects and scenes in the environment over time. More empirical work is needed
to investigate this possibility at a later age.

Some may argue that instead of actually demonstrating complete volumetric and sym-
metrical object completion preferences, participants were choosing options based on low-level
perceptual similarity (e.g., an option was chosen because it looked most perceptually similar
to the limited viewpoint); or based on whether or not the 2D limited viewpoint was symmet-
rical (e.g., the symmetrical option was chosen because the 2D limited viewpoint presented
was symmetrical). To test the first possibility, we used F-score to evaluate the perceptual
similarity of each option relative to the limited viewpoint and relative to the other options
in terms of 2D and 3D geometry. The F-score evaluates the distance between object surfaces
and counts the percentage points that lie within a certain distance on another object under
comparison. We also used SSIM [159] to evaluate perceptual differences in terms of mate-
rial. We did not find any statistically significant correlation between the 2D or 3D F-scores
(whether it be relative to the limited viewpoint or relative to other options), or SSIM, and
how often an option was chosen by children and adults in both experiments. To test for the
second possibility, we evaluated whether the limited viewpoints were symmetrical or asym-
metrical along the vertical axis (since we evaluated preferences for bilateral symmetry across
the trials). Again, performance was similar whether the limited viewpoint was symmetrical
or not.

Our finding of a robust human expectation for symmetry in object completion aligns
with the vast literature on human sensitivity to and preference for symmetry [117, 130]. The
increasing tendency to complete objects in a symmetrical manner with age also resonates
with existing developmental studies that human symmetry preference increases with age [64,
63]. However, contrary to our initial hypothesis, and in spite of children’s well-established
shape bias, children exhibited the strongest preference for symmetrical object completion for
color and the weakest preference for shape. One possible reason is that bilateral asymmetries
in shape (one half of the object is one shape and the other half is a different shape) may occur
more frequently than bilateral asymmetries in color (one half of the object is one color and the
other half is a different color) in the artefacts in our everyday environments, such as kitchen
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tools or toys. From infancy, humans have a strong capacity for visual statistical learning [35,
75], and may have come to expect fewer color asymmetries than shape asymmetries. This
could explain the relatively lower shape symmetry preference in both children and adults.
Another possibility stems from the fact that young children between 3.5 and 6 years of age
also tend to be faster and more accurate at naming the color of an object when the object
was presented in an abstract shape [121]. The abstractly shaped objects in our study may
therefore have increased children’s attention to color and driven their preference for color
symmetry.

Like children and adults, pretrained ResNet-50 networks completed objects at above-
chance accuracy in both experiments, while the untrained network failed to do so in Ex-
periment 2, potentially because the distractor options were harder to visually distinguish in
that experiment. Critically, in their object completion, the neural networks preferred volu-
metrically complete objects in Experiment 1, but not symmetrical objects in Experiment 2.
Compared to the reference objects on the shelf and the volumetrically complete options, the
volumetrically incomplete options had convex surfaces reflected through darker shadings.
Darker shadings might contribute to a lower cosine similarity, thereby causing the neural
networks to avoid the incomplete options. This also lends some support to the hypothesis
that neural networks are texture-biased and attend less to shape [42, 44]. That said, SSIM,
which includes luminance and contrast masking terms, did not predict the choices of the
neural networks. By contrast, the neural networks cannot use 2D cues such as shading in
Experiment 2. Trained or untrained, they demonstrated little to no preference for symmet-
rical completions, suggesting that 3D symmetrical object completion may not be achieved
solely through cosine similarities following training on 2D images. The ImageNet trained
ResNet-50 models did not necessarily develop 3D understanding of objects the way humans
do, and thus may not further develop preferences for symmetry in 3D objects.

From a broader perspective, the present study may shed light on understudied aspects
of object completion, an important problem in both human cognition and computer vision.
We examined preferences for solid volumes and bilateral symmetry, the developmental trend
from childhood to adulthood, as well as the differences between humans and ResNet-50
neural networks in completing occluded parts of an object. Given the small number of
trials (n = 12) in these experiments, we hope to scale up the object dataset to generate
more reliable findings. Further studies may also explore other variables such as the axis
of symmetry and the animacy of objects to further understand this important aspect of
perception. Manmade structures tend to possess more segments of straight lines, longer linear
lines, and coterminations than animates or natural objects [65]. Hence, it is possible that
symmetry preferences may differ between these categories. On the computational side, we
plan to train neural networks on 3D (as opposed to 2D) object data and test the preferences
of single-view 3D reconstruction networks.



20

Chapter 4

The Gap in Training Data

Why might there be such a discrepancy in the way humans and neural networks represent
visual data? While there are several factors at play, including the biological differences
between humans and artificial systems, the specificities of the neural network architecture,
and the optimization algorithm for neural networks not being entirely biologically plausible,
this thesis proposes that an important and potentially understudied culprit is the training
data that is used. Many aspects of the training data that we use to train neural networks is
drastically different from the visual inputs that children are “trained” on. In this chapter,
we discuss a few of those key differences.

4.1 Realism of Training Data

One of the most significant differences is the realism of the training data used to trained deep
networks. Children learn to see and reason about 3D objects in the real world, exposed to a
wide range of visual inputs, including variations in lighting, texture, and color. In contrast,
neural networks are often trained on images that are artificially generated [17], or captured
in the real world but contain category or photographer bias [29]. This lack of realism in the
training data can significantly impact the ability of neural networks to accurately represent
visual data.

To bridge this gap, one potential solution is to use a dataset with realistic-looking 3D
models with physically-based rendering materials. These 3D models can then be rendered
photorealistically, under many different viewpoints and lighting conditions, exposing the
neural network to a much wider range of visual inputs that are closer to what humans
encounter in the real world. In addition to providing a more diverse set of visual inputs, a
dataset with realistic-looking 3D models can be used to render images in a controlled and
systematic way, allowing researchers to study the impact of specific factors, such as lighting
or texture, on the performance of neural networks. Second, using such a dataset can help to
overcome limitations in collecting real-world training data, such as the cost and difficulty of
capturing images under diverse enough lighting and material conditions.
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4.2 Interaction with Objects

Children learn about the world around them not only by passive observation, but also by
actively exploring and interacting with it [137, 140]. They manipulate objects, move around
the environment, and experiment with cause and effect relationships [47]. This active ex-
ploration and interaction plays a critical role in shaping their understanding of the world.
In contrast, current neural network models are often trained on static images and videos,
without the ability to interact with the objects and environment. This lack of interaction can
result in models that are poorly equipped to represent the dynamic and interactive nature
of objects in the world.

One potential solution to help address this limitation is to have better 3D model datasets
that can articulate. By incorporating the ability to manipulate and interact with objects
during training, we can create more dynamic and realistic representations of objects. Mesh
models with motion assets can be used to generate large amounts of training data that
include variations in object articulation, as well as potentially object-object and object-
environment interactions. This type of data can help deep networks learn more robust and
accurate representations of objects.

4.3 Multiple Views and Sparse Labels

Clerkin et al.[23] conducted an intriguing study using head-mounted cameras to record the
visual inputs that infants typically receive in their daily lives. One of the key findings of the
study was that infants are frequently exposed to a few specific objects, such as a parent’s face
or a special cup, viewed from many different angles, distances, backgrounds, and lighting
environments. Further, their learning about objects is largely driven by self-play interspersed
with sparse labeling events from a parent or caretaker [142]. This type of visual input is
vastly different from the training data that we typically use to train neural networks, which
usually consists of single views of objects from relatively stereotyped viewpoints[29, 97].

In this thesis we consider how incorporating the types of visual inputs that infants typi-
cally receive into the training data of neural networks can change the learned representations.
One approach is to train on multiple viewpoints of objects, rather than only use single view
images. In addition, rather than relying solely on labeled data, which may not always be
available or representative of real-world scenarios, we can use self-supervised learning tech-
niques that leverage the natural structure and regularities in the data to learn more robust
and generalizable visual representations of objects.

In Part II we discuss efforts targeting each of these key differences. In Chapter 5 we intro-
duce a more realistic 3D dataset with physically-based rendering materials for photorealistic
rendering. In Chapter 6 we introduce a methology to infer motion assets for rigid 3D models.
Finally, in Chapter 7 we study the effect of training with multiple views (vs. single views)
on self-supervised feature learning.
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Part II

Towards Bridging the Gap
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Chapter 5

A Realistic Dataset for 3D Object
Understanding

catalog images

high-resolution geometry & texture

physically-based renderings

Figure 5.1: ABO is a dataset of product images and realistic, high-resolution, physically-
based 3D models of household objects.

We introduce ABO, a new large-scale dataset designed to help bridge the gap between
real and virtual 3D worlds. ABO contains product catalog images, metadata, and artist-
created 3D models with complex geometries and physically-based materials that correspond
to real, household objects. We derive challenging benchmarks that exploit the unique prop-
erties of ABO and measure the current limits of the state-of-the-art on three open problems
for 3D object understanding: single-view 3D reconstruction of real world objects, material
estimation, and cross-domain multi-view object retrieval.

This work was first published as ABO: Dataset and Benchmarks for Real-World 3D Object Understand-
ing in CVPR, 2022 [25].
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Dataset # Models # Classes Real images Full 3D PBR

ShapeNet [17] 51.3K 55 ✗ ✓ ✗
3D-Future [38] 16.6K 8 ✗ ✓ ✗
Google Scans [32] 1K - ✗ ✓ ✗
CO3D [125] 18.6K 50 ✓ ✗ ✗
IKEA [96] 219 11 ✓ ✓ ✗
Pix3D [144] 395 9 ✓ ✓ ✗
PhotoShape [119] 5.8K 1 ✗ ✓ ✓
ABO (Ours) 8K 63 ✓ ✓ ✓

Table 5.1: A comparison of the 3D models in ABO and other commonly used object-
centric 3D datasets. ABO contains nearly 8K 3D models with physically-based rendering (PBR)
materials and corresponding real-world catalog images.

5.1 Motivation

Progress in 2D image recognition has been driven by large-scale datasets [80, 29, 97, 143,
52]. The ease of collecting 2D annotations (such as class labels or segmentation masks)
has led to the scale of these diverse, in-the-wild datasets, which in turn has enabled the
development of 2D computer vision systems that work in the real world. Theoretically,
progress in 3D computer vision should follow from equally large-scale datasets of 3D objects.
However, collecting large amounts of high-quality 3D annotations (such as voxels or meshes)
for individual real-world objects poses a challenge. One way around the challenging problem
of getting 3D annotations for real images is to focus only on synthetic, computer-aided
design (CAD) models [17, 180, 76]. This has the advantage that the data is large in scale
(as there are many 3D CAD models available for download online) but many of the models
are low quality or untextured and do not exist in the real world. This has led to a variety
of 3D reconstruction methods that work well on clear-background renderings of synthetic
objects [22, 49, 168, 103] but do not necessarily generalize to real images, new categories, or
more complex object geometries [147, 6, 8].

To enable better real-world transfer, another class of 3D datasets aims to link existing
3D models with real-world images [165, 166]. These datasets find the closest matching
CAD model for the objects in an image and have human annotators align the pose of the
model to best match the image. While this has enabled the evaluation of 3D reconstruction
methods in-the-wild, the shape (and thus pose) matches are approximate. Further, because
this approach relies on matching CAD models to images, it inherits the limitations of the
existing CAD model datasets (i.e. poor coverage of real-world objects, basic geometries and
textures).

The IKEA [96] and Pix3D [144] datasets sought to improve upon this by annotating real
images with exact, pixel-aligned 3D models. The exact nature of such datasets has allowed
them to be used as training data for single-view reconstruction [46] and has bridged some



CHAPTER 5. A REALISTIC DATASET FOR 3D OBJECT UNDERSTANDING 25

of the synthetic-to-real domain gap. However, the size of the datasets are relatively small
(90 and 395 unique 3D models, respectively), likely due to the difficulty of finding images
that exactly match 3D models. Further, the larger of the two datasets [144] only contains
9 categories of objects. The provided 3D models are also untextured, thus the annotations
in these datasets are typically used for shape or pose-based tasks, rather than tasks such as
material prediction.

Rather than trying to match images to synthetic 3D models, another approach to collect-
ing 3D datasets is to start with real images (or video) and reconstruct the scene by classical
reconstruction techniques such as structure from motion, multi-view stereo and texture map-
ping [20, 136, 32]. The benefit of these methods is that the reconstructed geometry faithfully
represents an object of the real world. However, the collection process requires a great deal
of manual effort and thus datasets of this nature tend to also be quite small (398, 125, and
1032 unique 3D models, respectively). The objects are also typically imaged in a controlled
lab setting and do not have corresponding real images of the object “in context”. Further,
included textured surfaces are assumed to be Lambertian and thus do not display realistic
reflectance properties.

Motivated by the lack of large-scale datasets with realistic 3D objects from a diverse set
of categories and corresponding real-world multi-view images, we introduce Amazon Berke-
ley Objects (ABO). Overall, ABO contains 147,702 product listings associated with 398,212
unique catalog images, and up to 18 unique metadata attributes (category, color, material,
weight, dimensions, etc.) per product. ABO also includes “360º View” turntable-style im-
ages for 8, 222 products and 7,953 products with corresponding artist-designed 3D meshes.
In contrast to existing 3D computer vision datasets, the 3D models in ABO have complex
geometries and high-resolution, physically-based materials that allow for photorealistic ren-
dering. A sample of the kinds of real-world images associated with a 3D model from ABO
can be found in Figure 5.1. The dataset is released under CC BY-NC 4.0 license and can be
downloaded at https://amazon-berkeley-objects.s3.amazonaws.com/index.html.

To facilitate future research, we benchmark the performance of various methods on three
computer vision tasks that can benefit from more realistic 3D datasets: (i) single-view shape
reconstruction, where we measure the domain gap for networks trained on synthetic objects,
(ii) material estimation, where we introduce a baseline for spatially-varying BRDF from
single- and multi-view images of complex real world objects, and (iii) image-based multi-
view object retrieval, where we leverage the 3D nature of ABO to evaluate the robustness
of deep metric learning algorithms to object viewpoint and scenes.

5.2 Background

3D Object Datasets ShapeNet [17] is a large-scale database of synthetic 3D CAD models
commonly used for training single- and multi-view reconstruction models. IKEA Objects [96]
and Pix3D [144] are image collections with 2D-3D alignment between CAD models and real
images, however these images are limited to objects for which there is an exact CAD model

 https://amazon-berkeley-objects.s3.amazonaws.com/index.html
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Figure 5.2: 3D model categories. Each category is also mapped to a synset in the WordNet
hierarchy. Note the y-axis is in log scale.

match. Similarly, Pascal3D+ [165] and ObjectNet3D [166] provide 2D-3D alignment for
images and provide more instances and categories, however the 3D annotations are only
approximate matches. The Object Scans dataset [20] and Objectron [2] are both video
datasets that have the camera operator walk around various objects, but are limited in the
number of categories represented. CO3D [125] also offers videos of common objects from 50
different categories, however they do not provide full 3D mesh reconstructions.

Existing 3D datasets typically assume very simplistic texture models that are not physi-
cally realistic. To improve on this, PhotoShapes [119] augmented ShapeNet CAD models by
automatically mapping spatially varying (SV-) bidirectional reflectance distribution func-
tions (BRDFs) to meshes, yet the dataset consists only of chairs. The works in [30, 39]
provide high-quality SV-BRDF maps, but only for planar surfaces. The dataset used in [71]
contains only homogenous BRDFs for various objects. [93] and [9] introduce datasets con-
taining full SV-BRDFs, however their models are procedurally generated shapes that do not
correspond to real objects. In contrast, ABO provides shapes and SV-BRDFs created by
professional artists for real-life objects that can be directly used for photorealistic rendering.

Table 5.1 compares the 3D subset of ABO with other commonly used 3D datasets in
terms of size (number of objects and classes) and properties such as the presence of real
images, full 3D meshes and physically-based rendering (PBR) materials. ABO is the only
dataset that contains all of these properties and is much more diverse in number of categories
than existing 3D datasets.
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Figure 5.3: Posed 3D models in catalog images. We use instance masks to automatically
generate 6-DOF pose annotations for the dataset.

3D Shape Reconstruction Recent methods for single-view 3D reconstruction differ mainly
in the type of supervision and 3D representation used, whether it be voxels, point clouds,
meshes, or implicit functions. Methods that require full shape supervision in the single-
view [34, 179, 144, 103, 46] and multi-view [69, 22, 168] case are often trained using ShapeNet.
There are other approaches that use more natural forms of multi-view supervision such as
images, depth maps, and silhouettes [170, 162, 69, 153], with known cameras. Of course,
multi-view 3D reconstruction has long been studied with classical computer vision tech-
niques [54] like multi-view stereo and visual hull reconstruction. Learning-based methods
are trained typically in a category-specific way and evaluated on new instances from the
same category. Out of the works mentioned, only [179] claims to be category-agnostic. In
this work we are interested in how well these ShapeNet-trained networks [22, 179, 103, 46]
generalize to more realistic objects.

Material Estimation Several works have focused on modeling object appearance from a
single image, however realistic datasets available for this task are relatively scarce and small
in size. [89] use two networks to estimate a homogeneous BRDF and an SV-BRDF of a flat
surface from a single image, using a self-augmentation scheme to alleviate the need for a large
training set. However, their work is limited to a specific family of materials, and each separate
material requires another trained network. [173] extend the idea of self-augmentation to train
with unlabeled data, but their work is limited to the same constraints. [31] use a modified
U-Net and rendering loss to predict the SV-BRDFs of flash-lit photographs consisting of
only a flat surface. To enable prediction for arbitrary shapes, [93] propose a cascaded CNN
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architecture with a single encoder and separate decoder for each SV-BRDF parameter. While
the method achieves good results on semi-uncontrolled lighting environments, it requires
using the intermediate bounces of global illumination rendering as supervision.

More recent works have turned towards using multiple images to improve SV-BRDF
estimation, but still only with simplistic object geometries. For instance, [30] and [39] use
multiple input images with a flash lit light source, but only for a single planar surface. [9]
and [12] both use procedurally generated shapes to estimate SV-BRDFs from multi-view
images. ABO addresses the lack of sufficient realistic data for the material estimation, and
in this work we propose a simple baseline method that can estimate materials from single or
multi-view images of complex, real-world shapes.

2D/3D Image Retrieval Learning to represent 3D shapes and natural images of products
in a single embedding space has been tackled by [91]. They consider various relevant tasks,
including cross-view image retrieval, shape-based image retrieval and image-based shape re-
trieval, but all are inherently constrained by the limitations of ShapeNet [17] (cross-view
image retrieval is only considered for chairs and cars). [79] introduced 3D object repre-
sentations for fine-grained recognition and a dataset of cars with real-world 2D imagery
(CARS-196), which is now widely used for deep metric learning (DML) evaluation. Like-
wise, other datasets for DML focus on instances/fine categories of few object types, such as
birds [155], clothes [100], or a few object categories [115].

Due to the limited diversity and the similar nature of query and target images in existing
retrieval benchmarks, the performance of state-of-the-art DML algorithms are near satura-
tion. Moreover, since these datasets come with little structure, the opportunities to analyze
failure cases and improve algorithms are limited. Motivated by this, we derive a challenging
large-scale benchmark dataset from ABO with hundreds of diverse categories and a proper
validation set. We also leverage the 3D nature of ABO to measure and improve the robust-
ness of representations with respect to changes in viewpoint and scene. A comparison of
ABO and existing benchmarks for DML can be found in Table 5.4.

5.3 The ABO Dataset

Dataset Properties The ABO dataset originates from worldwide product listings, meta-
data, images and 3D models provided by Amazon.com. This data consists of 147,702 listings
of products from 576 product types sold by various Amazon-owned stores and websites (e.g.
Amazon, PrimeNow, Whole Foods). Each listing is identified by an item ID and is provided
with structured metadata corresponding to information that is publicly available on the list-
ing’s main webpage (such as product type, material, color, and dimensions) as well as the
media available for that product. This includes 398, 212 high-resolution catalog images, and,
when available, the turntable images that are used for the “360º View” feature that shows
the product imaged at 5º or 15º azimuth intervals (8, 222 products).

3D Models ABO also includes 7, 953 artist-created high-quality 3D models in glTF 2.0
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format. The 3D models are oriented in a canonical coordinate system where the “front”
(when well defined) of all objects are aligned and each have a scale corresponding to real
world units. To enable these meshes to easily be used for comparison with existing methods
trained on 3D datasets such as ShapeNet, we have collected category annotations for each
3D model and mapped them to noun synsets under the WordNet [105] taxonomy. Figure 5.2
shows a histogram of the 3D model categories.

Catalog Image Pose Annotations We additionally provide 6-DOF pose annotations for
6, 334 of the catalog images. To achieve this, we develop a fully automatic pipeline for
pose estimation based on the knowledge of the 3D model in the image, off-the-shelf instance
masks [56, 74], and differentiable rendering. For each mask M, we estimate R ∈ SO(3) and
T ∈ R3 such that the following silhouette loss is minimized

R∗,T∗ = argmin
R,T

∥DR(R,T)−M∥

where DR(·) is a differentiable renderer implemented in PyTorch3D [124]. Examples
of results from this approach can be found in Figure 5.3. Unlike previous approaches to
CAD-to-image alignment [166, 144] that use human annotators in-the-loop to provide pose
or correspondences, our approach is fully automatic except for a final human verification
step.

Material Estimation Dataset To perform material estimation from images, we use the
Disney [16] base color, metallic, roughness parameterization given in glTF 2.0 specifica-
tion [50]. We render 512x512 images from 91 camera positions along an upper icosphere of
the object with a 60◦ field-of-view using Blender’s [26] Cycles path-tracer. To ensure diverse
realistic lighting conditions, we illuminate the scene using 3 random environment maps out
of 108 indoor HDRIs [48]. For these rendered images, we generate the corresponding ground
truth base color, metallicness, roughness, and normal maps along with the object depth map
and segmentation mask. The resulting dataset consists of 2.1 million rendered images and
corresponding camera intrinsics and extrinsics.

5.4 Experiments

Evaluating Single-View 3D Reconstruction

As existing methods are largely trained in a fully supervised manner using ShapeNet [17],
we are interested in how well they will transfer to more real-world objects. To measure how
well these models transfer to real object instances, we evaluate the performance of a variety
of these methods on objects from ABO. Specifically we evaluate 3D-R2N2 [22], GenRe [179],
Occupancy Networks [103], and Mesh R-CNN [46] pre-trained on ShapeNet. We selected
these methods because they capture some of the top-performing single-view 3D reconstruc-
tion methods from the past few years and are varied in the type of 3D representation that
they use (voxels in [22], spherical maps in [179], implicit functions in [103], and meshes



CHAPTER 5. A REALISTIC DATASET FOR 3D OBJECT UNDERSTANDING 30

Input Image R2N2 Occupancy Networks GenRe Mesh RCNN GT

Figure 5.4: Qualitative 3D reconstruction results for R2N2, Occupancy Networks,
GenRe, and Mesh-RCNN on ABO. All methods are pre-trained on ShapeNet and show a
decrease in performance on objects from ABO.

in [46]) and the coordinate system used (canonical vs. view-space). While all the models we
consider are pre-trained on ShapeNet, GenRe trains on a different set of classes and takes
as input a silhouette mask at train and test time.

To study this question (irrespective of the question of cross-category generalization), we
consider only the subset of ABO models objects that fall into ShapeNet training categories.
Out of the 63 categories in ABO with 3D models, we consider 6 classes that intersect with
commonly used ShapeNet classes, capturing 4,170 of the 7,953 3D models. Some common
ShapeNet classes, such as “airplane”, have no matching ABO category; similarly, some
categories in ABO like “air conditioner” and “weights” do not map well to ShapeNet classes.

Unlike models in ShapeNet, the 3D models in ABO can be photo-realistically rendered
due to their detailed textures and non-lambertian BRDFs. We render 30 viewpoints of each
mesh using Blender [26], each with a 40◦ field-of-view and such that the entire object is
visible. Camera azimuth and elevation are sampled uniformly on the surface of a unit sphere
with a −10◦ lower limit on elevations to avoid uncommon bottom views. We used a publicly
available HDRI [48] for scene lighting.

GenRe and Mesh-RCNN make their predictions in “view-space” (i.e. pose aligned to the
image view), whereas R2N2 and Occupancy Networks perform predictions in canonical space
(predictions are made in the same category-specific, canonical pose despite the pose of the
object in an image). For each method we evaluate Chamfer Distance and Absolute Normal
Consistency and largely follow the evaluation protocol of [46].

Results A quantitative comparison of the four methods we considered on ABO objects can
be found in Table 5.2. We also re-evaluated each method’s predictions on the ShapeNet
test set from R2N2 [22] with our evaluation protocol and report those metrics. We observe
that Mesh R-CNN [46] outperforms all other methods across the board on both ABO and
ShapeNet in terms of Chamfer Distance, whereas Occupancy Networks performs the best in
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Figure 5.5: Qualitative material estimation results for single-view (SV-net) and multi-
view (MV-net) networks. We show estimated SV-BRDF properties (base color, roughness,
metallicness, surface normals) for each input view of an object compared to the ground truth.

terms of Absolute Normal Consistency. As can be seen, there is a large performance gap
between all ShapeNet and ABO predictions. This suggests that shapes and textures from
ABO, while derived from the same categories but from the real world, are out of distribution
and more challenging for the models trained on ShapeNet. Further, we notice that the lamp
category has a particularly large performance drop from ShapeNet to ABO. Qualitative
results suggest that this is likely due to the difficulty in reconstructing thin structures. We
highlight some qualitative results in Figure 5.4, including one particularly challenging lamp
instance.

Material Prediction

While these existing material estimation approaches show good performance on their re-
spective datasets, the datasets that they use are quite simplistic (planar objects [30]) or not
realistic (procedurally generated shape and material mappings [9]). To date, there are not
many available datasets tailored for the material prediction task. Most publicly available
datasets with large collections of 3D objects [17, 20, 38] don’t contain physically-accurate
reflectance parameters that can be used for physically-based rendering to generate photore-
alistic images. Datasets like PhotoShape [119] do contain such parameters but are limited
to a single category.

In contrast, the realistic 3D models in ABO are artist-created and have highly varied
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SV-net MV-net (no proj.) MV-net

Base Color (↓) 0.129 0.132 0.127
Roughness (↓) 0.163 0.155 0.129
Metallicness (↓) 0.170 0.167 0.162
Normals (↑) 0.970 0.949 0.976
Render (↓) 0.096 0.090 0.086

Table 5.3: ABO material estimation results for the single-view, multi-view, and multi-
view network without projection (MV-net no proj.) ablation. Base color, roughness,
metallicness and rendering loss are measured using RMSE (lower is better) - normal similarity is
measured using cosine similarity (higher is better).

shapes and SV-BRDFs. We leverage this unique property to derive a benchmark for material
prediction with large amounts of photorealistic synthetic data. We also present a simple
baseline approach for both single- and multi-view material estimation of complex geometries.

Dataset Curation We use the material estimation dataset outlined in Section 5.3, but filter
out objects with transparencies, resulting in 7,679 models. We split the 3D models into a
non-overlapping train/test set of 6,897 and 782 models, respectively. To test generalization
to new lighting conditions, we reserve 10 out of 108 HDRI environment maps for the test set
only.

Method To evaluate single-view and multi-view material prediction and establish a baseline
approach, we use a U-Net-based model with a ResNet-34 backbone to estimate SV-BRDFs
from a single viewpoint. The U-Net has a common encoder that takes an RGB image as
input and has a multi-head decoder to output each component of the SV-BRDF separately.
Inspired by recent networks in [9, 30], we align images from multiple viewpoints by projection
using the depth data and bundle original image/projected image pairs as input data to enable
an analogous approach for the multi-view network. We reuse the single-view architecture
for the multi-view network and use global max pooling to handle an arbitrary number of
input images. Ground truth material maps are used for direct supervision. Similar to [31],
we utilize a differential rendering layer to render the flash illuminated ground truth and
compare it to similarly rendered images from our predictions to better regularize network
and guide the training process.

Our model takes as input 256x256 rendered images. For training, we randomly subsample
40 views on the icosphere for each object. For the multi-view network, for each reference
view we select its immediate 4 adjacent views as neighboring views. We use mean squared
error as loss function for base color, roughness, metallicness, normal and render losses. Each
network is trained using the AdamW optimizer [101] with a learning rate of 1e-3 and weight
decay of 1e-4, and trained for 17 epochs.

Results Results for the single-view network (SV-net) and multi-view network (MV-net) can
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Figure 5.6: Qualitative multi-view material estimation results on real catalog images.
Each of the multiple views is aligned to the reference view using the catalog image pose annotations.

be found in Table 5.3. The multi-view network has better performance compared to single-
view network in terms of the base color, roughness, metallicness, and normal prediction
tasks. The multi-view network is especially better at predicting properties that effect view-
dependent specular components like roughness and metallicness.

We also run an ablation study on our multi-view network without using 3D structure
to align neighboring views to reference view (denoted as MV-net: no projection). First, we
observe that even without 3D structure-based alignment, the network still outperforms the
single-view network on roughness and metallic predictions. Comparing to the multi-view
network, which uses 3D structure-based alignment, we can see structure information leads
to better performance for all parameters. We show some qualitative results from the test set
in Figure 5.5. As a focus of ABO is enabling real-world transfer, we also test our multi-view
network on catalog images of objects from the test set using the pose annotations gathered
by the methodology in Section 5.3. We use the inferred material parameters to relight the
object. The results can be found in Figure 5.6. Despite the domain gap in lighting and
background, our network trained on synthetic images makes reasonable predictions on the
catalog images. In one case, the network fails to accurately infer the true base color, likely
due to the presence of self-shadow.

Multi-View Cross-Domain Object Retrieval

Merging the available catalog images and 3D models in ABO, we derive a novel benchmark for
object retrieval with the unique ability to measure the robustness of algorithms with respect
to viewpoint changes. Specifically, we leverage the renderings described in Section 5.3,
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with known azimuth and elevation, to provide more diverse views and scenes for training
deep metric learning (DML) algorithms. We also use these renderings to and evaluate the
retrieval performance with respect to a large gallery of catalog images from ABO. This new
benchmark is very challenging because the rendered images have complex and cluttered
indoor backgrounds (compared to the cleaner catalog images) and display products with
viewpoints that are not typically present in the catalog images. These two sources of images
are indeed two separate image domains, making the test scenario a multi-view cross-domain
retrieval task.

Dataset Curation For this task, we used product type annotations to focus only on rigid
objects, removing items such as garments, home linens, and some accessories (cellphone
accessories, animal harnesses, cables, etc.). As the set of products beyond just those with
3D models are likely to contain near-duplicates (i.e. different sizes of the same shoe), we
then applied a hierarchical Union-Find algorithm for near-duplicate detection and product
grouping, based on shared imagery as a heuristic. We considered near-duplicates as correct
matches of a single instance and thus assigned a unique instance id to all near-duplicate
listings. Product groups are sets of such instances that are from product lines that may
share design details, materials, patterns and thus may have common images (close-up detail
of fabric, fact sheet image, ...). Consequently, we ensured that all instances in a group
are assigned to the same data split (train, val or test). The val and test sets contain only
instances with 3D models and, while their catalog images compose their respective target set
(val-target and test-target), we use rendered images as queries (val-query and test-query).
Table 5.4 summarizes the statistics of this new retrieval benchmark in comparison to the
most common benchmark datasets for DML in the literature.

The validation performance, which is used to optimize model hyperparameters (HPO), is
measured using val-query queries against the val-target set. After HPO, the test performance
is measured using the test-query images against the union of test-target and the 187, 912
catalog images of the train set. We used standard instance-level retrieval metrics (recall at
1, 2, 4 and 8) and report them as an aggregate over all test queries and also as a function
of azimuth and elevation. We split the azimuth angle into 30 bins of 12◦ each and elevation
in 3 bins (< 21◦, [21◦ − 50◦] and > 50◦), such that each bin had roughly equal amounts of
images.

Method To compare the performance of state-of-the-art DML methods on our multi-view
cross-domain retrieval benchmark, we use PyTorch Metric Learning implementations that
cover the main approaches to DML: NormSoftmax [178] (classification-based), ProxyNCA
[111] (proxy-based) and Contrastive, TripletMargin, NTXent [18] and Multi-similarity [158]
(tuple-based). We leveraged the Powerful Benchmarker framework to run fair and controlled
comparisons as in [112], including Bayesian HPO.

We opted for ResNet-50 [55] as the backbone, projected it to 128D after a LayerNorm [3]
layer, did not freeze the batch-norm parameters and added an image padding transformation
to obtain undistorted square images before resizing to 256x256. We used batches of 256
samples with 4 samples per class, except for NormSoftmax and ProxyNCA where we obtained



CHAPTER 5. A REALISTIC DATASET FOR 3D OBJECT UNDERSTANDING 37

Rendered images Catalog
Recall@k (%) k=1 k=2 k=4 k=8 k=1

Pre-trained 5.0 8.1 11.4 15.3 18.0
Constrastive 28.6 38.3 48.9 59.1 39.7
Multi-similarity 23.1 32.2 41.9 52.1 38.0
NormSoftmax 30.0 40.3 50.2 60.0 35.5
NTXent 23.9 33.0 42.6 52.0 37.5
ProxyNCA 29.4 39.5 50.0 60.1 35.6
TripletMargin 22.1 31.1 41.3 51.9 36.9

Table 5.5: Test performance of state-of-the-art deep metric learning methods on the
ABO retrieval benchmark. Retrieving products from rendered images highlights performance
gaps that are not as apparent when using catalog images.

better results with a batch size of 32 and 1 sample per class. After HPO, we trained all losses
for 1000 epochs and chose the best epoch based on the validation Recall@1 metric, computing
it only every other epoch.

Importantly, whereas catalog and rendered images in the training set are balanced (188K
vs 111K), classes with and without renderings are not (4K vs. 45K). Balancing them in
each batch proved necessary to obtain good performance: not only do we want to exploit the
novel viewpoints and scenes provided by the renderings to improve the retrieval performance,
but there are otherwise simply not sufficiently many negative pairs of rendered images being
sampled.

Results As shown in Table 5.5, the ResNet-50 baseline trained on ImageNet largely fails
at the task (5% recall@1). This confirms the challenging nature of our novel benchmark.
DML is thus key to obtain significant improvements. In our experiments, NormSoftmax,
ProxyNCA and Contrastive performed better (≈ 29%) than the Multi-similarity, NTXent
or TripletMargin losses (≈ 23%), a gap which was not apparent in other datasets, and
is not as large when using cleaner catalog images as queries. Moreover, it is worth noting
that the overall performance is significantly lower than for existing common benchmarks (see
Table 5.4). This confirms their likely saturation [112], the value in new and more challenging
retrieval tasks, and the need for novel metric learning approaches to handle the large scale,
the unique challenges and the unique properties of our new benchmark.

Further, the azimuth (θ) and elevation (φ) angles available for rendered test queries
allow us to measure how performance degrades as these parameters diverge from typical
product viewpoints in ABO’s catalog images. Figure 5.7 highlights two main regimes for
both azimuth and elevation: azimuths beyond |θ| = 75◦ and elevations above φ = 50◦ are
significantly more challenging to match, consistently for all approaches. Closing this gap is
an interesting direction of future research on DML for multi-view object retrieval. For one,
the current losses do not explicitly model the geometric information in training data.
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Figure 5.7: Recall@1 as a function of the azimuth and elevation of the product view.
For all methods, retrieval performance degrades rapidly beyond azimuth |θ| > 75◦ and elevation
φ > 50◦.

5.5 Discussion

In this work we introduced ABO, a new dataset to help bridge the gap between real and
synthetic 3D worlds. We demonstrated that the set of real-world derived 3D models in ABO
are a challenging test set for ShapeNet-trained 3D reconstruction approaches, and that both
view- and canonical-space methods do not generalize well to ABO meshes despite sampling
them from the same distribution of training classes. We also trained both single-view and
multi-view networks for SV-BRDF material estimation of complex, real-world geometries - a
task that is uniquely enabled by the nature of our 3D dataset. We found that incorporating
multiple views leads to more accurate disentanglement of SV-BRDF properties. Finally,
joining the larger set of products images with synthetic renders from ABO 3D models, we
proposed a challenging multi-view retrieval task that alleviates some of the limitations in
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diversity and structure of existing datasets, which are close to performance saturation. The
3D models in ABO allowed us to exploit novel viewpoints and scenes during training and
benchmark the performance of deep metric learning algorithms with respect to the azimuth
and elevation of query images.

While not considered in this work, the large amounts of text annotations (product de-
scriptions and keywords) and non-rigid products (apparel, home linens) enable a wide array
of possible language and vision tasks, such as predicting styles, patterns, captions or key-
words from product images. Furthermore, the 3D objects in ABO correspond to items that
naturally occur in a home, and have associated object weight and dimensions. This can
benefit robotics research and support simulations of manipulation and navigation.



40

Chapter 6

Inferring How Objects Can Articulate

In this chapter, we present a neural network approach to transfer the motion from a single
image of an articulated object to a rest-state (i.e., unarticulated) 3D model. Our network
learns to predict the object’s pose, part segmentation, and corresponding motion parameters
to reproduce the articulation shown in the input image. The network is composed of three
distinct branches that take a shared joint image-shape embedding and is trained end-to-end.
Unlike previous methods, our approach is independent of the topology of the object and can
work with objects from arbitrary categories. Our method, trained with only synthetic data,
can be used to automatically animate a mesh, infer motion from real images, and transfer
articulation to functionally similar but geometrically distinct 3D models at test time.

6.1 Motivation

We live in a 3D world where interacting with objects in our environment is necessary to carry
out daily activities. Therefore, the objects around us have been designed with the appropriate
structures and part motions to afford various actions to both humans and robotic agents.
Whether for general visual perception tasks such as functionality inference or robotic action
planning, it is a valuable skill to be able to predict the part motions or articulations of
everyday objects. Recently, there has been much interest in training deep neural networks
to learn such predictions, especially in the context of embodied AI [164, 110]. However,
the availability of 3D models with associated part articulations [157, 164] for training these
methods is still limited.

Creating articulated 3D models relies on human effort which can be expensive in terms
of time, cost and expertise. As a result, most 3D model datasets do not contain objects
with any kind of functional part and motion annotations. For example while most of the 3D
models in ABO represent objects that can be interacted with, such as desks with openable
drawers or chairs that recline, the 3D models have all been constructed in their “rest” (i.e.,
unarticulated) poses that do not expose their real functionality. The same is true for the vast
majority of 3D models in well-established repositories such as ShapeNet [17] (3M models) and
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46801_7

CA2T-Net

Rest-state mesh

Articulated image

Pose estimation

Part segmentation

Motion prediction

 Transfer to Real Images 

Animation

Motion Analogies

Training

Inference

Figure 6.1: Predicting pose, part, and motion annotations for synthetic meshes given
an exemplar image. At test time, we can perform 3D animation, transfer motion to functionally
similar objects, and generalize to real {image, mesh} pairs.

PartNet [109] (27K models). The largest 3D datasets with part articulations, SAPIEN [164]
and Shape2Motion [157], only contain 2K manually annotated synthetic models.

In this chapter, we introduce single-view 3D articulation transfer , a learning-based ap-
proach aimed at endowing the many existing 3D models, in particular, those of real products
such as ABO, with part articulations. Specifically, given a single RGB image, I, showing how
an object can be articulated, and a 3D mesh model M in its rest state, our goal is to infer
the pose, motion parameters, and 3D part segmentation of M such that we can re-pose and
transform it to match the articulation in the input image. Our method is structure-agnostic,
as it makes no assumption on the topology of the input model. Unlike many existing methods
for articulated pose estimation, our approach is also category-agnostic, meaning no further
training is necessary to run our model on objects from novel categories and it can make pre-
dictions for objects from arbitrary categories. Further, the object represented in the input
image I and the mesh M need not be exactly the same, but should simply share a functional
similarity to allow a plausible articulation transfer. To our knowledge, our work is the first
to pose the problem of single-view articulation transfer onto a target 3D object. As indicated
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in Table 6.1, the most relevant works [175, 157, 90, 67, 171] differ from our problem setting
in one way or another.

We call our network CA2T-Net for category-agnostic articulation transfer, and demon-
strate that our method has superior performance in single-view 3D articulation transfer
compared to baseline methods and the current state-of-the-art in terms of motion predic-
tion. Our approach takes as input an articulated image and rest-state 3D point cloud and
uses three branches to predict global pose, part segmentation, and 3D motion parameters.
The network is trained end-to-end using synthetic data. We also show three downstream ap-
plications of our trained approach: automatic mesh animation, generalization to functionally
similar objects, and transfer to real objects and images in ABO.

Our work is a first step towards replacing manual part and motion annotations [157, 164]
with a fully automated inference of part articulations and motion parameters of arbitrary
3D shapes. With the wide availability of images depicting object articulations (e.g., catalog
images found in the product metadata within ABO), our image-to-3D transfer presents a
promising step towards articulated 3D shape creation at scale.

6.2 Background

Part Segmentation In computer vision, most research on 2D or 3D part segmentation
focuses on semantic [174, 109] or functional [73, 61, 157, 67] meanings of the parts. Jiang
et al. [67] extended 2D semantic segmentation networks (e.g. Mask R-CNN) to predict the
location of openable parts from a single-view image. Gelfand et al. [45] defined a part seg-
mentation as a kinematic surface composed of points that undergo the same type of motion.
Other work has relied on a category-level canonical container or a fixed kinematic structure.
For example, follow-up work [90, 171] learned a fully supervised canonicalization to map in-
stance observations of different position, orientation, scale and articulation into a canonical
container. Xu et al. [169] estimated the part segmentation from a depth image in a known
category of a fixed kinematic chain. In contrast, our approach requires neither semantic an-
notation nor category-level functional information or kinematic structure. Further, our work
is not about learning semantic or functional part segmentation, but rather image-guided
part segmentation. Our method finds the correspondence between an input image and a 3D
shape under different articulation configurations.

Articulated Pose Estimation Articulated pose estimation from a 2D image is another
focus of our work. Recently, Wang et al. [156] introduced the Normalized Object Coor-
dinate Space (NOCS), allowing category-level rigid pose estimation. Follow-ups [90, 99]
have used this representation to perform articulated pose estimation. For example, Li et
al. [90] proposed a part-level canonical reference frame and performed part pose fitting using
RANSAC. Liu et al. [99] extended NOCS to Real-World Articulation NOCS which focuses
on pose estimation for articulated objects with varied kinematic structures in real-world set-
tings. Kulkarni et al., [81] introduced an approach for articulating a template mesh given



CHAPTER 6. INFERRING HOW OBJECTS CAN ARTICULATE 43

M
et
h
o
d

T
as
k

In
p
u
t

P
os
e
3D

P
ar
t
S
eg
.
C
at
-S
p
ec
ifi
c

D
ee
p
P
ar
tI
n
d
u
ct
io
n
[1
75
]
T
ra
n
sf
er

ar
ti
cu
la
ti
on

fr
om

P
C

→
P
C

2
P
C
s

×
✓

N
o

S
h
ap

e2
M
ot
io
n
[1
57
]

P
re
d
ic
t
m
ot
io
n
fo
r
al
l
m
ov
ea
b
le

p
ar
ts

P
C

×
✓

N
o

R
P
M
-N

et
[1
71
]

P
re
d
ic
t
m
ot
io
n
fo
r
al
l
m
ov
ea
b
le

p
ar
ts

P
C

×
✓

N
o

A
N
C
S
H

[9
0]

A
rt
ic
u
la
te
d
p
os
e
es
ti
m
at
io
n

P
C

✓
✓

Y
es

N
A
S
A
M

[1
60
]

R
ec
on

st
ru
ct

an
d
an

im
at
e
ob

je
ct
s

R
G
B
s
+

p
os
e

×
✓

Y
es

O
P
D

[6
7]

P
re
d
ic
t
m
ot
io
n
fo
r
al
l
op

en
ab

le
p
ar
ts

R
G
B

✓
×

N
o

C
A

2
T
-N

et
(o
u
rs
)

T
ra
n
sf
er

ar
ti
cu
la
ti
on

fr
om

im
ag
e
→

m
es
h

R
G
B
,
P
C

✓
✓

N
o

T
ab

le
6.
1
:
C
A

2
T
-N

e
t
a
d
d
re

ss
e
s
th

e
p
ro

b
le
m

o
f
si
n
g
le
-v
ie
w

a
rt
ic
u
la
ti
o
n

tr
a
n
sf
e
r,

fr
o
m

a
n

im
a
g
e

to
a

m
e
sh

.
E
x
is
ti
n
g
w
o
rk

ta
rg
et
s
re
la
te
d
p
ro
b
le
m
s,

b
u
t
d
iff
er
s
in

te
rm

s
of

ta
sk

an
d
in
p
u
ts

of
th
e
m
o
d
el
.



CHAPTER 6. INFERRING HOW OBJECTS CAN ARTICULATE 44

a target image segmentation mask from a category-specific image collection, but requires
hand-annotated part segmentations. Other work [171, 161, 172] relies on a series of frames
displaying an object actively articulating. In contrast, our method does not require learning
the canonical representation with a fixed kinematic structure for each category. Without the
need of sequences of images of an object’s different articulation states as inputs, we require
only an articulated single-view image and its unarticulated 3D model to perform articulated
pose estimation.

Motion Estimation & Transfer In 3D understanding, considerable work has focused
on the problem of motion prediction. Methods largely differ in the types of input(s) used
for motion estimation and transfer. Initial work [45, 107, 171] utilized only the geometry
of an object to infer part segmentation and motion. Li et al. [88] focused on predicting
part mobility of an object from a sequence of scans displaying the the dynamic motion
of articulated models. More recently, motion estimation has been performed from depth
images [1, 90]. Mo et al., [110] learned to make per-point motion predictions from a single
RGB or depth image by interacting with articulated objects in simulation. Other approaches
use a sequence of images or video clips to infer 3D part movement [62, 175, 66]. Wei et
al., [160] trained an implicit representation of the geometry, appearance, and motion of an
object in a self-supervised manner from image observations, however their approach is limited
to certain classes of articulated objects. Recently, Jiang et al., [67] introduced a method for
estimating 3D motion parameters from single image. Their approach aims to predict motion
parameters for all “openable” parts, rather than focusing on transferring arbitrary motion
from one object to another.

Our work makes no assumptions on the input category and can both estimate and transfer
3D motion. We formulate the problem as learning the articulated segmentation of the input
geometry, estimating the pose and predicting motion parameters of the moveable part (driven
by the input image). Unlike many existing approaches, our work is both category-agnostic
and structure agnostic.

6.3 Method

We propose a model for the single-view articulation transfer task. Given an articulated
RGB image and corresponding 3D model, our method infers the pose, part segmentation
and motion parameters that can be used to deform the mesh to match the input image.

Architecture

Our architecture is composed of 3 distinct branches: a pose prediction branch, a motion
prediction branch, and a 3D part segmentation branch. Our model takes two inputs: an
image I ∈ Rh×w×3 and point cloud shape S ∈ Rn×3, where n is the number of points in
a point cloud sampled from the normalized input mesh. Image features, h = fθ(I), are



CHAPTER 6. INFERRING HOW OBJECTS CAN ARTICULATE 45

Figure 6.2: Diagram of training architecture. CA2T-Net takes in an RGB image and 3D model
and predicts the global pose of the object in the image, segmentation of the part that is articulated
in the image, as well as part-specific motion parameters. Each motion attribute is predicted from
a spearate head.

extracted with a ResNet-18 [146], and shape features, s = gθ(S), are extracted with a
PointNet-like [122] architecture, without input and feature transforms for pose-invariance.
Both the image and shape encoder are trained from scratch. The shape and image features
are concatenated and passed through a set of fully connected layers resulting in a joint image
and shape embedding, z ∈ Rb×512. Each of the three branches take z as input. An overview
of the full architecture can be found in Figure 6.2.

Pose Prediction The pose prediction branch of our architecture is inspired by [167], a
method that also takes as input an RGB image (however unarticulated) and a 3D shape,
and predicts the pose of the 3D model in the image. As in [167] we predict pose in terms of
azimuth, elevation, and in-plane rotation. The network first classifies the angle bin and the
regresses an offset. Let l̂i,j be the predicted bin for the j-th Euler angle (azimuth, elevation,

in-plane rotation) of the i-th datapoint, and δ̂i,j be the predicted relative offset within the
bins. For bin prediction, we have 24 azimuth classes, 12 elevation classes, and 24 in-plane
rotation classes. We train the model with a cross-entropy loss (LCE) for bin classification
and Huber loss (Lhuber) for regression offsets.

Lp =
N∑
i=1

∑
j∈E

LCE(li,j, l̂i,j) + Lhuber(δ̂i,j, δi,j), (6.1)



CHAPTER 6. INFERRING HOW OBJECTS CAN ARTICULATE 46

where E = {azimuth, elevation, in-plane} and li,j and δi,j are the ground truth pose bins and
offsets, accordingly.

Motion Estimation In this work we consider two distinct motion types, revolute (rota-
tion) and prismatic (translation). We parameterize the revolute motion in terms of motion
axis, origin, and magnitude, and prismatic in terms of motion axis and magnitude. Each
motion attribute is predicted by a separate head, for origin, axis, magnitude, and class. Let
Lmc be the classification loss on motion type, defined as:

Lmc =
N∑
i=1

LCE(mi, m̂i), (6.2)

where mi is the ground-truth motion class represented as a one-hot vector and m̂i is the
corresponding predicted class.

Motion axis â ∈ R3, origin ô ∈ R3, and magnitude ẑ ∈ R are regressed and optimized
using Huber loss:

Lm =
N∑
i=1

Lhuber(ai, âi) + Lhuber(oi, ôi)+

Lhuber(zi, ẑi).

(6.3)

We predict motion parameters in the world coordinate space (i.e., object’s canonical co-
ordinate frame). Motion origin and magnitude for prismatic motion is given in terms of
normalized object size, and magnitude for revolute motion is given in terms of radians.
As motion origin is not relevant for prismatic joints, we only apply the motion origin loss,
Lhuber(oi, ôi), in the cases of predicted revolute motion.

3D Part Segmentation Our 3D part segmentation branch takes in the transformed global
shape and image features, z, as well as a 3D point, x ∈ R3, and predicts whether or not that
point (from the pointcloud) corresponds to the moveable part. Our architecture is inspired
by DeepSDF [118] which also takes as input a set of features and a 3D point. After processing
these inputs with 2 fully connected layers, the initial inputs are again concatenated with the
intermediate features and further processed by 3 more fully connected layers. Let p̂ be the
predicted confidence of a certain point x’s movability - we define the 3D part segmentation
loss as:

Ls =
N∑
i=1

M∑
j=1

LCE(pi,j, p̂i,j), (6.4)

where i indexes over training datapoints and j over the M sampled 3D points from the input
shape. For training we use M = 1000.
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Full Training Objective Our full training loss is a weighted combination of losses applied
to each of the three branches:

L = λpLp + λmcLmc + λmLm + λsLs. (6.5)

The coefficients on the loss terms are λp = 2, λmc = 1, λm = 8, and λs = 1. We train the
network using the Adam optimizer with a learning rate of 1e-3 and batch size of 128 for 50
epochs and decrease the learning rate to 1e-4 for the final 10 epochs.

Inference During inference, we randomly sample 100 points on each distinct part of the
input model and compute the network’s 3D part prediction for each point. We apply the
network’s predicted motion only to parts that have >50% points considered “moveable”.

6.4 Evaluation and Results

We train and evaluate our method using images and ground-truth data generated from the
SAPIEN PartNet-Mobility [164] dataset.

Dataset

The original SAPIEN PartNet-Mobility dataset consists of 2,346 CAD models from 46 cate-
gories with part segmentations and motion annotations. As we are interested in articulation
transfer from a single-image, we focus on objects with large moveable parts such as the door
or drawer of a cabinet, rather than the individual keys on a keyboard. To do so, we filter
out CAD models that only contain moveable parts that consist of <5% of the overall surface
area of the object, as well as objects with missing or incomplete motion data. After this
filtering process, 1,717 objects remain.

From the remaining objects, we render 256 images per object using the SAPIEN Vulkan
Renderer, each with a random pose, randomly sampled part, and randomly sampled motion
parameters within the valid range. For simplicity, we only consider one moving part at a
time. The pose distribution ranges from azimuth ∈ [−90◦, 90◦], elevation ∈ [−45◦, 45◦], and
in-plane rotation ∈ [−20◦, 20◦]. Such ranges were chosen so that the articulated part on the
3D model is usually visible (most moveable parts are on the front of the object, rather than
the back). For each image, we also randomly sample the camera’s field-of-view ∈ [20◦, 60◦].
In total we render approximately 280K images for training, and 10K images for evaluation.

For each image we also write out the rest-state mesh, the ground truth pose of the object,
3D part segmentation (of the articulated part from the rest of the object), and motion
parameters. The motion parameters consist of a motion type ∈ {revolute, prismatic}, axis,
origin, and magnitude. In the case of revolute motion, the magnitude corresponds to a
rotation amount, whereas it corresponds to translation distance for prismatic motion. From
the rest-state mesh we sample a point cloud that is the input to our network. For training, we
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resize images to 224 × 224 and sample a pointcloud of 2500 points for each mesh. Pointclouds
are further normalized to fit in a unit box.

Baselines

We consider three baseline approaches to single-view articulation transfer: selecting a random
motion and part (RandMot), selecting the most frequent motion parameters (FreqMot), and
OPD-O [67], the current state-of-the-art approach for 3D motion prediction. RandMot and
FreqMot are inspired by similar baselines used by OPD [67], however modified to predict
additional outputs such as object pose and motion magnitude. RandMot gives a lower bound
on performance whereas FreqMot is a relatively strong heuristic-based baseline approach.

RandMot For the random motion (RandMot) baseline, we sample a random set of ground
truth labels from the training dataset, including random pose, motion axis, motion origin,
type, and magnitude. For the predicted part segmentation, we randomly sample a valid part
from the set of parts contained in the input mesh.

FreqMot In contrast to the RandMot baseline, the frequent motion (FreqMot) baseline
method predicts the most frequent motion parameters from the train dataset. We still ran-
domly sample a global pose, but sample the predicted part segmentation based on statistics
from the training dataset. We compute the average size of the most frequently sampled part
in the training set and select the part that is most similar in size at inference time. For the
remaining categorical variables, we sample the most frequent value from the training set.
For real-valued parameters such as motion magnitude, motion axis, and motion origin, we
first cluster the values from the training set and sample the mean value of the most frequent
cluster.

Openable Part Detection [67] While designed for a different problem formulation,
Openable Part Detection (OPD) is the most applicable to our articulation transfer task
in terms of model output. OPD takes a single RGB image and predicts 2D segmentation
masks and 3D motion parameters for all parts identified as “openable”. While their method
cannot be directly used to animate a 3D model, we can still compare to them in terms of 3D
motion prediction and 2D part segmentation. Specifically, we compare our method to OPD-
O, the best-performing variant of OPD in terms of real image performance. OPD-O also
predicts motion parameters in the world coordinate system by using an additional branch
to predict extrinsic parameters.

Metrics

We consider evaluation metrics for pose, motion, and segmentation performance, as well as
3D reconstruction metrics on the final deformed mesh. Our Pose metric is the percentage
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Figure 6.3: Qualitative results on SAPIEN validation set. Our method’s predictions can be
used to deform the input mesh to match the articulated image.

of pose estimations with rotation error less than 30◦. Motion-Type refers to the 2-way
classification accuracy of revolute or prismatic motion. Motion-Axis is the average angular
error (in degrees) between the normalized predicted and ground-truth motion axes, and
Motion-Origin is the average L1 distance between the predicted and ground-truth motion
origin. Mag-R and Mag-P refer to the revolute and prismatic magnitude errors, respectively,
measured in degrees for the case of revolute motion and L1 distance for prismatic motion.
Because motion origin is not applicable for prismatic motion, we only evaluate motion origin
for predicted revolute parts. Seg. refers to the 3D segmentation accuracy, measured across
1000 sampled points. Finally for 3D reconstruction metrics, we report Chamfer distance and
F1@0.1.

Experimental Results

Performance on Validation Set We report the performance of our model trained on
the SAPIEN dataset in Table 6.2. As no neural network-based approach currently exists
for the full single-view articulation transfer task, we compare against our two heuristic-
based baselines: RandMot and FreqMot. We consider two train/validation splits of varying
difficult, I-split (per-image: validation set contains unseen images) and O-split (per-object:
validation set contains unseen images of novel objects).

Compared to the RandMot and FreqMot baselines, we find that our method achieves the
best performance across all metrics. Understandably, the validation performance is better
on the I-split than the O-split. Visualizations of each method’s predictions can be found in
Figure 6.3.
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Motion

Type (↑) Axis (↓) Origin (↓) mAP (↑)

OPD-O [67] 94.0% 72.5◦ 0.912 41.0%
CA2T-Net 98.9% 50.5◦ 0.757 49.2%

Table 6.3: Comparison to OPD for 3D motion prediction and 2D segmentation. We
compare to OPD, a method that estimates motion parameters for all movable parts given an RGB
image. For segmentation, we report mAP@IoU=0.5.

Comparison to OPD We compare our approach to the recently introduced OPD method
[67], which represents the state-of-the-art in terms of 3D motion estimation. OPD predicts
2D segmentation masks, motion type, and 3D motion parameters (axis, origin) for all move-
able parts (based on priors in the training dataset) given a single image, whereas CA2T-Net
takes a 3D model and a driving input image, and predicts 3D segmentation, motion type,
and 3D motion parameters (axis, origin, and magnitude). To compare the two approaches
on a somewhat level playing field, we evaluate the performance of CA2T-Net and OPD on
the motion parameter predictions that the methods share in common. Because OPD makes
multiple predictions for all moveable parts in an image but in our problem setting we are
only interested in the part that has actually moved in the image, we take only the OPD
predictions that have ≥ 0.5 IOU with the ground-truth segmented part. Further, as OPD
is limited to predicting only openable part motion, we only consider datapoints that come
from the subset of the 11 categories that OPD was trained on. This reduces the size of our
valiation set from 10,000 images to 1,039 images. We utilize the CA2T-Net model trained
on the more difficult per-object training split (O-split).

Results can be found in Table 6.3. We also compare to OPD in terms of 2D segmentation
ability, by projecting the CA2T-Net -predicted 3D part segmentation to 2D and measuring
mAP at IoU = 0.5. In general we find that CA2T-Net outperforms OPD in terms of motion
type, origin, and axis prediction, as well as 2D segmentation ability. Intuitively, learning 3D
features from the input model in CA2T-Net should support better prediction of 3D motion
parameters. A common failure case that we observe with OPD is predicting a motion axis
that is 180 degrees rotated from the correct axis.

Multi-Task vs Single-Branch Learning We study the contribution of each of the loss
terms corresponding to each branch of our architecture by training three variants of our
model: pose prediction only, motion prediction only, and 3D segmentation prediction only.
The results can be found in Table 6.4. We find that the multi-task objective with all three
loss terms leads to the best performance across most metrics, specifically for pose and 3D
segmentation estimation. The performance gains for motion estimation are less pronounced.
Intuitively, accurate pose prediction should aid the alignment between the image and shape
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Motion

Pose (↑) Type (↑) Axis (↓) Origin (↓) Mag-R (↓) Mag-P (↓) Seg (↑)

Pose Only 69.6% - - - - - -
Motion Only - 92.5% 52.2◦ 0.599 52.3◦ 0.26 -
Seg Only - - - - - - 78.9%
All 74.0 % 91.5% 58.7◦ 0.605 51.9◦ 0.23 81.8%

Table 6.4: Training for individual objectives vs multi-task learning. We train three separate
networks for pose, motion and segmentation only and compare their performance to the proposed
multi-task objective. We find that optimizing all losses together yields the best results.

inputs, which should improve part segmentation ability. Such an effect may explain the
boost in performance by doing multi-task training.

Failure Cases The most common failure cases of our method include pose prediction failure
(e.g., predicting a pose that is 180-rotated from the ground-truth pose) as well as failure to
segment any part of the object when the motion magnitude is small. Visualizations of these
failure cases can be found in Figure 6.6.

6.5 Applications

We present three exciting applications of our model: generalization to functionally similar
objects (i.e., motion analogies), 3D model animation, and transfer to real images and meshes
in ABO.

Motion Analogies

During training, our method takes as input a 3D model that exactly matches the geometry
of the object pictured in the 2D image. However, at test time we can swap the 3D input
with a functionally similar 3D model that does not exactly match the input image to perform
a motion analogy. To achieve this, we swap the input model with a different model from
the same category as the original input 3D model, and run our method with no additional
modifications. The articulated outputs predicted by our method can be seen in Figure 6.4.
We note that in this setting our model has to not only segment and predict motion for
the corresponding articulated part on the swapped shape, it also has to accurately predict
the pose in this setting that was never seen during training. In general we find that our
method can segment the functionally similar part and produce motion parameters that lead
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Input Motion Transfer Input Motion Transfer

Figure 6.4: Motion analogies. By presenting a functionally similar but geometrically distinct 3D
model at test time, we can transfer motion across analogous 3D parts.

to a plausible deformation of the non-matching input model, even when the input model is
drastically different from the articulated image (see Figure 6.4 left column, third row).

Animation: Interpolation and Extrapolation

A convenience of our motion parameterization is that animation of the input 3D model can
be achieved simply by varying the predicted motion magnitude. As a result, the predicted
segmented part will move along or around the predicted axis. We can interpolate between the
rest-state magnitude (0) and predicted magnitude to simulate the motion of a part opening
and closing, or even consider magnitude settings beyond the predicted value to get motion
extrapolation. See Figure 6.5 for an animation example.

Transfer to Real Objects & Images

A natural source of real-world articulated objects, including rest-state mesh and image pairs,
comes from the ABO dataset [25]. The dataset contains catalog images of Amazon products,
as well as a subset of 3D models corresponding to the object in the images. The catalog
images range from stock-like photos to close-up detail shots, and also sometimes contain
an articulated picture of the object. We gathered a subset of approximately 50 catalog
images that show articulated objects (with a single moving part) for which there also exist
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Interpolation

Extrapolation

Interpolation

Extrapolation

Input Pred (New View) Interpolation Extrapolation

Figure 6.5: Interpolation and extrapolation in 3D from a single input image. Our motion
parameterization can easily be used to interpolate between the rest-state and articulated object
pose, or even extrapolate beyond the motion that is seen in the input image.

Input Pred GT Input Pred GT

Figure 6.6: Typical failure cases in articulation transfer. Pose prediction failures (180 degrees
off, left column), and failure to predict a segmented part when motion magnitude in image is small
(right column).

corresponding 3D models as a real-world use-case of the single-view articulation transfer
setup.

Unlike the training objects in the SAPIEN dataset that have annotated part segmenta-
tions, meshes from the ABO dataset are unsegmented. Further, articulated image instances
in ABO have no ground-truth in terms of pose, part segmentation, and motion annotations.
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To achieve a candidate part segmentation we leverage the fact that the meshes in ABO
happen to be designed by artists, part by part, and thus different parts of the object tend to
be represented by mesh pieces that are disconnected from the rest of the object. As a result,
running connected components on the ABO meshes tends to give us an over-segmentation of
the object’s functionally relevant parts. We treat these connected components as pseudo-part
segmentations and can then run CA2T-Net on this data with no modifications.

Qualitative results showing our model applied, without any finetuning, to real images
from the ABO dataset can be seen in Figure 6.7. Note that the meshes in ABO were designed
to simply show the product in its rest-state, rather than with articulation in mind (like in
SAPIEN). This is shown by the fact that drawers are simply external panels rather than a
full drawer part enclosed by the rest of the object. Further, our model was trained only with
inputs that show a single articulated part, whereas realistic catalog images typically show
multiple articulated parts at once. We include a challenging instance of this in Figure 6.7
(row 3), where the input image contains a recliner chair, which is a category not seen during
training, with multiple complex motions, including a reclined headrest and raised footrest.
As our method is category-agnostic, it can handle inputs like this at test-time.

6.6 Discussion

We proposed a method to transfer the articulation from a single-view image to a 3D model in
such a way that the model can be deformed to match the input image. To our knowledge, we
are the first to solve this task in the setting of household objects from arbitrary categories. In
this work we only consider articulated exemplar images with a single moving part displayed.
Of course, articulated images can commonly show multiple moving parts. Extending our
method to predict multiple motion types and part segmentations is a practical next step
and can be achieved by combining Mask RCNN-style detections (as used in OPD) with our
method. Further, our method requires a 3D model as input which can limit its practical
use in say, an embodied perception system navigating the world. Recent advances in CAD
model retrieval from a single image [82, 83, 51] can be used to retrieve a similar 3D CAD
model, and our results on functionally similar shape swapping suggest that our approach
will be able to handle this case. Thus combining CA2T-Net with CAD retrieval methods
could be a promising path forward to allowing our method to run on single image inputs
only. Finally, we consider only rigid motion (further, just prismatic and revolute motion) in
this work, but considering how this approach can be extended to more complicated motion
types as well as non-rigid deformation is an interesting avenue for future work.
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Figure 6.7: Transfer results to real articulated objects. We run our model on instances of
ABO objects with no finetuning and are able to make reasonable predictions despite the domain
gap.
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Chapter 7

Multi-View Data for Self-Supervised
Learning

Original Image 2D Augmentation 3D Augmentation

Figure 7.1: Generating 3D data augmentations on ImageNet. We explore the possibility of
generating 3D rotations of ImageNet images, in addition to the standard 2D data augmentations
such as color jitter and cropping.

This chapter studies the impact of learning unsupervised contrastive features with multi-
ple viewpoints of objects. This is in contrast to the standard setting, where learning occurs
only with single image views that are then 2D augmented with various image-level transfor-
mations. We first render a synthetic dataset from CAD models that allows for training with
multiple viewpoints of the same object, and find that the learned representations outperform
training with single views in terms of nearest neighbors classification. We then introduce
an image-to-mesh generation pipeline that allows generating novel 3D views from any RGB
input image (“3D data augmentation”). We apply this pipeline to the entire ImageNet [29]
dataset, and find that training with 3D data augmentation slightly improves downstream
ImageNet accuracy, as well as performance on various out-of-distribution test sets.

This chapter includes joint work with Ari Morcos, Georgia Gkioxari, Shiry Ginosar, and Jitendra Malik
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7.1 Motivation

Humans are remarkably able to extract general representations of objects from a single
image. These representations capture both the shape and texture of objects and enable us
to reason about category membership and object affordances. We learn this implicit shape
reasoning capability in childhood by viewing objects from multiple angles—first passively
and eventually actively by directly interacting with them [4]. In fact, extensive multi-view
visual input from just a small set of objects makes up the bulk of visual data that we receive
as infants [23]. This experience with object-centric views from a diverse set of poses [4]
bootstraps children’s ability to recognize objects from novel categories, eventually with as
little as one label [85, 23]. Critically, object labels play a minor role in this learning process.

In machine learning, self-supervised methods such as contrastive learning [86, 53, 37,
163, 151, 106, 19, 18, 57], have done away with the need for labels in object-representation
learning. However, in contrast with the multi-view paradigm of human object-learning,
these methods rely on only seeing single instances, and therefore single views, of different
objects. This is perhaps due to the current dominant trend of training neural networks with
readily-available large datasets of single images.

In this paper, we present a scientific study to understand the benefits of learning from
multiple views of the same object, compared to the traditional single-image approach [29,
56, 74]. Taking note of the ability of infants to learn shape representations from visual input
with minimal category labels [85, 23], we study this question in a self-supervised, contrastive
framework where no category labels are required for learning. Rather, we use a naturally
available cue—the preservation of object identity when viewed from different orientations.
This form of supervision is natural for an active agent collecting its ego-centric datastream.

As real-world object-centered multi-view datasets are not abundant, we first demonstrate
a system that learns from rendered views of synthetic objects. Nevertheless, we show that our
model trained with synthetic multi-view inputs is better able to capture class and shape-
based information that generalizes to novel instances and categories. Using advances in
off-the-shelf tools [129, 145, 135], we then introduce a 3D data augmentation pipeline that
can extend this idea to arbitrary single-view image datasets, such as ImageNet [29], when
no multi-view data is actually available.

7.2 Background

Contrastive learning Contrastive learning and triplet losses have a long history in rep-
resentation learning [86, 53, 37]. More recently, contrastive losses have seen a resurgence
as a very successful method for unsupervised pretraining for ImageNet classification [163,
151, 106, 19, 18, 57]. These methods typically rely on some type of data augmentation on
a single image in order to learn representations that are invariant to augmentations at the
image instance-level. Rather, we are interested in learning representations that are invariant
to viewpoint changes at the object-level. Most related to our efforts are Lin et al. [98], who
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learn from multiple views of rendered objects and demonstrate that their learned metric
is better aligned with human perception than AlexNet features. While their experiments
consider only synthetic images, we provide evidence that multi-view images (synthetic and
real) are beneficial for tasks on real-world data.

Learned pose- and illumination-invariance has been well-studied in the context of face
recognition. For example, the seminal work of [131] employs metric learning on multi-view
face images. Here, we show the value of multi-view representation learning for recognizing
and generalizing to arbitrary classes of objects.

Learning 3D from multiple views Learning explicit 3D representations from multiple
views [22, 103, 168, 179, 46] is a problem that is related to ours. However, in addition to
multi-view images, these methods often require 3D supervision and/or camera intrinsics and
extrinsics. Moreover, they operate either on a single object or on a few classes of objects
that were seen during training. In contrast, we do not require any extra forms of supervision
and learn an implicit representation that is invariant to pose.

Learning classes from multiple views Bambach et al. [4] collect a multi-view dataset
for supervised learning based on images collected from a head-mounted camera on both
toddlers or adults. They found that the views from toddlers contained a more diverse range
of poses and object scales than adults, and networks trained on toddler-generated multi-
view data generalized better than that of adults. We are interested in this problem but in an
unsupervised setting. Further, while [4] only showed generalization results on different views
of single objects, we show generalization across objects, as well as to novel object classes.

Texture bias in CNNs A common finding in both ImageNet-supervised [42] and self-
supervised neural networks [43] is that they are biased towards texture, rather than shape.
Hermann et al. [59] have shown that data augmentations such as random cropping can
increase texture bias in self-supervised networks. Existing approaches have either used arti-
ficial stylized images [42, 92] or non-cropping data augmentation [59] to reduce texture bias.
In this work, we show that training on naturalistic, multi-view data can reduce the texture
bias in CNNs.

7.3 Learning View-Invariant Representations with

ShapeNet

To gain an intuition about the effects of training with multiple 3D views in contrastive
learning, we set up a toy dataset based off of synthetic mesh models for which we can render
arbitrary novel viewpoints. We then can leverage this multi-view data as supervision to
learn visual representations that are invariant to pose. To understand the benefits of multi-
view imagery, we build off of the contrastive learning framework of SimCLR [18]. We train a
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single-view network, where two images, xi and xj, that originate from the same underlying
image and differ only by randomly sampled data augmentations are passed through encoders
with shared weights to obtain hi = f(xi) and corresponding hj. These representations are
further passed through a small multi-layer perceptron (MLP) projection head, g(·) to obtain
zi and zj. We apply normalized temperature-scaled cross entropy loss [18] to push the learned
representations together, and away from those corresponding to other image instances. In
practice, we train in a batch setting and negatives are obtained from the other examples in
the batch. We also train a multi-view network, where instead of augmented versions of
the same image, we propose to use two viewpoints of the same object as input to the model.
Over training, this model learns to push the learned representations of the same object in
different poses together, and away from representations of other objects. In other words,
under perfect training conditions, this model should learn to become invariant to object
pose. Finally, to get a feel for the difficulty of each dataset and task, we train a variant
that uses class labels (class-supervised network). In this setup, rather than sampling two
augmented versions of the same image, or two viewpoints of the same object, positives are
drawn from the same class and negative examples come from different classes.

Experimental Setup

Dataset We utilize ShapeNet [17], a collection of 3D CAD models commonly used for
benchmarking the performance of 3D reconstruction methods. Because ShapeNet objects
are organized into 55 distinct categories, we can leverage this category information to create
an effective train/test split for testing generalization. We train on only 20 categories (decided
as those with ≥ 500 models per category). For evaluation, we hold out object instances
both from training classes, as well as evaluate on instances from the 35 held-out classes.
For training, we use rendered images from 500 different models (24 poses per model) per
class. We render viewpoints evenly spaced from 0◦-360◦ in azimuth and elevation sampled
randomly from the range [-10◦, 10◦]. The rendered dataset is divided into an 80%/10%/10%
train/val/test split at the object-level (views from the same object always fall within the
same split).

Implementation Details All models use a ResNet-18 [55] backbone. For these experi-
ments we use a 512-D h-representation and 256-D z-representation. We train with a batch
size of 256 and Adam optimizer with a learning rate of 5e-4 that decays with a multiplier of
0.1 after 30,000 training steps. Since we are interested in studying only the effect of training
on single vs. multi-view images, we train both models in precisely the same way using the
same data augmentation (from [18]).

Results

Pose-Invariant Representations Better Capture Class Structure To quantify how
well each learned representation captures class structure, we set up a 1-NN classification
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Seen Classes Unseen Classes

k = 1 k = 5 k = 1 k = 5

R 9.2 ± 2.0 19.8 ± 2.8 12.0 ± 2.3 25.2 ± 3.1
SV 34.8 ± 3.1 53.4 ± 3.2 24.5 ± 3.0 40.4 ± 3.5
MV 48.4 ± 3.0 62.0 ± 3.1 49.8 ± 2.7 68.4 ± 2.5
CS 58.8 ± 2.9 69.9 ± 2.8 28.2 ± 3.2 45.7 ± 3.5

Table 7.1: Multi-view networks outperform single-view networks on ShapeNet NN clas-
sification. Classification accuracy (± SEM) for random weights (R), single-view (SV), multi-view
(MV), and class-supervised (CS) networks using a support set of either k = 1 or k = 5 examples
per class.

task. We extract features for all images in the test set, and create either a one-shot or
five-shot classification similar to [84]. That is, we sample a query image in addition to a
support set of either 1 or 5 examples from each class, then use the label of the instance from
the support set with highest cosine similarity to the query image as the class prediction. We
conducted 10,000 runs total and average results within-class and finally across classes.

In this experiment, we perform this classification on unseen instances from classes seen
during training. Because of the different number of classes for seen and unseen on ShapeNet
(n = 20 seen classes and n = 35 unseen classes) we perform a 55-way classification on
all classes at once. This is done so that later when we also look at the performance on
unseen classes, the final accuracy numbers can be directly compared without being conflated
by the difficulty of the classification problem. However, to understand the generalization
performance of each condition, we report seen classification separately from unseen.

Classification accuracy on seen classes for the single- and multi-view networks can be
found in Table 7.1 (left). Additionally, we report a baseline of a randomly initialized network
(to get a feel for how identifiable each class is by random features alone) and a second
“baseline” of the class-supervised variant of the model. This gives us an indication of the
level of performance we should expect when labels are available for supervision. We find that
training with multi-view images gives a significant boost over single images from ShapeNet:
+13.6% in the case of 1 example per class and +8.6% for 5 examples (Table 7.1, left). As
expected, the class-supervised model outperforms all other methods.

Pose-Invariant Representations Generalize to Novel Classes Next, we test how
well single-view and pose-invariant features trained on ShapeNet, generalize to both unseen
classes from ShapeNet. The results in Table 7.1 (right) demonstrate that representations
trained on multi-view images outperform those trained on single views. Interestingly enough,
we find that class-supervised features generalize worse than multi-view features on the 35
unseen ShapeNet classes. We take this as a positive indication that multi-view object-level
supervision leads to features that generalize better to new classes of object shapes than those
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s1s2

s1 > s2 → textu re
s2 > s1 → shape

Figure 7.2: Shape vs. texture task. s1 represents the cosine similarity between the query object
x and a different object with the same texture xt. s2 represents the cosine similarity between the
query object x and the same object with a different texture xs. We call the decision texture-biased
if s1 > s2 and shape-biased otherwise.

obtained from class labels.

Multi-View Training Increases Shape Bias

Having models that are biased more towards shape (over texture) is desired as this bias is
more aligned with human perception [42]. We wondered if perhaps training with multi-view
images could increase shape bias. To study this, we formulate a novel test-time task to
investigate the shape or texture bias of each model’s learned representations. Our setup is
inspired by [42, 43] but unlike these prior works, is independent of class and class-specific
texture choices. We use this task to probe the representations of the different self-supervised
models directly in a class-agnostic manner.

Our task setup relies on access to synthetic 3D models, for which we can easily swap out
the surface textures and render the models from different views. For this task, we generate
sets of triplets of the form {x, xs, xt}. Here, x is some reference object with some underlying
shape s and texture t. xs is an object of the same shape as x, but with a different texture. xt

is an object with the same texture as x, but a different shape. In other words, xs is a shape
match to x and xt is a texture match (see Figure 7.2). To prevent shape-matching from being
trivially easy, we sample images of xs and xt from different poses than x. We performed
this task on models trained on the 20 ShapeNet training categories. In total, we rendered
105 objects (3 models from each of the 35 unseen classes) with 5 different textures from 5
different viewpoints and tested each model on 10,000 triplets. We opt to use objects from
unseen classes to prevent any possibility of the networks having associated certain textures
with certain training classes. For each triplet, if a network finds the shape-matched pair to
be more similar than the texture-matched pair, we call it a “shape decision” on that sample.
The more shape decisions a model makes, the mode shape biased we assume it is.

It is reasonably well documented that single-view networks display a bias towards tex-
ture [42, 59, 43], but we find that networks trained with multi-view images (and either no
data augmentation, or color distortion augmentation only) have a tendency to make many
more shape decisions on our Shape vs. Texture task. However, this bias is diminished by
the specific data augmentation used in [18], which includes a combination of cropping and
color distortion. We suspected that the cropping might be the culprit behind this reduction
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Figure 7.3: Multi-view networks are more shape-biased than single-view ones, and crop-
ping increases texture-bias. X-axis labels represent the range from which random crop scales
are sampled ([1.0, 1.0] corresponds to no cropping). While multi-view networks trained without
cropping are more shape-biased than single-view ones, cropping reduces this tendency. The same
is not true for single-view networks.

in shape bias and set up a controlled study to find out. We train single- and multi-view net-
works with color augmentation and cropping, but modify only how much random cropping
is performed by controlling the range from which the scale of the crop was sampled. We then
measure the outcome of these modifications on shape bias. As can be seen in Figure 7.3, we
find that 1) multi-view networks are capable of being more shape biased than single-view
networks, and 2) cropping has a direct impact on the amount of shape bias for multi-view
networks (and less of an effect for single-view networks). To the best of our knowledge, this is
the first demonstration that training with naturalistic multi-view images, akin to the visual
input that humans receive, can increase the shape bias of CNNs.

7.4 Scaling up to ImageNet

Given promising results on the rendered ShapeNet dataset, we wondered if such a result
could scale to larger and more realistic datasets such as ImageNet [29]. Unlike the case with
ShapeNet, we do not have corresponding 3D models in the dataset and thus develop a new
pipeline for generating novel views from each image. In theory, this approach can be applied
to any image dataset. As we are now working with single images rather than rendering new
views from a CAD model, we refer to this new-view generation as a “3D data augmentation”.
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Figure 7.4: Overview of 3D data augmentation pipeline. For each ImageNet image, we
separate the foreground and background. We inpaint the background image and use the foreground
to generate a mesh for which we can render at a novel view.

7.5 Method

3D Data Augmentation

Our mesh generation pipeline consists of a few steps including foreground-background split-
ting, background inpainting, foreground mesh generation, novel viewpoint rendering, and
image quality filtering. A high-level summary of the mesh generation process is visualized
in Figure 7.4.

Background Inpainting We generate background images by inpainting the foreground
object according to saliency masks from [129]. In general, masking out the foreground object
leaves a trace of foreground-colored pixels around the edge, and the inpainting algorithm tries
to reconstruct the foreground object. To avoid this, we dilate the foreground mask before
inpainting. We use the LaMa inpainting algorithm [145].

Mesh Generation We based our mesh generation pipeline largely on 3D Photo Inpaint-
ing [135], however we found that their inpainting algorithm caused large stretching artifacts
when applying any kind of large rotation, and thus skip that major step. We also only
generate a mesh for the foreground portion of the image, where foreground pixels are deter-
mined by masks from [129]. For depth estimation, we use MiDaS v3 [123]. Again, with noisy
foreground masks we find that some depth values at the edge of the foreground can be noisy
and cause stretching artifacts in the mesh. To avoid this, we remove outlier depth values
and additionally remove those pixels from the foreground mask. Each generated mesh typi-



CHAPTER 7. MULTI-VIEW DATA FOR SELF-SUPERVISED LEARNING 65

Figure 7.5: Sample images rendered from mesh generation pipeline. Center image repre-
sents original ImageNet image viewpoint. Left to right is varying azimuth, top to bottom is varying
elevation.

cally contains hundreds of thousands of vertices, thus we downsample each mesh to contain
<50,000 vertices. Lastly, we center and scale each mesh to the origin and with unit scale.

Novel Viewpoint Rendering We render novel views of our generated foreground meshes
using Pytorch3D [124]. We randomly rotate each mesh by sampling an azimuth and eleva-
tion uniformly in [-15.0, 15.0] and render a new view at 512x512 resolution, for up to 10
images per ImageNet instance. We then calculate the bounding box around the rendered
foreground object and resize it such that the width of the rendered image matches the width
of the original foreground object. This resized rendering then gets pasted onto the inpainted
background image at the same location as the previous foreground object.

Image Quality Filtering Some rendered images look unrealistic due to artifacts in the
mesh, poor foreground masks, or too much rotation. We are able to filter out some of these
instances by passing each newly generated image into a ResNet-50 pretrained on ImageNet,
and seeing if the predicted class label changes between the rendered image and the original
ImageNet image. We do not keep renderings where the predicted class changes. After the
filtering criteria described, we are able to generate 3D augmentations for 79% of the ImageNet
training images. At the end of this process we are left with 6,186,264 images (roughly 5×
the size of ImageNet). Sample images that pass the image quality filtering step can be found
in Figure 7.5.

Training

We train MoCo v2 [19] with a ResNet-50 backbone using distributed data parallel across 4
nodes with 8 GPUs each. We use a batch size of 256 per node (per-gpu batch size of 32) and
learning rate of 0.12. We train for a total of 220 epochs, with a linear warmup for the first
20 epochs. We evaluate the learned representations using a linear probe, finetuning the final
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Task Top-1 Top-5

2D Aug. 67.6% 88.0%
3D Aug. 68.3% (+0.7%) 88.4% (+0.4%)

Table 7.2: Linear probe ImageNet accuracy. Top-1 and top-5 ImageNet accuracy for models
trained with 2D and 3D data augmentation.

linear layer weights on ImageNet classification labels. This finetuning is done on 8 GPUs for
100 epochs using a total batch size of 1024, and a learning rate of 120 (divided by 10 at 60
and 80 epochs).

We experiment with incorporating the 3D augmented images in different ways. In all
cases we have paug which is the probability a 3D augmented image gets sampled. Otherwise,
3D augmentation is not applied. In all experiments we also apply the standard 2D data
augmentation recipe, regardless of if the image is 3D augmented or not. When sampling a
3D augmented image, we pass it as a query image only. In other words, we do not add the
3D augmented image to the momentum encoder. We found that doing so causes a decrease
in performance. We experimented with different schedules for paug, but found that starting
at paug = 1.0 and linearly annealing down to paug = 0.05 over the entire course of training
worked best.

7.6 Results

We found that incorporating 3D augmented images into training improves linear probe Im-
ageNet top-1 and top-5 accuracy by 0.7% and 0.4%, respectively (Table 7.2). Results are an
average of 3 runs. We also evaluated the fine-tuned model on the Cue-Conflict, Edge, and
Silhouette downstream tasks that favor shape features over texture-based features [41, 42].
We find that training with 3D data augmentation improves accuracy on all of these tasks,
with the most notable gain on the Edge dataset (+5.8%).

7.7 Discussion

In this chapter we studied the benefit of multiple views in object-centric contrastive learning
for a variety of synthetic and real world datasets. We discovered that training with multi-
view images can lead to pose-invariant representations that outperform those learned from
single views for the downstream task of classification. We further found that training on
multi-view images can increase the shape bias of CNNs, when trained without aggressive
cropping. Finally, we scaled the multi-view dataset creation idea to a large-scale, real-world
dataset, ImageNet. We found that incorporating multiple views further can increase accuracy
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Task Cue Conflict Edge Silhouette

2D Aug. 19.5% 17.7% 39.4%
3D Aug. 20.2% (+0.7%) 23.5% (+5.8%) 41.0% (+1.6%)

Table 7.3: Performance on out-of-distribution evaluation sets. Accuracy of model trained
with 2D and 3D augmentation on cue-conflict, edge, and silhouette test sets.

on downstream classification and shape-based tasks. We hope these findings will help future
researchers in building machine vision systems which are more capable—need fewer labels,
generalize better, and be closer to human performance than the systems of today.
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Chapter 8

Conclusion

In this thesis we presented three efforts towards bridging the gap between humans and
machines in 3D object perception. Inspired by the ability of infants and toddlers to rapidly
learn about objects in the world, we highlighted three key features of their visual inputs:
realism, interaction (object articulation), and diverse, multiple views with sparse labels. We
then went on to propose a dataset-driven solution in each of these directions.

In The Development of Embodied Cognition: Six Lessons from Babies, Smith and Gasser
[138] offer advice from years of research experience in developmental psychology for building
embodied, intelligent agents. Some of the directions explored in this thesis overlap with
the lessons proposed by Smith and Gasser, but there are many, still untapped, fascinating
areas of research. For example, multi-modal models are another promising direction for
improving the ability of neural networks to perceive and represent objects. By marring vision
and language, we can enable machines to learn more complex associations between objects
and their attributes, such as their functions, relationships, and categories. In the future,
incorporating additional modalities such as touch, sound, and proprioception could further
enrich the learning experience of machines and enable them to better understand the physical
properties and affordances of objects. For example, haptic feedback can provide information
about the texture, shape, and weight of an object, which can be useful for manipulation,
grasping, and exploration. Similarly, auditory feedback can indicate the position, movement,
and interactions of objects in the environment, which can help machines to navigate, localize,
and recognize objects.

In summary, while the efforts presented in this thesis are important steps towards im-
proving the 3D object perception of machines, there are many other exciting avenues of
research that can contribute to building more embodied and intelligent agents. By drawing
inspiration from the learning strategies of infants and toddlers, we can push the frontiers of
machine perception and enable machines to better understand and interact with the world
around us.
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