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Abstract

Deep neural networks excel on a variety of different tasks, often surpassing human
abilities. However, when presented with out-of-distribution data, these models tend
to break down even on the simplest tasks. This paper compares the robustness of
implicitly-defined and classical deep learning models on a series of mathematical
tasks and a real-world earthquake location prediction task, where the models
are tested with out-of-distribution samples during inference time. Across all
experiments, implicit models greatly outperform classical deep learning networks
that overfit the training distribution. This paper then shows how to decrease
implicit model training time by harnessing the state-driven implicit modeling
framework to safely eliminate features while maintaining model accuracy. Safe
feature elimination is demonstrated with the FashionMNIST dataset and earthquake
location prediction offering a promising avenue for the adoption of implicit models.

1 Introduction

Learning to extrapolate – the ability to infer unknown values that extend the application of a method
or conclusion beyond the current scope of the known data – is a core ability of human intelligence
and an important development towards general machine intelligence. Although contemporary neural
networks have demonstrated remarkable success in a myriad of domains, they struggle greatly when
faced with data points outside of their training distribution [3, 37]. This work investigates the
capability of implicitly-defined neural networks [1, 9, 13] to extrapolate on mathematical tasks.

Implicitly-defined neural networks, such as implicit deep learning [13] or deep equilibrium models
(DEQ) [1], are a general class of deep learning models that has been proposed as a potential alternative
to classical neural networks. These models do not operate on the premise of explicitly defined layers,
but instead have state vectors that are defined via an “equilibrium” (fixed-point) equation, and the
outputs are determined only implicitly by the underlying equilibrium equation. Formally, for a given
data point u, an implicit model solves the equilibrium equation x = ϕ(Ax + Bu), where x is the
equilibrium state for an input u, ϕ is an non-linear activation such as ReLU, and matrices A,B are
model parameters. The prediction is obtained by feeding the equilibrium state z through an affine
transformation, ŷ(u) = Cx+Du, where matrices C,D are also model parameters. Recent results
have shown successes of the implicit models [2, 19, 43]. There has also been emerging work where
the equilibrium state is interpreted as a closed-loop feedback system from a neural science perspective
[31]. Inspired by these successes, this paper seeks to explore the generalization capabilities of an
implicit model when dealing with mathematical and sequential tasks by comparing their capabilities
to those of transformers and other architectures specialized for arithmetic computation [42].

It is also important to note that implicit models are slower to train when compared to classical deep
learning models. The training time is highly dependent on how many iterations the state-space
equation takes to converge for a certain input. The State-driven Implicit Modeling (SIM) paper is
able to speed up training time by constraining the state vectors and outputs of the implicit model to
that of a pre-trained feed-forward model thus circumnavigating costly implicit differentiation steps in
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the backward pass [43]. This work attempts to speed up the training process even further by detailing
how one can safely eliminate features when working with the convex and parallelizable training
problem outlined by eq. 9 in the SIM paper.

2 Related Work

Out-of-Distribution Extrapolation. Prior work on using machine learning to solve logical rea-
soning tasks has primarily focused on developing specialized neural network models to accomplish
algorithm learning [17, 18, 25, 30, 40]. Some of these papers take advantage of external memory
sources while others allow the network to iterate longer with more complex inputs. Deep Equilibrium
Models, a specific instance of the variable depth implicit models, have shown superior out-of-
distribution performance. They use a higher number of root-finding iterations before converging for
more complex inputs [30]. Neural Arithmetic Logic Units (NALU) attempt to answer Deep Neural
Network’s extrapolation shortcomings on arithmetic tasks. NALU is a novel architecture that is able
to explicitly represent mathematical relationships using the neurons of the network [42]. However,
even with the improved NALU (iNALU), instability is seen in training and random re-initializations
are required [38].

Transformers are well-suited for addition and subtraction tasks achieving very high accuracy on
interpolation experiments [34]. However, when faced with Out of Distribution (OOD) data, testing
on longer numbers than the model was trained on, only the transformer with larger than three billion
parameters performed well [34]. The same OOD concerns are also observed when experimenting on
arithmetic tasks with BART, a de-noising auto-encoder using a transformer-based architecture [46].
On the contrary, when transformers were tested on matrix inversion and eigenvalue decomposition,
even with OOD data they provided solutions that were ”roughly correct” and demonstrated some
mathematical understanding [8]. This potentially suggests that transformers are better suited for
more complex mathematical tasks where there is some possibility of demonstrating mathematical
understanding without explicitly solving the problem correctly.

Feature Elimination. The growing size and computational costs of deep neural networks coupled
with the push to deploy on edge devices have ushered in a heightened focus on model compression.
Many different methods of model compression are being studied such as network pruning [4, 15, 21,
29, 28, 49], lightweight architecture design [35, 27], knowledge distillation [23, 48], and quantization
[12]. Amongst these, pruning is the most popular where the goal is to systematically eliminate
network structures before [28], during [49], or after training [21] the model.

This paper intends to eliminate features as part of the SIM training problem which can be represented
as a constrained LASSO problem [39]. Screening techniques for LASSO have been widely studied.
El Ghaoui et. al.’s seminal work describes a pre-training algorithm that allows one to conclusively
determine the non-zero entries in the LASSO solution vector thus reducing the problem size and
speeding up convergence [16]. These same principles have been extended to many LASSO variants
such as group [6], sparse group [32], and generalized [36]. More dynamic variants have since arose,
working within iterative solving approaches by leveraging the additional information learned about
the optimal solution at each iteration [5, 33]. Screening rules have also been developed for the the
elastic net formulation [50] which combines the ℓ1 and ℓ2 penalty terms allowing for the combined
benefits of group variable selection and shrinkage [20, 47].

3 Mathematical Extrapolation

3.1 Methodology

We consider three types of mathematical extrapolation tasks: 1) modeling the identity function, 2)
performing arithmetic operations, and 3) modeling rolling functions over sequential data. We evaluate
model robustness on out of distribution shifts from the training mean. We compare implicit models
with various classical deep learning models (MLP, LSTM and Transformers) and with Google’s
Neural Arithmetic Logic Units (NALU) [42] built for out of distribution arithmetic tasks. See Table 1
in the Appendix for model architecture specifics for all tasks.
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ImplicitRNN. The implicit model may be seen as having an unfair advantage when compared to
a traditional recurrent neural networks (RNN) that is only able to look at the input sequence one
element at a time. To make a fair comparison, this paper introduces an implicitRNN designed to
process sequence elements one at a time and maintain hidden state(s) to enforce sequence-based
memory. The linear recurrent layer seen in vanilla RNNs is replaced with an implicit layer with
input size I +O and output size O, where the output doubles as the recurrent-hidden state. I will
typically be equal to 1. The initial recurrent-hidden state, h0, is initialized to be the zero vector. A
single forward pass for the ith sequence element, si, takes the following steps: (1) concatenate si and
previous time-step recurrent hidden-state yi−1 : xi := [si, yi−1]; (2) pass xi into the implicit layer,
producing output yi; (3) repeat the procedure with yi and si+1. At any time-step i, yi can also be
used as the output prediction corresponding to the input si.

Figure 1: The left panel shows a block diagram of a vanilla RNN (adapted from [14]) and the right
panel shows a block diagram of an implicitRNN. This paper’s construction replaces the linear cell
present in a vanilla RNN with an implicit layer. Additionally, the implicitRNN does not make a
distinction between the output and the recurrent hidden state.

Identity function. It has been shown that neural networks struggle to learn the basic task of
identity mapping, f(x) = x, where models should return the exact input as given [22, 42]. We
train on 10,000 data points sampled from a uniform distribution with an input dimension of 10,
xtrain ∈ R10 ∼ U(−5, 5), and test on 1,000 data points drawn from multiple shifted uniform
distributions, U(−κ, κ), where κ ranges from 10 to 80, for instance xtest ∈ R10 ∼ U(−10, 10). We
train for 500 epochs for the MLP and 1,000 epochs for both the implicit models and Transformer
encoder, all with a learning rate of 0.01.

Arithmetic operations. We focus on two arithmetic operations: addition and subtraction. The
models take in 10,000 training arrays of length 50. Replicating the task proposed by Trask et al.,
we randomly select four numbers i < j, k < l from 1 to 50. For each sample, we construct two
new numbers from a given array, x⃗ := ⟨x1, x2, · · · , x50⟩. We take a =

∑j
a=i xa, b =

∑l
b=k xb and

predict y = a+ b for addition, and y = a− b for subtraction. The training and testing data follow a
uniform distribution where xtrain ∈ R50 ∼ U(−1, 1) and we expand or shrink our testing distribution
by a factor of t ranging from 10 to 105 symmetrically such that xtest ∈ R50 ∼ U(−t/2, t/2) .

Sequence modeling. We perform three sequence modeling tasks: rolling average, rolling argmax
and spiky time series predictions. The rolling average task consists of predicting for each time step the
average of the sequence up to current time step j,

∑j
i=1 xi/j. We train on sequences drawn from a

normal distribution, x ∼ N (3, 1) and test on sequences with a shifted mean such that x ∼ N (3+t, 1).

The rolling argmax task predicts at each time step the index of the max value seen by the
model so far. We train on sequences x ∼ U(0, 1) and test on sequences with extrapolation factor t
where x ∼ U(0, t). We compare sequential models that process the sequence one timestep at a time:
implicitRNN and LSTM. We implement a masked transformer decoder which also only has access
to previous inputs at a given timestep. We also compared our results to an unmasked transformer
decoder and a regular implicit deep learning model. In contrast with sequential models, our two
transformers and implicit model process the entire sequence at once rather than timestep per timestep.

Finally, for the spiky time series forecasting task, we first generate a time series sequence,
then we randomly insert spikes designed from a combination of sine functions (see more details in
the appendix). This is not an extrapolation task but rather aims to understand whether our models can
predict sudden changes in the data.
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3.2 Results

For the modeling identity task, Figure 2 shows the MSE (mean squarred error) evaluated on the
testing set for the MLP, implicit model and transformer. The implicit model maintains testing MSE
< 5 for training distribution shifts from 0 to 25. Even for very large distribution shifts of up to 40
where xtest ∈ R10 ∼ U(−45, 45), the implicit model’s testing MSE only grows by a factor of 10.
In comparison, the MLP and transformer encoder testing errors surpass 10 with distribution shifts
of only 10 and 5 respectively. The MLP and transformer fail to model the actual identity function
and instead replicate patterns observed in the training distribution which leads to increasing error as
the testing set shifts away. Specifically, the transformer encoder’s MSE explodes the fastest which
may be partly explained by the model’s very large size and therefore higher potential to overfit to a
small training set. In contrast, the implicit model converged after only 4 iterations when predicting on
each test point. It can be concluded that implicit models, not restricted to a specific number of layers,
can limit overfitting through faster convergence when given simple functions. They can therefore
effectively model simple mathematical functions such as the identity.

For addition and subtraction tasks, Figure 3 and Figure 4 compare training and out of distribution
testing log MSE loss for the five models. In Figure 4, it is observed that the implicit model outperforms
all other models maintaining the lowest testing loss across distribution shifts for both addition and
subtraction tasks.

Figure 2: Testing MSE of the MLP,
implicit model and transformer en-
coder evaluated on different testing
distribution shifts.

It successfully seems to learn the operations as demonstrated by
low training loss and its ability to replicate the operation on out
of distribution inputs with testing loss < 1 for distribution shifts
< 100. In Figure 4, transformers, MLP and implicit models’
log MSE loss seem to similarly linearly increase as the log dis-
tribution shift factor increases. Further results in the appendix,
Table 3 and Figure 10 however demonstrate the extrapolation
advantages of implicit models on even small distribution shifts.
Furthermore as suggested by their high training MSE in Figure
3, transformers seem to underfit the training data which results
in their higher extrapolation testing loss. Implicit models there-
fore appear a better out of the box model for tasks with fewer
training samples. Surprisingly, the NALU model, designed
for extrapolation on arithmetic tasks, performs the worst as
shown in Figure 4 where its testing loss surpasses 1010 for an
extrapolation shift of only 10. The robust out-of-distribution
predictions with the NALU model seen in [42] were not able
to be replicated across all the experiments. It is suspected the
model’s performance is inflated by hand-crafted evaluation metrics and therefore does not perform
well when evaluated using more traditional metrics.

As suggested by Kaiqu Liang et al. [30], the more selective nature of implicit models may help them
generalize better on logical tasks. For a specific input X, an implicit model’s training only terminates
if it finds a fixed point representation of X through the equilibrium equation. During training on both
arithmetic operations, it was observed that the model failed to converge for at least 1/3 of the epochs.
Implicit models would have the ability to filter out internal representations that do not help capture
the given arithmetic operation. On the other hand, MLPs forward pass always terminates in a given
number of steps; when the input has gone through each layer. Therefore, the MLP may have a higher
chance of overfitting to the training data.

The results on out of distribution inputs for the three sequence modeling tasks are summarized in
Figure 5 and 6. For the rolling argmax task, as seen in Figure 5, it is observed that the implicit
models maintain the highest and a very stable testing accuracy across distribution shifts. Both the
transformers demonstrate a similar capacity to extrapolate on out of distribution inputs with however
a lower accuracy (by at least 5%). In contrast, the LSTM fails to extrapolate as its accuracy drops by
almost 50% when evaluated on out of distribution inputs. Figure 6 shows test MSE across distribution
shifts for the rolling average task and an example test sequence prediction for the spiky data task. For
the rolling average task, the LSTM and transformer both replicate the training distribution, predicting
averages around 3 even in the test set, whereas the implicit model extrapolates to higher values.
For the spiky data predictions, although LSTM and implicit models have similar testing losses, the
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Figure 3: Training Log(MSE) per number of epochs for the five models evaluated on addition and
subtraction. The implicit model achieves the lowest training loss across both tasks.

Figure 4: Testing Log(MSE) of the five models evaluated on testing distribution shifts. The implicit
model strongly outperforms all other models on OOD data and maintains a linear increase.

Figure 5: As the extrapolation factor increases the implicit model and implicitRNN are able to
maintain superior accuracy on the rolling argmax task. On the right, with extrapolation factor t = 10,
the implicitRNN performs similarly on interpolated and extrapolated data.

Figure 6: Testing results for the rolling average and spiky time series prediction tasks. For the rolling
average, the implicit model maintains close to constant loss across shifts in contrast with the LSTM
and transformer. On the right plot, in the spiky regions, the implicit RNN more accurately predicts
the magnitude of the spikes.

implicit model seems to have a better understanding of overall sequence structure. It successfully
predicts the specific location and magnitudes of spikes. Note that this is not an extrapolation task
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as the training and testing regimes had a similar proportion of spikes. However, given very few
examples of anomalous structure in the data the implicit model performs very well when similar
structure appears in the test set. Across these sequential tasks, this paper hypothesizes that implicit
and implicitRNN models here benefit from greater model flexibility. Specifically for sequential data,
the implicit layers within an implicitRNN can run for more iterations when presented with more
complex inputs.

4 Earthquake Location Prediction Extrapolation

4.1 Background

The prior experiments solely focused on examining the OOD generalization capabilities of various
models when faced with learning mathematical behaviors. The experiments in this section illustrate
that the aforementioned OOD extrapolation advantages of implicit models extend to more complex
and relevant tasks.

Location prediction is a long-studied problem in the field of seismology. It boils down to predicting
the location (longitude, latitude, and depth) and origin time of earthquakes given the observations of
stations recording seismic waves. Solving this problem accurately has tremendous implications for
early warning systems that use the non-destructive primary (p) waves to predict the origin/impact
region of earthquakes. Ascertaining this information even 60-90 seconds before the destructive
secondary (s) waves arrive has huge humanitarian implications [11]. These same early warning
systems can be used beyond seismic domains for surface explosion monitoring when presented with
additional infrasound signals [26]. Location prediction also has huge implications for insurance
underwriting, building codes, and policy writing. Seismology, as a field, is embracing deep learning
methods which are outperforming traditional methods in many seismological tasks. However, deep
learning methods struggle when presented with a sparse number of observations as is the case with
early warning system applications [11]. Effective in-distribution location prediction neural networks,
such as EikoNet [41], struggle with OOD generalization which will prove detrimental due to the
spatial heterogeneity of earthquake data (the majority of earthquakes occur in the Pacific Ring of Fire)
[10]. The following experiment results show that general-purpose implicit models can outperform
EikoNet when faced with an OOD location prediction task.

4.2 Methodology

The data generation and organization follow the methods outlined in [11]. These experiments use
synthetically generated data to avoid the bias that creeps in due to the spatial heterogeneity of real-
world data. Each sample (subnet) comprises data relating to five stations that record seismic waves.
Each subnet contains a randomly selected anchor station which serves as a reference point for all
other p-wave arrival times in the subnet. The p-wave travel times were generated using the 1-D
velocity model Ak135. The x, y, and z coordinates of each station, event-station back-azimuths (θ),
and relative p-travel times (p) w.r.t. to the anchor station are known. All features are linearly scaled
to be between -1 and 1 and packed into a feature vector of length 30. The label is the X , Y , and Z
coordinates of the source and the p-wave travel time from the source to the anchor station (T ). The
label is of length 4 and all its components are linearly scaled to be between -1 and 1.

The in-distribution training + validation data is composed of 900,720 samples: 1,295 (X , Y ) source
pairs occurring at 695 different depths (Z). Training source points were synthetically generated
between 90◦E and −90◦E which roughly corresponds to the boundaries of the Pacific Ring of Fire.
Each testing region comprises two 10-degree bands symmetrically located on either side of the
training boundary. The first two testing bands border the training boundary. More explicitly, each
pair of testing bands takes the following form: (90− 10k, 100− 10k) ∪ (−100 + 10k,−90 + 10k)
where k, the extrapolation factor, ranges from 1 to 9. For this experiment, the implicit model was
compared to the EikoNet model, a six-layer MLP containing one residual block.

4.3 Results

After training, the MLP finished off with a slightly lower in-distribution test loss of 1.73e−3 whereas
the implicit model ended with a test loss of 1.98e−3. As seen in the left panel of Figure 8 as k
increases, the implicit model performs increasingly better when compared to EikoNet in terms of the
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Figure 7: The panel on the left shows a geometric visualization of one set of training features (xi, yi,
zi, pi, θi) and its corresponding labels (X , Y , Z, T ). The triangles correspond to stations and the star
corresponds to a source. This figure is modified after [11]. The map on the right shows the training
set region colored in blue, roughly corresponding to the Pacific Ring of Fire. The area colored in red
corresponds to the testing set region when k = 3.

Figure 8: Extrapolation comparison between EikoNet and implicit model on the location prediction
task as the extrapolation factor increases. The implicit model has better performance in terms of
MSE loss. However, upon closer inspection, it is apparent that the implicit model only outperforms
EikoNet in two out of the four categories that make up the MSE loss metric (longitude and latitude).

test set MSE loss. By the time k = 2, the implicit model has overtaken EikoNet, and when k = 9, the
implicit model’s test set loss is better than that of EikoNet by 1.59e−2. This translates to an average
improvement of 11◦ longitude and 2◦ of latitude. Future work needs to be done to see whether
restricting the source latitude in addition to longitude during training leads to a greater latitude
extrapolation improvement. As seen in the right panel of Figure 8, the implicit model struggles a lot
more with time and depth prediction performing increasingly worse as k increases. When k = 9, the
implicit model performs 9.2 seconds and 409 km worse on average. Future work needs to be done to
see whether training an implicit model exclusively on time and depth labels improves its performance
in those categories. This two pass approach is seen with traditional location prediction software as
depth and time are much harder to constrain [44].

5 Feature Elimination with State-driven Implicit Models

5.1 Background

The relaxed version of the first of the two parallelizable training sub-problems seen in the SIM
paper is as follows. X is the post-activation state matrix of the feed-forward baseline model. aT
represents a row of A, one of the implicit model parameter matrices. zT is the corresponding row of
the pre-activation state matrix [43]. This becomes a simple ℓ1-norm ball-constrained least squares
problem.

min
∥a∥1≤κ

1

2
∥Xa− z∥2 (1)
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To invoke a modified version of the elastic net formulation, an ℓ2 penalty is added on. Elastic net is
known to have performance benefits over LASSO and adds strong convexity to this problem [50].

min
∥a∥1≤κ

1

2
∥Xa− z∥2 + γ

2
∥a∥2 (2)

After introducing the auxiliary variable y = Xa− z, the following QP formulation results

min
a,y

1
2∥y∥

2 + γ
2 ∥a∥

2 (3)

subject to e⊤t ≤ κ

t ≥ a ≥ −t

Xa− z − y = 0.

This paper proceeds by writing the Lagrangian dual. The dual problem is being considered for two
reasons. First, the dual problem is of size m, where m is the number of features. The primal problem
is of size n, where n is the number of samples. For most deep learning problems m ≫ n; therefore,
considering the dual reduces the problem size. Additionally due to complementary slackness, solving
the dual problem provides more information about redundancy present in the primal variable than
solving the primal problem [7].

L(a, y, t, µ1, µ2, ν, δ) =
1

2
∥y∥2 + γ

2
∥a∥2 + δ(e⊤t− κ)

+ µ⊤
1 (a− t)− µ⊤

2 (a+ t) + ν⊤(Xa− z − y)

=
1

2
∥y∥2 − ν⊤y +

γ

2
∥a∥2

+ (µ1 − µ2 +X⊤ν)⊤a+ (δe− µ1 − µ2)
⊤t− z⊤ν − κδ

The dual problem follows naturally

min
µ1,µ2,ν,δ

1
2∥ν∥

2 + 1
2γ ∥µ1 − µ2 +X⊤ν∥2 + z⊤ν + κδ

subject to µ1 + µ2 = δe (4)
µ1, µ2 ≥ 0.

Assume that µ∗
1 and µ∗

2 are known, then by complementarity it is known that

µ∗
1,i (t

∗
i − a∗i ) = µ∗

2,i (t
∗
i + a∗i ) = 0

The safe feature elimination condition follows naturally

If µ∗
1,i, µ

∗
2,i > 0, then t∗i − a∗i = t∗i + a∗i ⇒ a∗i = 0.

Remark 1. Specifically if γ = 0, then it can be seen that

min
δ,µ1,µ2,ν

1
2∥ν∥

2 + z⊤ν + κδ

subject to X⊤ν + µ1 − µ2 = 0

µ1 + µ2 = δe

µ1, µ2 ≥ 0.

and further simplification can be done to obtain an unconstrained dual problem in Rm.

min
ν

1

2
∥ν∥2 + z⊤ν + κ∥X⊤ν∥∞ (5)

5.2 Methodology and Results

When solving the dual problem, the non-zero indices of µ∗
1 and µ∗

2 correspond to the inactive indices
of the primal optimizer (a∗). Therefore, these indices also correspond to columns of X and rows of
Z that can be removed prior to training. This same procedure can be repeated with a reduced size
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X and Z until a pre-defined stopping point. For the purposes of the following experiments, feature
elimination halts when X only has two columns left.

There are multiple methods that can be used to solve the dual problem. For proof of concept, this paper
directly solves the dual using the optimization software CVXPY. Unlike the dual problem of LASSO,
the dual problems in (4) and (5) are less friendly to solve exactly. Directly solving this dual problem
for larger-scale datasets is very time-consuming. However, since the dual solution provides us with
more useful information about primal redundancy, it is worthwhile to collect this information and
reuse it for solving subsequent problems. A potential solution that balances efficiency and accuracy
could solve the first few dual problems exactly using optimization software and then proceed to solve
the remaining problems using a first-order heuristic method such as proximal gradient descent.

FashionMNIST. Following along with [43], a 4-layer fully-connected network of size 784× 64×
32 × 16 × 10 is chosen for constructing the state matrices X,Z and the outputs Ŷ . The baseline
model achieved 82% test performance. The corresponding SIM trained on an ℓ1-norm objective
achieved a test accuracy of 81% using 500 training samples. The bound on the ℓ1 norm of a, κ, can
be treated as a hyperparameter; after hyperparameter-tuning κ = 0.3 was chosen.

As seen in the left panel of Figure 9, this feature elimination method is very effective. After 50% of
the 896 features are eliminated an accuracy drop of less than 1% is observed. A 5% accuracy drop-off
only occurs after 95% of the features have been eliminated. This shows that feature elimination can
greatly speed up SIM training for a marginal trade-off in accuracy.

Figure 9: Model performance as a function of the proportion of features eliminated for FashionMNIST
classification task and earthquake location prediction. Feature elimination is very effective for the
classification task as the elimination of 90% of the model’s features leads to an accuracy drop of
approx. 2%. The location prediction results are more modest as 30% feature elimination leads to a
1.5e−2 increase in MSE.

Earthquake Location Prediction. This section revisits the earthquake location prediction problem
from the lens of feature elimination. It considers the scenario where there are observations from many
stations and the objective is to decrease training and inference time by only using the observations of
a few relevant stations. Synthetic data generation is used to obtain six features each for 45 stations.
4,865 source locations are used in the training set which corresponds to 7 (X , Y ) coordinate pairs
occurring at 695 depths (Z). The baseline EikoNet model achieved a test MSE loss of 0.36 and the
baseline implicit model achieved a test MSE loss of 0.27. κ = 1.0 is used for this problem and there
are 4,750 features prior to feature elimination.

As seen in Figure 9, eliminating 30% of the features leads to a test MSE loss gain of 1.5e−2. As seen
earlier, this approximately translates to a loss of 11◦ longitude and 2◦ latitude in accuracy. This is a
sizeable accuracy drop indicating that this feature elimination method is not as effective for this task.
When 90% of the features are eliminated the loss increases by 4.0e−2. Further work needs to be
done to see if this procedure can be scaled up to work with a larger training set such as the one used
in the prior extrapolation experiments. Currently, it is not possible to chose the number of features
that are eliminated with each iteration. Having fine-grained control of this would prove to be very
useful for practical applications.
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6 Conclusion

This paper showcases implicit models’ superior performance on out-of-distribution sample points
when compared to traditional deep learning models. This ability is apparent in mathematical tasks such
as function learning and arithmetic operations but also extends to more challenging applications such
as earthquake location prediction. In all experiments conducted, implicit models showcased improved
performance over MLPs, LSTMs, transformers, and Google’s NALU architecture. The adaptive
nature of training implicit models enables them to explore and identify optimal architectures, thereby
providing a convenient out-of-the-box solution that offers superior performance on extrapolation
tasks. This paper also addresses implicit model training speed concerns by incorporating feature
elimination into the state-driven implicit framework. This approach roughly maintains accuracy on
small-scale datasets and this paper outlines strategies to extend this approach to larger datasets. These
results motivate the further study of implicit models as a robust and practical framework to excel
under distribution shifts.
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A Appendix

A.1 Model and Task Specifications

For all the extrapolation experiments, this paper compares the extrapolation capacities of a baseline
model (MLP for non-sequential tasks, LSTM [24] for sequential tasks, and NALU for arithmetic
operations), implicit models (standard and RNN), and Transformers [45]. The architectures used for
each task are summarized in Table 1.

A.2 Activation Function Experiments

For the identity function and arithmetic operation tasks, this paper experiments with 15 different
activation functions on the MLP: hardtanh, sigmoid, reLU6, tanh, tanhshrink, hardshrink, leakyrelu,
softshrink, softsign, reLU, preLU, multipreLU, softplus, eLU and seLU. The goal is to understand
whether specific activations helped the MLP extrapolate as well as the implicit model. Table 2
summarizes the results of 5 of these activation functions on the identity function task as compared to
the implicit deep learning model.

Table 3 compares the test MSE for the MLP with ReLU activation, the best MLP across all 15
activations and the implicit model. For this experiment, xtrain ∈ R100 ∼ U(1, 2) and xtest ∈ R100 ∼
U(2, 5). For both operations, the implicit model greatly outperforms the MLP regardless of the
activation function.

A.3 Arithmetic Operations More Results

For more specific results on the OOD generalization capacities of implicit models, Figure 10 compares
the training and validation loss on the addition task of both implicit and MLP models where xtrain ∈
R100 ∼ U(1, 2) and xval ∈ R100 ∼ U(2, 5). This is a small distribution shifts since t = 3.

Figure 10: Testing and training MSE plots based on the number of training epochs for the addition
and rolling argmax tasks. The MLP test loss bounces from low to high and eventually explodes
whereas the implicit model achieves testing loss close to 0.

A.4 Spiky Data Generation

Both the LSTM and the implicit model were trained on 7000 data points and tested on 3000 data
points. The training regime featured 20 spiky regions of 100 data points each. The testing regime
featured a proportionate amount of spiky regions. The data points in the spiky regions were sampled
from y = 5× (sin(2x)+sin(23x)+sin(78x)+sin(100x)). The frequencies were arbitrarily chosen
to be between 0 to 100 to generate a sufficiently spiky pattern. The magnitude of the spiky regions is
at most 20. For the non-spiky regimes, the data points were sampled from y = sin(x).
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Table 1: Details of the network architectures used in this paper’s experiments and applications. The
number of parameters in each model is in parentheses next to its architecture info.

Task Dataset/Task
summary Baseline model(s) Implicit model(s) Transformer(s)

Identity
Function

xtrain ∈ R10 ∼
U(−5, 5)

MLP: 10× 10× 10
(220)

Regular: A ∈ R4×4, B ∈
R4×10, C ∈ R10×4, D ∈
R10×10 (196)

Encoder: Single
attention head
(43,498)

xtest ∈ R10 ∼
U(−κ, κ), where κ
ranges from 10 to 80

Arithmetic
Operations

xtrain ∈ R50 ∼
U(−1, 1)

MLP:
50× 10× 10× 1
(1,497)

Regular: A ∈ R20×20, B ∈
R20×50, C ∈ R1×20, D ∈
R1×50 (1,470)

Sequential encoder: 1
layer, 10 attention
heads - processes
each array as a single
sequence (6,208)

xtest ∈ R50 ∼
U(−t/2, t/2), t
ranges from 10 to
105

NALU:
50× 10× 10× 1
(1,530)

Depth-wise encoder:
1 layer, 1 attention
head - processes each
element in a given
array as a single
sequence (217,349)

Predict the sum or
difference of 8
random numbers out
of 50

Rolling
Average xtrain ∼ N (3, 1)

LSTM:
1×100×100×1
(42,210)

Regular:
A ∈ R200×200, B ∈
R200×10, C ∈
R10×200, D ∈ R10×10

(44,100)

Encoder: Single layer
and 2 attention heads,
(42,210)

xtest ∼ N (3 + t, 1),
t ranges from 5 to
100

Rolling
Argmax xtrain ∼ U(0, 1)

LSTM: 1×19×19×10
(1,872)

Regular: A ∈ R33×33, B ∈
R33×10, C ∈ R10×33, D ∈
R10×10 (1,849)

Masked decoder: 1
layer, 2 attention
heads (1,920)

xtest ∼ U(0, t), t
ranges from 101 to
105

RNN: A ∈ R18×18, B ∈
R18×23, C ∈ R22×18, D ∈
R22×23 (1,870)

Unmasked decoder: 1
layer, 2 attention
heads (1,920)

Spiky Time
Series

Predict rare volatile
patterns (see A.4 for
more)

LSTM: 1×20×20×1
(1,861)

RNN: A ∈ R20×20, B ∈
R20×21, C ∈ R20×20, D ∈
R20×21 with a linear layer
20×1 (1,661)

Masked decoder: 1
layer, 10 attention
heads (43,529)

Earthquake
Location
Prediction

Train: 720,576 (X ,
Y , Z) locations
sampled between (90,
-90)◦E, 30 features

EikoNet:
270× 32× 128×
128× 128× 32× 4
(42,500)

Regular:
A ∈ R190×190, B ∈
R190×270, C ∈
R4×190, D ∈ R4×270

(42,680)

N/A

Test: 20,016 samples
in each extrap. region
(90− 10k, 100−
10k) ∪ (−100 +
10k,−90 + 10k), k
ranges from 1 to 9
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Table 2: Testing loss of the implicit model and five MLP models with specific activations on the
identity function task. The results show that the implicit model outperforms the MLP across activation
functions. Description of the activation functions in the appendix.

Train MSE Test MSE

Activation MLP Implicit MLP Implicit

ReLU 2.14× 10−3 12.4 ×10−1 21.6 2.16
Leaky ReLU 3.28× 10−3 - 22.3 -
Softplus 1.57× 10−2 - 17.1 -
Softsign 3.01× 10−1 - 47.5 -
Log sigmoid 1.71× 10−2 - 17.1 -

Table 3: Test MSE table of two MLPs and the implicit model on arithmetic operations. The best
MLP for both tasks was with ReLU6 activation.

Operation ReLU MLP Best MLP Implicit

Addition 6.95 ×1031 8.50 ×103 16.07
Subtraction 3.69 ×1019 1.87×104 3.40 ×10−2
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