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ABSTRACT
This technical report describes the state of autograding in CS 61B
in the Spring 2023 semester. Students submit to Gradescope, and
receive feedback generated and delivered by a suite of autograder
tests; BSAG, an autograder configuration tool; and jh61b, a Java test
framework on top of JUnit 5 and Truth assertions. Students receive
feedback from a wide variety of tests, including black box unit
tests and random tests. We also describe nontraditional automated
tests, including a complexity analyzer, introspector, and a tester for
student-written tests.

1 INTRODUCTION
CS programs increased drastically in size over the past decade, es-
pecially at UC Berkeley. Currently, computing majors (CS, EECS,
and Data Science) graduate around 2000 students per year, ap-
proximately 23% of degrees awarded. Individual courses have also
increased in size, where CS 61B enrolls typically 1000 students in
fall semesters, and 1500 students in spring semesters. While the size
of course staff has increased, the large number of students makes it
difficult for courses to provide help, even as the number of course
staff increases.

One major time-consuming activity for course staff is grading, or
evaluating student programs and producing feedback. In order to
serve larger numbers of students, many courses use automated grad-
ing (autograding), where student-submitted programs are evaluated
automatically by a program. Autograders are prevalent at many
universities, and are a subject of active research and development
[19, 20]. The usage of autograders helps courses scale to serve ad-
ditional students as staff hours dedicated to grading are reallocated
towards other course duties: office hours, answering questions on
course forums, teaching section, or developing content.

However, naive autogenerated feedback, such as the verbatim
output of a test suite, is difficult for students to interpret. As a
result, staff in office hours act as pseudo-graders and spend time
generating feedback from student programs on an ad-hoc basis in a
short time period. In large courses, such as CS 61B, not all students
are able to easily access office hours or work with course staff
for clarification on autograder outputs. Autograder output has a
higher impact in large and resource-stressed courses, because more
students will interact with it more often without an alternative.
Continued research and development into enabling autograders
to produce more appropriate and pedagogically valuable feedback
can reduce the amount of time that both students and staff spend
interpreting grader outputs.

After the autograder evaluates the student’s submission, it must
also produces a “score” which can take various forms. The score
may be numeric, computed by a count of tests passed, a weighted
average, or by some other metric. It may also be a form of speci-
fications grading, where the submission is described by a certain
level of proficiency.

In this report, we describe the usage of autograders in UC Berke-
ley’s CS 2 course (CS 61B: Data Structures and Algorithms). We
first describe the autograding infrastructure that enables generating
feedback and delivering it to a large number of students. Then, we
describe newly implemented autograder features targeted at gener-
ating more effective feedback and the implications of these features.
Finally, we propose future directions for autograder development
in CS 61B.

2 RELATEDWORK
2.1 Tools to Generate Feedback
A common autograding technique is to run students’ submitted
code against a set of unit tests, compare the actual output with
expected output, and report the results. Since this only checks
output, it is also known as blackbox autograding. However, the
feedback that can be generated solely from blackbox autograding
is limited in scope and pedagogical utility [20].

Haldeman et. al [13] describe CSF2, a process by which instruc-
tors “bucket” student submissions to find common mistakes, and
write hints accordingly. While their method achieves a high accu-
racy of error categorization, it does so in a CS 1 context, where the
range of possible errors is distinct from a CS 2 context. Additionally,
they note that incorrect hints were caused by “errors that would be
difficult to detect with blackbox testing” [13].

Blackbox autograding focuses solely on the correctness of the
student’s program to an external observer. In contrast, whitebox
autograding involves analyzing the program directly, whether dy-
namically or statically. Pedal [12], a Python framework for creating
feedback, provides mechanisms to statically analyze Python code.
It also provides a sandbox to execute student code, and unit test
aspects of its execution, such as the number of calls to a specific
function.

JavAssess [14] is a Java library that provides functions to inspect,
analyze, and edit loaded Java source code at runtime. Parihar et.
al [21] further explore the idea of modifying student programs
with GradeIT by using program repair to fix minor syntax errors,
allowing testing submissions that do not compile. We apply ideas
from these and other libraries to evaluate and provide feedback on
student implementations of data structures in a large course.

Additionally, instructors often want students to learn to test their
own code, and therefore provide automated feedback on student
test suites. Web-CAT [9], alongside unit tests, supports evaluating
students via code coverage and mutation testing. The supported
code coverage types include line coverage and method coverage of
a reference solution, which are complex to report to students with-
out giving away some information about the reference. Mutation
testing, where a reference solution is modified so that effective tests
should fail, encounters a similar problem. It is difficult to communi-
cate mutations that are not caught to students, as they are buggy
reference solutions. Testing Tutor [7] is a web-based platform that
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provides “conceptual” feedback on the testing concepts that the
student’s test suite is missing. While it is not clear how a reference
test suite is specified and tagged, the authors report that conceptual
feedback results in better learning outcomes and is perceived more
favorably by students when compared to detailed coverage-based
feedback. Our approach does not directly use a reference test suite,
instead instrumenting a reference solution to identify desired be-
haviors. We also integrate test suite feedback with the autograder
as a whole.

2.2 Effects of Automated Feedback
One advantage of autograders is that they allow students to receive
feedback on “submission" without waiting for a human. This can
occur either through a provided test suite that can be run locally,
or through submission to an external platform, typically a web-
site. Mitra et. al [18] found that this instant feedback increases
the quality of student submissions and improves confidence and
engagement even after it is removed. They also find that on later as-
signments without instant feedback, students that received instant
feedback on prior assignments performed similarly to students that
did not. Leite and Blanco [17] find that students that receive human
feedback achieve a higher conceptual understanding than students
that receive automated feedback in an AI class. Their autograding
scheme returns an estimated score immediately, and detailed feed-
back at a later fixed date. Even when the instantaneous feedback
was extremely limited to a total estimated score, students still used
the grader as a blackbox debugger. Kyilov and Noelle [15] find that
students receiving binary instant feedback with low granularity
attempted fewer exercises, and were twice as likely to cheat.

The availability of instantaneous feedback, regardless of the
quality, enables students to repeatedly submit to the autograder
without verifying their work beforehand. This runs counter to
an important programming skill, checking checking one’s own
code for correctness. Baniassad et. al [6] observe this effect in a
junior-level software engineering course, and attempt to curb it
by penalizing students for submitting solutions that regress. The
authors report that the penalty scheme reduced submissions to
the autograder without significantly impacting project scores, at
the cost of some student stress. Leinonen et. al [16] go further,
and provide instantaneous feedback with score penalties for any
extra submissions. They report that more students appreciated
scheduled automated feedback (fewer opportunities for feedback)
than instantaneous feedback with penalties for overuse. We do
not utilize penalties, and instead apply a rate limiting scheme on
submissions to encourage students to test their own code.

3 BACKGROUND INFORMATION
3.1 CS 61B
At UC Berkeley, CS 2 is called CS 61B: Data Structures and algo-
rithms. It is the second of three courses required to declare the CS
major. In Spring 2023, 78.5% of the students had taken CS 61A (CS
1 taught in Python), and 87% of the students intended to major in
Computer Science, EECS, or Data Science.

The course is taught using Java 17 in the IntelliJ IDE, and is
divided into three phases:

• Phase 1 (4 weeks), introduction to Java and usage of data
structures

• Phase 2 (6 weeks), implementation of data structures
• Phase 3 (4 weeks), algorithms

Scoring in CS 61B uses a bag-of-points system, with specific
point thresholds required for each letter grade. Students receive
points by completing assignments (labs, homeworks, and surveys),
submitting progress and check-in surveys, and exams. While discus-
sion sections and worksheets are available for students to attend,
they are not a formally scored component.

In CS 61B, the autograded programming assignments are Home-
work 2; Projects 0, 1, and 2; and 10 Lab assignments [4]. In total,
these assignments make up 24.5% of the points available in the
class. While higher emphasis is placed on exams, which make up
50% of the points available, students spend a significant amount of
time working on programming assignments, especially the projects.
Nearly all students are expected to get a full score on every program-
ming assignment through automated feedback and resubmissions.

Students that struggle on these assignments can receive help
in a variety of ways. They can attend lab section or office hours,
where they can work with a member of course staff. If they have a
question outside office hours, or their question requires significant
staff debugging, they are also able to ask on the course forum,
EdStem.

The projects require significantly more design and implementa-
tion than labs. The three projects that used significant autograding
are:

• Project 0: Awakening of Azathoth, in which students imple-
ment hangman choosers and guessers using Java’s built-in
data structures (Phase 1).

• Project 1: Deques, in which students implement both a
linked list-backed (1A) and array-backed version (1B) of a
deque interface. A required component of this project is
writing a comprehensive test suite (late Phase 1).

• Project 2: NGordNet, in which students implement the back-
end for an explorer of the Google NGrams dataset. This
project was split into two halves. In the first half, students
implement methods to parse and query the dataset. In the
second half with optional partners, students implement a
DAG of hyponyms (Phase 2).

In our discussion of autograding practices in CS 61B, we will
focus primarily on Projects 0 and 1, to which the author contributed
heavily.

3.2 Student Workflow
Students in CS 61B use two separate pieces of software to submit
assignments and receive grades. They maintain their work in a
course-provided GitHub repository and receive starter code by
merging from a base “skeleton” repository, where each assignment
is in a separate subfolder. Every assignment is completed in the
same repository with the exception of partner assignments (which
are completed in a second repository dedicated to the partnership).
To submit, students commit and push their code to GitHub, and
submit from this repository on Gradescope using the integration.
The assignment autograder runs in a Gradescope Docker container,
pulls the tests from a private GitHub repository, and outputs an
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autograding log in Gradescope’s output format [3]. Students are able
to resubmit to the same assignment and receive instant feedback
from the autograder, subject to limits on the rate of submission.

4 INFRASTRUCTURE
4.1 BSAG
CS 61B has a wide variety of assignments, each of which has dif-
ferent test suites and different scoring mechanisms, among other
things. The course staff that design and deploy assignments are
often not experienced with the details of the autograding software
or how Gradescope reports output. Rather than having staff write
code that runs tests and manually compiles a report, we use a
configurable middleware application.

Prior to Spring 2023, CS 61B used ASAG (A Simple AutoGrader),
which configured assignments with a YAML file. A config executes
steps in sequence, where a step is a Python class with a callable
method that can perform some computation, pass data to future
steps, and/or create log entries. However, ASAG was difficult to use,
as modifying it required access to the source code and knowledge
of its architecture. Its internal representation uses nested Python
dictionaries, which are difficult to use with type hints and static
analysis. It also provided little feedback to staff when an assignment
configuration was incorrect.

To resolve these issues, the author wrote and deployed a suc-
cessor to ASAG called BSAG, the Better Simple AutoGrader, first
used in Spring 2023 [10]. BSAG uses Python 3.10 best practices, and
uses the Pydantic library [5] to specify and validate assignment
configurations and other loaded data.

Similar to ASAG, BSAG provides some default steps, such as a
step to parse Gradescope submission metadata and a step to output
in Gradescope’s results format. BSAG further supports loading ex-
ternal step definitions from external packages in two ways. Users
can define their own entry point to BSAG, and provide their steps
as local files; or install Python packages that contain BSAG steps,
which are detected via Python’s plugin mechanism. CS 61B cur-
rently uses the latter method to install a package with steps to
compile and execute tests for Java programs, and aggregate their
scores [2]; and a separate private package with steps to interface
with the course’s custom LMS. While certain packages are private,
the explicit separation between the public core and the possibly
private steps has allowed us to open-source BSAG.

An example BSAG configuration file is shown in Figure 1. The
shared parameters are common settings that are reused across
several phases, such as the location of the grader files, the student
submission, and how long a command should take before timing
out. The execution plan defines the order in which steps should be
executed, with the configuration it should be executed with. For
example, this configuration file parses Gradescope’s submission
information, followed by processing extensions from our custom
LMS Beacon. These two steps compose together, as the latter step
assumes that the first has executed, and modifies the due date in
the loaded metadata. The jh61b steps are loaded from a separate
package, and specify how the autograder’s Java tests are compiled,
run, and aggregated into Gradescope’s score format. Finally, we
process lateness, and output the results as Gradescope expects them.

shared_parameters:
grader_root: "/autograder/course-materials/labs/

↩→ lab01/grader/submit"
submission_root: "/autograder/submission/lab01/src"
command_timeout: 10
assignment_id: lab01

execution_plan:
- gradescope.sub_info
- beacon.extensions
- jh61b.check_files:

pieces:
ArithmeticTest:
student_files:
- Arithmetic.java

assessment_files:
- ArithmeticTest.java

- jh61b.compilation
- jh61b.dep_check
- jh61b.assessment:

piece_configs:
ArithmeticTest:
require_full_score: true
aggregated_number: 1

- jh61b.final_score:
scoring:
ArithmeticTest: 1

max_points: 256

teardown_plan:
- jh61b.motd
- gradescope.lateness
- gradescope.results

Figure 1: Sample BSAG Configuration File

This configuration runs the autograder and provides feedback on
late submissions. One modification we could make to this configura-
tionwould be to check lateness before executing the autograder, and
halting if the submission is after the due date, preventing students
from continuing to work on a late assignment.

4.2 Java Assertions
Java programs are typically unit tested using assertions about the
output of a student’s program. Assertions check an actual value
produced from a student program in some way, and is compared to
an expected value in some way. Libraries can make several kinds
of comparisons in assertions, depending on the data type, with the
most commonly used being a check for equality between the ex-
pected and actual. While the actual value is derived from a student
program, the expected value may come from a variety of sources,
including a hardcoded value in the test, the contents of a file, or
a known correct solution. There are several libraries that provide
different methods of writing assertions, and output messages in
different formats when assertions fail. We show the differences
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between these libraries when comparing a long integer array that
differs in the last element in Table 1. One point of note is that some
libraries, such as AssertJ and Truth, use the fluent programming
style, which uses method chaining to make assertions read left to
right as in English. Prior to Spring 2023, CS 61B used JUnit 4 for
legacy reasons. In Spring 2023, CS 61B switched to the Truth asser-
tion library for its fluent assertions and better-formatted assertion
errors; as well as the variety of assertions it provides [11].

4.3 Executing Tests
Executing tests requires a test framework, such as JUnit 5. These
frameworks allow a variety of methods for users to specify which
tests to run, such as filtering based on class, method name, tags, or
various patterns. The framework also determines how test results
are compiled and reported to the user. While JUnit 5 supports
the Open Test Reporting XML format, along with various human-
readable formats, these are ill-suited for a full autograding suite
tests with useful information for scoring. For example, instructors
may want to assign specific scoring information to specific tests,
annotate tests with additional messages outside assertions and print
statements, or suppress the output of certain tests.

To run tests, CS 61B uses the jh61b library [8]. The library im-
plements a custom Junit 5 test engine that attaches a test execu-
tion listener listener that consumes a specific Java annotation on
unit test methods, and outputs a JSON in Gradescope’s results
schema. It also captures standard output, which can optionally
be included in the results. A test method may be annotated with
@GradedTest(number="4", max_score=2,
suppress_output=true), describing the test number (for ordering
in Gradescope output), the relative value of the test, and whether to
include the test ouptut in Gradescope results. When an assignment
executes multiple test suites, we use a BSAG step to merge the
results files into a single Gradescope report.

4.4 Autograding Practices
4.4.1 Blackbox Tests. The most common kind of automated test
currently used in CS 61B is a blackbox test, which simply runs the
student’s program to produce an output, then asserts that output is
“correct”. Our blackbox tests fall into two categories: small unit tests
and large randomized tests. Small unit tests call a student’s program
once, or a few times on small hardcoded inputs. In contrast, large
randomized tests call a student’s program many times on a variety
of inputs, which are often randomly generated. Although these
tests are called randomized, we ensure that they are deterministic
by seeding a random number generator for consistency, fairness,
and reproducibility.

With a sufficiently large number of random inputs, it is likely
that many paths in the student’s code will be covered, which gives
us high confidence that passing the random tests means they have
implemented a fully correct solution. However, this is not a guar-
antee of complete correctness. There may be edge cases that are
extremely unlikely to be covered by pure randomness. Addition-
ally, generating and testing a sufficient number of random inputs
may take an unreasonably long time, which can be frustrating to
students and slow their development velocity. Furthermore, it is
difficult to generate appropriate feedback from a failed random

test, because the root cause of the failure is inherently unknown.
Therefore, we provide both unit tests and several other kinds of
tests to provide better feedback to students.

4.4.2 Limiting Feedback. One learning objective of CS 61B is soft-
ware testing, or verifying the correctness of one’s own code. How-
ever, the availability of automated feedback often causes students to
rely on this automated feedback instead of writing their own tests.
Much related work focuses on various mechanisms of penalizing
repeated submissions, and CS 61B uses a similar approach.

Certain assignments, particularly the later projects, use a token
system of to ratelimit student submissions. Students begin with
a maximum number of tokens, and can “spend” a token to make
a submission and receive feedback from the autograder. A token
recharges after a specific length of time, and any submissions made
when the student has 0 tokens receive a 0 score and no feedback.

4.4.3 Security. Velocity limiting and other methods of controlling
the rate at which students can receive feedback requires that the
test suite be private and not easily printable. Even with a public
test suite with unlimited instant feedback, it is still good practice
to prevent student code from writing to arbitrary files, terminating
the test suite early, or faking behavior. While these concerns are
likely inapplicable for the majority of students, it is still important
to consider autograder security.

In CS 61B, we use velocity limiting on many assignments, and
therefore have a need to secure the test suite. We implement this
using the Java Security Manager and extending the Policy and
SecurityManager classes. The Policy restricts the filepaths and
system properties that student code is allowed to access. The
SecurityManager works alongside the Policy, and converts
System.exit calls that would interrupt the test suite into excep-
tions. To use these classes, our tests launch from a custom entry
point to the jh61b runner, which instantiates and installs them be-
fore running the test suite. We use a separate entry point outside
of jh61b as these security policies encode many CS 61B-specific
details, and we would like to make jh61b usable by others. Secondly,
separating them allows us to open-source jh61b while obscuring
the precise details of our security mechanisms from students.

A significant upcoming challenge is that the Security Manager
is deprecated and slated for removal without a replacement [1].
While we do not yet know in which Java version these features will
be deleted, the fact that they are deprecated is strong motivation
to update our practices. An alternate possibility for securing test
contents is separation of student code from readable test code. After
the test files are compiled, they may be copied to a separate system,
or the file permissions may be updates so that the tests are run by a
user that only has access to the bytecode files. Although it may still
be possible for a student to leak the bytecode, it is significantly more
difficult to discern the actual contents of a test from bytecode than
source code. Another worthwhile practice is verifying a checksum
of test data files to ensure that they have not been overwritten at
time of use.
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Table 1: Comparison of Java Assertion Libraries

Library Assertion Output

JUnit 4.13 assertArrayEquals("not␣equal",

↩→ expected, actual)

not equal: arrays first differed at element [999];

↩→ expected:<0> but was:<-1>

Expected :0

Actual :-1

JUnit 5.9 assertArrayEquals(expected, actual, "

↩→ not␣equal");

not equal ==> array contents differ at index [999],

Expected :0

Actual :-1

TestNG 7.7 assertEquals(actual, expected, "not␣

↩→ equal");

arrays differ firstly at element [999]; expected value

↩→ is <0> but was <-1>. not equal

Hamcrest 2.2 assertThat(actual, is(expected)); Expected: is [<0>, <0>, <0>, <0>, <0>, <0>, <0>, <0>,

↩→ <0>, <0>, ...

but: was [<0>, <0>, <0>, <0>, <0>, <0>, <0>, <0>,

↩→ <0>, <0>, ...

The entire array is printed; we only show the first 10 elements.

AssertJ 3.24 assertThat(actual).as("not␣equal").

↩→ isEqualTo(expected);

[not equal]

expected: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

but was: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

The entire array is printed; we only show the first 10 elements.

Truth 1.1 assertWithMessage("not␣equal").that(

↩→ actual).isEqualTo(expected);

not equal

expected : ..., 0, 0, 0, 0, 0, 0, 0]

but was : ..., 0, 0, 0, 0, 0, 0, -1]

differs at index: [999]

5 BEYOND BLACKBOX AUTOGRADING
We now discuss how we use autograding techniques to evaluate
student programs beyond running the programs and checking their
outputs.

5.1 Introspection
Java supports observing the structure of classes at runtime via its
reflection library. One way that we provide this library to give
more appropriate feedback is to look at field declarations to check
that students are not declaring fields in a way that would lead to
inefficient or incorrect implementations. For example, in Project
0, a common mistake is to store a map with English words as the
key as a field at the class level, while it only needs to be a local
variable. Reflection lets us test for this explicitly and provide a
targeted feedback message.

In Project 1, where students implement a data structure, we use
reflection more extensively. When students implement a deque
backed by a linked list, we search for an inner class that “looks
like” a doubly-linked node by checking that the defined fields are
exactly two pointers to the same type, and a value. If the test fails, it
reports that the student’s class does not have a doubly-linked node
This test is made locally available to students because it provides
structural feedback to prevent students from going in an entirely
incorrect direction, such as using a singly linked list.

In addition to verifying the node class, we also provide feedback
on the internal representation of their linked list after various oper-
ations. After the linked list is constructed, we verify that they use
one of the required structures with or without sentinel nodes. We
also use a test that traverses the linked list and checks that the next
and previous pointers are consistent with each other. This allows
us to provide feedback at the point where the student’s internal
representation becomes incorrect, rather than at the point where
it affects the program’s behavior. A third test uses reflection to
count the number of reachable nodes in the linked list by following
pointers to check that adding values only adds one node, and that
removing values appropriately removes one node.

5.2 Complexity Analysis
CS 61B also heavily emphasizes the asymptotic runtime of algo-
rithms. Many assignments involve implementing a data structure
or algorithm, and we would like to provide feedback to students
that they are implementing the assignments to the desired runtime
complexity.

Using Project 1 as an example, our versions require students
to have constant-time addition and removal to both the front and
back of their deques, regardless of the internal implementation.
This means that students should not implement their array-backed
deque by shifting elements, as this would take linear time. A second
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example is ensuring constant-time access, as a common mistake is
to implement access by repeatedly incrementing an idex by 1.

We evaluate runtime at the method level. To estimate runtime for
a single method call, we perform operations on input sizes varying
from 28 to 216, doubling each step. For each size, we first construct
an input of the specific size, then measure the time it takes to call
the method. We do this 100 times per size, and take the average
runtime for each size. Then, we test whether the times “look like”
they are constant or linear.

Assuming that the times were generated by a runtime function
of the specific class, we apply a transformation function to the
times so that the hypothetical runtime becomes a constant function.
For example, if we are checking whether the runtime is linear, we
divide each average time by the input size. Finally, we verify our
assumption by running ordinary least squares to fit a line, and
checking the 𝑅2 value and slope. Empirically, this method is good
at differentiating between constant and linear runtimes.

We are aware of implementations at other institutions, but none
in the context of a large data data structures course.

5.3 Testing Tests
CS 61B also has a significant software engineering component, and
also has the learning objective of students verifying the correctness
of their code, both in designing test cases and implementing them.
To support students in reaching this learning objective, we provide
feedback on the quality of their tests. This feedback generation
is automated so that it can be provided alongside the automated
feedback generated for the other parts of the assignment.

We provide this feedback by manually instrumenting and anno-
tating a reference solutionwith flags.While some flags simply check
whether a line of code was executed, other flags are more complex
and involve tracking the program state over multiple method calls.
See Figure 2 for an example of an instrumented size method for a
linked list-backed deque. When a student submits to the autograder,
it runs their tests against the reference solution, and outputs the
names of the flags that were hit. We also provided a separate auto-
grader that would only give feedback on student tests, that was not
subject to the submission rate limits present on the autograder for
the full assignment. This is the first time that many students are
writing tests and thinking explicitly about edge case behavior, and
we would like to provide as frequent feedback as possible.

This approach evaluates the students’ testing in terms of behav-
ior coverage, or how many distinct significant behaviors their tests
cover. The feedback on tests presented to students is not solely
quantitative, but includes information on the sorts of behaviors
that their test coverage is missing. Additionally, it is a curated set
of important behaviors that have been identified by course staff.
This set of behaviors can exclude insignificant or overly complex
behaviors that course staff deem unnecessary, or identify and in-
clude rare edge case behaviors that random tests are unlikely to
encounter.

Of course, since these flags are not likely to cover all possible
behavior, some students get all the flags and pass their tests, but do
not pass the exhaustive suite of autograder tests. This is particularly
frustrating for students, as they’ve received feedback that their test
suite is “acceptable”, but then seemingly contradictory feedback

// Instrumented reference solution
public int size() {

if (size > 0) {
Flags.LLD_FLAGS.add("size");

} else if (size == 0 && nRemove > 0) {
Flags.LLD_FLAGS.add("

↩→ size_after_remove_to_empty");
} else if (size == 0 && nEmptyRemove > 0) {

Flags.LLD_FLAGS.add("
↩→ size_after_remove_from_empty");

}
return size;

}

// Flag test file
@Test
public void sizeTestCoverage() {

Set<String> flags = new TreeSet<>(Set.of(
"size",
"size_after_remove_to_empty",
"size_after_remove_from_empty"

));

System.out.println("Possible flags: " + flags);
flags.retainAll(Flags.LLD_FLAGS);
System.out.println("Obtained flags: " + flags);
assertThat(flags.size()).isAtLeast(1);

}

Figure 2: Flags for the sizemethod in Project 1A

that it is not. We have taken two responses to this. The first is to
update the flags over time, to report whether additional behaviors
are covered by student tests. The second is to use this as a learning
opportunity to teach students that test suites are not perfect, and
that passing a set of tests does not necessarily mean that their code
is completely correct.

5.4 Scoring
With new kinds of autograder feedback, we also re-evaluate our
scoring mechanism. Prior to Spring 2023, CS 61B gave each test
method a point value. When a student submitted and received
feedback on their test suite, their grade on the assignment would
be the total number of points from passed test methods.

This method of scoring student programs by assigning each test
a point value has several drawbacks related to how partial credit is
reflected. Firstly, points are fungible, which means that a test can
be worth the same number of points as a different test. Two tests
worth the same number of points may not indicate the same level
of completion, especially if both are small random tests. A program
may miss a particular edge case that causes it to fail more tests
than a different program that misses a different edge case. Ideally,
both students would fix their errors and resubmit, though they
may decide that their program is “good enough”. The reflection
tests earlier that check the internal structure of a program, aside
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from providing meaningful feedback, also check that the student
followed the specification for the assignment. If a student passes
tests while not following the specification, it may not be desirable
to give credit. Finally, adding additional tests or editing the test
suite because new tests requires extra cognitive load to determine
how they should be weighted against existing tests.

As we introduce additional kinds of feedback, we revise our
scoring mechanisms to better describe student progress through
an assignment. For Project 1A, we are able to give partial credit for
constructing a correct representation of an empty linked list, then
exhaustively test adding elements, followed by exhaustively testing
adding and removing elements. Each subpart requires passing all
relevant tests to receive credit, as a step towards specifications
grading at the assignment level. As individual tests no longer con-
tribute to a student’s assignment score, we add many additional
tests that exercise specific edge cases, such as repeatedly adding
and removing elements from an empty list. We use similar tests in
Project 1B, instead checking that the student has instantiated an
array, and providing tests that exercise various possible states of
the backing array.

However, switching to this form of grading must be done care-
fully to ensure that each subpart is of reasonable size. In Spring
2023’s Project 2B, students design and implement a graph on the
WordNet dataset, and implement several search algorithms to ex-
plore it [22]. Due to the scope of the project, students were allowed
to complete it in partners.

The test suite for the project directly translated from a previ-
ous term, with each fully functioning search feature designated
as a supbart. Each feature is tested by several medium to large
randomized tests. Since there is a large design and implementation
component to complete even one of these features correctly, the
bottom 3% of students did not receive any credit despite spending
a significant amount of time on the project. Some of these students
had implemented entire subparts nearly correctly, except for small
edge cases that the randomized tests failed on. This assignment
used aggressive velocity limiting, with 4 tokens that regenerated
every 24 hours, which limits the the feedback that students are able
to obtain from the autograder.

Two thirds of the student body in total received at least one
extension to complete the assignment. Of these, approximately 60%
received an extension of 9 days (over spring break) and another 30%
received an extension beyond that. In contrast, on each of Projects
1A, 1B, approximately one third of the students received at least
one extension.

While it is likely that the difference in difficulty explains the
increase in extensions, our hypothesis is that the lack of effective
feedback in Project 2B is a heavy contributor as well. The poor
feedback combined with long office hours waits caused students
to not be able to receive the necessary guidance to correct their
solutions.

6 FUTUREWORK
There are many directions for future work in developing auto-
graders that can give more effective feedback beyond blackbox
testing.

One technique is using a Java agent to modify student class
bytecode when it is loaded by the Java classloader. For example,
the previously mentioned complexity estimator can be made much
more consistent by inserting a step counter after every instruction
of a student’s code, and fitting to the number of steps. We are aware
of an (unpublished) implementation in CS 2 at Caltech by Adam
Blank.

A common approach that TAs use at office hours is using the
debugger to demonstrate why a program state is incorrect in the
middle of a method. We are also interested in exploring using the
Java Debugger Interface to expose, check, and provide feedback on
the internal state of student programs in an autograder.

Finally, while we have thus far viewed autograder feedback
through the lens of a novice student programmer, we are also in-
terested in how autograders can enable experienced course staff
to give effective help more efficiently. Automated feedback can
contain more information that a student would have difficulty pars-
ing, but a trained staff member would be able to use to identify
possible causes. This would help reduce the office hours time spent
on problem diagnosis, allowing staff to spend more time directly
instructing students.
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