
Safe and Efficient Robot Learning by Biasing

Exploration Towards Expert Demonstrations

Albert Wilcox

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-152

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-152.html

May 12, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The research presented in this thesis would not have been possible without
the collaboration, mentorship and friendliness from those I've had the
pleasure to work with, including Professor Ken Goldberg, Ashwin
Balakrishna, Nathan Lambert, Brijen Thanajeyan, Justin Kerr, Raven
Huang, Ryan Hoque, Alejandro Escontrela, Allie Gu, Max Fu, Chung Min
Kim, Rishi Parikh, Vainavi Viswanath, Kaushik Shivakumar, Satvik Sharma,
Simeon Adebola, Varun Kamat, and countless others.

Safe and E�icient Robot Learning by Biasing
Exploration Towards Expert Demonstrations

Albert Wilcox

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Commi�ee

Professor Ken Goldberg
Research Advisor

(Date)

¢ ¢ ¢ ¢ ¢ ¢ ¢

Professor Pieter Abbeel
Second Reader

(Date)

10 May 2023

Pieter Abbeel
11 May 2023

Safe and Efficient Robot Learning by Biasing Exploration Towards Expert Demonstrations

by

Albert Wilcox III

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Pieter Abbeel

Spring 2023

The dissertation of Albert Wilcox III, titled Safe and Efficient Robot Learning by Biasing
Exploration Towards Expert Demonstrations, is approved:

Chair Date

Date

Date

University of California, Berkeley

Safe and Efficient Robot Learning by Biasing Exploration Towards Expert Demonstrations

Copyright 2023
by

Albert Wilcox III

1

Abstract

Safe and Efficient Robot Learning by Biasing Exploration Towards Expert Demonstrations

by

Albert Wilcox III

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

Reinforcement learning (RL) has shown impressive results as a framework for learning
to complete complex tasks in a wide variety of low- and high-dimensional environments.
However, numerous challenges prevent it from being broadly useful as a tool for robotic
control. For one, while others have had success training RL algorithms on densely defined
reward functions, these can be exceedingly difficult to define and may lead to unintended
behaviors. An alternative approach is to learn based on sparse reward functions, using
demonstrations to address the additional exploration challenges these sparse reward functions
introduce. A second challenge is that while robots running RL algorithms randomly explore
in the real world they are known to exhibit dangerous behaviors, damaging themselves, their
environments, or even harming people. In this dissertation, we propose the use of offline
demonstrations of desirable behavior as a means to guide online exploration, and present two
projects using this concept towards addressing problems with efficiency and safety in RL.

A promising strategy for learning in dynamically uncertain environments is requiring that
the agent can robustly return to learned safe sets, where task success (and therefore safety)
can be guaranteed. While this approach has been successful in low-dimensions, enforcing this
constraint in environments with visual observations is exceedingly challenging. We present a
novel continuous representation for safe sets by framing it as a binary classification problem
in a learned latent space, which flexibly scales to image observations. We then present a new
algorithm, Latent Space Safe Sets (LS3), which uses this representation for long-horizon tasks
with sparse rewards.

While prior work has used expert demonstrations to improve RL, these algorithms introduce
algorithmic complexity and additional hyperparameters, making them hard to implement
and tune. We introduce Monte Carlo augmented Actor-Critic (MCAC), a parameter free
modification to standard actor-critic algorithms which initializes the replay buffer with
demonstrations and computes a modified Q-value by taking the maximum of the standard
temporal distance (TD) target and a Monte Carlo estimate of the reward-to-go. This

2

encourages exploration in the neighborhood of high-performing trajectories by encouraging
high Q-values in corresponding regions of the state space.

i

To my parents

Everything I’ve been able to do has been because of you. Thank you.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

2 Related Work 3
2.1 Safe, Iterative Learning Control . 3
2.2 Model Based Reinforcement Learning . 3
2.3 Reinforcement Learning from Pixels . 4
2.4 Reinforcement Learning from Demonstrations 4
2.5 Improving Q-Value Estimates . 5

3 LS3: Latent Space Safe Sets (LS3) 7
3.1 Individual Contributions . 8
3.2 Problem Statement . 8
3.3 Algorithm Details . 9
3.4 Experiments . 16

4 MCAC: Monte Carlo augmented Actor-Critic 24
4.1 Individual Contributions . 25
4.2 Problem Statement . 25
4.3 Preliminaries: Actor-Critic Algorithms . 26
4.4 Monte Carlo augmented Actor-Critic . 26
4.5 Experiments . 29
4.6 Additional Experiments . 37

5 Conclusions and Limitations 41

6 Future Work 43

iii

Bibliography 45

iv

List of Figures

3.1 Latent Space Safe Sets (LS3): At time t, LS3 observes an image st of the
environment. The image is first encoded to a latent vector zt ∼ fenc(zt|st).
Then, LS3 uses a sampling-based optimization procedure to optimize H-length
action sequences by sampling H-length latent trajectories over the learned latent
dynamics model fdyn. For each sampled trajectory, LS3 checks whether latent
space obstacles are avoided and if the terminal state in the trajectory falls in the
latent space safe set. The terminal state constraint encourages the algorithm to
maintain plans back to regions of safety and task confidence, but still enables
exploration. For feasible trajectories, the sum of rewards and value of the terminal
state are computed and used for sorting. LS3 executes the first action in the
optimized plan and then performs this procedure again at the next timestep. . . 10

3.2 LS3 Learned Models: LS3 learns a low-dimensional latent representation of
image-observations (Section 3.3) and learns a dynamics model, value function,
reward function, constraint classifier, and safe set for constrained planning and
task-completion driven exploration in this learned latent space. These models are
then used for model-based planning to maximize the total value of predicted latent
states (Section 3.3) while enforcing the safe set (Section 3.3) and user-specified
constraints (Section 3.3). 10

3.3 Experimental Domains: LS3 is evaluated on 3 long-horizon, image-based,
simulation environments: a visual navigation domain where the goal is to navigate
the blue point mass to the right goal set while avoiding the red obstacle, a 2
degree of freedom reacher arm where the task is to navigate around a red obstacle
to reach the yellow goal set, and a sequential pushing task where the robot must
push each of 3 blocks forward a target displacement from left to right. We also
evaluate LS3 on a physical, cable-routing task on a da Vinci Surgical Robot, where
the goal is to guide a red cable to a green target without the cable or robot arm
colliding with the blue obstacle. This requires learning visual dynamics, because
the agent must model how the rest of the cable will deform during manipulation
to avoid collisions with the obstacle. 16

v

3.4 Simulation Experiments Results: Learning curves showing mean and standard
error over 10 random seeds. We see that LS3 learns more quickly than baselines
and ablations. Although SACfD and SACfD+RRL converge to similar reward
values, LS3 is much more sample efficient and stable across random seeds. 17

3.5 Physical Cable Routing Results: We present learning curves, task success
rates and constraint violation rates with a mean and standard error across 3
random seeds. LS3 learns a more efficient policy than the demonstrator while still
violating constraints less than comparisons, which are unable to learn the task. . 21

3.6 Task Success Rate: Learning curves showing mean and standard error of task
success rate of checkpointed policies over 10 random seeds (and 10 rollouts per
seed). We see that LS3 has a much higher task success rate than comparisons
early on, and maintains a success rate at least as high as comparisons throughout
training in all environments. 22

3.7 Hyperparameter Sweep for LS3 Constraint Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings
of δC on the sequential pushing environment. As expected, we see that without
avoiding latent space obstacles (No Constraints) the agent violates constraints
more often, while lower thresholds (meaning the planning algorithm is more
conservative) generally lead to fewer violations. 22

3.8 Hyperparameter Sweep for LS3 Safe Set Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings of
δS on the sequential pushing environment. We see that after offline training, the
agent can successfully complete the task only when δS is high enough to sufficiently
guide exploration, and that runs with higher values of δS are more successful overall. 23

3.9 Hyperparameter Sweep for LS3 Planning Horizon: Plots show mean and
standard error over 10 random seeds for experiments with different settings of H
on the sequential pushing environment. We see that when the planning horizon
is too high the agent cannot reliably complete the task due to modeling errors.
When the planning horizon is too low, it learns quickly but cannot significantly
improve because it is constrained to the safe set. We found H = 3 to balance this
trade off best. 23

4.1 MCAC Domains: We evaluate MCAC on five continuous control domains: a
pointmass navigation environment, and four high-dimensional robotic control
domains. All domains are associated with relatively unshaped reward functions,
which only indicate constraint violation, task completion, or completion of a subtask. 34

vi

4.2 MCAC Replay Buffer Visualization: Scatter plots showing Bellman, GQE and
MCAC Q estimates on the entire replay buffer, including offline demonstrations,
for SAC learners with and without the MCAC modification after 50000 timesteps
of training. The top row shows data and Q estimates obtained while training
a baseline SAC agent without MCAC, while the bottom row shows the same
when SAC is trained with MCAC. The left column shows Bellman Q estimates
on each replay buffer sample while the middle column shows GQE estimates and
the right column shows MCAC estimates. Results suggest that MCAC is helpful
for propagating rewards along demonstrator trajectories. 35

4.3 MCAC and Standard RL Algorithms Results: Learning curves showing
the exponentially smoothed (smoothing factor γ = 0.9) mean and standard error
across 10 random seeds. We find that MCAC improves the learning efficiency of
TD3, SAC, and GQE across all 5 environments. 36

4.4 MCAC and RL from Demonstrations Algorithm Results: Learning curves
showing the exponentially smoothed (smoothing factor γ = 0.9) mean and standard
error across 10 random seeds. When OEFD or AWAC achieve high performance
almost immediately, MCAC has little impact on performance. However, when
OEFD and AWAC are unable to learn efficiently, MCAC accelerates and stabilizes
policy learning. 37

4.5 MCAC without Demonstrations: Learning curves showing the exponentially
smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random
seeds for experiments with demonstrations and 3 seeds for experiments without
them. We see that in all environments the demonstrations are critical for learning
an optimal policy. The only place the variants without demonstrations make
progress is in the push environment, because of the intermediate reward for pushing
each block. 38

4.6 MCAC Sensitivity Experiments: Learning curves showing the exponentially
smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random
seeds for varying demonstration qualities (a) and quantities (b) for SAC + MCAC.
(a): Results suggest that MCAC is somewhat sensitive to demonstration quality,
as when ϵ-greedy noise is injected into the demonstrator, MCAC’s performance
does drop significantly, although it eventually make some task progress for most
values of ϵ. (b): MCAC appears to be much less sensitive to demonstration
quantity, and is able to achieve relatively high performance even with a single
task demonstration. 39

4.7 MCAC with and without Pretraining Results: Learning curves showing
the exponentially smoothed (smoothing factor γ = 0.9) mean and standard error
across 10 random seeds. We find that other than in the navigation environment
pretraining does not provide a significant benefit. 40

vii

List of Tables

3.1 Hyperparameters for LS3 . 15
3.2 Task Success Rate over all Training Episodes: We present the mean and

standard error of training-time task completion rate over 10 random seeds. We
find LS3 outperforms all comparisons across all 3 domains, with the gap increasing
for the challenging sequential pushing task. 20

3.3 Constraint Violation Rate: We report mean and standard error of training-
time constraint violation rate over 10 random seeds. LS3 violates constraints
less than comparisons on the Reacher task, but SAC and SACfD+RRL achieve
lower constraint violation rates on the Navigation and Pushing tasks, likely due
to spending less time in the neighborhood of constraint violating regions due to
their much lower task success rates. 20

4.1 Hyperparameters for SAC . 32
4.2 Hyperparameters for GQE . 33

viii

Acknowledgments

The research presented in this thesis would not have been possible without the collab-
oration, mentorship and friendliness from numerous people I’ve had the pleasure to work
with.

First and foremost, Professor Ken Goldberg has been an incredible mentor, and working
in his group has opened a world of possibilities to me. I thank you for taking the time to
help all of the many students in your group and am extremely grateful for having been one
of them.

Next, I’d like to extend an ocean of gratitude to Ashwin Balakrishna. Ashwin was one
of my first mentors in the lab and came to be a very close friend. He did an incredible job
spending time teaching me to do robotics research, and his sense of humor made long days
and nights working on robotics experiments bearable. He’s also become a trusted source of
advice whenever I’m unsure about life decisions. I can’t thank Ashwin enough.

I’d also like to extend thanks to other students I’ve worked directly with on projects
both included and not included in this thesis. I collaborated with Brijen Thanajeyan, also
one of my first mentors in the lab, on two papers and am grateful for his help shaping my
understanding of robotics research. I’ve also collaborated closely with Justin Kerr multiple
times, and will forever be impressed by his skills getting robots to work correctly. Raven
Huang, Ryan Hoque and Alejandro Escontrela, Allie Gu have also been excellent collaborators
who I’m grateful to have worked with.

Lastly, I’d like to thank those who I never worked with directly but whose friendship and
insights have been crucial to my development as a researcher. These people include Max Fu,
Chung Min Kim, Rishi Parikh, Vainavi Viswanath, Kaushik Shivakumar, Satvik Sharma,
Simeon Adebola, Varun Kamat, Edith Llontop, Amber Xie, Philippe Hansen-Estruch, and
countless others.

1

Chapter 1

Introduction

Reinforcement learning has been successful in learning complex skills in many environments
[39, 64, 59], but there are numerous factors making it difficult to apply RL to a wide range of
robotic applications. For one, many successful applications have relied on engineers providing
dense, informative reward functions, but this is often very challenging [85, 31, 84]. This is
particularly problematic for high-dimensional control tasks, in which there may be a large
number of factors that influence the agent’s objective. In many settings, it may be much
easier to provide sparse reward signals that simply convey high-level information about
task progress, such as whether an agent has completed a task or has violated a constraint.
However, optimizing RL policies given such reward signals can be exceedingly challenging, as
sparse reward functions may not be able to meaningfully distinguish between a wide range of
different policies. For tasks that take many timesteps to complete, it is often impossible for
a randomly exploring agent to ever stumble upon a successful trajectory, making naive RL
impossible.

Another key issue preventing the application of RL to a wide range of robotic tasks is
safety. Reinforcement learning relies on the agent randomly exploring a wide range of states,
and when the agent is a physical robot in the real world, this random exploration can be
dangerous. In the worst case, the robot can accidentally damage itself, its environment, or
even harm people. While there are a variety of plausible ways to avoid this, one direction we
focus on in this dissertation is safe RL, an RL formulation where the agent is subjected to
constraints on the probability of constraint violation [67, 73, 74, 81].

The unifying theme behind these two problems is that they both arise due to RL’s need
for a body of data with informative rewards in order to learn good policies. Sparse reward RL
is difficult because it is difficult to find such informative data through random exploration,
and safe RL is difficult because while looking for that data, the robot may exhibit dangerous
behaviors. To that end, in this dissertation we propose to use offline demonstrations of
desired behavior to guide RL exploration towards promising and safe states, presenting two
projects that work towards this idea.

For the first project presented here, discussed in further detail in Chapter 3, we developed
a model-based RL algorithm seeking to explicitly constrain the agent to stay near familiar

CHAPTER 1. INTRODUCTION 2

states by explicitly constraining latent planning. This work builds on prior methods which
efficiently learn safe control policies by learning a ‘safe set’ of familiar states and using it to
guide exploration [51, 50, 72, 74]. While these works do well enabling safe learning in low
dimensional settings with simple tasks, they fall short on tasks that require larger datasets
or those with higher dimensional observation spaces, as discussed further in Chapter 3. To
that end, we introduce a novel algorithm, Latent Space Safe Sets (LS3), which learns a latent
representation space approximates these algorithms within this latent space. We additionally
present simulated and physical robotics experiments demonstrating LS3’s ability to learn
high-performing policies while minimizing the probability of constraint violation.

For the second project presented here, we focus specifically on the problem of learning to
complete sparse reward tasks using offline data, as discussed in Chapter 4. While prior work
has used demonstrations to address this setting [49, 46, 74, 73, 81, 42, 18, 12], these algorithms
add significant complexity and hyperparameters, making them difficult to implement and
tune for different tasks. To that end, we introduce Monte Carlo augmented Actor-Critic,
an easy-to-implement and highly effective change that can be made to a wide variety of
actor-critic algorithms without the addition of any hyperparameters. At a high level, MCAC
works by slightly modifying the Q target values during critic updates to encourage optimism
in regions of the state space where replay buffer data has been successful in the past. This
synergizes with the offline data of desired behavior to bias the agent towards high-performing
demonstrator trajectories, helping the agent to discover high-performing policies. In addition
to the algorithm itself, we provide a suite of experiments studying MCAC’s effect on a variety
of RL algorithms and studying its sensitivity to a variety of RL training variables.

3

Chapter 2

Related Work

2.1 Safe, Iterative Learning Control

In iterative learning control (ILC), the agent tracks a reference trajectory and uses data
from controller rollouts to refine tracking performance [4]. [53, 52, 51] present a new class of
algorithms, known as Learning Model Predictive Control (LMPC), which are reference-free
and instead iteratively improve upon the performance of an initial feasible trajectory. To
achieve this, [53, 52, 51] use data from controller rollouts to learn a safe set and value
function, with which recursive feasibility, stability, and local optimality can be guaranteed
given a known, deterministic nonlinear system or stochastic linear system under certain
regularity assumptions. However, a core challenge with these algorithms is that they assume
known system dynamics, and cannot be applied to high-dimensional control problems. [74]
extends the LMPC framework to higher dimensional settings in which system dynamics are
unknown and must be learned, but the visuomotor control setting introduces a number of new
challenges as learned system dynamics, safe sets, and value functions must flexibly scale to
visual inputs. [50] designs expressive safe sets for fixed policies using neural network classifiers
with Lyapunov constraints. In contrast, LS3 constructs a safe set for an improving policy by
optimizing a task cost function instead of uniformly expanding across the state space.

2.2 Model Based Reinforcement Learning

There has been significant recent progress in algorithms which combine ideas from model-
based planning and control with deep learning [8, 35, 10, 38, 7, 40]. These algorithms
are gaining popularity in the robotics community as they enable leaning complex policies
from data while maintaining some of the sample efficiency and safety benefits of classical
model-based control techniques. However, these algorithms typically require hand-engineered
dense cost functions for task specification, which can often be difficult to provide, especially
in high-dimensional spaces. This motivates leveraging demonstrations (possibly suboptimal)
to provide an initial signal regarding desirable agent behavior. There has been some prior

CHAPTER 2. RELATED WORK 4

work on leveraging demonstrations in model-based algorithms such as [48] and [20], which
use model-based control with known dynamics to refine initially suboptimal motion plans,
and [10], which uses demonstrations to seed a learned dynamics model for fast online
adaptation using iLQR [10]. [74, 89] present ILC algorithms which rapidly improve upon
suboptimal demonstrations when system dynamics are unknown. However, these algorithms
either require knowledge of system dynamics [48, 20] or are limited to low-dimensional state
spaces [10, 74, 89] and cannot be flexibly applied to visuomotor control tasks.

2.3 Reinforcement Learning from Pixels

Reinforcement learning and model-based planning from visual observations is gaining sig-
nificant recent interest as RGB images provide an easily available observation space for
robot learning [9, 37]. Recent work has proposed a number of model-free and model-based
algorithms that have seen success in laboratory settings in a number of robotic tasks when
learning from visual observations [55, 57, 43, 65, 23, 47, 9, 87, 37]. However, two core issues
that prevent application of many RL algorithms in practice, inefficient exploration and safety,
are significantly exacerbated when learning from high-dimensional visual observations in
which the space of possible behaviors is very large and the features required to determine
whether the robot is safe are not readily exposed. There has been significant prior work on
addressing inefficiencies in exploration for visuomotor control such as latent space planning [15,
37, 87] and goal-conditioned reinforcement learning [47, 43]. However, safe reinforcement
learning for visuomotor tasks has received substantially less attention. [73] and [22] present
reinforcement learning algorithms which estimate the likelihood of constraint violations to
avoid them [73] or reduce the robot’s velocity [22]. Unlike these algorithms, which focus on
presenting methods to avoid violating user-specified constraints, LS3 additionally provides
consistent task completion during learning by limiting exploration to the neighborhood of prior
task successes. This difference makes LS3 less susceptible to the challenges of unconstrained
exploration present in standard model-free reinforcement learning algorithms.

2.4 Reinforcement Learning from Demonstrations

One standard approach for using demonstrations for RL first uses imitation learning [1]
to pre-train a policy, and then fine-tunes this policy with on-policy reinforcement learning
algorithms [56, 29, 46, 49]. However, initializing with suboptimal demonstrations can hinder
learning and using demonstrations to initialize only a policy is inefficient, since they can also
be used for Q-value estimation.

Other approaches leverage demonstrations to explicitly constrain agent exploration. [74]
propose a model-based RL approach that uses suboptimal demonstrations to iteratively
improve performance by ensuring consistent task completion during learning. Similarly,
[jing2020reinforcement] also uses suboptimal demonstrations to formulate a soft-constraint

CHAPTER 2. RELATED WORK 5

on exploration. However, a challenge with these approaches is that they introduce substantial
algorithm complexity, making it difficult to tune and utilize these algorithms in practice. For
example, while [74] does enable iterative improvement upon suboptimal demonstrations, they
require learning a model of system dynamics and a density estimator to capture the support
of successful trajectories making it challenging to scale to high-dimensional observations.

Finally, many methods introduce auxiliary losses to incorporate demonstrations into
policy updates [27, 12, 24]. Deep Deterministic Policy Gradients from Demonstrations
(DDPGfD) [79] maintains all the demonstrations in a separate replay buffer and uses prioritized
replay to allow reward information to propagate more efficiently. [42], and [18] use similar
approaches, where demonstrations are maintained separately from the standard replay
buffer and additional policy losses encourage imitating the behavior in the demonstrations.
Meanwhile, RL algorithms such as AWAC [41] pretrain using demonstration data to constrain
the distribution of actions selected during online exploration. While these methods often work
well in practice, they often increase algorithmic complexity and introduce several additional
hyperparameters that are difficult and time consuming to tune. By contrast, MCAC does
not increase algorithmic complexity, is parameter-free, and can easily be wrapped around
any existing actor-critic algorithm.

2.5 Improving Q-Value Estimates

The core contribution of this work is an easy-to-implement, yet highly effective, method
for stabilizing actor-critic methods for sparse reward tasks using demonstrations and an
augmented Q-value target. There has been substantial literature investigating learning
stability challenges in off-policy deep Q-learning and actor-critic algorithms. See [78] for
a more thorough treatment of the learning stability challenges introduced by combining
function approximation, bootstrapping, and off-policy learning, as well as prior work focused
on mitigating these issues.

One class of approaches focuses on developing new ways to compute target Q-values [30,
82, 77, 58]. [77] computes target Q-values with two Q-networks, using one to select actions
and the other to measure the value of selected actions, which helps to prevent the Q-value
over-estimation commonly observed in practice in many practical applications of Q-learning.
TD3 [11] attempts to address overestimation errors by taking the minimum of two separate
Q-value estimates, but this can result in underestimation of the true Q-value target. [33]
uses an ensemble of critics to adaptively address estimation errors in Q-value targets, but
introduces a number of hyperparameters which must be tuned separately for different tasks.
[3] and [45] consider a linear combination of a TD-1 target and Monte Carlo target. [83, 58]
and [62] consider a number of different estimators of a policy’s value via n-step returns, which
compute Q-targets using trajectories with n contiguous transitions followed by a terminal
evaluation of the Q-value after n steps. Each of these targets make different bias and variance
tradeoffs that can affect learning dynamics.

Similar to our work, [82] explore the idea of taking a maximum over a bootstrapped

CHAPTER 2. RELATED WORK 6

target Q-value (TD-1 target) and a Monte Carlo estimate of the return-to-go to improve
fitted Q-iteration. However, [82] focuses on fully offline Q-learning and only considers simple
low-dimensional control tasks using Q-learning with linear value approximation. There are
numerous reasons to extend these ideas to online deep RL. First, deep RL algorithms are often
unstable, and using the ideas in [82] to improve Q estimates is a promising way to alleviate
this, as we empirically verify. Second, while offline learning has many important applications,
online RL is far more widely studied, and we believe it is useful to study the effects these
ideas have in this setting. To the best of our knowledge, MCAC is the first application
of these ideas to online actor-critic algorithms with deep function approximation, and we
find that it yields surprising improvements in RL performance on complex high-dimensional
continuous control tasks.

7

Chapter 3

LS3: Latent Space Safe Sets (LS3)

One promising strategy for efficiently learning safe control policies is to learn a safe set [51,
50], which captures the set of states from which the agent is known to behave safely, which is
often reformulated as the set of states where it has previously completed the task. When
used to restrict exploration, this safe set can be used to enable highly efficient and safe
learning [51, 72, 74], as exploration is restricted to states in which the agent is confident in
task success. However, while these safe sets can give rise to algorithms with a number of
appealing theoretical properties such as convergence to a goal set, constraint satisfaction, and
iterative improvement [51, 72, 52], using them for controller design for practical problems
requires developing continuous approximations at the expense of maintaining theoretical
guarantees [74]. This choice of continuous approximation is a key element in determining the
applications to which these safe sets can be used for control.

Prior works have presented approaches which collect a discrete safe set of states from
previously successful trajectories and represent a continuous relaxation of this set by con-
structing a convex hull of these states [51] or via kernel density estimation with a tophat
kernel function [74]. While these approaches have been successful for control tasks with
low-dimensional states, extending them to high-dimensional observations presents two key
challenges: (1) scalability: these prior methods cannot be efficiently applied when the number
of observations in prior successful trajectories is large, as querying safe set inclusion scales
linearly with number of samples it contains and (2) representation capacity: both of these
prior approaches do not scale well to high dimensional observations and are limited in the
space of continuous sets that they can efficiently represent. Applying these ideas to visuomotor
control is even more challenging, since images do not directly expose details about the system
state or dynamics that are typically needed for formal controller analysis [51, 72, 2].

This work makes several contributions. First, we introduce a scalable continuous approxi-
mation method which makes it possible to leverage safe sets for visuomotor policy learning.
The key idea is to reframe the safe set approximation as a binary classification problem in a
learned latent space, where the objective is to distinguish states from successful trajectories
from those in unsuccessful trajectories. Second, we present , a model-based RL algorithm
which encourages the agent to maintain plans back to regions in which it is confident in task

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 8

completion, even when learning in high dimensional spaces. This constraint makes it possible
to define a control strategy to (1) improve safely by encouraging consistent task completion
(and therefore avoid unsafe behavior) and (2) learn efficiently since the agent only explores
promising states in the immediate neighborhood of those in which it was previously successful.
Third, we present simulation experiments on 3 visuomotor control tasks which suggest that
can learn to improve upon demonstrations more safely and efficiently than prior algorithms.
Fourth, we conduct physical experiments on a vision-based cable routing task which suggest
that can learn more efficiently than prior algorithms while consistently completing the task
and satisfying constraints during learning.

3.1 Individual Contributions

This chapter is adapted from our paper “LS3: Latent Space Safe Sets for Long-Horizon
Visuomotor Control of Sparse Reward Iterative Tasks” [81], and is joint work with Ashwin
Balakrishna, Brijen Thananjeyan, Joseph Gonzalez, and Ken Goldberg.

My contributions to the work in this chapter include developing and implementing the
algorithm as well as running all the simulated experiments. I also spent substantial time
iterating on and carrying out the physical robotics experiments. Finally, I assisted with
writing the paper.

Ashwin Balakrishna and Brijen Thanajeyan provided substantial help scoping and advising
the project throughout the algorithm development phase. Both of them were very involved
with robotics experiments and writing.

Joseph Gonzalez and Ken Goldberg provided help with guiding the direction of the project
and editing drafts of the paper.

3.2 Problem Statement

We consider an agent interacting in a finite horizon goal-conditioned Markov Decision
Processes (MDP) which can be described with the tupleM = (S,G,A, P (·|·, ·), R(·, ·), µ, T).
S and A are the state and action spaces, P : S ×A× S → [0, 1] maps a state and action to
a probability distribution over subsequent states, R : S ×A× S → R is the reward function,
µ is the initial state distribution (s0 ∼ µ), and T is the time horizon. In this work, the
agent is only provided with RGB image observations st ∈ RW×H×3

+ = S, where W and H
are the image width and height in pixels, respectively. We consider iterative tasks, where
the agent must reach a fixed goal set G ⊆ S as efficiently as possible and the support of µ is
small. While there are a number of possible choices of reward functions that would encourage
fast convergence to G, providing shaped reward functions can be exceedingly challenging,
especially when learning from high dimensional observations. Thus, as in SAVED, we consider
a sparse reward function that only indicates task completion: R(s, a, s′) = 0 if s′ ∈ G and −1
otherwise. To incorporate constraints, we augmentM with an extra constraint indicator

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 9

function C : S → {0, 1} which indicates whether a state satisfies user-specified state-space
constraints, such as avoiding known obstacles. This is consistent with the modified CMDP
formulation used in [73]. We assume that R and C can be evaluated on the current state of
the system, but may be approximated using prior data for use during planning. We make
this assumption because in practice we plan over predicted future states, which may not be
predicted at sufficiently high fidelity to expose the necessary information to directly evaluate
R and C during planning.

Given a policy π : S → A, we define its expected total return in M as Rπ =
Eπ,µ,P [

∑
tR(st, at)]. Furthermore, we define P π

C(s) as the probability of future constraint
violation (within time horizon T) under policy π from state s. The objective is to maximize
the expected return Rπ while maintaining a constraint violation probability lower than δC.
This can be written formally as follows:

π∗ =π∈Π {Rπ : Es0∼µ [P
π
C(s0)] ≤ δC} (3.2.1)

We assume that the agent is provided with an offline dataset D of transitions in the
environment of which some subset Dconstraint ⊊ D are constraint violating and some subset
Dsuccess ⊊ D appear in successful demonstrations from a suboptimal supervisor. As in [73],
Dconstraint contains examples of constraint violating behaviors (for example from prior runs of
different policies or collected under human supervision) so that the agent can learn about
states which violate user-specified constraints.

3.3 Algorithm Details

We describe how LS3 uses demonstrations and online interaction to safely learn iteratively
improving policies. Section 3.3 describes how we learn a low-dimensional latent representation
of image observations to facilitate efficient model-based planning. To enable this planning, we
learn a probabilistic forward dynamics model as in [7] in the learned latent space and models
to estimate whether plans will likely complete the task (Section 3.3) and to estimate future
rewards and constraint violations (Section 3.3) from predicted trajectories. In Section 3.3, we
discuss how these components are synthesized in LS3. Dataset D is expanded using online
rollouts of LS3 and used to update all latent space models (Sections 3.3 and 3.3) after every
K rollouts. See Algorithm 1 and the supplement for further details on training procedures
and data collection.

Learning a Latent Space for Planning

Learning compressed representations of images has been a popular approach in vision based
control to facilitate efficient algorithms for planning and control which can reason about
lower dimensional inputs [15, 87, 44, 66, 21, 37]. To learn such a representation, we train
a β-variational autoencoder [19] on states in D to map states to a probability distribution
over a d-dimensional latent space Z. The resulting encoder network fenc(z|s) is then used

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 10

Unsafe PlanUnsafe Plan

Safe Plans

Latent Space Obstacle ()

Latent Space
Safe Set ()

1. Observe Image 2. Encode
Image

3. Sample Trajectories, Check Constraints, Sort by Value
Candidate Action

Plans

Figure 3.1: Latent Space Safe Sets (LS3): At time t, LS3 observes an image st of the environment.
The image is first encoded to a latent vector zt ∼ fenc(zt|st). Then, LS3 uses a sampling-based opti-
mization procedure to optimize H-length action sequences by sampling H-length latent trajectories
over the learned latent dynamics model fdyn. For each sampled trajectory, LS3 checks whether
latent space obstacles are avoided and if the terminal state in the trajectory falls in the latent space
safe set. The terminal state constraint encourages the algorithm to maintain plans back to regions
of safety and task confidence, but still enables exploration. For feasible trajectories, the sum of
rewards and value of the terminal state are computed and used for sorting. LS3 executes the first
action in the optimized plan and then performs this procedure again at the next timestep.

Value FunctionLatent Space
Safe Set Goal Predictor

Constraint
Predictor

Observation Encoder

Latent Dynamics

Decoder

Start
Obstacle

Goal

Agent

Figure 3.2: LS3 Learned Models: LS3 learns a low-dimensional latent representation of image-
observations (Section 3.3) and learns a dynamics model, value function, reward function, constraint
classifier, and safe set for constrained planning and task-completion driven exploration in this learned
latent space. These models are then used for model-based planning to maximize the total value of
predicted latent states (Section 3.3) while enforcing the safe set (Section 3.3) and user-specified
constraints (Section 3.3).

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 11

Algorithm 1 Latent Space Safe Sets (LS3)

Require: offline dataset D, number of updates U
1: Train VAE encoder fenc and decoder fdec (Section 3.3) using data from D
2: Train dynamics fdyn, safe set classifier fS(Section 3.3), and the value function V goal

indicator fG, and constraint estimator fC (Section 3.3) using data from D.
3: for j ∈ {1, . . . , U} do
4: for k ∈ {1, . . . , K} do
5: Sample starting state s0 from µ.
6: for t ∈ {1, . . . , T} do
7: Choose and execute at (Section 3.3)
8: Observe st+1, reward rt, constraint ct.
9: D := D ∪ {(st, at, st+1, rt, ct)}
10: end for
11: end for
12: Update fdyn, V , fG, fC, and fS with data from D.
13: end for

to sample latent vectors zt ∼ fenc(zt|st) to train a forward dynamics model, value function,
reward estimator, constraint classifier, safe set, and combine these elements to define a policy
for model-based planning. Motivated by [34], during training we augment inputs to the
encoder with random cropping, which we found to be helpful in learning representations that
are useful for planning. For all environments we use a latent dimension of d = 32, as in [15]
and found that varying d did not significantly affect performance.

We scale all image inputs to a size of (64, 64, 3) before feeding them to the β-VAE, which
uses a convolutional neural network for fenc and a transpose convolutional neural network for
fdec. We use the encoder and decoder from [15], but modify the second convolutional layer in
the encoder to have a stride of 3 rather than 2. As is standard for β-VAEs, we train with a
mean-squared error loss combined with a KL-divergence loss. For a particular observation
st ∈ S the loss is

J(θ) = ∥fdec(zt)− st∥22 + βDKL (fenc(zt|st)||N (0, 1)) (3.3.1)

where zt ∼ fenc(zt|st) is modeled using the reparameterization trick.

Probabilistic Dynamics

As in [5] we train a probabilistic ensemble of neural networks to learn dynamics. Each network
has two hidden layers with 128 hidden units. We train these networks with a maximum
log-likelihood objective, so for two particular latent states zt, zt+1 ∈ Z and the corresponding
action at ∈ A the loss is as follows for dynamics model fdyn,θ with parameter θ:

J(θ) = − log fdyn,θ(zt+1|zt, at) (3.3.2)

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 12

When using fdyn for planning, we use the TS-1 method from [5].

Latent Safe Sets for Model-Based Control

LS3 learns a binary classifier for latent states to learn a latent space safe set that represents
states from which the agent has high confidence in task completion based on prior experience.
Because the agent can reach the goal from these states, they are safe: the agent can avoid
constraint violations by simply completing the task as before. While classical algorithms use
known dynamics to construct safe sets, we approximate this set using successful trajectories
from prior iterations. At each iteration j, the algorithm collects K trajectories in the
environment. We then define the sampled safe set at iteration j, Sj , as the set of states from
which the agent has successfully navigated to G in iterations 0 through j of training, where
demonstrations trajectories are those collected at iteration 0. We refer to the dataset collecting
all these states as Dsuccess. This discrete set is difficult to plan to with continuous-valued
state distributions so we leverage data from Dsuccess (data in the sampled safe set), data from
D \ Dsuccess (data outside the sampled safe set), and the learned encoder from Section 3.3
to learn a continuous relaxation of this set in latent space (the latent safe set). We train a
neural network with a binary cross-entropy loss to learn a binary classifier fS(·) that predicts
the probability of a state st with encoding zt being in Sj. To mitigate the negative bias that
appears when trajectories that start in safe regions fail, we utilize the intuition that if a state
st+1 ∈ Sj then it is likely that st is also safe. To do this, rather than just predict 1Sj , we
train fS with a recursive objective to predict max(1Sj , γSfS(st+1)). The relaxed latent safe
set is parameterized by the superlevel sets of fS, where the level δS is adaptively set during
execution: Sj

Z = {zt|fS(·)(zt) ≥ δS}.
The safe set classifier fS(·) is represented with neural network with 3 hidden layers and

256 hidden units. We train the safe set classifier to predict

fS(st) = max(1Sj(st), γSfS(st+1)) (3.3.3)

using a binary cross entropy loss, where 1Sj (st) is an indicator function indicating whether st
is part of a successful trajectory. Training data is sampled uniformly from a replay buffer
containing all of D. Similar to deep value function learning literature [14, 60, 74], the safe
set is trained to solve the above equation by fixed point iteration: the safe set is used to
construct its own targets, which are then used to update the safe set before using the updated
safe set to construct new targets.

Reward and Constraint Estimation

In this work, we define rewards based on whether the agent has reached a state s ∈ G, but we
need rewards that are defined on predictions from the dynamics, which may not correspond to
valid real images. To address this, we train a classifier fG : Z → {0, 1} to map the encoding
of a state to whether the state is contained in G using terminal states in Dsuccess (which

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 13

are known to be in G) and other states in D. However, in the temporally-extended, sparse
reward tasks we consider, reward prediction alone is insufficient because rewards only indicate
whether the agent is in the goal set, and thus provide no signal on task progress unless the
agent can plan to the goal set. To address this, as in prior MPC-literature [74, 72, 51, 75], we
train a recursively-defined value function as discussed below. Similar to the reward function,
we use the encoder (Section 3.3) to train a classifier fC : Z → [0, 1] with data of constraint
violating states from Dconstraint and the constraint satisfying states in D \ Dconstraint to map
the encoding of a state to the probability of constraint violation.

We represent constraint indicator fC : Z → {0, 1} with a neural network with 3 hidden
layers and 256 hidden units for each layer with a binary cross entropy loss with transitions
from Dconstraint for unsafe examples and the constraint satisfying states in D \ Dconstraint as
safe examples. Similarly, we represent the goal estimator fG : Z → {0, 1} with a neural
network with 3 hidden layers and 256 hidden units. This estimator is also trained with a
binary cross entropy loss with positive examples from Dsuccess and negative examples sampled
from all datasets. For the constraint estimator and goal indicator, training data is sampled
uniformly from a replay buffer containing Dsuccess, Drand and Dconstraint.

We train an ensemble of recursively defined value functions to predict long term reward.
We represent these functions using fully connected neural networks with 3 hidden layers with
256 hidden units. Similarly to [74], we use separate training objectives during offline and
online training. During offline training, we train the function to predict actual discounted
cost-to-go on all trajectories in D. Hence, for a latent vector zt, the loss during offline training
is given as follows where V has parameter θ:

J(θ) =

(
V π
θ (zt)−

T−t∑
i=1

γirt+i

)2

(3.3.4)

In online training we also store target network V π′
and calculate a temporal difference (TD-1)

error,

J(θ) =
(
V π
θ (zt)− (rt + γV π′

θ′ (zt+1))
)2

(3.3.5)

where θ′ are the parameters of a lagged target network and π′ is the policy at the timestep
at which θ′ was set. We update the target network every 100 updates. In each of these
equations, γ is a discount factor (we use γ = 0.99). Because all episodes end by hitting a
time horizon, we found it was beneficial to remove the mask multiplier usually used with
TD-1 error losses.

For all simulated experiments we update value functions using only data collected by
the suboptimal demonstrator or collected online, ignoring offline data collected with random
interactions or offline demonstrations of constraint violating behavior.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 14

Model-Based Planning with LS3

LS3 aims to maximize total rewards attained in the environment while limiting constraint
violation probability within some threshold δC (equation 3.2.1). We optimize an approximation
of this objective over an H-step receding horizon with model-predictive control. Precisely,
LS3 solves the following optimization problem to generate an action to execute at timestep t:

at:t+H−1∈AH Ezt:t+H

[
H−1∑
i=1

fG(zt+i) + V π(zt+H)

]
(3.3.6)

s.t. zt ∼ fenc(zt|st) (3.3.7)

zk+1 ∼ fdyn(zk+1|zk, ak) ∀k ∈ {t, . . . , t+H − 1} (3.3.8)

P̂
(
zt+H ∈ Sj−1

Z
)
≥ 1− δS (3.3.9)

P̂(zt+i ∈ ZC) ≤ δC ∀i ∈ {0, . . . , H − 1} (3.3.10)

In this problem, the expectations and probabilities are taken with respect to the learned, prob-
abilistic dynamics model fdyn(zt+1|zt, at). The optimization problem is solved approximately
using the cross-entropy method (CEM) [54] which is a popular optimizer in model-based
RL [5, 74, 72, 86, 73].

The objective function is the expected sum of future rewards if the agent executes at:t+H−1

and then subsequently executes π (equation 3.3.6). First, the current state st is encoded
to zt (equation 3.3.7). Then, for a candidate sequence of actions at:t+H−1, an H-step latent
trajectory {zt+1, . . . , zt+H} is sampled from the learned dynamics fdyn (equation 3.3.8). LS3

constrains exploration using two chance constraints: (1) the terminal latent state in the plan
must fall in the safe set (equation 3.3.9) and (2) all latent states in the trajectory must satisfy
user-specified state-space constraints (equation 3.3.10). ZC is the set of all latent states such
that the corresponding observation is constraint violating. The optimizer estimates constraint
satisfaction probabilities for a candidate action sequence by simulating it repeatedly over fdyn.
The first chance constraint ensures the agent maintains the ability to return to safe states
where it knows how to do the task within H steps if necessary. Because the agent replans at
each timestep, the agent need not return to the safe set: during training, the safe set expands,
enabling further exploration. In practice, we set δS for the safe set classifier fS adaptively as
described in the supplement. The second chance constraint encourages constraint violation
probability of no more than δC. After solving the optimization problem, the agent executes
the first action in the plan: π(zt) = at where at is the first element of a∗t:t+H−1, observes a
new state, and replans.

We use the cross entropy method to solve the optimization problem in equation 3.3.6. We
build on the implementation of the cross entropy method provided in [6], which works by
sampling ncandidate action sequences from a diagonal Gaussian distribution, simulating each
one nparticle times over the learned dynamics, and refitting the parameters of the Gaussian
on the nelite trajectories with the highest score under equation 3.3.6 where constraints are
implemented by assigning large negative rewards to trajectories which violate either the safe

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 15

Table 3.1: Hyperparameters for LS3

Parameter Navigation Reacher Sequential Pushing Cable Routing

δS 0.8 0.5 0.8 0.8
δC 0.2 0.2 0.2 0.2
β 1× 10−6 1× 10−6 1× 10−6 1× 10−6

H 5 3 3 5
nparticle 20 20 20 20
ncandidate 1000 1000 1000 2000
nelite 100 100 100 200

ncem iters 5 5 5 5
d 32 32 32 32

prandom 1.0 1.0 1.0 0.3
Frame Stacking No Yes No No

Batch Size 256 256 256 256
γ 0.99 0.99 0.99 0.99
γS 0.3 0.3 0.9 0.9

set constraint or user-specified constraints. This process is repeated for ncem iters to iteratively
refine the set of sampled trajectories to optimize equation 3.3.6. To improve the optimizer’s
efficiency on tasks where subsequent actions are often correlated, we sample a proportion
(1 − prandom) of the optimizer’s candidates at the first iteration from the distribution it
learned when planning the last action. To avoid local minima, we sample a proportion prandom
uniformly from the action space. See [5] for more details on the cross entropy method as
applied to planning over neural network dynamics models.

As mentioned in Section 3.3, we set δS for the safe set classifier fS adaptively by checking
whether there exists at least one plan which satisfies the safe set constraint at each CEM
iteration. If no such plan exists, we multiply δS by 0.8 and re-initialize the optimizer at the
first CEM iteration with the new value of δS. We initialize δS = 0.8.

Hyperparameters

In Table 3.1, we present the hyperparameters used to train and run LS3. We present details
for the constraint thresholds δC and δS. We also present the planning horizon H and VAE KL
regularization weight β. We present the number of particles sampled over the probabilistic
latent dynamics model for a fixed action sequence nparticles, which is used to provide an
estimated probability of constraint satisfaction and expected rewards. For the cross entropy
method, we sample ncandidate action sequences at each iteration, take the best nelite action
sequences and then refit the sampling distribution. This process iterates ncem iters times. We
also report the latent space dimension d, whether frame stacking is used as input, training
batch size, and discount factor γ. Finally, we present values of the safe set bellman coefficient

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 16

Figure 3.3: Experimental Domains: LS3 is evaluated on 3 long-horizon, image-based, simulation
environments: a visual navigation domain where the goal is to navigate the blue point mass to the
right goal set while avoiding the red obstacle, a 2 degree of freedom reacher arm where the task is
to navigate around a red obstacle to reach the yellow goal set, and a sequential pushing task where
the robot must push each of 3 blocks forward a target displacement from left to right. We also
evaluate LS3 on a physical, cable-routing task on a da Vinci Surgical Robot, where the goal is to
guide a red cable to a green target without the cable or robot arm colliding with the blue obstacle.
This requires learning visual dynamics, because the agent must model how the rest of the cable will
deform during manipulation to avoid collisions with the obstacle.

γS. For all domains, we scale RGB observations to a size of (64, 64, 3). For all modules we
use the Adam optimizer with a learning rate of 1× 10−4, except for dynamics which use a
learning rate of 1× 10−3.

3.4 Experiments

We evaluate LS3 on 3 robotic control tasks in simulation and a physical cable routing task on
the da Vinci Research Kit (dVRK) [25]. Safe RL is of particular interest for surgical robots
such as the dVRK due to its delicate structure, motivating safety, and relatively imprecise
controls [74, 61], motivating closed-loop control. We study whether LS3 can learn more
safely and efficiently than algorithms that do not structure exploration based on prior task
successes.

Comparisons

We evaluate LS3 in comparison to prior algorithms that behavior clone suboptimal demon-
strations before exploring online (SACfD) [13] or leverage offline reinforcement learning to
learn a policy using all offline data before updating the policy online (AWAC) [41]. For both
of these comparisons we enforce constraints via a tuned reward penalty of λ for constraint
violations as in [71]. We also implement a version of SACfD with a learned recovery policy
(SACfD+RRL) using the Recovery RL algorithm [73] to use prior constraint violating
data to try to avoid constraint violating states. We then compare LS3 to an ablated version
without the safe set constraint (just binary classification (BC)) in equation 3.3.9 (LS3 (−Safe
Set)) to evaluate if the safe set promotes consistent task completion and stable learning.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 17

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50

Re
wa

rd
Pointbot Navigation

0 50 100 150 200 250
Training Trajectories

100

90

80

70

60

50
Reacher

0 100 200 300 400 500
Training Trajectories

150

125

100

75

50

25
Sequential Pushing

Demonstrations SACfD AWAC SACfD + RRL LS3 (BC SS) LS3 (SS) Ours: LS3

Figure 3.4: Simulation Experiments Results: Learning curves showing mean and standard
error over 10 random seeds. We see that LS3 learns more quickly than baselines and ablations.
Although SACfD and SACfD+RRL converge to similar reward values, LS3 is much more sample
efficient and stable across random seeds.

Finally, we compare LS3 to an ablated version of the safe set classifier (Section 3.3) without
a recursive objective, where the classifier is just trained to predict 1Sj (LS3 (BC SS)).

Evaluation Metrics

For each algorithm on each domain, we aggregate statistics over random seeds (10 for
simulation experiments, 3 for the physical experiment), reporting the mean and standard
error across the seeds. We present learning curves that show the total sum reward for each
training trajectory to study how efficiently LS3 and the comparisons learn each task. Because
all tasks use the sparse task completion based rewards defined in Section 3.2, the total reward
for a trajectory is the time to reach the goal set, where more negative rewards correspond to
slower convergence to G. Thus, for a task with task horizon T , a total reward greater than
−T implies successful task completion. The state is frozen in place upon constraint violation
until the task horizon elapses. We also report task success and constraint satisfaction rates
for LS3 and comparisons during learning to study (1) the degree to which task completion
influences sample efficiency and (2) how safely different algorithms explore. LS3 collects
K = 10 trajectories in between training phases on simulated tasks and K = 5 in between
training phases for physical tasks, while the SACfD and AWAC comparisons update their
parameters after each timestep. This presents a metric in terms of the amount of data
collected across algorithms.

Domains

In simulation, we evaluate LS3 on 3 vision-based continuous control domains that are
illustrated in Figure 4.1. We evaluate LS3 and comparisons on a constrained visual navigation
task (Pointmass Navigation) where the agent navigates from a fixed start state to a fixed
goal set while avoiding a large central obstacle. We study this domain to gain intuition and
visualize the learned value function, goal/constraint indicators, and safe set in Figure 3.2.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 18

We then study a constrained image-based reaching task (Reacher) based on [70], where the
objective is to navigate the end effector of a 2-link planar robotic arm to a yellow goal position
without the end-effector entering a red stay out zone. We then study a challenging sequential
image-based robotic pushing domain (Sequential Pushing), in which the objective is to push
each of the 3 blocks forward on the table without pushing them to either side and causing
them to fall out of the workspace. Finally, we evaluate LS3 with an image-based physical
experiment on the da Vinci Research Kit (dVRK) [26] (Figure 4.1), where the objective is to
guide the endpoint of a cable to a goal region without letting the cable or end effector collide
with an obstacle. The Pointmass Navigation and Reaching domains have a task horizon of
T = 100 while the Sequential Pushing domain and physical experiment have task horizons of
T = 150 and T = 50 respectively.

Navigation

The visual navigation domain has 2-D single integrator dynamics with additive Gaussian
noise sampled from N (0, σ2I2) where σ = 0.125. The start position is (30, 75) and goal
set is B2((150, 75), 3), where B2(c, r) is a Euclidean ball centered at c with radius r. The
demonstrations are created by guiding the agent north for 20 timesteps, east for 40 timesteps,
and directly towards the goal until the episode terminates. This tuned controller ensures that
demonstrations avoid the obstacle and also reach the goal set, but they are very suboptimal.
To collect demonstrations of constraint violating behavior, we randomly sample starting
points throughout the environment, move in a random direction for 15 time steps, and
then move directly towards the obstacle. We do not collect additional data for Drand in
this environment. We collect 50 demonstrations of successful behaviors and 50 trajectories
containing constraint violating behaviors.

Reacher

The reacher domain is built on the reacher domain provided in the DeepMind Control Suite
from [70]. The robot is represented with a planar 2-link arm and the agent supplies torques
to each of the 2 joints. Because velocity is not observable from a single frame, algorithms
are provided with several stacked frames as input. The start position of the end-effector
is fixed and the objective is to navigate the end effector to a fixed goal set on the top left
of the workspace without allowing the end effector to enter a large red stay-out zone. To
collect data from Dconstraint we randomly sample starting states in the environment, and
then use a PID controller to move towards the constraint. To sample random data that will
require the agent to model velocity for accurate prediction, we start trajectories at random
places in the environment, and then sample each action from a normal distribution centered
around the previous action, at+1 ∼ N (at, σ

2I) for σ2 = 0.2. We collect 50 demonstrations of
successful behavior, 50 trajectories containing constraint violations and 100 short (length 20)
trajectories or random data.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 19

Sequential Pushing

This sequential pushing environment is implemented in MuJoCo [76], and the robot can
specify a desired planar displacement a = (∆x,∆y) for the end effector position. The goal is
to push all 3 blocks backwards by at least some displacement on the table, but constraints
are violated if blocks are pushed backwards off of the table. For the sequential pushing
environment, demonstrations are created by guiding the end effector to the center of each
block and then moving the end effector in a straight line at a low velocity until the block is
in the goal set. This same process is repeated for each of the 3 blocks. Data of constraint
violations and random transitions for Dconstraint and Drand are collected by randomly switching
between a policy that moves towards the blocks and a policy that randomly samples from
the action space. We collect 500 demonstrations of successful behavior and 300 trajectories
of random and/or constraint violating behavior.

Physical Cable Routing

This task starts with the robot grasping one endpoint of the red cable, and it can make
(∆x,∆y) motions with its end effector. The goal is to guide the red cable to intersect with the
green goal set while avoiding the blue obstacle. The ground-truth goal and obstacle checks
are performed with color masking. LS3 and all baselines are provided with a segmentation
mask of the cable as input. The demonstrator generates trajectories Dsuccess by moving the
end effector well over the obstacle and to the right before executing a straight line trajectory
to the goal set. This ensures that it avoids the obstacle as there is significant margin to
the obstacle, but the demonstrations may not be optimal trajectories for the task. Random
trajectories Drand are collected by following a demonstrator trajectory for some random
amount of time and then sampling from the action space until the episode hits the time
horizon. We collect 420 demonstrations of successful behavior and 150 random trajectories.
We use data augmentation to increase the size of the dataset used to train fenc and fdec,
taking the images in D and creating an expanded dataset by adding randomly sampled affine
translations and perspective shifts, until |DVAE| > 100000.

Simulation Results

We find that LS3 is able to learn more stably and efficiently than all comparisons across all
simulated domains while converging to similar performance within 250 trajectories collected
online (Figure 3.4). LS3 is able to consistently complete the task during learning, while the
comparisons, which do not learn a safe set to structure exploration based on prior successes,
exhibit much less stable learning. Additionally, in Table 3.2 and Table 3.3, we report the
task success rate and constraint violation rate of all algorithms during training. We find
that LS3 achieves a significantly higher task success rate than comparisons on all tasks. We
also find that LS3 violates constraints less often than comparisons on the Reacher task, but
violates constraints more often than SACfD and SACfD+RRL on the other domains. This is

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 20

Table 3.2: Task Success Rate over all Training Episodes: We present the mean and standard
error of training-time task completion rate over 10 random seeds. We find LS3 outperforms all
comparisons across all 3 domains, with the gap increasing for the challenging sequential pushing
task.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.363± 0.068 0.312± 0.093 0.184± 0.053 0.818± 0.019 0.988± 0.004
Reacher 0.502± 0.072 0.255± 0.089 0.473± 0.056 0.736± 0.025 0.870± 0.024
Sequential Pushing 0.425± 0.064 0.006± 0.003 0.466± 0.065 0.366± 0.030 0.648± 0.049

Table 3.3: Constraint Violation Rate: We report mean and standard error of training-time
constraint violation rate over 10 random seeds. LS3 violates constraints less than comparisons
on the Reacher task, but SAC and SACfD+RRL achieve lower constraint violation rates on the
Navigation and Pushing tasks, likely due to spending less time in the neighborhood of constraint
violating regions due to their much lower task success rates.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.006± 0.002 0.104± 0.070 0.001± 0.001 0.019± 0.006 0.005± 0.001
Reacher 0.146± 0.039 0.398± 0.107 0.142± 0.031 0.247± 0.027 0.102± 0.027
Sequential Pushing 0.033± 0.003 0.138± 0.028 0.054± 0.006 0.122± 0.031 0.107± 0.016

because SACfD and SACfD+RRL spend much less time in the neighborhood of constraint
violating states during training due to their lower task success rates. Because they do not
efficiently learn to perform the tasks, they do not violate constraints as often. We find
that the AWAC comparison achieves very low task performance. While AWAC is designed
for offline reinforcement learning, to the best of our knowledge, it has not been previously
evaluated on long-horizon, image-based tasks as in this paper, which we hypothesize are very
challenging for it.

We find LS3 has a lower success rate when the safe set constraint is removed (LS3(−Safe
Set)) as expected. The safe set is particularly important in the sequential pushing task, and
LS3 (−Safe Set) has a much lower task completion rate than LS3. LS3 without the recursive
classification objective from Section 3.3 (LS3 (BC SS)) has similar performance to LS3 on the
navigation environment, but learns substantially more slowly on the Reacher environment
and performs significantly worse than LS3 on the more challenging Pushing environment as
the learned safe set is unable to exploit temporal structure to distinguish safe states from
unsafe states. See the supplement for details on experimental parameters and offline data
used for LS3 and comparisons and ablations studying the effect of the planning horizon and
threshold used to define the safe set.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 21

0 20 40 60
Training Trajectories

50

40

30

20

Re
wa

rd

Physical Cable Routing

SACfD SACfD + RRL LS30.0

0.2

0.4

0.6

0.8
Task Success Rate

SACfD SACfD + RRL LS30.000
0.025
0.050
0.075
0.100
0.125
0.150

Constraint Violation Rate

Demonstrations SACfD SACfD + RRL LS3

Figure 3.5: Physical Cable Routing Results: We present learning curves, task success rates
and constraint violation rates with a mean and standard error across 3 random seeds. LS3 learns a
more efficient policy than the demonstrator while still violating constraints less than comparisons,
which are unable to learn the task.

Physical Results

In physical experiments, we compare LS3 to SACfD and SACfD+RRL (Figure 3.5) on the
physical cable routing task illustrated in Figure 4.1. We find LS3 quickly outperforms the
suboptimal demonstrations while succeeding at the task significantly more often than both
comparisons, which are unable to learn the task and also violate constraints more than
LS3. We hypothesize that the difficulty of reasoning about cable collisions and deformation
from images makes it challenging for prior algorithms to make sufficient task progress as
they do not use prior successes to structure exploration. See the supplement for details on
experimental parameters and offline data used for LS3 and comparisons.

Additional Results

We additionally study how the task success rate of LS3 and comparisons evolves as training
progresses in Figure 3.6. Precisely, we checkpoint each policy after each training trajectory
and evaluate it over 10 rollouts for each of the 10 random seeds (100 total trials per datapoint).
We find that LS3 achieves a much higher task success rate than comparisons early on in
training, and maintains a higher task success rate throughout the course of training on all
simulation domains.

Sensitivity Experiments

Key hyperparameters in LS3 are the constraint threshold δC and safe set threshold δS, which
control whether the agent decides predicted states are constraint violating or in the safe
set respectively. We ablate these parameters for the Sequential Pushing environment in
Figures 3.7 and 3.9. We find that lower values of δC made the agent less likely to violate
constraints as expected. Additionally, we find that higher values of δS helped constrain
exploration more effectively, but too high of a threshold led to poor performance suffered as
the agent exploited local maxima in the safe set estimation. Finally, we ablate the planning
horizon H for LS3 and find that when H is too high, Latent Space Safe Sets (LS3) can explore

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 22

0 50 100 150 200 250
Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Pointbot Navigation

0 50 100 150 200 250
Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0
Reacher

0 100 200 300 400 500
Training Trajectories

0.0

0.2

0.4

0.6

0.8

Sequential Pushing

SACfD AWAC SACfD + RRL LS3 (BC SS) LS3 (SS) Ours: LS3

Figure 3.6: Task Success Rate: Learning curves showing mean and standard error of task success
rate of checkpointed policies over 10 random seeds (and 10 rollouts per seed). We see that LS3 has
a much higher task success rate than comparisons early on, and maintains a success rate at least as
high as comparisons throughout training in all environments.

too aggressively away from the safe set, leading to poor performance. When H is lower,
LS3 explores much more stably, but if it is too low (ie. H = 1), LS3 is eventually unable to
explore significantly new plans, while slightly increasing H (ie. H = 3) allows for continuous
improvement in performance.

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Constraint Threshold Sweep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Task Success Rate

0.00

0.05

0.10

0.15

0.20

Constraint Violation Rate

Demonstrations No Constraints = 0.8 = 0.5 = 0.3 = 0.1 = 0.05

Figure 3.7: Hyperparameter Sweep for LS3 Constraint Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings of δC on the
sequential pushing environment. As expected, we see that without avoiding latent space obstacles
(No Constraints) the agent violates constraints more often, while lower thresholds (meaning the
planning algorithm is more conservative) generally lead to fewer violations.

CHAPTER 3. LS3: LATENT SPACE SAFE SETS (LS3) 23

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Safe Set Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Task Success Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Constraint Violation Rate

Demonstrations = 1.0 = 0.8 = 0.5 = 0.2 No Safe Set

Figure 3.8: Hyperparameter Sweep for LS3 Safe Set Threshold: Plots show mean and
standard error over 10 random seeds for experiments with different settings of δS on the sequential
pushing environment. We see that after offline training, the agent can successfully complete the
task only when δS is high enough to sufficiently guide exploration, and that runs with higher values
of δS are more successful overall.

0 100 200 300 400 500
Training Trajectories

140

120

100

80

60

40

Re
wa

rd

Sequential Pushing Planning Horizon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Task Success Rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Constraint Violation Rate

Demonstrations H = 10 H = 8 H = 5 H = 3 H = 1

Figure 3.9: Hyperparameter Sweep for LS3 Planning Horizon: Plots show mean and
standard error over 10 random seeds for experiments with different settings of H on the sequential
pushing environment. We see that when the planning horizon is too high the agent cannot reliably
complete the task due to modeling errors. When the planning horizon is too low, it learns quickly
but cannot significantly improve because it is constrained to the safe set. We found H = 3 to
balance this trade off best.

24

Chapter 4

MCAC: Monte Carlo augmented
Actor-Critic

This issue can be mitigated by leveraging demonstrations, which provide initial signal about
desired behaviors. Though demonstrations may often be suboptimal in practice, they should
still serve to encourage exploration in promising regions of the state space, while allowing
the agent to explore behaviors which may outperform the demonstrations. Prior work has
considered a number of ways to leverage demonstrations to improve learning efficiency for
reinforcement learning, including by initializing the policy to match the behavior of the
demonstrator [49, 46], using demonstrations to explicitly constrain agent exploration [74, 73,
81], and introducing auxiliary losses to incorporate demonstration data into policy updates [42,
79, 12]. While these algorithms have shown impressive performance in improving the sample
efficiency of RL algorithms, they add significant complexity and hyperparameters, making
them difficult to implement and tune for different tasks.

We present Monte Carlo augmented Actor-Critic (MCAC), which introduces an easy-to-
implement, but highly effective, change that can be readily applied to existing actor-critic
algorithms without the introduction of any additional hyperparameters and only minimal
additional complexity. The idea is to encourage initial optimism in the neighborhood of
successful trajectories, and progressively reduce this optimism during learning so that it
can continue to explore new behaviors. To operationalize this idea, MCAC introduces two
modifications to existing actor-critic algorithms. First, MCAC initializes the replay buffer
with task demonstrations. Second, MCAC computes a modified target Q-value for critic
updates by taking the maximum of the standard temporal distance targets used in existing
actor critic algorithms and a Monte Carlo estimate of the reward-to-go. The intuition is that
Monte Carlo value estimates can more effectively capture longer-term reward information,
making it possible to rapidly propagate reward information from demonstrations through
the learned Q-function. This makes it possible to prevent underestimation of values in
high-performing trajectories early in learning, as high rewards obtained later in a trajectory
may be difficult to initially propagate back to earlier states with purely temporal distance
targets [82]. Experiments on five continuous control domains suggest that MCAC is able to

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 25

substantially accelerate exploration for both standard RL algorithms and recent RL from
demonstrations algorithms in sparse reward tasks.

4.1 Individual Contributions

This chapter is adapted from our paper “Monte Carlo Augmented Actor-Critic for Sparse
Reward Deep Reinforcement Learning from Suboptimal Demonstrations” [80], and is joint
work with Ashwin Balakrishna, Jules Dedieu, Wyame Benslimane, Daniel S. Brown and Ken
Goldberg.

I fully led this project, developing it from an idea I discovered while experimenting for a
different project to a finished product. Specifically, I implemented the algorithm and ran all
experiments in the paper, and did a substantial chunk of the writing work.

Ashwin and Daniel were both very helpful with advising and guiding the project, as well
as contributing to the writing. Jules and Wyame helped with implementing Conservative Q
Learning.

4.2 Problem Statement

We consider a Markov Decision Process (MDP) described by a tuple (S,A, p, r, γ, T) with
a state set S, an action set A, a transition probability function p : S × A × S → [0, 1], a
reward function r : S ×A → R, a discount factor γ, and finite time horizon T . In each state
st ∈ S the agent chooses an action at ∈ A and observes the next state st+1 ∼ p(·|st, at) and
a reward r(st, at) ∈ R. The agent acts according to a policy π, which induces a probability
distribution over A given the state, π(at|st). The agent’s goal is to find the policy π∗ which
at any given st ∈ S maximizes the expected discounted sum of rewards,

π∗ =π Eτ∼π

[
T∑
t=0

γtr(st, at)

]
, (4.2.1)

where τ = (s0, a0, s1, a1, . . . sT) and τ ∼ π indicates the distribution of trajectories induced
by evaluating policy π in the MDP.

We make additional assumptions specific to the class of problems we study. First, we
assume that all transitions in the replay buffer are elements of complete trajectories; this is a
reasonable assumption as long as all transitions are collected from rolling out some policy in
the MDP. Second, we assume the agent has access to an offline dataset Doffline of (possibly
suboptimal) task demonstrations. Finally, we focus on settings where the reward function is
sparse in the sense that most state transitions do not induce a change in reward, causing
significant exploration challenges for RL algorithms.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 26

4.3 Preliminaries: Actor-Critic Algorithms

For a given policy π, its state-action value function Qπ is defined as

Qπ(st, at) = Eτ∼π

[
T∑

k=t

γk−tr(sk, ak)

]
. (4.3.1)

Actor-critic algorithms learn a sample-based approximation to Qπ, denoted Qπ
θ , and a

policy πϕ which selects actions to maximize Qπ
θ , with a function approximator (typically a

neural network) parameterized by θ and ϕ respectively. During the learning process, they
alternate between regressing Qπ

θ to predict Qπ and optimizing πϕ to select actions with high
values under Qπ

θ .
Exactly computing Qπ targets to train Qπ

θ is typically intractable for arbitrary policies
in continuous MDPs, motivating other methods for estimating them. One such method is
to simply collect trajectories (st, at, rt, st+1, . . . sT−1, aT−1, rT−1, sT) by executing the learned
policy πϕ from state st, computing a Monte Carlo estimate of the reward-to-go defined as
follows:

Qtarget
MC (st, at) =

T∑
k=t

γk−tr(sk, ak), (4.3.2)

and fitting Qπ
θ to these targets.

However, Qtarget
MC can be a high variance estimator of the reward-to-go [58, 68], motivating

the popular one-step temporal difference target (TD-1 target) to help stabilize learning:

Qtarget
TD (st, at) = r(st, at) + γQπ

θ′(st+1, at+1), (4.3.3)

where at+1 ∼ πϕ(st+1), which is recursively defined based on only a single (st, at, st+1, rt)
transition. Here θ′ is the parameters of a lagged target network as in [77]. There has also
been interest in computing TD-n targets, which instead sum rewards for n timesteps and
then use Q-values from step n+ 1 [83, 58, 62].

4.4 Monte Carlo augmented Actor-Critic

MCAC Algorithm

The objective of MCAC is to efficiently convey information about sparse rewards from
suboptimal demonstrations to Qπ

θ in order to accelerate policy learning while still maintaining
learning stability. To do this, MCAC combines two different methods of computing targets
for fitting Q-functions to enable efficient value propagation throughout the state-action space
while also learning a Q-value estimator with low enough variance for stable learning. To
operationalize this idea, MCAC defines a new Q-function target for training Qπ

θ by taking
the maximum of the Monte Carlo Q-target (eq 4.3.2) and the temporal difference Q-target
(eq 4.3.3): max

[
Qtarget

TD (st, at), Q
target
MC (st, at)

]
.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 27

The idea here is that early in learning, a Q-function trained only with temporal difference
targets will have very low values throughout the state-action space as it may be very difficult
to propagate information about delayed rewards through the temporal difference target for
long-horizon tasks with sparse rewards [78]. On the other hand, the Monte Carlo Q-target
can easily capture long-term rewards, but often dramatically underestimates Q-values for
poorly performing trajectories [82]. Thus, taking a maximum over these two targets serves to
initially boost the Q-values for transitions near high performing trajectories while limiting
the influence of underestimates from the Monte Carlo estimate.

MCAC can also be viewed as a convenient way to balance the bias and variance properties
of the Monte Carlo and temporal difference Q-targets. The Monte Carlo Q-target is well
known to be an unbiased estimator of policy return, but have high variance [82]. Conversely,
temporal difference targets are known to be biased, but have much lower variance [82, 77].
Thus, as the temporal difference target is typically negatively biased (an underestimate of
the true policy return) on successful trajectories early in learning due to the challenge of
effective value propagation, computing the maximum of the temporal difference and Monte
Carlo targets helps push the MCAC target value closer to the true policy return. Conversely,
the Monte Carlo targets are typically pessimistic on unsuccessful trajectories, and their
high variance makes it difficult for them to generalize sufficiently to distinguish between
unsuccessful trajectories that are close to being successful and those that are not. Thus,
computing the maximum of the temporal difference and Monte Carlo targets also helps
to prevent excessive pessimism in evaluating unsuccessful trajectories. Notably, MCAC
does not constrain its Q-targets explicitly based on the transitions in the demonstrations,
making it possible for the policy to discover higher performing behaviors than those in the
demonstrations as demonstrated in Section 4.5.

MCAC Practical Implementation

MCAC can be implemented as a wrapper around any actor-critic RL algorithm; we consider
6 options in experiments (Section 4.5). MCAC starts with an offline dataset of suboptimal
demonstrations Doffline, which are used to initialize a replay buffer R. Then, during each
episode i, we collect a full trajectory τ i, where the jth transition (sij, a

i
j, s

i
j+1, r

i
j) in τ i is

denoted by τ ij .
Next, consider any actor-critic method using a learned Q function approximator Qθ(st, at)

that, for a given transition τ ij = (sij, a
i
j, s

i
j+1, r

i
j) ∈ τ i ⊊ R is updated by minimizing the

following loss:
J(θ) = ℓ

(
Qθ(s

i
j, a

i
j), Q

target(sij, a
i
j)
)
, (4.4.1)

where ℓ is an arbitrary differentiable loss function and Qtarget is the target value for regressing
Qθ. We note that Qtarget is defined by the choice of actor-critic method. To implement
MCAC, we first calibrate the Monte Carlo targets with temporal difference targets (which
provide infinite-horizon Q estimates) by computing the infinite horizon analogue of the Monte
Carlo target defined in Equation 4.3.2, which assumes the last observed reward value will

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 28

Algorithm 2 Monte Carlo augmented Actor-Critic

Require: Offline dataset Doffline.
Require: Total training episodes N , batch size M , Pretraining Steps Np

Require: Episode time horizon T .
1: Initialize replay buffer R := Doffline.
2: Initialize agent πϕ and critic Qπ

θ using data from Doffline.
3: for i ∈ {1, . . . , Np} do
4: Sample B ⊊ R such that |B| = M .
5: Optimize Qπ

θ on B to minimize loss in eq (4.4.4). Optimize policy πϕ to maximize Qθ.
6: end for
7: for i ∈ {1, . . . , N} do
8: Initialize episode buffer E = {}.
9: Observe state si1.
10: for j ∈ {1, . . . , T} do
11: Sample and execute ait ∼ πθ(s

i
j), observing sij+1, r

i
j.

12: τ ij ← (sij, a
i
j, s

i
j+1, r

i
j)

13: E ← E ∪ {τ ij}.
14: Sample B ⊊ R such that |B| = M .
15: Optimize Qπ

θ on B to minimize loss in eq (4.4.4). Optimize policy πϕ to maximize
Qθ.

16: end for
17: for τ ij ∈ E do

18: Compute Qtarget
MC-∞(sij, a

i
j) as in eq (4.4.2).

19: τ ij ← (sij, a
i
j, s

i
j+1, r

i
j, Q

target
MC-∞(sij, a

i
j)).

20: end for
21: R ← R∪ E .
22: end for

repeat forever and uses this to add an infinite sum of discounted rewards, and is given by

Qtarget
MC-∞(sij, a

i
j) = γT−j+1 riT

1− γ
+

T∑
k=j

γk−jr(sik, a
i
k). (4.4.2)

Then, we simply replace the target with a maximum over the original target and the Monte
Carlo target defined in Equation 4.4.2, given by

Qtarget
MCAC(s

i
j, a

i
j) = max

[
Qtarget(sij, a

i
j), Q

target
MC-∞(sij, a

i
j)
]
. (4.4.3)

This results in the following loss function for training Qθ:

J(θ) = ℓ
(
Qθ(s

i
j, a

i
j), Q

target
MCAC(s

i
j, a

i
j)
)
. (4.4.4)

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 29

The full MCAC training procedure (Algorithm 2) alternates between updating Qπ
θ using

the method described above, followed by optimizing the policy πϕ using any standard policy
update method.

4.5 Experiments

In the following experiments we study (1) whether MCAC enables more efficient learning
when built on top of standard actor-critic RL algorithms and (2) whether MCAC can be
applied to improve prior algorithms for RL from demonstrations. See the supplementary
material for code and instructions on how to run experiments for reproducing all results in
the paper and additional experiments studying the impact of demonstration quantity, quality,
and other algorithmic choices such as whether to pretrain learned networks on demonstration
data before online interaction.

Experimental Procedure

All experiments were run on a set of 24 Tesla V100 GPUs through a combination of Google
Cloud resources and a dedicated lab server. We aggregate statistics over 10 random seeds for
all experiments, reporting the mean and standard error across the seeds with exponential
smoothing. Details on hyperparameters and implementation details are provided in the
supplementary material.

Domains

We consider the five long-horizon continuous control tasks shown in Figure 4.1. All tasks
have relatively sparse rewards, making demonstrations critical for performance. We found
that without demonstrations, SAC and TD3 made little to no progress on these tasks.

Pointmass Navigation: The first domain is a pointmass 2D navigation task (Fig-
ure 4.1(a)) with time horizon T = 100, where the objective is to navigate around the red
barrier from start set S to a goal set G by executing 2D delta-position controls. If the agent
collides with the barrier it receives a reward of −100 and the episode terminates. At each
time step, the agent receives a reward of −1 if it is not in the goal set and 0 if it is in the
goal set. To increase the difficulty of the task, we perturb the state with zero-mean Gaussian
noise at each timestep. The combination of noisy transitions and sparse reward signal makes
this a very difficult exploration task where the agent must learn to make it through the slit
without converging to the local optima of avoiding both the barrier and the slit.

The demonstrator is implemented as a series of proportional controllers which guide it
from the starting set to the slit, through the slit, and to the goal set. The actions are clipped
to fit in the action space, and trajectories are nearly optimal. The agent is provided with 20
demonstrations.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 30

Object Manipulation in MuJoCo: We next consider two object manipulation tasks
designed in the MuJoCo physics simulator [76], where the objective is to extract a block from
a tight configuration on a table (Block Extraction, Figure 4.1(b)) and push each of 3 blocks
forward on the plane (Sequential Pushing, Figure 4.1(c)). In the Block Extraction task, the
action space consists of 3D delta position controls and an extra action dimension to control
the degree to which the gripper is opened. In the Sequential Pushing environment, this extra
action dimension is omitted and the gripper is kept closed. In the Block Extraction domain,
the agent receives a reward of −1 for every timestep that it hasn’t retrieved the red block
and 0 when it has. In the Sequential Pushing domain, the reward increases by 1 for each
block the agent pushes forward. Thus, the agent receives a reward of −3 when it has made
no progress and 0 when it has completed the task. The Block Extraction task is adapted
from [73] while the Sequential Pushing task is adapted from [81]. We use a time horizon of
T = 50 for the Block Extraction task and a longer T = 150 for the Sequential Pushing task
since it is of greater complexity.

The block extraction demonstrator is implemented as a series of proportional controllers
guiding the arm to a position to grip the block, followed by an instruction to close the gripper
and a controller to lift. We provide the agent with 50 demonstrations with zero-mean noise
injected in the controls to induce suboptimality. For the sequential pushing environment, the
demonstrator uses a series of proportional controllers to slowly push one block forward, move
backwards, line up with the next block, and repeat the motion until all blocks have been
pushed. Because it moves slowly and moves far back from each block it pushes, demonstrations
are very suboptimal. For Sequential Pushing, the agent is provided with 500 demonstrations
due to the increased difficulty of the task.

Robosuite Object Manipulation: Finally, we consider two object manipulation tasks
built on top of Robosuite [88], a collection of robot simulation tasks using the MuJoCo
physics engine. We consider the Door Opening task (Figure 4.1(d)) and the Block Lifting
task (Figure 4.1(e)). In the Door Opening task, a Panda robot with 7 DoF and a parallel-jaw
gripper must turn the handle of a door in order to open it. The door’s location is randomized
at the start of each episode. The agent receives a reward of -1 if it has not opened the door
and a reward of 0 if it has. In the Block Lifting task, the same Panda robot is placed in front
of a table with a single block on its surface. The robot must pick up the block and lift it
above a certain threshold height. The block’s location is randomized for each episode and
the agent receives a reward of −1 for every timestep it has not lifted the block and a reward
of 0 when it has. Both Robosuite tasks use a time horizon of T = 50.

For both Robosuite tasks, demonstrators are trained using SAC on a version of the
task with a hand-designed dense reward function, as in the Robosuite benchmarking experi-
ments [88]. In order to ensure suboptimality, we stop training the demonstrator policy before
convergence. For each Robosuite environment we use the trained demonstrator policies to
generate 100 suboptimal demonstrations for training MCAC and the baselines.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 31

Algorithm Comparisons

We empirically evaluate the following baselines both individually and in combination with
MCAC. All methods are provided with the same demonstrations which are collected as
described in Section 4.5. See Section 4.5

Behavior Cloning: Direct supervised learning on the offline suboptimal demonstrations.
Twin Delayed Deep Deterministic Policy Gradients (TD3) [11]: State of the art

actor-critic algorithm which trains a deterministic policy to maximize a learned critic.
Soft Actor-Critic (SAC) [13]: State of the art actor-critic algorithm which trains

a stochastic policy which maximizes a combination of the Q value of the policy and the
expected entropy of the policy to encourage exploration.

Generalized Q Estimation (GQE): A complex return estimation method from [58]
for actor-critic methods, which computes a weighted average over TD-i estimates for a range
of i. GQE is implemented on top of SAC (see supplement for more details). We tune the
range of horizons considered and the eligibility trace value (corresponding to λ in GAE).

Overcoming Exploration from Demonstrations (OEFD) [42]: OEFD builds on
DDPG [36] by adding a loss which encourages imitating demonstrations and a learned filter
which determines when to activate this loss. Our implementation does not include hindsight
experience replay since it is not applicable to most of our environments.

Conservative Q Learning (CQL) [32]: A recent offline RL algorithm that addresses
value overestimation with a conservative Q function. Here we also update CQL online
after pre-training offline on demonstrations in order to provide a fair comparison with other
algorithms.

Advantage Weighted Actor-Critic (AWAC) [41]: A recent offline reinforcement
learning algorithm designed for fast online fine-tuning.

We also implement versions of each of the above RL algorithms with MCAC (TD3 +
MCAC, SAC + MCAC, GQE + MCAC, OEFD + MCAC, CQL + MCAC, AWAC + MCAC).

The behavior cloning comparison serves to determine whether online learning is beneficial
in general, while the other comparisons study whether MCAC can be used to accelerate
reinforcement learning for commonly used actor-critic algorithms (TD3, SAC, and GQE,
which is essentially SAC with complex returns) and for recent algorithms for RL from
demonstrations (OEFD, CQL and AWAC).

Implementation Details

For all algorithms, all Q functions and policies are approximated using deep neural networks
with 2 hidden layers of size 256. They are all updated using the Adam optimizer from [28].

Behavioral Cloning

We used a straightforward implementation of behavioral cloning, regressing with a mean
square error loss. For all experiments learners were provided with the same number of

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 32

demonstrators as the other algorithms and optimized for 10000 gradient steps using a learning
rate of 1× 10−4.

Twin Delayed Deep Deterministic Policy Gradients

We use the author implementation of TD3 from [11], modifying it to implement MCAC. In
order to maintain the assumption about complete trajectories described in the main text,
we modify the algorithm to only add to the replay buffer at the end of sampled trajectories,
but continue to update after each timestep. We found the default hyperparameters from the
repository to be sufficient in all environments.

Soft Actor Critic

For all SAC experiments we used a modified version of the SAC implementation from [69]
which implements SAC with a double-Q critic update function to combat Q overestimation.
Additionally, we modify the algorithm to satisfy the trajectory assumption as in Section 4.5.
We mostly use the default hyperparameters from [13], but tuned α and τ . Parameter choices
are shown in Table 4.1.

Table 4.1: Hyperparameters for SAC

Parameter Navigation MuJoCo Robosuite

Learning Rate 3× 10−4 3× 10−4 3× 10−4

Automatic Entropy Tuning False False False
Batch Size 256 256 256

Hidden Layer Size 256 256 256
Hidden Layers 2 2 2

Updates Per Timestep 1 1 1
α 0.2 0.1 0.05
γ 0.99 0.99 0.99
τ 5× 10−2 5× 10−3 5× 10−2

Generalized Q Estimation

Similarly to the advantage estimation method in [58], we estimate Q values by computing a
weighted average over a number of Q estimates estimated with k-step look-aheads. Concretely,
if a Q

(k)
t is a Q estimate with a k-step look-ahead given by

Q
(k)
t =

k−1∑
i=0

rt+i + γkQθ(st+k, at+k), (4.5.1)

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 33

we compute the n-step GQE estimate QGQE
t as

QGQE
t =

1− λ

1− λn

n∑
k=1

λk−1Q
(k)
t . (4.5.2)

We built GQE on top of SAC, using the SAC Q estimates for the values of Qθ. However, in
principle this method can be applied to other actor-critic methods.

Where applicable we used the hyperparameters from SAC, and tuned the values of λ
and n as hyperparameters, trying values in the sets λ ∈ {0.8, 0.9, 0.95, 0.99, 0.999} and n
values in the set n ∈ {8, 16, 32, 64}. The chosen parameters for each environment are given
in Table 4.2.

Table 4.2: Hyperparameters for GQE

Parameter Navigation Extraction Push Door Lift

λ 0.9 0.95 0.95 0.9 0.9
n 32 8 16 16 16

Overcoming Exploration with Demonstrations

We implement the algorithm from [42] on top of the implementation of TD3 described in
Section 4.5. Because it would provide an unfair advantage over comparisons, the agent is
not given the ability to reset to arbitrary states in the replay buffer. Since our setting is
not goal-conditioned, our implementation does not include hindsight experience replay. For
the value λ balancing the actor critic policy update loss and behavioral cloning loss, we use
λ = 1.0. In all experiments the agent is pretrained on offline data for 10000 gradient steps.

Conservative Q-learning

Offline reinforcement learning algorithm that produces a lower bound on the value of the
current policy. We used the implementation from [SAC˙CQL], which implements CQL on
top of SAC as is done in the original paper, modified for additional online-finetuning. We
used the default hyperparameters from [32] in all environments and pretrained the agent on
offline data for 10000 gradient steps.

Advantage Weighted Actor Critic

For AWAC experiments we use the implementation from [63], once again modifying it to
maintain the assumption about complete trajectories and to implement MCAC. We found
the default hyperparameter values to be sufficient in all settings. In all experiments the agent
is pretrained on offline data for 10000 gradient steps.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 34

start goal

(a) Pointmass Navigation (b) Block Extraction (c) Sequential Pushing

(d) Door Opening (e) Block Lifting

Figure 4.1: MCAC Domains: We evaluate MCAC on five continuous control domains: a pointmass
navigation environment, and four high-dimensional robotic control domains. All domains are
associated with relatively unshaped reward functions, which only indicate constraint violation, task
completion, or completion of a subtask.

Results

In Section 4.5, we study MCAC on a simple didactic environment to better understand how
it affects the learned Q-values. We then study whether MCAC can be used to accelerate
exploration on a number of continuous control domains. In Section 4.5, we study whether
MCAC enables more efficient learning when built on top of widely used actor-critic RL
algorithms (SAC, TD3, and GQE). Then in Section 4.5, we study whether MCAC can provide
similar benefits when applied to recent RL from demonstration algorithms (OEFD, CQL, and
AWAC). Additionally, in the supplement we provide experiments involving other baselines,
investigating the sensitivity of MCAC to the quality and quantity of demonstration data,
and investigating its sensitivity to pretraining.

MCAC Didactic Example

In order to better understand the way MCAC affects Q estimates, we visualize Q estimates
when MCAC is applied to SAC after 50000 timesteps of training in the Pointmass Navigation

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 35

environment, in Figure 4.2. Here we visualize Q-values for the entire replay buffer, including
offline demonstrations,

When training without MCAC (top row), the agent is unable to learn a useful Q function
and thus does not learn to complete the task (the only successful trajectories shown are
offline data). However, even when this is the case, the MCAC estimate is able to effectively
propagate reward signal backwards along the demonstrator trajectories, predicting higher
rewards early on (top right). We see that the GQE estimates (top middle) are somewhat
more effective than the Bellman ones at propagating reward, but not as effective as MCAC.
When the agent is trained with MCAC (bottom row), the agent learns a useful Q function
that it uses to reliably complete the task (bottom left). As expected with a high-performing
policy, its Bellman estimates, GQE estimates and MCAC estimates are similar.

MCAC and Standard RL Algorithms

In Figure 4.3, we study the impact of augmenting SAC, TD3 and GQE with the MCAC
target Q-function. Note that all methods, both with and without MCAC, we initialize their
replay buffers with the same set of demonstrations. Results suggest that MCAC is able to
accelerate learning for both TD3 and SAC across all environments, and is able to converge
to performance either on-par with or better than the demonstrations. In the Pointmass
Navigation and Block Lifting tasks, SAC and TD3 make no task progress without MCAC.

Demonstrator Trajectories

SAC Agent

SAC + MCAC
Agent

Bellman Q Estimate MCAC Q Estimate

0

-100

Start Goal

Start Goal

Start Goal Start Goal

Start Goal

GQE Q Estimate

Figure 4.2: MCAC Replay Buffer Visualization: Scatter plots showing Bellman, GQE and
MCAC Q estimates on the entire replay buffer, including offline demonstrations, for SAC learners
with and without the MCAC modification after 50000 timesteps of training. The top row shows
data and Q estimates obtained while training a baseline SAC agent without MCAC, while the
bottom row shows the same when SAC is trained with MCAC. The left column shows Bellman Q
estimates on each replay buffer sample while the middle column shows GQE estimates and the right
column shows MCAC estimates. Results suggest that MCAC is helpful for propagating rewards
along demonstrator trajectories.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 36

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd
(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting

Demos BC TD3 SAC GQE
TD3 + MCAC SAC + MCAC GQE + MCAC

Figure 4.3: MCAC and Standard RL Algorithms Results: Learning curves showing the
exponentially smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random
seeds. We find that MCAC improves the learning efficiency of TD3, SAC, and GQE across all 5
environments.

MCAC also accelerates learning for GQE for the Pointmass Navigation, Block Extraction,
and Sequential Pushing environments. In the Door Opening and Block Lifting environments,
MCAC leaves performance largely unchanged since GQE already achieves performance on
par with the next best algorithm without MCAC.

MCAC and RL From Demonstrations Algorithms

In Figure 4.4, we study the impact of augmenting OEFD [42], CQL [32] and AWAC [41] with
the MCAC target Q-function. Results suggest that MCAC improves the learning efficiency of
OEFD on the Pointmass Navigation, Sequential Pushing, and Block Lifting tasks, but does
not have a significant positive or negative affect on performance for the Block Extraction
and Door Opening tasks. MCAC improves the performance of AWAC on the Pointmass
Navigation and Sequential Pushing environments, stabilizing learning while the versions
without MCAC see performance fall off during online fine tuning. On the other 3 environments
where AWAC is able to immediately converge to a stable policy after offline pre-training,

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 37

0 20000 40000 60000 80000 100000
Timesteps

120

100

80

60

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000
Timesteps

50

40

30

20

10

Re
wa

rd
(b) Block Extraction

50000 100000 150000
Timesteps

400

300

200

100

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(d) Door Opening

50000 100000 150000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting

Demos BC OEFD CQL AWAC
OEFD + MCAC CQL + MCAC AWAC + MCAC

Figure 4.4: MCAC and RL from Demonstrations Algorithm Results: Learning curves
showing the exponentially smoothed (smoothing factor γ = 0.9) mean and standard error across
10 random seeds. When OEFD or AWAC achieve high performance almost immediately, MCAC
has little impact on performance. However, when OEFD and AWAC are unable to learn efficiently,
MCAC accelerates and stabilizes policy learning.

MCAC has no significant negative effect on its performance. In all tasks, MCAC improves
the performance of CQL. In particular, for the Pointmass Navigation, Block Extraction and
Sequential Pushing tasks, CQL makes almost no progress while the version with MCAC
learns to complete the task reliably.

4.6 Additional Experiments

No Demonstrations

To study the effects that MCAC has without demonstration data in the replay buffer we
compare performance with and without MCAC and demonstrations in all environments
with the SAC learner, shown in Figure 4.5. Overall we see that, as desired, the agent is
unable to make progress in most environments. The only exception is the sequential pushing

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 38

environment results (Figure 4.5(c)), where the intermediate reward for pushing each block
helps the agent learn to make some progress. Overall, this experiment does not conclusively
answer whether MCAC is helpful without demonstrations, but this is an exciting direction
for future work.

0 20000 40000 60000 80000 100000
Timesteps

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting

Demos SAC SAC (ND) SAC + MCAC SAC + MCAC (ND)

Figure 4.5: MCAC without Demonstrations: Learning curves showing the exponentially
smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random seeds for experiments
with demonstrations and 3 seeds for experiments without them. We see that in all environments
the demonstrations are critical for learning an optimal policy. The only place the variants without
demonstrations make progress is in the push environment, because of the intermediate reward for
pushing each block.

MCAC Sensitivity Experiments

In Figure 4.6, we first study the impact of demonstration quality (Figure 4.6(a)) and quantity
(Figure 4.6(b)) on MCAC when applied to SAC (SAC + MCAC) on the Pointmass Navigation
domain. We evaluate sensitivity to demonstration quality by injecting ϵ-greedy noise into the
demonstrator for the Pointmass Navigation domain. Results suggest that MCAC is somewhat
sensitive to demonstration quality, since MCAC’s performance does drop significantly for
most values of ϵ, although it still typically makes some task progress. In Figure 4.6(b), results
suggest that MCAC is relatively robust to the number of demonstration.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 39

0 20000 40000 60000 80000 100000
Timesteps

120

110

100

90

80

70

60

50

Re
wa

rd

= 0.0
= 0.1

= 0.15
= 0.25

= 0.35

(a) Demonstration Quality

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

Demos
N = 1

N = 5
N = 10

N = 20
N = 50

(b) Demonstration Quantity

Figure 4.6: MCAC Sensitivity Experiments: Learning curves showing the exponentially
smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random seeds for varying
demonstration qualities (a) and quantities (b) for SAC + MCAC. (a): Results suggest that MCAC is
somewhat sensitive to demonstration quality, as when ϵ-greedy noise is injected into the demonstrator,
MCAC’s performance does drop significantly, although it eventually make some task progress for
most values of ϵ. (b): MCAC appears to be much less sensitive to demonstration quantity, and is
able to achieve relatively high performance even with a single task demonstration.

Pretraining

In Figure 4.7 we ablate on the pretraining step of the algorithm to determine whether it is
useful to include. We find that it was helpful for the Navigation environment but unhelpful
and sometimes limiting in other settings. Thus, we leave pretraining as a hyperparameter to
be tuned.

CHAPTER 4. MCAC: MONTE CARLO AUGMENTED ACTOR-CRITIC 40

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting

Demos BC TD3 + MCAC TD3 + MCAC (Pre) SAC + MCAC SAC + MCAC (Pre)

Figure 4.7: MCAC with and without Pretraining Results: Learning curves showing the
exponentially smoothed (smoothing factor γ = 0.9) mean and standard error across 10 random seeds.
We find that other than in the navigation environment pretraining does not provide a significant
benefit.

41

Chapter 5

Conclusions and Limitations

In this dissertation we propose the use of offline demonstrations as a means to guide online
RL exploration, and present two novel algorithms using this to improve efficiency and safety
during learning.

In Chapter 3, we present LS3, a scalable algorithm for safe and efficient policy learning for
visuomotor tasks. LS3 structures exploration by learning a safe set in a learned latent space,
which captures the set of states from which the agent is confident in task completion. LS3

then ensures that the agent can plan back to states in the safe set, encouraging consistent
task completion during learning. Experiments suggest that LS3 can safely and efficiently
learn 4 visuomotor control tasks, including a challenging sequential pushing task in simulation
and a cable routing task on a physical robot.

While LS3 did show encouraging results in the domains we experimented in, it also
had numerous limitations. For one, we found the algorithm to require more offline dataset
engineering than would be desirable for widespread deployment. We also found the dynamics
to fail in more complicated environments than those we present. Both of these issues need to
be addressed before it is ready for widespread use.

In Chapter 4, we present Monte Carlo augmented Actor-Critic (MCAC), a simple, yet
highly effective, change that can be applied to any actor-critic algorithm in order to accelerate
reinforcement learning from demonstrations for sparse reward tasks. We present empirical
results suggesting that MCAC often significantly improves performance when applied to three
state-of-the-art actor-critic RL algorithms and three RL from demonstrations algorithms on
five different continuous control domains.

Despite strong empirical performance, MCAC also has some limitations. We found that
while encouraging higher Q-value estimates is beneficial for sparse reward tasks, when rewards
are dense and richly informative, MCAC is not helpful and can even hinder learning by
overestimating Q-values. From an ethical standpoint, reinforcement learning algorithms such
as MCAC can be used to automate aspects of a variety of interactive systems, such as robots,
online retail systems, or social media platforms. However, poor performance when policies
haven’t yet converged, or when hand-designed reward functions do not align with true human
intentions, can cause significant harm to human users. Lastly, while MCAC shows convincing

CHAPTER 5. CONCLUSIONS AND LIMITATIONS 42

empirical performance, its theoretical backbone is questionable, since it relies on using n-step
rollouts, on-policy data, from past policies in the replay buffer.

43

Chapter 6

Future Work

There are a wide variety of directions we hope to extend the work in this dissertation in the
future.

For Latent Space Safe Sets (LS3), we list some future directions below:

• For computational reasons, we chose to pretrain the latent embeddings on the offline
dataset and then freeze the encoders for use online. While this was beneficial for the
first iteration of the project where fast computation was critical, it was limiting because
it left the agent unable to learn to deal with observations it doesn’t observe in the
offline dataset. In future iterations of the algorithm it would be beneficial to improve
the pipeline to update the encoder online.

• LS3 is built on a variety of older pieces of technology, and would likely benefit by
replacing these with more advanced algorithms. For example, while β-VAE learned a
sufficient representation for the domains we considered, a version of LS3 learned on top
of masked autoencoders [17] would likely be applicable to a wider variety of situations.
It would also be interesting to explore how LS3’s ideas combine with more advanced
world models, such as that from DreamerV3 [16].

• Assuming the changes above lead to concrete improvements, it would be interesting
to experiment with LS3 in more complex and long horizon simulated and physical
environments.

There are also a variety of future directions we hope to investigate while extending MCAC.

• As mentioned before, MCAC achieves impressive empirical results with the downside
that it loses its theoretical convergence guarantees. A key issue making this difficult is
that the use of n-step returns implicitly assumes that the data is on-policy, but because
that data is coming from a replay buffer, this is not the case. It would be interesting
to investigate whether there is a way to reason about this mixture, or whether it is
possible to change the algorithm to get the same or better empirical performance while
providing better theoretical guarantees.

CHAPTER 6. FUTURE WORK 44

• While MCAC performed well in the domains we considered, it would be interesting to
explore its applicability to a wider variety of longer-horizon tasks. Down the road, it
would also be useful to run experiments deploying it on physical robots to see whether
its benefits are present in that setting as well.

• While policy learning, which we considered in this project, is the most obvious appli-
cation of the improved MCAC Q target estimation step, there are a variety of other
applications we hope to investigate MCAC in. For example, it would be interesting to
see whether it improves safety when applied to the safety critics learned in [67, 73].

45

Bibliography

[1] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[2] Somil Bansal et al. “Hamilton-Jacobi Reachability: A Brief Overview and Recent
Advances”. In: Conference on Decision and Control (CDC). 2017.

[3] Marc Bellemare et al. “Unifying count-based exploration and intrinsic motivation”. In:
Advances in Neural Information Processing Systems. 2016, pp. 1471–1479.

[4] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. “A survey of iterative
learning control”. In: IEEE control systems magazine (2006).

[5] K. Chua et al. “Deep Reinforcement Learning in a Handful of Trials using Probabilistic
Dynamics Models”. In: Proc. Advances in Neural Information Processing Systems. 2018.

[6] Kurtland Chua. Experiment code for ”Deep Reinforcement Learning in a Handful of
Trials using Probabilistic Dynamics Models”. https://github.com/kchua/handful-
of-trials. 2018.

[7] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using proba-
bilistic dynamics models”. In: Proc. Advances in Neural Information Processing Systems.
2018.

[8] MP. Deisenroth and CE. Rasmussen. “PILCO: A Model-Based and Data-Efficient
Approach to Policy Search”. In: Proc. Int. Conf. on Machine Learning. 2011.

[9] Frederik Ebert et al. “Visual foresight: Model-based deep reinforcement learning for
vision-based robotic control”. In: arXiv preprint arXiv:1812.00568 (2018).

[10] Justin Fu, Sergey Levine, and Pieter Abbeel. “One-shot learning of manipulation skills
with online dynamics adaptation and neural network priors”. In: Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS). 2016.

[11] Scott Fujimoto, Herke van Hoof, and Dave Meger. “Addressing Function Approximation
Error in Actor-Critic Methods”. In: Proc. Int. Conf. on Machine Learning. 2018.

[12] Yang Gao et al. “Reinforcement Learning from Imperfect Demonstrations”. In: CoRR
abs/1802.05313 (2018). arXiv: 1802.05313. url: http://arxiv.org/abs/1802.
05313.

https://github.com/kchua/handful-of-trials
https://github.com/kchua/handful-of-trials
https://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1802.05313

BIBLIOGRAPHY 46

[13] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor”. In: Proc. Int. Conf. on Machine Learning
(2018).

[14] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor”. In: Proc. Int. Conf. on Machine Learning.

[15] Danijar Hafner et al. “Learning Latent Dynamics for Planning from Pixels”. In: Proc.
Int. Conf. on Machine Learning (2019).

[16] Danijar Hafner et al. “Mastering Diverse Domains through World Models”. In: arXiv
preprint arXiv:2301.04104 (2023).

[17] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2022, pp. 16000–16009.

[18] Todd Hester et al. “Deep q-learning from demonstrations”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[19] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained
variational framework”. In: Proc. Int. Conf. on Learning Representations (2017).

[20] Jeffrey Ichnowski et al. “Deep learning can accelerate grasp-optimized motion planning”.
In: Science Robotics 5.48 (2020).

[21] B. Ichter and M. Pavone. “Robot Motion Planning in Learned Latent Spaces”. In:
IEEE Robotics and Automation Letters 4.3 (2019), pp. 2407–2414. doi: 10.1109/LRA.
2019.2901898.

[22] Greg Kahn et al. “Uncertainty-Aware Reinforcement Learning for Collision Avoidance”.
In: CoRR (2017).

[23] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: Conf. on Robot Learning (CoRL) (2018).

[24] Bingyi Kang, Zequn Jie, and Jiashi Feng. “Policy optimization with demonstrations”.
In: International Conference on Machine Learning. PMLR. 2018, pp. 2469–2478.

[25] Peter Kazanzides et al. “An Open-Source Research Kit for the da Vinci Surgical
System”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2014.

[26] Peter Kazanzides et al. “An open-source research kit for the da Vinci® Surgical
System”. In: 2014 IEEE international conference on robotics and automation (ICRA).
IEEE. 2014, pp. 6434–6439.

[27] Beomjoon Kim et al. “Learning from Limited Demonstrations.” In: NIPS. Citeseer.
2013, pp. 2859–2867.

[28] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2015).

https://doi.org/10.1109/LRA.2019.2901898
https://doi.org/10.1109/LRA.2019.2901898

BIBLIOGRAPHY 47

[29] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In: Learning
Motor Skills. Springer, 2014, pp. 83–117.

[30] George Konidaris, Scott Niekum, and Philip S Thomas. “Td gamma: Re-evaluating
complex backups in temporal difference learning”. In: Advances in Neural Information
Processing Systems 24 (2011), pp. 2402–2410.

[31] Victoria Krakovna et al. “Specification gaming: the flip side of AI ingenuity”. In:
DeepMind Blog (2020).

[32] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning”. In:
Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 1179–1191. url: https://proceedings.neurips.
cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

[33] Arsenii Kuznetsov et al. “Controlling overestimation bias with truncated mixture of
continuous distributional quantile critics”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 5556–5566.

[34] Michael Laskin et al. “Reinforcement Learning with Augmented Data”. In: (2020).
arXiv:2004.14990.

[35] Ian Lenz, Ross A. Knepper, and Ashutosh Saxena. “DeepMPC: Learning Deep Latent
Features for Model Predictive Control”. In: Robotics: Science and Systems. 2015.

[36] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
CoRR abs/1509.02971 (2015). arXiv: 1509.02971. url: http://arxiv.org/abs/1509.
02971.

[37] Martina Lippi et al. “Latent Space Roadmap for Visual Action Planning of Deformable
and Rigid Object Manipulation”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2020.

[38] Kendall Lowrey et al. “Plan Online, Learn Offline: Efficient Learning and Exploration
via Model-Based Control”. In: Proc. Int. Conf. on Machine Learning. 2019.

[39] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pp. 529–533.

[40] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep Reinforce-
ment Learning with Model-Free Fine-Tuning”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2018.

[41] Ashvin Nair et al. AWAC: Accelerating Online Reinforcement Learning with Offline
Datasets. 2021. arXiv: 2006.09359 [cs.LG].

[42] Ashvin Nair et al. “Overcoming Exploration in Reinforcement Learning with Demon-
strations”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2018).

[43] Ashvin Nair et al. “Visual reinforcement learning with imagined goals”. In: Proc.
Advances in Neural Information Processing Systems (2018).

https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2006.09359

BIBLIOGRAPHY 48

[44] Suraj Nair, Silvio Savarese, and Chelsea Finn. “Goal-Aware Prediction: Learning to
Model What Matters”. In: Proceedings of the 37th International Conference on Machine
Learning. 2020, pp. 7207–7219.

[45] Georg Ostrovski et al. “Count-based exploration with neural density models”. In:
International conference on machine learning. PMLR. 2017, pp. 2721–2730.

[46] Xue Bin Peng et al. Advantage-Weighted Regression: Simple and Scalable Off-Policy
Reinforcement Learning. 2019. arXiv: 1910.00177 [cs.LG].

[47] Vitchyr H Pong et al. “Skew-fit: State-covering self-supervised reinforcement learning”.
In: Proc. Int. Conf. on Machine Learning (2020).

[48] S. Quinlan and O. Khatib. “Elastic bands: connecting path planning and control”. In:
International Conference on Robotics and Automation. 1993, 802–807 vol.2.

[49] Aravind Rajeswaran et al. Learning Complex Dexterous Manipulation with Deep Rein-
forcement Learning and Demonstrations. 2018. arXiv: 1709.10087 [cs.LG].

[50] Spencer M Richards, Felix Berkenkamp, and Andreas Krause. “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical systems”. In:
Conference on Robot Learning. PMLR. 2018, pp. 466–476.

[51] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Iterative
Tasks. A Data-Driven Control Framework”. In: IEEE Transactions on Automatic
Control (2018).

[52] Ugo Rosolia and Francesco Borrelli. “Sample-Based Learning Model Predictive Control
for Linear Uncertain Systems”. In: CoRR abs/1904.06432 (2019). url: http://arxiv.
org/abs/1904.06432.

[53] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. “A Stochastic MPC Approach
with Application to Iterative Learning”. In: 2018 IEEE Conference on Decision and
Control (CDC) (2018).

[54] Reuven Rubinstein. “The cross-entropy method for combinatorial and continuous
optimization”. In: Methodology and computing in applied probability 1.2 (1999), pp. 127–
190.

[55] Andrei A Rusu et al. “Sim-to-real robot learning from pixels with progressive nets”. In:
Conference on Robot Learning. PMLR. 2017, pp. 262–270.

[56] Stefan Schaal et al. “Learning from demonstration”. In: Advances in neural information
processing systems (1997), pp. 1040–1046.

[57] Gerrit Schoettler et al. “Deep reinforcement learning for industrial insertion tasks with
visual inputs and natural rewards”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS) (2020).

[58] John Schulman et al. “High-Dimensional Continuous Control Using Generalized Advan-
tage Estimation”. In: International Conference on Learning Representations (ICLR)
(June 2016).

https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1904.06432
http://arxiv.org/abs/1904.06432

BIBLIOGRAPHY 49

[59] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[60] John Schulman et al. “Trust Region Policy Optimization”. In: Proceedings of Machine
Learning Research 37 (July 2015). Ed. by Francis Bach and David Blei, pp. 1889–1897.
url: http://proceedings.mlr.press/v37/schulman15.html.

[61] D. Seita et al. “Fast and Reliable Autonomous Surgical Debridement with Cable-Driven
Robots Using a Two-Phase Calibration Procedure”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2018.

[62] Sahil Sharma et al. “Learning to Mix n-Step Returns: Generalizing lambda-Returns for
Deep Reinforcement Learning”. In: 2018. arXiv: 1705.07445 [cs.AI].

[63] Harshit Sikchi and Albert Wilcox. pytorch-AWAC. url: https://github.com/hari-
sikchi/AWAC.

[64] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587 (2016), pp. 484–489.

[65] Avi Singh et al. “End-to-end robotic reinforcement learning without reward engineering”.
In: Proc. Robotics: Science and Systems (RSS) (2019).

[66] Aravind Srinivas et al. “Universal Planning Networks”. In: Proc. Int. Conf. on Machine
Learning (Apr. 2018).

[67] Krishnan Srinivasan et al. “Learning to be Safe: Deep RL with a Safety Critic”. In:
arXiv preprint arXiv:2010.14603 (2020).

[68] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st.
Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[69] Pranjal Tandon. pytorch-soft-actor-critic. url: https : / / github . com / pranz24 /
pytorch-soft-actor-critic.

[70] Yuval Tassa et al. dm-control: Software and Tasks for Continuous Control. 2020. arXiv:
2006.12983 [cs.RO].

[71] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. “Reward Constrained Policy
Optimization”. In: Proc. Int. Conf. on Learning Representations. 2019.

[72] Brijen Thananjeyan et al. ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic
Nonlinear Dynamical Systems with Adjustable Boundary Conditions. 2020.

[73] Brijen Thananjeyan et al. “Recovery RL: Safe Reinforcement Learning with Learned
Recovery Zones”. In: NeurIPS Deep Reinforcement Learning Workshop (2020).

[74] Brijen Thananjeyan et al. “Safety Augmented Value Estimation From Demonstrations
(SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 3612–3619.

[75] Stephen Tian et al. “Model-Based Visual Planning with Self-Supervised Functional
Distances”. In: Proc. Int. Conf. on Learning Representations (2021).

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1705.07445
https://github.com/hari-sikchi/AWAC
https://github.com/hari-sikchi/AWAC
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://arxiv.org/abs/2006.12983

BIBLIOGRAPHY 50

[76] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on. IEEE. 2012, pp. 5026–5033. url: https://ieeexplore.ieee.
org/abstract/document/6386109/.

[77] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 30. 1. 2016.

[78] Hado Van Hasselt et al. Deep Reinforcement Learning and the Deadly Triad. 2018.
arXiv: 1812.02648 [cs.LG].

[79] Matej Vecerik et al. “Leveraging Demonstrations for Deep Reinforcement Learning on
Robotics Problems with Sparse Rewards”. In: CoRR abs/1707.08817 (2017).

[80] Albert Wilcox et al. “Monte Carlo Augmented Actor-Critic for Sparse Reward Deep
Reinforcement Learning from Suboptimal Demonstrations”. In: Advances in Neural
Information Processing Systems. Ed. by Alice H. Oh et al. 2022. url: https://
openreview.net/forum?id=FLzTj4ia8BN.

[81] Albert Wilcox* et al. “LS3: Latent Space Safe Sets for Long-Horizon Visuomotor
Control of Sparse Reward Iterative Tasks”. In: Conference on Robot Learning (CoRL).
PMLR. 2021.

[82] Robert Wright et al. “Exploiting Multi-step Sample Trajectories for Approximate Value
Iteration”. In:Machine Learning and Knowledge Discovery in Databases. Ed. by Hendrik
Blockeel et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 113–128. isbn:
978-3-642-40988-2.

[83] Robert William Wright et al. “CFQI: Fitted Q-Iteration with Complex Returns.” In:
AAMAS. Citeseer. 2015, pp. 163–170.

[84] Zheng Wu et al. “Learning Dense Rewards for Contact-Rich Manipulation Tasks”. In:
arXiv preprint arXiv:2011.08458 (2020).

[85] Jiexin Xie et al. “Deep reinforcement learning with optimized reward functions for
robotic trajectory planning”. In: IEEE Access 7 (2019), pp. 105669–105679.

[86] Jesse Zhang et al. “Cautious adaptation for reinforcement learning in safety-critical
settings”. In: International Conference on Machine Learning. PMLR. 2020, pp. 11055–
11065.

[87] Marvin Zhang et al. “Solar: Deep structured representations for model-based rein-
forcement learning”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 7444–7453.

[88] Yuke Zhu et al. “robosuite: A Modular Simulation Framework and Benchmark for
Robot Learning”. In: arXiv preprint arXiv:2009.12293. 2020.

[89] Zhaoxuan Zhu et al. In: (2021). arXiv: 2105.11640 [cs.LG].

https://ieeexplore.ieee.org/abstract/document/6386109/
https://ieeexplore.ieee.org/abstract/document/6386109/
https://arxiv.org/abs/1812.02648
https://openreview.net/forum?id=FLzTj4ia8BN
https://openreview.net/forum?id=FLzTj4ia8BN
https://arxiv.org/abs/2105.11640

