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Abstract

Scaling Part Models: Challenges and Solutions for Robustness on Large Datasets

by

Nabeel Hingun

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor David Wagner, Chair

Part models have been shown to be an e↵ective way to increase the robustness of deep
learning models to adversarial examples. While part models have successfully been applied
to small datasets like PartImageNet, obtaining the necessary segmentation labels can be
expensive and time-consuming. In order to scale part models to larger datasets, it is crucial
to find ways to obtain cheaper labels. In this work, we explore some of the challenges that
may arise when scaling up part models. First, we investigate ways to reduce labeling costs by
using part bounding box labels instead of segmentation masks, while still providing additional
supervision to models. Second, we evaluate the performance of part-based models on a more
diverse and larger dataset. Our work provides valuable insights into the key challenges that
need to be addressed in order to scale up part models successfully and achieve adversarial
robustness on a larger scale. The code is publicly available at https://github.com/nab-
126/adv-part-based-models.

https://github.com/nab-126/adv-part-based-models
https://github.com/nab-126/adv-part-based-models
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Chapter 1

Background

1.1 Adversarial Robustness

Machine learning models have achieved remarkable success in a variety of applications, in-
cluding image classification, speech recognition, and natural language processing. However,
these models are susceptible to adversarial examples, which are inputs that are specifically
crafted to deceive machine learning models. These adversarial examples are generated by
adding small, imperceptible perturbations to legitimate inputs [12] and can cause the model
to make incorrect predictions with high confidence. Such attacks pose a significant threat
to the security and reliability of machine learning systems, particularly in safety-critical
applications such as self-driving cars and medical diagnosis.

There has been significant research in improving the adversarial robustness of machine
learning models and their ability to classify adversarial examples correctly. One such ap-
proach, called adversarial training, is to train models on adversarial examples during the
training process [9] to help the model learn distinguish between benign and adversarial in-
puts. In fact, adversarial training is the baseline and state-of-the-art approach to adversarial
robustness and has led to significant improvements in this area. Yet, it has been observed
that the benefits of adversarial training tend to plateau as the number of adversarial examples
used during training increases [3]. Achieving linear improvements in adversarial robustness
necessitates exponentially more computational resources, which can make this approach pro-
hibitively expensive. This computational cost increases further with larger models and larger
datasets.

In light of the increasing costs associated with adversarial training, recent research [11]
has explored alternative approaches to achieving robustness through the use of part-based
models. The work demonstrates that such models can indeed achieve adversarial robustness,
providing a cheaper paradigm to adversarial training.
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Figure 1.1: Example of a Part Segmentation Mask

1.2 Part-Models

Part-based models are usually used to improve object recognition in situations when objects
can vary in appearance due to changes in lighting, viewpoint, or occlusion. The basic idea
behind part-based models is to break down an object into its constituent parts which are
then used in downstream tasks.

Sitawarin et al. [11] show that the combination of the part-based model architecture and
adversarial training improves adversarial robustness. The authors introduce four part-based
models – Downsampled, Bounding-Box, Two-Headed, and Pixel – which all perform equally
well in terms of adversarial robustness. For a given image, these models are trained to predict
both its label and part segmentation mask. Part segmentation masks are a type of mask
that provide more detailed annotation of an object by labeling di↵erent parts separately, as
opposed to having a single mask for the entire object. As a result, they are able to provide
a more fine-grained segmentation of an image. For instance, the part segmentation mask
depicted in Fig. 1.1 highlights the head, body, legs, and tail of a dog. The authors note that
their part-based models can be used with any segmenter architecture. In their experiments,
they use the DeepLabv3+ segmenter [2] with a ResNet-50 backbone [5].

The Downsampled part-based model is a two-stage classifier, i.e, a segmentation model
first takes in an image and generates part segmentation masks, which are then passed to a
classifier head to predict the class label of the input. As shown in Fig. 1.2, the model reduces
the size of the predicted segmentation masks before passing them through a small classifier
head for the final image classification. With this sequential architecture, the classifier head
only sees the predicted segmentation masks, not the original images. In contrast, the image
classifier head from the Two-Headed model sees the dense representation from the bottleneck
layer of DeepLabv3+. Its segmentation head uses that same dense representation for part
mask predictions. Please see Fig. 1.3 for an illustration of this architecture.

While these part-based models have shown promising results in improving adversarial
robustness, they still rely on the use of expensive segmentation masks as a form of training
supervision. The high cost of obtaining such fine-grained labels limits the adoption and
practical applicability of these models. To address this issue, we explore the possibility
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Figure 1.2: Downsampled DeepLabv3+ Architecture

Figure 1.3: Two-Headed DeepLabv3+ Architecture

of using bounding box labels as a cheaper alternative to segmentation masks. We also
investigate the performance of state-of-the-art models for object detection, namely DINO
[13], for generating bounding box labels.

1.3 DINO and Mask DINO

DINO (DETR with Improved deNoising anchOr) [13] is a transformer-based model used
for object detection. The model takes in an image and predicts a bounding box for every
object within that image. Overall, the model learns to reason about all objects in an image
by attending to these di↵erent objects and encoding them into a high-dimensional vector
representations.

DINO’s architecture consists of a backbone, a multi-layer encoder, a multi-layer decoder,
and a feed-forward network. First, the backbone extracts feature representations of input
images. These representations are then processed by the encoder. The decoder layers attend
to the encoder outputs with learnt position embeddings. These position embeddings, called
object queries, are formulated as dynamic anchor boxes and are refined step-by-step across
decoder layers. Finally, the decoder output is passed through the feed-forward network
to predict the normalized center coordinates and class label of each bounding box. DINO
predicts a fixed-size set of bounding boxes which is usually much larger than the actual
number of objects of interest in an image.



CHAPTER 1. BACKGROUND 4

There are multiple reasons we choose to use DINO. First, DINO makes several improve-
ments over previous transformer-based object detectors [1] in terms of training e�ciency and
query initialization. Second, DINO achieves state-of-the-art performance on the COCO [7]
public benchmarks. More importantly, DINO eliminates the need of hand-crafted algorithms
like non-maximum suppression or anchor generation and makes the detection pipeline end-
to-end di↵erentiable. This ensures we can perform adversarial training. Finally, DINO also
uses a ResNet-50 backbone and hence uses the same dense representations from images as
the part-models in previous work [11].

Li et al. [6] recognize the lack of transformer-based models for both detection and seg-
mentation tasks. The existing ones have yet to achieve the same level of performance on
these tasks as CNN-based models using such unified frameworks. Hence, they propose a uni-
fied approach to leverage the shared objective of localizing objects in an image and learning
more useful image representations. In particular, they introduce Mask DINO, a segmentation
model that extends DINO with an additional mask prediction head. Mask DINO uses the
same position embeddings from DINO to predict segmentation masks, while retaining the
state-of-the-art performance, training e�ciency, and end-to-end di↵erentiability of DINO.
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Chapter 2

Object Detection

Recent work [11] has proposed a novel approach to improving adversarial robustness with
part-models. This suggests a new direction for work on robustness, based on richer supervi-
sion using segmentation masks. However, the main limitation is the high cost of obtaining
segmentation labels. To address this limitation, we explore the use of bounding boxes as a
cheaper form of additional supervision. In this context, we assume the model to be trained
on a labeled set of images where each image is associated with a class and bounding boxes
that indicate the location of the objects within the image. Please refer to Fig. 2.1 for an
illustration of this part detection architecture. In our work, we compare the performance of
detection models to that of segmentation models in terms of clean and robust accuracy (see
Table 2.1 for a summary of our results).

2.1 Dataset Overview

We use PartImageNet [4] as a benchmark for evaluating the adversarial robustness of our
part-models. PartImageNet is a large and high-quality dataset consisting of approximately
24,000 images from 158 classes of ImageNet, grouped into 11 supercategories. We reshu✏e
the dataset into a 0.8/0.1/0.1 train/val/test split and hold out the test set for evaluation.
Since the PartImageNet dataset follows the COCO-style annotation format, each part seg-
mentation mask has an associated bounding box. It is not necessary for us to convert ground
truth segmentation masks to ground truth bounding boxes.

Model Clean Acc. Robust Acc.
Segmentation Model 84.1 40.5

Detection Model 83.4 38.7

Table 2.1: Overview Comparison of our best Part Segmentation and best Part Detection
Models on PartImageNet
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Figure 2.1: Architecture used for Part Bounding Box Classification

2.2 Model Architecture

Sitawarin et al., explored using bounding boxes as an alternative labeling method, instead
of part segmentation masks. In their experiments, they used the DeepLabv3+ segmentation
model on part box segmentation masks (see row (b) of Fig. 2.4 for examples) and measured
the model’s accuracy in predicting the class of the image. Even though the part box seg-
mentation masks are less fine-grained than the original part segmentation masks, they found
that bounding box labels were nearly as e↵ective as segmentation masks, achieving 84.1%
clean accuracy and 39.7% adversarial accuracy on PartImageNet. Building on this line of
work, we further investigate the use of bounding boxes as a cheaper form of additional su-
pervision. Specifically, instead of using a segmentation model on bounding box labels, we
use DINO, an architecture specialized for object detection. Our model is trained on images
with bounding box labels for each part.

Fig. 2.2 illustrates the two-stage model architecture we use for classification. An image
is first fed to DINO which outputs bounding boxes with normalized center coordinates (box
center x, box center y, box width, box height) concatenated with their respective class logits,
resulting in a feature vector for each detection. These feature vectors are then passed through
a fully connected neural network with two hidden layers and a final Softmax output layer to
predicts a probability distribution over classes. We refer to this model as DINO sequential.

With around 47 million trainable parameters, DINO is a much larger model than Deeplabv3+
(around 27 million trainable parameters). To ensure that any increase in model robustness
comes from the additional supervision signal and not from the model size, we also implement
a two-headed DINO model (see Fig. 2.3). Using this architecture, the ResNet50 backbone
processes the input image and extracts its feature maps. These feature maps are then fed
to the object detection head and a classification head. The object detection head follows
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Figure 2.2: The DINO sequential architecture: the predicted bounding boxes (part class
logits and normalized coordinates) are used by the classifier head for image classification

Figure 2.3: The DINO multi-head architecture: the DINO head (top) is used for Part Bound-
ing Box Prediction and the classification head (bottom) is used for Image Classification. Both
heads used the same image feature representations extracted by the backbone

the standard DINO architecture to predict bounding boxes while the classification head first
reduces the spatial dimensions of the feature maps with average pooling then applies a fully
connected layer to obtain the final classification logits. The entire model is trained end-to-
end using a joint loss that combines the detection and classification objectives. With the
two-headed model, the detection head can be discarded after training and we will hope-
fully be left with a more robust model. We refer to this model as DINO two-headed in our
experiments.

2.3 Metrics

In our experiments, we utilize standard evaluation metrics to assess the performance of
our models. For the classification task, we use accuracy, which measures the proportion of
correctly classified samples.
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For the segmentation task, we use pixel-wise accuracy which measures the proportion of
correctly classified pixels in the image. Specifically, for every pixel of an image, we obtain its
predicted class label by computing the argmax of the pixel’s class logits. Then, we compare
the predicted class label to its corresponding pixel in the ground truth segmentation mask.
If both pixels are classified as the same label, we consider it as a true positive. The pixel-wise
accuracy is then calculated by dividing the total number of correct predictions by the total
number of pixels in the image.

For the object detection task, we use Mean Average Precision (MAP) which is calculated
as the average of the precision values at di↵erent recall levels. Here, precision is the ratio
of true positive detections to the total number of detections. We use two variants of MAP:
mAP@0.5 and mAP@0.5:0.95. mAP@0.5 measures the average precision of the model at
a fixed Intersection over Union (IoU) threshold of 0.5. mAP@0.5:0.95, on the other hand,
measures the average precision of the model at a range of IoU thresholds from 0.5 to 0.95.

Overall, the accuracy metric provides a straightforward measure of classification perfor-
mance while the pixel-wise accuracy and MAP metrics enable us to evaluate the quality of
the predicted segmentation masks and bounding boxes, respectively, in comparison to the
ground truth annotations.

2.4 Converting between segmentation masks and

bounding boxes

Object detectors and image segmenters use di↵erent evaluation metrics. Hence, to compare
their performance, we need either need to convert the predicted segmentation masks to
bounding boxes or convert the predicted bounding boxes to segmentation masks.

To derive bounding boxes from predicted segmentation masks, we use a method to gen-
erate a bounding box for each connected component in the segmentation mask. Here, a
connected component is defined as a collection of pixels that are connected to each other
and assigned the same label. Specifically, we first produce the predicted segmentation mask
by using the softmax function to produce a probability map for each pixel and subsequently
assigning each pixel to the label with the highest probability. For each connected component
in this predicted segmentation mask, we compute the minimum and maximum pixel coordi-
nates within the component, which correspond to the top-left and bottom-right corners of
the bounding box, respectively. Finally, we transform these corner coordinates normalized
center coordinates for the bounding box. The confidence score for each bounding box is
calculated as the average of the probability values in the predicted segmentation mask that
correspond to the connected component. To prevent the creation of bounding boxes for
small connected components of pixels, we exclude those with an area less than 1% of the
total image area. Row (c) and (d) from Fig. 2.4 illustrates this conversion of segmentation
masks to bounding boxes.

The process of generating segmentation masks from bounding boxes involves creating
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Figure 2.4: Deeplabv3+ and DINO Example Predictions
(a) Original images with Ground Truth bounding boxes
(b) Ground Truth segmentation masks
(c) Deeplabv3+ Predicted segmentation masks
(d) Deeplabv3+ Predicted segmentation masks converted to bounding boxes
(e) DINO Predicted bounding boxes (top 10 only)
(f) DINO Predicted bounding boxes converted to segmentation masks

a binary mask for each object detected within an image. First, bounding boxes with low
confidence scores are filtered out based on a confidence threshold. For each pixel in the image,
the corresponding segmentation label is determined by selecting the bounding box with the
maximum confidence score that covers the pixel. Since the object detector does not predict
the background class, the absence of a bounding box covering a particular pixel indicates
the presence of the background class. To determine the optimal confidence threshold, we
test the di↵erent values in the range 0.1-0.5. Using a high threshold like 0.5 results in the
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model mostly predicting the background class since few bounding boxes have a confidence
score higher than that. Conversely, using a low threshold predicts too few instances of the
background class. We settle on a threshold of 0.2 in our experiments. Please see row (e) and
(f) from Fig. 2.4 for some examples of converting bounding boxes to segmentation masks.

2.5 Experiments

In all of our experiments, we train our models with adversarial training to encourage them
to be robust to L1 perturbations. To stay consistent with previous work [11] and to speed
up adversarial training, our models are first pretrained for 50 epochs on clean samples and
are then adversarially trained with 10-step PGD [9] with ✏ = 8

255 for another 50 epochs. For
evaluation, we use 100-step PGD also with ✏ = 8

255 on the held-out test set.

Segmentation vs Detection

We present a comparative analysis of segmentation models and detection models, using only
segmentation or detection tasks for evaluation and excluding the classification task. For a
fair comparison of models using the same annotations, we train the segmentation model on
bounding box segmentation labels (see second row from Fig. 2.4).

By converting between segmentation masks and bounding boxes, we can evaluate the
performance of our object detector using the same metrics as the segmentation model. This
allows us to make a fair comparison between the two models. We train a Deeplabv3+ model
as our segmenter on part box segmentions and train a DINO model as our object detector
on part bounding box annotations (see Fig. 2.4).

We experiment with di↵erent hyperparameters for DINO by varying the number of queries
and the number of encoder/decoder layers of the transformer. Specifically, we consider
100 queries and 900 queries (the default for DINO), as well as a smaller transformer with
only one encoder/decoder layer, instead of the default 6 layers. Our experimental results
demonstrate that both the segmentation and detection models achieve high performance on
their respective tasks on clean samples (as shown in Table 2.2). For instance, the pretrained
Deeplabv3+ model performs better than the pretrained DINO model in terms of pixel-
wise accuracy, while the pretrained DINO model outperforms Deeplabv3+ on MAP scores.
However, while the robust Deeplabv3+ model still outperforms the robust DINO model
on both clean and adversarial samples in terms of clean accuracy, the robust DINO model
exhibits low MAP scores comparable to those of Deeplabv3+.

Detection Part Models

In this experiment, we investigate the robustness of detection part-based models in compari-
son to segmentation part-based models at the task of classifying images from PartImageNet,
as shown in Table 2.3. We evaluate the performance of the DeepLabv3+ Downsampled model
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Pretrained + Clean Images Adv. Trained + Clean Images Adv. Trained + Adv. Images

Model
Num.
Params

Enc/Dec.
Layers

Num.
Queries

Pixel
Acc.

mAP@.5 mAP@.5:0.95
Pixel
Acc.

mAP@.5 mAP@.5:0.95
Pixel
Acc.

mAP@.5 mAP@.5:0.95

Deeplabv3+ 26.7 83.8 0.147 0.312 70.1 0.076 0.175 52.5 0.023 0.055
DINO 46.6 6 900 82.3 0.338 0.560 46.2 0.004 0.002 46.2 0.002 0.005
DINO 46.4 6 100 82.4 0.337 0.565 46.2 0.002 0.005 46.2 0.001 0.004
DINO 32.7 1 900 80.4 0.270 0.454 56.6 0.080 0.151 46.3 0.030 0.062

DINO 32.5 1 100 80.5 0.263 0.454 46.2 0.002 0.005 46.2 0.002 0.005

Table 2.2: Comparison of part segmentation and part detection models, when trained on the
part segmentation or part detection task but not on the classification task

Pretrained + Clean Images Adv. Trained + Clean Images Adv. Trained + Adv. Images

Model
Num.
Params

Enc/Dec.
Layers

Num.
Queries

Pixel
Acc.

mAP@.5 mAP@.5:0.95 Acc.
Pixel
Acc.

mAP@.5 mAP@.5:0.95 Acc.
Pixel
Acc.

mAP@.5 mAP@.5:0.95 Acc.

Deeplabv3+ 26.8 82.2 0.122 0.267 98.8 71.7 0.067 0.161 84.1 54.7 0.030 0.064 40.6

DINO seq. 49.5 6 900 83.0 0.342 0.568 98.8 73.2 0.248 0.422 86.6 51.8 0.096 0.158 36.6
DINO seq. 47.0 6 100 82.7 0.335 0.564 98.7 71.1 0.227 0.391 83.2 50.4 0.082 0.143 36.5
DINO seq. 35.4 1 900 79.8 0.245 0.424 98.6 69.3 0.158 0.276 83.7 51.2 0.061 0.103 38.5
DINO seq. 32.8 1 100 80.0 0.245 0.428 98.9 67.6 0.152 0.271 83.2 49.2 0.059 0.103 37.0
DINO two-head 46.9 6 900 82.6 0.342 0.567 99.0 58.8 0.166 0.277 48.2 69.6 0.169 0.309 31.9
DINO two-head 46.7 6 100 82.9 0.346 0.574 98.9 59.5 0.173 0.297 55.0 69.1 0.172 0.331 32.4

Table 2.3: Comparison of part segmentation and part detection models, when trained with
a joint classification and segmentation/detection loss

[11], as well as two DINO-based models ;DINO sequential and DINO two-headed. Even when
varying the number of encoder/decoder layers and number of queries for DINO based models,
we still observe that the DINO models are outperformed in terms of robustness, as evidenced
by their low accuracy on adversarial images.

2.6 Conclusion

Our experiments have two main findings:

1. We demonstrate that it is possible to achieve adversarial robustness through object
detection. Using part bounding box instead of fine-grained segmentation masks reduces
annotation costs while still providing an additional form of supervision to models.

2. DeepLabv3+ based models work better than DINO-based models for robust classifica-
tion. Our study reveals that DINO is a challenging model to train in an adversarial
setting. DINO-based models have comparable performance to DeepLabv3+ based
models on clean samples but their performance deteriorate significantly on adversarial
samples. One possible explanation to this poor performance when exposed to ad-
versarial training is that DINO is a very large model with a considerable number of
hyperparameters to tune. We encourage future work to explore how to improve adver-
sarial training with transformer-based models. Ultimately, DeepLabv3+ based models
outperform the DINO-based models, with the same labels and same training data and
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without the need to tune any hyperparameters. Hence, DeepLabv3+ based models are
a better choice for adversarial robustness.
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Chapter 3

PACO

To achieve high performance in object recognition tasks, it is crucial to train models on large
and diverse datasets with high-quality annotations. Although the PartImageNet dataset is
beneficial for evaluating the robustness of part-models, it still su↵ers from some limitations
in terms of size and annotation diversity. As a natural progression towards overcoming these
limitations, we employ PACO (Parts and Attributes of Common Objects) [10] to evaluate
part-models on a more challenging dataset with common everyday objects (please refer to
Table 3.1 for summarized results).

3.1 PACO Overview

PACO provides annotations for various vision tasks, including part-segmentation. The
dataset is an order of magnitude larger and more diverse than PartImageNet, spanning
75 object categories and 456 object part categories. It consists of 57,643 images from the
LVIS image dataset and 26,384 images from the Ego4D video dataset.

Model
Clean

Accuracy
Robust
Accuracy

ResNet50 28.3 11.6
Downsampled DeepLabv3+ 46.7 17.5
Two-Headed DeepLabv3+ 46.9 18.4

Mask DINO Simple 52.0 17.7

Table 3.1: Overview of our best Part Segmentation Models on PACO
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3.2 Dataset Preparation

Since PACO was originally built for part mask segmentation, we have to create a classification
task from the dataset. First, we discard the test set from the Ego4D dataset because its
segmentation masks were held out, leaving us with a total of 74,135 images. Then, using the
provided annotated bounding boxes, we crop out 310,603 objects from these images. During
that process, we discard small objects whose bounding box area is less than 1% of the image,
which leaves us with 123,315 objects left for classification.

For each object, we expand its bounding box’s width and height by 1.5 times and crop
it out of the original images. This ensures that the extracted object includes relevant infor-
mation about the background. To get the object’s respective segmentation mask, we use the
same cropping strategy on the full annotated segmentation mask of the image. This ensures
that the part-models are not penalized for predicting the masks of other objects if there are
multiple objects occurring in the same crop.

There are 19,030 objects from the PACO dataset without part annotations. We decide
not to discard these as they represent about 15.4% of all objects. Instead, we create a
special mask label for such objects such that they are ignored when computing the loss for
the part-model.

Our created dataset consists of 123,315 images partitioned in a 0.8/0.1/0.1 train/val/test
split. We provide a visual overview of the dataset by presenting some example images in
Fig. 3.1. The distribution of our dataset across classes can be found in Fig. 3.2.

3.3 Architecture

We compare the adversarial robustness of part-based segmentation models to a ResNet50
baseline. In particular, we use the existing Downsampled and Two-Headed part-based models
[11] and introduce a Mask DINO Simple model.

The Mask DINO Simple model is also a part-based classifier using Mask DINO [6] as a
segmenter. It takes in an image to predict part segmentation masks and class labels for the
input image. The architecture is similar to a two-headed model whereby the classification
head does not use the segmentation masks directly but instead maps Mask DINO’s query
embeddings to class logits.

More specifically, the classification head computes the class logits using a matrix mul-
tiplication operation between the query embeddings and a part-to-class matrix. We can
define the part-to-class matrix as M 2 RP⇥C , where P is the number of parts (excluding
the background class) and C is the number of classes (also excluding the background class).
Each entry in M represents the mapping between a part and a class. We can also define
the query embeddings as Q 2 RN⇥P , where N is the number of queries. Each entry in Q
represents the logits of a query for a particular part class.

The class logits for each query can then be computed using a matrix multiplication
operation as follows:
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Figure 3.1: Example Images, Segmentation Masks and Class Labels from our created PACO
classification dataset

B = QṀ 2 RN⇥C

This operation applies the mapping between the parts and the classes to the query class
logits and produces a matrix of class logits for each query. Finally, the class logits for each
query are averaged over the queries to obtain the class logits:

c = eB 2 RC

where e =
⇥
1
N . . . 1

N

⇤
and c is the vector of class logits for the input.

3.4 Experiments

In our experiments, we evaluate the part-based models on the PACO dataset and present
the results in Table 3.4. We observe that all part-based models outperform the ResNet50
baseline in both clean and adversarial accuracy. However, we also notice that adversarial
accuracies on PACO are lower than those on Part ImageNet, highlighting the increased
diversity and di�culty of the PACO dataset.

Interestingly, we find that the part model utilizing MaskDINO as segmenter achieves
similar clean accuracies as the DeepLabv3+-based models. However, the robustness of the
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Figure 3.2: Data Distribution for Classification Dataset Created from PACO

MaskDINO part-based model is significantly lower in terms of pixel accuracy and class
accuracy on adversarial examples.

To investigate this discrepancy, we conduct additional experiments on the MaskDINO
part-based model. First, we examine whether a transformer-based model might require
additional PGD steps during training. To do so, we perform an ablation study on the number
of PGD steps used during training and evaluation. Specifically, we train a part-based model
with 5-step and 10-step PGD and evaluate the model on adversarial examples generated
with 5, 10 and 100 PGD steps. Our experiments show that for the Deeplabv3+ model, using
more PGD steps during training results in an increase in adversarial robustness ranging from
0.6% to 0.9%, which is similar to the 0.7% to 1.0% observed increase for MaskDINO. Hence,
while our findings suggest that additional PGD steps during training can improve adversarial
robustness, they do not fully explain the low robustness of the MaskDINO part-based model.
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5 Step PGD Training 10 Step PGD Training

Model
Num. PGD
Eval. Steps

Robust
Pixel Acc.

Robust
Accuracy

Robust
Pixel Acc.

Robust
Accuracy

Change in
Robust Acc.

Deeplabv3+ Two-Headed
100 60.5 17.5 60.9 18.4 +0.9
10 60.6 18.3 61.1 19.0 +0.7
5 60.7 18.7 61.2 19.4 +0.6

MaskDINO Simple
100 54.7 13.9 55.2 14.6 +0.7
10 55.7 15.1 56.1 16.1 +1.0
5 56.3 16.1 56.6 17.0 +0.9

Table 3.2: Comparing the Robustness of models trained with di↵erent PGD step sizes against
attacks of varying strengths

We also experiment with varying the cseg hyperparameter during training. This parameter
combines the loss of the segmentation task and the loss of the classification task as follows:

Loss = (1� cseg)Lossclassifier + csegLosssegmenter

A higher cseg value places more emphasis on the segmentation task during training. In
our experiments, we use cseg = 0.5 for the DeepLabv3+ based models. We demonstrate in
Table 3.3 that increasing the value of cseg for Mask DINO Simple leads to improved pixel
accuracy for both clean and adversarial images but also results in a decrease in clean and
robust class accuracy. Hence, we are not able to match the performance of the Deeplabv3+
model when varying the cseg hyperparameter.

Finally, we explore some modifications to our Mask DINO Simple architecture to improve
its performance. In particular, the classification head of the model maps query embeddings
relating to object parts in an image to class logits. Since this mapping is hard-coded, we
test out a learnable mapping from object parts to classes. Additionally, we experiment with
a smaller model by training a MaskDINO part-model with a single decoder layer instead
of the default 9 decoder layers since Li et al. [6] have shown that earlier decoder layers
in the MaskDINO model have good segmentation performance. By incorporating these
modifications, we observe a substantial increase in adversarial robustness for the Mask DINO
Sim part-model and achieve comparable performance to the DeepLabv3+ part-based model
(please see Table 3.4).

We provide visual examples of the predictions from the Two-Headed Deeplabv3+ model
in Fig. 3.3 and from the Mask DINO Sim model in Fig. 3.4.

3.5 Conclusion

In our study, we explore the challenges in scaling part models to a larger and more diverse
dataset such as PACO. Our experiments reveal that part-models still exhibit improvements
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Pretrained + Clean Images Adv. Trained + Clean Images Adv. Trained + Adv. Images
Model c seg Pixel Acc. Accuracy Pixel Acc. Accuracy Pixel Acc. Accuracy
Deeplabv3+ Two-Headed 0.5 72.7 73.6 66.2 48.4 61.9 18.7

MaskDINO 0.0 71.5 73.0 64.8 46.9 60.9 18.4
MaskDINO 0.3 72.7 67.9 65.2 47.3 55.0 14.3
MaskDINO 0.5 72.4 67.3 65.5 46.0 55.0 12.9
MaskDINO 0.7 72.2 64.3 65.7 45.6 54.9 11.5
MaskDINO 0.9 71.7 54.4 66.1 43.3 56.1 7.6

Table 3.3: Evaluation of MaskDINO Robustness with di↵erent hyperparameters combining
the segmentation loss and the classification loss

Pretrained + Clean Images Adv. Trained + Clean Images Adv. Trained + Adv. Images

Model
Pixel

Accuracy
Accuracy

Pixel
Accuracy

Accuracy
Pixel

Accuracy
Accuracy

ResNet50 70.6 28.3 11.6
Downsampled DeepLabv3+ 70.3 71.7 64.2 46.7 60.5 17.5
Two-Headed DeepLabv3+ 71.5 73.0 64.8 46.9 60.9 18.4

Mask DINO Simple 86.3 73.8 64.1 52.0 55.6 17.7

Table 3.4: Part-based models evaluation on the PACO dataset

in adversarial robustness in comparison to baselines. However, while part-models have rea-
sonable clean accuracy, we encourage future work to increase their adversarial robustness
even further. For instance, future work could explore using larger baseline models and larger
backbones [8] to further improve the robustness. Finally, the PACO dataset also provides
textual object attributes. It would be interesting to explore the use of these attributes as an
alternative supervision signal to segmentation masks.
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Figure 3.3: Predictions for Two-Headed Part-based Model with DeepLabv3+
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Figure 3.4: Predictions for Part-based Model with Mask DINO
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Chapter 4

Conclusion

In this study, we have demonstrated that it is possible to achieve adversarial robustness
through the use of part bounding box labels instead of expensive fine-grained segmentation
masks. By providing a more cost-e↵ective form of supervision to models, our approach has
the potential to significantly reduce annotation costs and improve the practical applicability
of part-based models in real-world scenarios.

Our experimental results indicate that DeepLabv3+ based models perform better than
DINO-based models for achieving robust classification in an adversarial setting. Counter-
intuitively, while DINO-based models exhibit good performance on clean samples, their
performance significantly deteriorates on adversarial samples. This phenomenon is seen con-
sistently though out our experiments with both the DINO object detector and the Mask
DINO segmenter. We encourage future work to explore strategies for improving the adver-
sarial training of transformer-based models.

Finally, we have shown that part-based models can be scaled to a larger and more diverse
dataset like PACO. In particular, our part-based models show significant improvements in
both clean and robust accuracy as compared to baseline models that do not use additional
supervision signals.
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