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Abstract

Sequential Decision Making under Uncertainty: Optimality Guarantees, Compositional
Learning, and Applications to Robotics and Ecology

by

Hyun Jae Lim

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

Sequential decision making under uncertainty problems often deal with partially observable
Markov decision processes (POMDPs). POMDPs mathematically capture making decisions
at each step while accounting for potential rewards and uncertainties an agent may en-
counter in the future, which make them desirable and flexible representations of many real
world problems. However, such sequential decision making problems with various sources
of uncertainty are notoriously difficult to solve, especially when the state and observation
spaces are continuous or hybrid, which is often the case for physical systems. Furthermore,
modern problem settings require sophisticated machine learning techniques to effectively
handle complex data structures like image, text or audio inputs, while performing compli-
cated reasoning such as localizing with noisy camera images or predicting intentions and
locations of other agents. Modern approaches that involve artificial intelligence and machine
learning methods provide powerful computational resources that can effectively manage the
above challenges. Many of these decision making algorithms and machine learning tech-
niques can either capture rigorous theoretical guarantees or empirical performance, but few
capture both.

This dissertation aims to lay the foundations to study sequential decision making under
uncertainty from multiple angles: theoretical guarantees, integration with learning, and real
world applications. We strike a balance between mathematical analysis of the foundational
framework of POMDPs, and enabling and deploying these techniques via integration with
machine learning techniques through compositional learning.

We first begin the theoretical portion of the dissertation by analyzing novel POMDP solvers
and their theoretical convergence properties. This portion introduces a several novel POMDP
algorithms that serve as foundations for studying convergence properties of modern POMDP
algorithms when dealing with continuous observation and action spaces. Then, we cover
a more general result that provides theoretical guarantees and justification for solving the
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particle belief approximation of POMDPs while retaining guarantees in the original POMDP.
This result formally justifies a common POMDP approximation technique known as the
particle likelihood weighting, which is the first-of-its-kind in theoretically explaining a family
of modern POMDP algorithms that use this technique.

Then, we introduce approaches to integrate model-based planning with learning-based com-
ponents via compositional learning for real world robotic settings. First, we study how
to integrate the aforementioned POMDP planning algorithms with machine learning com-
ponents by using deep generative models, which enables these algorithms to tackle visual
navigation tasks. Second, we substantially extend a robotic arm manipulation algorithm
for tabletop manipulation through reasoning with demonstration sequences and weighted
multi-task learning.

Lastly, we propose a novel application area of sequential decision making in ecological sub-
field of community state navigation. Specifically, we focus on formulating the species co-
existence navigation problem as an optimal path planning problem. This approach allows
us to understand the population dynamics by analyzing small perturbations to the equi-
librium states and subsequently find action sequences that allow efficient navigation. We
also discuss the benefits and impact of applying sequential decision making framework to
community state navigation problems and beyond.

Afterwards, we summarize the main contributions once again and contextualize the novel
contributions. We also discuss some opportunities for future works in sequential decision
making under uncertainty, in terms of new theoretical developments, alternative approaches
for compositional learning, and other avenues for impactful real world applications.
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Chapter 1

Introduction

Chapter Outline

This chapter provides a short introduction to the dissertation and its contributions. It
also defines key notations and formalism that may be useful for reading each chapter
of the dissertation.

1.1 This Work in Perspective

This dissertation is rooted in ideas from sequential decision making under uncertainty,
most often in dealing with partially observable Markov decision processes (POMDPs), which
is a general formalism that can represent many of these sequential decision making under
uncertainty problems. POMDPs mathematically capture the challenge of making decisions
at each step, while accounting for potential rewards and uncertainties an agent may encounter
in the future. Consequently, sequential decision making under uncertainty problems require
agents to reason about uncertainty that can come in many forms: How will the system evolve
in the next step after taking a certain action? How can the agent distill information about
our current location or configuration from noisy or incomplete information provided by the
environment? What is the best action to complete the task while minimizing failure risk?

As modern problem settings become incredibly complex both in the environmental setup,
such as dealing with image, text, or audio inputs, as well as the reasoning, such as navigating
with noisy camera readings or predicting community state evolution, it is imperative that
these decision making methods can adapt to reasoning about and eventually solving these
problems. While modern technologies like artificial intelligence and machine learning meth-
ods provide powerful tools to handle many of these issues, it is important to provide some
level of performance guarantees and assurances to be useful in many real world applications.
Unfortunately, many decision making solvers and systems attain either empirical perfor-
mance or theoretical guarantees, but few capture both. The challenge to simultaneously
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Figure 1.1: Overview of the dissertation: sequential decision making under uncertainty. We
first theoretically motivate the sequential decision making under uncertainty, and then dive into various
extensions using compositional learning and applications in robotics and ecology.

mathematically represent and formally justify many modern machine learning techniques
and their applications to sequential decision making has become incredibly difficult, due to
the complexity of these techniques as well as their applications.

The dissertation aims to strike a balance between mathematically justifying foundational
framework of POMDPs, and enabling these techniques to be integrated with machine learn-
ing technologies in a way that preserves the system structure that enjoys these guarantees
as much as possible. In essence, not only are the theoretical foundations of the finite sample
optimality guarantees of decision making methods important, but also these methods should
be made further useful through integration with modern machine learning and artificial in-
telligence technologies to enable applications to more realistic problem domains including
robotics and ecology. In this sense, the approach of compositional learning is extremely
promising in balancing theoretical rigor and computational power: the prior knowledge of
the problem structure and domain knowledge is distilled into an appropriate sequential de-
cision making problem, where the model components are bolstered by enabling individual
and/or simultaneous learning of these components.

Consequently, the core philosophy of the dissertation is the following:

In order for fast and optimal sequential decision making under uncertainty meth-
ods to be useful in real world applications, they should be rigorously founded
through mathematical proofs and guarantees and empowered through integration
with modern technologies.

Thus, we aim to devise solutions and systems that are both theoretically well-justified in the
formulation, most often in the form of statistical guarantees, and computationally efficient
and accurate. With these frameworks in mind, we also seek ways in which the sequential
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decision making framework could be useful in previously under-explored application areas,
in particular ecology problems regarding species coexistence navigation.

1.2 Contributions and Outline

This dissertation provides three different lenses into the topic of decision making under un-
certainty: theory, computation, and real world applications. In Part I Chapters 2 and 3, we
will introduce the necessary mathematical background to understand the ideas in this disser-
tation, and provide additional materials that cover some of the more recent developments in
the domain. The following parts and chapters outline the key contributions on approaching
the subject of sequential decision making under uncertainty in three different lenses. Since
this dissertation also serves as a compilation of the author’s previously published works, we
introduce each main part with an overview chapter that concisely outlines what the main
contributions are, why they are significant, and how they fit into the overall narrative of
studying sequential decision making under uncertainty.

Part II – Theory: Fast and Optimal Online Algorithms for POMDPs.
In Part II, we establish important theoretical properties of online algorithms for POMDPs.
We present various theoretically motivated contributions on tackling POMDPs with contin-
uous observations and continuous/hybrid actions. These techniques heavily utilize sampling-
based techniques and the corresponding statistical analysis. We cover the following novel
contributions:

• Partially observable weighted sparse sampling (POWSS), which is a parti-
cle belief likelihood algorithm for continuous observation POMDPs with finite sam-
ple near-optimality results, justifying the commonly used particle likelihood weighting
technique. Notably, this result does not rely on any discretization schemes nor directly
depend on the size of the observation space.

• A general result about Particle Belief MDP approximation of POMDPs,
which bridges the gap between theoretically solving POMDPs and practical POMDP
algorithms that use simplifying POMDP representations. The theoretical results heav-
ily leverage Sparse Sampling-ω, which is a simplified and updated version of POWSS
that also enjoys much more desirable theoretical guarantees.

• Voronoi Progressive Widening (VPW), which is the first known continuous space
POMDP algorithm with theoretical guarantees (VOWSS algorithm) and practical ex-
tensions (VOMCPOW algorithm).

Part III – Learning and Robotics: Compositional Learning-based Planning with
Algorithmic Priors.
In Part III, we integrate principles from sequential decision making and robotic motion
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planning with modern machine learning techniques. Specifically, we discuss the composi-
tional learning approach for decision making and planning, which strikes a balance between
maintaining theoretical guarantees or domain knowledge structure, and leveraging the rep-
resentation power of machine learning. We cover the following novel contributions:

• Visual Tree Search, which is a planning system that integrates particle filter and
POMDP planners with learning-enabled components to tackle POMDPs with complex
and noisy visual observations.

• Sequence-Conditioned Transporter Networks, which extends Transporter Net-
works system to reason with demonstration sequences through multi-task weighted
learning to handle multi-task tabletop robotic arm manipulation problems.

Part IV – Ecology Application: Novel Ecological Applications of Optimal Path
Planning.
In Part IV, we discuss novel applications of sequential decision making under uncertainty
approach in the field of community state evolution. This section discusses some possible
ways to formulate the species coexistence navigation problem as a sequential decision mak-
ing problem, and encourage further collaborations between these two fields. We cover the
following novel contributions:

• Navigation between community states via shortcuts, which enables community
evolution via small sequential additions and deletions of species to nudge the dynamic
system into desired basins and eventually the goal, through constructing the state
diagram that represents possible community evolution pathways.

1.3 Notations and Formalism

Since this dissertation unifies three related yet distinct approaches to studying sequential
decision making under uncertainty, each part and chapter has different notations and for-
malism. In order to remedy the notation discrepancy between different chapters, we provide
Tables 1.1 and 1.2 of general notations that are most often followed in the chapters, and
Table 1.3 of specific notations that are mostly used in specific chapters only.
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Notation Short Description

s, o, a, r State, observation, action, reward
D Horizon of the planning problem
d Given depth of the tree/estimator.

Mostly used for variables internal to the planner
t Given time step of the environment.

Mostly used for variables that interact with the environment
b, b(s) Belief, belief state, or belief density
h History of states, actions, and/or observations
b̄ Particle belief, consisting of state particles and weights
w Likelihood (importance sampling) weights for a particle
G Generative model
ϵ Concentration worst case error bound
α, β Concentration worst case error bound for inductive steps (α - POMDP, β - PB-MDP)
δ Concentration worst case probability bound
P,E Probability and expectation operators
Rn n-dimensional Real space
V,Q Value functions
P,Q, . . . Probability densities denoted with calligraphic font

Table 1.1: General Notations - Variables and Quantities. Summary of important notations and
formalism used throughout this dissertation, for variables and quantities.

Notation Short Description

□d Step d of planning
□t Time t of planning, estimation, or execution
□i Variable or data indexed by i
□1:d Product of the density from step 1 through d for a given sequence
□′ Next quantity of □, usually used to reason about next states and beliefs
□∗ Optima of the quantity, usually the maximum
{□} Sequence of quantities

□̂ Statistical estimator of the quantity □
□̃ Denotes self-normalized importance sampling (SN) for weights and estimators

Table 1.2: General Notations - Indexing and Superscripts. Summary of important notations and
formalism used throughout this dissertation, for indexing and superscripts.
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Notation Short Description

POWSS & Particle Belief MDPs (Chapters 5 and 6)
C Number of state/observation samples
P Denotes the given POMDP, or quantities related to it
MP Denotes the corresponding particle belief MDP (PB-MDP) of a given POMDP,

or quantities related to it

Voronoi Progressive Widening (Chapter 7)
Cs Number of state/observation samples, equivalent to C above.

The distinction is necessary since actions also need to be finitely sampled for
POMDPs with continuous action spaces

Ca Number of action samples
RCa VOO agent regret bound using Ca queries
p POWSS or Sparse Sampling bound tail probability
ω VOO exploration probability
D(·, ·) Distance metric defined over the action space
(ka, αa, ko, αo) Double Progressive Widening parameters for action a and observation o

Visual Tree Search (Chapter 9)
Tψ Transition model of POMDP, neural net with parameters ψ
Zθ Observation density model of POMDP, neural net with parameters θ
Pϕ Particle proposer model of POMDP, neural net with parameters ϕ
Gξ Observation generative model of POMDP, neural net with parameters ξ
ζ Neural network training hyperparameters
χ Differentiable Particle Filter hyperparameters
ρ Monte Carlo Tree Search hyperparameters

Transporter Networks (Chapter 10)
Tpick, Tpick SE(2) geometric pose coordinates for picking & placing actions
Φkey,Φquery,Φgoal Transporter network visual input modules for key, query, and goal models
ψkey, ψquery Transporter network intermediary modules for key and query models,

with the goal information included.
D Data set that comprises of episode data ζi
ζ Episode data ζi = {(o1,a1), · · · , (oTi ,aTi)} of length Ti
Ecological Navigation (Chapter 12)
X State of the community of size n
E Environmental variable of cardinality m
ξ Fixed point of the community dynamics
A A matrix of the GLV model, representing intra- & inter-species interactions
r r vector of the GLV model, representing intra-species interactions
∆ Action sequence of low-cost actions ∆ = {δ1, δ2, . . .}
ω Cost sequence of low-cost actions ω =

{
Cq,1, Cq,2, . . .

}
Cq,i Cost of action type q at time index i

Table 1.3: Chapter Specific Notations. Summary of important notations and formalism used mostly in
specific parts of this dissertation.
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Chapter 2

Sequential Decision Making under
Uncertainty

Chapter Outline

In this chapter, we give an overview of POMDPs and notable solution techniques. We
formulate POMDP as an optimization problem, cover conventional techniques used to
solve POMDP problems, in particular the MCTS technique, introduce more modern
approaches based on deep learning, and discuss the progress in theoretical analyses
of these algorithms in the form of convergence guarantees. Some discussions, results,
and relevant figures are borrowed & repeated from the original works listed in Parts II
and III for better storytelling and emphasis.

2.1 Optimization Objective

This thesis focuses on sequential decision making under uncertainty. In this setting,
the agent is tasked to optimize some desired objective, which often comprises cumulative
sum of rewards and costs for a given environment. Mathematically, this problem can be
represented as

max
π

J(π) (2.1)

where π represents a policy, which delineates what action an agent should take depending on
the inputs, for some objective function J that takes into account the rewards and costs infor-
mation. Often, the system that the agent plans in may have different forms of uncertainty.
In this case, the optimization problem can be expressed in the expected value formulation

max
π

E[J(π)] (2.2)
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that optimizes the objective function on average. There can be other objective formulations,
which can optimize over the worst case behavior (min instead of E), and using some notion of
risk to interpolate between the minimum and expectation to strike a balance between average
behavior and worst case behavior [35, 38]. Specifically in this work, we often assume the
system uncertainties exist in the form of transition uncertainty and observation uncertainty,
which will be defined in Sections 2.2 and 2.3 and studied further in Parts II and III.

Maintaining safety and acting efficiently in the midst of uncertainty is an important as-
pect in a diverse set of challenges from transportation [77, 172] to autonomous scientific
exploration [25, 58], to healthcare [13] and ecology [123]. There are multiple ways of repre-
senting such safety requirements in the optimization framework. One way is to optimize a
single objective J0 while satisfying constraints J1, . . . , Jn:

max
π

J0(π) (2.3)

s.t. J1(π) ≥ D1 (2.4)

... (2.5)

Jn(π) ≥ Dn. (2.6)

While this formulation ensures that the constraints are met, many off-the-shelf decision mak-
ing algorithms are not equipped to handle such constrained formulations, and the thresholds
must be chosen a priori which may require additional domain knowledge or more development
time.

Another formulation is similar to Lagrange multiplier idea, which incorporates the con-
straints or other objective functions directly into the optimization formalism by using a
weighted sum:

max
π

J0(π) + λ1J1(π) + · · ·+ λnJn(π). (2.7)

This formulation alleviates the aforementioned problems by implicitly dealing with the con-
straint objectives, but the relative weights must also be chosen beforehand which adds com-
plexity.

2.2 Markov Decision Processes (MDPs)

The Markov decision process (MDP) is a mathematical formalism that can represent a wide
range of sequential decision making problems [96]. In an MDP, an agent chooses actions
based on current state to maximize the expectation of a cumulative reward signal. An
important property of MDPs is the Markov state assumption, where the state information
at the next time step depends only on the current state and not on any previous states:

P(st+1|st, st−1, . . . , s0) = P(st+1|st). (2.8)
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Formally an MDP is defined by the 5-tuple (S,A, T , R, γ). In this tuple, S is the set of
all possible states and A is the sets of all possible actions. These sets can be discrete, e.g.
{1, 2}, continuous, e.g. R2, or hybrid. The transition probability distribution is conditioned
on the current state s and action a and is denoted T (s′ | s, a). The reward function, R(s, a),
maps states and actions to an expected reward, and γ ∈ [0, 1) is a discount factor. The agent
plans starting from s0, the initial state. Some MDP algorithms only require samples from
the transition or reward models rather than explicit knowledge of T or R. Such samples can
be produced using a so-called generative model [92] denoted with s′, r ← G(s, a).

The objective of an MDP is to find an optimal policy, π∗, that selects actions that
maximizes the discounted sum of future rewards, with an appropriate tie-breaking method:

π∗ = argmax
π

E

[
∞∑
t=0

γtR(st, at)

]
. (2.9)

In order to maximize this objective, the policy must take into account the immediate reward
from taking the action in the current state and whether the action will lead to states favorable
for attaining rewards in the future. For a state s and action a, the state-action value
functions, defined as

Qπ(s, a) ≡ E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a, at = π(st)

]
, (2.10)

take both of these factors into account. When π is also used for the current step, the expected
accumulated reward is denoted with V π(s) = V π(s) = Qπ(s, π(s)). When π is an optimal
policy, these value functions are denoted with Q∗ and V ∗. If Q∗ can be calculated, an optimal
policy π∗ can simply be extracted with π∗(s) = argmaxaQ

∗(s, a).

2.3 Partially Observable Markov Decision Processes

(POMDPs)

The partially observable Markov decision process (POMDP) is a mathematical formalism
that can represent even wider range of sequential decision making problems than MDPs by
also taking into account the observation uncertainty [96]. Similar to MDP, in a POMDP,
an agent chooses actions based on observations to maximize the expectation of a cumulative
reward signal.

A POMDP is defined by the 7-tuple (S,A,O, T ,Z, R, γ). In this tuple, S, A, and O are
sets of all possible states, actions, and observations, respectively. These sets can be discrete,
e.g. {1, 2}, continuous, e.g. R2, or hybrid. The conditional probability distributions T and
Z define state transitions and observation emissions, respectively. The transition probability
distribution is conditioned on the current state s and action a and is denoted T (s′ | s, a).
The observation probability is conditioned on the previous state and action and current state
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and denoted Z(o | s, a, s′). In our analyses, we often relax this assumption to reason with
observation densities that may only be conditioned on next step state s′ and action a. The
reward function, R(s, a), maps states and actions to an expected reward, and γ ∈ [0, 1) is a
discount factor. The agent plans starting from b0, the initial state distribution or the initial
belief. Some POMDP algorithms only require samples from the transition, observation, or
reward models rather than explicit knowledge of T , Z, or R. Such samples can be produced
using a so-called generative model [92] denoted with s′, o, r ← G(s, a).

Similar to MDP, the objective of a POMDP is to find an optimal policy, π∗, that se-
lects actions that maximizes the discounted sum of future rewards, with an appropriate
tie-breaking method:

π∗ = argmax
π

E

[
∞∑
t=0

γtR(st, at)

]
. (2.11)

In general, since the observations are not Markov unlike the states, the actions may be chosen
based on the entire history of actions and observations,

ht ≡ (b0, a0, o1, a1, . . . , ot−1, at−1, ot). (2.12)

However, because of the Markov property of the underlying state distribution, it can actually
be shown that optimal decisions can be made based only on the conditional distribution of
the state given the history [84], known as the belief,

bt(s) ≡ P(st = s | ht). (2.13)

This belief can be updated using Bayes’s rule or an efficient approximation such as a Kalman
filter or particle filter, and it is often more straightforward to determine actions based on
beliefs rather than the history. Since the belief and history fulfill the Markov property, a
POMDP is a Markov decision process (MDP) on the belief or history space, commonly re-
ferred to as the belief MDP [84]. Chapter 3 provides further details of filtering and estimation
techniques for reasoning with beliefs.

The value functions for POMDPs are similarly defined as those for MDPs, except in most
cases replacing the state variable with the history or belief variable. For a history h and a
corresponding belief b, history-action and belief-action value functions are defined as

Qπ(h, a) ≡ Qπ(b, a) ≡ E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ b0 = b, a0 = a, at = π(bt)

]
. (2.14)

When π is also used for the current step, the expected accumulated reward from a history
or belief is denoted with V π(h) = V π(b) = Qπ(b, π(b)). When π is an optimal policy, these
value functions are denoted with Q∗ and V ∗. If Q∗ can be calculated, an optimal policy π∗

can simply be extracted with π∗(h) = argmaxaQ
∗(h, a).

In our work, we often assume that we solve a POMDP that terminates after D steps.
Then, the value functions can be defined as the following for a finite-horizon problem of
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horizon length D for t ∈ [0, D − 1], where bao indicates the belief b updated with (a, o):

V π
t (b) = E

D−1∑
i=t

γi−tR(si, π(si))

∣∣∣∣∣∣b
 , V π

D(b) = 0 (2.15)

Qπ
t (b, a) = E

[
R(s, a) + γV π

t+1(bao)|b
]
. (2.16)

Accordingly, the optimal value functions for finite-horizon POMDPs satisfy the following:

V ∗
t (b) = max

a∈A
Q∗
t (b, a) (2.17)

π∗
t (b) = argmax

a∈A
Q∗
t (b, a) (2.18)

Q∗
t (b, a) = E

[
R(s, a) + γV ∗

t+1(bao)|b
]
. (2.19)

Early research [84, 158, 162] sought to find optimal solutions to POMDPs offline; that
is, they attempted to optimize actions for every possible belief before interacting with the
environment. However, since POMDPs are generally intractable [139], it is often impossible
to find a complete solution for a POMDP offline. Thus, a common strategy for solving
POMDPs involves iteratively improving estimates of Q∗ denoted simply with Q for brevity,
and we seek to compute solutions online only for the part of the problem that may be reached
in the immediate future.

Another practical consideration or solving POMDPs is that since the agent only receives
noisy observations of the state and never the true state itself, the sensing-planning-acting
outer loop must have an observer system that also keeps a robust representation of the
current belief. Such representations of the belief are described further in detail in Chapter 3.
Thus, a typical closed-loop planning procedure for POMDP proceeds as following:

1. Sensing : The agent receives the corresponding observation and reward, which is then
used to update the next step belief using a belief updater.

2. Planning : At the current belief state, plan for the next-step action using a POMDP
policy/planner.

3. Acting : Perform the action chosen by the planner in the environment.

Fig. 2.1 demonstrates this closed-loop planning in a self-driving car example. In our work,
we are mostly concerned with analyzing the planning step of the loop, but empirical studies
performed in our work implements all three parts of the closed-loop.

2.4 Common Solution Approaches for POMDPs

2.4.1 Value Iteration for POMDPs

Value iteration is a simple offline method for solving MDPs, and can be extended to POMDPs
as well. Value iteration for MDPs proceeds by utilizing the Bellman equation to characterize
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Figure 2.1: Overview of the sensing-planning-acting procedure for closed-loop POMDP plan-
ning in a self-driving example. The agent receives an observation (front car going forward) from the
environment, which is used to update the belief about the true state distribution using a belief updater
(sensing step). Then, the agent decides to change the lane using a policy/planner (planning step), and per-
forms the lane change maneuver in the environment (acting step). The icons are generated from Microsoft
PowerPoint 2023.

the optimal value function:

V ∗(s) = max
a∈A

{
R(s, a) + E[V ∗(s′)|s, a]

}
. (2.20)

The Bellman operator applies this recursive definition:

B[V ](s) = max
a∈A

{
R(s, a) + E[V (s′)|s, a]

}
. (2.21)

Specifically, for discrete problems, the Bellman operator can be used to find the unique
solution to the Bellman equation through iterative application: Vk+1(s) = B[Vk](s). Due to
the contraction mapping property of the Bellman operator, the uniqueness of fixed point and
the convergence to such point is guaranteed. Such fixed point is the optimal value function,
and the iterative process above is known as the value iteration [20]. Once the optimal value
function is found, the optimal policy can be extracted by taking the maximizing argument
of the Bellman operator:

π∗(s) = argmax
a∈A

{
R(s, a) + E[V ∗(s′)|s, a]

}
. (2.22)

There is an analog of value iteration for POMDPs called α-vectors [84]. The main idea
of α-vector algorithms is reasoning about belief distributions when performing Bellman-type
backups through α-vectors that are linear representations of value functions. The algorithm
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utilizes the following facts. First, the policy value function of discrete POMDPs are defined
as Vp(b) =

∑
s∈S Vp(s)b(s), where Vp(s) is the value function obtained by starting at initial

state s and executing some policy p ∈ P . This state value function Vp(s) can obtained via
the policy tree in discrete settings, which is a tree that outlines all the possible outcomes
and corresponding values, and it can be constructed via similar recurrence relationship as
the Bellman update for MDPs. Second, the value function will be the supremum of the value
functions that form a set of hyperplanes. This leads us to representing the value function as
the set of value hyperplanes obtained from policy trees, which are defined to be the α-vectors:

αp(s) = (Vp(s1), . . . , Vp(s1)). (2.23)

Consequently, the value function can be obtained by taking the inner product with the belief
vector:

V (b) = max
p∈P

b · αp. (2.24)

2.4.2 Approximate POMDP Solvers

Finding an optimal POMDP policy is computationally demanding because of the uncertainty
introduced by imperfect observations [139]. One of the most popular approaches to deal with
this computational challenge is to use online algorithms that look for local approximate
policies as the agent interacts with the environment rather than computing a global policy
that maps every possible outcome to an action.

One common method for solving POMDPs online is online tree search, which is attractive
for several reasons. First, the approach scales to very large problems because it uses sampled
trajectories, making it insensitive to the dimensionality of the state and observation spaces
[92]. Second, since online computation focuses on the current states and states likely to
be encountered in the future, it can reduce the need for offline computation and end-to-end
training [48]. Third, tree search is applicable to a wide range of problems, for example hybrid
continuous-discrete and non-convex problems, because it only depends on a minimal set of
problem structure requirements. As such, many online POMDP algorithms are variants of
Monte Carlo tree search (MCTS) [28, 159, 171] or other tree search variants [101, 191].

2.4.3 Monte Carlo Tree Search (MCTS)

Monte Carlo tree search (MCTS) is a common solution technique for Games, MDPs and
POMDPs [28, 159]. In an MDP context, MCTS constructs a tree consisting of state
and state-action nodes. In a POMDP context, each node corresponds to an action- or
observation-terminated history node, estimating Q(h, a) at each action-terminated history
node. The most common variant is called partially observable upper confidence trees (PO-
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UCT) or partially observable Monte Carlo planning (POMCP)1 [159] and repeats the fol-
lowing four steps to construct the tree:

1. Search. A simulation proceeds from the root node with action selected according to
the Upper Confidence Bound (UCB) exploration criterion,

UCB(h, a) = Q(h, a) + cUCB

√
log(N(h))

N(h, a)
, (2.25)

where N(h) and N(h, a) are the number of times a history and action node have been
visited, respectively. The first term encourages tree expansion towards parts of the
history space that are likely to have high value, and the second term encourages explo-
ration in parts of the space that have not been visited as often. The hyperparameter
cUCB, commonly referred to as the UCB critical factor, balances these two consider-
ations. Once an action has been chosen, the next state, reward, and observation are
generated by sampling from the POMDP stochastic model.

2. Expansion. Eventually, the simulation reaches a leaf node and it is expanded by cre-
ating new action nodes.

3. Estimation. After the expansion step, the value at the history node is estimated, either
with a domain-specific heuristic, or with a rollout simulation.

4. Update. The estimates of Q(h, a) at each of the visited action nodes are updated with
the discounted reward and backed up value estimates from descendant nodes.

This approach builds a tree asymmetrically favoring regions of the history and action spaces
that are likely to be visited when the optimal policy is executed.

In addition to the PO-UCT algorithm described above, several other approaches round
out the online POMDP solver landscape. Early solvers attempted to use exact Bayesian
belief updates on discrete state spaces [148], however, these are much less scalable than PO-
UCT. Two other popular solvers with scalability similar to UCT are determinized sparse
partially observable trees (DESPOT) [191] and adaptive belief trees (ABT) [101]. DESPOT
uses a small number of determinized scenarios instead of independent random simulations
to reduce variance and relies on heuristic tree search guided by upper and lower bounds
rather than Monte Carlo tree search. ABT is designed to efficiently adapt to changes in the
environment without throwing away previous computation.

2.4.4 QMDP

One notable approximation scheme of POMDPs is the QMDP approximation [84]. The
QMDP approximation proceeds by solving the fully observable MDP problem of the POMDP,

1Strictly speaking, POMCP also includes a specialized unweighted particle filter update, but the term is
often used informally as a synonym for PO-UCT.
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by assuming no observation uncertainty starting from a given state, and obtaining its optimal
state-action value function QMDP. This value function can be relatively easily calculated us-
ing value iteration or approximate MDP solvers, which are usually much less computationally
demanding. Then, the QMDP value approximation is defined as the following:

QMDP(b, a) = E[QMDP(s, a)|b]. (2.26)

In essence, the QMDP approximation assumes that the observation uncertainty disappears
after one action step due to taking the naive expectation over the fully observable MDPQMDP

state-action value. Unfortunately, the QMDP approximation is known to be suboptimal
in some contexts, as it assumes no observation uncertainty after one step and becomes
overconfident as it is not incentivized to learn more about its current state.

Despite the suboptimality, QMDP approximation proves to be not only useful in many
contexts due to its simplicity, but also can be used as baseline planner algorithm to be used
as a rollout estimator. In this thesis, many experiments leverage the QMDP approximation
as the rollout policy of tree search solvers in order to obtain a good estimate of the value
function at leaf nodes.

2.4.5 Deep Reinforcement Learning

Many deep reinforcement learning algorithms are implicitly solving a POMDP, in a sense
that the agent often needs to reason about complex state or observation inputs for a Markov
environment, and must come up with an action or a policy by learning a neural network repre-
sentation. While we will not dive too much into the details of all deep reinforcement learning
methodologies, we outline the four major types of deep reinforcement learning solvers. These
four characterizations are not definitive, and some modern algorithms integrate multiple of
these components for better performance.

1. Policy gradients: Policy gradient methods directly differentiate the expected sum
of rewards objective to obtain the policy. Some examples include REINFORCE [186],
natural policy gradient [142], trust region policy optimization (TRPO) [151], and prox-
imal policy optimization (PPO) [150].

2. Value-based: Value-based methods learn a value function network or a Q-function
network that represents the optimal values, and use the value maximizing action as
the policy. Some examples include Q-learning [184], deep Q-network (DQN) [131],
temporal difference (TD) learning [173], and fitted Q-value iteration [145].

3. Actor-critic: Actor-critic algorithms learn a value function network or a Q-function
network that represents the current policy values, and use that to improve the policy.
Some examples include asynchronous advantage actor-critic (A3C) [130] and soft actor-
critic (SAC) [68].
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4. Model-based: Model-based algorithms estimate the model components of POMDP,
usually the transition model, and then use it for planning, improve a policy, or perform
other tasks to obtain the action. Most of our work in Part III and the related works
discussed in those sections would fall under the model-based reinforcement learning
category.

2.4.6 Compositional Learning

In compositional learning, a learning task is broken down into neural network components
that each specialize in different tasks. These components are then integrated to learn com-
plex relations, allowing for less data and training resources to be used overall. Compositional
learning can be achieved either through provided compositional structure in the form of an
algorithmic prior [6, 78], or by automatically discovering such structures [4, 95, 127, 146].
Specifically, algorithmic prior knowledge can be introduced by specifying neural network
architectures or model components, which then allows for intelligent planning with minimal
training from limited or specialized data. Furthermore, this paradigm has enjoyed success in
various sequential decision making under uncertainty problems, and particularly reinforce-
ment learning settings [48, 51, 67, 111, 129, 190]. Part III further discusses backgrounds
for how these compositional learning methods can be used, and introduces our two new
contributions that utilize compositional learning.

2.4.6.1 Vision POMDPs

Recently, there has been increased interest in solving POMDPs involving visual observations
through deep learning [65, 88, 201], which can be viewed as instances of compositional
learning. Model-free vision POMDP solvers such as QMDP-net [89] and Deep Variational
Reinforcement Learning [80] maintain a latent belief vector whose update rule is learned
via a neural network. They then learn corresponding value or policy networks in this latent
belief state and action space. Furthermore, since these methods usually make minimal sets of
assumptions, extensions of such techniques can also be seen in embodied artificial intelligence
applications [3, 87]

Model-based vision POMDP works such as Differentiable Particle Filter (DPF) [83] allow
conventional particle filtering techniques to be interfaced with complex visual observations.
This algorithm contains multiple linked neural network components, including a particle
proposer, an observation model, and a dynamics model, that are designed to be trained end-
to-end. A recent work extends DPF with entropy regularization and provides convergence
guarantees [41]. Dual Sequential Monte Carlo (DualSMC) [183] extends the DPF methods
further to introduce an adversarial filtering objective and integrate in the SMC planner,
making it a fully closed-loop POMDP solver. The DPF framework is extensively discussed
in Section 3.2.3.

In Chapter 9, we break down the vision POMDP problem into a compositional learning
problem involving learning deep generative models. Many models in deep learning are used to
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approximate probability distributions over high dimensional spaces such as spaces of images
and videos. However, sampling from these distributions requires deep generative models.
While some deep generative models, such as Generative Adversarial Networks (GANs), try
to sample from distributions by making the samples seem as “realistic” as possible, other
models such as Variational Autoencoders (VAEs) map complex distributions to simpler ones
via latent space embedding. Conditional generative models condition on another variable
to sample from conditional distributions [128, 202]. In our MCTS planner introduced in
Chapter 9, we use deep generative models G to sample observations conditioned on the
state, and P to propose state particles given the current observation.

2.4.6.2 Pick-and-Place Tasks

Recent works in pick-and-place tasks leverage learned models to generate pick-and-place
policies that can successfully generalize to unseen objects [19, 52, 64, 79, 93, 154, 166, 189,
194, 199]. These vision-based agents produce per-pixel scores in an image, which are then
mapped to physical pick-and-place coordinates. This approach is shown to be successful for
tasks including robotic warehouse order picking [197], pushing and grasping [196], tossing
objects [198], kit assembly [194], and mobile manipulation [188].

2.4.6.3 Multi-Task Learning

Multi-task learning approaches aim to improve learning efficiency through shared structure
and data between tasks. While multi-task learning and systems have shown effectiveness
across several domains [79], they often require careful choices of tasks, balanced sampling,
and learning curricula [47, 66, 165]. Consequently, multi-task learning may not always
improve learning, sometimes diminishing performances as shown in vision-based continuous
control manipulation tasks [178]. Moreover, composing tasks together amplifies the problem
of compounding errors [103, 137, 200] and the need for large number of demonstrations
[55, 147]. Understanding task structure may be a key ingredient in scaling reinforcement
learning methods to compositional tasks [108, 136, 164, 165], as leveraging task structures
can successfully solve realistic compositional tasks including web navigation [66] and subtask
dependency inference [165].

Sequence-conditioning combined with multi-task learning can also be viewed as a variant
of one-shot meta-learning. Meta-learning approaches aim to learn policies that can quickly
adapt and generalize to new task instances [55], and some of these approaches also condition
the policies on demonstration videos or sequences [47, 193]. While most prior works in
meta-learning focus on generalizing to new unseen tasks of short planning horizon, our work
focuses on multiple seen tasks that result in long planning horizon.
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2.5 Continuous Space POMDP Algorithms

2.5.1 Online Planning for Continuous Space Problems

Dealing with varying levels of continuous space assumptions make POMDP problems much
more intangible to solve analytically. Here, we denote continuous observation POMDPs as
POMDPs with continuous observation (and also often continuous state) space, and contin-
uous space POMDPs as POMDPs with continuous state, action, and observation spaces.

2.5.2 Online Continuous Observation POMDP Solvers

There are many approaches for solving POMDPs or belief-space MDPs with continuous ob-
servation spaces. For example, a variant of Monte Carlo Value Iteration (MCVI) uses Monte
Carlo sampling-based Bellman backup and leverages a classifier to deal with continuous ob-
servation spaces and provide convergence guarantees [14]. Others partition the observation
space [75] or assume that the most likely observation is always received [143]. Many ap-
proaches are based on motion planning [2, 29], locally optimizing pre-computed trajectories
[179], or optimizing open-loop plans [170]. McAllester and Singh [121] also extend the sparse
sampling algorithm of Kearns et al. [92], but they use a belief simplification scheme instead
of the particle sampling scheme.

Previous online approaches that use particle belief representations, such as ABT [101],
POMCP [159], and DESPOT [191] have exhibited good performance in large discrete do-
mains. However, many real-world domains, notably when a robot interacts with the physical
world, have continuous observation spaces, and the algorithms mentioned above will not al-
ways converge to an optimal policy in problems with continuous or naively discretized obser-
vation spaces [171]. Since PO-UCT, DESPOT, and ABT all rely on an unweighted particle
representation, they can be used with continuous state spaces. However, they will fail to
find optimal policies in continuous observation spaces since the probability of generating the
same observation twice, and hence creating beliefs with multiple particles, is zero [109, 171].

Partially observable Monte Carlo planning with observation widening (POMCPOW), ap-
proached the continuous observation challenge by introducing a weighted particle filter and
the continuous action challenge with progressive widening [171]. DESPOT-α [61] incorpo-
rates a similar weighting scheme and uses the α-vector concept to generalize value estimates
between sibling nodes. Adaptive online packing-guided search (AdaOPS) [187] fuses similar
observation branches in the search tree to improve performance. Lazy Belief Extraction for
Continuous Observation POMDPs (LABECOP) [74] builds the planning tree by re-weighting
beliefs with particle weighting and extracting belief sequence values efficiently.

2.5.3 Online Continuous Space POMDP Solvers

There are also solvers that additionally focus on dealing with continuous or hybrid action
spaces. Several techniques use double progressive widening (DPW) [43], originally designed
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to solve continuous space MDPs. Most notably, POMCPOW and PFT-DPW [171] extend
POMCP and DPW to handle continuous space POMDPs. However, these algorithms use
DPW as it is proposed with the inefficient action sampling that is not suitable for large
problems.

One effective direction to handle continuous action spaces has been to use continuous
bandits to sample new actions. Particularly, hierarchical optimistic optimization (HOO)
and the corresponding HOOT algorithm [117] began work on continuous bandit algorithms
applied to MCTS. This is followed by works such as HOLOP [185] that plans with open-loop
trajectories instead of individual actions using HOO, POLY-HOOT [118] with polynomial
guarantees, and VOO and VOOT [94] that we build on in Chapter 7.

Another direction is to use Bayesian optimization to efficiently sample new actions. CBTS
[133] uses Gaussian processes (GP) to tackle the random action sampling problem. How-
ever, CBTS does not use progressive widening approach and uses a separate GP at each
belief node, which limits its optimization scope and branching capabilities. Most recently,
BOMCP [124] extends POMCPOW by posing the random action sampling step of DPW as a
Bayesian optimization problem over all the belief and action nodes. Despite the effectiveness
of BOMCP, GPs are very computationally expensive to fit especially over the joint belief
and action space, and BOMCP trades off computation time for sample efficiency compared
to POMCPOW.

Other directions include GPS-ABT [152] that uses generalized pattern search to find local
optima, PA-POMCPOW that additionally incorporates score functions [125], and VG-UCT
that calculates gradient of the value function [104].

2.5.4 Theoretical Guarantees

Recently, there has been a considerable amount of developments in providing guarantees
for online POMDP algorithms. Some of the notable popular algorithms for large discrete
POMDPs include POMCP [159] and DESPOT [191], which were foundational algorithms
for both theoretical analysis and practical algorithm development. A lot of contemporary
algorithms take inspiration from the belief representation using state particle insertions.
However, these algorithms cannot effectively handle continuous state and observation spaces
without relying on some discretization schemes, due to the fact that the planning trees
become infinitely wide of depth 1, commonly referred to as bushes or shrubs. This phenomena
is mainly due to the fact that in extremely large or continuous probability measures, the
probability of sampling the same observation twice is zero [109, 171]. Since the state particle
insertion scheme relies on revisiting the same observation many times and inserting state
particles into it, it ends up generating depth 1 bushes as it is unable to visit an observation
node more than once and cannot expand depth-wise. This results in a myopic planner that
never reasons past the first step and cannot deal with long horizons.

Recently proposed POMDP tree search algorithms [14, 61, 74, 109, 110, 124, 171, 187]
have been shown empirically to work on continuous state and observation spaces, and some
come with finite sample performance guarantees. Specifically, several of these algorithms
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such as POMCPOW and PFT-DPW [171] and DESPOT-α [61] have employed a weighting
scheme inspired by particle filtering to achieve good performance on realistic problems with
large or continuous observation spaces. In our work, we discuss the POWSS algorithm [109]
in Chapter 5, which not only formally justifies the necessity of such weighting scheme but also
provides and algorithm with convergence guarantees that does not directly depend on the
observation space size. Furthermore, the VPW algorithm [110] in Chapter 7 captures both
theoretical guarantees and empirical performance when we additionally assume continuous
or hybrid action space.

While there are many particle weighting-based algorithms that have performance guar-
antees [109, 110] and algorithms that perform well empirically [61, 74, 110, 124, 171, 187],
there has been little progress on generalization of why such family of algorithms can enjoy
performance guarantees. For instance, AdaOPS [187], a recent particle belief-based POMDP
solver that we include in our analysis, comes very close to capturing both theory and practice,
but it has a complex algorithmic structure and provides only algorithm specific guarantees
with additional simplifying assumptions.

In our work, we discuss the particle belief approximation of POMDPs [112] in Chapter 6,
which formally justifies that optimality guarantees in a finite sample particle belief MDP
(PB-MDP) approximation of a POMDP/belief MDP yields optimality guarantees in the
original POMDP as well. Notably, this convergence rate does not directly depend on the
size of the state space nor the observation space, but rather depends on a statistical quantity
that links the probabilities concerning state and observation trajectories and the planning
horizon D. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt
any sampling-based MDP algorithm of choice to a POMDP by solving the corresponding
particle belief MDP approximation and preserve the convergence guarantees in the POMDP.
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Chapter 3

State Estimation and Representation

Chapter Outline

In this chapter, we give an overview of state estimation through belief representations.
We cover some common methods of belief representations, dive deeper into particle be-
liefs and some modern techniques, and discuss some theoretical properties of particle
beliefs by introducing importance sampling. Some discussions, results, and relevant
figures are borrowed & repeated from the original works listed in Parts II and III for
better storytelling and emphasis.

3.1 Belief Representations

When the agent is only provided with noisy or complex observations that reveal partial in-
formation about the state of the environment, the agent should take into account the entire
observation history in order to plan optimally. This is sometimes known as the curse of his-
tory, as the agent is burdened with keeping the entire history of observations to intelligently
plan over long horizons, as the observation sequence is no longer Markov. Furthermore,
modern high dimensional observations such as images, videos, or texts require sophisticated
machinery to estimate the state at any given point in time, for which a good latent repre-
sentation that explicitly or implicitly encodes this history information is crucial.

3.1.1 Reasoning with Beliefs

One effective technique to handle such curse of history is to reason about the observation
histories with beliefs or belief functions. Generally speaking, beliefs are mathematical objects
that capture the state density given an initial density representation and some history of
observations and actions:

bt(s) ≡ bt(s|b0, {ai}, {oi}). (3.1)
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Beliefs are sufficient statistics for optimal decision making. This intuitively means that
beliefs are the only object necessary to fully capture the observation history information
that is relevant for optimal planning. Mathematically, there exists a policy π∗ that derives
the action policy at = π∗(bt), which maximizes the expected cumulative reward or the value
function of the POMDP [84, 96]. For an exact analytical update, if the exact density form
is analytically known, then it is possible to update the belief function with a new action and
observation at a given time via Bayesian update due to the Markov property [84]. These
subsequent updates of bt given (at, ot+1) can be calculated as following:

bt+1(st+1) =

∫
S
Z(o|st, at, st+1)T (st+1|st, at)bt(st) dst∫

S

∫
S
Z(o|st, at, st+1)T (st+1|st, at)bt(st) dst dst+1

. (3.2)

The integrals can be replaced by sums when the state space is discrete. Thus, beliefs are a
compact way of keeping track of history information.

3.1.2 Belief MDP

Since the belief and history fulfill the Markov property, a POMDP can be viewed as a
Markov decision process (MDP) on the belief or history space, commonly referred to as
the belief MDP [84]. The corresponding belief MDP for a given POMDP problem P =
(S,A,O, T ,Z, R, γ) is the MDP MB = (B,A, TB, RB, γ) defined by the following elements:

• B: Space over belief densities bd. The belief density is now a “state” in this MDP.

• A: Action space. Remains the same as the original action space.

• TB: Transition density TB(bd+1 | bd, a). The transition probability from bd to bd+1 by
taking the action a can be defined as:

TB(bd+1 | bd, a) ≡
∫
O

P(bd+1 | bd, a, o)P(o | bd, a)do. (3.3)

• RB: Reward function RB(bd, a):

RB(bd, a) = Es∼bd [R(s, a)]. (3.4)

• γ: Discount factor. Remains the same as the original discount factor.

This type of reasoning will prove to be extremely useful for deriving the particle belief MDP
approximation for POMDPs in Chapter 6. Particle belief MDP has a very similar definition
as the belief MDP definition in order to effectively reason about the MDP structure over
belief approximations using particles.
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State (Mean) Gaussian Particle Tensor

• Simple representation • Simple representation • Multi-modal uncertainty • Complex uncertainty
• Captures uncertainty • Statistical guarantees • Modern inputs
• Mathematically convenient • Models still applicable • Interface w/ neural nets

• Certainty equivalence • Uncertainty representation • Extra computational • Need neural net models
• No uncertainty info simple and uni-modal factor O(#particles) • No guarantees

• Need obs. density • Difficulty training &
representations

Table 3.1: Overview of select belief representation methods. The advantages of each method are
listed on the top row, and the disadvantages on the bottom row.

3.1.3 Representations of Belief State

There are many ways to reason about the belief state. We outline some of the popular
methods that represent the belief state, and their various properties in Table 3.1.

The simplest representation is using a single state directly as the representation of a
belief. This can be done by either just using the observation directly as the state if the
observation and state spaces are the same, or extracting the mean of some belief function
if the belief function is externally managed, such as in the outer state observer. While this
is a simple representation, there is no representation of uncertainty information whatsoever.
This effectively assumes certainty equivalence, for which such assumption can be sometimes
theoretically shown to be suboptimal [84]. However, the certainty equivalence principle
actually holds up quite well in many robotic experimental scenarios, as the sensor noise is
small enough.

Another simple representation is using a Gaussian distribution to represent the belief.
While this is similar to the single state representation, the Gaussian belief now captures
the uncertainty information through the covariance matrix. This additional information is
still rather simple to manage, and the updates to the mean and covariance matrix can be
done with techniques such as the Kalman filter and its variants. However, this uncertainty
representation is still crude and uni-modal, which does not perform well in scenarios that
require multi-modal representation of belief density.

The third option is the one we will extensively analyze in Part II, which is representing
a belief with a set of particles and their corresponding weights. This representation strikes a
balance between representational power that not only captures the multi-modality and the
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theoretical guarantees of finitely representing a belief density, but also being able to use the
known POMDP model components to plan. However, since this uses a large number of par-
ticles, this induces an extra multiplicative computational factor of O(#particles), and it also
needs an analytic model of the observation density function in order to correctly update the
state particle likelihood weights via Bayesian updates. Despite the above shortcomings, the
mathematical flexibility and plausibility makes it an ideal candidate for theoretical analysis.

The last option listed is the tensor representation of beliefs. This option is both explicitly
and implicitly used in many modern reinforcement learning solvers that reason with complex
inputs [69, 80, 89]. Since many modern machine learning methods utilize neural networks,
which can distill complex information into tensor representation, modern neural network-
based planners use tensors to reason about the observations. There is a wide variety of tensor
representations: some reinforcement learning algorithms train solely on the observations,
which may implicitly learn a belief representation internally in the neural network, while
others may explicitly formulate latent space embedding, very similar to a belief representation
as it often takes in some form of observation history as an input. However, it is very difficult
to learn such high-dimensional embedding, and there is very little statistical guarantee in
most real-world scenarios.

3.2 Particle Filtering

The particle filter is an application of Monte Carlo estimation to the task of Bayesian belief
updating [97, 174]. In essence, it uses a set of states, and their weights if using a weighted
particle filter, to keep track of likely hypotheses of states.

3.2.1 Principles

Unweighted particle filter. The simplest form is an unweighted particle filter, in which
the belief is represented by a collection of N states, known as particles, b̃ = {si}Ni=1. The
density is approximated by b̃(s) ≈

∑N
i=1 δ(si = s), where δ(·) is a Dirac or Kronecker delta

function depending on the form of the state space. At each step of the POMDP, after
an action a is taken and an observation o is received, a new state s′i and observation oi is
simulated once or more for each of the particles to create the new belief, b̃′ = {s′i : oi = o}. In
most cases, few particles will match o so it is difficult to maintain a large number of particles
in the belief. Various domain-specific techniques can be used to reduce this problem, but it
is difficult to solve completely in the unweighted particle filter.

Weighted particle filter. The weighted particle filter is usually much more effective.
The belief is represented by a collection of state particles and corresponding weights, b̃ =

{(si, wi)}Ni=1. The density is approximated with b̃(s) ≈
∑N

i=1 wiδ(si=s)∑N
i=1 wi

. A belief update consists

of simulating each particle once or more and then calculating the new weight according to
the importance sampling correction: w′

i = wi · Z(o | s, a, s′i). This weight will be referred
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Algorithm 3.1 SIR Particle Filter vs. Generative Particle Filter

Algorithm: SIRPF(b̄, a, o)
Input: particle belief set b̄ = {(si, wi)}, action
a, observation o.
Output: New updated particle belief set b̄′ =
{(s′i, w′

i)}.
1: for i = 1, . . . , C do
2: sj ← sample si from b̄ w.p. wi∑

i wi

3: s′i ← G(sj , a)
4: w′

i ← wi · Z(o|a, s′i)
5: for i = 1, . . . , C do

6: w′
i ←

w′
i∑

i w
′
i

7: b̄′ ←
{
(s′i, w

′
i)
}C
i=1

8: return b̄′

Algorithm: GenPF(b̄, a)
Input: particle belief set b̄ = {(si, wi)}, action
a.
Output: New updated particle belief set b̄′ =
{(s′i, w′

i)}, mean reward ρ.

1: so ← sample si from b̄ w.p. wi∑
i wi

2: o← G(so, a)
3: for i = 1, . . . , C do
4: s′i, ri ← G(si, a)
5: w′

i ← wi · Z(o|a, s′i)
6: b̄′ ←

{
(s′i, w

′
i)
}C
i=1

7: ρ←
∑

iwiri/
∑

iwi
8: return b̄′, ρ

SIR Particle Filter Generative Particle Filter

Observation Generation ✗ ✓
Resampling ✓ ✗
Purpose State estimation Value estimation
Used in POMDP outer loop observer POMDP action planner

Table 3.2: Comparison of SIR particle filter and generative particle filter.

to as the particle likelihood weight. Typically, the weights of a few particles grow much
larger than the others, so a resampling step creates many particles from those with large
weights and eliminates those with very small weights [97, 174]. A basic implementation
of this weighted particle filter is given in Algorithm 3.1 – this algorithm is also known as
the sequential importance resampling (SIR) particle filter. A more comprehensive survey of
particle filtering and corresponding guarantees are available in [45].

3.2.2 Generative Particle Filter

The generative particle filter, which is a logic that is implicitly used a lot in POMDP plan-
ning, is very similar to the weighted particle filter mentioned in the previous section. How-
ever, the generative particle filter does not take in an observation as an input, but rather
samples the next step observation. This is mostly to enable sampling from an approximate
density of belief dynamics using observation and transition densities for sampling-based on-
line planners. Specifically, the generative particle filter corresponds to the transition model
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of a particle belief approximation of POMDPs:

τ(b̄d+1 | b̄d, a) ≡
∫
O

P(b̄d+1 | b̄d, a, o)P(o | b̄d, a)do. (3.5)

This allows treating the particle belief approximation as a form of MDP, which enables us to
connect guarantees from MDP-type algorithms to POMDP-type algorithms. This connection
is further described in Chapter 6. Thus, the main difference is that the generative particle
filter seeks to sample the next possible particle belief using a valid observation and transition
density for the purposes of planning, while the particle filter used for observers seeks to
estimate the current state for the purposes of localization.

An example implementation of the generative particle filter is given in Algorithm 3.1,
which is actually the exact generative particle filter routine used in Algorithm 6.1 to correctly
define the particle belief approximation of POMDP. Since the above implementation of gen-
erative particle filter ensures that the state particle trajectories are independently generated
between indices, it suffices to know the likelihood of each trajectory to be able to accurately
approximate the full POMDP value function. Table 3.2 outlines the key differences between
these concepts.

Note that the generative particle filter does not perform resampling. While it is certainly
possible to perform resampling, it actually is less desirable to do so within our theoretical
analyses. This is because the main purpose of generative particle filter is to be able to
accurately approximate the value function at the root node, and adding resampling logic
only adds another layer of complexity by entangling the state trajectory sequences together
and also adds in another source of uncertainty which only makes the convergence speed
worse. Furthermore, the observations are generated directly from one of the state particles,
and this consistency ensures that at least one particle will have a high enough weight. On the
other hand, since the SIR particle filter needs to address observations from the environment
that may not correspond to any of the state particles in the belief, it must use resampling
techniques to deal with particle depletion problems where none of the state particles are
likely.

3.2.3 Differentiable Particle Filter

While particle filtering can help represent and solve a fairly large family of POMDP prob-
lems due to its flexibility and theoretical guarantees, it cannot handle modern problems that
involve complex and high-dimensional inputs such as images, videos, and texts. One popular
modern framework to handle the challenge is called differentiable particle filters [83]. Differ-
entiable particle filters use learning-enabled components to represent the POMDP models.
Specifically, it learns the transition, observation density, and particle proposer networks to
interface particle filters with complex observations.

This in turn allows other planning methods to take advantage of the algorithmic structure
(or the algorithmic prior) of particle filtering and particle belief representations. For instance,
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Figure 3.1: Overview of the differentiable particle filtering system. The learned modules – transition,
observation, and proposer – serve as the model-based representations of POMDP model components. This
figure is a modification of Fig. 9.2.

Dual Sequential Monte Carlo (DualSMC) [183] modifies the differentiable particle filter al-
gorithm by adversarially training the observation density and the particle proposer networks
from collected data, and employs the Sequential Monte Carlo method as the planner. How-
ever, the planner learns state-dependent advantage function neural network, and uses a fixed
planner that requires reward information, cannot adapt to different reward structures, needs
to interact with the environment, and requires long training that sometimes fails.

Our work Visual Tree Search (VTS) [48] introduced in Chapter 9 interfaces tree search
planning methods often used in POMDP literature, by learning an observation generative
model neural network instead, which allows us to vastly reduce the training time, does not
need to interact with the environment, and can leverage previously collected data without
any reward information to be trained offline. This is a type of generative particle filter that
uses deep image generative model. This results in an efficient, interpretable, and theoretically
principled planner that can take in any reward structure of choice while not compromising
on planning quality with short online planning.

Other works in capturing the belief information of the POMDP for high-dimensional
inputs often explicitly or implicitly represent the belief in tensor form [69, 80]. The resulting
algorithms do not assume any previous knowledge about the state space structure and are
very general, but require extremely long training time with little insight into the reasoning
behind the decisions they make.

3.3 Importance Sampling

In many real-world applications, updating the belief exactly based on a new action and
observation is impractical. Fortunately, Monte Carlo methods provide simple and effective
tools for approximate reasoning about distributions such as beliefs. In this section, we focus
on the theoretical foundations of particle belief representation, which leverages likelihood
weights of each state particles that is theoretically empowered by the tool of importance
sampling.
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3.3.1 Principles

We often need to reason about a random variable X ∼ P based only on samples from
another related random variable, Y ∼ Q. Importance sampling allows us to, among other
tasks, calculate the expectation of a function by observing that

EX∼P [f(X)] =

∫
f(x)P(x)dx =

∫
f(x)

P(x)
Q(x)

Q(x)dx ≈ 1

N

N∑
i=1

P(yi)
Q(yi)

f(yi), (3.6)

where {yi}Ni=1 are samples from distribution Q. The ratio of the densities is known as
the importance weights wP/Q(x) ∝ P(x)/Q(x). Consequently, a standard assumption of
importance sampling is that the P is absolutely continuous with respect to Q, which means
that P(x) = 0 whenever Q(x) = 0.

Since the importance weights are often assumed to be known only up to an unknown
normalizing constant, we often work with the self-normalized importance sampling estimator
(SN estimator), which additionally normalizes the importance weights with the sum of the
available weights. While this produces a slightly biased estimator, it still maintains favorable
convergence properties as shown in Theorem 5.1.

We define the following quantities:

w̃P/Q(x) ≡
wP/Q(x)∑N
i=1wP/Q(xi)

(SN Importance Weight)

dα(P||Q) ≡ Ex∼Q[wP/Q(x)
α] (Rényi Divergence)

µ̃P/Q ≡
N∑
i=1

w̃P/Q(xi)f(xi). (SN Estimator)

Of particular importance is the infinite Rényi Divergence, d∞, which can be rewritten as
an almost sure bound on the ratio of P and Q:

d∞(P||Q) = ess sup
x∼Q

wP/Q(x). (3.7)

3.3.2 Relationship to Particle Beliefs

Importance sampling is the backbone of particle belief representations, since the particle
weights essentially are the importance weights of each state trajectories. In POMDP plan-
ning algorithms using particle belief representations, we wish to estimate the value function
for beliefs conditioned on observation sequences while only being able to sample from the
marginal distribution of states for a given action sequence. Following the formalism of impor-
tance sampling, Pd is the normalized measure incorporating the probability of observation
sequence {on,j}dn=1 on top of the state sequence {sn,i}dn=1 and action sequence {an}d−1

n=0 until
the node at depth d, and Qd is the measure of the state sequence. We can think of Pd
corresponding to the observation sequence {on,j}. For simplicity, we also denote Z1:d as the
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product of observation likelihoods
∏d

n=1Z(on | an−1, sn) and T1:d as the product of transition
densities

∏d
n=1 T (sn | sn−1, an−1). Then, for an arbitrary action sequence {an}, the following

describes the densities necessary to define importance weighting:

Pd = Pd{an,on,j}({sn,i}) =
(Z i,j1:d)(T i1:d)bi0∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(3.8)

Qd = Qd{an}({sn,i}) = (T i1:d)bi0 (3.9)

wPd/Qd({sn,i}) =
(Z i,j1:d)∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
. (3.10)

Here, the integral to calculate the normalizing constant is taken over Sd+1, the Cartesian
product of the state space S over d + 1 steps. Now, we claim that the recursive likelihood
updating scheme produces valid likelihood weights up to a normalization. With our recursive
definition of the empirical weights, we obtain the full weight of each state sequence for a
fixed observation sequence:

wd,i = wd−1,i · Z(od,j | ad, sd,i) = . . . = Z i,j1:d ∝ wPd/Qd({sn,i}). (3.11)

Therefore, this allows us to justify that the self-normalized importance sampling estimator
that uses i.i.d. state particle trajectories and properly updated particle likelihood weights
are SN estimators of the expected value of a desired function:

µ̃b̄d [f ] =

∑C
i=1wd,i · f(sd,i)∑C

i=1wd,i
=

∑C
i=1wPd/Qd({sn,i}) · f(sd,i)∑C

i=1wPd/Qd({sn,i})
=

C∑
i=1

w̃Pd/Qd({sn,i}) · f(sd,i).

(3.12)

3.3.3 Convergence Property

Assuming d∞(P||Q) is finite, we can prove an estimator concentration bound in Theorem 5.1,
which builds upon the derivation in Proposition D.3 of [126].

Theorem 5.1 (SN d∞-Concentration Bound). Let P and Q be two probability measures
on the measurable space (X ,F) with P absolutely continuous w.r.t. Q and d∞(P||Q) <
+∞. Let x1, . . . , xN be independent identically distributed random variables (i.i.d.r.v.) with
distribution Q, and f : X → R be a bounded function ( ∥f∥∞ < +∞). Then, for any

λ > 0 and N large enough such that λ > ∥f∥∞ d∞(P||Q)/
√
N , the following bound holds

with probability at least 1− 3 exp(−N · t2(λ,N)):

|Ex∼P [f(x)]− µ̃P/Q| ≤ λ, (3.13)

t(λ,N) ≡ λ

∥f∥∞ d∞(P||Q)
− 1√

N
. (3.14)
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This result is important, since it then allows us to establish a general result about function
estimation using state particles with likelihood weights, as a precursor to Theorem 6.2.
This is useful because the inductive proof for showing Sparse Sampling-ω convergence in
Lemma 6.2 relies heavily upon this SN estimator concentration inequality, where estimating
the reward/value function at a given particle belief node can be shown to be nearly accurate
through this lemma.

Lemma 6.2 (Particle Likelihood SN Estimator Convergence). Suppose a function f is
bounded by a finite constant ∥f∥∞ ≤ fmax, and a particle belief state b̄d = {(sd,i, wd,i)}Ci=1

at depth d represents bd with particle likelihood weighting that is recursively updated as
wd,i = wd−1,i · Z(od | a, sd). Then, for all d = 0, . . . , D − 1, the following weighted av-
erage is the SN estimator of f under the belief bd corresponding to the actions {an}d−1

n=0 and
observations {on}dn=1, for all beliefs bd ∈ B that are realizable given the initial belief b0:

µ̃b̄d [f ] =

∑C
i=1wd,if(sd,i)∑C

i=1wd,i
, (3.15)

and the following concentration bound holds with probability at least 1−3 exp(−C ·t2max(λ,C)),

|Es∼bd [f(s)]− µ̃b̄d [f ]| ≤ λ, (3.16)

tmax(λ,C) ≡
λ

fmaxdmax
∞
− 1√

C
. (3.17)
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Part II

Theory: Fast and Optimal Online
Algorithms for POMDPs
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Chapter 4

Overview

Chapter Outline

In this chapter, we give an overview of all the works discussed in Part II. We intro-
duce sparse sampling algorithm variants for POMDPs, which constitute the theoretical
contributions for continuous observation POMDP algorithms. Then, we discuss the
particle belief approximation of POMDPs, which provides a theoretically valid way of
extending MDP planning algorithms into POMDP algorithms. Lastly, we summarize
our contributions for theoretical and algorithmic developments on solving continuous
space POMDPs that additionally deal with continuous or hybrid action spaces. Some
discussions, results, and relevant figures are borrowed & repeated from the original
works listed in each chapter.

4.1 Sparse Sampling for POMDPs

4.1.1 Sparse Sampling for MDPs

Sparse sampling algorithm [92] is a continuous state MDP algorithm that fully expands the
decision tree by recursively exploring all the actions and sampling a fixed number of states C
by using the generative model G. The sparse sampling logic of limiting the visit of number
of states and fully expanding the sampled subtree provides a powerful analytic tool to reason
about convergence guarantees when dealing with continuous states and observations.

The contribution of this algorithm at the time was that there exists a simple yet elegant
tree search algorithm that has convergence guarantees to the optimal policy. The convergence
guarantee is independent of the state space dimensions while scaling with the number of
states sampled and the problem horizon instead, shifting the planning requirement paradigm.
This gives an exponentially converging worst-case probability while requiring O((|A|C)D)
samples, including the contribution from the size of the action space. Even though the
sparse sampling algorithm is meant to be a theoretical tool to justify some of the sampling
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• MDP • POMDP • POMDP • POMDP
• Theoretical • Theoretical • Theoretical • Practical
• Convergence for • Convergence for • Bridge between • Sparse-UCT adapted
cont. state MDPs cont. obs. POMDPs PB-MDPs & POMDPs to PB-MDPs

• Foundational • State particle insertion • Particle belief transition
algorithm • Weighted sum • Monte Carlo sum

Table 4.1: Summary of Sparse Sampling related algorithms discussed in this dissertation. These
are designed to tackle continuous state MDPs or continuous observation POMDPs.

based solvers to tackle the challenging continuous state MDPs, the relative ease of algorithm
definition and the concise mathematical guarantees that it enjoys makes it an ideal candidate
to further take inspiration from to analyze POMDP planning algorithms.

In this dissertation, we actively leverage the concept of sparse sampling to now generalize
our results to continuous observation POMDPs, which additionally takes into account the
observation uncertainty in POMDPs. This leads to our two sparse sampling-based algorithms
for continuous observation POMDPs: the Partially Observable Weighted Sparse Sampling
(POWSS) algorithm and the Sparse Sampling-ω algorithm.

4.1.2 Partially Observable Weighted Sparse Sampling (POWSS)

In Chapter 5, we introduce the Partially Observable Weighted Sparse Sampling (POWSS)
algorithm [109]. POWSS algorithm is a continuous observation POMDP algorithm with
near-optimality guarantees, without relying on any discretization schemes. This convergence
guarantee justifies the particle likelihood weighting scheme and provides performance guar-
antees that do not directly depend on size of the state and observation spaces. Specifically,
the algorithm leverages ideas from sparse sampling to limit the number of observation sam-
ples, and then using importance sampling principles to iteratively insert the state particles
in each of the observation nodes by adjusting their likelihood weights.

The particle likelihood weighting technique is essential for solving continuous observation
POMDPs. Fig. 5.1 illustrates the qualitative behaviors of a solver that uses observation
matching and does not use particle likelihood weighting, and a solver that uses particle
likelihood weighting to insert particles. The observation matching logic requires that when
the state and observation are generated from a generative model, the state can only be
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inserted into the observation nodes in the planner tree that have matching observations.
Solvers that only rely on observation matching often produce observation nodes with only
one state particle inside as the probability of generating the same observation more than
once is 0 for a continuous observation space. This leads to a certainty equivalent planner,
which ends up planning in a QMDP fashion that is known to be sometimes suboptimal as
we show in Section 5.4. Many previous notable POMDP solvers such as POMCP [159] and
DESPOT [191] rely on observation matching, and thus cannot effectively handle continuous
observations.

On the other hand, particle likelihood weighting provides us with a way to reason about
hypothetically inserting a state particle in an observation node. By adjusting the likelihood
weight of the state particle, the state particle can be inserted into an observation node even
if it did not generate the same observation. This style of reasoning is very similar to how
state particles are handled in many modern continuous observation POMDP solvers, such
as POMCPOW [171], LABECOP [74], and DESPOT-α [61]. Thus, POWSS provides a
theoretical foundation for which the particle likelihood weighting is not only necessary but
also optimal.

Such combination of sparse sampling infused with particle likelihood-based belief gives
rise to a continuous observation POMDP algorithm with similar performance guarantees
with worst-case probability that scales as O((|A|C)D exp(−t · C)), including the contribu-
tion from the size of the action space for some problem specific constant t. Similar to sparse
sampling, POWSS convergence rate does not directly depend on the state nor observation
space size, but rather the Rényi divergence relating the observation sequence density and
state transition density. While the convergence rate is rather crude, POWSS provides per-
formance guarantees that do not directly depend on size of the state and observation spaces.
POWSS is mostly meant as a theoretical tool to justify the particle likelihood weighting
scheme, and is only applicable to small problems.

4.1.3 Sparse Sampling-ω

In Chapter 6, we introduce the Sparse Sampling-ω algorithm [112]. Despite the theoretical
significance of POWSS, there are a few shortcomings of the POWSS algorithm. First, the
algorithm definition is rather tedious, since all the state particles must be inserted into the
observation node one-by-one, which makes the analysis and the definition complex. Second,
POWSS is not exactly analogous to the sparse sampling algorithm in a POMDP context
due to such iterative insertion of state particles. Third, POWSS only validates theoretical
properties of its own convergence, and does not provide any more general guarantees for
continuous observation POMDP algorithms that use particle likelihood weighting.

To address the above shortcomings, we then present Sparse Sampling-ω [112]. Sparse
Sampling-ω works similarly to POWSS, since it can be thought of as the Monte Carlo
equivalent of POWSS – the observations are not generated iteratively for every state particle,
but rather through Monte Carlo random sampling according to the likelihood weights of the
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state particles in a given particle belief set. However, this rather small algorithmic difference
brings many benefits:

1. Sparse Sampling-ω algorithm is directly analogous to the original sparse sampling
algorithm. The particle belief states are the state nodes instead, and the transition
model is now a generative particle filter.

2. Sparse Sampling-ω algorithm is much easier to define algorithmically and analyze math-
ematically.

3. Sparse Sampling-ω algorithm enjoys more general convergence guarantees, where it
is near-optimal in both the original POMDP problem as well as the corresponding
particle belief approximation of the POMDP.

The last point is incredibly significant, as this coupled convergence property enables us to
prove a much more general statement: Planning in the particle belief approximation of
the POMDP enables us to make similarly near-optimal decisions in the original POMDP
problem. Thus, the Sparse Sampling-ω algorithm serves as a theoretical bridge that justifies
much more general scheme of reasoning about particle belief approximations.

4.2 Particle Belief MDPs

In Chapter 6, we introduce general theoretical properties of the particle belief MDP approx-
imation of POMDPs [112]. An important component of being able to make these particle
belief approximations of POMDPs is the concept of particle belief MDP. The correspond-
ing particle belief MDP for a given POMDP problem P = (S,A,O, T ,Z, R, γ) is the MDP
MP = (Σ, A, τ, ρ, γ) defined by the following elements:

• Σ: State space over particle beliefs b̄d. An element in this set, b̄d ∈ Σ, is a particle
collection, b̄d = {(sd,i, wd,i)}Ci=1, where sd,i ∈ S, wd,i ∈ R+.

• A: Action space. Remains the same as the original action space.

• τ : Transition density τ(b̄d+1 | b̄d, a): We define the likelihood weights wd,i of particles
sd,i to be updated through unnormalized Bayes rule:

wd+1,i = wd,i · Z(o | a, sd+1,i). (4.1)

Then, the transition probability from b̄d to b̄d+1 by taking action a can be defined as:

τ(b̄d+1 | b̄d, a) ≡
∫
O

P(b̄d+1 | b̄d, a, o)P(o | b̄d, a)do. (4.2)

• ρ: Reward function ρ(b̄d, a):

ρ(b̄d, a) =

∑
iwd,i ·R(sd,i, a)∑

iwd,i
. (4.3)
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• γ: Discount factor. Remains the same as the original discount factor.

This mathematical definition of a corresponding particle belief MDP, which is further de-
tailed in Section 6.2, not only provides a rigorous and general theoretical justification of using
particle-based planners to solve POMDPs, but also allows us to directly adapt any sampling-
based MDP algorithms to approximately solve a POMDP by only changing the transition
generative model into a generative particle filter. As we demonstrate later, PB-MDP approx-
imation allows Q-value convergence guarantees of the MDP algorithms to translate nicely
into solving the POMDP. This powerful generality only comes at an additional multiplica-
tive compute factor of O(C) at each depth, with C as the number of particles we use to
approximate a belief.

Consequently, this brings us to Theorem 6.3, which we repeat below:

Theorem 6.3 (Particle Belief MDP Q-Value Approximation Optimality). Given a finite
horizon POMDP P and its corresponding particle belief MDP MP, there exists a number of
particles C for which the optimal Q-value of the POMDP problem Q∗

P(b, a) can be approx-
imated by the optimal Q-value of the particle belief MDP problem Q∗

MP
(b̄, a) with arbitrary

precision. Namely, under the regularity conditions (i)-(vi), the following bound holds for a
given realizable belief b, corresponding sampled particle belief b̄, and all available actions a
with probability at least 1− δMP

for a desired accuracy ϵMP
:

|Q∗
P(b, a)−Q∗

MP
(b̄, a)| ≤ ϵMP

. (4.4)

This theorem essentially claims that the optimal Q values of the POMDP and the cor-
responding particle belief approximation of the POMDP are close to each other with high
probability, that scales with the number of particles. Therefore, Theorem 6.3 justifies the us-
age of particle belief approximations in general, irrespective of the sampling-based planning
algorithm choice. Fig. 6.1 illustrates this relationship.

Using the above principle, we promote a sampling-based MDP planning algorithm Upper
Confidence Tree (UCT) into Sparse Particle Filter Tree (Sparse-PFT) and retain similar
convergence guarantees for the POMDP [21, 98, 157]. This results in an algorithm that
is simple to implement and enjoys both theoretical guarantees and high performance in
practice.

4.3 Voronoi Progressive Widening

In Chapter 7, we introduce the Voronoi Progressive Widening (VPW) technique [110].
Voronoi Progressive Widening is a generalization and integration of two techniques that
handle continuous action spaces: Voronoi Optimistic Optimization (VOO) and Progressive
Widening (PW).
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4.3.1 Voronoi Optimistic Optimization

Voronoi optimistic optimization (VOO) [94] is a continuous multi-armed bandit algorithm
that adaptively explores the sampling space by partitioning the space into Voronoi cells.
Essentially, VOO tackles the problem of exploration-exploitation trade-off in sampling new
actions by either deciding to sample randomly uniformly (exploration) or sample within
the best Voronoi cell with the highest Q value estimate (exploitation). VOO enjoys nice
theoretical guarantees in the form of expected value bounds using multi-armed bandit theory.
Furthermore, it is relatively easy to implement and scales well to higher dimensions, since
sampling within the best Voronoi cell only requires performing a rejection sampling based
on a specified distance metric. VOO has previously been extended to Voronoi Optimistic
Optimization Tree (VOOT) [94], but only for deterministic MDPs.

4.3.2 Progressive Widening

Progressive widening (PW) [43] tackles continuous state and action spaces by gradually
expanding the state and action sample sets. PW approaches the problem of exploration-
exploitation trade-off in evaluating current actions by either deciding to sample new action
candidates (exploration) or proceed further down the previously visited actions (exploita-
tion). PW dynamically limits the number of sampled children as a function of the number of
visits. Many modern MCTS solvers utilize progressive widening to handle large or continu-
ous action spaces [124, 171] due to ease of implementation and theoretical guarantees under
mild conditions [12]. However, since PW samples new actions uniformly from the action
space, it is rather sample inefficient and does not take into account any information gained
from previous samples.

4.3.3 Voronoi Progressive Widening

Voronoi Progressive Widening (VPW) generalizes VOO and PW: VPW progressively widens
with a VOO sample instead of a uniform sample. With this formulation, PW is simply
VPW with ω = 1, and VOO is VPW with ka · Nαa = +∞. This leads to a simple yet
effective modification to the progressive widening logic that can handle exploration on both
evaluating the currently visited actions and sampling new action candidates. VPW is a
general technique that can be applied to most MCTS-based solvers that build the tree
sequentially. Fig. 7.1 showcases the VPW logic.

Specifically, we introduce two types of algorithms that use VPW, Voronoi Optimistic
Weighted Sparse Sampling (VOWSS) and Voronoi Optimistic Monte Carlo Planning with
Observation Weighting (VOMCPOW):

• VOWSS: VOWSS is POWSS modified with VPW, which is the first known continuous
space POMDP solver with convergence guarantees.
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• VOMCPOW: VOMCPOW is POMCPOW modified with VPW, which is a state-of-
the-art practical POMDP that rivals and outperforms other solvers.
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Chapter 5

Partially Observable Weighted Sparse
Sampling

Chapter Outline
This chapter is based on the paper “Sparse Tree Search Optimality Guarantees in
POMDPs with Continuous Observation Spaces” [109], written in collaboration with
Claire Tomlin and Zachary Sunberg.

5.1 Introduction

The partially observable Markov decision process (POMDP) is a flexible mathematical frame-
work for representing sequential decision problems where knowledge of the state is incomplete
[20, 84, 96]. The POMDP formalism can represent a wide range of real world problems in-
cluding autonomous driving [15, 171], cancer screening [13], spoken dialog systems [192], and
others [34]. In one of the most successful applications, an approximate POMDP solution is
being used in a new aircraft collision avoidance system that will be deployed worldwide [77].

A POMDP is an optimization problem for which the goal is to find a policy that specifies
actions that will control the state to maximize the expectation of a reward function. One
of the most popular ways to deal with the challenging computational complexity of finding
such a policy [139] is to use online tree search algorithms [101, 159, 171, 191]. Instead of
attempting to find a global policy that specifies actions for every possible outcome of the
problem, online algorithms look for local approximate solutions as the agent is interacting
with the environment.

Previous online approaches such as ABT [101], POMCP [159], and DESPOT [191] have
exhibited good performance in large discrete domains. However, many real-world domains,
notably when a robot interacts with the physical world, have continuous observation spaces,
and the algorithms mentioned above will not always converge to an optimal policy in prob-
lems with continuous or naively discretized observation spaces [171].
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Figure 5.1: Visual comparison of trees generated from partially observable sparse sampling
(POSS) algorithm (left), and partially observable weighted sparse sampling (POWSS) algo-
rithm (right) with depth D = 2 and width C = 2, for a continuous-observation POMDP. Nodes
below the fading edges are omitted for clarity. Square nodes correspond to actions, filled circles to state
particles with size representing weight, and unfilled circles to beliefs.

Two recent approaches, POMCPOW [171] and DESPOT-α [61], have employed a weight-
ing scheme inspired by particle filtering to achieve good performance on realistic problems
with large or continuous observation spaces. However, there are currently no theoretical
guarantees that these algorithms will find optimal solutions in the limit of infinite computa-
tional resources.

A convergence proof for these algorithms must have the following two components: (1)
A proof that the particle weighting scheme is sound, and (2) a proof that the heuristics
used to focus search on important parts of the tree are sound. This chapter tackles the first
component by analyzing a new simplified algorithm that expands every node of a sparse
search tree.

First, we naively extend the sparse sampling algorithm of Kearns et al. [92] to the
partially observable domain in the spirit of POMCP and explain why this algorithm, known
as partially observable sparse sampling (POSS), will converge to a suboptimal solution when
the observation space is continuous. Then, we introduce appropriate weighting that results
in the partially observable weighted sparse sampling (POWSS) algorithm. We prove that
the value function estimated by POWSS converges to the optimal value function at a rate of
O(CD exp(−t ·C)), where C is the planning width and number of particles, D is the depth,
and t is a constant specific to the problem and desired accuracy. This yields a policy that
can be made arbitrarily close to optimal by increasing the computation.

POWSS is proven to converge to a globally optimal policy for POMDPs with continuous
observation spaces, most notably with performance guarantees and algorithm logic that do
not directly depend on size of the state and observation spaces. Since POWSS fully expands
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Algorithm 5.1 Routines common to POWSS and POSS

Algorithm: SelectAction(b0, γ,G,C,D)
Input: Belief state b0, discount γ, generative
model G, width C, max depth D.
Output: An action a∗.

1: From the initial belief distribution b0, sample
C particles and store it in b̄0. For POWSS,
weights are also initialized with wi = 1/C.

2: For each of the actions a ∈ A, calculate:

Q̂∗
0(b̄0, a) = EstimateQ(b̄0, a, 0)

3: Return a∗ = argmaxa∈A Q̂
∗
0(b̄0, a)

Algorithm: EstimateV(b̄, d)
Input: Belief particles b̄, current depth d.
Output: A scalar V̂ ∗

d (b̄) that is an estimate of
V ∗
d (b).

1: If d ≥ D the max depth, then return 0.
2: For each of the actions a ∈ A, calculate:

Q̂∗
d(b̄, a) = EstimateQ(b̄, a, d)

3: Return V̂ ∗
d (b̄) = maxa∈A Q̂

∗
d(b̄, a)

all nodes in the sparse tree, it is not computationally efficient and is only practically appli-
cable to toy problems. However, the convergence guarantees justify the weighting schemes
in state-of-the-art efficient continuous observation POMDP algorithms like DESPOT-α and
POMCPOW that solve realistic problems by only constructing the most important parts
of the search tree, and suggest that these algorithm performances may not be as severely
impacted by the size of the state and observation spaces.

The remainder of this chapter proceeds as follows: First, Section 5.2 presents an overview
of the POSS and POWSS algorithms. Next, Section 5.3 contains an importance sampling
result used in subsequent sections. Section 5.4 contains the main contribution, a proof that
POWSS converges to an optimal policy using induction from the leaves to the root to prove
that the value function estimate will eventually be accurate with high probability at all
nodes. Finally, Section 5.5 empirically shows convergence of POWSS on a modified tiger
problem [84].

5.2 Partially Observable Weighted Sparse Sampling

We first define the algorithmic elements shared by POSS and POWSS, SelectAction
and EstimateV, in Algorithm 5.1. SelectAction is the entry point of the algorithm,
which selects the best action for a belief b0 according to the Q-function by recursively calling
EstimateQ. EstimateV is a subroutine that returns the value, V , for an estimated belief,
by calling EstimateQ for each action and returning the maximum. We use belief particle
set b̄ at every step d, which contain pairs (si, wi) that correspond to the generated sample
and its corresponding weight. The weight at initial step is uniformly normalized to 1/C, as
the samples are drawn directly from b0. In Algorithms 5.1 to 5.3, we omit γ,G,C,D in the
subsequent recursive calls for convenience since they are fixed globally.

We define EstimateQ functions in Algorithm 5.2 for POSS and Algorithm 5.3 for
POWSS, where both methods perform sampling and recursive calls to EstimateV to es-
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Algorithm 5.2 POSS

Algorithm: EstimateQ(b̄, a, d)
Input: Belief particles b̄, action a, current depth d.
Output: A scalar Q̂∗

d(b̄, a) that is an estimate of Q∗
d(b, a).

1: For each particle si in b̄, generate s
′
i, oi, ri = G(si, a). If i > |b̄|, use simod |b̄|.

2: For each unique observation oj from previous step, insert all s′i that satisfy oi = oj to a
new belief particle set baoj.

3: Return

Q̂∗
d(b̄, a) =

1

C

C∑
i=1

(ri + γ ·EstimateV(baoi, d+ 1))

timate the Q-function at a given step. The crucial difference between these algorithms is
shown in Fig. 5.1.

POSS naively samples the next s′i, oi, ri via the generating function for each state si in the
belief particle set b̄, at a given step d. Then, for each unique observation oj generated from
the sampling step, POSS inserts the states s′i into the next-step belief particle set baoj only
if the generated observation oi matches oj. This behavior is similar to POMCP, DESPOT,
or a particle filter that uses rejection and can quickly lead to particle depletion when there
are many unique observations. Finally, POSS returns the naive average of the Q-functions
calculated via recursive calculation of EstimateV for each of the next-step beliefs.

On the other hand, POWSS uses particle weighting rather than using only unweighted
particles with matching observation histories as in POSS. POWSS samples the next s′i, oi, ri
via the generating function for each state-weight pair (si, wi) in the belief particle set b̄. Now,
for each observation oj generated from the sampling step, POWSS inserts all the states s′i
and the new weights w′

i = wi · Z(oj|a, s′i) into the next-step belief particle set baoj. These
weights are the adjusted probability of hypothetically obtaining oj from state s′i. POWSS
then returns the weighted average of the Q-functions.

5.3 Importance Sampling

We begin the theoretical portion of this work by stating important properties about self-
normalized importance sampling estimators (SN estimators). One goal of importance sam-
pling is to estimate an expected value of a function f(x) where x is drawn from distribution
P , while the estimator only has access to another distribution Q along with the importance
weights wP/Q(x) ∝ P(x)/Q(x). This is crucial for POWSS because we wish to estimate the
reward for beliefs conditioned on observation sequences, while only being able to generate
the marginal distribution of states with correct probability for an action sequence.
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Algorithm 5.3 POWSS

Algorithm: EstimateQ(b̄, a, d)
Input: Belief particles b̄, action a, current depth d.
Output: A scalar Q̂∗

d(b̄, a) that is an estimate of Q∗
d(b, a).

1: For each particle-weight pair (si, wi) in b̄, generate s
′
i, oi, ri from G(si, a).

2: For each observation oj from previous step, iterate over i = {1, · · · , C} to insert (s′i, wi ·
Z(oj|a, s′i)) to a new belief particle set baoj.

3: Return

Q̂∗
d(b̄, a) =

∑C
i=1wi(ri + γ ·EstimateV(baoi, d+ 1))∑C

i=1wi

We define the following quantities:

w̃P/Q(x) ≡
wP/Q(x)∑N
i=1wP/Q(xi)

(SN Importance Weight)

dα(P||Q) ≡ Ex∼Q[wP/Q(x)
α] (Rényi Divergence)

µ̃P/Q ≡
N∑
i=1

w̃P/Q(xi)f(xi) (SN Estimator)

Theorem 5.1 (SN d∞-Concentration Bound). Let P and Q be two probability measures on
the measurable space (X ,F) with P ≪ Q and d∞(P||Q) < +∞. Let x1, · · · , xN be i.i.d.r.v.
sampled from Q, and f : X → R be a bounded Borel function (∥f∥∞ < +∞). Then, for any

λ > 0 and N large enough such that λ > ∥f∥∞ d∞(P||Q)/
√
N , the following bound holds

with probability at least 1− 3 exp(−N · t2(λ,N)):

|Ex∼P [f(x)]− µ̃P/Q| ≤ λ (5.1)

where t(λ,N) is defined as:

t(λ,N) ≡ λ

∥f∥∞ d∞(P||Q)
− 1√

N
(5.2)

Theorem 5.1 builds upon the derivation in Proposition D.3 of Metelli et al. [126], which
provides a polynomially decaying bound by assuming d2 exists. Here, we compromise by
further assuming that the infinite Rényi divergence d∞ exists and is bounded to get an
exponentially decaying bound: d∞(P||Q) = ess supx∼QwP/Q(x) < +∞. The proof of Theo-
rem 5.1 is given in Appendix A.1.

This exponential decay is important for the proofs in Section 5.4.2. We need to ensure
that all nodes of the POWSS tree at all depths d reach convergence. The branching of the
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tree induces a factor proportional to ND. To offset this, we need a probabilistic bound at
each depth that decays exponentially with N . Intuitive explanation of the d∞ assumption
is given at the beginning of Section 5.4.2.

5.4 Convergence Analysis

5.4.1 POSS Convergence to QMDP

We present a short informal argument for the convergence of the Q-value estimates of POSS
to the QMDP value (Definition 5.1) in continuous observation spaces. Sunberg and Kochen-
derfer [171] provide a formal proof for a similar algorithm.

Definition 5.1 (QMDP value). Let QMDP(s, a) denote the optimal Q-function evaluated at
state s and action a for the fully observable MDP relaxation of a POMDP. Then, the QMDP
value at belief b, QMDP(b, a), is Es∼b

[
QMDP(s, a)

]
.

Since the observations oi are drawn from a continuous distribution, the probability of
obtaining duplicate oi values in EstimateQ, line 1 is 0. Consequently, when evaluating
EstimateQ, all the belief particle sets after the root node only contain a single state particle
each (Fig. 5.1, left), which means that each belief node is merely an alias for a unique state
particle. Therefore, EstimateV performs a rollout exactly as if the current state became
entirely known after taking a single action, identical to the QMDP approximation. Since
QMDP is sometimes suboptimal [84], POSS is suboptimal for some continuous-observation
POMDPs.

5.4.2 Near-Optimality of POWSS

On the other hand, we claim that the POWSS algorithm can be made to perform arbitrarily
close to the optimal policy by increasing the width C.

In analyzing near-optimality of POWSS, we view POWSS Q-function estimates as SN
estimators, and we apply the concentration inequality result from Theorem 5.1 to show that
POWSS estimates at every node have small errors with high probability. Through the near-
optimality of the Q-functions, we conclude that the value obtained by employing POWSS
policy is also near-optimal with further assumptions on the closed-loop POMDP system.

5.4.3 Assumptions for Analyzing POWSS

The following assumptions are needed for the proof:
(i) S and O are continuous spaces, and the action space has a finite number of elements,
|A| < +∞.
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(ii) For any observation sequence {on}j, the densities Z, T , b0 are chosen such that the
Rényi divergence of the target distribution Pd and sampling distributionQd (Eqs. (5.15)
and (5.16)) is bounded above by dmax

∞ < +∞ a.s. for all d = 0, · · · , D − 1:

d∞(Pd||Qd) = ess supx∼QdwPd/Qd(x) ≤ dmax
∞

(iii) The reward function R is Borel and bounded by a finite constant ||R||∞ ≤ Rmax < +∞
a.s., and Vmax ≡ Rmax

1−γ < +∞.

(iv) We can sample from the generating function G and evaluate the observation probability
density Z.

(v) The POMDP terminates after D <∞ steps.
Intuitively, condition (ii) means that the ratio of the conditional observation probability
to the marginal observation probability cannot be too high. Additionally, our results still
hold even when either of S,O are discrete, as long as it doesn’t violate condition (ii), by
appropriately switching the integrals to Riemann sums.

While we restrict our analysis to the case when γ < 1 for a finite horizon problem, the
authors believe that similar results can be derived for either when γ = 1 or when dealing
with infinite horizon problems.

Theorem 5.2 (Accuracy of POWSS Q-Value Estimates). Suppose conditions (i)-(v) are
satisfied. Then, for a given ϵ > 0, choosing constants C, λ, δ that satisfy:

λ = ϵ(1− γ)2/5, δ = λ/(VmaxD(1− γ)2) (5.3)

δ ≥ 3|A|(3|A|C)D exp(−C · t2max) (5.4)

tmax(λ,C) =
λ

3Vmaxdmax
∞
− 1√

C
> 0 (5.5)

The Q-function estimates obtained for all depths d = 0, · · · , D − 1 and all actions a are
near-optimal with probability at least 1− δ:∣∣∣Q∗

d(bd, a)− Q̂∗
d(b̄d, a)

∣∣∣ ≤ λ

1− γ
(5.6)

Theorem 5.3 (POWSS Policy Convergence). In addition to conditions (i)-(v), assume that
the closed-loop POMDP Bayesian belief update step is exact. Then, for any ϵ > 0, we can
choose a C such that the value obtained by POWSS is within ϵ of the optimal value function
at b0 a.s.:

V ∗(b0)− V POWSS(b0) ≤ ϵ (5.7)

Theorems 5.2 and 5.3 are proven sequentially in the following subsections. We generally
follow the proof strategy of Kearns et al. [92] but with significant additions to account for
the belief-based POMDP calculations rather than state-based MDP calculations. We use
induction to prove a concentration inequality for the value function at all nodes in the tree,
starting at the leaves and proceeding up to the root.
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5.4.3.1 Value Convergence at Leaf Nodes

First, we reason about the convergence at nodes at depth D − 1 (leaf nodes). In the subse-
quent analysis, we abbreviate some terms of interest with the following notation:

T i1:d ≡
d∏

n=1

T (sn,i|sn−1,i, an) (5.8)

Z i,j1:d ≡
d∏

n=1

Z(on,j|an, sn,i)

Here d denotes the depth, i denotes the index of the state sample, and j denotes the index
of the observation sample. Absence of indices i, j means that {sn} and/or {on} appear as
regular variables. Intuitively, T i1:d is the transition density of state sequence i from the root
node to depth d, and Z i,j1:d is the conditional density of observation sequence j given state
sequence i from the root node to depth d. Additionally, bid denotes bd(sd,i), rd,i the reward
R(sd,i, ad), and wd,i the weight of sd,i.

Since the problem ends after D steps, the Q-function for nodes at depth D− 1 is simply
the expectation of final reward and the POWSS estimate has the following form:

Q∗
D−1(bD−1, a) =

∫
S

R(sD−1, a)bD−1dsD−1 (5.9)

Q̂∗
D−1(b̄D−1, a) =

∑C
i=1wD−1,irD−1,i∑C

i=1wD−1,i

(5.10)

Lemma 5.1 (SN Estimator Leaf Node Convergence). Q̂∗
D−1(b̄D−1, a) is an SN estimator of

Q∗
D−1(bD−1, a), and the following leaf-node concentration bound holds with probability at least

1− 3 exp(−C · t2max(λ,C)),

|Q∗
D−1(bD−1, a)− Q̂∗

D−1(b̄D−1, a)| ≤ λ (5.11)

Proof. First, we show that Q̂∗
D−1(b̄D−1, a) is an SN estimator of Q∗

D−1(bD−1, a). By following
the recursive belief update, the belief term can be fully expanded:

bD−1(sD−1) =

∫
SD−1(Z1:D−1)(T1:D−1)b0ds0:D−2∫
SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(5.12)

Then, Q∗
D−1(bD−1, a) is equal to the following:

Q∗
D−1(bD−1, a) =

∫
S

R(sD−1, a)bD−1dsD−1 (5.13)

=

∫
SD R(sD−1, a)(Z1:D−1)(T1:D−1)b0ds0:D−1∫

SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(5.14)
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We approximate the Q∗ function with importance sampling by utilizing problem requirement
(iv), where the target density is bD−1. First, we sample the sequences {sn}i according to
the joint probability (T1:D−1)b0. Afterwards, we weight the sequences by the corresponding
observation density Z1:D−1, obtained from the generated observation sequences {on}j. For
now, we assume the observation sequences {on}j are fixed.

Applying the importance sampling formalism to our system for all depths d = 0, · · · , D−
1, Pd is the normalized measure incorporating the probability of observation sequence j on
top of the state sequence i until the node at depth d, and Qd is the measure of the state
sequence. We can think of Pd being indexed by the observation sequence {on}j.

Pd = Pd{on}j({sn}i) =
(Z i,j1:d)(T i1:d)bi0∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(5.15)

Qd = Qd({sn}i) = (T i1:d)bi0 (5.16)

wPd/Qd({sn}i) =
(Z i,j1:d)∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(5.17)

The weighing step is done by updating the self-normalized weights given in POWSS
algorithm. We define wd,i and rd,i as the weights and rewards obtained at step d for state
sequence i from POWSS simulation. With our recursive definition of the empirical weights,
we obtain the full weight of each state sequence i for a fixed observation sequence j:

wD−1,i = wD−2,i · Z(oD−1,j|aD−1, sD−1,i) (5.18)

∝ Z i,j1:D−1 (5.19)

Realizing that the marginal observation probability is independent of indexing by i, we
show that Q̂∗

D−1(b̄D−1, a) is an SN estimator of Q∗
D−1(bD−1, a):

Q̂∗
D−1(b̄D−1, a) =

∑C
i=1(Z

i,j
1:D−1)R(sD−1,i, a)∑C
i=1(Z

i,j
1:D−1)

(5.20)

=

∑C
i=1

(Zi,j
1:D−1)∫

SD (Zj
1:D−1)(T1:D−1)b0ds0:D−1

R(sD−1,i, a)∑C
i=1

(Zi,j
1:D−1)∫

SD (Zj
1:D−1)(T1:D−1)b0ds0:D−1

(5.21)

=

∑C
i=1wPD−1/QD−1({sn}i)R(sD−1,i, a)∑C

i=1wPD−1/QD−1({sn}i)
(5.22)

=
C∑
i=1

w̃PD−1/QD−1({sn}i)R(sD−1,i, a) (5.23)

Since {sn}1, · · · {sn}C are i.i.d.r.v. sequences of depth D sampled from QD−1, and R is a
bounded function from problem requirement (iii), we can apply the SN concentration bound
in Theorem 5.1 to prove Lemma 5.1. Detailed finishing steps of the proof are given in
Appendix A.2.



CHAPTER 5. PARTIALLY OBSERVABLE WEIGHTED SPARSE SAMPLING 49

5.4.3.2 Induction from Leaf to Root Nodes

Now, we want to show that nodes at all depths have convergence guarantees via induction.

Lemma 5.2 (SN Estimator Step-by-Step Convergence). Q̂∗
d(b̄d, a) is an SN estimator of

Q∗
d(bd, a), and for all d = 0, · · · , D − 1 and a, the following holds with probability at least

1− 3|A|(3|A|C)D exp(−C · t2max):

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤ αd (5.24)

αd ≡ λ+ γαd+1; αD−1 = λ (5.25)

Proof. First, we set C such that C > (3Vmaxd
max
∞ /λ)2 to satisfy tmax(λ,C) > 0, which ensures

that the SN concentration inequality holds with probability 1 − 3 exp(−C · t2max(λ,C)) at
any given step d and action a. Furthermore, we multiply the worst-case union bound factor
(3|A|C)D, since we want the function estimates to be within their respective concentration
bounds for all the actions |A| and child nodes C at each step d = 0, · · · , D − 1, for the 3
times we use SN concentration bound in the induction step. We once again multiply the
final δ by |A| to account for the root node Q-value estimates also satisfying their respective
concentration bounds for all actions.

Following our definition of EstimateQ, the value function estimates at step d are given
as the following:

V̂ ∗
d (b̄d) = max

a∈A
Q̂∗
d(b̄d, a) (5.26)

Q̂∗
d(b̄d, a) =

∑C
i=1wd,i

(
rd,i + γV̂ ∗

d+1(bdaoi)
)

∑C
i=1wd,i

(5.27)

The base case d = D − 1 holds by Lemma 5.1. Then for the inductive step, we assume
Eq. (5.24) holds for all actions at step d + 1. Using the triangle inequality for step d, we
split the difference into two terms, the reward estimation error (A) and the next-step value
estimation error (B):

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤

∣∣∣∣∣E[R(sd, a)|bd]−
∑C

i=1wd,ird,i∑C
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

(5.28)

+ γ

∣∣∣∣∣E[V ∗
d+1(bao)|bd]−

∑C
i=1wd,iV̂

∗
d+1(bdaoi)∑C

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(B)

(5.29)

Each of the error terms are bound by (A) ≤ Rmax

3Vmax
λ and (B) ≤ 1

3
λ+ 2

3γ
λ+αd+1. We provide

a detailed justification of these bounds in Appendix A.3, which uses the SN concentration
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bound 3 times. Combining (A) and (B), we prove the inductive hypothesis:

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤
Rmax

3Vmax

λ+ γ[
1

3
λ+

2

3γ
λ+ αd+1]

≤ λ+ γαd+1 = αd (5.30)

Therefore, Eq. (5.24) holds for all d = 0, · · · , D − 1 with probability at least
1− 3|A|(3|A|C)D exp(−C · t2max).

Proof. (Theorem 5.2) First, we choose constants C, λ, δ and densities Z, T , b0 that satisfy
the conditions in Theorem 5.2. Since αd ≤ α0, the following holds for all d = 0, · · · , D − 1
with probability at least 1− δ through Lemmas 5.1 and 5.2:

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤ α0 =
D−1∑
d=0

γdλ ≤ λ

1− γ
(5.31)

Note that the convergence rate δ is O(CD exp(−tC)), where t = (λ/(3Vmaxd
max
∞ ))2.

5.4.3.3 Near-Optimal Policy Performance

We have proven in the previous subsection that the planning step results in a near-optimal
Q-value for a given belief. Assuming further that we have a perfect Bayesian belief update
in the outer observe-plan-act loop, we prove Theorem 5.3, which states that the closed-loop
POMDP policy generated by POWSS at each planning step results in a near-optimal policy.
The proof given in Appendix A.4 combines Theorem 5.2 with results from Kearns et al. [92];
Singh and Yee [161]:

V ∗(b0)− V POWSS(b0) ≤ ϵ (5.32)

5.5 Experiments

The simple numerical experiments in this section confirm the theoretical results of Sec-
tion 5.4. Specifically, they show that the value function estimates of POSS converge to the
QMDP approximation and the value function estimates of POWSS converge to the optimal
value function for a toy problem.

5.5.1 Continuous Observation Tiger Problem

We consider a simple modification of the classic tiger problem [84] that we refer to as the
continuous observation tiger (CO-tiger) problem. In the CO-tiger problem, the agent is
presented with two doors, left (L) and right (R). One door has a tiger behind it (S =
{Tiger L, Tiger R}). In the classic problem, the agent can either open one of the doors or
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listen, and the CO-tiger problem has an additional wait action to illustrate the suboptimality
of QMDP estimates (A = {Open L, Open R, Wait, Listen}). If the agent opens a door, the
problem terminates immediately; If the tiger is behind that door, a penalty of -10 is received,
but if not, a reward of 10 is given. Waiting has a penalty of -1 and listening has a penalty of
-2. If the agent waits or listens, a noisy continuous observation between 0 and 1 is received
(O = [0, 1]). In the wait case, this observation is uniformly distributed, independent of the
tiger’s position, yielding no information. In the listen case, the observation distribution is
piecewise uniform. An observation in [0, 0.5] corresponds to a tiger behind the left door and
(0.5, 1] the right door. Listening yields an observation in the correct range 85% of the time.
The discount is 0.95, and the terminal depth is 3.

The optimal solution to this problem may be found by simply discretizing the observation
space so that any continuous observation in [0, 0.5] is treated as a Tiger L observation,
and any continuous observation in (0.5, 1] is treated as a Tiger R observation. This fully
discrete version of the problem may be easily solved by a classical solution method such as
the incremental pruning method of Cassandra et al. [33]. Given an evenly-distributed initial
belief, the optimal action is Listen with a value of 4.65, and the Wait action has a value of
3.42. The QMDP estimate for Wait is 8.5 and for Listen is 7.5.

While the CO-tiger problem is too small to be of practical significance, it serves as an
empirical demonstration that POWSS converges toward the optimal value estimates and that
POSS converges toward the QMDP estimates. In fact, the QMDP estimates generated by
POSS are suboptimal in this example and lead to picking the suboptimal Wait action. Both
POWSS and POSS were implemented using the POMDPs.jl framework, [53] and open-source
code can be found at https://github.com/JuliaPOMDP/SparseSampling.jl.

5.5.2 Results

The results plotted in Fig. 5.2 show the Q-value estimates of POWSS converging toward
the optimal Q-values as the width C is increased. Each data point represents the mean Q-
value from 200 runs of the algorithm from a uniformly-distributed belief, with the standard
deviation plotted as a ribbon. The estimates for POSS have no uncertainty bounds since
the estimates in this problem are the same for all C.

With C = 1, POWSS suffers from particle depletion and, because of the particular
structure of this problem, finds the QMDP Q-values. As C increases, one can observe that
both bias and variance in the Q-value estimates significantly decrease in agreement with our
theoretical results, while POSS continues to yield incorrect estimates.

Some estimates by POMCPOW are also included. These are not directly compara-
ble since POMCPOW is parameterized differently. For these tests, the double progressive
widening parameters ko = C, αo = 0 were used to limit the tree width, with n = C3 iter-
ations to keep the particle density high in wider trees (see Sunberg and Kochenderfer [171]
for parameter definitions). POMCPOW’s value estimates are strongly biased downwards
by exploration actions, but the estimated value for Listen action is much higher than the
estimated value for the Wait action, which is too low to appear on the plot. Thus the correct

https://github.com/JuliaPOMDP/SparseSampling.jl
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Figure 5.2: Numerical convergence of Q-value estimates for POSS, POWSS, and POMCPOW
in the CO-tiger problem. Ribbons indicate standard deviation.

action will usually still be chosen. At C = 41, POMCPOW is about an order of magnitude
faster than POWSS.

5.6 Conclusion

This work has proposed two new POMDP algorithms and analyzed their convergence in
POMDPs with continuous observation spaces. Though these algorithms are not computa-
tionally efficient and thus not suitable for realistic problems, this work lays the foundation
for analysis of more complex algorithms, rigorously justifying the observation likelihood
weighting used in POWSS, POMCPOW, and DESPOT-α.

There is a great deal of future work to be done along this path. Most importantly,
the theory presented in this work should be extended to more computationally efficient
and hence practical algorithms. Before extending to POMCPOW and DESPOT-α, it may
be beneficial to apply these techniques to an algorithm that is less conceptually complex,
such as a modification of Sparse-UCT [21] extended to partially observable domains. Such
an algorithm could enjoy strong theoretic guarantees, ease of implementation, and good
performance on large problems.

Moreover, the proof techniques in this work may yield insight into which problems are
difficult for sparse tree search techniques. For example, the Rényi divergence between the
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marginal and conditional state distributions (assumption (ii)) may be a difficulty indicator
for likelihood-weighted sparse tree solvers, similar to the covering number of the optimal
reachable belief space for point-based solvers [105].
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Chapter 6

Optimality Guarantees for Particle
Belief Approximation of POMDPs

Chapter Outline

This chapter is based on the paper “Optimality Guarantees for Particle Belief Approx-
imation of POMDPs” [112], written in collaboration with Tyler J. Becker, Mykel J.
Kochenderfer, Claire J. Tomlin, and Zachary N. Sunberg.

6.1 Introduction

Maintaining safety and acting efficiently in the midst of uncertainty is an important as-
pect in a diverse set of challenges from transportation [77, 172] to autonomous scientific
exploration [25, 58], to healthcare [13] and ecology [123]. The partially observable Markov
decision process (POMDP) is a flexible framework for sequential decision making in uncertain
environments.

One common method for solving POMDPs is online tree search, which is attractive for
several reasons. First, the approach scales to very large problems because it uses sampled
trajectories, making it insensitive to the dimensionality of the state and observation spaces
[92]. Second, since online computation focuses on the current states and states likely to
be encountered in the future, it can reduce the need for offline computation and end-to-end
training [48]. Third, tree search is applicable to a wide range of problems, for example hybrid
continuous-discrete and non-convex problems, because it only depends on a minimal set of
problem structure requirements.

Recently proposed POMDP tree search algorithms [61, 74, 109, 110, 124, 171, 187] have
been shown empirically to work on continuous state and observation spaces. Theoretical
analysis, however, has lagged behind. While there are algorithms that have performance
guarantees [109, 110] and algorithms that perform well empirically [61, 74, 110, 124, 171,
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187], there has been little progress on generalization of why such family of algorithms can
enjoy performance guarantees. For instance, AdaOPS [187], a recent particle belief-based
POMDP solver that we include in our analysis, comes very close to capturing both theory
and practice, but it has a complex algorithmic structure and provides only algorithm specific
guarantees with additional simplifying assumptions. The considerable gap in the connection
between POMDPs and practical approximations using particle methods still remains, only
partially answered by a few algorithm-specific guarantees.

This chapter formally justifies that optimality guarantees in a finite sample particle belief
MDP (PB-MDP) approximation of a POMDP/belief MDP yields optimality guarantees in
the original POMDP as well. We accomplish this by showing that the Q-values of the
POMDP and PB-MDP are close with high probability by using an intermediary theoretical
algorithm called Sparse Sampling-ω. Specifically, we prove that the Sparse Sampling-ω Q-
value estimates are close to both optimal Q-values of the POMDP and PB-MDP with high
probability. This in turn implies that since there exists an algorithm that approximates
both Q-values accurately with high probability, the optimal Q-values of the POMDP and
PB-MDP themselves must be close to each other with high probability that scales as 1 −
O(CD exp(−t · C)) where C is the number of particles, D is the planning depth, and t is a
number determined by the POMDP reward function and probability distribution, number
of particles, and desired accuracy. Notably, this convergence rate does not directly depend
on the size of the state space nor the observation space, but rather depends on the Rényi
divergence that links the probabilities concerning state and observation trajectories and the
planning horizon D.

This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sam-
pling based MDP algorithm of choice to a POMDP by solving the corresponding particle
belief MDP approximation and preserve the convergence guarantees in the POMDP. Practi-
cally, this means additionally assuming we have an explicit observation model Z, and then
simply swapping out the state transition generative model with a particle filtering-based
model, which only increases the computational complexity of transition generation by a fac-
tor of O(C), with C the number of particles in a particle belief state. This allows us to
devise algorithms such as Sparse Particle Filter Tree (Sparse-PFT), which enjoys algorith-
mic simplicity, theoretical guarantees and practicality, as it is equivalent to upper confidence
trees (UCT) [21, 157], with particle belief states.

The remainder of this chapter proceeds as follows: First, Section 6.2 formalizes the no-
tion of particle belief MDPs (PB-MDPs) and gives detailed mathematical treatment. Then,
Section 6.3 introduces Sparse Sampling-ω algorithm, and proves its coupled convergence to-
wards the optimal Q-values of a POMDP and its corresponding PB-MDP in Theorem 6.2.
Section 6.4 formally bridges the gap between POMDPs and PB-MDPs by leveraging the
coupled convergence of Sparse Sampling-ω. In this section, we present two main theorems:
Theorem 6.3 shows the optimal Q-value bounds between POMDP and PB-MDP, and Theo-
rem 6.4 shows the near-optimality of planning in PB-MDP to solve a POMDP in closed-loop.
We also introduce Sparse-PFT, a practical example of generating a PB-MDP approximation
algorithm from an MDP algorithm. Finally, Section 6.5 empirically shows the performance
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Figure 6.1: Illustration of Particle Belief MDP approximation of POMDPs and its theoretical
justification. Since Sparse Sampling-ω algorithm Q-value estimator converges to both the optimal Q-values
of POMDP and PB-MDP, such an existence of algorithm implies that the optimal Q-values of POMDP and
PB-MDP are also close to each other with high probability. This enables us to approximate the POMDP
problem as a PB-MDP, and then solve the PB-MDP with an MDP algorithm to make a decision in the original
POMDP while retaining the guarantees and computational efficiencies of the original MDP algorithm.

of Sparse-PFT and other practical continuous observation POMDP algorithms over five dif-
ferent simulation experiments, and validates the improvements in performance of PB-MDP
approximation with the increase in number of particles C while keeping other hyperparam-
eters fixed.

6.2 Particle Belief MDPs (PB-MDPs)

In this section, we define the corresponding particle belief MDP (PB-MDP) for a given
POMDP. Deriving the corresponding particle belief MDP of a POMDP is equivalent to
approximating the belief MDP with a finite number of particles.

Definition 6.1 (Particle Belief MDP). The corresponding particle belief MDP for a given
POMDP problem P = (S,A,O, T ,Z, R, γ) is the MDP MP = (Σ, A, τ, ρ, γ) defined by the
following elements:

• Σ: State space over particle beliefs b̄d. An element in this set, b̄d ∈ Σ, is a particle
collection, b̄d = {(sd,i, wd,i)}Ci=1, where sd,i ∈ S, wd,i ∈ R+.1 Note that this space is not
permutation invariant over the particles, meaning that particles of different orders are
considered different elements in Σ.

1The d subscript, the number of steps, is included for subscript order consistency with the rest of the
chapter, but is not meaningful in this context.
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• A: Action space. Remains the same as the original action space.

• τ : Transition density τ(b̄d+1 | b̄d, a): We define the likelihood weights wd,i of particles
sd,i to be updated through unnormalized Bayes rule:

wd+1,i = wd,i · Z(o | a, sd+1,i). (6.1)

Then, the transition probability from b̄d to b̄d+1 by taking the action a can be defined
as:

τ(b̄d+1 | b̄d, a) ≡
∫
O

P(b̄d+1 | b̄d, a, o)P(o | b̄d, a)do. (6.2)

The first term in the integrand product P(b̄d+1 | b̄d, a, o) is the conditional transition
density given some observation o. Note that the likelihood weight Bayesian update
step is deterministic given sd,i, sd+1,i, a and o. Combining with the facts that the
state transition density update for each particle is independent and that the case
when b̄d+1 = {s′i, w′

i} results in the only nonzero integrand, such likelihood calculation
simplifies into the product of the transition densities for each i-th index particle if such
transition is valid:

P(b̄d+1 | b̄d, a, o) =
∫
Σ

P(b̄d+1 | b̄d, a, o, {s′i, w′
i})P({s′i, w′

i} | b̄d, a, o)dσ (6.3)

=

∫
Σ

δ
[
b̄d+1 = {s′i, w′

i}
] C∏
i=1

T (s′i | sd,i, a)dσ (6.4)

=

{∏C
i=1 T (sd+1,i | sd,i, a) if wd+1,i = wd,i · Z(o | a, sd+1,i) ∀i

0 otherwise.
(6.5)

The second term in the integrand product P(o | b̄d, a) is the observation likelihood
given a particle belief and an action. This is equivalent to weighted sum of observation
likelihoods conditioning on the observation having been generated from the respective
i-th particle:

P(o | b̄d, a) = P(o | {sd,i, wd,i}, a) =
∑C

i=1wd,i · P(o | sd,i, a)∑C
i=1wd,i

(6.6)

=

∑C
i=1wd,i · [

∫
S
Z(o | a, s′)T (s′ | sd,i, a)ds′]∑C

i=1wd,i
. (6.7)

Note that this density τ is usually impossible or very difficult to calculate explicitly.
However, it is rather easy to sample from it using generative models.

• ρ: Reward function ρ(b̄d, a):

ρ(b̄d, a) =

∑
iwd,i ·R(sd,i, a)∑

iwd,i
. (6.8)
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Note that if R is bounded by Rmax, ρ is also bounded with ||ρ||∞ ≤ Rmax, since the
normalized weights sum to 1.

• γ: Discount factor. Remains the same as the original discount factor.

The significance of defining a corresponding particle belief MDP is that we can directly
adapt any sampling-based MDP algorithms to approximately solve a POMDP by only chang-
ing the transition generative model. The transition generative model will now be a sampler
based on particle filtering, as the particle belief MDP deals with particle belief states. Fur-
thermore, this allows Q-value convergence guarantees of the MDP algorithms to translate
nicely into solving the POMDP, as we will prove later in this chapter that the optimal
Q-values of the POMDP Q∗

P and PB-MDP Q∗
MP

are close with high probability.

6.3 Sparse Sampling-ω

In order to show that the optimal Q-values of the POMDP Q∗
P and PB-MDP Q∗

MP
are

approximately equivalent, we first introduce an algorithm called Sparse Sampling-ω (sparse
sampling with weights), which will serve as a theoretical bridge between POMDP and PB-
MDP. Sparse Sampling-ω is a sparse sampling solver that uses particle belief states with
particle likelihood weighting to deal with observation uncertainty. As is evident from the
name, Sparse Sampling-ω takes inspiration from sparse sampling [92] for continuous state
MDPs, using particle belief states. This algorithm can also be seen as a slight modification
of POWSS [109], the first known algorithm to enjoy convergence guarantees to the optimal
policy for continuous observation POMDP problems with performance guarantees and al-
gorithm logic that do not directly depend on size of the state and observation spaces. This
duality effectively lets us bridge POMDPs and PB-MDPs. Note that Sparse Sampling-ω
is purely a theoretical intermediary tool to bridge POMDPs and PB-MDPs, and fully ex-
panding the state and action nodes is extremely computationally inefficient. Rather, the
existence of such theoretically well-behaved algorithm is what lets us effectively bridge the
gap between the optimal Q-values of the POMDP Q∗

P and PB-MDP Q∗
MP

.

6.3.1 Algorithm Definition

First, we define the auxiliary functions for Sparse Sampling-ω in Algorithm 6.1, which are
also applicable to any sampling-based particle belief MDP planner. GenPF is the helper
function to generate the next-step particle belief set, where the particles are evolved through
the transition density T and the weights are updated through the observation density Z. In
GenPF, the sampled states s′i are inserted into each next-step particle belief set baoj with
the new weights w′

i = wi · Z(oj | a, s′i), which are the adjusted probability of hypothetically
sampling observation oj from state s′i. Furthermore, the reward returned by GenPF is the
particle likelihood weighted reward ρ =

∑
iwiri/

∑
iwi of the current particle belief state,

which is a constant output for a fixed pair of b̄, a. The Plan function is the entry point
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Algorithm 6.1 Auxiliary Procedures for Sparse Sampling-ω and other PB-MDP algorithms

Algorithm: GenPF(b̄, a)
Input: particle belief set b̄ = {(si, wi)}, action
a.
Output: New updated particle belief set b̄′ =
{(s′i, w′

i)}, mean reward ρ.

1: so ← sample si from b̄ w.p. wi∑
i wi

2: o← G(so, a)
3: for i = 1, . . . , C do
4: s′i, ri ← G(si, a)
5: w′

i ← wi · Z(o|a, s′i)
6: b̄′ ←

{
(s′i, w

′
i)
}C
i=1

7: ρ←
∑

iwiri/
∑

iwi
8: return b̄′, ρ

Algorithm: Plan(b)
Input: Belief b.
Output: An action a.

1: for i = 1, . . . , C do
2: s← sample from b
3: b̄← b̄ ∪ {(s, 1/C)}
4: for i = 1, . . . , n do
5: Simulate(b̄, 0)

6: return a← argmaxa∈C(b)Q(b, a)

Algorithm 6.2 Sparse Sampling-ω Algorithm

Global Variables: γ,G,C,D.
Algorithm: EstimateV(b̄, d)
Input: particle belief set b̄ = {(si, wi)}, depth
d.
Output: A scalar V̂ ∗

d (b̄) that is an estimate of
V ∗(b̄).

1: if d ≥ D then
2: return 0
3: for a ∈ A do
4: Q̂∗

d(b̄, a)← EstimateQ(b̄, a, d)

5: return V̂ ∗
d (b̄)← maxa∈A Q̂

∗
d(b̄, a)

Algorithm: EstimateQ(b̄, a, d)
Input: particle belief set b̄ = {(si, wi)}, action
a, depth d.
Output: A scalar Q̂∗

d(b̄, a) that is an estimate
of Q∗

d(b, a).

1: for i = 1, . . . , C do
2: b̄′i, ρ← GenPF(b̄, a)
3: V̂ ∗

d+1(b̄
′
i)← EstimateV(b̄′i, d+ 1)

4: return Q̂∗
d(b̄, a)← ρ+ 1

C

∑C
i=1 γ · V̂ ∗

d+1(b̄
′
i)

to the Sparse-PFT algorithm, which initializes the particle belief state, subsequently calls
Simulate to build the tree and returns the best action with the highest Q-value.

We define the main planning functions in Sparse Sampling-ω, EstimateV and Esti-
mateQ functions, in Algorithm 6.2. The global variables are the discount factor γ, the
generative model G, the observation width C, and the planning depth D. We use particle
belief set b̄ at every step d, which contain pairs (si, wi) that correspond to the generated sam-
ple and its corresponding weight. EstimateV is a subroutine that returns the value function
V , for an estimated state or belief, by calling EstimateQ for each action and returning the
maximum. Similarly, EstimateQ performs sampling and recursive calls to EstimateV to
estimate the Q-function at a given step with a weighted average. In EstimateQ, Sparse
Sampling-ω samples the next particle belief state using GenPF.

Consequently, the Sparse Sampling-ω policy action can be obtained by calling the value
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estimation function EstimateV(b̄0, 0) at the root node and taking an action that maximizes
the Q-value. The particle belief set is initialized by drawing samples from b0 and setting
weights to 1/C, as the samples were drawn directly from b0. Sparse Sampling-ω is not
computationally efficient as it fully expands the sparsely sampled tree with full particle
belief states, and serves only to demonstrates theoretical convergence and is only practically
applicable to very small toy POMDP problems.

Sparse Sampling-ω is identical to the sparse sampling algorithm [92] planning on a par-
ticle belief MDP. It also is a slight modification of the previously-published POWSS algo-
rithm [109]. Specifically, whereas POWSS generates exactly one observation and correspond-
ing new belief for each particle in a belief, Sparse Sampling-ω randomly selects a state to
generate the observation each time GenPF is called in Line 2 of Algorithm 6.2. This means
that Sparse Sampling-ω performs a Monte Carlo sampling estimate of the next step value,
while POWSS performs an importance weighted summation over the estimates.

Most importantly, this duality of being a modification of POWSS algorithm maintaining
similar convergence guarantees for POMDPs while simultaneously being an adaptation of
the sparse sampling algorithm for particle belief MDP makes it the ideal candidate to bridge
POMDPs and PB-MDPs together. As an added benefit, the definition of Sparse Sampling-ω
is much simpler than the original POWSS algorithm, while still allowing us to use similar
analysis techniques used in both POWSS and sparse sampling.

6.3.2 Theoretical Analysis

In this section, we will prove that Sparse Sampling-ω algorithm can be made to approximate
both optimal Q-values of the POMDP Q∗

P and PB-MDP Q∗
MP

arbitrarily close by increasing
the observation width C. Theorem 6.2 proves that the Sparse Sampling-ω algorithm ap-
proximates these Q-values with high probability by combining results from self-normalized
importance sampling estimators and POWSS optimality proofs [109] to prove the optimality
in Q∗

P, and sparse sampling proof [92] to prove the optimality in Q∗
MP

.

6.3.2.1 Importance Sampling

We begin the theoretical portion of this work by stating an important property about self-
normalized importance sampling estimators (SN estimators). We have previously published
this property [109] but present it again here because of its importance to our analysis. One
goal of importance sampling is to estimate an expected value of a function f(x) where x
is drawn from a distribution P while the estimator only has access to another distribution
Q along with the importance weights wP/Q(x) ∝ P(x)/Q(x). This technique is crucial
for Sparse Sampling-ω because we wish to estimate the value for beliefs conditioned on
observation sequences while only being able to sample from the marginal distribution of
states for a given action sequence.
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We define the following quantities:

w̃P/Q(x) ≡
wP/Q(x)∑N
i=1wP/Q(xi)

(SN Importance Weight)

dα(P||Q) ≡ Ex∼Q[wP/Q(x)
α] (Rényi Divergence)

µ̃P/Q ≡
N∑
i=1

w̃P/Q(xi)f(xi). (SN Estimator)

Of particular importance is the infinite Rényi Divergence, d∞, which can be rewritten as
an almost sure bound on the ratio of P and Q:

d∞(P||Q) = ess sup
x∼Q

wP/Q(x). (6.9)

Assuming d∞(P||Q) is finite, we prove an estimator concentration bound in the following
theorem.

Theorem 6.1 (SN d∞-Concentration Bound). Let P and Q be two probability measures
on the measurable space (X ,F) with P absolutely continuous w.r.t. Q and d∞(P||Q) <
+∞. Let x1, . . . , xN be independent identically distributed random variables (i.i.d.r.v.) with
distribution Q, and f : X → R be a bounded function (∥f∥∞ < +∞). Then, for any λ > 0

and N large enough such that λ > ∥f∥∞ d∞(P||Q)/
√
N , the following bound holds with

probability at least 1− 3 exp(−N · t2(λ,N)):

|Ex∼P [f(x)]− µ̃P/Q| ≤ λ, (6.10)

t(λ,N) ≡ λ

∥f∥∞ d∞(P||Q)
− 1√

N
. (6.11)

Theorem 6.1 builds upon the derivation in Proposition D.3 of Metelli et al. (2018), which
provides a polynomially decaying bound by assuming d2 is bounded. Here, we compromise
by further assuming that d∞ exists and is bounded to get an exponentially decaying bound.
The proof of Theorem 6.1 is given in Appendix A.1, as the theorem remains exactly the same
as that of Theorem 5.1, and the intuitive explanation of the d∞ assumption in the POMDP
planning context is given in Section 6.3.2.2.

This exponential decay is important for the proofs in this section. We need to ensure that
all nodes of the Sparse Sampling-ω tree at all depths d reach convergence. The branching of
the tree induces a factor proportional toND. A probabilistic bound that decays exponentially
with N will not only help offset the ND factor even with increasing depths, but also be
consistent with Hoeffding-type bound exponential error rate that we also use to bound
intermediate estimator errors.
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6.3.2.2 Assumptions for Analyzing Sparse Sampling-ω.

The following assumptions are needed for the Sparse Sampling-ω coupled convergence proof:

(i) S and O are continuous spaces, and the action space has a finite number of elements,
|A| < +∞.

(ii) For any observation sequence {on,j}dn=1, the densities Z, T , b0 are chosen such that the
Rényi divergence of the target Pd and sampling distributionQd (Eqs. (6.17) and (6.18))
is bounded above by dmax

∞ for all d = 0, . . . , D − 1:

d∞(Pd||Qd) = ess supx∼Qd wPd/Qd(x) ≤ dmax
∞ (6.12)

(iii) The reward function R is bounded by a finite constant Rmax, and hence the value
function is bounded by Vmax ≡ Rmax

1−γ .

(iv) We can sample from the generating function G and evaluate the observation density
Z.

(v) The POMDP terminates after no more than D <∞ steps.

(vi) We restrict our analysis to all the beliefs b ∈ B that are realizable from the initial belief
b0 through Bayesian updates with action sequences {an} and observation sequences
{on}.

Intuitively, condition (ii) means that the ratio of the conditional observation probability to
the marginal observation probability cannot be too high. Additionally, the results still hold
even when either of S or O are discrete, so long as it does not violate condition (ii), by
appropriately switching the integrals to sums.

Although our analysis is restricted to the case when γ < 1 and the problem has a finite
horizon, we believe that similar results can be derived for either when γ = 1 for a finite
horizon or for infinite horizon problems when γ < 1 by using the common argument that
eventually future discounted rewards will be small [92, 159]. Furthermore, while the results
from this section repeat steps taken in proving POWSS [109], we significantly modify the
details for Sparse Sampling-ω.

6.3.2.3 Particle Likelihood Weighting Accuracy.

As a precursor to Theorem 6.2, we establish a general result about function estimation
using state particles with likelihood weights. This is useful because the inductive proof for
showing Sparse Sampling-ω convergence in Lemma 6.2 relies heavily upon an SN estimator
concentration inequality as well as a Hoeffding-type inequality.

Lemma 6.1 (Particle Likelihood SN Estimator Convergence). Suppose a function f is
bounded by a finite constant ∥f∥∞ ≤ fmax, and a particle belief state b̄d = {(sd,i, wd,i)}Ci=1
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at depth d represents bd with particle likelihood weighting that is recursively updated as
wd,i = wd−1,i · Z(od | a, sd). Then, for all d = 0, . . . , D − 1, the following weighted av-
erage is the SN estimator of f under the belief bd corresponding to the actions {an}d−1

n=0 and
observations {on}dn=1, for all beliefs bd ∈ B that are realizable given the initial belief b0:

µ̃b̄d [f ] =

∑C
i=1wd,if(sd,i)∑C

i=1wd,i
, (6.13)

and the following concentration bound holds with probability at least 1−3 exp(−C ·t2max(λ,C)),

|Es∼bd [f(s)]− µ̃b̄d [f ]| ≤ λ, (6.14)

tmax(λ,C) ≡
λ

fmaxdmax
∞
− 1√

C
. (6.15)

Proof. We only outline the important steps here, and defer the detailed proof of this lemma
to Appendix B.1. The key of this proof lies in the fact that the state particles trajectories
{sn,1}, . . . , {sn,C} are i.i.d.r.v. sequences of depth d, as GenPF independently generates
each state sequence i according to the transition density T . While GenPF generates highly
correlated observation sequences and histories {on,j}dn=1, the dependence on observation se-
quence for a given particle belief state only comes through in the particle likelihood weights.

We abbreviate some terms of interest with the following notation:

T i1:d ≡
d∏

n=1

T (sn,i | sn−1,i, an); Z i,j1:d ≡
d∏

n=1

Z(on,j | an, sn,i), (6.16)

where d is the depth, i is the index of the state sample, and j is the index of the observation
sample. Absence of indices i, j means that {sn} and/or {on} appear as regular variables.
Intuitively, T i1:d is the transition density of state sequence i from the root node to depth d,
and Z i,j1:d is the conditional density of observation sequence j given state sequence i from the
root node to depth d. Additionally, bid denotes bd(sd,i) and wd,i the weight of sd,i.

Then, we apply importance sampling to our system for all depths d = 0, . . . , D − 1.
Here, Pd is the normalized measure incorporating the probability of observation sequence
{on,j}dn=1 on top of the state sequence {sn,i}dn=1 and action sequence {an}d−1

n=0 until the node
at depth d, and Qd is the measure of the state sequence. We can think of Pd corresponding
to the observation sequence {on,j}. For simplicity, we also denote Z1:d as the product of

observation likelihoods
∏d

n=1Z(on | an−1, sn) and T1:d as the product of transition densities∏d
n=1 T (sn | sn−1, an−1). Then, for an arbitrary action sequence {an}, the following describes

the densities necessary to define importance weighting:

Pd = Pd{an,on,j}({sn,i}) =
(Z i,j1:d)(T i1:d)bi0∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(6.17)

Qd = Qd{an}({sn,i}) = (T i1:d)bi0 (6.18)

wPd/Qd({sn,i}) =
(Z i,j1:d)∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
. (6.19)
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Here, the integral to calculate the normalizing constant is taken over Sd+1, the Cartesian
product of the state space S over d + 1 steps. Now, we claim that the recursive likelihood
updating scheme produces valid likelihood weights up to a normalization. With our recursive
definition of the empirical weights, we obtain the full weight of each state sequence for a
fixed observation sequence:

wd,i = wd−1,i · Z(od,j | ad, sd,i) = . . . = Z i,j1:d ∝ wPd/Qd({sn,i}). (6.20)

Consequently, we conclude that the weighted average with particle likelihood weights indeed
corresponds to the proper SN estimator:

µ̃b̄d [f ] =

∑C
i=1wd,i · f(sd,i)∑C

i=1wd,i
=

∑C
i=1wPd/Qd({sn,i}) · f(sd,i)∑C

i=1wPd/Qd({sn,i})
. (6.21)

We can apply the SN concentration inequality in Theorem 6.1 to obtain the concentration
bound.

Note that proving this lemma allows us to apply the particle likelihood weighting SN
inequality whenever we encounter weighted averages with particle likelihood weights for a
realizable particle belief. Also, this result does not depend on any specific choice of observa-
tion sequence {on}.

6.3.2.4 Coupled Convergence of Sparse Sampling-ω.

The theorem below describes Sparse Sampling-ω’s coupled convergence to both optimal Q-
values of the POMDP Q∗

P and PB-MDP Q∗
MP

, as C is increased.

Theorem 6.2 (Sparse Sampling-ω Coupled Optimality). Suppose conditions (i)-(vi) are
satisfied. Then, for any desired policy optimality ϵ > 0, choosing constants C, λ, δ that
satisfy:

λ = ϵ(1− γ)2/8, (6.22)

δ = λ/(VmaxD(1− γ)2), (6.23)

C = max


(
4Vmaxd

max
∞

λ

)2

,
64V 2

max

λ2

(
D log

24|A|D+1
D V 2

maxD

λ2
+ log

1

δ

) , (6.24)

the Q-function estimates Q̂∗
ω,d(b̄d, a) obtained for all depths d = 0, . . . , D − 1, realized beliefs

or histories bd encountered in the Sparse Sampling-ω tree, and actions a are jointly near-
optimal with respect to Q∗

P,d and Q∗
MP,d

with probability at least 1− δ:

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤
λ

1− γ
, (6.25)

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤

λ

1− γ
. (6.26)
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To prove Theorem 6.2, we follow a similar proof strategy from our previous proof for
POWSS [109] to show that Eq. (6.25) holds, and a similar strategy of the original sparse
sampling proof [92] to show that Eq. (6.26) holds. In essence, this Sparse Sampling-ω conver-
gence guarantee builds on POWSS and sparse sampling convergence guarantees, providing
coupled convergence results to optimal Q-values of the POMDP Q∗

P and PB-MDP Q∗
MP

.
First, we use induction in Lemma 6.2 to prove a concentration inequality for the value

function at all nodes in the tree, starting at the leaves and proceeding up to the root.
Consequently, proving Lemma 6.2 allows us to prove Theorem 6.2, with some justifications
of how the parameter C can actually be explicitly chosen with the choice of ϵ. The detailed
proof for Theorem 6.2 is in Appendix B.3.

Lemma 6.2 (Sparse Sampling-ω Estimator Q-Value Coupled Convergence). For all d =
0, . . . , D − 1 and a, the following bounds hold with probability at least
1− 6|A|(4|A|C)D exp(−C · t̃2):

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤ αd, αd = λ+ γαd+1, αD−1 = λ, (6.27)

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤ βd, βd = γ(λ+ βd+1), βD−1 = 0, (6.28)

tmax(λ,C) =
λ

4Vmaxdmax
∞
− 1√

C
, t̃ = min{tmax, λ/4

√
2Vmax} (6.29)

Proof. We outline how we use the particle likelihood SN estimator inequality and Hoeffding
inequality to bound the Q-values, and defer the detailed proof to Appendix B.2.

The optimal d-step Q-values for the POMDP Q∗
P and the corresponding PB-MDP Q∗

MP

are

Q∗
P,d(bd, a) = EP[R(sd, a) + γV ∗

P,d+1(bdao) | bd] (6.30)

=

∫
S

R(sd, a)bd · dsd + γ

∫
S

∫
S

∫
O

V ∗
P,d+1(bdao)(Zd+1)(Td,d+1)bd · dsd:d+1do,

(6.31)

Q∗
MP,d

(b̄d, a) = ρ(b̄, a) + γ EMP
[V ∗

MP,d+1(b̄d+1) | b̄d, a] (6.32)

=

∑
iwd,i ·R(sd,i, a)∑C

i=1wd,i
+ γ

∫
Σ

V ∗
MP,d+1(b̄d+1)τ(b̄d+1 | b̄d, a)db̄d+1. (6.33)

The Sparse Sampling-ω value estimates are mathematically equal to

V̂ ∗
ω,d(b̄d) = max

a∈A
Q̂∗
ω,d

(
b̄d, a

)
(6.34)

Q̂∗
ω,d(b̄d, a) =

∑C
i=1wd,ird,i∑C
i=1wd,i

+
1

C

C∑
i=1

γ · V̂ ∗
ω,d+1

(
b̄
′[Ii]
d+1

)
, (6.35)

where {Ii} are C independent identically distributed random variables with finite discrete
distribution pw,d with probability mass pw,d(I = j) = (wd,j/

∑
k wd,k), and particle belief state
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b̄
′[Ii]
d+1 is updated by an observation generated from sd,Ii . This reflects the fact that GenPF
randomly selects a state particle so with probability wd,o/

∑
k wd,k C times independently to

generate a new observation for the particle belief state after next step.
POMDP Value Convergence: First, we show that Eq. (6.27) is satisfied, which is an

adapted and substantially modified proof of POWSS convergence [109]. Using the triangle
inequality for a given step d of the inductive proof, we split the difference into two terms,
the reward estimation error (A) and the next-step value estimation error (B):

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤

∣∣∣∣∣EP[R(sd, a) | bd]−
∑C

i=1wd,ird,i∑C
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

(6.36)

+ γ

∣∣∣∣∣∣EP[V
∗
P,d+1(bdao) | bd]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

The reward estimation error (A) is exactly the particle likelihood importance sampling er-
ror for estimating the reward function R(·, a), which can be bounded by applying Lemma 6.1.
This also proves the base case.

To bound the next-step value estimation error (B), we introduce particle likelihood SN
estimators and Monte Carlo average estimators to bridge the following quantities (detailed
definitions and bounds of each terms are in Appendix B.3):∣∣∣∣∣∣EP[V

∗
P,d+1(bdao) | bd]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

≤ (6.37)

∣∣∣∣∣∣EP[V
∗
P,d+1(bdao) | bd]−

∑C
i=1 wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1 wd,i

∣∣∣∣∣∣︸ ︷︷ ︸
(1) Importance sampling error

+

∣∣∣∣∣∣
∑C
i=1 wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1 wd,i

− 1

C

C∑
i=1

V∗
P,d+1(bd, a)

[Ii]

∣∣∣∣∣∣︸ ︷︷ ︸
(2) MC weighted sum approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V∗
P,d+1(bd, a)

[Ii] − 1

C

C∑
i=1

V ∗
P,d+1(bdao

[Ii])

∣∣∣∣∣∣︸ ︷︷ ︸
(3) MC next-step integral approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V ∗
P,d+1(bdao

[Ii])− 1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(4) Inductive function estimation error

.

PB-MDP Value Convergence: Second, we show that Eq. (6.28) is satisfied, which
is an adapted and substantially modified proof of sparse sampling convergence [92]. Once
again, we split the difference between the SN estimator and the Q∗

MP
function into two terms,
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the reward estimation error (A) and the next-step value estimation error (B):

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤

∣∣ρ(b̄d, a)− ρ(b̄d, a)∣∣︸ ︷︷ ︸
(A) = 0

(6.38)

+ γ

∣∣∣∣∣∣EMP
[V ∗

MP,d+1(b̄d+1) | b̄d, a]−
1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

Since our particle belief MDP induces no reward estimation error, the term (A) is always
0 and proving the base case d = D − 1 is trivial as (A) and (B) are both 0. Then, we show
that the difference (B) is bounded for all d = 0, . . . , D − 1. We use the triangle inequality
repeatedly to separate it into two terms; (1) the MC transition approximation error, and (2)
the inductive function estimation error (detailed definitions and bounds of each terms are in
Appendix B.3):∣∣∣∣∣∣EMP

[V ∗
MP,d+1(b̄d+1) | b̄d, a]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

(6.39)

≤

∣∣∣∣∣∣EMP
[V ∗

MP,d+1(b̄d+1) | b̄d, a]−
1

C

C∑
i=1

V ∗
MP,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(1) MC transition approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V ∗
MP,d+1(b̄

′[Ii]
d+1)−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(2) Inductive function estimation error

.

Combining the probability bounds used in both of these procedures results in a worst case
O(exp(−t · C)) probability factor, where t is some constant, as both the SN concentration
bound and the Hoeffding bound are exponentially decaying. Since this upper bound on
the estimation error needs to hold for all steps d = 0, . . . , D − 1, we must apply the worst
case union bound on the probability to ensure that every node in the tree achieves the
desired concentration bound. This results in a worst case probability factor that is O(CD).
Therefore, we can obtain the Q-value estimator concentration inequality, with convergence
rate O(CD exp(−t · C)).

6.4 Particle Belief MDP Approximation Guarantees

In this section, we establish the theoretical guarantees for using any approximately optimal
MDP planning algorithm to solve the POMDP problem P by planning in the particle belief
MDP MP. Theorem 6.3 shows that the Q-values Q∗

P and Q∗
MP

are close to each other
with high probability, and Theorem 6.4 shows that using any approximately optimal MDP
planning algorithm A in the particle belief MDP MP as a policy yields near-optimal value
in the original POMDP with an additional closed-loop exact belief update step.
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6.4.1 Particle Belief MDP Q-Value Approximation Optimality

We introduce Theorem 6.3, which probabilistically bridges the POMDP P and its corre-
sponding particle belief MDP MP. In essence, this theorem claims that the two optimal
Q-values Q∗

P and Q∗
MP

are close with high probability, because creating a very accurate
Q-value estimator via Sparse Sampling-ω that is close to both Q∗

P and Q∗
MP

happens with
high probability.

Theorem 6.3 (Particle Belief MDP Q-Value Approximation Optimality). Given a finite
horizon POMDP P and its corresponding particle belief MDP MP, there exists a number of
particles C for which the optimal Q-value of the POMDP problem Q∗

P(b, a) can be approx-
imated by the optimal Q-value of the particle belief MDP problem Q∗

MP
(b̄, a) with arbitrary

precision. Namely, under the regularity conditions (i)-(vi), the following bound holds for a
given realizable belief b, corresponding sampled particle belief b̄, and all available actions a
with probability at least 1− δMP

for a desired accuracy ϵMP
:

|Q∗
P(b, a)−Q∗

MP
(b̄, a)| ≤ ϵMP

. (6.40)

Proof. The main idea of the proof is that we bridge the two Q-values, Q∗
P and Q∗

MP
, via

approximation through Sparse Sampling-ω with C particles. From Theorem 6.2, we have
established that there exists an algorithm, Sparse Sampling-ω, which is jointly optimal in
both senses of POMDP P and its corresponding particle belief MDP MP. Then, if we were
to hypothetically perform Sparse Sampling-ω of depth D, the sum of the errors between
the three types of Q-values at the root node, Q∗

P, Q
∗
MP

and Q̂∗
ω, are jointly bounded with

probability at least 1− δMP
through Theorem 6.2, where δMP

follows the same definition as
δ. We use the fact that Q∗

P and Q∗
MP

are the optimal Q-values at d = 0 for the POMDP
and PB-MDP, respectively:

|Q∗
P(b, a)−Q∗

MP
(b̄, a)| ≤ |Q∗

P(b, a)− Q̂∗
ω(b̄, a)|+ |Q̂∗

ω(b̄, a)−Q∗
MP

(b̄, a)| (6.41)

≡ |Q∗
P,0(b0, a)− Q̂∗

ω,0(b̄0, a)|+ |Q∗
MP,0

(b̄0, a)− Q̂∗
ω,0(b̄0, a)| (6.42)

≤ 2λ

1− γ
(≡ ϵMP

). (6.43)

Here, instead of using the λ definition in Theorem 6.2, we can directly choose λ such that
the above quantity is equal to ϵMP

, since λ only depends on a desired approximation error ϵ
and γ. However, we emphasize the intermediate step of the Q-value difference bounded by
2λ
1−γ to invoke this fact later on in the policy convergence proof of Theorem 6.4. Since this
bound holds with high probability for creating any hypothetical Sparse Sampling-ω tree, this
must mean that |Q∗

P(b, a)−Q∗
MP

(b̄, a)| ≤ ϵMP
in general with high probability.

The convergence rate δMP
is O(CD exp(−t̃ · C)). This means that as we increase the

number of particles, we can expect better performance by approximately solving a POMDP
via particle belief MDP planning approximation.
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Figure 6.2: Illustration of promoting an MDP algorithm (UCT) into a POMDP algorithm
(Sparse-PFT). This practically only involves changing the transition generative model into a particle
filtering-based transition generative model that deals with particle belief states.

6.4.2 Particle Belief MDP Planning Optimality

Corollary 6.1 (Particle Belief MDP Planning Optimality). Under regularity conditions
necessary for both the particle belief MDP and an MDP planning algorithm A, if the optimal
planner can approximate Q-values with arbitrary precision ϵA with probability at least 1− δA
in the corresponding particle belief MDP of a given POMDP, then the planning algorithm
can approximate the POMDP Q-values within ϵMP

+ϵA with probability at least 1−δMP
−δA:

|Q∗
P(b, a)− Q̂A

MP
(b̄, a)| ≤ ϵMP

+ ϵA. (6.44)

Proof. This is a straightforward application of triangle inequality for the Q-value estimation
accuracy and worst case union bound for the probability.

Note that it would also be possible to devise an expected value version of the bounds by
converting the probability statement into an expected value statement.

Essentially, Corollary 6.1 means that we can use any approximately optimal MDP plan-
ning algorithm to solve the POMDP problem by planning in the particle belief MDP instead,
and still retain similar optimality guarantees. In most practical cases, this method would
usually incur an additional O(C) compute time factor for a transition sampling step as single
particle belief state generation now needs to propagate C particles forward instead of a single
particle/state.

This remarkable result does not directly depend on the size of the state space nor the
observation space. However, the dependence may indirectly come through the observation
density and thus the Rényi divergence factor, and in practice, the generative model sampling
complexity that often depends on the dimensionality of the state space. Moreover, even
though this approach is insensitive to the state and observation space size, the guarantees
and practical algorithms are highly sensitive to the planning horizon D.
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Algorithm 6.3 Sparse-PFT Algorithm
Global Variables: γ, n, cUCB, G,D.
Algorithm: Simulate(b̄, d)
Input: particle belief set b̄ = {(si, wi)}, depth d.
Output: A scalar q that is the total discounted reward of one simulated trajectory sample.

1: if d = D then
2: return 0
3: a← argmaxa∈C(b̄)Q(b̄, a) + cUCB

√
logN(b̄)

N(b̄,a)

4: if |C(b̄, a)| = C then
5: b̄′, ρ← sample from C(b̄, a)
6: else
7: b̄′, ρ← GenPF(b̄, a)
8: C(b̄, a)← C(b̄, a) ∪ {(b̄′, ρ)}
9: if N(b̄) = 0 then
10: q ← ρ+ γ ·Rollout(b̄′, d− 1)
11: else
12: q ← ρ+ γ · Simulate(b̄′, d− 1)

13: N(b̄)← N(b̄) + 1
14: N(b̄, a)← N(b̄, a) + 1

15: Q(b̄, a)← Q(b̄, a) + q−Q(b̄,a)

N(b̄,a)
16: return q

Consequently, proving Corollary 6.1 allows us to prove Theorem 6.4 with additional
results from Kearns et al. (2002) and Singh and Yee (1994). Through the near-optimality
of the Q-functions, we conclude that the value obtained by employing a near-optimal MDP
policy in the PB-MDP is also near-optimal in the original POMDP with further assumptions
on the closed-loop POMDP system. The detailed proof for Theorem 6.4 is in Appendix B.4.

Theorem 6.4 (Particle Belief MDP Approximate Policy Convergence). In addition to reg-
ularity conditions for particle belief MDP and the MDP planning algorithm A, assume that
the closed-loop POMDP Bayesian belief update step is exact. Then, for any ϵ > 0, we can
choose a C such that the value obtained by planning with A in the PB-MDP is within ϵ of
the optimal POMDP value function at b0:

V ∗
P(b0)− V A

MP
(b0) ≤ ϵ. (6.45)

6.4.3 Sparse Particle Filter Tree (Sparse-PFT)

By utilizing the results in Theorem 6.3 and Theorem 6.4, we can promote a sampling-based
MDP planning algorithm Upper Confidence Tree (UCT) into Sparse Particle Filter Tree
(Sparse-PFT) and retain similar convergence guarantees for the POMDP [21, 98, 157]. This
results in an algorithm that is simple to implement, and enjoys both theoretical guarantees
and high performance in practice.
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The core of Sparse-PFT is the Simulate function defined in Algorithm 6.3 that is called
repeatedly to construct the tree. The set of global variables for Sparse-PFT includes the
same global variables used for Sparse Sampling-ω with the addition of n, the number of tree
search queries, and cUCB, the Upper Confidence Bound critical factor that determines the
amount of exploration. The Simulate function is analogous to the function of the same
name from UCT [21, 98], with the only difference being Sparse-PFT manages particle belief
sets through GenPF rather than states directly.

In the above algorithm definition, C(·) represents the list of children nodes, N(·) the
number of visits to the node, Q(·) the estimated Q-value at the node, and cUCB the Upper
Confidence Bound exploration parameter. These lists are all implicitly initialized to 0 or
∅. The Rollout procedure is an optional heuristic that runs a simulation with a heuristic
rollout policy for d steps to estimate the value, while avoiding building a large computation
tree at each step of simulation.

With the introduction of Sparse-PFT, we can view the recent POMDP algorithms as
practical extensions of Sparse-PFT. For instance, PFT-DPW [171] is a simple modification
of Sparse-PFT by utilizing the double progressive widening (DPW) technique to additionally
handle continuous action spaces, and POMCPOW [171] is a further extension that plans
based on particle trajectory that allows for flexible particle number representations of a
given belief node. However, further theoretical analyses of these algorithms would most
likely require more sophisticated techniques and further assumptions.

6.5 Numerical Experiments

Numerical simulation experiments were conducted in order to evaluate and compare the per-
formances of our new simple algorithm, Sparse-PFT, along with other solvers. In particular,
we also ran experiments for Adaptive online packing-guided search (AdaOPS) [187], a recent
solver with practical performance and partial theoretical guarantees. We also show perfor-
mances of other hallmark algorithms like QMDP and POMCP along with random policy
to demonstrate the need for continuous observation POMDP solvers that can handle more
general assumptions.

The following sections contain descriptions of the evaluation problems along with discus-
sion of solver performances. In all five of the numerical experiments shown in Fig. 6.3, the
POMDP solvers were limited to at most 1 second of planning time per step. For the closed
loop planning, the belief updates were accomplished with a particle filter independent of the
planner, and no part of the planning tree was saved for re-use on subsequent steps. A total
of 5000 simulation experiments were conducted for each configuration combination of solver
and environment in order to obtain the Monte Carlo mean and standard error estimates for
the Laser Tag and VDP tag environments, and 1000 simulation experiments for the Light
Dark and Sub Hunt problems since planners typically yielded more consistent performances
for these problems. The tabular summary of all results is given in Table 6.1, and correspond-
ing figure summary of all results for different planning time allotments is given in Fig. 6.4.
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(a) Laser Tag POMDP (b) Light Dark POMDP

(c) Sub Hunt POMDP (d) VDP Tag POMDP

Figure 6.3: Illustration of the four environments we test our continuous observation POMDP
algorithms on: (a) Laser Tag, (b) Light Dark, (c) Sub Hunt, and (d) VDP Tag (discrete and continuous
versions).

We also vary belief particle count C with Simulate calls held constant to demonstrate
the effect of particle belief approximation resolution on the quality of the resulting policy
in Fig. 6.10 by using the optimized hyperparameters from Table B.1 with 1000 simulation
experiments for Laser Tag, Light Dark and Sub Hunt, and 100 for VDP Tag and Discrete
VDP Tag. The open source code for the experiments is built on the POMDPs.jl framework
[53], and is available at: github.com/WhiffleFish/PFTExperiments. The hyperparameter
values used for the experiments are shown in Appendix B.5.
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Figure 6.4: Comparative benchmark results summary of continuous observation POMDP solvers
over different planning time allotments. Ribbons surrounding the Monte Carlo benchmark mean
estimates indicate two standard error confidence bands. Planning times are given in log scale.

Laser Tag (D, D, D) Light Dark (D, D, C) Sub Hunt (D, D, C)

Sparse-PFT −8.96± 0.17 58.9± 0.5 86.0± 0.8
PFT-DPW −8.99± 0.07 56.9± 0.5 84.9± 0.9
POMCPOW −10.3± 0.08 60.6± 0.4 73.5± 0.7
AdaOPS −9.33± 0.08 61.7± 0.5 81.3± 0.6
QMDP −10.4± 0.08 3.28± 0.5 28.0± 0.6
POMCP −16.0± 0.09 −14.86± 2.3 30.0± 0.8
Random Policy −51.0± 0.18 −85.0± 0.72 4.20± 0.27

VDP Tag (C, C, C) VDP TagD (C, D, C)

Sparse-PFT 15.2± 1.0 19.3± 0.9
PFT-DPW 25.4± 1.0 13.7± 0.9
POMCPOW 26.3± 0.9 24.2± 0.9
AdaOPS 2.0± 0.4
Random Policy −66.8± 0.24 −66.6± 0.25

Table 6.1: Tabular comparative benchmark summary of continuous observation POMDP
solvers. All results are given as (mean ± stderr) for a 1 second planning time allotment. The algorithm(s)
with the best average performance within one standard error is shown in boldface for each experiment. The
three letters after each problem name indicate whether the state, action, and observation spaces are contin-
uous or discrete, respectively.
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6.5.1 Laser Tag

The Laser Tag POMDP is taken from the DESPOT benchmarks [191] wherein a robot is
required to use laser sensors to localize with the ultimate goal of catching an evading robot.
The agent’s laser sensors extend radially in 8 evenly spaced directions and each return a
rounded sensed distance sampled from a normal distribution given by N (d, 2.5) where d is
the true distance to the nearest obstacle. Although the observation space is not continuous,
it is sufficiently large (on the order of 106) that most online solvers would have to treat this
as close to continuous.

Figure 6.5: Example Sparse-PFT operating in
Laser Tag: the agent (green) has roughly located the
evading robot at bottom right corner (orange).

From the results, we find that the PFT
methods outperform both POMCPOW and
AdaOPS: PFT-DPW consistently outper-
forms both planners across different plan-
ning times, and Sparse-PFT outperforms all
other planners with increased planning time.
This suggests that for Laser Tag, having a
full particle belief approximation rather than
dynamically varying particle size is helpful
for keeping track of likely particle hypothe-
ses. Furthermore, this also suggests that the
double progressive widening has diminishing
returns when the action space has a fixed
small size.

We note that POMCP particularly strug-
gles on this problem compared to all other
algorithms. The large observation space forces the trees constructed by POMCP to become
extremely shallow due to each unique sampled observation resulting in a new leaf node. This
hinders POMCP’s ability to develop a non-myopic multi-step plan and yield accurate action
values, empirically showing the importance of particle weighting. On the other hand, QMDP
performs similarly well as the modern solvers. While the agent does not initially know its
own location, it has sufficient information to localize using the laser sensor observations af-
ter some steps, and the evading robot behavior is not stochastic. Thus, the crude QMDP
approximation performs well, seemingly due to the problem requiring less active information
gathering compared to other problems.

6.5.2 Light Dark

The 1-dimensional Light Dark POMDP revolves around the requirement of active informa-
tion gathering. The state is an integer representing the position of the agent and the action
space is A = {−10,−1, 0, 1, 10}. Deterministic transitions are given by s′ = s + a. The
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reward,

R(s, a) =


+100 if s = 0, a = 0

−100 if s ̸= 0, a = 0

−1 otherwise

, (6.46)

dictates that the optimal policy drive the state to the origin as quickly as possible. Because
the state is not immediately known, inferences over the true state must be made over noisy
observations that grow in variance proportional to the agent’s distance from the light location
at s = 10. The observation distribution is N (s, |s− 10|+ ϵ), where ϵ is some small constant
included to prevent observation weights from reaching +∞ due to a collapse to a Dirac
distribution when the agent arrives at the light location.

Figure 6.6: Example Sparse-PFT trajectory for
Light Dark, successfully localizing in the light region
to reach the goal in the dark region.

The planners that yield the highest ex-
pected reward in the Light Dark domain
roughly follow a 2-step plan: first localiz-
ing at the light location, then traveling down
to the goal location. Essentially, the light
location becomes a necessary subgoal. We
can demonstrate this by creating a heuristic
policy that initially steers towards the light
region via certainty-equivalent control, and
then takes action a = −10 down to the goal.
This heuristic policy yields an expected re-
ward of 62.0±0.19 which is as good or better
than any planner shown in Table 6.1.

Surprisingly, higher planning times do
not necessarily correspond to increasing ex-
pected rewards in the Light Dark domain.
For AdaOPS, the solver converges to its peak
expected reward with a planning time as low as 0.01 seconds leading to marginal improve-
ment with further increases in planning time. Within a planning time interval of [0.03, 0.1]
seconds, the performance of POMCPOW decreases, indicating that the planner becomes
increasingly confident in a suboptimal plan. One possible source of this overconfidence is
beliefs represented by a single particle. This same behavior becomes evident in PFT plan-
ners when the PFT planner is supplied with a single rollout value estimation. However, by
increasing the number of sampled particles that are chosen as the true state in belief-based
rollouts, the belief value estimate is granted lower variance and greater accuracy, effectively
reducing the time spent exploring suboptimal branches of the constructed tree.

Because of this necessity to decrease belief entropy before committing to the goal, QMDP
performs suboptimally due to no emphasis being placed on costly information gathering.
Therefore, regardless of belief distribution entropy, QMDP myopically steers directly to-
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wards the goal location but rarely commits within the simulation horizon due to high state
uncertainty.

6.5.3 Sub Hunt

Figure 6.7: Example Sparse-PFT policy behavior
for Sub Hunt, where the agent’s submarine pursues
the target with active information gathering.

In the Sub Hunt POMDP, from the POM-
CPOW benchmark [171], the agent controls
a submarine with the goal of finding and
destroying an opposing submarine. The
state space consists of the grid locations of
both the agent and enemy submarines, a
Boolean determining whether or not the en-
emy is aware of the agent’s presence, and
the enemy’s goal direction ({1, . . . , 20}4 ×
{aware, unaware} × {N,S,E,W}). The
agent is given the option to move three steps
in any of the four cardinal directions, attack
the enemy, or ping the enemy with active
sonar while the enemy randomly chooses be-
tween taking two steps forward or one step
diagonally forward.

In the Sub Hunt domain, PFT methods
dominate all other planners over all planning times, with Sparse-PFT having a slight edge
over all other planners. Because the state space is discrete, value iteration can be used to
calculate Q-values for the fully observable MDP, and QMDP [113] can be used for the rollout
policy. With this strong belief-based rollout policy, both PFT-DPW and Sparse-PFT are
able to construct nearly-optimal policies with planning times as low as 0.01 seconds, leading
to no noticeable further improvement over longer planning times. Conversely, POMCPOW
and AdaOPS have gradually increasing planning curves in Fig. 6.4, with AdaOPS nearly
reaching the performance of PFT planners at 1 second and POMCPOW reaching an earlier
inflection point, resulting in a final performance lower than the other three planners.

6.5.4 VDP Tag

The Van Der Pol Tag (VDP Tag) POMDP formulation tasks the agent with moving through
a two-dimensional space to catch an opponent whose dynamics are governed by the Van Der
Pol differential equations,

ẋ = µ

(
x− x3

3
− y

)
, ẏ =

x

µ
, (6.47)

for which we use scaling constant µ = 2. Because this problem has a continuous state space
(S = R4), a continuous action space (A = [0, 2π)×{0, 1}) and a continuous observation space
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Figure 6.8: Example Sparse-PFT policy behavior for VDP Tag, which shows a successful localization
of the target following the Van Der Pol dynamics, then a successful capture.

(O = R8), discrete value iteration is no longer admissible as input for a value estimation
policy. AdaOPS is unable to handle continuous action spaces thus it is omitted from this
benchmark. For the action-discretized VDP Tag, the available movement directions are 20
evenly spaced angles from 0◦ to 360◦.

−4 −2 0 2 4
−4

−2

0

2

4

Figure 6.9: An example Van Der Pol vector field
(µ = 0.5) which defines the target dynamics. The
target is not blocked by the barriers, unlike the agent.

The continuous VDP Tag domain is
the first in which there exists a noticeable
performance gap between Sparse-PFT and
PFT-DPW, indicating that action progres-
sive widening offers some utility over fixed
widening in continuous action space prob-
lems. Furthermore, PFT-DPW and POM-
CPOW have similar performances across dif-
ferent planning times, suggesting that the
main challenge of VDP Tag is being able to
handle continuity of state, action, and obser-
vation spaces, while the particle belief ap-
proximation resolution does not affect the
performance as much.

For discrete VDP Tag, we come across
two new peculiarities: AdaOPS performance
decreases with increased planning time, and
PFT methods perform orders of magnitude
worse than other planners at very low allot-
ted planning times. This is likely attributable to a large action space (|A| = 20) and a
relatively expensive simulation function (RK4 integration). Because PFT methods propa-
gate a collection of particles upon tree expansion, belief value estimates tend to be more
accurate at the cost of added computation scaling linearly with the number of particles rep-
resenting each belief. Thus, expanding all possible actions while using an computationally
expensive simulator on all particles takes a long time, leading to very shallow trees.
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Figure 6.10: Empirical validation of the effect of increasing particle counts to better planning
performance. Sparse-PFT policy mean rewards with two standard error confidence band, varying belief
particle count while holding number of tree search Simulate queries constant.

6.5.5 Experimental Validation of Particle Belief Approximation
Convergence

In order to test the effect of particle belief approximation resolution, or the number of belief
particles C, on planner performance, we vary C while fixing the number of Simulate calls
and using optimal hyperparameters found in Appendix B.5 for Sparse-PFT planner. By
increasing the the number of belief particles, the particle belief becomes a more accurate
representation of the actual belief function, and should lead to a better optimal Q-value
estimation.

Across all five problem domains, increasing the number of particles C results in a roughly
monotonic non-decreasing performance gain as shown in Fig. 6.10. In particular, we see a
gradual performance increase for Laser Tag, VDP Tag, and Discrete VDP Tag as we increase
the number of particles, while Light Dark and Sub Hunt problems reach their performance
capacity rather quickly at less than 10 particles. However, when applying this principle to
promote MDP algorithms into PB-MDP algorithms, the particle filtering transition gener-
ative model takes an extra O(C) multiplicative factor for generating transitions, so it is
important to balance compute time and value estimation accuracy when deploying these
algorithms in practice.
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These results offer two valuable insights. First, the number of particles C offers increased
performance since the increased resolution of particle belief approximation corresponds to
increased accuracy in Q-value estimates as we have established in Section 6.4. This suggests
that the resolution of belief approximation is one indicator of a problem difficulty. Second,
not all problems benefit the same way from increasing the number of particles. Light Dark
and Sub Hunt have rather simple state spaces, and adding more particles did not significantly
improve the policy performance. In contrast, the other three problems continually benefited
from having increased resolution of belief approximation. Consequently, this suggests that
the belief approximation resolution is not the only factor contributing to the problem dif-
ficulty, but also other factors like action space cardinality and existence of optimal rollout
policies will contribute to the problem difficulty.

6.6 Conclusion

In this work, we formally show that optimality guarantees in a finite sample particle belief
MDP (PB-MDP) approximation of a POMDP/belief MDP yields optimality guarantees in
the original POMDP as well, which allows for simple yet powerful adaptations of MDP al-
gorithms to solve POMDPs. By proving that the Sparse Sampling-ω Q-value estimates are
close to both optimal Q-values of the POMDP and PB-MDP with high probability, we con-
clude that the optimal Q-values of the POMDP and PB-MDP themselves are close with high
probability. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt
any sampling-based MDP algorithm of choice to a POMDP by solving the corresponding
particle belief MDP approximation and preserve the convergence guarantees in the POMDP.
Such operation only increases the computational complexity of transition generation by a
factor of O(C), by using particle filtering-based generative models. Our convergence result
is not directly dependent on the size of the state space nor the observation space, but rather
dependent on the Rényi divergence that links the probabilities concerning state and obser-
vation trajectories. This motivates usage of particle belief-based MDP algorithms such as
Sparse Particle Filter Tree (Sparse-PFT), which enjoys algorithmic simplicity, theoretical
guarantees and practicality, as it is a variant of upper confidence trees (UCT) [21, 157] for
PB-MDPs.

There are many interesting avenues for future research. First, the broader theoretical
justification of more complex algorithms, such as POMCPOW and DESPOT-α, still do not
exist. Showing theoretical validity of these algorithms would help close the gap between
theory and practice even further. In addition, as seen in our numerical experiments, the best
performing algorithm varies across different types of benchmarks. Further theoretical and
empirical characterization of which algorithms are most effective for which problems could
greatly aid practitioners. Also, the particle number sweep suggests a method to characterize
the difficulty of a POMDP problem. While there have been many empirical studies of
different benchmarks, there are currently no known analytic quantification of the problem
difficulty, which may be of interest for both practitioners and researchers alike. Lastly, while
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the algorithms presented here perform well in low dimensional continuous observation spaces,
tree search for more difficult POMDPs, such as those with high dimensional observations [48]
and continuous/hybrid action spaces [110, 124, 153] is more difficult, and further analytical
and empirical research is warranted.
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Chapter 7

Voronoi Progressive Widening

Chapter Outline
This chapter is based on the paper “Voronoi Progressive Widening: Efficient Online
Solvers for Continuous State, Action, and Observation POMDPs” [110], written in
collaboration with Claire Tomlin and Zachary Sunberg.

7.1 Introduction

The partially observable Markov decision process (POMDP) is a flexible mathematical frame-
work for expressing stochastic sequential decision problems. POMDPs can represent a wide
range of real world problems such as autonomous driving [15, 172], cancer screening [13],
spoken dialog systems [192], and aircraft collision avoidance [77]. A POMDP is an opti-
mization problem in which we aim to find a policy that maps states to actions which will
control the state to maximize the expected sum of rewards. Finding an optimal POMDP
policy is computationally demanding because of the uncertainty introduced by imperfect
observations [139]. One of the most popular approaches to deal with this computational
challenge is to use online algorithms that look for local approximate policies as the agent
interacts with the environment rather than computing a global policy that maps every pos-
sible outcome to an action. Many online POMDP algorithms are variants of Monte Carlo
tree search (MCTS) [28, 159, 171] or other tree search variants [101, 191].

The research presented here concerns continuous space POMDPs, defined as POMDPs
with continuous state, action and observation spaces. If tree search is naively applied to con-
tinuous space POMDPs, an immediate problem is that the branching factor of the tree will be
infinite, preventing evaluation of future consequences of actions deep in the tree. This prob-
lem has been thoroughly studied, and the most popular solutions are sparse sampling [61,
92, 109] and progressive widening (PW) [43, 171], which limit the branching factor by only
considering a randomly-selected subset of the states, actions and observations. For contin-
uous states and observations, this random sampling is used to approximate the expectation
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Figure 7.1: Voronoi progressive widening (VPW) guides the selection of actions to widen the
search tree. Circles denote state/belief nodes, squares denote action nodes.

of the next-step value in Bellman’s equation [61, 92, 109]. Since the Monte Carlo integra-
tion needed to approximate these expectations has straightforward and robust convergence
guarantees, sparse sampling and PW are sufficient [43, 92, 109].

Continuous action spaces are, however, much more difficult to accommodate. Instead
of simply estimating expectations, planning in a problem with a continuous action space
requires solving a nonconvex optimization problem at each node in the tree. PW has been
applied to these problems [43, 171], but, since PW considers a randomly sampled set of
actions, it wastes a large amount of computation on suboptimal parts of the action space
and has only been demonstrated on small action spaces such as one-dimensional intervals
of real numbers. Voronoi optimistic optimization (VOO) [94] is an approach for sequential
decision problems with deterministic and fully-observable dynamics that attempts to focus
computation on more promising parts of the action space by partitioning it into Voronoi
cells and sampling from cells corresponding to previously successful actions.

In this work, we propose Voronoi Progressive Widening (VPW), a versatile technique
to modify tree search algorithms to effectively handle continuous or hybrid action spaces.
VPW generalizes VOO and PW to problems with both transition and observation uncer-
tainties. Like PW, it balances exploring previously proposed actions and searching for new
action candidates. However, VPW searches for new candidates in a much more efficient way
via VOO, and balances local and global searching without relying on any additional prior
information or expert knowledge. Furthermore, VPW does not require significant additional
computation time and can handle both continuous and hybrid action spaces with relative
ease.

There are two main contributions in this work. First, we prove theoretical guarantees
about certain parts of the VPW approach via Voronoi Optimistic Weighted Sparse Sampling
(VOWSS). VOWSS is special case of VPW applied to Partially Observable Weighted Sparse
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Solver Problem Cont. Opt. Fast Brief Description

VOOT [94] MDP S,A ✓ ✓ VOO for deterministic MDPs.
POWSS [109] POMDP S,O ✓ ✗ Sparse sampling with observation weights.
VOWSS POMDP S,A,O ✓ ✗ Extends POWSS with VPW.
POMCPOW [171] POMDP S,A,O ✗ ✓ Combines POMCP and DPW.
VOMCPOW POMDP S,A,O ✗ ✓ Extends POMCPOW with VPW.
BOMCP [124] POMDP S,A,O ✗ ✓ Extends POMCPOW with Gaussian processes.
VOSS MDP S,A ✓ ✗ Extends sparse sampling with VPW.

Table 7.1: Summary of continuous space MDP and POMDP solvers studied and newly proposed
in this chapter. The newly proposed algorithms in this chapter are marked in bold. “Problem” column
denotes which problems the solver can handle, “Cont.” column denotes which spaces are continuous, “Opt.”
denotes if the solver has optimality guarantees, and “Fast” denotes if the solver is fast enough to be practical.

Sampling (POWSS) [109] with fixed number of action samples, which integrates the two
convergence guarantees from VOO and POWSS into a single guarantee. Specifically, this is
the first known solver to have global convergence guarantees for continuous space POMDPs.
This shows that VOO and action PW were extended in a way that VPW not only can
handle transition and observation uncertainties, but also combines the two procedures in a
theoretically sound way.

Second, we propose an efficient VPW-based algorithm: Voronoi Optimistic Monte Carlo
Planning with Observation Weighting (VOMCPOW). VOMCPOW can also be thought of as
a practical extension of VOWSS. The experiments over different domains show the practical
effectiveness of VPW for handling continuous and hybrid action space problems. VOM-
CPOW consistently outperforms state-of-the-art continuous space POMDP solvers based on
PW, such as Partially Observable Monte Carlo Planning with Observation Widening (POM-
CPOW) [171] and Bayesian Optimized Monte Carlo Planning (BOMCP) [124] in several
simulation experiments. Table 7.1 summarizes the solvers that are studied in this chapter.

The remainder of this chapter proceeds as follows: First, Section 7.2 introduces the VPW
algorithm, and describes its strengths as well as how to efficiently implement it in practice.
Section 7.3 presents the VOWSS algorithm and theoretical analysis justifying VPW. Finally,
Section 7.4 empirically shows the optimality of VOWSS action selection and the efficiency
and robustness of VOMCPOW over three different simulation experiments.

7.2 Voronoi Progressive Widening

In this section, we first introduce VOO and PW to motivate the formulation of VPW and
VOMCPOW.
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Algorithm 7.1 VOO Algorithms [94]

Global Variables: A,D(·, ·), ω,Σ.
Algorithm: VOO(a,Q)
Input: Array of Voronoi centers a = [ai] and
their function values Q = [Q(ai)].
Output: A sample a.

1: u← Unif[0, 1]
2: if u ≤ ω or |Q| = 0 then
3: a← Unif(A)
4: else
5: a← BestVoronoiCell(a,Q)

6: return a

Algorithm: BestVoronoiCell(a,Q)
Input: Array of Voronoi centers a = [ai] and
their function values Q = [Q(ai)].
Output: A sample a.

1: a∗ ← argmaxaQ
2: while a is not closest do
3: a← N(a∗,Σ)
4: Check if D(a, a∗) ≤ D(a, ai) ∀ai ∈

a, ai ̸= a∗

5: return a

7.2.1 Voronoi Optimistic Optimization

Voronoi optimistic optimization (VOO) [94] is a continuous multi-armed bandit algorithm
that adaptively explores the sampling space by partitioning the space into Voronoi cells.
We define a Voronoi cell by the set of points closest to the corresponding Voronoi center
compared to the other centers, and the best Voronoi cell is the Voronoi cell with the center
that achieves the highest function value estimate. In our setting, the sampling space is the
action space, the Voronoi centers are the sampled actions, and the function values are the Q-
value estimates at the actions. Since Voronoi cells are solely defined by distances to Voronoi
centers, VOO additionally takes in a distance metric D(·, ·) as an input, and scales well to
higher dimensions unlike HOO.

In Algorithm 7.1, we define the adapted functionsVOO and BestVoronoiCell. VOO
searches the action space either uniformly with probability ω or from the best Voronoi cell
with probability 1 − ω. BestVoronoiCell samples an action from the best Voronoi cell
via rejection sampling. In practice, VOO sampling is best implemented by using Gaussian
rejection sampling centered around the current best action [94]. While we reflected this in our
algorithm definition, we note that the theoretical guarantees only hold for uniform rejection
sampling. Furthermore, to improve computation time for the experiments in Section 7.4, we
limit the maximum number of rejected samples via methods described in Appendix B. VOO
has previously been extended to Voronoi Optimistic Optimization Tree (VOOT) [94], but
only for deterministic MDPs.

7.2.2 Progressive Widening

Progressive widening (PW) [43] tackles continuous state and action spaces by gradually
expanding the state and action sample sets. PW limits the number of sampled children to
k · Nα, where N corresponds to the number of visits to the parent node in the search tree,
and k, α are the widening parameters. Algorithm 7.2 describes action progressive widening.
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Algorithm 7.2 Action Progressive Widening [43]

Global Variables: ka, αa, A, c.
Algorithm: PW(h)
Input: Belief/history node h in the MCTS tree.
Output: An action a.

1: if |C(h)| = 0 or |C(h)| ≤ kaN(h)αa then
2: a← Unif(A)
3: C(h)← C(h) ∪ {a}
4: else

5: a← argmaxa∈C(h)Q(h, a) + c
√

logN(h)
N(h,a)

6: return a

Algorithm 7.3 Voronoi Progressive Widening

Global Variables: ka, αa, ω, A, c.
Algorithm: VPW(h)
Input: Belief/history node h in the MCTS tree.
Output: An action a.

1: if |C(h)| = 0 or |C(h)| ≤ kaN(h)αa then
2: a← VOO(C(h), [Q(h, ·)])
3: C(h)← C(h) ∪ {a}
4: else

5: a← argmaxa∈C(h)Q(h, a) + c
√

logN(h)
N(h,a)

6: return a

Here, h is the belief/history node in the MCTS tree, C(h) the list of children action nodes,
N the number of visits, and c the Upper Confidence Bound exploration parameter. In the
action space, PW balances two modes of exploration: (1) exploring branches with previously
proposed actions (line 2), and (2) searching for new suitable action candidates (line 5).
However, since PW samples new actions uniformly from the action space, it is rather sample
inefficient and does not take into account any information gained from previous samples.

7.2.3 Voronoi Progressive Widening

We now introduce Voronoi Progressive Widening (VPW) in Algorithm 7.3, which generalizes
VOO and PW. Essentially, VPW progressively widens with a VOO sample instead of a
uniform sample. With this formulation, PW is simply VPW with ω = 1, and VOO is VPW
with ka ·Nαa = +∞.

Compared to PW, VPW only additionally relies on having a collection of Q-value esti-
mates, which are typically calculated and stored for MCTS solvers. While this means that
we require the Q-value estimates to be relatively faithful to the actual Q-values and also
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requires an informative rollout policy that can guide the solver to more optimal actions,
this is not a requirement specific to VPW as a typical MCTS solver should aim to have
both of these components. Furthermore, since the VOO step does not require a significant
additional time, VPW operates in a similar time scale as PW/DPW while being able to
efficiently sample action candidates that are closer to the optimal action. The only other
requirement of VPW is the distance metric on the action space, but this is often simple to
define, and in fact lets VPW to tackle hybrid action spaces such as the one in Section 7.4.2.

7.2.4 VOMCPOW

The VPW technique is versatile as it can be applied to any MCTS solver for MDPs and
POMDPs without requiring any additional expert or domain knowledge. For instance, one
could consider Sparse-UCT-VPW algorithm for continuous space MDPs that uses VPW cri-
terion with the Sparse-UCT algorithm [21] to handle continuous action spaces. Specifically,
we demonstrate the versatility of VPW through modifying POMCPOW into VOMCPOW
(Voronoi Optimistic Monte Carlo Planning with Observation Weighting) by simply swap-
ping out action PW with VPW. VOMCPOW consistently outperforms POMCPOW and
BOMCP by a statistically significant margin across all of our experiments.

7.3 Convergence Analysis

For convergence analysis, we introduce and Voronoi Optimistic Weighted Sparse Sampling
(VOWSS), a VPW-based continuous space online POMDP solver that guarantees conver-
gence to an optimal policy. VOWSS justifies the usage of VPW-based solvers that build
upon sparse sampling [92], particle weighting and VOO, such as VOMCPOW.

7.3.1 VOWSS

We define EstimateV and EstimateQ functions in Algorithm 7.4. Here, Cs, Ca are the
state and action widths, respectively. EstimateV is a subroutine that returns the value
function, V , for an estimated state or belief, by calling EstimateQ for each action and
returning the maximum. Similarly, EstimateQ performs sampling and recursive calls to
EstimateV to estimate the Q-function at a given step with a weighted average in the
style of POWSS [109]. The sampled states s′i are inserted into each next-step belief particle
set baoj with the new weights w′

i = wi · Z(oj|a, s′i), which are the adjusted probability of
hypothetically sampling observation oj from state s′i.

Thus, the VOWSS policy action is obtained by calling EstimateV(b̄0, 0) at the root
node and taking the action that corresponds to the maximizing Q-value. Note that the
particle belief set is initialized by drawing samples from b0 and normalizing weights to 1/Cs.
Like POWSS, VOWSS is not very computationally efficient as it fully expands the sparsely
sampled tree. Thus, VOWSS mainly demonstrates theoretical convergence and are only
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Algorithm 7.4 Value estimation algorithms for VOWSS

Global Variables: γ,G,Cs, Ca, D.
Algorithm: EstimateV(b̄, d)
Input: Belief particle set b̄ = {(si, wi)}, depth
d.
Output: A scalar V̂ ⋆

d (b̄) that is an estimate of
V ⋆
d (b̄).

1: If d ≥ D the max depth, then return 0.
2: For i = 1, · · · , Ca, sequentially run VPW(b̄)

to sample actions ai and estimate the
corresponding Q-values with Q̂⋆d(b̄, ai) =
EstimateQ(b̄, a, d).

3: Return the value function:

V̂ ⋆
d (b̄) = max

i=1,··· ,Ca

Q̂⋆d(b̄, ai).

Algorithm: EstimateQ(b̄, a, d)
Input: Belief particle set b̄ = {(si, wi)}, action
a, depth d.
Output: A scalar Q̂⋆d(b̄, a) that is an estimate
of Q⋆d(b, a).

1: For each particle-weight pair (si, wi) in b̄,
generate s′i, oi, ri from G(si, a).

2: For each observation oj from previous step,
iterate over i = 1, · · · , Cs to insert (s′i, wi ·
Z(oj |a, s′i)) to a new belief particle set baoj .

3: Return the Q-value estimate:

Q̂⋆d(b̄, a) =

∑Cs

i=1 wi(ri + γEstimateV(baoi, d+ 1))∑Cs

i=1 wi
.

practically applicable to very small problems. The algorithms in this section are written in a
style closer to a plain English format to enhance the readability of mathematical machinery
used for these algorithms, since VOWSS is more theoretical in nature.

It is worth noting that with our recursive formulation, VOOT [94] can be recast as a
Q-function estimation algorithm that simply returns the one sample Q-function estimate.
Particularly, this means that EstimateQ for VOOT would look identical to VOWSS’s
EstimateQ function except with Cs set to 1 as VOOT assumes no transition and observation
uncertainties, with no action width decay. Consequently, VOOT is notably faster than
VOWSS and thus practical for deterministic MDP problems, since it only needs to sample
the deterministic next step state once. Nevertheless, due to the hierarchical structure of
VOOT, the actual VOO algorithm as well as the theoretical guarantees of VOOT should
remain identical when recast into this recursive form. We also discuss the stochastic MDP
case in Appendix C.

7.3.2 Convergence Guarantees

We obtain global convergence to the optimal value functions for continuous space POMDPs
by combining VOO that globally optimizes over the entire action space and POWSS that
estimates value functions with arbitrary precision. To our knowledge, VOWSS is the first
continuous space POMDP algorithm to have global convergence guarantees without relying
on any discretization schemes for any of the spaces. In the subsequent sections, we prove that
VOWSS policy can be made to perform arbitrarily close to the optimal policy by increasing
both the state and action widths. Our results are derived with ka · Nαa = +∞ (VPW =
VOO), and uniform rejection sampling for BestVoronoiCell.
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The convergence proof of VOWSS relies on the proofs for the ancestor algorithms:
POWSS and VOO. Since the proof of VOWSS requires the union of all the regularity
conditions for POWSS and VOO, which deal with local smoothness of rewards and ob-
servation density requirements, we will not repeat them here and detail them in Appendix
A.2. One of the conditions requires that the reward function R be bounded and measurable,
||R||∞ ≤ Rmax, and consequently the value is bounded by Vmax ≡ Rmax/(1− γ) for γ < 1.

Theorem 7.1 (VOWSS Inequality). Suppose we choose the action sampling width Ca and
state sampling width Cs such that under the union of regularity conditions specified by [109]
and [94], the intermediate POWSS bounds and VOO bounds in Lemma 7.1 are satisfied at
every depth of the tree. Then, the following bounds for the VOWSS estimator V̂VOWSS,d(b̄)
hold for all d ∈ [0, D − 1] in expectation:

|V ⋆
d (b)− V̂VOWSS,d(b̄)| ≤ ηCa + αCs . (7.1)

Here, ηCa and αCs are non-negative bounds that tend to 0 as we increase Ca and Cs,
respectively. We show a brief outline of the proof of Theorem 7.1. In order to prove Theorem
7.1, we first need to prove the intermediate bounds.

Lemma 7.1 (VOWSS Intermediate Inequality). Suppose with our notation, the POWSS
estimators at all depths d are within ϵ of their mean values with probability 1 − p, and the
VOO agents have regret bounds of RCa. The following inequalities hold for all d ∈ [0, D− 1]
in expectation:

|V ⋆
d (b)− V̂ Ca

d (b)| ≤ ηCa(d), (7.2)

|V̂ Ca
d (b)− V̂VOWSS,d(b̄)| ≤ αCs(d). (7.3)

In Lemma 7.1, we aim to bound the inequality in (7.1) by applying triangle inequality to
the two split terms: the VOO-like regret bound with ηCa(d) and the POWSS-like concentra-
tion bound with αCs(d). The exact definitions of these intermediate bound terms are defined
and explained further in Appendix A.2. We define each value function used in Lemma 7.1
as the following:

V ⋆
d (b) ≡ max

a∈A
R(b, a) + γ E[V ⋆

d+1(bao)|b],

V̂ Ca
d (b) ≡ max

a∈V OO(A)
R(b, a) + γ E[V̂ Ca

d+1(bao)|b], (7.4)

V̂VOWSS,d(b̄) ≡ max
a∈V OO(A)

∑Cs

i=1wi(ri + γ · V̂VOWSS,d+1(baoi))∑Cs

i=1wi
.

Here, V ⋆
d (b) is the optimal value function as per the conventional definition, and V̂VOWSS,d(b̄)

is the VOWSS estimator for the optimal value function. In addition, we introduce the
theoretical intermediate term V̂ Ca

d (b) that bridges the gap between the regret bound and
the concentration bound by only performing the VOO step and not the sparse sampling



CHAPTER 7. VORONOI PROGRESSIVE WIDENING 89

step. Using this intermediate term, we can further subdivide the intermediate inequalities
to obtain the appropriate regret and concentration bounds using results from [94] and [109],
respectively. Proving Lemma 7.1 proves Theorem 7.1.

7.4 Experiments

The numerical experiments in this section confirm the theoretical results of Section 7.3.2,
as well as showcase the effectiveness of VPW. We demonstrate the performances of our
algorithms in three different control experiments: Linear-Quadratic-Gaussian (LQG) con-
trol, Van Der Pol Tag, and modified lunar lander problems. When running experiments for
POMCPOW, VOMCPOW, and BOMCP, we use the rollout policy heuristic to estimate the
value function as well as take the first action to be the rollout policy action at each newly
generated belief node. To determine the hyperparameters of the solvers, we used cross-
entropy method (CEM) [116] to maximize the mean expected reward of a hyperparameter
set when the optimal hyperparameters are not already available from previous experiments.
The VOMCPOW and BOMCP hyperparameters were trained by first initializing them with
POMCPOW hyperparameters and then using CEM again including all the additional hy-
perparameters specific to the solvers. The only hyperparameter that was manually chosen
is the Gaussian covariance matrix for VOO rejection sampling. The code for the experi-
ments is built on the POMDPs.jl framework [53]. The exact hyperparameters used for each
experiment are given in Appendix B.

7.4.1 Linear-Quadratic-Gaussian Control

We first test our algorithms on a simple 2D-action space LQG control system. Here, we
choose a relatively simple problem setup such that we can easily understand and visualize
the results while allowing VOWSS to still plan within a reasonable time. Here, VOWSS
uses VPW like VOO by setting ka ·Nαa = +∞, but with Gaussian rejection sampling. The
dynamics and observation models are

xt+1 = xt + ut + vt; yt = xt + wt; vt, wt
i.i.d.∼ N(0, σ2I). (7.5)

The initial state x0 is distributed as N([−10, 10], σ2I), and σ = 0.1 for all x0, vt, wt. We aim
to minimize the cost function J(x0), while planning for two steps (N = 2):

J(x0) = E[xTNxN +
N−1∑
t=0

(xTi xi + uTi ui)]. (7.6)

The analytical answer can be obtained by solving the LQG backup equation, which is iden-
tical to the LQR solution,

u⋆0 = −K0x̂0 = −0.6 · x̂0 = [6.0,−6.0]. (7.7)
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Figure 7.2: Scatter plots of the first actions chosen by policies from different solvers and rollouts
for the two step LQG problem. The exact LQR solution, which is the same as the LQG solution, is
shown as a red dot at [6.0,−6.0], and the Riccati solution as a blue dot at approximately [6.18,−6.18].

Since the problem has an analytical solution, we can directly compare the actions each
solver chooses to the analytical solution, for all of VOWSS, POMCPOW, VOMCPOW, and
BOMCP. For the solvers that require a rollout policy, we test both the finite horizon LQR
solution (referred to as “exact policy”) and the steady-state solution to the discrete time
algebraic Riccati equation (referred to as “Riccati policy”) [37] as the rollout policies to
observe effects on each solver. For this particular scenario, the Riccati solution is u∗t ≈
−0.618 · x̂t, and u∗0 ≈ [6.18,−6.18], slightly different from the exact policy.

When choosing hyperparameters through CEM, we use the Riccati policy as the rollout
policy. The number of queries for POMCPOW and VOMCPOW are set to 1000 and BOMCP
to 100, which correspond to approximately 0.1 seconds of planning time. For VOWSS, the
state width is set to 10 and action width to 200. Furthermore, we introduce the action
width decay term γa such that the number of VPW iterations for a given height is γa times
the VPW iterations for the previous height, similar to the way VOOT is modified for long
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Figure 7.3: Tabular summary of the first actions chosen by VOWSS policy, where we show the
mean Euclidean distance from the LQG solution, and the corresponding standard error in parentheses.

horizons [94]. The action width decay is manually set to γa = 0.4 after a careful inspection
to balance performance and run time, which means that the action width for first step is
200, and the action width for second step is 80. While this results in number of evaluations
on the order of 106, we include the performance of VOWSS as a reference.

We first show the scatter plots of the actions chosen by each solver in Figure 7.2. Each
scatter plot shows the result of 1000 simulations. While POMCPOW and BOMCP find
solutions biased towards the rollout actions, we see that the effect is much less pronounced in
VOMCPOW. Specifically, when the rollout policy is set to Riccati policy, both POMCPOW
and BOMCP heavily resort to picking the Riccati solution as shown by the large point
mass corresponding to the Riccati solution in the scatter plots. Even though VOMCPOW
still produces a sizable mass of points on and surrounding the Riccati solution, it otherwise
picks solutions that are close to the LQG solution. VOMCPOW scatter plots show that
the bias and the variance of the optimal action estimates are noticeably smaller than those
of POMCPOW and BOMCP. Although VOWSS cannot be directly compared to the other
solvers since the number of iterations is not on the same order and it doesn’t rely on a rollout
policy, the overall shape of the scatter plot looks similar to those of VOMCPOW.

In addition, we study the effects of varying the state and action widths for VOWSS. Figure
7.3 shows the mean Euclidean distance to the LQG solution for different combinations of state
and action widths. Each cell in the table shows the result of 1000 simulations, and the other
hyperparameters are left intact. As we increase either the state or action width, the mean
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Figure 7.4: Comparative benchmark results summary of continuous space POMDP solvers over
different planning time allotments. Ribbons surrounding the Monte Carlo benchmark mean estimates
indicate one standard error confidence bands. Planning times are given in log scale.

VDP Tag Lunar Lander

VOMCPOW 33.2± 0.9 63.7± 1.6
POMCPOW 28.3± 1.0 56.3± 1.9
BOMCP 55.2± 1.9

Table 7.2: Tabular comparative benchmark summary of continuous space POMDP solvers. All
results are given as (mean ± stderr) for a 1 second planning time allotment. The algorithm(s) with the best
average performance within one standard error is shown in boldface for each experiment.

distance and the standard error decrease. This indicates that VOWSS chooses better actions
by increasing the state and action widths, which confirms our theoretical results: larger state
widths should increase value estimation accuracy and larger action widths should improve
action optimization.

7.4.2 Van Der Pol Tag

Next, we test POMCPOW and VOMCPOW on the Van Der Pol Tag (VDP Tag) problem
introduced by [171], which is the only problem in their work with continuous state, observa-
tion and (hybrid) action spaces. In VDP Tag, an agent navigates through 2D box to tag a
target with randomized initial state that follows a dynamics model defined by the Van Der
Pol differential equation. The agent moves at a fixed speed, but can choose the direction of
travel and can decide to make an accurate observation of where the target is at a higher cost
than making the default noisy observation. While the target can freely move within the 2D
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box, the agent is blocked when it comes into contact with a barrier.
We show the mean reward for 1000 simulations for each solver and each planning time

plotted in log scale of seconds in Figure 7.4. We observe that VOMCPOW outperforms
POMCPOW at every planning time by a statistically significant margin. It is also worth
noting that VOMCPOW takes almost an order of magnitude less planning time to reach the
mean reward of 25 compared to POMCPOW.While VDP Tag is a continuous space POMDP,
the rewards are still discrete in both state and action spaces, which suggests that even with
discrete jumps in the reward function, VPW can still optimize to find better actions. In
addition, while it is possible to adapt BOMCP to solve VDP Tag, it requires nontrivial
modifications to the action space due to the action space being hybrid (A = [0, 2π)×{0, 1})
and the angle space being a modular space. This further illustrates the ease of implementing
VPW since we only need to supply VPW with a distance metric on the action space, which
makes VPW suitable for hybrid action spaces as well.

7.4.3 Lunar Lander

Lastly, we test POMCPOW, VOMCPOW and BOMCP on the modified lunar lander problem
proposed in [124], where the main objective is to guide a vehicle to land in a target zone
safely. In this version of lunar lander, the vehicle state is defined as (x, y, θ, ẋ, ẏ, ω), and we
only obtain noisy observations of the angular rate, horizontal speed, and above-ground level.
The action space is defined by the tuple (T, Fx, δ) where T is the main vertical thrust, Fx
the corrective horizontal thrust, and δ the offset. The default rollout policy is proportional
control based on the observation.

Once again, we show the mean reward for 1000 simulations for each solver and each
planning time plotted in log scale of seconds in Figure 7.4. VOMCPOW outperforms both
POMCPOW and BOMCP by a statistically significant margin once the planning time ex-
ceeds 0.1 seconds. Below 0.1 seconds, the performances of POMCPOW and VOMCPOW
are similar due to the problem having a long horizon, in which the effects of VPW will not
be as apparent since best Voronoi cell actions will not be sampled very often.

We note that the performance of POMCPOW here seemingly differs from the results in
[124], which might be due to a several factors. The lander problem has a high variance in the
returns, since failure to land results in a steep penalty of -1000. This failure mode does not
happen very often even within 1000 iterations, so the number of failures significantly impacts
the mean rewards. Furthermore, we are comparing the algorithms based on planning time
rather than number of queries. POMCPOW queries much faster than BOMCP, and average
planning time may not sufficiently capture the relationship between total planning time and
number of queries for a progressively built tree. It is also possible that authors of [124] did
not set POMCPOW first action to be the rollout action.
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7.5 Conclusion

In this chapter, we have introduced Voronoi Progressive Widening (VPW), a versatile tech-
nique to effectively handle continuous or hybrid action spaces in MDPs and POMDPs. Con-
sequently, we proposed two VPW-based tree search algorithms to demonstrate convergence
guarantees and efficiency, justifying the theoretical soundness, versatility and practicality of
VPW for many continuous or hybrid action space POMDPs.

This study has yielded a several key insights, which suggest some promising future direc-
tions to explore. While each of the VPW-based algorithms either enjoy theoretical guarantees
or computational efficiency, the gap between theoretical soundness and practicality still re-
mains. In particular, the state and action selection heuristics as it is utilized in POMCPOW
still need to be integrated into the theoretical algorithms like POWSS to bridge the gap
between theory and practice. On the other hand, we believe that the VPW technique itself
should also have some theoretical guarantees similar to the DPW technique [43].

Additionally, since the convergence guarantees of VOO hold as long as the reward function
is locally smooth around at least one global optimum [94], more extensive study could be done
for effectiveness of VPW on MDPs and POMDPs with discrete reward structures. Similar
to how the Rényi divergence requirement for POWSS [109] could be a difficulty indicator
for likelihood-weighted sparse tree solvers, the proof techniques utilized for VOO and DPW
could offer insights on what continuous or hybrid action space problems are harder to solve
than others.
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Part III

Learning and Robotics:
Compositional Learning-based

Planning with Algorithmic Priors
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Chapter 8

Overview

Chapter Outline

In this chapter, we give an overview of all the works discussed in Part III. We intro-
duce two ways of reasoning about real world robotics application scenarios. First work,
Visual Tree Search, offers a direct integration of pre-existing particle-based POMDP
planning methods with generative neural network model components. Second work,
Sequence-Conditioned Transporter Networks, offers an alternative approach to solve vi-
sual robotic arm manipulation tasks by introducing sequence conditioning and weighted
multi-task learning. Some discussions, results, and relevant figures are borrowed & re-
peated from the original works listed in each chapter.

8.1 Compositional Learning

This part of the dissertation aims at applying the principles of compositional learning to
designing systems and architectures for autonomous planning. Compositional learning at-
tempts to break down a learning task into specialized and compartmentalized neural net-
work components. These learning-enabled components are then integrated into one system
to allow learning complex relations and semantics while keeping the training resources and
amount of data minimal. Furthermore, compositional learning approaches also benefit from
the compartmentalized architecture that are not only often robust and perform better than
their naive counterparts but also provide better interpretability in their outputs and policies.
Compositional learning also allows algorithmic priors to be seamlessly integrated into the
system, where specific domain knowledge and problem structures can be factored into the
component design or the overall integration of different components.

Thus, continuing from the previous Part II where we are primarily focused on theoreti-
cal foundations of model-based POMDP planners, in this part of the dissertation we start
considering how to effectively integrate these planners and concepts with learning-enabled
components. Learning-enabled components from modern machine learning can effectively
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reason about complex data structures like images, videos, and text, and learn to recognize
complex patterns such as human behavior and game strategies. In particular, this part of
the dissertation focuses on solving realistic robotic problems in the domains of navigation
and manipulation.

8.2 Visual Tree Search for Vision POMDPs

In Chapter 9, we introduce the Visual Tree Search algorithm for Vision POMDPs [48]. While
POMDP is a powerful framework for capturing decision-making problems that involve state
and transition uncertainty, most current POMDP planners cannot effectively handle high-
dimensional image observations prevalent in real world applications, and often need lengthy
online training that requires interaction with the environment.

We propose Visual Tree Search (VTS), a compositional learning and planning procedure
that combines generative models learned offline with online model-based POMDP planning.
This work is a natural extension from the previous chapters, as we directly reason about
how to integrate the algorithmic prior of the POMDP problem structure and particle belief
representation with unsupervised generative neural network models. The deep generative
observation models generate and evaluate the likelihood of future image observations in a
Monte Carlo tree search planner. We show that VTS is robust to different types of image
noises that were not present during training and can adapt to different reward structures
without the need to re-train. This new approach significantly and stably outperforms several
baseline state-of-the-art vision POMDP algorithms while using a fraction of the training time.

8.3 Sequence-Conditioned Transporter Networks for

Tabletop Manipulation

In Chapter 10, we introduce Sequence-Conditioned Transporter Networks for vision-based
tabletop robotic arm manipulation [111]. Enabling robots to solve multiple manipulation
tasks has a wide range of industrial applications. While learning-based approaches enjoy
flexibility and generalizability, scaling these approaches to solve such compositional tasks
remains a challenge.

We aim to solve multi-task learning through the lens of sequence conditioning and
weighted sampling. First, we propose a new suite of benchmark specifically aimed at com-
positional tasks, MultiRavens, which allows defining custom task combinations through task
modules that are inspired by industrial tasks and exemplify the difficulties in vision-based
learning and planning methods. Second, we propose a vision-based end-to-end system ar-
chitecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned
Transporter Networks with sequence-conditioning and weighted sampling and can efficiently
learn to solve multi-task long horizon problems. Our analysis suggests that not only the new
framework significantly improves pick-and-place performance on novel 10 multi-task bench-
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mark problems, but also the multi-task learning with weighted sampling can vastly improve
learning and agent performances on individual tasks.

While this approach is not exactly aligned with the traditional POMDP methods dis-
cussed earlier in Part II, this work offers an alternative perspective on handling complex
observations for visual robotic manipulation. Nevertheless, we apply the same philosophy
of model-based planning with algorithmic priors, enabled by the pre-existing Transporter
networks [199] that specialize in visual tabletop robotic arm tasks. Specifically, we em-
ploy compositional learning once again to devise an architecture that can reason with input
sequences of demonstrations and learn and perform multiple tasks at once.
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Chapter 9

Compositional Learning-based
Planning for Vision POMDPs

Chapter Outline

This chapter is based on the paper “Compositional Learning-based Planning for Vision
POMDPs” [48], written in collaboration with Sampada Deglurkar, Johnathan Tucker,
Zachary N. Sunberg, Aleksandra Faust, and Claire J. Tomlin.

9.1 Introduction

Many sequential decision making problems, such as autonomous driving [15, 172], cancer
screening [13], spoken dialog systems [192], and aircraft collision avoidance [77], involve un-
certainty in both sensing and planning. Planning under partial observability is challenging,
as the agent must address both localization and uncertainty-aware planning through ac-
tive information gathering in the environment. By capturing the observation uncertainty
through a belief distribution over possible states, the agent will be able to fully close the
observation-plan-action loop. While there are many methods that can either handle visual
localization [83, 87, 90] or planning under uncertainty [176, 179], a näıve combination of
these methods, for instance by assuming the certainty equivalence principle or simplifying
the observation space, may not yield meaningful closed-loop control policies that enable
active information gathering under more general environmental assumptions.

The partially observable Markov decision process (POMDP) formalism is a powerful
framework that can capture and systematically solve these sequential decision making un-
der uncertainty problems. However, finding an optimal POMDP policy is computationally
demanding, and often intractable, due to the uncertainty introduced by imperfect observa-
tions [139]. One popular approach to deal with this challenge is to use online algorithms
that look for local approximate policies as the agent interacts with the environment rather
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Figure 9.1: Visual Tree Search interfaces offline deep generative model training with online model-based
POMDP filtering and planning.

than a global policy that maps every possible outcome to an action, such as Monte Carlo tree
search (MCTS) and similar variants [28, 101, 159, 171, 191]. Many of these state-of-the-art
MCTS algorithms enjoy computational efficiency [110, 124, 171] and finite sample conver-
gence guarantees to the optimal policy [109, 110]. Despite their flexibility and optimality,
these methods rely on having access to generative models and observation density models,
which limits the class of problems they can solve in practice. In many realistic scenarios with
high dimensional observations like RGB images, these POMDP methods cannot be applied
without knowing or learning the relevant models or simplifying the environment.

Recently, there has been an increased interest in solving vision POMDPs, i.e. POMDPS
with image or video observations, using deep learning methods. Model-free vision POMDP
algorithms train an end-to-end deep neural network policy to learn both a latent belief repre-
sentation and a planner [80, 89, 131], which benefit from not having to specify the transition
and observation models and can learn complex policies. However, they may lack inter-
pretability, not generalize well to new unseen tasks, and not leverage much prior knowledge
about the system, especially in robotics settings. In contrast, model-based vision POMDP
algorithms [160, 183] combine classical filtering and planning techniques with deep learning.
While such algorithmic structure allows the models to focus on specific tasks, making them
sample efficient and robust, these methods often rely on simplified approaches for planning
in the belief space and require learning an advantage function that only partially captures
uncertainty by coupling observations with rewards.

Thus, we propose Visual Tree Search (VTS), a procedure to solve vision POMDPs by
combining deep generative models and online tree search planning, effectively framing the
POMDP reinforcement learning problem as a compositional unsupervised learning prob-
lem. Our key insight is to utilize compositional learning approaches to bridge the offline
training of individual sets of models with online model-based planning that uses learning-
enabled components. Introducing the algorithmic prior knowledge of particle filtering and
MCTS decreases the computational complexity required by the learning and captures state
and transition uncertainty without dependence on reward structure. Our empirical analy-
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Figure 9.2: Overview of Visual Tree Search (VTS). The models learned with neural networks are
shown in yellow – the transition model is shown in gradient, since it can be learned or pre-defined. The
contributions of the models for filtering are shown in blue arrows, and planning in red arrows, and numbers
in brackets show corresponding steps in Algorithm 9.1.

ses demonstrate that tackling uncertainty via VTS enhances performance, robustness, and
interpretability of neural network components.

9.2 Visual Tree Search

Solving a POMDP can be split into solving the filtering and the planning problems sepa-
rately. In the Visual Tree Search (VTS) algorithm, we integrate the learned POMDP model
components with classical filtering and planning techniques. This results in a POMDP solver
that can learn model components that are more sample efficient and interpretable than end-
to-end approaches. It also benefits from having a robust particle filter and planner built
upon techniques with theoretical guarantees, and can adapt to different task rewards. To in-
tegrate planning techniques that use online tree search, we must have access to a conditional
generative model that can generate image observations o from a given state s according to
the likelihood density Z(o|s). In this section, we outline the filtering and planning algorithms
and models, and the compositional training procedure.

9.2.1 Differentiable Particle Filtering

For particle filtering, we leverage a family of architectures called Differentiable Particle Filters
(DPF) [83], which combine classical particle filtering algorithms with convolutional neural
networks that can handle complex observations. We learn two neural network-based models:
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Algorithm 9.1 Visual Tree Search Algorithm.
Input: Hyperparameters for neural networks (ζ), DPF (χ), MCTS (ρ), maximum time step Tmax.
Output: Action at at each step t.

1: Collect data D of tuples (st, at, ot, st+1) through random sampling or exploration.
2: [Optional] Train the transition model Tψ with data tuples (st, at, st+1).
3: [Training] Jointly train the observation density model Zθ and particle proposer model Pϕ with

data tuples (st, ot, {ŝt,i}), where {ŝt,i} are particle estimates of st.
4: [Training] Train the observation conditional generator model Gξ with data tuples (st, ot).
5: for t = 1 to Tmax do
6: [Filtering] If t = 1, initialize the belief state bt. Otherwise, after receiving ot, update the

belief state bt with DPF(Tψ, Zθ, Pϕ, χ).
7: [Planning] Run MCTS(Tψ, Zθ, Gξ, ρ) on the belief state bt to obtain and perform action at.

(1) Observation density Zθ that gives the likelihood weights wt = Zθ(ot|st), (2) Particle
proposer Pϕ that allows us to sample states st ∼ Pϕ(ot). The Greek letters denote the
parameters of these neural network models. Specifically for our work, we adapt the DPF
architecture introduced in DualSMC [183], in which the observation and proposer networks
are trained with an adversarial optimization objective. In principle, we can also train DPF
with entropy regularization [41] with optimality guarantees. We assume that the transition
model T is known, which is not a limiting assumption for many POMDP problems (e.g.
POMDPs with physical dynamics), but in principle it can be learned and modeled with a
neural network Tψ as well.

The filtering procedure is described below; the belief is represented by bt ≈ {s(k)t , w
(k)
t }Kk=1,

with K as the number of particles. First, the agent takes a step with an action chosen by the
planner. Then, the agent updates the predicted states (s′t+1)

(k) with the transition model
T . The observation ot obtained from the environment is fed into the observation density Zθ,
which provides the likelihood of an observation given the state. This is used to update the
likelihood weights (w′

t+1)
(k) of each particle. In order to ensure robustness in the particle

representation of the belief state, the particle proposer deep generative model Pϕ proposes
plausible state particles for a given observation, replacing some fraction of the particles. This
fraction is made to decay exponentially over time.

9.2.2 Tree Search Planner

Monte Carlo Tree Search. For the online planner, we use the Particle Filter Trees-
Double Progressive Widening (PFT-DPW) algorithm [171]. PFT-DPW is a particle belief-
based MCTS planner that is relatively easy to implement and efficiently vectorizes particle
filtering. Additionally, a simplified version of PFT-DPW has optimality guarantees [109].
However, any continuous POMDP tree search planner can be used instead.

For our navigation problems, we discretize the action space such that the robotic agent
moves in the 8 cardinal and diagonal directions with full thrust. While this means we work
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with a limited action space, we can ensure that we travel with full thrust to get to the goal
faster and reduce the complexity of both planning and generating observations. However,
we could also work with a continuous action space in principle. Furthermore, we provide
PFT-DPW with a näıve rollout policy of actuating straight towards the goal and calculating
the expected reward, which PFT-DPW can use as a reference and vastly improve upon.

Observation conditional generative model. Deep conditional generative models en-
able online model-based POMDP planning with images. To plan with a tree search planner,
we need to be able to generate the next step states and observations, and evaluate the likeli-
hood of the observations. With models from DPF, we can generate the next step state with
transition model T and calculate the likelihood weight with observation density Zθ, which
are also used in the filtering procedure. Thus, we only additionally need to learn a deep
generative model Gξ that generates an observation ot given a state st: ot ∼ Gξ(st). We use
a Conditional Variational Autoencoder (CVAE) [163] to model the observation conditional
generator Gξ, where the state st is the conditional variable, since it had the most consistent
training and performance in our experiments.

9.2.3 Compositional Training of Visual Tree Search

We train each neural network model with pre-collected data D, containing tuples of (st, at, ot,
st+1), as shown in Lines 1-4 of Algorithm 9.1. We provide the Zθ and Pϕ models with ran-
domly sampled batches of state, observation, and synthetic belief particle sets (st, ot, {ŝt,i}).
While the belief particle sets are not a part of the pre-collected data, we can easily create
them by sampling states from a normal distribution centered at st. The Zθ and Pϕ are
trained with the adversarial objective in DualSMC [183]: Zθ serves as a discriminator that
gives higher likelihoods to states that are more likely for a given observation, and Pϕ serves
as a conditional generator that proposes plausible state particles for a given observation.
The Gξ model is trained with random batches of samples of state and observation pairs:
(st, ot). These random batches provide a good data prior for all types of states and obser-
vations an agent may encounter during planning, unlike methods such as DualSMC which
only encounter data collected from the locally optimal policy. For our neural network train-
ing procedures, we make the ground truth state information available to the planner during
training, but keep it unavailable during testing.

Compared to other on-policy RL algorithms and architectures, the VTS training proce-
dure shifts the POMDP problem from a reinforcement learning problem to a compositional
learning problem, in which training each model in the POMDP is framed as an unsupervised
learning problem. This drastically decreases the problem complexity, as we have explicit
control over the learning objective of each model and the schedule of the training. It also
allows us to better approximate the data distribution via sampling or exploration, as op-
posed to an evolving on-policy planner distribution that often starts off poorly and provides
heavily biased data.
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Figure 9.3: The results of 4 different planners, VTS, DualSMC, DVRL, and PlaNet, on Floor
Positioning and 3D Light-Dark. Sub figures denote: (a) training time, (b) steps taken, (c) task success,
and (d) episode reward.

9.3 Experiments

We compare VTS to other state-of-the-art vision POMDP algorithms, DualSMC [183],
DVRL [80] and PlaNet [69], on two benchmark vision POMDP problems. First, we tested
our algorithm on the 2D Floor Positioning problem [183] to demonstrate that using the VTS
learning and planning procedure can significantly decrease the training time to learn a solver
that is agnostic to the task or reward structure of the problem. Then, we prepared our own
version of the 3D Light-Dark problem in the Stanford Large-Scale 3D Indoor Spaces dataset
[10] to set up a more challenging navigation task that requires the agent to plan with realis-
tic indoor building RGB images. We also performed ablation tests with the 3D Light-Dark
experiment in which we varied the reward structure using spurious traps and the observation
space using random visual occlusions. In each section, we calculate the results of the planner
performances for 1000 testing episodes for Floor Positioning and 500 for 3D Light-Dark. For
online planning speed, VTS takes around 0.26 seconds to plan for Floor Positioning and 0.80
seconds for 3D Light-Dark on average, while other planners require less than 0.05 seconds for
both problems. The experimental summary figures are given in Fig. 9.3 and the full tabular
summary in Table 9.1. In addition, VTS training data details are given in Appendix D.2,
and the hyperparameters and computation details in
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Planner & Problem Task Episode Steps Training Planning Particle
(Successful Trials) Success (%) Reward Taken Time (h) Time (s) Distance

Floor Positioning
VTS (10/10) 97.6 ±0.002 99.36 ± 0.12 28.85 ±0.28 5.88 ±0.02 0.26 ±0.0022 0.07 ±0.002

DualSMC (10/10) 94.0 ±0.049 100.0 ±0.0 24.78 ±0.70 14.27 ±2.39 0.04 ±0.0003 0.08 ±0.003

DVRL (10/10) 91.0 ±0.084 100.0 ±0.0 45.71 ±9.01 12.74 ±0.72 0.0063 ±6.4e-5 –

3D Light-Dark
VTS (10/10) 99.6 ±0.002 98.71 ± 0.22 18.18 ± 0.76 9.42 ±0.21 0.76 ± 0.005 0.48 ± 0.07

DualSMC (6/10) 99.0 ±0.009 98.05 ± 0.62 22.71 ± 1.70 20.31 ±3.13 0.06 ± 0.003 0.50 ± 0.02

DVRL (10/10) 76.1 ±0.081 91.88 ± 2.2 55.33 ± 6.94 80.65 ±1.18 0.0076 ±3.0e-4 –
PlaNet (4/4) 72.7 ±0.029 89.35 ± 4.84 27.1 ± 2.67 157.1 ±0.66 0.061 ±4.1e-4 –

3D LD + Traps
VTS 97.7 ±0.003 85.34 ±3.33 27.96 ±1.06 – 0.80 ±0.0039 0.42 ±0.06

DualSMC 99.2 ±0.007 0.48 ±4.45 22.55 ±1.80 – 0.06 ±0.0006 0.49 ±0.02

DVRL 76.6 ±0.078 -136.14 ±34.42 55.79 ±6.34 – 0.0076 ±2.9e-4 –
PlaNet 67.6 ±0.016 35.41 ±3.38 28.31 ±2.63 – 0.061 ±7.1e-4 –

3D LD + Occlusions
VTS 97.0 ±0.007 91.05 ±1.73 33.25 ±1.33 – 0.77 ±0.0051 0.82 ±0.08

DualSMC 78.3 ±0.052 17.45 ±7.82 46.38 ±0.97 – 0.06 ±0.0005 0.91 ±0.03

DVRL 72.9 ±0.081 77.0 ±7.97 62.32 ±4.56 – 0.0075 ±3.1e-4 –
PlaNet 36.8 ±0.078 75.07 ±14.55 34.62 ±3.69 – 0.059 ±5.4e-4 –

Table 9.1: Summary of planner performances on the vision POMDP problems: Floor Positioning
problem and the 3D Light-Dark problem variants. Each column reports the mean of means estimator
over different seeds, and ± indicates one standard error of the estimator. Mean particle distance is defined
as the mean of the distance between the mean belief state and the true state. All statistics are for when the
agent is successful.

9.3.1 Floor Positioning Problem

In this problem, a robotic agent is randomly placed around the center of either the top or
the bottom floor, and it must infer its position by relying on a radar-like observation in all
four cardinal directions, which bounces off the nearest wall. The top and bottom floors are
indistinguishable within the “corridor states” of the hallways, but the robotic agent can take
advantage of the “wall states” by traveling closer to the top or bottom walls of each floor,
where it can receive different observations due to the different wall placements in each floor.
The agent must reach the goal and avoid the trap, where the goal is the left end of the
hallway in the top floor and right end in the bottom floor, and the trap is at the opposite
side of the goal in each floor.

Planner comparison. Overall, VTS is the most successful among the three planners with
reasonable online planning time and steps taken, while requiring less than half the training
time compared to the other planners. In Fig. 9.4, we show an example trajectory of the VTS
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(a) Initial Belief (b) Localization (c) Reaching Goal

Figure 9.4: Example VTS behavior for Floor Positioning, where the planner starts the problem with
the initial belief (a), localizes in the wall states (b), and successfully reaches the goal (c).

agent, in which the agent quickly localizes in the wall states and then reaches the goal.
The VTS system gains significant performance optimality and efficiency by balancing

offline training and online planning. Specifically, VTS training is quick since it does not rely
on planner performance and only needs to be supplied with relevant state and observation
batches. However, other online training algorithms require the policy to interact with the
environment, and as such, much of the time is spent earlier in the training episodes when
the planner can neither localize nor reach the goal. Since tree search methods learn the
policy online and are more difficult to parallelize, they typically trade off the offline training
time with the online learning and planning time. Despite the longer planning, VTS plans
reasonably fast while maintaining the efficiency and flexibility of an online planner. We
also tested DualSMC with a known T model to ensure VTS is not given an advantage by
knowing T for model-based planning, but observed no statistically significant difference in
performance.

9.3.2 3D Light-Dark Problem

The Light-Dark problem is a family of problems in which an agent starting in a “dark” region
can localize by taking a detour into a “light” region before reaching the goal. Observations
are noisier in the dark region than in the light region. The 3D Light-Dark problem extends
this problem to have 3D image observations with salt-and-pepper pixel-wise noise.

The observations consist of 32 × 32 × 3 RGB images from the agent’s perspective. Our
environment is more challenging to reason with than the one in [183], since the RGB images
are rendered from a realistic hallway scene dataset rather than a synthetic environment. The
agent receives a reward for reaching the goal and a penalty if it enters a “trap”.

Planner comparison. In the Light-Dark problem and its variants, VTS performs the
best among four planners not only by taking full advantage of the image features, but also
by being able to adapt to different reward structures and distribution shifts in the noisy
observations during test time. Also, DualSMC sometimes fails to have successful training
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Figure 9.5: Example schema for 3D Light-Dark, localizing in the light region to reach the goal in the
dark region.

seeds, and DVRL and PlaNet have lower task success rates despite all successful training
seeds.

Figure 9.6: VTS can localize without light
observations (top), unlike DualSMC (bottom).

Among the successful training seeds for Du-
alSMC, VTS and DualSMC have comparable
success rates, but the VTS planner takes fewer
steps to reach the goal. While this is only 4.5
steps difference on average, further inspection of
the planner trajectories in Fig. 9.6 reveals an in-
teresting insight. Unlike the traditional light-
dark problems, the VTS results for 3D Light-
Dark suggest that the planner in fact is able to
localize solely with the noisy observations in the
dark region. This shows that while the salt-and-
pepper noise observations are hard to interpret,
the corrupted RGB images actually contain sufficient information to localize given enough
observations.

Figure 9.7: VTS can avoid new test time
traps (top), while other planners like DVRL dis-
regard the traps (bottom).

Test-time changes: Spurious traps. VTS
has additional advantages in its robustness and
adaptability, which we showcase through exper-
iments on modified Light-Dark environments.
First, to test the adaptability of different plan-
ners on test-time reward structure difference, we
perform an ablation with spurious traps that ap-
pear during test time. These regions could repre-
sent the presence of unforeseen obstacles or haz-
ards. Over 500 testing episodes, we randomly
generate the locations of two 0.5 × 0.5 square



CHAPTER 9. COMPOSITIONAL LEARNING-BASED PLANNING FOR VISION
POMDPS 108

traps over a particular strip in the environment and compare the performances of the models
without additional training or modification.

Since VTS uses an online planner, it can easily adapt to new reward structures at test
time without the need to retrain an entire planner. We see in Fig. 9.7 that while the other
planners ignore these new trap regions because they are not represented by their models,
the VTS planner is able to take into account rewards seen while planning. Thus, while the
success rate of all planners remains similar to the vanilla experiment, VTS achieves a much
higher reward than all other planners while taking more steps as it actively tries to avoid
these traps.

Figure 9.8: VTS can optimally plan with
occlusions (top), while others like PlaNet fail
to reach the goal (bottom).

Test-time changes: Image occlusions. Sec-
ond, we compare planner performances when
the form of the noise in the image observations
changes during test time. During test time only,
images seen in the dark region contain random
blacked out 15 × 15 squares instead of salt-and-
pepper noise.

We also find that VTS is robust to distribu-
tion shifts in the image noise at test time. Fig. 9.8
shows VTS maintaining a good success rate and
number of steps taken, while other planners are
struggling to generalize to this new scenario. The
additional robustness of VTS seems to be due to
the Zθ and Pϕ models being trained with high fidelity data samples through random batch
sampling or exploration.

In contrast, other planners that use on-policy training and complex non-separable ar-
chitectures suffer from such distribution shifts. This is likely due to lack of control over
on-policy exploration and the inability to cover many possible scenarios with such limited
interaction with the environment. Due to this difference in data variation, we conjecture
that the Zθ and Pϕ models in VTS learn more precise and robust features.

9.4 Conclusion

The development of Visual Tree Search suggests new ways to think about integrating un-
certainty aware learning and control. VTS demonstrates that a more principled integration
of control and planning techniques both illuminates the interpretability of each model com-
ponent and saves training time by cleanly partitioning what each network is responsible for.
This benefits researchers and practitioners alike, as a more interpretable and theoretically
principled planner that is also quicker to train is beneficial in many practical safety critical
scenarios with limited training resources.
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Our work also raises the question of what is the most natural, effective, and safety-
ensured method of combining pre-existing controllers and planners, which are extensively
studied both theoretically and experimentally, with learning-based components, which can
model many complex functions and phenomena. VTS is one such way of accomplishing that
goal, but there are other ways to achieve principled integration of learning and control.
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Chapter 10

Sequence-Conditioned Transporter
Networks

Chapter Outline

This chapter is based on the paper “Multi-Task Learning with Sequence-Conditioned
Transporter Networks” [111], written in collaboration with Andy Zeng, Brian Ichter,
Maryam Bandari, Erwin Coumans, Claire Tomlin, Stefan Schaal, and Aleksandra
Faust.

10.1 Introduction

Compositional multi-task settings are found in a number of industrial settings: from plac-
ing gears and chaining parts for assembly in a manufacturing plant, to routing cables and
stacking servers for datacenter logistics. Such tasks often require robots to perform multiple
maneuvers using different manipulation skills (primitives). Humans have the ability to gen-
eralize between compositional tasks of varying complexity and diversity [182], but solving
compositional tasks remains a major challenge in robotics. Enabling robotic autonomous
agents to learn and reason through compositional multi-tasks can further unlock autonomous
manufacturing frontiers by diversifying the problems that robots can solve while significantly
decreasing production costs [114].

Complex manipulation is compositional by nature – requiring multi-step interactions
with the physical world, and can be formulated as sequencing multiple individual tasks over
a longer horizon. Learning-based approaches offer the flexibility to learn complex manip-
ulation skills and generalize to unseen configurations [56, 85, 107, 115]. However, scaling
these approaches to solve compositional tasks may not always be successful [85, 86, 178].
Specifically, task compositionality often requires exponentially increasing amounts of demon-
strations for agents to learn and generalize well, while avoiding compounding long horizon
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Figure 10.1: Overview of Sequence-Conditioned Transporter Networks (SCTN). SCTN is trained
through multi-task weighted sampling, and can reason with demonstration sequence images with the trained
networks to output pick-and-place actions.

planning errors. In recent works in compositional task learning, it has been shown that learn-
ing agents should leverage shared task structures [66, 165], and techniques such as sequence-
conditioning [47], balanced sampling and learning curricula [86] can aid this process. Thus,
learning systems should effectively reason with task structures to solve compositional tasks.

In this work, we propose a new suite of benchmark problems inspired by industrial
compositional tasks, MultiRavens, which allows customizing compositional task problems
with task modules. To effectively solve these compositional tasks, we then propose a system
architecture that scales up to solve long horizon compositional manipulation tasks. Our
vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks,
uses sequence-conditioning and multi-task learning with weighted sampling to solve multi-
task long horizon problems, leveraging the task structure and compositionality with little
data.

Our results show that the new framework significantly outperforms original Transporter
networks [154, 199] on 10 multi-task benchmark problems in MultiRavens, where each prob-
lem exemplifies the difficulties in vision-based learning and planning tasks. Furthermore, our
results suggest that multi-task learning with weighted sampling can improve learning and
agent performances on individual tasks. Beyond compositional tasks, our results provide
insights for effective intermediate representations and learning shared structures.
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Figure 10.2: MultiRavens. Task modules introduced in MultiRavens: placing, chaining, routing and
stacking, and their goal configurations (left). The task modules effectively capture the compositionality of
industrial manipulation problems. An example multi-task problem placing + chaining + routing and its
goal configuration (right).

10.2 Transporter Networks for Rearranging Objects

10.2.1 Problem Formulation

Consider the problem of rearranging objects as learning a policy π : O → A that maps the
robot visual observations ot ∈ O to corresponding pick-and-place actions at ∈ A:

ot 7→ π(ot) = at = (Tpick, Tplace) ∈ A. (10.1)

Both Tpick, Tplace ∈ SE(2) describe the geometric pose of the end effector when grasping and
releasing the object, where SE(2) is the Special Euclidean group that covers all translations
and rotations in the 2D xy-plane. For a given pick-and-place action pair, the end effector
approaches Tpick until contact is detected, attempts to grasp the object, lifts up to a fixed
z-height, approaches Tplace to lower the object until contact is detected, and releases the
grasp. This framework can be generalized further to many tasks solvable with two-pose
motion primitives [199].

It is crucial that the policy π learns from a training procedure with closed-loop visual
feedback, as many compositional tasks require sequential planning over long horizons while
avoiding compounding error. The visual observations of the expert demonstrations are given
from the top-down view of the planar surface, from which the picking and placing poses are
sampled. We assume access to a small dataset D = {ζ1, ζ2, · · · , ζN} of N stochastic expert
demonstrations, used to train π. Each episode ζi = {(o1, a1), · · · , (oTi , aTi)} of length Ti is
a sequence of observation-action pairs (ot, at).

10.2.2 Transporter Frameworks

Transporter Networks [199] and Goal-Conditioned Transporter Networks (GCTN) [154] are
model architectures that learn pick-and-place actions by using attention and convolution
modules. For picking, the attention module predicts regions of placing interest given the
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Figure 10.3: Sequence-Conditioned Transporter Networks (SCTN). Roll out of SCTN policy on
placing + chaining + routing. SCTN takes in as input the current state ot and the demonstration sequence
v. The next-step goal module determines the next-step goal og,t from ot and v, which is then fed into the
GCTN module with ot to obtain the pick-and-place action at.

current observation. Then for placing, the convolution module uses the picking region to de-
termine the spatial displacement via cross-correlating the image features over the observation
and goal (for GCTN).

Both Transporter frameworks utilize the spatial equivariance of 2D visual observations,
where the top-down observations are invariant under 2D translations and rotations [40, 99,
195]. Thus, the observations ot are top-down orthographic images of the workspace, where
each pixel represents a narrow vertical column of 3D space. The top-down images simplify
reasoning with pick-and-place operations, as coordinates on the workspace can be directly
mapped to the observation pixel space, and improving training data augmentation process
[144], as translating and rotating the observation can quickly generate different configurations
of the object. Thus, both Transporter frameworks have shown significant success in pick-
and-place tasks, including stacking, sweeping, and rearranging deformable objects [154, 199].

GCTN consists of 4 Fully Convolutional Networks (FCNs): one FCN is used for picking
module and three FCNs for placing module. All FCNs are hourglass encoder-decoder residual
networks (ResNets) [73] with 43-layers and 9.9M parameters, made up of 12 residual blocks
and 8-strides.

10.2.2.1 Picking Module

The picking module consists of one FCN, fpick. It takes in as input the stacked image of the
observation ot and goal og images, and outputs dense pixel-wise prediction of action-values
Qpick that correlate with inferred picking success. This gives us the goal-conditioned picking
action Tpick = argmax(u,v){Qpick((u, v)|ot,og)}, with (u, v) as the pixel corresponding to the
picking action determined by the camera-to-robot vision mapping.
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Figure 10.4: Multi-Task Weighted Sampling Training. For a selected demo, we first choose which task
to sample from with probability ptask, then choose which step to sample from within the chosen task with
probability pstep, getting (ot,at,og,t).

10.2.2.2 Placing Module

The placing module consists of three FCNs, Φkey,Φquery,Φgoal. First, Φkey and Φquery take in
the observation ot to output dense pixel-wise feature maps of the inputs. Then, Φgoal takes
in the goal image og to also output a pixel-wise feature map, which is then multiplied to
each of the outputs of Φkey and Φquery using the Hadamard product to produce pixel-wise
correlated features ψ:

ψquery(ot,og) = Φquery(ot)⊙ Φgoal(og), (10.2)

ψkey(ot,og) = Φkey(ot)⊙ Φgoal(og). (10.3)

Finally, the query feature is cropped around the pick action ψquery(ot,og)[Tpick], then cross-
correlated with the key feature to produce dense pixel-wise prediction of action-values Qplace

that correlate with inferred placing success:

Qplace(∆τ |ot,og, Tpick) = ψquery(ot,og)[Tpick] ∗ ψkey(ot,og)[∆τ ]. (10.4)

The convolution covers the space of all possible placing poses through ∆τ , and gives us the
goal-conditioned placing action Tplace = argmax∆τ{Qplace(∆τ |ot,og, Tpick)}.

10.3 Sequence-Conditioned Transporter Networks

We present our two main architecture contributions: (1) Sequence-Conditioned Transporter
Networks (SCTN), which can effectively leverage structure and compositionality of multi-
task problems through demonstration image sequences; and (2) multi-task learning with
weighted sampling prior that improves learning robustness and efficiency.

10.3.1 Sequence-Conditioned Transporter Networks

We first determine what form of intermediate representation is suitable for demonstration
sequences. One way to represent sequential information is demonstration sequence images
[47, 193]. We collect demonstration sequence images at every time step t we receive a positive
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delta reward: whenever the expert demonstrator successfully places an object at a desired
location or completes a part of a sequential task, we record the resulting observation. Thus,
after a successful expert demonstration with D delta reward signals, we will have collected
demonstration sequence images v ≡ {vi}Di=1 that reaches a desired final goal configuration.

Next, we introduce the next-step goal module, a general framework for determining the
next suitable goal given an observation ot. The next-step goal module seeks to find the closest
delta reward time step in the demonstration image sequence, and infer the next-step goal as
the demonstration image after the matched step. There are many possible implementations
of this module: it could be a raw image distance-based module that compares the distance
between the current observation ot against the demonstration sequence images vi, or a neural
network-based module that learns and compares temporal embeddings of vi,ot [155].

In this work, we set the next-step goal module as an oracle operator that knows which
delta reward time step the agent is in and outputs the next-step goal image from v during
evaluation, for ease of implementation and to demonstrate proof of concept. This oracle
operator is reasonable since in our real robot system, a human operator checks each step of
the robot action and gives signal to continue or stop.

Thus, SCTN takes in as input the observation image ot and the demonstration sequence
v of the task being solved into a desired final configuration, determines the next-step goal
image og,t from v, and passes (ot,og,t) into GCTN to obtain the pick-and-place action at
(Fig. 10.3). We note that this is a general system architecture that could potentially work
well with any discrete-time goal-conditioned agents.

10.3.2 Multi-Task Training with Weighted Sampling

We introduce next-step goal-conditioning, as well as task-level and step-level weighting that
serve as useful sampling priors for stochastic gradient steps in training SCTN.

10.3.2.1 Next-Step Goal-Conditioning

To train the next-step goal-conditioning architecture, we sample (ot, at,og,t) from a given
demonstration episode, with og,t as the next-step goal image within the episode. This ap-
proach is based on Hindsight Experience Relay [7], where the goal image og,t is the first state
with a delta reward signal after ot.

10.3.2.2 Weighted Sampling for Multi-Task Problems

To train SCTN, a demonstration ζi is randomly chosen from a dataset of N demonstrations
D = {ζ1, ζ2, · · · , ζN}, after which a step t of the demo needs to be sampled from the set of
all time steps t ∈ [1, · · · , Ti] to give us the training sample (ot, at,og,t). However, sampling
uniformly across time steps can be problematic for multi-task problems that consist of tasks
with varying difficulties and horizons.



CHAPTER 10. SEQUENCE-CONDITIONED TRANSPORTER NETWORKS 116

Precise Sequential Occluded Deformable Lengthy Goal Objects n
Module Placing Planning Goal Objects Task (6+) (Max. Steps)

placing ✓ ✗ ✗ ✗ ✓ 9 (n+ 2)
stacking ✓ ✓ ✓ ✗ ✓ 6 (n+ 2)
chaining ✗ ✗ ✗ ✓ ✗ 2 (n+ 2)
routing ✗ ✓ ✗ ✓ ✗ 2-3 (n+ 4)

Single-Task Double-Task Triple-Task
Problems Problems Problems

1. placing 5. placing + routing 9. placing + chaining
2. stacking 6. stacking + routing + routing
3. chaining 7. placing + chaining 10. placing + stacking
4. routing 8. placing + stacking + routing

Table 10.1: MultiRavens. Overview of task modules and their attributes (top), and the 10 multi-task
problems we test in this work (bottom).

We introduce weighted sampling on both task-level and step-level to leverage task struc-
ture information. For task-level weighting, we assign each task i in a multi-task problem a
weight wi. We use two weighting schemes: (i) uniform weighting (“Unif”) that gives all tasks
equal weights, and (ii) complexity weighting (“Comp”) that weighs a given task proportional
to its inferred task complexity. The inferred task complexity of a task is how many gradient
steps it takes to reach optimal evaluation performance. Then for step-level weighting, we
assign each step t of the demonstration corresponding for each task a weight wi,t. We assume
that the expert demonstration solves each task sequentially, which means there is no mixing
of demo steps between tasks.

To determine the inferred task complexity and the step-level weighting for each task, we
employ black-box optimization [63] to obtain the values, which are shown in Appendix E.3.
With the weights determined, we can now enhance multi-task learning with weighted sam-
pling. We first choose a task i with probability ptask ∝ {wi}, i ∈ {tasks}, then choose a step
t with probability pstep|i ∝ {wi,t}, t ∈ [ti,1, · · · , ti,f ] where ti,1 and ti,f denote the first and
last steps of the demo episode that pertains to solving task i. Fig. 10.4 depicts the weighted
sampling process for training SCTN.

10.4 Simulator and Tasks

We evaluate the system on MultiRavens, a novel suite of simulated compositional manipu-
lation tasks built on top of PyBullet [44] with an OpenAI gym [27] interface.
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10.4.1 Modularized Tasks in PyBullet

To develop standardized benchmarks for compositional tasks, we propose a new PyBullet
simulation platform, MultiRavens, based on Ravens [199] and DeformableRavens [154], which
allows support for loading multiple tasks at once. PyBullet is a widely-used publicly available
simulator for robotics research, and the prior Ravens frameworks support various discrete-
time tabletop manipulation tasks. In MultiRavens, we introduce three new task modules:
placing, chaining and routing ; as well as modify one of the existing tasks from Ravens:
stacking. The tasks take inspiration from the National Institute of Standards and Technology
(NIST) Assembly Task Boards [54]. MultiRavens fully embraces compositionality of tasks
by allowing full customizability of task modules in compositional tasks.

Even though the PyBullet implementations of these tasks are simplified, the four task
modules capture the compositionality of industrial tasks while increasing the difficulty of
pick-and-place reasoning compared to Ravens and DeformableRavens. The challenges in-
clude precisely placing without direct visual cues for long horizon, dealing with deformable
objects with other static objects present, and planning around occluded goals without mem-
orizing task sequences. Fig. 10.2 shows the four task modules and an example multi-task
problem, and Table 10.1 provides a quick description for each placing, routing, chaining and
stacking.

10.4.2 Benchmark for Multi-Task Pick-and-Place Problems

We benchmark our agents on 10 discrete-time multi-task tabletop manipulation problems
from MultiRavens in Table 10.1. Each environment setup consists of a Universal Robot
arm UR5 with a suction gripper, a 0.5 × 1m tabletop workspace where task modules are
loaded, and 3 calibrated RGB-D cameras with known intrinsics and extrinsics, diagonally
overlooking the workspace. The three RGB-D images are augmented to produce a single
top-down observation ot ∈ R320×160×6, which has pixel resolution of 320× 160 representing a
3.125×3.125mm vertical column of 3D space with 3 RGB channel and 3 channel-wise depth
values. In principle, this camera setup can be replaced with a single top-down camera, but
the image reconstruction method gives us a clear view of the workspace without the UR5
arm.

We use the same grasping and releasing motion primitives in the Transporter works [154,
199], which locks in the degrees of freedom of the end effector and the object using fixed
constraints to pick and lift an object up. Furthermore, we use different motion primitive
settings for different tasks, determined by which tasks we have completed up until a given
step. For instance, for routing, we use a primitive setting that makes the arm move slowly
at a low lifting height to reduce unnecessary cable movements and prevent undoing any
previous successful routes. For stacking, we use a setting that lets the arm move quickly at
a higher height to be able to stack blocks on top of each other.
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10.5 Experiments

We use stochastic demonstrator policies to obtainN = 1000 demonstration data per problem.
Each policy we benchmark below are then trained with 1, 10, 100 or 1000 demonstrations.
For each problem, we test GCTN and SCTN, both with various weighted sampling schemes
to analyze whether the system architecture of sequence-conditioning and weighted sampling
helps with the performance. Training details, such as learning rate, optimizer, and data
augmentation, remain the same as Transporter works [154, 199].

For single-task problems, we test the following four agents: GCTN, GCTN-Step, SCTN,
and SCTN-Step. GCTN-Step and SCTN-Step are Transporter agents that are trained with
step-level weighting for a given single-task problem. For multi-task problems, we test the
following six agents: GCTN, GCTN-Unif-Step, GCTN-Comp-Step, SCTN, SCTN-Unif-Step,
SCTN-Comp-Step. The agents with Unif-Step suffixes are trained with uniform task-level
weighting and step-level weighting, and those with Comp-Step are trained with inferred task
complexity task-level weighting and step-level weighting. The weighting schemes are given
in Table E.1.

Zeng et al. [199] and Seita et al. [154] also test GT-State MLP models in their analyses,
which use ground truth pose information of each objects in the scene and process the input
with multi-layer perception (MLP) networks. However, two of our task modules, chaining
and routing, have variable number of objects in the scene due to randomized chain and cable
lengths. This renders the näıve ground truth-based models unapplicable to these problems.
Other directly comparable vision-based discrete-time pick-and-place agents tested in Zeng et
al. [199], such as Form2Fit [194] and ConvMLP [107], may potentially be made comparable
to GCTN and SCTN. However, these agents are not goal-conditioned.

While it is possible to substantially modify these agents, these models are shown to per-
form rather poorly compared to the Transporter variants and will require nontrivial mod-
ifications to perform reasonably well on these tasks. Since we are mainly interested in
analyzing the benefits of the new systems architecture of multi-task learning and sequence-
conditioning, we focus our analysis on how different weighting and conditioning schemes
affect the performance.

10.6 Results

We summarize results in Tables 10.2 and 10.3. For each agent and number of demo episodes
N ∈ {1, 10, 100, 1000}, we train the models 5 times with different TensorFlow [1] random
seeds, trained for 20K ×m iterations with batch size of 1, where m is the number of task
modules in a given problem. We evaluate the trained model every tenth of the training iter-
ations, where the trained model snapshot is validated on a roll out of 20 evaluation episodes.
This results in 20×5 = 100 metrics for 10 snapshots of the model. We evaluate agent perfor-
mances based on completion rate, which aptly captures agents’ abilities to reliably complete
all tasks in a given episode. For completion rate, we assign the value of 1 for a given episode
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1. placing 2. stacking

Method 1 10 100 1000 1 10 100 1000

GCTN 37.0 44.0 39.0 37.0 0.0 0.0 0.0 0.0
GCTN-Step 20.0 35.0 29.0 37.0 0.0 0.0 0.0 0.0
SCTN 94.0 100.0 100.0 100.0 0.0 47.0 53.0 70.0
SCTN-Step 77.0 100.0 98.0 80.0 3.0 50.0 73.0 67.0

3. chaining 4. routing

Method 1 10 100 1000 1 10 100 1000

GCTN 4.0 17.0 19.0 2.0 13.0 66.0 69.0 75.0
GCTN-Step 4.0 22.0 1.0 8.0 13.0 64.0 78.0 68.0
SCTN 10.0 26.0 36.0 27.0 1.0 10.0 12.0 15.0
SCTN-Step 7.0 30.0 28.0 33.0 1.0 11.0 10.0 10.0

Table 10.2: Single-task results. Completion rate vs. number of demonstration episodes used in training.
The completion rate is calculated as mean % over 20× 5 test-time episodes in simulation of the best saved
snapshot, the # of demos used in training are chosen from {1, 10, 100, 1000}, and bold indicates the best
performance for a given problem and # of demos.

if and only if all the task modules are completed, and otherwise 0. We average the comple-
tion rates over each snapshot and report the maximum over all snapshots in Tables 10.2 and
10.3.

10.6.1 Single-Task

For single-task problems, both variants of SCTNs outperform GCTNs in placing and stack-
ing. SCTN has a remarkably high completion rate of 94% for placing even with just 1 demo
episode, while GCTNs hover around 30-40%. GCTNs often suffer from two types of errors:
inaccurately placing the disks, and stacking a disk on top of another one. In these scenarios,
GCTN does not know how to properly correct itself since the top-down view is unable to
capture the stacking mistake and the attention module mostly focuses only on the disks that
are directly outside the square plate.

SCTN-Step also has a high completion rate of 50% with 10 demos and 73% with 100
demos for stacking, while GCTNs completely fail, which is expected as GCTNs cannot reason
with blocks that are (partially) occluded from the top-down view. Interestingly, GCTNs
successfully imitate the overall behavior of stacking the blocks but completely disregard the
goal configuration (Fig. 10.5).

All Transporter agents perform similarly poorly on the chaining task, while GCTNs
perform far better on routing with completion rate of 66% with only 10 demos. SCTNs
often struggle at performing the final cable stretching move to match the goal configuration
and seem to prematurely consider that it has already completed the task, then perform out-
of-distribution moves that lead to failure. This seems to be an artifact of both overfitting and
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5. placing + routing 6. stacking + routing

Method 1 10 100 1000 1 10 100 1000

GCTN 1.0 (4.8) 28.0 (29.0) 20.0 (26.9) 25.0 (27.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-U 3.0 (2.6) 25.0 (22.4) 28.0 (22.6) 29.0 (25.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-C 1.0 (2.6) 5.0 (22.4) 18.0 (22.6) 13.0 (25.2) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

SCTN 5.0 (0.9) 46.0† (10.0) 62.0† (12.0) 50.0† (15.0) 0.0 (0.0) 35.0† (4.7) 54.0† (6.4) 39.0† (10.5)

SCTN-U 4.0 (0.8) 50.0† (11.0) 81.0† (9.8) 86.0† (8.0) 0.0 (0.0) 25.0† (5.5) 45.0† (7.3) 65.0† (6.7)

SCTN-C 2.0 (0.8) 25.0† (11.0) 38.0† (9.8) 44.0† (8.0) 0.0 (0.0) 30.0† (5.5) 49.0† (7.3) 49.0† (6.7)

7. placing + chaining 8. placing + stacking

Method 1 10 100 1000 1 10 100 1000

GCTN 3.0 (1.5) 4.0 (7.5) 9.0 (7.4) 2.0 (0.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-U 1.0 (0.8) 7.0 (7.7) 6.0 (0.3) 8.0 (3.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-C 2.0 (0.8) 2.0 (7.7) 0.0 (0.3) 1.0 (3.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

SCTN 4.0 (9.4) 33.0 (26.0) 40.0 (36.0) 44.0† (27.0) 1.0 (0.0) 44.0 (47.0) 54.0 (53.0) 56.0 (70.0)

SCTN-U 3.0 (5.4) 38.0 (30.0) 48.0† (27.4) 50.0† (26.4) 1.0 (2.3) 57.0 (50.0) 68.0 (71.5) 51.0 (53.6)

SCTN-C 1.0 (5.4) 16.0 (30.0) 46.0† (27.4) 32.0 (26.4) 0.0 (2.3) 58.0 (50.0) 64.0 (71.5) 62.0 (53.6)

9. placing + chaining + routing 10. placing + stacking + routing

Method 1 10 100 1000 1 10 100 1000

GCTN 1.0 (0.2) 5.0 (4.9) 4.0 (5.1) 9.0 (0.6) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-U 0.0 (0.1) 4.0 (4.9) 9.0 (0.2) 8.0 (2.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

GCTN-C 0.0 (0.1) 2.0 (4.9) 1.0 (0.2) 4.0 (2.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

SCTN 1.0 (0.1) 27.0† (2.6) 33.0† (4.3) 27.0† (4.0) 0.0 (0.0) 21.0† (4.7) 35.0† (6.4) 41.2† (10.5)

SCTN-U 2.0 (0.1) 26.0† (3.3) 49.0† (2.7) 53.8† (2.6) 0.0 (0.0) 42.5† (5.5) 44.0† (7.2) 48.7† (5.4)

SCTN-C 0.0 (0.1) 21.0† (3.3) 32.0† (2.7) 39.0† (2.6) 0.0 (0.0) 23.0† (5.5) 49.0† (7.2) 29.0† (5.4)

Table 10.3: Multi-task results. Completion rate vs. number of demonstration episodes used in training.
The completion rate is calculated as mean % over 20× 5 test-time episodes in simulation of the best saved
snapshot, the # of demos used in training are chosen from {1, 10, 100, 1000}, and bold indicates the best
performance for a given problem and # of demos. The shorthand “-U” denotes the Unif-Step weighting
and “-C” denotes the Comp-Step weighting. Gray number in parentheses indicates expected performance
of combining single-task Transporter agents, and dagger (†) indicates more than 10% completion rate im-
provement compared to the expected performance.

task complexity, as efficient routing demonstration steps can overshadow the complexities of
dealing with linear deformable objects.

Thus, for single-task problems, SCTNs perform far better and more efficiently than
GCTNs on tasks that deal with small individual objects over long horizons, but does not
perform better than GCTNs on tasks that deal with deformable objects. On a single-task
level, the step-level weighting does not seem to improve the performance significantly.
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Figure 10.5: Shortcomings of GCTN: GCTN can imitate the block stacking behavior but mostly disre-
gards the goal configuration (left), and makes several misplacing mistakes in multi-task problems (right).

10.6.2 Multi-Task

For all multi-task problems, SCTNs vastly outperform GCTNs. We also report the expected
completion rate in Table 10.3, which is the completion rate we can expect if we use separate
Transporter agents of same settings for each task in the multi-task problem, calculated by
multiplying the mean completion rates for each task. SCTNs with weighted sampling often
performed far better on multi-task problems than the expected completion rate. For placing
+ routing, SCTN-Unif-Step has a completion rate of 81%, while the expected completion
rate is only 9.8%, which means SCTN performs better on the routing task when jointly
trained on placing and routing than when solely trained on routing.

This trend continues to show in triple-task problems, where SCTN-Unif-Step achieves
49.0% completion rate with just 10 demos for placing + chaining + routing. Meanwhile,
GCTN often makes several mistakes along the way (Fig. 10.5). Thus, for multi-task problems,
both sequence-conditioning and weighted sampling significantly improve the performance of
the Transporter agents, often improving far beyond the expected performance when trained
on multiple tasks.

10.7 Conclusions

We introduce a suite of modularized tasks for benchmarking vision-based manipulation
agents on multi-task problems. In addition, we propose an architecture that enables discrete-
time goal-conditioned pick-and-place agents to reason with sequence-conditioning and allows
for more informed weighted sampling to tackle multi-task problems of long horizons.

Reasoning over multi-task problems is challenging, and prior works have shown mixed
success results in multi-task training. Our proposed system demonstrates high completion
rates in many multi-task problems of long planning horizon when trained on as few as 10
demonstration episodes, and shows that sequence-conditioning with appropriate sampling
schemes can bolster multi-task learning and planning. Despite the promising results, it still
remains a question how the new system architecture generalizes to other goal-conditioned
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agents. Furthermore, while access to robots was limited due the COVID-19 pandemic, we
aim to conduct physical experiments with suitable multi-task problems to see how well the
system performs in realistic scenarios.
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Part IV

Ecology Application: Novel Ecological
Applications of Optimal Path

Planning
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Chapter 11

Overview

Chapter Outline

In this chapter, we give an overview of the work discussed in Part IV. We introduce
the ecological species coexistence navigation problem and how to approach it with se-
quential decision making methods. Some discussions, results, and relevant figures are
borrowed & repeated from the original works listed in each chapter.

11.1 Applications of Sequential Decision Making to

Ecological Community State Navigation

This part of the dissertation aims at applying the principles from Parts II and III to other
promising domain intersections. One such domain to apply and extend sequential decision
making techniques to is ecology, specifically community state navigation, which we focus on
in this part of the dissertation. Ecological problems often require reasoning about how popu-
lations dynamically evolve, how to effectively control and leverage such dynamics, and design
experiments and policies that are both effective and the least harmful to the environment. In
particular, using theoretically principled and justified algorithms is of practical importance
in ecological settings for species coexistence navigation, as practitioners are often interested
in algorithms and techniques that are scientifically justified with guarantees (Part II), and
can leverage the prior knowledge and modern techniques to aid these planning techniques
(Part III). Generating near-optimal plans with guarantees is of utmost importance in ecol-
ogy, where experiments can be performed and decisions can be made on a time scale of years
and decades, such as in the case of annual plant growth, forest management, and wildlife
preservation.

Consequently, as the next step of Parts II and III, we consider how to effectively apply
these techniques to ecological problems. In particular, this part of the dissertation dives deep
into solving the species coexistence navigation problem, where we want to drive a population
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state from one configuration from another. The state diagram approach [22] introduced in
Chapter 12 outlines how we can formulate an ecological problem into a sequential decision
making problem, by generating a graph of possible transitions and searching for the optimal
path.

11.2 Species Coexistence Navigation

In Chapter 12, we introduce the state diagram approach, which enables navigation between
initial and desired community states using shortcuts [22]. Ecological management problems
often involve navigating from an initial to a desired community state. We ask whether navi-
gation without brute-force additions and deletions of species is possible via: adding/deleting
a small number of individuals of a species, changing the environment, and waiting. Naviga-
tion can yield direct paths (single sequence of actions) or shortcut paths (multiple sequences
of actions with lower cost than a direct path). We ask (1) when is non-brute-force naviga-
tion possible?; (2) do shortcuts exist and what are their properties?; and (3) what heuristics
predict shortcut existence? Using a state diagram framework applied to several empirical
datasets, we show that (1) non-brute-force navigation is only possible between some state
pairs, (2) shortcuts exist between many state pairs; and (3) changes in abundance and rich-
ness are the strongest predictors of shortcut existence, independent of dataset and algorithm
choices. State diagrams thus unveil hidden strategies for manipulating species coexistence
and efficiently navigating between states.
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Chapter 12

Navigation Between Initial and
Desired Community States Using
Shortcuts

Chapter Outline
This chapter is based on the paper “Navigation between initial and desired community
states using shortcuts”, written in collaboration with Benjamin W. Blonder, Claire
Tomlin, and Zachary Sunberg.

12.1 Introduction

Many ecological management problems involve observing a community in an initial state,
then taking a sequence of actions to yield a desired state (e.g. promoting gut microbiome
health after infection, restoring a degraded rangeland). Management problems are often
solved by brute-force navigation, which involves removing all individuals of undesired species
and adding many individuals of desired species at great effort (e.g., antibiotics+probiotics,
bulldozing+replanting). Such navigation may succeed, but at high cost and impact. Al-
ternatives may exist that are more efficient and have fewer side effects. The challenge is
to identify action sequences, i.e. navigation, that yield the desired state at lower cost and
effort.

Some prior navigation approaches focused on continuous control of community dynamics.
The problem has recently been conceptually explored in models [8, 18, 26, 82]. Applications
exist for e.g., fisheries, forestry, agriculture, and other natural resource management chal-
lenges where continual intervention is of interest [24, 100, 102, 138], and also in microbial
systems where metabolite production or infectious disease are priorities [8, 42, 60]. However,
continuous control of multiple species’ abundances becomes mathematically prohibitive and
biologically unrealistic in high-richness communities.
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Figure 12.1: Ecological Navigation Problem. (a) Navigation is the problem of discovering sequences of
actions that shift a community from an initial state (purple circle) to a desired state (green circle) while
not unnecessarily visiting other states (gray circles). A direct path (black arrow) involves taking a single
low-cost action. A shortcut path (gray arrows connecting orange circles) involves taking several low-cost
actions, and represents a ‘work-with-nature’ solution. A brute-force solution (red arrows) involves deleting
all individuals of all undesired species and adding many individuals of all desired species. (b) Navigation is
loosely analogous to playing ‘Snakes and Ladders’. In this game, players transition between squares (states)
through sequential movement (actions) that either progress along the board (direct path) or jump around
via snakes or ladders (shortcut paths).

We instead propose a discretized navigation approach that focuses on control of com-
munity outcomes. Many management problems can be simplified to coexistence outcomes
[23, 39, 120]. Reaching an outcome (desired state) may be more important than the tran-
sient dynamics. Formulation as a discrete path planning problem can reduce mathematical
complexity and improve biological realism.

Our hypothesis is that the internal dynamics of a community enable taking actions that
nudge a community between states, either through direct paths or shortcut paths, both of
which are lower-effort than brute-force navigation. Here, we define a direct path as a single
set of low-effort actions that yield the desired state, and a shortcut path as a sequence of
multiple sets of low-effort actions that yield the desired state; action sets are separated by
waiting for the community to reach a feasible and stable fixed point. The term ‘shortcut’
is used to indicate that path cost is small, not path length (Fig. 12.1 (a)). Conceptually,
we nudge a community until it tips into an alternate basin of attraction, then repeat this
nudging process until the desired state is reached. Several small nudges may be lower in cost
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than a single large push into the desired state.
Brute-force navigation is always theoretically possible between states by removing all

individuals of undesired species and then adding a sufficient number of desired species,
ignoring the internal dynamics of the community. However, brute-force is often impractical,
and if the desired state is not feasible and stable, further continuous effort would be needed to
maintain the state. We focus therefore on finding direct and shortcut paths between feasible
and stable states only. Direct paths may be findable via trial-and-error. However, shortcuts
are difficult to find because of the near-infinite numbers of potential action sequences to
explore.

The navigation problem is loosely analogous to the game of ‘Snakes and Ladders’ (known
originally as ‘gyan caupar’) (Fig. 12.1 (b)) [177]. In this game, “the player should complete
[the tour of] the board according to its numbering, starting at birth and ending at liberation.
Going upward comes about by means of the ladder; going down comes about from the body
of the snake. Going up is achieved from good actions; [going down from] the face of the
snake is caused by bad actions. Vaikuntha [the heaven of Visnu] is reached by completing
the game; otherwise the player must go on climbing” [71]. While Snakes and Ladders is a
game of chance, not choice, our hypothesis is approximately equivalent to finding and then
using ‘snakes’ (richness-decreasing shortcuts) and ‘ladders’ (richness-increasing shortcuts) to
navigate between states.

First, we show how to enumerate a state diagram characterizing all of the possible tran-
sitions between all possible fixed point states. We consider actions that include adding ϵ
individuals of a certain species, deleting ϵ individuals of a certain species, changing the envi-
ronment, or waiting. The first three actions are assumed to occur instantaneously, shifting
the community into a transient state, while the last action takes time, shifting the commu-
nity to a fixed point. Each type of action i is also assumed to have a different cost Ci. We
then show how to identify shortcuts on the state diagram for arbitrary pairs of initial and
desired states.

We apply the approach to six empirical parameterizations of the generalized Lotka-
Volterra model, varying in taxonomy and species pool richness. We use these data to ask:
(1) when is navigation between states possible without using brute-force; (2) are shortcut
paths common, and what are their characteristics; and (3) are shortcuts predictable based
on dataset or initial/desired community properties?

12.2 The State Diagram Approach

12.2.1 The state diagram

There is a set of n species comprising a regional pool, of which any subset may co-occur
locally in the community. The state of the community, X =

{
Xi(t)

}
∈ Rn

≥0, is defined as
the vector of abundances of each species Xi (1 ≥ i ≥ n) at a time t. There is a set of
discrete environments with cardinality m defined by

{
Ej
}
∈ M with 1 ≤ j ≤ m. Note
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that the environment may actually be continuous; here we simply consider some discrete
points within the environment to be reachable by actions, e.g., to model cases where an
experimentalist could select among ‘cold’ to ‘warm’ and ‘hot’ conditions (m = 3). There is
a dynamical model that predicts temporal changes in the state as a function of variables,
which may include X and E, dX(t)

dt
= f(X(t), E).

Based on this dynamical model, there are a set of fixed points with cardinality Ξ, {ξk}
with 1 ≤ k ≤ Ξ, defining the points where dX(t)

dt
= 0. Note that if E changes, so too may

Ξ. A fixed point k can have an attribute fs (ξk) indicating that it is feasible (i.e. all species
present i occur at non-negative abundances; ξk,i ≥ 0) and stable (for every small ε > 0 there
exists a δ > 0 such that if |X(t0)− ξk| < δ then |X(t)− ξk| < ε for all t ≥ t0).

We next enumerate {ξk} over all combinations of species being present or absent in the
community (i.e. the empty community, all species occurring alone, all pairs, all triplets,
etc.). These fixed points can be identified by exploring every subspace of the state space (all
combinations of presences/absences), then re-calculating dynamical model nullclines.

We consider four types of actions, indexed 1 ≤ q ≤ 4. Each action type q is assumed to
have some cost Cq ≥ 0 and have a different consequence: (q = 1) adding a small number (ϵ)
of individuals of a single species i (i.e. Xi → Xi + ϵ) ; (q = 2) deleting a small number (ϵ)
of individuals of a single species i (i.e. Xi → max(Xi − ϵ, 0)) ; (q = 3) changing the state
of the environment j to j, 1 ≤ j∗ ≤ m (Ej → Ej∗), no change to X), and (q = 4) waiting
for a shift into fixed point k∗, 1 ≤ k∗ ≤ Ξ (X → ξk∗), no change to E). Each species i can
either be added or deleted up to one time until a waiting action has been performed. For
all actions except waiting, the consequence is assumed to occur instantaneously; for waiting,
the consequence is assumed to occur as t → ∞ and determined by the dynamical model.
That is, we assume that states do not reach a fixed point until a waiting action, and that
multiple non-waiting actions can be taken in sequence before waiting.

The system can now be discretized into a smaller state space {Y } that describes fixed
points and transient points. In each environment E, we therefore assume that each state
can either be at one of the fixed points ξk or, for each fixed point, at one of the 3n possible
transient ϵ-addition or ϵ-deletion states that occur immediately after any number of actions
is taken. The overall cardinality of the discretized state space {Y } is therefore (m×Ξ× 3)n

or approximately m × 2n × 3n assuming one fixed point per species combination. The
action space can also be discretized. There are a total of n ϵ-additions and ϵ-deletions, m
environmental changes, and 1 wait action, yielding a cardinality of 2n+m+1. Each action,
now by definition, yields a transition from a state in {Y } to another state in {Y }.

With this information for fixed points and the outcomes of actions at each fixed point,
we can construct a directed graph called the state diagram. Vertices are states in {Y } and
edges are actions, where the arrow head is the state after the action and the arrow base is
the state before the action. Each vertex k has attribute fs (ξk) ; each edge δ has an attribute
Cq. We define an action sequence ∆ = {δ1, δ2, . . .} as an ordered set of edges (actions) that
connects an initial vertex (state) to a desired vertex (state), with associated cost sequence
ω =

{
Cq,1, Cq,2, . . .

}
.
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Our primary insight is that the navigation problem is now equivalent to a shortest-path
(lowest-cost) problem on a directed graph (the state diagram), i.e. finding a ∆ that minimizes∑
ω. This general mathematical problem can be solved efficiently [36, 57]. If a path does

not exist, the only solution is brute-force; if a path does exist, and has one wait action, it is
direct, and if it has more than one wait action, it is a shortcut.

12.2.2 Implementation

We implemented the state diagram approach for the GLV model, which has been widely
studied to explore questions of species coexistence [17, 149] and can accommodate cases
where the environment influences parameter values [180]. The dynamical model is

dX(t)

dt
= diag

(
X(t)

) (
r(E) + A(E)X(t)

)
, (12.1)

where E is assumed constant unless changed by an action. Here, r (E) is a n × 1 vector
that indicates the intrinsic growth rates of each species, and A (E) is a n× n matrix whose
i, j entry represents the change in species i’s per-capita growth rate for a unit change in the
density of species j.

If A is non-singular, for each parameter combination, there is one non-trivial fixed point,
determinable by nullcline analysis:

ξ = −A−1(E)r(E). (12.2)

If the fixed point is not feasible, the state will shift to a subspace with some species absent
(see below). If A is singular, there can be many fixed points corresponding to the null space
of A, corresponding to cases where parameters are either linear combinations or there is
partitioning in the interaction network [8]. Stability is defined by the criterion

max
i

[
Re
({
λi(E)

})]
< 0, (12.3)

where
{
λi(E)

}
are the n eigenvalues of A (E), and feasibility is determined based on the

values of ξ.
To then calculate all the fixed points Ξ, the process can be iterated for all combinations

of species. Because all GLV interactions are pairwise, cases where species j is absent can
be handled by dropping row j and column j of the A matrix (i.e. obtaining the principal
submatrix), and simultaneously dropping entry j of the r vector. Multiple entries can be
dropped in cases where multiple species are absent. This is non-trivial, as the eigenvalues of
a principal submatrix (which are closely related to the matrix inverse, and thus the location
of the fixed point) are not necessarily the same as for the original matrix [81]. That is,
combinations of species may behave differently from subsets of those combinations [149], a
phenomenon also seen in models with higher-order interactions [119]. If A and all its principal
submatrices are non-singular, then there is a single fixed point per iteration, yielding Ξ = 2n
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Dataset Species Envs Number of edges Proportion of Abundance
(n) (m) in state diagram feasible & stable

Ciliate 5 1 27 ± 2 0.25 2.75 ± 1.48
Ciliate+env3 5 3 2851 ± 1562 0.9 0.07 ± 0.02
Ciliate+env5 5 5 5667 ± 2820 0.74 0.61 ± 1.26
Human gut 12 1 7132 ± 219 0.05 2.08 ± 8.35
Mouse gut 11 1 22065 ± 1590 0.24 6.1 ± 46.83
Protist 11 1 408 ± 39 0.02 8.29 ± 65.82

Table 12.1: Ecological Navigation Empirical Dataset. Summary of properties for empirical datasets
used in this study. Abundance values are summarized across all assemblages and then across all experimental
conditions. The number of edges in the state diagram are summarized across all ϵ values.

fixed points for each value of E. If A is singular, there may be more or fewer fixed points to
be considered.

The outcomes of actions are determined based on numerical integration of the dynamical
model. First, we enumerate all desired addition, deletion and environment change actions for
each fixed point, arriving at intermediate states. Then, when the waiting action is performed,
the initial condition of the numerical integration is set to the intermediate state, and the
dynamics are run forward with integration time span proportional to the smallest eigenvalue
of A to ensure that the system can approach equilibrium. The resulting final abundances
are then matched to the corresponding fixed point if the integration is successful and results
in a non-trivial fixed point.

We calculate ∆ and
∑
ω for pairs of starting and desired states using A* search, which is

a best-first search algorithm that expands local paths around the source vertex according to a
combination of the cost of the path from the initial vertex to the current vertex plus the cost of
a heuristic estimate of the cost from the current vertex to the desired vertex. It is guaranteed
to find a solution if one exists [72]. We use an admissible heuristic that optimistically
assumes that a single round of adding small numbers of individuals of currently missing
species followed by a waiting action is sufficient to reach the desired basin of attraction. All
algorithms were implemented in Julia (version 1.6.0). ODEs were solved using Rodas4P with
absolute tolerance 10−6, relative tolerance 10−6, and max iterations 103.

12.2.3 Empirical parameterization

We studied six cases where parameter estimates for A and r come from fitting generalized
Lotka Volterra models to empirical data (Table 12.1, taxon names in Table F.1). These com-
prise: (‘Ciliate’) a n = 5 protozoan ciliate community [120] based on data for 19 °C growth;
(‘Ciliate+environment3’, often abbreviated as ‘Ciliate+env3’) the above n = 5 community
for m = 3 environments: 15, 19, and 23 °C growth from [140], (‘Ciliate+environment5’, often
abbreviated as ‘Ciliate+env5’) as above for m = 5 environments also including 17 and 21°C
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growth; (‘Human gut’) a n = 12 m = 1 synthetic human gut microbial community [181];
(‘Mouse gut’) a n = 11 m = 1 mouse gut microbial community including the difficult-to-
remove pathogen Clostridium difficile [169] based on data from [30]; and (‘Protist’) a n = 11
m = 1 protist and rotifer community based on A values from [32] and r values from [31] and
supplemented by additional r values for two missing taxa via personal communications.

12.2.4 Computational experiments

We performed A* experiments over all multiple action cost combinations and action mag-
nitudes. Addition and deletion actions used ϵ in {10−1, 10−3, 10−5}. Each type of action
q used costs in {10−1, 100, 101}. We also tested whether capping the total number of ac-
tions before a wait (a scenario where actions should be simple to implement) influenced
navigation. This comprises 3 × 34 × 2 = 486 experiments per dataset. Impacts of capping
were minimal so main-text results only consider no capping, with capped results provided in
output files. For each dataset, we picked 10,000 random pairs of initial and desired states.
We determined whether a non-brute-force navigation solution existed for each dataset for
10,000 subsampled state pairs for which both start and end states are feasible and stable.
State pairs were sampled without replacement using a fixed random number generator seed
within each dataset to enable direct comparison between experimental results with different
hyperparameter choices.

12.2.5 Statistical analysis

To address Question 1, for each A* experiment, we determined whether non-brute-force
navigation was possible via any path. We also visualized state diagrams for selected cases,
and determined whether, across cases, some intermediate states were more commonly visited
(i.e. variation in node degree and centrality).

To address Question 2, for each A* experiment where non-brute-force navigation was
possible, we determined whether the lowest-cost path was direct or a shortcut. We assessed
variation in path length, and also visualized paths for selected cases.

To address Question 3, we built a random forest model that outputs probabilities, where
path type (brute-force, direct, shortcut) was the dependent variable. Predictor variables
reflected several easily-measured state properties, assuming no knowledge about the state
diagram or the GLV dynamics: change in mean abundance, richness, and Jaccard similarity
between initial and desired states; log10 ϵ; n; m; all four costs Cq; and dataset name. To
reduce computational costs, a subset of 100 (or the maximum available) state pairs were
randomly sampled from each of the 2916 A* experiments, after which we balanced the
sampling by path type (brute-force, direct, shortcut) to the minimum number of samples
available in each type. The final dataset comprised 25,782 cases. We used default parameters
in the ranger package (version 0.14.1). We calculated a permutation importance for each
predictor, made partial dependence plots for the most important predictors, and calculated
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Figure 12.2: State Diagrams. Example state diagrams for all datasets. Circles represent fixed point
states and are colored green if feasible and stable (i.e. possible navigation target), and gray if not. Orange
circles indicate transient states that have higher richness than their pre-action state. States are arranged
by richness on the y-axis, with the empty state at bottom and the maximum richness state at top. Arrows
indicate actions; redder arrows are primarily deletions, while bluer arrows are primarily additions, and
intermediate colors indicate mixtures of both additions and deletions; arrow thickness indicates inverse action
cost (thicker = lower cost). Panels (b) and (c) indicate cases where there are multiple environments. For
visual presentation, environment-changing actions are not separately colored, and states are not ordered by
environment (this is why there is more than one state shown at minimum/maximum richness). Visualizations
are for Cϵ−addition = 1, Cϵ−deletion = 1, Cenvironment = 1, Cwait = 0.1, and ϵ = 0.1. See Fig. F.2 for the
‘ladder’ path subset (the invasion graph) and Fig. F.3 for the ‘snake’ path subset (the un-invasion graph).

overall accuracy using a 10-fold cross-validation in the caret package (version 6.0-93). All
analyses were performed in R (version 4.2.0).
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12.3 Results using Experimental Data

12.3.1 Question 1: Navigation

State diagrams had complex topologies that varied widely with dataset (Fig. 12.2). Some
datasets only contained a small fraction of feasible and stable states, limiting non-brute-
force navigation among low richness states (e.g., protist), while others supported navigation
to high richness states (e.g., mouse gut). Higher-richness transient states used for naviga-
tion occurred widely in all datasets, indicating that species interactions, here competitive
exclusions, played a key role in navigation, but also represented a potential hazard if they
would be unsafe to reach (see Discussion). Actions were dominated by additions in some
datasets (e.g., human gut, mouse gut) and by deletions in others (e.g., ciliate+environment3,
ciliate+environment5), though actions comprising both additions/deletions also occurred
(Fig. F.1).

Varying the GLV parameterization influenced the state properties, and thus the possible
navigation targets. Varying ϵ changed the topology of the state diagram, with larger ϵ often
resulting in more edges, but sometimes loss of edges (Fig. F.4). For a fixed state diagram
topology, varying the costs Cq influenced the edge weights and thus the navigation paths.

Navigation probabilities, defined as the number of state pairs connected by a non-brute-
force path divided by the number of feasible and stable state pairs, varied widely (Fig. 12.3
(a)). Probabilities were lowest for the human gut and highest for the ciliate+environment5
dataset. Increasing ϵ increased probabilities for all datasets. Some intermediate states were
consistently visited (Fig. F.5), showing that there are hubs on the state diagram. However,
hubs were not common in the ciliate+environment datasets, suggesting that environmental
variation enables more diverse navigation pathways. Hubs were not correlated with in-degree
or out-degree on the state diagram (Fig. F.6). In general, there was a tradeoff between in-
and out-degree, indicating that states that are easier to reach are harder to leave, and vice
versa.

12.3.2 Question 2: Shortcut properties

Shortcut probabilities, defined as the probability a state pair was connected by a short-
cut, conditioned on navigation between the states being possible, also varied substantially
(Fig. 12.3 (b)). Shortcut probabilities ranged from 14% to 71% across datasets and ϵ val-
ues, except for the ciliate dataset at 0%. Increasing ϵ did not consistently increase shortcut
probability.

Among shortcut paths, the number of steps varied widely (Fig. F.7). The mouse gut and
ciliate+environment datasets consistently had the longest path lengths, some involving as
many as eight sequential actions, which is consistent with the greater number of links present
in their state diagrams (Fig. 12.2). Other datasets typically involved paths comprising 2-4
actions.
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Figure 12.3: Navigation Statistics. (a) Probability that non-brute-force navigation is possible between
two randomly selected feasible and stable states. (b) Probability that a shortcut path exists between two
randomly selected states, given that navigation is possible. Bars indicate different datasets and are colored
by ϵ. Error bars in panel (b) indicate standard deviations across assumed costs Cq; no error bars are shown
in (a) because costs do not influence estimates.

Visualizing shortcut paths illustrates the complexity of navigation. In the mouse gut,
completely removing the pathogen C. difficile when it is initially present was often possible.
For the experimental conditions described in Fig. 12.2, we found 4,304/10,000 cases with the
pathogen present; of these, a complete removal via shortcut was possible in 111 cases. Two
examples are shown in Fig. 12.4 (a-b). Similarly, community turnover is often achievable
by leveraging environmental change, as in the ciliate+environment5 dataset. Also for the
experimental conditions described in Fig. 12.2, we found 716/10,000 cases that had no net
change from 15°C growth; of these, reduction in richness via shortcuts leveraging environ-
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Figure 12.4: Example Shortcut Paths. Example shortcut paths for (a-b) completely removing the
pathogen Clostridium difficile in the mouse gut dataset, and (c-d) reducing species richness via environ-
mental change in the ciliate+environment5 dataset. Each panel indicates states connected by sequential
actions on the x-axis, ordered by richness on the y-axis. Green boxes indicate feasible and stable states, with
the initial state on the left and the desired state on the right. White boxes indicate actions, with ϵ-additions
as blue ‘+’, ϵ-deletions as red ‘-’, environment changes as orange ‘*’, and waits as gray ‘.’. Visualizations
are for Cϵ−addition = 1, Cϵ−deletion = 10, Cenvironment = 1, Cwait = 0.1, and ϵ = 0.1 (i.e. 10× more costly
to ϵ-delete than ϵ-add) Taxon names are in Table F.1. (a) 1: One species is introduced at low density and
another is given a small negative abundance perturbation, causing the establishment of one species and the
competitive exclusion of three others. 2: Three species are introduced at low density, causing the competitive
exclusion of C. difficile. 3: Two species are introduced at low density, yielding competitive exclusion of one
species and coexistence of four species in the desired state. (b) 1: Two species are introduced at low density,
causing one competitive exclusion. 2: One species is introduced at low density, causing two competitive
exclusions. 3: Three species are introduced at low density, causing the competitive exclusion of C. difficile
and two other species. 4: Two species are introduced at low density, yielding competitive exclusion of three
species and coexistence of two species in the desired state. (c) 1: The environment is warmed, causing
competitive exclusion of two species. 2: One species is introduced at low density and the environment is
cooled, causing coexistence of two species in the desired state. (d) Similar to (c).
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mental change was possible in 206 cases. Two examples are shown in Fig. 12.4 (a-b). In all
cases, navigation used timely actions to cause useful competitive exclusions, which allowed
jumping between states until the desired state was reached. In other cases (not shown) where
Cϵ−deletion is assumed smaller, ϵ-deletions were more commonly used.

12.3.3 Question 3: Predicting shortcuts

The random forest model of path type (brute-force, direct, shortcut) had a cross-validation
accuracy of 77.2%. Permutation importances of predictors varied widely (Fig. F.8). The
most important predictors were ∆Richness and ∆Abundance (desired state value minus
initial state value) (Fig. 12.5, Fig. F.9). Shortcut paths were most probable when ∆Richness
was positive and ∆Abundance was negative, i.e. cases involving introducing species and
displacing dominant species. Shortcut paths were also more probable when Jaccard similarity
was small, ϵ was large, and m was large; costs had negligible effects (Fig. 12.5).

12.4 Discussion

We showed that navigation between states is an equivalent problem to searching for lowest-
cost sequences of actions that comprise direct and shortcut paths. Shortcuts can be obtained
by using small sequential abundance perturbations (e.g. low-density introductions) and envi-
ronment perturbations to nudge communities between states. Shortcuts were most probable
when large richness-increasing, abundance-decreasing, similarity-decreasing state shifts were
desired, when perturbation size (ϵ) was large, and when environmental change was possi-
ble. Thus, our work suggests that brute-force approaches to navigation like antibiotics or
clearcutting may have realistic and less impactful alternatives.

12.4.1 Application cases

The approach could be used for navigation problems where there are a finite number of fixed
points to be considered, and where the time to reach a fixed point is substantially smaller than
the timescale of the overall problem. Realistic application cases may include communities
with fast population dynamics, e.g., microbial communities or bioreactors/chemostats, or
annual plants. Optimistic application cases could include resolving human health problems
that are linked to the microbiome, [167, 168], e.g. C. difficile removal, or improvement of
crop/soil health via associated microbial communities [134]. Additionally, applications could
be possible in annual plant restoration projects [46, 141].

The state diagram approach could also be useful for assembling synthetic communities,
e.g. in microbial bioreactor applications [18, 39]. This problem maps onto the navigation
problem, because the desired state is a certain feasible and stable community and the initial
state is an empty community. Action sequences could be identified to achieve these goals
when brute-force assembly of the desired state is not possible or efficient.
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Figure 12.5: Random Forest Partial Dependence (Full). Partial dependence plots indicating the effect
of each individual predictor on the probability of navigation yielding a brute-force solution, direct path, or
shortcut path.
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12.4.2 Extensions to the navigation approach

We implicitly assumed that the species pool richness was relatively low, which allowed us to
use the A* algorithm. This algorithm does not work well when n or m are large, because
the state diagram becomes too large to explore. However, the pathfinding problem does not
actually require full exploration of the state diagram if quasi-optimal solutions are acceptable.
Such solutions can be found through local search, which only requires enumeration of a
smaller set of states that are transiently reached, plus a slightly larger set of states that are
explored and discarded. Approximate algorithms such as Monte Carlo Tree Search (MCTS)
[28] can be used for larger problems by focusing computation only on promising state and
action sequences. Moreover, MCTS can handle stochastic transitions, as well as uncertainty
in observations of states when the problem is formulated as a partially observable Markov
decision process [91, 110, 112].

We also assumed that navigation problems involve a single desired state. However in
realistic use cases more diffuse targets may exist, e.g. any state with high richness, or where
a certain species is present, or where mean trait composition is within a certain range. A*
cannot handle this scenario, but MCTS can.

In addition, we assumed that the costs of each action are constant by type. However,
ϵ-deleting one species might be more costly than for another, either because the time or
effort required is high or may depend on whether a third species is also present. Or the
costs of different actions may also not be known in advance. Similarly, we assumed that
the magnitude of actions ϵ is constant. Based on our computational experiments, variation
in action costs seems unlikely to substantially impact navigation, whereas variation in ac-
tion magnitude does, with larger ϵ enabling more shortcuts. MCTS could also be used to
probabilistically identify navigation solutions when costs are unknown or variable [48].

Last, we assumed that there are no feedbacks among the environment and species, e.g.
depletion of limiting resources affecting competition [175]. These effects would shift the iden-
tity of and relationships among fixed points. Including them is possible if the environment
variables can be treated as state variables, which would require some modification of the
current implementation.

Trajectories do not necessarily reach fixed points in other models, and could instead reach
other attractors like limit cycles. Additionally, multiple fixed points for each combination
of species could exist, meaning that the value of ϵ would take a larger role in determining
which basin of attraction was reached. Both scenarios would increase the cardinality of the
state space and action space. However, if ‘states’ and ‘actions’ can still be defined, then a
discretized state diagram can still be constructed.

Safe navigation is also a priority for applications. Navigation should avoid certain states if
they are unethical to create, or if their creation would have negative ecological consequences
[11, 132]. Notably many paths discovered by our approach transiently put the community
into higher-richness states that include novel species (e.g. orange-colored states in Fig. 12.2).
This strategy may have substantial risk if those novel species escape due to mechanisms
not included in the dynamical model. Adding safety constraints could strongly influence
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reachability of desired states [16] and require algorithms beyond our current implementation.

12.4.3 Implications for community assembly

State diagrams provide potential linkages to community assembly, under the assumption that
the invasion of new species is infrequent relative to the dynamics. The invasion graph [76] is
the subgraph of the state diagram comprising only actions that include a single addition and
then a wait action (all richness-increasing ‘ladders’; Fig. F.2). These actions, and the states
they connect, enumerate the most complex communities that can be reached via sequential
single invasions. Notably, most states cannot be reached this way; they instead require
more complex actions present in the full state diagram (e.g. direct paths involving multiple
simultaneous additions and then a wait; or shortcut paths involving multiple wait actions).
Conversely, one can also conceptualize an ‘un-invasion’ graph, which is the subgraph of the
state diagram comprising the wait actions linking transient states to fixed point states with
no environment change (all richness-decreasing ‘snakes’; Fig. F.3). These actions, and the
states they connect, enumerate the possible paths by which transiently-reached communities
can decay into stable communities. The un-invasion and invasion graphs have non-trivial
structures that may be useful for describing community assembly/dis-assembly pathways.
We have not yet investigated the general properties of these subgraphs, but see [5, 70, 76].

Second, state diagrams may also help understand priority effects, i.e. order-dependent
community assembly [59]. This is because repeatedly taking single actions and then waiting
potentially has outcomes that depend on the order of operations; more strongly, taking
multiple actions at the same time and then waiting may have different consequences than
taking each action in sequence. We did not systematically explore such order dependence,
but see [156].

Third, some states may be harder to reach than others, both in community assembly
and in navigation. States that have no incident paths are impossible to reach except by
brute-force assembly, while those that have very few outgoing paths (especially involving
shortcuts) are potentially less likely to reach by chance. These states are related to the
‘holes’ described by [9]. Initial states with very few outgoing paths are potentially less likely
to change state by chance. States that are only reached by ‘ladders’ may be more easily built
up from lower richness states, while states that are only reached by ‘snakes’ may be more
easily broken down from higher richness states. In support of this idea, species combinations
most likely to persist under environmental perturbation are more frequent [122]. There may
also be ‘game changing’ species [49] that are disproportionately important for shaping the
properties of the state diagram, both in terms of the prevalence and identity of feasible and
stable states, as well as the prevalence and identity of shortcuts.
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12.5 Conclusion

State diagrams may be useful for solving applied navigation problems and understanding
community assembly. Our current work is limited by its focus on numerical simulation for a
single dynamical model. Adapting coexistence theory [62, 106, 149] to make general predic-
tions about state diagram topology may be fruitful. Additionally, experimental validation
of navigation predictions for community ecology has been absent except in a few microbial
[18, 39] and insect [50] cases. Validation is a priority next step for making progress towards
real-world applications.
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Part V

Conclusion
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Chapter 13

Conclusion and Future Works

As both a theoretician and a practitioner of sequential decision making under uncertainty, I
aim to design algorithms and procedures that have theoretical guarantees and can be useful
in many different contexts. As I dove deeper into some application domains like robotics,
ecology, and other natural sciences, it was evident that both the ability to formulate and
translate these problems into decision making problems and also the adaptability for the
methods to be able to address the realistic problems were important. Consequently, in order
for these sequential decision making algorithms to be truly impactful in their application
domains, I firmly believe it is crucial that these algorithms not only enjoy more rigorous
theoretical guarantees under relaxed assumptions but also take into account the context in
which the algorithms are used, especially the various realistic constraints that are in odds
with the previous assumptions. Thus, in this section, I briefly outline and contextualize my
conclusions, and provide some future directions and studies that could be helpful in this
endeavor.

13.1 Conclusion

In Part II, I have developed a number of continuous space POMDP algorithms with prov-
able guarantees, and provided a general convergence result that formally justifies the particle
belief approximation technique used in many POMDP algorithms. Previously, there were
many efficient continuous observation POMDP algorithms that utilized particle likelihood
weighting scheme, but few algorithms were equipped with theoretical guarantees. Further-
more, not many algorithms could additionally handle the continuous/hybrid action space
assumption, resulting in suboptimal plans and often needing a discretization scheme.

The introduction of POWSS and consequently Sparse Sampling-ω algorithm enabled
rigorous mathematical analyses of a family of online continuous observation POMDP algo-
rithms that utilize the particle likelihood weighting scheme, which notably does not rely on of
any discretization schemes nor directly depends on observation space size. The development
of POWSS and Sparse Sampling-ω provided the foundations for the particle belief MDP
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approximate optimality result, where the gap between exactly solving a POMDP problem
and its corresponding particle belief MDP approximation was shown to be bounded. This
novel result is first-of-its-kind to provide any general guarantee for using particle likelihood
weighted belief representations, and will serve not only as the theoretical justification for pre-
existing continuous observation POMDP solvers but also as the theoretical stepping stone
for more rigorous analyses and tighter inequality bounds. VPW technique adds on to the
theoretical rigor by additionally tackling the continuous action assumption. This algorithm
is the first known continuous space POMDP algorithm with guarantees, and can have prac-
tical extensions that serve as useful baselines of comparison against other continuous space
POMDP algorithms due to the ease of implementation.

In Part III, I have devised two approaches to integrate planning algorithms and machine
learning model components. Previously for vision POMDPs, many algorithms approached
the problem through either end-to-end learning of a global policy or combining model-based
planning with deep learning models through differentiable particle filters. However, these
algorithms often lacked interpretability, and required long online interactive training. VTS
architecture enabled further integration of POMDP model components by learning deep
generative models. By explicitly reasoning with likely future observations encountered from
the training data, VTS strikes a balance between offline training and online planning times
while remaining successful and robust.

For robotic manipulation, transporter networks and their variants provided a powerful
method of rearranging objects through computer vision and inverse kinematics control. By
introducing sequence conditioning and weighted multi-task learning, Sequence-Conditioned
Transporter Networks can further tackle long horizon multiple tasks at once even with min-
imal training data.

In Part IV, I have proposed a method to translate species coexistence navigation problem
into a path planning problem. The species coexistence dynamics information is distilled into
a state diagram, which can be used to determine if shortcut paths are possible and desirable.
Previous works have focused on explicitly solving the control problem, which often quickly
becomes prohibitive with more species present. The state diagram approach is a novel
perspective on species coexistence navigation by only looking at small perturbations to the
state and then waiting to reach the desired stable and feasible fixed point. The integration of
fundamental ideas from species coexistence dynamics modeling in ecology and path planning
algorithms in computer science not only provides an efficient and robust approach to control
but also motivates further integration and collaboration of the two fields.
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13.2 Future Directions

13.2.1 Theoretical Foundations of Sequential Decision Making
with More Realistic Assumptions

Planning with model error. One interesting question is: how much of these guarantees
can carry over when the models that we are assuming are somewhat wrong? In many
realistic scenarios, approximate models are used very often for various reasons: there could
be simplifying assumptions to deal with the compute and modeling complexity issues, lack
of understanding of the phenomena to capture the entire behavior of the system, lack of data
to learn and represent the model components, and inherent uncertainty of the system that
causes variations. Here, I aim to incorporate concepts from robust statistics to attempt to
prove near-optimality guarantees (or the lack thereof) when the models that we have access
to are not exactly accurate. This area could have a huge impact on model-based planning
and model-based reinforcement learning, as model errors are inevitable in real scenarios.

Constrained or risk-sensitive planning. Another avenue of research is to incorporate
constrained optimization or risk-sensitive optimization to sequential decision making under
uncertainty. There has recently been extensive amounts of studies on constrained and risk-
sensitive planning in the MDP context with promising empirical applications. Being able
to take hard constraints into consideration as well as strike a balance between cautious and
efficient planning with risk-sensitive measures will be extremely valuable in safety-critical
scenarios. Towards this vision, I aim to develop and prove POMDP methods that are able
to reason about constraints and risk-sensitive objective measures.

Further justifications of existing algorithms. On the other hand, many of the existing
modern algorithms for POMDPs still do not have complete guarantees. Especially for tree
search methods, sequentially building the tree essentially is a non-stationary process which
is extremely hard to reason about theoretically. There are still a lot of assumptions that
need to be justified, for instance using variable numbers of particles at different depths of
the planning tree or selectively exploring state trajectories of different lengths.

13.2.2 Various Approaches to Compositional Learning-based
Planning

Learning-based planning with guarantees. The visual tree search approach combined
the conventional POMDP closed-loop planning method with learning-based model compo-
nents. Despite the closed-loop planning components having theoretical guarantees, there still
isn’t a rigorous guarantee for the entire planning system, especially due to errors from neural
network model-based planning. Combined with the theoretical model error quantification, I
aim to design a more theoretically well-justified system that has closed-loop guarantees even
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with learning-based components. Furthermore, there are alternative approaches to putting
guarantees on learning-based planning under different formulations and assumptions, which
I have recently been exploring in projects such as [135].

General quantification of uncertainty in compositional systems. Separately, there
are many techniques in deep learning that aim to capture some notion of uncertainty in the
models. I plan to integrate these techniques in order to utilize the estimated uncertainties
in different model components of the compositional planning stack, and use the uncertainty
information to calibrate the system to plan more safely and efficiently in previously unseen
settings.

13.2.3 Further Applications and Extensions to Ecology and
Natural Sciences

Tackling further assumptions in species coexistence navigation. The state diagram
approach is the first step of introducing the concept of sequential decision making into the
species coexistence navigation problem. However, the assumptions made in the analyses are
rather rudimentary, since we assume that the dynamics model is known with a theoretically
well-understood GLV structure, and there are no uncertainties present. In many realistic
ecology application cases, such as forrest management and human gut microbiome health
improvement, the dynamics model is much more complex than the GLV structure, and there
are a lot of uncertainties in the system evolution. Thus, the natural next step would be to
incorporate some of these realistic assumptions on model complexity and model uncertainty,
and leverage existing POMDP planners to solve these problems.

Combining domain knowledge and machine learning for ecology. On the other
hand, there can be a strong synergy in applying the compositional learning framework to
ecological problems. For instance, ecologists are often interested in learning the dynamics
model of the system from experimental data, as well as being able to plan from the data.
I believe that the compositional approach of leveraging domain knowledge combined with
learning the unexplained phenomena could be extremely impactful in learning approximate
dynamics model from limited data.

Further collaborations between ecologists and computer scientists. Through my
personal experience collaborating with ecologists and natural scientists, I have learned the
importance of cross-domain scientific communication. I would not only like to serve as an
interdisciplinary scientist between these domains but also help facilitate discussions between
these scientists in order to discover other problems and areas that could be interesting and
important to solve and can be feasibly solved by applying existing methods.
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Appendix A

Details for Partially Observable
Weighted Sparse Sampling

A.1 Proof of Theorem 6.1 - SN d∞-Concentration

Bound

Theorem A.1 (SN d∞-Concentration Bound). Let P and Q be two probability measures on
the measurable space (X ,F) with P ≪ Q and d∞(P||Q) < +∞. Let x1, · · · , xN be i.i.d.r.v.
sampled from Q, and f : X → R be a bounded Borel function (∥f∥∞ < +∞). Then, for any

λ > 0 and N large enough such that λ > ∥f∥∞ d∞(P||Q)/
√
N , the following bound holds

with probability at least 1− 3 exp(−N · t2(λ,N)):

|Ex∼P [f(x)]− µ̃P/Q| ≤ λ (A.1)

where t(λ,N) is defined as:

t(λ,N) ≡ λ

∥f∥∞ d∞(P||Q)
− 1√

N
(A.2)

Proof. This proof follows similar proof steps as in Metelli et al. [126]. Since we have
upper bounds on the infinite Rényi divergence d∞(P||Q), we can start from the Hoeffd-
ing’s inequality for bounded random variables applied to the regular IS estimator µ̂P/Q =
1
N

∑N
i=1wP/Q(xi)f(xi), which is unbiased. While applying the Hoeffding’s inequality, we

can view importance sampling on f(x) weighted by wP/Q(x) as Monte Carlo sampling on
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g(x) = wP/Q(x)f(x), which is a function bounded by ∥g∥∞ = d∞(P||Q)∥f∥∞:

P
(
µ̂P/Q − Ex∼P [f(x)] ≥ λ

)
= P

(
µ̂P/Q − Ex∼Q[µ̂P/Q(x)f(x)] ≥ λ

)
(A.3)

≤ exp

(
− 2N2λ2∑N

i=1 2(d∞(P||Q)∥f∥∞)2

)
(A.4)

≤ exp

(
− Nλ2

d2∞(P||Q)∥f∥2∞

)
≡ δ (A.5)

P
(
|µ̂P/Q − Ex∼P [f(x)]| ≥ λ

)
≤ 2 exp

(
− Nλ2

d2∞(P||Q)∥f∥2∞

)
= 2δ (A.6)

We prove a similar bound for the SN estimator µ̃P/Q =
∑N

i=1 w̃P/Q(xi)f(xi), which is a biased
estimator. However, we need to take a step further and analyze the absolute difference,
requiring us to split the difference up into two terms:

P(|Ex∼P [f(x)]− µ̃P/Q| ≥ λ) (A.7)

≤ P(µ̃P/Q − Ex∼P [f(x)] ≥ λ) + P(Ex∼P [f(x)]− µ̃P/Q ≥ λ) (A.8)

≤ P(µ̃P/Q − Ex∼Q[µ̃P/Q] ≥ λ̃) + P(Ex∼Q[µ̃P/Q]− µ̃P/Q ≥ λ̃) (A.9)

≤ δ̃ + P(Ex∼P [f(x)]− µ̃P/Q ≥ λ) (A.10)

The first term is bounded by δ̃ from the above bound and recasting λ to λ̃ to account for
the bias of the SN estimator:

λ̃ = λ−
∣∣Ex∼P [f(x)]− Ex∼Q[µ̃P/Q]

∣∣ (A.11)

δ̃ = exp

(
− Nλ̃2

d2∞(P||Q)∥f∥2∞

)
(A.12)

Note that the bias term in the SN estimator is bounded by following through Cauchy-Schwarz
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inequality, closely following steps from Metelli et al. [126]:

|Ex∼P [f(x)]− Ex∼Q[µ̃P/Q]| =
∣∣Ex∼Q[µ̂P/Q − µ̃P/Q]

∣∣ ≤ Ex∼Q[|µ̂P/Q − µ̃P/Q|] (A.13)

≤ Ex∼Q

∣∣∣∣∣∣
∑N

i=1wP/Q(xi)f(xi)∑N
i=1wP/Q(xi)

− 1

N

N∑
i=1

wP/Q(xi)f(xi)

∣∣∣∣∣∣ (A.14)

= Ex∼Q

∣∣∣∣∣
∑N

i=1wP/Q(xi)f(xi)∑N
i=1wP/Q(xi)

∣∣∣∣∣
∣∣∣∣∣1−

∑N
i=1wP/Q(xi)

N

∣∣∣∣∣
 (A.15)

≤ Ex∼Q

(∑N
i=1wP/Q(xi)f(xi)∑N

i=1wP/Q(xi)

)2
1/2

Ex∼Q

(1− ∑N
i=1wP/Q(xi)

N

)2
1/2

(A.16)

≤∥f∥∞

√
d2(P||Q)− 1

N
≤∥f∥∞

d∞(P||Q)√
N

(A.17)

In the last step, the first term is bounded by ∥f∥∞ as the function is bounded, and the
second term is bounded by the fact that we can bound the square root of variance with the
supremum squared, where we square it for the convenience of the definition of t(λ,N) later
on such that the 1/

√
N factor is nicely separated. We assume that N is chosen large enough

that λ >∥f∥∞ d∞(P||Q)/
√
N. Using this, we bound the δ̃ term:

δ̃ ≤ exp

(
−N(λ−∥f∥∞ d∞(P||Q)/

√
N)2

d2∞(P||Q)∥f∥2∞

)
(A.18)

= exp

−N (λ−∥f∥∞ d∞(P||Q)/
√
N

∥f∥∞ d∞(P||Q)

)2
 (A.19)

≡ exp
(
−N · t2(λ,N)

)
(A.20)

Here, we define t(λ,N) ≡ λ
∥f∥∞d∞(P||Q)

− 1√
N
, which satisfies 0 < t(λ,N) ≤ λ

∥f∥∞d∞(P||Q)
. The

second term can be bounded similarly by rebounding the bias term with λ̃, using symmetry
and Hoeffding’s inequality:

P(Ex∼P [f(x)]− µ̃P/Q ≥ λ) ≤ P(Ex∼Q[µ̃P/Q]− µ̃P/Q ≥ λ̃) (A.21)

≤ P(|Ex∼Q[µ̃P/Q]− µ̃P/Q| ≥ λ̃) ≤ 2δ̃ (A.22)

Thus, we obtain the following bound:

P(|Ex∼P [f(x)]− µ̃P/Q| ≥ λ) ≤ 3 exp(−N · t2(λ,N)) (A.23)
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A.2 Proof of Lemma 6.1 (Continued) - SN Estimator

Leaf Node Convergence

In the main chapter, we show that Q̂∗
D−1(b̄D−1, a) is an SN estimator of Q∗

D−1(bD−1, a). We
apply the concentration inequality proven in Theorem 5.1 to finish the proof of Lemma 5.1.

Lemma A.1 (SN Estimator Leaf Node Convergence). Q̂∗
D−1(b̄D−1, a) is an SN estimator of

Q∗
D−1(bD−1, a), and the following leaf-node concentration bound holds with probability at least

1− 3 exp(−C · t2max(λ,C)),

|Q∗
D−1(bD−1, a)− Q̂∗

D−1(b̄D−1, a)| ≤ λ (A.24)

Proof. We first bound R by 3Vmax, where we define Vmax:

Vmax ≡
Rmax

1− γ
≥ Rmax (A.25)

We make this crude upper bound starting at the leaf node so that the probability upper
bound at other subsequent steps will be bounded by the same factor. In addition, since
d∞(PD−1||QD−1) is bounded by dmax

∞ a.s., we can bound the resulting tD−1(λ,C) by tmax(λ,C)
a.s.:

tD−1(λ,C) =
λ

3Vmaxd∞(PD−1||QD−1)
− 1√

C
≥ λ

3Vmaxdmax
∞
− 1√

C
≡ tmax(λ,C) (A.26)

Note that this algebra holds for all steps d = 0, · · · , D− 1, which allows us to say td(λ,C) ≥
tmax(λ,C). Thus, bounding the concentration inequality probability with tmax(λ,C) is jus-
tified when we prove Lemma 5.2 later.

This probabilistic bound holds for any choice of {on}j, where {on}j could be a sequence
of random variables correlated with any elements of {sn}i.

|Q∗
D−1(bD−1, a)− Q̂∗

D−1(b̄D−1, a)| ≤ λ (A.27)

Thus, for all {on}j, {an} and a fixed a, Eq. (A.27) holds with probability at least 1 −
3 exp(−C · t2max(λ,C)).
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A.3 Proof of Lemma 6.2 (Continued) - SN Estimator

Step-by-Step Convergence

Lemma A.2 (SN Estimator Step-by-Step Convergence). Q̂∗
d(b̄d, a) is an SN estimator of

Q∗
d(bd, a) for all d = 0, · · · , D − 1 and a, and the following holds with probability at least

1− 3|A|(3|A|C)D exp(−C · t2max):

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤ αd (A.28)

αd ≡ λ+ γαd+1; αD−1 = λ (A.29)

In Lemma 2, we split the difference between the SN estimator and the Q∗ function into
two terms, the reward estimation error (A) and the next-step value estimation error (B):

|Q∗
d(bd, a)− Q̂∗

d(b̄d, a)| ≤

∣∣∣∣∣E[R(sd, a)|bd]−
∑C

i=1wd,ird,i∑C
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

(A.30)

+ γ

∣∣∣∣∣E[V ∗
d+1(bao)|bd]−

∑C
i=1wd,iV̂

∗
d+1(bdaoi)∑C

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(B)

To bound these terms, we will use the SN concentration bound (Theorem 5.1) 3 times
throughout the process.

For (A), we use the SN concentration bound to obtain the bound Rmax

3Vmax
λ; rather than

bounding R with 3Vmax in this step, we instead bound R with Rmax and then augment λ
to Rmax

3Vmax
λ in order to obtain the same uniform tmax factor as the other steps. This choice of

bound is made to effectively combine the λ terms when we add (A) and (B).
For (B), we use the triangle inequality repeatedly to separate it into three terms; the im-

portance sampling error bounded by λ/3, the Monte Carlo next-step integral approximation
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error bounded by 2λ/3γ, and the function estimation error bounded by αd+1:

(B) ≤

∣∣∣∣∣E[V ∗
d+1(bao)|bd]−

∑C
i=1wd,iV

∗
d+1(sd,i, bd, a)∑C

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Importance sampling error

+

∣∣∣∣∣
∑C

i=1wd,iV
∗
d+1(sd,i, bd, a)∑C

i=1wd,i
−
∑C

i=1wd,iV
∗
d+1(bdaoi)∑C

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
MC next-step integral approximation error

+

∣∣∣∣∣
∑C

i=1wd,iV
∗
d+1(bdaoi)∑C

i=1wd,i
−
∑C

i=1wd,iV̂
∗
d+1(bdaoi)∑C

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Function estimation error

(A.31)

≤ 1

3
λ+

2

3γ
λ+ αd+1 (A.32)

The following subsections justify how each of the error terms are bounded.

A.3.1 Importance Sampling Error

Before we analyze the first term, note that the conditional expectation of the optimal
value function at step d + 1 given bd, a is calculated by the following, where we introduce
V∗
d+1(sd,i, bd, a) as a shorthand for the next-step integration over (sd+1, o) conditioned on

(sd,i, bd, a):

V∗
d+1(sd,i, bd, a) ≡

∫
S

∫
O

V ∗
d+1(bdao)Z(o|a, sd+1)T (sd+1|sd,i, a)dsd+1do (A.33)

E[V ∗
d+1(bao)|bd] =

∫
S

∫
S

∫
O

V ∗
d+1(bdao)(Zd+1)(Td,d+1)bd · dsd:d+1do (A.34)

=

∫
S

V∗
d+1(sd, bd, a)bd · dsd (A.35)

=

∫
Sd+1 V

∗
d+1(sd, bd, a)(Z1:d)(T1:d)b0ds0:d∫
Sd+1(Z1:d)(T1:d)b0ds0:d

(A.36)

Noting that the first term is then the difference between the SN estimator and the conditional
expectation, and that ||V∗

d+1||∞ ≤ Vmax, we can apply the SN inequality for the second time
in Lemma 2 to bound it by the augmented λ/3.

A.3.2 Monte Carlo Next-Step Integral Approximation Error

The second term can be thought of as Monte Carlo next-step integral approximation er-
ror. To estimate V∗

d+1(sd,i, bd, a), we can simply use the quantity V ∗
d+1(bdaoi), as the ran-

dom vector (sd+1,i, oi) is jointly generated using G according to the correct probability
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Z(o|a, sd+1)T (sd+1|sd,i, a) given sd,i in the POWSS simulation. Consequently, the quantity
V ∗
d+1(bdaoi) for a given (sd,i, bd, a) is an unbiased 1-sample MC estimate of V∗

d+1(sd,i, bd, a).
We define the difference between these two quantities as ∆d+1, which is implicitly a function
of random variables (sd+1,i, oi):

∆d+1(sd,i, bd, a) ≡ V∗
d+1(sd,i, bd, a)− V ∗

d+1(bdaoi) (A.37)

Then, we note that ||∆d+1||∞ ≤ 2Vmax and E∆d+1 = 0 by the Tower property conditioning
on (sd,i, bd, a) and integrating over (sd+1,i, oi) first, which holds for any choice of well-behaved
sampling distributions on {s0:d}i. Using this fact, we can then consider the second term as
an SN estimator for the bias E∆d+1 = 0, and use our SN concentration bound for the third
time. Since ||∆d+1||∞ ≤ 2Vmax, our λ factor is then augmented by 2/3:∣∣∣∣∣

∑C
i=1wd,iV

∗
d+1(sd,i, bd, a)∑C

i=1wd,i
−
∑C

i=1wd,iV
∗
d+1(bdaoi)∑C

i=1wd,i

∣∣∣∣∣
=

∣∣∣∣∣
∑C

i=1wd,i∆d+1(sd,i, bd, a)∑C
i=1wd,i

− 0

∣∣∣∣∣ ≤ 2

3
λ ≤ 2

3γ
λ

(A.38)

A.3.3 Function Estimation Error

Lastly, the third term is bounded by the inductive hypothesis, since each i-th absolute
difference of the Q-function and its estimate at step d+1, and furthermore the value function
and its estimate at step d+ 1, are all bounded by αd+1.
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A.4 Proof of Theorem 6.3 - POWSS Policy

Convergence

A.4.1 Belief State Policy Convergence Lemma

Before we prove Theorem 5.3, we first prove the following lemma, which is an adaptation of
Kearns et al. [92] and Singh and Yee [161] for belief states b.

Lemma A.4. Suppose we obtain a greedy policy implemented by some approximation Ṽd,t(b)
≈ V ∗

t+d(b) by generating a tree at online step t and obtaining a value function estimate at tree
depth d for a belief b. Define the total loss LṼ ,t ≡ V ∗

t (b)− VṼ0,t(b) as the difference between

the value obtained by the optimal policy and the value obtained by the Ṽd,t approximation at
online step t. If |Ṽd,t(b)−V ∗

t+d(b)| ≤ β for all online steps t ∈ [0, D−1] and its corresponding
tree depth d = 0, · · · , D − 1 − t, then the total loss by implementing the greedy policy from
the beginning is bounded by the following:

LṼ ,0(b) ≤
3

1− γ
β (A.39)

Proof. We mirror the proof strategies given in Kearns et al. [92] and Singh and Yee [161]
for belief states b.

Consider the optimal action a = π∗
d(b) and the greedy action ã = πṼ ,t(b). Here, we denote

R(b, a) as the shorthand notation for E[R(s, a)|b]. Since ã is greedy, it must look at least as
good as a under Ṽ :

R(b, a) + γ E[Ṽ1,t(bao)|b] ≤ R(b, ã) + γ E[Ṽ1,t(bão)|b] (A.40)

Since we have |Ṽd,t(b)− V ∗
t+d(b)| ≤ β,

R(b, a) + γ E[V ∗
t+1(bao)− β|b] ≤ R(b, ã) + γ E[V ∗

t+1(bão) + β|b] (A.41)

R(b, a)−R(b, ã) ≤ 2γβ + γ E[V ∗
t+1(bão)|b]− γ E[V ∗

t+1(bao)|b] (A.42)

Then, the loss for b at time t is:

LṼ ,t(b) = V ∗
t (b)− VṼ0,t(b) (A.43)

= R(b, a)−R(b, ã) + γ E[V ∗
t+1(bao)|b]− γ E[VṼ0,t+1

(bão)|b] (A.44)

Substituting the reward function into the loss expression,

LṼ ,t(b) = R(b, a)−R(b, ã) + γ E[V ∗
t+1(bao)|b]− γ E[VṼ0,t+1

(bão)|b] (A.45)

≤ 2γβ + γ E[V ∗
t+1(bão)|b]− γ E[V ∗

t+1(bao)|b] + γ E[V ∗
t+1(bao)|b]− γ E[VṼ0,t+1

(bão)|b]
(A.46)

≤ 2γβ + γ E[V ∗
t+1(bão)|b]− γ E[VṼ0,t+1

(bão)|b] (A.47)

≤ 2γβ + γ E[LṼ ,t+1(bão)|b] (A.48)
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Note that we have LṼ ,D−1(b) ≤ β from the root node estimate at the last step, which means
we obtain the bound with some over-approximations:

LṼ ,0(b) ≤
D−1∑
d=1

2βγd + γD−1β ≤
D−1∑
d=0

3βγd ≤ 3

1− γ
β (A.49)

These over-approximations are done in order to generate constants that can be easily calcu-
lated.

A.4.2 Proof of Theorem 3

We reiterate the conditions and Theorem 5.3 below:
(i) S and O are continuous spaces, and the action space has a finite number of elements,
|A| < +∞.

(ii) For any observation sequence {on}j, the densities Z, T , b0 are chosen such that the
Rényi divergence of the target distribution Pd and sampling distributionQd (Eqs. (5.15)
and (5.16)) is bounded above by dmax

∞ < +∞ a.s. for all d = 0, · · · , D − 1:

d∞(Pd||Qd) = ess supx∼QdwPd/Qd(x) ≤ dmax
∞

(iii) The reward function R is Borel and bounded by a finite constant ||R||∞ ≤ Rmax < +∞
a.s., and Vmax ≡ Rmax

1−γ < +∞.

(iv) We can evaluate the generating function G as well as the observation probability density
Z.

(v) The POMDP terminates after D <∞ steps.

Theorem A.3 (POWSS Policy Convergence). In addition to conditions (i)-(v), assume that
the closed-loop POMDP Bayesian belief update step is exact. Then, for any ϵ > 0, we can
choose a C such that the value obtained by POWSS is within ϵ of the optimal value function
at b0 a.s.:

V ∗(b0)− V POWSS(b0) ≤ ϵ (A.50)

Proof. In our main report, we have proved Lemmas 5.1 and 5.2, which gets us the root node
convergence for all actions. We apply these lemmas as well as Lemma A.4 to prove the policy
convergence.

From Lemma 5.2, we have that the error in estimating Q∗ with our POWSS policy is
bounded by λ/(1−γ) for all d, a with probability at least 1−δ. This directly implies that the
V -function estimation errors are bounded as well for all steps d; if |Q∗

d(bd, a)−Q̂∗
d(b̄d, a)| ≤ λ

1−γ
for all d, a, then:

|max
a∈A

Q∗
d(bd, a)−max

a∈A
Q̂∗
d(b̄d, a)| = |V ∗

d (bd)− V̂ ∗
d (b̄d)| ≤

λ

1− γ
(A.51)
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For online planning, we require that the POWSS trees generated at each online planning
step must satisfy the concentration inequalities for all of its nodes. As each of the trees
generated for D steps need to have good estimates, we worst-case upper bound the union
bound probability by multiplying D to δ. Applying Lemma A.4, we get that if all the nodes
satisfy the concentration inequality, which happens with probability at least 1 − Dδ, the
following holds:

V ∗(b0)− V POWSS(b0) = LV̂ ∗,0(b0) ≤
3λ

(1− γ)2
(A.52)

Note that the maximum difference between the values obtained by the two policies is bounded
by 2Vmax. At each online step, you can have 2Rmax as the maximum possible difference
between the two rewards the agent can obtain via the greedy POWSS policy and the optimal
policy generated at each online planning step, and at each online step there exists a discount
γ. We can use this bound for the bad case probability Dδ. Using all the definitions of the
constants defined in Theorem 5.2:

V ∗(b0)− V POWSS(b0) = E

D−1∑
i=0

γiR(si, π
∗
i (si))

∣∣∣∣∣∣b0
− E

D−1∑
i=0

γiR(si, π
POWSS
i (si))

∣∣∣∣∣∣b0

(A.53)

≤ (1−Dδ) 3λ

(1− γ)2
(A.54)

+Dδ sup


D−1∑
i=0

γi|R(si, π∗
i (si))−R(si, πPOWSS

i (si))|

∣∣∣∣∣∣b0


= (1−Dδ) 3λ

(1− γ)2
+Dδ

D−1∑
i=0

γi(2Rmax) (A.55)

≤ (1−Dδ) 3λ

(1− γ)2
+Dδ

2Rmax

1− γ
(A.56)

≤ 3λ

(1− γ)2
+ 2DδVmax =

5λ

(1− γ)2
= ϵ (A.57)

Therefore, we obtain our desired bound on the values obtained by POWSS policy.
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Appendix B

Details for Optimality Guarantees for
Particle Belief Approximation of
POMDPs

B.1 Proof of Lemma 7.1 (Continued) - Particle

Likelihood SN Estimator Convergence

In the main chapter, we show that µ̃b̄d [f ] is an SN estimator of Es∼bd [f(s)]. We apply the
concentration inequality proven in Theorem 6.1 to finish the proof of Lemma 6.1.

Lemma B.1 (Particle Likelihood SN Estimator Convergence). Suppose a function f is
bounded by a finite constant ∥f∥∞ ≤ fmax, and a particle belief state b̄d = {(sd,i, wd,i)}Ci=1 at
depth d represents bd with particle likelihood weighting that is recursively updated as wd,i =
wd−1,i · Z(od | a, sd). Then, for all d = 0, . . . , D − 1, the following weighted average is the
SN estimator of f under the belief bd corresponding to the actions {an}d−1

n=0 and observations
{on}dn=1, for all beliefs bd ∈ B that are realizable given the initial belief b0:

µ̃b̄d [f ] =

∑C
i=1wd,if(sd,i)∑C

i=1wd,i
, (B.1)

and the following concentration bound holds with probability at least 1−3 exp(−C ·t2max(λ,C)),

|Es∼bd [f(s)]− µ̃b̄d [f ]| ≤ λ, (B.2)

tmax(λ,C) ≡
λ

fmaxdmax
∞
− 1√

C
. (B.3)

Proof. In this proof, we will take advantage of the fact that the state particles trajectories
{sn}1, . . . {sn}C of depth d are independent of each other, asGenPF independently generates
each state sequence i according to the transition density T .
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In the subsequent analysis, we abbreviate some terms of interest with the following no-
tation:

T i1:d ≡
d∏

n=1

T (sn,i | sn−1,i, an); Z i,j1:d ≡
d∏

n=1

Z(on,j | an, sn,i). (B.4)

Here d denotes the depth, i denotes the index of the state sample, and j denotes the index
of the observation sample. Absence of indices i, j means that {sn} and/or {on} appear as
regular variables. Intuitively, T i1:d is the transition density of state sequence i from the root
node to depth d, and Z i,j1:d is the conditional density of observation sequence j given state
sequence i from the root node to depth d. Additionally, bid denotes bd(sd,i) and wd,i the
weight of sd,i.

First, we show that µ̃b̄d [f ] is an SN estimator of Es∼bd [f(s)]. By following the recursive
belief update, the belief term can be fully expanded:

bD−1(sD−1) =

∫
SD−1(Z1:D−1)(T1:D−1)b0ds0:D−2∫
SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(B.5)

Then, Es∼bd [f(s)] is equal to the following:

Es∼bd [f(s)] =
∫
S

f(sD−1)bD−1dsD−1 =

∫
SD f(sD−1)(Z1:D−1)(T1:D−1)b0ds0:D−1∫

SD(Z1:D−1)(T1:D−1)b0ds0:D−1

(B.6)

We approximate the Es∼bd [f(s)] function with importance sampling by using problem require-
ment (iv), where the target density is bD−1. First, we sample the sequences {sn,i} according
to the joint probability (T1:D−1)b0. Afterwards, we weight the sequences by the correspond-
ing observation density Z1:D−1, obtained from the generated observation sequences {on,j}.
Normally, these generated observation sequences through GenPF will be correlated. For
now, we assume the observation sequences {on,j} are fixed.

Applying the importance sampling formalism to our system for all depths d = 0, . . . , D−1,
Pd is the normalized measure incorporating the probability of observation sequence j on top
of the state sequence i and action sequence until the node at depth d, and Qd is the measure
of the state sequence. We can think of Pd corresponding to the observation sequence {on,j}.

Pd = Pd{an,on,j}({sn,i}) =
(Z i,j1:d)(T i1:d)bi0∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(B.7)

Qd = Qd{an}({sn,i}) = (T i1:d)bi0 (B.8)

wPd/Qd({sn,i}) =
(Z i,j1:d)∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
(B.9)

Here, the integral to calculate the normalizing constant is taken over Sd+1, the Cartesian
product of the state space S over d+ 1 steps.
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The weighing step is done by updating the self-normalized weights given in GenPF
algorithm. We define wd,i and rd,i as the weights and rewards obtained at step d for state
sequence i from GenPF simulation. With our recursive definition of the empirical weights,
we obtain the full weight of each state sequence i for a fixed observation sequence j:

wd,i = wd−1,i · Z(od,j | ad, sd,i) ∝ Z i,j1:d. (B.10)

Realizing that the marginal observation probability is independent of indexing by i, we
show that µ̃b̄d [f ] is an SN estimator of Es∼bd [f(s)]:

µ̃b̄d [f ] =

∑C
i=1(Z

i,j
1:d)f(sd,i)∑C

i=1(Z
i,j
1:d)

=

∑C
i=1

(Zi,j
1:d)∫

SD (Zj
1:d)(T1:d)b0ds0:d

f(sd,i)∑C
i=1

(Zi,j
1:d)∫

SD (Zj
1:d)(T1:d)b0ds0:d

(B.11)

=

∑C
i=1wPd/Qd({sn,i})f(sd,i)∑C

i=1wPd/Qd({sn,i})
=

C∑
i=1

w̃Pd/Qd({sn,i})f(sd,i) (B.12)

Since {sn}1, . . . , {sn}C are i.i.d.r.v. sequences of depth d, and f is a bounded function, we
can apply the SN concentration bound in Theorem 6.1 to obtain the concentration inequality.
Since d∞(Pd||Qd) is bounded by dmax

∞ a.s., we can bound the resulting td(λ,C) by tmax(λ,C)
a.s.:

td(λ,C) =
λ

fmaxd∞(Pd||Qd)
− 1√

C
≥ λ

fmaxdmax
∞
− 1√

C
≡ tmax(λ,C) (B.13)

This means that for all d, we can bound td(λ,C) ≥ tmax(λ,C). Thus, bounding the con-
centration inequality probability with tmax(λ,C) for any step d is justified when we prove
Lemma 6.2 later. This probabilistic bound holds for any choice of {on,j}, where {on,j} could
be a sequence of random variables correlated with any elements of {sn,i}. Thus, for any
{on,j},

|Es∼bd [f(s)]− µ̃b̄d [f ]| ≤ λ (B.14)

holds with probability at least 1− 3 exp(−C · t2max(λ,C)).
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B.2 Proof of Lemma 7.2 (Continued) - Sparse

Sampling-ω Q-Value Coupled Convergence

Lemma B.2 (Sparse Sampling-ω Estimator Q-Value Coupled Convergence). For all d =
0, . . . , D − 1 and a, the following bounds hold with probability at least
1− 6|A|(4|A|C)D exp(−C · t̃2):

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤ αd, αd = λ+ γαd+1, αD−1 = λ, (B.15)

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤ βd, βd = γ(λ+ βd+1), βD−1 = 0, (B.16)

tmax(λ,C) =
λ

4Vmaxdmax
∞
− 1√

C
, t̃ = min{tmax, λ/4

√
2Vmax} (B.17)

Before we proceed with the proof, note that in our definition of tmax, we set the maximum
of the fmax to be equal to 4Vmax. While this may seem very conservative to bound most
reasonable functions resulting from reward and value estimation with 4 times the Vmax, it
serves to uniformly bound the probability for each of the SN estimator terms with convenient
coefficients. Furthermore, individual concentration bounds may be adjusted to account for
this generous upper bound by multiplying a factor in front of λ.

POMDP Value Convergence: We split the difference between the SN estimator and
Q∗

P into two terms, the reward estimation error (A) and the next-step value estimation error
(B):

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤

∣∣∣∣∣EP[R(sd, a) | bd]−
∑C

i=1wd,ird,i∑C
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

(B.18)

+ γ

∣∣∣∣∣∣EP[V
∗
P,d+1(bdao) | bd]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

Here, the Ii notation represents that random variables Ii are sampled C times from the
finite discrete distribution pw,d with probability mass pw,d(I = i) = (wd,i/

∑
j wd,j), and

particle belief state b̄
′[Ii]
d+1 is updated by an observation generated from sd,Ii . This reflects

the fact that GenPF randomly selects a state particle so with probability wd,o/
∑

j wd,j C
times independently to generate a new observation for the next step particle belief state.
Similarly, a particle belief state b̄

′[i]
d+1 is updated by an observation generated from sd,i, which

is a notation we will use to represent beliefs that are generated through iterating upon each
state particle sd,i.

To prove the base case d = D− 1, we note that we only need to bound the first term (A)
since d = D− 1 corresponds to the leaf node of Sparse Sampling-ω tree and no further next
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step value estimation is performed:

|Q∗
P,D−1(bD−1, a)− Q̂∗

ω,D−1(b̄D−1, a)| ≤

∣∣∣∣∣EP[R(sD−1, a) | bD−1]−
∑C

i=1wD−1,irD−1,i∑C
i=1wD−1,i

∣∣∣∣∣︸ ︷︷ ︸
(A)

.

(B.19)

This term is simply a particle likelihood weighted average estimation term where the function
is R(·, a), and does not need any inductive step. Below, we will show how to bound both
terms (A) and (B), so the base case proof naturally follows from the proof of concentration
bound for (A).

For (A), we use the particle likelihood SN concentration bound in Lemma 6.1 to obtain
the bound Rmax

4Vmax
λ; rather than bounding R with 4Vmax in this step, we instead bound R with

Rmax and then augment λ to Rmax

4Vmax
λ in order to obtain the same uniform tmax factor as the

other steps. This choice of bound is made to effectively combine the λ terms when we add
(A) and (B). This also covers the base case since αD−1 = λ ≥ Rmax

4Vmax
λ.

For (B), we use the triangle inequality repeatedly to separate it into four terms; (1) the
importance sampling error bounded by λ/4, (2) the Monte Carlo weighted sum approxi-
mation error bounded by λ/4, (3) the Monte Carlo next-step integral approximation error
bounded by λ/2, and (4) the inductive function estimation error bounded by αd+1:∣∣∣∣∣∣EP[V

∗
P,d+1(bdao) | bd]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

≤ (B.20)

∣∣∣∣∣∣EP[V
∗
P,d+1(bdao) | bd]−

∑C
i=1 wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1 wd,i

∣∣∣∣∣∣︸ ︷︷ ︸
(1) Importance sampling error

+

∣∣∣∣∣∣
∑C
i=1 wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1 wd,i

− 1

C

C∑
i=1

V∗
P,d+1(bd, a)

[Ii]

∣∣∣∣∣∣︸ ︷︷ ︸
(2) MC weighted sum approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V∗
P,d+1(bd, a)

[Ii] − 1

C

C∑
i=1

V ∗
P,d+1(bdao

[Ii])

∣∣∣∣∣∣︸ ︷︷ ︸
(3) MC next-step integral approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V ∗
P,d+1(bdao

[Ii])− 1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(4) Inductive function estimation error

.

≤ 1

4
λ︸︷︷︸

(1)

+
1

4
λ︸︷︷︸

(2)

+
1

2
λ︸︷︷︸

(3)

+αd+1︸ ︷︷ ︸
(4)

. (B.21)

The following subsections justify how each error term is bounded.

(1) Importance Sampling Error: Before we analyze the first term, note that the condi-
tional expectation of the optimal value function at step d+1 given bd, a is calculated by
the following, where we introduce V∗

P,d+1(bd, a, sd,i) ≡ V∗
P,d+1(bd, a)

[i] as a shorthand
for the next-step integration over (sd+1, o) conditioned on (bd, a, sd,i). Once again, we
denote [i] to indicate that sd,i was the particle chosen to generate the observation o, and
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if we are conditioning on a generic particle sd, then we simply denote all the variables
V∗

P,d+1(bd, a, sd):

V∗
P,d+1(bd, a)

[i] ≡
∫
S

∫
O

V ∗
P,d+1(bdao)Z(o | a, sd+1)T (sd+1 | sd,i, a)dsd+1do

(B.22)

EP[V
∗
P,d+1(bdao) | bd] =

∫
S

∫
S

∫
O

V ∗
P,d+1(bdao)(Zd+1)(Td,d+1)bd · dsd:d+1do (B.23)

=

∫
S

V∗
P,d+1(bd, a, sd)bd · dsd (B.24)

=

∫
Sd+1 V

∗
P,d+1(bd, a, sd)(Z1:d)(T1:d)b0ds0:d∫
Sd+1(Z1:d)(T1:d)b0ds0:d

. (B.25)

Noting that the term (1) is then the difference between the SN estimator and the

conditional expectation, and that
∥∥∥V∗

P,d+1

∥∥∥
∞
≤ Vmax, we can apply the SN inequality

for the second time in Lemma 2 to bound it by the augmented λ/4. Thus, with our
definition of tmax, the bound holds with probability at least 1− 3 exp(−C · t2max(λ,C)).

(2) Monte Carlo Weighted Sum Approximation Error: The second term is the error
resulting from estimating the sum with a Monte Carlo sum, which can be bounded by a
Hoeffding-type bound. First, we assume that all the variables except I are given, which
are {sd,i, wd,i}, bd, a. Then, we note that V∗

P,d+1(bd, a, ·) is a function bounded by Vmax.

For convenience of notation and conceptual clarity, we will denote V∗
P,d+1(bd, a)

[i] ≡
V(i), which means the value estimate realization for the i-th state index. Noting that
the probability mass is pw,d(I = i) = (wd,i/

∑
j wd,j), the Monte Carlo summation error

can be simplified as the following:∣∣∣∣∣∣
∑C

i=1wd,iV
∗
P,d+1(bd, a)

[i]∑C
i=1wd,i

− 1

C

C∑
i=1

V∗
P,d+1(bd, a)

[Ii]

∣∣∣∣∣∣ (B.26)

=⇒

∣∣∣∣∣∣
C∑
i=1

pw,d(I = i) ·V(i)− 1

C

C∑
i=1

V(Ii)

∣∣∣∣∣∣ . (B.27)

The first term in the difference is the expectation ofV(·) under the probability measure
pw,d: ∣∣∣∣∣∣

C∑
i=1

pw,d(I = i) ·V(i)− 1

C

C∑
i=1

V(Ii)

∣∣∣∣∣∣ =
∣∣∣∣∣∣Epw,d

[V(I)]− 1

C

C∑
i=1

V(Ii)

∣∣∣∣∣∣ . (B.28)

This is precisely the form of the double-sided Hoeffding-type bound on the function
values V(I), where a Monte Carlo summation, or the Monte Carlo average in this case,
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attempts to approximate the expected value. Therefore, we can choose λ such that the
absolute difference is bounded by λ with probability at least 1 − 2 exp(−Cλ2/2V 2

max)
for an arbitrary fixed set of {sd,i, wd,i}, bd, a:∣∣∣∣∣∣

∑C
i=1wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1wd,i

− 1

C

C∑
i=1

V∗
P,d+1(bd, a)

[Ii]

∣∣∣∣∣∣ ≤ λ. (B.29)

The previous calculation was done by conditioning on {sd,i, wd,i}, bd, a. However, this
bound does not depend on the specific values of these weights nor the particle belief
sets, since Hoeffding bound only takes advantage of the fact that the random variables
Ii are sampled i.i.d. and the corresponding V(Ii) are bounded. Thus, we can revert
this back into a general statement by applying the Tower property, and noting that the
expectation of an indicator random variable is the probability of the associated event.
By denoting the difference as ∆({sd,i, wd,i}, bd, a, {Ii}), we obtain the unconditional
Hoeffding-type bound:

P
{
∆({sd,i, wd,i}, bd, a, {Ii}) ≤ λ

}
(B.30)

= E[1{∆({sd,i,wd,i},bd,a,{Ii})≤λ}] (B.31)

= E
[
E
[
1{∆({sd,i,wd,i},bd,a,{Ii})≤λ} | {sd,i, wd,i}, bd, a

]]
(B.32)

= E
[
P
{
∆({sd,i, wd,i}, bd, a, {Ii}) ≤ λ | {sd,i, wd,i}, bd, a

}]
(B.33)

≥ E[1− 2 exp(−Cλ2/2V 2
max)] (B.34)

= 1− 2 exp(−Cλ2/2V 2
max). (B.35)

Here, we use the factor augmentation once again to choose λ/4 such that the absolute
difference is bounded by λ/4 with probability at least 1− 2 exp(−Cλ2/32V 2

max), which
gets us our desired result:∣∣∣∣∣∣

∑C
i=1wd,iV

∗
P,d+1(bd, a)

[i]∑C
i=1wd,i

− 1

C

C∑
i=1

V∗
P,d+1(bd, a)

[Ii]

∣∣∣∣∣∣ ≤ λ

4
. (B.36)

(3) Monte Carlo Next-Step Integral Approximation Error: The third term can
be thought of as Monte Carlo next-step integral approximation error. To estimate
V∗

P,d+1(bd, a)
[Ii], we can simply use the quantity V ∗

P,d+1(bdao
[Ii]), as the random vector

(sd+1,Ii , oIi) is jointly generated using G according to the correct probability Z(o |
a, sd+1)T (sd+1 | sd,Ii , a) given sd,Ii in the simulation realized in the tree. Consequently,
the quantity V ∗

P,d+1(bdao
[Ii]) for a given (sd,Ii , bd, a) is an unbiased 1-sample MC estimate

of V∗
P,d+1(bd, a)

[Ii]. We define the difference between these two quantities as ∆d+1,
which is implicitly a function of random variables (sd+1,Ii , oIi):

∆d+1(bd, a)
[Ii] ≡ V∗

P,d+1(bd, a)
[Ii] − V ∗

P,d+1(bdao
[Ii]). (B.37)
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Then, we note that ∥∆d+1∥∞ ≤ 2Vmax and E∆d+1 = 0 by the Tower property condi-
tioning on (sd,Ii , bd, a) (which is implicitly conditioning on Ii, but this does not matter
greatly as everything cancels out) and integrating over (sd+1,Ii , oIi) first, which holds
for any choice of well-behaved sampling distributions on {s0:d}i. Using this fact, we
can then consider this term as a Monte Carlo estimator for the bias E∆d+1 = 0, and
use another Hoeffding bound. Since∥∆d+1∥∞ ≤ 2Vmax, our λ factor is then augmented
by 1/2 to once again obtain probability at least 1− 2 exp(−Cλ2/32V 2

max):∣∣∣∣∣∣ 1C
C∑
i=1

V∗
P,d+1(bd, a)

[Ii] − 1

C

C∑
i=1

V ∗
P,d+1(bdao

[Ii])

∣∣∣∣∣∣ (B.38)

=

∣∣∣∣∣∣ 1C
C∑
i=1

(V∗
P,d+1(bd, a)

[Ii] − V ∗
P,d+1(bdao

[Ii]))− 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1C
C∑
i=1

∆d+1(bd, a)
[Ii] − E∆d+1

∣∣∣∣∣∣ ≤ λ

2
. (B.39)

(4) Inductive Function Estimation Error: The fourth term is bounded by the induc-
tive hypothesis, since each i-th absolute difference of the Q-function and its estimate
at step d + 1, and furthermore the value function and its estimate at step d + 1, are
all bounded by αd+1.

Thus, each of the error terms are bound by (A) ≤ Rmax

4Vmax
λ and (B) ≤ 1

4
λ+ 1

4
λ+ 1

2
λ+αd+1,

which uses the SN concentration bound 2 times and Hoeffding bound 2 times. Combining
(A) and (B), we can obtain the desired bound:

|Q∗
P,d(bd, a)− Q̂∗

d(b̄d, a)| ≤
Rmax

4Vmax

λ+ γ

[
1

4
λ+

1

4
λ+

1

2
λ+ αd+1

]
(B.40)

≤ 1− γ
4

λ+ γ

[
1

4
λ+

3

4γ
λ+ αd+1

]
(B.41)

= λ+ γαd+1 = αd. (B.42)

Now, we derive the worst case union bound probability. First, we want to ensure that the
SN concentration inequality holds with probability 1− 3 exp(−C · t2max(λ,C)) whenever it is
used at any given step d and action a. Similarly, we also want to ensure that the Hoeffding-
type inequality holds with probability at least 1− 2 exp(−Cλ2/32V 2

max) whenever it is used
at any given step d and action a. This means we can bound the worst case probability of
using either bound by

max(3 exp(−C · t2max(λ,C)), 2 exp(−Cλ2/32V 2
max)) (B.43)

≤ 3 exp(−C · t2max(λ,C)) + 2 exp(−Cλ2/32V 2
max) (B.44)

≤ 5 exp(−C · t̃2). (B.45)
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Furthermore, we multiply the worst-case union bound factor (4|A|C)D, since we want the
function estimates to be within their respective concentration bounds for all the actions |A|
and child nodes C at each step d = 0, . . . , D − 1, for the 2 times we use SN concentration
bound and 2 times we use the double-sided Hoeffding-type bound in the induction step. We
once again multiply the final probability by |A| to account for the root nodeQ-value estimates
also satisfying their respective concentration bounds for all actions. Thus, the worst case
union bound probability of all bad events is bounded by probability 5|A|(4|A|C)D exp(−C ·
t̃2). Therefore, we have shown that the concentration bounds for both the particle likelihood
SN estimator and Monte Carlo estimator components converge with probability at least
1− 5|A|(4|A|C)D exp(−C · t̃2) for all levels d:

|Q∗
P,d(bd, a)− Q̃∗

d(b̄d, a)| ≤ α̃d. (B.46)

PB-MDP Value Convergence: Once again, we split the difference between the SN
estimator and the Q∗

MP
function into two terms, the reward estimation error (A) and the

next-step value estimation error (B):

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤

∣∣ρ(b̄d, a)− ρ(b̄d, a)∣∣︸ ︷︷ ︸
(A) = 0

(B.47)

+ γ

∣∣∣∣∣∣EMP
[V ∗

MP,d+1(b̄d+1) | b̄d, a]−
1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

.

Since our particle belief MDP induces no reward estimation error, the term (A) is always
0 and proving the base case d = D − 1 is trivial as (A) and (B) are both 0.

We now prove that the difference (B) is bounded for all d = 0, . . . , D − 1. We use the
triangle inequality repeatedly to separate it into two terms; (1) the MC transition approx-
imation error bounded by λ, and (2) the inductive function estimation error bounded by
βd+1:∣∣∣∣∣∣EMP

[V ∗
MP,d+1(b̄d+1) | b̄d, a]−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

(B.48)

≤

∣∣∣∣∣∣EMP
[V ∗

MP,d+1(b̄d+1) | b̄d, a]−
1

C

C∑
i=1

V ∗
MP,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(1) MC transition approximation error

+

∣∣∣∣∣∣ 1C
C∑
i=1

V ∗
MP,d+1(b̄

′[Ii]
d+1)−

1

C

C∑
i=1

V̂ ∗
ω,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣︸ ︷︷ ︸
(2) Inductive function estimation error

≤ λ︸︷︷︸
(1)

+βd+1︸︷︷︸
(2)

. (B.49)

We justify how each error term is bounded.
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(1) MC Transition Approximation Error: The Monte Carlo summation over the next

step particle belief state samples {b̄′[Ii]d+1} given (b̄d, a) is essentially approximating the

integration over the transition density τ(b̄d+1 | b̄d, a). Since the value function and its
estimate are both bounded by Vmax, we can invoke Hoeffding bound here to obtain the
following exponential probabilistic bound on the difference:

P


∣∣∣∣∣∣EMP

[V ∗
MP,d+1(b̄d+1) | b̄d, a]−

1

C

C∑
i=1

V ∗
MP,d+1(b̄

′[Ii]
d+1)

∣∣∣∣∣∣ ≤ λ
 ≥ 1− 2 exp(−Cλ2/2V 2

max).

(B.50)

(2) Inductive Function Estimation Error: The second term is bounded by the induc-
tive hypothesis, since each i-th absolute difference of the Q-function and its estimate
at step d + 1, and furthermore the value function and its estimate at step d + 1, are
all bounded by βd+1.

By applying similar logic of ensuring that every particle belief state node and action pairs
can satisfy the concentration inequality, we note that the particle belief MDP approximation
concentration bound is satisfied with probability at least 1− |A|(|A|C)D exp(−Cλ2/2V 2

max).
Thus, since (A) is 0 and (B) is bounded by λ + βd+1, the Q-value estimation error with
respect to MP is bounded as desired:

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤ γ(λ+ βd+1) = βd. (B.51)

Combining both concentration bounds: In order to enable the two concentration
inequalities to happen simultaneously, we bound the worst case union probability by using
the definition of t̃ and combining the upper bounding terms together:

5|A|(4|A|C)D exp(−C · t̃2)+|A|(|A|C)D exp(−Cλ2/2V 2
max) (B.52)

≤ 5|A|(4|A|C)D exp(−C · t̃2) + |A|(|A|C)D exp(−C · t̃2)
(B.53)

≤ 5|A|(4|A|C)D exp(−C · t̃2) + |A|(4|A|C)D exp(−C · t̃2)
(B.54)

= 6|A|(4|A|C)D exp(−C · t̃2). (B.55)

Therefore, we conclude that the Q-value concentration inequalities for both POMDP ap-
proximation error and particle belief approximation error are bounded by αd, βd at every
node, respectively, with probability at least 1− 6|A|(4|A|C)D exp(−C · t̃2).
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B.3 Proof of Theorem 7.2 - Sparse Sampling-ω

Coupled Optimality

We reiterate the conditions and Theorem 6.2 below:

(i) S and O are continuous spaces, and the action space has a finite number of elements,
|A| < +∞.

(ii) For any observation sequence {on,j}dn=1, the densities Z, T , b0 are chosen such that the
Rényi divergence of the target Pd and sampling distributionQd (Eqs. (6.17) and (6.18))
is bounded above by dmax

∞ for all d = 0, . . . , D − 1:

d∞(Pd||Qd) = ess supx∼Qd wPd/Qd(x) ≤ dmax
∞ (B.56)

(iii) The reward function R is bounded by a finite constant Rmax, and hence the value
function is bounded by Vmax ≡ Rmax

1−γ .

(iv) We can sample from the generating function G and evaluate the observation density
Z.

(v) The POMDP terminates after no more than D <∞ steps.

(vi) We restrict our analysis to all the beliefs b ∈ B that are realizable from the initial belief
b0 through Bayesian updates with action sequences {an} and observation sequences
{on}.

Theorem B.1 (Sparse Sampling-ω Coupled Optimality). Suppose conditions (i)-(vi) are
satisfied. Then, for any desired policy optimality ϵ > 0, choosing constants C, λ, δ that
satisfy:

λ = ϵ(1− γ)2/8, (B.57)

δ = λ/(VmaxD(1− γ)2), (B.58)

C = max


(
4Vmaxd

max
∞

λ

)2

,
64V 2

max

λ2

(
D log

24|A|D+1
D V 2

maxD

λ2
+ log

1

δ

) , (B.59)

the Q-function estimates Q̂∗
ω,d(b̄d, a) obtained for all depths d = 0, . . . , D − 1, realized beliefs

or histories bd encountered in the Sparse Sampling-ω tree, and actions a are jointly near-
optimal with respect to Q∗

P,d and Q∗
MP,d

with probability at least 1− δ:

|Q∗
P,d(bd, a)− Q̂∗

ω,d(b̄d, a)| ≤
λ

1− γ
, (B.60)

|Q∗
MP,d

(b̄d, a)− Q̂∗
ω,d(b̄d, a)| ≤

λ

1− γ
. (B.61)
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Proof. This proof has two parts. First, we show that the choice of C is valid given the
assumptions in Lemma 6.2. Then, we use Lemmas 6.2 and 3A to prove the Q-value estimate
claim.

The conditions necessary for C from Lemma 6.2 are the following:

tmax(λ,C) =
λ

4Vmaxdmax
∞
− 1√

C
> 0 (B.62)

δ ≥ 6|A|(4|A|C)D exp(−C · t̃2) (B.63)

t̃max(λ,C) ≡ max
{
tmax(λ,C), λ/4

√
2Vmax

}
(B.64)

Note that the constraint on tmax implies that the following must be true:

λ

4Vmaxdmax
∞
− 1√

C
> 0 =⇒ C >

(
4Vmaxd

max
∞

λ

)2

, (B.65)

which gives us the first option of C in the maximum.
For the next option of C, we show that substituting the formula yields Eq. (B.63). We

note that due to the definition of t̃max, the following is true:

t̃max(λ,C) ≥ λ/4
√
2Vmax. (B.66)

Let us denote T ≡ (λ/4
√
2Vmax)

2 for convenience. Then, since T is upper-bounded by t̃max,

6|A|(4|A|C)D exp(−C · t̃2) ≤ 6|A|(4|A|C)D exp(−C · T ) (B.67)

≤ (24|A|
D+1
D C)D exp(−C · T ) (B.68)

Consequently, if we show that Eq. (B.68) is bounded by δ, then we automatically show that

the original quantity is bounded by δ as well. By defining X ≡ 24|A|D+1
D , we want to show

that this simplified formula is bounded above by δ:

δ ≥ (X · C)D exp(−C · T ). (B.69)

We will show that our second option of C satisfies the following, where the simplified formula
equals:

64V 2
max

λ2

(
D log

24|A|D+1
D V 2

maxD

λ2
+ log

1

δ

)
=⇒ 2

T

(
D log

XD

T
+ log

1

δ

)
(B.70)
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Substituting in the second option of C:

(X · C)D exp(−C · T ) = δ2
(
2XD
T

log XD
T

+ 2X
T

log 1
δ

)D(
XD
T

)2D (B.71)

= δ2

(
XD
T

log
(
XD
T

)2
+ XD

T
log
(
1
δ

)2/D)D(
XD
T

)2D (B.72)

= δ2

(
log
(

XD
Tδ1/D

)2)D
(
XD
T

)D = δ

 log
(

XD
Tδ1/D

)2(
XD
Tδ1/D

)

D

(B.73)

Note that the function f(x) = log x2/x is less than 1 for x > 0 (in fact, the maximum value
of f(x) is exactly 2/e, attained by setting x = e). This means that the quantity inside the
parentheses is less than 1, which lets us obtain our desired result

(X · C)D exp(−C · T ) ≤ δ. (B.74)

Therefore, each of our option of C satisfies the respective conditions, and taking the maxi-
mum of the options will yield valid results for both inequality constraints:

C = max


(
4Vmaxd

max
∞

λ

)2

,
64V 2

max

λ2

(
D log

24|A|D+1
D V 2

maxD

λ2
+ log

1

δ

) . (B.75)

This concludes the first part of the proof; we have shown that C is a valid choice. Next, we
prove the value bounds.

With our choice of C, from Lemma 6.2, the error in estimating Q∗ with our Sparse
Sampling-ω policy is bounded by αd for all d, a with probability at least 1 − δ. Since
αd ≤ α0, the following holds for all d = 0, . . . , D − 1 with probability at least 1− δ through
Lemmas 6.1 and 6.2:

|Q∗
P,d(bd, a)− Q̂∗

d(b̄d, a)| ≤ α0 ≤
D−1∑
d=0

γdλ ≤ λ

1− γ
, (B.76)

|Q∗
MP,d

(b̄d, a)− Q̂∗
d(b̄d, a)| ≤ β0 ≤

D∑
d=1

γdλ ≤ λ

1− γ
. (B.77)
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B.4 Proof of Theorem 7.4 - Particle Belief MDP

Approximate Policy Convergence

Before we prove Theorem 6.4, we first prove the following lemma, which is an adaptation of
Kearns et al. (2002) and Singh and Yee (1994) for belief states b.

Lemma 3A. Consider a POMDP with a finite horizon of D steps and policy π(b) =
argmaxa Q̂(b, a) where Q̂ is a stochastic value function approximator with errors bounded
by a positive constant ξ: |Q∗(b, a) − Q̂(b, a)| ≤ ξ. Let V π(b0) denote the value of executing
π starting at belief b0 with an exact Bayesian belief update, bt+1 = btao, between each call to
the policy. Then

V ∗(b0)− V π(b0) ≤
2ξ

1− γ
. (B.78)

Proof. First, note that if an action is chosen by π, it must appear better than π∗ according
to Q̂, i.e. Q̂(b, π(b)) ≥ Q̂(b, π∗(b)). The worst case is when Q̂(b, π(b)) = Q∗(b, π(b)) + ξ and
Q̂(b, π∗(b)) = Q∗(b, π∗(b))− ξ. Thus, for any t, we have the bound

Q∗ (bt, π∗(bt)
)
− E[Q∗ (bt, π(bt))] ≤ 2ξ. (B.79)

Next, we prove that V ∗(bt) − V π(bt) ≤
∑D−1

d=t γ
d−t2ξ using induction from t = D − 1 to

t = 0. We verify the base case, t = D − 1, by observing that both Qπ(bD−1, π(bD−1)) and
Q∗(bD−1, π(bD−1)) are equal to R(bD−1, π(bD−1)) since no further reward can be accumulated
and using Eq. (B.79):

V ∗(bD−1)− V π(bD−1) = Q∗(bD−1, π
∗(bD−1))− E[Qπ(bD−1, π(bD−1))] (B.80)

= Q∗(bD−1, π
∗(bD−1))− E[Q∗(bD−1, π(bD−1))] (B.81)

≤ 2ξ. (B.82)

The inductive step is verified by subtracting and adding E[Q∗ (b, π(b))], using the bound in
Eq. (B.79), and applying the inductive hypothesis:

V ∗(bt)− V π(bt) = Q∗ (b, π∗(b)
)
− E[Qπ(b, π(b))] (B.83)

= Q∗ (b, π∗(b)
)
− E[Q∗ (b, π(b))]︸ ︷︷ ︸

Bounded by Eq. (B.79)

+E[Q∗ (b, π(b))]− E[Qπ(b, π(b))] (B.84)

≤ 2ξ + E[Q∗ (b, π(b))]− E[Qπ(b, π(b))] (B.85)

= 2ξ + E[R
(
b, π(b)

)
] + γ E[V ∗(bt+1))]− E[R(b, π(b))]− γ E[V π(bt+1))]

(B.86)

= 2ξ + γ E[V ∗(bt+1))− V π(bt+1))] (B.87)

= 2ξ + γ

D−1∑
d=t+1

γd−t2ξ =
D−1∑
d=t

γd−t2ξ. (B.88)
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Now, by applying the result above to t = 0, we prove the lemma:

V ∗(b0)− V π(b0) ≤
D−1∑
d=0

γd2ξ ≤ 2ξ

1− γ
.

Theorem B.4 (Particle Belief MDP Approximate Policy Convergence). In addition to reg-
ularity conditions for particle belief MDP and the MDP planning algorithm A, assume that
the closed-loop POMDP Bayesian belief update step is exact. Then, for any ϵ > 0, we can
choose a C such that the value obtained by planning with A in the PB-MDP is within ϵ of
the optimal POMDP value function at b0:

V ∗
P(b0)− V A

MP
(b0) ≤ ϵ. (B.89)

Proof. During policy execution, we create a new independent tree and choose an action
based on the estimated Q-values. At each of the D steps of the POMDP, there is at most
δ probability that |Q∗

P,0(b0, a) − Q̂A
MP,0

(b̄0, a)| > 2λ
1−γ + ϵA. We further choose C ′, δ′, λ′ such

that 2λ′

1−γ = 2λ
1−γ + ϵA.

Thus, with probability at least 1−Dδ′, we execute a policy that meets the assumptions of
Lemma 3A with ξ = 2λ′

1−γ , and hence by Lemma 3A, the difference between the optimal value

and the average accumulated reward for this case is at most 4λ′

(1−γ)2 . In the other case, which

occurs with at most probability Dδ′, an arbitrarily bad policy can be executed, resulting in
an accumulated reward difference of up to 2Vmax from the optimal policy. Combining these
two cases and using the definition of δ′ in Eq. (6.23), we have

V ∗
P(b0)− V A

MP
(b0) ≤ (1−Dδ′) 4λ′

(1− γ)2
+Dδ′2Vmax (B.90)

≤ 4λ′

(1− γ)2
+

4λ′

(1− γ)2
(B.91)

= ϵ. (B.92)
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B.5 Experiment Details

cUCB ka αa ko αo mmin δ C Depth

Laser Tag (D, D, D)

Sparse-PFT 15 - - 15 - - - 96 37
PFT-DPW 25 - - 5 0.33 - - 25 48
POMCPOW 26 - - 4 0.03 - - - 50
AdaOPS - - - - - 30 0.1 - 90
POMCP 26 - - - - - - - 50
QMDP - - - - - - - - -

Light Dark (D, D, C)

Sparse-PFT 95 - - 24 - - - 134 28
PFT-DPW 93 - - 13 0.08 - - 33 20
POMCPOW 90 - - 5 0.07 - - - 20
AdaOPS - - - - - 30 0.1 - 90
POMCP 83 - - - - - - - 20
QMDP - - - - - - - - -

Sub Hunt (D, D, C)

Sparse-PFT 20 - - 27 - - - 23 20
PFT-DPW 85 - - 10 0.08 - - 79 20
POMCPOW 17 - - 6 0.01 - - - 50
AdaOPS - - - - - 30 0.1 - 90
POMCP 17 - - - - - - - 84
QMDP - - - - - - - - -

VDP Tag (C, C, C)

Sparse-PFT 16 28 - 28 - - - 385 33
PFT-DPW 23 22 0.32 21 0.04 - - 132 44
POMCPOW 110 30 0.03 5 0.01 - - - 10

VDP TagD (C, D, C)

Sparse-PFT 76 - - 25 - - - 444 46
PFT-DPW 10 - - 9 0.11 - - 330 22
POMCPOW 31 - - 5 0.05 - - - 10
AdaOPS - - - - - 40 0.25 - 90

Table B.1: Summary of hyperparameters used in continuous observation POMDP experiments.

For UCT methods, we vary cUCB, the UCB exploration parameter. ka and αa are action
progressive widening parameters, where new actions are added if widening criterion |C(h)| ≤
kaN(h)αa is met. Similarly, ko and αo are observation progressive widening parameters,
where new actions are added if widening criterion |C(ha)| ≤ koN(ha)αo is met. Sparse-
PFT uses αa = αo = 0. C is the number of particles constituting internal tree beliefs for



APPENDIX B. DETAILS FOR OPTIMALITY GUARANTEES FOR PARTICLE
BELIEF APPROXIMATION OF POMDPS 189

PFT methods. mmin is the minimum number of particles required to approximate a belief
for AdaOPS. Finally, δ is the maximum distance distance between beliefs resulting from
observation branches required to merge the branches for AdaOPS.

V̂ L0 U0

Laser Tag (D, D, D)

Sparse-PFT QMDP PO-Rollout - -
PFT-DPW QMDP PO-Rollout - -
POMCPOW FO-Value - -
AdaOPS - Random Rollout QMDP
POMCP Random Rollout - -
QMDP - - -

Light Dark (D, D, C)

Sparse-PFT QMDP PO-Rollout - -
PFT-DPW QMDP PO-Rollout - -
POMCPOW FO-Value - -
AdaOPS - Random Rollout QMDP
POMCP Random Rollout - -
QMDP - - -

Sub Hunt (D, D, C)

Sparse-PFT QMDP PO-Rollout - -
PFT-DPW QMDP PO-Rollout - -
POMCPOW FO-Value - -
AdaOPS - Random Rollout QMDP
POMCP Random Rollout - -
QMDP - - -

VDP Tag (C, C, C)

Sparse-PFT Random Rollout - -
PFT-DPW Random Rollout - -
POMCPOW Random Rollout - -

VDP TagD (C, D, C)

Sparse-PFT Random Rollout - -
PFT-DPW Random Rollout - -
POMCPOW Random Rollout - -
AdaOPS - Random Rollout 106

POMCP Random Rollout - -

Table B.2: Summary of leaf node value estimators used in continuous observation POMDP
experiments.

QMDP PO-Rollout corresponds to sampling a “true state” from a leaf node particle belief
and simulating the state/belief dynamics with a particle filter as a belief updater and QMDP
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as a policy. The returns following the trajectory of the sampled “true state” are taken as a
value estimate for the leaf node. FO-Value corresponds to using the MDP value for the state
representation of a particle. QMDP corresponds to using the belief value estimate given by
a QMDP policy. Random Rollout corresponds to sampling a state from a particle belief and
simulating it forward using a random policy. The returns of this simulation are used as the
initial leaf node value estimate. A constant number (e.g. 106) indicates a belief-independent
static initial value estimate. UCT solvers only require a single value estimate (V̂ ), whereas
AdaOPS requires lower and upper bounds on belief value, L0 and U0 respectively.
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Appendix C

Details for Voronoi Progressive
Widening

C.1 VOWSS Convergence Conditions

Before we prove the VOWSS inequality theorem, we present the necessary conditions for
this analysis. The conditions required for the proof is the union of regularity conditions
required for POWSS and VOO. The POWSS conditions are the following, with appropriate
adaptations to our formalism:
(i) (Continuous spaces) S,A,O are continuous spaces.
(ii) (Bounded Rényi divergence) For any observation sequence {on}j, the densities Z, T , b0

are chosen such that the Rényi divergence of the target distribution Pd and sampling
distribution Qd is bounded above by dmax

∞ < +∞ a.s. for all d = 0, · · · , D − 1:

d∞(Pd||Qd) = ess supx∼QdwPd/Qd(x) ≤ dmax
∞

(iii) (Bounded reward function) The reward function R is Borel and bounded by a finite
constant ||R||∞ ≤ Rmax < +∞ a.s., and Vmax ≡ Rmax

1−γ < +∞.

(iv) (Generative model) We can sample from the generating function G and evaluate the
observation probability density Z.

(v) (Finite horizon) The POMDP terminates after D <∞ steps.
In our context, the target distribution Pd corresponds to the conditional observation density
of the state trajectory, Qd the marginal state trajectory density, and wPd/Qd the importance
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weights:

Pd = Pd{on}j({sn}i) =
(Z i,j1:d)(T i1:d)bi0∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
, (C.1)

Qd = Qd({sn}i) = (T i1:d)bi0, (C.2)

wPd/Qd({sn}i) =
(Z i,j1:d)∫

Sd+1(Zj1:d)(T1:d)b0ds0:d
. (C.3)

Essentially, condition (ii) means that the conditional observation density cannot be much
larger than the marginal density for any given state trajectory. With the above conditions,
the state sampling width Cs is chosen such that the following holds:

p ≥ 3Ca(3Ca · Cs)D exp(−Cs · t2max), (C.4)

p =
ϵ

(1− γ)VmaxD
, tmax(ϵ, Cs) =

ϵ(1− γ)
3Vmaxdmax

∞
− 1√

Cs
. (C.5)

This ensures the POWSS type bound |Q⋆
d(b, a)− Q̂⋆

d(b̄, a)| ≤ ϵ holds with probability at least
1− p for each b, a at depth d.

The VOO conditions are the following, with appropriate adaptations to our formalism.
Note that with our notation, VOO aims to optimize a function Q(a) over some space A:
(i) (Translation-invariant semi-metric) D : A×A→ R+ is such that ∀x, y, z ∈ A, D(x, y)

= D(y, x), D(x, y) = 0 iff x = y, and D(x+ z, y + z) = D(x, y).
(ii) (Local smoothness of Q) There exists at least one global optimum a∗ ∈ A of Q such

that ∀a ∈ A,Q(a∗)−Q(a) ≤ L ·D(a, a∗) for some L > 0.
(iii) (Shrinkage ratio of the Voronoi cells) Consider any point a′ inside the Voronoi cell C

generated by the point a0, and denote d0 = D(a′, a0). If we randomly sample a point
a1 from C, we have E[min(d0, D(a′, a1))] ≤ λd0 for λ ∈ (0, 1).

(iv) (Well-shaped Voronoi cells) There exists η > 0 such that for any Voronoi cell generated
by a with expected diameter d0 contains a ball of radius ηd0 centered at a.

(v) (Local symmetry near optimum) The set of global optima A∗ consists of finite number of

disjoint and connected components {A(l)
∗ }kl=1, k <∞. For each component, there exists

an open ball Bνl(a
(l)
∗ ) for some a

(l)
∗ ∈ A

(l)
∗ such that D(a, a

(l)
∗ ) ≤ D(a′, a

(l)
∗ ) implies

Q(a) ≥ Q(a′) for any a, a′ ∈ Bνl(a
(l)
∗ ).

Here, we define µ̄B(r) = µ(Br(·))/µ(A), with µ the Borel measure on A, δmax the largest
distance between two points in A, and νmin = minl∈[k] νl. Then, the action sampling width
Ca is chosen such that the following holds:

ω ≥ 1− λ1/k

µ̄B(νmin) + 1− µ̄B(η · λνmin)
(C.6)

Ca ≥ max
d=0,··· ,D−1

[
log

(
ηCa(d)− γηCa(d+ 1)

2LδmaxCmax

)
·min(Gλ,ω, Kν,ω,λ)

]
. (C.7)
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Here, Cmax, Gλ,ω, Kν,ω,λ are problem specific quantities/functions that are explicitly defined
in [94]. Satisfying these constraints for a decreasing sequence {ηCa(d)} will allow us to use
the VOO type bound V ⋆

d (b)− V̂ ⋆
d (b) ≤ ηCa(d) that holds in expectation.

C.2 Proof of Theorem 8.1 - VOWSS Inequality

Theorem C.1 (VOWSS Inequality). Suppose we choose the action sampling width Ca and
state sampling width Cs such that under the union of regularity conditions specified by [94]
and [94], the intermediate POWSS bounds and VOO bounds in Lemma 1A are satisfied at
every depth of the tree. Then, the following bounds for the VOWSS estimator V̂VOWSS,d(b̄)
hold for all d ∈ [0, D − 1] in expectation:∣∣∣V ⋆

d (b)− V̂VOWSS,d(b̄)
∣∣∣ ≤ ηCa + αCs . (C.8)

In order to prove Theorem C.1, we first prove an intermediate lemma which will allow
us to obtain the bound through triangle inequality. We introduce and prove the following
lemma first. All of the following calculations are done in expectation. We also denote b̄ for
a particle representation of belief b that POWSS and VOWSS take as an argument.

Lemma 1A (VOWSS Intermediate Inequality). Suppose with our notation, the POWSS
estimators at all depths d are within ϵ of their mean values with probability 1 − p, and the
VOO agents have regret bounds of RCa. The following inequalities hold for all d ∈ [0, D− 1]
in expectation: ∣∣∣V ⋆

d (b)− V̂ Ca
d (b)

∣∣∣ ≤ ηCa(d), (C.9)∣∣∣V̂ Ca
d (b)− V̂VOWSS,d(b̄)

∣∣∣ ≤ αCs(d). (C.10)

ηCa(d) and αCs(d) are sequences that satisfy the following properties:

ηCa(d) ≥ γ · ηCa(d+ 1) +RCa , ηCa(D) = 0, (C.11)

ηCa ≡ max
d=0,··· ,D−1

ηCa(d) < +∞, (C.12)

αCs(d) ≡ (1 + γ)(ϵ+ 2p · Vmax) + γ(αCs(d+ 1) + 2p · Vmax), (C.13)

αCs(D − 1) = ϵ+ 2p · Vmax, (C.14)

αCs ≡ max
d=0,··· ,D−1

αCs(d) < +∞. (C.15)

Proof. This proof proceeds through induction by assuming that the bounds hold for all
depths from d+1 toD−1, and then proving they also hold for depth d (induction hypothesis is
omitted as the bounds trivially hold as per the definitions of VOOT and POWSS). We divide
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the main inequality into VOO bound and POWSS bound by introducing an intermediate
term V̂ Ca

d (b):∣∣∣V ⋆
d (b)− V̂VOWSS,d(b)

∣∣∣ ≤ ∣∣∣V ⋆
d (b)− V̂ Ca

d (b)
∣∣∣︸ ︷︷ ︸

VOO bound

+
∣∣∣V̂ Ca
d (b)− V̂VOWSS,d(b̄)

∣∣∣︸ ︷︷ ︸
POWSS bound

(C.16)

Essentially, we have two main layers of inequality, caused by the stochastic nature of VOO
action selection, and the uncertainties in state transition and observation. We will first
analyze the VOO bound, then the POWSS bound.

Step 1: VOO Bound The VOO bound can once again be further decomposed into the
following terms as [94] do in their work:∣∣∣V ⋆

d (b)− V̂ Ca
d (b)

∣∣∣ ≤ ∣∣∣V ⋆
d (b)− V̂d(b)

∣∣∣︸ ︷︷ ︸
VOO Recursive bound

+
∣∣∣V̂d(b)− V̂ Ca

d (b)
∣∣∣︸ ︷︷ ︸

VOO Regret bound

(C.17)

Here, the intermediate random variables are defined in the following manner:

V ⋆
d (b) ≡ max

a∈A
Q⋆
d(b, a) = max

a∈A

{
R(b, a) + γ E[V ⋆

d+1(bao)|b]
}

(C.18)

V̂d(b) ≡ max
a∈A

Q̂d(b, a) = max
a∈A

{
R(b, a) + γ E[V̂ Ca

d+1(bao)|b]
}

(C.19)

V̂ Ca
d (b) ≡ max

a∈V OO(A,Ca)
Q̂d(b, a) = max

a∈V OO(A,Ca)

{
R(b, a) + γ E[V̂ Ca

d+1(bao)|b]
}

(C.20)

As a notation, a ∈ V OO(A,Ca) indicates that the actions a are chosen sequentially through
the VOO algorithm over the action space A for Ca iterations of VOO. Here, we compare the
two quantities with a reference action a⋆ = argmaxQ⋆

d(b, a), which results in a looser bound
but allows us to directly compare the quantities inside the max operations. We closely follow
the calculations from the proof of Lemma 5 in [94]:∣∣∣V ⋆

d (b)− V̂d(b)
∣∣∣︸ ︷︷ ︸

VOO Recursive bound

=

∣∣∣∣max
a∈A

{
R(b, a) + γ E[V ⋆

d+1(bao)|b]
}
−max

a∈A

{
R(b, a) + γ E[V̂ Ca

d+1(bao)|b]
}∣∣∣∣

(C.21)

≤
∣∣∣R(b, a⋆) + γ E[V ⋆

d+1(ba
⋆o)|b]−R(b, a⋆) + γ E[V̂ Ca

d+1(ba
⋆o)|b]

∣∣∣
(a⋆ = argmaxQ⋆

d(b, a))

≤ γ E
[
|V ⋆
d+1(bao)− V̂ Ca

d+1(bao)|
∣∣∣b] (C.22)

≤ γ · ηCa(d+ 1) (C.23)∣∣∣V̂d(b)− V̂ Ca
d (b)

∣∣∣︸ ︷︷ ︸
VOO Regret bound

≤ RCa . (C.24)
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In the VOO Regret bound, the difference cannot be less than zero since the global maximum
is at least as big as the VOO maximum, so the absolute value disappears and we get the
regret of VOO. Thus, with our choice of Ca that is designed to satisfy the recurrence relation:∣∣∣V ⋆

d (b)− V̂ Ca
d (b)

∣∣∣ ≤ ∣∣∣V ⋆
d (b)− V̂d(b)

∣∣∣︸ ︷︷ ︸
VOO Recursive bound

+
∣∣∣V̂d(b)− V̂ Ca

d (b)
∣∣∣︸ ︷︷ ︸

VOO Regret bound

(C.25)

≤ γ · ηCa(d+ 1) +RCa ≤ ηCa(d). (C.26)

Step 2: POWSS Bound The POWSS bound can also be further decomposed into the
following terms:∣∣∣V̂ Ca

d (b)− V̂VOWSS,d(b)
∣∣∣ ≤ ∣∣∣V̂ Ca

d (b)− ṼVOWSS,d(b)
∣∣∣︸ ︷︷ ︸

POWSS Concentration bound

+
∣∣∣ṼVOWSS,d(b)− V̂VOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS Recursive bound

. (C.27)

Here, the extra intermediate random variable and the VOWSS estimator are defined in the
following manner:

ṼVOWSS,d(b) ≡ max
a∈V OO(A,Ca)

Q̃VOWSS,d(b, a) = max
a∈V OO(A,Ca)

{∑Cs
i=1wd,i(rd,i + γV̂ Ca

d+1(baoi))∑Cs
i=1wd,i

}
,

(C.28)

V̂VOWSS,d(b̄) ≡ max
a∈V OO(A,Ca)

Q̂VOWSS,d(b̄, a) = max
a∈V OO(A,Ca)

{∑Cs
i=1wd,i(rd,i + γV̂VOWSS,d+1(baoi))∑Cs

i=1wd,i

}
(C.29)

We compare the two quantities by picking a reference action to directly compare the quan-
tities inside the max operations.

For the concentration bound term:∣∣∣V̂ Ca
d (b)− ṼVOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS Concentration bound

≤
∣∣∣∣ max
a∈V OO(A,Ca)

{
R(b, a) + γ E[V̂ Ca

d+1(bao)|b]
}

(C.30)

− max
a∈V OO(A,Ca)

{∑Cs

i=1wd,i(rd,i + γV̂ Ca
d+1(baoi))∑Cs

i=1wd,i

}∣∣∣∣ (C.31)

≤

∣∣∣∣∣R(b, a∗) + γ E[V̂ Ca
d+1(ba

∗o)|b]−
∑Cs

i=1wd,i(rd,i + γV̂ Ca
d+1(ba

∗oi))∑Cs

i=1wd,i

∣∣∣∣∣ .
(a∗ = argmaxV OO Q̂d(b, a))

As a small note, picking the maximizing action with respect to Q̂d does not guarantee that
we have bounded the term in this case. We also need to consider the case of picking the
maximizing action with respect to Q̃VOWSS,d, since Q̃VOWSS,d could achieve larger values
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than Q̂d due to sparse sampling of states. However, our overall result does not change,
since choosing the other maximizing action will only result in a change in sign within the
absolute value, which we can still bound with the recursive bound. Thus, in the following
calculations whenever we pick the reference action for difference in quantities that do not
have strict magnitude hierarchy, we do not consider this possibility as the terms can still be
bounded with their respective recursive bounds by choosing an appropriate reference action.

Decomposing the quantity into the reward difference and the next-step value difference:

∣∣∣V̂ Ca
d (b)− ṼVOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS Concentration bound

≤

∣∣∣∣∣R(b, a∗)−
∑Cs

i=1wd,ird,i∑Cs

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Reward difference

(C.32)

+ γ

∣∣∣∣∣E[V̂ Ca
d+1(ba

∗o)|b]−
∑Cs

i=1wd,iV̂
Ca
d+1(ba

∗oi)∑Cs

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Value difference

.

For the reward difference, we can crudely upper bound it by the POWSS Q-value estimate
concentration bound in Theorem 2 of [94], since this is effectively the same structure as the
leaf node estimate. In the POWSS concentration bound in Theorem 2, the difference has
an upper bound of λ/(1 − γ), which we will define as ϵ, and we denote the corresponding
probability δ as p. This bounds the quantity by (ϵ+2p · Vmax) using the expectation version
of the POWSS concentration bound.∣∣∣∣∣R(b, a∗)−

∑Cs

i=1wd,ird,i∑Cs

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Reward difference

≤ ϵ+ 2p · Vmax. (C.33)

We could instead use Lemma 1 of [94], the leaf node estimate concentration bound, but
we use the more general Theorem 2. This allows us to consistently use the same theorem
throughout this analysis and effectively combine terms. Similarly, while the worst case bound
is 2Rmax since we are taking the difference of two reward functions, we crudely upper bound
that with 2Vmax for algebraic convenience of combining it with the value difference term.∣∣∣∣∣E[V̂ Ca

d+1(ba
∗o)|b]−

∑Cs

i=1wd,iV̂
Ca
d+1(ba

∗oi)∑Cs

i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Value difference

≤ ϵ+ 2p · Vmax. (C.34)

On the other hand, for the value difference, the POWSS concentration bound also turns out
to be an upper bound, but with more sophisticated calculations. During this part of the
proof, we will refer heavily back to the continued proof of Lemma 2 in the Appendix C of
[94] and give a general overview of how the steps apply here.
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Step 2-i: Value Difference While Lemma 2 in [94] is calculated with respect to the
theoretically optimal value function V ∗

d+1, the calculation steps themselves and the theorems

and lemmas used there can apply exactly the same way for V̂ Ca
d+1. We will briefly illustrate

how the steps are parallel to the proof of Lemma 2 in the Appendix C of [94].

The value difference corresponds to the difference between the expected value of V̂ Ca
d+1

and the self-normalized importance sampling estimator of the expected value. This value
difference specifically corresponds to the first two error terms in the continued proof of
Lemma 2 in the Appendix C of [94]. The decomposition looks like the following:∣∣∣∣∣E[V̂ Ca

d+1(ba
∗o)|b]−

∑Cs
i=1wd,iV̂

Ca
d+1(ba

∗oi)∑Cs
i=1wd,i

∣∣∣∣∣ (C.35)

≤

∣∣∣∣∣E[V̂ Ca
d+1(ba

∗o)|b]−
∑Cs

i=1wd,iV̂
Ca
d+1(sd,i, b, a

∗)∑Cs
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
Importance sampling error

+

∣∣∣∣∣
∑Cs

i=1wd,i(V̂
Ca
d+1(sd,i, b, a

∗)− V̂ Ca
d+1(ba

∗oi))∑Cs
i=1wd,i

∣∣∣∣∣︸ ︷︷ ︸
MC next-step integral approximation error

.

(C.36)

The next-step marginal integral V̂Ca
d+1(sd,i, b, a

∗) is defined as

V̂Ca
d+1(sd,i, b, a

∗) ≡
∫
S

∫
O

V̂ Ca
d+1(ba

∗o)Z(o|a∗, sd+1)T (sd+1|sd,i, a∗)dsd+1do. (C.37)

With this analogous definition, the self-normalized estimator identities in [94] can be exactly
applied to this setting once again, now instead for the function V̂ Ca

d because the algebraic
steps taken in the proof should hold for our V function estimator as well. Intuitively, the
next-step marginal integral is defined to be the marginal random variable for V̂ Ca

d , instead
of the optimal V function as it is done in the works of [94].

First, following [94], we define the following notation for products of transition and
observation densities:

T i1:d ≡
d∏

n=1

T (sn,i|sn−1,i, an), (C.38)

Z i,j1:d ≡
d∏

n=1

Z(on,j|an, sn,i). (C.39)

Specifically, i denotes the index of the state sample, and j denotes the index of the observation
sample. Absence of any of the indices i or j means that the state trajectory {sn} or the
observation history {on} appear as regular variables, mostly for the purposes of integration.
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Step 2-ii: Importance Sampling Error For the importance sampling error, note that
for a belief b at depth d,

E[V̂ Ca
d+1(ba

∗o)|b] =
∫
S

∫
S

∫
O

V̂ Ca
d+1(ba

∗o)(Zd+1)(Td,d+1)b · dsd:d+1do (C.40)

=

∫
S

V̂Ca
d+1(sd,i, b, a

∗)b · dsd (C.41)

=

∫
Sd V̂

Ca
d+1(sd,i, b, a

∗)(Z1:d)(T1:d)b0ds0:d∫
Sd(Z1:d)(T1:d)b0ds0:d

. (C.42)

Consequently, the weighted average of the next-step marginal integral V̂Ca
d+1(sd,i, b, a

∗) is a

self-normalized importance sampling estimator of V̂ Ca
d+1(ba

∗o) given b, and we can apply the
augmented self-normalized estimator concentration bound in the same way as [94] to get the
concentration bound of λ/3.

Step 2-iii: Monte Carlo Next-Step Integral Approximation Error For the MC
next-step integral approximation error, generating estimates of V̂ Ca

d+1(ba
∗oi) for a given tu-

ple (sd,i, b, a
∗) also results in an unbiased Monte Carlo estimator of the next-step marginal

integral, and the following difference is mean zero conditioned on (sd,i, b, a
∗):

∆d+1(sd,i, b, a
∗) ≡ V̂Ca

d+1(sd,i, b, a
∗)− V̂ Ca

d+1(ba
∗oi). (C.43)

Thus, the same calculation steps hold. Note that in the works of [94], the MC next-step
integral approximation error is further crudely bound by 2

3γ
λ, when the actual bounds also

hold for 2
3
λ, for the convenience of being able to combine the γ multiplied terms in the main

proof of Lemma 2. Thus, we can bound the MC next-step integral approximation error with
the stricter bound 2

3
λ.

In our work, we used the variable ϵ to denote the POWSS concentration bound, which
corresponds to ϵ = λ/(1 − γ) ≥ λ. Since the sum of importance sampling error and MC
next-step integral approximation error are bounded by (1/3+2/3)λ = λ, this can also further
be crudely bounded by the POWSS concentration inequality with the upper bound ϵ.

We have now obtained bounds for the value difference term using the expectation version
of the POWSS concentration inequality where the extreme probability event is once again
bounded with the term 2p · Vmax:∣∣∣∣∣E[V̂ Ca

d+1(ba
∗o)|b]−

∑Cs

i=1wd,iV̂
Ca
d+1(ba

∗oi)∑Cs

i=1wd,i

∣∣∣∣∣ ≤ ϵ+ 2p · Vmax. (C.44)

Finally, we can bound the POWSS Concentration bound term:∣∣∣V̂ Ca
d (b)− ṼVOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS Concentration bound

≤ (ϵ+ 2p · Vmax) + γ(ϵ+ 2p · Vmax) = (1 + γ)(ϵ+ 2p · Vmax).

(C.45)
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For the POWSS Recursive bound term, we simply apply the inductive hypothesis for
step d+ 1:

∣∣∣ṼVOWSS,d(b)− V̂VOWSS,d(b̄)
∣∣∣︸ ︷︷ ︸

POWSS Recursive bound

≤
∣∣∣∣ max
a∈V OO(A,Ca)

{∑Cs

i=1wd,i(rd,i + γV̂ Ca
d+1(baoi))∑Cs

i=1wd,i

}
(C.46)

− max
a∈V OO(A,Ca)

{∑Cs

i=1wd,i(rd,i + γV̂VOWSS,d+1(baoi))∑Cs

i=1wd,i

}∣∣∣∣
(C.47)

≤

∣∣∣∣∣γ
∑Cs

i=1wd,i(V̂
Ca
d+1(bãoi)− V̂VOWSS,d+1(bãoi))∑Cs

i=1wd,i

∣∣∣∣∣
(ã = argmaxV OO Q̃V OWSS,d(b, a))

≤ γ

∑Cs

i=1wd,i

∣∣∣V̂ Ca
d+1(bãoi)− V̂VOWSS,d+1(bãoi)

∣∣∣∑Cs

i=1wd,i
(C.48)

≤ γ · αCs(d+ 1). (C.49)

Putting the POWSS components together, we prove the POWSS bound by induction:∣∣∣V̂ Ca
d (b)− V̂VOWSS,d(b̄)

∣∣∣ ≤ ∣∣∣V̂ Ca
d (b)− ṼVOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS Concentration bound

+
∣∣∣ṼVOWSS,d(b)− V̂VOWSS,d(b̄)

∣∣∣︸ ︷︷ ︸
POWSS Recursive bound

(C.50)

≤ (1 + γ)(ϵ+ 2p · Vmax) + γ · αCs(d+ 1) = αCs(d). (C.51)

Proof of Theorem C.1. Finally, we prove the main theorem by combining the two terms:∣∣∣V ⋆
d (b)− V̂VOWSS,d(b̄)

∣∣∣ ≤ ∣∣∣V ⋆
d (b)− V̂ Ca

d (b)
∣∣∣︸ ︷︷ ︸

VOO bound

+
∣∣∣V̂ Ca
d (b)− V̂VOWSS,d(b)

∣∣∣︸ ︷︷ ︸
POWSS bound

(C.52)

≤ ηCa(d) + αCs(d) ≤ ηCa + αCs . (C.53)

Here, the ηCa(d) corresponds to the VOO bound in [94]. Thus, we can always find a
corresponding Ca for an arbitrary decreasing sequence of ηCa(d) which satisfies the properties
in our lemma, and this sequence can be made closer to 0 for each depth by choosing bigger
Ca values.

On the other hand, αCs(d) is comprised of POWSS bound components in [94], which
decreases in both p and ϵ with more samples Cs. Thus, it can also be made to decrease to 0
as we increase Cs.
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C.3 Experiment Hyperparameters

Hyperparameters were taken from the references if they were given, and otherwise the set of
hyperparmaters for a system was obtained by first training POMCPOW, and then training
VOMCPOW and BOMCP centered around POMCPOW hyperparameters as initial esti-
mates. This usually augmented the performances of VOMCPOW and BOMCP compared
to directly borrowing the POMCPOW hyperparameters. For BOMCP, buffer and k were
fixed at 100 and 5, respectively, as it was done in the original paper by [124]. Table C.1
shows the final hyperparameters used in the experiments. Specifically for the lunar lander
problem, we have chosen the dynamics time step dt = 0.4, which gave us the most consistent
performance of BOMCP with 100 queries over 1000 iterations that is in line with the results
of [124].

We give a brief intuitive explanation for each of the parameters utilized. c is the critical
factor or the Upper Confidence Bound exploration parameter, which governs how much we
should explore among the action samples we have collected. Since VPW needs to balance
local and global search, on top of estimating relatively faithful Q-values, it usually worked
better to set the c on the equal magnitude/lower than the c value for POMCPOW, usually
around 10-100. ka is the constant factor of the action widening parameter, which sets the
overall width of the action widening. αa is the exponential factor of the action widening
parameter, which determines how adaptive we want to progressively widen the action width.
ko, αo are the state/observation widening parameters, which function similarly to the action
widening parameters. ω is the VOO exploration probability, which governs how much we
should explore in the action space. Since in global search, we need to see enough samples to
explore the action space sufficiently, it usually worked better to set ω to be relatively high
around 0.7-0.9. Lastly, Σ is the Gaussian covariance matrix for VOO rejection sampling.

The only hyperparameter that was manually picked is the Gaussian covariance matrix
for VOO rejection sampling. When picking this covariance matrix, we usually found that
it was most effective to use a diagonal matrix with entries that are around 10 to 20 times
less than the maximum action space bounds for each dimension. In theory, the diagonal
covariance matrix can also be fitted via CEM, but we chose to handpick these values after
some inspection in order to reduce the number of hyperparameters that needed to be fit.

To limit the number of rejection sampling iterations, we set the maximum number of
rejection sampling iterations to 20 and automatically choose the closest action we have
sampled when we reach 20 iterations. We also manually set automatic sample acceptance
regions that was usually on the order of a tenth of the sampling radius, which we found was
not strictly necessary in conjunction with the sampling iteration limit.

The open source code is available at github.com/michaelhlim/VOOTreeSearch.jl.

github.com/michaelhlim/VOOTreeSearch.jl
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C.4 Voronoi Optimistic Sparse Sampling (VOSS) for

Stochastic MDPs

Voronoi Optimistic Sparse Sampling (VOSS) is an application of VPW to the sparse sampling
algorithm [92] to tackle the stochastic MDP case. Like VOWSS, it can be defined by an
EstimateQ function that estimates the Q-value with next-step state samples. Since VOSS
does not have observation uncertainty, it only needs to take the arithmetic average instead of
the observation likelihood weighted average. The EstimateQ function that takes in a state
s instead of a belief particle set b̄ is outlined in Algorithm C.1. Note that this is analogous
definition to the Q-function estimation algorithm in [92]. The EstimateV function should
function similarly, except working with s instead of b̄.

Algorithm C.1 Value estimation algorithm for VOSS

Algorithm: EstimateQ(s, a, d)
Input: State s, action a, depth d.
Output: A scalar Q̂⋆

d(s, a) that is an estimate of Q⋆
d(s, a).

1: For i = 1, · · · , Cs, generate s′i, r = G(s, a).
2: Return the Q-value estimate:

Q̂⋆
d(s, a) = r + γ

1

Cs

Cs∑
i=1

EstimateV(s′i, d+ 1).

The conditions required for the proof is the union of regularity conditions required for
sparse sampling and VOO. The sparse sampling conditions are the subset of POWSS con-
ditions. Namely, we only require the conditions (i), (iii), (iv), only for the state and action
spaces. Since in this proof we simply use the Chernoff bound for the sparse sampling type
bound, we just need to make sure that p ≥ exp(−ϵ2Cs/(2Vmax)

2) holds when picking Cs.

Theorem C.2 (VOSS Inequality). Suppose we choose the action sampling width Ca and state
sampling width Cs such that under the union of regularity conditions specified by [92] and
[94], the intermediate sparse sampling bounds and VOO bounds in Lemma 2A are satisfied
at every depth of the tree. Then, the following bounds for the VOSS estimator V̂VOSS,d(s)
hold for all d ∈ [0, D − 1] in expectation:∣∣∣V ⋆

d (s)− V̂VOSS,d(s)
∣∣∣ ≤ ηCa + αCs . (C.54)

Similar to proving Theorem C.1, to prove Theorem C.2, we first prove an intermediate
lemma which will allow us to obtain the bound through triangle inequality. The proof is
easier than that of Theorem C.1, since we do not explicitly need to deal with the observa-
tion uncertainty. We introduce and prove the following lemma first. All of the following
calculations are done in expectation.
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Lemma 2A (VOSS Intermediate Inequality). Suppose with our notation, the sparse sam-
pling estimators at all depths d are within ϵ of their mean values with probability 1−p, and the
VOO agents have regret bounds of RCa. The following inequalities hold for all d ∈ [0, D− 1]
in expectation: ∣∣∣V ⋆

d (s)− V̂ Ca
d (s)

∣∣∣ ≤ ηCa(d), (C.55)∣∣∣V̂ Ca
d (s)− V̂VOSS,d(s)

∣∣∣ ≤ αCs(d). (C.56)

ηCa(d) and αCs(d) are sequences that satisfy the following properties:

ηCa(d) ≥ γ · ηCa(d+ 1) +RCa , ηCa(D) = 0, (C.57)

ηCa ≡ max
d=0,··· ,D−1

ηCa(d) < +∞, (C.58)

αCs(d) ≡ γ(αCs(d+ 1) + ϵ+ 2p · Vmax), αCs(D − 1) = ϵ+ 2p · Vmax, (C.59)

αCs ≡ max
d=0,··· ,D−1

αCs(d) < +∞. (C.60)

Proof. This proof proceeds through induction by assuming that the bounds hold for all
depths from d+1 to D−1, and then proving they also hold for depth d (induction hypothesis
is omitted as the bounds trivially hold as per the definitions of VOOT and sparse sampling).
We divide the main inequality into VOO bound and sparse sampling bound (SS bound) by
introducing an intermediate term V̂ Ca

d (s):∣∣∣V ⋆
d (s)− V̂VOSS,d(s)

∣∣∣ ≤ ∣∣∣V ⋆
d (s)− V̂ Ca

d (s)
∣∣∣︸ ︷︷ ︸

VOO bound

+
∣∣∣V̂ Ca
d (s)− V̂VOSS,d(s)

∣∣∣︸ ︷︷ ︸
SS bound

. (C.61)

We now have two main layers of inequality, caused by the stochastic nature of VOO action
selection and the uncertainty in state transition. We will first analyze the VOO bound, then
the SS bound.

Step 1: VOO Bound The VOO bound can be further decomposed into the following
terms as [94] do in their work:∣∣∣V ⋆

d (s)− V̂ Ca
d (s)

∣∣∣ ≤ ∣∣∣V ⋆
d (s)− V̂d(s)

∣∣∣︸ ︷︷ ︸
VOO Recursive bound

+
∣∣∣V̂d(s)− V̂ Ca

d (s)
∣∣∣︸ ︷︷ ︸

VOO Regret bound

. (C.62)

This step is very close to our previous procedure in VOWSS. Here, the intermediate random
variables are defined in the following manner:

V ⋆
d (s) ≡ max

a∈A
Q⋆
d(s, a) = max

a∈A

{
R(s, a) + γ Es′∼T (s,a)[V ⋆

d+1(s
′)]
}
, (C.63)

V̂d(s) ≡ max
a∈A

Q̂d(s, a) = max
a∈A

{
R(s, a) + γ Es′∼T (s,a)[V̂ Ca

d+1(s
′)]
}
, (C.64)

V̂ Ca
d (s) ≡ max

a∈V OO(A,Ca)
Q̂d(s, a) = max

a∈V OO(A,Ca)

{
R(s, a) + γ Es′∼T (s,a)[V̂ Ca

d+1(s
′)]
}
. (C.65)
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Repeating the procedures in Lemma 1A, we closely follow the calculations from Lemma 5 in
[94]:∣∣∣V ⋆

d (s)− V̂d(s)
∣∣∣︸ ︷︷ ︸

VOO Recursive bound

=

∣∣∣∣max
a∈A

{
R(s, a) + γ Es′∼T (s,a)[V ⋆

d+1(s
′)]
}

(C.66)

−max
a∈A

{
R(s, a) + γ Es′∼T (s,a)[V̂ Ca

d+1(s
′)]
} ∣∣∣∣ (C.67)

≤
∣∣∣R(s, a⋆) + γ Es′∼T (s,a⋆)[V ⋆

d+1(s
′)]−R(s, a⋆)− γ Es′∼T (s,a⋆)[V̂ Ca

d+1(s
′)]
∣∣∣

(a⋆ = argmaxQ⋆
d(s, a))

≤ γ Es′∼T (s,a⋆)
∣∣∣V ⋆
d+1(s

′)− V̂ Ca
d+1(s

′)
∣∣∣ (C.68)

≤ γ · ηCa(d+ 1) (C.69)∣∣∣V̂d(s)− V̂ Ca
d (s)

∣∣∣︸ ︷︷ ︸
VOO Regret bound

≤ RCa . (C.70)

Thus, with our choice of Ca that is designed to satisfy the recurrence relation, we obtain the
bound: ∣∣∣V ⋆

d (s)− V̂ Ca
d (s)

∣∣∣ ≤ ∣∣∣V ⋆
d (s)− V̂d(s)

∣∣∣︸ ︷︷ ︸
VOO Recursive bound

+
∣∣∣V̂d(s)− V̂ Ca

d (s)
∣∣∣︸ ︷︷ ︸

VOO Regret bound

(C.71)

≤ γ · ηCa(d+ 1) +RCa ≤ ηCa(d). (C.72)

Step 2: Sparse Sampling Bound Similar to Lemma 1A, the SS bound can also be
further decomposed into the following terms:∣∣∣V̂ Ca

d (s)− V̂VOSS,d(s)
∣∣∣ ≤ ∣∣∣V̂ Ca

d (s)− ṼVOSS,d(s)
∣∣∣︸ ︷︷ ︸

SS Concentration bound

+
∣∣∣ṼVOSS,d(s)− V̂VOSS,d(s)

∣∣∣︸ ︷︷ ︸
SS Recursive bound

. (C.73)

Here, the extra intermediate random variable and the VOSS estimator are defined in the
following manner:

ṼVOSS,d(s) ≡ max
a∈V OO(A,Ca)

Q̃VOSS,d(s, a) = max
a∈V OO(A,Ca)

R(s, a) + γ
1

Cs

Cs∑
i=1

V̂ Ca
d+1(s

′
i)

 ,

(C.74)

V̂VOSS,d(s) ≡ max
a∈V OO(A,Ca)

Q̂VOSS,d(s, a) = max
a∈V OO(A,Ca)

R(s, a) + γ
1

Cs

Cs∑
i=1

V̂VOSS,d+1(s
′
i)

 .

(C.75)
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We now apply the sparse sampling bound as well as the recursive bound in order to bound the
SS bound components. In our case, since our intermediate sparse sampling term ṼVOSS,d(s)

is merely swapping out the expectation of V̂ Ca
d+1 with a sample average under the appropriate

sampling density, this turns out to be simply the Chernoff bound. We transform the sparse
sampling concentration bound to an expected value bound by using the fact that the differ-
ence of V functions/estimators is bounded above by 2Vmax, setting the concentration bound
to be ϵ as per the Lemma statement and assigning the worst case result with probability p.
Once again, we compare the two quantities by picking a reference action to directly compare
the quantities inside the max operations:∣∣∣V̂ Ca

d (s)− ṼVOSS,d(s)
∣∣∣︸ ︷︷ ︸

SS Concentration bound

≤
∣∣∣∣ max
a∈V OO(A,Ca)

{R(s, a) + γ Es′∼T (s,a)[V̂ Ca
d+1(s

′)]} (C.76)

− max
a∈V OO(A,Ca)

{R(s, a) + γ
1

Cs

Cs∑
i=1

V̂ Ca
d+1(s

′
i)}
∣∣∣∣

≤ γ

∣∣∣∣∣∣Es′∼T (s,a∗)[V̂ Ca
d+1(s

′)]− 1

Cs

Cs∑
i=1

V̂ Ca
d+1(s

′
i)

∣∣∣∣∣∣
(a∗ = argmaxV OO Q̂d(s, a))

≤ γ · ((1− p)ϵ+ 2p · Vmax) ≤ γ · (ϵ+ 2p · Vmax). (C.77)

For the SS Recursive bound, we proceed with the similar recursive calculation as SS
Recursive bound term done in Lemma 1A by using the inductive hypothesis for step d+ 1:

∣∣∣ṼVOSS,d(s)− V̂VOSS,d(s)
∣∣∣︸ ︷︷ ︸

SS Recursive bound

≤
∣∣∣∣ max
a∈V OO(A,Ca)

R(s, a) + γ
1

Cs

Cs∑
i=1

V̂ Ca
d+1(s

′
i)

 (C.78)

− max
a∈V OO(A,Ca)

R(s, a) + γ
1

Cs

Cs∑
i=1

V̂VOSS,d+1(s
′
i)


∣∣∣∣

≤ γ
1

Cs

Cs∑
i=1

∣∣∣V̂ Ca
d+1(s

′
i)− V̂VOSS,d+1(s

′
i)
∣∣∣

(ã = argmaxV OO Q̃VOSS,d(s, a))

≤ γ · αCs(d+ 1). (C.79)

Putting the sparse sampling components together by applying the recursive definition of
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αCs(d), we obtain the recurring concentration inequality by induction:∣∣∣V̂ Ca
d (s)− V̂VOSS,d(s)

∣∣∣ ≤ ∣∣∣V̂ Ca
d (s)− ṼVOSS,d(s)

∣∣∣︸ ︷︷ ︸
SS Concentration bound

+
∣∣∣ṼVOSS,d(s)− V̂VOSS,d(s)

∣∣∣︸ ︷︷ ︸
SS Recursive bound

(C.80)

≤ γ · (ϵ+ 2p · Vmax) + γ · αCs(d+ 1) = αCs(d). (C.81)

Proof of Theorem C.2. Finally, we prove the main theorem by combining the two terms:∣∣∣V ⋆
d (s)− V̂VOSS,d(s)

∣∣∣ ≤ ∣∣∣V ⋆
d (s)− V̂ Ca

d (s)
∣∣∣︸ ︷︷ ︸

VOO bound

+
∣∣∣V̂ Ca
d (s)− V̂VOSS,d(s)

∣∣∣︸ ︷︷ ︸
SS bound

(C.82)

≤ ηCa(d) + αCs(d) ≤ ηCa + αCs . (C.83)

Here, the ηCa(d) corresponds to the VOO bound in [94]. Thus, we can always find a
corresponding Ca for an arbitrary decreasing sequence of ηCa(d) which satisfies the properties
in our lemma, and this sequence can be made closer to 0 for each depth by choosing bigger
Ca values.

On the other hand, αCs(d) corresponds to the sparse sampling bound/Chernoff bound
which decreases in both p and ϵ with more samples Cs. Thus, it can also be made to decrease
to 0 as we increase Cs.
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Appendix D

Details for Visual Tree Search

D.1 Experiment Details

For all methods, the episode length was 200 steps. If the agent reached the goal in under
200 steps, this was considered a success with a positive reward of 100 and a termination of
the episode. Entrance into traps incurred a negative reward of −100 per entry. This is with
the exception of DVRL, in which rewards were scaled to lie between −1 and 1 to ensure
stability of the training. The DVRL rewards reported here are scaled by 100.

In addition to statistics such as the success rate, reward, and so on, we have provided
values for the number of successful trials for the method. This is because certain seeds
for DualSMC failed to produce any goal-reaching behavior at all during training. Since
the provided statistics are only for episodes in which the goal was reached, those seeds of
DualSMC were dropped entirely.

The prohibitive training time of PlaNet allowed for only 4 trials to be run with reasonable
computational resources. Training for all methods was done on NVIDIA Tesla K80 GPUs.

Note that the “planning time” reported for DVRL is actually the time to run the forward
pass of the DVRL policy, since the method does not perform planning. The number has
been provided to display that aspect of the algorithm.

D.2 VTS Training Data Generation Details

The open source code for our implementations will be available at https://github.com/

michaelhlim/VisualTreeSearch.

D.2.1 Floor Positioning

We trained the Zθ, Pϕ, and Gξ models with random data batches. Zθ and Pϕ were provided
with random batches of samples (st, ot, {ŝt,i}), with st = (xt, yt) being the agent’s position.
The {ŝt,i} were generated from a normal distribution centered at st with standard deviation

https://github.com/michaelhlim/VisualTreeSearch
https://github.com/michaelhlim/VisualTreeSearch
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0.01. Gξ was provided with random batches of samples (st, ot), where for each batch we
sampled the st and generated each ot from the corresponding st. The sampling procedure
for the states was biased towards the wall states, since those states were more difficult to
learn from. Specifically, for Zθ and Pϕ, in each batch a state would be chosen from a wall
with 0.5 probability and from anywhere in the environment with 0.5 probability. For Gξ, in
each batch a state would be chosen from a wall with 0.5 probability, from a non-wall area
with 0.375 probability, and from anywhere in the environment with 0.125 probability.

D.2.2 3D Light-Dark

To train the Zθ and Pϕ models, we employed the following procedure. Each training batch
consisted of random batches of samples (st, θt, ot, {ŝt,i}), where st = (xt, yt). The agent’s
location could be described by both its position st and its heading θt, though only st was
unknown. In each batch, θt was discretely chosen from [0, 2π) at intervals of π/4. This is be-
cause the agent’s actions were in the form of discrete commands instantaneously changing its
heading. If st was in the dark region, then the {ŝt,i} were generated from a normal distribu-
tion centered at st with standard deviation 0.1, and 0.01 for the light region. The difference
in standard deviation was to enable the Zθ and Pϕ models to cause better localization in
the light region than in the dark region. The two models were trained on a schedule that
gradually introduced noise in the image observations ot over the training epochs. In contrast,
Gξ was trained simply with the random batches (st, θt, ot) without the noise schedule, as if it
were data collected by a randomly exploring agent. However, both sets of models could be
trained either way in principle. For these conditional generative models, the concatenation
of st and θt formed the conditional variable.

D.2.3 On-Policy Refining

Technically, we could employ additional on-policy learning to refine the networks to focus on
parts of the problem that are relevant for a given task as done in training DPF-based policies
[83]. However, we found that on-policy learning does not significantly improve performance
in addition to regular training, since the planner often successfully and quickly reaches the
goal and does not provide many new samples in areas where the models need improvement.
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D.3 Hyperparameters and Computation Details

Table D.1 shows the hyperparameters used in training and filtering for VTS. Our models were
trained on NVIDIA Tesla K80 GPUs. The hyperparameters for DualSMC training remained
the same as the original work [183]. For 3D Light-Dark, we maintained a training pool of
data to draw random batches of samples from instead of generating image observations at
every training step.

Hyperparameters Floor Positioning 3D Light-Dark

Training gradient steps 500,000 100,000
Training sample pool size - 16,000
Learning rate 0.001 0.0003
Batch size 64 64

Filtering particles 100 100
Percent of particles proposed 0.3 0.3
Resampling frequency 3 3

Table D.1: Summary of hyperparameters used in training and filtering for vision POMDP.

Unlike DualSMC, VTS does not use an LSTM as one of the intermediate layers in Zθ
because Zθ is trained offline from randomly collected data. We observed that this would
result in particle de-localization, as the observation density could not propagate forward the
localized information. In essence, the VTS solver would be quick to localize, but sometimes
would need to take a detour in order to re-localize. Particle de-localization has been observed
before in the literature and there are many potential methods to remedy this problem. We
found an exponential decay of the number of particles proposed, as suggested by [183], to
provide the best results and solve the issue. That is, for episode step number n and nominal
particle proposal amount p, the number of particles proposed is p ∗ γnd . We set the decay
rate γd to 0.9.

Table D.2 shows the hyperparameters used for PFT-DPW planner. While hyperparame-
ters for tree search planners are often chosen with hyperparameter sweeps and/or optimiza-
tion, such meta-optimization in our algorithm would mean having to run our algorithm on
a GPU numerous times, which was practically very inefficient. Thus, the hyperparameters
were manually chosen via a combination of inspection and prior experience. For both Floor
Positioning and 3D Light-Dark, we found the rollout strategy that yielded the best results
to be one in which we assume that the uncertainty in the current belief collapses in the next
step. Essentially, we select a random particle from the belief and calculate its straight-line
direction and distance to the goal. We use this distance to estimate the discounted reward
associated with that particle. We add that with the weighted sum of rewards obtained when
all other particles move in that same direction and distance.

Table D.3 shows some parameters for the Floor Positioning and 3D Light-Dark environ-
ments. The environment parameters for Floor Positioning were left unchanged from [183].



APPENDIX D. DETAILS FOR VISUAL TREE SEARCH 210

n c ka αa ko αo m H γ

Floor Positioning
100 10.0 3.0 1

4 4.0 1
4 100 10 0.99

3D Light-Dark
100 10.0 3.0 1

4 4.0 1
4 100 10 0.99

Table D.2: Summary of hyperparameters used in PFT-DPW for VTS.

Across all baseline planning methods, the dimension of the action varied according to the
problem in accordance with [183]; for the Floor Positioning problem, the action dimension
was 2, representing a change in the 2D state. For the 3D Light-Dark problem, the action
dimension was 1, representing a change in the agent’s orientation. DVRL, however, was
found to produce the best performance when the action was 2D for both problems.

Hyperparameters Floor Positioning 3D Light-Dark

Observation size 4 32 × 32 × 3
Agent velocity 0.05 0.2
Noise amount (image) - 40%
Occlusion amount (image) - 15 × 15

Table D.3: Summary of vision POMDP environment parameters.

For the 3D Light-Dark problem, the Zθ and Pϕ modules were trained with a gradual noise
schedule that was as follows: for the first 1/4 of the number of training epochs, the images
in the training data had 0% noise. For the next 1/4 of the epochs, the images corresponding
to states in the dark region had final noise % ∗ 1/4 noise. For the next 1/4 of the epochs,
the images had final noise % ∗ 1/2 noise. For the final 1/4 of the epochs, the images had
the full final noise %. (As seen in Table D.3, final noise % was 40%.) This percentage
corresponds to the percent of locations on the 32 × 32 image that were corrupted by the
salt-and-pepper noise.

Finally, Table D.4 shows the neural network architecture details for the Z, P,G models we
trained on different experimental domains. We note here that although VTS and DualSMC
differ in the architectures of their Zθ and Pϕ models in that the networks for VTS have deeper
structures than those for DualSMC, we did not see any noticeable increase in performance
for DualSMC with the deeper architectures in a preliminary exploration.
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Model Layers # Channels

Floor Positioning
Zθ 5-layer MLP 256× 3, 128, 16

Concat: state 18
3-layer MLP 256× 2, 1

Pϕ 3-layer MLP 256× 2, 64
Concat: z(64) ∼ N (0, 1) 128
4-layer MLP 256× 3, 2

Gξ Encoder 5-layer MLP 256× 4, 64
1 layer to output µ, σ 64

Decoder 5-layer MLP 256× 4, 4

3D Light-Dark
Zθ Conv2d, filter (3, 3), stride 1 num image channels

Conv2d × 4, filter (3, 3), stride 2 32, 64, 128, 256
Conv2d, filter (3, 3), stride 1 512
3-layer MLP 1024, 512, 256
Normalize output (*) 256
3-layer MLP 256 × 3
Concat: state, orientation 259
4-layer MLP 128 × 3, 1

Pϕ Same as Zθ up to (*) 256
1-layer MLP 256
Concat: z(256) ∼ N (0, 1), orientation 513
3-layer MLP 128 × 2, 2

Gξ Encoder Same as Zθ up to (*) 256
Concat: state, orientation 259
5-layer MLP 256 × 4, 128
1 layer MLP to output µ, σ 128

Decoder Concat z(128) ∼ N (0, 1), state, orientation 131
5-layer MLP 256 × 5
3-layer MLP 256, 512, 1024
Conv2dTranspose × 3, filter (3, 3), stride 2 128, 64, 32
Conv2d, filter (3, 3), stride 2 num image channels

Table D.4: VTS Network details.
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D.4 Stanford 3D Light-Dark Environment

Implementation Details

Figure D.1: The overview diagram of the 3D Light-Dark problem implemented using the Stanford
dataset (left), and a top-down map of a floor in a building in the Stanford dataset that we use to recreate
the 3D Light-Dark problem (right).

Fig. D.1 shows the overview diagram of the 3D Light-Dark problem implemented using
the Stanford dataset (left), and a top-down map of a floor in a building in the Stanford
dataset (right).

The environment diagram depicts the “trap” regions in orange, the goal region in green,
and the agent in blue. The agent’s location is given by (x, y, θ), where x, y are the unknown
absolute position coordinates and θ is the known heading. The shaded part of the envi-
ronment depicts the “dark” region, where the image observations received by the agent are
corrupted by salt-and-pepper noise. The rest of the environment is in the “light”, where the
image observations are uncorrupted. The darkest gray region is a wall region that the agent
cannot enter. The agent’s initial state is randomly chosen from a strip in the dark region.

In the top-down map, the red rectangle denotes the part of the building that forms
our environment (top right). We chose a subset of the Stanford dataset region in order
to replicate the exact settings of the 3D Light-Dark problem in [183]. However, since our
3D Light-Dark implementation uses realistic images rendered with the Stanford dataset as
opposed to using synthetic backgrounds generated with the DeepMind simulation platform,
our problem is more realistic and challenging.
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D.5 Baseline Planner Implementation Details

We compare the performance of VTS against two baselines in addition to DualSMC: Deep
Variational Reinforcement Learning for POMDPs (DVRL), and Deep Planning Network
(PlaNet).

We evaluated DVRL in both the Floor Positioning and 3D Light-Dark environments and
PlaNet in the 3D Light-Dark environment. This was so that we could minimally modify the
model architectures provided by the two methods; while DVRL architectures supported both
vector and image observations, the PlaNet architecture only supported image observations.
This was also the reason for running the PlaNet 3D Light-Dark experiments with 64 × 64
images while all other baselines and VTS used 32 × 32 images. In this way, the baselines
were advantaged in our comparisons.

D.5.1 DVRL

Table D.5 shows the parameters modified when running DVRL, with all other parameters
unchanged from the original work. For Floor Positioning, a sweep was performed over
the encoder channel dimensions, presence of the BatchNorm, multiplier backprop length,
and number of particles. For 3D Light-Dark, a sweep was performed over the number
of environment processes, number of environment steps per gradient step, and multiplier
backprop length to balance performance and computation time.

Since the DVRL implementation is designed to produce trajectories in the environment by
running multiple environment processes in parallel, we performed both training and testing
in this multiprocessing framework. For testing, we ran 2 environment processes in parallel
and collected the 1000 testing episodes for Floor Positioning and 500 testing episodes for 3D
Light-Dark from their combined results. Also, the DVRL policy produces actions for these
parallel environments at once. Therefore, the “planning time” provided is the time for the
policy to produce 2 actions.

D.5.2 PlaNet

Table D.6 shows the parameters modified when running PlaNet, with all other parameters
unchanged from the original work. A sweep was performed over action repeat and learning
rate. The occlusion amount was increased to 30 as compared to 15 for the other baselines
to maintain consistency with the larger image size.

Since the action repeat for the PlaNet baseline is 2, the agent only needs to perform the
planning, which is done via the Cross Entropy Method (CEM), every 2 steps. This is because
the action resulting from the plan is applied twice. To reflect this aspect of the algorithm in
the results, we divided the obtained planning time by 2 to produce the final numbers.
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Hyperparameters Floor Positioning 3D Light-Dark

Environment
Observation size 4 32 × 32 × 3
Agent velocity 0.05 0.2
Noise amount (image) – 40%
Occlusion amount (image) – 15 × 15

Training
Number of training frames 2.5e7 1.2e6
Number of env steps per gradient step 25 5
Multiplier backprop length 1 100
Number of particles 10 10
Number of environment processes 16 4

Model
Encoder channel dimensions [64, 64] [32, 64, 32]
BatchNorm present Yes Yes
RNN latent state size (h) 256 256
Additional latent state size (z) 256 256
Action encoding size 64 128

Table D.5: Summary of DVRL environment, training, and model hyperparameters.

Hyperparameters 3D Light-Dark

Environment
Observation size 64 × 64 × 3
Agent velocity 0.2
Action repeat 2
Noise amount (image) 40%
Occlusion amount (image) 30 × 30

Training
Number of training steps 1e6
Number of training steps per data collection phase 100
Environment steps per data collection phase 200
Learning rate 1e-3

Table D.6: Summary of PlaNet environment and training hyperparameters.
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Appendix E

Details for Sequence-Conditioned
Transporter Networks

E.1 Covid-19 Details

Due to the ongoing COVID-19 pandemic, performing physical robotics experiments became
a huge challenge. The resulting challenges include: restrictions in traveling to the robotic
setup locations, restrictions in collecting demonstrations and performing experiments at the
locations as per COVID-19 safety protocols, and difficulties and delays in sourcing materials
to devise and build realistic yet tractable pick-and-place experiments. On that end, we
continue to utilize the PyBullet simulation environment like Zeng et al. [199] and Seita et
al. [154], and modify it to load multiple task modules at once. We hope to investigate the
performance of SCTN on realistic experiment setups in future works.

E.2 Task Details

InMultiRavens, we propose 10 multi-task problems that are made up of 4 basic task modules.
These task modules take inspiration from National Institute of Standards and Technology
(NIST) Assembly Task Boards [54] as shown in Fig. E.1. In this section, we give further
details of the task, including evaluation metrics and corresponding demonstrator policies.
The visualizations of these tasks are shown in Fig. 10.2, and quick overview of unique task
attributes of each task is given in Table 10.1. All problems have task modules anchored at
the same coordinates each time they are generated for consistency.
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Figure E.1: The new modularized tasks in MultiRavens, placing, chaining and routing (left), take
inspiration from the National Institute of Standards and Technology (NIST) Assembly Task Boards (right).

Figure E.2: The explicitly visualized evaluation goal positions and/or object goal positions for
each task in MultiRavens: routing (left), chaining (middle) and placing (right). For routing and chaining,
the green ‘+’ corresponds to the evaluation goal positions for reward calculation, and the blue ‘+’ to the
bead goal positions to aid oracle planning. For placing, the green ‘+’ corresponds to the goal positions for
even disks, and the blue ‘+’ for odd disks.

E.2.1 Placing

E.2.1.1 Overview

For the placing task, the agent is tasked to place the 9 disks at their goal positions on top of
the dark gray square plate. The 9 disks are initialized such that 5 of the “even” index disks
are placed on the left of the plate, and 4 “odd” disks placed on the right. The even and odd
disks can either be big or small for a given parity, which gives us the total of 4 possible task
goal configurations.
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E.2.1.2 Metrics

The evaluation metric checks whether the disks are placed in their designated zone (even or
odd) and whether they are placed close enough to the 3 × 3 grid of goal positions, where
visualizations of green ‘+’ corresponds to goal position for even disks and blue ‘+’ for odd
disks as shown in Fig. E.2. Delta reward of 1/9 is given whenever a disk is placed successfully.
The metric is robust to stacking disks, which means that it does not award additional delta
reward if there is already a disk at the goal position and another disk is stacked on top.
This ensures that the task is complete only when all the disks are in their designated goal
configurations with high enough accuracy.

E.2.1.3 Demonstrator Policy

The even and odd disks have randomized oracle goal positions, which means that despite
there being only 4 possible task goal configurations, the demonstration policy roll outs are
highly varied and randomized. The demonstrator randomly picks the disks to be placed
at their designated oracle goal positions, which ensures that the Transporter agents cannot
simply copy or memorize the sequences of moves. The demonstrator often needs exactly 9
steps to successfully execute the demonstration.

E.2.2 Chaining

E.2.2.1 Overview

For the chaining task, the agent is tasked to wrap the chain of beads around the two fixed
pegs. The peg distances and radii are randomly selected with 4 possible combinations, while
the orientation of the task is set randomly with angle θ ∈ [−π/4, π/4]. The closed-loop chain
is made up of connected beads in a manner similar to the implementations in the Transporter
works [154, 199]. Depending on the initial configuration, the bead chain length is variable,
usually in the range of around 30-40 beads.

E.2.2.2 Metrics

The evaluation metric checks whether the chain is wrapped around the pegs, with each
successful wrap resulting in a delta reward of 1/2. The evaluation goal poses check for
whether there are any beads close to the points, shown as green ‘+’ in Fig. E.2. The
evaluation poses will only be fully satisfied if the chain is wrapped around both pegs without
any twisting.

E.2.2.3 Demonstrator Policy

The demonstrator policy attempts to place the beads at each of their pre-specified bead-
level goal poses shown as blue ‘+’ in Fig. E.2. The demonstrator policy plans in two stages,
where in each stage the demonstrator tries to place and wrap the chain over each peg. Unlike
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other tasks, the chaining task often requires more than 2 steps to successfully execute the
demonstration, as the demonstration policy may sometimes need a couple of steps to properly
place the chain around each peg. However, it usually suffices to let the demonstrator policy
plan for 3 steps in the demonstration roll outs for a reasonable demonstration success rate.

E.2.3 Routing

E.2.3.1 Overview

For the routing task, the agent is tasked to route the cable of beads around the fixed pegs.
The peg positions are generated at random, with the randomized parameters set to be
alternating such that the cable needs to wind in different directions every peg. With the
current randomization settings, the environment is initialized with 2 or 3 pegs at various
positions. Similar to the chaining task, the cable is made up of connected beads, where the
left end of the cable is anchored to the workspace. The cable length once again varies with
the task initialization, but are programmed such that the cable is sufficiently long to route
the cable fully around all the pegs with some slack.

E.2.3.2 Metrics

Similar to the chaining task, the evaluation metric checks whether the cable is wrapped
around the pegs, which are shown as green ‘+’ in Fig. E.2. There is another evaluation goal
position after the pegs, which checks whether the cable is fully stretched out after routing
around the pegs. This ensures that the cable is properly routed around the peg, which
demonstrator policy sometimes fails to do for the last peg. It also adds on an additional
challenge for the agents to learn, as the resulting cable stretching move at the last step is a
different type of maneuver compared to placing the cables over the pegs via Reidemeister-
type moves.

Unlike other tasks, the routing task requires that all the pegs be routed sequentially,
where each sequentially correct moves will result in a delta reward of 1/(n + 1) where n
is the number of pegs (we divide by (n + 1), as the task requires n routing moves and 1
stretching move to be completed). This means that routing the cable around first and third
pegs will only result in a reward for first peg. We enforce this sequential planning rule, as
we noticed that out-of-order peg routing can often cause the routing task to fail due to the
cable often getting stuck in some configuration and the demonstrator and agents cannot
effectively finish the task without undoing the routing moves.

E.2.3.3 Demonstrator Policy

The demonstrator policy attempts to place the beads at each of their pre-specified bead-level
goal poses shown as blue ‘+’ in Fig. E.2, similar to the chaining task. The demonstrator
policy plans in multiple stages, where in each stage the demonstrator attempts to route the
cable around the peg sequentially from left to right, using Reidemeister-type moves to lift the
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cable over the pegs and place it in the desired position. For the last stage, the demonstrator
then stretches the cable such that the last yellow-colored bead is in the desired goal position.

E.2.4 Stacking

E.2.4.1 Overview

For the stacking task, it is similar to how it is defined in Ravens. We make an additional
modification that now the block goal positions are randomized with color such that goal-
conditioning is necessary. We also initialize the blocks in a 2× 3 array for easy initialization
and placement of task when loading multiple task modules together to avoid bad initialization
that overlaps with other tasks. The orientation for the base is randomized at 8 cardinal half-
directions: θ ∈ {θ : θ ≡ πk/4, k ∈ [0, · · · , 7]}.

E.2.4.2 Metrics

The metrics are simple goal positioned metrics for each box, checking that each boxes are
stacked in the right place within small margin of error.

E.2.4.3 Demonstrator Policy

The demonstrator policy operates similar to how it does in Ravens, where it stacks all three
bottom boxes in the first stage, the next two middle boxes in the second stage, and the one
top box in the third stage.

E.2.5 Visualizations

In this section, we provide visualizations of the task initialization, intermediate states, and
goal configurations for all 10 single and multi-task problems. For each problem, we provide
sequences of 3 images, where the first image corresponds to the initial state, the middle
image corresponds an arbitrary intermediate state, and the last image corresponds to the
final goal configuration. The complete set of visualizations is given in Fig. E.3.

E.3 Determining Sampling Weights

In Section 10.3.2, we have determined the task-level and step-level weights through black
box optimization. For the black box optimization, we fix the number of demos to 1000, train
the SCTN agent for 20K iterations, with snapshot evaluations taken every 2K iterations that
is evaluated only on one random seed. The evaluation metric for a given weighting scheme
is the maximum evaluation performance on 20 test-time episodes over all 10 snapshots.
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Figure E.3: Visualization of the top-down image sequences of solving each task module: placing,
routing, chaining, and stacking (top to bottom).

The hyperparameters to be optimized are the weighting scheme and the maximum weight
wmax ∈ [1.5, 5.0]. The minimum weight is fixed to be 1 for all weighting schemes. The three
weighting schemes tested are the following:

• Linear: Linearly increasing weighting scheme, where the weight of first step is 1.0 and
the last step is wmax, and the weights of other steps are interpolated linearly depending
on the episode length.

• Last: Weighting scheme in which the weight of last step is wmax and all other steps
are 1.0.

• First-Last: Weighting scheme in which the weight of first last steps are wmax and all
other steps are 1.0.

We choose these weighting schemes since we often empirically observed that weighing the
later steps of the demonstrations usually provided better learning for multi-task problems.

The inferred task complexity is determined by the first snapshot in which it achieves
maximum evaluation performance.
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Inferred Weighting Scheme Mean Mean
Module Complexity [min. & max. weights] Completion Reward

placing 4K Steps Linear: [1.0 2.76] 100% 1.0
chaining 20K Steps Last: [1.0 1.92] 90% 0.95
routing 20K Steps Linear: [1.0 1.76] 25% 0.52
stacking 12K Steps Linear: [1.0 1.50] 90% 0.94

Table E.1: Hyperparameters for SCTN weighted sampling and evaluation statistics for each
task.

E.4 Additional Experiment Results

We provide more detailed evaluation statistics for the 10 single-task and multi-task problems.
Fig. E.4 contains learning curves showing the mean completion rates of different agents
over 20 × 5 test-time episode evaluations as a function of training iterations for single-task
problems, grouped by different numbers of demonstrations.

The agents are trained with trained for 20K ×m iterations, where m is the number of
task modules in a given problem, and one training iteration consists of one gradient update
from data of batch size 1. This means that agents are trained for 20K training iterations for
single-task problems, 40K for double-task problems, and 60K for triple-task problems. At
each snapshot occurring every tenth of total training iterations, we evaluate the agents on
20 test episodes. These 20 episodes are generated using a held-out set of random seeds for
testing, which does not overlap with random seeds used for generating demonstrations. We
repeat this training procedure 5 times over 5 different TensorFlow training seeds in order to
test consistency of our learning results, totaling 20× 5 = 100 metrics for 10 snapshots of the
model. Figs. E.5, E.6, E.7 and E.8 contain learning curves for multi-task problems.
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Figure E.4: Results for models on the single-task problems, grouped by numbers of demonstrations
the agents are trained on. The mean task completion rate over 20×5 test-time episode evaluations is plotted
against the number of training steps in the unit of thousands. All single-task problems are trained with 20K
training iterations.
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Figure E.5: Results for models on the multi-task problems trained on 1 demonstration. The
plotting format follows Fig. E.4. All double-task problems are trained with 40K training iterations, and
triple-task problems with 60K training iterations.

Figure E.6: Results for models on the multi-task problems trained on 10 demonstrations. The
plotting format follows Fig. E.5.



APPENDIX E. DETAILS FOR SEQUENCE-CONDITIONED TRANSPORTER
NETWORKS 224

Figure E.7: Results for models on the multi-task problems trained on 100 demonstrations. The
plotting format follows Fig. E.5.

Figure E.8: Results for models on the multi-task problems trained on 1000 demonstrations. The
plotting format follows Fig. E.5.
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Appendix F

Details for Navigation Between Initial
and Desired Community States Using
Shortcuts

F.1 Supporting Information

This section provides the supporting figures and tables for Chapter 12.



APPENDIX F. DETAILS FOR NAVIGATION BETWEEN INITIAL AND DESIRED
COMMUNITY STATES USING SHORTCUTS 226

Figure F.1: State Diagram Actions Distribution. Distribution of actions within edges for the state
diagrams shown in Fig. 12.2. Panels indicate the number of ϵ-additions (x-axis), ϵ-deletions (y-axis), and
environmental change actions (facets) comprising each edge in the state diagram.
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Sp. Labels Taxon Name Sp. Labels Taxon Name

Ciliate (Maynard) Mouse Gut (Bucci)
1 CO Colpidium striatum 1 Barne Barnesiella
2 DE Dexiostoma campylum 2 und. Lachn und. Lachnospiraceae
3 LO Loxocephalus sp. 3 uncl. Lachn uncl. Lachnospiraceae
4 PA Paramecium caudatum 4 Other Other
5 SP Spirostomum teres 5 Blaut Blautia
Human Gut (Venturelli) 6 und. uncl. Molli und. uncl. Mollicutes
1 BH Blautia hydrogenotrophica 7 Akker Akkermansia
2 CA Collinsella aerofaciens 8 Copro Coprobacillus
3 BU Bacteroides uniformis 9 Clost diffi Clostridium difficile
4 PC Prevotella copri 10 Enter Enterococcus
5 BO Bacteroides ovatus 11 und. Enter und. Enterobacteriaceae
6 BV Bacteroides vulgatus Protist (Carrara)
7 BT Bacteroides thetaiotaomicron 1 Chi Chilomonas sp.
8 EL Eggerthella lenta 2 Cyc Cyclidium sp.
9 FP Faecalibacterium prausnitzii 3 Tet Tetrahymena sp.
10 CH Clostridium hiranonis 4 Dex Dexiostoma sp.
11 DP Desulfovibrio piger 5 Col Colpidium sp.
12 ER Eubacterium rectale 6 Pau Paramecium aurelia

7 Cep Cephalodella sp.
8 Spi Spirostomum sp.
9 Eug Euglena gracilis
10 Eup Euplotes aediculatus
11 Pbu Paramecium bursaria

Table F.1: Ecological Navigation Empirical Dataset Species Detail. Taxon names within each
dataset. Column ‘Sp.’ indicates the numeric species abbreviation used in the code repository. Column
‘Labels’ indicates the taxon abbreviation in code. Column ‘Taxon Name’ indicates the scientific name of the
taxon.
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Figure F.2: Invasion Graphs. Invasion graphs for all datasets. Notation and parameters are the same as
in Fig. 12.2, except that transient states are not colored orange.
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Figure F.3: Un-invasion graphs. Un-invasion graphs for all datasets. Notation and parameters are the
same as in Fig. 12.2.
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Figure F.5: Most-visited Intermediate States. For each dataset and A* experiment we identified the
intermediate states that were most commonly visited in navigation among all state pairs. We then rank-
ordered these states by their prevalence within each dataset and A* experiment. Panels show states on the
y-axis and experiments on the x-axis. Top-5 common states are colored in red; all others in blue. Panels
are faceted by ϵ. Columns within each panel indicate different experiments, i.e. different combinations of
costs Ci. The prevalence of apparent horizontal red lines within each each facet indicates that the identity
of most-visited intermediate states is sometimes not strongly dependent on Cq.
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Figure F.6: Network Toplogy Summary. Summary of network topology for state diagrams for different
datasets (rows) and ϵ values (columns). Facet points indicate in- and out-degree for each state, and are
colored by the number of intermediate visits. Gray points indicate states that are not reachable by non-
brute-force navigation. Data are shown for a case where all Cq = 1 for all action types; results do not vary
strongly with Cq (not shown).
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Figure F.7: Distribution of path lengths among shortcuts. Panels are faceted by dataset; line color
indicates ϵ; multiple lines represent variation due to assumed costs Cq.
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Figure F.8: Random Forest Variable Importance. Variable importance plot for the random forest
model shown in Fig. 12.5.
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Figure F.9: Random Forest Partial Dependence. Partial dependence plots indicate the effect of
∆Abundance and ∆Richness on the probability of navigation yielding no path (brute-force solution), a
direct path, or a shortcut path. ∆s are defined as desired state values minus initial state values.
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