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Abstract—The use of virtual reality (VR) for occupational
training of psychomotor skills has been investigated for decades.
Previous literature show that training in VR increases engage-
ment, expedites learning, enhance safety, and improves skills
in reality. Grounding on these progress, industry has begun
to adopt VR to train their workers. However, we observe a
disconnect between learning sciences and the current practice
in VR training. Numerous literature across domains rely on self-
assessment of the learners to predict whether they have reached a
sufficient level, or mastery, of skill. However, it is well-established
that self-assessment is inaccurate. Yet, there is no alternative
for self-assessment to predict mastery of psychomotor skills. We
propose to use bayesian knowledge tracing (BKT), a de facto
standard in education to predict students’ mastery of cognitive
skills, for psychomotor skill mastery prediction. Using BKT, we
design an intelligent occupational training system in VR. We
conduct a between subjects study with 18 participants, with the
control group relying on self-assessment to adjust curriculum and
progression speed, while BKT is used instead for the experimental
condition. Our results demonstrate the negative impact of self-
assessment on psychomotor skill learning in VR, and shows the
benefits of BKT as an alternative to self-assessment.

Index Terms—learning sciences, human-computer interaction,
formal methods, virtual reality, psychomotor skill, bayesian
knowledge tracing

I. INTRODUCTION

Over the past decade, there has been an increasing body
of literature investigating the effectiveness of occupational
training in immersive virtual reality (VR) to train high pre-
cision psychomotor skills (i.e. physical skills with cogni-
tive planning) [51]. The literature spans various occupations
such as healthcare [19], defense [2], manufacture [41], and
sports [35]. These literature show that the VR training can
increase engagement, expedite learning, enhance safety in
training, and improves skills in reality. Grounded on these
progress, a growing number of businesses are adopting VR
to train their workers [34].

In this context, personalization, or individualized adaptation,
of training contents displayed in VR to maximize learning
and user experience becomes a practical design problem,
which can positively impact across various workplaces. Then,
a natural design question is: who should control the contents?
The learners themselves? Or the training system? Numerous
literature on VR-based occupational training systems are de-
signed to let learners modify the training scenario contents
by controlling the curriculum (i.e. the order of skills to
train) and/or the progression speed (i.e. the rate at which

you transition through skills in the curriculum). These design
choices implicitly assumes that the learners have accurate
self-assessment of their skills during training.

However, in learning science, it has been well-established
that learners are inaccurate in the self-assessment of their
skill mastery, or proficiency [11], [14]. Yet, currently there
is a lack of principled mechanism grounded in learning sci-
ences to replace self-assessment for an accurate skill mastery
prediction. We propose to use bayesian knowledge tracing
(BKT) [52], a de facto standard in education research to
predict mastery of cognitive skills in domains like algebra,
to predict psychomotor skill mastery. BKT is traditionally
developed for purely cognitive skills that do not involve motor
skills. Hence, one of key components of our study is to
evaluate the suitability of BKT in its canonical form for
psychomotor skill mastery prediction, and to identify which
aspects of BKT to extend to improve its accuracy. Using BKT,
we design and implement an intelligent occupational training
system for psychomotor skills. The proposed system adapts
the curriculum and the progression speed to individual needs.

We conduct a between subjects study with 18 participants
who trained for ten different psychomotor skills. The control
condition employs self-assessment and the experimental condi-
tion relies on BKT to adjust the curriculum and the progression
speed. The control group represents the current common
practices in VR-based occupational training literature. Our
results show that the control group does improve on average in
its accuracy as demonstrated in numerous literature. However,
its fluctuations, measured by standard deviation, of mastery
prediction error nearly doubled than the BKT’s. Consequently,
some participants fall behind with as low as 0% learning
gain. In terms of accuracy, BKT’s skill mastery prediction
accuracy is not statistically different on average compared to
self-assessment. However, its more consistent prediction leads
to more uniform average improvement in learning gains, which
is pedagogically useful for instructors to bring their students
up to a similar level of skill to then tailor instruction to as a
group. As a result, the experimental group had 32.3% higher
learning gains with respect to the control group. We identify
weaknesses of BKT for skill mastery prediction and suggests
ways to improvement.

This work presents three primary contributions in VR-based
occupational training: (1) re-evaluation of the current common
practice of using learners’ self-assessment to personalize train-



Fig. 1: An overview of our proposed intelligent tutoring system architecture for training psychomotor skills in virtual reality

ing contents, (2) a intelligent occupational training system in
VR for psychomotor skills with a novel use of BKT for skill
mastery prediction, and (3) user evaluation which demonstrates
the negative impact of self-assessment on skill learning and the
benefits of BKT as an alternative, principled mechanism for
skill mastery prediction.

II. RELATED WORK

A large body of literature have investigated different as-
pects of psychomotor skill training. Some focused on the
construction of training simulators [20], [39]. Another in-
vestigated diverse forms of feedbacks to correct the learners
by employing existing visual, tactile, and auditory haptic
feedback [5], [43], [50], developing new media like augmented
mirror [1], or accounting for social interactions [47] and
cognitive science [21]. Others implemented physical devices
(e.g. airRacket [45], tacTower [30]) to enhance sensory realism
and engagement in training.

In comparison, our work assumes training in VR that
a VR simulator and any feedback mechanisms are already
provided for an occupational training. We focus on how to
personalize, or individually adapt, the sequential contents of
the training scenarios that each learner will experience in VR
to optimize learning and user experience. In this vain, previous
literature explored the gamification of training to increase
engagement and motivation in VR [15], [46]. Others also
investigated the personalization of a curriculum to increase the
effectiveness of training [33], [40]. However, there is a lack of
investigation in understanding the design implications of which
entity should control the learning contents for occupational
training in VR. In this absence, we observe a growing number
of literature having learners control the contents despite the
well-established results in the inaccuracy of self-assessment
of their skills [11], [14].

For training systems to accurately assess learners’ skill, pre-
vious literature focused on various task analysis techniques to
formally specify evaluation metrics to measure the correctness
of performance in solving tasks [7], [22], [32] designed to train
or evaluate for particular skills. Yet, how many repetitions of
practices each learner should have per skill to reach mastery
has not been sufficiently investigated, even though it has been

brought to attention more than a decade ago [3]. In this
paper, we propose to use BKT [52] to address this problem
of personalized repetition.

The design of our training system is built on top of curricu-
lum personalization framework proposed in [48]. This work
provided a generic framework to assess skills and personalize
curriculum without relying on any dataset a priori. In general,
across occupations, it is difficult to access a big data of dataset
in relation to training. Hence, we adapted the curriculum
generation aspect of this work to incorporate BKT to estimate
skill mastery.

III. BACKGROUND

A. SCENIC: Probabilistic Programming Language for Sce-
nario Modeling

To robustly train or evaluate a learner’s mastery of psy-
chomotor skills against realistic variations in the environment,
we need to generate various scenarios in a VR headset for
training or evaluation. For example, suppose we train a learner
to throw a ball to a moving teammate. The teammate can
be moving in various directions with different speeds. How
can we efficiently model and generate such variations in a
VR headset to train psychomotor skills? To address this issue,
we used SCENIC [13], a scenario modeling language whose
syntax and semantics are designed to intuitively model and
generate dynamic and interactive scenarios involving multiple
agents and objects. More technically, SCENIC is a probabilistic
programming language that allows users to easily specify
distributions over environment parameters (e.g. teammate’s
speed and moving direction). A SCENIC program, there-
fore, models a distribution of concrete scenarios. A concrete
scenario is defined as a tuple, (Iv1, Bv2), where Iv is an
initial state consisting of different objects, their positions,
orientations, etc., with concrete values, v1. Bv defines a
behavior assigned to each object in the scenario, where each
behavior is parametrized with concrete value, v2. For training
or evaluation, we iteratively sample a concrete scenario and
generate it in a VR headset.



Fig. 2: This figure expands the curriculum generation aspect visualized in Fig. 1. Once we select which next skill to train for,
we input a SCENIC program modeling a distribution of training scenarios for the skill and its evaluation metric to VERIFAI
toolkit [10]. Then, VERIFAI samples a training scenario from the program, generates it in the learner’s VR headset, and
assesses the learner’s performance using the given metric. This assessment is used to update the skill’s BKT model.

B. VERIFAI Toolkit

For both training and evaluation, we need to assess the
performance of a learner in VR using an evaluation metric.
However, SCENIC cannot specify an evaluation metric. Hence,
we use VERIFAI toolkit [10] which takes a SCENIC program
and an evaluation metric as inputs. Then, as shown in Fig. 4,
it samples a concrete scenario from the program, generates
it in a VR headset, collects the learner’s telemetry data (e.g.,
trajectory and actions), and evaluates the learner’s performance
by computing the given evaluation metric on the collected data.

C. Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) [52] has become the
standard in education research for modeling a student’s mas-
tery of a skill. BKT assumes a binary knowledge state,
meaning that the student is either in the learned (i.e. mastered)
or unlearned state with respect to a skill. It also assumes
a binary-graded response from a student’s attempt to solve
a tutorial/training exercise (i.e., the student either correctly
or incorrectly solved the exercise). The underlying statistical
architecture of BKT is a hidden Markov model with observable
nodes representing students’ known binary response sequences
obst to training exercises and hidden nodes representing stu-
dents’ latent knowledge state at a particular time step t. A
canonical BKT model has four parameters: initial probability
of knowing the skill a priori (prior), probability of student’s
knowledge of a skill transitioning from not known to known
state after an opportunity to apply it (learn), probability to
make a mistake when applying a known skill (slip), and
probability of correctly applying a not-known skill (guess). For
more detail, please refer to [52]. The mathematical definitions
of these parameters and the Bayesian update rule is formulated
below.

prior = P (L0)

learn = P (T ) = P (Lt+1 = 1|Lt = 0)

guess = P (G) = P (obst = 1|Lt = 0)

slip = P (S) = P (obst = 0|Lt = 1)

Note that while P (L0) denotes the prior parameter, we also
define P (Lt) as the probability that the student has mastered
the skill at time step t. Bayesian Knowledge Tracing updates
P (Lt) given an observed correct or incorrect response to
calculate the posterior with:

P (Lt|obst = 1) =
P (Lt)(1− P (S))

P (Lt)(1− P (S)) + (1− P (Lt))P (G)

P (Lt|obst = 0) =
P (Lt)P (S)

P (Lt)P (S) + (1− P (Lt))(1− P (G))

The updated prior for the following time step, which incorpo-
rates the probability of learning from immediate feedback and
any other instructional support, is defined by:

P (Lt+1) = P (Lt|obst) + (1− P (Lt|obst))P (T )

IV. METHODOLOGY

We present the methodology for designing our intelligent
tutoring system (ITS) for psychomotor skill training in virtual
reality. To maximize the number of skills mastered, or learned,
within a bounded training time, two adaptive mechanisms are
deployed in our ITS.

First, we allocate the training time efficiently, by primarily
focusing on the skills that the learners have not yet learned. At
the beginning of the training, we characterize the prior knowl-
edge (i.e. skills the learner mastered versus not mastered),
which varies across learners. Then, we adaptively determine
the order of skills to train from the skill not yet learned.

Second, we use Bayesian knowledge tracing (BKT) as the
adaptive mechanism that estimates a learner’s mastery of a
particular skill. For additional details, please refer to the
background (Sec. III-C). An accurate skill mastery estimation
is crucial to determine when is appropriate to transition a



Fig. 3: An example of a SCENIC program (left) modeling a distribution of training scenarios for throwing a frisbee disc to a
moving teammate and a snapshot (right) of a generated scenario in a VR headset where the teammate is moving as the learner
is throwing a disc towards it

learner to the next skill for training. An underestimation and
an overestimation both result in low number of mastered skills.
The former results in an incomplete training, where the learner
does not have a chance to train for certain skills at all. The
latter results in covering all skills during training but none of
the skills are mastered.

A. Domain Expert Informed Curriculum

We first recruit experts to gather domain knowledge. We ask
domain experts to help build our curriculum by asking them to
provide the following information: (i) a set of skills to train, (ii)
prerequisite relations among the skills, and (iii) corresponding
sets of training and evaluation scenarios for the skills, and
(iv) parameters to tune a distinct knowledge tracing model for
each skill. The details of our interaction with experts to gather
these domain knowledge are explained in Appendix A.

1) Modeling and Generating Training and Evaluation Sce-
narios in VR: To model and generate training/evaluation
scenarios with realistic environment variations and to evalu-
ate a learner’s performance, we used open-sourced SCENIC
(Sec. III-A) and VERIFAI (Sec. III-B). For each skill, we
encoded two SCENIC programs, each encoding a distribution
of training/evaluation scenarios, respectively. Experts crafted
these scenarios with specific tasks designed to train/evaluate
particular skills. As shown in Fig. 2, for each skill, we input
the corresponding SCENIC program and the task evaluation
metric to VERIFAI which iteratively samples a scenario from
the program, generates it in a VR headset to train/evaluate a
learner, and measure the learner’s performance according to
the given metric.

2) Fine-tuning Knowledge Tracing Models: A BKT model
estimates student mastery of a single skill as a probability.
Hence, a separate BKT model is used for each skill. We used
0.99 as the probability threshold such that if the knowledge
tracing model’s estimate of mastery is greater than 0.99, then
we determined that a learner mastered the skill. Typically, in

traditional ITS, a threshold of 0.95 or 0.98 is used. We use
0.99 because of the high slip rate which increases BKT’s skill
mastery more steeply than for typical cognitive skills. Hence,
we use 0.99 as a more conservative measure to ensure mastery.
A BKT model requires four parameters to be tuned (refer to
Sec. III-C). To tune these parameters for each skill, we asked
the domain experts to respond to the following statements
regarding the training scenario they provided for each skill
in Likert 5-Point scale [28], assuming that the trainee already
mastered the prerequisite skills.

1) There is a high chance a novice trainee will learn the
skill after a single training exercise. (learn)

2) A trainee is likely to solve the task in a training scenario
without having mastered the necessary skill. (guess)

3) Considering the complexity of the maneuvers that a
novice trainee has to make to solve for the training
scenario, a trainee is likely to make a mistake and fail
to solve a task in this scenario even if they had already
mastered the necessary skills. (slip)

Additionally, to determine the mapping from the Likert 5-
Point scale to probability ∈ [0, 1], we also asked the expert
how many times in a row should a learner solve the training
exercises to master each skill. We found a mapping such that
if the learner answers the first three training exercises con-
secutively correct, then the KT model should output > 0.99.
Regarding the “prior” parameter, we conservatively uniformly
set it to 0.05 across all skills since we do not have data a
priori for estimation. The practice of enlisting experts to help
hand set BKT parameters based on expected skill learning
trajectories, is not unique to our work. In the first few years of
operation, this was the practice established by the Cognitive
Tutor [37] for setting their skill parameter values, although
data-driven refinements were proposed after substantial student
response data had been collected [24], [38].



B. Knowledge Graph Generation

Knowledge is represented as a knowledge graph, i.e. a
directed, pre-order graph as shown in Fig. 5. Given a set of
skills to train and their prerequisite relations by the experts,
we construct a knowledge graph. Each node represents a
pscyhomotor skill to train and is associated with its distinct
knowledge tracing model and SCENIC programs encoding
abstract training and evaluation scenarios. The directed edges
encode the prerequisite relation among skills such that the
parent nodes pointing to other nodes are prerequisite skills to
the children nodes being pointed at.

C. Prior Knowledge Identification

A knowledge state, as visualized in Fig. 5, is defined as
a colored knowledge graph, where a binary color, red or
green, represents mastered or not mastered skill, respectively.
Learners have diverse prior knowledge where some may
already have learned certain skills. We aim to identify the
knowledge state of a learner to allocate more training time to
skills not mastered yet.

There is an exploration/exploitation trade-off to consider
where more time could be spent increasing our confidence in a
student’s prior knowledge of a particular skill by giving more
assessments of that skill, but this would be at the expense of
assessing prior knowledge in additional skills under a tight
time budget. Hence, we approximate the prior knowledge
using the provided prerequisite relations. If the trainee has
already mastered a skill, then we estimate that there is a higher
chance that the learner has mastered the prerequisite skills. In
this case, we update the “prior” parameter of the prerequisite
nodes’ KT models to a higher probability in consultation with
the experts. On the other hand, if the learner has not mastered
a skill, then the post-requisite skills, i.e. the skills that have the
unmastered skill as a prerequisite, are also likely not mastered.
To reflect this, we keep the “prior” parameter of the post-
requisite skills to the default value of 0.05. After updating the
prior for all prerequisites or post-requisites, if the prior > 0.99,
we color the node green, otherwise red.

Using these prerequisite relations, we can efficiently ap-
proximate the prior knowledge state if we carefully sample
which node to assess. To account for time-efficiency, for each
node that is not colored yet, we approximate how much time
is saved if the learner already mastered a skill, s, by adding
the time constraint for the skill as well as its prerequisites
skills’. We denote this time as t+s . Similarly, we approximate
time saved if the learner did not master the skill by adding
the time constraint for the skill and its post-requisites’. We
denote this time as t−s . Hence, for each uncolored node, s, the
worst saved time is min (t+s , t

−
s ). We sample for the uncolored

node, which maximizes the worst saved time, for a time-
efficient prior knowledge identification. We mathematically
formulate the algorithm for sampling skill for prior knowledge
identification in Equation (1).

s∗ = argmax
s is uncolored

min (t+s , t
−
s ) (1)

D. Personalized Curriculum Generation

Zone of proximal development (ZPD) is a concept from
psychology, which we adopt to generate a personalized cur-
riculum. ZPD defines the ”boundary zone” of human knowl-
edge, which defines the zone that is not learned yet but has
close relation with those already learned. Previous literature
shows that, with activities selected from ZPD, students can
learn on their own with little guidance from instructors [27],
[29], and feel more engaged in learning [6].

As highlighted in light blue in Fig. 5, we define the ZPD
to be a set of red color nodes that are either one edge away
from the green nodes or red nodes with no prerequisite skill.
An example of a knowledge state with a ZPD highlighted in
light blue is shown in Fig. 5. From the ZPD set, we select
for the next skill to train, which has the minimum number of
prerequisites. If there are more than one such node, we choose
the one with a shorter time constraint for its training scenario.
We use these heuristics to expedite the training.

As shown in Fig. 2, once a node is selected, we generate
a variable number of training exercises until the learner has
mastered the skill according to its BKT model. We sample a
training exercise from its corresponding SCENIC program and
generate it in the VR headset. After each training exercise, we
compute a Boolean to represent whether the learner solved
the task or not, and update the BKT model with the Boolean
outcome. Once the BKT model outputs a probability > 0.99,
we update the color of the node from red to green, indicating
mastery. Then, we update the ZPD set and select the next skill
to train and generate a variable training exercises again until
mastery. We repeat this process until either the training time
expires or the ZPD set is empty.

V. EXPERIMENT

We conduct a study to understand the design implications
of having the learners versus the training system control
the training contents in VR. We specifically investigate their
impact on learning gains and user experience.

A. Example Application Domain: Echo Arena VR Esports

As an example application domain, we select an esports
called Echo Arena [26] which is a zero gravity, frisbee VR
esports game owned by Meta [31]. Our rationale for the choice
is the following. First, the characteristics of psychomotor skills
that Echo Arena requires are general enough to represent
those of many occupations. This esports demands gross (e.g.
arms, legs, head) and/or fine (e.g. wrists, fingers) motor move-
ments often under varying time limits. Hence, our findings
in the design implications of training content control may
have broader implications across workplaces. Second, there
is no considerable VR-to-reality gap to consider since the
application domain itself is in VR. Although skill transfer from
VR to reality is crucial, we aim to first investigate whether
the two contrasting designs have implications in VR training
setting itself. If there is a significant difference in VR, then
such finding would motivate future work on its impact on
the skill transfer. Third, recruiting experts/instructors in Echo



Fig. 4: VerifAI is an open-source tool that we use to generate training/evaluation scenarios in VR and assess a learner’s
performance in those scenarios. Its architecture is visualized in this figure. VerifAI takes as inputs a SCENIC program and an
evaluation metric. It samples iteratively a concrete scenario from the program, generates it in VR, and outputs the learner’s
performance in the training scenario.

Fig. 5: We represent a knowledge state as a colored, acyclic,
directed, pre-order graph as visualized in this figure. Each
node represents a skill. The directed edges encode prerequisite
relations. The color represents mastery (green: mastered, red:
not mastered). The zone of proximal development (ZPD)
highlighted in light blue is a set of not mastered skills that
are in proximity to mastered ones.

Arena is relatively easier and does not warrant any legal
debate between organizations. For these reasons, we select
Echo Arena as our example application domain to conduct our
study. We reconstruct Echo Arena in Unity [16] and interfaced
SCENIC (refer Sec. III-A) to model and generate the desired
training and evaluation scenarios in VR.

B. Experts/Instructors Recruitment

We recruit four professional Echo Arena esports players
via direct messaging in Discord [9], who provide us with
necessary inputs (refer Sec. IV-A) to our training system
through 2 hours of joint video call. Each professional is
paid $50 for their time and inputs. These professionals have
achieved the top 10 in ranking over the last few years in the
VR Master League [26], which hosts the largest annual Echo
Arena tournament. For context, in the most recent tournament

in 2022, nearly 8,000 people around the world joined the
competition [25]. These four experts also had experience in
coaching novice or amateur Echo Arena players.

C. Participants

We recruit participants through university online forums
and mailing lists from a community of VR users. We re-
ceive 25 responses of people with prerequisite dynamic VR
game experience. Out of the 25 respondents, we exclude 7
people according to three pre-determined exclusion criteria:
1) exhibiting motion sickness, 2) too much skill expertise
(no opportunity for learning) and 3) extreme lack of hand-
eye coordination (unlikely to master any skill during our short
training session). Eligibility criteria are listed in supplemental
material (Appendix B). The accepted 18 participants’ ages
range from 19 - 25 years old, with 4 females and 14 males.
Each participant is financially compensated with $40 gift card
for their 2 hours of participation. For the participants who
are excluded according to our pre-determined criteria, they
are compensated for the time they participate at $20 per hour
rate.

D. Procedure

We conduct a between subjects experiment to avoid learning
and fatigue effects. We randomly divide the accepted 18
participants into two disjoint groups, i.e. the control and the
experimental groups, with 9 participants in each condition.
The study is conducted individually, not in groups. The study
consists of the following procedures: tutorial (5 min), pre-
test (15 min), training (25 min), post-test (15 min), and exit
questionnaire (5 min), with 10 min breaks in between parts
including the half way through the training session. The details
of these procedures are explained in Appendix C. Per skill,
the pre/post tests examine each skill 3 times by randomly
sampling 3 concrete scenarios from the corresponding SCENIC



Fig. 6: A comparison in curricula between the control and the experimental groups. The black circles represent the skills. The
control group’s single curriculum is visualized as a sequence of skills traced by the black arrows. The experimental group’s
diverse, personalized curricula are shown with colored arrows. The short, straight line segments pointing at skills, BT and SP,
mark the start of different curricula.

programs modeling distributions of evaluations scenarios (refer
Sec. III-A). Three is the maximum number of tests we could
afford within our time bound study to examine the mastery of
each skill.

Both conditions follow these same procedures and train for
the same set of 10 skills (a video of a post-test visualizing
these ten skills can be found in this drive). The only difference
is the entity that controls the training contents, namely the
curriculum (i.e. the order of skills to train) and the progression
speed (i.e. the rate at which you transition through the skills in
the curriculum). In the control group, the learners control the
training contents, hence self-guided. Additionally, the control
group is provided with the experts’ suggested curriculum to
train on (as is the case in many occupational VR training),
but can alter the curriculum as they see fit. In contrast, in the
experimental group, the training system controls the training
contents. After each training scenario, we ask the participants
in both groups to report their binary self-assessment (i.e.
mastered vs. not mastered) for the skill they are training
at the moment. During training, we collect learners’ binary
performance score (i.e. correct or incorrect) for each training /
evaluation scenario, binary self-assessment, BKT’s probability
output of [0,1], and the time stamp of when these data are
collected.

E. Measurements

1) Relative Quantitative Comparison: Because access to
our limited sample data is expensive, we report the experi-
mental group’s quantity with respect to the control group’s
quantity to better appreciate the differences. For example,
suppose the learning gains of the control group is 50% and
the experimental group, 60%. Then, the experimental group
improves 25% = (60 − 50)/50 = (experimental’s quantity -
control’s quantity) / (control’s quantity) x 100 (%) with respect
to the control group.

2) Learning Gains: A learning gain for a participant
is computed by one’s score improvement (i.e. post
test - pre test scores), where the pre and post
test scores are computed in the following way:∑10

i=1(# of successes for skill i in the test)/3. Recall that

each participant is evaluated on 10 different skills where each
skill is evaluated 3 times in the pre/post tests (refer Sec. V-D).

3) Statistical Significance Test: We use Mann-Whitney’s
U test using Python Scipy’s stats package [23] for all the
statistical significance tests reported in the Results Section.
We choose this test because, although both the control and the
experimental groups are sampled from the same population,
the sample size is too limited to expect normal distributions
to hold for unpaired t-test. In case when statistically non-
significant results are found, we conduct bayes factor anal-
ysis [8] to further check if null hypothesis is accepted. The
bayes factor quantitatively represents the degree of closeness
to accepting the null hypothesis when having a statistically
non-significant result. We use the online calculator [44] to
compute the bayes factors.

4) User Experience: We equally ask participants in both
groups to fill out NASA task load index (TLX) [17] and a
verbal interview. The NASA TLX is answered before and after
their training. The verbal interview is conducted after the post
tests.

During our verbal interview, we asked own questionnaire
below to inquire specific attributes of curricula and progression
speed through the curricula.

1) The training session was engaging.
2) The training session was incrementally challenging.
3) The training has helped me learn physical skills in

virtual reality.
A table listing out the 5 point scale and their meanings, i.e.
strongly disagree, disagree, neutral, agree, strongly agree) was
provided underneath each statement. In addition, we further
ask participants for any negative experiences during training.

5) Skill Mastery Estimation Error: This error is computed
using the difference between the expected and actual post
test score for the mastered skills for a participant, i.e. N −∑N

i=1(# of successes for skill i in the test)/3 where N ≤ 10
is both the number of mastered skills and expected score for
each participant.

F. Results
1) Effectiveness in Learning Gains: Prior to comparing the

learning gains between the two conditions, we check whether

https://drive.google.com/drive/folders/1DaXuVE9F9EBvXOM-a9r4u5gYx-7Blfg8?usp=sharing


Fig. 7: The left box plot shows that the experimental group had higher learning gains in comparison to the self-guided control
group. The right box plot shows that the bayesian knowledge tracing models have lower error in estimating skill mastery when
compared to learners’ self-assessment in the control group. The green dotted line in the box plot represents the average and
the orange line, the median.

Fig. 8: The bar plot compares the learners’ Likert 5-point
scale responses on their learning experience. The experimental
group’s responses are on par with the control’s, where both
reported positively on their learning experience.

there is any imbalance in the prior skills between the two
conditions. The difference in the distributions of the pre-test
scores is not statistically significant (p-value 0.26). Regarding
learning gains, the experimental group outperform the control
group on average with statistical significance (p-value of 0.04)
as shown in Fig. 7 with an effect size of 0.41. On average,
the control group improve 22.96±12.90%, whereas the ex-
perimental group improve 30.37±5.97%. The experimental
group experience 32.3% = (30.37 − 26.67)/26.67 higher
learning gain with respect to the control group. Furthermore,
the standard deviation of the experimental group’s learning

gains is 46% less with respect to the control group’s.
2) User Experience: After the post tests, we equally ask

participants in both conditions to share their user experience
using NASA task load index (TLX) and and a verbal interview.

Regarding verbal interview, we ask three questions as
listed in V-E4. Both conditions positively rate their training
experience as summarized in Fig. 8. Mann-Whitney U test
show that the differences in distributions across conditions
for engagement, incremental difficulty, and helpfulness are not
statistically significant, reporting p-values of 0.86, 0.43, and
0.34, respectively, and bayes factors were 0.33, 0.30, and 0.96,
respectively. Hence, our statistical analysis shows that the user
experience is on par regarding engagement and incremental
difficulty attributes, but inconclusive for helpfulness aspect.

Despite the experimental group’s higher average learning
gains, the average NASA TLX score improvement after train-
ing for the experimental group is nearly a third of the control
group’s. The experimental group improved 6.56±16.00, while
the control group improved 17.56± 11.77. During the verbal
interview, the control group (participants denoted as C1-C9)
and the experimental group (E1-E9) share feedback that could
explain the gap between learning gains and NASA TLX scores.
We inquire participants in both groups for negative experience
about the training. The experimental group share conflicting
feedback related to the progression speed of the training. Some
participants share frustration from too many assigned practices
for a specific skill:“I got frustrated towards the end because
I was stuck in a task” (E3) and “getting stuck in a task
was a bit frustrating in the beginning, but frustration went
down as I saw myself improving” (E5). On the contrary, some
report unexpected early transitions: “sometimes, the training
algorithm transitioned you a bit earlier than you expected”
(E6) and “during the training, I thought I still needed some
more practice, but during evaluation I actually performed



better than I expected” (E1). Hence, either the frustration or
the early transitions could have likely affected the participants
perception of the skills. The rest of the participants (E2,E4,E7-
E9) report no negative feedback. The control group did not
report any negative feedback.

3) Skill Mastery Estimation: We compute the skill overes-
timation error for each condition for the skills that participants
report to have mastered during training. For the control
group, the mastered skills are identified using the binary self-
assessment that the learners report during training after each
training scenario. For the experimental group, they are the
skills which the corresponding bayesian knowledge tracing
(BKT) models output greater than 0.99 (refer to Sec. III-C).

Comparing the average overestimation errors, BKT shows
higher accuracy in skill mastery estimation on average than
the learners’ self-assessment as shown in Fig. 7. BKT overes-
timates participants’ skill mastery by 28.21±13.06%, whereas
participants in the control group overestimate their own skill
mastery by 34.81± 23.67%. Note that the standard deviation
for BKT’s error is 55% decreased with respect to the control’s.
However, Mann-Whitney’s U test shows that this result is not
statistically significant (p-value 0.46). We further investigate
the effect of this considerable reduction in the standard devi-
ation. We correlate (using Pearson correlation [12]) the par-
ticipants’ actual scores to the corresponding expected scores
for the control and the experimental groups, respectively. The
BKT models shows much higher correlation coefficient of 0.96
(p-value < 0.01) than the self assessment’s 0.59 (p-value 0.09).
In short, BKT is 62.71% = (0.96 − 0.59)/0.59 more highly
correlated to the consecutive successful demonstration of skill
mastery with respect to self-assessment.

4) Curriculum Generation: We observed that our system
personalized curricula better optimized training time efficiency
compared to the control group. The comparison of the emerged
curricula between the two conditions is visualized in Fig. 6.
We observed that the control group all uniformly adhered
to the expert’s fixed curriculum (highlighted in black arrows
and the black nodes represent skills) despite the freedom to
change it. In contrast, our training system generated various
personalized curricula, automatically skipping over skills (e.g.
BT, DP, SPGR, DPBT) participants already mastered to focus
the training on the skills yet mastered.

The personalized curriculum reduced the time wasted for
redundantly training on already mastered skills. In the control
group, the participants spent on average 11.67±10.21 trials on
skills they already mastered (i.e. scored 3 out of 3 in the pre-
test) out of 66.33± 14.53 total average number of trials they
experienced during the training session, using close to 16.67%
of the total trials on skills they already mastered. On the other
hand, the experimental group spent 6.57%, using 4.16± 4.53
trials on average on mastered skills out of the total average
number of 63.33± 8.77 trials during the training session. We
report time in terms of trials, not minutes, for fairness because
each skill’s training scenarios required different training time
on average, ranging from 6 to 20 seconds. Depending on which
skills a participant mastered, 1 trial for a skill may worth 3

trials for another skill in regards to time.

VI. DISCUSSION

In this paper, we question the current design choices in
the personalization of VR-based occupational training to let
learners control training contents. We base our suspicion on
the well-established literature in learning sciences demon-
strating the inaccuracy of learners’ self-assessment [11], [14].
Therefore, we hypothesize that learning gains would be maxi-
mized if the training system, not learners, control the training
contents, namely the curriculum and the progression speed.
To test this hypothesis, we design a training system that
controls the training contents and does not yield or share
control with the learners. The key component of this system is
skill mastery estimation specifically related to the problem of
repetition: how many times a learner should correctly solve
training tasks, designed for a particular skill, with realistic
variations in order to achieve mastery? And, without pre-
fixing this number, can we adaptively and systematically adjust
the number of repetitions per skill for each individual based
on one’s performance during training time? We conduct a
between subjects study to investigate the impact of learners
versus system-controlled training on the learning gains and
user experience.

Learning Gains: Our study shows higher average learning
gains when the training system, not learners, assumes full
control of training contents. Our results show that the exper-
imental group achieves 32.3% higher learning gains (p-value
0.04) with respect to the self-guided baseline with the effect
size of 0.41. Furthermore, the system’s control over contents
considerably reduces the fluctuations in learning, as evidenced
by 46% reduction in the standard deviation of learning gains in
the experimental group. In Fig. 7 (left plot), we observe much
higher fluctuations in the control group’s learning gains than
those of the experimental group. For occupational training, this
is pedagogically useful for instructors to bring their students
up to a similar level of skill to then tailor instruction to as a
group. Our findings are consistent with Corbett and Anderson’s
literature concerning the control problem [4], where learners
have the highest learning gains when the training system has
the most control over its content sequencing and interventions
in an academic setting with no motor skills involved. This
prevents the inaccuracy of self-assessment negatively affecting
the learning process. Our study also reveals a consistent
message but in psychomotor skill training setting.

Skill Mastery Estimation: The control group’s under-
performance in learning gains is attributed to inaccuracy and
inconsistency of learners’ self-assessment of skill mastery.
Note that, for both conditions, accurate skill mastery estima-
tion is crucial for adequate control of the curriculum and the
progression speed. We observe that BKT and self-assessment
are both inaccurate with nearly 30% average estimation er-
rors with no statistically significant difference. However, the
control group’s self-assessments have much higher variations
in its estimation errors. In Fig. 7 (right plot), we observe
the control group’s much wider range of skill estimation



error. The BKT considerably reduces the standard deviation
of the skill mastery estimation error by 55% with respect
to the self-assessment. Consequently, BKT is 62.71% more
highly correlated to skill mastery than self-assessment. Hence,
the inaccuracy and the wide individual variations in their
inaccuracy contributed to the control group’s lower learning
gains.

User Experience: We measured user experience via (1)
NASA-TLX, (2) verbal interview, and (3) custom question-
naire after the post-test. In both conditions, participants report
positive overall training experience to our custom question-
naire, with approximately 4.5 out of 5 point likert scale on
average across the three aspects of training as shown in Fig. 8.
Despite the system taking control over the training contents,
the experimental group’s average ratings on the engaging and
the incrementally difficult aspects of the training are on par
with the control group’s.

However, despite the experimental group’s higher average
learning gains, they showed noticeably lower average improve-
ment than the control group in their subjective perception of
skills after training. The self-guided group improved in the
NASA TLX score by 17.56 ± 11.77% on average, whereas
the experimental group only improved by 6.56 ± 16.00. The
contrasting verbal interview results between the two conditions
reveal the limitations of withholding control from learners.
While the control group reported no negative experience with
training, nearly half of the experimental group participants
experienced frustration or undesired transitions. As we report
in the Results section, the participants (E3,E5) repeatedly use
the word “stuck” to share their frustration from not being
able to stop excessive training one a particular skill. Also,
the “early transitions” (E1,E6) to new skills, contrary to
the learners’ expectations, left them feeling unprepared. This
discrepancy in objective and subjective (or perceived) learning
has been observed in academic learning setting [42], where
the condition with the highest objective learning gains has the
lowest perceived learning gains.

This noticeable discrepancy between the learning gains and
the perception of skills opens up a new design optimization
problem for a time-efficient, effective, and user-friendly oc-
cupational training in VR. There needs to be further design
explorations to carefully determine the learners’ degree of
control over the learning process, in order to optimize for both
higher learning gains and better perception of skills. In the
remaining discussion, we suggest challenges to consider for
the design exploration.

A. Challenges of Skill Mastery Estimation & Our Suggestions

We provide our suggestions and insights from our study
to help improve personalization of VR-based occupational
training. From our study, we observe two issues (i.e. frustration
and early transitions) when controlling the training contents,
stemming from the system’s exclusion of learners’ feedback.
We describe the potential challenges to consider when address-
ing these two issues.

To lower the learners’ chance of frustration, there are
important factors to consider. First, the pre-requisite rela-
tions imposes the order in which skills should be mastered.
Consequently, if we design the training system to violate
this order to avoid frustration, then this may result incurring
more frustration as time progresses. For example, suppose
after a learner fails to solve training tasks multiple times,
the system transitions the learner to train for the next skill
whose pre-requisite is the current skill. The learner is now
overloaded, having to learn both the current and the next
skill, simultaneously. This may likely result in accumulation
of frustration, contrary to the motive. Second, the violation of
the pre-requisite relation also poses an issue in skill mastery
estimation. This violation may invalidate the assumptions of
the system designers and the instructors/experts. For example,
in our system, we tune the parameters of each BKT model per
skill with the experts under the assumption that each skill’s
pre-requisite skill(s) are already mastered. Hence, violating
the pre-requisite relations to avoid frustration may degrade the
BKT’s accuracy. To circumvent these issues, scaffolding [18]
could help the learner fully master the skill before transitioning
to the next skill. However, scaffolding each training scenarios
to easier ones could be labor intensive, especially as the
number of skills scales.

To prevent “early transitions” (E1,E6), it may be appropriate
to accept learner’s self-assessment. Once BKT determines
a skill is mastered, then the system could ask the learners
whether they are ready to move on. If they are not, then
provide further practices for the skill until the learner is ready.
However, this comes at the risk of, in worst case, consistent un-
derestimation of skill mastery, resulting in redundant training
due to the learner’s inaccurate self-assessment. For this reason,
it may be reasonable to explore sharing the BKT’s estimate
of skill mastery on VR display during training. This way, the
learners do not have to solely rely on their self-assessment.

Lastly, although BKT was more accurate on average than
self-assessment, the difference in distributions was not statis-
tically significant. Hence, there is a room for improvement
in BKT’s accuracy. Recall that we only used crude binary
(i.e. correct/incorrect) performance feedback to update BKT
models (refer to Sec. III-C). However, using telemetry data
collected in VR, we could compute how “close” (i.e. partial
credit) the learner is to correctly solving the training task,
which provides a richer signal than binary to update the BKT
models. To enable this, the current traditional BKT model
will need to be adapted to accept non-binary partial credit
feedback. Deep knowledge tracing (DKT) [36] may provide a
suitable framework for this effort. Yet, due to DKT’s reliance
on neural networks, this will require data.

B. On Interacting with Experts/Instructors & Suggestions

We recommend tuning BKT parameters for skills with
more than one expert to reduce subjective bias. This is also
a recommended practice in academic education to improve
instructors’ reliability [49]. During our joint discussion with
the experts, each expert’s suggested BKT parameters disagreed



by more than 2 or 3 likert scale points on a number of skills. At
each occasion, the experts corrected each other’s bias through
discussions and converged to closer parameters.

In hindsight, we suggest to have the experts not directly
insert the BKT parameters on a shared document to further
reduce bias. For each skill, experts took different lengths of
deliberation time to propose BKT parameters. Consequently,
some wrote down the parameters earlier than others on
a shared document, potentially influencing or even biasing
others who wrote down parameters afterwards. Hence, we
suggest that the experts share the parameters separately to
the researcher, and the researcher should notify the experts
to jointly discuss and correct any bias only when there is a
notable discrepancy in the proposed parameters.

VII. LIMITATIONS & FUTURE WORK

There are a number of limitations in our study. Although
we do not experience this issue in our study, it can be
challenging to extract tacit domain knowledge from the experts
to specify accurate evaluation metrics. We do not fully explore
a methodological approach to cope with this difficult problem.
Furthermore, the transfer of skills from VR to reality is
a critical component that is yet investigated in our study.
However, the results of our work motivates the need to explore
further impact of self-assessment in skill transfer.

Another major limitation of VR-based occupational training
is motion sickness. Depending on the dynamic nature of the
vocation, the degree of motion sickness may vary. In our
study, we train learners in extremely dynamic esports setting,
which results in two participants dropping out due to motion
sickness. To be inclusive of all participants in occupational
training, it would be necessary to explore effective methods to
(gradually) adapt participants to VR in order to reduce motion
sickness. Another feasible direction to lower motion sickness
is to use mixed reality (MR), where virtual images or avatars
were overlaid on top of or interact with real physical objects.
However, this realistic physical interactions between the virtual
and the real objects impose constraints on the types of training
scenarios one can generate in MR. Hence, for our future work,
we plan to extend our work to MR for more inclusive, VR-
based occupational training across workplaces.

VIII. CONCLUSION

This work re-evaluates the current common practice of using
learners’ self-assessment to personalize training contents in
VR-based occupational training. It identifies the disconnect
between the practice and the well-established finding in learn-
ing sciences that self-assessment is inaccurate. To address this
discrepancy, we propose to use BKT as an alternative for self-
assessment in predicting skill mastery for psychomotor skills.
Using BKT, we design an intelligent occupational training
system in VR. Our study shows that BKT, although it is
traditionally designed to predict purely cognitive skills, it is
still better suited for mastery prediction than self-assessment.
In the future, we plan to extend BKT with physical factors such

as fatigue to enhance its accuracy and, ultimately, provide a
generic means for skill mastery prediction in VR.
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APPENDIX

A. Interaction with Experts

We had a 2-hour joint video call with the four experts, each
of whom is compensated $50. To facilitate the discussion we
shared a Figma document on which the experts can collectively
draw or jot down ideas. First, we asked the experts to provide
us with the ten most fundamental skills to play Echo Arena. To
facilitate brainstorming, we initially asked them to individually
jot down relevant skills on the shared document for five
minutes. They proposed more than ten skills so we asked
them to reach consensus to ten through discussion without
our intervention. Next, we inquired the prerequisite relations
among the ten skills. To facilitate the discussion, we created
a knowledge graph of ten nodes (as shown in Fig. 5) without
any directed edges or coloring on the shared document. We
first asked which skills are the most fundamental among
the ten skills. We place them at the top of the knowledge
graph, becoming the root nodes with no prerequisite skill.
Then, we asked them to place the those skills, or nodes,
beneath the root nodes and draw directed edges to indicate
prerequisite relations. We iterated this process until all nodes
are referenced, forming the knowledge graph as in Fig. 5
without colors.

Next, for each skill, we asked the experts to describe training
and evaluation scenarios by drawing top-down views of these
scenarios in the shared document. Then, we asked for BKT
parameters for each skill considering its training scenario as
explained in Sec. IV-A2, starting with the root nodes and
traversing down the knowledge graph by depth. Finally, we
asked them for a curriculum, i.e. a carefully ordered sequence
of skills, to train the control group. We provide the visual
explanations of the training/evaluation scenarios for these ten
skills in the Supplement.



B. Eligibility Criteria for the Experiment

During recruitment phase, we only participants should regu-
larly play dynamic and interactive VR games like Echo Arena,
for at least an hour per month without symptoms of motion
sickness. This meant that their physical bodies are already
accustomed to VR.

During study, we excluded participants after pre-test. These
exclusion criteria set the lower and the upper bound for our
study’s eligibility criteria. As to the lower bound, participants
who cannot score at least 50% in the evaluation tasks during
pre-test, regarding the three fundamental skills, i.e thrust,
grab/release, and static pass as shown in Fig. 5. As to the
upper bound, participants who scores over 50% in the overall
pre-test are also excluded because they already know majority
of the skills, and would limit the potential range of learning
gains.

C. Details of Our Experiment Design

1) Tutorial Session: Because all the participants never
played Echo Arena, we asked all participants to watch a short
tutorial video that we prepared covering basic controls (e.g.
thrusts for navigation, grabbing an object, brake) and then
asked them to wear Oculus Quest 2 VR headset and familiarize
the controls in a few simple scenarios.

2) Pre / Post Test Sessions: For each skill in the curriculum
enumerated by the experts, we gave participants three evalua-
tion exercises representing the skill. To account for potentially
high slip rate, our experts suggested that we evaluate each
skill repeatedly with variations to accurately measure learning.
Three was the maximum number of evaluation exercises we
could afford to complete the study within 2 hours. We sampled
the three evaluation exercises, i.e. concrete scenarios, for
each skill from the corresponding evaluation SCENIC program
and generated them in VR headset in sequence (refer to
Sec. IV-A1).

3) Training Session: At the beginning of the training ses-
sion, for both groups, we asked participants to watch another
tutorial video we prepared, which provided game intuition
on how to solve tasks more easily. Then, both groups were
instructed to “master” the 10 skills in 25 minutes of training
time with a 10 min break in the middle. We did not provide the
definition of mastery, and left it to the learners. This instruction
posed a trade-off between committing much time per skill for
mastery versus training for all 10 skills within the limited time.
The self-guided control group needed to manually control the
learning speed and the curriculum to balance this trade-off.
On the other hand, these two are automatically controlled by
our algorithm for the experimental group.

By default, the control group trained with a non-adaptive,
fixed curriculum that experts provided (Appendix A). How-
ever, they could change the curriculum by skipping and
returning to skills of their choice. And, they could adjust the
learning speed by choosing to repeatedly train for a particular
skill.

During training, the training scenarios were generated in
sequence in the VR headset. After each scenario, for both

groups, we displayed a question in text whether they mastered
the skill to solve the training scenario. We asked all the
participants to laser tag either ‘Yes’ or ‘No’ button on the
screen to indicate their self-assessment of skill mastery. An-
swering this question was mandatory. Otherwise, participants
were not allowed to proceed to the next training scenario.
This Yes/No answer was only logged and was not used as
feedback to the tutoring system in either groups. In addition,
only for the control group, we provided an extra ‘Skip’ button
which when pressed, allowed the participant to skip to the
next skill in the expert’s fixed curriculum. Pressing this skip
button was optional. If not pressed, a variant training scenario
for the current skill was generated. The control group was
also allowed to return to the skill they skipped by verbally
requesting to the experiment conductor.

4) Exit Questionaire: We asked the participants in both
groups to rate their user experience in Likert 5-Point scale.
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