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Abstract

Neural Software Abstractions

by

Michael Chang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Co-chair

Professor Thomas L. Griffiths, Co-chair

The desire to efficiently solve problems has driven humans to create tools to accomplish more
with less. To be useful in a variety of contexts, a tool must encode knowledge of how to solve
a general problem, knowledge that models the system that the tool manipulates. For most of
human history, tools enabled humans to better manipulate only physical systems, such as
using a lever for lifting heavy objects. These tools implicitly modeled the physical system via
their specialized design. The computer is significant because it was the first universal tool for
modeling and manipulating any system.

Unfortunately, this universality has historically been restricted to systems that only humans
can manually model and manipulate, via code. Humans have long acted as the interface
between computers and the physical world, but we will increasingly become the bottleneck
to progress as computers become more powerful and the world becomes more complex. If we
could build machines that automatically model and manipulate systems on their own, then
we would solve more problems with less effort: we would need only specify what the problem
is rather than bother with how to solve it.

The problem of building machines that automatically model and manipulate systems is not new
and arguably encompasses the entire field of artificial intelligence (AI). Solving such a problem
implies two things: first, that the machine can represent system interactions and second, that
the machine can learn such representations automatically. What it means to represent system
interactions is to represent the entities in the environment, the transformations that change
the state of these entities, and choices the agent makes to apply these transformations. What
it means to learn representations automatically is for these representations to be learned
functions of the machine’s raw sensorimotor stream. For such representations to be effective
for automatically modeling and manipulating systems, they need to generalize over the
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combinatorial space of possible combinations of entities, of transformations, and of choices,
and criterion that I call combinatorial generalization.

Neither of the two paradigms that have dominated AI since the mid-1900s have yet offered
a complete solution to both desiderata. The symbolic paradigm offers solutions for how
to represent system interactions but not for how to learn representations. Conversely, the
connectionist paradigm offers solutions for how to learn representations, but generally such
representations do not directly expose the entities, transformations, and choices of the
underlying system interaction in question. In the last half century these two paradigms
have grown into the modern disciplines of software programming and deep learning, largely
retaining their original complementary strengths and weaknesses. How can we achieve the
strengths of both?

One prominent class of approaches for combining both paradigms is to use neural networks
for processing symbolic data or searching over symbolic code. These methods have achieved
great success in natural language processing, code generation, and symbolic search, but they
all assume a human-defined abstraction of the system to begin with. To actually address
the problem of automatically modeling and manipulating systems, we need the machine to
create these abstractions from its own sensorimotor experience. We need to combine both
paradigms in a different way. What we would want instead are AI methods that can learn
directly from raw data as deep learning algorithms do, with learned representations that
generalize over the combinatorial space of system interactions as software does.

My central thesis is that there is a deep similarity between electronic circuits and neural
networks, and that adapting the methods we invented almost a century ago for creating
modular software programs on top of analog circuits can enable neural networks to exhibit
similar generalization properties as software does. I argue that the principle of separation of
concerns was the key design principle that enabled representations in software to generalize
and that contextual refinement was the key technique that enabled us to implement the
principle of separation of concerns at every level of the computing stack. This thesis presents
various ways for how to instantiate contextual refinement in neural networks and shows the
gains in combinatorial generalization that this technique brings.
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2.1 Overview. We address efficient training of iterative refinement methods for learning
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is adapted from Locatello et al. [208]. Vanilla slot attention backpropagates gradients
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truth more faithfully. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.5 Does implicit differentiation remove the need for various optimization tricks?

We ablate three heuristically-motivated optimization tricks from both vanilla SLATE

and our method, and show that for two out of the three, removing the optimization trick

quantitatively hurts the vanilla model but not the implicit model. Whereas removing

gradient clipping and learning rate warmup causes vanilla SLATE’s training to become

unstable, as indicated by the growth of the Jacobian norm of the slot attention cell, our

method trains significantly more stably and can take advantage of the larger gradient

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 (a) Without gradient clipping, our implicit differentiation technique keeps gradients

small while backpropagating through the unrolled iterations causes gradients to explode.

(b) Training with implicit differentiation also is not sensitive to the number of iterations
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3.1 OP3. (a) OP3 can infer a set of entity variables H
(T )
1:K from a series of interactions

(interactive entity grounding) or a single image (entity grounding). OP3 rollouts predict

the future entity states H
(T+d)
1:K given a sequence of actions a(T :T+d). We evaluate these

rollouts during planning by scoring these predictions against inferred goal entity-states

H
(G)
k . (b) OP3 enforces the entity abstraction, factorizing the latent state into

local entity states, each of which are symmetrically processed with the same function

that takes in a generic entity as an argument. In contrast, prior work either (c)

process a global latent state [145] or (d) assume a fixed set of entities processed in a

permutation-sensitive manner [94, 184, 340, 326]. (e-g) Enforcing the entity-abstraction

on modeling the (f) dynamics and (g) observation distributions of a POMDP, and

on the (e) interactive inference procedure for grounding the entity variables in raw

visual observations. Actions are not shown to reduce clutter. . . . . . . . . . . . . . 28
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3.2 Comparison with other methods. Unlike other methods, OP3 is a fully probabilistic
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OP3 is naturally suited for combinatorial generalization [28] because it enforces that

local properties are invariant to changes in global structure. Because every learnable

component of the OP3 operates symmetrically on each entity, including the mechanism

that disambiguates entities itself (c.f. COBRA, which uses a learned autoregressive

network to disambiguates entities, and Transporter and C-SWMs, which use a forward
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current timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 (a) The observation model G models an observation image as a composition of sub-

images weighted by segmentation masks. The shades of gray in the masks indicate the
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3.4 The dynamics model D models the time evolution of every object by symmetrically
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3.6 (a) In the block stacking task from [164] with single-step greedy planning, OP3

generalizes better than both O2P2, an oracle model with access to image segmentations,
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bottom-left : CRL learns dynamically learns the structure of a program customized for

its problem, and this program can be viewed as a finite state machine. right : A series of

computations in the program is equivalent to a traversal through a Meta-MDP, where

module can be reused across different stages of computation, allowing for recursive

computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



xi

5.3 Multilingual Arithmetic (Quantitative). CRL generalizes significantly better than

the RNN, which, even with ten times more data, does not generalize to 10-length

multilingual arithmetic expressions. Pretraining the RNN on domain-specific auxiliary

tasks does not help the 10-length case, highlighting a limitation of using monolithic

learners for compositional problems. By comparing CRL with a version trained without

a curriculum (“No Curr”: blue), we see the benefit of slowly growing the complexity of

problems throughout training, although this benefit does not transfer to the RNN. The

vertical black dashed line indicates at which point all the training data has been added

when CRL is trained with a curriculum (red). The initial consistent rise of the red

training curve before this point shows CRL exhibits forward transfer [209] to expressions

of longer length. Generalization becomes apparent only after a million iterations after

all the training data has been added. (b, c) only show accuracy on the expressions

with the maximum length of those added so far to the curriculum. “1e4” and “1e5”

correspond to the order of magnitude of the number of samples in the dataset, of which

70% are used for training. 10, 50, and 90 percentiles are shown over 6 runs. . . . . . 65
5.4 Left: For multilingual arithmetic, blue denotes the language pairs for training and

red denotes the language pairs held out for evaluation in Fig 5.3b,c. Center: For

transformed MNIST classification, blue denotes the length-2 transformation combina-

tions that produced the input for training, red denotes the length-2 transformation

combinations held out for evaluation. Not shown are the more complex length-3 trans-

formation combinations (scale then rotate then translate) we also tested on. Right:

For transformed MNIST classification, each learner performs better than the others in

a different metric: the CNN performs best on the training subproblem combinations,

the STN on different subproblem combinations of the same length as training, and CRL

on longer subproblem combinations than training. While CRL performs comparably

with the others in the former two metrics, CRL’s ∼ 40% improvement for more complex

image transformations is significant. . . . . . . . . . . . . . . . . . . . . . . . . . 67



xii

5.5 Multilingual Arithmetic (Qualitative). A randomly selected execution trace for

generalizing from length-5 to length-10 expressions. The input is 0− 6 + 1+ 7× 3× 6−
3 + 7− 7× 7 expressed in Pig Latin. The desired output is seis, which is the value of

the expression, 6, expressed in Spanish. The purple modules are reducers and the red

modules are translators. The input to a module is highlighted and the output of the

module is boxed. The controller learns order of operations. Observe that reducer m9

learns to reduce to numerals and reducer m10 to English terms. The task-agnostic nature

of the modules forces them to learn transformations that the controller would commonly

reuse across problems. Even if the problem may not be compositionally structured, such

as translating Pig Latin to Spanish, CRL learns to design a compositional solution (Pig

Latin to Numerals to Spanish) from previous experience (Pig Latin to Numerals and

Numerals to Spanish) in order to generalize: it first reduces the Pig Latin expression to

a numerical evaluation, and then translates that to its Spanish representation using the

translator m6. Note that all of this computation is happening internally to the learner,

which computes on softmax distributions over the vocabulary; for visualization we show

the token of the distribution with maximum probability. . . . . . . . . . . . . . . . 71
5.6 Image Transformations: CRL reasonably applies a sequence of modules to transform

a transformed MNIST digit into canonical position, and generalizes to different and

longer compositions of generative transformations. m0 is constrained to output the sine

and cosine of a rotation angle, m1 is constrained to output the scaling factor, and m2

through m13 are constrained to output spatial translations. Some modules like m2 and

m6 learn to translate up, some like m3 and m10 learn to translate down, some like m7

learn to shift right, and some like m13 learn to shift left. Consider (d): the original

generative transformations were “scale big” then “translate left,” so the correct inversion

should be “translate right” then “scale small.” However, CRL chose to equivalently

“scale small” and then “translate right.” CRL also creatively uses m0 to scale, as in (e)

and (f), even though its original parametrization of outputting sine and cosine is biased

towards rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 We study how a society of primitives agents can be abstracted as a super-agent. The

incentive mechanism is the abstraction barrier that relates the optimization problems of

the super-agent with those of its constituent primitive agents. . . . . . . . . . . . . 75
6.2 The cloned Vickrey society. In this market economy of primitive agents, wealth

is distributed not directly from the global MDP objective but based on what future

primitives decide to bid for the fruits of the labor of information processing carried

out by past primitives transforming one state to another. The primitive ω0′
t that wins

the auction at time t receives an environment reward r(st, ω
0′
t ) as well as payment b1

′
t+1

from ω1′
t+1 for transforming st to st+1. By the Vickrey auction, the price ω1′

t+1 pays to

transform st+1 is the second highest bid b1t+1 at time t+ 1. Because each primitive ωi

and its clone ωi
′
have the same valuations, their bids are equivalent and so credit is

conserved through time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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6.3 Market Bandits. We compare the cloned Vickrey society (Cloned Vickrey Auction)

against solitary societies that use the first-price auction mechanism (first price auction),

the Vickrey auction mechanism (Vickrey Auction), and a mechanism whose utility is

only the environment reward (Environment Reward). The dashed line in (a) indicates

truthful bidding of valuations. The cloned Vickrey society’s bids are closest to the true

valuations which also translates into the best global policy (b). . . . . . . . . . . . 84
6.4 Implementations. The table shows the bid price that temporally consecutive winners

ω̂t+1 and ω̂t pay and receive based on three possible implementations of the cloned

Vickrey society: CCV, BB, V, with tradeoffs depicted in the Venn diagram. We use

b̂t+1 and b′
t+1 to denote the highest and second highest bids at time t+ 1 respectively. 85

6.5 Learned Bidding Strategies for Chain. We organize the analysis by distinguishing

between the credit-conserving (CCV and BB) and the non-credit-conserving (V )

implementations. The solitary CCV (a) and BB (b) implementations learn to bid very

close to 0: CCV because the valuation for a primitive at t is only the second-highest

bid at t+ 1, resulting in a rapid decay in the valuations leftwards down the chain; BB

because each primitive is incentivized to pay as low of a price for winning as possible.

The cloned CCV (d) and BB (e) implementations learn to implement a form of return

decomposition [16] that redistributes the terminal reward into a series of positive payoffs

back through the chain, each agent getting paid for contributing to moving the society

closer to the goal state, where the CCV implementation’s bids are closer to the optimal

societal Q-value than those of the BB implementation. Because both the solitary (c)

and cloned (f) versions of the V implementations do not conserve credit, they learn to

bid close to the optimal societal Q-value, but both suffer from market bubbles where

the primitive for going left bids higher than the primitive for going right, even though

the optimal global policy is to keep moving right. . . . . . . . . . . . . . . . . . . 86
6.6 Multi-Step MDPs. (a) In the Chain environment, the society starts at state s0 and

the goal state is s5. Only activating primitive ω1 at state s4 yields reward. The optimal

global policy is to directly move right by continually activating ω1. Without credit

conservation, the society may get stuck going back and forth between s0 and s4 without

reaching the goal. (b) In the Duality environment, the society starts at state s0. s−1 is

an absorbing state with perpetual negative rewards. The optimal societal policy is to

cycle between s0 and s1 to receive unbounded reward, but without redundant primitives,

the society may end up in a suboptimal perpetual self-loop at s1. . . . . . . . . . . 87
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6.7 CCV Bidding Curves for Duality. Each column shows the bidding curves of the

solitary (top row) and cloned (bottom row) CCV societies for states s−1, s0, and s1.

Without redundant primitives to force the second-highest and highest valuations to be

equal, the dominant strategy of truthful bidding may not coincide with the globally

optimal policy because the solitary CCV implementation does not guarantee Bellman

optimality. The bidding curves in (c) show that ω1 learns a best response of bidding

higher than primitive ω0 at state s1, even though it would be globally optimal for the

society if ω0 wins at s1. Adding redundant primitives causes the second-highest and

highest valuations to be equal, causing ω0 to learn to bid highly as well at s1, which

results in a more optimal return as shown in Figure 6.8b. . . . . . . . . . . . . . . 88
6.8 Multi-Step MDP Global Learning Curves. We observe that cloned societies

are more robust against suboptimal equilibria than solitary societies. Furthermore the

cloned CCV implementation achieves the best sample efficiency, suggesting that truthful

bidding and credit-conservation are important properties to enforce for enabling the

optimal global policy to emerge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.9 Mental Rotation. The cloned Vickrey society learns to transform the image into

a form that can be classified correctly with a pre-trained classifier by composing two

of six possible affine transformations of rotation and translation. Clones are indicated

by an apostrophe. In this example, the society activated primitive ω2′ to translate the

digit up then primitive ω1 to rotate the digit clockwise. Though the bidding policies ψi

and ψi
′
of the clones ωi and ωi

′
have the same parameters, their sampled bids may be

different because the bidding policies are stochastic. . . . . . . . . . . . . . . . . . 89
6.10 Two Rooms. The cloned Vickrey society adapts more quickly than the hierarchical

monolithic baseline in both the pre-training and the transfer tasks. The bottom-right

figure, which is a histogram of the absolute values of how much the weights have shifted

from fine-tuning on the transfer task, shows that more weights shift, and to a larger

degree, in the hierarchical monolithic baseline than in our method. This seems to

suggest that the cloned Vickrey society is a more modular learner than the hierarchical

monolithic baseline. The non-hierarchical monolithic baseline does not learn to solve

the task from scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Minimal motivating example. The optimal action sequence for the training task

is A → B → C, and the optimal sequence for the transfer task differs only in the

last time-step. Continuing to train an optimal policy from the training task on the

transfer task with the cloned Vickrey society (CVS) from Chang et al. [54] transfers

13.9x more efficiently than with PPO [282], even though learning efficiency for both

on-policy algorithms during training is comparable. This chapter suggests that this is

due to dynamic modularity: the algorithmic independence among CVS’s learnable

mechanisms and among their gradients. . . . . . . . . . . . . . . . . . . . . . . . . 93
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7.2 Key Ideas. A system can be represented as a algorithmic causal graph G. (a) A

modification to a mechanism in graph Gi generates a new graph Gi+1. (b) A dynamic

system encompasses an outer process that generates a sequence of graphs via a series

of modifications to the mechanisms. (c) Learning algorithms are examples of dynamic

systems, where the outer process is the model of credit assignment C, which modifies

the mechanisms of the model of execution E, which represents the forward pass of the

learner. By flattening the learning algorithm as one algorithmic causal graph, we can

determine whether the causal structure of the credit assignment mechanism makes

independent modification of learnable mechanisms possible by inspecting whether the

gradients are d-separated by the previous graph Ci. A credit assignment mechanism is

(d) modular if they are d-separated and (e) not modular if not. . . . . . . . . . . . 97
7.3 Modularity in RL. In RL, the forward pass is a rollout in the MDP. (a) The

societal decision-making framework exposes the learnable decision mechanisms of the

policy as separate components in the model of execution. The bids b represent either

action probabilities are estimated action-specific Q-values. The credit assignment

mechanisms of (b) policy gradient methods and (c) TD(n > 1) methods, like using

Monte Carlo estimation, contain shared hidden variable and thus do not produce

algorithmically independent gradients δ. (d) TD(0) methods have modular credit

assignment mechanisms in generic cases. The red crosses indicate a lack of d-separation,

whereas the green checkmarks do. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 How transfer tasks are generated. We consider transfer problems where the

optimal decision sequence of the transfer task differs from that of the training task by

a single decision. As above, the transfer MDP and the training MDP differ in that

the effect of action B; all other transitions remain the same. The agent must learn to

choose action D instead of C while re-using other previously optimal decisions. . . . 104
7.5 How the decision mechanisms change during transfer. Shown the three states of

the decision sequence. The optimal last decision must change from action C (purple) to

action D (green). CVS modifies its bids independently. The bids for PPOF are coupled

together across decision mechanisms and across time. . . . . . . . . . . . . . . . . 105
7.6 Transfer problems involving triplets of decisions. For each task topology (leftmost

column) we have a training task, labeled (a) and three independent transfer tasks,

labeled (b,c,d). Each transfer task is a different way to modify the training task’s

MDP. CVS consistently exhibits higher sample efficiency than both PPO and PPOF

showing that dynamic modularity correlates with more efficient transfer. Notably the

gap between CVS and the other methods in the bottom-right (e.g. 13.9x more efficient

than PPO) is so wide that we had to extend the chart width. We set the convergence

time as the first time after which the return deviates by no more than ε = 0.01 from

the optimal return, 0.8, for 30 epochs of training. Shown are runs across ten seeds. . 106
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7.7 Modularity and forgetting. The optimal solutions for tasks (a) and (b) involve a

disjoint set of decisions: A→ C for task (a) and B → D for task (b). We first train on

task (a), then transfer from (a) to (b), then transfer back from (b) to (a). The purpose

of this experiment is to test whether dynamic modularity improve the agent’s ability to

preserve optimal behavior on a previous task after having trained to convergence on a

different task in a different context. While both CVS and PPO have similar sample

efficiency when initially training on task (a), CVS is more than ten times more sample

efficient than PPO when transferring back from (b) to (a), suggesting that PPO “forgot”

the optimal behavior for task (a) when training on task (b), which is not the kind of

forgetting we want in learning agents. . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Implicit differentiation appears to create a stronger dependence among the slots. This

figure shows what reconstruction looks if we train and evaluate with 12 slots, then

re-render the reconstruction by deleting slots one at a time. When there are still many

other slots as context, for both vanilla and implicit SLATE, deleting a slot corresponds

to a clean deletion of the corresponding object in the reconstruction, as shown in the

inset that highlights what the rendering looks like if we render with eight slots and

seven slots. However, as we remove more slots, implicit SLATE generates less coherent

compositions than vanilla SLATE, as shown when we render with only one to three

slots. What causes this discrepancy is also an open question for future work. . . . . 137
A.2 Despite our work pushing the optimization performance for a state-of-the-art model in

object-centric learning (Tab. 2.3), and despite implicit slot attention producing similarly

intuitive predicted segmentation masks as vanilla slot attention (Fig. 2.8), there appears

to be a qualitative difference between the attention maps of implicit slate and those of

vanilla slate. As this figure shows, the attention masks for vanilla SLATE appear to

be more localized to each object, the attention masks for implicit SLATE appear to

be more smeared out. One observation is that in some cases implicit SLATE appears

to attend not only to the object but also its shadow, as circled in green. However, in

other cases the attention maps appear to be smeared in other ways that may attend to

a shadow that could possibly happen, but not necessarily a shadow in the given scene.

What causes this discrepancy is open question for future work. . . . . . . . . . . . . 138
A.3 Comparing different orders of Neumann approximation. We sought to under-

stand how the different orders of Neumann approximation affected performance. We

observe that the 1st order approximation still largely performs the best, likely because

adding more terms to the series expansion requires backpropagating through more

iterations of slot attention, which was the problem we had sought to avoid in the first

place. However, most approximations still perform better than the vanilla model with

the same number of forward iterations. . . . . . . . . . . . . . . . . . . . . . . . . 139
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A.4 Qualitative visualizations without gradient clipping: implicit. This figure

shows qualitative visualizations of implicit SLATE’s reconstructions and attention

masks when trained without gradient clipping. Compared to Fig. A.5, implicit SLATE’s

reconstructions matches the ground truth much more closely, and its masks are more

coherent. Vanilla SLATE’s masks are much noisier, and become degenerate in later

stages of training as its Jacobian norm explodes. . . . . . . . . . . . . . . . . . . . 140
A.5 Qualitative visualizations without gradient clipping: vanilla. Compared to

Fig. A.4, vanilla SLATE’s masks are much noisier, and become degenerate in the

later stages of training as its Jacobian norm explodes, whereas implicit SLATE’s

reconstructions matches the ground truth much more closely, and its masks are more

coherent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1 Qualitative results on building a structure from the dataset in [164]. The input is
an ”action image,” which depicts how an action intervenes on the state by raising
a block in the air. OP3 is trained to predict the steady-state outcome of dropping
the block. We see how OP3 is able to accurately and consistently predict the
steady state effect, successively capturing the effect of inertial dynamics (gravity)
and interactions with other objects. . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.2 We show a demonstration of a rollout for the dataset from [164]. The first four
columns show inference iterations (refinement steps) on the single input image,
while the last column shows the predicted results using the dynamics module on
the learnt hidden states. The bottom 5 rows show the subimages of each entity
at each iteration, demonstrating how the model is able to capture individual
objects, and the dynamics afterwards. Notice that OP3 only predicts a change in
the yellow block while leaving the other latents unaffected. This is a desriable
property for dynamics models that operate on scenes with multiple objects. . . . 151

B.3 Two-dimensional (left) and three-dimensional (right) visualization of attention
values where colors correspond to different latents. The blocks are shown as
the green squares in the 2D visualizatio; picking anywhere within the square
automatically picks the block up. The black dots with color crosses denote the
computed pick xy for a given hk. We see that although the individual values are
noisy, the means provide good estimates of valid pick locations. In the right plot
we see that attention values for all objects are mostly 0, except in the locations
corresponding to the objects (purple and red). . . . . . . . . . . . . . . . . . . . 152

C.1 An example of solving a task in the robogym rearrange environment used in this
chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2 The original Robogym rearrange setup . . . . . . . . . . . . . . . . . . . . . . . 158
C.3 The performance of our method as the number of initialized clusters and batches

from the training set used to construct the graph, and the number of slots are
varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
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C.4 Varying interaction horizon. The performance of the NF (b) and MPC (c) baselines

compared to NCS (d, reproduced from Fig. C.5) and the random baseline (a) on

robogym-rearrange as we vary the interaction horizon (as a multiple of the minimum

steps needed to complete the task). Note that the scale of the y-axis is not the same.

While a longer horizon improves performance, NCS still achieves at least 50x better

accuracy with an interaction horizon multiplier of 1 than the performance obtained by

increasing the interaction horizon multiplier for the model-based baselines to 8. . . . 161
C.5 Stress testing NCS This figure shows the performance of NCS on robogym-

rearrange as we vary the amount of noise added to the actions (left) and vary
the interaction horizon, defined as a multiple of the minimum steps needed to
complete the task (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D.1 Numerical math task. We compare our learner with the RNN baseline. As a sanity

check, we also compare with a version of our learner which has a hardcoded controller

(HCC) and a learner which has hardcoded modules (HCF) (in which case the controller

is restricted to select windows of 3 with an operator in the middle). All models perform

well on the training set. Only our method and its HCC, HCF modifications generalize to

the testing and extrapolation set. The RNN requires 10 times more data to generalize to

the testing and extrapolation set. For (b, c) we only show accuracy on the expressions

with the maximum length of those added so far to the curriculum. “1e3” and “1e4”

correspond to the order of magnitude of the number of samples in the dataset, of which

70% are used for training. 10, 50, and 90 percentiles are shown over 6 runs. . . . . . 168
D.2 Variations: The minimum number of reducers and translators that can solve the

multilingual math problems is 1 and m respectively, where m is the number of languages.

This is on an extrapolation task, which has more terms and different language pairs.

(a, b): Four reducers and zero translators (red) is a pathological choice of modules

that causes CRL to overfit, but it does not when translators are provided. (c) In the

non-pathological cases, regardless of the number of modules, the learner metareasons

about the resources it has to customize its computation to the problem. 10, 50, and 90

percentiles are shown over 6 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
D.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
D.4 Multilingual Arithmetic Execution Traces . . . . . . . . . . . . . . . . . . . . 170
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F.1 This figure shows the computation graph of L across one credit assignment update.

Inputs to the credit assignment mechanism are shaded. A modular credit assignment

mechanism (shown with blue edges) is equivalent to showing the gradients δt as condition-

ally independent, as shown by the plate notation labeled with T . Dynamic modularity

at iteration i− 1 is equivalent to showing that the functions fk,i are inside the plate

labeled with N . Then because the UPDATE operation, shown with yellow edges, operates

only within the plate labeled with N , the updated functions fk,i+1 are also conditionally

independent given (x, f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
F.2 This figure shows part of the computational graph within Π for policy gradient methods.

Conditioning on x implies we condition on the lightly shaded nodes.
∑

k b
k
t is the shared

hidden variable that renders δ1, ..., δT not d-separated. . . . . . . . . . . . . . . . . 191
F.3 This figure shows part of the computational graph within Π for TD(n > 1) methods.

Conditioning on x implies we condition on the lightly shaded nodes.
∑

t rt is the shared

hidden variable that renders δ1, ..., δT not d-separated. . . . . . . . . . . . . . . . . 191
F.4 This figure shows part of the computational graph within Π for on-policy and off-policy

TD(0) methods. Conditioning on (x, f) implies we condition on the lightly shaded

nodes. For on-policy methods such as CVS and SARSA, the hidden variable would

be maxk b
k
t+1 for CVS and the bid corresponding to the decision mechanism that was

sampled through ε-greedy for SARSA. The figure shows maxk b
k
t+1 for concreteness. For

off-policy methods such as Q-learning, the bids bt+1 are computed from st+1 and f,

both of which we condition on. In both cases, the hidden variable is only parent to one

of the δt’s, and thus the δ1, ..., δT remain d-separated. . . . . . . . . . . . . . . . . 192
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Chapter 1

Introduction

If machines are to solve problems for us, then they need to automatically model and manipulate
systems. A problem is simply the gap between an existing and desired state of a particular
underlying system: solving a problem requires manipulating the system into a state that
what we want, and knowing how to manipulate the system requires modeling the system.

But to a large extent, automatically modeling and manipulating systems is still something
that only humans do. Computers have allowed us to manually encode how we model
and manipulate systems via software, but we do not yet know how to enable machines to
automatically determine what system to model and manipulate for solving a problem.

The very concept of a system is an abstraction over an agent’s interface to the real world
– the sensorimotor stream. What makes an abstraction of a system powerful is not whether
it supports solving a specific problem but whether it can be reused for new problems that
have not yet been encountered before. Therefore building machines that automatically model
and manipulate systems implies building machines that learn reusable abstractions from
sensorimotor experience. But we do not yet know how to do this.

The problem of automatically modeling and manipulating systems is usually formulated
in a artificial intelligence (AI) as an agent-environment interaction loop, where an agent
manipulates environment states by taking actions. A state is a system configuration underlying
the environment, and an action is a choice of a transformation in the environment that
changes the system to a different state. But the strength of AI capabilities have largely
depended on whether or not humans have already provided the appropriate abstractions of
system configurations and transformations to the agent.

When appropriate system abstractions are given, AI methods excel. Examples include
modeling language [38] and simulating proteins [168], where words and amino acids are
reusable abstractions that humans have already predefined. But when appropriate system
abstractions are not given, methods often fail to be useful. Deep reinforcement learning (RL)
is the primary class of machine learning methods for learning directly from the sensorimotor
stream. Such methods can learn to solve fixed tasks, such as opening doors [197] or moving
individual toys [6]. But they often fail at what I call combinatorial generalization:
generalizing to new systematic variations in the agent-environment interaction [172].
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Combinatorial generalization

The combinatorial space of possible real world systems motivates why combinatorial gener-
alization is a good criterion for evaluating useful interaction with systems. Meadows [219]
defines a system as a set of interrelated entities that produce behavior. We can unpack this
definition by defining the space of system behaviors as the space of entity configurations
and of system transformations. We can then extend this definition to the agent-environment
interaction by defining the space of system interactions as the space of system behaviors
in the environment and of choices the agent makes for which transformations to apply.
Combinatorial generalization can thus be more specifically decomposed as generalizing over
the space of possible combinations of entities, of transformations, and of choices.

As an evaluation criterion, combinatorial generalization enables us to test to what extent
the agent represents the appropriate abstraction of an underlying system: train the agent
to solve problems under a subset of possible system interactions and test the agent’s ability
to generalize to new problems under a disjoint subset of other system interactions. If the
agent has represented entities, transformations, and choices in a way that corresponds to the
structure of the actual system it is interacting with, then it should be able to generalize over
the space of possible combinations of entities, of transformations, and of choices. One could
argue that combinatorial generalization underlies science and engineering in general: in science
we seek explanations that remain true, and in engineering we seek methods that remain
robust, across a combinatorial space of varying factors. But combinatorial generalization also
shows up in simple mundane problems.

Consider even the intuitive problem of object rearrangement: from visual input, rearrange
a set of objects to new locations over a tabletop. If the agent trains only four objects, can it
generalize to rearranging six objects? This requires it to have learned the appropriate abstrac-
tions of entities, transformations, and choices. Specifically, it requires (1) representing objects
as independent entities in a way that can be recombined within larger sets of other entities, (2)
representing the process of moving an object from one location to another as an independent
transformation than can be recombined within longer sequences of transformations, and (3)
representing the process of selecting these transformations as independent choices that can
be recombined within longer sequences of choices for solving new problems. Though this kind
of generalization may seen trivial for humans, it is challenging for current RL methods. Even
seemingly simple problems, such as arithmetic with varying length expressions or numerical
values, still challenge even the best state-of-the-art systems [39].

Shortcomings of monolithic approaches

Why has combinatorial generalization been difficult for existing deep RL methods? One pos-
sible reason is that these methods represent the agent-environment interaction monolithically:
they encode, process, and act upon the distribution of possible environment configurations
and transformations, as well as agent choices, with the same neural network. This might
not be unreasonable if the environment consists of a single entity, such that training data
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can sufficiently cover the space of possible variations the agent would encounter. But it
is generally infeasible to sufficiently cover the combinatorial space of system interactions.
Without sufficient coverage, training neural networks to monolithically represent systems
introduces spurious correlations from the co-presence of entities, transformations, or choices
during training that may be broken when the agent encounters new problems, thereby limiting
the agent’s capacity for combinatorial generalization.

This suggests a perhaps straightforward conclusion that to enable combinatorial general-
ization we need to move beyond the monolithic approach for abstracting the sensorimotor
interface and instead model and manipulate systems as they are: by building agents that
represent discrete sets of entities, transformations, and choices that reflect the underlying
systematic structure of the agent-environment interaction.

The trouble of course is that there no ground truth for what this structure should be. Even
humans have revised our abstractions of reality for thousands of years. We can at least turn
the problem into one we can study by testing whether the agent recovers human abstractions.
But even so, the challenge is how to enable the agent to do so automatically without explicitly
observing or receiving supervision on what the structure should be. If we choose not to
directly provide or supervise this structure, then the other option is to enforce this structure
to emerge through learning constraints. To enable the structure that emerges to be suitable
for combinatorial generalization, such constraints must prevent spurious correlations among
representations of entities, transformations, and choices. They must enforce some form of
independence among these representations.

Enforcing independence in representations

Enforcing independence among representations is not trivial. Consider what this means for
producing entity representations from images. Simply splitting a monolithic image encoder
into one with multiple heads does not work, because fixing a number of heads prevents
generalizing to scenes with more entities than what has been encountered in training. Even
if this issue were somehow fixed, backpropagating with respect to a global loss function still
trains each head to be co-dependent. It is also not clear that going the opposite extreme of the
monolithic approach, by maximally splitting images into one representation per pixel, helps
either. Such representations are known as tokens and are used to represent the fine-grained
units of images and text – image patches and subwords. But splitting representations as
tokens has the opposite problem of not capturing the dependence among different tokens that
do refer to the same concept [310]. Representations of entities should be not as monolithic as
representations of scenes but also not as fine-grained as representations of pixels.

Worse, it is not even clear how to formalize independence in the first place. The
concept of statistical independence used in machine learning is a theoretical abstraction of
an infinite sampling process, but the independence we are interested has nothing to do with
repeated sampling. Rather, we are interested in the independence of the descriptions of the
representations: for example, the entities of a system can still be described independently
without referencing the descriptions of other entities, regardless of whether we observe multiple
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samples of the system or not. The model of algorithmic independence [201, 294, 181]
deals with independence of descriptions, but this model is also only of theoretical use because
it is based on the uncomputable Kolmogorov complexity measure.

The obvious ways of factorizing monolithic networks do not work, and our mathematical
descriptions of “independence” are loose descriptions of the property we want in our rep-
resentations of entities, transformations, and choices. However, there is a different notion
of independence that does not fit neatly in existing mathematical frameworks of machine
learning, but does capture exactly the kind of independence we seek to enforce in our neural
representations. It is the principle of separation of concerns that was invented for circuit
and software design, a principle that has enabled billions of circuit components to be composed
in different ways to make modern computers.

Proposal

How can we enable neural networks to create reusable abstractions of systems that support
combinatorial generalization? I argue in this thesis that the answer might lie in how we have
designed computers themselves. The transition from electronic circuits to software a century
ago involved solving a very similar problem of enforcing independence among different circuit
components. This led to the digital abstraction, an instance of the broader principle of
separation of concerns. The digital abstraction was the crucial idea that allowed us to
scale electronic circuits to general-purpose software.

The von Neumann architecture is the general-purpose circuit architecture that underlies
the structure of modern software today. It is perhaps no accident that the three kinds signals
processed by the von Neumann architecture – data, programs, and controls – correspond
exactly to the entities, transformations, and choices that underpin the combinatorial space
of system interactions that software is uniquely designed to generalize over. Given that
we seek the same combinatorial generalization in our learning agents, this thesis proposes
to consider the implications of drawing an analogy between electronic circuits and neural
networks – the neural circuits underlying current AI systems. Perhaps the kinds of methods
that enabled us to build programmed software from circuits for modeling and manipulating
any system via programs can inform how we can build learning software from neural networks
for automatically modeling and manipulating any system.

The point of view behind this thesis is that contextual refinement, the core implemen-
tational principle behind the digital abstraction, and separation of concerns more broadly, can
be instantiated in neural networks to enable learning reusable abstractions of systems that
support combinatorial generalization. This thesis presents examples of how this principle can
be incorporated into neural networks to build reusable abstractions of entities, transformations
and choices, thereby taking a step toward building machines that automatically model and
manipulate systems as humans do.
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1.1 Contextual refinement

Computers are such versatile tools for solving problems that it may be easy to forget that
computers were not always universal machines, but began as highly specialized electronic
circuits. The first machine that Alan Turing himself built was a circuit that could do no
more than crack German codes during World War II [87]. The neural networks driving recent
AI advances have been similarly specialized. Whether it is for classifying images, controlling
robotic arms, or answering questions, neural networks have traditionally been trained for
solving specific tasks just as electronic circuits were designed to solve specific tasks.

Yet in the past century, we have transformed specialized electronic circuits into universal
machines that can be programmed to model and manipulate any system. How we generally
represent system interactions exactly mirrors the flow of computation in modern computer
architectures: system behavior can be represented as a factor graph unrolled through time,
with nodes as entities, factors as transformations, and the connectivity between factors and
nodes as choices an agent makes to apply transformations to entities [166]. Similarly, the
flow computation can be represented as the same kind of factor graph – usually called a
computation graph [55], with nodes as data, factors as programs, and connectivity as controls.

What makes writing software uniquely powerful is that the code we write for representing
data, programs, and controls can be reused and combined with other code to create software
of arbitrary complexity. This ability to reuse and combine representations of entities,
transformations, and choices is also exactly the combinatorial generalization we seek for
neural networks. But the generalization capabilities of software did not come by accident; we
had to invent methods for transforming the continuous noisy voltages of electronic circuits
into the discrete generalizable code of software. What were these methods exactly, and how
did they enable the generalization capabilities of modern software?

The standard answer to this question would reference separation of concerns as the
key design principle behind the various abstractions we invented for organizing circuit and
software components into reusable modules. Precisely, encapsulating disparate information
in separate modules reduces interdependencies, which enables modules to be reused in more
contexts in combination with other modules. Hence, separation of concerns is the notion of
independence that we have invented to achieve combinatorial generalization in software.

While this answer is sufficient in the context of computing systems, there is a difference
between electronic circuits and neural networks that makes it only part of the answer in
the context of learning systems. In computing systems, the representations of entities,
transformations, and choices are designed, but in learning systems, these representations are
learned. Knowing that encapsulation is the solution to combinatorial generalization is by
itself not a sufficient guide if what should be encapsulated is not known beforehand.

What we need to understand is the mechanism by which encapsulation is achieved. If we
can bake this mechanism into deep learning systems, then we can allow the learning signal
to dictate what the representations should be and rely on this mechanism to enable the
representations to be combinatorially composed. We can identify what this mechanism is by
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considering how the digital abstraction is implemented. This is because turning voltages
into bits was the defining leap that enabled the separation of concerns in every higher layer
of the computing stack to be implemented precisely.

The digital abstraction was invented as a solution for enforcing precise specifications.
Precise specifications enables any system component to be combined with any other system
component as long as how they are combined meets their specifications. Like activations in
neural networks, voltages in electronic circuits are continuously valued. For analog circuits,
continuously valued inputs and outputs resulted in circuit components whose specifications
could only be satisfied approximately, rather than precisely. This prevented arbitrary
composability because errors would accumulate. The solution we invented was to design
circuit components that actively corrected errors by amplifying marginally valid 0s and 1s,
possibly corrupted by noise, back to solidly valid 0s and 1s [136].

The need to enforce precise specifications rules out circuits that implement only passive
forward propagation [136]. This is why inventing active digital circuits from passive analog
circuits was the defining leap that enabled combinatorial generalization in programmed
software. Data, programs, and controls are implemented as voltages in the von Neumman
circuit, yet thanks to the digital abstraction they can be effectively represented as binary
strings that can be modified independently without affecting other representations.

But it is not just voltages that are refined toward their desired specification of binary
values; we can understand this active error-correction as an instance of a broader class of
mechanisms for contextual refinement that applies at every level of the computing stack
beyond circuits. One of the main ways to enable different software components to be reused in
combination of other components is through wrapper functions. Wrapper functions modify a
given program’s outputs or restrict a given program from operating on certain inputs, thereby
refining the program’s pre-defined behavior to match a desired specification that enables it
to be newly combined with other programs. In all cases, this refinement is contextualized
to the particular execution of the circuit or program. Refining a component’s behavior to
specification thereby implements encapsulation by enforcing the component to not leak any
other information beyond what the specification calls for.

In the context of computing, contextual refinement is how we have implemented encap-
sulation, encapsulation is how we have instantiated separation of concerns, and separating
concerns is how we have enable data, programs, and controls to be combined in novel ways.
The key difference between computing and learning is that specifications in computing are
designed, whereas specifications in learning are learned. This therefore suggests that we
may be able to enable combinatorial generalization in neural networks by implementing
mechanisms for contextual refinement, mechanisms that refine towards learned specifications
rather than designed specifications. In the section that follows, I summarize the various ways
I have explored instantiating the principle of contextual refinement in neural networks for
representing entities, transformations, and choices.
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1.2 Neural software abstractions

Our goal is to enable machines to automatically model and manipulate systems, and we
have identified learning reusable abstractions for combinatorial generalization as the core
bottleneck. Specifically the reusable abstractions we seek are representations of entities,
transformations, and choices that can be independently recombined in new contexts. Machine
learning lacks a useful mathematical framework for describing this notion of independence,
and we have argued that naively factorizing monolithic networks does not effectively prevent
spurious correlations. The transition from electronic circuits to software required solving
a similar problem. The solution for achieving combinatorial generalization in computing
was to implement the principle of separation of concerns via contextual refinement towards
designed specifications. The question now is whether the method of contextual refinement
towards learned specifications can enable neural networks to learn representations that can
be similarly reused.

Problem

I investigate this question along three dimensions: entities, transformations, and choices.

1. Entities: Objects are the entities of the sensorimotor interface. Neural networks
traditionally represent visual scenes either as a single monolithic vector representation
or as a grid of token representations, one per small image patch. The problem is
that monolithic representations do not afford reusing information about entities in
new contexts, and token representations are too fine-grained to capture the coherence
of objects. What we want instead is for a neural network to learn to infer a set
of representations that encapsulate information about an individual object within a
representation while removing information about other objects, thereby enabling these
representations to be coherently recombined in new ways.

2. Transformations: In the broadest sense, transformations are functions. In the
context of deep learning we consider the functions that blocks of neural network
weights perform on their inputs. Neural networks traditionally are organized either as
recurrent architectures that repeat the same function or as feedforward architectures
that implement a fixed sequence of different functions. The problem is that forcing
all transformations to either be implemented with the same repeated set of weights or
the same sequence of weights either introduces spurious correlations among weights or
requires massively wide layers that waste capacity. What we want instead is to learn a
set of distinct functions that each implement a specific behavior and that can be reused
a variable number of times in combination with each other.

3. Choices: Unlike entities and transformations, choices are fundamentally tied to the
problem being solved, so instead of seeking zero-shot combinatorial generalization it
makes more sense to seek efficient transfer to problems that require new combinations
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of choices. Agents make choices via policies that map states to actions, and we define a
choice as a the function that assigns a weight to a particular action, such as a softmax
logit or a Q-value. Neural networks policies traditionally entangle all choice function
in the same parameters of a monolithically parameterized policy or Q-function. The
problem is that the existence of other actions may not be relevant to the choice for a
particular action, but the monolithic policy imposes a dependence among the choice
functions, which may not only be artificial and unnecessary but also harmful for efficient
adaptation, as I show in Chatper 7. What we want instead is for the choice functions
to learn via local credit assignment that isolates the modification of one choice function
from modifying others.

The desired solution for all three cases involves decomposing a traditional monolithic repre-
sentation into a discrete set of reusable representations that each encapsulate the information
specific to that representation from information specific to other representations. We know
from the design of circuits and software that encapsulation is implemented via contextual
refinement towards a desired specification. In our context, the specifications of what the
representations of entities, transformations, and choices would not be designed but learned.
The open question therefore is whether the benefits of encapsulation – the ability to reuse
representations in new contexts – can still be achieved by incorporating the mechanism of
contextual refinement as a constraint on the neural network forward propagation, without
specifying what the mechanism should refine to beforehand, leaving the target of refinement
something that is learned via stochastic gradient descent.

Approach

To answer this question, I present three different ways of implementing contextual refinement
in neural networks:

1. Iterative clustering (for entities) I frame the problem of inferring reusable repre-
sentations of objects as a kind of latent clustering problem over latent visual tokens,
where the parameters that describe a cluster are treated as the representation of an
object. The contextual refinement mechanism is an iterative procedure that alternates
between assigning tokens to clusters and updating the cluster parameters to better fit
their assigned tokens. Like the expectation-maximization (EM) algorithm for Gaussian
mixture models, this iterative process makes each cluster more encapsulated as it
adjusts the parameters of each cluster to be more specific to its assigned subset of
tokens. Whereas the assignment and update steps of the EM algorithm are analytical,
the iterative process I use consists of neural networks that replace these two steps.
Therefore, whereas the EM algorithm refines cluster parameter estimates closer to
the maximum likelihood estimates, the contextual refinement mechanism I use refines
towards representations that are best suited for some downstream task, like image
reconstruction, video prediction, or object property classification.
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2. Partial modification (for transformations) To learn specialized functions that
can combined in new contexts, I adopt an approach that restricts a neural block from
operating certain parts of its input. Contextual refinement in this context is simply the
manual enforcement of the restriction itself. Like code wrappers in software, restricting
a function to operate only part of its input leaves the function agnostic to the part
that it ignores, enabling it to be reused in new contexts where different values of the
ignored part are encountered. Unlike code wrappers, however, I do not specify what
information should be ignored or not: that is, for input x, I decompose x as x = [x1, x2],
and specify that x2 should be ignored but do not specify what the content of x2 should
be – the neural blocks are free to learn the representations for x1 and x2 that would
enable the entire network to solve its task. Therefore, the refinement mechanism is a
manually imposed restriction on the neural block’s input, and the refinement target is
a function behavior that is agnostic to the part of the input that is ignored.

3. Incentivizing truthfulness (for choices) To train choice functions via local credit
assignment, I reframe the sequential decision problem not as a single agent optimization
for a policy but as a multi-agent game for the choice functions. In particular, a A choice
function’s output is interpreted as an auction bids for its associated action to operate
on a particular state. The auction winner at the previous time-step sells the state at the
auction at the next time-step. The contextual refinement mechanism would thus be the
auction mechanism that incentivizes equilibrium strategies of the choice functions to
coincide with the optimal policy for the single agent formulation. I show that this can
be achieved with the Vickrey auction as the auction mechanism, which incentivizes the
choice functions to truthfully bid the optimal Q-value for their associated action. This
truthfulness property enables each choice function to compute and update its Q-value
independently of other choice functions, thereby encapsulating the representation of
each choice function – the neural network weights for computing its bid – from one
another. A choice function’s optimal Q-value for a state is analogous to a real-world
auction bidder’s valuation of the auction good, but unlike real-world Vickrey auctions,
the optimal Q-value is not known by the choice function beforehand and must be
learned. Thus the refinement mechanism is the Vickrey incentive mechanism, and the
refinement target for a particular choice function is its optimal Q-value of the state.

All three methods for contextual refinement depart from traditional deep learning in a
particular way, which is that they implement a refinement mechanism during the forward
execution of the neural network. This is similar to the difference between the active error
correction performed by digital circuits and the passive forward propagation performed by
analog circuits. One could say that the training of neural networks via stochastic gradient
descent is a form of refinement as well, but it is global refinement that is a function of all
the data the network trains on, rather than the contextual refinement specific to a particular
input that this thesis proposes.
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1.3 Outline and Contributions

This thesis is a compilation of six publications grouped across three main parts – entities,
transformations, and choices. Together, they show how contextual refinement enables better
combinatorial generalization in neural networks.

Part I: Entities shows that reusable representations of entities can be learned via the
contextual refinement mechanism of iterative clustering.

• Chapter 2 [53] presents a method for improving the optimization of neural networks
that implement iterative clustering.

• Chapter 3 [319] extends the iterative clustering algorithm from representing entities
in static images to representing entities in dynamic videos.

Part II: Transformations shows that reusable representations of transformations can be
learned via the contextual refinement mechanism of enforcing partial modification of inputs.

• Chapter 4 [56] shows that training a dynamics model to ignore action-invariant
features of objects enables us to construct a planning algorithm that composes transfor-
mations over object states that can be reused for different objects in different contexts.
Chapter 5 [58] shows that restricting neural blocks to operating over only parts of
arithmetic expressions enables generalization to solving expressions of varying length.

Part III: Choices shows that transferable representations of choices functions can be
learned via the contextual refinement mechanism of incentivizing truthful bidding

• Chapter 6 [54] introduces the Vickrey auction mechanism as a method for aligning
the Nash equilibrium of the auction to coincide with the optimal policy of the single
agent sequential decision problem.

• Chapter 7 [55] explains how choice functions trained via the Vickrey auction mecha-
nism learn via local credit assignment.

Part IV: Conclusion concludes the thesis.
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Part I

Entities
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Chapter 2

Representing Static Entities

2.1 Introduction

Conventionally, neural network models implement feedforward computation, transforming
the input x into the output z through a fixed series of operations corresponding to distinct
layers as z = fN(fN−1(...f2(f1(x))...)). However, a range of more sophisticated models
implement iterative computation with the network, typically formulated and motivated
as some sort of optimization procedure where the correct answer is the fixed point of an
iterative refinement z = fx(z) of an initial guess z0. This includes diffusion models [293, 153,
297, 272], energy-based models [192, 78], deep equilibrium models [20], iterative amortized
inference procedures [215, 214, 216], neural ordinary differential equations [60], meta-learning
algorithms [93, 123, 15], and object-centric models [317, 319, 177, 85]. Such iterative
refinement procedures may have a number of advantages over direct feedforward computation:
they can serve to simplify the learned function (e.g., in the same way that a recursive program
might be much simpler than an equivalent program implemented without recursion), introduce
an inductive bias into the model that improves generalization, and break symmetries.

In this work, we consider the case of iterative refinement applied to representation learning
of latent sets, which has primarily been applied to learning representations of objects from
pixels [130, 317, 132, 129, 319, 208, 177, 356, 290]. The particular challenge of this setting is
that invariance of set elements to permutation means there are many latent sets that serve
as equally plausible explanations for the data. Iterative refinement is especially useful in this
context because it breaks the symmetry among these explanations with the randomness of
the initial guess z0 rather than encoding the symmetry-breaking mechanism in the weights
of the network, as do conventional methods that learn a direct feedforward mapping from
observation to representation. The state-of-the-art of these iterative object-centric methods
is the slot attention module from Locatello et al. [208], serving as the focus of this chapter.

Unfortunately, these methods have been notoriously difficult to train. Their nature as
unsupervised representation learning methods means that we do not have ground-truth targets
to supervise the outputs of each iteration of f , as in other settings (e.g. diffusion models).
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Figure 2.1: Overview. We address efficient training of iterative refinement methods for learning
representations of latent sets, such as the slot attention model in (a), whose illustration is adapted
from Locatello et al. [208]. Vanilla slot attention backpropagates gradients through the unrolled
iterative refinement procedure, which leads to training instabilities as shown by the growing Jacobian
spectral norm (b). Implicit slot attention uses the first-order Neumann approximation of the implicit
gradient, which simply truncates the backpropagation, leading to substantially more effective
training, as shown in (c).

As a result, prior works train these methods by differentiating through the unrolled iterations
of f . Differentiating through this recurrence contributes to various training instabilities,
as we can see by the growing spectral norm of f in Fig. 2.1b. Such instabilities result in
sensitivity to hyperparameter choices (e.g., number of refinement steps) and have motivated
adding optimization tricks such as gradient clipping, learning rate warm-up, and learning
rate decay, all of which make such models more complex and harder to use, restrict the model
from optimizing its learning objective fully, and only temporarily delay instabilities that still
emerge in later stages of training.

To approach this problem, we observe that previous iterative refinement methods like
slot attention have not taken full advantage of the fact that f can be viewed as a fixed
point operation. Thus, f can be trained with implicit differentiation applied at the fixed
point, without backpropagating gradients through the unrolled iterations [48, 80]. This
chapter investigates how advances in implicit differentiation in neural models can be applied
to improve the training of iterative refinement methods.

Our primary contribution is to propose implicit differentiation for training iterative
refinement procedures, specifically slot attention, for learning representations of latent sets.
First, we show that slot attention can be cast as a fixed point procedure that can be trained
with implicit differentiation, resulting in what we call implicit slot attention. Second,
we show on the latest state-of-the-art method of this kind, SLATE [290], that using the
first-order Neumann approximation of the implicit gradient for the slot attention module
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yields substantial improvement in optimization. Third, we show across three datasets that,
compared to SLATE, our method for training achieves much lower validation loss in training,
as well as lower Fréchet inception distance (FID) [150] and mean squared error (MSE) in
image reconstruction. Fourth, our method also removes the need for gradient clipping,
learning rate warmup, or tuning the number of iterations, while achieving lower space and
time complexity in the backward pass, all with just one additional line of code. Fifth, when
integrated with the original slot attention encoders and decoders from Locatello et al. [208],
implicit differentiation substantially improves object property prediction and continues to
predict intuitive segmentation masks as the vanilla slot attention.

2.2 Related Work

Much early work in artificial intelligence followed a paradigm of using an iterative learning
procedure during execution time, whether it be a form of search, inference, or optimiza-
tion [267]. These include early work on variational inference [70, 102] and energy-based
models [192, 337, 338, 335, 336, 78], Hopfield networks [156], Boltzmann machines [4], and
associative memory [180]. The rise of modern deep networks in the last decade shifted
the method for computing solutions during execution time away from iterative procedures
and towards producing the solution directly with a feedforward pass of a network. Recent
works have started to shift the paradigm of execution back to combining the best of function
approximation and iterative search, with neural networks parameterizing initializations [93],
update rules [15, 130, 214], search heurstics [285, 162], and evaluation functions [78]. Our work
concerns the optimization of neural networks as update rules for these iterative refinement
procedures.

Our methodological novelty is the adaptation of implicit differentiation techniques for
training iterative refinement procedures for representing of latent sets, where our key insight
is that the iterative procedure used for symmetry-breaking reaches a fixed point, thus allowing
implicit differentiation to be used. We are not aware that this has been done before, as
current methods that perform iterative refinement for representing latent sets, often referred
to as object-centric learning [130, 317, 132, 129, 319, 208, 177, 356, 290], all differentiate
through the unrolled dynamics of the fixed point procedure, which as we show makes them
difficult to train.

Our work draws upon innovations in implicit differentiation that have been applied in
various other applications besides object-centric learning, such as embedded optimization
layers [11, 5], neural ordinary differential equations [60], meta-learning [254], implicit neural
representations [158], declarative layers [118], and transformers [20]. Although we evaluate
various techniques for implicit differentiation, our results highlight the benefits of the simplest
of these, which is that of using a truncated Neumann approximation [111, 105, 158, 284].
While this technique was used in Zoran et al. [356] without theoretical explanation, we propose
implicit differentiation as an explanation for why this technique is beneficial. The closest
works to ours is the concurrent work of Zhang et al. [354] which applies implicit differentiation
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to predicting properties of set elements and finds similar benefits. Our approach generalizes
their results to the unsupervised setting and scales to high dimensional outputs (e.g., images),
taking a crucial step toward improving representation learning of latent sets.

2.3 Background

Our work builds on prior works on iterative refinement and implicit differentiation with deep
networks.

Iterative refinement for inferring representations of latent sets Current work on
inferring representations of latent sets is motivated by learning to represent objects – which
we consider independent and symmetric entities – from perceptual input. Because mixture
models are also defined to have a priori independent and symmetric mixture components,
they have been the model of choice for representing entities: thus these iterative methods
model each datapoint xn (e.g. image) as a set of independent sensor measurements xn,m (e.g.
pixels) which are posited as having been generated from a mixture model whose components
represent the entities. Under a clustering lens, the problem reduces to finding the K groups
of cluster parameters θn := {θn,k}Kk=1 and cluster assignments ϕn,m := {ϕn,m,k}Kk=1 that were
responsible for the measurements xn,m of the datapoint xn.

A network f breaks symmetry among components by alternately updating θn and ϕn,m

starting from independent randomly initialized θn,k’s. The slot attention module [208], e.g.,
computes θnt+1 ← f (θnt , x

n), where ϕn,m is updated as an intermediate step inside f . The
θn, called slots, serve as input to a downstream objective, e.g. image reconstruction, whose
gradients are backpropagated through the unrolling of f . Earlier works applied this approach
to binary images [130] and videos [317].

Implicit differentiation Implicit differentiation is a technique for computing the gradients
of a function defined in terms of satisfying a joint condition on the input and output. For
example, a fixed point operation f is defined to satisfy “find z such that z = f(z, x)” (or
written as z = fx(z)) rather than through an explicit parameterization of f . This fixed point
z∗ can be computed by simply repeatedly applying f or by using a black-box root-finding
solver. Letting fw be parameterized by weights w, with input x and fixed point z∗, the
implicit function theorem [48] enables us to directly compute the gradient of the loss ℓ with
respect to w, using only the output z∗:

∂ℓ

∂w
=

∂ℓ

∂z∗
(I − Jfw (z∗))

−1︸ ︷︷ ︸
u⊤

∂fw (z∗, x)

∂w
, (2.1)

where Jfw (z∗) is the Jacobian matrix of fw evaluated at z∗. Compared to backpropagating
through the unrolled iteration of f , which is just one of many choices of the solver, implicit
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differentiation via Eq. 2.1 removes the cost of storing any intermediate results from the
unrolled iteration. Deep equilibrium models (DEQ) [20] represent the class of functions
f parameterized by neural networks, which have successfully been trained with implicit
differentiation and empirically produce stable fixed points even though their convergence
properties remains theoretically not well understood.

Much effort has been put into approximating the inverse-Jacobian term (I − Jfw (z∗))
−1

which has O(n3) complexity to compute. Using notation from Bai, Koltun, and Kolter [21],
Pineda [249] and Almeida [10] propose to approximate the u⊤ term in Eq. 2.1 as the fixed
point of the linear system:

u⊤ = u⊤Jfw (z∗) +
∂ℓ

∂z∗
, (2.2)

which can be solved with any black-box solver. However, in the context of applying implicit
differentiation to neural networks, this approach has in practice required some expensive
regularization to maintain stability [21], so Geng et al. [111], Fung et al. [105], Huang, Bai,
and Kolter [158], and Shaban et al. [284] propose instead to approximate (I − Jfw (z∗))

−1

with its Neumann series expansion, yielding

∂ℓ

∂w
= lim

T→∞

∂ℓ

∂z∗

T∑
i=0

Jfw (z∗)
i ∂fw (z∗, x)

∂w
. (2.3)

The first-order approximation (T = 1) amounts to applying f once to the fixed point z∗ and
differentiating through the resulting computation graph. This is not only cheap to compute
and easy to implement, but has also been shown empirically [111] to have a regularizing effect
on the spectral norm of Jfw without sacrificing performance.

2.4 Implicit Iterative Refinement

Our main contribution is to propose treating iterative refinement algorithms used for inferring
latent sets as fixed-point procedures, thereby motivating the use of implicit differentiation to
train them.

Motivation

Our approach is inspired by the structural resemblance between iterative refinement for
latent sets and the Expectation-Maximization algorithm [72], which also has been pointed
out by Greff, Van Steenkiste, and Schmidhuber [130] and Locatello et al. [208]. If f were to
update the components θn and assignments ϕn,m in a way that monotonically improves the
evidence lower bound (ELBO) Ln on the log-likehood of each image xn with respect to θn

and ϕn,m, then we know from Neal and Hinton [231] and Wu [333] that such an approach is a
fixed point operation whose fixed point locally maximizes Ln. With this interpretation, such
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iterative refinement algorithms for inferring latent sets can be viewed as performing a nested
optimization with three levels, where the weights of the slot attention module are optimized
across images xn, the components θn are optimized per-image xn but across measurements
xn,m, and the assignments ϕn,m are optimized per-measurement xn,m.

How these iterative refinement methods are implemented differs from optimizing the
per-datapoint ELBO described above, however. Indeed, both Greff, Van Steenkiste, and
Schmidhuber [130] and Locatello et al. [208] implemented ablations to their methods that
do implement a variant of Expectation-Maximization on a well-defined mixture model, but
found that replacing the update rule with a recurrent neural network empirically performs
better at extracting representations.

Iterative refinement as a fixed point procedure

While in general we still lack the theory to understand whether and how the slots of slot
attention optimize a well-defined objective like the ELBO, and thus have no theoretical
guarantees that slot attention does converge to a fixed point, we empirically observe from its
stable forward relative residuals (Fig. 2.3a) that it does appear to approximately converge
to a fixed point. This suggests that slot attention can be understood as an instance of a
DEQ that uses naive forward iteration to find a fixed point and backpropagates through
the iteration to compute the gradient. The novel implication of this to inferring latent sets
is that any root-finding solver and implicit gradient estimator can in principle be used to
train slot attention, and we find that many combinations do train slot attention effectively in
Fig. 2.3b. This insight is one of our main contributions, but in the next section we describe a
particular combination that we empirically found effective.

Implicit slot attention

Table 2.1: Complexity

vanilla implicit
time (forward) O(n) O(n)
space (forward) O(n) O(1)
time (backward) O(n) O(1)
space (backward) O(n) O(1).

We propose implicit slot attention: a method
for training the state-of-the-art slot attention mod-
ule [208] with the simplest and most effective
method that we have empirically found for ap-
proximating the implicit gradient, which is its
first-order Neumann approximation (Eq. 2.3). It
can be implemented by simply differentiating the
computation graph of applying the slot attention
update once to the fixed point θn∗ , where θn∗ is
computed by simply iterating the slot attention
module forward as usual, but without the gradient tape, amounting to truncating the back-
propagation. The time and space complexity of backpropagation for implicit slot attention
compared to vanilla slot attention as a function of the number of slot attention iterations n,
is shown in Table 2.1. While other methods for implicit differentiation are more complex to
implement, this method requires only one additional line of code (Fig. 2.2).



CHAPTER 2. REPRESENTING STATIC ENTITIES 18

Figure 2.2: Code. The first order Neumann approximation to the implicit gradient adds only
one additional line of Pytorch code [243] to the original forward function of slot attention, but
yields substantial improvement of optimization. attn and slots correspond to ϕ and θ in the text
respectively.

2.5 Experiments

Our main hypothesis is that iterative refinement methods for latent sets, specifically slot
attention, can be trained as DEQs, and that consequently implicit differentiation would
improve their optimization. We test this premise by replacing the backward pass of the
slot attention module in the state-of-the-art SLATE [290] with the first-order Neumann
approximation of the implicit gradient. This requires only one additional line of code to the
original slot attention implementation (Fig.2.2) and in one instance improves reconstruction
mean-squared error by almost 7x.

Experimental setup

We summarize the SLATE architecture, datasets we considered, and relevant implementation
details.

SLATE SLATE uses a discrete VAE [255] to compress an input image into a grid of discrete
tokens. These tokens index into a codebook of latent code-vectors, which, after applying
a learned position encoding, serve as the input to the slot attention module. An Image
GPT decoder [59] is trained with a cross-entropy loss to autoregressively reconstruct the
latent code-vectors, using the outputted slots from slot attention as queries and the latent
code-vectors as keys/values. Gradients are blocked from flowing between the discrete VAE
and the rest of the network (i.e. the slot attention module and the Image GPT decoder), but
the entire system is trained simultaneously.

Data We consider three datasets: CLEVR-Mirror [290], Shapestacks [135], and COCO-
2017 [204], the former two of which were used in the original SLATE paper. We obtained
CLEVR-Mirror directly from the SLATE authors and used a 70-15-15 split for training,
validation, and testing. We pooled all the data variants of Shapestacks together as Singh,
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Figure 2.3: Can slot attention by trained as a fixed point operation with implicit
differentiation? (2.3a) The relative residual of the forward iteration of slot attention is close to
zero, which motivates its treatment as a fixed point operation. (2.3b) The forward and backward
computations of vanilla slot attention can be swapped out with different solvers, most of which
result in the same improved optimization performance. Here we compare with IB , BB , IN , and
BN variants of implicit differentiation across 4 seeds. Table 2.2 defines these acronyms.

Deng, and Ahn [290] did and used the original train-validation-test splits. The COCO-2017
dataset was downloaded from FiftyOne and used the original train-validation-test splits.

Implementation details In all of our experiments we used the same model and training
hyperparameters as those used for the ShapeStacks experiment from Singh, Deng, and Ahn
[290, Table 6], run on an A100 GPU. The only difference is in the image resolution (and
consequently number of image tokens) because the largest image size we could train with
was 96x96 due to computing constraints, rather than the 128x128 used for their CLEVR
experiment. However, as we show for resolutions of both 96x96 and 64x64, the improvement
in optimization appears to be hold across image resolutions.

For a clean comparison, we simply integrated the official SLATE implementation1 with
the solvers and backward gradient hook from the official implementation of deep equilibrium
models2. Besides implementing logging and evaluation code, as well as the first-order Neumann
approximation (Eq. 2.3), we did not change anything in the above two official implementations
otherwise. The SLATE implementation serves as the baseline in all our experiments.

Training slot attention with implicit differentiation

The first test to conduct is to see whether slot attention can be trained with implicit
differentiation at all. In summary: Test: Swap the forward pass with a different black-box

1https://github.com/singhgautam/slate
2https://github.com/locuslab/deq

https://voxel51.com/docs/fiftyone/integrations/coco.html
https://github.com/singhgautam/slate
https://github.com/locuslab/deq
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Table 2.2: Different instantiations of implicit differentiation

abbrv. forward computation gradient estimation
IB iteration Broyden
BB Broyden Broyden
IN iteration Neumann approximation
BN Broyden Neumann approximation

solver, and train with implicit gradients computed via various gradient estimation methods
for Eq. 2.1. Hypothesis: There exists a (forward solver, implicit gradient estimator) that
optimizes cross entropy no worse than backpropagating through unrolled inference. Result:
Yes, such a pair exists, and in fact it enables significantly better optimization.

To conduct this test, we compare vanilla slot attention with four variants trained with
implicit differentiation, shown in Table 2.2, labeled IB, BB, IN, and BN. B stands for the
Broyden solver, used by Bai, Kolter, and Koltun [20]. We test configurations where the
Broyden solver was both used to find the fixed point of slot attention and used to estimate
the implicit gradient with Eq. 2.2. N stands for the first-order Neumann approximation for
computing the explicit gradient (Eq. 2.3). Our hypothesis would be tentatively refuted if the
cross-entropy learning curves of none of these variants converges as efficiently as the baseline.
We train these methods to model the CLEVR-Mirrors dataset with an image resolution of
64x64. The slot attention baseline unrolls the slot attention cell for seven iterations and we
also limit the maximum number of Broyden iterations to seven.

Results and analysis Figure 2.3 shows that not only is it possible to train slot attention
with implicit differentiation, but three out of four of the implicit differentiation configurations
from Table 2.2 optimize significantly better than vanilla slot attention. Whereas vanilla slot
attention plateaus at a cross entropy of around 130, the BB, IN, and BN variants all achieve
a 10x lower cross entropy loss. Moreover, BB, IN, and BN all follow the same learning
curve, suggesting that the optimization improvement is largely due to whether we use implicit
differentiation or not, rather than the choice of how we implement the implicit differentiation.
The IB variant is less stable than the others, and we hypothesize that this can be explained
by the tendency for the fixed point of Eq. 2.2 to become increasingly hard to estimate, an
issue discussed in Bai, Koltun, and Kolter [21].

Does this improvement generalize across datasets?

We now test whether this improved optimization holds across different datasets. If the
improvement was simply due to implicit differentiation being serendipitously useful for 64x64
images CLEVR-Mirror, then we should expect implicit differentiation to not help for other



CHAPTER 2. REPRESENTING STATIC ENTITIES 21

CLEVR-Mirrors ShapeStacks

COCO-2017

?

Figure 2.4: Qualitative results. Across three datasets, optimizing SLATE with implicit differenti-
ation leads to improved image reconstructions through the slot bottleneck. Black borders indicate
the ground truth image, blue border indicate our method, and red borders indicate vanilla SLATE.
The rest of the panels visualize attention masks. In the CLEVR-Mirrors dataset, whereas vanilla
SLATE misses objects, changes their size, or changes their color (indicated by the circles), implicit
SLATE reconstructs the ground truth more faithfully.

datasets. We focus our attention on IN variant to conduct this test because it is the minimal
modification to the baseline slot attention for gaining the benefits of implicit differentiation,
as it requires adding only one line of code on top of the baseline slot attention implementation
and does not require implementing any black-box solvers. We henceforth refer to the IN
variant as implicit slot attention (and correspondingly implicit SLATE), as described
in §2.4. In summary: Test: Apply implicit slot attention to CLEVR-Mirror, ShapeStacks,
and COCO with 96x96 image resolution. Hypothesis: Implicit slot attention significantly
improves optimization across all three datasets. Result: Yes it does.

Results and quantitative analysis Using the two primary metrics used in Singh, Deng,
and Ahn [290], images generated by implicit SLATE achieve both lower pixel-wise mean-
squared error and FID score [150]. The FID score was computed with the PyTorch-Ignite [98]
library using the inception network from the PyTorch port of the FID official implementation.
All methods were trained for 250k gradient steps. Table 2.3 compares the FID and MSE
scores of the images that result from compressing the SLATE encoder’s set of discrete tokens
through the slot attention bottleneck, using Image-GPT to autoregressively re-generate these
image tokens one by one, and using the discrete VAE decoder to render the generated image
tokens. Implicit differentiation significantly improves the quantitative image reconstruction

https://pytorch.org/ignite/generated/ignite.metrics.FID.html
https://pytorch.org/ignite/generated/ignite.metrics.FID.html
https://github.com/mseitzer/pytorch-fid
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Table 2.3: Quantitative metrics for image reconstruction through the slot bottleneck.

Data Implicit Vanilla
CLEVR (FID) 22.19 25.89
CLEVR (MSE) 10.66 67.04
COCO (FID) 127.79 147.48
COCO (MSE) 1659.15 1821.75

ShapeStacks (FID) 34.2 34.76
ShapeStacks (MSE) 108.67 312.14

metrics of SLATE across the test sets of CLEVR-Mirrors, Shapestacks, and COCO. In the
case of MSE for CLEVR, this is almost a 7x improvement.

Qualitative analysis The higher quantitiatve metrics also translate into better quality
reconstructions on the test set, as shown in Figure 2.4. For CLEVR-Mirrors, vanilla SLATE
sometimes drops or changes the appearance of objects, even in simple scenes with three
objects. In contrast, the generations produced from implicit SLATE match the ground
truth very closely. For Shapestacks, implicit SLATE consistently segments the scene into
constituent objects. This is sometimes the case with vanilla SLATE on the training and
validation set as well, but we observed for both of the seeds we ran for the final evaluation
that vanilla SLATE produced degenerated attention maps where one slot captures the entire
foreground, and the background is divided among the other slots. The visual complexity of
the COCO dataset is much higher than either CLEVR-Mirrors and Shapestacks, and the
reconstructions on the COCO dataset are quite poor, for both SLATE’s discrete VAE and
consequently for the reconstruction through the slot bottleneck. This highlights the gap
that still exists between using the state-of-the-art in object-centric learning out-of-the-box
and what the community may want these methods to do. The attention masks for both
vanilla and implicit SLATE furthermore do not appear to correspond consistently to coherent
objects in COCO but rather patches on the image that do not immediately seem to match
with our human intuition of what constitutes a visual entity.

Can we simplify the need for optimization tricks?

To further understand the benefits of implicit differentiation, we then ask whether it stabilizes
the training of slot attention without the need for optimization tricks like learning rate
decay, gradient clipping, and learning warmup. In summary: Test: Remove learning rate
decay, gradient clipping, and learning warmup each from vanilla SLATE and our method.
Hypothesis: Our method should not require these tricks to optimize stably. Result: No, it
generally does not require these tricks.



CHAPTER 2. REPRESENTING STATIC ENTITIES 23

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

101

102

103

va
lid

at
io

n
cr

os
s

en
tr

op
y

implicit (ours) no lr decay

implicit (ours)

vanilla no lr decay

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

100

101

2⇥ 100

3⇥ 100

4⇥ 100

6⇥ 100

va
lid

at
io

n
Ja

co
b
ia

n
n
or

m

implicit (ours) no lr decay

implicit (ours)

vanilla no lr decay

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

101

102

103

va
lid

at
io

n
cr

os
s

en
tr

op
y

implicit (ours) no lr warmup

implicit (ours)

vanilla no lr warmup

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

100

101

2⇥ 100

3⇥ 100

4⇥ 100

6⇥ 100

va
lid

at
io

n
Ja

co
b
ia

n
n
or

m

implicit (ours) no lr warmup

implicit (ours)

vanilla no lr warmup

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

101

102

103

va
lid

at
io

n
cr

os
s

en
tr

op
y

implicit (ours) no clip grad

implicit (ours)

vanilla no clip grad

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

100

101

2⇥ 100

3⇥ 100

4⇥ 100

6⇥ 100
va

lid
at

io
n

Ja
co

b
ia

n
n
or

m

implicit (ours) no clip grad

implicit (ours)

vanilla no clip grad

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

101

102

103

va
lid

at
io

n
cr

os
s

en
tr

op
y

implicit (ours) no lr decay

implicit (ours)

vanilla no lr decay

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

100

101

2⇥ 100

3⇥ 100

4⇥ 100

6⇥ 100

va
lid

at
io

n
Ja

co
b
ia

n
n
or

m

implicit (ours) no clip grad

implicit (ours)

vanilla no clip grad

vanilla

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
training iterations ⇥105

101

102

103

va
lid

at
io

n
cr

os
s

en
tr

op
y

implicit (ours) no lr warmup

implicit (ours)

vanilla no lr warmup

vanilla

No learning rate decay No gradient clipping No learning rate warmup

Figure 2.5: Does implicit differentiation remove the need for various optimization tricks?
We ablate three heuristically-motivated optimization tricks from both vanilla SLATE and our
method, and show that for two out of the three, removing the optimization trick quantitatively hurts
the vanilla model but not the implicit model. Whereas removing gradient clipping and learning rate
warmup causes vanilla SLATE’s training to become unstable, as indicated by the growth of the
Jacobian norm of the slot attention cell, our method trains significantly more stably and can take
advantage of the larger gradient steps.

Fig. 2.5 shows that the ease and stability of training correlates with the spectral norm of
the Jacobian of the slot attention cell. Decaying the learning rate regularizes the Jacobian
norm from exploding, but it also hurts optimization performance for both our method and
vanilla SLATE, as expected. When we remove gradient clipping the Jacobian norm of vanilla
SLATE explodes, as do its gradients (Fig. 2.6a), whereas both stay stable for our method.
This translates into a qualitative drop in performance for vanilla SLATE (Fig. A.5) but not
for implicit SLATE (Fig. A.4). Lastly, removing learning rate warmup also consistently makes
vanilla SLATE’s training unstable, whereas it only affects the stability of our method for one
out of three seeds. Finally, Fig. 2.6b shows that implicit slot attention is not sensitive to
the number of iterations with which to iterate the slot attention cell, whereas vanilla slot
attention is, with more iterations being harder to train.
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Figure 2.6: (a) Without gradient clipping, our implicit differentiation technique keeps gradients
small while backpropagating through the unrolled iterations causes gradients to explode. (b) Training
with implicit differentiation also is not sensitive to the number of iterations with which to iterate the
slot attention cell. (c) Using one iteration for vanilla slot attention trains as stably, but reconstructs
more poorly, than implicit slate.
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Figure 2.7: We outperform vanilla slot attention on object property prediction.

Does this mean that iterating slot attention for one iteration is
enough?

One might be tempted to interpret Fig. 2.6b to suggest that fewer iterations of vanilla slot
attention is sufficient to improve performance. This is not necessarily the case: although
vanilla slot attention with one iteration trains more stably than its seven iteration counterpart,
it still achieves 2x worse reconstruction MSE than implicit slot attention with seven iterations
on CLEVR (Fig. 2.6c).

Futhermore, Fig. 2.7 shows that using only a single iteration is not enough to improve
optimization of vanilla slot attention for the object property prediction task used by Locatello
et al. [208]. We directly modified the released code from Locatello et al. [208], which used
three iterations, to use implicit differentiation. Implicit slot attention can instead scale to as
many forward iterations as needed.

Does implicit slot attention still produce intuitive masks with a
different architecture?

We sought to check whether implicit differentiation still preserves the quality of the segmen-
tation masks produced by the original slot attention architecture by Locatello et al. [208],
which uses a spatial broadcast decoder [327] rather than a transformer decoder as SLATE
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Figure 2.8: Implicit differentiation preserves the quality of predicted segmentations from Locatello
et al. [208].

does. It indeed does (Fig. 2.8), suggesting that our findings are not specific to SLATE but
apply to slot attention more broadly.

2.6 Discussion

The connection we made in this chapter between slot attention and deep equilibrium models
also highlights various other properties about iterative refinement procedures for inferring
latent sets that suggest connections to other areas of research that are worth theoretically
developing in the future. First is the connection to the literature on fast weights [276, 17,
159]: interpreting slots as parameters that are modified during the inner optimization during
execution time may give us novel formulation for how to represent and update fast weight
memories. Second is the connection to the literature on meta-learning [275, 93, 312, 15]:
interpreting slots as solutions to an inner optimization problem during execution time may
give us a novel perspective on perception as itself a learning process. Third is the connection
to causality [245, 248]: interpreting the independently generated and symmetrically processed
slots as parameterizing independent causal mechanisms [139] may give us a novel approach for
learning to represent causal models within a neural scaffolding. Fourth is the connection to
dynamical systems [233]: interpreting slots as a set of attractor basins may offer a novel theory
of how the error-correcting properties of discrete representations emerge from continuous
ones. These different fields have their own conceptual and implementation tools that could
potentially improve our understanding of how to build better iterative refinement algorithms
and inform how objects could potentially be represented in the mind.
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Conclusion We have proposed implicit differentiation for training iterative refinement
procedures for inferring representations of latent sets. Our results show clear signal that
implicit differentiation can offer a significant optimization improvement over backpropagating
through the unrolled iteration of slot attention, and potentially any other iterative refinement
algorithm, with lower space and time complexity and only one additional line of code. Because
it is so simple to apply implicit differentiation to any fixed point algorithm, we hope our
work inspires future work to leverage tools developed for implicit differentiation for improving
learning representations of latent sets and iterative refinement methods more broadly.
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Chapter 3

Representing Dynamic Entities

3.1 Introduction

A powerful tool for modeling the complexity of the physical world is to frame this complexity
as the composition of simpler entities and processes. For example, the study of classical
mechanics in terms of macroscopic objects and a small set of laws governing their motion
has enabled not only an explanation of natural phenomena like apples falling from trees but
the invention of structures that never before existed in human history, such as skyscrapers.
Paradoxically, the creative variation of such physical constructions in human society is due
in part to the uniformity with which human models of physical laws apply to the literal
building blocks that comprise such structures – the reuse of the same simpler models that
apply to primitive entities and their relations in different ways obviates the need, and cost, of
designing custom solutions from scratch for each construction instance.

The challenge of scaling the generalization abilities of learning robots follows a similar
characteristic to the challenges of modeling physical phenomena: the complexity of the
task space may scale combinatorially with the configurations and number of objects, but if
all scene instances share the same set of objects that follow the same physical laws, then
transforming the problem of modeling scenes into a problem of modeling objects and the
local physical processes that govern their interactions may provide a significant benefit in
generalizing to solving novel physical tasks the learner has not encountered before. This is
the central hypothesis of this chapter.

We test this hypothesis by defining models for perceiving and predicting raw observations
that are themselves compositions of simpler functions that operate locally on entities rather
than globally on scenes. Importantly, the symmetry that all objects follow the same physical
laws enables us to define these learnable entity-centric functions to take as input argument a
variable that represents a generic entity, the specific instantiations of which are all processed
by the same function. We use the term entity abstraction to refer to the abstraction barrier
that isolates the abstract variable, which the entity-centric function is defined with respect
to, from its concrete instantiation, which contains information about the appearance and



CHAPTER 3. REPRESENTING DYNAMIC ENTITIES 28

Figure 3.1: OP3. (a) OP3 can infer a set of entity variables H
(T )
1:K from a series of interactions

(interactive entity grounding) or a single image (entity grounding). OP3 rollouts predict the future

entity states H
(T+d)
1:K given a sequence of actions a(T :T+d). We evaluate these rollouts during planning

by scoring these predictions against inferred goal entity-states H
(G)
k . (b) OP3 enforces the entity

abstraction, factorizing the latent state into local entity states, each of which are symmetrically
processed with the same function that takes in a generic entity as an argument. In contrast, prior
work either (c) process a global latent state [145] or (d) assume a fixed set of entities processed in a
permutation-sensitive manner [94, 184, 340, 326]. (e-g) Enforcing the entity-abstraction on modeling
the (f) dynamics and (g) observation distributions of a POMDP, and on the (e) interactive
inference procedure for grounding the entity variables in raw visual observations. Actions are not
shown to reduce clutter.

dynamics of an object that modulates the function’s behavior.
Defining the observation and dynamic models of a model-based reinforcement learner

as neural network functions of abstract entity variables allows for symbolic computation in
the space of entities, but the key challenge for realizing this is to ground the values of these
variables in the world from raw visual observations. Fortunately, the language of partially
observable Markov decision processes (POMDP) enables us to represent these entity variables
as latent random state variables in a state-factorized POMDP, thereby transforming the
variable binding problem into an inference problem with which we can build upon state-of-
the-art techniques in amortized iterative variational inference [214, 215, 131] to use temporal
continuity and interactive feedback to infer the posterior distribution of the entity variables
given a sequence of observations and actions.

We present a framework for object-centric perception, prediction, and planning (OP3), a
model-based reinforcement learner that predicts and plans over entity variables inferred via
an interactive inference algorithm from raw visual observations. Empirically OP3 learns to
discover and bind information about actual objects in the environment to these entity variables
without any supervision on what these variables should correspond to. As all computation
within the entity-centric function is local in scope with respect to its input entity, the process
of modeling the dynamics or appearance of each object is protected from the computations
involved in modeling other objects, which allows OP3 to generalize to modeling a variable
number of objects in a variety of contexts with no re-training.
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Contributions: Our conceptual contribution is the use of entity abstraction to integrate
graphical models, symbolic computation, and neural networks in a model-based reinforcement
learning (RL) agent. This is enabled by our technical contribution: defining models as the
composition of locally-scoped entity-centric functions and the interactive inference algorithm
for grounding the abstract entity variables in raw visual observations without any supervision
on object identity. Empirically, we find that OP3 achieves two to three times greater accuracy
than state of the art video prediction models in solving novel single and multi-step block
stacking tasks.

3.2 Related Work

Representation learning for visual model-based reinforcement learning: Prior works
have proposed learning video prediction models [330, 73, 194, 94] to improve exploration [234]
and planning [95] in RL. However, such works and others that represent the scene with a single
representation vector [145, 352, 225, 235] may be susceptible to the binding problem [128, 262]
and must rely on data to learn that the same object in two different contexts can be modeled
similarly. But processing a disentangled latent state with a single function [329, 62, 185, 184,
114] or processing each disentangled factor in a permutation-sensitive manner [194, 341, 184]
(1) assumes a fixed number of entities that cannot be dynamically adjusted for generalizing
to more objects than in training and (2) has no constraints to enforce that multiple instances
of the same entity in the scene be modeled in the same way. For generalization, often the
particular arrangement of objects in a scene does not matter so much as what is constant
across scenes – properties of individual objects and inter-object relationships – which the
inductive biases of these prior works do not capture. The entity abstraction in OP3 enforces
symmetric processing of entity representations, thereby overcoming the limitations of these
prior works.

Unsupervised grounding of abstract entity variables in concrete objects: Prior
works that model entities and their interactions often pre-specify the identity of the entities [57,
27, 146, 163, 230, 24, 7], provide additional supervision [113, 149, 323, 344], or provide
additional specification such as segmentations [164], crops [100], or a simulator [334, 172].
Those that do not assume such additional information often factorize the entire scene into
pixel-level entities [271, 347, 79], which do not model objects as coherent wholes. None
of these works solve the problem of grounding the entities in raw observation, which is
crucial for autonomous learning and interaction. OP3 builds upon recently proposed ideas in
grounding entity representations via inference on a symmetrically factorized generative model
of static [128, 130, 131] and dynamic [317] scenes, whose advantage over other methods for
grounding [355, 88, 41, 182, 326] is the ability to refine the grounding with new information.
In contrast to other methods for binding in neural networks [200, 171, 292, 318], formulating
inference as a mechanism for variable binding allows us to model uncertainty in the values of
the variables.
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Figure 3.2: Comparison with other methods. Unlike other methods, OP3 is a fully probabilistic
factorized dynamic latent variable model, giving it several desirable properties. First, OP3 is naturally
suited for combinatorial generalization [28] because it enforces that local properties are invariant to
changes in global structure. Because every learnable component of the OP3 operates symmetrically
on each entity, including the mechanism that disambiguates entities itself (c.f. COBRA, which uses a
learned autoregressive network to disambiguates entities, and Transporter and C-SWMs, which use a
forward pass of a convolutional encoder for the global scene, rather than each entity), the weights of
OP3 are invariant to changes in the number of instances of an entity, as well as the number of entities
in the scene. Second, OP3’s recurrent structure makes it straightforward to enforce spatiotemporal
consistency, object permanence, and refine the grounding of its entity representations over time with
new information. In contrast, COBRA, Transporter, and C-SWMs all model single-step dynamics
and do not contain mechanisms for establishing a correspondence between the entity representations
predicted from the previous timestep with the entity representations inferred at the current timestep.

Comparison with similar work: The closest three works to OP3 are the Trans-
porter [184], COBRA [326], and C-SWMs [176]. The Transporter enforces a sparsity bias
to learn object keypoints, each represented as a feature vector at a pixel location, and the
method’s focus on keypoints has the advantage of enabling long-term object tracking, model-
ing articulated composite bodies such as joints, and scaling to dozens of objects. C-SWMs
learn entity representations using a contrastive loss, which has the advantage of overcoming
the difficulty in attending to small but relevant features as well as the large model capacity
requirements usually characteristic of the pixel reconstructive loss. COBRA uses the autore-
gressive attention-based MONet [41] architecture to obtain entity representations, which has
the advantage of being more computationally efficient and stable to train. Unlike works such
as [130, 88, 41, 131] that infer entity representations from static scenes, these works represent
complementary approaches to OP3 (Figure 3.2) for representing dynamic scenes.
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Symmetric processing of entities – processing each entity representation with the same
function, as OP3 does with its observation, dynamics, and refinement networks – enforces
the invariance that local properties are invariant to changes in global structure because it
prevents the processing of one entity from being affected by other entities. How symmetric
the process is for obtaining these entity representations from visual observation affects how
straightforward it is to directly transfer models of a single entity across different global
contexts, such as in modeling multiple instances of the same entity in the scene in a similar
way or in generalizing to modeling different numbers of objects than in training. OP3 can
exhibit this type of zero-shot transfer because the learnable components of its refinement
process are fully symmetric across entities, which prevents OP3 from overfitting to the
global structure of the scene. In contrast, the KeyNet encoder of the Transporter and the
CNN-encoder of C-SWMs associate the content of the entity representation with the index
of that entity in a global representation vector (Figure 3.1d), and this permutation-sensitive
mapping entangles the encoding of an entity with the global structure of the scene. COBRA
lies in between: it uses a learnable autoregressive attention network to infer segmentation
masks, which entangles local object segmentations with global structure but may provide a
useful bias for attending to salient objects, and symmetrically encodes entity representations
given these masks1.

As a recurrent probabilistic dynamic latent variable model, OP3 can refine the grounding
of its entity representations with new information from raw observations by simply applying
a belief update similar to that used in filtering for hidden Markov models. The Transporter,
COBRA, and C-SWMs all do not have mechanisms for updating the belief of the entity
representations with information from subsequent image frames. Without recurrent structure,
such methods rely on the assumption that a single forward pass of the encoder on a static
image is sufficient to disambiguate objects, but this assumption is not generally true: objects
can pop in and out of occlusion and what constitutes an object depends temporal cues,
especially in real world settings. Recurrent structure is built into the OP3 inference update
(Appendix 4), enabling OP3 to model object permanence under occlusion and refine its
object representations with new information in modeling real world videos (Figure 3.7).

3.3 Problem Formulation

Let x∗ denote a physical scene and h∗1:K denote the objects in the scene. Let X and A be
random variables for the image observation of the scene x∗ and the agent’s actions respectively.
In contrast to prior works [145] that use a single latent variable to represent the state of the
scene, we use a set of latent random variables H1:K to represent the state of the objects h∗1:K .
We use the term object to refer to h∗k, which is part of the physical world, and the term entity
to refer to Hk, which is part of our model of the physical world. The generative distribution

1A discussion of the advantages and disadvantages of using an attention-based entity disambiguation
method, which MONet and COBRA use, versus an iterative refinement method, which IODINE [131] and
OP3 use, is discussed in Greff et al. [131].
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of observations X(0:T ) and latent entities H
(0:T )
1:K from taking T actions a(0:T−1) is modeled as:

p
(
X(0:T ), H

(0:T )
1:K

∣∣∣ a(0:T−1)
)
= p

(
H

(0)
1:K

) T∏
t=1

p
(
H

(t)
1:K

∣∣∣ H(t−1)
1:K , a(t−1)

) T∏
t=0

p
(
X(t)

∣∣∣ H(t)
1:K

)
(3.1)

where p(X(t) |H(t)
1:K) and p(H

(t)
1:K |H

(t−1)
1:K , A(t−1)) are the observation and dynamics distribution

respectively shared across all timesteps t. Our goal is to build a model that, from simply
observing raw observations of random interactions, can generalize to solve novel compositional
object manipulation problems that the learner was never trained to do, such as building
various block towers during test time from only training to predict how blocks fall during
training time.

When all tasks follow the same dynamics we can achieve such generalization with a planning
algorithm if given a sequence of actions we could compute p(X(T+1:T+d) |X(0:T ), A(0:T+d−1)),
the posterior predictive distribution of observations d steps into the future. Approximating
this predictive distribution can be cast as a variational inference problem (Appdx. B.2)

for learning the parameters of an approximate observation distribution G(X(t) |H(t)
1:K), dy-

namics distribution D(H
(t)
1:K |H

(t−1)
1:K , A(t−1)), and a time-factorized recognition distribution

Q(H
(t)
1:K |H

(t−1)
1:K , X(t), A(t−1)) that maximize the evidence lower bound (ELBO), given by

L =
∑T

t=0 L
(t)
r − L(t)

c , where

Lt
r = Eht

1:K∼q(Ht
1:K |h0:t−1

1:K ,x1:t,a0:t−1)
[
logG

(
xt |ht1:K

)]
Lt
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[
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1:K |ht−1
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.

The ELBO pushes Q to produce states of the entities H1:K that contain information useful
for not only reconstructing the observations via G in L(t)

r but also for predicting the entities’

future states via D in L(t)
c . Sec. 3.4 will next offer our method for incorporating entity

abstraction into modeling the generative distribution and optimizing the ELBO.

3.4 Object-Centric Perception, Prediction, and

Planning (OP3)

The entity abstraction is derived from an assumption about symmetry: that the problem of
modeling a dynamic scene of multiple entities can be reduced to the problem of (1) modeling
a single entity and its interactions with an entity-centric function and (2) applying this
function to every entity in the scene. Our choice to represent a scene as a set of entities
exposes an avenue for directly encoding such a prior about symmetry that would otherwise
not be straightforward with a global state representation.

As shown in Fig. 3.1, a function F that respects the entity abstraction requires two
ingredients. The first ingredient (Sec. 3.4) is that F (H1:K) is expressed in part as the higher-
order operation map(f,H1:K) that broadcasts the same entity-centric function f(Hk) to every
entity variable Hk. This yields the benefit of automatically transferring learned knowledge
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R

Figure 3.3: (a) The observation model G models an observation image as a composition of sub-
images weighted by segmentation masks. The shades of gray in the masks indicate the depth δ from
the camera of the object that the sub-image depicts. (b) The graphical model of the generative
model of observations, where k indexes the entity, and i, j indexes the pixel. Z is the indicator
variable that signifies whether an object’s depth at a pixel is the closest to the camera.

for modeling an individual entity to all entities in the scene rather than learn such symmetry
from data. As f is a function that takes in a single generic entity variable Hk as argument,
the second ingredient (Sec. 3.4) should be a mechanism that binds information from the raw
observation X about a particular object h∗k to the variable Hk.

Entity Abstraction in the Observation and Dynamics Models

The functions of interest in model-based RL are the observation and dynamics models G and
D with which we seek to approximate the data-generating distribution in equation 3.1.

Observation Model: The observation model G(X |H1:K) approximates the distribution
p(X |H1:K), which models how the observation X is caused by the combination of entities
H1:K . We enforce the entity abstraction in G (in Fig. 3.1g) by applying the same entity-centric
function g(X |Hk) to each entity Hk, which we can implement using a mixture model at each
pixel (i, j):

G
(
X(ij) | H1:K

)
=

K∑
k=1

m(ij) (Hk) · g
(
X(ij) |Hk

)
, (3.2)

where g computes the mixture components that model how each individual entity Hk is
independently generated, combined via mixture weights m that model the entities’ relative
depth from the camera, the derivation of which is in Appdx. B.1.

Dynamics Model: The dynamics model D(H ′
1:K |H1:K , A) approximates the distribution

p(H ′
1:K |H1:K , A), which models how an action A intervenes on the entities H1:K to produce

their future values H ′
1:K . We enforce the entity abstraction in D (in Fig. 3.1f) by applying

the same entity-centric function d(H ′
k |Hk, H[ ̸=k], A) to each entity Hk, which reduces the



CHAPTER 3. REPRESENTING DYNAMIC ENTITIES 34

Figure 3.4: The dynamics model D models the time evolution of every object by symmetrically
applying the function d to each object. For a given object, d models the individual dynamics of
that object (do), embeds the action vector (da), computes the action’s effect on that object (dao),
computes each of the other objects’ effect on that object (doo), and aggregates these effects together
(dcomb).

problem of modeling how an action affects a scene with a combinatorially large space of
object configurations to the problem of simply modeling how an action affects a single generic
entity Hk and its interactions with the list of other entities H[ ̸=k]. Modeling the action as an
finer-grained intervention on a single entity rather than the entire scene is a benefit of using
local representations of entities rather than global representations of scenes.

However, at this point we still have to model the combinatorially large space of interactions
that a single entity could participate in. Therefore, we can further enforce a pairwise entity
abstraction on d by applying the same pairwise function doo(Hk, Hi) to each entity pair
(Hk, Hi), for i ∈ [ ̸= k]. Omitting the action to reduce clutter (the full form is written in
Appdx. B.6), the structure of the D therefore follows this form:

D (H ′
1:K | H1:K) =

K∏
k=1

d
(
H ′

k | Hk, H
interact
k

)
, where H interact

k =

K∑
i ̸=k

doo (Hi, Hk) . (3.3)

The entity abstraction therefore provides the flexibility to scale to modeling a variable number
of objects by solely learning a function d that operates on a single generic entity and a
function doo that operates on a single generic entity pair, both of which can be re-used for
across all entity instances.

Interactive Inference for Binding Object Properties to Latent
Variables

For the observation and dynamics models to operate from raw pixels hinges on the ability to
bind the properties of specific physical objects h∗1:K to the entity variables H1:K . For latent
variable models, we frame this variable binding problem as an inference problem: binding
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information about h∗1:K to H1:K can be cast as a problem of inferring the parameters of
p(H(0:T ) |x(0:T ), a(0:T−1)), the posterior distribution of H1:K given a sequence of interactions.
Maximizing the ELBO in Sec. 3.3 offers a method for learning the parameters of the
observation and dynamics models while simultaneously learning an approximation to the

posterior q(H(0:T ) |x(0:T ), a(0:T−1)) =
∏T

t=0Q(H
(t)
1:K |H

(t−1)
1:K , x(t), a(t)), which we have chosen

to factorize into a per-timestep recognition distribution Q shared across timesteps. We
also choose to enforce the entity abstraction on the process that computes the recognition
distribution Q (in Fig. 3.1e) by decomposing it into a recognition distribution q applied to
each entity:

Q
(
H

(t)
1:K |h

(t−1)
1:K , x(t), a(t)

)
=

K∏
k=1

q
(
H

(t)
k |h

(t−1)
k , x(t), a(t)

)
. (3.4)

Whereas a neural network encoder is often used to approximate the posterior [145, 340,
184], a single forward pass that computes q in parallel for each entity is insufficient to break
the symmetry for dividing responsibility of modeling different objects among the entity
variables [353] because the entities do not have the opportunity to communicate about which
part of the scene they are representing.

We therefore adopt an iterative inference approach [214] to compute the recognition
distribution Q, which has been shown to break symmetry among modeling objects in static
scenes [131]. Iterative inference computes the recognition distribution via a procedure, rather
than a single forward pass of an encoder, that iteratively refines an initial guess for the
posterior parameters λ1:K by using gradients from how well the generative model is able to
predict the observation based on the current posterior estimate. The initial guess provides
the noise to break the symmetry.

For scenes where position and color are enough for disambiguating objects, a static image
may be sufficient for inferring q. However, in interactive environments disambiguating objects
is more underconstrained because what constitutes an object depends on the goals of the
agent. We therefore incorporate actions into the amortized varitional filtering framework [215]
to develop an interactive inference algorithm (Appdx. B.4 and Fig. 3.5) that uses temporal
continuity and interactive feedback to disambiguate objects. Another benefit of enforcing en-
tity abstraction is that preserving temporal consistency on entities comes for free: information
about each object remains bound to its respective Hk through time, mixing with information
about other entities only through explicitly defined avenues, such as in the dynamics model.

Training at Different Timescales

The variational parameters λ1:K are the interface through which the neural networks fg, fd,
fq that respectively output the distribution parameters of G, D, and Q communicate. For
a particular dynamic scene, the execution of interactive inference optimizes the variational
parameters λ1:K . Across scene instances, we train the weights of fg, fd, fq by backpropagating
the ELBO through the entire inference procedure, spanning multiple timesteps. OP3 thus
learns at three different timescales: the variational parameters learn (1) across M steps of
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Figure 3.5: Amortized interactive inference alternates between refinement (pink) and dynamics
(orange) steps, iteratively updating the belief of λ1:K over time. λ̂ corresponds to the output of the
dynamics network, which serves as the initial estimate of λ that is subsequently refined by fG and
fQ . ▽ denotes the feedback used in the refinement process, which includes gradient information and
auxiliary inputs (Appdx. B.4).

inference within a single timestep and (2) across T timesteps within a scene instance, and
the network weights learn (3) across different scene instances.

Beyond next-step prediction, we can directly train to compute the posterior predictive
distribution p(X(T+1:T+d) |x(0:T ), a(0:T+d)) by sampling from the approximate posterior of H

(T )
1:K

with Q, rolling out the dynamics model D in latent space from these samples with a sequence
of d actions, and predicting the observation X(T+d) with the observation model G. This
approach to action-conditioned video prediction predicts future observations directly from
observations and actions, but with a bottleneck of K time-persistent entity-variables with
which the dynamics model D performs symbolic relational computation.

Object-Centric Planning

OP3 rollouts, computed as the posterior predictive distribution, can be integrated into the
standard visual model-predictive control [95] framework. Since interactive inference grounds
the entities H1:K in the actual objects h∗1:K depicted in the raw observation, this grounding
essentially gives OP3 access to a pointer to each object, enabling the rollouts to be in the
space of entities and their relations. These pointers enable OP3 to not merely predict in
the space of entities, but give OP3 access to an object-centric action space: for example,
instead of being restricted to the standard (pick xy, place xy) action space common to
many manipulation tasks, which often requires biased picking with a scripted policy [198,
170], these pointers enable us to compute a mapping (Appdx. B.7) between entity id and
pick xy, allowing OP3 to automatically use a (entity id, place xy) action space without
needing a scripted policy.
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Generalization to Various Tasks

We consider tasks defined in the same environment with the same physical laws that govern
appearance and dynamics. Tasks are differentiated by goals, in particular goal configurations
of objects. Building good cost functions for real world tasks is generally difficult [104] because
the underlying state of the environment is always unobserved and can only be modeled
through modeling observations. However, by representing the environment state as the state
of its entities, we may obtain finer-grained goal-specification without the need for manual
annotations [83]. Having rolled out OP3 to a particular timestep, we construct a cost function

to compare the predicted entity states H
(P )
1:K with the entity states H

(G)
1:K inferred from a goal

image by considering pairwise distances between the entities, another example of enforcing
the pairwise entity abstraction. Letting S ′ and S denote the set of goal and predicted entities
respectively, we define the form of the cost function via a composition of the task specific
distance function c operating on entity-pairs:

C
(
H

(G)
1:K , H

(P )
1:K

)
=
∑
a∈S′

min
b∈S

c
(
H(G)

a , H
(P )
b

)
, (3.5)

in which we pair each goal entity with the closest predicted entity and sum over the costs of
these pairs. Assuming a single action suffices to move an object to its desired goal position,
we can greedily plan each timestep by defining the cost to be mina∈S′,b∈S c(H

(G)
a , H

(P )
b ),

the pair with minimum distance, and removing the corresponding goal entity from further
consideration for future planning.

3.5 Experiments

Our experiments aim to study to what degree entity abstraction improves generalization,
planning, and modeling. Sec. 3.5 shows that from only training to predict how objects fall,
OP3 generalizes to solve various novel block stacking tasks with two to three times better
accuracy than a state-of-the-art video prediction model. Sec. 3.5 shows that OP3 can plan
for multiple steps in a difficult multi-object environment. Sec. 3.5 shows that OP3 learns to
ground its abstract entities in objects from real world videos.

Combinatorial Generalization without Object Supervision

We first investigate how well OP3 can learn object-based representations without addi-
tional object supervision, as well as how well OP3’s factorized representation can enable
combinatorial generalization for scenes with many objects.

Domain: In the MuJoCo [313] block stacking task introduced by Janner et al. [164] for
the O2P2 model, a block is raised in the air and the model must predict the steady-state
effects of dropping the block on a surface with multiple objects, which implicitly requires
modeling the effects of gravity and collisions. The agent is never trained to stack blocks, but
is tested on a suite of tasks where it must construct block tower specified by a goal image.
Janner et al. [164] showed that an object-centric model with access to ground truth object



CHAPTER 3. REPRESENTING DYNAMIC ENTITIES 38

SAVP O2P2 OP3 (ours)

24% 76% 82%

Table 3.1: Accuracy (%) of block tower builds by the SAVP baseline, the O2P2 oracle, and our
approach. O2P2 uses image segmentations whereas OP3 uses only raw images as input.

# Blocks SAVP OP3 (xy) OP3 (entity)

1 54% 73% 91%
2 28% 55% 80%
3 28% 41% 55%

Table 3.2: Accuracy (%) of multi-step planning for building block towers. (xy) means (pick xy,

place xy) action space while (entity) means (entity id, place xy) action space.

segmentations can solve these tasks with about 76% accuracy. We now consider whether
OP3 can do better, but without any supervision on object identity.

Setup: We train OP3 on the same dataset and evaluate on the same goal images as Janner
et al. [164]. While the training set contains up to five objects, the test set contains up to
nine objects, which are placed in specific structures (bridge, pyramid, etc.) not seen during
training. The actions are optimized using the cross-entropy method (CEM) [264], with each
sampled action evaluated by the greedy cost function described in Sec. 3.4. Accuracy is
evaluated using the metric defined by Janner et al. [164], which checks that all blocks are
within some threshold error of the goal.

Results: The two baselines, SAVP [194] and O2P2, represent the state-of-the-art in video
prediction and symmetric object-centric planning methods, respectively. SAVP models objects
with a fixed number of convolutional filters and does not process entities symmetrically. O2P2
does process entities symmetrically, but requires access to ground truth object segmentations.
As shown in Table 3.1, OP3 achieves better accuracy than O2P2, even without any ground
truth supervision on object identity, possibly because grounding the entities in the raw image
may provide a richer contextual representation than encoding each entity separately without
such global context as O2P2 does. OP3 achieves three times the accuracy of SAVP, which
suggests that symmetric modeling of entities is enables the flexibility to transfer knowledge
of dynamics of a single object to novel scenes with different configurations heights, color
combinations, and numbers of objects than those from the training distribution. Fig. B.1
and Fig. B.2 in the Appendix show that, by grounding its entities in objects of the scene
through inference, OP3’s predictions isolates only one object at a time without affecting the
predictions of other objects.
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Figure 3.6: (a) In the block stacking task from [164] with single-step greedy planning, OP3
generalizes better than both O2P2, an oracle model with access to image segmentations, and SAVP,
which does not enforce entity abstraction. (b) OP3 exhibits better multi-step planning with objects
already present in the scene. By planning with MPC using random pick locations (SAVP and OP3
(xy)), the sparsity of objects in the scene make it rare for random pick locations to actually pick the
objects. Because OP3 has access to pointers to the latent entities, we can use these to automatically
bias the pick locations to be at the object location, without any supervision (OP3 (entity)).

Multi-Step Planning

The goal of our second experiment is to understand how well OP3 can perform multi-step
planning by manipulating objects already present in the scene. We modify the block stacking
task by changing the action space to represent a picking and dropping location. This requires
reasoning over extended action sequences since moving objects out of place may be necessary.

Goals are specified with a goal image, and the initial scene contains all of the blocks
needed to build the desired structure. This task is more difficult because the agent may
have to move blocks out of the way before placing other ones which would require multi-step
planning. Furthermore, an action only successfully picks up a block if it intersects with the
block’s outline, which makes searching through the combinatorial space of plans a challenge.
As stated in Sec. 3.4, having a pointer to each object enables OP3 to plan in the space of
entities. We compare two different action spaces (pick xy, place xy) and (entity id,

place xy) to understand how automatically filtering for pick locations at actual locations of
objects enables better efficiency and performance in planning. Details for determining the
pick xy from entity id are in appendix B.7.

Results: We compare with SAVP, which uses the (pick xy, place xy) action space.
With this standard action space (Table 3.2) OP3 achieves between 1.5-2 times the accuracy
of SAVP. This performance gap increases to 2-3 times the accuracy when OP3 uses the
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(entity id, place xy) action space. The low performance of SAVP with only two blocks
highlights the difficulty of such combinatorial tasks for model-based RL methods, and
highlights the both the generalization and localization benefits of a model with entity
abstraction. Fig. 3.6b shows that OP3 is able to plan more efficiently, suggesting that OP3
may be a more effective model than SAVP in modeling combinatorial scenes. Fig. 3.7a shows
the execution of interactive inference during training, where OP3 alternates between four
refinement steps and one prediction step. Notice that OP3 infers entity representations
that decompose the scene into coherent objects and that entities that do not model objects
model the background. We also observe in the last column (t = 2) that OP3 predicts the
appearance of the green block even though the green block was partially occluded in the
previous timestep, which shows its ability to retain information across time.

Figure 3.7: Visualization of interactive inference for block-manipulation and real-world videos [82].
Here, OP3 interacts with the objects by executing pre-specified actions in order to disambiguate
objects already present in the scene by taking advantage of temporal continuity and receiving
feedback from how well its prediction of how an action affects an object compares with the ground
truth result. (a) OP3 does four refinement steps on the first image, and then 2 refinement steps
after each prediction. (b) We compare OP3, applied on dynamic videos, with IODINE, applied
independently to each frame of the video, to illustrate that using a dynamics model to propagate
information across time enables better object disambiguation. We observe that initially, both
OP3 (green circle) and IODINE (cyan circles) both disambiguate objects via color segmentation
because color is the only signal in a static image to group pixels. However, we observe that as time
progresses, OP3 separates the arm, object, and background into separate latents (purple) by using
its currently estimates latents predict the next observation and comparing this prediction with the
actually observed next observation. In contrast, applying IODINE on a per-frame basis does not
yield benefits of temporal consistency and interactive feedback (red).
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Real World Evaluation

The previous tasks used simulated environments with monochromatic objects. Now we study
how well OP3 scales to real world data with cluttered scenes, object ambiguity, and occlusions.
We evaluate OP3 on the dataset from Ebert et al. [82] which contains videos of a robotic
arm moving cloths and other deformable and multipart objects with varying textures.

We evaluate qualitative performance by visualizing the object segmentations and compare
against vanilla IODINE, which does not incorporate an interaction-based dynamics model
into the inference process. Fig. 3.7b highlights the strength of OP3 in preserving temporal
continuity and disambiguating objects in real world scenes. While IODINE can disambiguate
monochromatic objects in static images, we observe that it struggles to do more than just
color segmentation on more complicated images where movement is required to disambiguate
objects. In contrast, OP3 is able to use temporal information to obtain more accurate
segmentations, as seen in Fig. 3.7b where it initially performs color segmentation by grouping
the towel, arm, and dark container edges together, and then by observing the effects of
moving the arm, separates these entities into different groups.

3.6 Discussion

We have shown that enforcing the entity abstraction in a model-based reinforcement learner
improves generalization, planning, and modeling across various compositional multi-object
tasks. In particular, enforcing the entity abstraction provides the learner with a pointer to
each entity variable, enabling us to define functions that are local in scope with respect to
a particular entity, allowing knowledge about an entity in one context to directly transfer
to modeling the same entity in different contexts. In the physical world, entities are often
manifested as objects, and generalization in physical tasks such as robotic manipulation often
may require symbolic reasoning about objects and their interactions. However, the general
difficulty with using purely symbolic, abstract representations is that it is unclear how to
continuously update these representations with more raw data. OP3 frames such symbolic
entities as random variables in a dynamic latent variable model and infers and refines the
posterior of these entities over time with neural networks. This suggests a potential bridge to
connect abstract symbolic variables with the noisy, continuous, high-dimensional physical
world, opening a path to scaling robotic learning to more combinatorially complex tasks.
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Part II

Transformations
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Chapter 4

Representing Physical Transformations

4.1 Introduction

The power of an abstraction depends on its usefulness for solving new problems. Object
rearrangement [26] offers an intuitive setting for studying the problem of learning reusable
abstractions. Solving novel rearrangement problems requires an agent to not only infer object
representations without supervision, but also recognize that the same action for moving an
object between two locations can be reused for different objects in different contexts.

We study the simplest setting in simulation with pick-and-move action primitives that
move one object at a time. Even such a simple setting is challenging because the space of
object configurations is combinatorially large, resulting in long-horizon combinatorial task
spaces. We formulate rearrangement as an offline goal-conditioned reinforcement learning
(RL) problem, where the agent is pretrained on a experience buffer of sensorimotor interactions
and is evaluated on producing actions for rearranging objects specified in the input image to
satisfy constraints depicted in a goal image.

Offline RL methods [199] that do not infer factorized representations of entities struggle
to generalize to problems with more objects. But planning with object-centric methods that
do infer entities [319] is also not easy because the difficulties of long-horizon planning with
learned parametric models [165] are exacerbated in combinatorial spaces.

Instead of planning with parametric models, our work takes inspiration from non-
parametric planning methods that have shown success in combining neural networks with
graph search to generate long-horizon plans. These methods [342, 350, 205, 86] explicitly
construct a transition graph from the experience buffer and plan by searching through the
actions recorded in this transition graph with a learned distance metric. The advantage of
such approaches is the ability to stitch different path segments from offline data to solve
new problems. The disadvantage is that the non-parametric nature of such methods requires
transitions that will be used for solving new problems to have already been recorded in the
buffer, making conventional methods, which store entire observations monolithically, ill-suited
for combinatorial generalization. Fig. 4.2b shows that the same state transition can manifest
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Figure 4.1: NCS uses a two-level hierarchy to abstract sensorimotor interactions into a graph of
learned state transitions. The affected entity is in black.

for different objects and in different contexts, but monolithic non-parametric methods are not
constrained to recognize that all scenarios exhibit the same state transition at an abstract
level. This induces an blowup in the number of nodes of the search graph. To overcome this
problem, we devise a method that explicitly exploits the similarity among state transitions in
different contexts.

Our method, Neural Constraint Satisfaction (NCS), marries the strengths of non-
parametric planning with those of object-centric representations. Our main contribution is to
show that factorizing the traditionally monolithic entity representation into action-invariant
features (its type) and action-dependent features (its state) makes it possible during planning
and control to reuse action representations for different objects in different contexts, thereby
addressing the core combinatorial challenge in object rearrangement. To implement this
factorization, NCS constructs a two-level hierarchy (Fig. 4.1) to abstract the experience buffer
into a graph over state transitions of individual entities, separated from other contextual
entities (Fig. 4.3). To solve new rearrangement problems, NCS infers what state transitions
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can be taken given the current and goal image observations, re-composes sequences of state
transitions from the graph, and translates these transitions into actions.

In §4.3 we introduce a problem formulation that exposes the combinatorial structure
of object rearrangement tasks by explicitly modeling the independence, symmetry, and
factorization of latent entities. This reveals two challenges in object rearrangement which we
call the correspondence problem and combinatorial problem. In §4.4 we present NCS,
a method for controlling an agent that plans over and acts with emergent learned entity
representations, as a unified method for tackling both challenges. We show in §4.5 that NCS
outperforms both state-of-the-art offline RL methods and object-centric shooting-based
planning methods in simulated rearrangement problems.

4.2 Related Work

The problem of discovering re-composable representations is generally motivated by combina-
torial task spaces. The traditional approach to enforcing this compositional inductive bias is
to compactly represent the task space with MDPs that human-defined abstractions of entities,
such as factored MDPs [35, 34, 137], relational MDPs [322, 138, 108], and object-oriented
MDPs [76, 1]. Approaches building off of such symbolic abstractions [57, 28, 346, 24, 350] do
not address the problem of how such entity abstractions arise from raw data. Our work is
one of the first to learn compact representations of combinatorial task spaces directly from
raw sensorimotor data.

Recent object-centric methods [130, 317, 132, 129, 208, 177, 356, 290] do learn entity
representations, as well as their transformations [119, 120], from sensorimotor data, but
only do so for modeling images and video, rather than for taking actions. Instead, we study
how well entity-representations can reused for solving tasks. Kulkarni et al. [184] considers
how object representations improve exploration, but we consider the offline setting which
requires zero-shot generalization. Veerapaneni et al. [319] also considers on control tasks, but
their shooting-based planning method in suffers from compounding errors as other learned
single-step models do [165], while our hierarchical non-parametric approach enables us to
plan for longer horizons.

Non-parametric approaches have recently become popular for long horizon planning [342,
350, 205, 86, 351], but the drawback of these approaches is they represent the entire scenes
monolithically, which causes a blowup of nodes in combinatorial task spaces, making it
infeasible for these methods to be applied in rearrangement tasks that require generalizing to
novel object configurations with different numbers of objects. Similar to our work, Huang et al.
[157] also tackles rearrangement problems by searching over a constructed latent task graph,
but they require a demonstration during deployment time, whereas NCS does not because it
reuses context-agnostic state transitions that were constructed during training. [351] conducts
non-parametric planning directly on abstract subgoals rather than object-centric states —
while similar, the downside of using subgoals rather than abstract states is that those subgoals
are not used to represent equivalent states and therefore cannot generalize to new states at
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Figure 4.2: Solving object rearrangement requires solving two challenges. (a) The
correspondence problem is the problem of abstracting raw sensorimotor signal into representations
of entities such that there is a correspondence between how an agent intervenes on an entity and how
its action affects an object in the environment. k denotes the index of the entity, z denotes its type
(shown with solid colors), and s denotes its state (shown with textures). The entity representing
the moved object is in black. (b) The combinatorial problem is the problem of representing
the combinatorial task space in a way that enables an agent to transfer knowledge of a given state
transition (indicated by the dotted circle) to different contexts.

test time. Our method, NCS, captures both reachability between known states and new,
unseen states that can be mapped to the same abstract state.

4.3 Goal-Conditioned Reinforcement Learning with

Entities

This section introduces a set of modifications to the standard goal-conditioned partially
observed Markov decision process (POMDP) problem formulation that explicitly expose the
combinatorial structure of object rearrangement tasks of the following kind: “Sequentially
move a subset (or all) of the objects depicted in the current observation o1 to satisfy the
constraints depicted in the goal image og.” We assume an offline RL setting, where the agent
is trained on a buffer of transitions {(o1, a1, ...aT−1, oT )}Nn=1 and evaluated on tasks specified
as (o1, og).

The standard POMDP problem formulation assumes an observation space O, action
space A, latent space H, goal space G, observation function E : H → O, transition function
P : H×A → H, and reward function R : H× G → R. Monolithically modeling the latent
space this way does not expose commonalities among different scenes, such as scenes that
contain objects in the same location or scenes with multiple instances of the same type of
object, which prevents us from designing control algorithms that exploit these commonalities
to collapse the combinatorial task space.

To overcome this issue, we introduce structural assumptions of independence, symmetry,
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and factorization to the standard formulation. The independence assumption encodes the
intuitive property that objects can be acted upon without affecting other objects. This is
implemented by decomposing the latent space into independent subspaces asH = H1×...×HK ,
one for each independent degree of freedom (e.g. object) in the scene. The symmetry
assumption encodes the property that the the same physical laws apply to all objects. This
is implemented by constraining the observation function E, transition function P and reward
function R to be shared across all subspaces, thereby treating H1 = ... = HK . We define an
entity1 h ∈ Hk as a member of such a subspace, and an entity-set as the set of entities
h = (h1, ..., hK) that explain an observation, similar to Diuk, Cohen, and Littman [76]
and Weld [328]. Lastly, the factorization assumption encodes that each subspace can be
decomposed as Hk = Z ×S, where the z ∈ Z represents the entity’s action-invariant features
like appearance, and s ∈ S represents its action-dependent features like location. We call z
the type and s the state.

Introducing these assumptions solves the problem of modeling the commonalities among
different scenes stated above. It allows us to describe scenes that contain objects in the same
location by assigning entities in different scenes to share the same state s. It allows us to
describe a scene with multiple instances of the same type of object by assigning multiple
entities in the scene to share the same type z. This formulation also makes it natural to
express goals as a set of constraints hg = (h1g, ..., h

k
g). To solve a task is to take actions that

transform the subset of entities in the initial observation o1 whose types are given by zg to
new states specified by sg.

Exposing this structure in our problem formulation enables us to exploit it by designing
methods that represent entities in an independent, symmetric, and factorized way and that
use these three properties to collapse the combinatorial task space. To do so involves solving
two problems: the correspondence problem of learning to represent entities in this way
and the combinatorial problem of using these properties to make planning tractable.
The correspondence problem is hard because it assumes no human supervision of what the
entities are. It also goes beyond problems solved by existing object-centric methods for
images and videos because it involves action: it requires representing entities such that
there is a correspondence between how the agent models how its actions affect entities and
how its actions actually affect objects in the environment. The combinatorial problem goes
beyond problems solved by methods for solving object-oriented MDPs, relational MDPs,
and factorized MDPs because it requires the agent to recognize whether and how previously
observed state transitions can be used for new problems, using learned, not human-defined,
entity representations. The natural evaluation criterion for both problems is to test to what
extent an agent can zero-shot-generalize to solve rearrangement tasks involving new sets of
object configurations that aree disjoint from the configurations observed in training, assuming
that the training configurations have collectively covered Z and S. Our experiments in §4.5
test exactly this.

1We use “object” to refer to an independent degree of freedom in the environment, and “entity” to refer
to the agent’s representation of the object.
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Figure 4.3: Modeling. NCS constructs a two-level abstraction hierarchy to model transitions in the
experience buffer. (a) Level 1: NCS learns to infer a set of entities from sensorimotor transitions
with pick-and-move actions, in which one entity is moved per transition. We enforce that the
type z (shown with solid colors) of an entity remains unchanged between time-steps. The GPT
dynamics model learns to sparsely predict the states s (shown with textures) of the entities at the
next time-step. This addresses the correspondence problem by forcing the network to use predict
and reconstruct observations through the entity bottleneck. (b) Level 2: NCS abstracts transitions
over entity-sets into transitions over states of individual entities, constructing a graph where states
are nodes and transitions between them are edges. This is done by clustering entity transitions that
share similar initial states and final states. This addresses the combinatorial problem by making it
possible for state transitions to reused for different entity types and with different context entities.

Simplifying assumptions To focus on the combinatorial nature of rearrangement, we are
not interested in low-level manipulation, so we represent each action as (w,∆w), where w
are Cartesian coordinates w = (x, y, z). We assume actions sparsely affect one entity at a
time and how an action affects an object’s state does not depend on its identity. We are
not interested in handling occlusion, so we assume that objects are constrained to the xy
plane or xz plane and are directly visible to the camera. Following prior work [147, 47], we
make a bisimulation assumption that the state space can be partitioned into a finite set of
equivalence classes, and that there is one action primitive that transitions between each pair
of equivalence classes. Lastly, we assume objects can be moved independently. Preliminary
experiments suggest that NCS can be augmented to support tasks like block-stacking that
involve dependencies among objects, but how to handle these dependencies would warrant a
standalone treatment in future work.

4.4 Neural Constraint Satisfaction

In §4.3 we introduced a structured problem formulation for object rearrangement and reduced
it to solving the correspondence and combinatorial problems. We now present our method,
Neural Constraint Satisfaction (NCS) as a method for controlling an agent that plans over
and acts with a state transition graph constructed from learned entity representations. This
section is divided into two parts: modeling and control. The modeling part is further divided
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into two parts: representation learning and graph construction. The representation learning
part addresses the correspondence problem, while the graph construction and control parts
address the combinatorial problem.

Modeling

The modeling component of NCS abstracts the experience buffer into a factorized state
transition graph that can be reused across different rearrangement problems. Below we
describe how we first train an object-centric world model to infer entities that are independent,
symmetric, and factorized and then construct the state transition graph by clustering entities
with similar state transitions. These two steps comprise a two-level abstraction hierarchy
over the raw sensorimotor transitions.

Level 1: representation learning The first level concerns the unsupervised learning of
entity representations that factorizes into their action-invariant features (their type) and their
action-dependent features (their state). Concretely our goal is to model a video transition
ot, at → ot+1 as a transition over entity-sets ht, at → ht+1, where each entity hk is factorized
as a pair hk = (zk, sk). Given our setting where an action moves only a single object in the
environment at a time, successful representation learning implies three criteria: (1) the world
model properly identifies the individual entity hk corresponding to the moved object, (2) only
the state sk of that entity should change, while its type zk should remain unaffected, and (3)
other entity representations h̸=k should also remain unaffected. Criteria (1) and (3) rule out
standard approaches that represent an entire scene with a monolithic representation, so we
need an object-centric world model instead of a monolithic world model. But criterion (2)
rules out standard object-centric world models (e.g. [319, 85, 291]), which do not decompose
entity representations into action-invariant and action-dependent features.

Because the parameters of a mixture model are independent and symmetric by construction,
we propose to construct our factorized object-centric world model as an equivariant sequential
Bayesian filter with a mixture model as the latent state, where entity representations are the
parameters of the mixture components. Recall that a filter consists of two major components,
latent estimation and latent prediction. We implement latent estimation with the state-
of-the-art slot attention (SA) [207], based on the connection Chang, Griffiths, and Levine
[53] between mixture components and SA slots. We implement latent prediction with the
transformer decoder (TFD) architecture [318] because TFD is equivariant with respect to its
inputs. We denote the SA slots as λ and SA attn masks as α. We split each slot λ ∈ Rn

into two halves λz ∈ Rn
2 and λs ∈ Rn

2 . Given observations o and actions a, we embed the
actions as ã with an feedforward network and implement the filter as:

λ̂1 ∼ Gaussian λ̂st+1 = TFD (queries = λst , keys/values = [λs, ãt])

λt,αt = SA
(
λ̂t, ot

)
λ̂t+1 =

[
λzt , λ̂

s
t+1

]
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where [·, ·] is the concatenation operator, λ̂ is the output of the latent prediction step,
and λ is the output of the latent estimation step. We embed this filter inside the SLATE
backbone [289] and call this implementation dynamic SLATE (dSLATE).

By constructing λ̂zt+1 as a copy of λzt , dSLATE enforces the information contained λz

to be action-invariant, hence we treat λz as dSLATE’s representation of the entities’ types.
As for the entities’ states, either the action-dependent part of the slots λs or the attention
masks α can be used. Using α may be sufficient and more intuitive to analyze if all objects
looks similar and there is no occlusion, while λs may be more suitable in other cases, and
we provide an example of each in the experiments. To simplify notation going forward and
connect with the notation in §4.3, we use h to refer to (λ,α), use z to refer to λz, and use s
to refer to λs or α. Thus by construction dSLATE satisfies criterion (2). Empirically we
observe that it satisfies criterion (1) as well as SLATE does, and that TFD learns to sparsely
edit λst , thereby satisfying criterion (3).

Algorithm 1 Building the Graph

1: input model, buffer
2: for {(ot, at, ot+1)}n in buffer do
3: # infer entities from transition

4: {(ht, at,ht+1)}n ← model ({ot, at, ot+1}n).
5: # identify which entity changed in transition

6: {(hkt , at, hkt+1)}n ← isolate ({(ht, at,ht+1)}n)
7: end for
8: # partition transitions by clustering entities

9: {s∗}Mm=1 ← cluster
(
{(skt , at, skt+1)}Nn=1

)
10: # transitions between clusters are edges

11: initialize graph with nodes s
[m]
∗ , for m ∈ [1 :M ]

12: for each {(hkt , at, hkt+1)}n do
13: # infer cluster assignments

14: [i], [j]← bind
(
hkt
)
, bind

(
hkt+1

)
15: # tag edge with action at

16: graph.edges[i, j]← create-edge
(
s
[i]
∗

at→ s
[j]
∗

)
17: end for
18: return graph

Level 2: graph construction Having produced from the first level a buffer of entity-
set transitions {ht, at → ht+1}Nn=1, the goal of the second level (Fig. 4.3b) is to use this
buffer to construct a factorized state transition graph. The key to solving the combinatorial
problem is to construct the edges of this graph to represent not state transitions of entire
entity-sets (i.e. st, at → st+1) as prior work does [350], but state transitions of individual
entities (i.e. skt , at → skt+1). Constructing edges over transitions for individual entities rather
than entity sets enables the same transition to be reused with different context entities



CHAPTER 4. REPRESENTING PHYSICAL TRANSFORMATIONS 51

present. Constructing edges over state transitions instead of entity transitions enables the
same transition to be reused across entities with different types. This would enable the
agent to recompose sequences of previously encountered state transitions for solving new
rearrangement problems with different entities in different contexts. Henceforth our use of
“state” refers specifically to the state of individual entity unless otherwise stated.

Given our bisimulation assumption that states can be partitioned into a finite number
of groups, we construct our graph such that nodes represent equivalence classes among
individual states and the edges represent actions that transform a state from one equivalence
class to another. To implement this we cluster state transitions of individual entities in
the buffer, which reduces to clustering the states of individual entities before and after the
transition. We treat each cluster centroid as a node in the graph, and an edge between nodes
is tagged with the single action that transforms one node’s state to another’s. The algorithm
for constructing the graph is shown in Alg. 1 and involves three steps: (1) isolating the state
transition of an individual entity from the state transition of the entity-set, (2) creating graph
nodes from state clusters, and (3) tagging graph edges with actions.

The first step is to identify which object was moved in each transition, i.e. identifying
the entity hk that dSLATE predicted was affected by at in the transition (ht, at,ht+1). We
implement a function isolate that achieves this by solving k = argmaxk′∈{1,...,K} d(sk

′
t , s

k′
t+1)

to identify the index of the entity whose state has most changed during the transition, where
d(·, ·) is a distance function, detailed in Table C.2 of the Appendix. This converts the buffer
of transitions over entity-sets ht, at → ht+1 into a buffer of transitions over individual entities
hkt , at → hkt+1.

The second step is to cluster the states before and after each transition. We implement
a function cluster that uses K-means to returns graph nodes as the centroids {s∗}Mm=1 of
these state clusters.

The third step is to connect the nodes with edges that record actions that actually were
taken in the buffer to transform one state to the next. We implement a function bind that,
given entity hk, returns the index [i] of the centroid s∗ that is the nearest neighbor to the
entity’s state sk. For each entity transition (hkt , at, h

k
t+1) we bind entity hkt and hkt+1 to their

associated nodes s
[i]
∗ and s

[j]
∗ and create an edge between s

[i]
∗ and s

[j]
∗ tagged with action a,

overwriting previous edges based on the assumption that with a proper clustering there
should only be one action per pair of nodes.

In our experiments both cluster and bind use the same distance metric (see Table C.1
in the Appendix), but other clustering algorithms and distance metrics can also be used.
Our experiments (Fig. C.5) also show that it is also possible to have more than one action
primitive per pair of nodes as long as these actions all map between states bound to the same
pair of nodes.
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Figure 4.4: Planning and control. Given a rearrangement problem specified only by the current
and goal observations (o0, og), NCS decomposes the rearrangement problem into one subproblem
(ot, og) per entity. (a) shows the computations NCS uses to solve each subproblem and (b-d) show
these steps in context. For each subproblem (ot, og), NCS infers entities from both the current and
goal observations. The states of the goal entities indicate constraints on the desired locations of
the current entities. (b) NCS aligns the indices of the current entities to those of the goal entities
with corresponding types. (c) It selects the index k of the next goal constraint skg to satisfy, as
indicated by the red box. The selected goal constraint and current entity are also colored black in
(a), and note that their types are the same but states are different; we want to choose the action
to transform the state of the current entity to the state of the goal constraint. (d) It binds the
selected goal constraint and its corresponding current entity to nodes s∗ and s′∗ in the transition
graph. Lastly, it identifies the edge connecting those two nodes and executes the action tagged to
that edge in the environment.
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Control

To solve new rearrangement problems, we re-compose sequences of state transitions from
the graph. Specifically, the agent decomposes the rearrangement problem into a set of
per-entity subproblems (e.g. initial and goal positions for individual objects), searches
the transition graph for a transition that transforms the current entity’s state to its goal
state, and executes the action tagged with this transition in the environment. This problem
decomposition is possible because the transitions in our graph are constructed to be agnostic
to type and context, enabling different rearrangement problems to share solutions to the same
subproblems. The core challenge in deciding which transitions to compose is in determining
which transitions are possible to compose. That is, the agent must determine which nodes
in the graph correspond to the given goal constraints and which nodes correspond to the
entities in the current observation, but the current entities ht and goal constraints hg must
themselves be inferred from the current and goal observations ot and og, requiring the agent
to infer both what to do and how to do it purely from its sensorimotor interface.

Algorithm 2 Action Selection

1: given model, graph
2: input goal og, observation ot
3: # infer goal constraints and current entities

4: hg,ht ← model (og) , model (ot)
5: align entity indices of ht with those of hg

6: π ← align (ht,hg)
7: permute indices of ht according to π

8: ht ← (h
π[1]
t , ..., h

π[K]
t )

9: identify kth goal constraint to satisfy next

10: k ← select-constraint (ht,hg)
11: infer cluster assignments

12: [i], [j]← bind
(
hkt
)
, bind

(
hkg
)

13: action that transforms node [i] to node [j]

14: return graph.edges[i, j].action

Our approach takes four steps, summarized in Alg. 2 and Fig. 4.4. In the first step, we
use dSLATE to infer ht and hg from ot and og (e.g. the positions and types of all objects
in the initial and goal images). In the second step (Fig. 4.4b), because of the permutation
symmetry among entities, we find a bipartite matching that matches each entities in hjg with a
corresponding entity in hkt that shares the same type and permute the indices k of ht to match
those of hg. We implement a function align that uses the Hungarian algorithm to perform
this matching over (z1t , ...z

K
t ) and (z1g , ...z

K
g ), with Euclidean distance as the matching cost.

The third step selects which goal constraint hkg to satisfy next (Fig. 4.4c). W implement this
select-constraint procedure by determining which constraint hkg has the highest difference
in state with its counterpart hkt , which reduces to solving the same argmax problem as in
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(a) block-rearrange (b) robogym-rearrange

Figure 4.5: Our environments are block-rearrange and robogym-rearrange. Fig. 4.5a shows a
complete specification of goal constraints; Fig. 4.5b shows a partial specification that only specifies
the desired locations for two objects.

isolate with the same distance function used in isolate. The last step chooses an action
given the chosen goal constraint hkg and its counterpart hkt , by binding hkt and hkg to the
graph based on their state components and returning the action tagged to the edge between
their respective nodes (Fig. 4.4d). If an edge does not exist between the inferred nodes, then
we simply take a random action.

4.5 Experiments

We have proposed NCS as a solution to the object rearrangement problem that addresses two
challenges: NCS addresses the correspondence problem by learning a factorized object-centric
world model with dSLATE and it addresses the combinatorial problem by abstracting entity
representations into a queryable state transition graph. Now we test NCS’s efficacy in solving
both problems.

The key question is whether NCS is better than state-of-the-art offline RL algorithms in
generalizing over combinatorially-structured task spaces from perceptual input. As stated in
§4.3, the crucial test for answering this question is to evaluate all methods on solving new
rearrangement problems with a disjoint set of object configurations from those encountered
during training. The most straightforward way to find a disjoint subset of the combinatorial
space is to evaluate with a novel number of objects. We compare NCS to several offline RL
baselines and ablations on two rearrangement environments and find a significant gap in
performance between our method and the next best method.

Environments. In block-rearrange (Fig. 4.5a), all objects are the same size, shape, and
orientation. S covers 16 locations in a grid. Z is the continuous space of red-green-blue
values from 0 to 1. robogym-rearrange (Fig. 4.5b) is adapte from the OpenAI [239] rearrange
environment and removes the assumptions from block-rearrange that all objects have the
same size, shape, and orientation. The objects are uniformly sampled from a set of 94
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meshes consisting of the YCB object set [44] and a set of basic geometric shapes, with colors
sampled from a set of 13. Although locations are not pre-defined in robogym-rearrange as
in block-rearrange, in practice there is a limit to the number of ways to arrange objects on
the table to still be visible to the camera, which makes the bisimulation still a reasonable
assumption here. For block-rearrange we use the SA attention mask α as the state s, and for
robogym-rearrange we use the action-dependent part of the SA slot λs as the state s.

Experimental setup. We evaluate two settings: complete and partial. In the complete
setting, the goal image shows all objects in new locations. The partial setting is underspecified:
only a subset of objects have associated goal constraints (Fig. 4.5b). In block-rearrange,
all constraints are unsatisfied in the start state. In robogym-rearrange, four constraints are
unsatisfied in the start state. Our metric is the fractional success rate, the average change in
the number of satisfied constraints divided by the number of initially unsatisfied constraints.

The experiences buffer consists of 5000 trajectories showing 4 objects. We evaluate on 4-7
objects for 100 episodes across 10 seeds. Even if we assume full access to the underlying state
space, the task spaces are enormous: with |S| object locations and k objects, the number of
possible trajectories over object configurations of t timesteps is

(|S|
k

)
× (k× (|S| − k))t, which

amounts to searching over more than 1016 possible trajectories for the complete specification
setting of block-rearrange with k = 7 objects (see Appdx. C.5 for derivation). Our setting of
assuming access to only pixels makes the problem even harder.

Baselines. The claim of this chapter are that, for object rearrangement, (1) object-centric
methods fare better than monolithically-structured offline RL methods (2) non-parametric
graph search fares better than parametric planning for object rearrangement and (3) a
factorized graph search over state transitions of individual entities fares better than a
non-factorized graph search over state transitions over entire entity-sets. To test (1), we
compare with state-of-the-art pixel-based behavior cloning (BC) and implicit Q-learning (IQL)
implementations based off of [183]. To test (2), we compare against a version of object-centric
model predictive control (MPC) [319] that uses the cross entropy method over dSLATE
rollouts. To test (3), we compare against an ablation (abbrv. NF, for “non-factorized”) that
constructs a graph with state transitions of entity-sets than of individual states. Our last
baseline just takes random actions (Rand).

Results

Figure 4.1 shows that NCS performs significantly better than all baselines (about a 5-10x
improvement), thereby refuting the alternatives to our claims. Most of the baselines perform
no better or only slightly better than random. We observe that it is indeed difficult to perform
shooting-based planning with an entity-centric world model trained to predict a single step
forward [165]: the MPC baseline performs poorly because its rollouts are poor, and it is
significantly more computationally expensive to run (11 hours instead of 20 minutes). We
also observe that the NF ablation performs poorly, showing the importance of factorizing the
non-parametric graph search. Additional results are in the Appendix.
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Table 4.1: This table compares NCS with various baselines in the complete and partial evaluation
settings of block-rearrange and robogym-rearrange. The methods were trained on 4 objects and
evaluated on generalizing to 4, 5, 6, and 7 objects. We report the fractional success rate, with a
standard error computed over 10 seeds.

(a) block-rearrange, complete specification.

Method 4 5 6 7

NCS (ours) 0.94 ± 0.01 0.93 ± 0.00 0.93 ± 0.00 0.89 ± 0.00

Rand 0.06 ± 0.02 0.07 ± 0.03 0.07 ± 0.03 0.08 ± 0.03

MPC 0.16 ± 0.06 0.12 ± 0.04 0.11 ± 0.04 0.10 ± 0.03

NF 0.07 ± 0.03 0.06 ± 0.02 0.07 ± 0.02 0.08 ± 0.03

IQL 0.07 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

BC 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

(b) block-rearrange, complete specification.

Method 4 5 6 7

NCS (ours) 0.89 ± 0.01 0.86 ± 0.01 0.78 ± 0.01 0.70 ± 0.01

Rand 0.06 ± 0.02 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.03

MPC 0.13 ± 0.05 0.11 ± 0.04 0.10 ± 0.04 0.08 ± 0.03

NF 0.06 ± 0.03 0.07 ± 0.03 0.08 ± 0.03 0.07 ± 0.03

IQL 0.01 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.00

BC 0.05 ± 0.01 0.04 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

(c) robogym-rearrange, complete specification.

Method 4 5 6 7

NCS (ours) 0.64 ± 0.01 0.47 ± 0.01 0.49 ± 0.01 0.41 ± 0.01

Rand 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MPC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

NF 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

IQL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

BC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(d) robogym-rearrange, partial specification.
Method 4 5 6 7

NCS (ours) 0.47 ± 0.01 0.33 ± 0.01 0.27 ± 0.01 0.22 ± 0.01

Rand 0.005 ± 0.001 0.001 ± 0.00 0.002 ± 0.001 0.001 ± 0.00

MPC 0.00 ± 0.00 0.001 ± 0.001 0.00 ± 0.00 0.00 ± 0.00

NF 0.005 ± 0.001 0.001 ± 0.00 0.002 ± 0.001 0.001 ± 0.00

IQL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

BC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Analysis

Having quantitatively shown the relative strength of NCS in combinatorial generalization from
pixels, we now examine how our key design choices of (1) factorizing entity representations
into action-invariant and action-dependent features and (2) querying a state transition graph
constructed from action-dependent features contribute to NCS’s behavior and performance. Is
copying the entity type during latent prediction as dSLATE does sufficient for disentangling the
location and appearance of objects into the state and type respectively? Does dSLATE learn
to sparsely modify only the entity that corresponds to the moved object in the sensorimotor
transition, such that the nodes of the state transition graph meaningfully can be reused
across entities? These are nontrivial capabilities because NCS is self-supervised on only the
experience buffer.

Fig. 4.4b, which visualizes the align, select-constraint, and bind functions of NCS
on robogym-rearrange, suggests that, at least for the simplified setting we consider, the answer
to both questions is yes. NCS has learned to represent different objects in different slots and
construct a graph whose nodes capture location information. Fig. 4.6 shows a t-SNE [315]
plot that clusters entities inferred from the robogym environment. Because we have not
provided supervision on what states should represent, we observe there are multiple cluster
indices that map onto similar groups of points. This reveals that multiple different regions of
S appear to be modeling similar states. We also tried merging redundant clusters, but found
that this did not improve quantitative performance.
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Figure 4.6: Nodes as equivalent classes over states. We show a clustering of states inferred
for robogym-rearrange, where each cluster centroid is treated as a node in our transition graph. A
subset of clusters are labeled with an attention mask computed by averaging the slot attention
masks for the entities associated with the cluster.

4.6 Discussion

Object rearrangement offers an intuitive setting for studying how an agent can learn reusable
abstractions from its sensorimotor experience. This chapter takes a first step toward con-
necting the world of symbolic planning with human-defined abstractions and the world of
representation learning with deep networks by introducing NCS. NCS is a method for con-
trolling an agent that plans over and acts with state transition graph constructed with entity
representations learned from raw sensorimotor transitions, without any other supervision. We
showed that factorizing the entity representation into action-invariant and action-dependent
features are important for solving the correspondence and combinatorial problems that make
the object rearrangement difficult, and enable NCS to significantly outperform existing meth-
ods on combinatorial generalization in object rearrangement. The implementation of NCS
provides a proof-of-concept for how learning reusable abstractions might be done, which we
hope inspires future work to engineer methods like NCS for real-world settings.



58

Chapter 5

Representing Virtual Transformations

5.1 Introduction

This chapter seeks to tackle the question of how to build machines that leverage prior
experience to solve more complex problems than they have previously encountered. How
does a learner represent prior experience? How does a learner apply what it has learned to
solve new problems? Motivated by these questions, this chapter aims to formalize the idea of,
as well as to develop an understanding of the machinery for, compositional generalization
in problems that exhibit compositional structure. The solutions for such problems can be
found by composing in sequence a small set of reusable partial solutions, each of which
tackles a subproblem of a larger problem. The central contributions of this chapter are to
frame the shared structure across multiple tasks in terms of a compositional problem graph,
propose compositional generalization as an evaluation scheme to test the degree a learner can
apply previously learned knowledge to solve new problems, and introduce the compositional
recursive learner, a domain-general framework1 for sequentially composing representation
transformations that each solve a subproblem of a larger problem.

The key to our approach is recasting the problem of generalization as a problem of learning
algorithmic procedures over representation transformations. A solution to a (sub)problem is
a transformation between its input and output representations, and a solution to a larger
problem composes these subsolutions together. Therefore, representing and leveraging prior
problem-solving experience amounts to learning a set of reusable primitive transformations and
their means of composition that reflect the structural properties of the problem distribution.

This chapter introduces the compositional recursive learner (CRL), a framework for
learning both these transformations and their composition together with sparse supervision,
taking a step beyond other approaches that have assumed either pre-specified transformation
or composition rules (Sec. 5.5). CRL learns a modular recursive program that iteratively
re-represents the input representation into more familiar representations it knows how to
compute with. In this framework, a transformation between representations is encapsulated

1https://github.com/mbchang/crl

https://github.com/mbchang/crl
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into a computational module, and the overall program is the sequential combination of the
inputs and outputs of these modules, whose application are decided by a controller.

What sort of training scheme would encourage the spontaneous specialization of the
modules around the compositional structure of the problem distribution? First, exposing
the learner to a diverse distribution of compositional problems helps it pattern-match across
problems to distill out common functionality that it can capture in its modules for future use.
Second, enforcing that each module have only a local view of the global problem encourages
task-agnostic functionality that prevents the learner from overfitting to the empirical training
distribution; two ways to do this are to constrain the model class of the modules and to
hide the task specification from the modules. Third, training the learner with a curriculum
encourages the learner to build off old solutions to solve new problems by re-representing the
new problem into one it knows how to solve, rather than learning from scratch.

How should the learner learn to use these modules to exploit the compositional structure
of the problem distribution? We can frame the decision of which computation to execute as
a reinforcement learning problem in the following manner. The application of a sequence
of modules can be likened to the execution trace of the program that CRL automatically
constructs, where a computation is the application of a module to the output of a previous
computation. The automatic construction of the program can be formulated as the solution
to a sequential decision-making problem in a meta-level Markov decision process (MDP) [148],
where the state space is the learner’s internal states of computation and the action space
is the set of modules. Framing the construction of a program as a reinforcement learning
problem allows us to use techniques in deep reinforcement learning to implement loops and
recursion, as well as decide on which part of the current state of computation to apply a
module, to re-use sub-solutions to solve a larger problem.

Our experiments on solving multilingual arithmetic problems and recognizing spatially
transformed MNIST digits [193] show that the above proposed training scheme prescribes a
type of reformulation: re-representing a new problem in terms of other problems by implicitly
making an analogy between their solutions. We also show that our meta-reasoning approach
for deciding what modules to execute achieves better generalization to more complex problems
than monolithic learners that are not explicitly compositional.

5.2 Compositional Generalization

Solving a problem simply means representing it so as to
make the solution transparent.

Simon [286]

Humans navigate foreign cities and understand novel conversations despite only observing
a tiny fraction of the true distribution of the world. Perhaps they can extrapolate in this
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Figure 5.1: (a) Consider a multitask family of problems, whose subproblems are shared within
and across problems. Standard approaches either (b) train a separate learner per task or (c) train
a single learner for all tasks. Both have difficulty generalizing to longer compositional problems.
(d) Our goal is to re-use previously learned sub-solutions to solve new problems by composing
computational modules in new ways.

way because the world contains compositional structure, such that solving a novel problem is
possible by composing previously learned partial solutions in a novel way to fit the context.

With this perspective, we propose the concept of compositional generalization. The
key assumption of compositional generalization is that harder problems are composed of
easier problems. The problems from the training and test sets share the same primitive
subproblems, but differ in the manner and complexity with which these subproblems are
combined. Therefore, problems in the test set can be solved by combining solutions learned
from the training set in novel ways.

Definition. Let a problem P be a pair (Xin, Xout), where Xin and Xout are random
variables that respectively correspond to the input and output representations of the problem.
Let the distribution of Xin be rin and the distribution of Xout be rout. To solve a particular
problem P = p is to transform Xin = xin into Xout = xout. A composite problem pa = pb◦pc is
that for which it is possible to solve by first solving pc and then solving pb with the output of pc
as input. pb and pc are subproblems with respect to pa. The space of compositional problems
form a compositional problem graph, whose nodes are the representation distributions r. A
problem is described as pair of nodes between which the learner must learn to construct an
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edge or a path to transform between the two representations.
Characteristics. First, there are many ways in which a problem can be solved. For

example, translating an English expression to a Spanish one can be solved directly by learning
such a transformation, or a learner could make an analogy with other problems by first
translating English to French, and then French to Spanish as intermediate subproblems.
Second, sometimes a useful (although not only) way to solve a problem is indicated by
the recursive structure of the problem itself: solving the arithmetic expression 3 + 4 × 7
modulo 10 can be decomposed by first solving the subproblem 4× 7 = 8 and then 3 + 8 = 1.
Third, because a problem is just an (input, output) pair, standard problems in machine
learning fit into this broadly applicable framework. For example, for a supervised classification
problem, the input representation can be an image and the output representation a label, and
intermediate subproblems can be transforming some intermediate representations to other
intermediate representations. Sec. 5.4 demonstrates CRL on all three of the above examples.

Broad Applicability. Problems in supervised, unsupervised, and reinforcement learning
can all be viewed under the framework of transformations between representations. What we
gain from the compositional problem graph perspective is a methodological way to relate
together different problems of various forms and complexity, which is especially useful in a
lifelong learning setting: the knowledge required to solve one problem is composed of the
knowledge required to solve subproblems seen in the past in the context of different problems.
For example, we can view latent variable reinforcement learning architectures such as [143,
228] as simultaneously solving an image reconstruction problem and an action prediction
problem, both of which share the same subproblem of transforming a visual observation into
a latent representation. Lifelong learning, then, can be formulated as not only modifying
the connections between nodes in the compositional problem graph but also continuing to
make more connections between nodes, gradually expanding the frontier of nodes explored.
Sec. 5.4 describes how CRL takes advantage of this compositional formulation in a multi-task
zero-shot generalization setup to solve new problems by re-using computations learned from
solving past problems.

Evaluation. To evaluate a learner’s capacity for compositional generalization, we
introduce two challenges. The first is to generalize to problems with different subproblem
combinations from what the learner has seen. The second is to generalize to problems with
longer subproblems combinations than the learner has seen. Evaluating a learner’s capability
for compositional generalization is one way to measure how readily old knowledge can be
reused and hence built upon.

5.3 A Learner That Programs Itself

This chapter departs from the popular representation-centric view of knowledge [31] and
instead adopts a computation-centric view of knowledge: our goal is to encapsulate useful
functionality shared across tasks into specialized computational modules – atomic function
operators that perform transformations between representations. This section introduces the
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Figure 5.2: Compositional recursive learner (CRL): top-left : CRL is a symbiotic relationship
between a controller and evaluator: the controller selects a module m given an intermediate
representation x and the evaluator applies m on x to create a new representation. bottom-left :
CRL learns dynamically learns the structure of a program customized for its problem, and this
program can be viewed as a finite state machine. right : A series of computations in the program is
equivalent to a traversal through a Meta-MDP, where module can be reused across different stages
of computation, allowing for recursive computation.

compositional recursive learner (CRL), a framework for training modules to capture primitive
subproblems and for composing together these modules as subproblem solutions to form a
path between nodes of the compositional problem graph.

Compositional Recursive Learner

The CRL framework consists of a controller π, a set of modules m ∈M , and an evaluator E.
Training CRL on a diverse compositional problem distribution produces a modular recursive
program that is trained to transform the input Xin into its output Xout, the corresponding
samples of which are drawn from pairs of nodes in the compositional problem graph. In this
program, the controller looks at the current state xi of the program and chooses a module
m to apply to the state. The evaluator executes the module on that state to produce the
next state xi+1 of the program. Xin is the initial state of the program, X̂out is the last, and
the intermediate states Xi of the execution trace correspond to the other representations
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produced and consumed by the modules. The controller can choose to re-use modules across
different program executions to solve different problems, making it straightforward to re-use
computation learned from solving other problems to solve the current one. The controller
can also choose to reuse modules several times within the same program execution, which
produces recursive behavior.

Deciding Which Computations To Execute

The sequential decision problem that the controller solves can be formalized as a meta-level
Markov decision process (meta-MDP) [148], whose state space corresponds to the intermediate
states of computation X, whose action space corresponds to the modules M , and whose
transition model corresponds to the evaluator E. The symbiotic relationship among these
components is shown in Fig. 5.2. In the bounded-horizon version of CRL (Sec. 5.4), the
meta-MDP has a finite horizon whose length is determined by the complexity of the current
problem. In the infinite-horizon version of CRL (Sec. 5.4), the program itself determines
when to halt when the controller selects the HALT signal. When the program halts, in both
versions the current state of computation is produced as output x̂out, and CRL receives a
terminal reward that reflects how x̂out matches the desired output xout. The infinite-horizon
CRL also incurs a cost for every computation it executes to encourage it to customize its
complexity to the problem.

Note the following key characteristics of CRL. First, unlike standard reinforcement learning
setups, the state space and action space can vary in dimensionality across and within episodes
because CRL trains on problems of different complexity, reducing more complex problems to
simpler ones (Sec. 5.4). Second, because the meta-MDP is internal to CRL, the controller
shapes the meta-MDP by choosing which modules get trained and the meta-MDP in turn
shapes the controller through its non-stationary state-distribution, action-distribution, and
transition function. Thus CRL simultaneously designs and solves reinforcement learning
problems “in its own mind,” whose dynamics depend just as much on the intrinsic complexity
of the problem as well as the current problem-solving capabilities of CRL.

Making Analogies in the Compositional Problem Graph

The solution that we want CRL to discover lies between two extremes, both of which have
their own drawbacks. One extreme is where CRL learns a module specialized for every
pair of nodes in the compositional problem graph, and the other is where CRL only learns
one module for all pairs of nodes. Both extremes yield a horizon-one meta-MDP and are
undesirable for compositional generalization: the former does not re-use past knowledge and
the latter cannot flexibly continuously learn without suffering from negative transfer.

What is the best solution that CRL could discover? For a given compositional problem
graph, an optimal solution would be to recover the original compositional problem graph such
that the modules exactly capture the subproblems and the controller composes these modules
to reflect how the subproblems were originally generated. By learning both the parameters
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of the modules and the controller that composes them, during CRL would construct its own
internal representation of the problem graph, where the functionality of the modules produces
the nodes of the graph. How can we encourage CRL’s internal graph to reflect the original
compositional problem graph?

We want to encourage the modules to capture the most primitive subproblems, such that
they can be composed as atomic computations for other problems. To do this, we need to
enforce that each module only has a local view of the global problem. If tasks are distinguished
from each other based on the input (see Sec. 5.4), we can use domain knowledge to restrict
the representation vocabulary and the function class of the modules. If we have access to a
task specification (e.g. goal or task id) in addition to the input, we can additionally give only
the controller access to the task specification while hiding it from the modules. This forces
the modules to be task agnostic, which encourages that they learn useful functionality that
generalizes across problems.

Because the the space of subproblem compositions is combinatorially large, we use a
curriculum to encourage solutions for the simpler subproblems to converge somewhat before
introducing more complex problems, for which CRL can learn to solve by composing together
the modules that had been trained on simpler problems. Lastly, to encourage the controller
to generalize to new node combinations it has not seen, we train on a diverse distribution
of compositional problems, such that the controller does not overfit to any one problem.
This encourages controller to make analogies between problems during training by re-using
partial solutions learned while solving other problems. Our experiments show that this
analogy-making ability helps with compositional generalization because the controller solves
new or more complex subproblem combinations by re-using modules that it learned during
training.

5.4 Experiments

The main purpose of our experiments is to test the hypothesis that explicitly decomposing
a learner around the structure of a compositional problem distribution yields significant
generalization benefit over the standard paradigm of training a single monolithic architecture
on the same distribution of problems. To evaluate compositional generalization, we select
disjoint subsets of node pairs for training and evaluating the learner. Evaluating on problems
distinct from those in training tests the learner’s ability to apply what it has learned to new
problems. To demonstrate the broad applicability of the compositional graph, we consider
the structured symbolic domain of multilingual arithmetic and the underconstrained and
high-dimensional domain of transformed-MNIST classification. We find that composing
representation transformations with CRL achieves significantly better generalization when
compared to generic monolithic learners, especially when the learner needs to generalize to
problems with longer subproblem combinations than those seen during training.

In our experiments, the controller and modules begin as randomly initialized neural
networks. The loss is backpropagated through the modules, which are trained with Adam
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(a) Training (b) Different subproblem combinations (c) Longer subproblem combinations

Figure 5.3: Multilingual Arithmetic (Quantitative). CRL generalizes significantly better than
the RNN, which, even with ten times more data, does not generalize to 10-length multilingual
arithmetic expressions. Pretraining the RNN on domain-specific auxiliary tasks does not help the
10-length case, highlighting a limitation of using monolithic learners for compositional problems. By
comparing CRL with a version trained without a curriculum (“No Curr”: blue), we see the benefit
of slowly growing the complexity of problems throughout training, although this benefit does not
transfer to the RNN. The vertical black dashed line indicates at which point all the training data
has been added when CRL is trained with a curriculum (red). The initial consistent rise of the
red training curve before this point shows CRL exhibits forward transfer [209] to expressions of
longer length. Generalization becomes apparent only after a million iterations after all the training
data has been added. (b, c) only show accuracy on the expressions with the maximum length of
those added so far to the curriculum. “1e4” and “1e5” correspond to the order of magnitude of the
number of samples in the dataset, of which 70% are used for training. 10, 50, and 90 percentiles are
shown over 6 runs.

[174]. The controller receives a sparse reward derived from the loss at the end of the
computation, and a small cost for each computational step. The model is trained with
proximal policy optimization [282].

Multilingual Arithmetic

This experiment evaluates the infinite-horizon CRL in a multi-objective, variable-length
input, symbolic reasoning multi-task setting. A task is to simplify an arithmetic expression
expressed in a source language, encoded as variable-length sequences of one-hot tokens,
and produce the answer modulo 10 in a given target language. To evaluate compositional
generalization, we test whether, after having trained on 46200 examples of 2, 3, 4, 5-length
expressions (2.76 · 10−4 of the training distribution) involving 20 of the 5× 5 = 25 pairs of five
languages, the learner can generalize to 5-length and 10-length expressions involving the other
five held-out language pairs (problem space: 4.92 · 1015 problems). To handle the multiple
target languages, the CRL controller receives a one-hot token for the target language at every
computational step additional to the arithmetic expression. The CRL modules consist of
two types of feedforward networks: reducers and translators, which do not know the target
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language and so can only make local progress on the global problem. Reducers transform
a consecutive window of three tokens into one token, and translators transform all tokens
in a sequence by the same transformation. The CRL controller also selects where in the
arithmetic expression to apply a reducer. We trained by gradually increasing the complexity
of arithmetic expressions from length two to length five.

Quantitive results in Fig. 5.3 show that CRL achieves significantly better compositional
generalization than a recurrent neural network (RNN) baseline [65] trained to directly map
the expression to its answer, even when the RNN has been pretrained or receives 10x more
data. Fig. D.3 shows that CRL achieves about 60% accuracy for extrapolating to 100-term
problems (problem space: 4.29 · 10148).

The curriculum-based training scheme encourages CRL to designs its own edges and
paths to connect nodes in the compositional problem graph, solving harder problems with
the solutions from simpler ones. It also encourages its internal representations to mirror the
external representations it observes in the problem distribution, even though it has no direct
supervision to do so. However, while this is often the case, qualitative results in Fig. 5.5
show that CRL also comes up with its own internal language – hybrid representations that
mix different external representations together – to construct compositional solutions for
novel problems. Rather than learn translators and reducers that are specific to single input
and output language pair as we had expected, the modules, possibly due to their nonlinear
nature, tended to learn operations specific to the output language only.

Image Transformations

This experiment evaluates the bounded-horizon CRL in a single-objective, latent-structured,
high-dimensional multi-task setting. A task is to classify an MNIST digit, where the MNIST
digit has been randomly translated (left, right, up, down), rotated (left, right), and scaled
(small, big). Suppose CRL has knowledge of what untransformed MNIST digits look like;
is it possible that CRL can learn to compose appropriate spatial affine transformations in
sequence to convert the transformed MNIST digit into a “canonical” one, such that it can use
a pre-trained classifier to classify it? To reformulate a scenario to one that is more familar is
characteristic of compositional generalization humans: humans view an object at different
angles yet understand it is the same object; they may have an accustomed route to work, but
can adapt to a detour if the route is blocked. To evaluate compositional generalization, we test
whether, having trained on images produced by combinations of two spatial transformations,
CRL can can generalize to different length-2 combinations as well as length-3 combinations.
A challenge in this domain is that the compositional structure is latent, rather than apparent
in the input for the learner to exploit.

CRL is initialized with four types of modules: a Spatial Transformer Network (STN) [161]
parametrized to only rotate, an STN that only scales, an STN that only translates, and an
identity function. All modules are initialized to perform the identity transformation, such
that symmetry breaking (and their eventual specialization) is due to the stochasticity of the
controller.
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Figure 5.4: Left: For multilingual arithmetic, blue denotes the language pairs for training and red
denotes the language pairs held out for evaluation in Fig 5.3b,c. Center: For transformed MNIST
classification, blue denotes the length-2 transformation combinations that produced the input for
training, red denotes the length-2 transformation combinations held out for evaluation. Not shown
are the more complex length-3 transformation combinations (scale then rotate then translate) we
also tested on. Right: For transformed MNIST classification, each learner performs better than
the others in a different metric: the CNN performs best on the training subproblem combinations,
the STN on different subproblem combinations of the same length as training, and CRL on longer
subproblem combinations than training. While CRL performs comparably with the others in
the former two metrics, CRL’s ∼ 40% improvement for more complex image transformations is
significant.

Quantitative results in Fig. 5.4 show that CRL achieves significantly better compositional
generalization than both the standard practice of finetuning the convolutional neural network
[301] pretrained classifier and training an affine-STN as a pre-processor to the classifier.
Both baselines perform better than CRL on the training set, and the STN’s inductive bias
surprisingly also allows it to generalize to different length-2 combinations. However, both
baselines achieve only less than one-third of CRL’s generalization performance for length-3
combinations, which showcases the value of explicitly decomposing problems. Note that in
Fig. 5.6 the sequence of transformations CRL performs are not necessarily the reverse of
those that generated the original input, which shows that CRL has learned its own internal
language for representing nodes in the problem graph.

5.5 Related Work

Several recent and contemporaneous work [190, 206, 210, 19] have tested in whether neural
networks exhibit systematic compositionality [97, 212, 96, 213, 45] in parsing symbolic data.
This chapter draws inspiration from and builds upon research in several areas to propose an
approach towards building a learner that exhibits compositional generalization. We hope this
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chapter provides a point of unification among these areas through which further connections
can be strengthened.

Compositional Generalization

Transformations between representations: Our work introduces a learner that exhibits
compositional generalization in some sense by bridging deep learning and reformulation, or
re-representing a problem to make it easier to solve [155, 287, 13] by making analogies [236]
to previously encountered problems. Taking inspiration from meta-reasoning [266, 148, 146,
124] in humans [133, 43, 202], CRL generalize to new problems by composing representation
transformations (analogous to the subprograms in Schmidhuber [278]), an approach for which
recent and contemporaneous work [274, 9, 74] provide evidence.

Meta-learning: Our modular perspective departs from recent work in meta-learning
[312, 275] which assume that the shared representation of monolithic architectures can be
shaped by the diversity of tasks in the training distribution as good initializations for future
learning [93, 232, 256, 15, 123, 224, 191, 101, 140, 141, 302].

Graph-based architectures: Work in graph-based architectures have studied combi-
natorial generalization in the context of modeling physical systems [28, 57, 27, 271, 270,
317]. Whereas these works focus on factorizing representations, we focus on factorizing the
computations that operate on representations.

Neural program induction:

Just as the motivation behind disentangled representations [329, 185, 62, 311, 31, 151] is
to uncover the latent factors of variation, the motivation behind disentangled programs
is to uncover the latent organization of a task. Compositional approaches (as opposed to
memory-augmented [125, 304, 167, 127, 188, 15, 126] or monolithic [348, 169] approaches for
learning programs) to the challenge of discovering reusable primitive transformations and
their means of composition generally fall into two categories. The first assumes pre-specified
transformations and learns the structure (from dense supervision on execution traces to sparse-
rewards) [257, 42, 339, 63, 107, 40, 91, 81, 349, 278]. The second learns the transformations
but pre-specifies the structure [14, 259, 203]. These approaches are respectively analogous to
our hardcoded-functions and hardcoded-controller ablations in Fig. D.1. The closest works to
ours from a program induction perspective are [109, 314], both neurosymbolic approaches for
learning differentiable programs integrated in a high-level programming language. Our work
complements theirs by casting the construction of a program as a reinforcement learning
problem, and we believe that more tightly integrating CRL with types and combinators
would be an exciting direction for future work.
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Self-organizing learners

Lifelong Learning: CRL draws inspiration from work [275, 71, 279, 277, 84] on learners that
learn to design their own primitives and subprograms for solving an increasingly large number
of tasks. The simultaneous optimization over the the continuous function parameters and
their discrete compositional structure in CRL is inspired by the interplay between abstract
and concrete knowledge that is hypothesized to characterize cognitive development: abstract
structural priors serve as a scaffolding within which concrete, domain-specific learning takes
place [298, 251], but domain-specific learning about the continuous semantics of the world
can also provide feedback to update the more discrete structural priors [117, 46].

Hierarchy: Several works have investigated the conditions in which hierarchy is useful for
humans [33, 296, 269]; our experiments show that the hierarchical structure of CRL is more
useful than the flat structure of monolothic architectures for compositional generalization.
Learning both the controller and modules relates CRL to the hierarchical reinforcement
learning literature [25], where recent work [18, 186, 101, 320, 227] attempting to learn both
lower-level policies as well as a higher-level policy that invokes them.

Modularity: Our idea of selecting different weights at different steps of computation is
related to the fast-weights literature [276, 17], but those works are motivated by learning
context-dependent associative memory [156, 332, 179, 12, 142] rather than composing
representation transformations, with the exception of [273]. CRL can be viewed as a
recurrent mixture of experts [160], where each expert is a module, similar to other recent and
contemporaneous work [152, 260, 178, 90] that route through a choices of layers of a fixed-
depth architecture for multi-task learning. The closest work to ours from an implementation
perspective is Rosenbaum, Klinger, and Riemer [260]. However, these works do not address
the problem of generalizing to more complex tasks because they do not allow for variable-
length compositions of the modules. Parascandolo et al. [240] focuses on a complementary
direction to ours; whereas they focus on learning causal mechanisms for a single step, we focus
on learning how to compose modules. We believe composing together causal mechanisms
would be an exciting direction for future work.

5.6 Discussion

This chapter sought to tackle the question of how to build machines that leverage prior
experience to solve more complex problems than they have seen. This chapter makes three
steps towards the solution. First, we formalized the compositional problem graph as a
language for studying compositionally-structured problems of different complexity that can
be applied on various problems in machine learning. Second, we introduced the compositional
generalization evaluation scheme for measuring how readily old knowledge can be reused
and hence built upon. Third, we presented the compositional recursive learner, a domain-
general framework for learning a set of reusable primitive transformations and their means of
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composition that reflect the structural properties of the problem distribution. In doing so we
leveraged tools from reinforcement learning to solve a program induction problem.

There are several directions for improvement. One is to stabilize the simultaneous
optimization between discrete composition and continuous parameters; currently this is tricky
to tune. Others are to generate computation graphs beyond a linear chain of functions, and to
infer the number of functions required for a family of problems. A major challenge would be
to discover the subproblem decomposition without a curriculum and without domain-specific
constraints on the model class of the modules.

Griffiths et al. [134] argued that the efficient use cognitive resources in humans may also
explain their ability to generalize, and this chapter provides evidence that reasoning about
what computation to execute by making analogies to previously seen problems achieves
significantly higher compositional generalization than non-compositional monolithic learners.
Encapsulating computational modules grounded in the subproblem structure also may pave
a way for improving interpretability of neural networks by allowing the modules to be unit-
tested against the subproblems we desire them to capture. Because problems in supervised,
unsupervised, and reinforcement learning can all be expressed under the framework of
transformations between representations in the compositional problem graph, we hope that
our work motivates further research for tackling the compositional generalization problem
in many other domains to accelerate the long-range generalization capabilities that are
characteristic of general-purpose learning machines.
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Figure 5.5: Multilingual Arithmetic (Qualitative). A randomly selected execution trace for
generalizing from length-5 to length-10 expressions. The input is 0− 6+ 1+7× 3× 6− 3+ 7− 7× 7
expressed in Pig Latin. The desired output is seis, which is the value of the expression, 6, expressed
in Spanish. The purple modules are reducers and the red modules are translators. The input to
a module is highlighted and the output of the module is boxed. The controller learns order of
operations. Observe that reducer m9 learns to reduce to numerals and reducer m10 to English
terms. The task-agnostic nature of the modules forces them to learn transformations that the
controller would commonly reuse across problems. Even if the problem may not be compositionally
structured, such as translating Pig Latin to Spanish, CRL learns to design a compositional solution
(Pig Latin to Numerals to Spanish) from previous experience (Pig Latin to Numerals and Numerals
to Spanish) in order to generalize: it first reduces the Pig Latin expression to a numerical evaluation,
and then translates that to its Spanish representation using the translator m6. Note that all of this
computation is happening internally to the learner, which computes on softmax distributions over
the vocabulary; for visualization we show the token of the distribution with maximum probability.
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Figure 5.6: Image Transformations: CRL reasonably applies a sequence of modules to transform a
transformed MNIST digit into canonical position, and generalizes to different and longer compositions
of generative transformations. m0 is constrained to output the sine and cosine of a rotation angle,
m1 is constrained to output the scaling factor, and m2 through m13 are constrained to output
spatial translations. Some modules like m2 and m6 learn to translate up, some like m3 and m10

learn to translate down, some like m7 learn to shift right, and some like m13 learn to shift left.
Consider (d): the original generative transformations were “scale big” then “translate left,” so the
correct inversion should be “translate right” then “scale small.” However, CRL chose to equivalently
“scale small” and then “translate right.” CRL also creatively uses m0 to scale, as in (e) and (f), even
though its original parametrization of outputting sine and cosine is biased towards rotation.
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Choices
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Chapter 6

Representing Policies as Games

You know that everything you think and do is thought and
done by you. But what’s a “you”? What kinds of smaller
entities cooperate inside your mind to do your work?

Minsky [223]

6.1 Introduction

Biological processes, corporations, and ecosystems – physically decentralized, yet in some
sense functionally unified. A corporation, for example, optimizes for maximizing profits as
it were a single rational agent. But this agent abstraction is an illusion: the corporation is
simply a collection of human agents, each solving their own optimization problems, most not
even knowing the existence of many of their colleagues. But the human as the decision-making
agent is also simply an abstraction of the trillions of cells making their own simpler decisions.
The society of agents is itself an agent. What mechanisms bridge between these two levels of
abstraction, and under what framework can we develop learning algorithms for studying the
self-organizing nature of intelligent societies that pervade so much of the world?

Both the monolithic and the multi-agent optimization frameworks in machine learning
offer a language for representing only one of the levels of abstraction but not the relation
between both. The monolithic framework, the most commonly used in much of modern
machine learning, considers a single agent that optimizes a single objective in an environment,
whether it be minimizing classification loss or maximizing return. The multi-agent framework
considers multiple agents that each optimize their own independent objective and each
constitute each other’s learning environments. What distinguishes the multi-agent from the
monolithic is the presence of multiple independent optimization problems. The difficulty of
interpreting a learner in the monolithic framework as a society of simpler components is that
all components are still globally coupled together by the same optimization problem without
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Figure 6.1: We study how a society of primitives agents can be abstracted as a super-agent.
The incentive mechanism is the abstraction barrier that relates the optimization problems of the
super-agent with those of its constituent primitive agents.

independent local optimization problems themselves, as are the weights in a neural network
trained by backpropagation. The difficulty of interpreting a multi-agent system under a global
optimization problem is the computational difficulty of computing Nash equilibrium [69],
even for general two-player games [61].

To better understand the relationship between the society and the agent, this chapter
makes four contributions, each at a different level of abstraction. At the highest level, we
define the societal decision-making framework to relate the local optimization problem
of the agent to the global optimization problem of the society in the following restricted
setting. Each agent is specialized to transform the environment from one state to another.
The agents bid in an auction at each state and the auction winner transforms the state into
another state, which it sells to the agents at the next time-step, thereby propagating a series
of economic transactions. This framework allows us to ask what are properties of the auction
mechanism and of the society that enable the global solution to a Markov decision process
(MDP) that the society solves to emerge implicitly as a consequence of the agents optimizing
their own independent auction utilities.

At the second level, we present a solution to this question by introducing the cloned
Vickrey society that guarantees that the dominant strategy equilibrium of the agents
coincides with the optimal policy of the society. We prove this result by leveraging the
truthfulness property of the Vickrey auction [321] and showing that initializing redundant
agents makes the primitives’ economic transactions robust against market bubbles and
suboptimal equilibria.

At the third level, we propose a class of decentralized reinforcement learning
algorithms for optimizing the MDP objective of the society as an emergent consequence of
the agents’ optimizing their own auction utilities. These algorithms treat the auction utility
as optimization objectives themselves, thereby learning a societal policy that is global in
space and time using only credit assignment for learnable parameters that is local in space
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and time.
At the fourth level, we empirically investigate various implementations of the cloned

Vickrey society under our decentralized reinforcement learning algorithm and find that a
particular set of design choices, which we call the credit conserving Vickrey implementation,
yields both the best performance at the societal and and agent level.

Finally, we demonstrate that the societal decision making framework, along with its
solution, the algorithm that learns the solution, and the implementation of this algorithm,
is a broadly applicable perspective on self-organization to not only standard reinforcement
learning but also selecting options in semi-MDPs [309] and composing functions in dynamic
computation graphs [58]. Moreover, we show evidence that the local credit assignment
mechanisms of societal decision-making produce more efficient learning than the global credit
assignment mechanisms of the monolithic framework.

6.2 Related Work

Describing an intelligent system as the product of interactions among many individual agents
dates as far back as the Republic [252], in which Plato analyzes the human mind via an
analogy to a political state. This theme continued into the early foundations of AI in the
1980s and 1990s through cognitive models such as the Society of Mind [223] and Braitenberg
vehicles [36] and engineering successes in robotics [37] and in visual pattern recognition [283].

The closest works to ours were the algorithms developed around that same time period
that sought as we do to leverage a multi-agent society for achieving a global objective, starting
as early as the bucket brigade algorithm [154], in which agents bid in a first-price auction
to operate on the state and auction winners directly paid their bid to the winners from the
previous step. Prototypical self-referential learning mechanisms [275] improved the bucket
brigade by imposing credit conservation in the economic transactions. The neural bucket
brigade [280] adapted the bucket brigade to learning neural network weights, where payoffs
corresponded to weight changes. Baum [29] observed that the optimal choice for an agent’s
bid should be equivalent to the optimal Q-value for executing that agent’s transformation
and developed the Hayek architecture for introducing new agents and removing agents that
have gone broke. Kwee, Hutter, and Schmidhuber [189] added external memory to the Hayek
architecture.

However, to this date there has been no proof to the best of our knowledge that the bid-
updating schemes proposed in these works simultaneously optimize a global objective of the
society in a decision-making context. Sutton [306] provides a convergence proof for temporal
difference methods that share some properties with the bucket brigade credit assignment
scheme, but importantly does not take the competition between the individual agents into
account. But it is precisely the competition among agents in multi-agent learning that
make their equilibria nontrivial to characterize [218]. Our work offers an alternative auction
mechanism for which we prove that the optimal solution for the global objective does coincide
with a Nash equilibrium of the society. We follow similar motivations to Balduzzi [22], which
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investigates incentive mechanisms for training a society of rational discrete-valued neurons.
In contrast to other works that decouple the computation graph [303, 122, 247, 244] but
optimize a global objective, our work considers optimizing local objectives only. We consider
economic transactions between time-steps, as opposed to within a single time-step [237].

6.3 Preliminaries

To set up a framework for societal decision-making, we relate Markov decision processes
(MDP) and auctions under a unifying language. We define an environment as a tuple
that specifies an input space, an output space, and additional parameters for specifying
an objective. An agent is a function that maps the input space to the output space. An
objective is a functional that maps the learner to a real number. Given an environment and
objective, the problem the agent solves is to maximize the value of the objective.

In the MDP environment, the input space is the state space S and the output space
is the action space A. The agent is a policy π : S → A. The transition function T :
S × A → S, the reward function r : S × A → R, and discount factor γ are additional

parameters that specify the objective: the return J(π) = Eτ∼pπ(τ)
[∑T

t=0 γ
tr (st, at)

]
, where

pπ(τ) = p(s0)
∏T

t=0 π(at|st)
∏T−1

t=0 T (st+1|st, at). The agent solves the problem of finding
π∗ = argmaxπ J(π). For any state s, the optimal action for maximizing J(π) is π∗(s) =
argmaxaQ

∗(s, a), where the optimal Q function Q∗(s, a) is recursively defined as Q∗(s, a) =
Es′∼T (s,a) [r(s, a) + γmaxa′ Q

∗(s′, a′)|s, a].
In the auction environments we consider, the input space is a single auction item s

and the output space is the bidding space B. Instead of a single agent, each of N agents
ψ1:N compete to bid for the auction item via its bidding policy ψi : {s} → B. Let b be
the vector of bids produced by ψ1:N . The vector vs of each agent’s valuations for auction
item s and the auction mechanism – allocation rule X : BN → [0, 1]N and pricing rule
P : BN → RN

≥0 – are additional parameters that specify each agent’s objective: the utility
U i
s(ψ

1:N) = vis · X i(b) − P i(b), where X i(b) is the proportion of s allocated to i, and
P i(b) is the scalar price i pays. Each agent i independently solves the problem of finding
ψi∗ = argmaxψi U

i
s(ψ

1:N). The independent optimization of objectives distinguishes a multi-
agent problem from a single-agent one and makes multi-agent problems generally difficult to
analyze when an agent’s optimal policy depends on the strategies of other agents.

However, if an auction is dominant strategy incentive compatible (DSIC), bidding one’s
own valuation is optimal, independent of other players’ bidding strategies. That is, truthful
bidding is the unique dominant strategy. Notably, the Vickrey auction [321], which sets
P i(b) to be the second highest bid maxj ̸=i b

j and X i(b) = 1 if i wins and 0 and 0 respectively
if i loses, is DSIC, which means the dominant strategy equilibrium occurs when every agent
bids truthfully, making the Vickrey auction straightforward to analyze. Another attractive
property of the Vickrey auction is that the dominant strategy equilibrium automatically
maximizes the social welfare

∑N
i=1 v

i ·X i(b) [263], which selects the bidder with the highest
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valuation as winner. The existence of dominant strategies in the Vickrey auction removes the
need for agents to recursively model others, giving the Vickrey auction the practical benefit
of running in linear time [263].

6.4 Societal Decision-Making

The perspective of this chapter is that a society of agents can be abstracted as an agent that
itself solves an optimization problem at a global level as an emergent consequence of the
optimization problems its constituent agents solve at the local level. To make this abstraction
precise, we now introduce the societal decision-making framework for analyzing and
developing algorithms that relate the global decision problem of a society to the local decision
problems of its constituent agents. We use primitive and society to distinguish between
the agents at the local and global levels, respectively, which we define in the context of their
local and global environments and objectives:

Definition 6.4.1. A primitive ω is a tuple (ψ, ϕT ) of a bidding policy ψ : S → B and
transformation ϕT : S → S.

Definition 6.4.2. A society Ω is a set of primitives ω1:N .

The global environment is an MDP that we call the global MDP, with state space
S and discrete action space A = {1, ..., N} that indexes the primitives ω1:N . The local
environment is an auction that we call the local auction with auction item s ∈ S and
bidding space B = [0,∞).

The connection between the local and global environments is as follows. Each state in
the global MDP is an auction item for a different local auction. The winning primitive ω̂
of the auction at state s transforms s into the next state s′ of the global MDP using its
transformation ϕT , parameterized by the global MDP’s transition function T . For each
primitive i at each state s, its local objective is the utility U i

s(ψ
1:N ). Its local problem is

to maximize U i
s(ψ

1:N). The global objective is the return J(πΩ) in the global MDP of the
global policy πΩ. The global problem for the society is to maximize J(πΩ). We define
the optimal societal Q function Q∗

Ω(s, ω) as the expected return received from ω invoking
its transformation ϕT on s and the society activating primitives optimally with respect to
J(πΩ) afterward.

Since all decisions made at the societal level are an emergent consequence of decisions
made at the primitive level, the societal decision-making framework is a self-organization
perspective on a broad range of sequential decision problems. If each transformation ϕT
specifies a literal action, then societal decision-making is a decentralized re-framing of standard
reinforcement learning (RL). Societal decision-making also encompasses the decision problem
of choosing ϕT s as options in semi-MDPs [309] as well as choosing ϕT s as functions in a
computation graph [58, 261, 9].
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We are interested in auction mechanisms and learning algorithms for optimizing the global
objective as an emergent consequence of optimizing the local objectives. Translating problems
from one level of abstraction to another would provide a recipe for engineering a multi-agent
system to achieve a desired global outcome and permit theoretical expectations on the nature
of the equilibrium of the society, while giving us free choice on the architectures and learning
algorithms of the primitive agents. To this end, we next present an auction mechanism for
which the dominant strategy equilibrium of the primitives coincides with the optimal policy
of the society, which we develop into a class of decentralized RL algorithms in later sections.

6.5 Mechanism Design for the Society

We first observe that to produce the optimal global policy, the optimal bidding strategy for
each primitive at each local auction must be to bid their societal Q-value. By defining each
primitive’s valuation of a state as its optimal societal Q-value at that state, we show that the
Vickrey auction ensures the dominant strategy equilibrium profile of the primitives coincides
with the optimal global policy. Then we show that a market economy perspective on societal
decision-making overcomes the need to assume knowledge of optimal Q-values, although
weakens the dominant strategy equilibrium to a Nash equilibrium. Lastly, we explain that
adding redundant primitives to the society mitigates market bubbles by enforcing credit
conservation. Proofs are in the Appendix.

Optimal Bidding

We state what was observed informally in [29]:

Proposition 6.5.1. Assume at each state s the local auction allocates X i(b) = 1 if i wins
and X i(b) = 0 if i loses. Then all primitives ωi bidding their optimal societal Q-values
Q∗

Ω(s, ωi) collectively induce an optimal global policy.

This proposition makes the problem of self-organization concrete: getting the optimal
behavior in the global MDP to emerge from the optimal behavior in the local auctions can be
reduced to incentivizing the primitives to bid their optimal societal Q-value at every state.

Dominant Strategies for Optimal Bidding

To incentivize the primitives to bid optimally, we propose to define the primitives’ valuations
vis for each state s as their optimal societal Q-values Q∗

Ω(s, ωi) and use the Vickrey auction
mechanism for each local auction.

Theorem 6.5.2. If the valuations vis for each state s are the optimal societal Q-values
Q∗

Ω(s, ωi), then the society’s optimal global policy coincides with the primitives’ unique
dominant strategy equilibrium under the Vickrey mechanism.
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Then, the utility U i
s(ψ

1:N ) at each state s that induces the optimal global policy, which we
refer equivalently as Û i

s(ω
1:N ) for the winning primitive ω̂i and U j

s (ω1:N ) for losing primitives
ωj, is given by

Û i
s(ω

1:N) = Q∗
Ω(s, ω̂i)−max

j ̸=i
bjs (6.1)

and by U j
s (ω1:N) = 0 for losing primitives.

Economic Transactions for Propagating Q∗Ω
We have so far defined optimal bidding with respect to societal decision-making and charac-
terized the utilities as functions of Q∗

Ω for which such bidding is a dominant strategy. We
now propose to redefine the utilities without knowledge of Q∗

Ω by viewing the society as a
market economy.

Monolithic frameworks for solving MDPs, such as directly optimizing the policy J(π) with
policy gradient methods, are analogous to command-economies, in which all production
– the transformation of past states st into future states st+1 – and wealth distribution –
the credit assignment of reward signals to parameters – derive directly from single central
authority – the MDP objective. In contrast, under the societal decision-making framework,
the optimal global policy does not derive directly from the MDP objective, but rather emerges
implicitly as the equilibrium of the primitives optimizing their own local objectives. We thus
redefine the valuations vis following the analogy of a market economy, in which production
and wealth distribution are governed by the economic transactions between the primitives.

Specifically, we couple the local auctions at consecutive time-steps in the same game by
defining the valuation vist of primitive ω̂i for winning the auction item st as the revenue it
can receive in the auction at the next time-step by selling the product st+1 of executing
its transformation ϕiT on st. This compensation comes as the environment reward plus the
(discounted) winning bid at the next time-step:

Û i
st(ω

1:N)︸ ︷︷ ︸
utility

= r(st, ω̂
i) + γ ·max

k
bkst+1︸ ︷︷ ︸

revenue, or valuation vist

−max
j ̸=i

bjst︸ ︷︷ ︸
price

. (6.2)

Analogous to a market economy, the revenue ω̂i receives for producing st+1 from st depends
on the price the winning primitive ω̂k at t+ 1 is willing to bid for st+1. In turn, ω̂k sells st+2

to the winning primitive at t+ 2, and so on. Ultimately currency is grounded in the reward.
Wealth is distributed based on what future primitives decide to bid for the fruits of the labor
of information processing carried out by past primitives transforming one state to another.

Definition 6.5.1. A Market MDP is a global MDP in which all utilities are defined as in
Equation 6.2.

As valuations now depend on the strategies of future primitives, the dominant strategy
equilibrium from Theorem 6.5.2 must be weakened to a Nash equilibrium in the general case:



CHAPTER 6. REPRESENTING POLICIES AS GAMES 81

Figure 6.2: The cloned Vickrey society. In this market economy of primitive agents, wealth
is distributed not directly from the global MDP objective but based on what future primitives
decide to bid for the fruits of the labor of information processing carried out by past primitives
transforming one state to another. The primitive ω0′

t that wins the auction at time t receives an
environment reward r(st, ω

0′
t ) as well as payment b1

′
t+1 from ω1′

t+1 for transforming st to st+1. By the

Vickrey auction, the price ω1′
t+1 pays to transform st+1 is the second highest bid b1t+1 at time t+ 1.

Because each primitive ωi and its clone ωi
′
have the same valuations, their bids are equivalent and

so credit is conserved through time.

Proposition 6.5.3. In a Market MDP, it is a Nash equilibrium for every primitive to bid
Q∗

Ω(s, ωi). Moreover, if the Market MDP is finite horizon, then bidding Q∗
Ω(s, ωi) is the

unique Nash equilibrium that survives iterated deletion of weakly dominated strategies.

Redundancy for Credit Conservation

In general, credit is not conserved in the Market MDP: the winning primitive at time t− 1
gets paid an amount equal to the highest bid at time t, but the winner at time t only pays an
amount equal to the second highest bid at time t. At time t, ωi could bid arbitrarily higher
than maxj ̸=i b

j without penalty, which distorts the valuations for primitives that bid before
time t, creating a market bubble.

To prevent market bubbles, we propose a modification to the society, which we will call a
cloned society, for enforcing credit conservation – for all transformations ϕT initialize at
least two primitives that share the same ϕT :
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Lemma 6.5.4. For a cloned society, at the Nash equilibrium specified in Proposition 6.5.3,
what the winning primitive ω̂i at time t receives from the winning primitive ω̂k at t + 1 is
exactly what ω̂k pays: bkst+1

.

We now state our main result.

Theorem 6.5.5. Define a cloned Vickrey society as a cloned society that solves a Market
MDP. Then it is a Nash equilibrium for every primitive in the cloned Vickrey society to bid
Q∗

Ω(s, ωi). In addition, the price that the winning primitive pays for winning is equivalent to
what it bid.

The significance of Theorem 6.5.5 is that guaranteeing truthful bidding of societal Q-values
decouples the analysis of the local problem within each time-step from that of the global
problem across time-steps, which opens the possibility for designing learners to reach a Nash
equilibrium that we know exists. Without such a separation of these two levels of abstraction
the entire society must be analyzed as a repeated game through time – a non-trivial challenge.

6.6 From Equilibria to Learning Objectives

So far the discussion has centered around the quality of the equilibria, which assumes
the primitives know their own valuations. We now propose a class of decentralized RL
algorithms for learning optimal bidding behavior without assuming knowledge of the primitives’
valuations.

Instead of learning to optimize the MDP objective directly, we propose to train the
primitives’ parameterized bidding policies to optimize their utilities in Equation 6.2, yielding
a class of decentralized RL algorithms for optimizing the global RL objective that is agnostic
to the choice of RL algorithm used to train each primitive. By Theorem 6.5.5, truthful bidding
for all agents is one global optimum to all agent’s local learning problems that also serves as
a global optimum for the society as whole. In the special case where the transformation ϕT
is a literal action, this class of decentralized RL algorithms can serve as an alternative to
any standard algorithm for solving discrete-action MDPs. An on-policy learning algorithm is
presented in Appendix E.4.

Local Credit Assignment in Space and Time

The global problem requires a solution that is global in space, because the society must collec-
tively work together, and global in time, because the society must maximize expected return
across time-steps. But an interesting property of using the auction utility in Equation 6.2 as
an RL objective is that given redundant primitives it takes the form of the Bellman equation,
thereby implicitly coupling all primitives together in space and time. Thus each primitive
need only optimize for its immediate utility at a each time-step without needing to optimize
for its own future utilities. This class of decentralized RL algorithms thus implicitly finds a
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global solution in space and time using only credit assignment that is local in space, because
transactions are only between individual agents, and local in time, because each primitive
need only solve a contextual bandit problem at each time-step.

Redundancy for Avoiding Suboptimal Equilibria

A benefit of casting local auction utilities as RL objectives is the practical development of
learning algorithms that need not assume oracle knowledge of valuations, but unless care
is taken with each primitives’ learning environments, the society may not converge to the
globally optimal Nash equilibrium described in Section 6.5. As an example of a suboptimal
equilibrium, in a Market MDP with two primitives, even if v1 = 1,v2 = 2, it is a Nash
equilibrium for b1 = 100,b2 = 0. Without sufficient competitive pressure to not overbid
or underbid, a rogue winner lacks the risk of losing to other primitives with similarly close
valuations. Fortunately, the redundancy of a cloned Vickrey society serves a dual purpose
of not only preventing market bubbles but also introducing competitive pressure in the
primitives’ learning environments in the form of other clones.

6.7 Experiments

Now we study how well the cloned Vickrey society can recover the optimal societal Q-function
as its Nash equilibrium. We compare several implementations of the cloned Vickrey society
against baselines across simple tabular environments in Section 6.7, where the transformations
ϕT are literal actions. Then in Section 6.7 we demonstrate the broad applicability of the
cloned Vickrey society for learning to select options in semi-MDPs and composing functions
in a computation graph. Moreover, we show evidence for the advantages of the societal
decision making framework over its monolithic counterpart in transferring to new tasks.

Although our characterization of the equilibrium and the learning algorithm are agnostic to
the implementation of the primitive, in our experiments the bidding policy ψ is implemented
as a neural network that maps the state to the parameters of a Beta distribution, from which
a bid is sampled. We used proximal policy optimization (PPO) [282] to optimize the bidding
policy parameters.

Numerical Simulations

In the following simulations we ask: (1) How closely do the bids the primitives learn match
their optimal societal Q-values? (2) Does the solution to the global objective emerge from
the competition among the primitives? (3) How does redundancy affect the solutions the
primitives converge to?

We first consider the Market Bandit, the simplest global MDP with one state, and compare
the cloned Vickrey society with societies with different auction mechanisms. Next we consider
the Chain environment, a sparse-reward multi-step global MDP designed to study market
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(a) (b)

Figure 6.3: Market Bandits. We compare the cloned Vickrey society (Cloned Vickrey Auction)
against solitary societies that use the first-price auction mechanism (first price auction), the Vickrey
auction mechanism (Vickrey Auction), and a mechanism whose utility is only the environment
reward (Environment Reward). The dashed line in (a) indicates truthful bidding of valuations. The
cloned Vickrey society’s bids are closest to the true valuations which also translates into the best
global policy (b).

bubbles. Last we consider the Duality environment, a multi-step global MDP designed to
study suboptimal equilibria. We use solitary society to refer to a society without redundant
clones.

Market Bandits and Auction Mechanisms

The simulation primarily studies question (1) by comparing the auction mechanism of the
cloned Vickrey society against other mechanisms in eliciting bids that match optimal societal
Q-values. We compare against first price auction, based on Holland [154], a solitary society
that uses the first price auction mechanism for the local auction, in which the winning
primitive pays a price of their bid, rather the second highest bid; against Vickrey Auction, a
solitary version of the cloned Vickrey society; and against Environment Reward, a baseline
solitary society whose utility function uses only the environment reward, with no price term
P i(b).

The environment is a four-armed Market Bandit whose arms correspond to transformations
ϕ that deterministically yield reward values of 0.2, 0.4, 0.6, and 0.8. Solitary societies thus
would have four primitives, while cloned societies eight. Since we are mainly concerned with
question (1), we stochastically drop out a subset of primitives at every round to give each
primitive a chance to win and learn its value.
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ω̂t Receives ω̂t+1 Pays
CCV b′

t+1 b′
t+1

BB b̂t+1 b̂t+1

V b̂t+1 b′
t+1

Figure 6.4: Implementations. The table shows the bid price that temporally consecutive winners
ω̂t+1 and ω̂t pay and receive based on three possible implementations of the cloned Vickrey society:
CCV, BB, V, with tradeoffs depicted in the Venn diagram. We use b̂t+1 and b′

t+1 to denote the
highest and second highest bids at time t+ 1 respectively.

In the Market Bandit, the arm rewards directly specify the primitives’ valuations, so if
the primitives successfully learned their valuations, we would expect them to learn to bid
values exactly at 0.2, 0.4, 0.6, and 0.8. Figure 6.3a shows that the primitives in the cloned
Vickrey society learn to bid most closely to their true valuations, which also translates into
the best global policy in Figure 6.3b, answering question (2). To address question (3), we
observe that the solitary Vickrey society’s bids are more spread out than those of the cloned
Vickrey society because there is no competitive pressure to learn the valuations exactly. This
is not detrimental when the global MDP has only one time-step, but the next section shows
that the lack of redundancy creates market bubbles that result in a suboptimal global policy.

Market MDPs

Now we consider MDPs that involve multiple time-steps to understand how learning is
affected when primitives’ valuations are defined by the bids of future primitives. Redundancy
theoretically makes what the winner ω̂t receives and ω̂t+1 equivalent, but the stochasticity of
the bid distribution yields various possible implementations for the cloned Vickrey society in
the market MDP– bucket brigade (BB), Vickrey (V ), and credit conserving Vickrey (CCV ),
summarized in Figure 6.4, with different pros and cons. Note that the solitary bucket brigade
society is a multiple time-step analog of the first price auction in Section 6.7. We aim to
empirically test which of the implementations of the cloned Vickrey society yields best local
and global performance.

The Chain environment and market bubbles. A primary purpose of the Chain
environment (Figure 6.6a) is to study the effect of redundancy on mitigating market bubbles
in the bidding behavior and how that affects global optimality. The Chain environment is a
sparse reward finite-horizon environment which initializes the society at s0 on the left, yields
a terminal reward of 0.8 if the society enters the goal state s5 on the right, and ends the
episode after 20 steps if the society does not reach the goal. Chain thus tests the ability



CHAPTER 6. REPRESENTING POLICIES AS GAMES 86

(a) CCV solitary (b) BB solitary (c) V solitary

(d) CCV clone (e) BB clone (f) V clone

Figure 6.5: Learned Bidding Strategies for Chain. We organize the analysis by distinguishing
between the credit-conserving (CCV and BB) and the non-credit-conserving (V ) implementations.
The solitary CCV (a) and BB (b) implementations learn to bid very close to 0: CCV because
the valuation for a primitive at t is only the second-highest bid at t+ 1, resulting in a rapid decay
in the valuations leftwards down the chain; BB because each primitive is incentivized to pay as
low of a price for winning as possible. The cloned CCV (d) and BB (e) implementations learn to
implement a form of return decomposition [16] that redistributes the terminal reward into a series
of positive payoffs back through the chain, each agent getting paid for contributing to moving the
society closer to the goal state, where the CCV implementation’s bids are closer to the optimal
societal Q-value than those of the BB implementation. Because both the solitary (c) and cloned (f)
versions of the V implementations do not conserve credit, they learn to bid close to the optimal
societal Q-value, but both suffer from market bubbles where the primitive for going left bids higher
than the primitive for going right, even though the optimal global policy is to keep moving right.

of the society to propagate utility from future agents to past agents in the absence of an
immediate environment reward signal. We compare the bidding behaviors of the BB, V,
and CCV implementations of the cloned Vickrey society, as well as those of their solitary
counterparts, in Figure 6.6 and the society’s global learning curve in Figure 6.8a.

To answer question (1), we observe that redundancy indeed prevents market bubbles,
with the cloned CCV implementation bidding closet to the optimal societal Q values. Details
are in the caption of Figure 6.5. When we consider the society’s global learning curve in
Figure 6.8a, the answers to questions (2) and (3) go hand-in-hand: the solitary societies
fail to find the globally optimal policy and the cloned CCV implementation has the highest
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Figure 6.6: Multi-Step MDPs. (a) In the Chain environment, the society starts at state s0 and
the goal state is s5. Only activating primitive ω1 at state s4 yields reward. The optimal global
policy is to directly move right by continually activating ω1. Without credit conservation, the
society may get stuck going back and forth between s0 and s4 without reaching the goal. (b) In the
Duality environment, the society starts at state s0. s−1 is an absorbing state with perpetual negative
rewards. The optimal societal policy is to cycle between s0 and s1 to receive unbounded reward, but
without redundant primitives, the society may end up in a suboptimal perpetual self-loop at s1.

sample efficiency.

The Duality environment and suboptimal equilibria. The Chain environment exper-
iments suggested a connection between lack of redundancy and globally suboptimal equilibria,
the subtleties of which we explore further in the Duality environment (Figure 6.6b). The
CCV implementation has yielded the best performance so far but does not guarantee Bell-
man optimality (Figure 6.4) without redundant primitives. We show that in the Duality
environment, without redundant primitives the dominant strategy equilibrium would lead the
society to get stuck in a self-loop at s1 indefinitely, even though the global optimal solution
would be to cycle back and forth between s0 and s1. The reasoning for this is explained in
Appendix E.6. Figure 6.8b indeed shows that a society with redundant primitives learns a
better equilibrium than without.

Semi-MDPs and Computation Graphs

One benefit of framing global decision-making from the perspective of local economic transac-
tions is that the same societal decision-making framework and learning algorithms can be used
regardless of the type of transformation ϕT . We now show in the Two Rooms environment
that the cloned Vickrey society can learn more efficiently than a monolithic counterpart to
select among pre-trained options to solve a gym-minigrid [64] navigation task that involves
two rooms separated by a bottleneck state. We also show in the Mental Rotation environment
that the cloned Vickrey society can learn to dynamically compose computation graphs of
pre-specified affine transformations for classifying spatially transformed MNIST digits. We
use the cloned CCV society for these experiments.

Transferring with Options in Semi-MDPs

We construct a two room environment, Two Rooms, which requires opening the red door
and reaching either a green goal or blue goal. The transformations ϕT are subpolicies that
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(a) solitary: s−1 (b) solitary: s0 (c) solitary: s1

(d) cloned: s−1 (e) cloned: s0 (f) cloned: s1

Figure 6.7: CCV Bidding Curves for Duality. Each column shows the bidding curves of the
solitary (top row) and cloned (bottom row) CCV societies for states s−1, s0, and s1. Without
redundant primitives to force the second-highest and highest valuations to be equal, the dominant
strategy of truthful bidding may not coincide with the globally optimal policy because the solitary
CCV implementation does not guarantee Bellman optimality. The bidding curves in (c) show
that ω1 learns a best response of bidding higher than primitive ω0 at state s1, even though it
would be globally optimal for the society if ω0 wins at s1. Adding redundant primitives causes the
second-highest and highest valuations to be equal, causing ω0 to learn to bid highly as well at s1,
which results in a more optimal return as shown in Figure 6.8b.

have been pre-trained to open the red door, reach the green goal, and reach the blue goal.
In the pre-training task, only reaching the green goal gives a non-zero terminal reward and
reaching the blue goal does not give reward. In the transfer task, the rewards for reaching
the green and blue goals are switched. We compared the cloned Vickrey society against a
non-hierarchical monolithic baseline that selects among the low-level gym-minigrid actions
as well as a hierarchical monolithic baseline that selects among the pre-trained subpolicies.
Both baseline policies sample from a Categorical distribution and are trained with PPO.
The cloned Vickrey society is more sample efficient in learning on the pre-training task and
significantly faster in adapting to the transfer task (Figure 6.10).

Our hypothesized explanation for this efficiency is that the local credit assignment
mechanisms of a society parallelize learning across space and time, a property that is not true
of the global credit assignment mechanisms of a monolithic learner. To test this hypothesis,
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(a) Chain (b) Duality

Figure 6.8: Multi-Step MDP Global Learning Curves. We observe that cloned societies
are more robust against suboptimal equilibria than solitary societies. Furthermore the cloned
CCV implementation achieves the best sample efficiency, suggesting that truthful bidding and
credit-conservation are important properties to enforce for enabling the optimal global policy to
emerge.

Figure 6.9: Mental Rotation. The cloned Vickrey society learns to transform the image into a
form that can be classified correctly with a pre-trained classifier by composing two of six possible
affine transformations of rotation and translation. Clones are indicated by an apostrophe. In this
example, the society activated primitive ω2′ to translate the digit up then primitive ω1 to rotate
the digit clockwise. Though the bidding policies ψi and ψi

′
of the clones ωi and ωi

′
have the same

parameters, their sampled bids may be different because the bidding policies are stochastic.
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Figure 6.10: Two Rooms. The cloned Vickrey society adapts more quickly than the hierarchical
monolithic baseline in both the pre-training and the transfer tasks. The bottom-right figure, which
is a histogram of the absolute values of how much the weights have shifted from fine-tuning on the
transfer task, shows that more weights shift, and to a larger degree, in the hierarchical monolithic
baseline than in our method. This seems to suggest that the cloned Vickrey society is a more
modular learner than the hierarchical monolithic baseline. The non-hierarchical monolithic baseline
does not learn to solve the task from scratch.

we observe in the bottom-right of Figure 6.10 that not only has a higher percentage of the
hierarchical monolithic baseline’s weights shifted during transfer compared to our method but
they also shift to a larger degree, which suggests that the hierarchical monolithic baseline’s
weights are more globally coupled and perhaps thereby slower to transfer. While this analysis
is not comprehensive, it is a suggestive result that motivates future work for further study.

Composing Dynamic Computation Graphs

We adapt the Image Transformations task from Chang et al. [58] as what we call the Mental
Rotation environment (Figure 6.9), in which MNIST images have been transformed with a
composition of one of two rotations and one of four translations. There are 60, 000 × 8 =
240, 000 possible unique inputs, meaning learning an optimal global policy involves training
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primitives across 240, 000 local auctions. The transformations ϕT are pre-specified affine
transformations. The society must transform the image into a form that can be classified
correctly with a pre-trained classifier, with a terminal reward of 1 if the predicted label is
correct and 0 otherwise. The cloned Vickrey society converges to a mean return of 0.933 with
a standard deviation of 0.014.

6.8 Discussion

This work formally defines the societal decision-making framework and proves the optimality
of a society – the cloned Vickrey society – for solving a problem that was first posed in
the AI literature in the 1980s: to specify the incentive structure that causes the global
solution of a society to emerge as the equilibrium strategy profile of self-interested agents.
For training the society, we further proposed a class of decentralized reinforcement learning
algorithms whose global objective decouples in space and time into simpler local objectives.
We have demonstrated the generality of this framework for selecting actions, options, and
computations as well as its potential advantages for transfer learning.

The generality of the societal decision-making framework opens much opportunity for
future work in decentralized reinforcement learning. A society’s inherent modular structure
suggests the potential of reformulating problems with global credit-assignment paths into
problems with much more local credit-assignment paths that offer more parallelism and
independence in the training of different components of a learner. Understanding the learning
dynamics of multi-agent societies continues to be an open problem of research. It would be
exciting to explore algorithms for constructing and learning societies in which the primitives
are also societies themselves. We hope that the societal decision-making framework and its
associated decentralized reinforcement learning algorithms provide a foundation for future
work exploring the potential of creating AI systems that reflect the collective intelligence of
multi-agent societies.
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Chapter 7

Local Credit Assignment

It is causality that gives us this modularity, and when we
lose causality, we lose modularity.

Judea Pearl [99]

7.1 Introduction

Gusteau’s [32] taqueria has a great team for making burritos: Colette heats the tortillas,
Remy adds the meat, and Alfredo wraps the burrito in aluminum foil. But today customers
fell sick from meat contamination and gave angry reviews. Clearly, Remy should replace
meat with tofu or something else. But should credit assignment from the reviews affect
the others? Intuitively, no: the feedback signals to the decision of adding meat and to the
decisions of heating tortillas and wrapping aluminum foil should be independent. Customer
dissatisfaction in burritos are not reflective of the taqueria’s quesadillas, for which Colette’s
tortilla skills and Alfredo’s wrapping skills are useful.

The example above expresses the intuition that modularity, or the capacity for the
mechanisms in a system to be independently modified, enables flexible adaptation. However,
using principles of modularity to build flexible learning systems has been difficult because
the traditional formalism for precisely describing what modularity means was developed
in the context of analyzing static systems – systems whose mechanisms, or functional
components, are assumed fixed. But learning agents are dynamic systems composed
of mechanisms (i.e. learnable functions) that evolve over the course of learning. Thus,
to even express the hypothesis that modularity enables flexibility in learning agents, let
alone test it, we first need (1) a formalism that defines what modularity means for dynamic
systems, (2) a theory that identifies the conditions under which independent modification of
learnable mechanisms is even possible, and (3) a practical criterion for determining when
these conditions are met in learning algorithms. This chapter proposes candidate solutions
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A B C

Training Task

A B D

Transfer Task

Figure 7.1: Minimal motivating example. The optimal action sequence for the training
task is A → B → C, and the optimal sequence for the transfer task differs only in the last
time-step. Continuing to train an optimal policy from the training task on the transfer task with
the cloned Vickrey society (CVS) from Chang et al. [54] transfers 13.9x more efficiently than
with PPO [282], even though learning efficiency for both on-policy algorithms during training is
comparable. This chapter suggests that this is due to dynamic modularity: the algorithmic
independence among CVS’s learnable mechanisms and among their gradients.

to these problems and applies them to shed new insight on the modularity of discrete-action
reinforcement learning (RL) algorithms. The takeaway message of this chapter is that
independent modification of mechanisms requires both the mechanisms and the feedback
signals that update them to be independent: a modular learning algorithm must have a
credit assignment mechanism whose algorithmic causal structure makes such independent
modification possible.

Janzing and Schölkopf [166] proposed to precisely characterize modularity in static systems
as the algorithmic independence of mechanisms in the computational graph used to describe
the system. In learning systems, the computational graph in question depicts the forward
pass of a learner (e.g. a neural network), but this graph itself evolves over the course of
learning because the learnable functions – the mechanisms – get modified. For such dynamic
systems, we extend the static notion of modularity to define dynamic modularity as the
algorithmic independence of mechanisms in the current iteration, conditioned on the graph
from the previous iteration of evolution. This addresses problem (1).

Modularity matters when the system needs to be modified for a new context or purpose.
In learning systems it is the credit assignment mechanism that performs this modification.
Thus dynamic modularity is tied to independence in feedback: for a gradient-based learner,
we show that enforcing dynamic modularity requires enforcing gradients to be algorithmically
independent as well, which we call the modularity constraint. This addresses problem (2).

Algorithmic independence is generally incomputable, which makes the modularity con-
straint intractable to evaluate. To make this constraint practical for analyzing learning
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algorithms, we formally represent the entire learning process as one big causal graph, which
we call the algorithmic causal model of learning (ACML). Then the modularity con-
straint translates into an easy-to-inspect criterion, the modularity criterion, on d-separation
in ACML that enables us to evaluate, without any training, whether a learning algorithm is
exhibits dynamic modularity. This addresses problem (3).

Having established a theoretically-grounded formalism for reasoning about modularity
in learning systems, we theoretically and empirically analyze discrete-action RL algorithms.
The mechanisms of interest are the functions that compute the “bid” (e.g. action probability
or Q-value) for each value of the action variable. The Markov decision process (MDP) is
too coarse-grained to represent these functions separately, so we use the societal decision-
making framework (SDM) from Chang et al. [54], whose computational graph does treat
them separately. We prove that certain single-step temporal difference methods satisfy the
modularity criterion while all policy gradient methods do not. Empirically, we find that for
transfer problems that require only sparse modifications to a sequence of previously optimal
decisions, implementations of algorithms that exhibit dynamic modularity transfer more
efficiently than their counterparts. All proofs are in the Appendix.

Assumptions and approximations The theory developed in §7.4, §7.5, and §7.6 assume
computational graphs over arbitrary strings. Thus we will understand statements about
Kolmogorov complexity and algorithmic information in these sections as inherently asymptotic,
pertaining to strings of increasing length, where equations that hold up to constant terms are
well defined. Similarly, our discussion in §7.6 will pertain not to concrete instantiations of RL
algorithms but only to the causal structure of these algorithms in the abstract. As with all
explanations in science, there is inevitably a gap between theory and practice. In particular,
when considering empirical performance of concrete instantiations of RL algorithms in §7.7
on a specific Turing machine, asympototic statements are not meaningful, but we can still
use empirical observation to refute or improve our theory.

7.2 Related Work

The hypothesis that modularity could improve flexibility of learning systems has motivated
much empirical work in designing factorized architectures [74, 14, 58, 121, 178, 9, 244] and
reinforcement learners [288, 300, 268], but the extent to which the heuristics used in these
methods enforce the learnable components to be independently modifiable has yet to be
tested. Conversely, other works begin by defining a multi-agent system of independently
modifiable components and seek methods to induce their cooperation with respect to a
global objective [22, 29, 303, 54, 110, 23], but the precise property of a learning system that
characterizes its modularity has not been discussed in these works, as far as we are aware.
Recent complementary work has proposed alternative measures of modularity, restricted to
deep networks, based on connectivity strength [92] and functional decomposition [68]. In
contrast, our work identifies a general property that defines the modularity of a learning
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system as the algorithmic independence of learnable mechanisms and of their gradients,
and presents a practical method for testing for this property without any training. We
build upon the theoretical foundations from Janzing and Schölkopf [166] that have clarified
similar notions of “autonomy” and “invariance” that underlie axioms of econometrics [144,
8], causality [246, 248], and computer programming [2]. Yu et al. [345] explored enforcing the
linear independence of gradients to improve multi-task learning, and formulating the precise
connection between algorithmic and linear independence would be valuable future work.

7.3 Background

Our analysis of the modularity of RL algorithms employs two key ideas: (§7.3) computational
graphs can be interpreted as causal graphs and (§7.3) a learnable discrete-action policy can be
interpreted as a society of learnable action-specific functions and a fixed selection mechanism.

Algorithmic Causality

We begin by reviewing terms from algorithmic information theory [181, 201, 294]1. We
assume that programs are expressed in a language L and run on a universal Turing machine.
Given binary strings x, y, and z, we denote conditional algorithmic independence as

x ⊥⊥ y | z, equivalently I (x : y | z)
+
= 0, which reads “given z, knowledge of y does not

allow for a stronger compression of x.” Let x∗ denote the shortest program that produces

x. I denotes conditional algorithmic mutual information.
+
= denotes equality up to

a constant that depends on L but not the strings on either side of the equality (see §7.1).
Conditional Kolmogorov complexity of y given x is given by K(y | x), the length of the
shortest program that generates y from x as input.

Janzing and Schölkopf [166, Post. 6] generalized structural causal models [245] to general
programs, allowing us to treat computational graphs as causal graphs.

Definition 7.3.1 (computational graph). Define a computational graph G = (x, f)
as a directed acyclic factor graph (DAG) of variable nodes x = x1, ..., xN and function nodes
f = f1, ..., fN . Let each xj be computed by a program fj with length O(1) from its parents
{paj} and an auxiliary input nj. Assume the nj are jointly independent: nj ⊥⊥ {n ̸=j}.
Formally, xj := fj({paj}, nj), meaning that the Turing machine computes xj from the input
{paj}, nj using the additional program fj and halts.

By absorbing the nj into the functions fj we can equivalently assume that fj are jointly
independent, but not necessarily O(1) Janzing and Schölkopf [166, Post. 6]. If the nj
are interpreted as noise, this DAG represents a probabilistic program [221, 116, 211] that
implements a standard causal model. Henceforth we treat all graphs as computational graphs.
We define a mechanism as the string representation (i.e. source code) of the program that

1See the appendix for background.
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implements a function f and data as the string representations of the input/output variables
x of f. The algorithmic causal Markov condition [166, Thm. 4], which states that
d-separation implies conditional independence, generalizes the standard Markov condition to
general programs:

Theorem 7.3.1 (algorithmic causal Markov condition). Let {paj} and {ndj} respec-
tively represent concatenation of the parents and non-descendants (except itself) of xj in a
computational graph. Then ∀xj, xj ⊥⊥ {ndj} | {paj}∗.

In standard causality it is typical to assume the converse of the Markov condition, known
as faithfulness [299]. We do the same for algorithmic causality:

Postulate 7.3.2 (algorithmic faithfulness). Given sets S, T , R of nodes in a computational

graph, I(S : T |R∗)
+
= 0 implies R d-separates S and T .

Societal Decision-Making

A discrete-action MDP is the standard graph for a sequential decision problem over states
S with N discrete actions A, defined with state space S, action space {1, ..., N}, transition
function T : S × {1, ..., N} → S, reward function R : S × {1, ..., N} → R, and discount factor
γ. The MDP objective is to maximize the return

∑T
t=0 γ

tR(st, at) with respect to a policy
π : S → {1, ..., N}. We define a decision as a value a of A. The MDP abstracts over the
mechanisms that control each decision with a single edge in the graph, represented by π, but
to analyze the independence of different decisions we are interested in representing these
mechanisms as separate edges.

The societal decision-making (SDM) framework [54] offers an alternative graph that does
exactly this: it decomposes a discrete-action policy as a society of N agents ωk that each
controls a different decision. Each agent is a tuple (ψk, ϕk) of a bidder ψk : S → B and a
fixed transformation ϕk : S → S. In §7.6, we will consider the algorithmic independence of
the ψn. Recovering a policy π composes two operations: one computes bids bks := ψk(s), ∀k,
and one applies a selection mechanism S : BN → {1, ..., N} on the bids to select decision
a. SDM thus curries the transition and reward functions as T : {1, ..., N} → [S → S] and
R : {1, ..., N} → [S → R].

Chang et al. [54] introduced the cloned Vickrey society (CVS) algorithm as an on-policy
single-step temporal-difference action-value method. CVS interprets the Bellman optimality
equation as an economic transaction between agents seeking to optimize their utilites in a
Vickrey auction [321] at each time-step. The Vickrey auction is the selection mechanism that
selects the highest bidding agent i, which receives a utility

U i
st(ω

1:N)︸ ︷︷ ︸
utility

= Rϕ(ωi, st) + γ ·max
k
bkst+1︸ ︷︷ ︸

revenue, or valuation vst

−max
j ̸=i

bjst︸ ︷︷ ︸
price

, (7.1)

and the rest receive a utility of 0. In CVS each agent bids twice: the highest and second
highest bids are produced by the same function parameters. The auction incentivizes each
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Figure 7.2: Key Ideas. A system can be represented as a algorithmic causal graph G. (a) A
modification to a mechanism in graph Gi generates a new graph Gi+1. (b) A dynamic system
encompasses an outer process that generates a sequence of graphs via a series of modifications to
the mechanisms. (c) Learning algorithms are examples of dynamic systems, where the outer process
is the model of credit assignment C, which modifies the mechanisms of the model of execution
E, which represents the forward pass of the learner. By flattening the learning algorithm as one
algorithmic causal graph, we can determine whether the causal structure of the credit assignment
mechanism makes independent modification of learnable mechanisms possible by inspecting whether
the gradients are d-separated by the previous graph Ci. A credit assignment mechanism is (d)
modular if they are d-separated and (e) not modular if not.

agent to truthfully bid the Q-value of its associated transformation mechanism, independent
of the identities and bidding strategies of other agents.

7.4 Dynamic Modularity in Learning Systems

This section extends the definition of modularity in static systems to dynamic systems. We
discuss learning algorithms as examples of dynamic systems and the constraints that must
be imposed on the credit assignment mechanism for the learning algorithm to be exhibit
dynamic modularity.
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From Static Modularity to Dynamic Modularity

A system can be described by a computational graph (i.e. an algorithmic causal graph), whose
mechanisms represent the system components and whose data represent the information
communicated between components. In standard causal analysis [246], mechanisms are
generally treated as fixed. In this context, we call the graph a static graph that describes
a static system. Modularity in the static context has been defined as the autonomy [246,
§1.3.1], or more precisely, the algorithmic independence [166, Post. 7] of mechanisms:

Definition 7.4.1 (static modularity).

∀k ̸= j, I
(
fk : fj

) +
= 0. (7.2)

If mechanisms are algorithmically independent, then one can be modified without an
accompanying modification in the others to compensate. This enables the analysis of
counterfactual queries, for example, where a human performs a hypothetical modification
to a mechanism of a static graph (Fig. 7.2a). To analyze a different query, the mechanism
is reset to its original state before the hypothetical modification, and the human then
performs a different hypothetical modification on the original static graph. The human is a
meta-mechanism, a mechanism that modifies mechanisms.

Whereas static graphs are useful for analyzing systems under human control, many systems
in the real world (e.g. star systems, whose mechanisms are stars that communicate via forces)
are dynamic systems (Fig. 7.2b), whose mechanisms evolve through time (e.g. the stars
move). We describe these systems with a dynamic graph. In the dynamic context, the
meta-mechanism is not the human, but symmetric laws that govern the time evolution of
the mechanisms (e.g. physical laws governing stars’ motion are invariant to change reference
frame). Since any snapshot in time of a dynamic system depicts a static system, we naturally
extend the traditional definition of modularity to the dynamic context:

Definition 7.4.2 (dynamic modularity).

∀k ̸= j, I
(
fk,i+1 : fj,i+1

∣∣ xi, fi) +
= 0. (7.3)

Dynamically modularity simply re-interprets static modularity as a snapshot i along the
temporal dimension.

Learning Algorithms are Dynamic Systems

We now show that general learning algorithms are examples of dynamic systems and can
be analyzed as such. To do so, we need to specify the data and mechanisms of the static
computational graph that represents a particular snapshot, as well as the equivariant meta-
mechanism that evolves the mechanisms from one iteration to the next.

Let the model of execution be the computational graph E that represents the forward
pass of the learner, generating x as an execution trace (x1, ..., xt, ..., xT ) of the input and
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output data of the learnable mechanisms f. For example, with MDPs, the forward pass is a
rollout, the trace records its states, actions, and rewards, and the mechanisms, which map
parent variables {pa}t = st to child variables xt = (at, st+1, rt), are instances of the policy at
different steps t.

Let the model of credit assignment be the computational graph C that evolves the
mechanisms. Each step represents the backward pass of the learner. Here the mechanisms
are treated as data for two equivariant meta-mechanisms, the credit assignment mechanism
Π(x, f) → δ and the update rule UPDATE(f, δ) → f′. C can be viewed as a reward-less
MDP with states f and actions δ, with UPDATE as the transition function. Then Π is a
context-conditioned policy that generates modifications δ = (δ1, ..., δT ) to the functions f of
the learner, given x as context. For a gradient-based learner, δkt is the gradient of the learning
objective with respect to the function fk that participated at step t of the execution trace
(e.g. as we discuss in §7.6, δkt would be the Bellman error of the decision mechanism for action
k taken at step i). UPDATE performs the parallel operation UPDATE(fk,

∑
t δ

k
t )→ fk′ over all

mechanisms fk. The choice of optimizer for gradient descent (e.g. Adam [174]) determines
the functional form of UPDATE. Henceforth we assume gradient-based learning, but our results
hold more generally given the assumptions that UPDATE (1) is algorithmically independent of
Π and (2) completely factorizes across k.

Modularity Constraint on Credit Assignment

The design of a learning algorithm primarily concerns the credit assignment mechanism
Π, whereas the choice of UPDATE is often assumed. We now present the constraint Π must
satisfy for dynamic modularity to hold at every iteration of learning. Given trace x and
previous mechanisms f, we define the modularity constraint as that which imposes that
the gradients δ1, ..., δT be jointly independent:

Definition 7.4.3 (modularity constraint).

I (δ1, ..., δT | x, f)
+
= 0. (7.4)

A modular credit assignment mechanism is one that satisfies the modularity con-
straint. If E exhibited statically modularity (i.e. its functions were independently initialized)
then a modular Π enforces dynamic modularity:

Theorem 7.4.1 (modular credit assignment). Dynamic modularity is enforced at learning
iteration i if and only if static modularity holds at iteration i = 0 and the credit assignment
mechanism satisfies the modularity constraint.

Initializing different functions with different weights is not sufficient to guarantee dynamic
modularity. The gradients produced by Π must be independent as well. If Π were not
modular it would be impossible for it to modify a function without simultaneously inducing
a dependence with another, other than via non-generic instances where δt has a simple
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description, i.e. δt = 0, which, unless imposed, are unlikely to hold over all iterations of
learning.

7.5 An Algorithmic Causal Model of Learning

We can determine the dynamic modularity of a learning algorithm if we can evaluate the
modularity constraint, but evaluating it is not practical in its current form because algorithmic
information is generally incomputable. This section proposes to bypass this incomputability
by translating the constraint into a d-separation criterion on the causal structure of Π, defined
as part of one single causal graph of the learning process, which combines both the model of
execution and the model of credit assignment. The challenge to constructing this graph is
that f are treated as functions in E but as data in C, so it is not obvious how to reconcile
the two in the same graph. We solve this by treating the function application operation
APPLY [2]2, where ∀f, x, APPLY(f, x) := f(x), as itself a function in a computational graph,
enabling us to treat both f and x as variables in the same flattened dynamic graph (Fig. 7.2c).
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Figure 7.3: Modularity in RL. In RL, the forward pass is a rollout in the MDP. (a) The societal
decision-making framework exposes the learnable decision mechanisms of the policy as separate
components in the model of execution. The bids b represent either action probabilities are estimated
action-specific Q-values. The credit assignment mechanisms of (b) policy gradient methods and (c)
TD(n > 1) methods, like using Monte Carlo estimation, contain shared hidden variable and thus
do not produce algorithmically independent gradients δ. (d) TD(0) methods have modular credit
assignment mechanisms in generic cases. The red crosses indicate a lack of d-separation, whereas
the green checkmarks do.

Lemma 7.5.1 (algorithmic causal model of learning). Given a model of execution E

and of credit assignment C, define the algorithmic causal model of learning (ACML)
as a dynamic computational graph L of the learning process. We assume Π has its own
internal causal structure with internal variable and function nodes. The function nodes of L
are APPLY, UPDATE, and internal function nodes of Π. The variable nodes of L are x, f, δ,

2This operation is known in λ-calculus as β-reduction.
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and internal variable nodes of Π. APPLY and UPDATE are assumed to have length O(1). The
internal function nodes of Π jointly independent, and along with the variable nodes of L, are
assumed to not have length O(1). Then these variable nodes satisfy the algorithmic causal
Markov condition with respect to L for all steps of credit assignment.

ACML is the bridge that brings tools from algorithmic causality [166] to bear on analyzing
not simply the algorithmic independence of variables, but algorithmic independence of
functions in general learning algorithms. The learnable mechanisms are no longer considered
to have length O(1) as is assumed in the model of execution. With ACML, we define a
criterion to test whether the modularity constraint holds by direct inspection:

Theorem 7.5.2 (modularity criterion). If L is faithful, the modularity constraint holds if
and only if for all i, outputs δt and δ ̸=t of Π are d-separated by its inputs x and f.

We generally have access to the true computational graph, because the learning algorithm
was programmed by us. Thus Thm. 7.5.2 enables us to evaluate, before any training, whether
a learning algorithm satisfies the modularity constraint by simply inspecting L for d-separation
(Fig. 7.2d,e), giving us a practical tool to both design and evaluate learning algorithms on
the basis of dynamic modularity.

7.6 Modularity in Reinforcement Learning

We now apply the modularity criterion to evaluate the dynamic modularity of two major
classes of RL algorithms [308] – action-value and policy-gradient methods. The modularity
criterion unlocks the use graphical language for our analysis, which simplifies the proofs.
We define a common model of execution for all algorithms within the SDM framework
from §7.3 that enables us to compare the causal structures of their different credit assignment
mechanisms under ACML. We find that in the general function approximation setting,
assuming acyclic decision sequences, the cloned Vickrey society (CVS, §7.3) is the only
algorithm to our knowledge so far that produces reinforcement learners that exhibit dynamic
modularity.

From Monolithic Policies to Decision Mechanisms

As mentioned in §7.3, and as motivated by our taqueria example, we are interested in
analyzing the independence of different decisions, so we need to adapt the model of execution
we gave as an example for MDPs in §7.4 to treat the functions that control each decision as
separate mechanisms.

We observe from the SDM framework that any discrete-action policy π with N actions
can be decomposed into a set of mechanisms computing a “bid” bkst for each decision k (i.e.,
a value of the action variable, recall §7.3) at the given state st, and an independent selection
mechanism that selects a decision given the bids (Fig. 7.3a). Define a decision mechanism
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as the function that computes a bid. For policy-gradient methods, a bid corresponds to
the action probability for a particular action p(a = k|·), and the selection mechanism is the
stochastic sampler for a categorical variable. For action-value methods, a bid corresponds to
the estimated Q-value for a particular action, Q(·, a = k), and the selection mechanism could
be an ε-greedy sampler or a Vickrey auction [54]. Often decision mechanisms share weights
(e.g. DQN [226]) and thus are algorithmically dependent, but for some algorithms they do
not, as in CVS. Then, by absorbing the transition function T and reward function R into
APPLY, the function nodes f of our model of execution are the decision mechanisms, which
each take as input st, and produce as output the tuple (bkst , st+1, rt, w

k
t ), where wt is a binary

flag that indicates whether the selection chose its corresponding action. The execution trace
x, which we call a decision sequence, records the values of these variables in a rollout.

The Modularity of RL Algorithms

We now ask which action-value and policy-gradient methods exhibit dynamic modularity by
evaluating whether their credit assignment mechanisms satisfy the modularity criterion and
whether their decision mechanisms share weights.

Which RL algorithms satisfy the modularity criterion? The modularity criterion
can be violated if there exists a shared hidden variable in the causal structure of Π that
couples together the gradients δ, which causes the δkt ’s to not be d-separated given x and f

(Fig. 7.3b-d).
For all policy gradient methods, the gradient into the action probabilities includes a

normalization term
∑

k b
k as a shared hidden variable (Fig. 7.3b):

Corollary 7.6.0.1 (policy gradient). All policy gradient methods do not satisfy the modu-
larity criterion.

We divide action-value methods into single-step and n-step (where n > 1) temporal
difference methods, abbrv. TD(0) and TD(n > 1) respectively. For TD(n > 1) methods,
such as those that use Monte Carlo (MC) estimation of returns, TD(λ) [307], or generalized
advantage estimation [281], this shared hidden variable is a sum of estimated returns or
advantages at different steps of the decision sequence (Fig. 7.3c):

Corollary 7.6.0.2 (n-step TD). All TD(n > 1) methods do not satisfy the modularity
criterion.

This leaves only TD(0) methods. If the decision mechanism fk were selected (i.e. wkt = 1)
at step i, these methods produce, for some function g, gradients as δkt := g(bkst , st, st+1, rt, f).
Otherwise, δkt := 0. For example, for Q-learning, g is the TD error [maxj b

j
st+1

+ rt − bkst ]
(Fig. 7.3d), where [maxj b

j
st+1

] is computed from st+1 and f. The only hidden variable is

[maxj b
j
st+1

]. It is only shared when the decision sequence x contains a cycle where two
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states st and s′t transition into the same state st+1. In this cyclic case, the credit assignment
mechanism would not satisfy the modularity criterion. Otherwise it does:

Corollary 7.6.0.3 (single-step TD). TD(0) methods satisfy the modularity criterion for
acyclic x.

As cyclic x are non-generic cases that arise from specific settings of x, we henceforth
restrict our analysis to the acyclic case, justifying this restriction similarly to the justification
of assuming faithfulness in other causal literature.

Which RL algorithms exhibit dynamic modularity? We have identified TD(0)
methods as the class of RL algorithms that satisfy the modularity criterion. By Thm. 7.4.1,
whether they satisfy dynamic modularity now depends on whether they satisfied static
modularity at initialization (i = 0). We assume random initialization of f, so the only source
of dependence among f is if they share parameters.

In the tabular setting, decision mechanisms are columns of the Q-table corresponding to
each action. Because these columns do not share parameters, Q-learning [325], SARSA [265],
and CVS exhibit dynamic modularity:

Corollary 7.6.-3.1 (tabular). In the tabular setting, Thm. 7.4.1 holds for Q-learning,
SARSA, and CVS.

In the general function approximation setting, static modularity requires decision mecha-
nisms to not share weights, which eliminates DQN [226] and its variants.

Corollary 7.6.-3.2 (function approximation). In the function approximation setting,
Thm. 7.4.1 holds for TD(0) methods whose decision mechanisms do not share parameters.

To our knowledge, CVS is the only proposed TD(0) method with this property, but it
is straightforward to make existing TD(0) methods exhibit dynamic modularity by using
separate networks for estimating the Q-value of each decision.

Summary. If we want dynamic modularity, then we need the decision mechanisms to not
share parameters and the credit assignment mechanism to not contain a shared hidden variable
that induced algorithmic dependence among the gradients it outputs. An RL algorithm with
dynamic modularity makes it possible for individual decision mechanisms to be modified
independently without an accompanying modification to other decision mechanisms.

7.7 Simple Experiments

This chapter is motivated by the hypothesis that modularity enables flexible adaptation.
To test this hypothesis requires (1) a method for determining whether a learning algorithm
is modular and (2) a metric for evaluating flexible adaptation. The previous sections have
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modified. The original decision sequence 
A → B → C is now suboptimal.

Optimal decision sequence for the 
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Figure 7.4: How transfer tasks are generated. We consider transfer problems where the
optimal decision sequence of the transfer task differs from that of the training task by a single
decision. As above, the transfer MDP and the training MDP differ in that the effect of action B; all
other transitions remain the same. The agent must learn to choose action D instead of C while
re-using other previously optimal decisions.

contributed (1). The metric we use for (2) is the comparative transfer efficiency of an
algorithm that exhibits dynamic modularity with respect to one that does not. We consider
transfer problems that require modifying only one decision in a previously optimal decision
sequence needs to be changed, similar to our motivating example with Gusteau’s taqueria
(§7.1).

Our evaluation focuses on discrete-action on-policy RL algorithms since many factors that
influence the learning of off-policy methods are still not well understood [3, 187, 316, 103].
Specifically we compare three algorithms that span the spectrum of action-value and policy-
gradient methods. CVS represents a method that exhibits dynamic modularity. PPO [282]
represents a method that is not modular at all. PPOF is a modification of PPO whose where
each action logit is computed by a different network, and represents a method that exhibits
static modularity at initialization but not dynamic modularity during learning.

We designed our experiments to be as minimal as possible to remove confounders. States
are represented as binary vectors. The reward is given at the end of the episode and is 1 if
the task is solved and 0 otherwise. The relationship between the training and transfer MDP
is given by an intervention in the MDP transition function (Fig. 7.4).
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Figure 7.5: How the decision mechanisms change during transfer. Shown the three states
of the decision sequence. The optimal last decision must change from action C (purple) to action
D (green). CVS modifies its bids independently. The bids for PPOF are coupled together across
decision mechanisms and across time.

An Enumeration of Transfer Problems

Similar to how analysis of d-separation is conducted with triplets of nodes, we enumerated
all possible topologies of triplets of decisions: linear chain, common ancestor, and common
descendant (Fig. 7.6, left column). For each topology we enumerated all ways of making
an isolated change to an optimal decision sequence. The common ancestor and common
descendant topologies involve multi-task training for two decision sequences of length two,
while linear chain involves single-task training for one decision sequence of length three.
For example, in Fig. 7.6, the optimal decision sequence for the linear chain training task
is A→ B → C. For each topology we have a training task and three independent transfer
tasks. Each transfer task represents a different way to modify the MDP of the training task.
This single comprehensive task suite (Fig. 7.6) enables us to ask a wide range of questions.
The answers to the questions that follow are scoped only to our stated experimental setup.

Does dynamic modularity improve transfer efficiency? Yes, at least in these experi-
ments. For each of the nine transfer settings (rightmost three columns) in Fig. 7.6, CVS (red)
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Figure 7.6: Transfer problems involving triplets of decisions. For each task topology (leftmost
column) we have a training task, labeled (a) and three independent transfer tasks, labeled (b,c,d).
Each transfer task is a different way to modify the training task’s MDP. CVS consistently exhibits
higher sample efficiency than both PPO and PPOF showing that dynamic modularity correlates with
more efficient transfer. Notably the gap between CVS and the other methods in the bottom-right
(e.g. 13.9x more efficient than PPO) is so wide that we had to extend the chart width. We set the
convergence time as the first time after which the return deviates by no more than ε = 0.01 from
the optimal return, 0.8, for 30 epochs of training. Shown are runs across ten seeds.

transfers consistently more efficiently than both PPO (green) and PPOF (blue), despite
having comparable training efficiency in the training task (second column from left). The
variance among the different runs is also lower for CVS.

How does where a decision needs to be modified in the decision sequence affect
transfer efficiency? The improvement in transfer efficiency is especially pronounced in the
trend shown in the bottom row of Fig. 7.6 for linear chain. The later the decision that needs
to be modified appears in the decision sequence, the wider the gap between CVS and the other
two methods, to the point that we had to widen the plot width. Our theory (Thm. 7.4.1)
offers one possible explanation. Considering the bottom-right plot of Fig. 7.6, the transfer
task requires modifying the last decision and keeping the previous two the same. But the
lack of independent gradients and parameters in PPO and PPOF seems to have affected
correct decision mechanisms in the first two steps based on the errors encountered by the
decision mechanism in the last step, seemingly causing the previous decision mechanisms to
“unlearn” originally optimal behavior, then relearn the correct behavior again, as shown in the
plots for “state s0” and “state s1” in Fig. 7.5 for PPOF. This slow unlearning and relearning
seems to be a reason for the lower transfer efficiency of PPO and PPOF. It is as if Colette in
Gusteau’s taqueria (§7.1) stopped heating tortillas because of the angry reviews about meat
contamination but then realized that she should still be heating tortillas after all.
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Does dynamic modularity enable independent modification of decision mechanisms
in practice? While theory tells us that decision mechanisms can be modified independently
within a single credit assignment update, in practice transfer learning requires multiple credit
assignment updates to converge. Across multiple credit assignment updates, the decision
mechanisms would no longer be independent, even for algorithms that exhibit dynamic
modularity, but it is also expected that the functions of a learner should learn to work
together over the course of learning in any case. Nonetheless, Fig. 7.5 shows that the lack of
a softmax tying the bids of CVS together enables them to change more independently and
rapidly than PPOF.

How much of transfer efficiency is due to modular credit assignment than network
factorization? This question pits our theory against a competing explanation: that network
factorization alone (represented by PPOF) is responsible for improved transfer efficiency.
Though PPOF is more efficient than PPO in training and transfer, PPOF is consistently
less efficient than CVS in transfer while being similarly efficient in training. This suggests
that network factorization is not a sufficient explanation, leaving our theory of dynamic
modularity still standing.

Modularity and Forgetting

A desirable consequence of having the capacity to independently modify learnable mechanisms
is the ability to not modify mechanisms that need not be modified: we would not want
the agent to forget optimal behavior in one context when it trains on a different task in
a different context. We now test whether dynamic modularity contributes to this ability.
The experimental setup is shown in Fig. 7.7. There are four possible values for the action,
A,B,C,D. In task (a), the optimal decision sequence is A → C, starting at state s0 and
passing through state s2, which has a context bit flipped to 0. In task (b), the optimal
decision sequence is B → D, starting at state s1 and passing through state s2, which has a
context bit flipped to 1. Though the optimal states for task (a) are disjoint from the optimal
states for task (b), the decision mechanisms corresponding to A,B,C,D are present for both
tasks. We first train on task (a), then transfer from (a) to (b), then transfer back from (b) to
(a).

Does dynamic modularity improve the agent’s ability to preserve optimal behavior
on a previous task after having trained to convergence on a different task? To
test this, we compare CVS and PPO’s sample efficiency when transferring back from (b) to
(a). Fig. 7.7 shows that even when both CVS and PPO have similar sample efficiency when
initially training on task (a), CVS is more than ten times more sample efficient than PPO
when transferring back from (b) to (a). Our explanation for this phenomenon is that the
lack of algorithmic independence in the decision mechanisms of PPO causes the decision
mechanisms for actions A and C to be significantly modified when PPO transfers from (a) to
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Figure 7.7: Modularity and forgetting. The optimal solutions for tasks (a) and (b) involve a
disjoint set of decisions: A→ C for task (a) and B → D for task (b). We first train on task (a),
then transfer from (a) to (b), then transfer back from (b) to (a). The purpose of this experiment is
to test whether dynamic modularity improve the agent’s ability to preserve optimal behavior on a
previous task after having trained to convergence on a different task in a different context. While
both CVS and PPO have similar sample efficiency when initially training on task (a), CVS is more
than ten times more sample efficient than PPO when transferring back from (b) to (a), suggesting
that PPO “forgot” the optimal behavior for task (a) when training on task (b), which is not the
kind of forgetting we want in learning agents.

(b), even when these actions do not even participate in the optimal decision sequence for task
(b). The low sample efficiency when transferring back from (b) to (a) suggests that PPO
“forgot” the optimal behavior for task (a) when training on task (b), which is not the kind of
forgetting we want in flexibly adaptable agents.

How much of this ability to preserve previously optimal behavior due to modular
credit assignment than network factorization? PPOF is similarly inefficient as PPO
compared to CVS in transferring from (a) to (b), which is consistent with our findings
from §7.7. Interestingly, PPOF seems to be just as efficient at transferring back from (b)
to (a) as CVS, which seems to suggest that the primary cause for the forgetfulness of PPO,
at least in this experiment, is less due to lack of independent gradients but more to lack of
network factorization. This experiment suggests a need for an explanatory theory to identify
under which circumstances independent gradients are more influential to flexible adaptation
than network factorization, and vice versa, as well as a means for quantifying the degree of
influence each has.

7.8 Discussion

The hypothesis that modularity can enable flexible adaptation requires a method for deter-
mining whether a learning system is modular. This chapter has contributed the modularity
criterion (Thm. 7.5.2) as such a method.

The consistency of how dynamic modularity in on-policy reinforcement learning correlates
with higher transfer efficiency in our experiments suggests a need for future work to provide
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an explanatory theory for exactly how dynamic modularity contributes to flexible adaptation
as well as to test whether the same phenomenon can be observed with other classes of
learning algorithms, other transfer problems, and other domains. The modularity criterion
is a binary criterion on algorithmic independence or lack thereof, but our experiments also
suggest a need for future work in quantifying algorithmic causal influence if we want to relax
the criterion to a softer penalty on algorithmic mutual information. Moreover, our work
highlights a need for a formalism that allows for meaningful statements about independence
among concrete strings within a specific Turing machine, rather than statements that only
hold asymptotically.

Learning algorithms are only one example of the more general concept of the dynamic
computational graph introduced in this chapter, which Lemma 7.5.1 shows can be used to
analyze the algorithmic independence of functions that evolve over time. The connection we
have established among credit assignment, modularity, and algorithmic information theory,
in particular the link between learning algorithms and algorithmic causality, opens many
opportunities for future work, such as new ways of formalizing inductive bias in the algorithmic
causal structure of learning systems and the learning algorithms that modify them.
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Part IV

Conclusion
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Our goal in this thesis has been to take a step towards building machines that automatically
model and manipulate systems. I have argued that proper modeling and manipulation of
systems should exhibit combinatorial generalization: the capacity to generalize across the space
of different combinations of entities, transformations, and choices. I have identified the core
bottleneck to achieving this to be the capacity to learn reusable abstractions: representations
of entities, transformations, and choices that can be independently recombined in new
contexts. Machine learning lacks a useful mathematical framework for describing this notion
of independence, and I have argued that naively factorizing monolithic networks does not
effectively prevent spurious correlations. The transition from electronic circuits to software
required solving a similar problem. The solution for achieving combinatorial generalization in
computing was to implement the principle of separation of concerns via contextual refinement
towards designed specifications. The question this thesis has tackled is whether the method
of contextual refinement towards learned specifications can enable neural networks to learn
representations that can be similarly reused.

I have investigated this question along three dimensions of system interaction: entities,
transformations, and choices. For entities, I showed that implementing contextual refinement
as iterative clustering enables neural networks to learn to infer representations of objects
that can be reused in the context of other objects. For transformations, I showed that
implementing context refinement by restricting neural blocks to only partially modify their
input enables these learned functions to be composed with other functions in novel ways. For
choices, I showed that training policies as a set of choice functions that optimize auction
utility enables these choice functions to be independently updated for more efficient transfer.

I have made a case in this thesis that the future of AI research has much to gain from
taking the analogy between electronic circuits and neural circuits seriously. Contextual
refinement for encapsulation is an idea invented uniquely for circuits and software, and
encapsulation as a notion of independence does not have a rigorous formalization in the
mathematics of machine learning. This thesis showed that identifying contextual refinement
as the mechanism behind how we implemented encapsulation for enabling combinatorial
generalization in software opens the path to implementing the same kind of mechanism for
enabling combinatorial generalization in neural networks.

But the insights we get from this analogy does not have to stop there. Most recently, the
field has begun to take steps towards a neural variant of von Neumann architecture, where a
Transformer interacts with an external data source similarly to how a CPU interacts with the
hard drive [173, 52, 112, 222]. We can then use this connection to draw parallels between how
the field of computing evolved after the von Neumann machine to give us insight on how the
field of deep learning will evolve as well. As an example, we have yet to invent the analogue of
Assembly let alone high-level programming languages on top of our neural circuits. The best
AI models today are large language models [238] and interacting with them by typing text is
like interacting with the early computers of the 1960s through command-line interfaces. We
have yet to invent the analogue to the graphical user interface of the deep learning era.

As we begin the transition beyond designing neural circuits to writing neural software, it
is worth keeping in mind the key difference between electronic circuits and computer software.
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The difference is that software is fundamentally a user interface. Though software ultimately
grounds out in circuits, it is a series of abstraction layers on top of circuits that enable
humans to model and manipulate systems by writing code. As a user interface, software has
also introduced a new set of design criteria beyond those for designing circuits, specifically
that software needs to be “safe from bugs, easy to understand, and ready for change” [217].
These design criteria suggest that, though anything that can be achieved by software can be
achieved with a complex electronic circuit, the reason why we developed software over the last
century rather than stayed with circuits is that problem solving is inherently human-centric:
it matters not only what problems software can solve but that it solves it in a way that can
be understood, modified, and used by humans.

Understanding the path from circuits to software may give us valuable insights on the
future of deep learning and how to address its present limitations. Massive neural networks
are similarly inscrutable as complex electronic circuits. The design criteria of “safe from
bugs, easy to understand, and ready for change” for good software are also the same criteria
for building safe AI systems of the future: aligned, interpretable, and extensible. If we want
learning machines to help us solve problems, then we need to similarly design AI systems
with the human in mind. We need to go beyond training neural circuits and begin creating
neural software abstractions.
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[9] Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. “Modular meta-learning”.
In: arXiv:1806.10166 (2018).

[10] Luis B Almeida. “A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment”. In: Artificial neural networks: concept learning. 1990,
pp. 102–111.

[11] Brandon Amos and J Zico Kolter. “Optnet: Differentiable optimization as a layer in
neural networks”. In: International Conference on Machine Learning. PMLR. 2017,
pp. 136–145.

[12] James A Anderson and Geoffrey E Hinton. “Models of information processing in the
brain”. In: Parallel models of associative memory. Psychology Press, 2014, pp. 33–74.

[13] John Robert Anderson. “The adaptive character of thought”. In: Psychology Press,
1990. Chap. 5, pp. 191–230.

[14] Jacob Andreas et al. “Neural module networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 39–48.



BIBLIOGRAPHY 114

[15] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”.
In: Advances in Neural Information Processing Systems. 2016, pp. 3981–3989.

[16] Jose A Arjona-Medina et al. “Rudder: Return decomposition for delayed rewards”. In:
Advances in Neural Information Processing Systems. 2019, pp. 13544–13555.

[17] Jimmy Ba et al. “Using fast weights to attend to the recent past”. In: Advances in
Neural Information Processing Systems 29 (2016), pp. 4331–4339.

[18] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The Option-Critic Architecture.”
In: AAAI. 2017, pp. 1726–1734.

[19] Dzmitry Bahdanau et al. “Systematic Generalization: What Is Required and Can It
Be Learned?” In: arXiv preprint arXiv:1811.12889 (2018).

[20] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In: arXiv
preprint arXiv:1909.01377 (2019).

[21] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Stabilizing equilibrium models by
Jacobian regularization”. In: arXiv preprint arXiv:2106.14342 (2021).

[22] David Balduzzi. “Cortical prediction markets”. In: arXiv preprint arXiv:1401.1465
(2014).

[23] David Balduzzi et al. “Smooth markets: A basic mechanism for organizing gradient-
based learners”. In: arXiv preprint arXiv:2001.04678 (2020).

[24] Victor Bapst et al. “Structured agents for physical construction”. In: arXiv:1904.03177
(2010), pp. 464–474.

[25] Andrew G Barto and Sridhar Mahadevan. “Recent advances in hierarchical reinforce-
ment learning”. In: Discrete event dynamic systems 13.1-2 (2003), pp. 41–77.

[26] Dhruv Batra et al. “Rearrangement: A challenge for embodied AI”. In: arXiv preprint
arXiv:2011.01975 (2020).

[27] Peter Battaglia et al. “Interaction networks for learning about objects, relations and
physics”. In: Advances in Neural Information Processing Systems. 2016, pp. 4502–4510.

[28] Peter W Battaglia et al. “Relational inductive biases, deep learning, and graph
networks”. In: arXiv preprint arXiv:1806.01261 (2018).

[29] Eric B Baum. “Toward a model of mind as a laissez-faire economy of idiots”. In: ICML.
1996, pp. 28–36.

[30] R Bellmann. “Dynamic programming princeton university press”. In: Princeton, NJ
(1957).

[31] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A
review and new perspectives”. In: IEEE transactions on pattern analysis and machine
intelligence 35.8 (2013), pp. 1798–1828.

[32] B. Bird et al. Ratatouille. 2007.



BIBLIOGRAPHY 115

[33] Matthew M Botvinick, Yael Niv, and Andrew C Barto. “Hierarchically organized be-
havior and its neural foundations: a reinforcement learning perspective”. In: Cognition
113.3 (2009), pp. 262–280.

[34] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. “Stochastic dynamic
programming with factored representations”. In: Artif. Intell. 121.1-2 (2000), pp. 49–
107.

[35] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. “Exploiting Structure
in Policy Construction”. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAI’95. Montreal, Quebec, Canada: Morgan
Kaufmann Publishers Inc., 1995, pp. 1104–1111.

[36] Valentino Braitenberg. Vehicles: Experiments in synthetic psychology. 1986.

[37] Rodney A Brooks. “Intelligence without representation”. In: Artificial intelligence
47.1-3 (1991), pp. 139–159.

[38] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.
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[206] Adam Lǐska, Germán Kruszewski, and Marco Baroni. “Memorize or generalize?
searching for a compositional RNN in a haystack”. In: arXiv preprint arXiv:1802.06467
(2018).



BIBLIOGRAPHY 126

[207] Francesco Locatello et al. “Object-Centric Learning with Slot Attention”. In: NeurIPS.
2020.

[208] Francesco Locatello et al. “Object-centric learning with slot attention”. In: arXiv
preprint arXiv:2006.15055 (2020).

[209] David Lopez-Paz et al. “Gradient episodic memory for continual learning”. In: Advances
in Neural Information Processing Systems. 2017, pp. 6467–6476.

[210] Joao Loula, Marco Baroni, and Brenden M Lake. “Rearranging the Familiar: Testing
Compositional Generalization in Recurrent Networks”. In: arXiv preprint (2018).
eprint: arXiv:1807.07545.

[211] Vikash Kumar Mansinghka et al. “Natively probabilistic computation”. PhD thesis.
Massachusetts Institute of Technology, Department of Brain and Cognitive . . ., 2009.

[212] Gary F Marcus. “Rethinking eliminative connectionism”. In: Cognitive psychology
37.3 (1998), pp. 243–282.

[213] Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science.
MIT press, 2018.

[214] Joe Marino, Yisong Yue, and Stephan Mandt. “Iterative amortized inference”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 3403–3412.

[215] Joseph Marino, Milan Cvitkovic, and Yisong Yue. “A general method for amortizing
variational filtering”. In: arXiv preprint arXiv:1811.05090 (2018), pp. 7857–7868.

[216] Joseph Marino et al. “Iterative amortized policy optimization”. In: arXiv preprint
arXiv:2010.10670 (2020).

[217] Massachusetts Institute of Technology. The goal of 6.031. [Online; accessed April 11,
2023]. 2022. url: %5Curl%7Bhttps://web.mit.edu/6.031/www/sp22/classes/01-
static-checking/#the_goal_of_6031%7D.

[218] Eric Mazumdar et al. “Policy-gradient algorithms have no guarantees of convergence in
continuous action and state multi-agent settings”. In: arXiv preprint arXiv:1907.03712
(2019).

[219] Donella H Meadows. Thinking in systems: A primer. chelsea green publishing, 2008.

[220] Christopher Meek. “Strong Completeness and Faithfulness in Bayesian Networks”.
In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence.
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Appendix A

Representing Static Entities

A.1 Future Work

Fig. A.1 and Fig. A.2 both highlight intriguing qualitative differences between vanilla and
implicit SLATE and understanding what causes these differences would be valuable for future
work. What these figures highlight is that multiple decompositions of a scene into components
are possible, which may differ in how closely they reflect human intuition on what constitutes
a visual entity. This suggests that the optimization objectives for current object-centric
models still underspecify the kinds of decompositions we seek to achieve in our models. The
paradigm of decomposing static scenes, as opposed to interactive videos (e.g. [319, Fig. 7]),
also contributes to this underspecification.
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Implicit

Vanilla
Ground truth

Ground truth

Figure A.1: Implicit differentiation appears to create a stronger dependence among the slots. This
figure shows what reconstruction looks if we train and evaluate with 12 slots, then re-render the
reconstruction by deleting slots one at a time. When there are still many other slots as context, for
both vanilla and implicit SLATE, deleting a slot corresponds to a clean deletion of the corresponding
object in the reconstruction, as shown in the inset that highlights what the rendering looks like
if we render with eight slots and seven slots. However, as we remove more slots, implicit SLATE
generates less coherent compositions than vanilla SLATE, as shown when we render with only one
to three slots. What causes this discrepancy is also an open question for future work.
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Implicit SLATE

Vanilla SLATE

Figure A.2: Despite our work pushing the optimization performance for a state-of-the-art model in
object-centric learning (Tab. 2.3), and despite implicit slot attention producing similarly intuitive
predicted segmentation masks as vanilla slot attention (Fig. 2.8), there appears to be a qualitative
difference between the attention maps of implicit slate and those of vanilla slate. As this figure
shows, the attention masks for vanilla SLATE appear to be more localized to each object, the
attention masks for implicit SLATE appear to be more smeared out. One observation is that in
some cases implicit SLATE appears to attend not only to the object but also its shadow, as circled
in green. However, in other cases the attention maps appear to be smeared in other ways that may
attend to a shadow that could possibly happen, but not necessarily a shadow in the given scene.
What causes this discrepancy is open question for future work.
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A.2 Further Experiments
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Figure A.3: Comparing different orders of Neumann approximation. We sought to
understand how the different orders of Neumann approximation affected performance. We observe
that the 1st order approximation still largely performs the best, likely because adding more terms to
the series expansion requires backpropagating through more iterations of slot attention, which was
the problem we had sought to avoid in the first place. However, most approximations still perform
better than the vanilla model with the same number of forward iterations.



APPENDIX A. REPRESENTING STATIC ENTITIES 140

0×10! iterations

1×10! iterations

2×10! iterations

3×10! iterations

Implicit

Ground Truth Reconstruction Masks

Figure A.4: Qualitative visualizations without gradient clipping: implicit. This figure
shows qualitative visualizations of implicit SLATE’s reconstructions and attention masks when
trained without gradient clipping. Compared to Fig. A.5, implicit SLATE’s reconstructions matches
the ground truth much more closely, and its masks are more coherent. Vanilla SLATE’s masks are
much noisier, and become degenerate in later stages of training as its Jacobian norm explodes.
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0×10! iterations

1×10! iterations

2×10! iterations

3×10! iterations

Vanilla

Ground Truth Reconstruction Masks

Figure A.5: Qualitative visualizations without gradient clipping: vanilla. Compared to
Fig. A.4, vanilla SLATE’s masks are much noisier, and become degenerate in the later stages of
training as its Jacobian norm explodes, whereas implicit SLATE’s reconstructions matches the
ground truth much more closely, and its masks are more coherent.
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Appendix B

Representing Dynamic Entities

B.1 Observation Model

The observation model G models how the objects H1:K cause the image observation X ∈
R
N×M . Here we provide a mechanistic justification for our choice of observation model

by formulating the observation model as a probabilistic approximation to a deterministic
rendering engine.

Deterministic rendering engine: Each object Hk is rendered independently as the
sub-image Ik and the resulting K sub-images are combined to form the final image observation
X. To combine the sub-images, each pixel Ik(ij) in each sub-image is assigned a depth δk(ij)
that specifies the distance of object k from the camera at coordinate (ij). of the image plane.
Thus the pixel X(ij) takes on the value of its corresponding pixel Ik(ij) in the sub-image Ik if
object k is closest to the camera than the other objects, such that

X(ij) =

K∑
k=1

Zk(ij) · Ik(ij), (B.1)

where Zk(ij) is the indicator random variable 1[k = argmink∈K δk(ij)], allowing us to intuitively
interpret Zk as segmentation masks and Ik as color maps.

Modeling uncertainty with the observation model: In reality we do not directly
observe the depth values, so we must construct a probabilistic model to model our uncertainty:

G (X|H1:K) =

N,M∏
i,j=1

K∑
k=1

m(ij)(Hk) · g
(
X(ij) |Hk

)
, (B.2)

where every pixel (ij) is modeled through a set of mixture components g
(
X(ij) |Hk

)
that

model how pixels of the individual sub-images Ik are generated, as well as through the mixture
weights mij(Hk) that model which point of each object is closest to the camera. The mixture
components are defined as g

(
X(ij) |Hk

)
:= p

(
Xij|Zk(ij) = 1, Hk

)
and the mixture weights

are defined as mij(Hk) := p
(
Zk(ij) = 1|Hk

)
.
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B.2 Evidence Lower Bound

Here we provide a derivation of the evidence lower bound. We begin with the log probability
of the observations X(1:T ) conditioned on a sequence of actions a(0:T−1):

log p
(
X(0:T )

∣∣∣ a(0:T−1)
)
= log

∫
h
(0:T )
1:K

p
(
X(0:T ), h

(0:T )
1:K

∣∣∣ a(0:T−1)
)
dh

(0:T )
1:K .

= log

∫
h
(0:T )
1:K

p
(
X(0:T ), h

(0:T )
1:K

∣∣∣ a(0:T−1)
) q (h(0:T )

1:K | ·
)

q
(
h
(0:T )
1:K | ·

) dh(0:T )
1:K .

= logE
h
(0:T )
1:K ∼q

(
H

(0:T )
1:K | ·

)
p
(
X(0:T ), h

(0:T )
1:K

∣∣∣ a(0:T−1)
)

q
(
h
(0:T )
1:K | ·

)


≥ E
h
(0:T )
1:K ∼q

(
H

(0:T )
1:K | ·

) log
p
(
X(0:T ), h

(0:T )
1:K

∣∣∣ a(0:T−1)
)

q
(
h
(0:T )
1:K | ·

)
 . (B.3)

We have freedom to choose the approximating distribution q
(
H

(0:T )
1:K | ·

)
so we choose it to

be conditioned on the past states and actions, factorized across time:

q
(
H

(0:T )
1:K | x(0:T ), a(0:T )

)
= q

(
H

(0)
1:K |x(0)

) T∏
t=1

q
(
H

(t)
1:K | H

(t−1)
1:K , x(t), a(t−1)

)
With this factorization, we can use linearity of expectation to decouple Equation B.3 across
timesteps:

E
h
(0:T )
1:K ∼q

(
H

(0:T )
1:K | x(0:T ),a(0:T )

) log
p
(
X(0:T ), h

(0:T )
1:K

∣∣∣ a(0:T−1)
)

q
(
h
(0:T )
1:K |x(0:T ), a(0:T )

)
 =

(t)∑
t=0

L(t)
r − L(t)

c ,

where at the first timestep

L(0)
r = E

h
(0)
1:K∼q

(
H

(0)
1:K | X(0)

) [log p(X(0) | h(0)1:K

)]
L(0)
c = DKL

(
q
(
H

(0)
1:K | X(0)

)
|| p
(
H

(0)
1:K

))
and at subsequent timesteps

L(t)
r = E

h
(t)
1:K

∼q
(
H

(t)
1:K

|h(0:t−1)
1:K

,X(0:t),a(0:t−1)
) [log p(X(t) | h(t)

1:K

)]
L(t)

c = E
h
(t−1)
1:K

∼q
(
H

(t−1)
1:K

|h(0:t−2)
1:K

,X(1:t−1),a(0:t−2)
) [DKL (

q
(
H

(t)
1:K | h(t−1)

1:K , X(t), a(t−1)
)
|| p

(
H

(t)
1:K | h(t−1)

1:K , a(t−1)
))]

.

By the Markov property, the marginal q(H
(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)) is computed recursively

as
E
h(t−1)∼q

(
H

(t−1)
1:K |h(0:t−2)

1:K ,X(0:t−1),a(0:t−2)
) [q (H(t)

1:K | h
(t−1)
1:K , X(t), a(t−1)

)]
whose base case is q

(
H(0) |X(0)

)
when t = 0.
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We approximate observation distribution p(X |H1:K) and the dynamics distribution
p(H ′

1:K |H1:K , a) by learning the parameters of the observation model G and dynamics model
D respectively as outputs of neural networks. We approximate the recognition distribution
q(H

(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)) via an inference procedure that refines better estimates of the

posterior parameters, computed as an output of a neural network. To compute the expectation
in the marginal q(H

(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)), we follow standard practice in amortized

variational inference by approximating the expectation with a single sample of the sequence
h
(0:t−1)
1:K by sequentially sampling the latents for one timestep given latents from the previous

timestep, and optimizing the ELBO via stochastic gradient ascent [77, 175, 258].

B.3 Posterior Predictive Distribution

Here we provide a derivation of the posterior predictive distribution for the dynamic latent
variable model with multiple latent states. Section B.2 described how we compute the distri-

butions p(X |H1:K), p(H ′
1:K |H1:K , a), q(H

(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)), and q(H

(0:T )
1:K |x(1:T ), a(1:T )).

Here we show that these distributions can be used to approximate the predictive posterior
distribution p(X(T+1:T+d) |x(0:T ), a(0:T+d)) by maximizing the following lower bound:

log p
(
X(T+1:T+d) | x(0:T ), a(0:T+d)

)
=

∫
h
(0:T+d)
1:K

p
(
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1:K | ·

)
q
(
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1:K | ·

) dh
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= logE
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(
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∼q
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) log
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(
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1:K | x(0:T ), a(0:T+d)
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q
(
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(0:T+d)
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 .
(B.4)

The numerator p(X(T+1:T+d), h
(0:T+d)
1:K |x(0:T ), a(0:T+d)) can be decomposed into two terms, one

of which involving the posterior p(h
(0:T+d)
1:K |x(0:T ), a(0:T+d)):

p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T ), a(0:T+d)

)
= p

(
X(T+1:T+d) | h(0:T+d)

1:K

)
p
(
h
(0:T+d)
1:K | x(0:T ), a(0:T+d)

)
,

This allows Equation B.4 to be broken up into two terms:

E
h
(0:T+d)
1:K

∼q
(
H

(0:T+d)
1:K

| ·
) log p(X(T+1:T+d) | h(0:T+d)

1:K

)
−DKL

(
q
(
H

(0:T+d)
1:K | ·

)
|| p

(
H

(0:T+d)
1:K | x(0:T ), a(0:T+d)

))
Maximizing the second term, the negative KL-divergence between the variational distribution

q(H
(0:T+d)
1:K | ·) and the posterior p(H

(0:T+d)
1:K |x(0:T ), a(0:T+d)) is the same as maximizing the

following lower bound:

E
h
(0:T )
1:K ∼q

(
h
(0:T )
1:K | ·

) log p(x(0:T ) | h(0:T )
1:K , a(0:T−1)

)
−DKL

(
q
(
H

(0:T+d)
1:K | ·

)
|| p
(
H

(0:T+d)
1:K | a(0:T+d)

))
(B.5)
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where the first term is due to the conditional independence between X(0:T ) and the future

states H
(T+1:T+d)
1:K and actions A(T+1:T+d). We choose to express q

(
H

(0:T+d)
1:K | ·

)
as conditioned

on past states and actions, factorized across time:

q
(
H(0:T+d) | x(0:T ), a(0:T+d−1)

)
= q

(
H

(0)
1:K |x(0)

) T+d∏
t=1

q
(
H

(t)
1:K | H

(t−1)
1:K , x(t), a(t−1)

)
.

In summary, Equation B.4 can be expressed as

E
h
(0:T+d)
1:K ∼q(H(0:T+d) | x(0:T ),a(0:T+d−1)) log p

(
X(T+1:T+d) | h(0:T+d)

1:K

)
+E

h
(0:T )
1:K ∼q(H(0:T ) | x(0:T ),a(0:T−1)) log p

(
x(0:T ) | h(0:T )

1:K , a(0:T−1)
)

−DKL

(
q
(
H(0:T+d) | x(0:T ), a(0:T+d−1)

)
|| p
(
H

(0:T+d)
1:K | a(0:T+d)

))
which can be interpreted as the standard ELBO objective for timesteps 0 : T , plus an addition
reconstruction term for timesteps T + 1 : T + d, a reconstruction term for timesteps 0 : T .
We can maximize this using the same techniques as maximizing Equation B.3.

Whereas approximating the ELBO in Equation B.4 can be implemented by rolling out
OP3 to predict the next observation via teacher forcing [331], approximating the posterior
predictive distribution in Equation B.4 can be implemented by rolling out the dynamics
model d steps beyond the last observation and using the observation model to predict the
future observations.

B.4 Interactive Inference

Algorithms 3 and 4 detail M steps of the interactive inference algorithm at timestep 0
and t ∈ [1, T ] respectively. Algorithm 3 is equivalent to the IODINE algorithm described
in [131]. Recalling that λ1:K are the parameters for the distribution of the random variables
H1:K , we consider in this chapter the case where this distribution is an isotropic Gaussian
(e.g. N (λk) where λk = (µk, σk)), although OP3 need not be restricted to the Gaussian
distribution. The refinement network fq produces the parameters for the distribution

q(H
(t)
k |h

(t−1)
k , x(t), a(t)). The dynamics network fd produces the parameters for the distribution

d(H
(t)
k |h

(t−1)
k , h

(t−1)
[ ̸=k] , a

(t)). To implement q, we repurpose the dynamics model to transform

h
(t−1)
k into the initial posterior estimate λ

(0)
k and then use fq to iteratively update this

parameter estimate. βk indicates the auxiliary inputs into the refinement network used
in [131]. We mark the major areas where the algorithm at timestep t differs from the
algorithm at timestep 0 in blue.
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Algorithm 3 Interactive Inference: Timestep 0

1: Input: observation x(0)

2: Initialize: parameters λ(0,0)

3: for i = 0 to M − 1 do

4: Sample h
(0,i)
k ∼ N

(
λ
(0,i)
k

)
for each entity k

5: Evaluate L(0,i) ≈ logG
(
x(0) |h(0,i)1:K

)
−DKL

(
N
(
λ
(0,i)
1:K

)
|| N (0, I)

)
6: Calculate ∇λk

L(0,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k

8: Update λ
(0,i+1)
k ← frefine

(
x(0),∇λL(0,i), λ(0,i), β

(0,i)
k

)
for each entity k

9: end for
10: return λ(0,M)

Algorithm 4 Interactive Inference: Timestep t

1: Input: observation x(t), previous action a(t−1), previous entity states h
(t−1)
1:K

2: Predict λ
(t,0)
k ← fd

(
h
(t−1)
k , h

(t−1)
[̸=k] , a

(t−1)
)
for each entity k

3: for i = 0 to M − 1 do
4: Sample h

(t,i)
k ∼ N

(
λ(t,i)

)
for each entity k

5: Evaluate L(t,i) ≈ logG
(
x(t) |h(t)1:K

)
−DKL

(
N
(
λ
(t,i)
1:K

)
|| N

(
λ
(t,0)
1:K

))
6: Calculate ∇λk

L(t,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k

8: Update λ
(t,i+1)
k ← fq

(
x(t),∇λk

L(t,i), λ
(t,i)
k , β

(t,i)
k

)
for each entity k

9: end for
10: return λ(t,M)

Training: We can train the entire OP3 system end-to-end by backpropagating through
the entire inference procedure, using the ELBO at every timestep as a training signal for
the parameters of G, D, Q in a similar manner as [317]. However, the interactive inference
algorithm can also be naturally be adapted to predict rollouts by using the dynamics model
to propagate the λ1:K for multiple steps, rather than just the one step for predicting λ

(t,0)
1:K in

line 2 of Algorithm 4. To train OP3 to rollout the dynamics model for longer timescales, we
use a curriculum that increases the prediction horizon throughout training.

B.5 Cost Function

Let Î(Hk) := m(Hk) · g (X |Hk) be a masked sub-image (see Appdx: B.1). We decompose
the cost of a particular configuration of objects into a distance function between entity states,
c(Ha, Hb). For the first environment with single-step planning we use L2 distance of the
corresponding masked subimages: c(Ha, Hb) = L2(Î(Ha), Î(Hb)). For the second environment
with multi-step planning we a different distance function since the previous one may care
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more about if a shape matches than if the color matches. We instead use a form of intersection
over union but that counts intersection if the mask aligns and pixel color values are close

c(Ha, Hb) = 1−
∑
i,j mij(Ha)>0.01 and mij(Hb)>0.01 and L2(g(Ha)(ij),g(Hb)(ij))<0.1∑

i,j mij(Ha)>0.01 or mij(Hb)>0.01
. We found this version

to work better since it will not give low cost to moving a wrong color block to the position of
a different color goal block.

B.6 Architecture and Hyperparameter Details

We use similar model architectures as in [131] and so have rewritten some details from their
appendix here. Differences include the dynamics model, inclusion of actions, and training
procedure over sequences of data. Like [145], we define our latent distribution of size R to be
divided into a deterministic component of size Rd and stochastic component of size Rs. We
found that splitting the latent state into a deterministic and stochastic component (as opposed
to having a fully stocahstic representation) was helpful for convergence. We parameterize the
distribution of each Hk as a diagonal Gaussian, so the output of the refinement and dynamics
networks are the parameteres of a diagonal Gaussian. We parameterize the output of the
observation model also as a diagonal Gaussian with means µ and global scale σ = 0.1. The
observation network outputs the µ and mask mk.

Training: All models are trained with the ADAM optimizer [174] with default parameters
and a learning rate of 0.0003. We use gradient clipping as in [241] where if the norm of global
gradient exceeds 5.0 then the gradient is scaled down to that norm.

Inputs: For all models, we use the following inputs to the refinement network, where
LN means Layernorm and SG means stop gradients. The following image-sized inputs are
concatenated and fed to the corresponding convolutional network:

Description Formula LN SG Ch.

image X 3
means µ 3
mask mk 1
mask-logits m̂k 1
mask posterior p(mk|X,µ) 1
gradient of means ∇µkL ✓ ✓ 3
gradient of mask ∇mkL ✓ ✓ 1
pixelwise likelihood p(X |H) ✓ ✓ 1
leave-one-out likelih. p(X |Hi ̸=k) ✓ ✓ 1
coordinate channels 2

total: 17
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Observation and Refinement Networks

The posterior parameters λ1:K and their gradients are flat vectors, and we concatenate them
with the output of the convolutional part of the refinement network and use the result as
input to the refinement LSTM:

Description Formula LN SG

gradient of posterior ∇λkL ✓ ✓
posterior λk

All models use the ELU activation function and the convolutional layers use a stride
equal to 1 and padding equal to 2 unless otherwise noted. For the table below Rs = 64 and
R = 128.

Observation Model Decoder

Type Size/Ch. Act. Func. Comment

Input: Hi R
Broadcast R+2 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 Linear RGB + Mask

Refinement Network

Type Size/Ch. Act. Func. Comment

MLP 128 Linear
LSTM 128 Tanh
Concat [λi,∇λi ] 2Rs

MLP 128 ELU
Avg. Pool Rs

Conv 3× 3 Rs ELU
Conv 3× 3 32 ELU
Conv 3× 3 32 ELU
Inputs 17

Dynamics Model

The dynamics model D models how each entity Hk is affected by action A and the other
entity H[ ̸=k]. It applies the same function d(H ′

k |Hk, H[ ̸=k], A) to each state, composed of
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several functions illustrated and described in Fig. 3.4:

H̃k = do(Hk) Ã = da(A
t) H̃act

k = dao(H̃kÃ)

H interact
k =

K∑
i ̸=k

doo(H̃i
act
, H̃k

act
) H

′

k = dcomb(H̃
act
k , H interact

k ),

where for a given entity k, dao(H̃kÃ) := dact-eff(H̃k, Ã) · dact-att(H̃k, Ã) computes how

(dact-eff) and to what degree (dact-att) an action affects the entity and doo(H̃i
act
, H̃k

act
) :=

dobj-eff(H̃act
i , H̃act

k ) · dobj-att(H̃act
i , H̃act

k ) computes how (fobj-eff) and to what degree (dobj-att)
other entities affect that entity. dobj-eff and dobj-att are shared across all entity pairs. The
other functions are shared across all entities. The dynamics network takes in a sampled
state and outputs the parameters of the posterior distribution. Similar to [145] the output
H ′
k is then split into deterministic and stochastic components each of size 64 with separate

networks fdet and fsto. All functions are parametrized by single layer MLPs.

Dynamics Network

Function Output Act. Func. MLP Size

do(Hk) H̃k ELU 128

da(A) Ã ELU 32

dact-eff(H̃k, Ã) ELU 128

dact-att(H̃k, Ã) Sigmoid 128

dobj-eff(H̃act
i , H̃act

j ) ELU 256

dobj-att(H̃
act
i , H̃act

k ) Sigmoid 256

dcomb(H̃act
i , H̃ interact

k ) H ′
k ELU 256

fdet(H
′
k) H ′

k,det 128
fsto(H

′
k) H ′

k,sto 128

This architectural choice for the dynamics model is an action-conditioned modification of
the interaction function used in Relational Neural Expectation Maximization (RNEM) [317],
which is a latent-space attention-based modification of the Neural Physics Engine (NPE) [57],
which is one of a broader class of architectures known as graph networks [28].

B.7 Experiment Details

Single-Step Block-Stacking

The training dataset has 60,000 trajectories each containing before and after images of size
64x64 from [164]. Before images are constructed with actions which consist of choosing a
shape (cube, rectangle, pyramid), color, and an (x, y, z) position and orientation for the
block to be dropped. At each time step, a block is dropped and the simulation runs until the
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block settles into a stable position. The model takes in an image containing the block to be
dropped and must predict the steady-state effect. Models were trained on scenes with 1 to 5
blocks with K = 7 entity variables. The cross entorpy method (CEM) begins from a uniform
distribution on the first iteration, uses a population size of 1000 samples per iteration, and
uses 10% of the best samples to fit a Gaussian distribution for each successive iteration.

Figure B.1: Qualitative results on building a structure from the dataset in [164]. The input is an
”action image,” which depicts how an action intervenes on the state by raising a block in the air.
OP3 is trained to predict the steady-state outcome of dropping the block. We see how OP3 is able
to accurately and consistently predict the steady state effect, successively capturing the effect of
inertial dynamics (gravity) and interactions with other objects.

Multi-Step Block-Stacking

The training dataset has 10,000 trajectories each from a separate environment with two
different colored blocks. Each trajectory contains five frames (64x64) of randomly picking
and placing blocks. We bias the dataset such that 30% of actions will pick up a block and
place it somewhere randomly, 40% of actions will pick up a block and place it on top of a
another random block, and 30% of actions contain random pick and place locations. Models
were trained with K = 4 slots. We optimize actions using CEM but we optimize over multiple
consecutive actions into the future executing the sequence with lowest cost. For a goal with
n blocks we plan n steps into the future, executing n actions. We repeat this procedure
2n times or until the structure is complete. Accuracy is computed as # blocks in correct position

# goal blocks
,

where a correct position is based on a threshold of the distance error.
For MPC we use two difference action spaces:
Coordinate Pick Place: The normal action space involves choosing a pick (x,y) and

place (x,y) location.
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Figure B.2: We show a demonstration of a rollout for the dataset from [164]. The first four columns
show inference iterations (refinement steps) on the single input image, while the last column shows
the predicted results using the dynamics module on the learnt hidden states. The bottom 5 rows
show the subimages of each entity at each iteration, demonstrating how the model is able to capture
individual objects, and the dynamics afterwards. Notice that OP3 only predicts a change in the
yellow block while leaving the other latents unaffected. This is a desriable property for dynamics
models that operate on scenes with multiple objects.

Entity Pick Place: A concern with the normal action space is that successful pick
locations are sparse ( 2%) given the current block size. Therefore, the probability of picking
n blocks consecutively becomes 0.02n which becomes improbable very fast if we just sample
pick locations uniformly. We address this by using the pointers to the entity variables to
create an action space that involves directly choosing one of the latent entities to move and
then a place (x, y) location. This allows us to easily pick blocks consecutively if we can
successfully map a latent entity id of a block to a corresponding successful pick location.
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Figure B.3: Two-dimensional (left) and three-dimensional (right) visualization of attention values
where colors correspond to different latents. The blocks are shown as the green squares in the 2D
visualizatio; picking anywhere within the square automatically picks the block up. The black dots
with color crosses denote the computed pick xy for a given hk. We see that although the individual
values are noisy, the means provide good estimates of valid pick locations. In the right plot we
see that attention values for all objects are mostly 0, except in the locations corresponding to the
objects (purple and red).

In order to determine the pick (x, y) from an entity id k, we sample coordinates uniformly
over the pick (x, y) space and then average these coordinates weighted by their attention
coefficient on that latent:

pick xy|hk =

∑
x′,y′ p(hk|x, y) ∗ pick x’y’∑

x′,y′ p(hk|x′, y′)

where p(hk|x, y) are given by the attention coefficients produced by the dynamics model
given hk and the pick location (x, y) and x′, y′ are sampled from a uniform distribution. The
attention coefficient of Hk is computed as

∑K
i ̸=k dobj-att(H̃

act
i , H̃act

k ) (see Appdx. B.6)

B.8 Ablations

We perform ablations on the block stacking task from [164] examining components of our
model. Table B.1 shows the effect of non-symmetrical models or cost functions. The
“Unfactorized Model” and “No Weight Sharing” follow (c) and (d) from Figure 3.1 and are
unable to sufficiently generalize. “Unfactorized Cost” refers to simply taking the mean-squared
error of the compositie prediction image and the goal image, rather than decomposing the
cost per entity masked subimage. We see that with the same OP3 model trained on the same
data, not using an entity-centric factorization of the cost significantly underperforms a cost
function that does decompose the cost per entity (c.f. Table 3.1).
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No Weight Sharing Unfactorized Model Unfactorized Cost

0 % 0 % 5%

Table B.1: Accuracy of ablations. The no weight sharing model did not converge during training.

B.9 Interpretability

We do not explicitly explore interpretability in this work, but we see that an entity-factorized
model readily lends itself to be interpretable by construction. The ability to decompose
a scene into specific latents, view latents invididually, and explicitly see how these latents
interact with each other could lead to significantly more interpretable models than current
unfactorized models. Our use of attention values to determine the pick locations of blocks
scratches the surface of this potential. Additionally, the ability to construct cost functions
based off individual latents allows for more interpretable and customizable cost functions.
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Appendix C

Representing Physical Transformations

C.1 Implementation Details

This section details the implementation design decisions for each component of NCS. The
hyperparameters of dSLATE are given in Tab. C.1.

Background: SLATE backbone

SLATE [289] is an autoencoder architecture that uses slot attention (SA) [207] as a bottleneck.
It preprocesses the image with a discrete variational autoencoder [255] into a grid of image
features, encodes these features into a grid of tokens, infers slots from this token grid with
SA, which also produces an attention mask over the features each slot attends to. These slots
are trained using a transformer decoder [318, 253] to autoregressively reconstruct the tokens
using the slots as keys/values.

Constructing nodes by clustering states

We found that we obtained better clusterings when we used the SA attention mask α as the
state s for block-rearrange and when we used the action-dependent part of the SA slot λs as the
state s for robogym-rearrange. We also empirically found that certain choices of distance metric
used for K-means clustering and binding (implemented as nearest-neighbors) depended on
which choice of state representation we used, and this is summarized in Table C.2. The K-
means implmentation is adapted from https://github.com/overshiki/kmeans_pytorch.

When applying the trained dSLATE to the experience buffer to construct the graph we
found that increasing the number of SA iterations improved the entity representations, so
even though we trained dSLATE with slot attention three iterations, for constructing the
graph we used seven iterations. Lastly, we found that the number of clusters used to for
K-Means is the most important hyperparameter for creating a graph that reflected the state
transitions. We swept over 16 to 50 clusters and report the optimal number of clusters we
found in Table C.3.

https://github.com/overshiki/kmeans_pytorch
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Number of epochs 200
Episodes per epoch 5K
Episode length 5
Batch size 32
Peak LR 0.0002
LR warmup steps 30000
Dropout 0.1

Discrete VAE

Vocabulary Size 4096
Temp. Cooldown 1.0 to 0.1
Temp. Cooldown Steps 30000
LR (no warmup) 0.0003
Image Size 64
Image Tokens Image Size / 4

transformer decoder
Layers 4
Heads 4
Hidden Dim. 192

Slot attention

Slots 5
Iterations 3
Slot Heads 1
Slot Dim. (h) 192
Type Dim. (λz) 96
State Dim. (λs) 96

transformer dynamics
Layers 4
Heads 4
Hidden Dim. 96

Table C.1: Hyperparameters for training dSLATE These hyperparameters are almost identical
to those found in Singh, Deng, and Ahn [289, Fig. 7], but because dSLATE operates on video
demonstrations rather than static images, we changed some hyperparameters to save memory cost.
We changed the batch size from 50 to 32, the number of transformer layers and heads from 8 to
4, the number of slot attention iterations from 7 to 3 without observing a significant change in
performance. Because each video in the experience buffer contains four objects, we used five slots,
one more than the number of objects, following the convention used in Van Steenkiste et al. [317]
and Veerapaneni et al. [319].

Action selection

To implement align we use the scipy.optimize.linear sum assignment implementation
of the Hungarian algorithm, with Euclidean distances between the zk’s as the matching cost.

Given the set of current entities ht and goal constraints hg, select-constraint returns
the index k of the goal constraint to satisfy next. By NCS’ construction, the edge between the
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State representation α λs

isolate distance metric cosine cosine
cluster distance metric IoU squared Euclidean
bind distance metric cosine squared Euclidean

Table C.2: Hyperparameters for constructing the transition graph with NCS. This table
shows the distance metrics we use for the isolate, cluster, and bind functions described in 4.4.
For block-rearrange we use the SA attention mask α as the state s, and for robogym-rearrange we
use the action-dependent part of the SA slot λs as the state s.

block-rearrange robogym-rearrange block-stacking

number of clusters 30 45 47

Table C.3: Number of clusters used for constructing the nodes of the transition graph.

nodes that hkt and hkg are bound to is the state transition that would be executed if the action
associated to the edge were taken in the environment. If NCS does not find an edge between
the two nodes, such as if hkt and hkg were incorrectly bound to the graph, then NCS simply
takes a random action. textttselect-constraint consists of two steps: (1) ranking transitions
(2) sampling a transition.

Ranking The goal of the ranking step is to compute a ranking among the indices of
(h1g, ..., h

K
g ) to choose which index k to actually select to affect with an action. Intuitively,

we should rank indices k according to how different skt and skg are because a large difference
would indicate that the constraint hkg is not satisfied, which means we would need to take an
action to move the corresponding object represented by hkt . We reuse the distance metric
d(·, ·) used for isolate to implement this ranking.

Sampling Given our ranking, the goal of the sampling step is to select a k ∈ {1, ..., K}
whose associated entity we will affect with an action. One way to do this is to simply choose
k as k = argmaxk′∈{1,...,K̃} d(sk

′
t , s

k′
t+1) as in isolate, but we empirically found that sampling

k from a categorical distribution whose pre-normalized probabilities are given by d(sk
′
t , s

k′
t+1)

resulted in better task performance so we used this stochastic sampling approach. One
explanation for why using the argmax may be worse is that it relies on the distance metric
d(·, ·), and the state representation s, to be such that the distance metric flawlessly assigns
high value to entities k that need to be moved and low value to entities k that do not need
to be moved. But because the state space S is learned through the dSLATE training process
without explicit supervision on the geometry of the space, a pair of points that should be
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farther apart than another set of points may not be accurately reflected by using a fixed
distance metric d(·, ·). Future work will investigate imposing explicit supervision on the
geometry of S.

C.2 Baseline Implementation Details

Random (Rand) The random policy takes actions using env.action space.sample().

Behavior cloning (BC) This approach trains a policy to output the actions directly taken
in the provided dataset. We use an MSE loss to train the policy to imitate the actions.

Implicit Q-learning (IQL) IQL is a simple, offline RL approach that uses temporal
difference (TD) learning with the dataset actions and trains a behavior policy value function.
To produce an optimal value function, IQL estimates the maximum of the Q-function using
expectile regression with an asymmetric MSE using the following objectives:

LV (ψ) = E(s,a)∼D[Lτ2(Qθ̂(s, a)− Vψ(s))] where Lτ2(u) = |τ − 1(u < 0)|u2 (C.1)

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s′)−Qθ(s, a))2] (C.2)

Lπ(ϕ) = E(s,a)∼D[exp (β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)]. (C.3)

The V (s) estimates are used for TD-backups and the optimal policy is extracted with
advantage-weighted behavioral cloning.

Model predictive control (MPC) This approach uses model predictive control with
the cross entropy method (CEM) to select actions, using the transformer dynamics model
of dSLATE to perform rollouts in latent space. This is similar to the approached used
in OP3 [319], except that we use more recently proposed architectural components (slot
attention [207] instead of IODINE [132], a transformer instead of a graph network [28, 317,
57]) so our MPC results are not directly comparable to that of OP3. We use the same
dSLATE checkpoint that was used for NCS.

We implement this MPC baseline using the mbrl-lib library [250] with 10 CEM iterations,
an elite ratio of 0.05, and a population size of 250 which was the best configuration we found
that fit within a wall clock budget of two days for 8 objects and 100 test episodes. We
swept over CEM iterations of [5, 10, 20], elite ratio of [0.05, 0.1, 0.2], and population sizes of
[250, 500, 1000], and found that the elite ratio was the most important hyperparameter.

The cost function is computed by first aligning the predicted slots hT and goal constraints
hg using the same align procedure in Appendx. C.1, and then adding up the squared
Euclidean distance between slots as cost =

∑
k(h

k
T − hkg)2.
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Figure C.1: An example of solving a task in the robogym rearrange environment used in this chapter.

Figure C.2: The original Robogym rearrange setup

Non-factorized graph search (NF) This approach is an ablation to NCS that does not
construct a graph over state transitions of individual entities but instead constructs a graph
over state transition over entity sets, i.e. each transition is (s, a, s′) rather than (sk, a, sk′).
As with MPC, we use the same dSLATE checkpoint that was used for NCS.

The purpose of this ablation is to elucidate the benefit of factorizing the transition graph
over individual entities rather than entity sets. Because nodes in the transition graph for
NF represent a set of entity states rather than individual entity states, we use Dijkstra’s
algorithm, as in [89, 342, 350] to plan a unbroken path from the node the initial observation
is bound to to the node a goal observation is bound to. For each time-step, we plan a path
along the nodes using Dijkstra’s algorithm, then return the action associated with the first
edge along that path. Like NCS, NF is a non-parametric model, which means that for a set
of entities to be bound to a node in the graph, that node must contain the exact set of entity
states corresponding to the states of the entities. If we do not successfully bind to the graph,
or if we do not find a path between the current node and the goal node, we sample a random
action as NCS does.
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C.3 Environment Details

Environments Block-rearrange is implemented in PyBullet [67] while robogym-rearrange
is implemented in Mujoco [313].

Robogym-rearrange (see figures C.1 and C.2) is adapted from the rearrange environment
in OpenAI’s Robogym simulation framework [239] and removes the assumption from block-
rearrange that all objects are the same size, shape, and orientation and the assumption
of predefined locations. Furthermore, due to 3D perspective, the objects can look slightly
different in different locations. Objects are uniformly sampled from a set of 94 meshes
consisting of the YCB object set [44] and a set of basic geometric shapes, with colors sampled
from a set of 13. The camera angle is a bird’s eye view over the table, and the size of each
object is normalized by its longest dimension, so tall thin objects appear smaller. The objects’
target positions are randomly sampled such that they don’t overlap with each other or any
of the initial positions, and the target orientation is set to be unchanged. Because locations
take continuous values, we define a match threshold of at most 0.05 for both the initial pick
position and the goal placement (the table dimensions are 0.6 by 0.8).

Sensorimotor interface Each observation is a tuple of an initial image displaying the
current observation and a goal image displaying constraints to be satisfied – the goal locations
of the objects. Each action is a tuple (w,∆w), where w is a three-dimensional Cartesian coor-
dinate (x, y, z) in the environment arena. Objects are initialized at random non-overlapping
locations that also do not overlap with their goal locations. For these tasks the z (height)
coordinate is always fixed. An object is picked if w is within a certain threshold of its location.
For block-rearrange where object locations are fixed points in a grid, the object is snapped
to the nearest grid location to w + ∆w. Constraints are considered satisfied if objects are
placed within a certain threshold of their target location.

C.4 Additional Results

This section presents additional results and analyses of NCS.

Analysis of key hyperparameters

In this section, we analyze the sensitivity of task performance to several hyperparameters
used in NCS when creating the graph: the number of clusters, the number of examples
from the experience buffer to use, and the number of slots used in slot attention. We
perform this evaluation in the robogym environment with four objects in the complete goal
specification. As Fig. C.3 shows, performance depends on the number of initialized clusters
and the number of batches from the training set used to construct the graph. With too few
clusters, the clusters are too coarse-grained to differentiate objects in significantly different
positions. With too many, the performance deteriorates as the data is needlessly split into
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Figure C.3: The performance of our method as the number of initialized clusters and batches from
the training set used to construct the graph, and the number of slots are varied.

duplicate clusters. Performance improves with more data, as the graph has better coverage.
Although NCS performs worse when there are insufficient slots to represent all objects present
in the environment, performance is barely impacted by having double the number of necessary
slots. Our method can thus still work in environments with an unknown but upper-bounded
number of objects.

More computation time for model-based baselines

We tested whether doubling the computation time for the model-based baselines would
improve their performance to be comparable to NCS’s. For the results Chapter 4, we capped
the length of the episode as 4x the minimum number of actions required to solve the task. In
Fig. C.4, we vary this interaction horizon multiplier from 1x to 8x. NCS degrades less with
shorter interaction horizons compared to the baselines. We find that NF performs similar to
the random baseline. Since NF takes a random action if it cannot bind the given entity set
to its graph, this result suggests that the space of subsets of entities is so combinatorially
large that NF does not successfully bind to the graph most of the time. We verified that this
is the case by inspecting when NF takes random actions. MPC performs the worst out of all
the methods, performing worse than random. We tested that the cost function described in
Appdx. C.2 ranks latents that match the goal constraint with a lower cost than randomly
sampled latents, which suggests that the main source of error is due to the inaccuracy in the
prediction rollouts. This can be expected, as learned models suffer from compounding errors
when rolled out [165] and prior methods that use MPC for object-centric methods only roll
out for very short horizons [319].

More challenging settings

Finally, we analyzed NCS in more challenging settings that crudely emulate the noisy nature
of real-world robotics. As Fig. C.5 (left) shows, NCS is more robust than the baselines
to the addition of Gaussian noise to the action at every time step, up until the noise
variance is comparable to the maximum distance for successful picking and goal placements.
The performance remains high given significantly fewer interaction steps (Fig. C.5, right).
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(a) Rand (b) NF (c) MPC (d) NCS

Figure C.4: Varying interaction horizon. The performance of the NF (b) and MPC (c) baselines
compared to NCS (d, reproduced from Fig. C.5) and the random baseline (a) on robogym-rearrange
as we vary the interaction horizon (as a multiple of the minimum steps needed to complete the task).
Note that the scale of the y-axis is not the same. While a longer horizon improves performance, NCS
still achieves at least 50x better accuracy with an interaction horizon multiplier of 1 than the
performance obtained by increasing the interaction horizon multiplier for the model-based baselines
to 8.

Figure C.5: Stress testing NCS This figure shows the performance of NCS on robogym-rearrange
as we vary the amount of noise added to the actions (left) and vary the interaction horizon, defined
as a multiple of the minimum steps needed to complete the task (right).

Nevertheless, our success rate is still nowhere perfect, signifying much more work to do in
scaling NCS to the real world.

C.5 Combinatorial Space

This section details the calculation of the combinatorial size of the task space described
in § 4.5. The number of object configurations in the initial state is

(|S|
k

)
. In the complete

specification setting, all objects must be moved, so t ≥ k. At each step, any of the k occupied
grid cells can be moved to any of the

(|S|
k

)
unoccupied grid cells, so the number of successor

states is k × (|S| − k). For block-rearrange |S| = 16 so with k = 7 the number of possible
trajectories is ≥ 4.5× 1016.
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C.6 Limitations and future work.

NCS relies on a nonparametric, non-learning-based approach for control to highlight the
generalization capability of our representation of the combinatorial task space, but this lim-
its NCS to only composing previously seen transitions for previously seen entities. Collapsing
the combinatorial space along state transitions already provides significant gains but does not
adapt to the introduction of novel objects at test time. NCS is currently implemented with
tools such as SLATE and K-means that have much potential for improvement. We expect
future variations of NCS will improve upon our results by replacing SLATE and K-means
with their future successors.

Beyond the challenge of improving object-centric models to robustly model real pixels,
extending our method to real world environments, such as those studied in Gokhale et al.
[115] and Chang et al. [51] would require overcoming the additional challenge of translating
our high-level pick-and-move action primitives into motor torques for a real robot in a
way that handles different object geometries, masses, and properties. Given that many
works in learning robotics (e.g. Devin et al. [75] and Yang et al. [343]) tackle this exact
problem of goal-conditioned object grasping and manipulation, one potential approach to
scale our method to real world environments is to train such goal-conditioned policies as the
pick-and-move primitives for NCS to compose.

In this chapter, we have assumed objects can be moved independently. Preliminary
experiments suggest that NCS can be augmented to support tasks like block-stacking that
involve dependencies among objects, but how to handle these dependencies would warrant a
standalone treatment in future work.

C.7 Why the name “Neural Constraint Satisfaction?”

NCS can be seen as physically solving a embodied constraint satisfaction probem, where
states are variables, identities are variable values, and actions carry out variable assignments.
Crucially the variables, their domains, the assignment operator, and the constraints are all
learned from the sensorimotor interface, hence the name Neural Constraint Satisfaction.
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Appendix D

Representing Virtual Transformations

D.1 Data

Numerical arithmetic (Sec. D.4): The dataset contains arithmetic expressions of k
terms where the terms are integers ∈ [0, 9] and the operators are ∈ {+,×,−}. The number
of possible problems is (10k)(3k−1). The learner sees 5810/(2.04 · 1014) = 2.85 · 10−11 of
the training distribution. The number of possible problems in the extrapolation set is
(1020)(319) = 1.16 · 1029. An input expression is a sequence of one-hot vectors of size 13.

# Terms Prob. Space # Train Samples Frac. of Prob. Space

2 (102)(31) = 3 · 102 210 7 · 10−1

3 (103)(32) = 9 · 103 700 7.78 · 10−2

4 (104)(33) = 2.7 · 105 700 2.6 · 10−3

5 (105)(34) = 8.1 · 106 700 8.64 · 10−5

6 (106)(35) = 2.43 · 108 700 2.88 · 10−6

7 (107)(36) = 7.29 · 109 700 9.60 · 10−8

8 (108)(37) = 2.19 · 1011 700 3.20 · 10−9

9 (109)(38) = 6.56 · 1012 700 1.07 · 10−10

10 (1010)(39) = 1.97 · 1014 700 3.56 · 10−12

Total 2.04 · 1014 5810 2.85 · 10−11

Table D.1: Numerical Arithmetic Dataset

Multilingual arithmetic (Sec. 5.4): The dataset contains arithmetic expressions of k
terms where the terms are integers ∈ [0, 9] and the operators are ∈ {+, ·,−}, expressed in five
different languages. With 5 choices for the source language and target language, the number
of possible problems is (10k)(3k−1)(52). In training, each source language is seen with 4 target
languages and each target language is seen with 4 source languages: 20 pairs are seen in
training and 5 pairs are held out for testing. The learner sees 46200/(1.68 · 108) = 2.76 · 10−4

of the training distribution. The entire space of possible problems in the extrapolation set is
(1010)(39)(52) = 4.92 · 1015 out of which we draw samples from the 5 held-out language pairs



APPENDIX D. REPRESENTING VIRTUAL TRANSFORMATIONS 164

((1010)(39)(5) = 9.84 · 1014 possible). An input expression is a sequence of one-hot vectors of
size 13 × 5 + 1 = 66 where the single additional element is a STOP token (for training the
RNN).

# Terms Prob. Space Train Prob. Space # Train Samples % Train Dist. % Prob. Space

2 102 · 31 · 25 = 7.5 · 103 102 · 31 · 20 = 6 · 103 210 · 20 = 4.2 · 103 70% 56%
3 103 · 32 · 25 = 2.25 · 105 103 · 32 · 20 = 1.8 · 105 700 · 20 = 1.4 · 104 7.78% 6.22%
4 104 · 33 · 25 = 6.75 · 106 104 · 33 · 20 = 5.4 · 106 700 · 20 = 1.4 · 104 0.26% 0.207%
5 105 · 34 · 25 = 2.02 · 108 105 · 34 · 20 = 1.62 · 108 700 · 20 = 1.4 · 104 0.00864% 0.00691%

Total 2.09 · 108 1.68 · 108 46200 0.0276% 0.0221%

Table D.2: Multilingual Arithmetic Dataset

Spatially transformed MNIST (Sec. 5.4): The generative process for transforming
the standard MNIST dataset to the input the learner observes is described as follows. We
first center the 28x28 MNIST image in a 42x42 black background. We have three types of
transformations to apply to the image: scale, rotate, and translate. We can scale big or small
(by a factor of 0.6 each way). We can rotate left or right (by 45 degrees each direction). We
can translate left, right, up, and down, but the degree to which we translate depends on
the size of the object: we translate the digit to the edge of the image, so smaller digits get
translated more than large digits. Large digits are translated by 20% of the image width,
unscaled digits are translated by 29% of the image width, and small digits are translated
by 38% of the image width. In total there are 2 + 2 + 4× 3 = 16 individual transformation
operations used in the generative process. Because some transformation combinations are
commutative, we defined an ordering with which we will apply the generative transformations:
scale then rotate then translate. For length-2 compositions of generative transformations,
there are scale-small-then-translate (1 × 4), scale-big-then-translate (1 × 4), rotate-then-
translate (2 × 4), and scale-then-rotate (2 × 2). We randomly choose 16 of these 20 for
training, 2 for validation, 2 for test, as shown in Figure 5.4 (center). For length-3 compositions
of generative transformations, there are scale-small-then-rotate-then-translate (1× 2× 4) and
scale-big-then-rotate-then-translate (1× 2× 4). All 16 were held out for evaluation.

D.2 Learner Details

All learners are implemented in PyTorch [242] and the code is available at https://github.
com/mbchang/crl.

Arithmetic

Baseline: The RNN is implemented as a sequence-to-sequence [305] gated recurrent unit
(GRU) [65].

https://github.com/mbchang/crl
https://github.com/mbchang/crl
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CRL Controller: The controller consists of a policy network and a value function, each
implemented as GRUs that read in the input expression. The value function outputs a value
estimate for the current expression. For the numerical arithmetic task, the policy network
first selects a reducer and then conditioned on that choice selects the location in the input
expression to apply the reducer. For the multilingual arithmetic task, the policy first samples
whether to halt, reduce, or translate, and then conditioned on that choice (if it doesn’t halt)
it samples the reducer (along with an index to apply it) or the translator.

CRL Modules: The reducers are initialized as a two-layer feedforward network with
ReLU non-linearities [229]. The translators are a linear weight matrices.

Image Transformations

Baselines: The CNN is a variant of an all-convolutional network [301]. This was also used
as the pre-trained image classifier. The affine-STN predicts all 6 learnable affine parameters
as in Jaderberg, Simonyan, Zisserman, et al. [161].

CRL Controller: The controller consists of a policy network and a value function, each
implemented with the same architecture as the CNN baseline.

CRL Modules: The rotate-STN’s localization network is constrained to output the sine
and cosine of a rotation angle, the scale-STN’s localization network is constrained to output
the scaling factor, and the translate-STN’s localization network is constrained to output
spatial translations

D.3 Experiment Details

Multilingual Arithmetic

Training procedure: The training procedure for the controller follows the standard Proximal
Policy Optimization training procedure, where the learner samples a set of episodes, pushes
them to a replay buffer, and every k episodes updates the controller based on the episodes
collected. Independently, every k′ episodes we consolidate those k′ episodes into a batch and
use it to train the modules. We found via a grid search k = 1024 and k′ = 256. Through an
informal search whose heuristic was performance on the training set, we settled on updating
the curriculum of CRL every 105 episodes and updating the curriculum of the RNN every
5 · 104 episodes.

Domain-specific details: In the case that HALT is called to early, CRL treats it as a no-
op. Similarly, if a reduction operator is called when there is only one token in the expression,
the learner also treats it as a no-op. There are other ways around this domain-specific nuance,
such as to always halt whenever HALT is called but only do backpropagation from the loss if
the expression has been fully reduced (otherwise it wouldn’t make sense to compute a loss on
an expression that has not been fully reduced). The way we interpret these “invalid actions”
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is analogous to a standard practice in reinforcement learning of keeping an agent in the same
state if it walks into a wall of a maze.

Symmetry breaking: We believe that the random initialization of the modules and
the controller breaks the symmetry between the modules. For episodes 0 through k the
controller still has the same random initial weights, and for episodes 0 through k′ the modules
still have the same random initial weights. Because of the initial randomness, the initial
controller will select certain modules more than others for certain inputs; similarly initially
certain modules will perform better than others for certain inputs. Therefore, after k episodes,
the controller’s parameters will update in a direction that will make choosing the modules
that luckily performed better for certain inputs more likely; similarly, after k′ episodes, the
modules’ parameters will update in a direction that will make them better for the inputs
they have been given. So gradually, modules that initially were slightly better at certain
inputs will become more specialized towards those inputs and they will also get selected more
for those inputs.

Training objective: The objective of the composition of modules is to minimize the
negative log likelihood of the correct answer to the arithmetic problem. The objective of
the controller is to maximize reward. It receives a reward of 1 if the token with maximum
log likelihood is that of the correct answer, 0 if not, and −0.01 for every computation step
it takes. The step penalty was found by a scale search over {−1,−0.1,−0.01,−0.001} and
−0.01 was a penalty that we found balanced accuracy and computation time to a reasonable
degree during training. There is no explicit feedback on what the transformations should be
and on how they are composed.

Image Transformations

Training procedure: The training procedure is similar to the mulitlingual arithmetic case.
We update the policy every 256 episodes and the modules everye 64 episodes. We observed
that directly training for large translations was unstable, so to overcome this we used a
curriculum. The curriculum began without any translation, then increased the direction of
translation by 1% of the image width every 3 · 104 episodes until the amount of translation
matched 20% of the image width for large digits, 29% of the image width for unscaled digits,
and 38% of the image width for small digits. Unlike in the multilingual arithmetic case,
during later stages of the curriculum we do not continue training on earlier stages of the
curriculum.

Domain-specific details: In the bounded-horizon setup, we manually halt CRL accord-
ing to the length of the generative transformation combinations of the task: if the digit was
generated by applying two transformations, then we halt CRL’s controller after it selects two
modules. Therefore, we did not use a step-penalty in this experiment.

Symmetry breaking: The transformation parameters were initialized to output an
identity transformation, although the the localization network were randomly initialized
across modules, which breaks the symmetry among the modules.
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Training objective: The objective is to classify a transformed MNIST digit correctly
based on the negative log likelihood of the correct classification from a pre-trained classifier.
The objective of the controller is to maximize reward. It receives a reward of 1 for a correct
classification and 0 if not. There is no explicit feedback on what the transformations should
be and on how they are composed.

D.4 Additional Experiments

Numerical Math

The input is a numerical arithmetic expression (e.g. 3 + 4× 7) and the desired output (e.g. 1)
is the evaluation of the expression modulo 10. In our experiments we train on a curriculum
of length-2 expressions to length-10 expressions, adding new expressions to an expanding
dataset over the course of training. The first challenge is to learn from this limited data (only
6510 training expressions) to generalize well to unseen length-10 expressions in the test set
(≈ 214 possible). The second challenge is to extrapolate from this limited data to length-20
expressions (≈ 1029 possible). We compare with an RNN architecture [66] directly trained to
map input to output.

Though the RNN eventually generalizes to different 10-length expressions and extrapolates
to 20-length expressions (yellow in Fig. D.1) with 10 times more data as CRL, it completely
overfits when given the same amount of data (gray). In contrast, CRL (red) does not overfit,
generalizing significantly better to both the 10-length and 20-length test sets. We believe
that the modular disentangled structure in CRL biases it to cleave the problem distribution
at its joints, yielding this 10-fold reduction in sample complexity relative to the RNN.

We found that the controller naturally learned windows centered around operators (e.g.
2 + 3 rather than ×4−), suggesting that it has discovered semantic role of these primitive
two-term expressions by pattern-matching common structure across arithmetic expressions of
different lengths. Note that CRL’s extrapolation accuracy here is not perfect compared to
[42]; however CRL achieves such high extrapolation accuracy with only sparse supervision,
without the step-by-step supervision on execution traces, the stack-based model of execution,
and hardcoded transformations.

Variations

Here we study the effect of varying the number of modules available to our learner. Figs. D.2a
and D.2b highlight a particular pathological choice of modules that causes CRL to overfit. If
CRL uses four reducers and zero translators (red), it is not surprising that it fails to generalize
to the test set: recall that each source language is only seen with four target languages
during training with one held out; each reducer can just learn to reduce to one of the four
target languages. What is interesting though is that when we add five translators to the
four reducers (blue), we see certain runs achieve 100% generalization, even though CRL need
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(a) Training (length 10) (b) Testing (length 10) (c) Testing (length 20)

Figure D.1: Numerical math task. We compare our learner with the RNN baseline. As a sanity
check, we also compare with a version of our learner which has a hardcoded controller (HCC) and a
learner which has hardcoded modules (HCF) (in which case the controller is restricted to select
windows of 3 with an operator in the middle). All models perform well on the training set. Only
our method and its HCC, HCF modifications generalize to the testing and extrapolation set. The
RNN requires 10 times more data to generalize to the testing and extrapolation set. For (b, c)
we only show accuracy on the expressions with the maximum length of those added so far to the
curriculum. “1e3” and “1e4” correspond to the order of magnitude of the number of samples in the
dataset, of which 70% are used for training. 10, 50, and 90 percentiles are shown over 6 runs.

(a) Pathological Train (b) Pathological Test (c) Different numbers of modules

Figure D.2: Variations: The minimum number of reducers and translators that can solve the
multilingual math problems is 1 and m respectively, where m is the number of languages. This is
on an extrapolation task, which has more terms and different language pairs. (a, b): Four reducers
and zero translators (red) is a pathological choice of modules that causes CRL to overfit, but it
does not when translators are provided. (c) In the non-pathological cases, regardless of the number
of modules, the learner metareasons about the resources it has to customize its computation to the
problem. 10, 50, and 90 percentiles are shown over 6 runs.

not use the translators at all in order to fit the training set. That the blue training curve is
slightly faster than the red offers a possible explanation: it may be harder to find a program
where each reducer can reduce any source language to their specialized target language, and
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Figure D.3: Extrapolation

easier to find programs that involve steps of re-representation (through these translators),
where the solution to a new problem is found merely by re-representing that problem into
a problem that learner is more familiar with. The four-reducers-five-translators could have
overfitted completely like the four-reducers-zero-translators case, but it consistently does not.

We find that when we vary the number of reducers (1 or 3) and the number of translators
in (5 or 8) in Fig. D.2c, the extrapolation performance is consistent across the choices of
different numbers of modules, suggesting that CRL is quite robust to the number of modules
in non-pathological cases.

How far can we push extrapolation?

Figure D.3 shows the extrapolation accuracy from 6 to 100 terms after training on a curriculum
from 2 to 5 terms (46200 examples) on the multilingual arithmetic task (Sec. 5.4). The
number of possible 100-term problems is (10100)(399)(52) = 4.29 · 10148 and CRL achieves
about 60% accuracy on these problems; a random guess would be 10%.

Execution Traces: Function Selection

Fig. D.4 compares the execution traces of CRL on different language pairs from training of
(a,b) length 5 and of (c) length 10. We observe that in many cases the controller chooses to
take an additional step to translate the fully reduced answer into an answer in the target
language, which shows that it composes together in a novel way knowledge of how to solve a
arithmetic problem with knowledge of how to translate between languages.



APPENDIX D. REPRESENTING VIRTUAL TRANSFORMATIONS 170

(a) Validation (length 5) (b) Test (length 5) (c) Test (length 10)

Figure D.4: Multilingual Arithmetic Execution Traces

Execution Traces: Examples

Here are two randomly selected execution traces from the numerical arithmetic extrapolation
task (train on 10 terms, extrapolate to 20 terms), where CRL’s accuracy hovers around 80%.
These expressions are derived from the internal representations of CRL, which are softmax
distributions over the vocabulary (except for the first expression, which is one-hot because it
is the input). The expressions here show the maximum value for each internal representation.

This is a successful execution, with input 6*1*3-4+6*0*0+1-7-3+3+3*4+1+1+3+3+6+2+7.
The correct answer is 3. Notice that the order in which controller applies its modules does
not strictly follow the order of operations but respects the rules of order of operations: for
example, it may decide to perform addition (A) before multiplication (B) if it doesn’t affect
the final answer.

6*1*3-4+6*0*0+1-7-3+3+3*4+1+1+3+3+6+2+7 # 3 * 4 = 2
6*1*3-4+6*0*0+1-7-3+3+2+1+1+3+3+6+2+7 # 3 + 2 = 5
6*1*3-4+6*0*0+1-7-3+5+1+1+3+3+6+2+7 # 1 - 7 = 4
6*1*3-4+6*0*0+4-3+5+1+1+3+3+6+2+7 # 0 * 0 = 0
6*1*3-4+6*0+4-3+5+1+1+3+3+6+2+7 # 4 - 3 = 1
6*1*3-4+6*0+1+5+1+1+3+3+6+2+7 # 1 + 3 = 4
6*1*3-4+6*0+1+5+1+4+3+6+2+7 # 5 + 1 = 6
6*1*3-4+6*0+1+6+4+3+6+2+7 # 1 + 6 = 7
6*1*3-4+6*0+7+4+3+6+2+7 # 2 + 7 = 9
6*1*3-4+6*0+7+4+3+6+9 # 3 + 6 = 9
6*1*3-4+6*0+7+4+9+9 # 6 * 0 = 0 --------------------------------
6*1*3-4+0+7+4+9+9 # tried to HALT above this line is extrapolation
6*1*3-4+0+7+4+9+9 # 9 + 9 = 8 (A)
6*1*3-4+0+7+4+8 # 1 * 3 = 3 (B)
6*3-4+0+7+4+8 # 0 + 7 = 7
6*3-4+7+4+8 # 6 * 3 = 8
8-4+7+4+8 # 8 - 4 = 4
4+7+4+8 # 4 + 7 = 1
1+4+8 # 1 + 4 = 5
5+8 # 5 + 8 = 3
3 # HALT
END



APPENDIX D. REPRESENTING VIRTUAL TRANSFORMATIONS 171

The following trace with input 5+6-4+5*7*3*3*8*0*1-4+6-3*5*3+6-0+0-4-6 has a cor-
rect answer of 0 but was unsuccessful. Notice that it tends to follow of order of operations
by doing multiplication first, although it does make mistakes (D), which in this case was
the reason for its incorrect answer. Note that CRL never receives explicit feedback about
its mistakes on what its modules learn to do or the order in which it applies them; it only
receives a sparse reward signal at the very end. Although (C) was a calculation mistake,
it turns out that it does not matter because the subexpression would be multiplied by 0
anyways.

5+6-4+5*7*3*3*8*0*1-4+6-3*5*3+6-0+0-4-6 # 3 * 8 = 4
5+6-4+5*7*3*4*0*1-4+6-3*5*3+6-0+0-4-6 # 0 - 4 = 6
5+6-4+5*7*3*4*0*1-4+6-3*5*3+6-0+6-6 # 5 * 7 = 5
5+6-4+5*3*4*0*1-4+6-3*5*3+6-0+6-6 # 3 * 4 = 4 (mistake) (C)
5+6-4+5*4*0*1-4+6-3*5*3+6-0+6-6 # tried to HALT
5+6-4+5*4*0*1-4+6-3*5*3+6-0+6-6 # 5 * 4 = 0
5+6-4+0*0*1-4+6-3*5*3+6-0+6-6 # 6 - 6 = 0
5+6-4+0*0*1-4+6-3*5*3+6-0+0 # 6 - 3 = 3 (D: order of operations mistake)
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6+0 # 3 * 5 = 5
5+6-4+0*0*1-4+5*3+6+0 # 0 * 1 = 0
5+6-4+0*1-4+5*3+6+0 # 5 * 3 = 5 --------------------------------
5+6-4+0*1-4+5+6+0 # 0 * 1 = 0 above this line is extrapolation
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # 6 + 0 = 0
5+6-4+0-4+5+6 # 5 + 6 = 1
5+6-4+0-4+1 # 0 - 4 = 6
5+6-4+6+1 # 5 + 6 = 1
1-4+6+1 # 1 - 4 = 7
7+6+1 # 7 + 6 = 3
3+1 # 3 + 1 = 4
4 # HALT
END
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Appendix E

Representing Policies as Games

E.1 Game Theory

In the context of Chapter 6, a strategy of a primitive ω is equivalent to its bidding policy
ψ. A strategy profile is the set of strategies ψ1:N for all primitives ω1:N . For emphasis, we
equivalently write the utility U i

(
ψ1:N

)
for player i as U i (ψi;ψ−i), where ψi is the strategy

for player i and ψ−i is the strategy for all other players.

Definition E.1.1. Best Response: A strategy ψi is the best response for player i if given
the strategies of all other players ψ−i, ψi maximizes player i’s utility U i (ψi;ψ−i).

Definition E.1.2. Nash Equilibrium: A strategy profile is in a Nash equilibrium if given
the strategies of other players, each player’s strategy is a best response.

Definition E.1.3. Dominant Strategy Equilibrium: A strategy ψ is a dominant strategy
if it is the best response for a player no matter what strategies the other players play. A
dominant strategy equilibrium is the unique Nash equilibrium where every player plays their
dominant strategy.

Definition E.1.4. Weakly Dominated Strategies: Consider player i playing strategy ψi.
Let the strategies for all other players be ψ−i. A strategy ψi weakly dominates ψ̃i if for
all strategies of other players ψ−i, U i(ψ;ψ−i) ≥ U i(ψ̃;ψ−i), and there exists a ψ̃−i such that
U i(ψi; ψ̃−i) > U i(ψ̃i; ψ̃−i). ψ is dominated if there exists a strategy which dominates it.

Definition E.1.5. Iterated Deletion of Dominated Strategies: Iterated deletion of
dominated strategies repeatedly (a) removes all dominated strategies for each player, then
(b) updates the dominance relation (as now there are fewer strategies of other players to
consider). It terminates when all remaining strategies are undominated.

Vickrey Auction The Vickrey Auction is a type of single-item sealed bid auction. It is
single-item, which means there is a single auction item up for sale. It is sealed-bid, which
means that the players have no knowledge of each others’ bids.
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E.2 Societal Decision-Making Framework

Abstraction Level Global Local

Agent Society Ω = {ωi}Ni=1 Primitive ωi =
(
ψi, ϕi

)
Environment global MDP local auction at state s

State Space S the single state {s}

Action Space the indices of the primitives A = {1, 2, ..., N} the space of non-negative bids B = R≥0

Objective J(πΩ) = Eτ∼pπ(τ)

[∑T
t=0 γ

tr (st, ωt)
]

U is(ψ
1:N ) = vis ·Xi(b)− P i(b)

Problem maxπΩ J(πΩ) maxψi U is(ψ
1:N )

Table E.1: Societal Decision-Making. This table specifies the agent, environment, objective,
and problem at both the global and local levels of abstraction in the societal-decision-making
framework.

Though both the monolithic decision-making framework as well as the societal decision-
making (in which the transformations ϕ correspond to literal actions) can both be used for
reinforcement learning, the key difference between the two is that the learnable parameters
are trained to optimize the objective of the MDP in the monolithic framework, whereas the
learnable parameters are trained to optimize the objective of the auction at each state of the
MDP in the societal framework.

E.3 The Cloned Vickrey Society as a Solution to

Societal Decision-Making

The MDP specifies the environment. The society specifies the abstract agent that interacts in
the environment. The Market MDP is a global MDP governed by a specific type of auction
mechanism (the Vickrey mechanism) that is agnostic to the architecture of the society that
interacts with it. A cloned society is a specific architecture of society (one with redundant
primitives) that is agnostic to the auction mechanism governing the global MDP. The cloned
Vickrey society specifies a specific architecture of a society (a cloned society) that interacts
with a specific type of global MDP (a Market MDP).

Proofs

Proposition 6.5.1. Assume at each state s the local auction allocates X i(b) = 1 if i wins
and X i(b) = 0 if i loses. Then all primitives ωi bidding their optimal societal Q-values
Q∗

Ω(s, ωi) collectively induce an optimal global policy.
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Proof. For state s, the index of the primitive with the highest bid is equal to the primitive with
the highest optimal societal Q-value for that state. That is, argmaxi b

i
t = argmaxiQ

∗
Ω(st, ω

i
t).

Thus, selecting the highest-bidding primitive to win by definition follows the optimal policy
for the Market MDP.

Theorem 6.5.2 If the valuations vis for each state s are the optimal societal Q-values
Q∗

Ω(s, ωi), then the society’s optimal global policy coincides with the primitives’ unique
dominant strategy equilibrium under the Vickrey mechanism.

Proof. By defining the valuation of each primitive ωi to be its optimal societal Q-value
Q∗

Ω(st, ω
i
t), the DSIC property of the Vickrey auction guarantees the dominant strategy

equilibrium is to bid exactly Q∗
Ω(st, ω

i
t). The welfare-maximization property of the Vickrey

auction guarantees if all primitives played their dominant strategies, then the primitive with
the highest valuation wins, so specifying the valuations such that activating the primitive
with the highest valuation at time t follows the optimal global policy at that timestep.

Proposition 6.5.3. In a Market MDP, it is a Nash equilibrium for every primitive to
bid Q∗

Ω(s, ωi). Moreover, if the Market MDP is finite horizon, then bidding Q∗
Ω(s, ωi) is the

unique Nash equilibrium that survives iterated deletion of weakly dominated strategies.

Proof. Consider time-step t. Assuming that every other primitive at every other time-step
bids Q∗

Ω, the best response under the Vickrey mechanism for primitive ωi at timestep t would
be to truthfully bid r(st, ω

i
t) + γ · maxk Q

∗
Ω(st+1, ω

k), which by definition of the Bellman
optimality equations [30] is Q∗

Ω(st, ω
i
t).

For the finite horizon case, we proceed by backwards induction.
Base Case: The last time-step T is a bandit problem where Q∗

Ω(sT , ω
i
T ) = r(sT , ω

i
T ), so

by Theorem 6.5.2 bidding Q∗
Ω(st, ω

i
t) is the unique dominant strategy.

Inductive Hypothesis: In time-step t+ 1, the strategy which survives iterated deletion
of dominated strategies is to bid the optimal societal Q-value.

Inductive Step: By the Inductive Hypothesis, in time-step t + 1, all primitives bid
their optimal societal Q-values if they use any strategy which survives iterated deletion
of dominated strategies. This means that in time-step t, each primitive’s valuation for
winning is given exactly by their optimal societal Q-value: r(st, ω

i
t) + γ ·maxk Q

∗
Ω(st+1, ω

k).
Therefore, it is a dominant strategy to bid Q∗

Ω, and all other bids are dominated (and therefore
removed).

Lemma 6.5.4 For a cloned society, at the Nash equilibrium specified in Proposition 6.5.3,
what the winning primitive ω̂i at time t receives from the winning primitive ω̂k at t + 1 is
exactly what ω̂k pays: bkst+1

.

Proof. If two primitives have the same ϕ, then their societal Q-values are identical, so their
optimal strategies ψ are identical. Then at the Nash equilibrium specified in Proposition 6.5.3,
their bids are also identical.



APPENDIX E. REPRESENTING POLICIES AS GAMES 175

Theorem 6.5.5. Define a cloned Vickrey society as a cloned society that solves
a Market MDP. Then it is a Nash equilibrium for every primitive in the cloned Vickrey
society to bid Q∗

Ω(s, ωi). In addition, the price that the winning primitive pays for winning is
equivalent to what it bid.

Proof. (1) is by Proposition 6.5.3 and (2) is by Lemma 6.5.4.

E.4 Decentralized RL Algorithms for the Cloned

Vickrey Society

Section 6.5 presented the cloned Vickrey society as a concrete instantiation of the societal
decision-making framework whose optimal global policy emerges as a Nash equilibrium of
self-interested primitives engaging in local economic transactions. Section 6.6 removed the
assumption that primitives know their valuations and presented decentralized RL algorithms
for learning these valuations through interaction.

In Chapter 6, we specified the class of decentralized RL algorithms by the learning
objective – the set of local auction utilities at every state. We present in Algorithm 5 the
algorithm pseudocode for an on-policy variant of such a decentralized RL algorithm, but the
learning objective is in principle agnostic to the RL algorithm use to train each primitive.
However, simply specifying only one variant within this class of algorithm in Chapter 6
leaves much to still be explored. Adapting methods developed in the monolithic framework,
including bandit algorithms, off-policy algorithms, and on-policy algorithms, for optimizing
the local auction utilities the would be an interesting direction for future work.

E.5 Implementations of an On-Policy Decentralized

RL Algorithm

Stochastic policy gradient In Chapter 6, we considered optimizing the bidding policies
with a stochastic policy gradient algorithm, which means that the bidding policies parameterize
a distribution of bids. The stochasticity of the bidding policy means that there need not be
an explicit exploration strategy such as ϵ-greedy, which simplifies the analysis in Chapter 6.
In future work it would be interesting to explore deterministic bidding policies as well.

Bidding Policies We implement all bidding policies as neural networks that output the
parameters of a Beta-distribution. Because the Beta-distribution has support between 0 and
1, we normalized environment rewards so returns fit in this range. In theory, the range of
possible bids could be [0,∞) and need not be restricted to [0, 1]. The society decision-making
framework prescribes a different unique local auction, with different primitives, at each state
s. However, because the state space could be extremely large or even continuous, in practice
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Algorithm 5 On-Policy Decentralized RL

1: Initialize: Primitives ω1:N , Memory m1:N , RL update rule f
2: while True do
3: ▷ Sample Episode
4: while episode has not terminated do
5: ω1:N observe state s
6: ω1:N produce bids b1

s, ...,b
N
s

7: Auction selects winner ω̂ with transformation ϕ̂T
8: ω̂ produces s′ = ϕ̂T (s)
9: Record environment reward r(s, ω̂)
10: s← s′

11: end while
12: ▷ Compute Utilities
13: for each time-step t until the end of sampled episode do
14: ω̂t gets Û

i
st(ω

1:N ) = r(st, ω̂t) + γ ·max
k

bkst+1
−max

j ̸=i
bjst

15: Losers ωjt get U jst(ω
1:N ) = 0

16: for all primitives ωi do
17: Primitive ωit stores (st,b

i
st , st+1, U

i
st(ω

i
t)) into m

i

18: end for
19: end for
20: ▷ Update
21: if time to update then
22: for all primitives ωi do
23: Update primitive ωi with update rule f with memory mi

24: end for
25: end if
26: end while

we share the same set of primitives ω1:N across all states, express their bidding policies as
functions of the state, and rely on the function approximation capabilities of neural networks
to learn different state-conditioned bidding strategies.

Redundancy Implementing two clones of each primitive means that each clone should
share the same transformation ϕ: if ϕ were the literal action of go-left, then there would
be two primitives that bid in the local auction to execute the go-left action. We imple-
mented redundant clones by sharing the weights of their bidding policies ψ. Therefore,
cloned primitives have identical bidding distributions, from which different bids are sam-
pled. Alternatively, we also explored giving clone primitives the same transformation ϕ but
independently parameterized bidding policies ψ. While we did not find much difference in
global performance with independently parameterized bidding policies, such a scheme could
be useful for multi-task learning where the same transformation could have different optimal
societal Q-values depending on the task.
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Learning Objectives The utility of the cloned Vickrey society is the learning objective.
We compared three possible implementations of this learning objective: bucket-brigade (BB),
Vickrey (V ), and credit-conserving Vickrey (CCV ) as described in Section 6.7 and Figure 6.4.
We also compared with a baseline that sets the learning objective to be the environment
reward. For all implementations and the baseline, the learning objective that a loser ω that
the auction receives is 0 because its allocation X i(b) and payment P i(b) are both 0. Letting
b̂st and b′

st denote the highest and second highest bid at time t respectively, the learning

objective Û i
st(ω

1:N) of the winner ω̂ for state st is given below.

Learning Objective

Bucket-Brigade Û i
st(ω

1:N) =
[
r(st, ω̂t) + γ · b̂st+1

]
− b̂st

Vickrey Û i
st(ω

1:N) =
[
r(st, ω̂t) + γ · b̂st+1

]
− b′

st

Credit-Conserving Vickrey Û i
st(ω

1:N) =
[
r(st, ω̂t) + γ · b′

st+1

]
− b′

st

Environment Reward Û i
st(ω

1:N) = [r(st, ω̂t)]

E.6 Experimental Details

We implemented our experiments using the PyTorch library [243]. For all experiments, for
proximal policy optimization we used a policy learning rate of 4 · 10−5, a value function
learning rate of 5 · 10−3, a clipping ratio of 0.2, a GAE [281] smoothing parameter of 0.95,
a discount factor of 0.99, and the Adam [174] optimizer. Each bidding policy has its own
replay buffer. Each bidding policy is updated every 4096 transitions with a minibatch size of
256. For Two Rooms and Mental Rotation we added an entropy bonus, with a weighting
coefficient of 0.1, to the PPO loss.

The plots for Market Bandit, Two Rooms, and Mental Rotation were averaged over 3
seeds and the other plots were averaged over 5 seeds. The metric for the learning curves is
the mean return over 4096 environment steps. The error bars represent the 10th, 50th, 90th
quantile. All experiments were run on CPU, except for the TwoRooms environment, which
was run on GPU.

Numerical Simulations

All transformations ϕ correspond to literal actions. The bidding policies ψ are implemented
as linear neural networks with a single hidden layer of 16 units that output the α and β
parameters of the Beta distribution. There is no activation function for the hidden layer. We
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used the softplus activation function to output α and β. The valuation functions for the
bidding policies are also implemented as linear neural networks with a single hidden layer of
16 units.

Market Bandit

At every round, we stochastically drop out a subset of primitives. For cloned societies, one
clone could be dropped out while the other clone stays in the auction. The drop-out sampling
procedure is as follows. Letting N be the number of total primitives (which means there are
N/2 unique primitives in cloned societies), we first sample a random integer m in {2, 3, ..., N}.
Then we sample a subset of m primitives from the N total primitives without replacement.
For a given round, only the primitives that participated in that round are updated.

Duality

Figure E.1: The Duality environment.

As stated in Figure 6.4, without redundant primitives the solitary CCV implementation
sacrifices Bellman optimality in general. We now use the Duality environment as an example
to illustrate such an instance where the dominant strategy of the primitives does not coincide
with the global optimal policy of the society, even if the primitives have full knowledge of
their own valuations. The DSIC property of the Vickrey auction makes it straightforward to
analyze the dominant strategies of the primitives, which the following paragraphs illustrate.
Recall that based on the CCV learning objective, the valuation of the winner ω̂ at time t is
the immediate reward plus the discounted second -highest bid (not the highest bid) at the
next time-step: r(st, ω̂t) + γ · b′

st+1
. Let r0 be equal to the environment reward r(s1, ω

0), r1

be equal to the environment reward r(s1, ω
1), and r2 be equal to the environment reward

r(s0, ω
1), where in Figure E.1 we see that r0 = 0.5, r1 = 0.3, and r2 = 0.5

At state s0, primitive ω0 will bid 0, the lowest possible bid, because the local auction at
state s0 would lead to unbounded negative reward at s−1. This means that the valuation that
ω0 has for winning at state s1 is r0 + γ · 0 = r(s1, ω

0), since 0 must be the second highest bid
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at state s0. Thus the dominant strategy for ω0 is to truthfully bid r0. At s1, primitive ω1

will bid some number c. Since activating ω1 is a self-loop, ω1 can sell s1 back to itself in the
next time-step. Thus the valuation that ω1 has for winning at state s1 is r1 + γ ·min(r0, c).
Thus the dominant strategy for ω0 is to truthfully bid c = r1 + γ ·min(r0, c).

In the undiscounted case, where γ = 1, if we solve for c, we have that if r1 > 0, then
c = r1 + r0, which is greater than r0, which is what ω0 would bid as its dominant strategy.
Therefore, in the case that r1 > 0, ω1 will continue to sell s1 to itself. As long as r1 < r0 + r2,
the self-loop at s1 will be less optimal than cycling back and forth between s0 and s1.

In the discounted case, where 0 < γ < 1 and we again assume that r1 > 0. Solving c
again, we see that if in the case that r0 < r1

1−γ , then c = r1 + γr0 and c > r0. In this case ω1

will bid higher than ω0 at state s1, creating a perpetual self-loop. If instead r0 > r1

1−γ , then

c = r1

1−γ and c < r0. In this case ω0 will bid higher than ω1 at state s1, which is the optimal
global policy.

Therefore the Duality environment illustrates that without redundancy, for fortuitous
settings of r0 and r1, the dominant strategy equilibrium of the society may coincide with
the optimal global policy, but if the for other choices of r0 and r1, the dominant strategy
equilibrium of the society may be globally suboptimal. Adding redundant primitives makes
the auction utilities consistent with the Bellman optimality equations and therefore does not
suffer from such suboptimal equilibria.

Two Rooms

Figure E.2: The Two Rooms environment.

The transformations ϕ0:2 are subpolicies pre-trained with PPO and have an action space
equivalent to the action space of the Minigrid environment. For these transformation subpoli-
cies, the bidding policies, the value functions for the bidding policies, the non-hierarchical
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Figure E.3: The Mental Rotation environment.

monolithic baseline, and the hierarchical monolithic baseline, we adapted the convolutional
neural network architecture from https://github.com/lcswillems/rl-starter-files.

ϕ0 is initialized randomly in the room on the left and is pre-trained to take the done
action once it opens the red door and enters the room on the right, upon which it receives
a terminal reward. ϕ1 is initialized randomly in the room on the right and is pre-trained
to take the done action upon reaching the green square, upon which it receives a terminal
reward. ϕ2 is initialized randomly in the room on the right and is pre-trained to take the
done action upon reaching the blue square, upon which it receives a terminal reward.

In the pre-training task, the society receives a terminal reward upon reaching the green
square and no intermediate rewards. In the transfer task, the society receives a terminal
reward upon reaching the blue square and no intermediate rewards. These subpolicies ϕ0:2

are frozen for these tasks. For all learners, we trained to convergence on the pre-training
task, then we initialized training for the transfer task from the best saved checkpoint on the
pre-training task. The non-hierarchical monolithic baseline could not solve the pre-training
task so we did not consider it for the transfer task.

Mental Rotation

Environment Each 28× 28 image in the MNIST training set was first inset into a black
background of 64 × 64. Then the image first rotated either clockwise or counterclockwise
by 60 degrees, then translated left, up, down, right by 29% of the image width, for a total
of eight possible transformation combinations given these six affine transformations. These
transformation combinations were taken from Chang et al. [58].

https://github.com/lcswillems/rl-starter-files
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Primitives The transformations ϕ correspond to the same six affine transformations,
summarized in the following table. The primitive ωi, and its bidding policy ψi, correspond
to the transformation ϕi. The clones are indicated by i and i′.

ϕ0, ϕ0′ rotate-counterclockwise

ϕ1, ϕ1′ rotate-clockwise

ϕ2, ϕ2′ translate-up

ϕ3, ϕ3′ translate-down

ϕ4, ϕ4′ translate-left

ϕ5, ϕ5′ translate-right

Neural network architecture The pre-trained MNIST classifier, the bidding policies, and
the value functions for the bidding policies follow the same architecture as the convolutional
neural network used in Chang et al. [58], with different output dimensions (10 as the output
dimension of the MNIST classifier, 1 for the other networks). The PyTorch architecture is
given below:

network = nn.Sequential(

nn.Conv2d(1, 8, 4, 2, 1, bias=False),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(8, 8 * 2, 4, 2, 1, bias=False),

nn.BatchNorm2d(8 * 2),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(8 * 2, 8 * 4, 4, 2, 1, bias=False),

nn.BatchNorm2d(8 * 4),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(8 * 4, 8 * 8, 4, 2, 1, bias=False),

nn.BatchNorm2d(8 * 8),

nn.LeakyReLU(0.2, inplace=True),

nn.Conv2d(8 * 8, outdim, 4, 1, 0, bias=False))
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Appendix F

Local Credit Assignment

F.1 Background

This section supplements §7.3 with more background on algorithmic information theory and
standard causality. For a more thorough treatment on the foundational mathematics and
formalism, please refer to Li, Vitányi, et al. [201] for algorithmic information theory, to Pearl
[246] for standard causality, and to Janzing and Schölkopf [166] and Peters, Janzing, and
Schölkopf [248] for algorithmic causality.

Notation

We denote with bolded uppercase monospace a computation graph at a single level of
abstraction (e.g. the model of execution G, the model of credit assignment C). We denote
with blackboard bold (e.g. the algorithmic causal model of learning L) a computation graph
that represents multiple levels of abstraction.

We denote binary strings that represent the data nodes in L with lower case (e.g. x or
f), where script (x) is used to emphasize that the string typically represents a variable and
monospace (f) is used to emphasize that the string typically represents a function. We use
bolded lower case (e.g. x, δ, f) to indicate a group of binary strings. We denote the function
nodes in L (e.g., APPLY, UPDATE) with uppercase.

We write f(x)→ y to mean “a program f that takes a string x as input and produces a
string y as output.”

Background on algorithmic causality

The formalism of algorithmic causality derives from Janzing and Schölkopf [166] and Peters,
Janzing, and Schölkopf [248], which builds upon algorithmic statistics [106]. Here we directly
restate or paraphrase additional relevant definitions, postulates, and theorems from Janzing
and Schölkopf [166] and Gács, Tromp, and Vitányi [106].
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Algorithmic information theory

Kolmogorov complexity Kolmogorov complexity [295, 294, 181, 50, 49, 201] is a function
K : {0, 1}∗ → N from the binary strings {0, 1}∗ to the natural numbers N that represents the
amount of information contained in an object (represented by a binary string).

Definition F.1.1 (Kolmogorov-complexity). Given a universal Turing machine and
universal programming language as reference, the Kolmogorov complexity K(s) is the
length of the shortest program that generates s. The conditional Kolmogorov complexity
K(y | x) of a string y given another string x is the length of the shortest program that
generates y given x as input. Let the shortest program for string x be denoted as x∗. The
joint Kolomogorov complexity K(x, y) is defined as:

K (x, y)
+
= K (x) +K (x | y∗) +

= K (y) +K (y | x∗) .

The invariance theorem [181] states that the Kolmogorov complexities of two strings
written in two different universal languages differ only up to an additive constant. Therefore,
we can assume any reference universal language for defining K (e.g. Python) and work with

equalities (
+
=) and inequalities (

+

≥,
+

≤) up to an additive constant.

Algorithmic mutual information Algorithmic mutual information I measures the amount
of information two objects have in common:

Definition F.1.2 (algorithmic mutual information). The algorithmic mutual infor-
mation of two binary strings x, y is

I (x : y)
+
= K (x) +K (y)−K (x, y) .

The conditional algorithmic mutual information of strings x, y given string z is

I (x : y | z)
+
= K (x | z) +K (y | z)−K (x, y | z)

We can intuitively think of I(x : y | z) as, given z, the number of bits that can be saved
when describing y knowing the shortest program that generated x. We analogously extend
this definition to the joint conditional algorithmic mutual information of strings x1, ..., xn
given strings y1, ..., ym, using “...” instead of “:” for notational a convenience:

Definition F.1.3 (joint conditional algorithmic mutual information). Given strings
x1, ..., xn and y1, ..., ym, the joint algorithmic mutual information of x1, ..., xn given
y1, ..., ym is:

I (x1, ..., xn | y1, ..., ym)
+
=

n∑
i=1

K (xi | y1, ..., ym)−K (x1, ..., xn | y1, ..., ym) .
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Then algorithmic independence is the property of two strings that says that the description
of one cannot be further compressed given knowledge of the other.

Definition F.1.4 (algorithmic conditional independence). Given three strings x, y, z,
x is algorithmically conditionally independent of y given z, denoted by x ⊥⊥ y | z, if
the additional knowledge of y does not allow for stronger compression of x, given z. That is:

x ⊥⊥ y | z ⇔ I (x : y | z)
+
= 0.

Joint conditional independence of strings x1, ..., xn given y1, ..., ym is defined analogously

as I (x1, ..., xn | y1, ..., ym)
+
= 0.

Lemma F.1.1 (algorithmic joint conditional independence). If strings x1, ..., xn are
algorithmically jointly conditionally independent given strings y1, ..., ym, then

K (x1, ..., xn | y1, ..., ym)
+
=

n∑
i=1

K (xi | y1, ..., ym) , (F.1)

meaning that, conditioned on knowing y1, ..., ym, the length of the joint description
of x1, ..., xn cannot be further compressed than sum of the lengths of the descriptions of

the individual strings xi. The proof is by starting with I (x1, ..., xn | y1, ..., ym)
+
= 0 and

rearranging Def. F.1.3.
We state as a lemma the following result from Gács, Tromp, and Vitányi [106, Corollary

Π.8] that states the mutual information of strings x and y cannot be increased by separately
processing by functions f and g.

Lemma F.1.2 (information non-increase). Let f and g be computable programs. Then

I (f(x) : g(y))
+

≤ I (x : y) +K(f) +K(g). (F.2)

This intuitively makes sense: if K(f) is constant with respect to x and K(g) is constant

with respect to y (i.e. K(f)
+
= 0 and K(g)

+
= 0), then mutual information cannot increase

between x and y separately with f and g. In particular, if x and y were independent to begin

with (i.e. I(x : y)
+
= 0), then I (f(x) : g(y))

+
= 0.

Terminology In this chapter, we regard the following statements about a program f(x)→ y
as equivalent:

• “K(f)
+
= 0.”

• “f is an O(1)-length program.”

• “K(f) is constant with respect to x.”

Note that K(f)
+
= 0 implies that f and x are algorithmically independent (i.e. I(f : x)

+
= 0)

because

0
+

≤ I (x : f)
+
= K (f)−K (f | x∗)

+

≤ K (f)
+
= 0.
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Causality

Before we review algorithmic causality, we first review some key concepts in standard causality:
structural causal models and d-separation.

The following definition defines standard causal models over random variables as Bayesian
networks represented as directed acyclic graphs (DAG), analogous to the algorithmic version
we presented in Def. 7.3.1.

Definition F.1.5 (structural-causal-model). A structural causal model (SCM) [245,
246] represents the assignment of random variable X as the output of a function, denoted by
lowercase monospace (e.g. f), that takes as input an independent noise variable NX and the
random variables {PAX} that represent the parents of X in a DAG:

X := f({PAX}, NX). (F.3)

Given the noise distributions P(NX) for all variables X in the DAG, SCM entails a joint
distribution P over all the variables in the DAG [248].

The graph-theoretic concept of d-separation is used for determining conditional indepen-
dencies induced by a directed acyclic graph (see point 3 in Thm. F.1.3):

Definition F.1.6 (d-separation). A path p in a DAG is said to be d-separated (or blocked)
by a set of nodes Z if and only if

1. p contains a chain i→ m→ j or fork i← m→ j such that the middle node m is in
Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the middle node m is
not in Z and such that no descendant of m is in Z.

A set of nodes Z d-separates a set of nodes X from a set of nodes Y if and only if Z blocks
every (possibly undirected) path from a node in X to a node in Y .

Algorithmic causality

For convenience, we re-state the technical content from §7.3 here.
Definition 7.3.1 (computational graph). Define a computational graph G = (x, f)

as a directed acyclic factor graph (DAG) of variable nodes x = x1, ..., xN and function nodes
f = f1, ..., fN . Let each xj be computed by a program fj with length O(1) from its parents
{paj} and an auxiliary input nj. Assume the nj are jointly independent: nj ⊥⊥ {n ̸=j}.
Formally, xj := fj({paj}, nj), meaning that the Turing machine computes xj from the input
{paj}, nj using the additional program fj and halts.

Theorem 7.3.1 (algorithmic causal Markov condition). Let {paj} and {ndj}
respectively represent concatenation of the parents and non-descendants (except itself) of xj
in a computational graph. Then ∀xj, xj ⊥⊥ {ndj} | {paj}∗.
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Postulate 7.3.2 (faithfulness). Given sets S, T , R of nodes in a computational graph,

I(S : T |R∗)
+
= 0 implies R d-separates S and T .

The following theorem Janzing and Schölkopf [166, Thm. 3] establishes the connection
between the graph-theoretic concept of d-separation with condition algorithmic independence
of the nodes of the graph.

Theorem F.1.3 (equivalence of algorithmic Markov conditions). Given the strings
x1, ..., xn and a computational graph, the following conditions are equivalent:

1. Recursive form: the joint complexity is given by the sum of complexities of each node
xj, given the optimal compression of its parents {paj}:

K(x1, ..., xn)
+
=

n∑
j=1

K(xj|{paj}∗).

2. Local Markov Condition: Every node xj is independent of its non-descendants
{ndj}, given the optimal compression of its parents {paj}:

I(xj : ndj|{paj}∗) +
= 0.

3. Global Markov Condition: Given three sets S, T , R of nodes

I(S : T |R∗)
+
= 0

if R d-separates S and T .

Together, Thm. 7.3.1, Post. 7.3.2, and Thm. F.1.3 imply that variable nodes in a com-
putational graph are algorithmically independent if and only if they are d-separated in the
computational graph.

F.2 Assumptions

This section states our assumptions for the results that we prove in §F.4. This chapter analyzes
learning algorithms from the perspective of algorithmic information theory, specifically
algorithmic causality. To perform this analysis, we assume the following, and state our
justifications for such assumptions:

1. The learning algorithm is implemented in on a universal Turing machine with a universal
programming language.

Justification: This is a standard assumption in machine learning research that the
machine learning algorithm can be implemented on a machine.

2. Each initial parameter of the learnable functions f is jointly algorithmically independent
of the other initial parameters.
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Justification: This is a standard assumption in machine learning research that the
noise from the random number generator is given background knowledge [166, §2.3],
thus allowing us to ignore possible dependencies among the parameters induced by the
random number generator in developing our algorithms.

3. The function nodes of ACML – APPLY, UPDATE, and the internal function nodes of Π –
are O(1)-length programs.

Justification: Assuming APPLY (which encompasses the transition and reward func-
tions of the MDP, see §7.6) is an O(1)-length program is reasonable because it is a
standard assumption that they are fixed with respect to the activations and parameters
of the learning algorithm. Assuming UPDATE is an O(1)-length program is a standard
assumption in machine learning research that the source code that computes the update
rule (e.g. a gradient descent step) is agnostic to the feedback signals (e.g. gradients) it
takes as input. Assuming the internal function nodes of Π are O(1)-length programs is
reasonable because these function nodes are operations in the programming language
like addition, multiplication, etc that are agnostic to the activations and parameters of
the learning algorithm.

4. L is faithful. That is, any conditional independence among the data nodes (f, x, δ, and
the internal variable nodes of Π) in L is due to the causal structure of L rather than a
non-generic setting of these data nodes.

Justification: Faithfulness has been justified for standard causal models [220]. De-
riving an algorithmic analog has been the subject of ongoing work [196, 195]. For our
work, a violation of faithfulness means that two nodes x, y in the computational graph

have I(x : y)
+
= 0 but are not d-separated in the computational graph. This would

happen if x and y were tuned in such a way that makes one compressible given the
other. Given assumption (2) above, the source of a violation of faithfulness must be the
data experienced by the learning algorithm. Indeed, the data could be such that after
learning certain parameters within f may be conditionally independent given the training
history, as suggested by Csordás, Steenkiste, and Schmidhuber [68], Filan et al. [92],
and Watanabe [324]. However, as our focus is on theoretical results that hold regardless
of the data distribution the learning algorithm is trained on, we consider the specific
instances where the data does induce such faithfulness violations as “non-generic” and
thus out of scope of the chapter.

F.3 Additional Theoretical Results

All modular credit assignment mechanisms must be factorized in the following way:
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Theorem F.3.1 (modular factorization). The credit assignment mechanism Π(τ , f)→ δ
is modular if and only if

K (δ | x, f)
+
=

T∑
t=1

K (δt | x, f) . (F.4)

For modular credit assignment mechanisms, the complexity of computing feedback for
the entire system is minimal because all redundant information among the gradients has
been “squeezed out.” This connection between simplicity and modularity is another way
of understanding why if a credit assignment mechanisms were not modular it would be
impossible for Π to modify a function without simultaneously modifying another, other than
due to non-generic instances when δt has a simple description, i.e. δt = 0, which, unless
imposed, are not likely to hold over all iterations of learning.

F.4 Proofs

Given the assumptions stated in §F.2, we now provide the proofs for our theoretical results.
We will prove Lemma 7.5.1 first. Together with the faithfulness postulate (Post. 7.3.2) and
the equivalence of algorithmic Markov conditions (Thm. F.1.3) we can prove algorithmic
independence by inspecting the graph of L for d-separation.

Dynamic Modularity and the Algorithmic Causal Model of
Learning

Lemma 7.5.1 (algorithmic causal model of learning). Given a model of execution E

and of credit assignment C, define the algorithmic causal model of learning (ACML)
as a dynamic computational graph L of the learning process. We assume Π has its own
internal causal structure with internal variable and function nodes. The function nodes of L
are APPLY, UPDATE, and internal function nodes of Π. The variable nodes of L are x, f, δ,
and internal variable nodes of Π. APPLY and UPDATE are assumed to have length O(1). The
internal function nodes of Π jointly independent, and along with the variable nodes of L, are
assumed to not have length O(1). Then these variable nodes satisfy the algorithmic causal
Markov condition with respect to L for all steps of credit assignment.

Proof. If we can express Π in the form of the computational graph defined in Definition 7.3.1,
then we will have shown that L is a well-defined computational graph, and so by Thm. 7.3.1
it satisfies the algorithmic causal Markov condition. To express Π as a computational graph,
let us denote the internal function nodes Π as gj, indexed by j. For a given input uj into
gj, we can equivalently write gj(uj) as APPLY(gj, uj). Then since we assume APPLY is O(1),
by treating gj as analogous to the auxiliary input nj in Definition 7.3.1, Π is a well-defined
computational graph, which completes the proof.
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Figure F.1: This figure shows the computation graph of L across one credit assignment update.
Inputs to the credit assignment mechanism are shaded. A modular credit assignment mechanism
(shown with blue edges) is equivalent to showing the gradients δt as conditionally independent, as
shown by the plate notation labeled with T . Dynamic modularity at iteration i− 1 is equivalent
to showing that the functions fk,i are inside the plate labeled with N . Then because the UPDATE

operation, shown with yellow edges, operates only within the plate labeled with N , the updated
functions fk,i+1 are also conditionally independent given (x, f).

Remark. By Lemma F.1.2, if a set of data nodes in L are independent, then processing
them separately with factor nodes of L will maintain this independence. For example, given
that the UPDATE operation is applied in separately for each pair (fk,

∑
t δ

k
t ) to produce a

corresponding fk′, then if (fk,
∑

t δ
k
t ) were independent of (fj,

∑
t δ

j
t ) before applying UPDATE,

then fk′ would be independent of fj′ after applying UPDATE.

Theorem 7.4.1 (modular credit assignment). Dynamic modularity is enforced at
learning iteration i if and only if static modularity holds at iteration i = 0 and the credit
assignment mechanism satisfies the modularity constraint.

Proof. We will prove by induction on i. The inductive step will make use of the equivalence
between d-separation and conditional independence.

Base case: i = 1. There is no training history, so static modularity is equivalent to
dynamic modularity.

Inductive hypothesis: Assuming that dynamic modularity holds if and only if static
modularity holds at i = 0 and modular credit assignment holds for learning iteration i− 1,
dynamic modularity holds if and only if static modularity and modular credit assignment
hold for learning iteration i.

Inductive step: The modularity constraint states

I (δ1, ..., δM | xi, fi) +
= 0.

Dynamic modularity at iteration i− 1 states that

∀k ̸= j, I
(
fk,i : fj,i

∣∣ xi−1, fi−1

) +
= 0.
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These two above statements correspond to the computational graph in Fig. F.1. Note that
by Def. F.1.1, disjoint subsets of δ1, ..., δT also have have zero mutual information up to an
additive constant. Letting these subsets be

∑
t δ

k
t where k is the index of function fk in f,

then

I

(∑
t

δ1t , ...,
∑
t

δNt

∣∣∣∣∣ xi, fi
)

+
= 0. (F.5)

Then, as we can see by direct inspection in Fig. F.1, fki and fji are d-separated by (xi, fi),
which is equivalent to saying that dynamic modularity holds for iteration i.

Theorem 7.5.2 (modularity criterion). If L is faithful, the modularity constraint
holds if and only if for all i, outputs δt and δ ̸=t of Π are d-separated by its inputs x and f.

Proof. The forward direction holds by the equivalence of algorithmic causal Markov conditions
(Thm. F.1.3), and the backward direction holds by the faithfulness assumption.

Theorem F.3.1 (modular factorization). The credit assignment mechanism Π(τ , f)→
δ is modular if and only if

K (δ | x, f)
+
=

T∑
t=1

K (δt | x, f) . (F.6)

Proof. The proof comes from the definition of algorithmic mutual information (Def. F.1.3).

K (δ | x, f)
+
=

T∑
t=1

K (δt | x, f) (F.7)

T∑
t=1

K (δt | x, f)−K (δ | x, f)
+
= 0 (F.8)

I (δ1, ..., δT | x, f)
+
= 0. (F.9)

Modularity in Reinforcement Learning

In the following, we sometimes use bt instead of bst to reduce clutter.
Corollary 7.6.0.1 (policy gradient). All policy gradient methods do not satisfy the

modularity criterion.

Proof. It suffices to identify a single shared hidden variable that renders δ1, ..., δT not d-
separated. Computing the policy gradient includes the log probability of the policy as one
of its terms. Computing this log probability for any action involves the same normalization
constant

∑
k b

k. This normalization constant is a hidden variable that renders δ1, ..., δT not
d-separated, as shown in Fig. F.2.
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Figure F.2: This figure shows part of the computational graph within Π for policy gradient methods.
Conditioning on x implies we condition on the lightly shaded nodes.

∑
k b

k
t is the shared hidden

variable that renders δ1, ..., δT not d-separated.

Corollary 7.6.0.2 (n-step TD). All TD(n > 1) methods do not satisfy the modularity
criterion.

Proof. It suffices to identify a single shared hidden variable that renders δ1, ..., δT not d-
separated. TD(n > 1) methods include a sum of estimated returns or advantages at different
steps of the decision sequence that is shared among multiple δt’s. This sum is the hidden
variable that renders δ1, ..., δT not d-separated, as shown in Fig. F.3.

UPDATE UPDATE UPDATE

𝛿!"#$

𝑟!"#

#𝑟!
!

𝑟!%#𝑟!

𝛿!$ 𝛿!%#$

❌ ❌

Π

Figure F.3: This figure shows part of the computational graph within Π for TD(n > 1) methods.
Conditioning on x implies we condition on the lightly shaded nodes.

∑
t rt is the shared hidden

variable that renders δ1, ..., δT not d-separated.

Corollary 7.6.0.3 (single-step TD). TD(0) methods satisfy the modularity criterion
for acyclic x.

Proof. If the decision mechanism fk were selected (i.e. wkt = 1) at step i, TD(0) methods
produce, for some function g, gradients as δkt := g(bkt , st, st+1, rt, f). Otherwise, δkt := 0. The
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only hidden variable is [maxj b
j
st+1

], and for acyclic x there is only one state st in x that
transitions into st+1. Therefore the hidden variable is unique to each of δ1, ..., δt, so δ1, ..., δt
remain d-separated, as shown in Fig. F.4.
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Figure F.4: This figure shows part of the computational graph within Π for on-policy and off-policy
TD(0) methods. Conditioning on (x, f) implies we condition on the lightly shaded nodes. For
on-policy methods such as CVS and SARSA, the hidden variable would be maxk b

k
t+1 for CVS and

the bid corresponding to the decision mechanism that was sampled through ε-greedy for SARSA.
The figure shows maxk b

k
t+1 for concreteness. For off-policy methods such as Q-learning, the bids

bt+1 are computed from st+1 and f, both of which we condition on. In both cases, the hidden
variable is only parent to one of the δt’s, and thus the δ1, ..., δT remain d-separated.

Corollary 7.6.-3.1 (tabular). In the tabular setting, Thm. 7.4.1 holds for Q-learning,
SARSA, and CVS.

Proof. In the tabular setting, decision mechanisms are columns of the Q-table corresponding
to each action. These columns do not share parameters, so static modularity holds. Then
because Q-learning, SARSA, and CVS are TD(0) methods, by Corollary 7.6.0.3, their credit
assignment mechanisms are modular. Therefore Thm. 7.4.1 holds.

Corollary 7.6.-3.2 (function approximation). In the function approximation setting,
Thm. 7.4.1 holds for TD(0) methods whose decision mechanisms do not share parameters.

Proof. The decision mechanisms of CVS do not share weights, so static modularity holds.
By Corollary 7.6.0.3 its credit assignment mechanism is modular. Therefore Thm. 7.4.1
holds.
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F.5 Simulation Details

We implemented our simulations using the PyTorch library [243].

Implementation Details

The underlying PPO [282] implementation used for CVS, PPO, and PPOF used a policy
learning rate of 4× 10−5, a value function learning rate of 5× 10−3, a clipping ratio of 0.2, a
GAE [281] parameter of 0.95, a discount factor of 0.99, entropy coefficient of 0.1, and the
Adam [174] optimizer. For all algorithms, the policy and value functions for our algorithms
were implemented as fully connected neural networks that used two hidden layers of dimension
20, with a ReLU activation. All algorithms performed a PPO update every 4096 samples
with a minibatch size of 256.

Training Details

All learning curves are plotted from ten random seeds, with a different learning algorithm
represented by a different hue. The dark line represents the mean over the seeds. The error
bars represent one standard deviation above and below the mean.

Our protocol for transfer is as follows. A transfer problem is defined by a (training,
transfer) task pair, where the initial network parameters for the transfer task are the network
parameters learned the training task for H samples. In our simulations, we set H to 107

because that was about double the number of samples for all algorithms to visually converge
on the training task for all seeds. To calculate the relative sample efficiency of CVS over
PPO and PPOF (e.g. 13.9x and 6.1x respectively in the bottom-up right corner of Fig. 7.6),
we set the criterion of convergence as the number of samples after which the return deviates
by no more than ε = 0.01 from the optimal return for 30 epochs of training, where each
epoch of training trains on 4096 samples.

Environment Details

The environment for our experiments shown in Figs. 7.4 and 7.6 are represented as discrete-
state, discrete-action MDPs. Each state is represented by a binary-valued vector.

The structure of the MDP can best be explained via an analogy to a room navigation task,
which we will explain in the context of the A→ B → C task in the linear chain topology.
In this task, there are four rooms, room 0, room 1, room 2, and room 3. Room 0 has two
doors, labeled A and F , that lead to room 1. Room 1 has two doors, labeled B and E, that
lead to room 2. Room 2 has two doors, labeled C and D. Doors are unlocked by keys. The
state representation is a concatenation of two one-hot vectors. The first one-hot vector is of
length four; the “1” indicates the room id. The second one-hot vector is of length six; the “1”
indicates the presence of a key for door A, B, C, D, E, or F . Only one key is present in a
room at any given time. If the agent goes through the door corresponding to the key present
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in the room, then the agent transitions into the next room; otherwise the agent stays in the
same room. In the last room, if the agent opens the door corresponding to the key that is
present in the room, then the agent receives a reward of 1. All other actions in every other
state receive a reward of 0. Therefore the agent only gets a positive reward if it opens the
correct sequence of doors. For all of our experiments, the optimal policy is acyclic, but a
suboptimal decision sequence could contain cycles.

Therefore, for the training task in the linear chain topology where the optimal solution is
A→ B → C, the optimal sequence of states are

[1, 0, 0, 0 ; 1, 0, 0, 0, 0, 0] # room 0 with key for A

[0, 1, 0, 0 ; 0, 1, 0, 0, 0, 0] # room 1 with key for B

[0, 0, 1, 0 ; 0, 0, 1, 0, 0, 0] # room 2 with key for C.

For the transfer task whose optimal solution is A→ B → D, the optimal sequence of states
are

[1, 0, 0, 0 ; 1, 0, 0, 0, 0, 0] # room 0 with key for A

[0, 1, 0, 0 ; 0, 1, 0, 0, 0, 0] # room 1 with key for B

[0, 0, 1, 0 ; 0, 0, 0, 1, 0, 0] # room 2 with key for D.

Whereas for the linear chain topology the length of the optimal solution is three actions, for
the common ancestor and common descendant topologies this length is two actions. Common
ancestor and common descendant are multi-task problems. As a concrete example, the
training task for common ancestor is a mixture of two tasks, one whose optimal solution is
A→ B and one whose optimal solution is A→ C. Following the analogy to room navigation,
this task is set up such that after having gone through door A, half the time there is a key
for door B and half there is a key for door C.

Computing Details

For our experiments, we used the following machines:

• AWS: c5d.18xlarge instance

• Azure: Standard D64as v4 (64 vcpus, 256 GiB memory), 50GiB Standard SD attached.

The average runtime training on 107 samples was three hours for PPO and PPOF and 6
hours for CVS.
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