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Abstract

We solved two large games, Nine Men’s Morris and Quarto. These games involve multipart moves – moves
that require more than one decision. We demonstrate the versatility of our techniques by using them to
solve other games. We present position counts by value-remoteness for all games we solved. We discuss the
optimizations used to speed up the solving process and to store the results in a way that is efficient for both
solving and playing. Our report also covers the development of a new Image AutoGUI system. This tool
supports multipart moves and streamlines the interface development process. We demonstrate the use of this
tool by implementing multiple game interfaces. These projects were developed as part of the GAMESMAN
software infrastructure, specifically the GamesmanClassic backend and the web application GamesmanUni.
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Chapter 1

Introduction

UC Berkeley GamesCrafters is a research and development group founded by Teaching Professor Dan Garcia
in 2001. It has helped train hundreds of students in computational game theory through various projects
including strongly solving games and implementing game interfaces.

This technical report consists of two major parts.

The first part describes our work in solving large games. In Chapter 3, we discuss Quarto, a tierable
non-loopy game that we solved with custom code [1]. In Chapter 4, we discuss Nine Men’s Morris, a tier-
able loopy game we solved using the GamesmanClassic [2] framework. We discuss solving strategies and
optimizations that were used in the Nine Men’s Morris solve. Later in Chapter 4 we also provide details on
solving other games (Bagh-Chal, Tic-Tac-Two, and Topitop) to illustrate how this methodology is applied
to tierable loopy games in general.

The second part of this report discusses the process of adding several new game interfaces to our web
application, GamesmanUni. Many games that have been solved by the GamesCrafters group over the years
remain inaccessible to the public because user interfaces for those games have not yet been implemented.
The GamesmanUni interfaces not only provide the ability to play the game against another player or a com-
puter, but they also provide details on legal moves’ game-theoretic values which are important for gaining
insight on strategy. In Chapter 5 we discuss the Image AutoGUI system, which allows developers to add
more user-friendly interfaces to GamesmanUni with relatively little work. Additionally, some game interfaces
involve multipart moves, which are moves that entail more than one decision. In Chapter 6, we discuss the
considerations behind the creation of the multipart move system and how one can incorporate multipart
moves into their game interface.
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Chapter 2

Background

2.1 Definitions

An abstract strategy game [3] is a game in which players know the set of legal moves available to any player
on their turn (perfect information), and the outcome of the game depends solely on the move choices that
players make. No other factors, like randomness, influence the outcome of an abstract-strategy game. All
games described in this report involve alternating turns between two players.

A game G = (G,V ) consists of a graph G and a primitive value function V [4]. G = (P,M) is a weakly
connected directed graph made up of a position/vertex set P and a move/edge set M such that there is a
single source vertex, the initial position. The games that we study require that for each vertex p ∈ P
there exists a directed path from p to a sink vertex. Sink vertices are referred to as primitive positions
and represent the end of the game. V is a function that assigns a value win, lose, or tie to each primitive
position. G is generated according to the game’s movement rules and V is defined by the game’s winning
objective.

G is a loopy game if G is acyclic; otherwise it is loop-free.

Figure 2.1: An example game Gx = (Gx, Vx)

Refer to Figure 2.1. Position A is the initial position. Positions I, L, M, O, and P are primitive. Vx(I) =
LOSE, V (L) = V (M) = V (O) = WIN, V (P) = TIE. Gx is a loopy game (see positions F, G, J, and K).

8



If there exists a legal move from position p1 to position p2, then p2 is a child position of p1 and p1 is
a parent position of p2.

We use the following definition of perfect play:

• If forcing a win is possible, then force a win in as few moves as possible.

• Otherwise, if forcing a tie is possible, then force a tie in as few moves as possible.

• Otherwise, force a lose in as many moves as possible.

The value of a position is the outcome of the game for the player whose turn it is assuming perfect play.
If at a particular position p, the player whose turn it is at p can force a win, then p’s value is WIN. If the
player cannot force a win but can force a tie, then p’s value is TIE. Otherwise, p’s value is LOSE. The value
of a position in a game G = (G,V ) is recursively defined as follows...

• The value of a primitive position pr is V (pr).

• The value of a position that has at least one LOSE child position is WIN.

• The value of a position that has no LOSE child position but at least one TIE child position is TIE.

• The value of a position that only has WIN child positions is LOSE.

In addition, a position’s value is DRAW if neither player can force a win or a tie.

The value of a move is the perfect-play outcome of the game for the current player assuming they make that
move. Recall that the value of a position is from the perspective of whose turn it is at a position. A winning
move leads to a LOSE child position. A tying/drawing move leads to a TIE/DRAW child position. A
losing move leads to a WIN child position.

A position’s remoteness is the number of moves until the end of the game assuming perfect play.

• The remoteness of a primitive position is 0.

• The remoteness of a non-primitive win position is 1 + the remoteness of minimum-remoteness losing
child position.

• The remoteness of a non-primitive lose position is 1 + the remoteness of the maximum-remoteness
child position.

• The remoteness of a non-primitive tie position is 1 + the remoteness of the minimum-remoteness tying
child position.

• The remoteness of a draw position is ∞.

We define the following ordering of value-remoteness pairs as worst to best: low-remoteness lose < high-
remoteness lose < draw < high-remoteness tie < low-remoteness tie < high-remoteness win < low-remoteness
win.

GamesCrafters uses the following stoplight-inspired color convention: green (good) represents WIN, yel-
low (moderate) represents TIE/DRAW, and red (bad) represents LOSE.

9



Figure 2.2: Example game Gx solved. Colors and letters represent value and numbers represent remoteness.
This game is a win for the first player, who can guarantee that they win in four total moves (by both
players). If the first player plays perfectly, the second player cannot change the outcome or extend the game.
In general, if the first player does not play perfectly, the game may still be won but perhaps take longer; or
if they make a drawing or tying move the game may end in a draw or tie; or if they make a losing move,
“control” passes to the second player who can win if they themselves play perfectly.

Consider a game G = (G,V ) where G = (P,M). The subgame of G rooted at p ∈ P is a game Gp = (Gp, V )
where Gp is the induced subgraph of G from the position subset of P consisting of only the positions p′ for
which there exists a directed path from p to p′.

If the subgames rooted at p1 and p2 are equivalent, then p1 and p2 are symmetric positions. For ex-
ample, rotating a tic-tac-toe board 90◦ yields a symmetric position.

2.1.1 Tiers

Suppose a game’s graph is G = (P,M).

1. Partition P into vertex subsets T1, T2, ..., TN according to a rule D which indicates which positions
belong to which subsets. N depends on D. Specifically, D is a function that maps each position p to
one of the N subsets.

2. On G, for j = 0, 1, ..., N , perform a vertex contraction [5] on Tj . The resulting graph is G′.

If G′ is acyclic, then D is a valid tier definition. Then G′ is a tier graph and T0, T1, ..., TN are tiers
defined by D.

10



Figure 2.3: Tier Definition

Example: Again consider the example game Gx. A rule D partitions the vertices of Gx into subsets T1 = {A,
B, C}, T2 = {D, E}, T3 = {F, G, H, I}, T4 = {J, K, L, M}, T5 = {N, O}, T6 = {P} (Figure 2.3). If we
perform a vertex contraction on each of T1, T2, ..., T6, then we obtain a directed acyclic graph (see Figure
2.4), so D is a valid tier definition and T1, T2, ..., T6 are tiers.

Figure 2.4: Tier Graph

A tier Tc is a child tier of another tier Tp if there exists a position in Tp with a child position in Tc.

A tier definition D is trivial if all non-primitive positions belong to the same tier according to D. A
game is tierable if there exists a nontrivial tier definition.

In a retrograde tier solve [6] we only solve a tier once all of its child tiers have been solved (i.e., once all
positions across all child tiers are solved) [7]. To perform a retrograde tier solve on 2.4, we can, for example,
solve T4 and T6 first. T5 is solved after T4 is solved. T3 is solved after T5 and T6 are solved. In Chapters
3 and 4 we discuss how to solve a tier given its solved child tiers. One benefit of tiersolving is that we can
solve a game by only loading subsets of positions into memory at a time. Specifically, when solving a tier
we need only load the positions in its child tiers.
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2.2 GamesCrafters Projects and Infrastructure

Figure 2.5: GamesCrafters Servers

GamesmanUni [8] is a web application where users can play solved games with interfaces that show game-
theoretic values of positions and moves. GamesmanUni makes API calls to the GamesCraftersUWAPI server
to get data about game positions so that it knows what pieces and moves to render.

GamesCraftersUWAPI (Gamescrafters Universal Web API) [9] is a middleware that connects Gamesman
frontend applications to different backend game servers. For games written in C served by GamesmanClas-
sic, GamesCraftersUWAPI translates requests and responses between GamesmanUni and GamesmanClassic.
There exist other backends such as GamesmanJava which serves games written in Java.

GamesmanClassic [10] is a project that serves as a framework for solving and playing abstract strat-
egy games. It contains various solvers including a retrograde tier solver that we use to solve the games
presented in Chapter 4.

2.3 GamesCrafters User Interfaces

GamesmanClassic and GamesmanUni come with solved-game interfaces that follow the color convention for
position and move values. If a button to perform a move is red, then it corresponds to a losing move, for
example.

For some of its games, GamesmanClassic has text and Tcl/Tk interfaces. To play with them, however,
one needs to install and set up GamesmanClassic on their computer. This is part of the motivation for
putting more games on GamesmanUni so that the games are more accessible.

GamesmanUni renders positions and buttons for performing moves according to a string representations
of positions and moves. Position and move strings are relayed to GamesmanUni by GamesCraftersUWAPI
and are referred to as UWAPI position and move strings.

• Custom GUI: Renders a position in a way specific to a game. Custom GUIs are typically created for
games with interface features not supported by AutoGUI.

Figure 2.6: Sim Custom GUI
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• Character AutoGUI: Renders a position in a grid-based format with characters representing pieces. A
UWAPI position string contains information about the dimensions of the grid and the characters at
each grid slot.

Figure 2.7: (Left) Tic-Tac-Toe Character AutoGUI and (Right) 4-by-3 Chess Character AutoGUI

Using the Character AutoGUI, a game interface creator does not need to handle features such as coloring
move buttons according to move value and move button hover animations; those are handled automatically.
On the other hand, a person creating a Custom GUI needs to handle those features. In Chapter 5, we discuss
a new way to render a game, the Image AutoGUI.

2.4 Large Games

The game of Nine Men’s Morris has been solved by Gasser [11], who found that it is a draw. It has since been
strongly solved by other teams [12]. In Chapter 4, we explain how we solved it within the GamesmanClassic
framework. It is the largest game (in terms of number of positions) with no known closed-form solution
solved in GamesmanClassic to date.

The game of Quarto was solved by Goosens but seemingly his work can only be found in the “Internet
Archive” [13]. We will demonstrate the techniques on how we solved Quarto in Chapter 3, including a novel
way of defining tiers.

2.5 Machine

All solving presented in this paper was done on a dedicated machine assembled in 2021 with the following
specs:

• CPU: AMD Ryzen 9 5900, 12-Core 3.8GHz

• 128 GB DDR4 RAM

• 1 TB SSD

• 10 TB Hard Drive
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Chapter 3

Solving Quarto

3.1 Rules

There are 16 pieces. 8 of them are dark (isLight=FALSE) and 8 of them are light (isLight=TRUE). 8 of
them are circular (isSquare=FALSE) and 8 of them are square (isSquare=TRUE). 8 of them are hollow
(isFilled=FALSE) and 8 of them are filled (isFilled=TRUE). 8 of them are short (isTall=FALSE)
and 8 of them are tall (isTall=TRUE). No two pieces are identical; for any Boolean variable assignment
to isLight, isSquare, isFilled, and isTall, there is exactly one piece that is characterized by that
assignment. In Figure 4.1 below, short and tall pieces are represented as small and large pieces.

Figure 3.1: Quarto Pieces

Each piece can thus be represented as a nibble. Let the most significant bit represent isLight, the second
most significant bit represent isSquare, the second least significant bit represent isFilled, and the least
significant bit represent isTall. For example, piece 0b0101 = 0x5 is the dark, square, hollow, tall piece and
0b1100 = 0xC is the light, square, hollow, short piece.

The game is played on a 4 × 4 grid. Let the slots of the grid be assigned 0, 1, 2, ..., 15 in row-major or-
der. The objective is to create a horizontal, vertical, or diagonal four-in-a-row of pieces (quartet) on the grid
such that each piece in that four-in-a-row is similar in some way (e.g., all dark or all circular). In terms of
the nibble representation, four pieces are similar in some way if and only if there is a matching bit across
all four pieces, i.e., there exists i ∈ {0, 1, 2, 3} such that the i-th bit is set among all four pieces or the i-th
bit is unset among all four pieces. We refer to a four-in-a-row of pieces that are similar in some way as a
win quartet. The player to place the fourth piece of a win quartet wins. Any piece quartet that is not a win
quartet is a tie quartet.

At the beginning of the game, the first player chooses a piece for the second player to place. Then, the
second player places that piece on an empty slot on the board and chooses one of the remaining pieces for
the first player to place next. Then the first player places that piece on an empty slot on the board and
chooses one of the remaining pieces for the second player to place, and so on. The game ends when either
(1) a win quartet has been created or (2) when the board has been filled with no win quartets having been
created, in which case the game is a tie.
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Figure 3.2: Example Position

From now on each piece will be referred to by its nibble representation (e.g., 0b1010 or 0xA) rather than its
real characteristics (e.g., light, circular, filled, short).

3.2 Position Definition and String Representation

Note: We take “position” and “board” to mean different things for this game. A position consists of a board,
which has a particular arrangement of pieces, and a piece-to-place, which is either (1) a piece or (2) null,
when there is no piece to place.

There are three types of positions: the initial position, primitive positions, and middlegame (neither initial
nor primitive) positions.

A position can be represented by a 17-character string containing hex digits ("0", "1", ..., "F") and dashes
"-". The first sixteen characters represent the pieces on the board, with dashes representing unoccupied
slots. The last character represents the piece-to-place, in which case a dash means that there is no piece-to-
place (i.e., either the initial position or a primitive position is represented).

The initial position is the state of the game before the first player has chosen a piece for the second player
to place (the piece-to-place is null). The initial position’s child positions are the states of the game after
the first player has made that choice but before the second player has decided where to place the chosen
piece. Once the values of the initial position’s 16 child positions are known, it is simple to determine the
value and remoteness of the initial position. Our discussion about solving mostly ignores the initial position
henceforth. The non-string position representations do not apply to the initial position since it is abnormal
in that it is the only position in the game in which the player only chooses a piece. The string representation
of the initial position is "-----------------".

A middlegame position is defined by the state of the board and the piece that the player whose turn it
is must place.
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Figure 3.3: Middlegame Positions "----------------8" and "--1--C-86-93-E--A"

A primitive position is a position in which the game has ended (i.e., there exists a win quartet or the board
is filled). In this position, the piece-to-place is null because no more placements occur.

We need not store a turn bit for each position because the number of pieces on the board tells us whose turn
it is. It is the first player’s turn when the number of pieces on the board is odd, and the second player’s turn
when the number of pieces on the board is even (except at the initial position).

Figure 3.4: Primitive Lose Position "-B--0D56-8-7-F---" and Primitive Tie Position "CFE092B468137D5A-"

The other ways we represent positions, which will soon be introduced, represent every possible state that
can result from the following construction:

1. Choose any subset of pieces that will be on the board (e.g., {0x0, 0x3, 0x6, 0x9, 0xC}).

2. For each piece in that subset, arrange them in some way on the board, i.e., injectively assign each piece
in the subset a slot (e.g., 0x0 is on slot 8, 0x3 is on slot 5, 0x9 is on slot 0, etc.).

3. Of the pieces not in the subset, select one which will be the piece-to-place (e.g., 0x8).

The first consequence of these kinds of representation is the inclusion of unreachable positions, so we need to
identify and skip them while solving and exclude them while counting positions. The second consequence is
that primitive positions (besides those with 16 pieces on the board) now are given an inherent piece-to-place
and there is a redundancy of primitive positions. For example, the primitive position "-B--0D56-8-7-F---"

is represented by 8 equivalent states "-B--0D56-8-7-F--1", "-B--0D56-8-7-F--2", etc. where the last
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character is chosen according to which pieces are not on the board {0x1, 0x2, 0x3, 0x4, 0x9, 0xA, 0xC, 0xE}.
When counting, this position must be counted as a single position, rather than 8 different ones.

3.3 Tier Definition

We introduce two tier definitions.

The first tier definition DL groups two positions in the same tier if in both positions, the same number
of pieces are on the board. There are 17 different tiers, L0, L1, L2, ..., L16 that result from this tier definition.
From now on we will call this type of tier (a tier according to DL) a level. Level n or Ln is the set containing
all positions with n pieces on the board. Remember that we are ignoring the initial position, so it does not
belong to L0. When a move is made from a position in Ln, the resulting position is in Ln+1. Note that it is the
second player’s turn at all positions in Ln for even n and the first player’s turn at all positions in Ln for odd n.

A more granular tier definition DT groups two positions in the same tier if in both positions, the same
set of pieces exists on the board, the same slots are occupied, and they have the same piece-to-place. The
only difference among positions in the same tier under this tier definition is that the pieces placed are per-
muted to the occupied slots of the board differently. For the remainder of this chapter, “tier” refers to a
tier according to this tier definition DT . Splitting the game into tiers according to DT is useful because it
lends itself to an efficient implementation of WORM (write once, read many) tier-symmetry removal, which
is explained in 3.7.

Suppose we have a particular tier T .

• T ’s OCCUPIED_SLOTS (OCCUPIED_SLOTST ) is a subset of {0, 1, ..., 15} indicating which slots of the grid
are occupied by a piece. OCCUPIED_SLOTST can be represented as a 16-bit integer. If slot s contains a
piece, then the s-th bit is set. For example, if OCCUPIED_SLOTST = {1, 2, 3, 5, 8, 10, 15} then it can be
represented as 0b1000010100101110 = 0x852E.

• T ’s PIECES_PLACED (PIECES_PLACEDT ) is a subset of {0x0, 0x1, ..., 0xF} indicating which pieces are al-
ready on the board. Necessarily, |PIECES_PLACEDT | = |OCCUPIED_SLOTST |. PIECES_PLACEDT can also
be represented as a 16-bit integer. If piece u has been placed, then the u-th bit is set. For example, if
PIECES_PLACEDT = {0x0, 0x4, 0x6, 0x7, 0x9, 0xC, 0xD} then it can be represented as
0b0011001011010001 = 0x32B1.

• T ’s PIECE_TO_PLACE (PIECE_TO_PLACET ) is a piece such that it is not in PIECES_PLACEDT . That
means every position in T has a piece-to-place, including primitive positions.

Regarding notation: From now on we interchangeably refer to OCCUPIED_SLOTS and PIECES_PLACED by their
set and their integer representations.

Figure 3.5: Different Boards of Positions in the Same Tier

Shown in Figure 3.5 are the boards of different positions belonging to the same tier T ⊂ L9, where T is
such that OCCUPIED_SLOTST = {0, 2, 5, 7, 8, 10, 11, 13, 14} = 0b0110110110100101 and PIECES_PLACEDT =
{0x0, 0x1, 0x3, 0x6, 0x7, 0x8, 0x9, 0xC, 0xE} = 0b0101001111001011.
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3.3.1 Upper-Bounding the Number of Positions, Ignoring Symmetry

For a given level n, we are interested in the number of possible values of OCCUPIED_SLOTS, PIECES_PLACED,
and PIECE_TO_PLACE among all the tiers contained in Ln. There are

(
16
n

)
possible values of PIECES_PLACED

and
(
16
n

)
possible values of OCCUPIED_SLOTS because there are

(
16
n

)
16-bit integers with n set bits. If n < 16,

then there are 16 − n possible values of PIECE_TO_PLACE since there are 16 − n pieces that are not on the
board, so Ln is a union of

(
16
n

)(
16
n

)
(16− n) tiers. In L16 there is only one possible value of OCCUPIED_SLOTS

(all slots are occupied), of PIECES_PLACED (all pieces are placed), and of PIECE_TO_PLACE (a null piece-to-
place) so it consists of only one tier.

A tier in level n < 16 contains n! positions because there are n! ways to arrange the pieces placed among the
occupied slots, so Ln contains

(
16
n

)(
16
n

)
(16− n)n! positions. L16 contains 16! positions, i.e., ways to arrange

the 16 pieces among all slots.

Level # of Possible
PIECES PLACED

# of Possible
PIECE TO PLACE

# of Possible
OCCUPIED SLOTS

# of Tiers # of Positions

0 1 16 1 16 16
1 16 15 16 3,840 3,840
2 120 14 120 201,600 403,200
3 560 13 560 4,076,800 24,460,800
4 1,820 12 1,820 39,748,800 953,971,200
5 4,368 11 4,368 209,873,664 25,184,839,680
6 8,008 10 8,008 641,280,640 461,722,060,800
7 11,440 9 11,440 1,177,862,400 5,936,426,496,000
8 12,870 8 12,870 1,325,095,200 53,427,838,464,000
9 11,440 7 11,440 916,115,200 332,439,883,776,000
10 8,008 6 8,008 384,768,384 1,396,247,511,859,200
11 4,368 5 4,368 95,397,120 3,807,947,759,616,000
12 1,820 4 1,820 13,249,600 6,346,579,599,360,000
13 560 3 560 940,800 5,858,381,168,640,000
14 120 2 120 28,800 2,510,734,786,560,000
15 16 1 16 256 334,764,638,208,000
16 1 1 1 1 20,922,789,888,000

Total 4,808,643,121 20,667,870,288,606,736

Table 3.1: Upper-Bounding the Number of Tiers and Positions in Each Level

In the Symmetries section below we ignore most positions that are equivalent under symmetry so that we
need not explore 20.67 quadrillion positions, which would require 55 bits to address.

3.4 Non-string Position Representations

In addition to the string representation, we use two other position representations: the tier-and-bitboard
representation and the tier-and-tierposition representation. The bitboard and tierposition are each used to
identify a particular position in a given tier.

In the tier-and-bitboard representation, a position is defined by the tier it belongs to, and a 64-bit inte-
ger which we refer to as a bitboard. The bitboard is best explained as follows: if piece b3b2b1b0 is at slot
s, then the s-th least significant nibble in the integer is set to b3b2b1b0. For example, if piece 0xA is at slot
7, then the 28th to 31st bits are 1010. If slot s is blank, then the s-th least significant nibble is 0. Note
that the 0x0 piece and a blank have the same nibble encoding in the bitboard. The tier’s OCCUPIED_SLOTS
disambiguates these two slot states. The tier-and-bitboard representation is used to identify win and tie
quartets for the primitive/unreachable check.
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Figure 3.6: Example Position

Example: Consider the position shown in Figure 3.6. The bitboard is 0x00E0390680C00107. Let T be the
tier that this position belongs to. Given that OCCUPIED_SLOTST = {0, 2, 5, 7, 8, 10, 11, 13, 14}, we know that
slot 14 is occupied, so the highlighted 0 in the bitboard represents the 0x0 piece and all other 0s in the
bitboard represent blanks.

In the tier-and-tierposition representation, a position in level n is defined by the tier it belongs to and
a tierposition, an integer ρ ∈ {0, 1, ..., n!} such that ρ is a perfect hash value of a permutation of the
PIECES_PLACED among the OCCUPIED_SLOTS. The tier-and-tierposition representation is used as a key for
a position query of the hash-indexed database. In the next section, we discuss how to calculate the
hash/tierposition of a position.

3.5 Hashing

Conversions between bitboards and tierpositions occur frequently during our solve. For every tier in each level
n we aim to find a bijection between each possible bitboard in the tier and each tierposition ρ ∈ {0, 1, ..., n!}.
We refer to the bitboard-to-tierposition conversion as hashing and the tierposition-to-bitboard conversion as
unhashing.

We will first demonstrate the hashing algorithm by an example, then introduce formalization of the al-
gorithm and optimizations, then introduce a second example.

3.5.1 Hashing/Unhashing a Level 16 Position

Let T16 be the single tier in level 16. We demonstrate the hashing algorithm first on a position p1 ∈ T16.
Remember that OCCUPIED_SLOTST16 = PIECES_PLACEDT16 = 0xFFFF.
Suppose this p1’s bitboard is 0xA5D731864B290EFC. We look through each piece on the bitboard from right
to left.

• The first piece is 0xC. Of the pieces we have encountered so far, {0xC}, this is the 0th lowest-valued
piece. c0 = 0.

• Next is 0xF. Of the pieces we have encountered so far, {0xC, 0xF}, this is the 1st lowest valued-piece.
c1 = 1.

• Next is 0xE. We encountered {0xC, 0xE, 0xF} thus far and 0xE is the 1st lowest-valued piece. c2 = 1.

• Next is 0x0. This is the 0th lowest-valued piece in {0x0, 0xC, 0xE, 0xF}. c3 = 0.

• We find the values of c3, c4, ..., c13 are 1, 1, 3, 2, 3, 4, 1, 3, 6, and 11, respectively.

• 0x5 is the 5th lowest-valued piece in {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xB, 0xC, 0xD, 0xE,
0xF}. c14 = 5.
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• 0xA is the 10th lowest-valued piece in {0x0, 0x1, ..., 0xF}. c15 = 10.

The tierposition is ρ1 =

n−1∑
i=0

ci · i! = 13584131338467.

Now we demonstrate the unhashing algorithm. Notice that in the hashing algorithm, at iteration i, ci
is some value in {0, 1, ..., i}. Given a tierposition ρ1 corresponding to some position in T16, there is a

unique assignment of values to c0, c1, ..., c15 such that
∑n−1

i=0 ci · i! = ρ1. From ρ1, first we must determine
c15, c14, ..., c0 in that order which helps us identify the pieces. Suppose, in the context of the same tier T16,
we are given tierposition 13584131338467 and we need to convert it to a bitboard.

• Let set R = {0x0, 0x1, ..., 0xF}, i.e., R is equal to PIECES_PLACEDT16
.

• c15 = 10 because 10 is the highest value c such that 15!c ≤ 13584131338467. 13584131338467−15!c15 =
507387658467. The 10th piece in R is 0xA, so the bitboard is updated to 0xA000000000000000. Remove
0xA from R.

• c14 = 5 because 5 is the highest value c such that 14!c ≤ 507387658467. 507387658467 − 14!c14 =
71496202467. The 5th piece in R is 0x5, so the bitboard is updated to 0xA500000000000000. Remove
0x5 from R.

• c13 = 11 because 11 is the highest value c such that 13!c ≤ 71496202467. 71496202467 − 13!c13 =
2998973667. The 11th piece in R is 0xD, so bitboard is updated to 0xA5D0000000000000. Remove 0xD
from R.

• Essentially these are the steps in the hashing algorithm in reverse. We find that c12, c11, ..., c0 are the
same as before. Necessarily, c0 = 0. Once all steps have been completed, we obtain the same bitboard,
0xA5D731864B290EFC.

Thus ends the example for bitboard 0xA5D731864B290EFC. Note that in the T16 context, using this algorithm,
the hash of bitboard 0x0123456789ABCDEF is 0 and the hash of bitboard 0xFEDCBA9876543210 is 16!− 1.

3.5.2 Optimizations

We take note of repeated expensive operations during hashing/unhashing and how much space is required
to memoize them.

• At each iteration during hashing, we are given a set of pieces Q and one piece from Q. That piece
is the k-th lowest-valued piece in Q and we must determine k. This is equivalent to the problem of
being given a 16-bit number B with each j-th bit set if j ∈ Q, and we must determine the index i of
the k-th set bit. One way we can achieve this is to read each bit and count, but we would need to do
this for each iteration of hashing. The solution is to precompute all such computations and store them
in a table. The key is (B, k) and the value is i. k ranges from 0 to 15 so it can be represented as a
nibble, so the key (B, k) is 20 bits. Thus there are 220 different keys (not all are used). i can also be
represented as a nibble but for ease of implementation we represent it as a byte. The size of this entire
table is thus 220B = 1MiB.

• At each iteration during unhashing, we are given a set of pieces Q and k, and we must determine which
piece from Q is the k-th lowest value piece out of all pieces in Q. This is equivalent to the problem of
being given a 16-bit number B with each j-th bit set if j ∈ Q, and we must determine which k-th set
bit the i-th bit of B is. Again, we can use a table. The key is (B, i) and the value is k. i ranges from
0 to 15 so it is a 4-bit number, so the key (B, i) is 20 bits, so there are 220 different keys (not all are
used. For ease of implementation, the value k is a byte even if it can be represented as a nibble. The
size of this entire table is also 1MiB.

• We can also precompute factorial-multiplied-by-constant calculations. The key is (c,m) and the value
is c ·m!. Only values of c and m ranging from 0 to 15 are used during hashing/unhashing. Each value
is 8 bytes, so the space required is 16 · 16 · 8B = 2048B.
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We can speed up our hashing and unhashing by initializing all of these tables beforehand, which have a total
memory requirement of 2.002MiB.

3.5.3 Generalizing the Algorithm to a Position Outside of L16

We introduced an example in which the board was full but we would like to generalize the algorithm to work
with boards that have blank slots. For hashing and unhashing positions outside of L16, we skip over any
blanks in the bitboard and treat each piece value according to the piece’s ordering value in PIECES_PLACED.
For example, if PIECES_PLACED = {0x3, 0x5, 0x9, 0x15}, then these piece’s values would be treated as 0, 1, 2,
and 3, respectively.

Suppose we are to hash the bitboard of position p2 ∈ T ⊂ L6, where OCCUPIED_SLOTST = {0, 5, 8, 10, 13, 14}
and
PIECES_PLACEDT = {0x0, 0x3, 0x7, 0x8, 0xB, 0xE}. Suppose p2’s bitboard is 0x80000E00700003B0. The
highlighted 0 nibble is the zero piece (as given by OCCUPIED_SLOTST ) and all other 0s represent blank
spaces. We look through each piece on the bitboard from right to left.

• Initialize encounteredPieces = 0b0000000000000000.

• The piece occupying slot 0 is 0x8. Set the 8th bit in encounteredPieces – encounteredPieces :=
0b0000000100000000. The 8th bit in encounteredPieces is the 0th set bit in encounteredPieces.
c0 = 0.

• Skip to the next occupied slot, which is slot 5. Slot 5 is is occupied by 0xE. Set the 14th bit in
encounteredPieces – encounteredPieces := 0b0100000100000000. The 14th bit in
encounteredPieces is the 1st set bit in encounteredPieces. c1 = 1.

• The next piece is 0x7. encounteredPieces := 0b0100000110000000. The 7th bit in
encounteredPieces is the 0th set in encounteredPieces. c2 = 0.

• The next piece is 0x0. encounteredPieces := 0b0100000110000001. c3 = 0.

• The next piece is 0x3. encounteredPieces := 0b0100000110001001. c4 = 1.

• The final piece is 0xB. encounteredPieces := 0b0100100110001001. c5 = 4.

The hash of the p2’s bitboard is ρ2 =

5∑
0

ci · i!. For more details on the exact implementation of hashing

and unhashing, see Quarto Hash and Unhash in Appendix B.

3.6 Primitive/Unreachable Check

A position is unreachable if there exist two win quartets that cannot be simultaneously completed in a single
move (i.e., the two win quartets cannot coexist). For example, a board containing at least two row win
quartets, at least two column win quartets, or two diagonal win quartets is unreachable. A board state is
also unreachable if it has exactly one row, one column, and one diagonal win quartet such that there does
not exist a single slot covered by the three quartets.

Win quartets can coexist if all win quartets in question can be simultaneously completed in a single move.
If all win quartets in a position can coexist, then the position is reachable. If a reachable position has a win
quartet, then the position is a primitive lose (the player whose turn it is after their opponent has created a
win quartet has lost); otherwise, if the board is filled, then the position is a primitive tie.

For the primitive/unreachable check, we wish to determine whether a given four-in-a-row of pieces forms a
win quartet. The pieces form a win quartet if there is a matching bit among all four pieces.
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In order to check whether there exists a matching bit, we first bitwise-AND all four pieces. If the re-
sult is nonzero, then there exists a matching set bit. We then flip the (four least significant) bits of each
piece and bitwise-AND the the inverted pieces. If the result is nonzero, then there exists a matching unset bit.

We can modify this check to work with any four-in-a-row that might include blanks. We represent a blank
as a 0 in both AND checks (we do not invert the blank piece in the common-unset-bit check). If either AND
results in a nonzreo value then the four-in-a-row is a win quartet. Otherwise, it either is a tie quartet or an
incomplete quartet.

The primitive check uses the bitboard representation of the position. For each tier it is helpful to keep
a 64-bit integer which is each bit of OCCUPIED_SLOTS repeated four times (e.g., if OCCUPIED_SLOTS =
0b1011101110101001 then this integer is 0xF0FFF0FFF0F0F00F). We refer to this number as the occupied
slots mask. We can then XOR the bitboard with the occupied slots mask to obtain an inverted bitboard.
This inverts actual piece nibbles and leaves nibbles representing blanks unchanged.

Figure 3.7: Inverting a BitBoard

Shown above is an example of a position (1) with bitboard 0x0B000D5608030F00 and (2) belonging to a tier
such that the occupied slots mask is 0x0F00FFFF0F0F0F00. For the slot in the second row, first column,
notice that the corresponding nibble in the bitboard is 0x0 but the corresponding nibble in the occupied
slots mask is 0xF indicating that the slot contains the 0x0 piece and is not empty.

To check whether a position is primitive or unreachable, at most ten four-in-a-row checks take place (since
there are a total of ten sets of four slots that create a four in a row). For a particular four-in-a-row check
we select the appropriate nibbles from the bitboard and inverted bitboard.

We can perform all four column quartet checks in parallel by doing the following...

invBitBoard = bitBoard ^ OCCUPIED_SLOTS_MASK

bitBoardAND = bitBoard & (bitBoard >> 16) & (bitBoard >> 32) & (bitBoard >> 48)

invBitBoardAND = invBitBoard & (invBitBoard >> 16) & (invBitBoard >> 32)

& (invBitBoard >> 48)

Where “^” is a bitwise XOR, “&” is a bitwise AND, and “>> x” is a right shift by x bits. If the integer
represented by the lower 16 bits of bitBoardAND is nonzero or the integer represented by the lower 16 bits
of invBitBoardAND is nonzero, then there exists a column win quartet.

We can similarly perform all four row quartet checks in parallel by doing the following...
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invBitBoard = bitBoard ^ OCCUPIED_SLOTS_MASK

bitBoardAND = bitBoard & (bitBoard >> 4) & (bitBoard >> 8) & (bitBoard >> 12)

invBitBoardAND = invBitBoard & (invBitBoard >> 4) & (invBitBoard >> 8)

& (invBitBoard >> 12)

If the any of the 0th, 4th, 8th, or 12th least-significant nibbles of bitBoardAND is nonzero or any of the 0th,
4th, 8th, or 12th least-significant nibbles of invBitBoardAND is nonzero, then there exists a row win quartet.

The main diagonal quartet check can be similarly done by shifting by 20, 40, and 60. The antidiagonal
quartet check can be done by shifting by 12, 24, and 36.

It is sufficient to check whether AND results are nonzero if we can assume that the given position is reachable.
If we are not given that information and we must determine ourselves whether the position is reachable,
then we must not only determine whether each AND result is nonzero but also parse each AND result to
determine which rows, columns, and diagonals are win quartets in order to check for incompatible quartets.

Figure 3.8: Example Column Quartet Checks. The 1000 in the second column of the AND result indicates
that the second column contained pieces that all shared the highest bit (i.e., were all white).

3.7 Symmetries

Symmetric positions of a particular position p can be found through board slot and piece bit transformations.

In this section, we frequently discuss permutations. A permutation σ of a set is a bijection from that
set to itself. If σ defines a permutation of a set of n elements, then σ is a member of the permutation group
Sn. There are n! different permutations in Sn.

Example: Let n = 7 and suppose σ : M →M (a member of S7) is a permutation of M = {0, 1, 2, 3, 4, 5, 6}.
Suppose σ(0) = 1, σ(1) = 3, σ(3) = 0, σ(4) = 6, σ(6) = 4, σ(2) = 2, and σ(5) = 5. Then σ can be expressed
using the zero-indexed notation σ = (0 1 3)(4 6)(2)(5) or, equivalently, σ = (0 1 3)(4 6). If σ maps each
element to itself then σ = ().

3.7.1 Board Slot Symmetries

GBS = ⟨r, f, i, o⟩ is the board slot symmetry transformation group. GBS is a subgroup of the permutation
group S16 and contains transformations defining how to permute the slots of a board to create a symmetric
board. The generators r, f, i, and o are...

1. Rotate 90◦ Clockwise: r = (0 3 15 12)(1 7 14 8)(2 11 13 4)(5 6 10 9).

2. Transpose: f = (1 4)(2 8)(3 12)(6 9)(7 13)(11 14).

3. Inner Swap: i = (1 2)(4 8)(5 10)(6 9)(7 11)(13 14).

4. Outer Swap: o = (0 5)(1 4)(2 7)(3 6)(8 13)(9 12)(10 15)(11 14).
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There are |GBS| = 32 different permutations, i.e., there are 32 unique board slot symmetry transformations.
When applying r α times, then applying f β times, then applying i γ times, then applying o δ times, different
choices of α ∈ {0, 1, 2, 3} and β, γ, δ ∈ {0, 1} yield unique transformations. Following are explanations of
how to apply transformation σ ∈ GBS to various objects:

• σ applied to a board b is the board b′, formed by permuting the slots of board b according to σ. For
each slot s of b, the piece (or blank) occupying s occupies slot s′ = σ(s) of board b′. Notation, σ ·b = b′.

• Let p be a position with board b. σ applied to p is the position p′ which has the same piece-to-place
as p but has σ · b as its board. Notation: σ · p = p′.

• σ applied to a 16-bit integer N (e.g., an OCCUPIED_SLOTS value) results in the 16-bit integer N ′ formed
by permuting the bits of N according to σ. For each s ∈ {0, 1, ..., 15}, if bit s is set (or unset) in N ,
then bit s′ = σ(s) is set (or unset) in N ′. Notation: σ ·N = N ′.

• σ applied to a tier T results in the tier T ′ such that PIECE_TO_PLACET ′ = PIECE_TO_PLACET and
PIECES_PLACEDT ′ = PIECES_PLACEDT , but OCCUPIED_SLOTST ′ = σ · OCCUPIED_SLOTST . Notation:
σ · T = T ′.

On the board, there are ten ways a particular quartet can be arranged. A quartet can exist across one of the
ten four-in-a-rows of slots: the rows {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, and {12, 13, 14, 15}; the columns
{0, 4, 8, 12}, {1, 5, 9, 13}, {2, 6, 10, 14} and {3, 7, 11, 15}; and the diagonals {0, 5, 10, 15} and {3, 6, 9, 12}. Each
of the 32 board slot symmetry transformations σ when applied to a position results in a symmetric position
because it preserves all ten four-in-a-rows – if s0, s1, s2, and s3 exist in a four-in-a-row on board b, then
σ(s0), σ(s1), σ(s2), and σ(s3) also exist in a four-in-a-row (in no particular order).

Shown in Figure 3.9 are the transformations r, f , i, o each applied to a board b. All ten four-in-a-rows
are preserved under these transformations and under any composition of them.

Figure 3.9: Board Symmetry Transformation Group Generators
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3.7.2 Piece Bit Symmetries

Figure 3.10: Piece Bit Permutation Symmetry. In this example, the bits are permuted according to (0 3 1
2), resulting in a symmetric position.

Figure 3.11: Piece Bit XOR Symmetry. In this example, we flip the 1st and 3rd bits of each piece, i.e., we
bitwise XOR each piece with 0b1010 to obtain a symmetric position.

For any position p, we can permute the bits of each piece on p’s board and of the piece-to-place to obtain
a symmetric position. There are 24 ways to permute the bits. We can also choose a subset of the four bits
and flip those bits on the board pieces and piece-to-place. In total there are 16 ways to choose a subset of
bits to flip. Flipping some subset of the piece bits is equivalent to performing a bitwise XOR on each piece
by a number from 0 to 15. When we bitwise XOR a piece and a number k ∈ {0, 1, ...15}, then the set bits
of k indicate which piece bits to flip and the unset bits of k indicate which piece bits to leave unchanged.

Let the binary operator ⊕ denote bitwise XOR. Suppose we select any two pieces u1 and u2 that have
z matching bits. Then u′

1 = (u1 ⊕ k) and u′
2 = (u2 ⊕ k) (k ∈ {0, 1, ..., 15}) have z matching bits as well

because flipping the same bits in both pieces does not change the number of matching bits. Likewise, if we
permute the bits of u1 and u2 then the number of matching bits between them also remains unchanged.
These piece bit transformations yield symmetric positions because they preserve matching bits.

The XOR piece bit symmetry transformation group is G⊕ = ({⊕0,⊕1, ...,⊕15}, ◦), where ◦ is a binary
operator with the following definition: ⊕a ◦ ⊕b = ⊕a⊕b. One can easily verify that the group axioms are
satisfied. The piece bit permutation transformation group is S4.
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GPB = S4×G⊕ is the piece bit symmetry transformation group. In total there are |S4| · |G⊕| = 24 ·16 = 384
total piece bit symmetry transformations. Each member of this group is of the form τ = (π,⊕k) where
π ∈ S4 and ⊕k ∈ G⊕. Following are explanations of how to apply transformation τ ∈ GPB to various
objects:

• The result of applying transformation τ = (π,⊕k) to a piece u (a 4-bit integer) is the piece u′ that
is the result of permuting the bits of (u ⊕ k) according to π. Notation: τ · u = u′. For example,
((1 2 4),⊕11) · 0x9 = ((1 2 4),⊕0b1011) · 0b1001 = (1 2 4) · (0b1011 ⊕ 0b1001) = (1 2 4) · 0010 =
0b1010 = 0xA.

• Applying τ to position p gives the position p′ formed by applying τ to each piece on p’s board and to
p’s piece-to-place. Notation: τ · p = p′.

• τ applied to a 16-bit integer N (e.g., a PIECES_PLACED value) results in the 16-bit integer N ′ formed
by permuting the bits of N according to τ . Specifically, treat each u ∈ {0, ..., 15} as a piece or 4-bit
integer – if bit u is set (or unset) in N , then bit u′ = τ ·u is set (or unset) in N ′. Notation: τ ·N = N ′.

• Applying τ to a tier T gives the tier T ′ such that OCCUPIED_SLOTST ′ = OCCUPIED_SLOTST but
PIECE_TO_PLACET ′ = τ · PIECE_TO_PLACET and PIECES_PLACEDT ′ = τ · PIECES_PLACEDT . Notation:
τ · T = T ′.

Applying ⊕k ∈ G⊕ alone to any of these objects is the same as applying τ = ((),⊕k). Applying π ∈ S4

alone to any of these objects is the same as applying τ = (π,⊕0).

3.7.3 Canonicalization and Tier Symmetries

Suppose a group G acts on [14] a set of objects W . For a particular object y ∈ Y , the orbit of y (notated
G ·y) [15] is the set of all elements in Y that result from any transformation g ∈ G. The canonical object of
y is an object yC ∈ G · y that is a “representative” of all elements in the orbit of y including y itself. When
G is a symmetry transformation group, an orbit consists of objects that are “symmetrical” to each other.
For any information requested about an object in an orbit, we refer to the canonical object in that orbit.
For example, instead of storing information about all tiers in a set of tiers that are symmetric to each other,
we only store information about the canonical tier in a file and any time we request any information about
a non-canonical tier we read data from the canonical tier file.

The choice of which object in an orbit is canonical is completely arbitrary. Below we outline how we decide
canonical OCCUPIED_SLOTS values, canonical (PIECE_TO_PLACE, PIECES_PLACED) tuples, and canonical tiers.

Suppose GBS acts on the set of all possible OCCUPIED_SLOTS values. Let NOS be some OCCUPIED_SLOTS

value. Then the canonical OCCUPIED_SLOTS value of NOS is NC
OS, the smallest integer in GBS ·NOS.

Suppose GPB acts on the set of all possible (PIECE_TO_PLACE, PIECES_PLACED) tuples. Let (u,NPP) be
some (PIECE_TO_PLACE, PIECES_PLACED) tuple. Then the canonical tuple is (0x0, NC

PP), where NC
PP is the

smallest integer in S4 · (⊕u ·NPP). In other words, given a non-canonicalized (u,NPP), first we XOR by u
to arrive at a tuple (0x0, N ′

PP). Then apply each piece bit permutation symmetry transformation to N ′
PP

and find the smallest integer NC
PP among the results of those transformations.

Now we consider the combination of board slot and piece bit symmetries. The overall symmetry transforma-
tion group is GQ = GPB ×GBS. The total number of symmetry transformations is |GQ| = |GPB| · |GBS| =
12288.

Suppose GQ acts on the set of all tiers. Suppose a non-canonicalized tier T is such that OCCUPIED_SLOTST =
NOS, PIECES_PLACEDT = NPP, and PIECE_TO_PLACED = u. Then the canonical tier of T is the tier TC

such that OCCUPIED_SLOTSTC = NC
OS, PIECES_PLACEDTC = NC

PP, and PIECE_TO_PLACETC = 0x0. Indeed,
every tier is symmetric to a tier with a PIECE_TO_PLACE of 0x0 because we can XOR each piece with the
piece-to-place.
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3.7.4 Symmetry Tables

For smaller games, typically one can apply every symmetry transformation to an object and then look
through every object in its orbit to find the canonical one. For larger games like Quarto, it is helpful to
use symmetry tables so that one can look up an object to determine its canonical object, without the need
to “try” each symmetry transformation and see which transformation when applied to the object results in
the canonical one. Symmetry tables allow us to identify the canonical tier TC of a given tier T and give us
information about the symmetry transformations that bijectively map each position in T to a position in TC.

We use a table with which we can look up any non-canonicalized OCCUPIED_SLOTS value and obtain the
canonical OCCUPIED_SLOTS value and transformation from the non-canonicalized value to the canonical-
ized value. Specifically, the key to the board slots symmetry table is OCCUPIED_SLOTST and the value is
(OCCUPIED_SLOTSTC , σ) where σ is board slot symmetry transformation from OCCUPIED_SLOTST to
OCCUPIED_SLOTSTC . There are 216 keys since there are 216 possible values of OCCUPIED_SLOTST . There are
216 possible values of OCCUPIED_SLOTSTC and 32 = 25 possible transformations σ, so (OCCUPIED_SLOTSTC , σ)
uses 16 + 5 = 21 bits. For ease of implementation, we let (OCCUPIED_SLOTSTC , σ) take up 32 bits. Thus the
total size of the board slots symmetry table is 216 · 32 bits = 256 kiB.

We also use a table with which we can look up a PIECES_PLACED and PIECE_TO_PLACE value and obtain the
canonical PIECES_PLACED value and canonicalization transformation. The key to the piece bit symmetry table
is (PIECE_TO_PLACET , PIECES_PLACEDT ) and the value is (PIECES_PLACEDTC , πPB), where πPB is the piece
bit permutation from (⊕PIECE_TO_PLACET

· PIECES_PLACEDT ) to PIECES_PLACEDTC . There are 16 possible values of
PIECE_TO_PLACET and 216 possible values of PIECES_PLACEDT , so there are 220 possible keys. There are 216

possible values of PIECES_PLACEDTC and 24 possible values of πPB , so the value (PIECES_PLACEDTC , πPB)
takes up 16+⌈log2 24⌉ = 21 bits. For ease of implementation we let (PIECES_PLACEDTC , πPB) take up 32
bits. The total size of the piece bit symmetry table is 220 · 32 bits = 4 MiB.

We can speed up our symmetry calculations by initializing these symmetry tables beforehand, which have a
total memory requirement of 4.25 MiB.

3.7.5 Upper-Bounding the Number of Positions, Utilizing Tier Symmetry

We can read through the symmetry tables to identify and count the unique canonical OCCUPIED_SLOTS
and canonical PIECES_PLACED values. We can then construct canonical tiers – all the canonical tiers are
constructed by using a tier that has every possible combination of a canonical OCCUPIED_SLOTS and a
canonical PIECES_PLACED such that |OCCUPIED_SLOTS| = |PIECES_PLACED|. The number of canonical tiers
in level n would be the number of canonical OCCUPIED_SLOTS at Ln multiplied by the number of canonical
PIECES_PLACED at Ln. The canonical tier counts from the symmetry tables are presented in Table 3.2.
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Level # of Canonical
PIECES PLACED

# of Canonical
OCCUPIED SLOTS

# of Canonical Tiers # of Positions Per Tier # of Positions

0 1 1 1 1 1
1 4 2 8 1 8
2 13 10 130 2 260
3 39 28 1092 6 6552
4 97 84 8148 24 195552
5 187 168 31416 120 3769920
6 290 306 88740 720 63892800
7 365 410 149650 5040 754236000
8 365 476 173740 40320 7005196800
9 290 410 118900 362880 43146432000
10 187 306 57222 3628800 207647193600
11 97 168 16296 39916800 650484172800
12 39 84 3276 479001600 1569209241600
13 13 28 364 6227020800 2266635571200
14 4 10 40 87178291200 3487131648000
15 1 2 2 1307674368000 2615348736000
16 1 1 1 20922789888000 20922789888000

Total 1993 2494 649026 31770220181093

Table 3.2: Counting the Number of Tiers and Positions Unique Under Tier Symmetry

If we limit our solving to the canonical tiers only, then tier symmetries allow us to explore fewer than 32
trillion positions in order to solve the game, which is about 0.15% of the upper bound of 20.67 quadrillion
positions we calculated earlier when symmetries were not accounted for.

3.8 Encoding Value-Remoteness

LX, TX, and WX mean Lose, Tie, and Win in X, respectively. Vp is the value-remoteness of position p.
Primitive ties cannot occur unless the board is filled, so if p ∈ Ln is a tie, then its remoteness is 16− n.

3.8.1 Level Value-Remoteness Encoding Table

Prior to our solve, we know nothing about the analysis of Quarto other than the following information:

• That it can be split into levels Ln as defined before and it has level sequence L0 → L1 → ...→ L16.

• The only value-remoteness pairs possible for a position in L16 are L0 and T0.

For n ∈ {0, 1, ..., 15}, we are interested in determining a small superset ULn of the value-remoteness pairs
that will ever be seen during solving for positions in Ln, given only this information. In other words, we are
anticipating what value-remoteness pairs will be encountered among all positions in Ln.

Initialize UL16
= {L0, T0}. Perform the following in descending order n = 15, 14, 13, ..., 0 to construct

each ULn :

1. Initialize ULn
= {L0}. (Disregard the fact that primitive positions are not possible in L0, L1, L2, and

L3. We are constructing ULn
according to limited information about the analysis of Quarto. Indeed,

including L0 in UL0
, UL1

, UL2
, and UL3

leads to a space inefficiency but it is minor, as we discuss in
3.8.3.)

2. For each anticipated value-remoteness pair v in ULn+1
, presume the existence of a position p in Ln

whose child positions all have values that are v at best (for the player whose turn it is at Ln+1). Solve
this hypothetical position Vp and add its value to ULn .

This procedure ensures by construction that during our solve of a position in Ln, the position’s value will
be contained in ULn

, because we account for the possibility that a position in Ln will be a primitive lose (no
positions outside of L16 can be primitive ties) or that it will have any set of value-remoteness pairs among
its children.

For example, suppose we find that UL13
= {L0, W1, L2, W3, T3} and we must next construct UL12

. L0 is
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in UL12 because L12 may have primitive positions. W1, L2, W3, L4, and T4 are each contained in UL12 because
some position in L12 may be such that its child positions are all at best L0, at best W1, at best L2, at best
W3, or at best T3, respectively.

We list each value-remoteness pair in ULn
for all n in the Table 3.8.1 from worst to best, i.e., in ascending

order according to the following rule:
Low-Remoteness Lose < High-Remoteness Lose < Tie < High-Remoteness Win < Low-Remoteness Win

Encoding 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L0 L0 L2 L4 L6 L8 L10 L12 L14 L16 T16 W15 W13 W11 W9 W7 W5 W3 W1

L1 L0 L2 L4 L6 L8 L10 L12 L14 T15 W15 W13 W11 W9 W7 W5 W3 W1

L2 L0 L2 L4 L6 L8 L10 L12 L14 T14 W13 W11 W9 W7 W5 W3 W1

L3 L0 L2 L4 L6 L8 L10 L12 T13 W13 W11 W9 W7 W5 W3 W1

L4 L0 L2 L4 L6 L8 L10 L12 T12 W11 W9 W7 W5 W3 W1

L5 L0 L2 L4 L6 L8 L10 T11 W11 W9 W7 W5 W3 W1

L6 L0 L2 L4 L6 L8 L10 T10 W9 W7 W5 W3 W1

L7 L0 L2 L4 L6 L8 T9 W9 W7 W5 W3 W1

L8 L0 L2 L4 L6 L8 T8 W7 W5 W3 W1

L9 L0 L2 L4 L6 T7 W7 W5 W3 W1

L10 L0 L2 L4 L6 T6 W5 W3 W1

L11 L0 L2 L4 T5 W5 W3 W1

L12 L0 L2 L4 T4 W3 W1

L13 L0 L2 T3 W3 W1

L14 L0 L2 T2 W1

L15 L0 T1 W1

L16 L0 T0

Table 3.3: Anticipated Value-Remoteness Pairs at Each Level

E(Ln, V ) is the encoding of value-remoteness pair V , which is the number assigned to V given the level Ln

context. Refer to the header of Table 3.8.1. For example, E(L6, L2) = 1, E(L9, W1) = 8, and E(L0, L12) = 6.

3.8.2 Determining the Value-Remoteness of a Parent Position

Suppose position p ∈ Ln has child positions C ⊆ Ln+1. In order to determine the p’s value-remoteness
encoding E(Ln, Vp), we use the following formula.

E(Ln, Vp) =


0 if p is a primitive lose (L0)

1 if p is a primitive tie (T0)

17− n−min{E(Ln+1, Vc) | c ∈ C} otherwise

One can then determine the value-remoteness of p given the encoding and the level context Ln.

In other words, if p is a primitive lose, then its value-remoteness encoding is 0 because L0 in any level
context is encoded as 0. If p is a primitive tie T0, then it is in L16, so its encoding is 1.

If p ∈ Ln is nonprimitive, first determine the lowest-value encoding m among all of p’s child positions
(the child positions’ encodings are to be interpreted in the Ln+1 context). We subtract m from the highest-
value encoding for Ln, which is always 17−n, to obtain the encoding of p’s value-remoteness in the Ln context.

Example:
p ∈ L10 has children C = {c0, c1, c2, c3} and Vc0 = W5, Vc1 = T5, Vc2 = L2, and Vc3 = W1.
p is non-primitive because it has child positions. Thus,

E(L10, Vp) = 17− 10−min{E(L11, c) | c ∈ C}
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E(L10, Vp) = 7−min{E(L11, W5), E(L11, T5), E(L11, L2), E(L11, W1)}
E(L10, Vp) = 7−min{4, 3, 1, 6}
E(L10, Vp) = 6

Finally, 6 in context L10 encodes W3 so p’s value-remoteness is “Win in 3”.

The way the solver determines a position’s value-remoteness is described by the pseudocode below. The
function DetermineValueRemotenessEncoding takes n and a position p ∈ Ln as input and returns the
encoding for p’s value-remoteness in the Ln context.

DetermineValueRemotenessEncoding(level, position):

if position is primitive: return encoding 0 (PRIMITIVE_LOSE) or 1 (PRIMITIVE_TIE)

minChildVREncoding = 17 - level

for each child of position:

childVREncoding = DetermineValueRemotenessEncoding(level + 1, child)

if childVREncoding == 0: return 17 - level

else: minChildVREncoding = min(minChildVREncoding, childVREncoding)

return 17 - minChildVREncoding

A traditional way of encoding value

3.8.3 Encoding as a Bitstring

Suppose p ∈ Ln and the encoding of its value-remoteness is x. There are 18−n anticipated value-remoteness
pairs for Ln, so p’s value-remoteness bit representation is the ⌈log2(18− n)⌉ least significant bits of x.

Example 1: p ∈ L16 and E(L16, Vp) = 1: ⌈log2(18− 16)⌉ = 1 bit needed, so the representation is 1.
Example 2: p ∈ L7 and E(L7, Vp) = 5: ⌈log2(18− 7)⌉ = 4 bits needed, so the representation is 0101.
Example 3: p ∈ L12 and E(L12, Vp) = 5: ⌈log2(18− 12)⌉ = 3 bits needed, so the representation is 101.

There is a bit inefficiency one might observe after the solve is complete. For the lower levels (i.e., Ln

for larger n), all of the value-remoteness pairs in ULn end up being used. But in the higher levels (i.e.,
Ln for smaller n), not all of the value-remoteness pairs in ULn are actually used. However, any attempt to
compress the higher levels even further will not reduce the overall database size by much because the number
of positions in the higher levels is extremely small compared to the number of positions in the lower levels.

3.9 Database and Live-Solving

We store the results of our solve in a database directory with the following structure.

• database contains 17 level directories 00, 01, ..., and 16 corresponding to L0, L1, ..., L16 respectively.

• Each level directory contains the results files for all tiers in that level. Example: There are 173740
canonical tiers in level 8. Thus, 08 contains 173740 tier results files: one file per tier to store value-
remoteness data for each position in the tier.

• Suppose tier T is canonical. Its results are stored in the file with a name created by concatenating
the last four hex digits of PIECES_PLACEDT with the last four hex digits of OCCUPIED_SLOTST . For
example if OCCUPIED_SLOTST = 0x01FE and PIECES_PLACEDT = 0x017F, then T ⊂ L8 so the results of
T are stored in database/08/01FE017F. PIECE_TO_PLACE is not indicated in the tier results filename
because all canonical tiers have a PIECE_TO_PLACE of 0x0.
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• Suppose a canonical tier results file corresponds to a tier T ∈ Ln. The file is tierposition-indexed and
contains n! ⌈log2(18− n)⌉-bit entries. Example: Suppose a canonical tier results file corresponds to a
tier in L8 and one wants to read the value-remoteness of a position in that tier whose tierposition is
25312. Each value-remoteness in level 8 is encoded using ⌈log2(18− 8)⌉ = 4 bits. Read 4 bits, starting
at 25312×4 bits from the start of the file, in order to get the encoded value-remoteness of this position.

A position is queried with its string representation as the key. First, convert to a tier-and-bitboard represen-
tation. Next, determine the canonical tier and transformed bitboard as described in the Symmetries section.
Then hash the transformed bitboard and read from the appropriate canonical tier results file.

Figure 3.12: Database Directory Tree

Table 3.9 shows the raw size of the quarto database. Example: There are 173740 canonical tiers in level 8
each containing 8! positions which require 4 bits each to encode value-remoteness, so the total raw size of
level 8 is 173740× 8!× 4

8 B = 3.263 GiB.

Level Number of
Canonical

Tiers

Number of
Positions
Per Tier

Number of Value-
Remoteness Bits

Per Position

Size of
Tier Results
File (GiB)

Total Size of Canonical
Tier Results Files in
Level Directory (GiB)

Cumulative
Database
Size (GiB)

0 1 1 5 0.001 0.001 0.001
1 8 1 5 0.001 0.001 0.001
2 130 2 4 0.001 0.001 0.001
3 1092 6 4 0.001 0.001 0.001
4 8148 24 4 0.001 0.001 0.001
5 31416 120 4 0.001 0.002 0.002
6 88740 720 4 0.001 0.030 0.032
7 149650 5040 4 0.001 0.352 0.383
8 173740 40320 4 0.001 3.263 3.645
9 118900 362880 4 0.001 20.092 23.737

10 57222 3628800 3 0.002 72.520 96.257
11 16296 39916800 3 0.014 227.179 323.436
12 3276 479001600 3 0.168 548.040 871.476
13 364 6227020800 3 2.175 791.614 1663.089
14 40 87178291200 2 20.298 811.912 2475.000
15 2 1307674368000 2 304.467 608.934 3083.934
16 1 20922789888000 1 2435.734 2435.734 5519.667

Table 3.4: Raw Database Size

At level n, the last column of Table 3.9 (cumulative database size) indicates the size of the database if only
levels 0 through n inclusive are stored. If all levels are stored, then the total raw size of the database is
5519.687 GiB = 5.39 TiB, which is undesirably large.

Instead of storing every level, choose a boundary level n such that we only store all levels at least as
high as the boundary level (i.e., all levels Lw such that w ≤ n). Now suppose a query is received for a
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position belonging to a level lower than the boundary level (i.e., p ∈ Lw and w > n). Instead of performing
canonicalization and reading from a database file, we solve the Quarto subgame with initial position p to
determine p’s value. We refer to this as live-solving a position and it is an effective way to compress the
extremely large lower levels. In order to determine the value of p via live-solving, it is necessary for the
solving to be extremely efficient (solving will be discussed in more detail in the Solving section).

The subgames rooted at positions in the lowest levels are not large since they are shallow (the end of
the game is guaranteed to occur in few moves) and few legal moves are available (low fanout). At higher
levels, live-solving takes longer. Level 12 was chosen as the boundary level for the solve, so the raw database
size is 871.4 GiB (again, refer to the Cumulative Database Size column). Other boundary levels may be
chosen depending on what the user desires with regard to how fast a position query should be and how much
space they want the database to take up. One can simply delete the appropriate level directories if they
decide to use a higher boundary level for position queries.

Timing tests can help determine what the boundary level should be. A timing experiment was run to
determine how long it takes on average to live-solve a position, at each of the lower tiers. The following was
done for each lower level n:

• Generate N random position strings corresponding to positions at level n. Start the timer.

• For each position string, convert it to its tier-and-bitboard representation and live-solve using that
representation. Then end the timer.

• The average time to live-solve a position in Ln is the total time divided by N . For the lowest levels
16, 15, ..., 11, we used N = 1000000000. For levels 10, 9, 8 we used N = 1000, and for level 7 we used
N = 100.

Level n 16 15 14 13 12 11 10 9 8 7

Average Time To
Live-Solve 1 Million
Positions in Ln (s)

0.053 0.065 0.081 0.12 0.36 3.5 67 2,200 99,000 6,300,000

Table 3.5: Results of Live-Solve Timing Experiment

If, for example, one does not mind as long as a single position query takes less than a second, live-solving
can be done for positions in levels 8 or lower, and 7 can be chosen as the boundary level so that the total
raw database size is 0.383 GiB.

3.10 Solving

Our goal is to solve the game and count the number of positions per value-remoteness pair, i.e., count how
many positions are L0, T0, W1, etc. We achieve this by solving and counting each position (filtering out
unreachable positions) in each canonical tier. In the Results section we discuss how to postprocess the
counts from each canonical tier. Algorithm 1 shows at a high level how the entire game is solved. In the
actual implementation, some loops and conditionals are reordered.

3.10.1 Overview

Terminology: A level k is “above” level n if k < n and “below” level n if k > n.

We only explore positions in canonical tiers (Line 3). For each canonical tier, we perform value-remoteness
counting (Lines 4, 14, 16). For every tier at or above the boundary level, the value-remoteness of each
position in the tier is written to the tier results file (Lines 5, 14, 17).

For every tier at or below the boundary level, we live-solve each position to determine the position’s value
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Algorithm 1 Main Driver for Solving Quarto

1: Initialize any tables useful for symmetries and hashing. Determine list of all canonical tiers.
2: for all levels n = 16, 15, 14, ..., 0 do
3: for all canonical tiers T in Ln do
4: Initialize counts, a data structure for storing T ’s value-remoteness counts.
5: If n ≤ BOUNDARY, initialize results, a n!-length array for storing the value-remoteness of each

position in T .
6: If n < BOUNDARY, perform initialization required for solving T .
7: for all tierpositions ρ in {0, 1, 2, ..., n!} do
8: bitBoard = Unhash(T, ρ)
9: if n ≥ BOUNDARY then

10: vr = SolveLive(T, bitBoard)
11: else
12: vr = SolveFromChildTiers(T, bitBoard)
13: end if
14: Given vr (which is one of UNREACHABLE, L0, T0, W1, etc.), update counts and, if n ≤ BOUNDARY,

update results.
15: end for
16: Write counts to T’s value-remoteness counts file.
17: If n ≤ BOUNDARY, then write vr to T ’s position results file.
18: end for
19: end for

(Line 10). They make use of the function SolveLive which uses tree recursion to determine a position’s
value-remoteness.

For every tier above the boundary level, we determine the value of each position by reading the value-
remoteness of its child positions from the child tier files (Line 6, 12).
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Figure 3.13: Moves and Child Tiers

A move is a 2-tuple (e.g., (9, 0x3)) indicating the slot at which one decides to place the piece-to-place and
the piece they choose as the next piece-to-place. We defined tiers in such a way that all non-primitive
positions in the same tier have the same set of legal moves because they all have the same set of empty
slots and set of pieces that have not yet been chosen as a piece-to-place. In Figure 3.13, we show three
non-canonicalized child tiers of a parent tier that result from three different legal moves available to every
non-primitive position in the parent tier. We also show three different positions in the parent tier and what
their child positions are after each of the three moves are made. After canonicalization, each of these child
tiers will have a piece-to-place of 0x0 and likely a different OCCUPIED_SLOTS and PIECES_PLACED.

At the beginning of solving a tier T , we perform initialization for solving a tier from child tiers (Line
6). First we determine what the legal moves are and what non-canonicalized child tiers result from those
moves. We then determine what the canonical versions of each of these child tiers are and what transfor-
mations are made to canonicalize the child tiers. These transformations can then be applied to each child
position to obtain a position symmetric to the child position that belongs to a canonical tier so that we can
read its value. Applying these transformations to positions is done in SolveFromChildTiers (Line 12).

As discussed in subsection 3.7.3 Canonicalization and Tier Symmetries, every canonical tier has a
PIECE TO PLACE of 0x0, so for any position p in a canonical tier, every child position c has exactly the
same bitboard as p because blanks and the zero piece are encoded the same way. This is a nice property of
our tier definition and canonicalization that we use in both SolveLive and SolveFromChildTiers.
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3.10.2 Optimizations

When solving a tier from child tiers, we load all child tier files into memory. For the larger levels that are
not live-solved, the entire child level does not fit entirely into memory, so only a few child tiers from the
lower level can be loaded. As a result, child tiers are reloaded on multiple occasions when solving an entire
level. We make use of an LRU cache to reduce the frequency of reloading child tiers. The size of the LRU
cache is adjustable, but a cache size of 100GB is used for this solve.

We use OpenMP [16] to parallelize position solving within a tier. Specifically, Line 7 of Algorithm 1 is
parallelized. The solver is configured to use all available cores on the machine.

The LRU cache reduces the I/O footprint. While the solver was running, the CPU utilization was close
to 100%, indicating that the solver was not blocked by I/O.

3.11 Results

3.11.1 Timing

Level Number of Positions Among Canonical Tiers Duration (HH:MM:SS) Seconds Positions / Second

16 20922789888000 38:33:44 138824 150714501
15 2615348736000 5:37:16 20236 129242376.8
14 3487131648000 6:38:19 23899 145911194.9
13 2266635571200 5:27:13 19633 115450291.4
12 1569209241600 9:51:57 35517 44181919.7
11 650484172800 10:08:47 36527 17808310.9
10 207647193600 5:31:15 19875 10447657.5
9 43146432000 1:51:50 6710 6430168.7
8 7005196800 0:27:03 1623 4316202.6
7 754236000 0:04:31 271 2783158.7
6 63892800 0:00:38 38 1681389.5
5 3769920 0:00:07 7 538560
4 195552 0:00:01 1 195552
3 6552 0:00:01 1 6552
2 260 0:00:00 0.03 8666.7
1 8 0:00:00 0.01 800
0 1 0:00:00 0.01 100

Table 3.6: Level Solve Durations

In total it took 3.51 days to solve and position-count on a 12-core machine (1010.54 core-hours). If we were
not interested in position-counting the non-stored levels (16, 15, 14, 13), then it would have taken 1.16 days
to solve and position-count the stored levels. If we were only interested in solving and not position-counting,
then there would be no need to perform unreachable position checks in the primitive function, and the time
to solve would have been less than 1.16 days.

3.11.2 Value Counts

While solving, we keep track of the number of positions per value-remoteness pair in that tier. For each
canonical tier, we multiply its counts by the number of tiers it is symmetric to (i.e., the length of the tier’s
orbit). To get value-remoteness counts for a particular level, we add up all the counts for all tiers in the
level. However, we must adjust the counts due to the consequence of our position representation that each
primitive positions is represented and counted multiple times. (See section 3.2 Position Definition and String
Representation.) A primitive position at level n < 16 is represented 16− n times since the primitive board
state can be paired with any piece-to-place out of the 16 − n remaining pieces. All primitive positions at
level n < 16 are “Lose in 0”, so we divide the count for “Lose in 0” by 16 − n to get the real count after
filtering out primitive position duplicates under our position representation.

The final counts for value-remoteness for each value-remoteness pair and level are presented in the table
below.
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LEVEL Tie in (16 - LEVEL) Lose in 0 Win in 1 Lose in 2 Win in 3 Lose in 4 Win in 5 Lose in 6 Win in 7 Lose in 8 Win in 9 Lose in 10 Win in 11 Level Total

0 1.60E+01 1.60E+01
1 3.84E+03 3.84E+03
2 4.03E+05 4.03E+05
3 2.39E+07 5.15E+05 2.45E+07
4 8.54E+08 1.29E+05 7.41E+07 2.47E+07 9.53E+08
5 2.05E+10 1.85E+07 4.33E+09 4.40E+06 1.66E+06 5.23E+06 8.51E+06 1.43E+07 6.60E+07 2.50E+10
6 2.35E+11 1.12E+09 1.34E+11 8.85E+05 1.88E+09 5.01E+05 1.79E+09 2.40E+06 9.00E+09 3.60E+06 6.84E+10 2.82E+07 4.52E+11
7 2.35E+12 3.72E+10 2.44E+12 5.37E+08 1.11E+11 1.30E+09 9.96E+10 3.40E+09 1.72E+11 4.33E+10 3.81E+11 5.64E+12
8 1.04E+13 7.45E+11 2.69E+13 3.71E+10 2.16E+12 7.23E+10 2.88E+12 9.48E+10 4.75E+12 1.85E+11 4.82E+13
9 3.53E+13 9.28E+12 1.81E+14 9.23E+11 1.54E+13 1.86E+12 1.38E+13 3.36E+12 1.53E+13 2.77E+14

10 8.84E+13 7.23E+13 7.35E+14 7.66E+12 6.16E+13 9.34E+12 5.14E+13 9.32E+12 1.03E+15
11 1.28E+14 3.45E+14 1.71E+15 3.09E+13 1.15E+14 3.21E+13 6.91E+13 2.43E+15
12 1.55E+14 8.76E+14 2.12E+15 5.46E+13 1.24E+14 3.95E+13 3.37E+15
13 9.29E+13 1.20E+15 1.23E+15 4.75E+13 7.09E+13 2.64E+15
14 4.07E+13 7.26E+14 2.67E+14 1.98E+13 1.05E+15
15 6.63E+12 1.49E+14 1.24E+13 1.68E+14
16 4.14E+11 5.58E+12 5.99E+12

Value Total 5.61E+14 3.38E+15 6.28E+15 1.61E+14 3.89E+14 8.28E+13 1.37E+14 1.28E+13 2.03E+13 2.28E+11 4.49E+11 4.25E+07 9.07E+07 1.10E+16

Table 3.7: Number of Positions Per Value-Remoteness and Level. See Appendix B for a table of exact counts.

Notice that for levels 0, 1, and 2, the game is a tie in 16, 15, and 14, respectively. We need not reference the
database if asked the value-remoteness of a position in these levels; we can just return “Tie”.

The initial position is not included in this table, so we add 1 to our total count of reachable positions.
The initial position is “Tie in 17” because its 16 child positions are all “Tie in 16”.

In total, there are 11,029,662,094,763,537 reachable Quarto positions.

3.12 Value-Moves Interface

GamesmanClassic handles Quarto position requests by reading the database or live-solving to return value-
remoteness data, so GamesmanUni can now make Quarto API calls. I created a Quarto Custom GUI that
is now available on GamesmanUni. As with other games on GamesmanUni, the move buttons are colored
according to their corresponding move value.

• At the initial position, the user clicks one of the 16 moves buttons to indicate which piece the first
player gives to the second player.

• Each move thereafter is a placement of a piece and a choice of the next piece-to-place via a single
click. When a move button is clicked, the piece-to-place is placed on the slot where the move button
is located and the selected next piece-to-place is the piece displayed on the move button. Especially at
the beginning of the game, there are many such buttons displayed simply because there are so many
legal moves available. I settled on this design for showing the value for every single move.

• A different kind of move button is used when a move immediately leads to a primitive position. Clicking
it performs a piece placement only and there is no selection of a next piece-to-place since the game has
ended.

36



Figure 3.14: Quarto Interface

The bottom-right button toggles the nibble representation of the pieces. The piece bits are arranged in a
square.

Figure 3.15: Toggling Nibble Representation

3.13 Reflection and Future Work

Seemingly, the value-remoteness encoding idea that we used for Quarto is most applicable to dartboard
games in which a tie only occurs when the board is filled. For example, Tic-Tac-Toe and Connect4 can each
be split into 10 levels and 43 levels, respectively, and the anticipated value-remoteness pair table for each
can be constructed according to the same process by which the table for Quarto was constructed.

Live-solving as a form of compression was particularly helpful for Quarto because it is a shallow game and lev-
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els with the highest numbers of positions were located near the bottom of the level tree. Consider a different
theoretical game that has the following level sequence L0 → L1 → ...→ La → Lb → Lc → ...→ LN−1 → LN .
Suppose live-solving in this game is reasonably fast. Then, as with Quarto, we can choose to live-solve the
bottommost levels LN−j to LN for small j rather than storing them. In addition, if |Lb|, for example, is
significantly greater than either |La| or |Lc|, and if data for a position in Lb is requested, it can be live-solved
by loading its child positions from Lc, which would be more space-efficient than storing each position in Lb.

Future work includes but is not limited to...

• Incorporating some of the ideas from the Quarto solve into solvers and databases in GamesmanClassic.
For example, one can create a new database format in GamesmanClassic that utilizes the value-
remoteness encoding idea or further develop TierGamesman so that it supports tier symmetries.

• Compressing the Quarto database even further using machine learning, which would involve finding the
smallest model possible that, after training on each instance in the Quarto database we produced, can
classify each Quarto position by its value-remoteness pair either (1) with 100% accuracy or (2) with
extremely high accuracy but for which we would need to keep track of a separate database of incorrectly
classified positions. In the second case, the value-remoteness of a position is obtained by first checking
the separate database. If the position exists in the database, its value-remoteness is returned based on
the database. Otherwise, if the position is outside the database, the model’s classification is returned
since the model correctly classifies every such position.

• Creating a Quarto value-remoteness interface that incorporates multipart moves (explained in Chapter
6) in which each move is specified by two clicks – the first of which specifies where to place the piece-
to-place and the second of which specifies which piece to select. The current interface displays many
small move buttons and a multipart-move interface would be less cluttered, although it may sacrifice
the feature from the current interface that all of a position’s legal moves and their values are presented
all at once. It is ideal to give users the option to switch between the current interface and one that
uses multipart moves.
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Chapter 4

Solving Tierable Loopy Games

We now discuss how we solved four games – Nine Men’s Morris, Bagh-Chal, Tic-Tac-Two, and Topitop.
Unlike Quarto, these games are loopy and in all of them there exist draw positions. The solves described in
this chapter were done within the GamesmanClassic framework.

We describe the solver and general strategies used to solve and analyze each of the games. Then for each
game we present its rules, our tier definition, the time to solve, and value-remoteness counts.

4.1 Solver

Algorithm 2 shown below for solving loopy games uses the frontier F , a priority queue of positions in which
a position pa has a higher priority than another position pb if and only if pa’s value-remoteness is worse than
that of pb.

At any point in the execution of this algorithm, any positions p that have ever been enqueued to F are
positions whose values are finalized, i.e., p’s actual value is known.

Algorithm 2 An Algorithm for Handling Loopy Games

1: For each position p, initialize valueremoteness[p]← UNDECIDED.
2: for all primitive positions pr do
3: Set valueremoteness[pr] to pr’s primitive value (with remoteness 0).
4: Enqueue pr to F .
5: end for
6: while F is nonempty do
7: Dequeue a position c from F .
8: for all parent positions p of c do
9: if p has never been in F then

10: Update valueremoteness[p] according to valueremoteness[c].
11: if all of p’s child positions have been in F or valueremoteness[c] is LOSE then
12: Enqueue p to F .
13: end if
14: end if
15: end for
16: end while
17: for all positions pu that have never been in F do
18: if valueremoteness[pu] ∈ {LOSE,UNDECIDED} then
19: valueremoteness[pu]← DRAW
20: end if
21: end for
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Line 9 ensures that no position is put into frontier twice. This is a sufficient condition to ensure that the
algorithm – particularly the while loop – terminates.

At any point during the solve, if valueremoteness[p] is not UNDECIDED, then it contains the value-
remoteness-at-best of position p based on the value-remotenesses of p’s finalized children. p’s child positions
are finalized one-at-a-time, so we keep track of the value of p in Line 10.

There are several ways one can assemble the necessary data structures for this algorithm. One can per-
form a DFS from the initial position to visit all reachable positions and assemble a graph which keeps track
of each position’s parent positions. For large games this requires too much memory so we have a method
known as UndoMove which can derive the parent positions of a given child position. The UndoMove is al-
gorithmic and does not require additional memory, but it comes with the tradeoff that the solve is slightly
slower.

Algorithm 3 Solving Positions in a Given Tier T

1: For each position p ∈ T , initialize valueremoteness[p]← UNDECIDED.
2: Enqueue every child position from every child tier of T to F .
3: for all primitive positions pr do
4: Set valueremoteness[pr] to pr’s primitive value (with remoteness 0).
5: Enqueue pr to F .
6: end for
7: while F is nonempty do
8: Dequeue a position c from F .
9: for all parent positions p of c such that p ∈ T do

10: if p has never been in F then
11: Update valueremoteness[p] according to valueremoteness[c].
12: if all of p’s child positions have been in F or valueremoteness[c] is LOSE then
13: Enqueue p to F .
14: end if
15: end if
16: end for
17: end while
18: for all positions pu ∈ T that have never been in F do
19: if valueremoteness[pu] ∈ {LOSE,UNDECIDED} then
20: valueremoteness[pu]← DRAW
21: end if
22: end for

Algorithm 3 discusses how to solve a particular tier of a game in a retrograde tier-solve. The differences
from Algorithm 2 are highlighted in red. The solves described in this chapter use Algorithm 3.

4.2 General Strategies

Each of the four games were split into tiers. Each tier in each of the following games involves some form
of rearrangement of pieces among the slots of the board. Each tier contains a number of positions that are
represented by a hash value obtained by a perfect hash function that hashes into a value between 0 and
|T | − 1, where |T | is the size of the tier.

We first demonstrate the idea behind rearrangement hashing by example. Suppose we wish to hash an
arrangement of 4 “O” pieces and 4 ”X” pieces among 12 slots. There are a total of N = 12!

4!4!4! = 34650
total ways one can arrange the 4 O’s and 4 X’s (and 4 blanks) among the 12 slots. This is equivalent to the
problem of hashing all possible anagrams of the string “----OOOOXXXX”. The rearrangement hash bijectively
assigns a hash value in {0, 1, 2, ..., N − 1} to each possible arrangement.
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The exact hash value for a given even component configuration is the place it appears in an lexicographical
ordering of all anagrams. Suppose we define the following symbol ordering: ‘-’ < ‘O’ < ‘X’. Presented below
is a lexicographical ordering of the anagrams with their associated hash values.

0: ----OOOOXXXX

1: ----OOOXOXXX

2: ----OOOXXOXX

3: ----OOOXXXOX

4: ----OOOXXXXO

5: ----OOXOOXXX

...

17570: OOOXX-O-XX--

17571: OOOXX-OX---X

17572: OOOXX-OX--X-

17573: OOOXX-OX-X--

17574: OOOXX-OXX---

17575: OOOXX-X---OX

...

34644: XXXXOO-OO---

34645: XXXXOOO----O

34646: XXXXOOO---O-

34647: XXXXOOO--O--

34648: XXXXOOO-O---

34649: XXXXOOOO----

In GamesmanClassic, the generic hash library [17] is used for hashing rearrangements; however, we imple-
mented an optimized version of the hash for each game. The specific optimized version of the Nine Men’s
Morris hash is presented in the next section.

Initial profiling of the Nine Men’s Morris solve revealed that most time is spent unhashing. The unhash
function took up 63% of the time of the solve. We thus implemented an unhash cache to store the results of
recent unhashing.

Another optimization is to reduce the amount of computation by utilizing symmetries. We define a canonical
position as the position with the smallest hash value in its orbit.

4.2.1 Database Compression

Playing the game after it has been solved often involves random access of positions in tier files. Some tiers
are so large that random access of a position in a compressed tier file is extremely slow. To address this issue,
instead of writing a tier results array directly to a file and gzipping the file, we use a checkpoint technique
that allows random access without needing to uncompress a database up to the position.

The compression of each tier .gz file now works as follows:

1. Split the raw data into 1MB chunks.

2. gzip each chunk individually.

3. Take note of the sizes of each chunk and record their sizes in order. We refer to this file as the gzip
checkpoint table for this tier.

4. Concatenate the gzipped chunks into a new .gz file.

This compression is backward compatible [18] with the existing GamesmanClassic database reader because
it can be gunzipped in its entirety to obtain the original data. During gameplay, if a gzip checkpoint table
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is detected, it can be used to uncompress only the 1MB chunk of data containing the position.

To obtain a position’s data from a file directly:

1. Determine the tier and tierposition of the given position.

2. Calculate the index in the uncompressed tier file where the value would be located (based on the
tierposition).

3. Calculate the chunk the position data is in and the offset within the uncompressed chunk.

4. From the checkpoint table, lseek to the start of the correct chunk, then gzseek to the offset within the
uncompressed chunk. Then gzread to get the position’s data.

Compared to gzipping the raw data directly, compressing the Nine Men’s Morris database (using 1MB
chunks) this way results in a 1% increase in the overall compressed database size. We thus felt justified in
using this form of compression for other games to allow for fast random access. The fast random access also
reduces the load on the server hosting the games.

4.3 Nine Men’s Morris

4.3.1 Rules

Nine Men’s Morris [19] is played on a board shown in Figure 4.3.1. Pieces are placed on line intersections
and can move to an adjacent empty intersections.

The first player controls nine white pieces. The second player controls nine black pieces. A vertical or
horizontal three-in-a-row of same-colored pieces is called a mill. At any point in the game, if a player creates
a mill, they can remove one of their opponent’s pieces unless it is in a mill, in which case it is removable
only if all of their opponent’s pieces are also in a mill.

The game consists of two phases. In the first phase of the game, each player takes turns placing one of
their pieces on an empty intersection point on the board. Once all pieces have been placed, the second phase
begins, in which each player takes turns moving one of their pieces to an adjacent empty intersection point.
If a player has been reduced to three pieces, the pieces can fly, i.e., the pieces can be moved to any empty
intersection point on the board.

A player wins when they have reduced their opponent to two pieces or they have trapped their opponent’s
pieces such that their opponent has no legal moves.

Figure 4.1: Example Nine Men’s Morris Positions
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4.3.2 Position Representation

A position is defined by a 3-tuple (R,B, TURN), where R is the total number of pieces left to place, B is the
position’s board state, and TURN is a bit indicating whose turn it is at the position. R > 0 indicates that this
tier belongs to Phase 1. Nonzero even R indicates that it is white’s turn to place a piece and odd R indicates
that it is black’s turn to place a piece. A board B contains the state of each slot of the board, whether it is
empty, occupied by a black piece, or occupied by a white piece. A board can be represented as a 24-character
string, with each character corresponding to a slot on the board in row major order. For example, the boards
in 4.3.1 are represented as “-----------------------” and “---BBBW-W-B-W-B--W-W---W”.

4.3.3 Tier Definition

A tier is defined by a 3-tuple (R,NW , NB), where R indicates the number of remaining pieces to place, NW

indicates the number of white pieces on the board, and NB indicates the number of black pieces on the
board. A position p = (Rp, Bp, TURNp) belongs to tier T1 = (RT1

, NT1,W , NT1,B) if there are NT1,W white
pieces and NT1,B black pieces on Bp.

Suppose we are at a Phase 1 position p1 ∈ T1. If, for example, it is white’s turn, then either white can
place a piece without opponent piece removal or, if white has enough pieces to form a mill, then white
can place with opponent piece removal, which means that T has two child tiers. Now suppose we are at
some Phase 2 position p2 in a different tier T2 = (RT2

= 0, NT2,W , NT2,B). It can be either black’s turn or
white’s turn at p2, and a piece may be removed. Thus, the child tiers of T2 be (0, NT2,W − 1, NT2,B) and
(0, NT2,W , NT2,B − 1).

Under this tier definition and rule for generating child tiers of a given tier, there are 270 Phase 1 and
53 Phase 2 tiers, for a total of 333 tiers considered during the solve.

Each tier T = (RT , NT,W , NT,B) contains all states formed via every combination of (1) all possible turn
bits and (2) all board states – the possible ways to arrange NT,W white pieces and NT,B black pieces among
the S = 24 intersection points. The number of board states is given by:

S!

NT,W !NT,B !(S −NT,W −NT,B)!

If T is in Phase 1, then the parity of RT indicates whose turn it is. If T is in Phase 2, then a selected position
in T may be such that it is the first player’s turn or the second player’s turn, so we multiply the number of
board states in Phase 2 by 2 to obtain the number of positions in the tier.

NT,W = NT,B = 8 are the values of NT,W and NT,B such that the number of possible board arrange-
ments is maximized (9,465,511,770). The tier with the most positions is (0, 8, 8), with 18,931,023,540
positions.

4.3.4 Hashing

We define a hash function that takes a 24-character board string as input and calculates a value between 0
and M − 1 where M is the number of ways the pieces in the board string can be arranged.

Define Q(s, w, b) as the number of ways one can arrange w white pieces and b black pieces among s slots.

Q(s, w, b) =
s!

w!b!(s− w − b)!

To speed up the hashing, all possible values of Q(s, w, b) are pre-computed so only a lookup is necessary
when hashing.
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Algorithm 4 Hash Value of a Board State with Board String B

1: hashvalue← 0
2: s← 23
3: while s > 0 do
4: if B[s] = ’W’ then
5: w ← w − 1
6: else if B[s] = ’B’ then
7: if w > 0 then
8: hashvalue← hashvalue+Q(s, w − 1, b)
9: end if

10: b = b− 1
11: else
12: if w > 0 then
13: hashvalue← hashvalue+Q(s, w − 1, b)
14: end if
15: if b > 0 then
16: hashvalue← hashvalue+Q(s, w, b− 1)
17: end if
18: end if
19: s← s− 1
20: end while

4.3.5 Symmetry

Nine Men’s Morris has 16 board symmetry transformations – rotating, reflecting, and swapping the inner
and outer rings each yield symmetric positions. To take advantage of symmetries, we define a canonical
position as the position with the smallest hash value out of a set of symmetric positions.

To find the canonical position of any position, we can perform 16 symmetry transformations, hash the
resulting board strings, and find the one with the smallest hash value. However, a more efficient method is
to compare the board string of the transformations character by character, starting with the last character,
and only hash the transformation that yields the smallest hash value. This method is correct because based
on the definition of the hash value, the last character in the string representations is most significant, followed
by the second from last, etc.

4.3.6 Results

The game is a draw. The solve took 9.4 days. Although the (0, 8, 8) tier contains the most positions, the
(0, 9, 8) and (0, 8, 9) tiers each required the most memory to solve – they each involved keeping track of the
values of 16,827,576,480 current tier positions and 35,758,600,020 child tier positions. The size of the gzipped
database directory is 22.05 GiB.

4.3.7 Variants

We have also solved variants of Nine Men’s Morris. These variants may allow the removal of an opponent’s
piece even if it is in a mill, or disallow flying when a player has been reduced to 3 pieces. These variants are
also draw games. The approach to solving these variants are the same and the solve time is similar.

4.4 Bagh-Chal

4.4.1 Rules

Bagh-chal [20] is played on a 5x5 (25-space) board with edges between spaces indicating adjacencies (see
Figure 4.4.1). The first player plays with 20 goats and the second player plays with 4 tigers. At the initial
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Pieces Remaining # of White Pieces # of Black Pieces # of Positions Solve Time (HH:MM:SS)

2 8 8 9,465,511,770 03:16:10
1 8 8 9,465,511,770 03:13:55
2 8 7 8,413,788,240 02:54:11
1 7 8 8,413,788,240 02:51:23
1 9 7 8,413,788,240 02:49:58
2 7 8 8,413,788,240 02:45:51
1 8 7 8,413,788,240 02:45:09
1 9 8 8,413,788,240 02:41:11
3 8 7 8,413,788,240 02:38:57
1 7 7 6,731,030,592 02:19:36

:
260 tiers hidden

:

285,325,357,201 93:43:20

Table 4.1: Timing for Solve of 9 Men’s Morris Phase 1

# of White Pieces # of Black Pieces # of Positions Solve Time (HH:MM:SS)

8 8 18,931,023,540 09:35:06
9 8 16,827,576,480 09:12:43
8 9 16,827,576,480 09:04:10
9 7 16,827,576,480 08:27:38
7 9 16,827,576,480 08:24:47
8 7 16,827,576,480 07:55:58
7 8 16,827,576,480 07:48:30
7 7 13,462,061,184 05:47:52
9 9 13,088,115,040 07:45:17
6 9 13,088,115,040 05:57:23

:
53 tiers hidden

:

286,071,923,192 131:00:36

Table 4.2: Timing for Solve of 9 Men’s Morris Phase 2

position, none of the goats are on the board and the tigers occupy the corners, as shown in 4.2 (left).

In the first phase of the game, the first player places one goat on their turn on any empty space on the
board. Once 20 goats have been placed, the second phase of the game begins, and the first player, on each
turn, moves one goat to an adjacent empty space.

Throughout the entire game, on the second player’s turn, they either (1) move one of the tigers to an
adjacent empty space or (2) capture a goat, i.e., move one of their tigers two spaces in a straight line if doing
so crosses over a goat to an empty space, after which the goat is removed from the board.

The first player’s objective is to leave the second player with no legal moves and the second player’s objective
is to capture 5 goats.
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Non-Canonical Canonical

L0 255,079,008 15,980,258
W1 1,903,621,882 119,060,379
L2 615,396,939 38,503,549
W3 1,415,377,337 88,512,437
L4 1,113,734,328 69,655,726
W5 4,572,801,412 285,917,866
L6 3,139,672,428 196,318,051
W7 9,478,600,192 592,596,006
L8 6,072,111,812 379,659,724
W9 14,134,103,120 883,627,685
L10 8,419,632,190 526,407,582
W11 16,851,953,344 1,053,507,912
L12 9,392,209,316 587,195,266
W13 16,935,674,846 1,058,732,607
L14 9,144,963,894 571,731,049
W15 15,121,560,678 945,323,806
L16 8,309,785,868 519,512,760
W17 13,074,027,742 817,323,476
L18 7,252,751,092 453,424,982
W19 11,188,665,960 699,456,273
L20 6,150,063,609 384,485,973
W21 9,425,910,213 589,256,698
L22 5,059,997,114 316,337,275
W23 7,716,064,746 482,365,244
L24 4,058,257,060 253,710,464
W25 6,030,166,088 376,972,440
L26 3,160,365,980 197,576,508
W27 4,525,621,070 282,916,953
L28 2,395,053,138 149,730,885
W29 3,326,453,534 207,951,774
L30 1,771,767,878 110,765,681
W31 2,412,964,822 150,845,678
L32 1,278,070,730 79,901,055
W33 1,723,171,702 107,723,630
L34 900,387,630 56,290,570
W35 1,210,338,322 75,664,928
L36 624,986,986 39,073,302
W37 838,926,402 52,446,297
L38 432,998,562 27,070,830
W39 575,950,828 36,006,775
L40 304,663,154 19,047,931
W41 401,795,648 25,119,403
L42 221,524,288 13,850,087
W43 293,141,416 18,326,858
L44 168,335,156 10,525,056
W45 226,788,696 14,178,843
L46 132,878,090 8,308,178
W47 184,733,934 11,549,714
L48 108,468,976 6,782,374
W49 157,794,672 9,865,508
L50 91,592,544 5,727,062
W51 140,247,252 8,768,524
L52 79,840,476 4,992,257
W53 125,976,660 7,876,285
L54 70,987,716 4,438,769
W55 114,332,508 7,148,462
L56 64,128,812 4,009,879
W57 104,409,816 6,527,875
L58 59,243,228 3,704,240
W59 96,874,196 6,056,666
L60 55,324,696 3,459,337
W61 90,156,204 5,636,706
L62 51,746,432 3,235,414
W63 83,457,100 5,217,841
L64 47,875,696 2,993,551
W65 76,658,804 4,792,797
L66 43,727,400 2,734,066
W67 69,154,772 4,323,709
L68 39,570,052 2,474,321

Non-Canonical Canonical

W69 61,507,952 3,845,605
L70 35,760,992 2,235,951
W71 53,333,888 3,334,546
L72 32,256,824 2,017,028
W73 45,846,656 2,866,574
L74 28,485,086 1,781,001
W75 38,113,332 2,383,009
L76 25,146,748 1,572,389
W77 32,422,600 2,027,207
L78 22,548,352 1,409,801
W79 28,495,236 1,781,714
L80 20,397,908 1,275,442
W81 25,864,800 1,617,259
L82 18,476,742 1,155,299
W83 23,509,540 1,469,959
L84 16,804,164 1,050,752
W85 21,435,632 1,340,310
L86 14,971,864 936,175
W87 18,956,504 1,185,305
L88 12,655,856 791,369
W89 15,889,040 993,440
L90 10,493,440 656,197
W91 13,693,792 856,252
L92 8,974,860 561,248
W93 12,353,480 772,402
L94 8,075,556 505,040
W95 11,703,640 731,829
L96 7,402,468 462,892
W97 11,200,600 700,367
L98 6,865,884 429,344
W99 10,687,952 668,336
L100 6,702,512 419,120
W101 10,971,048 686,012
L102 6,841,600 427,826
W103 11,985,962 749,417
L104 7,137,816 446,306
W105 13,437,004 840,111
L106 7,307,320 456,938
W107 14,261,132 891,644
L108 7,367,708 460,692
W109 14,747,768 921,969
L110 7,086,256 443,077
W111 13,643,296 852,964
L112 6,614,344 413,564
W113 12,004,192 750,459
L114 5,962,240 372,799
W115 9,935,144 621,131
L116 5,310,192 332,024
W117 8,150,272 509,514
L118 4,633,832 289,710
W119 6,587,024 411,834
L120 3,980,136 248,892
W121 5,322,152 332,773
L122 3,419,408 213,795
W123 4,359,920 272,580
L124 2,891,440 180,807
W125 3,681,088 230,151
L126 2,593,368 162,152
W127 3,224,976 201,621
L128 2,505,544 156,687
W129 3,072,584 192,105
L130 2,469,072 154,374
W131 2,879,856 180,043
L132 2,297,752 143,668
W133 2,505,736 156,675
L134 2,068,216 129,307
W135 2,153,248 134,623
L136 1,808,904 113,095
W137 1,832,280 114,552

Non-Canonical Canonical

L138 1,547,240 96,732
W139 1,584,184 99,054
L140 1,325,832 82,889
W141 1,351,124 84,478
L142 1,133,392 70,871
W143 1,170,620 73,220
L144 996,392 62,295
W145 1,038,896 64,948
L146 840,328 52,543
W147 879,264 54,981
L148 689,936 43,137
W149 736,268 46,037
L150 541,848 33,875
W151 598,856 37,439
L152 438,732 27,429
W153 532,576 33,299
L154 405,800 25,368
W155 526,872 32,936
L156 384,552 24,040
W157 540,248 33,772
L158 373,112 23,327
W159 453,424 28,350
L160 399,800 25,000
W161 427,888 26,755
L162 458,664 28,676
W163 477,216 29,834
L164 491,016 30,702
W165 503,272 31,470
L166 477,080 29,838
W167 468,592 29,300
L168 429,912 26,887
W169 381,300 23,841
L170 348,872 21,813
W171 288,504 18,036
L172 284,944 17,814
W173 226,240 14,143
L174 216,552 13,535
W175 160,512 10,037
L176 156,680 9,796
W177 110,340 6,898
L178 113,640 7,103
W179 78,968 4,938
L180 93,864 5,867
W181 54,616 3,417
L182 81,728 5,110
W183 43,304 2,708
L184 63,384 3,962
W185 25,944 1,622
L186 34,872 2,180
W187 15,536 971
L188 20,144 1,259
W189 9,184 574
L190 9,616 601
W191 6,720 420
L192 8,352 522
W193 5,296 331
L194 8,416 526
W195 4,400 275
L196 7,440 465
W197 3,440 215
L198 4,272 267
W199 1,312 82
L200 2,560 160
W201 544 34
L202 704 44
W203 96 6
L204 160 10
Draw 70,184,308,733 4,388,120,765

Total 296,852,156,051 18,558,930,949

Table 4.3: Nine Men’s Morris Value-Remoteness Counts
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Figure 4.2: Example Bagh-Chal Boards

4.4.2 Position Representation

A state of the board B can be represented as a 25-length ternary string. The i-th trit represents the state
of the i-th slot on the board (0=Unoccupied, 1=Occupied by Goat, 2=Occupied by Tiger). A position is
defined by a 4-tuple (R,C,B, TURN), where R is the number of goats that have yet to be placed, C is the
number of goats that have been captured, B is the board state, and TURN is a bit indicating whose turn it
is at the position.

4.4.3 Tier Definition

We use a 3-tuple T = (RT , CT , TURNT ) to represent a tier, where TURNT is either GOATS or TIGERS in Phase
1; and is NULL in Phase 2. T contains all positions p = (Rp, Cp, Bp, TURNp) such that R = Rp, C = Cp, and
if R is nonzero, then TURNT = TURNp.

For the tier definition, the turn bit only matters when the tier belongs to the first phase of the game. Any
move made from a tier in phase 1 immediately leads to another tier. The initial tier is TI = (20, 0, GOATS)
(which contains the initial position). After a move has been made, the child tier is TJ = (19, 0, TIGERS).
There are two possible child tiers of TJ because with the tiger’s next move, a goat may or may not be
captured. The child tiers of TJ are (19, 0, GOAT) (if no capture occurs) and (19, 1, GOAT) (if a capture occurs).
Eventually, we reach a tier in phase 2 such as TK = (0, 2, NULL) (0 goats left to place, 2 goats captured).
Any move made from a position in TK may lead to a position either in TK or in (0, 3, NULL), its single child
tier (as a result of a goat being captured). Any tier (RX , CX , TURNX) such that CX = 5 has no child tiers.

Under this tier definition and rule for generating child tiers of a given tier, there are 196 tiers. Each tier
T = (RT , CT , TURNT ) contains every board state that is achieved by rearranging 20−RT − CT goats and 4
tigers among the 25 slots of the board. In addition, phase 2 tiers need to include every (turn, rearrangement)
combination since they do not have a defined turn; whereas phase 1 tiers do not. An upper bound on the
number of positions calculated by adding up all the possible rearrangements per tier is 291,915,283,550 posi-
tions. However, some positions are equivalent under symmetry. There are 8 board symmetry transformations
– rotating or reflecting the board yields a symmetric position.
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4.4.4 Results

The game is a draw. The solve took 3.41 days. The (8, 1, FALSE) tier required the most memory to solve – it
involved keeping track of the values of 4,461,857,400 current tier positions and loading in 8,923,714,800 child
tier positions. The size of gzipped database directory is 14.34 GiB. The Bagh-Chal interface is discussed in
Chapter 5.

Turn Remaining Captured # of Positions Solve Time (HH:MM:SS)

TIGER 8 2 4,461,857,400 01:32:03
TIGER 10 0 4,461,857,400 01:31:41
TIGER 9 1 4,461,857,400 01:29:47
TIGER 7 3 4,461,857,400 01:29:41
TIGER 9 0 4,461,857,400 01:29:24
TIGER 6 4 4,461,857,400 01:29:18
TIGER 7 2 4,461,857,400 01:28:17
TIGER 8 1 4,461,857,400 01:28:02
TIGER 6 3 4,461,857,400 01:27:58
TIGER 5 4 4,461,857,400 01:26:40
GOAT 10 0 4,461,857,400 01:14:58
GOAT 8 2 4,461,857,400 01:14:31
GOAT 9 1 4,461,857,400 01:14:20
GOAT 6 4 4,461,857,400 01:12:35
GOAT 7 3 4,461,857,400 01:12:16
GOAT 8 1 4,461,857,400 01:09:39
GOAT 9 0 4,461,857,400 01:08:46
GOAT 7 2 4,461,857,400 01:08:27
GOAT 5 4 4,461,857,400 01:08:14
GOAT 6 3 4,461,857,400 01:08:10
GOAT 4 5 4,461,857,400 00:26:10
GOAT 5 5 4,461,857,400 00:26:02
TIGER 9 2 3,718,214,500 01:19:18
TIGER 11 0 3,718,214,500 01:17:48
TIGER 7 4 3,718,214,500 01:17:09

:
165 tiers hidden

:

289,836,660,850 81:20:16

Table 4.4: Timing for Solve of Bagh-chal Phase 1

Remaining Captured # of Positions Solve Time (HH:MM:SS)

0 5 1,372,879,200 00:08:09
0 4 514,829,700 00:19:34
0 3 151,420,500 00:05:47
0 2 33,649,000 00:01:22
0 1 5,313,000 00:00:16
0 0 531,300 00:00:02

2,078,622,700 00:35:11

Table 4.5: Timing for Solve of Bagh-chal Phase 2

4.5 Tic-Tac-Two

4.5.1 Rules

The game is played on a 5 × 5 (25-slot) board with a 3x3 tic-tac-toe grid frame as shown below. The first
player controls 4 X marks and the second player controls 4 O marks. At the start of the game, each player
takes turns placing one of their marks on any empty slot contained within the tic-tac-toe grid. Once each
player has placed at least two of their marks on the board, they may do one of three things on their turn:
(1) place one of their remaining marks on an empty slot within the tic-tac-toe grid, (2) move the tic-tac-toe
grid such that it is centered at a slot one space horizontally, vertically, or diagonally away from its original
center, or (3) move one of their marks that is already on the board (regardless of whether or not it is within
the tic-tac-toe grid) to an empty slot within the grid. The first player to create a three-in-a-row of their own
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marks within the tic-tac-toe grid wins. If in a single move the grid has been moved such that it contains
both a 3-in-a-row of X and a 3-in-a-row of O, then the game is a tie.

Figure 4.3: Example Tic-Tac-Two Boards

4.5.2 Position Representation

A position is defined by a 2-tuple (B, TURN) where B is the state of the board (where the tic-tac-toe grid is
centered and where each X and O is) and TURN is a bit indicating whose turn it is.

4.5.3 Tier Definition

Each tier is defined as a 2-tuple (NX , NO). A position p = (Bp, TURNp) belongs to a tier T = (NT,X , NT,O) if
Bp contains NT,X X marks and NT,O O marks. Because placing is mandatory up until both players have 2
marks each on the board, the first four moves result in the tier sequence (0, 0)→ (1, 0)→ (1, 1)→ (2, 1)→
(2, 2). From this point forward, each tier has two child tiers which result from either player choosing to place
one of their pieces on their turn. For example, the child tiers of (2, 3) are (3, 3) (X places a mark) and (3, 4)
(O places a mark).

Under this tier definition and rule for generating child tiers of a given tier, there are 13 tiers. For each
tier Tα = (NT,X , NT,O) ∈ {(0, 0), (1, 0), (0, 1), (2, 1)}, the grid is centered at the center of the board and
each position in T has the same turn bit, so Tα contains all possible ways of arranging NT,X X marks and
NT,O O marks among the 9 slots within the grid. For every other tier Tβ = (NT,X , NT,O), Tβ contains every
combination of (1) possible grid centers (of which there are 9), (2) possible arrangements of NT,X X marks
and NT,O O marks among the 25 board slots, and (3) possible states of the turn bit. T thus contains at most

9 × 25!

NT,X !NT,O!(25−NT,X −NT,O)!
× 2 reachable positions. An upper bound on the number of positions

calculated by adding up all the possible states per tier is 2,148,349,834 positions. However, some positions
are equivalent under symmetry. There are 8 board symmetry transformations that were utilized in our solve
– rotating or reflecting the board yields a symmetric position.

4.5.4 Results

The first player can tie in 14 moves. The solve took 5.58 hours. The (3,4) and (4,3) tiers each required
the most memory to solve – it involved keeping track of the values of the values of 302,841,000 current tier
positions and 1,362,784,500 child tier positions. The size of the gzipped database directory is 0.57 GiB. The
Tic-Tac-Two interface is discussed in Chapter 6.
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Number of X’s Number of O’s # of Positions Solve Time (HH:MM:SS)

4 4 1,362,784,500 03:24:31
3 4 302,841,000 00:49:58
4 3 302,841,000 00:49:44
3 3 63,756,000 00:11:56
2 4 47,817,000 00:07:46
4 2 47,817,000 00:07:37
2 3 9,563,400 00:01:45
3 2 9,563,400 00:01:45
2 2 1,366,200 00:00:15
2 1 252 00:00:00
1 1 72 00:00:00
1 0 9 00:00:00
0 0 1 00:00:00

2,148,349,834 05:35:17

Table 4.6: Timing for Solve of Tic-Tac-Two

Remoteness Win Lose Tie Total

0 24,747,048 25,065,288 79,224 49,891,560
1 582,627,412 46,944 582,674,356
2 40,664,176 556,848 41,221,024
3 261,355,240 1,298,280 262,653,520
4 66,505,040 3,274,056 69,779,096
5 203,050,792 15,635,664 218,686,456
6 50,659,728 62,270,012 112,929,740
7 88,505,734 150,960,064 239,465,798
8 26,287,608 213,837,300 240,124,908
9 32,870,732 186,093,200 218,963,932

10 7,656,904 63,490,258 71,147,162
11 7,901,376 15,601,536 23,502,912
12 1,711,376 3,370,482 5,081,858
13 2,081,320 720,000 2,801,320
14 426,264 149,376 575,640
15 544,168 35,112 579,280
16 114,696 9,904 124,600
17 174,144 2,384 176,528
18 40,864 160 41,024
19 83,664 16 83,680
20 23,304 23,304
21 70,024 70,024
22 18,848 18,848
23 48,560 48,560
24 25,064 25,064
25 27,592 27,592
26 13,464 13,464
27 13,168 13,168
28 4,016 4,016
29 5,888 5,888
30 2,064 2,064
31 1,328 1,328
32 480 480
33 432 432
34 704 704
35 176 176
36 336 336
∞ 7,258,968 7,258,968

Total 1,204,108,798 219,220,224 724,689,788 2,148,018,810

Table 4.7: Tic-Tac-Two Value-Remoteness Counts (Without Symmetry)

4.6 Topitop

4.6.1 Rules

There are 4 different types of building components. In total, there are ten components: 2 B, 2 R, 4 S, and 4
L. The first player may only place components B, S, or L on the board. The second player may only place
components R, S, or L on the board.
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Remoteness Win Lose Tie Total

0 1,548,630 1,568,553 5,010 3,122,193
1 36,427,062 2,934 36,429,996
2 2,542,743 34,803 2,577,546
3 16,338,501 81,165 16,419,666
4 4,157,899 204,657 4,362,556
5 12,693,142 977,329 13,670,471
6 3,167,430 3,892,452 7,059,882
7 5,533,432 9,436,799 14,970,231
8 1,643,944 13,368,113 15,012,057
9 2,055,480 11,635,742 13,691,222

10 478,872 3,970,881 4,449,753
11 494,063 975,832 1,469,895
12 107,028 210,769 317,797
13 130,116 45,021 175,137
14 26,649 9,339 35,988
15 34,019 2,195 36,214
16 7,172 619 7,791
17 10,889 149 11,038
18 2,556 10 2,566
19 5,231 1 5,232
20 1,460 1,460
21 4,382 4,382
22 1,182 1,182
23 3,037 3,037
24 1,567 1,567
25 1,727 1,727
26 843 843
27 824 824
28 251 251
29 368 368
30 129 129
31 83 83
32 30 30
33 27 27
34 44 44
35 11 11
36 21 21
∞ 453,972 453,972

Total 75,281,024 13,708,373 45,307,792 134,297,189

Table 4.8: Tic-Tac-Two Value-Remoteness Counts (Unique Under Symmetry)

Figure 4.4: Building Components

Over the course of the game, there are 9 possible buildings that can exist on the 3× 3 board.

Figure 4.5: Buildings

The first player (blue) may move any building on the board except buildings 4,5, and 6. The second player
(red) may move any building on the board except buildings 1,2, and 3. Buildings 7,8, and 9 are referred to
as neutral buildings. The buildings are created via the following stacking rules.

Valid Stackings: stack(1, 7) → 2, stack(2, 8) → 3, stack(1, 9) → 3, stack(4, 7) → 5, stack(5, 8) → 6,
stack(4, 9) → 6, stack(7, 8) → 9. For every other building pair β1, β2 ∈ {1, ..., 9}, stack(β1,β2) is unde-
fined. The order of arguments matters, e.g., stack(1, 7)→ 2 but stack(7, 1) is undefined.
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The board starts empty. On a player’s turn they may either (1) place one of the remaining building compo-
nents they own on an empty slot on the board (placing B, R, S, or L on a particular empty slot establishes
building 1, 4, 7, or 8 on that slot, respectively) or (2) move one of the buildings β1 horizontally, vertically, or
diagonally one space into either an empty slot or to a slot containing a building β2 such that stack(β1, β2)
is defined, after which the destination slot will hold the building that results from stack(β1, β2). If a player
moves a neutral building to an empty slot, then the opponent on their next turn may not move that same
neutral structure back to its original slot (it may be moved back on a following turn; just not on the turn
immediately after). If a player is unable to make a legal move, they pass their turn. A building may never
be taken apart. Player 1 wins once two of building 3 has been created, and the second player wins once two
of building 6 has been created.

Figure 4.6: Example Topitop Board

4.6.2 Position Representation

A position is defined by a 3-tuple p = (B, TURN, illegalUndo) is sufficiently defined by the board B, whose
turn it is TURN, and the slide of a neutral piece that may not be immediately undone illegalUndo. B
contains information about the buildings currently on the board and how they are arranged. From the
existing structures one can deduce how many of each component remains to be placed.

4.6.3 Tier Definition

Each tier is defined as a 9-tuple (c1, c2, c3, c4, c5, c6, c7, c8, c9). A position p = (B, TURN, illegalUndo) be-
longs to T = (c1, c2, c3, c4, c5, c6, c7, c8, c9) if on B there exist exactly cj of building j for all j ∈ {1, ..., 9}. In
other words, two positions belong to the same tier if they have the same set of buildings, the same count of
each building, and the same count of each remaining component. In T , there may exist positions in which
one can place a component on an empty slot, which means that some of T ’s child tiers may be tiers with
incremented values of c1, c4, c7, and c8. The other child tiers are results of the stacking rule which are
best demonstrated by example: if c1 > 0 and c7 > 0, then one child of the child tiers would be a tier with
decremented c1 and c7 and incremented c2.

Under this tier definition and the rule for generating child tiers of a given tier, there are 2231 tiers. Each
tier T = (c1, c2, c3, c4, c5, c6, c7, c8, c9) contains all states formed via every combination of (1) all possible
illegalUndo values, of which there are 41 (40 ways to move from one slot to an adjacent slot and also a null
illegalUndo if a prior move did not involve sliding a neutral building), (2) all possible turn bits, and (3)
all possible arrangements of c1 of building 1, c2 of building 2,..., c9 of building 9 among the 9 board slots. T

thus contains at most 41× 2× 9!(∏9
j=1 cj !

)(
9−

∑9
j=1 cj

)
!
reachable positions.
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An upper bound on the number of positions calculated by adding up all possible states across all tiers
is 2, 972, 507, 380 positions. However, some positions are equivalent under symmetry. There are 8 board
symmetry transformations that were utilized in our solve – rotating or reflecting the board yields a symmet-
ric position.

4.6.4 Results

The game is a win in 31 moves. The solve took 3.04 hours. The (1, 1, 1, 2, 1, 1, 1, 0, 0) tier required the most
memory to solve (not a unique maximum) – it involved keeping track of the values of 14, 878, 080 current
tier positions and 64, 471, 680 child tier positions. The size of the gzipped database directory is 0.28 GiB.
The Topitop interface is discussed in Chapter 6.

c1 c2 c3 c4 c5 c6 c7 c8 c9 # positions Solve Time (HH:MM:SS)

1 1 1 1 0 0 1 1 1 14,878,080 00:00:52
1 1 1 0 0 1 1 1 1 14,878,080 00:00:50
1 1 0 1 1 0 1 1 1 14,878,080 00:00:50
1 1 0 0 1 1 1 1 1 14,878,080 00:00:42
1 1 1 1 0 0 1 2 1 14,878,080 00:00:35
1 1 0 1 1 0 1 2 1 14,878,080 00:00:31
1 1 1 0 0 1 1 2 1 14,878,080 00:00:31
1 1 0 1 0 0 1 2 1 7,439,040 00:00:35
1 1 1 0 0 0 1 2 1 7,439,040 00:00:34
1 1 0 1 0 0 2 1 1 7,439,040 00:00:31

:
2221 tiers hidden

:

2,972,507,380 03:02:20

Table 4.9: Timing for Solve of Topitop

4.7 Future Work

In Nine Men’s Morris, Tic-Tac-Two, and Topitop, there are other symmetries that were not utilized in our
solve partly due to the fact that GamesmanClassic does not support tier-symmetries. With the tier definitions
that I used, color-and-turn symmetries could not be implemented in the current GamesmanClassic framework
because these are relations according to which positions from different tiers may be symmetric to each other.
An example of a color-and-turn symmetry is in Nine Men’s Morris Phase 2: if the piece colors and turn bit
are flipped, then the resulting position is symmetric. Future work involves updating GamesmanClassic so
that it supports tier-symmetries.
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Chapter 5

Image AutoGUI

5.1 Overview

The Image AutoGUI system is a GUI creation system that only requires a developer to, on top of gener-
ating the appropriate UWAPI position and move strings for each position query, specify a list of relevant
coordinates, SVG information, and a few settings to create a game interface that comes with many of the
automatically handled features of the Character AutoGUI (e.g., move button coloring based on move values,
hover animations, API calls) but is more user-friendly. While Character AutoGUIs can only render grid-
based games and use a limited set of characters to represent pieces, Image AutoGUIs can be used to represent
various non-grid-based games and use SVGs for pieces and background images. The idea was first discussed
in GamesCrafters meetings with the goal of addressing the limitations of the Character AutoGUI. I later
implemented the Image AutoGUI system and it has been used ever since to create several game interfaces
on GamesmanUni.

5.2 Example: Achi AutoGUI

We first explain how GamesmanUni renders a position by using the Achi Image AutoGUI as an example.
See Explanation of Rules for Various Games for an explanation of the rules of Achi.

5.2.1 Coordinates and SVGs

The Achi interface uses the following data when rendering each position. Some attributes are hidden or
refactored for this explanation.

{

"defaultTheme": "basic",

"themes": {

"basic": {

"backgroundGeometry": [100, 100],

"backgroundImage": "achi/achiboard.svg",

"centers": [

[10, 10],

[50, 10],

[90, 10],

[10, 50],

[50, 50],

[90, 50],

[10, 90],

[50, 90],
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[90, 90]

],

"entities": {

"x": { "image": "achi/X.svg", "scale": 15 },

"o": { "image": "achi/O.svg", "scale": 15 }

}

}

}

}

We loosely refer to this as the Image AutoGUI JSON data. centers is the coordinate list and entities

is the entity mapping. An entity loosely refers to an element of the position display that moves or changes
(e.g., slides, rotates, appears, disappears). In Achi and many of the other interfaces we present, the only
entities are pieces.

Figure 5.1: There are three SVGs that are used: the background image achi/achiboard.svg and two piece
images achi/X.svg and achi/O.svg.

The backgroundGeometry defines the coordinate space for the board display, as shown in 5.2.1. In this
example, the backgroundGeometry is [100, 100], so the top left corner of the board view is treated as
coordinate (0, 0) and the bottom right corner of the board view is treated as coordinate (100, 100). There
are 9 coordinates in the coordinate list that are used as entity centers.
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Figure 5.2: Achi Coordinates

5.2.2 Rendering Positions

GamesmanUni first renders the background image (if one is specified), then the entities, then the foreground
image (if one is specified), then the move buttons.
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Figure 5.3: Achi Initial Position

Our first example (Figure 5.2.2) is the initial position. In the initial position, the first player chooses one of
9 intersection points to place a piece. The user clicks one of the circle-shaped move buttons to specify the
piece placement to perform. As in the Character AutoGUI, each move button is colored according to the
move’s game-theoretic value (Green=Win, Yellow=Tie/Draw, Red=Lose).

GamesmanUni sends a request for the Achi initial position to GamesCraftersUWAPI and receives the fol-
lowing response.

{

"position": "R_A_3_3_---------",

"moves": [

{

"move": "A_-_4",

"moveValue": "win",

"position": "R_B_3_3_----o----"

},

{

"move": "A_-_8",

"moveValue": "draw",

"position": "R_B_3_3_--------o"

},

{

"move": "A_-_7",

"moveValue": "lose",

"position": "R_B_3_3_-------o-"

}

]

}

Some move objects in the moves list and move attributes are omitted for brevity. Three of the nine move
objects are shown.
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1. The background image is drawn.

2. Rendering Entities: The current position is given by the position string R_A_3_3_---------. R_A_3_3_
is the position string header and --------- is the entity substring, which tells us which entities
to render. In the entity substring, '-' indicates that an entity is nonexistent. The first character
(index=0) in the entity substring is ’-’, so at coordinate 0, which is (10, 10), there is no entity drawn.
The second (index=1) character in the entity substring is also '-', so nothing is drawn at coordinate
1, which is (50, 10). We do the same for the remaining seven characters in the entity substring.

3. There is no foreground image. Continue to the next step.

4. Rendering Moves: moves is a list of move objects. In total there are nine but three are shown in this
example. In each move object, the move attribute specifies the shape and location of the move button,
the moveValue attribute specifies the value of the move (for the sake of coloring the move button
accordingly), and the position attribute indicates which position to send a request for and render
next, assuming this move button corresponding to this move is clicked.

In the first move object, move is A_-_4. “A” and “-” indicate that this move uses the default move
button shape, which is a circle. We explain custom move button shapes further in the next subsection.
4 indicates that this move button is to be centered at coordinate 4, which is (50, 50). moveValue

is win, so this move button is to be colored green. If this move button is clicked, then we load the
position whose position string is R_B_3_3_----o---- next. In the Achi board, this move button is the
green button in the center of the board.

We do the same for the remaining move objects. The second and third move objects shown corre-
spond to move buttons that will be centered at coordinate 8 and coordinate 7 respectively and colored
yellow and red respectively.

Figure 5.4: Achi Middlegame Position

Our second example (Figure 5.2.2) is a middlegame position, in which all pieces have been placed and
now they are being moved around the board. The user clicks on of the arrow move buttons to specify
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the move to perform. In the previous position, a move button was clicked to load the position with po-
sition string R_A_3_3_oxo-x-xo-. GamesmanUni receives the following response for the current position,
R_A_3_3_oxo-x-xo-.

{

"position": "R_A_3_3_oxo-x-xo-",

"moves": [

{

"move": "M_0_3",

"moveValue": "draw",

"position": "R_B_3_3_-xoox-xo-"

},

{

"move": "M_7_8",

"moveValue": "lose",

"position": "R_B_3_3_oxo-x-x-o"

},

{

"move": "M_2_5",

"moveValue": "lose",

"position": "R_B_3_3_ox--xoxo-"

}

]

}

We follow the same steps, again referencing the coordinate list and entity mapping.

• Rendering Entities: The entity substring is oxo-x-xo-. At index 0, the character is 'o', so the SVG
corresponding to 'o', which is achi/O.svg, should be drawn, centered coordinate 0. At index 1,
the character is 'x', so the SVG corresponding to 'x', which is achi/X.svg, is drawn, centered at
coordinate 1. Continuing on, achi/O.svg is drawn at coordinates 2 and 7, and achi/X.svg is drawn
at coordinates 4 and 6. The scale for these pieces is 15 and these are square SVGs, so each entity
image will take up 15/100 (100 is specified by the backgroundGeometry) of the width and height.

• Rendering Moves: There are three available moves at this position. In the first move object, move is
M_0_3. M indicates that the move button is arrow-shaped. This arrow is to be drawn from coordinate
0 to coordinate 3. The moveValue is draw so this arrow is yellow. In 5.2.2, this move button is the
arrow pointing at the center left from the top left. We follow the same procedure for displaying the
other two moves.

5.3 General Structure of Image AutoGUI Data

{

"defaultTheme": <name of default theme>,

"themes": {

<name of theme1>: {

"backgroundGeometry": [<width>, <height>],

"backgroundImage": <path to background image>,

"foregroundImage": <path to foreground image>,

"piecesOverArrows": <true/false>,

"defaultMoveTokenRadius": <radius, relative to backgroundGeometry>,

"arrowThickness": <thickness, relative to backgroundGeometry>,

"lineThickness": <thickness, relative to backgroundGeometry>,

"centers": [ [<x0>,<y0>], [<x1>, <y1>], [<x2>, <y2>], [<x3>, <y3>], ... ]
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"entities": {

<char1>: {

"image": <path to entity image>, "scale": <image scale>

},

<char2>: {

...

}

...

}

},

<name of theme2>: {

...

},

...

}

}

The general structure of the Image AutoGUI data is shown above. Each variant of a game has its own Image
AutoGUI data. This data consists of multiple themes. Different themes can be included to give users the
option to switch between different game board appearances (e.g., different board coloring or piece designs in
chess). Each theme consists of a coordinate list, an entity mapping, SVG information, and various settings.
centers lists all the coordinates that are used in the interface (whether they are entity centers or coordinates
used for positioning move buttons). entities defines the mapping of alphanuemric characters that appear
in the entity substring to SVGs. backgroundImage and foregroundImage define the background image and
foreground image path, respectively. Miscellaneous settings are:

• piecesOverArrows: whether arrow buttons should be drawn on top of or underneath entity SVGs.

• defaultMoveTokenRadius: the radius (relative to backgroundGeometry) of any circle move buttons.

• arrowThickness: the width (relative to backgroundGeometry) of the arrow stem of any arrow move
buttons.

• lineThickeness: the width (relative to backgroundGeometry) of any line move buttons.

There are three types of move buttons. A-type move buttons (movestring: A_<shape>_<center>) are cen-
tered at a given center coordinate. An A-type move button has either a default circle shape (shape='-')
or a custom shape as specified by an SVG (shape is a character corresponding to the desired SVG in the
entities mapping). M-type move buttons (movestring: M_<from>_<to>) are arrow-shaped move buttons
pointing from the from coordinate to the to coordinate. L-type move buttons (movestring: L_<p1>_<p2>)
are line-shaped move buttons with endpoints p1 and p2. All move buttons have a pulsing hover animation.

In section 5.5 New Interfaces Using Image AutoGUI we show different interfaces that have been created
in the Image AutoGUI system using various AutoGUI settings and move buttons.

5.4 Designing an Image AutoGUI for a Game

When the Image AutoGUI was first developed, one of the first goals was to modify existing Character Auto-
GUIs to use the Image AutoGUI system. It may be helpful for one to create a Character AutoGUI for their
game before incorporating images; however, with more experience, one can skip the Character AutoGUI step
entirely.

Typically, one follows the design process below to create an Image AutoGUI.

• In the interface, what are all the entities? What objects change or move in the interface?
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• What are all the possible move buttons that may appear on the interface?

• What SVGs are needed for the background, foreground, and entities?

• What coordinates will be used? Coordinates are needed to specify the centers of entities and move
tokens. They are also needed for the endpoints of arrow move buttons and line move buttons.

• Think about other settings (e.g., whether pieces should be drawn above or below arrow move buttons,
how thick arrow move buttons should be, etc.).

Figure 5.5: Example: Toggling the piecesOverArrows setting.

Assign each entity and custom-shape move button a unique alphanumeric character and assign each coor-
dinate an ID. Then the Image AutoGUI JSON data is created accordingly and the GamesCraftersUWAPI
server is updated to return this data when GamesmanUni requests information on how to render the game.

5.5 New Interfaces Using Image AutoGUI

Following are Image AutoGUIs that I worked on in addition to the Achi interface. Unless otherwise specified,
the rules of any of the following games that are lesser known are explained in Explanation of Rules for
Various Games. For each of the following games, we first show examples of how its interface looks, then
briefly discuss each part of its interface (e.g., what kinds of move buttons are used). We also individually
show the coordinates and entities that are used so that readers can gain insight into how one might design
their own Image AutoGUI.
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5.5.1 Bagh-Chal

Figure 5.6: Bagh-Chal Interface

For information on the rules and solving, see Chapter 4. The entities are not only the tiger and goat pieces
but also the digits of the remaining-goats and captured-goats counters. Arrow move buttons are used for
moving tigers and goats. Circle (default) move buttons are used for placing goats.

Figure 5.7: Bagh-Chal AutoGUI Design
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5.5.2 Chess Endgame

Figure 5.8: Chess Interface

Here, there are 64 center coordinates. The only entities are the chess pieces. Piece movements are executed
by clicking arrow move buttons.

Figure 5.9: Chess AutoGUI Design

With the same coordinates but different SVGs for the background and pieces, we can add another theme to
chess, as shown in 5.10. The user can choose which theme to use in the gameplay options menu.
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Figure 5.10: Another Theme for Chess

5.5.3 Chomp

Figure 5.11: Chomp Interface

The entities are the squares of the chocolate bar. A circle move button is clicked to indicate the bottom-left
corner of a rectangular removal.

Figure 5.12: Chomp AutoGUI Design
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5.5.4 Connect 4

Figure 5.13: Connect 4 Interface

This is an example that uses a foreground image – the Connect 4 frame. Technically, without animation,
the frame could instead be a background image with the pieces’ scales adjusted to be the same size as the
frame holes, but with animation, the pieces should be temporarily and partially obscured by the frame as
they are dropped from the top, so a foreground image is necessary to represent the frame. Two endpoint
coordinates above the frame are needed to draw each downward-facing arrow button, as shown in Figure
5.14. To place a piece in a particular column, one clicks the appropriate arrow button. The only entities are
the pieces themselves.
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Figure 5.14: Connect 4 AutoGUI Design

5.5.5 Dawson’s Chess

Figure 5.15: Dawson’s Chess Interface

This is an example of how one can generalize the coordinate lists to different variants of a game. Different
board lengths make for different variants of Dawson’s chess [21]. To avoid creating various grid background
images for each variant, we instead choose to have no background and have the entities be an occupied cell
or an empty cell. When a move button is clicked, the empty cell is replaced with an occupied cell. We can
calculate the appropriate center coordinates for a given board dimension.

Figure 5.16: Dawson’s Chess AutoGUI Design
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5.5.6 Dodgem

Figure 5.17: Dodgem Interface

Arrow move buttons indicate where to slide a piece. The coordinates that exist outside the board are used
for the endpoints of arrows that point away from the board.

Figure 5.18: Dodgem AutoGUI Design
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5.5.7 Mū Tōrere

Figure 5.19: Mū Tōrere Interface

The only entities are the eight pieces. Arrow move buttons are used to slide pieces.

Figure 5.20: Mū Tōrere AutoGUI Design
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5.5.8 QuickCross

Figure 5.21: QuickCross Interface

The QuickCross AutoGUI makes use of custom move button shapes and line moves. The only entities are
the pieces. When a particular cross is empty, a vertical line move button and horizontal line move button
are displayed on the cross. If each is clicked, a piece is placed horizontally or vertically, respectively. If a
particular cross contains a piece, then a custom-shape move button (circular arrow) appears on top of it
which, when clicked, changes the orientation of the piece. There are five points for each cross: the point at
the cross center is used as the center for an entity or circular arrow move button, and the other four points
are used as endpoints of line move buttons.

We provide an SVG of an all-black circular arrow for the custom move button. AutoGUI applies a filter to
the SVG to color it green, yellow, or red depending on the value of the move. Custom move buttons are
technically square because any transparency in the SVG can still be clicked, thus clicking the transparency
in the center of a circular arrow move button still performs the move.

Figure 5.22: QuickCross AutoGUI Design
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5.5.9 Shift-Tac-Toe

Figure 5.23: Shift-Tac-Toe Interface

The shift-tac-toe interface is one of the more complex examples. The entities are not only the pieces but also
the three sliders. Like in Connect 4, a foreground image is used. The left and right-facing arrow buttons
are used to move the sliders. The downward-facing move buttons are used to specify which column to drop
a piece in. The nine coordinates

Figure 5.24: Shift-Tac-Toe AutoGUI Design

5.5.10 Snake

Figure 5.25: Snake Interface
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The entities are the head, body, and tail components of the snake. An animated SVG is used for the head.

Figure 5.26: Snake AutoGUI Design

5.5.11 Tac Tix

Figure 5.27: Tac Tix Interface

This interface was adapted from the Tcl/Tk version of Tac Tix in GamesmanClassic and makes use of line
move buttons. The entities are the coins. When a line move button is clicked, the coins that it crosses over
are removed.
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Figure 5.28: Tac Tix AutoGUI Design

5.5.12 Toot-and-Otto

Figure 5.29: Toot-and-Otto Interface

The entities are the “T” and “O” pieces, whether they have been placed or whether they are in reserve.
Custom-shape move buttons (T and O) are used which, when clicked, specify which piece to use and which
column to drop it in.
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Figure 5.30: Toot-and-Otto AutoGUI Design

5.6 Future Work

Anyone working on GamesmanUni interfaces is encouraged to think about what an “ideal” value-moves
interface for a specific game they are working on would look like and compare that vision to what the best
interface for that game would look like if one were to be created from only the features that the current
AutoGUI supports. Any feature in the “ideal” interface that is not currently supported by AutoGUI should
be considered a future feature of AutoGUI as long as it is general enough for a large class of games.

For example, there are many games for which it is appropriate to use curved arrow buttons (perhaps if
it indicates a curved trajectory that a piece moves along). Currently AutoGUI only supports straight arrow
buttons, so having support for curved arrows would be an improvement. One can indeed “hardcode” curved
arrows via custom-shape move buttons as done in QuickCross, but it would be undesirable to create an SVG
for every type of arrow for a hypothetical game interface involving multiple curved arrow buttons varying in
length and curvature.

Another example: One common pattern that we notice in some games is the existence of counters. For
example, in Bagh-Chal, there are counters for goats left to place and goats captured. In Toot-and-Otto,
there are counters for how many of each “T” piece and “O” piece each player has in their reserve. Counters
are used for games that involve scoring as well. The current way of displaying counters is to display number
SVGs at particular coordinates on the game board. It would be easier for anyone working on an AutoGUI
if there exists an “automatic” system of creating a standardized dashboard to display counts so that they
need not decide how to position number SVGs or any icons or text associated with counts.

In addition, anyone who has gone through the current AutoGUI workflow should note which parts of the
process of implementing an AutoGUI can be improved to make creation and testing easier.

The most important next step is support for animation. Ideally an AutoGUI-with-animation system (1)
makes it as easy to incorporate animation into an interface with as little work as possible in addition to writ-
ing the Image AutoGUI JSON data and (2) supports a large class of animations ranging from simple piece
sliding animations to general linear transformations of entities, with support for multi-phase animations and
ways to customize how to time animations of different entities.
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Chapter 6

Multipart-Move Interfaces

6.1 Motivation

Consider a hypothetical game played on a 6-by-2 grid involving a circle and diamond piece. On a player’s
turn, they must move both pieces to orthogonally adjacent slots.

Figure 6.1: A Full-Move-Buttons Interface

One way to create a value-moves interface for this game is to display the state of the board and a list of
buttons to the right, with each button corresponding to a unique way to slide the two pieces, as shown in
6.1. The downside of this type of interface is that the user’s attention is drawn away from the board when
they look at the move buttons [22]. Additionally, if this type of interface were used for a variant of game
played on a larger board (e.g., 100-by-100), in which each piece can slide to any location on the board, then
there would be a large number of move buttons to choose from.

We can instead create a multipart-move interface to address these two issues. Each move will be speci-
fied by two part-moves. For the first part-move, the user clicks one of the arrow buttons displayed by the
circle piece to specify where it should move. Doing so loads an intermediate state that shows the circle
piece at its new location and arrow buttons to specify the second part-move. For the second part-move, the
user clicks one of the arrows displayed by the diamond piece to specify where it should move. All part-move
arrows should be colored according to the perfect-play outcome of the game for the current player assuming
they click that part-move.
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Figure 6.2: Consider the same position p as shown in the left image. Suppose the player whose turn it is at
p wishes to move the circle piece left and the diamond piece down. The center image shows the intermediate
state after selecting the circle-piece-left part-move. The right image shows the child position that results
from then selecting the diamond-piece-down part-move.

We use the term real position to refer to actual positions and distinguish them from intermediate states.
A full-move is a transition between two real positions. In a multipart-move interface, a full-move is specified
by a sequence of part-moves.

We developed the multipart move system to create interfaces for games, like the one shown in the exam-
ple, that involve moves that are not “naturally” specifiable by a single click. The goal of the multipart-move
system is to allow people, with as little work as possible on their part, to create a multipart-move interface
for their solved game. In order to color the part-move buttons, we would need to determine the values of
intermediate states; however we wish not to solve and store the values of intermediate states because they
exist only for the purpose of the interface and there may be a large number of intermediate states that exist
compared to the number of real positions. The multipart-move system automatically handles live-solving
for part-moves and intermediate states.

6.2 Multipart-Move Interface Design and Implementation

To take advantage of the multipart move system, a developer is required to write a function that can generate
a multipart-move graph for any position. They need to consider what intermediate states and part-moves
the interface should display. This graph must be finite and acyclic and will consist of (1) real positions
and intermediate states as nodes and (2) part-moves as edges. The root node is the current real position p
and the sink nodes are the real child positions of p. The graph is fed into the multipart move handler in
GamesCraftersUWAPI which assigns values to intermediate states and part-moves. The assumption behind
the multipart moves supported in this interface are that the multipart move graphs are relatively simple.
With all of the example games presented, the multipart move graphs are shallow.

6.3 A Game in and of Itself

Again consider the same position from the example game. We discuss how the multipart move handler solves
a multipart move graph.

75



Figure 6.3: The real parent position and its 9 real child positions. There are 5 losing full-moves, 3 tying
full-moves, and 1 winning full-move.

Figure 6.4: The choice of where to move the circle piece introduces three intermediate states. The player
whose turn it is at the real parent position also moves at any intermediate state. At the real child positions,
the opponent is to move. Any part-move leading to an intermediate state has the same value as that
intermediate state. If a part-move leads from an intermediate state or real position to a real child position,
then the part-move has value WIN if the real child position has value LOSE, TIE/DRAW if the real child
position has value TIE/DRAW, and LOSE if the real child position has value WIN.

The value of an intermediate state is defined as the outcome of the game for the player whose turn it is
at that intermediate state, assuming perfect play. The remoteness of an intermediate state is the number
of full-moves (including the one that the current sequence of part-moves is specifying) until the end of the
game assuming perfect play.

6.4 New Image AutoGUI Interfaces Involving Multipart Moves

What follows are game interfaces built using the multipart-move Image AutoGUI system. Unless otherwise
specified, the rules of any of the following games that are lesser known are explained in Explanation of Rules
for Various Games. For each of the following games, we first show examples of how its interface looks, then
briefly explain the multipart nature of the games’ moves and how to specify moves while using its interface.

6.4.1 L-game

The interface uses 3-part moves. In the first part-move, the players move the L-piece. This is achieved by
clicking an L-shaped move button. When a particular L-shaped move button is clicked, then the piece will
be oriented as the shape of the move button shows and its corner will be at the slot where the move button
is. In the second part-move, they select which neutral piece will be moved. In the third part-move, they
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select the new location of the selected neutral piece. The player indicates that they wish not to move either
of the neutral pieces by selecting one of the neutral pieces and placing it in its original location.

Figure 6.5: The first image shows the initial position, where L-shaped move buttons are used to specify where
to move the red L-piece. The second image shows the intermediate state after clicking the tying L-shaped
move button in the top-right corner. At this state, there are two move buttons available for the player to
specify which neutral piece to move. After selecting the gray neutral piece, a second intermediate state is
displayed (third image) in which available slots where the gray neutral piece can be moved to are indicated.
The fourth image shows the child position that results from making the third part-move.

6.4.2 3-Spot

2-part moves are used. For the first part-move, the player specifies where to move the piece belonging to
them. For the second part-move, the player specifies where to move the neutral piece. Elliptical move
buttons crossing over two board slots indicate how a piece should be placed.

Figure 6.6: The left image shows a real position with blue to move. Suppose for the first part-move, the
vertical elliptical move button is clicked. An intermediate state (center image) is loaded that shows the new
location of the blue piece and an updated score. The updated score can either be shown after or before the
white piece is moved, but we decide to update it before. Suppose for the second part-move the right elliptical
move button is clicked. The right image shows the white piece at its new location.

6.4.3 Tic-Tac-Two

See Chapter 4 for an explanation of the rules of Tic-Tac-Two. Making moves on the Tic-Tac-Two interface
works as follows:

• Placing a mark within the tic-tac-toe grid is a single-part move. The move is performed by clicking a
circle move button on the desired empty slot within the grid.
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• Moving the grid is a 2-part move. The first part-move is indicating that player wishes to move the grid
by clicking the circle move button at the bottom of the board. An intermediate state is then loaded
with circle move buttons the player can click to specify the new board (second part-move).

• Moving a mark that has already been placed on the board is a 2-part move. The first part-move is
indicating which mark the player wants to move. An intermediate state is then loaded with arrows the
player can click to specify where to move the selected mark. We could have used a single-part move to
perform this kind of move, which would involve displaying arrows from every movable mark to all their
possible destinations; however, we decided against it because there could be many arrows displayed at
a time, cluttering the board.

Figure 6.7: The left image shows a real position with O to move. The circle button below the board is
clicked if the player wishes to move the grid, and any circle move button on top of any “O” mark is clicked
if the player wishes to move the corresponding “O”. The center image shows the intermediate state loaded
after the “move grid” button is clicked. The right image shows the intermediate state loaded if the player
indicates that they instead wish to move the rightmost “O”.

6.4.4 Nine Men’s Morris

See Chapter 4 for an explanation of the rules of Nine Men’s Morris. To place a piece, the user clicks the
circle move button over the intersection point at which they wish to place. To slide a piece, the user clicks
the arrow pointing from the piece they wish to move to the intersection point they wish to move the piece to.
If a mill is created as a result of the placement or movement, then the user must make a second part-move
– specifying which of their opponent’s pieces they wish to remove from the board. A button to perform the
second part-move is displayed on each of the opponent’s removable pieces.
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Figure 6.8: The left image shows a real position with white to move. Suppose a white piece is placed on
e3, creating a mill. An intermediate state is loaded (center image) where circle move buttons are displayed
which, when clicked, remove the corresponding piece from the board. The right image shows the real child
position resulting from removing the piece on b4.

6.4.5 Topitop

See Chapter 4 for an explanation of the rules of Topitop. Making moves on the Topitop interface works as
follows:

• Placing a building component on the board is a 2-part move. For the first part-move, the player chooses
which building component to place. For the second part-move, the player chooses where to place the
building component. Circle move buttons for the first part-move are displayed by the remaining
building components. When one of these buttons is clicked, an intermediate state is displayed at
which (1) the selected building is highlighted and (2) circle move buttons for the second part-move are
displayed at the empty slots of the board.

• Sliding an existing structure is a single-part move. The move is performed by clicking an arrow button
from the source slot to the destination slot.

Figure 6.9: The initial position is shown on the left. The center shows the intermediate state after the
large building component is selected. The right shows the child position that results from then placing the
building component in the center. At this child position, the second player can either slide the large piece
already on the board or place another building component.
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6.4.6 Chung-Toi

Every move is 2-part. To place a piece, the first part-move is choosing a slot in which to place and the
second part-move is choosing the piece’s orientation. To slide a piece, the first part-move is clicking an arrow
indicating which piece to slide and where it should go, and the second part-move is choosing the piece’s
new orientation. In the second phase, if any of the circular move buttons over the player’s pieces are clicked
(first part-move), then the second part-move is choosing either the same orientation of the piece as before
(passing a turn) or the other orientation (rotating that piece). After any first part-move, an intermediate
state is reached in which (1) a piece on the board is shown with an undefined orientation and (2) a control
panel, which the player will use to choose the piece’s orientation, appears below the board.

Figure 6.10: The left image shows the initial position. Suppose the center move button is clicked, i.e., the
first part-move is choosing to place at the center of the board. An intermediate state is loaded (center image)
with a control panel for the player to choose the piece’s orientation. The right image shows the real position
resulting from choosing to set the piece to the “×” orientation as the second part-move.

Figure 6.11: The left image shows a real position with red to move. If the arrow button pointing northeast
is clicked (first part-move), then an intermediate state is loaded (center image) with the piece moved to
the center right and a control panel for selecting orientation. The right image shows the real child position
resulting from choosing to set the piece to the “×” orientation as the second part-move.
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6.5 Future Work

One downside of a multipart-move interface is that information about the entire distribution of full-move
values is not shown. At any time, the only information displayed is the best possible outcome of the game
for each current legal part-move. It does not, for example, show the worst sequence of part-moves one can
make. Suppose there are two legal first part-moves the current player can make: one tying part-move and
one winning part-move. The worst sequence of part-moves the current player can make after clicking the
tying part-move may lead to a child position that is better for the current player than the worst sequence of
part-moves the current player can make after clicking the winning part-move. In other words, one does not
immediately know whether the worst full-move is specified by first clicking the winning part-move.

In the future, a way to visualize the entire full-move-value distribution should be added to Gamesman-
Uni for multipart-move interfaces.
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Chapter 7

Conclusion

We presented the general methodology we used to solve and count positions by value-remoteness for both
loopy and loop-free games. For Quarto, we used a custom retrograde solver with a novel tier definition.
For Nine men’s Morris, Bagh-Chal, Tic Tac Two and Topitop, we used the retrograde solver within the
Gamesman framework. Quarto is a tie in 17, Bagh-Chal is a draw, Tic-Tac-Two is a tie in 12, and Topitop
is a win in 31. We also described the Image AutoGUI developed to support user interfaces for a number of
games, including games with multipart moves.

Additional information about the work, including data files and errata, can be found at
http://www.cameroncheung.com/ucbtechreport.html.
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Appendix A

Explanation of Rules for Various
Games

Each game listed here is one that I worked on an Image AutoGUI interface for but was not involved in
solving. See the preceding chapters for game rule explanations for all other games discussed in this report.

3-Spot: The game is played on a 3 × 3 board, where two players take turns moving their respective 2-
by-1 pieces. The first player controls the blue piece, while the second player controls the red piece. Both
players also control a neutral 2-by-1 white piece.

On a player’s turn, they must first move their own piece to a 2-by-1 area on the board that contains at
least one new square. If their piece covers two new squares in the bottom row of the board, then the player
gains two points. If their piece covers only one new square in the bottom row, the player gains one point.
If their piece does not cover any new squares in the bottom row, the player does not score any points. The
player then moves the neutral piece to a 2-by-1 area that contains at least one new square.

At any time during the game, no two pieces can cover the same squares on the board. A player wins if
they have at least 12 points while their opponent has at least 6 points. Alternatively, a player wins if they
have fewer than 6 points while their opponent has at least 12 points.

Achi: One player controls 3 white pieces and the other controls 3 black pieces. The board starts empty. At
the beginning of the game, each player takes turns placing one of their pieces on the board. Once all pieces
have been placed, players take turns sliding their pieces to adjacent slots. The first player to form a straight
line of their pieces wins.

Chomp: There is a m-row, n-column chocolate bar. On a player’s turn, any square aside from the bottom
left square that is available may be selected. When a square is selected, all squares located on or to the right
of its column and on or above its row disappear, i.e., those squares become unavailable. A player loses when
the bottom left square remains, i.e., no available squares remain.

Chung-Toi: The game is played on a tic-tac-toe board. The first player has three red pieces and the
second player has three white pieces. A player wins when if their pieces form a 3-in-a-row vertically, hori-
zontally or diagonally.

• First Phase: Each player takes turns placing one of their pieces on the board. Each piece is placed
either in a “+” or “×” orientation.

• Second Phase: Begins once all pieces have been placed. Players take turns either (1) sliding pieces of
their own color, (2) rotating a piece in place, or (3) passing their turn. Pieces in a “+” orientation can
only slide horizontally and vertically and pieces in a “×” orientation can only slide diagonally. When
a piece slides, it must slide into an empty slot but it can jump over any piece that blocks its path
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between its departure and destination slot. After sliding a piece, the player chooses to change or keep
the piece’s orientation.

Connect 4: There is a 6-row, 7-column grid. The first player has 21 red pieces and the second player has
21 yellow pieces. Players take turns placing one of their pieces by selecting a column in which the piece will
occupy the first (counting from the bottom upward) unoccupied slot in that column. A player wins when
they create a diagonal, horizontal, or vertical four-in-a-row of their color.

Dawson’s Chess: There is a 1 × n chessboard. Players take turns placing a king on the board such
that it is not attacked by any already-placed kings. A player loses when they are unable to legally place a
king on their turn.

Dodgem: The game is played on a 3 × 3 board. The top-left and center-left slots are each occupied
by a blue piece. The bottom-left and bottom-center slots are each occupied by a red piece. One player
controls the blue pieces and may only slide a piece one square to the right, up, or down but not left; and the
other controls the red pieces and may only slide a piece up, left, or right but not down. Players take turns
sliding one of their pieces. The first player to slide both of their pieces off the board wins.

L-game: The game is played on a 4 × 4 board. There are four pieces: 2 neutral pieces, 1 red L-piece,
and 1 blue L-piece. At any time, none of these pieces can occupy the same slots. The first player controls
the red L-piece and the second player controls the blue L-piece. A player makes a move by (1) moving their
L-piece such that it covers a different set of 4 slots, and (2) choosing either to move one of the neutral pieces
to any slot on the board or to leave the neutral pieces in the same slots. An L-piece must always cover four
slots, i.e., it must be contained in the 4x4 grid. If a player cannot find a valid way to move their L-piece
then they lose.

Mū Tōrere: The game is played on a wheel graph W9 [23]. Four black pieces and four white pieces
are placed on the degree 3 nodes such that there are only two edges connecting a node occupied by a black
piece and a node occupied by a white piece. The first player controls the black pieces; the other controls the
white pieces. Players take turns moving one of their pieces to an unoccupied adjacent vertex. A player loses
if they are unable to legally move one of their pieces on their turn.

QuickCross: The game is played on a 4 × 4 board where players take turns either (1) placing a chip
vertically or horizontally on an empty cross on the board or (2) altering one of the existing crosses by rotat-
ing it 90◦. The first player to create a full column, row, or diagonal with chips facing in the same direction
wins.

Shift-Tac-Toe: This game incorporates features from Tic-Tac-Toe and Connect 4. It uses a 3 × 5 board,
where the center 3× 3 board is filled in a manner exactly like Connect 4. On a player’s turn, they can either
drop a piece into one of the three columns or they can shift one of the rows left or right. When shifting a
row, any pieces that are at the side of the 3× 3 center and are shifted off disappear. The first player to have
a three-in-a-row of their own color wins. It is possible to create a three-in-a-row on behalf of the opponent.
It is possible to create three-in-a-rows of both colors simultaneously, resulting in a tie.

Snake: The game is played on a board of arbitrary shape. The first player controls the head of the
snake. The second player controls the tail. Each player takes turns moving their piece (head or tail)
to an orthogonally adjacent empty slot. After a piece is moved, the cell it originally occupied is replaced
with a “body” piece indicating that the cell is no longer empty. A player loses when they have no legal moves.

Tac Tix: Coins are arranged in a n × n square. Players take turns removing a set of connected coins
that occupy the same row or column. The first player unable to do so on their turn loses.

Toot-and-Otto: The game is played on a 4-row, 6-column board. On their turn, a player places ei-
ther a “T” piece or an “O” piece on the board and the placement rule is the same as that of Connect 4.
Throughout the game a player can only have placed at most 6 “T” pieces and at most 6 “O” pieces total.
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The first player aims to spell “TOOT” with four pieces vertically, horizontally, or diagonally. The second
player aims to spell “OTTO” with four pieces vertically, horizontally, or diagonally. A person wins if their
word appears on the board at any point in the game, unless both words are created simultaneously in which
case the game is a tie. The game is also a tie if the board is filled with neither word being spelled on the
board.
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Appendix B

Value-Remoteness Counts
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Pieces Left # White # Black Position Upper
Bound

Reachable
Positions

Reachable
Canonical
Positions

Highest
Win

Remoteness

Highest
Lose

Remoteness

Percentage

18 0 0 1 1 1 100.00%
17 1 0 24 24 4 100.00%
16 1 1 552 552 46 100.00%
15 2 1 6,072 6,072 428 125 100.00%
14 2 2 63,756 63,756 4,200 113 124 100.00%
13 3 2 425,040 421,680 26,855 179 112 99.21%
13 3 1 42,504 336 29 74 0.79%
12 3 3 2,691,920 2,649,552 166,821 187 178 98.43%
12 2 3 425,040 3,360 243 53 108 0.79%
12 3 2 425,040 3,360 243 113 0.79%
11 4 3 12,113,640 11,638,296 730,214 183 186 96.08%
11 4 2 2,018,940 63,840 4,111 95 126 3.16%
11 3 3 2,691,920 21,088 1,392 171 52 0.78%
11 3 2 425,040 576 49 73 0.14%
10 4 4 51,482,970 48,285,882 3,024,492 185 182 93.79%
10 3 4 12,113,640 379,584 23,997 149 172 3.13%
10 4 3 12,113,640 379,584 23,997 173 94 3.13%
10 3 3 2,691,920 9,600 646 59 74 0.36%
10 2 3 425,040 576 49 40 0.14%
9 5 4 164,745,504 147,072,000 9,202,533 185 192 89.27%
9 5 3 41,186,376 3,203,448 201,196 161 176 7.78%
9 4 4 51,482,970 1,569,168 98,672 177 148 3.05%
9 4 3 12,113,640 172,800 10,971 123 58 1.43%
9 5 2 7,268,184 4,104 289 62 0.06%
9 3 3 2,691,920 9,408 625 117 0.35%
9 3 2 425,040 576 49 57 0.14%
8 5 5 494,236,512 420,122,292 26,274,839 201 184 85.00%
8 4 5 164,745,504 12,464,160 781,129 175 180 7.57%
8 5 4 164,745,504 12,464,160 781,129 197 160 7.57%
8 4 4 51,482,970 1,180,920 74,346 133 186 2.29%
8 3 5 41,186,376 23,016 1,508 80 0.06%
8 3 4 12,113,640 172,800 10,971 89 136 1.43%
8 5 3 41,186,376 23,016 1,508 119 0.06%
8 4 3 12,113,640 1,200 90 39 0.01%
8 3 3 2,691,920 9,408 625 76 0.35%
8 2 3 425,040 576 49 0.14%
7 6 5 1,153,218,528 900,940,620 56,334,808 195 200 78.12%
7 6 4 411,863,760 60,865,920 3,808,437 177 196 14.78%
7 5 5 494,236,512 35,323,212 2,210,897 191 174 7.15%
7 5 4 164,745,504 9,336,576 585,290 185 146 5.67%
7 6 3 109,830,336 445,776 28,248 77 142 0.41%
7 5 3 41,186,376 40,872 2,669 95 120 0.10%
7 4 5 164,745,504 89,184 5,731 123 0.05%
7 4 4 51,482,970 1,180,920 74,346 157 92 2.29%
7 4 3 12,113,640 172,800 10,971 143 36 1.43%
7 5 2 7,268,184 720 52 36 0.01%
7 3 3 2,691,920 9,408 625 117 0.35%
7 3 2 425,040 576 49 73 0.14%
6 6 6 2,498,640,144 1,796,173,170 112,300,784 201 194 71.89%
6 5 6 1,153,218,528 161,027,904 10,070,698 199 190 13.96%
6 6 5 1,153,218,528 161,027,904 10,070,698 195 176 13.96%
6 5 5 494,236,512 35,165,016 2,201,534 173 184 7.12%
6 4 6 411,863,760 1,619,280 102,075 133 144 0.39%
6 4 5 164,745,504 9,351,840 586,248 169 178 5.68%
6 6 4 411,863,760 1,619,280 102,075 149 76 0.39%
6 5 4 164,745,504 426,000 26,977 121 94 0.26%
6 4 4 51,482,970 1,180,920 74,346 133 172 2.29%
6 3 5 41,186,376 23,256 1,528 88 0.06%
6 3 4 12,113,640 172,800 10,971 109 116 1.43%
6 5 3 41,186,376 10,416 667 79 0.03%
6 4 3 12,113,640 1,200 90 47 0.01%
6 3 3 2,691,920 9,408 625 104 0.35%
6 2 3 425,040 576 49 0.14%
5 7 6 4,283,383,104 2,703,410,700 169,007,212 201 200 63.11%
5 7 5 2,141,691,552 497,817,924 31,125,938 177 194 23.24%

Table B.2: Nine Men’s Morris Phase 1, Part 1
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Pieces Left # White # Black Position Upper
Bound

Reachable
Positions

Reachable
Canonical
Positions

Highest
Win

Remoteness

Highest
Lose

Remoteness

Percentage

5 6 6 2,498,640,144 316,248,792 19,774,769 189 198 12.66%
5 6 5 1,153,218,528 158,838,672 9,934,794 199 172 13.77%
5 7 4 823,727,520 13,088,208 820,602 121 148 1.59%
5 6 4 411,863,760 3,920,736 246,469 169 174 0.95%
5 5 6 1,153,218,528 4,245,324 266,547 149 132 0.37%
5 5 5 494,236,512 35,232,780 2,205,788 189 168 7.13%
5 5 4 164,745,504 9,351,840 586,248 171 132 5.68%
5 7 3 235,350,720 32,244 2,086 55 68 0.01%
5 6 3 109,830,336 172,104 10,845 65 88 0.16%
5 5 3 41,186,376 40,872 2,669 69 84 0.10%
5 4 5 164,745,504 93,024 5,980 99 0.06%
5 4 4 51,482,970 1,180,920 74,346 143 108 2.29%
5 4 3 12,113,640 172,800 10,971 113 60 1.43%
5 5 2 7,268,184 720 52 0.01%
5 3 3 2,691,920 9,408 625 117 0.35%
5 3 2 425,040 576 49 0.14%
4 7 7 6,731,030,592 3,741,325,068 233,882,415 199 200 55.58%
4 6 7 4,283,383,104 903,241,452 56,469,514 197 192 21.09%
4 7 6 4,283,383,104 903,241,452 56,469,514 197 176 21.09%
4 6 6 2,498,640,144 379,616,460 23,737,869 185 198 15.19%
4 5 7 2,141,691,552 31,866,576 1,995,365 167 172 1.49%
4 5 6 1,153,218,528 160,369,476 10,030,878 177 190 13.91%
4 7 5 2,141,691,552 31,866,576 1,995,365 149 120 1.49%
4 6 5 1,153,218,528 20,270,352 1,269,979 173 168 1.76%
4 5 5 494,236,512 35,350,860 2,213,252 183 170 7.15%
4 4 7 823,727,520 108,696 6,937 49 86 0.01%
4 4 6 411,863,760 1,701,000 107,282 63 132 0.41%
4 4 5 164,745,504 9,351,840 586,248 137 148 5.68%
4 7 4 823,727,520 108,696 6,937 83 54 0.01%
4 6 4 411,863,760 1,040,040 65,333 137 64 0.25%
4 5 4 164,745,504 374,880 23,712 157 68 0.23%
4 4 4 51,482,970 1,180,920 74,346 121 116 2.29%
4 3 5 41,186,376 23,256 1,528 58 0.06%
4 3 4 12,113,640 172,800 10,971 116 1.43%
4 5 3 41,186,376 10,416 667 83 0.03%
4 4 3 12,113,640 1,200 90 67 0.01%
4 3 3 2,691,920 9,408 625 0.35%
4 2 3 425,040 576 49 0.14%
3 8 7 8,413,788,240 3,878,561,460 242,460,039 199 198 46.10%
3 8 6 5,889,651,768 1,821,702,372 113,878,890 187 198 30.93%
3 7 7 6,731,030,592 1,217,519,856 76,112,540 191 196 18.09%
3 7 6 4,283,383,104 1,070,115,708 66,902,564 197 184 24.98%
3 8 5 3,212,537,328 140,648,256 8,799,160 171 166 4.38%
3 7 5 2,141,691,552 89,478,588 5,600,199 169 176 4.18%
3 6 7 4,283,383,104 56,843,688 3,557,965 171 166 1.33%
3 6 6 2,498,640,144 383,715,144 23,994,858 195 176 15.36%
3 6 5 1,153,218,528 160,761,984 10,055,584 173 182 13.94%
3 8 4 1,338,557,220 1,813,500 113,920 73 144 0.14%
3 7 4 823,727,520 7,388,736 462,923 117 136 0.90%
3 6 4 411,863,760 3,602,712 226,547 147 178 0.87%
3 5 7 2,141,691,552 261,384 16,523 85 48 0.01%
3 5 6 1,153,218,528 4,809,072 302,122 141 62 0.42%
3 5 5 494,236,512 35,234,364 2,205,887 175 136 7.13%
3 5 4 164,745,504 9,351,840 586,248 155 120 5.68%
3 8 3 411,863,760 1,656 123 32 0.00%
3 7 3 235,350,720 32,736 2,127 62 0.01%
3 6 3 109,830,336 171,636 10,805 82 0.16%
3 5 3 41,186,376 40,872 2,669 84 0.10%
3 4 5 164,745,504 93,024 5,980 77 0.06%
3 4 4 51,482,970 1,180,920 74,346 159 2.29%
3 4 3 12,113,640 172,800 10,971 51 1.43%
3 5 2 7,268,184 720 52 0.01%
3 3 3 2,691,920 9,408 625 0.35%
3 3 2 425,040 576 49 0.14%
2 8 8 9,465,511,770 3,644,358,480 227,824,019 197 188 38.50%
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Pieces Left # White # Black Position Upper
Bound

Reachable
Positions

Reachable
Canonical
Positions

Highest
Win

Remoteness

Highest
Lose

Remoteness

Percentage

2 7 8 8,413,788,240 2,237,971,464 139,895,782 197 198 26.60%
2 8 7 8,413,788,240 2,237,971,464 139,895,782 197 178 26.60%
2 7 7 6,731,030,592 1,759,472,964 109,993,521 197 196 26.14%
2 6 8 5,889,651,768 230,153,064 14,396,669 169 172 3.91%
2 6 7 4,283,383,104 1,105,001,124 69,085,320 175 194 25.80%
2 8 6 5,889,651,768 230,153,064 14,396,669 161 170 3.91%
2 7 6 4,283,383,104 277,578,048 17,360,805 181 168 6.48%
2 6 6 2,498,640,144 389,930,838 24,384,456 181 172 15.61%
2 5 8 3,212,537,328 4,027,152 252,388 69 144 0.13%
2 5 7 2,141,691,552 36,613,260 2,293,000 119 164 1.71%
2 5 6 1,153,218,528 160,419,348 10,034,027 165 176 13.91%
2 8 5 3,212,537,328 4,027,152 252,388 143 72 0.13%
2 7 5 2,141,691,552 24,790,512 1,551,799 171 116 1.16%
2 6 5 1,153,218,528 18,630,408 1,167,157 185 126 1.62%
2 5 5 494,236,512 35,350,860 2,213,252 165 154 7.15%
2 4 8 1,338,557,220 5,148 374 28 0.00%
2 4 7 823,727,520 115,680 7,404 72 0.01%
2 4 6 411,863,760 1,701,000 107,282 134 0.41%
2 4 5 164,745,504 9,351,840 586,248 45 158 5.68%
2 8 4 1,338,557,220 5,148 374 31 0.00%
2 7 4 823,727,520 115,584 7,395 61 0.01%
2 6 4 411,863,760 1,033,020 64,866 131 0.25%
2 5 4 164,745,504 374,880 23,712 131 0.23%
2 4 4 51,482,970 1,180,920 74,346 45 50 2.29%
2 3 5 41,186,376 23,256 1,528 58 0.06%
2 3 4 12,113,640 172,800 10,971 1.43%
2 5 3 41,186,376 10,416 667 103 0.03%
2 4 3 12,113,640 1,200 90 0.01%
2 3 3 2,691,920 9,408 625 0.35%
2 2 3 425,040 576 49 0.14%
1 9 8 8,413,788,240 2,510,097,156 156,918,254 189 188 29.83%
1 9 7 8,413,788,240 2,934,340,260 183,422,929 189 196 34.88%
1 8 8 9,465,511,770 2,011,860,900 125,762,159 197 176 21.25%
1 8 7 8,413,788,240 3,173,480,688 198,375,028 195 196 37.72%
1 9 6 6,544,057,520 604,776,168 37,817,360 169 182 9.24%
1 8 6 5,889,651,768 706,167,708 44,158,734 183 190 11.99%
1 7 8 8,413,788,240 274,516,452 17,168,684 175 164 3.26%
1 7 7 6,731,030,592 1,817,022,240 113,594,446 193 170 26.99%
1 7 6 4,283,383,104 1,116,773,928 69,823,090 181 180 26.07%
1 9 5 3,926,434,512 26,988,564 1,689,074 121 144 0.69%
1 8 5 3,212,537,328 101,061,816 6,321,699 137 170 3.15%
1 7 5 2,141,691,552 86,835,276 5,434,251 165 184 4.05%
1 6 8 5,889,651,768 6,441,060 403,539 143 68 0.11%
1 6 7 4,283,383,104 75,188,808 4,706,065 141 118 1.76%
1 6 6 2,498,640,144 384,456,990 24,041,421 177 164 15.39%
1 6 5 1,153,218,528 160,761,984 10,055,584 167 164 13.94%
1 9 4 1,784,742,960 190,644 12,134 3 42 0.01%
1 8 4 1,338,557,220 1,947,480 122,400 7 74 0.15%
1 7 4 823,727,520 7,714,512 483,302 35 130 0.94%
1 6 4 411,863,760 3,602,712 226,547 49 130 0.87%
1 5 8 3,212,537,328 11,256 753 27 0.00%
1 5 7 2,141,691,552 306,516 19,444 59 0.01%
1 5 6 1,153,218,528 4,809,072 302,122 133 0.42%
1 5 5 494,236,512 35,234,364 2,205,887 161 7.13%
1 5 4 164,745,504 9,351,840 586,248 55 44 5.68%
1 8 3 411,863,760 1,680 126 1 32 0.00%
1 7 3 235,350,720 32,736 2,127 1 24 0.01%
1 6 3 109,830,336 171,636 10,805 102 0.16%
1 5 3 41,186,376 40,872 2,669 1 0.10%
1 4 5 164,745,504 93,024 5,980 125 0.06%
1 4 4 51,482,970 1,180,920 74,346 29 2.29%
1 4 3 12,113,640 172,800 10,971 7 1.43%
1 5 2 7,268,184 720 52 0.01%
1 3 3 2,691,920 9,408 625 0.35%
1 3 2 425,040 576 49 1 0.14%

Phase 1 Total 275,610,620,697 51,153,431,825 3,198,110,285 201 200 18.56%
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Pieces Left # White # Black Position Upper
Bound

Reachable
Positions

Reachable
Canonical
Positions

Highest
Win

Remoteness

Highest
Lose

Remoteness

Percentage

0 9 9 13,088,115,040 3,070,141,476 191,938,998 189 190 23.46%
0 8 9 16,827,576,480 9,739,439,748 608,835,130 201 196 57.88%
0 9 8 16,827,576,480 9,737,310,308 608,701,478 201 196 57.87%
0 8 8 18,931,023,540 18,194,155,270 1,137,348,200 195 196 96.11%
0 7 9 16,827,576,480 12,450,353,992 778,303,625 201 202 73.99%
0 7 8 16,827,576,480 16,739,514,968 1,046,444,018 203 204 99.48%
0 9 7 16,827,576,480 12,449,657,588 778,259,849 201 202 73.98%
0 8 7 16,827,576,480 16,739,598,720 1,046,449,271 203 204 99.48%
0 7 7 13,462,061,184 13,461,977,164 841,580,739 181 180 100.00%
0 6 9 13,088,115,040 11,071,988,996 692,158,588 173 172 84.60%
0 6 8 11,779,303,536 11,767,387,948 735,661,291 185 186 99.90%
0 6 7 8,566,766,208 8,566,713,156 535,583,135 185 184 100.00%
0 9 6 13,088,115,040 11,071,986,440 692,158,417 173 172 84.60%
0 8 6 11,779,303,536 11,767,520,228 735,669,576 185 186 99.90%
0 7 6 8,566,766,208 8,566,712,784 535,583,107 185 184 100.00%
0 6 6 4,997,280,288 4,997,268,876 312,457,941 167 166 100.00%
0 5 9 7,852,869,024 7,235,826,192 452,366,452 113 114 92.14%
0 5 8 6,425,074,656 6,422,015,572 401,513,237 153 160 99.95%
0 5 7 4,283,383,104 4,283,320,220 267,817,755 159 160 100.00%
0 5 6 2,306,437,056 2,306,428,104 144,231,543 163 162 100.00%
0 9 5 7,852,869,024 7,235,826,104 452,366,445 113 114 92.14%
0 8 5 6,425,074,656 6,422,020,072 401,513,526 153 160 99.95%
0 7 5 4,283,383,104 4,283,319,876 267,817,730 159 160 100.00%
0 6 5 2,306,437,056 2,306,428,040 144,231,539 163 162 100.00%
0 5 5 988,473,024 988,471,560 61,828,743 57 56 100.00%
0 4 9 3,569,485,920 3,455,647,176 216,070,554 103 110 96.81%
0 4 8 2,677,114,440 2,676,725,952 167,386,939 111 112 99.99%
0 4 7 1,647,455,040 1,647,370,720 103,027,648 111 112 99.99%
0 4 6 823,727,520 823,714,656 51,530,732 157 156 100.00%
0 4 5 329,491,008 329,489,728 20,620,902 29 28 100.00%
0 9 4 3,569,485,920 3,455,647,176 216,070,554 103 110 96.81%
0 8 4 2,677,114,440 2,676,725,950 167,386,938 111 112 99.99%
0 7 4 1,647,455,040 1,647,370,712 103,027,647 111 112 99.99%
0 6 4 823,727,520 823,714,636 51,530,729 157 156 100.00%
0 5 4 329,491,008 329,489,728 20,620,902 29 28 100.00%
0 4 4 102,965,940 102,965,822 6,451,182 9 8 100.00%
0 3 9 1,189,828,640 1,180,422,880 73,827,320 25 30 99.21%
0 3 8 823,727,520 823,727,520 51,527,672 33 34 100.00%
0 3 7 470,701,440 470,701,440 29,451,376 31 30 100.00%
0 3 6 219,660,672 219,660,672 13,750,640 7 6 100.00%
0 3 5 82,372,752 82,372,752 5,160,780 31 2 100.00%
0 3 4 24,227,280 24,227,280 1,520,796 33 32 100.00%
0 9 3 1,189,828,640 1,180,422,880 73,827,320 25 30 99.21%
0 8 3 823,727,520 823,727,520 51,527,672 33 34 100.00%
0 7 3 470,701,440 470,701,440 29,451,376 31 30 100.00%
0 6 3 219,660,672 219,660,672 13,750,640 7 6 100.00%
0 5 3 82,372,752 82,372,752 5,160,780 31 2 100.00%
0 4 3 24,227,280 24,227,280 1,520,796 33 32 100.00%
0 3 3 5,383,840 5,383,840 339,252 25 26 100.00%
0 2 9 274,575,840 73,202,084 4,581,812 26.66%
0 2 8 176,513,040 34,280,956 2,146,761 19.42%
0 2 7 94,140,288 12,155,068 762,053 12.91%
0 2 6 41,186,376 3,159,940 198,562 7.67%
0 2 5 14,536,368 569,596 36,052 3.92%
0 2 4 4,037,880 63,816 4,109 1.58%
0 2 3 850,080 3,360 243 0.40%
0 9 2 274,575,840 73,202,084 4,581,812 26.66%
0 8 2 176,513,040 34,280,956 2,146,761 19.42%
0 7 2 94,140,288 12,155,068 762,053 12.91%
0 6 2 41,186,376 3,159,940 198,562 7.67%
0 5 2 14,536,368 569,596 36,052 3.92%
0 4 2 4,037,880 63,816 4,109 1.58%
0 3 2 850,080 3,360 243 0.40%

Phase 2 Total 286,071,923,192 245,698,724,226 15,360,820,664 203 204 85.89%

Table B.5: Nine Men’s Morris Phase 2
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Appendix C

Code

We present the most interesting pieces of relevant code here. All other code is publicly viewable in the
GamesCrafters organization GitHub repositories QuartoFall2022, GamesmanClassic, GamesCraftersUWAPI,
and GamesmanUni.

C.1 Quarto Tier Struct and Constructor

typedef struct tier {

uint8_t level; // Number of pieces on board

uint8_t pieceToPlace; // 0-15; undefined if level=16

uint16_t piecesPlaced; // 16-bit map; nth LSB is 1 if piece n is on board

uint16_t occupiedSlots; // 16-bit map; nth LSB is 1 if nth slot is nonempty

uint8_t occupiedSlotsListX4[16]; // list of occupied slots, each multiplied by 4

uint64_t occupiedSlotsMask;

} TIER;

void buildTier(TIER *tier, uint8_t pieceToPlace, uint16_t piecesPlaced,

uint16_t occupiedSlots) {

tier->pieceToPlace = pieceToPlace;

tier->piecesPlaced = piecesPlaced;

tier->occupiedSlots = occupiedSlots;

tier->occupiedSlotsMask = 0;

uint8_t counter = 0;

for (int i = 0; i < 16; i++) {

if (occupiedSlots & (1 << i)) {

tier->occupiedSlotsListX4[counter++] = i << 2;

tier->occupiedSlotsMask |= UINT64_C(0xF) << (i << 2);

}

}

tier->level = counter;

}

C.2 Quarto Hash and Unhash

Here we make use of tables that we described in subsection 3.5.2 Optimizations. Namely, fact[i] gives us
i!, factmul[i << 4 | pieces[i]] gives us pieces[i] · i!, whichSetBit[remaining << 4 | idx] gives us
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which set bit the idx-th set bit in the remaining bitstring is, and nthSetBit[remaining << 4 | pieces[i]]

gives us k such that the pieces[i]-th bit is the k-th set bit in the remaining bitstring.

// TierPosition to BitBoard

uint64_t unhash(TIER *tier, uint64_t tierPosition) {

int8_t i;

uint8_t idx;

uint8_t pieces[16] = {0};

uint64_t bitBoard = 0;

uint32_t remaining = tier->piecesPlaced;

for (i = tier->level - 1; i > 0; i--) {

pieces[i] = tierPosition / fact[i];

tierPosition %= fact[i];

}

for (i = tier->level - 1; i >= 0; i--) {

idx = nthSetBit[remaining << 4 | pieces[i]];

remaining ^= 1 << idx; // Flip piece to indicate taken out of "remaining" set

bitBoard |= ((uint64_t) idx) << tier->occupiedSlotsListX4[i];

}

return bitBoard;

}

// BitBoard to TierPosition

uint64_t hash(TIER *tier, uint64_t bitBoard) {

uint8_t i, idx = 0;

uint8_t pieces[16];

uint64_t tierPosition = 0;

uint32_t remaining = 0;

for (i = 0; i < tier->level; i++) {

idx = (bitBoard >> tier->occupiedSlotsListX4[i]) & 0xF;

remaining ^= 1 << idx;

pieces[i] = whichSetBit[remaining << 4 | idx];

}

for (i = 1; i < tier->level; i++) {

tierPosition += factmul[i << 4 | pieces[i]];

}

return tierPosition;

}

C.3 Multipart Edge Struct

typedef struct multipartedgelist_item

{

POSITION from;

POSITION to;

MOVE partMove;
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MOVE fullMove;

BOOLEAN isTerminal;

struct multipartedgelist_item *next;

}

MULTIPARTEDGELIST;

C.4 Multipart Move Graph Generation for Topitop

MULTIPARTEDGELIST* GenerateMultipartMoveEdges(

POSITION position, MOVELIST *moveList, POSITIONLIST *positionList

) {

MULTIPARTEDGELIST *mpel = NULL;

BOOLEAN edgeToAdded[4] = {FALSE, FALSE, FALSE, FALSE};

while (moveList != NULL) {

MOVE move = moveList->move;

if (move == NULLMOVE) {

break;

}

int to = move & 0b1111;

int from = (move >> 4) & 0b1111;

MOVE piece = (move >> 8) & 0b11;

POSITION intermediateMarker = ((POSITION) (4L | piece)) << 61;

if (from == to) {

// Select piece to place

if (!edgeToAdded[piece]) {

mpel = CreateMultipartEdgeListNode(

position,

position | intermediateMarker,

move | 0b10000000000,

0,

FALSE,

mpel );

edgeToAdded[piece] = TRUE;

}

// Place selected piece

mpel = CreateMultipartEdgeListNode(

position | intermediateMarker,

positionList->position,

move | 0b100000000000,

move,

TRUE,

mpel );

}

// Ignore sliding moves, they are single-part

moveList = moveList->next;

positionList = positionList->next;

}

return mpel;

}

96


	Introduction
	Background
	Definitions
	Tiers

	GamesCrafters Projects and Infrastructure
	GamesCrafters User Interfaces
	Large Games
	Machine

	Solving Quarto
	Rules
	Position Definition and String Representation
	Tier Definition
	Upper-Bounding the Number of Positions, Ignoring Symmetry

	Non-string Position Representations
	Hashing
	Hashing/Unhashing a Level 16 Position
	Optimizations
	Generalizing the Algorithm to a Position Outside of L16

	Primitive/Unreachable Check
	Symmetries
	Board Slot Symmetries
	Piece Bit Symmetries
	Canonicalization and Tier Symmetries
	Symmetry Tables
	Upper-Bounding the Number of Positions, Utilizing Tier Symmetry

	Encoding Value-Remoteness
	Level Value-Remoteness Encoding Table
	Determining the Value-Remoteness of a Parent Position
	Encoding as a Bitstring

	Database and Live-Solving
	Solving
	Overview
	Optimizations

	Results
	Timing
	Value Counts

	Value-Moves Interface
	Reflection and Future Work

	Solving Tierable Loopy Games
	Solver
	General Strategies
	Database Compression

	Nine Men's Morris
	Rules
	Position Representation
	Tier Definition
	Hashing
	Symmetry
	Results
	Variants

	Bagh-Chal
	Rules
	Position Representation
	Tier Definition
	Results

	Tic-Tac-Two
	Rules
	Position Representation
	Tier Definition
	Results

	Topitop
	Rules
	Position Representation
	Tier Definition
	Results

	Future Work

	Image AutoGUI
	Overview
	Example: Achi AutoGUI
	Coordinates and SVGs
	Rendering Positions

	General Structure of Image AutoGUI Data
	Designing an Image AutoGUI for a Game
	New Interfaces Using Image AutoGUI
	Bagh-Chal
	Chess Endgame
	Chomp
	Connect 4
	Dawson's Chess
	Dodgem
	Mū Tōrere
	QuickCross
	Shift-Tac-Toe
	Snake
	Tac Tix
	Toot-and-Otto

	Future Work

	Multipart-Move Interfaces
	Motivation
	Multipart-Move Interface Design and Implementation
	A Game in and of Itself
	New Image AutoGUI Interfaces Involving Multipart Moves
	L-game
	3-Spot
	Tic-Tac-Two
	Nine Men's Morris
	Topitop
	Chung-Toi

	Future Work

	Conclusion
	Bibliography
	Explanation of Rules for Various Games
	Value-Remoteness Counts
	Code
	Quarto Tier Struct and Constructor
	Quarto Hash and Unhash
	Multipart Edge Struct
	Multipart Move Graph Generation for Topitop


