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ABSTRACT
The notion of query equivalence is of great significance in the the-
ory and practise of database systems. Prior work in automated
query equivalence checking under bag semantics set the first steps
in formallymodeling and reasoning about query optimization rules.
However, many sql features such as integrity constraints and null
semantics are avoided or handled in ad hoc ways in prior attempts,
resulting inmany unsupported use cases in real world usages. Here
we present a new framework for query equivalence checking, based
on the U-semiring semantics, that leverage smt solvers as the rea-
soning engine with improved modeling of sql features. Empiri-
cally, our implementation can verify 235 out of the 415 query pairs
extracted from the latest test suite of the Calcite data management
framework, which is 2 times over the state-of-the-art tool (104/415).
On the theoretical side, we show that our formalism admits a large
query fragment in which query equivalence is decidable relative
to an smt solver, generalizing prior decidability results further.

1 INTRODUCTION
The idea of query equivalence is being widely used in modern data-
base, where the use of semantic-equivalent query rewriting is es-
sential to the correctness and performance of the query execution
engine. There are many previous attempts to automatically decide
query equivalence albeit its nature of undecidability, essentially
forming two lines of work. The first is started by Chu et al. in
the series of work [4] and [3], and axiomatized as the theory of
U-semiring in [2], where the bag semantics of sql queries is cap-
tured by a symbolic arithmetic expression representing the multi-
plicities of elements in a bag. The check of semantic equivalence is
then performed on the formal expressions of multiplicity without
any further knowledge of sql, and producing amachine-checkable
proof of equivalence in the end. The other line of work by Zhou et
al. in [7] and [8] reason directly on the query expressions, by first
repetitively applying a few selected query rewrite rules to put sql
queries into a normal form, and then us an smt solver to check the
equivalence of queries in normal form.

On one hand, we find the use of smt solvers enables more pow-
erful semantics reasoning compared to the syntactic approaches
used in the first line of work. On the other hand, many sql fea-
tures aremodelled as seemingly ad hoc and incomplete set of query
rewrite rules that are hard to compose in the second approach,
while the same can be expressed when lowered to the theory of U-
semiring as a relatively minimal group of equational axioms and
achieve higher fidelity. Moreover, we notice that more subtle as-
pects of sql queries, such as the integrity constraints and null
semantics, remains unsupported or supported in ad hoc ways by
both prior works, making them not capable of showing equiva-
lence when such features are used in a rewrite rules.

Contributions. We believe a more complete account for sql fea-
tures is essential for query equivalence checker to scale to more
real world cases, and we propose a new approach based on the
theory of U-semiring [2] and leverage smt solvers as oracles to
gain richer expressively when modeling sql features, combining
the separated approaches (U-semiring and smt solvers) in prior
arts for the first time. This has the following implications:

(1) The solver can handle a wider range of sql queries, since we
can now encode null semantics, have a better formulation
of integrity constraints, and allow queries to contain unin-
terpreted symbols. We use our implementation to prove the
validity of many query rewrite pairs used in modern data-
base engine, doubling the number of cases proved compared
to the previous state-of-the-art tool in the test set extracted
from the Calcite data management framework.

(2) Additionally, we can identify a fragment of sql queries rela-
tive to some first-order theory, demonstrate a decision pro-
cedure, and prove its soundness and completeness over the
specified fragment. This results generalize over prior decid-
ability results of query equivalence with bag semantics.

Example. To give a better motivation, we discuss a concrete ex-
ample in more detail. Consider the table 𝑅(𝑘, 𝑟) with two columns,
where 𝑘 is a primary key, and 𝑟 is a foreign key that self-reference
to the column 𝑘 of 𝑅. A valid rewrite to prove is that performing
an left outer join on the foreign key is equivalent to performing an
inner join instead. In sql syntax, we have the queries

R AS R1 INNER JOIN R AS R2 ON R1.r = R2.k;
R AS R1 LEFT OUTER JOIN R AS R2 ON R1.r = R2.k;

Do note that this query pair uses features such as primary key,
foreign key, and null semantics together. The current state-of-the-
art, spes [8], handles integrity constraints by ad hoc preprocessing
rules on the query syntax, and the above case is not handled as
discussed in their work. For udp [2] the current best equivalence
prover that is also based on the U-semiring semantics, encodes for-
eign key as a rewrite rule. But the rewrite rule they proposed fails
to terminate for the self-referencing situation we have here.

Our approach, which will be explained in details later, can prove
this rewrite just fine. First, the queries are interpreted into the U-
semiring semantics as

𝑄1(𝑎, 𝑏, 𝑐, 𝑑) =𝑅(𝑎, 𝑏) × 𝑅(𝑐, 𝑑) × [𝑏 = 𝑐],
𝑄2(𝑎, 𝑏, 𝑐, 𝑑) =𝑅(𝑎, 𝑏) × 𝑅(𝑐, 𝑑) × [𝑏 = 𝑐]

+ 𝑅(𝑎, 𝑏) × [𝑐 = null ∧ 𝑑 = null ∧ ¬‖∑𝑐′ ,𝑑′ [𝑏 = 𝑐′] × 𝑅(𝑐′, 𝑑′)‖].
The key here is to show the second term in 𝑄2 is empty, which we
focus on for now. With the semantics we provide for primary key
(8) and further normalization, the second term becomes

[‖𝑅′(𝑎)‖ ∧ 𝑏 = 𝑓𝑅(𝑎) ∧ 𝑐 = null ∧ 𝑑 = null ∧ ¬‖𝑅′(𝑏)‖].



Now using the semantics of foreign key (12), we may assert

∀𝑘. ‖𝑅′(𝑘)‖ → ‖𝑅′(𝑓𝑅(𝑘))‖, (1)

to an smt solver. The solver will then recognize the term in (1)
is trivially empty since ‖𝑅′(𝑎)‖ ∧ 𝑏 = 𝑓𝑅(𝑎) ∧ ¬‖𝑅′(𝑏)‖ contradicts
the above. We highlight using this example that prior attempts
to model integrity constraints are limited and ad hoc, while our
formalism for various sql features are composable and applicable,
making it scalable to more complicated cases.

Outline of the paper. We start in Section 2 to discuss the formal
semantics we defined for sql queries, as well as the semantics of
additional integrity constraints and null values. Then in Section 3
we present a general algorithm to check for query equivalence
within the given formal semantics. This algorithm, albeit incom-
plete, covers all of the sql features we covered in Section 2, and are
shown to be very effective in practise. In Section 4, we show that
our semantics admits a fragment of sql queries in which semantic
equivalence can be fully decidable relative to some smt solver, by
constructing another specialized equivalence checking algorithm,
which is then shown to be sound and complete. We then evaluate
our first algorithm in Section 5 by running it over query optimiza-
tion pairs present in real world databases, and compare the result
with similar tools. Finally, we make a more detailed comparison
with other related work and discuss future improvements in the
remaining sections.

2 SEMANTICS
Definition 1. In general, we allow sql queries to reference exter-
nal table and undetermined variables. We use Γ ∣ Δ ∣ Φ ⊢ 𝑄 to
denote the query 𝑄 referencing table variables from the context Γ
and uninterpreted symbols from the context Δ, with the symbols
in Δ constrained by a logical formula Φ. Using Query𝑆 to denote
a query of schema 𝑆, we give the syntax inductively using the fol-
lowing rules (omitting repetitive ambient context annotations).

𝑃 ∶ 𝑆 → Bool 𝑄 ∶ Query 𝑆
Filter(𝑃, 𝑄) ∶ Query 𝑆

𝑓 ∶ 𝑆 → 𝑇 𝑄 ∶ Query 𝑆
Proj(𝑓 , 𝑄) ∶ Query 𝑇

𝑄1 ∶ Query 𝑆1 𝑥 ∶ 𝑆 ⊢ 𝑄2 ∶ Query 𝑆2
CorrJoin(𝑄1, 𝑄2) ∶ Query (𝑆1 × 𝑆2)

𝑄1 ∶ Query 𝑆 𝑄2 ∶ Query 𝑆
Union(𝑄1, 𝑄2) ∶ Query 𝑆

𝑄 ∶ Query 𝑆
Distinct(𝑄) ∶ Query 𝑆

𝑣1 ∶ 𝑆 ⋯ 𝑣𝑛 ∶ 𝑆
Values(𝑣1, … , 𝑣𝑛) ∶ Query 𝑆

(2)

The use of constraint Φmight be apparent in later sections. The
notation here uses a multi-segment context of the form Γ ∣ Δ ∣ Φ
to annotate the query expression, keeping track of the variables
used and additional assumptions made about them. The turnstile
⊢ annotates an expression on the right by the context on the left,
but for brevity, we often partially or fully omit context annotations
when they can be inferred.

The semantics we choose to interpret the sql query expressions
mostly follows the U-semiring formalism [2]. To recap, the intu-
ition is to capture the well-received bag semantics of sql query,

where a table of schema 𝑆 is a multiset of rows of type 𝑆. Such mul-
tiset can be instead perceived as a function 𝑆 → 𝑈 taking in some
𝑠 ∈ 𝑆 and return the multiplicity of 𝑠 in the multiset, where 𝑈 the
type of U-semiring is intend to serve as the domain of multiplicity.
Additional operations on 𝑈 , namely +, ×, ∑, and ‖⋅‖, are axioma-
tized with equational laws as in [2]. This foundation allows us to
interpret sql queries formally as follows.

Definition 2. The semantics of a query Γ ∣ Δ ∣ Φ ⊢ 𝑄, denoted as
Γ ∣ Δ ∣ Φ ⊢ ⟦𝑄⟧, is given inductively as follows :

⟦𝑅 ⊢ 𝑅⟧ = 𝑅 ⊢ 𝜆𝑥. 𝑅(𝑥)
⟦Filter(𝑃, 𝑄)⟧ = 𝜆𝑥. [𝑃(𝑥)] × ⟦𝑄⟧(𝑥)
⟦Proj(𝑓 , 𝑄)⟧ = 𝜆𝑥. ∑

𝑠
[𝑥 = 𝑓 (𝑠)] × ⟦𝑄⟧(𝑠)

⟦CorrJoin(𝑄1, 𝑄2)⟧ = 𝜆𝑥1, 𝑥2. ⟦𝑄1⟧(𝑥1) × ⟦𝑥 ⊢ 𝑄2⟧[𝑥1/𝑥](𝑥2)
⟦Union(𝑄1, 𝑄2)⟧ = 𝜆𝑥. ⟦𝑄1⟧(𝑥) + ⟦𝑄2⟧(𝑥)

⟦Distinct(𝑄)⟧ = 𝜆𝑥. ‖⟦𝑄⟧(𝑥)‖
⟦Values(𝑣1, … , 𝑣𝑛)⟧ = 𝜆𝑥. [𝑥 = 𝑣1] + ⋯ + [𝑥 = 𝑣𝑛]

(3)

Moreover, we give the semantics of the Exists predicate which
takes in a sub-query as input

⟦Exists(𝑄)⟧ = ‖∑
𝑠
⟦𝑄⟧(𝑠)‖. (4)

2.1 The domain of multiplicity
It is very tempting to use the usual set of natural numbers ℕ as
the domain of multiplicity, instead of the axiomatized theory of
U-semiring, and we discuss some of the subtleties there. The main
reason that we choose the present the formal semantics in expres-
sions of U-semiring, or U-expressions for short, is that we use the
unbounded summation ∑ to characterize the projection operator
as in Eq. (3) and existence predicate as in Eq. (4). The unbounded
summation a priori does not ensure producing a finite result, hence
interpreting it directly as an operation on natural number is ill-
defined. As pointed out by Chu et al. [2], the natural number can
be viewed as a model of U-semiring only if all summations are of
finite support. That is, for ∑𝑠 𝑈 (𝑠), there are only finitely many 𝑠
such that 𝑈 (𝑠) ≠ 0.

However, taking a pure U-expression approach also has its own
challenge. As we will show later, it is convenient to delegate some
multiplicity equality check to an smt solver, given that most have
substantial support for integer arithmetics. But to express equal-
ity of U-expressions, one has to define the theory of U-semiring
within the smt solver, and it is not clear how to even define the
summation operator ∑𝑠 𝑈 (𝑠) within a first-order theory. In fact, a
core contribution of our work is reducing the equality between U-
expressions down to some smt formulas, without directly defining
the notion of unbounded summation.

Another issue is that U-semiring can be overly general to serve
as the domain of multiplicity for real-world databases and queries.
As pointed out by Chu et al. [2], there are many models for U-
semiring, including the set of natural number extended with an in-
finity element ℕ̄ ≔ ℕ∪{∞}, univalent types, cardinal numbers, etc.
This allows us tomake unrealistic constructions such as a table that
contains all integers, and each integer occurs infinitelymany times.
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But database developers only care about whether a query rewrite
rule preserve its result for all finite instantiation of databases.

The perspective that we take to balance between practicality
and formal rigor is as follows. We pick the actual domain of mul-
tiplicity to be the extended natural number ℕ̄, which is a model
of the theory of U-semiring, and it allows us to perform rewrites
based on the equational laws of U-expressions without worrying
about the finiteness of multiplicity along the way. But for any ta-
ble variable 𝑅 occurred within the U-expressions, we restrict them
to be an arbitrary table where each distinct row may only occur
finitely many time, and thus essentially regarding 𝑅 (of schema 𝑆)
as a function 𝑆 → ℕ. This restriction, justified by the finiteness of
real world database, allows us to check equalities of U-expressions
that only contains table variables and the + and × operator, by
translating the U-expressions into the obvious arithmetic expres-
sions and invoking an smt solver to check their equality.

An observation that would be useful later is that U-expressions
under the squash operator ‖⋅‖ can be equivalently written as a log-
ical formula without the squash operator, using the rules

‖𝑈1 + 𝑈2‖ ⇝ ‖𝑈1‖ ∨ ‖𝑈2‖, ‖‖𝑈 ‖‖ ⇝ ‖𝑈 ‖,
‖𝑈1 × 𝑈2‖ ⇝ ‖𝑈1‖ ∧ ‖𝑈2‖, ‖[𝑃]‖ ⇝ 𝑃,
‖∑
𝑠
𝑈 ‖ ⇝ ∃𝑠. ‖𝑠 ⊢ 𝑈 ‖, ‖𝑅 ⊢ 𝑅(𝑎)‖ ⇝ 𝑅 ⊢ 𝑅(𝑎) ≠ 0.

(5)

Andwe hence adopt the practise of regarding squashedU-expressions
as boolean expressions under the appropriate context.

2.2 Integrity constraints
In addition to the expression of the query one is executing, sql
allows user to define additional integrity constrains on the tables
involved in the query, which also bear semantics significance that
we wish to capture. We focus on three main types of constraints
that are definable by sql users in the CREATE TABLE command,
namely the primary key (uniqueness) constraint, the foreign key
constraint, and the user-defined check constraint.

Since all such constraints are declared in table schema defini-
tion and not reflected directly in the syntax of the query expres-
sion, we handle all the integrity constraints in a post-processing
step after translating sql queries into U-expressions. Specifically,
all integrity constraints will be captured by rewrite rules on U-
expressions of the form

Γ ∣ Δ ∣ Φ ⊢ 𝑈 ⇝ Γ′ ∣ Δ′ ∣ Φ′ ⊢ 𝑈 ′.

Do notice that the rules may rewrite the U-expression as well as
its surrounding context, and we will provide justifications in the
following parts.

2.2.1 Primary key constraint. Suppose we have a table 𝑅 with the
schema 𝐾 × 𝑆, where a column of type 𝐾 being the primary key of
𝑅. Intuitively, this means for any certain 𝑘 ∈ 𝐾 , there are at most
one 𝑠 ∈ 𝑆 such that the tuple (𝑘, 𝑠) occurs in 𝑅, and we additionally
require (𝑘, 𝑠) to occur exactly once. In the language of U-semiring,
an attempting way to capture this notion is to require for all 𝑘 ∈ 𝐾 ,
∑𝑠∈𝑆 𝑅(𝑘, 𝑠) ≤ 1. However, we do not allow the use of inequality
in the U-semiring formalism to avoid extra complexity. Another

attempt is the following equivalent formalism

∀𝑘 ∈ 𝐾. ∑
𝑠∈𝑆

𝑅(𝑘, 𝑠) = ‖∑
𝑠∈𝑆

𝑅(𝑘, 𝑠)‖, (6)

which is fully expressible with the U-semiring operators.
The above characterization of primary key, while correct, im-

pose the question of how can it be properly incorporated into the
pipeline of the solver, as an extra axiom on the table 𝑅. One may
suggest to encode Eq. (6) into a first-order logic formula and assert
the rule in an smt solver to further offload the work, but it is not
clear how can one even define the summation operator ∑, which
is inherently second-order and occur in both sides of Eq. (6), in
a first-order formula. Another approach is to use the equation as
a rewrite rule during normalisation. But neither the left nor right
side of Eq. (6) is an easy pattern to match on, making the rule hard
to integrate in a rewriting pipeline.

The observation we make here is that for any table 𝑅 of schema
𝐾 ×𝑆 with the primary key on 𝐾 , there exists a function 𝑓 ∶ 𝐾 → 𝑆
that represents the functional dependency of the non-key columns
over the key columns, over the subset of 𝐾 that is contained in 𝑅.
Conversely, any subset of 𝐾 combined with a function 𝑓 ∶ 𝐾 → 𝑆
induces a table 𝑅 with primary key on 𝐾 . In fact, for any logical
predicate 𝑃 over a table, we have that

∀𝑅 with primary key. 𝑃(𝑅)
⟺ ∀𝑅′, 𝑓 . 𝑃(𝜆𝑘, 𝑠. ‖𝑅′(𝑘)‖ × [𝑠 = 𝑓 (𝑘)]). (7)

This gives justifications to the following rule that for any table
symbol 𝑅 in the context with a primary key constraint, we may
change the context and apply the rewrite

𝑅 ⊢ 𝑅 ⇝ 𝑅′ ∣ 𝑓𝑅 ⊢ 𝜆𝑘, 𝑠. ‖𝑅′(𝑘)‖ × [𝑠 = 𝑓𝑅(𝑘)] (8)

2.2.2 Foreign key constraint. We may now proceed to discuss the
modeling of foreign key constraint, with the generic example of 𝑅
being a table of schema 𝐾 ×𝐴 with primary key on 𝐾 , and 𝑆 being
a table of schema 𝐵 × 𝐾 with a foreign key with 𝐾 referencing 𝑅.
Intuitively, this means that for any (𝑏, 𝑘) in 𝑆, there must exists
exactly one 𝑎 ∈ 𝐴 such that (𝑘, 𝑎) occurs exactly once in 𝑅, which
is captured by the following equality.

∀𝑏, 𝑘. 𝑆(𝑏, 𝑘) = 𝑆(𝑏, 𝑘) × ∑
𝑎∈𝐴

𝑅(𝑘, 𝑎) = 𝑆(𝑏, 𝑘) × ‖𝑅′(𝑘)‖. (9)

This works well as a rewrite rule, but if 𝑅 additionally has a for-
eign key constraint referring to other tables (or even back to 𝑆),
the rule may need to be applied repetitively, with the risk of non-
termination.

One way to resolve the non-termination of rewrites caused by
cyclical foreign keys is to encode the foreign key constraint as a
single global logical formula, and hence avoiding modifications of
U-expressions. Concretely, we first notice that the above intuition
can be precisely translated as

∀𝑏, 𝑘. ‖𝑆(𝑏, 𝑘)‖ → ∑
𝑎∈𝐴

𝑅(𝑘, 𝑎) = 1. (10)

Aminor technical point of Eq. (10) is that it is a logical formula that
contains U-expressions not under the squash operator ‖⋅‖, which
makes it hard to assert as a logical formula expressible in the frame-
work of smt solvers. But we may overcome this issue by further
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simplifying Eq. (10) using the fact that 𝑅 has primary key, and ob-
tain the rewrite rule

𝑆 ⊢ 𝑆 ⇝ 𝑆, 𝑅′ ∣ ∀𝑏, 𝑘. ‖𝑆(𝑏, 𝑘)‖ → ‖𝑅′(𝑘)‖ ⊢ 𝑆. (11)

Notice that as a derived rule, when 𝑆 has both the primary key con-
straint and a foreign key constraint, we should apply both Eq. (8)
and (11) and obtain

𝑆 ⊢ 𝑆 ⇝ 𝑆′, 𝑅′ ∣ ∀𝑏, 𝑘. ‖𝑆′(𝑏)‖ → ‖𝑅′(𝑓𝑆(𝑏))‖ ⊢ 𝑆. (12)

2.2.3 Check constraint. Finally, sql allows user to specify custom
constraints with the CHECK command on the columns of a specific
tables. Suppose on a table 𝑅 of schema 𝑆, we have a check con-
straint 𝐶 which should be a logical predicate over 𝑆. The check
constraint ensures all rows in 𝑅 satisfy 𝐶 , namely

∀𝑠. ‖𝑅(𝑠)‖ → 𝐶(𝑠).
And this gives the rewrite rule

𝑆 ⊢ 𝑆 ⇝ 𝑆 ∣ ∀𝑠. ‖𝑅(𝑠)‖ → 𝐶(𝑠) ⊢ 𝑆. (13)

2.3 NULL semantics
Up till now we have yet covered how null values are handled,
which we proceed now, but do note that all the formalisms above
require no changes in the presence of null values. Although null
values and their interactions with all the other sql features are sub-
tle and complicated to model, the flexibility and generality of our
formal setup enable us to precisely express all those complications
on a unified foundation.

First, since null values are allowed to occur under any typing
context in sql, we lift every type 𝑇 to its option type Option(𝑇 ) in
the semantics, effectively introducing a distinguished null value
in each elementary type. Such translation is supported by modern
smt solvers as the option types can be defined as custom algebraic
data types. We also notice that as a general rule, for an 𝑛-ary op-
eration 𝑓 that is well defined on non-null values, the behaviour
of 𝑓 (𝑎1, … , 𝑎𝑛) is extended to return null exactly when some 𝑎𝑖 is
null. Hence we can systematically lift many operations such as
+, ×, etc. that occurs in the surface syntax into the corresponding
operations that also operates on nullable/optional values.

The above rule, however, has a few exceptions that we need to
handle as special cases. For the boolean operations ∧ and ∨, we
have the definition as in three-value logic:

𝑎 ∧ 𝑏 ≔ ite(𝑎 = null, ite(𝑏 = True,null, 𝑏), ite(𝑎 = True, 𝑏, 𝑎)),
𝑎 ∨ 𝑏 ≔ ite(𝑎 = null, ite(𝑏 = False,null, 𝑏), ite(𝑎 = False, 𝑏, 𝑎)),

(14)
where ite denotes the if-then-else construct. Another special case
is the elementmembership predicate, namely In(𝑎, 𝑅) that checks if
the row 𝑎 is contained in table 𝑅. Complications arise when 𝑎 itself
is null or when 𝑅 contains null values, and we use the following
definition.
In(𝑎, 𝑅) ≔
ite(𝑎 = null,null, ite(‖𝑅(𝑎)‖, True, ite(‖𝑅(null)‖,null, False))).

(15)
This concludes the additional notions we introduce for mod-

elling the semantics of null, and the other important null-aware
operation such as the different flavors of outer join can be defined
using a combinations of null,Union, and Join, as a derived notion.

3 EQUIVALENCE CHECKING
Now we can present an equivalence checking algorithm based on
the formalism, namely U-expressions, we discussed in earlier sec-
tions. As hinted earlier, the algorithm is mainly two-staged, by first
normalizing arbitrarily formed U-expressions into a normal form,
and then trying to unify the two normal forms in a unification al-
gorithm. We will be using an smt solver along the way, idealized
as an oracle 𝒪 with the power to decide the satisfiability problem
of the logical theories in interest. We use the notation

Γ ∣ Δ ∣ Φ ⊢𝒪 𝑃 (16)

to denote checking the validity of the first-order logical formula 𝑃
with the oracle 𝒪 under the context Γ ∣ Δ ∣ Φ, which is equivalent
to checking the satisfiability of Φ ↛ 𝑃 with uninterpreted symbols
from Γ and Δ.

3.1 Normalization
All U-expressions can be organized into the following normal form,
and we demonstrate the procedure in Algorithm 1.

Definition 3. An U-expression 𝑈 under some context Γ ∣ Δ ∣ Φ is
in sum–product normal form (spnf) when it is the sum of 𝑛 sum–
product normal terms

Γ ∣ Δ ∣ Φ ⊢ 𝑈 = 𝑇1 + ⋯ + 𝑇𝑛 , (17)

where a sum–product normal term 𝑇 is in the form of some 𝑚
nested summations

Γ ∣ Δ ∣ Φ ⊢ 𝑇 = ∑
𝑠1 ,…,𝑠𝑚

‖𝐿‖ × 𝑉 . (18)

Here 𝐿 is any U-expression, and 𝑈 is the product of some 𝑘 appli-
cations of some table variable with some expression 𝑅𝑖(𝑒𝑖),

Γ ∣ Δ, 𝑠1, … , 𝑠𝑚 ∣ Φ ⊢ 𝑉 = 𝑅1(𝑒1) × ⋯ × 𝑅𝑘(𝑒𝑘). (19)

Since an U-expression in spnf is always the finite sum of normal
terms, we use the convention of regarding spnf as lists of normal
terms in the presentation of algorithms.

Algorithm 1 Obtaining sum–product normal form

−− Given a U−expression Γ ∣ Δ ∣ Φ ⊢ 𝑈 ,
−− return an equivalent U−expression in SPNF.
spnf : UExpr→ [SPNTerm]
spnf (𝑅 ⊢ 𝑅(𝑎)) = 𝑅 ⊢ 𝑅(𝑎)
spnf (𝑈1 + 𝑈2) = spnf 𝑈1 ++ spnf 𝑈2
spnf (𝑈1 × 𝑈2) = [mult 𝑇1 𝑇2 ∣ 𝑇1 ← spnf 𝑈1, 𝑇2 ← spnf 𝑈2] where

mult (∑𝑠‖𝐿‖ × 𝑉 ) (∑𝑠′ ‖𝐿′‖ × 𝑉 ′) = ∑𝑠,𝑠′ ‖𝐿 × 𝐿′‖ × 𝑉 × 𝑉 ′

spnf (∑𝑠 𝑈 ) = [∑𝑠 𝑇 ∣ 𝑇 ← spnf (𝑠 ⊢ 𝑈 )]
spnf ‖𝑈 ‖ = let 𝑈 ′ = spnf 𝑈 in ‖𝑈 ′‖
spnf [𝑃] = [𝑃]

Applying spnf does encompass many equivalent U-expressions
into one, but an important class of rewrites are not yet covered by
spnf. Consider the rule of composing two consecutive projections
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into one, which may result in the following pair of U-expressions
when normalized.

𝑅 ∣ 𝑥 ⊢ ∑
𝑦

∑
𝑧
‖[𝑥 = 𝑓 (𝑦)] × [𝑦 = 𝑔(𝑧)]‖ × 𝑅(𝑧),

𝑅 ∣ 𝑥 ⊢ ∑
𝑧
‖[𝑥 = 𝑓 (𝑔(𝑧))]‖ × 𝑅(𝑧).

(20)

The key here is to observe the summation variable 𝑦 can be ex-
pressed in terms of other variables as 𝑔(𝑧) and thus the summa-
tion over 𝑦 is unnecessary. Our solution here is to introduce an
extra step to eliminate as much redundant summation variable as
possible to the point where every remaining summation variable
does not have functional dependency over any other variables. We
call such process the stabilization of spnf and is demonstrated in
Algorithm 2.

Algorithm 2 Stabilize spnf

−− Stabilize a U−expression Γ ∣ Δ ∣ Φ ⊢ 𝑈 .
stable : [SPNTerm] → [SPNTerm]
stable 𝑈 = map stableTerm 𝑈
stableTerm : SPNTerm→ SPNTerm
stableTerm (∑𝑠‖𝐿‖ × 𝑈 ) = case mapMaybe (depend ‖𝐿‖ 𝑠) 𝑠 of

[] ⇒ ∑𝑠‖𝐿‖ × 𝑈
(𝑠, 𝑠′, 𝑒) ∷ _ ⇒ stableTerm (∑𝑠′ ‖𝐿‖[𝑒/𝑠] × 𝑈 [𝑒/𝑠]) where

depend ‖𝐿‖ 𝑠 𝑠𝑖 = let 𝑠′ = 𝑠 ∖ 𝑠𝑖 in
−− Check if exists some functional dependency between 𝑠′ and 𝑠.

if ∃(Δ ⊢ 𝑓 ). Γ ∣ Δ ∣ Φ ⊢𝒪 ‖𝐿‖ → 𝑓 (𝑠′) = 𝑠
then Just (𝑠, 𝑠′, 𝑓 (𝑠′)) else Nothing

An important implementation note is that when searching for
possible functional dependency between 𝑠′ and 𝑠, we need to per-
form the task of finding a function 𝑓 under the context Δ, such that
we have Γ ∣ Δ ∣ Φ ⊢𝒪 ‖𝐿‖ → 𝑓 (𝑠′) = 𝑠. Such task is not possible to
perform using smt solvers in general, and there are two implemen-
tation strategies we can take. First is to use synthesis tools such as
Syntax-Guided Synthesis (SyGuS) solvers to directly synthesis the
required function 𝑓 . Another strategy is to first obtain the congru-
ence group information of all the expressions involved in the term,
using calls such as Z3_get_implied_equalities exposed by the
Z3 solver. And then we can analyze the congruence classes to find
expressions that are equal to 𝑠 and get a suitable 𝑓 .

The second strategy theoretically can miss some cases if the so-
lution is not present as an expression already in the term, but we
find it equally powerful in practise and choose it over the first to
eliminate the extra dependency on a SyGuS solver.

3.2 Unification
Once we normalize and stabilize the U-expressions to obtain them
in spnf, checking equivalence can be relatively easy. InAlgorithm 3,
we accommodate for the commutativity of+ and∑ before compar-
ing the body of the terms by checking it with an smt solver.

Algorithm 3 Unifying spnfs

−− Unify two SPNFs under the same context Γ ∣ Δ ∣ Φ ⊢ 𝑈1, 𝑈2.
unify : [SPNTerm] → [SPNTerm]→ Bool
unify 𝑈1 𝑈2 = bagEq termEq (prune 𝑈1) (prune 𝑈2) where

prune = filter (𝜆 (∑𝑠‖𝐿‖ × 𝑈 )⇒ Γ ∣ Δ, 𝑠 ∣ Φ ⊬𝒪 ¬‖𝐿‖)
termEq (∑𝑠‖𝐿‖ × 𝑈 ) (∑𝑠′ ‖𝐿′‖ × 𝑈 ′) =

any (𝜆 𝜎 ⇒ Γ ∣ Δ, 𝑠 ∣ Φ ⊢𝒪 ‖𝐿‖ × 𝑈 = ‖𝐿′‖[𝜎] × 𝑈 ′[𝜎]) (perms 𝑠 𝑠′)
−− Enumerates all valid bijective substitutions
−− between two lists of variables.
perms : [Var] → [Var] → [(Var, Var)]

−− Compare two lists up to reordering of elements.
bagEq : (A→ A → Bool) → [A]→ [A] → Bool
bagEq (∼) [] [] = True
bagEq (∼) [] (_ ∷ _) = False
bagEq (∼) (x ∷ xs) ys = case dropEl x ys of

Nothing⇒ False
Just ys⇒ bagEq (∼) xs ys where

dropEl a [] = Nothing
dropEl a (x ∷ xs) ∣ a ∼ x = Just xs
dropEl a (x ∷ xs) = fmap (x ∷) (dropEl a xs)

4 COMPLETE FRAGMENT
The previous algorithm is designed to cover a large range of sql
features, but it is also incomplete in the sense that the equivalence
checking procedure returning false does not imply the queries are
not equivalent. And the incompleteness seems unavoidable even in
the presence of the perfect oracle 𝒪 deciding any first-order satisfi-
ability problem: Since the algorithm takes in arbitrary U-expressions
as inputs (not necessarily those that come from the interpretation
of queries), for arbitrary first-order predicate 𝑃 and 𝑄, we can have
the problem

∑
𝑠
[𝑃(𝑠)] ≟ ∑

𝑠
[𝑄(𝑠)] (21)

that encodes the notion of equicardinality (Hartig’s) quantifier, which
is known to be strictly more expressive than quantifiers in first-
order logic [6]. Therefore, to obtain a complete algorithm, we re-
strict our scope to a fragment of sql queries such that their seman-
tics in U-expressions contain extra structures that we can capture
and exploit during equivalence checking.

Real-world sql queries can be an open ended domain to charac-
terize, as endless data types and operations may occur in database
schema, filter conditions, projection expressions, etc. It is more ac-
curate to capture a query fragment relative to some (first-order)
theory 𝑇 which restricts the available data types and operations.

Definition 4. For some first-order theory 𝑇 , we have the query
fragment ℱ𝑇 generated by:

• Ground tables as distinct variables 𝑅1, 𝑅2, …, with optionally
imposed primary key constraints;

• Raw tables defined by Values(𝑣1, … , 𝑣𝑛).
• The filter operation Filter(𝑃, 𝑄);
• The projection operation Project(𝑓 , 𝑄);
• The correlated join operation CorrJoin(𝑄1, 𝑄2);
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• The union operation Union(𝑄1, 𝑄2);
And all the involved values 𝑣𝑖, projection expressions 𝑓 , and filter
conditions 𝑃 are definable in the theory 𝑇 .

Moreover, we have an accompanying oracle 𝒪𝑇 for ℱ𝑇 when
𝒪𝑇 can decide any satisfiability problem in 𝑇 . Equivalently, for any
context Γ and formula 𝜑 in 𝑇 under the context Γ, we can check if
𝜑 holds under all possible instantiation of the context Γ, denoted
Γ ⊢𝒪𝑇 𝜑, by querying the oracle 𝒪𝑇 whether ¬𝜑 is unsatisfiable
with uninterpreted symbols from Γ.

The significance of defining the query fragment relative to some
theory 𝑇 is in the same spirit of that in satisfiability modulo theo-
ries (smt). Since our method is generic over the underlying theory
𝑇 , the user has the freedom to pick and choose the theory 𝑇 and
its solver according to their specific problems in hand. We hereby
fix an arbitrary theory 𝑇 and proceed to demonstrate another al-
gorithm which completely decides the query equivalence problem
in ℱ with the oracle 𝒪 , and with two technical assumptions:

(1) The theory 𝑇 contains at least the equality logic with unin-
terpreted function and predicate.

(2) For every sort 𝑆 in the theory 𝑇 , a total order < on 𝑆 is de-
finable.

Our algorithm first translates the queries in ℱ directly into U-
expressions of a certain normal form, which are then further nor-
malized to obtain stronger normal forms, and are finally unified to
obtain the decision. We will then prove the soundness and com-
pleteness of the procedure.

4.1 Normalization
The queries in the fragmentℱ can be structured, whichwewish to
capture and exploit during equivalence check. As we demonstrate
later, any U-expression ⟦𝑄⟧ obtained from some query 𝑄 ∈ ℱ can
be rewritten into the following normal form.

Definition 5. An U-expression 𝑈 under some context Γ ∣ Δ is in
normal form when it is the sum of 𝑛 normal terms

Γ ∣ Δ ⊢ 𝑈 = 𝑇1 + ⋯ + 𝑇𝑛 , (22)

where a normal term 𝑇 is in the form of some𝑚 nested summations

Γ ∣ Δ ⊢ 𝑇 = ∑
𝑅𝑘11 (𝑠1)

⋯ ∑
𝑅𝑘𝑚𝑚 (𝑠𝑚)

[𝑃], (23)

where 𝑃 , called the body of 𝑇 and denoted Bdy 𝑇 , is a predicate
under the context Δ, 𝑠1, … , 𝑠𝑚 , i.e., not containing any relational
variables. We use the notation

∑
𝑅0(𝑠)

𝑓 (𝑠) ≔ ∑
𝑠
‖𝑅(𝑠)‖×𝑓 (𝑠), ∑

𝑅𝑘 (𝑠)
𝑓 (𝑠) ≔ ∑

𝑠
𝑅(𝑠) × ⋯ × 𝑅(𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 times

×𝑓 (𝑠)

to signify every variable introduced by a summation is always ap-
plied to some relational variable 𝑅 for some 𝑘 number of times,
with the special case of having ‖𝑅(𝑠)‖ when 𝑘 = 0.

Additionally, we may choose to globally fix a certain enumer-
ation of the relational variables in Γ, which gives Γ = 𝑅1, 𝑅2, …,
and require the summations in 𝑇 introduce variables applied to 𝑅𝑖
before those applied to 𝑅𝑗 whenever 𝑖 < 𝑗.

Since the normal form is highly structured, we define some ad-
ditional operations and notation on it that would be helpful later.

Definition 6. For a normal term 𝑇 and a relational variable 𝑅 that
occurred in 𝑇 , we let Scp𝑅 𝑇 be the list of variables introduced in 𝑇
that is also applied to 𝑅. Furthermore, we use Scp 𝑇 to denote the
entire scope of 𝑇 , namely the list of all variables introduced by the
summations in 𝑇 . In the case of Eq. (23), Scp 𝑇 = 𝑠1, … , 𝑠𝑛 . Similarly,
we define Rel 𝑇 to be the list of relational variables (including their
power) introduced by the summations in 𝑇 , and Rel′ 𝑇 to be the
list of relational variables without the power. In the case of (23),
Rel 𝑇 = 𝑅𝑘11 , … , 𝑅𝑘𝑚𝑚 and Rel′ 𝑇 = 𝑅1, … , 𝑅𝑚 .
Definition 7. For some 𝑅 and distinct 𝑠, 𝑠′ ∈ Scp𝑅 𝑇 , the notation
𝑇 [𝑠′/𝑠] represents the new normal term based on 𝑇 but with:

• All occurrences of 𝑠 in Bdy 𝑇 substituted with 𝑠′.
• The summation introducing 𝑠 by 𝑅𝑘(𝑠)merged with that in-
troducing 𝑠′ by 𝑅𝑙 (𝑠′) to form one summation introducing
𝑠′ by 𝑅𝑘+𝑙 (𝑠′).

And for a normal term Γ ∣ Δ ⊢ 𝑇 , the notation 𝑇 [𝑃]with Δ, Scp 𝑇 ⊢
𝑃 being a predicate, represents the new normal term based on 𝑇 but
with the body changed to 𝑃 .

Now we show that for all 𝑄 ∈ ℱ , the U-expression ⟦𝑄⟧ can
always be rewritten into the normal form. In fact, we proceed by
an inductive argument with a strengthened inductive hypothesis:
For Γ ∣ Δ, 𝑥 ⊢ ⟦𝑄⟧(𝑥), we can write it as the sum of normal terms
where each is of form

Γ ∣ Δ, 𝑥 ⊢ 𝑇 = ∑
𝑅𝑘11 (𝑠1)

⋯ ∑
𝑅𝑘𝑚𝑚 (𝑠𝑚)

[𝑥 = 𝑓 (𝑠1, … , 𝑠𝑚) ∧ 𝑃], (24)

where 𝑃 does not contain 𝑥 . The proof is essentially given by the
construction of Algorithm 4.

Algorithm 4 Normalizing queries to normal form

−− Given a query 𝑄 producing a result with schema 𝑆,
−− return a normal U−expression under context 𝑠 ∈ 𝑆 ⊢ 𝑈
−− that is equivalent to 𝑠 ⊢ ⟦𝑄⟧(𝑠)
norm : Query → [NTerm]
norm (Table 𝑅) = [𝑅 ∣ 𝑥 ⊢ ∑𝑅(𝑠)[𝑥 = 𝑠]]
norm (Values vals) = map (𝜆𝑣 ⇒ 𝑥 ⊢ [𝑥 = 𝑣]) vals
norm (Filter 𝑃 𝑄) = map (𝜆𝑇 ⇒ 𝑇[Bdy 𝑇 ∧ 𝑃]) (norm 𝑄)
norm (Proj 𝑓 𝑄) = map projTerm (norm 𝑄) where

projTerm (𝑦 ⊢ ∑𝑅𝑘 (𝑠)[𝑦 = 𝑔(𝑠) ∧ 𝑃]) =
𝑥 ⊢ ∑𝑅𝑘 (𝑠)[𝑥 = 𝑓 (𝑔(𝑠)) ∧ 𝑃]

norm (CorrJoin 𝑄1 𝑄2) = [join 𝑇1 𝑇2 ∣ 𝑇1 ← 𝑈1, 𝑇2 ← 𝑈2] where
(𝑈1, 𝑈2) = (norm 𝑄1, norm 𝑄2)
join (𝑥 ⊢∑

𝑅𝑘 (𝑠)
[𝑥 = 𝑓 (𝑠) ∧ 𝑃]) (𝑦, 𝑥′ ⊢∑

𝑅′𝑘′ (𝑠′)
[𝑥′ = 𝑓 ′(𝑠′) ∧ 𝑃 ′]) =

𝑥, 𝑥′ ⊢ ∑
𝑅𝑘 (𝑠), 𝑅′𝑘′ (𝑠′)

[(𝑥, 𝑥′) = (𝑓 (𝑠), 𝑓 ′[𝑓 (𝑠)/𝑦](𝑠′)) ∧ 𝑃 ∧ 𝑃 ′[𝑓 (𝑠)/𝑦]]

norm (Union 𝑄1 𝑄2) = norm 𝑄1 ++ norm 𝑄2
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4.1.1 Linearisation. Once we obtain the normal form above, com-
paring them in a term-by-term manner seems to be straightfor-
ward. However, the problem of variable ordering occurs when de-
ciding term equivalence. For example, consider the terms

𝑅 ∣ 𝑥 ⊢ 𝑇1 = ∑
𝑅(𝑠1)

∑
𝑅(𝑠2)

[𝑥 = 𝑠1], 𝑅 ∣ 𝑥 ⊢ 𝑇2 = ∑
𝑅(𝑠1)

∑
𝑅(𝑠2)

[𝑥 = 𝑠2],

which are identical if we (rightfully) swap the summation variables
𝑠1 and 𝑠2 in 𝑇2 before unification. But 𝑇1 and 𝑇2 are not the same in
the sense of checking

𝑅 ∣ 𝑥 ⊢ ∀𝑠1, 𝑠2. [𝑥 = 𝑠1] ↔ [𝑥 = 𝑠2].
The issue comes from the fact that variables in 𝑆𝑅(𝑇 ) can be equiv-
alently introduced in any order, while when comparing normal
terms by their body, we enforce a certain ordering of scope by
putting both sides under the same universal quantifier.

Another problematic case comes from redundant variables:

𝑅 ∣ 𝑥 ⊢ ∑
𝑅(𝑠1)

∑
𝑅(𝑠2)

[(𝑥 = 𝑠2) ∧ (𝑠1 = 𝑠2)], 𝑅 ∣ 𝑥 ⊢ ∑
𝑅2(𝑠1)

[𝑥 = 𝑠1],

where in 𝑇1 we can avoid 𝑠2 by removing the scope and substituting
all occurrences of 𝑠2 with 𝑠1 to obtain an identical term to 𝑇2. But
it is hard to check the equivalence of 𝑇1 and 𝑇2 as is due to their
mismatching summation scope.

Our solution is to fix variable ordering and eliminate redun-
dancy in normal terms by the process of linearization.

Definition 8. AU-expression 𝑈 is in linearized normal form (lnf)
if it is in normal form and additionally satisfies the property that:
for all normal term 𝑇 in 𝑈 and distinct relational variable 𝑅 in 𝑇 ,
Bdy 𝑇 implies the variables Scp𝑅 𝑇 are pairwise-distinct and form
a linearly ordered chain.

Such property effectively fix the ordering of Scp𝑅 𝑇 for any 𝑅
in 𝑇 , and since we have already fixed the ordering of distinct re-
lational variables, the entire scope Scp 𝑇 now have a well defined
order of variables.

The procedure to rewrite a normal form 𝑈 into an equivalent
and linearized normal form (lnf) is presented in Algorithm 5. We
define Lin(𝑋) to be the procedure that enumerates all possible re-
lations between the variables in set 𝑋 using the total order < or
equality. Namely for 𝑋 = {𝑎, 𝑏, 𝑐}, we have
Lin({𝑎, 𝑏, 𝑐})
= {𝑎 < 𝑏 < 𝑐, 𝑎 < 𝑐 < 𝑏, 𝑏 < 𝑎 < 𝑐, 𝑏 < 𝑐 < 𝑎, 𝑐 < 𝑎 < 𝑏, 𝑐 < 𝑏 < 𝑎}
∪ {𝑎 < 𝑏 = 𝑐, 𝑏 = 𝑐 < 𝑎, 𝑎 = 𝑏 < 𝑐, 𝑐 < 𝑎 = 𝑏, 𝑎 = 𝑐 < 𝑏, 𝑏 < 𝑎 = 𝑐}
∪ {𝑎 = 𝑏 = 𝑐}.

4.1.2 Partition. The lnf intuitively ensures terms can be equiva-
lent only if they have a matching scope. But we need some more
processing of lnf to take into account the fact that some terms can
be combined into/split from a single term. For example, consider
the following two lnfs,

𝑅 ∣ 𝑃, 𝑥 ⊢ ∑
𝑅(𝑠)

[(𝑥 = 𝑠) ∧ 𝑃(𝑠)] + ∑
𝑅(𝑠)

[(𝑥 = 𝑠) ∧ ¬𝑃(𝑠)],

𝑅 ∣ 𝑃 , 𝑥 ⊢ ∑
𝑅(𝑠)

[𝑥 = 𝑠].

Algorithm 5 Linearising the normal form

linear : [NTerm] → [LNTerm]
linear 𝑈 = concatMap linExpand 𝑈 where

clauses = sequence [ Lin(Scp𝑅 𝑇 ) ∣ 𝑅 ← Γ ]
linExpand 𝑇 = map (cleanUp ∘ foldl ∧ ⊤) clauses
cleanUp 𝑇 = foldl elimVar 𝑇 varPairs
varPairs = [ (𝑠𝑖, 𝑠𝑗 ) ∣ 𝑅 ← Γ, 𝑠𝑖 ← Scp𝑅 𝑇 , 𝑠𝑗 ← Scp𝑅 𝑇 , 𝑖 < 𝑗 ]
elimVar 𝑇 (𝑠, 𝑠′) =

if Δ, Scp 𝑇 ∣ Φ ⊢𝒪 Bdy 𝑇 → 𝑠 = 𝑠′ then 𝑇 [𝑠′/𝑠] else 𝑇

The two terms are equivalent since we can break down the second
term by the equality

[𝑥 = 𝑠] = [(𝑥 = 𝑠) ∧ (𝑃(𝑠) ∨ ¬𝑃(𝑠))]
= [(𝑥 = 𝑠) ∧ 𝑃(𝑠)] + [(𝑥 = 𝑠) ∧ ¬𝑃(𝑠)].

To accommodate, we propose to further normalize lnfs by parti-
tioning the terms into the finest possible disjoint fragments, which
we make precise in the following definition.

Definition 9. A lnf Γ ∣ Δ ⊢ 𝑈 is partitioned if for any normal
terms 𝑇 , 𝑇 ′ of 𝑈 such that Scp 𝑇 = Scp 𝑇 ′, we have exactly one of

Δ, Scp 𝑇 ⊢ Bdy 𝑇 ↔ Bdy 𝑇 ′, Δ, Scp 𝑇 ⊢ Bdy 𝑇 ↮ Bdy 𝑇 ′.
(25)

Moreover, we call a pair of lnf under the same context, say 𝑈1 and
𝑈2, fully partitioned when 𝑈1 + 𝑈2 is partitioned.

We present in Algorithm 6 a procedure to produce fully parti-
tioned lnfs. Notice that the algorithm takes both U-expressions
𝑈1 and 𝑈2 that we wish to perform equivalence check on as input,
and produce fully partitioned 𝑈 ′1 and 𝑈 ′2 . This agrees with the ob-
servation from the above example that partitioning the terms in
one side requires knowledge of the terms in the other.

4.2 Unification
With a fully partitioned pair 𝑈1 and 𝑈2, unification can be done
in a truly term-by-term fashion. Additionally, with the guarantee
that 𝑈1 and 𝑈2 are both in lnf, term comparison can also be trivial.
Hence we can finish the equivalence check with a relatively simple
unification procedure as in Algorithm 7.

And we finally have the equivalence checking procedure

Algorithm 8 Equivalence check of sql queries

equiv : Query → Query → Bool
equiv 𝑄1 𝑄2 = unify 𝑈1 𝑈2 where

(𝑈1, 𝑈2) = part (linear (norm ⟦𝑄1⟧) (linear (norm ⟦𝑄2⟧))

4.3 Soundness
We show that our approach is soundwith respect to the U-semiring
semantics in the following sense.

Theorem 1. For a pair of queries under the same context Γ ∣ Δ ∣
Φ ⊢ 𝑄1, 𝑄2, we have

equiv(𝑄1, 𝑄2) → ⟦𝑄1⟧ = ⟦𝑄2⟧. (26)
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Algorithm 6 Partitioning lnf

part : [LNTerm] → [LNTerm] → ([LNTerm], [LNTerm])
part 𝑈1 𝑈2 = separate (parts 𝑈1) (parts 𝑈2)
−− Given expression 𝑈 in LNF, return a partitioned LNF expression
−− that is equivalent to 𝑈 .
parts 𝑈 = concatMap (foldl cut [] 𝑈 ′) (groupWith Scp 𝑈 ) where

cut 𝑈 𝑇 = 𝑇 ′ ∷ concatMap pieces 𝑈 where
𝑃 = Bdy 𝑇
pieces 𝑇1 = [𝑇1[𝑃1 ∧ ¬𝑃], 𝑇1[𝑃1 ∧ 𝑃], 𝑇 [𝑃 ∧ 𝑃1]] where
(𝑃 , 𝑃1) = (Bdy 𝑇 , 𝐵𝑑𝑦𝑇1)

𝑇 ′ = foldl (𝜆𝑇2 𝑇1 ⇒ 𝑇2[Bdy 𝑇2 ∧ Bdy 𝑇1]) 𝑇 𝑈
−− Given 𝑈1 and 𝑈2 both partitioned, return a fully partitioned pair
−− that is equivalent to (𝑈1, 𝑈2).
separate 𝑈1 𝑈2 = unzip (concatMap sepPair pairs) where

−− Obtain the distinct scopes among all terms.
𝑆 = Data.List.nub (map Scp (𝑈1 ++ 𝑈2))
pairs = [(𝑇1, 𝑇2) ∣ 𝑠 ← 𝑆, 𝑇1 ← 𝑈1, 𝑇2 ← 𝑈2, Scp 𝑇1 = Scp 𝑇2 = 𝑠]
sepPair (𝑇1, 𝑇2) = (𝑈 ′1 , 𝑈 ′2 ) where

(𝑃1, 𝑃2) = (Bdy 𝑇1, Bdy 𝑇2)
𝑈 ′1 = [𝑇1[𝑃1 ∧ ¬𝑃2], 𝑇1[𝑃1 ∧ 𝑃2]]
𝑈 ′2 = [𝑇2[𝑃2 ∧ ¬𝑃1], 𝑇2[𝑃2 ∧ 𝑃1]]

Algorithm 7 Unifying lnfs with partitioned terms

unify : [LNTerm] → [LNTerm]→ Bool
unify 𝑈1 𝑈2 = bagEq termEq (prune 𝑈1) (prune 𝑈2) where

prune = filter (𝜆𝑇 ⇒ Δ, Scp 𝑇 ⊬𝒪 ¬Bdy 𝑇 )
termEq 𝑇1 𝑇2 = if Rel 𝑇1 ≠ Rel 𝑇2 then False else

Δ, Scp 𝑇1 ⊢𝒪 Bdy 𝑇1 ↔ Bdy 𝑇2

Proof. During each stage of normalization we are only using
the axioms of U-semiring for rewriting, and during unification the
equality check is also based on those axioms. □

4.4 Completeness
Theorem 2. For a pair of queries under the same context Γ ∣ Δ ∣
Φ ⊢ 𝑄1, 𝑄2, we have

⟦𝑄1⟧ = ⟦𝑄2⟧ → equiv(𝑄1, 𝑄2). (27)

Proof. We prove the contrapositive by first assuming the pro-
cedure Equiv(𝑄1, 𝑄2) returns false. Given that our normalization
procedures preserve U-semiring identity, and let 𝑠 ⊢ 𝑈1 and 𝑠 ⊢ 𝑈2
be the fully partitioned lnfs of 𝑠 ⊢ ⟦𝑄1⟧(𝑠) and 𝑠 ⊢ ⟦𝑄2⟧(𝑠) respec-
tively, we wish to show 𝑈1 ≠ 𝑈2.

By the assumption, during unification, we have some term 𝑇
that occurs in an unbalanced manner between 𝑈1 and 𝑈2, as in

𝐶(𝑇 , 𝑈1) ≠ 𝐶(𝑇 , 𝑈2),
where 𝐶(𝑇 , 𝑈 ) denotes the number of terms that are equal to 𝑇 in
the sense of termEq in Algorithm 7. Among all such unbalanced
term 𝑇 , we pick one with the minimal length of scope and denote
it with 𝑇 ∗. Additionally, we may prune away balanced terms from

𝑈1 and 𝑈2 at this point as they have no effect on the equality of 𝑈1
and 𝑈2.

We now construct an instance of Δ and a family of instances
of Γ based on 𝑇 ∗ and later show at least one such instantiation
leads to the desired conclusion 𝑈1 ≠ 𝑈2. First, since we have al-
ready pruned trivially empty terms during unification, there must
exists some 𝛿 ∈ Δ and 𝜎 ∈ Scp 𝑇 ∗ under which Bdy 𝑇 ∗ is true.
The instantiation 𝜎 ∈ Scp 𝑇 ∗ can be regarded as a sequence of val-
ues, where the 𝑖-th value is the instantiation of the 𝑖-th variable in
Scp 𝑇 ∗. Moreover, we use 𝜎𝑅 to denote the subsequence of 𝜎 which
form the instantiation of Scp𝑅 𝑇 ∗.

Now suppose there are 𝑚 values in the sequence 𝜎 , and we will
construct a family of instances of Γ over the set 𝑁 = ℕ𝑚>0. Con-
cretely, over the index 𝑛 ∈ 𝑁 we construct an instance 𝛾 ∈ Γ,
namely for each relational variable 𝑅 ∈ Γ, let

𝛾𝑅(𝑠) = {
𝑛𝑖 if 𝑠 ∈ 𝜎𝑅 and 𝑠 is the 𝑖-th element of 𝜎
0 otherwise

, (28)

where 𝑛𝑖 denotes the 𝑖-th component of 𝑛. Such instance of 𝑅 is well
defined, since the lnf already ensures the values in 𝜎𝑅 to be pair-
wise distinct, which guarantees 𝛾𝑅 to be a well-formed function.

Under the constructed context instantiations 𝛿 and 𝛾 , we may
evaluate the fully partitioned lnf of both sides, 𝑈1 and 𝑈2. Many
terms in both sides will be evaluated to zero, and we claim that the
remaining terms that are non-zero will have a form similar to 𝑇 ∗,
in the sense that for any 𝑇 ′ ≠ 0, we have

Rel′ 𝑇 ∗ = Rel′ 𝑇 ′, Δ, Scp 𝑇 ∗ ⊢ Bdy 𝑇 ∗ ↔ Bdy 𝑇 ′.
This holds for the non-zero terms since we can prove the contra-
positive by cases.

(1) Suppose Rel′ 𝑇 ∗ ≠ Rel′ 𝑇 ′. Since we have chosen 𝑇 ∗ to be
an unbalanced term with the minimal length in scope, their
must exists some relational variable 𝑅 such that Scp𝑅 𝑇 ′ is
longer than Scp𝑅 𝑇 ∗. With the fact that 𝑇 ′ is in lnf, there
must be some 𝑠 ∈ Scp𝑅 𝑇 ′ where Bdy 𝑇 ′ implies 𝑠 is always
distinct from the values in 𝜎𝑅. But since 𝑠 is applied to 𝑅
in the term, and the instantiation 𝛾𝑅 vanishes at all points
beyond those of 𝜎𝑅, the term 𝑇 ′ must also vanish under the
evaluation.

(2) Otherwise we have Rel′ 𝑇 ∗ = Rel′ 𝑇 ′ but the body of 𝑇 ∗ and
𝑇 ′ are not equivalent. Using the fact that the terms are fully
partitioned, we then know

Δ, Scp 𝑇 ∗ ⊢ Bdy 𝑇 ∗ ↮ Bdy 𝑇 ′.
Hence under the evaluation with 𝛾 and 𝛿 , the value of 𝑇 ′
vanishes, as the summations in 𝑇 ′ can only be non-zero on
𝜎 , which does not satisfy Bdy 𝑇 ′.

Finally, we can inspect the remaining non-zero terms, which are
all in a form similar to 𝑇 ∗ as shown. For any such term 𝑇 ′ in 𝑈1 (or
similarly in 𝑈2), the variable and relational variable introduced by
the 𝑖-th summation 𝑅𝑘𝑖𝑖 (𝑠𝑖) ∈ Rel 𝑇 ′ evaluates to 𝛾 𝑘𝑖𝑅𝑖 (𝜎𝑖) = 𝑛𝑘𝑖𝑖 . And
thus 𝑇 ′ = 𝑛𝑘11 ⋯𝑛𝑘𝑚𝑚 . Therefore, the remaining terms in 𝑈1 (and
similarly in 𝑈2) evaluates to a polynomial 𝑃1 over the variables
𝑛1, … , 𝑛𝑚 , where each term in 𝑃1 originates from a unique term 𝑇 ′
in 𝑈1 with the coefficient being 𝐶(𝑇 ′, 𝑈1) and the powers of vari-
ables given by Rel 𝑇 ′.
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Two polynomials over variables of positive integers are equal if
and only if all terms of a certain power have the same coefficient
at both sides. However, since 𝑇 ∗ occurs in an unbalanced manner,
the term originated from 𝑇 ∗ will have different coefficients in 𝑃1
and 𝑃2. Thus in the family of instantiation 𝛾 over 𝑁 , there must be
some instantiation for which 𝑃1 ≠ 𝑃2, and hence 𝑈1 ≠ 𝑈2. □

5 EVALUATION
We implement the algorithm presented in Section 3 in 2,520 lines
of Rust, with cvc5 and z3 as our backend smt solver. To demon-
strate a comparison with similar tools, we first run our prover on
a common benchmark suite initially compiled to evaluate the udp
implementation [2], and later also run by equitas [7] and spes
[8]. This benchmark suite consists of 232 query pairs that are ex-
tracted from a previous version the Apache Calcite data manage-
ment framework [1]. Each of these query pairs comes from a spe-
cific test case for the query rewrite engine in Calcite, which has
an input query and a corresponding expected rewritten query, all
sharing the same table schema information.

However, we notice that among the 232 collected query pairs, 23
pairs are already identical and hence trivial to prove. We believe
this is due to the fact that certain test cases in Calcite is setup such
that the expected output query should not be rewritten, and those
cases were still accidentally collected in the benchmark suite. To
obtain query pairs of higher quality, we prepare another suite ex-
tracted from a newer version of Calcite (1.32.0) and take care to
filter out all the trivial pairs. This new benchmark suite contains
416 query pairs, and we are able to rerun the previous state-of-the-
art, spes on this new suite for direct comparison.

In Table 1 we report the number of provable cases and aver-
age execution time for the relevant tools running on the two Cal-
cite benchmark suite prepared as above. Our tool can successfully
prove substantially more cases compared to the next best tool, spes
in both the old and new benchmark suite. And compared to udp,
the only other implementation that is also based on U-semiring,
we can see both a great increase in proof count as well as much
faster execution time. To gain more insight on the difference in
runtime compared to spes, we record the runtime of both tools on
a per case basis as in Figure 1. We can see that our tool has compa-
rable performance to spes for the fastest 50 cases, and our runtime
distribution is greatly skewed by a few slowest cases. We do note
that the slowest cases arise when the normalization algorithm (Al-
gorithm 1) hits the exponential worst case of distributing + over ×
and∑, producing a large term for later parts to process. But since
in such cases the produced terms are very similar, we expect some
form of caching can be helpful in avoiding repetitive computation
as a future performance improvement.

Wewould also like to comment a few points on our implementa-
tion strategy. First, we only implement the general algorithm and
avoid implementing the more specialized algorithm in Section 4.
Even though the specialized algorithm is proven to be complete,
we regard it to be only of theoretical interest since its time com-
plexity makes it perform poorly in practise, and its specialized
nature makes it cover less query pairs that occur in real world

Old suite (232 total) New suite (416 total)
Tool Semantics Proved Avg. time Proved Avg. time
udp Bag 34 4.16 s – –

equitas Set 67 0.19 s – –
spes Bag 95 0.08 s 107 0.08 s

Our tool Bag 148 1.18 s 235 1.67 s
Table 1: Comparison of automated sql query checkers. We
collect the number and average runtime of provable cases
using the original and new benchmark suite extracted from
Calcite. The data for udp and equitas are respectively taken
from [2] and [7].

Figure 1: The distribution of runtime for provable cases by
spes and our tool. For a given time 𝑡 , the corresponding case
count is the number of cases proved under 𝑡 by each tool. The
upper plot contains the data collected when running both
tools on the old Calcite suite, and the lower plot contains
those from the new Calcite suite.

use. Another notable design choice is that we choose to imple-
ment the decision procedure in Rust, rather than using a proof as-
sistant such as Coq or Lean as in prior work [2] that also based
on the U-semiring semantics. The advantage of using a more gen-
eral purpose programming language is that we can get good lan-
guage binding support to smt solvers and avoid doing tactic-level
meta-programming common in proof assistants. This leads to bet-
ter runtime performance and easier extensibility in the codebase.
But we do believe implementing our algorithm within a proof as-
sistant would be beneficial in the future, when better integration
with smt solver is possible. A current issue is that one should re-
gard our current Rust implementation as a trusted codebase, while
a proof tactic in Coq or Lean can not only provide an answer to
the user, but also generate a corresponding proof script that can
be independently checked. Moreover, since our general algorithm
are always incomplete, some user intervention at the proof search-
ing stage can be helpful or sometimes necessary, and interactive
proof assistants are the ideal user interface for such experience.
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6 RELATEDWORK
Reasoning about query equivalence is a long standing central topic
in the field of database systems. Due to its undecidable nature in
general, many works have devoted to characterizing special frag-
ments of sql that admits decidable query equivalence. More specif-
ically for bag semantics, Cohen [5] has shown the decidability of
equivalence for union of conjuncted queries (ucq). Our work can
be seen as an extension to Cohen’swork in the sense thatwe a) gen-
eralizes the proof techniques to work on more general constructs,
b) additionally include correlated joins and primary keys in the
decidable fragment, and c) relativize the decidability to the decid-
ability of some underlying logical theory, capturing the use of smt
solvers as oracles. In fact, by taking the theory of linear arithmetics,
in which satisfiability is decidable, our result implies the decidabil-
ity of ucq under bag semantics without any oracles.

On the implementation side, we have compared our solver with
udp, equitas, and spes quantitatively in Section 5.We largely share
the same semantics foundation with udp, which pioneers the prac-
tise of automated equivalence proof and is the origin of the U-
semiring formalism. Udp is implemented as a proof tactics using
the Lean programming language, which makes it much more trust-
worthy compared to others. But udp does not incorporate an smt
solver, limiting its capability in reasoning on foreign keys (poten-
tially non-terminating) and null semantics (no support). Since our
work is additionally smt-based, we are able to better formalize in-
tegrity constraints and correctly model the null semantics.

The other solver equitas and later spes uses a different approach
as they reason directly on the level of (symbolic) query expres-
sions, and do not descent down to a lower semantic representa-
tion such as U-semiring. Essentially, a few special query rewrite
rules are being selected as trusted, and queries are first normal-
ized by repetitively applying those special rules, which are then
unified with the help of smt solvers. Such technique is effective
for many simple cases, but as pointed out by Zhou et al. [8], the
semantics of integrity constraints are modeled incompletely by a
few ad hoc rewrite rules, which are unable to discover many real-
world equivalences. We instead insists on modeling semantics on
the U-semiring level, and strive to use rules that are general and
composable to better capture the interaction of various aspects of
sql semantics.

7 CONCLUSION
In this paper we present a new framework for query equivalence
checking, combining the U-semiring semantics with smt solvers
with better encoding of sql features. Empirically, our implemen-
tation can verify 235 out of 415 real-world query pairs extracted
from the Calcite data management framework, which doubles over
the next best tool in number (104/415). To capture the power of
the framework theoretically, we show that our formalism admits
a large query fragment in which query equivalence is decidable
relative to the satisfiability of some first-order theory, generaliz-
ing prior decidability results further. We hope that our contribu-
tions are a step towards integrating sql semantic reasoning tools
in more practical settings.
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