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Abstract

Efficient Clustering Frameworks for Federated Learning Systems

by

Jichan Chung

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kannan Ramchandran, Chair

We address the problem of Federated Learning (FL) where users are distributed and their
datapoints are partitioned into clusters. This setup captures settings where users have
their own objectives (learning tasks) but by aggregating their data with others in the same
cluster (same learning task), they can leverage the strength in numbers in order to perform
more efficient Federated Learning. We propose a framework dubbed the Iterative Federated
Clustering Algorithm (IFCA), which alternately estimates the cluster identities of the users
and optimizes model parameters for the user clusters via gradient descent. We analyze the
convergence rate of this algorithm first in a linear model with squared loss and then for
generic strongly convex and smooth loss functions. We show that in both settings, with
good initialization, IFCA converges at an exponential rate, and discuss the optimality of the
statistical error rate. When the clustering structure is ambiguous, we propose to train the
models by combining IFCA with the weight sharing technique in multi-task learning. In the
experiments, we show that our algorithm can succeed even if we relax the requirements on
initialization with random initialization and multiple restarts. We also present experimental
results showing that our algorithm is efficient in non-convex problems such as neural networks.
We demonstrate the benefits of IFCA over the baselines on several clustered FL benchmarks.
We also develop an extension of our framework for a more general setting where statistical
heterogeneity can exist across clients, named UIFCA . For synthetic data, we observe that
UIFCA can correctly recover the cluster information of individual datapoints. We also provide
analysis of UIFCA on MNIST dataset.
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Chapter 1

Introduction

In many modern data-intensive applications such as recommendation systems, image recogni-
tion, and conversational AI, distributed computing has become a crucial component. In many
applications, data are stored in end users’ own devices such as mobile phones and personal
computers, and in these applications, fully utilizing the on-device machine intelligence is an
important direction for next-generation distributed learning. Federated Learning (FL) [40,
25, 39] is a recently proposed distributed computing paradigm that is designed towards this
goal, and has received significant attention. Many statistical and computational challenges
arise in Federated Learning, due to the highly decentralized system architecture. In this
report, we propose an efficient algorithm that aims to address one of the major challenges in
FL—dealing with heterogeneity in the data distribution.

In Federated Learning, since the data source and computing nodes are end users’ personal
devices, the issue of data heterogeneity, also known as non-i.i.d. data, naturally arises.
Exploiting data heterogeneity is particularly crucial in applications such as recommendation
systems and personalized advertisement placement, and it benefits both the users’ and the
enterprises. For example, mobile phone users who read news articles may be interested in
different categories of news like politics, sports or fashion; advertisement platforms might
need to send different categories of ads to different groups of customers. These indicate that
leveraging the heterogeneity among the users is of potential interest—on the one hand, each
machine itself may not have enough data and thus we need to better utilize the similarity
among the users; on the other hand, if we treat the data from all the users as i.i.d. samples,
we may not be able to provide personalized predictions. This problem has recently received
much attention [51, 49, 21].

In this report, we study two different formulations of FL with non-i.i.d. data. First,
we consider clustered Federated Learning [49, 38] setup, which assumes that the users are
partitioned into different clusters; for example, the clusters may represent groups of users
interested in politics, sports, etc, and our goal is to train models for every cluster of users.
In order to achieve this goal, we propose a framework and analyze a distributed method,
named the Iterative Federated Clustering Algorithm (IFCA) for clustered FL. We further
establish convergence rates of our algorithm, for both linear models and general strongly
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convex losses under the assumption of good initialization. We prove exponential convergence
speed, and for both settings, we can obtain near optimal statistical error rates in certain
regimes. We also present experimental evidence of its performance in practical settings: We
show that our algorithm can succeed even if we relax the initialization requirements with
random initialization and multiple restarts; and we also present results showing that our
algorithm is efficient on neural networks. We demonstrate the effectiveness of IFCA on two
clustered FL benchmarks created based on the MNIST and CIFAR-10 datasets, respectively,
as well as the Federated EMNIST dataset [2] which is a more realistic benchmark for FL and
has ambiguous cluster structure.

In the second part of the study, we extend our algorithm to be applicable for a more
general type of heterogeniety and dataset; We now assume that a user can hold data from
multiple clusters, without any information of its membership, and task-specific label is not
available. An example case would be a user reading articles from different topics, but the
articles may not have tags that indicate which subjects it belongs to. We develop UIFCA
, a generative model-based clustering method for unsupervised dataset, that decodes the
heterogeniety within the client, based on the IFCA’s approach. We provide a comparison of
UIFCA and k-FED algorithm [8](an off-the-shelf federated clustering approach), on several
different types of synthetic cluster-structured data. We also evaluate our algorithm on MNIST
dataset, and provide comparison against ClusterGAN [43], a popular recent approach to
unsupervised data in the centralized setting combined with FedAvg algorithm. For all cases,
we evaluate for a particular type of client heterogeneity where a constant portion of the
client’s data belongs to a single distribution, and the remaining portion are drawn from the
mixture of all distributions. For the synthetic datasets, we observe that our method can
correctly recover cluster information for both i.i.d and non-i.i.d. cases, while the baseline
fails in non-i.i.d. We also provide analysis of our method on MNIST dataset.

The rest of this report discusses the development of IFCA and UIFCA . The outline is
as follows. In Chapter 2, we survey existing works related to our problem along with the
potential drawbacks and for improvement in these works. Chapter 3 describes the IFCA
algorithm in detail, with its analysis and experimental results. Chapter 4 presents the UIFCA
algorithm that extends IFCA for user-level heterogeniety and unsupervised datasets, with
its experimental results. Lastly, Chapter 5 draws conclusions from our work and describes
directions for future work.

1.1 Notation

We use [r] to denote the set of integers {1, 2, . . . , r}. We use ∥ · ∥ to denote the ℓ2 norm of
vectors. We use x ≳ y if there exists a sufficiently large constant c > 0 such that x ≥ cy, and
define x ≲ y similarly. We use poly(m) to denote a polynomial in m with arbitrarily large
constant degree.
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Chapter 2

Related Work

During the preparation of the initial draft, we became aware of a concurrent and independent
work by Mansour et al. [38], in which the authors propose clustered FL as one of the
formulations for personalization in Federated Learning. The algorithms proposed in our report
and by Mansour et al. are similar. However, our report makes an important contribution by
establishing the convergence rate of the population loss function under good initialization,
which simultaneously guarantees both convergence of the training loss and generalization to
test data; whereas in [38], the authors provided only generalization guarantees. We discuss
other related work in the following.

2.1 Federated Learning and non-i.i.d. data

Learning with a distributed computing framework has been studied extensively in various
settings [65, 46, 32]. As mentioned in Chpater 1, Federated Learning [40, 39, 25, 19] is one of
the modern distributed learning frameworks that aims to better utilize the data and computing
power on edge devices. A central problem in FL is that the data on the users’ personal devices
are usually non-i.i.d. Several formulations and solutions have been proposed to tackle this
problem. A line of research focuses on learning a single global model from non-i.i.d. data [64,
48, 31, 50, 34, 42]. Other lines of research focus more on learning personalized models [51,
49, 12]. In particular, the MOCHA algorithm [51] considers a multi-task learning setting
and forms a deterministic optimization problem with the correlation matrix of the users
being a regularization term. Our work differs from MOCHA since we consider a statistical
setting with cluster structure. Another approach is to formulate Federated Learning with
non-i.i.d. data as a meta learning problem [5, 21, 12]. In this setup, the objective is to first
obtain a single global model, and then each device fine-tunes the model using its local data.
The underlying assumption of this formulation is that the data distributions among different
users are similar, and the global model can serve as a good initialization. The formulation of
clustered FL has been considered in two recent works [49, 16]. Both of the two works use
centralized clustering algorithm such as K-means, in which the center machine has to identify
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the cluster identities of all the users, leading to high computational cost at the center. As a
result, these algorithms may not be suitable for large models such as deep neural networks
or applications with a large number of users. For the decentralized approach, k-FED [8]
proposes a clustering algorithm that is a variant of K-means [36], with focus on reducing the
number communication rounds.

2.2 Latent variable problems

As mentioned in Chapter 1, our formulation can be considered as a statistical estimation
problem with latent variables in a distributed setting, and the latent variables are the
cluster identities. The latent variable problem is a classical topic in statistics and non-
convex optimization; examples include Gaussian mixture models (GMM) [58, 30], mixture of
linear regressions [9, 55, 62], and phase retrieval [13, 41]. Expectation Maximization (EM)
and Alternating Minimization (AM) are two popular approaches to solving these problems.
Despite the wide applications, their convergence analyses in the finite sample setting are
known to be hard, due to the non-convexity nature of their optimization landscape. In recent
years, some progress has been made towards understanding the convergence of EM and AM
in the centralized setting [44, 6, 61, 1, 54]. For example, if started from a suitable point, they
have fast convergence rate, and occasionally they enjoy super-linear speed of convergence [58,
14]. In this report, we provide new insights to these algorithms in the FL setting.

2.3 Clustering methods using deep neural network for

the centralized environment

Many attempts have been made in using deep neural network to the clustering problem for
the centralized environment. ClusterGAN [43] designs a new GAN architecture that learns
representations that forms clusters in latent space. A variant of Variational Autoencoder
model was proposed to capture the cluster informations [10]. Self-conditioned GAN [35] trains
GAN model conditioned by pseudo-labels, where pseudo-labels are iteratively assigned from
K-means clustering on the learned representation. DeepCluster [3] trains deep classifiers with
similar idea. These works assumes full access to training data that captures the distribution
they come from. We consider the same problem for the federated, where above assumption
is not available. We find that methods involving DNN to cluster a unsupervised dataset
are not well studied in the federated settings, therefore we analyze DNN-based methods for
centralized setting in the federated settings, as well as applying IFCA algorithm to solve the
same problem.
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Chapter 3

Iterative Federated Clustering
Algorithm (IFCA)

3.1 Problem Formulation

We begin with a standard statistical learning setting of empirical risk minimization (ERM).
Our goal is to learn parametric models by minimizing some loss functions defined by the
data. We consider a distributed learning setting where we have one center machine and m
worker machines (i.e., each worker machine corresponds to a user in the Federated Learning
framework). The center machine and worker machines can communicate with each other
using some predefined communication protocol. We assume that there are k different data
distributions, D1, . . . ,Dk, and that the m machines are partitioned into k disjoint clusters,
S∗
1 , . . . , S

∗
k . We assume no knowledge of the cluster identity of each machine, i.e., the partition

S∗
1 , . . . , S

∗
k is not revealed to the learning algorithm. We assume that every worker machine

i ∈ S∗
j contains n i.i.d. data points zi,1, . . . , zi,n drawn from Dj, where each data point zi,j

consists of a pair of feature and response denoted by zi,ℓ = (xi,ℓ, yi,ℓ).
Let f(θ; z) : Θ → R be the loss function associated with data point z, where Θ ⊆ Rd

is the parameter space. In this paper, we choose Θ = Rd. Our goal is to minimize the
population loss function F j(θ) := Ez∼Dj

[f(θ; z)] for all j ∈ [k]. For the purpose of theoretical
analysis in Section 3.3, we focus on the strongly convex losses, in which case we can prove
guarantees for estimating the unique solution that minimizes each population loss function.
In particular, we try to find solutions {θ̂j}kj=1 that are close to θ∗j = argminθ∈ΘF

j(θ), j ∈ [k].
In our problem, since we only have access to finite data, we take advantage of the empirical
loss functions. In particular, let Z ⊆ {zi,1, . . . , zi,n} be a subset of the data points on the
i-th machine. We define the empirical loss associated with Z as Fi(θ;Z) =

1
|Z|

∑
z∈Z f(θ; z).

When it is clear from the context, we may also use the shorthand notation Fi(θ) to denote
an empirical loss associated with some (or all) data on the i-th worker.
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Figure 3.1: An overview of IFCA (model averaging). (a) The server broadcast models. (b)
Worker machines identify their cluster memberships and run local updates. (c) The worker
machines send back the local models to server. (d) Average the models within the same
estimated cluster Sj.

3.2 Algorithm

In this section, we provide details of our algorithm. We name this scheme Iterative Federated
Clustering Algorithm (IFCA). The main idea is to alternatively minimize the loss functions
while estimating the cluster identities. We discuss two variations of IFCA, namely gradient
averaging and model averaging. The algorithm is formally presented in Algorithm 1 and
illustrated in Figure 4.2.

The algorithm starts with k initial model parameters θ
(0)
j , j ∈ [k]. In the t-th iteration

of IFCA, the center machine selects a random subset of worker machines, Mt ⊆ [m], and

broadcasts the current model parameters {θ(t)j }kj=1 to the worker machines in Mt. Here, we
call Mt the set of participating devices. Recall that each worker machine is equipped with
local empirical loss function Fi(·). Using the received parameter estimates and Fi, the i-th
worker machine (i ∈Mt) estimates its cluster identity via finding the model parameter with

lowest loss, i.e., ĵ = argminj∈[k]Fi(θ
(t)
j ) (ties can be broken arbitrarily). If we choose the

option of gradient averaging, the worker machine then computes a (stochastic) gradient of

the local empirical loss Fi at θ
(t)

ĵ
, and sends its cluster identity estimate and gradient back

to the center machine. After receiving the gradients and cluster identity estimates from all
the participating worker machines, the center machine then collects all the gradient updates
from worker machines whose cluster identity estimates are the same and conducts gradient
descent update on the model parameter of the corresponding cluster. If we choose the option
of model averaging (similar to the Federated Averaging algorithm [39]), each participating
device needs to run τ steps of local (stochastic) gradient descent updates, get the updated
model, and send the new model and its cluster identity estimate to the center machine. The
center machine then averages the new models from the worker machines whose cluster identity
estimates are the same.
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Algorithm 1 Iterative Federated Clustering Algorithm (IFCA)

1: Input: number of clusters k, step size γ, j ∈ [k], initialization θ
(0)
j , j ∈ [k]

number of parallel iterations T , number of local gradient steps τ (for model averaging).
2: for t = 0, 1, . . . , T − 1 do
3: center machine: broadcast θ

(t)
j , j ∈ [k]

4: Mt ← random subset of worker machines (participating devices)
5: for worker machine i ∈Mt in parallel do

6: cluster identity estimate ĵ = argminj∈[k]Fi(θ
(t)
j )

7: define one-hot encoding vector si = {si,j}kj=1 with si,j = 1{j = ĵ}
8: option I (gradient averaging):

9: compute (stochastic) gradient: gi = ∇̂Fi(θ
(t)

ĵ
), send back si, gi to the center

machine
10: option II (model averaging):

11: θ̃i = LocalUpdate(θ
(t)

ĵ
, γ, τ), send back si, θ̃i to the center machine

12: center machine:

13: option I (gradient averaging): θ
(t+1)
j = θ

(t)
j −

γ
m

∑
i∈Mt

si,jgi, ∀ j ∈ [k]

14: option II (model averaging): θ
(t+1)
j =

∑
i∈Mt

si,j θ̃i/
∑

i∈Mt
si,j, ∀ j ∈ [k]

15: return θ
(T )
j , j ∈ [k]

LocalUpdate(θ̃(0), γ, τ) at the i-th worker machine
16: for q = 0, . . . , τ − 1 do
17: (stochastic) gradient descent θ̃(q+1) = θ̃(q) − γ∇̂Fi(θ̃

(q))

18: return θ̃(τ)

Practical implementation of IFCA

We clarify a few issues regarding the practical implementation of IFCA. In some real-
world problems, the cluster structure may be ambiguous, which means that although the
distributions of data from different clusters are different, there exists some common properties
of the data from all the users that the model should leverage. For these problems, we propose
to use the weight sharing technique in multi-task learning [4] and combine it with IFCA.
More specifically, when we train neural network models, we can share the weights for the first
a few layers among all the clusters so that we can learn a good representation using all the
available data, and then run IFCA algorithm only on the last (or last few) layers to address
the different distributions among different clusters. Using the notation in Algorithm 1, we run
IFCA on a subset of the coordinates of θ

(t)
j , and run vanilla gradient averaging or Federated

Averaging on the remaining coordinates. Another benefit of this implementation is that we
can reduce the communication cost: Instead of sending k models to all the worker machines,
the center machine only needs to send k different versions of a subset of all the weights, and
one single copy of the shared layers.

Another technique to reduce communication cost is that when the center machine observes
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that the cluster identities of all the worker machines are stable, i.e., the estimates of their
cluster identities do not change for several parallel iterations, then the center machine can
stop sending k models to each worker machine, and instead, it can simply send the model
corresponding to each worker machine’s cluster identity estimate.

3.3 Theoretical Guarantees

In this section, we present convergence guarantees of IFCA. In order to streamline our
theoretical analysis, we make several simplifications: we consider the IFCA with gradient
averaging, and assume that all the worker machines participate in every rounds of IFCA, i.e.,
Mt = [m] for all t. In addition, we also use the re-sampling technique for the purpose of
theoretical analysis. In particular, suppose that we run a total of T parallel iterations. We
partition the n data points on each machine into 2T disjoint subsets, each with n′ = n

2T
data

points. For the i-th machine, we denote the subsets as Ẑ
(0)
i , . . . , Ẑ

(T−1)
i and Z

(0)
i , . . . , Z

(T−1)
i .

In the t-th iteration, we use Ẑ
(t)
i to estimate the cluster identity, and use Z

(t)
i to conduct

gradient descent. As we can see, we use fresh data samples for each iteration of the algorithm.
Furthermore, in each iteration, we use different set of data points for obtaining the cluster
estimate and computing the gradient. This is done in order to remove the inter-dependence
between the cluster estimation and the gradient computation, and ensure that in each
iteration, we use fresh i.i.d. data that are independent of the current model parameter. We
would like to emphasize that re-sampling is a standard tool used in statistics [44, 20, 60, 61,
14], and that it is for theoretical tractability only and is not required in practice as we show
in Section 3.4.

Under these conditions, the update rule for the parameter vector of the j-th cluster can
be written as

S
(t)
j = {i ∈ [m] : j = argminj′∈[k]Fi(θ

(t)
j′ ; Ẑ

(t)
i )}, θ

(t+1)
j = θ

(t)
j −

γ

m

∑
i∈S(t)

j

∇Fi(θ
(t)
j ;Z

(t)
i ),

where S
(t)
j denotes the set of worker machines whose cluster identity estimate is j in the

t-th iteration. In the following, we discuss the convergence guarantee of IFCA under two
models: in Section 3.3, we analyze the algorithm under a linear model with Gaussian features
and squared loss, and in Section 3.3, we analyze the algorithm under a more general setting
of strongly convex loss functions.

Linear models with squared loss

In this section, we analyze our algorithm in a concrete linear model. This model can be seen
as a warm-up example for more general problems with strongly convex loss functions that we
discuss in Section 3.3, as well as a distributed formulation of the widely studied mixture of
linear regression problem [60, 61]. We assume that the data on the worker machines in the
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j-th cluster are generated in the following way: for i ∈ S∗
j , the feature-response pair of the

i-th worker machine machine satisfies

yi,ℓ = ⟨xi,ℓ, θ∗j ⟩+ ϵi,ℓ,

where xi,ℓ ∼ N (0, Id) and the additive noise ϵi,ℓ ∼ N (0, σ2) is independent of xi,ℓ. Furthermore,
we use the squared loss function f(θ;x, y) = (y − ⟨x, θ⟩)2. As we can see, this model is the
mixture of linear regression model in the distributed setting. We observe that under the
above setting, the parameters {θ∗j}kj=1 are the minimizers of the population loss function
F j(·).

We proceed to analyze our algorithm. We define pj := |S∗
j |/m as the fraction of worker

machines belonging to the j-th cluster, and let p := min{p1, p2, . . . , pk}. We also define the
minimum separation ∆ as ∆ := minj ̸=j′ ∥θ∗j − θ∗j′∥, and ρ := ∆2

σ2 as the signal-to-noise ratio.
Before we establish our convergence result, we state a few assumptions. Here, recall that n′

denotes the number of data that each worker uses in each step.

Assumption 1. The initialization of parameters θ
(0)
j satisfy ∥θ(0)j − θ∗j∥ ≤ 1

4
∆, ∀ j ∈ [k].

Assumption 2. Without loss of generality, we assume that maxj∈[k] ∥θ∗j∥ ≲ 1, and that

σ ≲ 1. We also assume that n′ ≳ (ρ+1
ρ
)2 logm, d ≳ logm, p ≳ logm

m
, pmn′ ≳ d, and

∆ ≳ σ
p

√
d

mn′ + exp(−c( ρ
ρ+1

)2n′) for some universal constant c.

In Assumption 1, we assume that the initialization is close enough to θ∗j . We note that
this is a standard assumption in the convergence analysis of mixture models [1, 59], due to
the non-convex optimization landscape of mixture model problems. In Assumption 2, we
put mild assumptions on n′, m, p, and d. The condition that pmn′ ≳ d simply assumes that
the total number of data that we use in each iteration for each cluster is at least as large as

the dimension of the parameter space. The condition that ∆ ≳ σ
p

√
d

mn′ + exp(−c( ρ
ρ+1

)2n′)

ensures that the iterates stay close to θ∗j .
We first provide a single step analysis of our algorithm. We assume that at a certain

iteration, we obtain parameter vectors θj that are close to the ground truth parameters θ∗j ,
and show that θj converges to θ∗j at an exponential rate with an error floor.

Theorem 1. Consider the linear model and assume that Assumptions 1 and 2 hold. Suppose
that in a certain iteration of the IFCA algorithm we obtain parameter vectors θj with ∥θj −
θ∗j∥ ≤ 1

4
∆. Let θ+j be iterate after this iteration. Then there exist universal constants

c1, c2, c3, c4 > 0 such that when we choose step size γ = c1/p, with probability at least
1− 1/poly(m), we have for all j ∈ [k],

∥θ+j − θ∗j∥ ≤
1

2
∥θj − θ∗j∥+ c2

σ

p

√
d

mn′ + c3 exp

(
−c4(

ρ

ρ+ 1
)2n′

)
.
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We prove Theorem 1 in Appendix ??. Here, we briefly summarize the proof idea. Using
the initialization condition, we show that the set {Sj}kj=1 has a significant overlap with
{S∗

j }kj=1. In the overlapped set, we then argue that the gradient step provides a contraction
and error floor due to the basic properties of linear regression. We then bound the gradient
norm of the miss-classified machines and add them to the error floor. We complete the proof
by combining the contributions of properly classified and miss-classified worker machines.
We can then iteratively apply Theorem 1 and obtain accuracy of the final solution θ̂j in the
following corollary.

Corollary 1. Consider the linear model and assume that Assumptions 1 and 2 hold. By
choosing step size γ = c1/p, with probability at least 1 − log(∆/4ε)

poly(m)
, after T = log ∆

4ε
parallel

iterations, we have for all j ∈ [k], ∥θ̂j − θ∗j∥ ≤ ε, where ε = c5
σ
p

√
d

mn′ + c6 exp(−c4( ρ
ρ+1

)2n′).

Let us examine the final accuracy. Since the number of data points on each worker
machine n = 2n′T = 2n′ log(∆/4ε), we know that for the smallest cluster, there are a
total of 2pmn′ log(∆/4ε) data points. According to the minimax estimation rate of linear
regression [53], we know that even if we know the ground truth cluster identities, we cannot

obtain an error rate better than O(σ
√

d
pmn′ log(∆/4ε)

). Comparing this rate with our statistical

accuracy ε, we can see that the first term σ
p

√
d

mn′ in ε is equivalent to the minimax rate up to

a logarithmic factor and a dependency on p, and the second term in ε decays exponentially
fast in n′, and therefore, our final statistical error rate is near optimal.

Strongly convex loss functions

In this section, we study a more general scenario where the population loss functions of the k
clusters are strongly convex and smooth. In contrast to the previous section, our analysis do
not rely on any specific statistical model, and thus can be applied to more general machine
learning problems. We start with reviewing the standard definitions of strongly convex and
smooth functions F : Rd 7→ R.

Definition 1. F is λ-strongly convex if ∀θ, θ′, F (θ′) ≥ F (θ) + ⟨∇F (θ), θ′ − θ⟩+ λ
2
∥θ′ − θ∥2.

Definition 2. F is L-smooth if ∀θ, θ′, ∥∇F (θ)−∇F (θ′)∥ ≤ L∥θ − θ′∥.

In this section, we assume that the population loss functions F j(θ) are strongly convex
and smooth.

Assumption 3. The population loss function F j(θ) is λ-strongly convex and L-smooth,
∀j ∈ [k].

We note that we do not make any convexity or smoothness assumptions on the individual
loss function f(θ; z). Instead, we make the following distributional assumptions on f(θ; z)
and ∇f(θ; z).
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Assumption 4. For every θ and every j ∈ [k], the variance of f(θ; z) is upper bounded by
η2, when z is sampled according to Dj, i.e., Ez∼Dj

[(f(θ; z)− F j(θ))2] ≤ η2

Assumption 5. For every θ and every j ∈ [k], the variance of ∇f(θ; z) is upper bounded by
v2, when z is sampled according to Dj, i.e., Ez∼Dj

[∥∇f(θ; z)−∇F j(θ)∥22] ≤ v2

Bounded variance of gradient is very common in analyzing SGD [7]. In this report we
use loss function value to determine cluster identity, so we also need to have a probabilistic
assumption on f(θ; z). We note that bounded variance is a relatively weak assumption on
the tail behavior of probability distributions. In addition to the assumptions above, we still
use some definitions from Section 3.3, i.e., ∆ := minj ̸=j′ ∥θ∗j − θ∗j′∥, and p = minj∈[k] pj with
pj = |S∗

j |/m. We make the following assumptions on the initialization, n′, p, and ∆.

Assumption 6. Without loss of generality, we assume that maxj∈[k] ∥θ∗j∥ ≲ 1. We also

assume that ∥θ(0)j − θ∗j∥ ≤ 1
4

√
λ
L
∆, ∀j ∈ [k], n′ ≳ kη2

λ2∆4 , p ≳ log(mn′)
m

, and that ∆ ≥
Õ(max{(n′)−1/5,m−1/6(n′)−1/3}).

Here, for simplicity, the Õ notation omits any logarithmic factors and quantities that do
not depend on m and n′. As we can see, again we need to assume good initialization, due to
the nature of the mixture model, and the assumptions that we impose on n′, p, and ∆ are
relatively mild; in particular, the assumption on ∆ ensures that the iterates stay close to an
ℓ2 ball around θ∗j .

Theorem 2. Suppose Assumptions 3-6 hold. Choose step size γ = 1/L. Then, with probability

at least 1− δ, after T = 8L
pλ

log
(
∆
2ε

)
parallel iterations, we have for all j ∈ [k], ∥θ̂j − θ∗j∥ ≤ ε,

where

ε ≲
vkL log(mn′)

p5/2λ2δ
√
mn′

+
η2L2k log(mn′)

p2λ4δ∆4n′ + Õ( 1

n′√m
).

We prove Theorem 2 in the Appendix ??. Similar to Section 3.3, to prove this result, we
first prove a per-iteration contraction

∥θ+j − θ∗j∥ ≤ (1− pλ

8L
)∥θj − θ∗j∥+ Õ(

1√
mn′

+
1

n′ +
1

n′√m
), ∀j ∈ [k],

and then derive the convergence rate. To better interpret the result, we focus on the
dependency on m and n and treat other quantities as constants. Then, since n = 2n′T , we
know that n and n′ are of the same scale up to a logarithmic factor. Therefore, the final
statistical error rate that we obtain is ϵ = Õ( 1√

mn
+ 1

n
). As discussed in Section 3.3, 1√

mn

is the optimal rate even if we know the cluster identities; thus our statistical rate is near
optimal in the regime where n ≳ m. In comparison with the statistical rate in linear models
Õ( 1√

mn
+ exp(−n)), we note that the major difference is in the second term. The additional

terms of the linear model and the strongly convex case are exp(−n) and 1
n
, respectively. We

note that this is due to different statistical assumptions: in for the linear model, we assume
Gaussian noise whereas here we only assume bounded variance.
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3.4 Experiments

In this section, we present our experimental results, which not only validate the theoretical
claims in Section 3.3, but also demonstrate that our algorithm can be efficiently applied
beyond the regime we discussed in the theory. We emphasize that we do not re-sample fresh
data points at each iteration. Furthermore, the requirement on the initialization can be
relaxed. More specifically, for linear models, we observe that random initialization with a
few restarts is sufficient to ensure convergence of Algorithm 1. In our experiments, we also
show that our algorithm works efficiently for problems with non-convex loss functions such
as neural networks.

Synthetic data
We begin with evaluation of Algorithm 1 with gradient averaging (option I) on linear
models with squared loss, as described in Section 3.3. For all j ∈ [k], we first generate
θ∗j ∼ Bernoulli(0.5) coordinate-wise, and then rescale their ℓ2 norm to R. This ensures
that the separation between the θ∗j ’s is proportional to R in expectation, and thus, in this
experiment, we use R to represent the separation between the ground truth parameter vectors.
Moreover, we simulate the scenario where all the worker machines participate in all iterations,
and all the clusters contain same number of worker machines. For each trial of the experiment,
we first generate the parameter vectors θ∗j ’s, fix them, and then randomly initialize θ

(0)
j

according to an independent coordinate-wise Bernoulli distribution. We then run Algorithm 1
for 300 iterations, with a constant step size. For k = 2 and k = 4, we choose the step size
in {0.01, 0.1, 1}, {0.5, 1.0, 2.0}, respectively. In order to determine whether we successfully
learn the model or not, we sweep over the aforementioned step sizes and define the following
distance metric: dist = 1

k

∑k
j=1 ∥θ̂j − θ∗j∥, where {θ̂j}kj=1 are the parameter estimates obtained

from Algorithm 1. A trial is dubbed successful if for a fixed set of θ∗j , among 10 random

initialization of θ
(0)
j , at least in one scenario, we obtain dist ≤ 0.6σ.

In Fig. 3.2 (a-b), we plot the empirical success probability over 40 trials, with respect to
the separation parameter R. We set the problem parameters as (a) (m,n, d) = (100, 100, 1000)
with k = 2, and (b) (m,n, d) = (400, 100, 1000) with k = 4. As we can see, when R becomes
larger, i.e., the separation between parameters increases, and the problem becomes easier
to solve, yielding in a higher success probability. This validates our theoretical result that
higher signal-to-noise ratio produces smaller error floor. In Fig. 3.2 (c-d), we characterize
the dependence on m and n, with fixing R and d with (R, d) = (0.1, 1000) for (c) and
(R, d) = (0.5, 1000) for (d). We observe that when we increase m and/or n, the success
probability improves. This validates our theoretical finding that more data and/or more
worker machines help improve the performance of the algorithm.

Rotated MNIST and CIFAR
We also create clustered FL datasets based on the MNIST [29] and CIFAR-10 [26] datasets. In
order to simulate an environment where the data on different worker machines are generated
from different distributions, we augment the datasets using rotation, and create the Rotated
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Figure 3.2: Success probability with respect to: (a), (b) the separation scale R and the scale
of additive noise σ; (c), (d) the number of worker machines m and the sample size on each
machine n. In (a) and (b), we see that the success probability gets better with increasing
R, i.e., more separation between ground truth parameter vectors, and in (c) and (d), we
note that the success probability improves with an increase of mn, i.e., more data on each
machine and/or more machines.

MNIST [37] and Rotated CIFAR datasets. For Rotated MNIST, recall that the MNIST
dataset has 60000 training images and 10000 test images with 10 classes. We first augment
the dataset by applying 0, 90, 180, 270 degrees of rotation to the images, resulting in k = 4
clusters. For given m and n satisfying mn = 60000k, we randomly partition the images into
m worker machines so that each machine holds n images with the same rotation. We also
split the test data into mtest = 10000k/n worker machines in the same way. The Rotated
CIFAR dataset is also created in a similar way as Rotated MNIST, with the main difference
being that we create k = 2 clusters with 0 and 180 degrees of rotation. We note that creating
different tasks by manipulating standard datasets such as MNIST and CIFAR-10 has been
widely adopted in the continual learning research community [18, 24, 37]. For clustered FL,
creating datasets using rotation helps us simulate a federated learning setup with clear cluster
structure.

For our MNIST experiments, we use the fully connected neural network with ReLU
activations, with a single hidden layer of size 200; and for our CIFAR experiments, we use a
convolution neural network model which consists of 2 convolutional layers followed by 2 fully
connected layers, and the images are preprocessed by standard data augmentation such as
flipping and random cropping.

We compare our IFCA algorithm with two baseline algorithms, i.e., the global model,
and local model schemes. For IFCA, we use model averaging (option II in Algorithm 1).
For MNIST experiments, we use full worker machines participation (Mt = [m] for all t).
For LocalUpdate step in Algorithm 1, we choose τ = 10 and step size γ = 0.1. For CIFAR
experiments, we choose |Mt| = 0.1m, and apply step size decay 0.99, and we also set τ = 5
and batch size 50 for LocalUpdate process, following prior works [40]. In the global model
scheme, the algorithm tries to learn single global model that can make predictions from all
the distributions. The algorithm does not consider cluster identities, so model averaging
step in Algorithm 1 becomes θ(t+1) =

∑
i∈Mt

θ̃i/|Mt|, i.e. averaged over parameters from all
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Table 3.1: Test accuracies(%) ± std on Rotated MNIST (k = 4) and Rotated CIFAR (k = 2)

Rotated MNIST Rotated CIFAR
m, n 4800, 50 2400, 100 1200, 200 200, 500

IFCA (ours) 94.20 ± 0.03 95.05 ± 0.02 95.25 ± 0.40 81.51 ± 1.37
global model 86.74 ± 0.04 88.65 ± 0.08 89.73 ± 0.13 77.87 ± 0.39
local model 63.32 ± 0.02 73.66 ± 0.04 80.05 ± 0.02 33.97 ± 1.19

the participating machines. In the local model scheme, the model in each node performs
gradient descent only on local data available, and model averaging is not performed.

For IFCA and the global model scheme, we perform inference in the following way. For
every test worker machine, we run inference on all learned models (k models for IFCA and
one model for global model scheme), and calculate the accuracy from the model that produces
the smallest loss value. For testing the local model baselines, the models are tested by
measuring the accuracy on the test data with the same distribution (i.e. those have the same
rotation). We report the accuracy averaged over all the models in worker machines. For all
algorithms, we run experiment with 5 different random seeds and report the average and
standard deviation.

Our experimental results are shown in Table 4.3. We can observe that our algorithm
performs better than the two baselines. As we run the IFCA algorithm, we observe that
we can gradually find the underlying cluster identities of the worker machines, and after
the correct cluster is found, each model is trained and tested using data with the same
distribution, resulting in better accuracy. The global model baseline performs worse than ours
since it tries to fit all the data from different distributions, and cannot provide personalized
predictions. The local model baseline algorithm overfits to the local data easily, leading to
worse performance than ours.

Federated EMNIST
We provide additional experimental results on the Federated EMNIST (FEMNIST) [2], which
is a realistic FL dataset where the data points on every worker machine are the handwritten
digits or letters from a specific writer. Although the data distribution among all the users
are similar, there might be ambiguous cluster structure since the writing styles of different
people may be clustered. We use the weight sharing technique mentioned in Section 3.2.
We use a neural network with two convolutional layers, with a max pooling layer after each
convolutional layer, followed by two fully connected layers. We share the weights of all the
layers, except the last layer which is trained by IFCA. We treat the number of clusters
k as a hyper parameter and run the experiments with different values of k. We compare
IFCA with the global model and local model approaches, as well as the one-shot centralized
clustering algorithm in [16]. The test accuracies are shown in Table 3.2, with mean and
standard deviation computed over 5 independent runs. As we can see, IFCA shows clear
advantage over the global model and local model approaches. The results of IFCA and the
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Table 3.2: Test accuracies (%) ± std on FEMNIST

IFCA (k = 2) IFCA (k = 3) one-shot (k = 2) one-shot (k = 3) global local
87.99 ± 0.35 87.89 ± 0.52 87.41 ± 0.39 87.38 ± 0.37 84.45 ± 0.51 75.85 ± 0.72

one-shot algorithm are similar. However, as we emphasized in Section ??, IFCA does not
run a centralized clustering procedure, and thus reduces the computational cost at the center
machine. As a final note, we observe that IFCA is robust to the choice of the number of
clusters k. The results of the algorithm with k = 2 and k = 3 are similar, and we notice that
when k > 3, IFCA automatically identifies 3 clusters, and the remaining clusters are empty.
This indicates the applicability of IFCA in real-world problems where the cluster structure is
ambiguous and the number of clusters is unknown.
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Chapter 4

UIFCA: a generative model-based
clustering method based on IFCA

4.1 Problem Setup

We consider a standard data clustering task in a distributed setting, where one central server
communicates with n client machines. We assume that total m datapoints are inherently
partitioned into K disjoint clusters, S∗

1 , . . . , S
∗
K , and our goal is to find them. We denote

j-th datapoint in client i by xi,j. Each set S∗
k consists of m

K
datapoints coming from the

distribution Dk, for k ∈ [K]. We consider unsupervised learning task where the cluster
information S∗

1 , · · · , S∗
K is not visible from the learning algorithm. The central server is

able to communicate with client machines using predefined secure protocol, such as secure
aggregation.

We aim to find an algorithm that finds clusters regardless of whether the client’s data is
given i.i.d. or not. To quantify the level of heterogeneity in clients, we define heterogeneity
level p that measures how much the data’s cluster is skewed across the machines. For example,
a dataset with K = 10 clusters with p = 0 refers to the case where data are distributed
to clients in purely i.i.d. manner, and in p = 1 case, each client holds data from a single
distribution. For a client holding s datapoints, the first sp data points are sampled from a
single cluster, and remaining s(1− p) data points are drawn from any clusters at random.
Illustrations of different p cases are given in Figure 4.1.

In order to estimate the cluster information of datapoints in clients, we train K different
models that capture each cluster’s datapoints, following the approach of IFCA [15]. Each
model is a generative model that is trained to capture the distribution of a given cluster data.
Cluster membership of a datapoint can be evaluated by picking the model that gives the
highest likelihood, i.e., selecting the model’s distribution that it is the most close to. We
define {θ1, θ2, ..., θK} as the model parameters learned for each cluster, and fθ(·) as the loss
function of a sample evaluated by the model θ. Each client i assigns its each of its datapoint
xi,j to one of the cluster sets {Si,1, Si,1, ..., Si,K}, and runs model update on each parameter
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p = 0 (IID) p = 0.5 p = 1.0

Figure 4.1: An illustration of a client heterogeneity type we consider.

θk with set Si,k to optimize the following local objective:

min
θk

1

|Si,k|
∑

xi,j∈Si,k

fθk(x
i,j).

for k ∈ [K]. Then the model updates are aggregated at the central server to optimize the
following global objective:

min
θk

1

|S∗,k|

n∑
i=1

∑
xi,j∈Si,k

fθk(x
i,j).

where S∗,k is union of {Si,k}ni=1. This objective minimizes the loss for all the data assigned to
cluster k in all clients, for each cluster k ∈ [K]. We also define Fθ(B) =

∑
x∈B fθ(x) to be

the loss used in batch gradient update of a data batch B.
We note that our procedure of inferring cluster information is inherently secure, and also

beneficial. A client can receive models {θ1, θ2, ..., θK} from the server and locally evaluate
its datapoints’ cluster membership. The central server can access each cluster’s content by
investigating the model(for example, sampling datapoints with high likelihood), and provide
additional beneficial information (such as advertisements) that may be relevant for that
cluster. The users have options to choose which additional information they will use, based
on the evaluated cluster information, which is not revealed to the central server.

4.2 Algorithms and Models

In this section, we first present a straightforward extension of existing algorithms to a
federated learning setting which we will consider as baselines, and discuss potential drawbacks
of these methods. Then, we provide details of UIFCA algorithm and the models used.
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Figure 4.2: An overview of UIFCA . (a) Central server broadcast models to n clients. (b)
Clients identify their local datapoints’ cluster memberships and run local updates with
received models. (c) The clients send back the local models to central server. (d) Central
server aggregates the models within the same estimated cluster Sj.

Baselines

A natural approach to clustering in a federated environment is to implement a distributed
version of k-means algorithm proposed by [8]. Each worker can compute the local estimate of
the centroids, and global centroids can be updated by gathering local centroids and running
k-means clustering algorithm over these centroids. The client can infer the cluster membership
of each datapoint by referring to local centriods’ cluster assignment among all local centroids
in the server. This approach is summarized in Algorithm 2. We consider this approach as a
baseline to compare with UIFCA .

For the data with more complex cluster structures such as real-world images, the k-means
based approach may not work well. One may consider deep learning model-based clustering
methods, which showed great success in capturing complex features of images and clustering
them. The method commonly involves learning a clustering model that infers a cluster label
of a sample or a representation that is well separated by the sample’s inherent cluster.

In order to adapt these methods into a federated environment, a natural approach is
to run distributed model training using secure training methods such as FedAvg algorithm.
As a baseline for our experiments, we consider clusterGAN [43] for clustering real image
data, combined with FedAvg. For each communication round, each client will update the
local replica of clusterGAN model with local data, and updated models from clients will be
aggregated at the central server.

However, this approach is problematic when it applies to heterogeneous clients. When
client’s heterogenity increases, FedAvg’s local objective can become different completely
different from one another, resulting in increasing difficulty in learning a consensus model
that performs well for all distributions [33]. Often, gradient averaging (or minibatch SGD) is
proposed as alternative for FedAvg for better convergence behavior in non-i.i.d setting [63, 56,
57], but we do not consider it since its practical use is not common, due to communication
being the bottleneck for large models, and FedAvg enables multiple local updates within one
communication round while gradient averaging only updates once.

We claim that our method has structural advantage compared to baselines in this sense.
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Algorithm 2 k-FED algorithm

1: Client i clusters local data xi,j into Si,1, . . . , Si,K based on distance to µ1, . . . , µK(for all
i ∈ [n]).

Si,k ← {j|k = arg min
k∈[K]

∥µk − xi,j∥}

2: Client i computes local centroids µi,1, . . . , µi,K and send to central server.
3: Central server runs k-means algorithm over all local centroids µi,j(for all i ∈ [n], j ∈ [K]).
4: Client i assigns local data xi,j to a cluster according to cluster assignment of its local

centroids µi,1, . . . , µi,K obtained from server.

Our method captures the datapoints that are likely to be from same distribution, and runs
FedAvg with them. This enables learning models in heterogeneous client data, leveraging
fast local updates of FedAvg.

UIFCA

IFCA [15] algorithm is a clustering algorithm that clusters clients by its data using deep
neural networks in a federated setting. The algorithm recovers optimal clusters by iteratively
alternating between estimating cluster identities and optimizing the cluster models. Starting
from K randomly initialized models, cluster identities of clients are found by assigning the
model that gives best score (usually referring to smallest loss), and models are updated by
averaging the model’s SGD updates from clients within the same cluster. IFCA [15] was
proven to be able to recover correct cluster identities under mild conditions, and was shown to
be successful in simple clustering tasks such as grouping the images by rotations by training
classifier models as cluster models with supervised data.

We adapt IFCA’s training method to our problem to leverage its powerful clustering
ability in federated settings. IFCA considers a setting where each client has data drawn
i.i.d. from a single distribution, while our problem setting assumes that the data points in a
client can come from different clusters. To reflect this change, our algorithm runs client local
updates for all K cluster models with data assigned to each corresponding cluster, while
in IFCA, each client only updates one cluster model locally. Also, in order to accomodate
unsupervised data, we use a generative model as cluster parameter model, to let each model
capture each cluster’s data distribution.

We now discuss details of our algorithm. The algorithm is formally presented in algo-
rithms 3 to 5 and illustrated in Figure 4.2.

The algorithm starts with K randomly initialized model parameters θ
(0)
1 , . . . , θ

(0)
K , and

initial random cluster assignment {{S(0)
i,k }Kk=1}ni=1. In the t-th cluster round, the center machine

broadcasts current model parameters θ
(t)
1 , . . . , θ

(t)
K to all the machines.

For each cluster k ∈ [K], the clients collectively runs FedAvg algorithm with model θ
(
kt)

to capture the distribution of the k-th cluster’s data across the clients, using the received
model parameters(shown in Algorithm 4). Each client will run batch gradient update M
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Algorithm 3 UIFCA

1: Input: Client samples {xi,∗}ni=1, number of cluster rounds T , initial cluster assignment
{{S0

i,k}Kk=1}ni=1

2: For t = 1, · · · , T do
3: (Learning) Fit generative model for each cluster
4: For cluster k ∈ [K] in parallel do

5: θ
(t+1)
k = LearnClusterModel(S

(t)
∗ , S

(t)
∗,k)

6: (Assigning) Assign each sample to a cluster:
7: For client i ∈ [m] in parallel do

S
(t)
i,k ← {j|k = arg min

k∈[K]
f
θ
(t)
k
(xi,j)}

Algorithm 4 LearnClusterModel(S)

1: Input: Data assigned to cluster k S = (S1,k, . . . , Sn,k)
2: Choose: Number of communication rounds τ
3: Initialize θ0 randomly
4: For each round l = 1, · · · , τ do
5: For client i ∈ [n] in parallel do

6: θ
(l)
i = ModelUpdate(θ(l−1), Si,k)

7: θ(l) =
∑m

i=1
|Si,k|
|S∗,k|

θ
(l)
i

8: Return: θτ

Algorithm 5 ModelUpdate(θ, S)

1: Input: Initial parameter θ, set S
2: Choose: Step size η, number M of gradient steps, batch size N
3: For j = 1, · · · ,M do
4: Bj ← random subset(S,N)
5: θj ← θj−1 − η

(
1
N
∇θFθj−1(Bj)

)
6: Return: θM

times for each model and its corresponding cluster set (shown in Algorithm 5). These local
model updates are averaged in the central server, weighted by cluster’s size. After running τ
times of averaging, an optimized cluster models θ

(t+1)
1 , . . . , θ

(t+1)
K are found. These models are

then broadcast to all clients. A cluster round ends up with client re-evaluating the cluster
identities of local datapoint by finding model parameter with lowest loss(highest likelihood),
i.e., argmink∈[K]fθ(t)k

(xi,j)). The cluster rounds iterate over T times to find optimal cluster

structure in the client’s data.
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Using normalizing flow models with UIFCA

For selecting the which generative model to use with UIFCA , we consider normalizing flow
model [52]. Normalizing flow models are generative models that model the distribution of
input data, by learning an invertible function g that maps from base distribution pZ(z) to the
target distribution pX(x). With base distribution pZ(z) given (commonly standard Gaussian),
the likelihood of of a sample x can be found by change of variables formula:

pX(x) = pZ(g
−1(x))

∣∣∣∣det∂g∂x
∣∣∣∣

The model is trained to capture the distribution by maximizing the log-likelihood of the
training data with respect to the parameters of the mapping function:

max
g

n∑
i=1

log(pX(xi))

Among many options of generative models that can provide sample likelihood (such
as variational autoencoders [22]), normalizing flow models are best fit to our needs, since
it explicitly models the data distribution, it can give the most exact estimate of sample
likelihood compared to generative models.

4.3 Experiments

In this section, we present our experimental results. We evaluate UIFCA with synthetic
datasets and realistic image datasets based on MNIST. Our method correctly recovers clusters
for synthetic settings, but does not perform well on MNIST, so we also discuss possible
reasons and ways to improve it.

Synthetic experiments

We consider following two types of synthetically generated data.
Gaussian clusters Data samples with dimension d = 32 are generated from K Gaussian

distributions with same standard deviation σ = 1 and different centers. To ensure that the
clusters have less overlapping data, we generate distribution centers θ∗k ∼ Bernoulli(0.5) for
all k ∈ [kK], coordinate-wise, and scale them by R. The R represents minimum separation
between each center. For our experiments, we use R = 5 for minimal overlap.

Subspace clusters Subspace clustered data [45] is a mixture of distributions that lies
in different subspaces. The cluster structure is not easily discoverable using simple clustering
algorithms such as k-means. For generating the data, a d = 32 dimensional basis set of
dsubspace = 16 orthonormal basis vectors are sampled for each of k clusters, and clustered
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Table 4.1: Cluster accuracies (%) on synthetic datasets.

p 0.0 0.25 0.5 0.75 1.0

Gaussian
UIFCA 100
k-FED 100

Subspace
UIFCA 100
k-FED 11.5 11.7 12.5 15.8 19.3

dataset is achieved by muitlplying random gaussian coefficients to each basis sets of each
cluster.

For the model, we use 1-layer planar flow [47] with following linear transformation function:

g(z) = wT z + b

with Gaussian prior z = N (0, 1). We initialize the models by first generating random
parameters for a single model, and adding small random normal noise to each parameter.
This procedure will ensure avoiding initial cluster degeneracy cases, where a particular model
initializes a much smaller loss compared to other models, gets most datapoints assigned
and fits data regardless of the clusters, while other models cannot learn due to the small
number of data points assigned to them. We run Algorithm 3 for T = 20 cluster rounds, with
each round consisting of τ = 100 communication rounds in Algorithm 4 and M = 100 local
batch updates. For distributed training with FedAvg, we assume that all clients participate
in each communication iteration. For each type of synthetic data, we test our algorithm
with k = 4 clusters and n = 4 clients with each client having 1000 datapoints, resulting
m = 4000 datapoints in total. We report cluster accuracy, defined as 1

m

∑
cmaxy |Sc ∩ Sy|

which measures purity of each cluster in terms of given true label.
Clustering performance of UIFCA is reported in Table 4.1. As we can see, for our provided

synthetic cases, UIFCA is able to fully recover cluster information of individual datapoints
inside clients, without compromising security assumptions of federated setting. For Gaussian
clusters, each flow model learns the transformation from standard gaussian prior to each
cluster distribution. For subspace clusters, the datapoints are given to follow gaussian
distribution defined in different sets of basis sets, and our model learns the projection from
standard basis to such subspaces. k-FED algorithm does not perform well for subspace
clustered data since the data are spread out over different dimensions, distance metric of the
algorithm becomes irrelevant to the cluster structure.

To provide in-depth look of UIFCA ’s behavior, we plot the cluster accuracy of UIFCA
with Gaussian clustered data at each cluster round in Figure 4.3. We can observe cluster
accuracy iteratively improving over cluster rounds. Starting from random cluster assignment,
each flow model captures the distribution of data assigned to its cluster. The model learns to
assign high likelihood to the majority type of the data (We denote ’type’ by the ground truth
cluster of a data.) leading to grabbing more data of the major type and less of the other
type, thus improving the cluster. Note that the cluster accuracy converges faster as client’s
data heterogeneity(p) increases, due to a FedAvg’s weighted averaging behavior. FedAvg’s
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Figure 4.3: Cluster accuracies with respect to cluster rounds for synthetic Gaussian clustered
data, for different heterogeneity levels p.

local update would converge faster when the large portion of (same cluster) data points
are provided in the same device, performing close to centralized SGD. On the other hand,
convergence would be relatively slow when p decreases, due to instability caused by model
averaging procedure.

MNIST experiments

We also test the performance of UIFCA with two types of clustered dataset based on
MNIST [28] dataset. Then, we discuss limitations of our approach and a possible approach
to improve.

Cluster by digits The MNIST dataset consists of m = 60000 28x28 images of 10 digits
with each digit having approximately 6000 images. Setting the digit information as a ground
truth label for the clustering task, we evaluate unsupervised clustering performance of our
algorithm with K = 10 clusters. We simulate the setting where the data are distributed
clients according to different heterogeneity level p, same as the synthetic experiments.

Cluster by rotation To simulate data coming from different distributions, we also create
a clustered dataset by applying rotations. We select one of the 10 digits and generate dataset
of k = 4 clusters by applying 0, 90, 180, 270 degree of rotation, resulting in unsupervised
dataset of appriximately 24, 000 images. Mixing two or more digits is not considered, in order
to ensure the cluster is formed by rotation, not digits. We consider digits 2, 3, 4, 5, which are
some of the digits that does not confuse rotation recognition(such as 8). We run clustering
algorithm for each of the digits and report average cluster accuracy.

Cluster representations Since many pre-trained models are publicly available, it is
often more practical to embeddings(representations) of user data for clustering rather than
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Default RB CM RB+CM
ACC(%) 50.7 95.09 99.0 98.6

Table 4.2: Ablation study of two methods: randomizing the background of digit images(RB),
and changing masking pattern of in RealNVP(CM).

clustering the raw images. We test our method for clustering image representations from a
pre-trained network. For the pre-trained model, we train a RotNet [17] that predicts image
rotations, trained using rotated MNIST images in centralized settings. Each client will have
access to this pre-trained model, and is able to obtain the representations of its local data
from this model. For the network, we use Alexnet [27] and extract activations from last
convolutional layer.

Using initialization obtained from baseline We often find our method performing
bad due to initializations. To improve this situation, we also test an additional method that
starts UIFCA method with initial cluster assignment obtained from k-FED (named k-FED +
UIFCA ). We provide experimental result of this method for clustering representations.

Issues with RealNVP We consider RealNVP [11] as the flow model to use with our
algorithm, which is one of the common types of normalizing flow model targeted for images.
However, our preliminary experiments showed that using standard RealNVP architecture
with UIFCA cannot cluster at all. We observed that the likelihoods of the samples from
cluster set used for training the model, were indistinguishible from samples outside the cluster
set, which makes likelihood-based cluster assignment completely fail. We reason this failure
by referring to an observation from [23], stating that a typical RealNVP model captures
graphical styles rather than features. A RealNVP model typically consists of multiple stacks
of affine coupling transformation function. In each function, input is split into two parts, and
the function is optimized to model the transformation between the two. The typical way to
split the image input is to apply a pixel-level checkerboard pattern (often called checkerboard
masking) . This architecture can be good at producing realistic images, but may assign high
likelihood to images outside the training set, if the graphical style matches the training set.
For our task of clustering MNIST, digit images consist of similar graphical images with a large
portion of black background and a pattern of strokes, thus clustering based on likelihoods
would have failed.

We consider two different solutions to tackle this issue. First, we consider randomizing
the background of the digit images, as shown in Figure 4.5. For black pixels with value less
than 0.01, we randomly set pixel value from [0, 1]. Because the background does not have a
pattern, we expect models can focus more to the strokes of the digits. Second, we apply one
of the methods proposed to address this issue in [23], which changes the masking pattern of
the RealNVP models from the checkerboard type to the cyclic one in each coupling function.
For details, we refer to [23]. We adapt their proposed architectural change to UIFCA from the
author’s code repository, and observe improved clustering performance compared to standard
RealNVP models.

In order to select best configuration, we conduct an ablation study of these two solutions.
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Figure 4.4: A sample of cluster accuracy measured at each epoch in single cluster iteration.
The red horizontal line refers to the cluster accuracy of the given cluster set.

Figure 4.5: Randomizing the background of MNIST digit images.

We evaluate sample cluster assignment of two RealNVP flow models based on its likelihood,
each trained with digit 2 and 3 respectively. The experiment measures the ability of
distinguishing the samples in training set and the sample outside the training set, which
is similar to Out-of-distribution detection. The results are shown in Table 4.2. We found
changing masking pattern by itself is most effective. Randomizing background helps for
the standard RealNVP model, but does not improve when the model’s masking pattern is
changed. Hence, we conclude that using changed masking pattern is best option for our
setting.

For experiments of clustering rotations and digits of MNIST, we run Algorithm 3 for
T = 20 cluster rounds, each having τ = 40 communication rounds and M = 100 local updates.
We use the SGD optimizer with a learning rate 1×10−4, combined with the FedAvg algorithm.
For clusterGAN [43], we use the model imported from the author’s code repository, and use
SGD optimizer with learning rate 5× 10−3 for local batch updates. We set the number of
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(c) m = 4000

Figure 4.6: Mean loss of correctly-clustered samples and misclustered samples, measured
with k = 2 models, in single cluster iteration.

Table 4.3: Cluster accuracies(%) of MNIST based datasets over different value of client
heterogeneity level p.

p 0.0 0.25 0.5 0.75 1.0

MNIST Rotated
UIFCA 63.5 60.8 63.4 79.5 79.6

ClusterGAN 95.7 78.9 49.1 36.4 28.8
k-FED 92.2 87.1 80.5 78.3 100

MNIST Digits
UIFCA 34.2 31.3 33.7 38.9 43.1

ClusterGAN 71.3 57.4 39.4 27.5 16.8
k-FED 57.0 59.1 53.3 51.6 62.3

MNIST Representations
k-FED 86.0 80.2 63.1 57.6 96.8
UIFCA 43.6 56.4 78.2 79.5 99.5

k-FED + UIFCA 85.1 85.4 80.1 81.8 99.6

clients n to be same number as clusters k.
We report cluster accuracies for p ∈ {0.0, 0.25, 0.5, 0.75, 1.0} in Table 4.3. For raw

images(Rotated, Digits), k-FED performs overall best. As expected, clusterGAN works
best at i.i.d. case (p = 0.0) but fails as moving towards high heterogeneity case (p = 1.0),
due to FedAvg’s bad convergence under heterogeneous environment. We observe that ours
reach higher cluster accuracy for high heteogeneity level cases compared to clusterGAN,
but yields overall very low cluster accuracy. For clustering representations, we find that
UIFCA often works better than the k-FED approach. The k-FED + UIFCA approach gives
overall best performance, showing that generative models can often find better structure in
distributions than k-means based approaches, and that UIFCA can also benefit from giving
good initializations, especially when the cluster accuracies are low.



CHAPTER 4. UIFCA: A GENERATIVE MODEL-BASED CLUSTERING METHOD
BASED ON IFCA 27

One of the key reason that UIFCA perform bad is that the cluster accuracy often worsens
if model training gets long. We plot a sample trace of the cluster accuracies measured at
each epoch in single cluster iteration of Algorithm 3 in Figure 4.4. The horizontal line is
the cluster accuracy of assignments from previous cluster round, which is the cluster set
that the models are trained with. We can observe that cluster accuracy does not always
increase and converge as training progresses. It decreases after certain point, toward original
cluster accuracy. Under the hood, we observe that cluster assignments are becoming similar
to assignments of previous iteration.

Main cause of this phenomenon overfitting of each cluster model to its cluster set. To
see this issue in detail, we reproduce the same issue in synthetic data setting of 2 gaussian
clusters. For each cluster, we define correct samples as samples that are the majority type
of the cluster’s set, and all other samples as incorrect. In Figure 4.6 we plot the mean
loss of correct and incorrect samples in cluster 1, evaluated with two cluster models θ1, θ2,
for m = 800, 2400, 4000 cases. For the correct sample x in cluster 1, trained the model
parameters results in fθ1(x) < fθ2(x). For the incorrect sample x′, we expect fθ1(x

′) > fθ2(x
′)

so that x′ can move to cluster 2 at the next cluster round. However, in Figure 4.6a, we
observe this can happen only in early epochs. However, as the training proceeds, we observe
fθ1(x

′) < fθ2(x
′) again, due to x′ becoming overfitted to model 1. The sample x′ is assigned

to cluster 1 again as a result, making no improvement in cluster iterations. Note that this
issue gets reduced when number of data m increases, as we see Figure 4.6b and Figure 4.6c.
Figure 4.6c shows the plot of the same configuration with m = 4000, and shows that two
model loss fθ1(x), fθ2(x), are not crossing, meaning that the misclustered sample will be
correctly clustered at any timestep of model training.

One may consider heuristics like applying early stopping based on validation stats. We
find this method often works well at synthetic settings, but fails when training with real-world
noisy data. The model should be trained to a level where correctly clustered data are well fit,
and at the same time incorrectly clustered data are not overfit, therefore determining the
optimal stopping point would be difficult without access to the ground truth cluster label.
Finding the solution for this issue remains open.
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Chapter 5

Conclusions and Future Works

5.1 Future work

Our framework has simple structure that clusters by loss given by the generative models
trained with each cluster set. For the future research direction, we consider augmenting our
method to involve more information. An interesting direction would be using more information
than loss statistics for the cluster assignment stage, such as involving different aspects of the
model (such as sample’s activation on specific layer). Another way of improvement would be
explicitly feeding supervision signal in training the model, such as maximizing the loss for
the samples outside the cluster, which can help models in distinguishing samples inside the
cluster from outside. We believe applying these methods improve our framework in model
training and clustering, and paritally reduce the issue of cluster assignment converging.

5.2 Conclusions

In this report, we address clustering problems in a heterogeous federated learning setting. We
propose an iterative algorithm and obtain convergence guarantees for strongly convex and
smooth functions. In experiments, we achieve this via random initialization with multiple
restarts, and we show that our algorithm works efficiently beyond the convex regime. We also
apply our algorithm to settings with varying heterogeniety by training multiple generative
models that captures each cluster, and assigns data a cluster membership by comparing the
model’s likelihoods, and evaluated its performance with MNIST and synthetic data.
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