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Abstract

Instance-dependent Optimality in Statistical Decision-making

by

Wenlong Mou

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Martin J. Wainwright, Co-chair

Professor Peter L. Bartlett, Co-chair

Data-driven and learning-based methodologies have been very popular in modern
decision-making systems. In order to make optimal use of data and computational
resources, these problems require theoretically sound procedures for choosing between
estimators, tuning their parameters, and understanding bias/variance trade-offs. In many
settings, asymptotic and/or worst-case theory fails to provide the relevant guidance.

In this dissertation, I present some recent advances that involve a more refined approach,
one that leads to non-asymptotic and instance-optimal guarantees. Focusing on function
approximation methods for policy evaluation in reinforcement learning, in Part I, I
describe a novel class of optimal oracle inequalities for projected Bellman equations, as
well as computationally efficient algorithms achieving them. In contrast to corresponding
results for ordinary regression, the approximation pre-factor depends on the geometry
of the problem, and can be much larger than unity. In Part II, I discuss optimal
procedures for estimating linear functionals from observational data. Our theory reveals
a rich spectrum of behavior beyond the asymptotic semi-parametric efficiency bound. It
also highlights the fundamental roles of geometry, and provides concrete guidance on
practical procedures and parameter choices.
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Chapter 1

Introduction

In recent years, applications of machine learning and data science have profoundly
changed people’s everyday life. While these technologies have achieved tremendous
success in lab environment, when applied to real-world decision-making problems, several
puzzles still remain unresolved. In particular, it has been observed that many important
choices are made in an ad hoc manner in practice, without principled guidance. These
practical challenges put statistical theory at a critical position — in the world of decision-
making, machine learning is not just about stacking more layers and tuning parameters.
Instead, theoretically well-grounded methodologies are needed, concerning structures in
the model, data, and the target. As the data in decision-making problems can be of low
quality, inter-dependent, and expensive to collect, novel machine learning algorithms
addressing these issues with optimal guarantees could lead to significant saving. Yet,
existing statistical and computational theories are still lacking in many aspects.

During my Ph.D. studies, the focus of my research is drawn on the theoretical
understanding into computational and statistical aspects of modern decision making
applications. A popular class of methodologies in decision-making is the learning-based
approaches, i.e., first learn a model or estimate some relevant functions, and then
compute the target value or optimal policy from the learned model. For example, in
Markov decision processes, this corresponds to reinforcement learning with function
approximation; and in causal estimation problems with observational data, this corre-
sponding to semi-parametric methods such as double machine learning. Though the
learning-based approaches offer lots of flexibility in modeling, it is observed in practice
that the classical principles in learning may fail for decision-making applications. This
naturally motivates the recurring theme in my research:

How to make learning optimal for decision-making?

In order to address this key question, I investigate the probabilistic and geometric
structures underlying the problems, on which a rich class of statistical theories and com-
putational methods are built. I aim at the fundamental questions about the possibility,
optimality, and computational efficiency of statistical estimation. Notwithstanding the
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seemingly simplicity, these questions lead to fruitful outcomes, which, not only facilitates
data-driven methods in decision-making, but also contributes to novel statistical theories.

Another important feature of the research results presented in this dissertation is
their instance-dependent optimality. Minimax optimality has been the golden criteria to
evaluate the performance of statistical estimation and learning algorithms. However, for
many decision-making applications including reinforcement learning and causal inference,
there are many methods that all achieve the global minimax optimality, but exhibit
extremely different practical performances. This is because the worst-case problem
instances within the problem class are usually too hard to solve with any practical sample
size, so that the worst-case optimality theory fails to guide the practical choice. By way
of contrast, in this dissertation, we adopt a more fine-grained criteria of optimality – the
estimator has to be minimax optimal not only globally, but also locally within suitably
defined neighborhood of any problem instance. In this way, we can obtain key quantities
that governs the complexity of estimation associated to any problem instance.

The notion of instance-dependent optimality dates back to the local asymptotic
minimax theory due to Le Cam and Hájek [117, 72]. However, in many modern decision-
making applications, taking the asymptotic limit with sample size going to infinity can
hide important finite-sample phenomena, especially when we are only able to model parts
of the environment instead of the entire data-generating process. With a complicated
model class and limited sample size, the asymptotic theory can be completely irrelevant.
In this dissertation, we discover novel instance-dependent quantities that govern the
non-asymptotic complexity, which are not covered by the classical local asymptotic
minimax theory. In order to make the estimators adaptive to these complexities, novel
statistical principles are revealed, which provide concrete guidance on practical choices.

The rest of the introduction is organized as follows: we first provide a high-level
overview of the results in this dissertation; then, we summarize some additional related
work of the author, which are not included in this dissertation; finally we introduce
notations used throughout this dissertation.

1.1 High-level overview of the results

In this section, we provide a high-level overview of the main results presented in this
dissertation.

1.1.1 Part I: reinforcement learning with function
approximation

Approximate dynamic programming (ADP) and reinforcement learning (RL) provides a
formalism of making optimal decisions in sequential settings. A central question in ADP
and RL is the estimation of value function, cast as the problem of solving a (linear)
Bellman fixed-point equation. In most practical applications, the state-action space
is enormous or infinite (for example, the game of Go has a state space of cardinality
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3361, and most control problems work with continuous states), so that direct plug-in
methods are impossible both computationally and statistically. A natural approach,
therefore, is to use a function class F to approximate the solution v∗, and solve the
projected fixed-point equations. Despite their extreme popularity in practice, statistical
guarantees for projected fixed-point methods, as well as their optimality properties, are
not clear. Drawing analogy to non-parametric estimation, for an estimator v̂n, we seek
to establish oracle inequalities to characterize its trade-off between approximation and
statistical errors.

E
[
∥v̂n − v∗∥2

]
≤ Approximation factor× inf

v∈F
∥v − v∗∥2 + Statistical errorn(F).

Ideally, we would want a unity approximation factor and an optimal statistical error
depending on the localized complexities. Despite decades of efforts, however, such
a guarantee is not achieved. The theoretical gap also bewilders practical model and
parameter selection. This motivates our central question:

Can we establish optimal oracle inequalities for policy evaluation just as in
non-parametric regression?

The answer is “yes and no”: optimal oracle inequalities are established, but is qualitative
different, exhibiting a richer spectrum of instance-dependent behavior. In Chapter 2, an
instance-dependent approximation factor upper bound is established for projected fixed-
point, which can be much larger than unity, but surprisingly, is information-theoretically
optimal. In Chapter 3, optimal instance-dependent guarantees are established on the
statistical error (under Markovian data), with the optimal sample complexity and
efficient stochastic approximation schemes. The next two paragraphs describe these
results.

Instance-dependent optimality of the approximation factor: Focusing on a low-
dimensional linear subspace F , the seminal work by Tsitsiklis and Van Roy establishes
an approximation factor bound for the projected fixed point, laying the foundations of
ADP with function approximation. Their bound depends on the effective horizon of the
problem, which is usually large in practice. As a result, even when the value function is
close to the class F , such an approximation error is amplified by a large factor, leading
to potentially poor solution. It is not clear whether this is unavoidable.

We start by showing an instance-dependent approximation factor upper bound for
the projected fixed-point approach, which depends on a notion of mixing in the projected
space. Such a bound recovers the horizon-based bound in the worst case, and improves
existing instance-dependent results.

What is most surprising, though, is that the approximation factor we established is
indeed information-theoretically instance-optimal, if we only have access to empirical
data. In particular, we show that for a moderate sample size, the local minimax risk
for estimation is lower bounded by the projection error infv∈F ∥v − v∗∥2 multiplied by
exactly the same approximation factor as we established in the upper bound. This
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precisely characterizes the price of RL with function approximation: when the sample
size cannot support estimating the entire underlying MDP model, an approximate factor
must be paid.

Statistical complexity and stochastic approximation with Markovian data:
Turning to the statistical error, we consider the stochastic approximation (SA) scheme
in Euclidean space, where the data are from a Markov chain trajectory. This method is
known as temporal difference (TD) methods, a default building block in most practical
RL systems. Through a novel bootstrapping proof technique, my work establish risk
bounds for SA with optimal dependency on the problem dimension and the mixing time
of underlying Markov chain. Additionally, for the Polyak–Ruppert averaged iterates,
we show an instance-dependent and optimal error upper bound that achieves the exact
covariance of Markovian central limit theorem, again with an optimal sample complexity.

Interesting consequences are derived by combining the instance-optimal results
Chapters 2 and 3. In RL literature, a classical approach for addressing the trade-off
between approximation and statistical error is through a resolvent formalism of the
Bellman operator – leading to the class of TD(λ) methods for λ ∈ (0, 1). A long-standing
puzzle is the choice of the tuning parameter λ, and our instance-dependent results make
it possible to select λ optimally based on empirical estimates.

The main contents of this part is drawn, under minor modification, from the
following two papers: Chapter 2 is from the paper [152] “Optimal oracle inequalities
for solving projected fixed-point equations, with applications to policy evaluation”,
co-authored with Ashwin Pananjady and Martin J. Wainwright. Chapter 3 is from the
paper [153] “Optimal and instance-dependent guarantees for Markovian linear stochastic
approximation”, co-authored with Ashwin Pananjady, Martin J. Wainwright, and Peter
L. Bartlett.

1.1.2 Part II: off-policy estimation of linear functionals

The contextual bandit model provides a general framework for decision-making. In
many applications including causal inference, the learning algorithms are not allowed
to interactively explore the environment, and have access only to the observational
data generated from a given behavior policy. A central problem is to estimate a
linear functional, which covers various notions of treatment effects. This problem
exhibits a semi-parametric nature, where the target is a scalar functional of a potentially
complicated model.

The celebrated local asymptotic minimax theory by Le Cam, Hájek and Levit provides
a canonical measure of instance-dependent optimality with sample size n tending to
infinity. Applied to the off-policy estimation problems, the optimal efficiency bound
consists of two terms: the variance of the target functional under random state, and the
average of conditional variance in the observation re-weighted by the importance ratio.
Focusing on achieving the optimal efficiency bounds under different models, various
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semi-parametric procedures are developed, which lays the foundations of modern theory
for causal effect estimation and inference.

Hidden behind the elegant and general asymptotic theory, however, is a diverse
spectrum of finite-sample behavior. In semi-parametric methodology, a function is
estimated and substituted into an identifying equation so as to obtain an optimal
estimator for the scalar. Due to mis-specification, complexity, and local geometry of the
function class, the estimation of the nuisance component may dramatically impacts the
non-asymptotic error, which are not captured by asymptotic theory of efficiency. Owing
to the theoretical gaps, in practice, the design and choices of estimators for the nuisance
components lack principled guidance. This motivates us to rethink semi-parametric
efficiency from non-asymptotic perspectives, and ask the question:

What is finite-sample instance-optimality for off-policy estimation? And how
to achieve it?

Part of the results in this dissertation pave the way towards a complete recipe for this
question. In Chapter 4, we show that the optimal risk is determined by how well we can
estimate the nuisance component in a weighted L2-norm, in addition to the classical
efficiency bound. When the efficiency bound itself is infinite, Chapter 5 shows that
instance-optimal estimation is made possible by exploiting geometric structures of the
function class.

Weighted L2-norm and optimal finite-sample efficiency: In practice, a class of
two-stage semi-parametric procedures known as Augmented Inverse Propensity Weighted
(AIPW) are widely used for off-policy estimation. In the first stage, the treatment
effect function, defined as the conditional expectation of the outcome conditioned on
the state-action pair, is estimated, so as to reduce the variance of the näıve important
weight (IPW) method in the second stage. Two prominent questions naturally arise:
which estimator should be used in the first stage for optimal estimation of the scalar?
and since the estimation of a function can require a large sample size, is this necessary?

Focusing on the case with known behavior policy, we analyze such two-stage pro-
cedures, and establish a general finite-sample error upper bound. The risk is given by
the sum of the asymptotic efficiency bound, and the estimation error for the nuisance
function, measured under a re-weighted L2-norm. The optimality of such procedure
is established in a strong sense, through a local non-asymptotic minimax lower bound
containing exactly the same weighted L2-error term. We also show the necessity of
the complexity-dependent sample size for achieving such bounds. Our results therefore
exhibits the equivalence between optimal estimation for the scalar and the function,
under the weighted L2-norm.

Optimal notion of efficiency beyond the
√
n rate: The semi-parametric efficiency

bound for off-policy evaluation involves certain moments of the importance ratio, which
can be infinite even for many natural applications. In causal literature, this corresponds
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to the lack of overlap assumption, a notorious situation where many classical principles
in the semi-parametric efficiency regime fails. However, infinite efficiency bound does
not rule out the possibility for estimating the target functional, if structural assumptions
are imposed on the treatment effect function.

Assuming that the treatment effect function belongs to a reproducing kernel Hilbert
spaces (RKHS), we characterize the instance-optimal risk with non-asymptotic upper
bounds and local minimax lower bounds, thereby exhibiting the correct notion of
efficiency in such regime. The resulting rate varies from the (near-)parametric

√
n to

arbitrarily slow ones, depending on interplay between the geometry of the RKHS and the
behavior policy. Furthermore, the estimator is adaptive in a strong sense: no knowledge
about the policy is required, while the optimal risk is achieved under any policy.

The main contents of this part is drawn, under minor modification, from the following
two papers: Chapter 4 is from the paper [155] “Off-policy estimation of linear functionals:
non-asymptotic theory for semi-parametric efficiency”, co-authored with Martin J.
Wainwright and Peter L. Bartlett. Chapter 5 is from the paper [145] “Kernel-based off-
policy estimation without overlap: instance-dependent optimality beyond semiparametric
efficiency”, co-authored with Peng Ding, Martin J. Wainwright, and Peter L. Bartlett.

1.2 Related work not appearing in this thesis

In this section, we briefly summarize some other papers of the author during his Ph.D.,
which are closely related to the topics above.

• Efficient sampling algorithms and diffusion processes: High-dimensional
sampling is a fundamental computational task with a wide range of applications
in data science. In particular, it allows us to compute Bayes optimal estimators
efficiently, and quantify uncertainties in a Bayesian framework. Lying at the
heart of continuous-space Markov chain Monte Carlo (MCMC) algorithms is the
discretization of the Langevin stochastic differential equations (SDE). I have made
several contribution to design and analysis of efficient sampling algorithms for
large-scale learning and inference. In particular, in the paper [147], we provide a
near-optimal analysis for the forward Euler discretization of Langevin diffusion,
achieving near-optimal rates, polynomial dependence on the time horizon, and
linear dimension dependence simultaneously under mild conditions that allow
arbitrary non-convexity. In the papers [151] and [146], we develop sampling algo-
rithms with state-of-the-art non-asymptotic performances by exploiting structures
in learning problems. The analysis of Langevin diffusion processes also sheds light
on the non-asymptotic contraction behavior and shape of the Bayesian posterior.
In my work [148], we develop new tools for non-asymptotic contraction rates using
the diffusion approach, which leads to near-optimal rates in some challenging
setups.
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• Statistically optimal stochastic approximation algorithms: The instance-
dependent optimality guarantees for stochastic approximation methods presented
in Chapter 3 have also been established for other setups. In the paper [150], we
study Polyak–Ruppert averaged constant stepsize linear stochastic approximation
with i.i.d. data. A fine-grained instance-dependent behavior is characterized,
with an additional term in the covariance given by a Ricatti equation depending
on the stepsize. In the paper [121], we propose a new stochastic optimization
algorithm, ROOT-SGD, which achieves desirable instance-dependent guarantees
at a near-optimal sample complexity, in the classical strongly convex and smooth
setup. This algorithm is further extended to solve the fixed point of contractive
operators in general Banach spaces [149]. The resulting algorithm, ROOT-SA, non-
asymptotically achieves the optimal risk functional defined by the local asymptotic
minimax limit, with a sharp sample complexity.

• Reinforcement learning with general function approximation: Part I
of this dissertation focuses on establishing optimal oracle inequalities for policy
evaluation using approximation with linear subspaces. While this form of function
approximation is widely used in practice, other parametric and nonparametric
classes provide more flexibility. In the paper [154], we extend the optimal oracle
inequalities to general function classes under some geometric conditions in a
tangent cone. We further exhibit the necessity of such geometric conditions. In
an independent line of research, in the paper [156], we characterize the sample
complexity of policy optimization using the eluder dimension of the policy class.

• Causal estimation with high-dimensional data: In observational studies,
when the propensity score is unknown, a popular approach is to estimate the
propensity score using logistic models. High-dimensional covariates bring about
additional challenges in this semiparametric problem. Using a novel debiased pro-
cedure, in the paper [197], we establish asymptotic normality and non-asymptotic
bounds with an improved dependence on problem dimension.

1.3 Notation

Here we summarize some notation used throughout this dissertation.

Basic notations: For a positive integer m, we define the set [m] := {1, 2, · · · ,m}.
For any pair (X,Y) of real Hilbert spaces and a linear operator A : X → Y, we denote by
A∗ : Y → X the adjoint operator of A, which by definition, satisfies ⟨Ax, y⟩ = ⟨x, A∗y⟩
for all (x, y) ∈ X × Y. For a bounded linear operator A from X to Y, we define its

operator norm as: |||A|||X→Y := supx∈X\{0}
∥Ax∥Y
∥x∥X

. We use the shorthand notation |||A|||X
to denote its operator norm when A is a bounded linear operator mapping X to itself.
When X = Rd1 and Y = Rd2 are finite-dimensional Euclidean spaces equipped with the
standard inner product, we denote by |||A|||op the operator norm in this case. We also
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use ∥ · ∥2 to denote the standard Euclidean norm, in order to distinguish it from the
Hilbert norm ∥ · ∥. Given a set A in a normed vector space with norm ∥ · ∥c, we denote
the diameter diamc(A) := supx,y∈A ∥x− y∥c.

For a random object X, we use L(X) to denote its probability law. For any x ∈ S,
we use δx to denote the distribution that places all its mass on {x}, or equivalently,
the Dirac δ-function at point x (defined as a tempered distribution). Given a vector
µ ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we use N (µ,Σ) to denote the
Gaussian distribution with mean µ and covariance Σ. We use U(Ω) to denote the
uniform distribution over a set Ω. Given a Polish space S and a positive measure µ
associated to its Borel σ-algebra, for p ∈ [1,+∞), we define Lp(S, µ) :=

{
f : S →

R, ∥f∥Lp :=
( ∫

S |f |
pdµ
)1/p

< +∞
}
. When S is a subset of Rd and µ is the Lebesgue

measure, we use the shorthand notation Lp(S).

Distance between probability measures: We let (S, ρ) denote a metric space. For
a pair (π, µ) of probability distributions on S, let Γ(π, µ) denote the space of all possible
couplings of µ and π. For any p ≥ 1, the Wasserstein-p distance between π and µ is
given by

Wp(π, µ) :=
{

inf
γ∈Γ(π,µ)

∫
S×S

ρ(x, y)pdγ(x, y)
}1/p

, (1.1)

and the total variation distance between π and µ by

dTV(π, µ) := sup
A⊆S

|π(A)− µ(A)| .

For any pair of probability distributions P and Q on the same space, we use P ≪ Q
to denote the fact that P is absolute continuous with respect to Q, and use dP

dQ
to

indicate the Radon-Nikodym derivative. Given P ≪ Q, we define:

KL Divergence: DKL (P ∥ Q) := EP
[
log dP

dQ
(X)

]
,

χ2 divergence: χ2 (P || Q) := EP
[
dP
dQ

(X)− 1
]
,

Max divergence: D∞(P ||Q) := sup
x∈supp(Q)

∣∣∣log dP
dQ

(x)
∣∣∣ .

Matrices in finite dimensions: We use {ej}dj=1 to denote the standard basis vectors
in the Euclidean space Rd, i.e., ei is a vector with a 1 in the i-th coordinate and zeros
elsewhere. For two matrices A ∈ Rd1×d2 and B ∈ Rd3×d4 , we denote by A ⊗ B their
Kronecker product, a d1d3 × d2d4 real matrix. For symmetric matrices A,B ∈ Rd×d, we
use A ⪯ B to denote the fact B − A is a positive semi-definite matrix, and denote by
A ≺ B when B−A is positive definite. For a positive integer d and indices i, j ∈ [d], we
denote by Eij a d× d matrix with a 1 in the (i, j) position and zeros elsewhere. More
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generally, given a set S and s1, s2,∈ S, we define Es1,s2 to be the linear operator such
that Es1,s2f(x) := f(s2)1x=s1 for all f : S → R.

Given any matrix A = (aij) ∈ Rn×m, its vectorization is obtained by concatenating its

columns—viz. vec(A) :=
[
a11 a2,1 · · · an1 a12 · · · an2 · · · a1m · · · anm

]⊤ ∈
Rnm. We use λmax(A) and λmin(A) to denote the largest and smallest eigenvalue of the
matrix A, respectively. We use the following notation for matrix norms: for any matrix
A ∈ Rd1×d2 , we use the notation |||A|||op, |||A|||F and |||A|||nuc to denote its operator norm,
Frobenius norm and nuclear norm, respectively.

Infinite-dimensional matrices: Above definitions can be extended to the infinite-
dimensional setup. In particula, we define infinite-dimensional vectors and matrices
formally as mappings from integers (pairs) to reals. Given an infinite-dimensional matrix
A and a vector z, we define their product pointwise as

[Az]i :=
+∞∑
j=1

Ai,jzj, for any i ∈ N+,

assuming that each summation is absolute convergent.
Let ℓ0(N) be the set of infinite-dimensional vectors with finite support, i.e., finitely

many non-zero entries. We say an infinite-dimensional symmetric matrix A is positive
semi-definite, denoted by A ⪰ 0, if

x⊤Ax ≥ 0, for any x ∈ ℓ0(N).

Note that for any vector space V in which ℓ0(N) is dense, if the matrix A maps from
V to V∗, the definition can be easily extended to ensure that x⊤Ax ≥ 0 for any x ∈ V.
Given this notation, we can furthermore define the positive semi-definite ordering A ⪰ B
if A−B ⪰ 0.

Similarly, we can define the inverse of infinite-dimensional matrix. We call B = A−1

if B · (Ax) = A(Bx) = x for any x ∈ ℓ0(N). Once again, such definition can be easily
extended to larger vector spaces by density arguments, assuming that both A and B
are bounded linear operators acting on suitably defined spaces.

Empirical process tools: For any α > 0, the Orlicz norm of a scalar random variable
X is given by

∥X∥ψα := sup
{
u > 0 | E

[
e(|X|/u)α] ≤ 1

}
.

The choices α = 2 and α = 1 correspond, respectively, to the cases of sub-Gaussian and
sub-exponential tails, respectively.

Given a metric space (T, ρ) and a set Ω ⊆ T, we use N(Ω, ρ; s) to denote the
cardinality of a minimal s-covering of set Ω under the metric ρ. For any scalar q ≥ 1
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and closed interval [δ,D] we define the Dudley entropy integral

Jq(Ω, ρ; [δ,D]) :=

∫ D

δ

[
logN(Ω, ρ; s)

]1/q
ds.

Given a domain S, a bracket [ℓ, u] is a pair of real-valued functions on S such that
ℓ(x) ≤ u(x) for any x ∈ S, and a function f is said to lie in the bracket [ℓ, u] if
f(x) ∈ [ℓ(x), u(x)] for any x ∈ S. Given a probability measure Q over S, the size of the
bracket [ℓ, u] is defined as ∥u− ℓ∥L2(Q). For a function class F over S, the bracketing
number Nbra

(
F ,L2(Q); s

)
denotes the cardinality of a minimal bracket covering of the set

F , with each bracket of size smaller than s. Given a closed interval [δ,D], the bracketed
chaining integral is given by

Jbra(F ,L2(Q); [δ,D]) :=

∫ D

δ

√
logNbra(F ,L2(Q); s) ds.
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Part I

Reinforcement learning with
function approximation
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Chapter 2

Optimal oracle inequalities for
projected fixed-point equations

Linear fixed point equations in Hilbert spaces arise in a variety of settings, including
reinforcement learning, and computational methods for solving differential and integral
equations. In this chapter, we study methods that use a collection of random observations
to compute approximate solutions by searching over a known low-dimensional subspace
of the Hilbert space. First, we prove an instance-dependent upper bound on the mean-
squared error for a linear stochastic approximation scheme that exploits Polyak–Ruppert
averaging. This bound consists of two terms: an approximation error term with an
instance-dependent approximation factor, and a statistical error term that captures
the instance-specific complexity of the noise when projected onto the low-dimensional
subspace. Using information-theoretic methods, we also establish lower bounds showing
that both of these terms cannot be improved, again in an instance-dependent sense. A
concrete consequence of our characterization is that the optimal approximation factor
in this problem can be much larger than a universal constant. We show how our results
precisely characterize the error of a class of temporal difference learning methods for
the policy evaluation problem with linear function approximation, establishing their
optimality.

2.1 Introduction

Linear fixed point equations over a Hilbert space, with the Euclidean space being an
important special case, arise in various contexts. Such fixed point equations take different
names in different domains, including estimating equations, Bellman equations, Poisson
equations and inverse systems [15, 110, 221]. More specifically, given a Hilbert space X,
we consider a fixed point equation of the form

v = Lv + b, (2.1)

where b is some member of the Hilbert space, and L is a linear operator mapping X to
itself.
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When the Hilbert space is infinite-dimensional—or has a finite but very large
dimension D—it is common to seek approximate solutions to equation (2.1). A standard
approach is to choose a subspace S of the Hilbert space, of dimension d≪ D, and to
search for solutions within this subspace. In particular, letting ΠS denote the orthogonal
projection onto this subspace, various methods seek (approximate) solutions to the
projected fixed point equation

v = ΠS
(
Lv + b

)
. (2.2)

In order to set the stage, let us consider some generic examples that illustrate the
projected fixed point equation (2.2). We eschew a fully rigorous exposition at this stage,
deferring technical details and specific examples to Section 2.2.2.

Example 2.1 (Galerkin methods for differential equations). Let X be a Hilbert space of
suitably differentiable functions, and let A be a linear differential operator of order k,
say of the form A(v) = ω0v +

∑k
j=1 ωjv

(j), where v(j) denotes the jth-order derivative of
the function v ∈ X. Given a function b ∈ X, suppose that we are interested in solving
the differential equation A(v) = b. This represents a particular case of our fixed point
equation with L = I − A.

Let S be a finite-dimensional subspace of X, say spanned by a set of basis functions
{ϕj}dj=1. A Galerkin method constructs an approximate solution to the differential
equation A(v) = b by solving the projected fixed point equation (2.2) over a subspace of
this type. Concretely, any function v ∈ S has a representation of the form v =

∑d
j=1 ϑjϕj

for some weight vector ϑ ∈ Rd. Applying the operator A to any such function yields
the residual A(v) =

∑d
j=1 ϑjA(ϕj), and the Galerkin method chooses the weight vector

ϑ ∈ Rd such that v satisfies the equation v = ΠS((I − A)v + b). In Section 2.2.2.2, we
describe in detail a specific version of the Galerkin method as applied to a second-order
differential equation that underlies the so-called elliptic boundary value problem. ♣

Example 2.2 (Instrumental variable methods for nonparametric regression). Let X
denote a suitably constrained space of square-integrable functions mapping Rp → R, and
suppose that we have a regression model of the form Y = f ∗(X)+ ϵ. Here X is a random
vector of covariates taking values in Rp, the pair (Y, ϵ) denote scalar random variables,
and f ∗ ∈ X denotes an unknown function of interest. For discussion of the existence
and uniqueness of the various objects in this model, see Darolles et al. [46].

In the classical setup of nonparametric regression, it is assumed that E[ϵ | X] = 0, an
assumption that can be violated. Instead, suppose that we have a vector of instrumental
variables Z ∈ Rp such that E[ϵ | Z] = 0. Now let T : X → X denote a linear operator
given by T (f) = E[f(X)|Z], and denote by r = E[Y |Z] a point in X. Instrumental
variable (IV) approaches to estimating f ∗ are based on the equality

E[Y − f ∗(X) | Z] = r − T (f ∗) = 0, (2.3)

which is a linear fixed point relation of the form (2.1) with L = I − T and b = r.
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Now let {ϕj}j≥1 be an orthonormal basis of X, and let S denote the subspace spanned
by the first d such eigenfunctions. Then each function f ∈ S can be represented as
f =

∑d
j=1 ϑjϕj, and approximate solutions to the fixed point equation (2.3) may be

obtained via solving a projected variant (2.2), i.e., the equation f = ΠS((I − T )f + r).
A specific example of an IV method is the class of temporal difference methods for

policy evaluation, introduced and discussed in detail in Section 2.2.2.3. ♣

In particular instantiations of both of the examples above, it is typical for the ambient
dimension D to be very large (if not infinite) and for us to only have sample access to
the pair (L, b). This chapter treats the setting in which n observations

{
(Li, bi)

}n
i=1

are
drawn i.i.d. from some distribution with mean (L, b). Letting v∗ denote the solution to
the fixed point equation (2.1), our goal is to use these observations in order to produce
an estimate v̂n of v∗ that satisfies an oracle inequality of the form

E∥v̂n − v∗∥2 ≤ α · inf
v∈S

∥v − v∗∥2 + εn. (2.4)

Here we use ∥ · ∥ to denote the Hilbert norm associated with X. The three terms
appearing on the RHS of inequality (2.4) all have concrete interpretations. The term

A(S, v∗) := inf
v∈S

∥v − v∗∥2 (2.5)

defines the approximation error ; this is the error incurred by an oracle procedure that
knows the fixed point v∗ in advance and aims to output the best approximation to v∗

within the subspace S. The term α is the approximation factor, which indicates how
poorly the estimator v̂n performs at carrying out the aforementioned approximation;
note that α ≥ 1 by definition, and it is most desirable for α to be as small as possible.
The final term εn is a proxy for the statistical error incurred due to our stochastic
observation model; indeed, one expects that as the sample size n goes to infinity, this
error should tend to zero for any reasonable estimator, indicating consistent estimation
when v∗ ∈ S. More generally, we would like our estimator to also have as small a
statistical error as possible in terms of the other parameters that define the problem
instance.

In an ideal world, both desiderata hold simultaneously: the approximation factor
should be as close to one as possible while the statistical error stays as small as possible.
As we discuss shortly, such a “best-of-both-worlds” guarantee can indeed be obtained
in many canonical problems, and “sharp” oracle inequalities—meaning ones in which
the approximation factor is equal to one—are known [172, 44]. On the other hand,
such oracle equalities with unit factors are not known for the fixed point equation (2.1).
Tsitsiklis and Van Roy [204] show that if the operator L is γmax-contractive in the norm
∥ · ∥, then the (deterministic) solution v to the projected fixed point equation (2.2)
satisfies the bound

∥v − v∗∥2 ≤ 1

1− γ2max

inf
v∈S

∥v − v∗∥2. (2.6)
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Since γmax can be arbitrarily close to one, the pre-factor in the bound (2.6) can be much
larger than one, in contrast to so-called “sharp” oracle inequalities for non-parametric
regression. One motivating question for our work is whether or not this bound can be
improved, and if so, to what extent.1

Our work is also driven by the complementary question of whether a sharp bound
can be obtained on the statistical error of an estimator that, unlike v, has access only to

the samples
{
(Li, bi)

}n
i=1

. In particular, we would like the statistical error εn to depend

on some notion of complexity within the subspace S, and not on the ambient space.
Recent work by Bhandari et al. [16] provides worst-case bounds on the statistical error
of a stochastic approximation scheme, showing that the parametric rate ϵn ≲ d/n is
attainable. In this chapter, we study how to derive a more fine-grained bound on the
statistical error that reflects the practical performance of the algorithm and depends
optimally on the geometry of our problem instance.

2.1.1 Contributions and organization

The main contribution of this chapter is to resolve both of the aforementioned questions,
in particular by deriving upper bounds and information-theoretic lower bounds on both
the approximation factor and statistical error that are instance-dependent. On one
hand, these bounds demonstrate that in general, it is not possible to obtain an oracle
inequality with a pre-factor equal to one, but that there are many settings in which the
optimal approximation factor is much smaller than what is suggested by the worst-case
bound (2.6). We also derive a significantly sharper bound on the statistical error of a
stochastic approximation scheme that is instance-optimal in a precise sense. In more
detail, the contributions of this chapter include the following:

• Theorem 2.1 establishes an instance-dependent upper bound of the form (2.4) for
the Polyak–Ruppert averaged stochastic approximation estimator, whose approxi-
mation factor α depends in a precise way on the projection of the operator L onto
the subspace S, and the statistical error ϵn matches the Cramér–Rao lower bound
for the instance within the subspace.

• In Theorem 2.2, we prove an information-theoretic lower bound on the approxi-
mation factor. It is a local analysis, in that the bound depends critically on the
projection of the population-level operator. This lower bound certifies that the
approximation factor attained by our estimator is optimal. To the best of our
knowledge, this is also the first instance of an optimal oracle inequality with a
non-constant and problem-dependent approximation factor.

1Note that one can achieve an approximation factor arbitrarily close to one provided that n≫ D.
One way to do so is as follows: form the plug-in estimate that solves the original fixed point relation (2.1)
on the sample averages 1

n

∑n
i=1 Li and

1
n

∑n
i=1 bi, and then project this solution onto the subspace S.

In this chapter, our principal interest—driven by the practical examples of Galerkin approximation and
temporal difference learning—is in the regime d≪ n≪ D.
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• In Theorem 2.3, we establish via a Bayesian Cramér-Rao lower bound that the
leading statistical error term for our estimator is also optimal in an instance-
dependent sense.

• In Section 2.4, we derive specific consequences of our results for several examples,
including problem of Galerkin approximation in second-order elliptic equations,
as well as temporal difference methods for policy evaluation with linear function
approximation. A particular consequence of our results shows that in a minimax
sense, the approximation factor (2.6) is optimal for policy evaluation with linear
function approximation (cf. Proposition 2.1).

The remainder of this chapter is organized as follows. Section 2.1.2 contains a detailed
discussion of related work. We introduce formal background and specific examples in
Section 2.2. Our main results under the general model of projected fixed point equations
are introduced and discussed in Section 2.3. We then specialize these results to our
examples in Section 2.4, deriving several concrete corollaries for Galerkin methods and
temporal difference methods. Our proofs are postponed to Section 2.5, and technical
results are deferred to the appendix.

2.1.2 Related work

Our study touches on various lines of related work, including stochastic approximation
and its application to reinforcement learning, projected linear equation methods, as well
as oracle inequalities for statistical estimation. Let us provide a brief discussion of these
connections here.

Stochastic approximation: Stochastic approximation algorithms for both linear
and nonlinear fixed-point equations play a central role in large-scale machine learning
and statistics [174, 114, 161]. See the books [11, 20] for a comprehensive survey of the
classical methods of analysis. In seminal work due to Polyak, Ruppert, and Juditsky [168,
169, 186], it was proposed to take the average of the stochastic approximation iterates,
which stabilizes the algorithm and ensures a Gaussian limiting distribution. In fact,
the averaged iterates are known to be asymptotically optimal in a local minimax
sense [55]. Non-asymptotic guarantees matching this asymptotic behavior have also
been established for other forms of stochastic approximation, as well as variance-reduced
variants thereof [157, 98, 150, 121].

Stochastic approximation is also a fundamental building block for reinforcement
learning algorithms, wherein the method is used to produce an iterative, on-line solution
to the Bellman equation from data; see the books [200, 14] for a survey. Such approaches
include temporal difference (TD) methods [198] for the policy evaluation problem and
the Q-learning algorithm [216] for policy optimization. Variants of these algorithms
also abound, including LSTD [24], SARSA [185], actor-critic algorithms [107], and
gradient TD methods [199]. The analysis of these methods has received significant
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attention in the literature, ranging from asymptotic guarantees (e.g., [27, 204, 205])
to more fine-grained finite-sample bounds (e.g., [16, 194, 115, 164, 211, 212]). Our
work contributes to this literature, since as a corollary of our general analysis, we
are able to establish finite-sample upper bounds for temporal difference methods with
Polyak–Ruppert averaging, as applied to the policy evaluation problem with linear
function approximation.

Projected methods for linear equations: In 1915, Galerkin [65] first proposed
the method of approximating the solution to a linear PDE by solving the projected
equation in a finite-dimensional subspace. This method later became a cornerstone of
finite-element methods in numerical methods for PDEs; see the books [60, 28] for a
comprehensive survey. A fundamental tool used in the analysis of Galerkin methods
is Céa’s lemma [35]; in this chapter, we derive more general upper bounds on the
approximation factor that capture this classical lemma as a special case. As mentioned
before, in the specific context of reinforcement learning, projected linear equations were
studied by Tsitsiklis and Van Roy [204], who first proved the upper bound (2.6) on the
approximation factor under contractivity assumptions. These contraction-based bounds
were further extended to the analysis of Q-learning in optimal stopping problems [205].
The connection between the Galerkin method and TD methods was observed by Yu
and Bertsekas [226, 15], and the former paper provides an instance-dependent upper
bound on the approximation factor. This analysis was later applied to Monte–Carlo
methods for solving linear inverse problems [171, 170].

The Bellman equation can be written in infinitely many equivalent ways—by using
powers of the transition kernel and via the formalism of resolvents—leading to a
continuous family of projected equations indexed by a scalar parameter λ (see, e.g.,
Section 5.5 of Bertsekas [14]). Some of these forms can be specifically leveraged in other
observation models; for instance, by observing the trajectory of the Markov chain instead
of i.i.d. samples, it becomes possible to obtain unbiased observations for integer powers
of the transition kernel. This makes it possible to efficiently estimate the solution to
the projected linear equation for various values of λ, and underlies the family of TD(λ)
methods [198, 24]. Indeed, Tsitsiklis and Van Roy [204] also showed that the worst-case
approximation factor in equation (2.6) can be improved by using larger values of λ.
Based on this observation, a line of work has studied the trade-off between approximation
error and estimation measure in model selection for reinforcement learning problems [13,
187, 158, 210]. Understanding precise trade-offs between approximation and estimation
error is crucial to model selection. However, unlike this body of work, our focus in this
chapter is on studying the i.i.d. observation model; a detailed investigation into the
Markov setting will be presented in Chapter 3.

Oracle inequalities: There is a large literature on mis-specified statistical models
and oracle inequalities (e.g., see the monographs [136, 105] for overviews). Oracle
inequalities in the context of penalized empirical risk minimization (ERM) are quite
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well-understood (e.g., [8, 104, 137]). Typically, the resulting approximation factor is
exactly 1 or arbitrarily close to 1, and the statistical error term depends on the localized
Rademacher complexity or metric entropy of this function class. Aggregation methods
have been developed in order to obtain sharp oracle inequalities with approximation
factor exactly 1 (e.g. [207, 31, 44, 172]). Sharp oracle inequalities are now available
in a variety of settings including for sparse linear models [32], density estimation [45],
graphon estimation [102], and shape-constrained estimation [10]. As previously noted,
our setting differs qualitatively from the ERM setting, in that as shown in this chapter,
sharp oracle inequalities are no longer possible. There is another related line of work on
oracle inequalities of density estimation. Yatracos [224] showed an oracle inequality with
the non-standard approximation factor 3, and with a statistical error term depending
on the metric entropy. This non-unit approximation factor was later shown to be
optimal for the class of one-dimensional piecewise constant densities [36, 23, 233]. The
approximation factor lower bound in these papers and our work both make use of the
birthday paradox to establish information-theoretic lower bounds.

2.2 Background

We begin by formulating the projected fixed point problem more precisely in Section 2.2.1.
Section 2.2.2 provides illustrations of this general set-up with some concrete examples.

2.2.1 Problem formulation

Consider a separable Hilbert space X with (possibly infinite) dimension D, equipped
with the inner product ⟨·, ·⟩. Let L denote the set of all bounded linear operators
mapping X to itself. Given one such operator L ∈ L and some b ∈ X, we consider the
fixed point relation v = Lv + b, as previously defined in equation (2.1). We assume
that the operator I − L has a bounded inverse, which guarantees the existence and
uniqueness of the fixed point satisfying equation (2.1). We let v∗ denote this unique
solution.

As previously noted, in general, solving a fixed point equation in the Hilbert space
can be computationally challenging. Consequently, a natural approach is to seek
approximations to the fixed point v∗ based on searching over a finite-dimensional
subspace of the full Hilbert space. More precisely, given some d-dimensional subspace S
of X, we seek to solve the projected fixed point equation (2.2).

Existence and uniqueness of projected fixed point: For concreteness in analysis,
we are interested in problems for which the projected fixed equation has a unique
solution. Here we provide a sufficient condition for such existence and uniqueness. In
doing so and for future reference, it is helpful to define some mappings between X and
the subspace S. Let us fix some orthogonal basis {ϕj}j≥1 of the full space X such that
S = span{ϕ1, . . . , ϕd}. In terms of this basis, we can define the projection operator
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Φd : X → Rd via Φd(x) :=
(
⟨x, ϕj⟩

)d
j=1

. The adjoint operator of Φd is a mapping from

Rd to X, given by

Φd(v) :=
d∑
j=1

vjϕj. (2.7)

Using these operators, we can define the projected operator associated with L—namely

M := ΦdLΦ
∗
d. (2.8)

Note that M is simply a d-dimensional matrix, one which describes the action of L on
S according to the basis that we have chosen. As we will see in the main theorems, our
results do not depend on the specific choice of the orthonormal basis, but it is convenient
to use a given one, as we have done here.

Consider the quantity

κ(M) := 1
2
λmax

(
M +M⊤

)
, (2.9)

corresponding to the maximal eigenvalue of the symmetrized version ofM . One sufficient
condition for there be a unique solution to the fixed point equation (2.2) is the bound
κ(M) < 1. When this bound holds, the matrix (Id−M) is invertible, and hence for any
b ∈ X, there is a unique solution v to the equation v = ΠS(Lv + b).

Stochastic observation model: As noted in Section 2.1, this chapter focuses on an
observation model in which we observe i.i.d. random pairs (Li, bi) for i = 1, . . . , n that
are unbiased estimates of the pair (L, b) so that

E[Li] = L, and E[bi] = b. (2.10)

In addition to this unbiasedness, we also assume that our observations satisfy a certain
second-moment bound. A weaker and a stronger version of this assumption are both
considered.

Assumption 2.1(W). (Second-moment bound in projected space) There exist scalars
σL, σb > 0 such that for any unit-norm vector u ∈ S and any basis vector in {ϕj}dj=1 we
have the bounds

E⟨ϕj, (Li − L)u⟩2 ≤ σ2
L∥u∥2, and (2.11a)

E⟨ϕj, bi − b⟩2 ≤ σ2
b . (2.11b)

Assumption 2.1(S). (Second-moment bound in ambient space) There exist scalars
σL, σb > 0 such that for any unit-norm vector u ∈ X and any basis vector in {ϕj}Dj=1 we
have the bounds

E⟨ϕj, (Li − L)u⟩2 ≤ σ2
L∥u∥2, and (2.12a)

E⟨ϕj, bi − b⟩2 ≤ σ2
b . (2.12b)
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In words, Assumption 2.1(W) guarantees that the random variable obtained by projecting
the “noise” onto any of the basis vectors ϕ1, . . . , ϕd in the subspace S has bounded
second moment. Assumption 2.1(S) further requires the projected noise onto any basis
vector of the entire space X to have bounded second moment. In Section 2.4, we show
that there are various settings—including Galerkin methods and temporal difference
methods—for which at least one of these assumptions is satisfied.

2.2.2 Examples

We now present some concrete examples to illustrate our general formulation. In partic-
ular, we discuss the problems of linear regression, temporal difference learning methods
from reinforcement learning2, and Galerkin methods for solving partial differential
equations.

2.2.2.1 Linear regression on a low-dimensional subspace

Our first example is the linear regression model when true parameter is known to
lie approximately in a low-dimensional subspace. This example, while rather simple,
provides a useful pedagogical starting point for the others to follow.

For this example, the underlying Hilbert space X from our general formulation is
simply the Euclidean space RD, equipped with the standard inner product ⟨·, ·⟩. We
consider zero-mean covariates X ∈ RD and a response Y ∈ R, and our goal is to estimate
the best-fitting linear model x 7→ ⟨v, x⟩. In particular, the mean-square optimal fit is
given by v∗ := argminv∈RD E

(
Y − ⟨v, X⟩)2. From standard results on linear regression,

this vector must satisfy the normal equations E[XX⊤]v∗ = E[Y X]. We assume that the
second-moment matrix E[XX⊤] is non-singular, so that v∗ is unique.

Let us rewrite the normal equations in a form consistent with our problem formulation.
An equivalent definition of v∗ is in terms of the fixed point relation

v∗ =
(
I − 1

β
E[XX⊤]

)
v∗ +

1

β
E[Y X], (2.13)

where β := λmax(E[XX⊤]) is the maximum eigenvalue. This fixed point condition is
a special case of our general equation (2.1) with the operator L = I − 1

β
E[XX⊤] and

vector b = 1
β
E[Y X]. Note that we have

|||L|||op = |||I − 1

β
E[XX⊤]|||op ≤ 1− µ

β
< 1,

where µ = λmin(E[XX⊤]) > 0 is the minimum eigenvalue of the covariance matrix.

2As noted by Bradtke and Barto [27], this method can be understood as an instrumental variable
method [221], and our results also apply to this more general setting.
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In the well-specified setting of linear regression, we observe i.i.d. pairs (Xi, Yi) ∈
RD × R that are linked by the standard linear model

Yi = ⟨v∗, Xi⟩+ εi, for i = 1, 2, · · · , n, (2.14)

where εi denotes zero-mean noise with finite second moment. Each such observation
can be used to form the matrix-vector pair

Li = I − β−1XiX
⊤
i , and bi = β−1XiYi,

which is in the form of our assumed observation model.
Thus far, we have simply reformulated linear regression as a fixed point problem. In

order to bring in the projected aspect of the problem, let us suppose that the ambient
dimension D is much larger than the sample size n, but that we have the prior knowledge
that v∗ lies (approximately) within a known subspace S of RD, say of dimension d≪ D.
Our goal is then to approximate the solution to the associated projected fixed-point
equation.

Using {ϕj}dj=1 to denote an orthonormal basis of S, the population-level projected
linear equation (2.2) in this case takes the form

E
[
(ΠSX)(ΠSX)⊤

]
v = E

[
Y · ΠSX

]
, (2.15)

Thus, the population-level projected problem (2.15) corresponds to performing linear
regression using the projected version of the covariates, thereby obtaining a vector of
weights v ∈ S in this low-dimensional space.

2.2.2.2 Galerkin methods for second-order elliptic equations

We now turn to the Galerkin method for solving differential equations, a technique
briefly described in Section 2.1. The general problem is to compute an approximate
solution to a partial differential equation based on a limited number of noisy observations
for the coefficients. Stochastic inverse problems of this type arise in various scientific
and engineering applications [162, 5].

For concreteness, we consider a second-order elliptic equation with Dirichlet boundary
conditions.3 Given a bounded, connected and open set Ω ⊆ Rm with unit Lebesgue
measure, let ∂Ω denote its boundary. Consider the Hilbert space of functions

X := Ḣ1(Ω) =
{
v : Ω → R,

∫
Ω

∥∇v(x)∥22dx <∞, v|∂Ω = 0
}

equipped with the inner product ⟨u, v⟩Ḣ1 :=
∫
Ω
∇u(x)⊤∇v(x)dx.

3It should be noted that Galerkin methods apply to a broader class of problems, including linear
PDEs of parabolic and hyperbolic type [116], as well as kernel integral equations [171, 170].
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Given a symmetric matrix-valued function a and a square-integrable function f ∈ L2,
the boundary-value problem is to find a function v : Ω → R such that{

∇ · (a(x)∇v(x)) + f = 0 in Ω,

v(x) = 0 on ∂Ω.
(2.16)

We impose a form of uniform ellipticity by requiring that µIm ⪯ a(x) ⪯ βIm, for some
positive scalars µ ≤ β, valid uniformly over x.

The problem can be equivalently stated in terms of the elliptic operator A :=
−∇· (a∇); as shown in Appendix A.8.3.1, the pair (A, f) induces a bounded, self-adjoint

linear operator Ã on X and a function g ∈ X such that the solution to the boundary
value problem can be written as

v∗ =
(
I − 1

β
Ã
)
v∗ + β−1g. (2.17)

By construction, this is now an instance of our general fixed point equation (2.1) with

L := I − 1
β
Ã and b := β−1g. Furthermore, our assumptions imply that |||L|||X ≤ 1− µ

β
.

We consider a stochastic observation model that is standard in the literature (see,
e.g., the paper [69]). Independently for each i ∈ [n], let Wi denote an m×m symmetric
random matrix with entries on the diagonal and upper-diagonal given by i.i.d. standard
Gaussian random variables. Let w′

i ∼ N (0, 1) denote a standard Gaussian random
variable. Suppose now that we observe the pair xi, yi ∼ U(Ω); the observed values for
the i-th sample are then given by

(ai, fi) :=
(
a(xi) +Wi, f(yi) + w′

i

)
with xi, yi ∼ U(Ω). (2.18)

The unbiased observations (Li, bi) can then be constructed by replacing (a, f) with(
aiδxi , fiδyi

)
in the constructions above.

For such problems, the finite-dimensional projection not only serves as a fast and
cheap way to compute solutions from simulation [130], but also makes the solution stable
and robust to noise [91]. Given a finite-dimensional linear subspace S ⊆ X spanned by
orthogonal basis functions (ϕi)

d
i=1, we consider the projected version of equation (2.17),

with solution denoted by v:

v = ΠS(Lv + b). (2.19)

Straightforward calculation in conjunction with Lemma A.9 shows that equation (2.19)
is equivalent to the conditions v ∈ S, and

⟨Ãv, ϕj⟩Ḣ1 = ⟨g, ϕj⟩Ḣ1 for all j ∈ [d], (2.20)

with the latter equality better known as the Galerkin orthogonality condition in the
literature [28].
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2.2.2.3 Temporal difference methods for policy evaluation

Our final example involves the policy evaluation problem in reinforcement learning. This
is a special case of an instrumental variable method, as briefly introduced in Section 2.1.
We require some additional terminology to describe the problem of policy evaluation.
Consider a Markov chain on a state space S and a transition kernel P : S × S → R.
It becomes a discounted Markov reward process when we introduce a reward function
r : S → R, and discount factor γ ∈ (0, 1). The goal of the policy evaluation problem
to estimate the value function, which is the expected, long-term, discounted reward
accrued by running the process. The value function exists under mild assumptions such
as boundedness of the reward, and is given by the solution to the Bellman equation
v∗ = γPv∗ + r, which is a fixed point equation of the form (2.1) with L = γP and b = r.

Throughout our discussion, we assume that the transition kernel P is ergodic and
aperiodic, so that its stationary distribution ξ is unique. We define X to be the Hilbert
space L2(S, ξ), and for any pair of vectors v, v′ ∈ X, we define the inner product as
follows

⟨v, v′⟩ :=
∫
S
v(s)v′(s)dξ(s).

In the special case of a finite state space, the Hilbert space X is a finite-dimensional
Euclidean space with dimension D = |S| and equipped with a weighted ℓ2-norm.

We consider the i.i.d. observation model in this chapter. For each i = 1, 2, · · · , n,
suppose that we observe an independent tuple (si, s

+
i , Ri(si)), such that

si ∼ ξ, s+i ∼ P (si, ·), and E[Ri(si)|si] = r(si). (2.21)

The i-th observation (Li, bi) is then obtained by plugging in these observations to
compute unbiased estimates of P and r, respectively.

A common practice in reinforcement learning is to employ function approximation,
which in its simplest form involves solving a projected linear equation on a subspace.
In particular, consider a set {ψ1, ψ2, · · · , ψd} of basis functions in X, and suppose that
they are linearly independent on the support of ξ. We are interested in projections onto
the subspace S = span(ψ1, . . . , ψd), and in solving the population-level projected fixed
point equation (2.2), which takes the form

v̄ = ΠS(γP v̄ + r). (2.22)

The basis functions ψi are not necessarily orthogonal, and it is common for the
projection operation to be carried out in a somewhat non-standard fashion. In order
to describe this, it is convenient to write equation (2.22) in the projected space. For
each s ∈ S, let ψ(s) = [ψ1(s) ψ2(s) . . . ψd(s)] denote a vector in Rd, and note that
we may write v̄(s) = ψ(s)⊤ϑ̄ for a vector of coefficients ϑ̄ ∈ Rd. Now observe that
equation (2.22) can be equivalently written in terms of the coefficient vector ϑ̄ as

Es∼ξ[ψ(s)ψ(s)⊤]ϑ̄ = γEs∼ξ
[
Es+∼P (s,·)[ψ(s)ψ(s

+)⊤]
]
ϑ̄+ Es∼ξ[r(s)ψ(s)]. (2.23)
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Equation (2.23) is the population relation underlying the canonical least squares temporal
difference (LSTD) learning method [27, 24].

2.3 Main results for general projected linear

equations

Having set-up the problem and illustrated it with some examples, we now turn to the
statements of our main results. We begin in Section 2.3.1 by stating an upper bound
on the mean-squared error of a stochastic approximation scheme that uses Polyak–
Ruppert averaging. We then discuss the form of this upper bound for various classes of
operator L, with a specific focus on producing transparent bounds on the approximation
factor. Section 2.3.2 is devoted to information-theoretic lower bounds that establish the
sharpness of our upper bound.

2.3.1 Upper bounds

In this section, we describe a standard stochastic approximation scheme for the problem
based on combining ordinary stochastic updates with Polyak–Ruppert averaging [168,
169, 186]. In particular, given an oracle that provides observations (Li, bi), consider the
stochastic recursion parameterized by a positive stepsize η:

vt+1 = (1− η)vt + ηΠS
(
Lt+1vt + bt+1

)
, for t = 1, 2, . . .. (2.24a)

This is a standard stochastic approximation scheme for attempting to solve the projected
fixed point relation. In order to improve it, we use the standard device of applying
Polyak–Ruppert averaging so as to obtain our final estimate. For a given sample size
n ≥ 2, our final estimate v̂n is given by taking the average of these iterates from time
n0 to n—that is

v̂n :=
1

n− n0

n∑
t=n0+1

vt. (2.24b)

Here the “burn-in” time n0 is an integer parameter to be specified.
The stochastic approximation procedure (2.24) is defined in the entire space X; note

that it can be equivalently written as iterates in the projected space Rd, via the recursion

ϑt+1 = (1− η)ϑt + η(ΦdLt+1Φ
∗
dϑt + Φdbt+1). (2.25)

The original iterates can be recovered by applying the adjoint operator—that is, vt = Φ∗
dϑt

for t = 1, 2, . . ..
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2.3.1.1 A finite-sample upper bound

Having introduced the algorithm itself, we are now ready to provide a guarantee on its
error. Two matrices play a key role in the statement of our upper bound. The first is the
d-dimensional matrix M := ΦdLΦ

∗
d that we introduced in Section 2.2.1. We show that

the mean-squared error is upper bounded by the approximation error infv∈S ∥v − v∗∥2
along with a pre-factor of the form

α(M, s) = 1 + λmax

(
(I −M)−1(s2 Id −MMT )(I −M)−T

)
, (2.26)

for s = |||L|||op. Our bounds also involve the quantity κ(M) = 1
2
λmax

(
M +MT

)
, which

we abbreviate by κ when the underlying matrix M is clear from the context.
The second matrix is a covariance matrix, capturing the noise structure of our

observations, given by

Σ∗ := cov
(
Φd(b1 − b) + Φd(L1 − L)v

)
.

This matrix, along with the constants (σL, σb) from Assumption 2.1(W), arise in the
definition of two additional error terms, namely

En(M,Σ∗) :=
trace

(
(I −M)−1Σ∗(I −M)−⊤

)
n

, and (2.27a)

Hn(σL, σb, v) :=
σL

(1− κ)3

(d
n

)3/2(
∥v∥2σ2

L + σ2
b

)
. (2.27b)

As suggested by our notation, the error Hn(σL, σb, v) is a higher-order term, decaying
as n−3/2 in the sample size, whereas the quantity En(M,Σ∗) is the dominant source of
statistical error. With this notation, we have the following:

Theorem 2.1. Suppose that we are given n i.i.d. observations {(Li, bi)}ni=1 that sat-
isfy the noise conditions in Assumption 2.1(W). Then there are universal constants

(c0, c) such that for any sample size n ≥ c0σ2
Ld

(1−κ)2 log
2
(

∥v0−v∥2d
1−κ

)
, then running the algo-

rithm (2.24) with

stepsize η = 1
c0σL

√
dn
, and burn-in period n0 = n/2

yields an estimate v̂n such that

E∥v̂n−v∗∥2 ≤ (1+ω) ·α(M, |||L|||X) inf
v∈S

∥v−v∗∥2+c
(
1+ 1

ω

)
·
{
En(M,Σ∗)+Hn(σL, σb, v)

}
,

(2.28)
valid for any ω > 0.
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We prove this theorem in Section 2.5.1.

A few comments are in order. First, the quantity α(M, |||L|||X) infv∈S ∥v − v∗∥2 is
an upper bound on the approximation error ∥v − v∗∥2 incurred by the (deterministic)
projected fixed point v. The pre-factor α(M, |||L|||X) ≥ 1 measures the instance-specific
deficiency of v relative to an optimal approximating vector from the subspace, and
we provide a more in-depth discussion of this factor in Section 2.3.1.2 to follow. Note
that Theorem 2.1 actually provides a family of bounds, indexed by the free parameter
ω > 0. By choosing ω arbitrarily close to zero, we can make the pre-factor in front of
infv∈S ∥v − v∗∥2 arbitrarily close to α(M, |||L|||X)—albeit at the expense of inflating the
remaining error terms. In Theorem 2.2 to follow, we prove that the quantity α(M, |||L|||X)
is, in fact, the smallest approximation factor that can be obtained in any such bound.

The latter two terms in the bound (2.28) correspond to estimation error that arises
from estimating v based on a set of n stochastic observations. While there are two
terms here in principle, we show in Corollary 2.1 to follow that the estimation error
is dominated by the term En(M,Σ∗) under some natural assumptions. Note that the
leading term En(M,Σ∗) scales with the local complexity for estimating v, and we show in
Theorem 2.3 that this term is also information-theoretically optimal. In Appendix A.9.2,
we perform additional simulation studies on the statistical error terms, showing that the
actual performance of Polyak–Ruppert averaging estimator is accurately characterized
by the instance-dependent analysis.

In the next subsection, we undertake a more in-depth exploration of the approxima-
tion factor in this problem, discussing prior work in the context of the term α(M, |||L|||X)
appearing in Theorem 2.1.

2.3.1.2 Detailed discussion of the approximation error

As mentioned in the introduction, upper bounds on the approximation factor have
received significant attention in the literature, and it is interesting to compare our
bounds.

Past results: In the case where γmax := |||L|||X < 1, the approximation-factor
bound (2.6) was established by Tsitsiklis and Van Roy [204], via the following ar-
gument. Letting ṽ := ΠS(Lv

∗ + b), we have

∥v − v∗∥2 (i)
= ∥v − ṽ∥2 + ∥ṽ − v∗∥2 = ∥ΠS(Lv + b)− ΠS(Lv

∗ + b)∥2 + ∥ṽ − v∗∥2

(ii)

≤ ∥Lv − Lv∗∥2 + ∥ṽ − v∗∥2

(iii)

≤ γ2max∥v − v∗∥2 + ∥ṽ − v∗∥2. (2.29)

Step (i) uses Pythagorean theorem; step (ii) follows from the non-expansiveness of
the projection operator; and step (iii) makes use of the contraction property of the
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operator L. Note that by definition, we have α(M, |||L|||X) ≤ (1− |||L|||X)−2, and so the
approximation factor in Theorem 2.1 recovers the bound (2.6) in the worst case. In
general, however, the factor α(M, |||L|||X) can be significantly smaller. See Lemmas 2.1
and 2.2 to follow.

Yu and Bertsekas [226] derived two finer grained upper bounds on the approximation
factor; in terms of our notation, their bounds take the form

α
(1)
YB := 1 + |||L|||2X · λmax

(
(I −M)−1(I −M)−⊤

)
,

α
(2)
YB := 1 + |||(I − ΠSL)

−1ΠSLΠS⊥|||2X.

It is clear from the definition that α(M, |||L|||X) ≤ α
(1)
YB, but α(M, |||L|||X) can often provide

an improved bound. This improvement is indeed significant, as will be shown shortly
in Lemma 2.1. On the other hand, the term α

(2)
YB is never larger than α(M, |||L|||X), and

is indeed the smallest possible bound that depends only on L and not b. However, as
pointed out by Yu and Bertsekas, the value of α

(2)
YB is not easily accessible in practice, since

it depends on the precise behavior of the operator L over the orthogonal complement
S⊥. Thus, estimating the quantity α

(2)
YB requires O(D) samples. In contrast, the term

α(M, |||L|||X) depends only on the projected operator M and the operator norm |||L|||X.
The former can be easily estimated using d samples and at smaller computational cost,
while the latter is usually known a priori. The discussion in Section 2.4 to follow fleshes
out these distinctions.

A simulation study: In order to compare different upper bounds on the approxima-
tion factor, we conducted a simple simulation study on the problem of value function
estimation, as previously introduced in Section 2.2.2.3. For this problem, the approxima-
tion factor α(M,γ) is computed more explicitly in Corollary 2.5. The Markov transition
kernel is given by the simple random walk on a graph. We consider Gaussian random
feature vectors and associate them with two different random graph models, Erdös-Rényi
graphs and random geometric graphs, respectively. The details for these models are
described and discussed in Appendix A.9.1.

In Figure 2.1, we show the simulation results for the values of the approximation
factor. Given a sample from above graphs and feature vectors, we plot the value of
α(M,γ), α

(1)
YB and α

(2)
YB against the discount rate 1− γ, which ranges from 10−5 to 10−0.5.

Note that the two plots use different scales: Panel (a) is a linear-log plot, whereas panel
(b) is a log-log plot. Figure 2.1 shows that the approximation factor α(M,γ) derived in

Theorem 2.1 is always between α
(1)
YB and α

(2)
YB. As mentioned before, the latter quantity

depends on the particular behavior of the linear operator L in the subspace S⊥, which
can be difficult to estimate. The improvement over α

(1)
YB, on the other hand, can be

significant.
In the Erdös-Rényi model, all the three quantities are bounded by relatively small

constant, regardless of the value of γ. The bound α(M,γ) is roughly at the midpoint

between the bounds α
(1)
YB and α

(2)
YB. On the other hand, the differences are much starker
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Figure 2.1: Plots of various approximation factor as a function of the discount factor
γ in the policy evaluation problem. (See the text for a discussion.) (a) Results for an
Erdös-Rényi random graph model with N = 3000, projected dimension d = 1000, and
a = 3. The resulting number of vertices in the graph G̃ is 2813. The value of 1− γ is
plotted in log-scale, and the value of approximation factor is plotted on the standard
scale. (b) Results for a random geometric graph model with N = 3000, projected

dimension d = 2, and r = 0.1. The resulting number of vertices in the graph G̃ is 2338.
Both the discount rate 1− γ and the approximation factor are plotted on the log-scale.

in the random geometric graph case: The bound improves over α
(1)
YB by several orders of

magnitude, while being off from α
(2)
YB by a factor of 10 for large γ. As we discuss shortly

in Lemma 2.1, this is because the approximation factor α(M,γ) scales as O
(

1
1−κ(M)

)
while α

(1)
YB scales as O

(
1

(1−κ(M))2

)
, making a big difference in the case where the constant

κ(M) is large.

Some useful bounds on α(M, |||L|||X): We conclude our discussion of the approxima-
tion factor with some bounds that can be derived under different assumptions on the
operator L and its projected version M . The following lemma is useful in understanding
the behavior of the approximation factor as a function of the contractivity properties of
the operator L; this is particularly useful in analyzing convergence rates in numerical
PDEs.

Lemma 2.1. Consider a projected matrix M ∈ Rd×d such that (I −M) is invertible
and κ(M) < 1.

(a) For any s > 0, we have the bound

α(M, s) ≤ 1 + |||(I −M)−1|||2op · s2 ≤ 1 +
s2

(1− κ(M))2
. (2.30a)
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(b) For s ∈ [0, 1], we have

α(M, s) ≤ 1 + 2|||(I −M)−1|||op ≤ 1 +
2

1− κ(M)
. (2.30b)

See Appendix A.7.1 for the proof of this lemma.
A second special case, also useful, is when the matrix M is symmetric, a setting

that appears in least-squares regression, value function estimation in reversible Markov
chains, and self-adjoint elliptic operators. The optimal approximation factor α(M,γmax)
can be explicitly computed in such cases.

Lemma 2.2. Suppose that M is symmetric with eigenvalues {λj(M)}dj=1 such that
λmax(M) < 1. Then for any s > 0, we have

α(M, s) = 1 + max
j=1,...,d

s2 − λ2j
(1− λj)2

. (2.31)

See Appendix A.7.2 for the proof of this lemma.

Lemma 2.1 reveals that there is a qualitative shift between the non-expansive case
|||L|||X ≤ 1 and the complementary expansive case. In the latter case, the optimal
approximation factor always scales as O

(
1

(1−κ(M))2

)
, but below the threshold |||L|||X =

1, the approximation factor drastically improves to become O
(

1
1−κ(M)

)
. It is worth

noting that both bounds can be achieved up to universal constant factors. In the
context of differential equations, the bound of the form (a) in Lemma 2.1 is known
as Céa’s lemma [35], which plays a central role in the convergence rate analysis of
the Galerkin methods for numerical differential equations. However, the instance-
dependent approximation factor α(M, |||L|||X) can often be much smaller: the global
coercive parameter needed in Céa’s estimate is replaced by the bounds on the behavior of
the operator L in the finite-dimensional subspace. The part (b) in Lemma 2.1 generalizes
Céa’s energy estimate from the symmetric positive-definite case to the general non-
expansive setting. See Corollary 2.4 for a more detailed discussion on the consequences
of our results to elliptic PDEs.

Lemmas 2.1 and 2.2 yield the following corollary of the general bound (2.28) under
different conditions on the operator L.

Corollary 2.1. Under the conditions of Theorem 2.1 and given a sample size n ≥
c0σ2

Ld

(1−κ)2 log
2
(

∥v0−v∥2d
1−κ

)
:

(a) There is a universal positive constant c such that

E∥v̂n − v∗∥2 ≤ c
{ |||L|||2X(

1− κ(M)
)2 · inf

v∈S
∥v − v∗∥2 + (σ2

b + σL∥v∥2)(
1− κ(M)

)2 d

n

}
(2.32a)

for any operator L, and its associated projected operator M = ΦdLΦ
∗
d.
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(b) Moreover, when L is non-expansive (|||L|||X ≤ 1), we have

E∥v̂n − v∗∥2 ≤ c
{ 1

1− κ(M)
· inf
v∈S

∥v − v∗∥2 + (σ2
b + σL∥v∥2)(
1− κ(M)

)2 d

n

}
. (2.32b)

See Appendix A.3 for the proof of this claim.
As alluded to before, the simplified form of Corollary 2.1 no longer has an explicit

higher order term, and the statistical error now scales at the parametric rate d/n. It
is worth noting that the lower bound on n required in the assumption of the corollary
is a mild requirement: in the absence of such a condition, the statistical error term
(σ2

b+σL∥v∥
2)

(1−κ)2
d
n
in both bounds would blow up, rendering the guarantee vacuous.

2.3.2 Lower bounds

In this section, we establish information-theoretic lower bounds on the approximation
factor, as well as the statistical error. Our eventual result (in Corollary 2.2) shows that
the first two terms appearing in Theorem 2.1 are both optimal in a certain instance-
dependent sense. However, a precise definition of the local neighborhood of instances
over which the lower bound holds requires some definitions. In order to motivate these
definitions more transparently and naturally arrive at both terms of the bound, the
following section presents individual bounds on the approximation and estimation errors,
and then combines them to obtain Corollary 2.2.

2.3.2.1 Lower bounds on the approximation error

As alluded to above, the first step involved in a lower bound is a precise definition of the
collection of problem instances over which it holds; let us specify a natural such collection
for lower bounds on the approximation error. Each problem instance is specified by
the joint distribution of the observations (Li, bi), which implicitly specifies a pair of
means (L, b) = (E[Li],E[bi]). For notational convenience, we define this class by first
defining a collection comprising instances specified solely by the mean pair (L, b), and
then providing restrictions on the distribution of (Li, bi). Let us define the first such
component. For a given matrix M0 ∈ Rd×d and vector h0 ∈ Rd, write

Capprox(M0, h0, D, δ, γmax) :=
{
(L, b)

∣∣∣ |||L|||X ≤ γmax, A(S, v∗) ≤ δ2, dim(X) = D,
ΦdLΦ

∗
d =M0, and Φdb = h0.

}
.

In words, this is a collection of all instances of the pair (L, b) ∈ L×RD whose projections
onto the subspace of interest are fixed to be the pair (M0, h0), and whose approximation
error is less than δ2. In addition, the operator L satisfies a certain bound on its operator
norm.

Having specified a class of (L, b) pairs, we now turn to the joint distribution over
the pair of observations (Li, bi), which we denote for convenience by PL,b. Now define
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the collection of instances

Gvar(σL, σb) :=
{
PL,b

∣∣∣ (Li, bi) satisfies Assumption 2.1(S) with constants (σL, σb)
}
.

This is simply the class of all distributions such that our observations satisfy Assump-
tion 2.1(S) with pre-specified constants. As a point of clarification, it is useful to recall
that our upper bound in Theorem 2.1 only needed Assumption 2.1(W) to hold, and we
could have chosen to match this by defining the Gvar under Assumption 2.1(W). We
comment further on this issue following the theorem statement.

We are now ready to state Theorem 2.2, which is a lower bound on the worst-case ap-
proximation factor over all problem instances such that (L, b) ∈ Capprox(M0, h0, D, δ, γmax)
and PL,b ∈ Gvar(σL, σb). Note that such a collection of problem instances is indeed local
around the pair (M0, h0). Two settings are considered in the statement of the theorem:
proper estimators when v̂n is restricted to take values in the subspace S; and improper
estimators, where v̂n can take values in the entire space X. We use V̂S and V̂X to denote
the class of proper and improper estimators, respectively. Finally, we use the shorthand
Capprox ≡ Capprox(M0, h0, D, δ, γmax) for convenience.

Theorem 2.2. Suppose M0 ∈ Rd×d is a matrix such that I −M0 is invertible, and
that the scalars (σL, σb) are such that σL ≥ γmax and σb ≥ δ. If the ambient dimension
satisfies D ≥ d+ 12

ω
n2 for some scalar ω ∈ (0, 1), then we have the lower bounds

inf
v̂n∈V̂S

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ (1− ω) · α(M0, γmax) · δ2 and (2.33a)

inf
v̂n∈V̂X

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ (1− ω) ·
(
α(M0, γmax)− 1

)
· δ2. (2.33b)

See Section 2.5.2 for the proof of this claim.
A few remarks are in order. First, Theorem 2.2 shows that the approximation

factor upper bound in Theorem 2.1 is information-theoretically optimal in the instance-
dependent sense: in the case of proper estimators, the upper and lower bound can be
made arbitrarily close by choosing the constant ω arbitrarily small in both theorems.
Both bounds depend on the projected matrixM0, characterizing the fundamental impact
of the geometry in the projected space on the complexity of the estimation problem.
The lower bound for improper estimators is slightly smaller, but for most practical
applications we have α(M0, γmax) ≫ 1 and so this result should be viewed as almost
equivalent.

Second, note that we may also extract a worst-case lower bound on the approximation
factor from Theorem 2.2. Indeed, for a scalar γmax ∈ (0, 1), consider the family
of instances in the aforementioned problem classes satisfying |||L|||X ≤ γmax. Setting
M0 = γ2maxId and applying Theorem 2.2, we see that (in a worst-case sense over this
class), the risk of any estimator is lower bounded by 1

1−γ2max
A(S, v∗). This establishes

the optimality of the classical worst-case upper bound (2.6).
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Third, notice that the theorem requires the noise variances (σL, σb) to be large
enough, and this is a natural requirement in spite of the fact that we seek lower bounds
on the approximation error. Indeed, in the extreme case of noiseless observations, we
have access to the population pair (L, b) with a single sample, and can compute both
v∗ and its projection onto the subspace S without error. From a more quantitative
standpoint, it is worth noting that our requirements σL ≥ γmax and σb ≥ δ are both
mild, since the scalars γmax and δ are typically order 1 quantities. Indeed, if both of
these bounds held with equality, then Corollary 2.1 yields that the statistical error would
be of the order O(d/n), and so strictly smaller than the approximation error we hope to
capture4.

Observe that Theorem 2.2 requires the ambient dimension D to be larger than n2.
As mentioned in the introduction, we should not expect any non-trivial approximation
factor when n ≥ D, but this leaves open the regime n ≪ D ≪ n2. Is a smaller
approximation factor achievable when D is not extremely large? We revisit this question
in Section 2.3.2.4, showing that while there are some quantitative differences in the
lower bound, the qualitative nature of the message remains unchanged.

Regarding our noise assumptions, it should first be noted that the class of instances
satisfying Assumption 2.1(W) is strictly larger than the corresponding class satisfying
Assumption 2.1(S), and so our lower bound extends immediately to the former case.
Second, it is important to note that imposing only Assumption 2.1(W) would in principle
allow the noise in the orthogonal complement S⊥ to grow in an unbounded fashion,
and one should expect that it is indeed optimal to return an estimate of the projected
fixed point v. As such, Theorem 2.2 constitutes a more meaningful lower bound,
since we operate instead under the stronger Assumption 2.1(S) and enforce second
moment bounds on the noise not only for basis vectors in S, but also its orthogonal
complement. Assumption 2.1(S) allows for other natural estimators: For instance, the
plug-in estimator of v∗ via the original fixed point equation (2.1) would now incur finite
error. Our lower bound—which operates under the stronger assumption and is thus more
challenging to establish—shows that the stochastic approximation estimator analyzed
in Theorem 2.1 is optimal even if the noise in S⊥ behaves as well as that in S.

2.3.2.2 Lower bounds on the estimation error

We now turn to establishing a minimax lower bound on the estimation error that matches
the statistical error term in Theorem 2.1. This lower bound takes a slightly different
form from Theorem 2.2: rather than studying the total error ∥v̂n − v∗∥ directly, we
establish a lower bound on the error ∥v̂n − v∥ instead.

4As a side remark, we note that our noise conditions can be further weakened, if desired, via a
mini-batching trick. To be precise, given any problem instance PL,b ∈ Gvar(σL, σb) and any integer
m > 0, one could treat the sample mean of m independent samples as a single sample, resulting
in a problem instance in the class Gvar

(
σL√
m
, σb√

m

)
. The same lower bound still applies to the class

Gvar

(
σL√
m
, σb√

m

)
, at a cost of stronger dimension requirement D ≥ d+ 12

ω n
2m2.
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Indeed, the latter term is more meaningful to study in order to characterize the
estimation error—which depends on the sample size n—since for large sample sizes,
the total error ∥v̂n − v∗∥ will be dominated by a constant approximation error. As we
demonstrate shortly, the term ∥v̂n − v∥ depends on noise covariance and the geometry
of the matrix M0 in the projected space, while having the desired dependence on the
sample size n. It is worth noting also that this automatically yields a lower bound on
the error ∥v̂n − v∗∥ when we have v = v∗.

We are now ready to prove a local minimax lower bound for estimating v ∈ S, which
is given by the solution to the projected linear equation v = ΠS(Lv + b). While our
objective is to prove a local lower bound around each pair (L0, b0) ∈ L × X, the fact
that we are estimating v implies that it suffices to define our set of local instances in
the d-dimensional space of projections. In particular, our mean parameters (L, b) are
specified by those pairs for which ΦdLΦ

∗
d is close to M0 := ΦdL0Φ

∗
d, and Φdb is close

to h0 := Φdb0. Specifically, let v0 denote the solution to the projected linear equation
v0 = ΠS(L0v0 + b0), and define the neighborhood

N(M0, h0) :=
{
(M ′, h′) : |||M ′ −M0|||F ≤ σL

√
d

n
, and ∥h′ − h0∥2 ≤ σb

√
d

n

}
, (2.34)

which, in turn, defines a local class of problem instances (L, b) given by

Cest :=
{
(L, b) |

(
ΦdLΦ

∗
d,Φdb

)
∈ N(M0, h0)

}
.

We have thus specified our local neighborhood in terms of the mean pair (L, b), and
as before, it remains to define a local class of distributions on these instances. Toward
this end, define the class

Gcov(ΣL,Σb, σL, σb)

:= Gvar(σL, σb) ∩
{
PL,b

∣∣∣ cov (Φd(b1 − b)
)
⪯ Σb and cov

(
Φd(L1 − L)v0

)
⪯ ΣL

}
,

(2.35)

corresponding to distributions on the observation pair (Li, bi) that satisfy Assump-
tion 2.1(S) and whose “effective noise” covariances are dominated by the PSD matrices
ΣL and Σb.

Note that Assumption 2.1(S) implies the diagonal elements of above two covariance
matrices are bounded by σ2

b and σ2
L∥v0∥2, respectively. In order to avoid conflicts

between assumptions, we assume throughout that for all indices j ∈ [d], the diagonal
entries of the covariance matrices satisfy the conditions

(Σb)j,j ≤ σ2
b and (ΣL)j,j ≤ σ2

L∥v0∥2. (2.36)

We then have the following theorem for the estimation error ∥v̂n − v∥, where we use the
shorthand Gcov ≡ Gcov(ΣL,Σb, σL, σb) for brevity.
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Theorem 2.3. Under the setup above, suppose the matrix I −M0 is invertible, and
suppose that n ≥ 16σ2

L|||(I −M0)
−1|||2opd. Then there is a universal constant c > 0 such

that

inf
v̂n∈V̂X

sup
(L,b)∈Cest

PL,b∈Gcov

E∥v̂n − v∥2 ≥ c · En(M0,ΣL + Σb).

See Appendix A.4 for the proof of this claim.
The estimation error lower bound in Theorem 2.3 is the worst-case instantiation of

the statistical error term En(M,Σ∗) in Theorem 2.1 within the local problem class, up
to a universal constant. Indeed, in the asymptotic limit n→ ∞, the regularity of the
problem can be leveraged in conjunction with classical Le Cam theory (see, e.g., [209]) to
show that the asymptotic optimal limiting distribution is a Gaussian law with covariance
(I −M)−1Σ∗(I −M)−⊤. (See the paper [98] for a detailed analysis of this type in the
special case of policy evaluation in tabular MDPs.) This optimality result holds in a
“local” sense: it is minimax optimal in a small neighborhood of radius O(1/

√
n) around

a given problem instance (M0, h0). Theorem 2.3, on the other hand, is non-asymptotic,
showing that a similar result holds provided n is lower bounded by an explicit, problem-
dependent quantity of the order σ2

Ld|||(I −M0)
−1|||2op. This accommodates a broader

range of sample sizes than the upper bound in Theorem 2.1.

2.3.2.3 Combining the bounds

Having presented separate lower bounds on the approximation and estimation errors in
conjunction with definitions of local classes of instances over which they hold, we are
now ready to present a corollary which combines the two lower bounds in Theorems 2.2
and 2.3.

We begin by defining the local classes of instances over which our combined bound
holds. Given a matrix-vector pair (M0, h0), covariance matrices (ΣL,Σb), ambient
dimension D > 0, and scalars δ, γmax, σL, σb > 0, we begin by specifying a collection of
mean pairs (L, b) via

Cfinal(M0, h0, D, δ, γmax) :=
⋃

(M ′,h′)∈Nn(M0,h0)

Capprox(M
′, h′, D, δ, γmax). (2.37)

Clearly, this represents a natural combination of the classes Capprox and Cest introduced
above. We use the shorthand Cfinal for this class for brevity. Our collection of distributions
PL,b is still given by the class Gcov from equation (2.35).

With these definitions in hand, we are now ready to state our combined lower bound.

Corollary 2.2. Under the setup above, suppose that the pair (σL, σb) satisfies the
conditions in Theorem 2.2 and equation (2.36), and that the matrixM0 satisfies |||M0|||op ≤
γmax − σL

√
d/n. Moreover, suppose that the sample size and ambient dimension satisfy
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n ≥ 16σ2
L|||(I −M0)

−1|||2opd and D ≥ d+ 36n2, respectively. Then the following minimax
lower bound holds for a universal positive constant c:

inf
v̂n∈V̂X

sup
(L,b)∈Cfinal
PL,b∈Gcov

E∥v̂n − v∗∥2 ≥ c ·
{(
α(M0, γmax)− 1

)
· δ2 + En(M0,ΣL + Σb)

}
.

We prove this corollary in Appendix A.5. It is relatively straightforward consequence of
combining Theorems 2.2 and 2.3.

The combined lower bound matches the expression α(M0, γmax)A(S, v∗)+En(M0,ΣL+
Σb), given by the first two terms of Theorem 2.1, up to universal constant factors. Recall
from our discussion of Theorem 2.1 that the high-order term Hn(σL, σb, v) represents
the “optimization error” of the stochastic approximation algorithm, which depends on
the coercive condition κ(M0) instead of the natural geometry I −M0 of the problem.
While we do not expect this term to appear in an information-theoretic lower bound,
the leading estimation error term En(M0,ΣL +Σb) will dominate the high-order term
when the sample size n is large enough. For such a range of n, the bound in Theorem 2.1
is information-theoretically optimal in the local class specified above. More broadly,
consider the class of all instances satisfying Assumption 2.1(S), with κ(M) ≤ κ and
|||L|||X ≤ 1. Then the bound in Theorem 2.1 is optimal, in a worst-case sense, over this

class as long as the sample size exceeds the threshold
cσ2

L

(1−κ)2d.

2.3.2.4 The intermediate regime

It remains to tie up some loose ends. Note that the lower bound in Theorem 2.2 requires
a condition D ≫ n2. On the other hand, it is easy to see that the approximation factor
can be made arbitrarily close to 1 when n ≫ D. (For example, one could run the
estimator based on stochastic approximation and averaging—which was analyzed in
Theorem 2.1—with the entire Euclidean space X, and project the resulting estimate
onto the subspace S.) In the middle regime n≪ D ≪ n2, however, it is not clear which
estimator is optimal.

In the following theorem, we present a lower bound for the approximation factor
in this intermediate regime, which establishes the optimality of Theorem 2.1 up to a
constant factor.

Theorem 2.4. Suppose M0 ∈ Rd×d is a matrix such that I −M0 is invertible, and that
the scalars (σL, σb) satisfy σL ≥ 1 + γmax and σb ≥ δ. If the ambient dimension satisfies

D ≥ d+ 3qn1+1/q for some integer q ∈
[
2, log n ∧ 1√

2(1−γmax∧1)

]
, then we have the lower

bound

inf
v̂n∈V̂X

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ α(M,γmax)− 1

4q2
· δ2.
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See Appendix A.6 for the proof of this theorem.
Theorem 2.4 resolves the gap in the intermediate regime, up to a constant factor that

depends on q. In particular, the stochastic approximation estimator (2.24) for projected
equations still yields a near-optimal approximation factor. Compared to Theorem 2.2,
Theorem 2.4 weakens the requirement on the ambient dimension D and covers the
entire regime D ≫ n. Furthermore, using the same arguments as in Corollary 2.2, this
theorem can also be combined with Theorem 2.3 to obtain the following lower bound in
the regime D ≥ d+ 3qn1+1/q, for any integer q > 0:

inf
v̂n∈V̂X

sup
(L,b)∈Cfinal
PL,b∈Gcov

E∥v̂n − v∗∥2 ≥ c ·
{
α(M0, γmax)− 1

q2
· δ2 + En(M0,ΣL + Σb)

}
.

q = limn→∞
logDn

logn
[2,∞) (1, 2) (0, 1)

Lower bound α(M0, γmax) cq · α(M0, γmax) 1
Upper bound α(M0, γmax) α(M0, γmax) 1

Table 2.1: Bounds on the approximation factor E∥v̂n−v∗∥2
A(S,v∗) for proper estimators in different

ranges of ambient dimension. Here, cq ∈ (0, 1) represents a constant depending only on
the aspect ratio q.

Let us summarize our approximation factor lower bounds in the various regimes.
Consider a sequence of problem instances

(
P(n)
L,b

)∞
n=1

with increasing ambient dimension
Dn. Let the projected dimension d, noise variances (σL, σb), oracle error δ, projected
matrix ΦdL

(n)Φ∗
d =M , and the operator norm bound |||L|||X ≤ γmax all be fixed. Table 2.1

presents a combination of our results from Theorems 2.1, 2.2, and 2.4; our results suggest
that the optimal approximation factor exhibits a “slow” phase transition phenomenon.
It is an interesting open question whether the phase transition is sharp, and to identify
the asymptotically optimal approximation factor in the regime limn→∞

logDn

logn
= 1 since

our lower bounds do not apply in this linear regime.

2.4 Consequences for specific models

We now discuss the consequences of our main theorems for the three examples introduced
in Section 2.2.2. For brevity, we state only upper bounds for the first two examples; our
third example for temporal difference learning methods includes both upper and lower
bounds.
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2.4.1 Linear regression

Recall the setting of linear regression5 from Section 2.2.2.1, including our i.i.d. observa-
tion model (2.14). We assume bounds on the second moment of ε and fourth moment
of X—namely, the existence of some ς > 0 such that

E⟨u, X⟩4 ≤ ς4, and E(ε2) ≤ ς2 for all u ∈ SD−1. (2.38)

These conditions ensure that Assumption 2.1(W) is satisfied with (σL, σb) = (β−1ς2, β−1ς2).
Recall that the (unprojected) covariance matrix satisfies the PSD relations µI ⪯
E[XX⊤] ⪯ βI, and define the d-dimensional covariance matrix Σ := E

[
(ΦdX)(ΦdX)⊤

]
for convenience.

In this case, our stochastic approximation iterates (2.24a) take the form

vt+1 = vt − η
(
ΠSXt+1X

⊤
t+1ΠSvt + Yt+1ΠSXt+1

)
, for all t = 0, 1, 2, . . . , (2.39)

and we take the averaged iterates v̂n := 2
n

∑n−1
t=n/2 vt. For this procedure, we have the

following guarantee:

Corollary 2.3. Suppose that we have n i.i.d. observations {(Xi, Yi)}ni=1 from the
model (2.14) satisfying the moment conditions (2.38). Then there are universal positive

constants (c, c0) such that given a sample size n ≥ c0ς4d
λ2min(Σ)

log2
(
β
µ
∥v0 − v∥22d

)
, if the

stochastic approximation scheme (2.39) is run with step size η = 1
c0ς2

√
dn
, then the

averaged iterate satisfies the bound

E∥v̂n−v∗∥22 ≤ (1+ω)·α
(
Id−Σ

β
, 1−µ

β

)
A(S, v∗)+c·trace(Σ

−1) · E(ε2)
ωn

+ c
ω

(
ς2

λmin(Σ)
·
√

d
n

)3
for any ω > 0.

This result is a direct consequence of Theorem 2.1 in application to this model.

Note that the statistical error term trace(Σ−1)·E(ε2)
n

in this case corresponds to the
classical statistical rates for linear regression in this low-dimensional subspace. The
approximation factor, by Lemma 2.2, admits the closed form expression

α
(
Id − Σ

β
, 1− µ

β

)
= max

j∈[d]

µ2+2β(λj−µ)
λ2j

,

where {λj}dj=1 denote the eigenvalues of the matrix Σ. Since λj ∈ [µ, β] for each j ∈ [d],

the approximation factor is at most of the order O
(

β
λmin(Σ)

)
.

5Note that the stochastic approximation iterates are invariant under translation, and consequently
we can assume without loss of generality that v = 0.
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Compared to known sharp oracle inequalities for linear regression (e.g., [173]), the
approximation factor in our bound is not 1 but rather a problem-dependent quantity.
This is because we study the estimation error under the standard Euclidean metric ∥ ·∥2,
as opposed to the prediction error under the data-dependent metric ∥ · ∥L2(PX). When
the covariance matrix E[XX⊤] is identity, the approximation factor α

(
Id − Σ

β
, 1− µ

β

)
is

equal to 1, recovering classical results. Another error metric of interest, motivated by
applications such as transfer learning [124], is the prediction error when the covariates X
follow a different distribution Q. For such a problem, the result above can be modified
straightforwardly by choosing the Hilbert space X to be RD, equipped with the inner

product ⟨u, v⟩ := u⊤
(
EQ[XX⊤]

)−1
v.

2.4.2 Galerkin methods

We now return to the example of Galerkin methods, as previously introduced in Sec-
tion 2.2.2.2, with the i.i.d. observation model (2.18). We assume the basis functions
ϕ1, . . . , ϕd to have uniformly bounded function value and gradient, and define the scalars

σL :=
(
1 +

2

β

)
max
j∈[d]

sup
x∈Ω

∥∇ϕj(x)∥2, and σb :=
∥f∥L2 + 1

β
max
j∈[d]

sup
x∈Ω

|ϕj(x)|. (2.40)

These boundedness conditions are naturally satisfied by many interesting basis func-
tions such as the Fourier basis6, and ensure—we verify this concretely in the proof of
Corollary 2.4 to follow—that our observation model satisfies Assumption 2.1(W) with
parameters (σL, σb).

Taking the finite-dimensional representation v = ϑ⊤ϕ, the stochastic approximation
estimator for solving equation (2.19) is given by

ϑt+1 = ϑt − β−1η
(
∇ϕ(xt+1)

⊤at+1∇ϕ(xt+1)ϑt − ft+1ϕ(yt+1)
)
, for t = 0, 1, · · ·

ϑ̂n :=
2

n

n−1∑
t=n/2

ϑt, and v̂n := ϑ̂⊤
nϕ.

6In the typical application of finite-element methods, basis functions based on local interpolation
are widely used [28]. These basis functions can have large sup-norm, but via application of the
Walsh–Hadamard transform, a new basis can be obtained satisfying condition (2.40) with dimension-
independent constants. Since the stochastic approximation algorithm is invariant under orthogonal
transformation, this modification is only for the convenience of analysis and does not change the
algorithm itself.
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In order to state our statistical guarantees for v̂n, we define the following matrices:

M := Id − β−1

∫
Ω

∇ϕ(x)⊤a(x)∇ϕ(x)dx,

ΣL :=
1

β2

∫
Ω

(
∇ϕ
)⊤
a∇v(∇v)⊤a∇ϕ dx− 1

β2

(∫
Ω

(
∇ϕ
)⊤
a∇v dx

)(∫
Ω

(
∇ϕ
)⊤
a∇v dx

)⊤
+

1

β2

∫
Ω

(∇ϕ)⊤
[
(∇v)(∇v)⊤ + diag

(
∥∇v∥22 − (∂jv)

2
)m
j=1

]
(∇ϕ)dx,

Σb :=
1

β2

∫
Ω

(
f(x)2 + 1

)
ϕ(x)ϕ(x)⊤ dx− 1

β2

(∫
Ω

f(x)ϕ(x)dx
)(∫

Ω

f(x)ϕ(x)dx
)⊤
.

With these definitions in hand, we are ready to state the consequence of our main
theorems to the estimation problem of elliptic equations.

Corollary 2.4. Under the setup above, there are universal positive constants (c, c0)

such that if n ≥ c0σ2
Ld

(1−κ(M))2
log2

(
∥v0−v∥2βd

µ

)
and the stochastic approximation scheme is

run with step size η = 1
c0σL

√
dn
, then the averaged iterates satisfy

E∥v̂n − v∗∥2X ≤ (1 + ω)α
(
M, 1− µ

β

)
inf
v∈S

∥v − v∗∥2X
+ c
(
1 + 1

ω

)
·
(
En(M,ΣL + Σb) +Hn(σL, σb, v)

)
for any ω > 0.

See Appendix A.8.3.2 for the proof of this corollary.

Note that the approximation factor α
(
M, 1− µ

β

)
scales as O(β/µ), which recovers

Céa’s energy estimates in the symmetric and uniform elliptic case [35]. On the other
hand, for a suitable choice of basis vectors, the bound in Corollary 2.4 can often be
much smaller: the parameter µ corresponding to a global coercive condition can be
replaced by the smallest eigenvalue of the projected operator M . Furthermore, note that
our analysis does not require the symmetry and contraction condition of the operator L,
and so applies also to the case where the operator A is not uniformly elliptic.

It is also worth noting that the bound in Corollary 2.4 is given in terms of Sobolev
norm ∥ · ∥X = ∥ · ∥Ḣ1 , as opposed to standard L2-norm used in the nonparametric
estimation literature. By the Poincaré inequality, a Sobolev Ḣ1-norm bound implies an
L2-norm bound, and ensures stronger error guarantees on the gradient of the estimated
function.

2.4.3 Temporal difference learning

We now turn to the final example previously introduced in Section 2.2.2.3, namely that
of the TD algorithm in reinforcement learning. Recall the i.i.d. observation model (2.21).
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Also recall the equivalent form of the projected fixed point equation (2.23), and note
that the population-level operator L satisfies the norm bound

|||L|||X = γ · sup
∥v∥≤1

∥Pv∥ ≤ γ := γmax,

since ξ is the stationary distribution of the transition kernel P .

2.4.3.1 Upper bounds on stochastic approximation with averaging

As mentioned before, this example is somewhat non-standard in that the basis functions
ψi are not necessarily orthonormal; indeed the classical temporal difference (TD) learning
update in Rd involves the stochastic approximation algorithm

ϑt+1 = ϑt − η
(
ψ(st+1)ψ(st+1)

⊤ϑt − γψ(st+1)ψ(s
+
t+1)

⊤ϑt −Rt+1(st+1)ψ(st+1)
)
. (2.41a)

The Polyak–Ruppert averaged estimator is then given by the relations

ϑ̂n =
2

n

n−1∑
t=n/2

ϑt, and v̂n := ϑ̂⊤
nψ. (2.41b)

Note that the updates (2.22) are, strictly speaking, different from the canonical iter-
ates (2.25), but this should not be viewed as a fundamental difference since we are
ultimately interested in the value function iterates v̂n; these are obtained from the
iterates ϑ̂n by passing back to the original Hilbert space.

Nevertheless, this cosmetic difference necessitates some natural basis transformations
before stating our results. Define the matrix7 B ∈ Rd×d by Bij := ⟨ψi, ψj⟩ for i, j ∈ [d];
this defines an orthonormal basis given by[

ϕ1 ϕ2 · · · ϕd

]
:=
[
ψ1 ψ2 · · · ψd

]
B−1/2.

We define the min/max eigenvalues β := λmax(B), and µ := λmin

(
B
)
, so that β/µ is

the condition number of the covariance matrix of the features.
Having set up this transformation, we are now ready to state the implication of our

main theorem to the case of LSTD problems. We assume the following fourth-moment
condition:

Eξ
[
R4(s)

]
≤ ς4, and Eξ

(
u⊤B−1/2ψ(s)

)4
≤ ς4 for all u ∈ Sd−1. (2.42)

As verified in the proof of Corollary 2.5 to follow, equation (2.42) suffices to guarantee
that Assumption 2.1(W) is satisfied with parameters (σL, σb) = (2ς2, ς2/

√
β). We also

7Since the functions ψi are linearly independent, we have B ≻ 0.
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define the matrices

M := γB−1/2Eξ[ψ(s)ψ(s+)⊤]B−1/2, and

Σ∗ := covξ

[
B−1/2ψ(s)

(
ψ(s)− γψ(s+)−R(s)

)⊤
ϑ̄
]
.

The following corollary then provides a guarantee on the Polyak–Ruppert averaged
TD(0) iterates (2.41).

Corollary 2.5. Under the set-up above, there are universal positive constants (c, c0)

such that given a sample size n ≥ c0ς4β2d
µ2(1−κ(M))2

log2
(

∥v0−v∥22βd
µ(1−κ(M))

)
, and when the stochastic

approximation scheme (2.41a) is run with step size η = 1
c0ς2β

√
dn
, the averaged iterates

satisfy the bound

E∥v̂n − v∗∥2 ≤ (1 + ω)α(M,γ)A(S, v∗)

+ c
(
1 + 1

ω

)[
En(M,Σ∗) +

(
1 + ∥v̄∥2

)(
ς2β

(1−κ(M))µ

√
d
n

)3]
(2.43)

for any ω > 0.

See Appendix A.8.1 for the proof of this corollary.
In the worst case, the approximation factor α(M,γ) scales as 1

1−γ2 , recovering

the classical result (2.6). More generally, it gives a fine-grained characterization of
the approximation factor depending on the one-step auto-covariance matrix for the
feature vectors. By Lemma 2.1, we have α(M,γ) ≤ O

(
1

1−κ(M)

)
, so intuitively, the

approximation factor is large when there are feature space directions in which the
Markov chain transitions slowly. On the other hand, if the one-step-transitions move
rapidly in all directions of feature space, then the approximation factor is much smaller.

The statistical error term En(M,Σ∗) matches the Cramér–Rao lower bound, and
gives a finer characterization than both worst-case upper bounds [16], as well as existing
instance-dependent upper bounds [115]. Note that the final higher-order term depends
on the condition number β

µ
of the covariance matrix B. This ratio is 1 when the basis

vectors are orthonormal, but in general, the speed of algorithmic convergence depends
on this parameter.

2.4.3.2 Approximation factor lower bounds for MRPs

We conclude our discussion of discounted MRPs with an information-theoretic lower
bound for policy evaluation. This bound involves technical effort beyond that in the
proof of Theorem 2.2, since any valid construction for MRPs must make use only of
operators L that are constructed using a valid transition kernel. To set the stage, we
say that a Markov reward process (P, γ, r) and associated basis functions {ψj}dj=1 are in
the canonical set-up if

• The stationary distribution ξ of P exists and is unique.
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• The reward function and its observations are uniformly bounded. In particular,
we have ∥r∥∞ ≤ 1, and ∥R∥∞ ≤ 1 almost surely.

• The basis functions are orthonormal, i.e., Eξ[ψ(s)ψ(s)⊤] = Id.

The three conditions are standard assumptions in Markov reward processes.
Now given scalars ν ∈ (0, 1] and γ ∈ (0, 1), integer D > 0 and scalar δ ∈ (0, 1/2), we

consider the following class of MRPs and associated feature vectors:

CMRP

(
ν, γ,D, δ

)
:=
{
(P, γ, r, ψ)

∣∣∣ (P, γ, r, ψ) is in the canonical setup, |S| = D,

A(S, v∗) ≤ δ2, κ
(
Eξ[ψ(s)ψ(s+)⊤]

)
≤ ν.

}
.

Note that under the canonical set-up, we have M = γEξ[ψ(s)ψ(s+)⊤], and consequently,
a problem instance in the class CMRP(ν, γ,D, δ) satisfies κ(M) ≤ νγ in the set-up

of Corollary 2.5. The condition κ
(
Eξ[ψ(s)ψ(s+)⊤]

)
≤ ν can be seen as a “mixing”

condition in the projected space: when ν is bounded away from 1, the feature vector
cannot have too large a correlation with its next-step transition in any direction.

We have the following minimax lower bound for this class, where we use the shorthand

CMRP ≡ CMRP

(
ν, γ,D, δ

)
for convenience.

Proposition 2.1. There are universal positive constants (c, c1) such that if D ≥
c1(n

2 + d), then for all scalars ν ∈ (0, 1] and γ ∈ (0, 1), we have

inf
v̂n∈V̂X

sup
(P,γ,r,ψ)∈CMRP

∥v̂n − v∗∥2 ≥ c

1− νγ
δ2 ∧ 1. (2.44)

See Appendix A.8.2 for the proof of this proposition.
A few remarks are in order. First, in conjunction with Corollary 2.5 and the second

upper bound in Lemma 2.1, we can conclude that the TD algorithm for policy evaluation
with linear function approximation attains the minimax-optimal approximation factor
over the class CMRP up to universal constants, in the regime where the optimal error
is bounded by O(1). It is also worth noting that Proposition 2.1 also shows that the
worst-case upper bound (2.6) due to Tsitsiklis and Van Roy [204] is indeed sharp up to
a universal constant; indeed, note that for all γ ∈ (0, 1), we have 1

1−γ2 ≍ 1
1−γ , and that

the latter factor can be obtained from the lower bound (2.44) by taking ν = 1.
Second, note that the class CMRP is defined in a more “global” sense, as opposed to

the “local” class Capprox used in Theorem 2.2. This class contains all the MRP instances
satisfying the approximation error bound and the constraint on κ(M), and a minimax
lower bound over this larger class is weaker than the lower bound over the local class
that imposes restrictions on the projected matrix. That being said, Proposition 2.1
still captures more structure in the Markov transition kernel than the fact that it is
contractive in the ξ-norm. For example, when the Markov chain makes “local moves”
in the feature space, the correlation between feature vectors can be large, leading to
large value of ν and larger values of optimal approximation factor. On the other hand,
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if the one-step transition of the feature vector jumps a large distance in all directions,
the optimal approximation factor will be small.

Finally, it is worth noticing that Proposition 2.1 holds only for the i.i.d. observation
models. If we are given the entire trajectory of the Markov reward process, the
approximation factor can be made arbitrarily close to 1, using TD(λ) methods [204].
The trade-off inherent to the Markov observation model is an important direction of
future work.

2.5 Proofs

We now turn to the proofs of our main results. The main proofs of Theorems 2.1 and 2.2
are given in this section, with some technical lemmas deferred to Appendix A. The
proofs of Theorems 2.3 and 2.4, Corollaries 2.1 and 2.2, as well as associated lemmas,
are presented in Appendix A

2.5.1 Proof of Theorem 2.1

We divide the proof into two parts, corresponding to the two components in the mean-
squared error of the estimator v̂n. The first term is the approximation error ∥v − v∗∥2
that arises from the difference between the exact solution v∗ to the original fixed point
equation, and the exact solution v to the projected set of equations. The second term is
the estimation error E∥v̂n− v∥2, measuring the difficulty of estimating v on the basis of
n noisy samples.

In particular, under the conditions of the theorem, we prove that the approximation
error is upper bounded as

∥v − v∗∥2 ≤ α(M, |||L|||X) inf
v∈S

∥v − v∗∥2, (2.45a)

whereas the estimation error is bounded as

E∥v̂n − v∥2 ≤ c
trace

(
(I −M)−1Σ∗(I −M)−⊤)

n
+ c

σL
(1− κ)3

(d
n

)3/2(
∥v∥2σ2

L + σ2
b

)
.

(2.45b)

Given these two inequalities, it is straightforward to prove the bound (2.28) stated
in the theorem. By expanding the square, we have

E∥v̂n − v∗∥2 = E∥v̂n − v∥2 + ∥v − v∗∥2 + 2E⟨v̂n − v, v − v∗⟩
(i)

≤ E∥v̂n − v∥2 + ∥v − v∗∥2 + 2
√

E∥v̂n − v∥2 · ∥v − v∗∥2
(ii)

≤ E∥v̂n − v∥2 + ∥v − v∗∥2 + 1
ω
E∥v̂n − v∥2 + ω∥v − v∗∥2

= (1 + ω)∥v − v∗∥2 + (1 + 1
ω
)E∥v̂n − v∥2
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where step (i) follows from the Cauchy–Schwarz inequality; and step (ii) follows from
the arithmetic-geometric mean inequality, and is valid for any ω > 0. Substituting the
bounds from equations (2.45a) and (2.45b) yields the claim of the theorem.

The remainder of our argument is devoted to the proofs of the bounds (2.45a) and (2.45b).

2.5.1.1 Proof of approximation error bound (2.45a)

We begin with some decomposition relations for vectors and operators. Note that S is a
finite-dimensional subspace, and therefore is closed. We use

S⊥ := {u ∈ X | ⟨u, v⟩ = 0 | for all v ∈ S.
}

to denote its orthogonal complement. The pair (S,S⊥) forms a direct product decompo-
sition of X, and the projection operators satisfy ΠS+ΠS⊥ = I. Also define the operators
LS,S = ΠSLΠS and LS,⊥ = ΠSLΠS⊥ . With this notation, our proof can be broken down
into two auxiliary lemmas, which we state here:

Lemma 2.3. The error ∥v − v∗∥ between the projected fixed point v and the original
fixed point v∗ is bounded as

∥v − v∗∥2 ≤
(
1 + |||(I − LS,S)

−1LS,⊥|||2X
)

inf
v∈S

∥v − v∗∥2. (2.46)

Lemma 2.4. Under the set-up above, we have

|||(I − LS,S)
−1LS,⊥|||2X ≤ λmax

(
(Id −M)−1

(
|||L|||2XId −MM⊤

)
(Id −M)−⊤

)
.

The claimed bound (2.45a) on the approximation error follows by combining these two
lemmas, and recalling our definition of α(M,L). We now prove these two lemmas in
turn.

2.5.1.2 Proof of Lemma 2.3

For any vector v ∈ X, we perform the orthogonal decomposition v = vS + v⊥, where
vS := ΠS(v) is a member of the set S, and v⊥ := ΠS⊥,ξ is a member of the set S⊥. With
this notation, the operator L can be decomposed as

L = (ΠS +ΠS⊥)L(ΠS +ΠS⊥) = ΠSLΠS︸ ︷︷ ︸
=:LS,S

+ ΠSLΠS⊥︸ ︷︷ ︸
=:LS,⊥

+ ΠS⊥LΠS︸ ︷︷ ︸
=:L⊥,S

+ ΠS⊥LΠS⊥︸ ︷︷ ︸
=:L⊥,⊥

.

The four operators LS,S, LS,⊥, L⊥,S, L⊥,⊥ defined in the equation above are also
bounded linear operators. By the properties of projection operators, we note that LS,S
and L⊥,S both map each element of S⊥ to 0, and LS,⊥ and L⊥,⊥ both map each element
of S to 0.
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Decomposing the target vector v∗ in an analogous manner yields the two components

ṽ := ΠS(v
∗), and v⊥ := v∗ − ṽ.

The fixed point equation v∗ = Lv∗ + b can then be written using S and its orthogonal
complement as

ṽ
(a)
= LS,Sṽ + LS,⊥v

⊥ + bS, and v⊥
(b)
= L⊥,Sṽ + L⊥,⊥v

⊥ + b⊥. (2.47)

For the projected solution v, we have the defining equation

v = LS,Sv + bS. (2.48)

Subtracting equation (2.47)(a) from equation (2.48) yields

(I − LS,S)(ṽ − v) = LS,⊥v
⊥.

Recall the quantityM = ΦdLΦ
∗
d, and our assumption that κ(M) = 1

2
λmax(M+MT ) < 1.

This condition implies that I − LS,S is invertible on the subspace S. Since this operator
also maps each element of S⊥ to itself, it is invertible on all of X, and we have ṽ − v =
(I − LS,S)

−1LS,⊥v
⊥.

Applying the Pythagorean theorem then yields

∥v − v∗∥2 = ∥v − ṽ∥2 + ∥ṽ − v∗∥2 = ∥(I − LS,S)
−1LS,⊥v

⊥∥2 + ∥v⊥∥2

≤
(
1 + |||(I − LS,S)

−1LS,⊥|||2X
)
· ∥v⊥∥2, (2.49)

as claimed.

2.5.1.3 Proof of Lemma 2.4

By the definition of operator norm for any vector v ∈ X such that ∥v∥ = 1, we have

|||L|||2X ≥ ∥Lv∥2 = ∥LS,SvS + LS,⊥v⊥∥2 + ∥L⊥,SvS + L⊥,⊥v⊥∥2 ≥ ∥LS,SvS + LS,⊥v⊥∥2.

Noting the fact that LS,Sv⊥ = 0 = LS,⊥vS, we have the following norm bound on the
linear operator LS,S + LS,⊥:

|||LS,S + LS,⊥|||X = sup
∥v∥=1

∥(LS,S + LS,⊥)v∥

= sup
∥v∥=1

∥LS,SvS + LS,⊥v⊥∥ ≤ |||L|||X.

By definition, the operator L∗
S,⊥ = ΠS⊥L

∗ΠS maps any vector to S⊥, and the operator

LS,S maps any element of S⊥ to 0. Therefore, we have the identity LS,SL
∗
S,⊥ = 0. A

similar argument yields that LS,⊥L
∗
S,S = 0. Consequently, we have

|||L|||2X ≥ |||LS,S + LS,⊥|||2X = |||(LS,S + LS,⊥)(LS,S + LS,⊥)
∗|||X

= |||LS,SL
∗
S,S + LS,⊥L

∗
S,⊥︸ ︷︷ ︸

=:G

|||X. (2.50)
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Note that the operator G can be expressed as G = ΠS

(
LΠSL

∗ + LΠS⊥L
∗
)
ΠS. From

this representation, we see that:

• For any vector x ∈ X, we have Gx ∈ S.

• For any vector y ∈ S⊥, we have Gy = 0.

Consequently, there exists a matrix G̃ ∈ Rd×d such that G = Φ∗
dG̃Φd. Since G is a

positive semi-definite operator, the matrix G̃ is positive semi-definite. Equation (2.50)
implies that

λmax(G̃) = |||G̃|||op = |||G|||X ≤ |||L|||2X. (2.51a)

Now defining τ := |||(I − LS,S)
−1LS,⊥|||X, note that

τ 2 = ||| (I − LS,S)
−1LS,⊥L

∗
S,⊥(I − L∗

S,S)
−1︸ ︷︷ ︸

=:H

|||X. (2.51b)

Moreover, the operator H is self-adjoint, and we have the following properties:

• The operator LS,⊥ maps any vector to S, and (I − LS,S)
−1 maps S to itself.

Consequently, for any x ∈ X, the vector Hx = (I−LS,S)
−1LS,⊥

(
L∗
S,⊥(I−L∗

S,S)
−1
)
x

is a member of the set S.

• The operator L∗
S,⊥ = ΠS⊥L

∗ΠS maps any vector from S⊥ to 0. Consequently, for

any y ∈ S⊥, we have Hy = (I − LS,S)
−1LS,⊥

(
L∗
S,⊥(I − L∗

S,S)
−1
)
y = 0.

Given the facts above, there exists a matrix H̃ ∈ Rd×d such that H = Φ∗
dH̃Φd.

Since the operator H is positive semi-definite, so is the matrix H̃. Consequently, by
equation (2.51b), we obtain the identity τ 2 = |||H|||X = |||H̃|||op = λmax(H). In particular,

letting u ∈ Sd−1 be a maximal eigenvector of H̃, we have

H̃ ⪰ τ 2uu⊤. (2.52)

Since M = ΦdLS,SΦ
∗
d by definition, combining the above matrix inequalities (2.51a)

and (2.52), we arrive at the bound:

|||L|||2XId ⪰ G̃

= Φd

(
LS,SL

∗
S,S + LS,⊥L

∗
S,⊥

)
Φ∗
d

= ΦdLS,SL
∗
S,SΦ

∗
d

+
(
Φd(I − LS,S)Φ

∗
d

)
·
(
Φd(I − LS,S)

−1LS,⊥L
∗
S,⊥(I − L∗

S,S)
−1Φ∗

d

)
·
(
Φd(I − L∗

S,S)Φ
∗
d

)
=MM⊤ + (I −M)H̃(I −M⊤)

⪰MM⊤ + τ 2(I −M)uu⊤(I −M⊤).
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Re-arranging and noting that u ∈ Sd−1, we arrive at the inequality

τ 2 ≤ u⊤
[
(I −M)−1(|||L|||2XId −MM⊤)(I −M)−⊤

]
u

≤ λmax

(
(I −M)−1(|||L|||2XId −MM⊤)(I −M)−⊤

)
,

which completes the proof of Lemma 2.4.

2.5.1.4 Proof of estimation error bound (2.45b)

We now turn to the proof of our claimed bound on the estimation error. Our analysis
relies on two auxiliary lemmas. The first lemma provides bounds on the mean-squared
error of the standard iterates {vt}t≥0—that is, without the averaging step:

Lemma 2.5. Suppose that the noise conditions in Assumption 2.1(W) hold. Then for
any stepsize η ∈

(
0, 1−κ

4σ2
Ld+1+|||L|||2X

)
, we have the bound

E∥vt − v∥2 ≤ e−(1−κ)ηt/2E∥v0 − v∥2 + 8η

1− κ
(∥v∥2σ2

Ld+ σ2
bd) valid for t = 1, 2, . . ..

(2.53)

See Appendix A.1.1 for the proof of this claim.

Our second lemma provides a bound on the PR-averaged estimate v̂n based on n
observations in terms of a covariance term, along with the error of the non-averaged
sequences {vt}t≥1:

Lemma 2.6. Under the setup above, we have the bound

E∥v̂n − v∥2 ≤ 3

n− n0

trace
(
(I −M)−1Σ∗(I −M)−⊤

)
+

3

(n− n0)2

n∑
t=n0

E∥(I −M)−1Φd(Lt+1 − L)(vt − v)∥22 +
3E∥vn − vn0∥2

η2(n− n0)2(1− κ)2
. (2.54)

See Appendix A.1.2 for the proof of this claim.

Equipped with these two lemmas, we can now complete the proof of the claimed
bound (2.45b) on the estimation error. Recalling that n0 = n/2, we see that the first
term in the bound (2.54) matches a term in the bound (2.45b). As for the remaining
two terms in equation (2.54), the second moment bounds from Assumption 2.1(W)
combined with the assumption that κ(M) < 1 imply that

E∥(I −M)−1Φd(Lt+1 − L)(vt − v)∥22 ≤
1

(1− κ)2
E∥Φd(Lt+1 − L)(vt − v)∥22

≤ 1

(1− κ)2

d∑
j=1

E⟨ϕj, (Lt+1 − L)(vt − v)⟩2 ≤ σ2
Ld∥vt − v∥2

(1− κ)2
.
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On the other hand, we can use Lemma 2.5 to control the third term in the
bound (2.54). We begin by observing that

∥vn − vn0∥2 ≤ 2∥vn − v∥2 + 2∥vn0 − v∥2 ≤ 4 sup
n0≤t≤n

E∥vt − v∥2.

If we choose a burn-in time n0 >
c0

(1−κ)η log
(

∥v0−v∥2d
1−κ

)
, then Lemma 2.5 ensures that

sup
n0≤t≤n

E∥vt − v∥2 ≤ 16η

1− κ

(
∥v∥2σ2

Ld+ σ2
bd
)
.

Finally, taking the step size η = 1
24σL

√
dn
, recalling that n0 = n/2, and putting

together the pieces yields

E∥v̂n − v∥2

≤ 12

n
trace

(
(I −M)−1Σ∗(I −M)−⊤

)
+

1

(1− κ)2

(12σ2
Ld

n
+

48

η2n2

)
sup

n0≤t≤n
E∥vt − v∥2

≤ 12

n
trace

(
(I −M)−1Σ∗(I −M)−⊤

)
+

48σL
(1− κ)3

(d
n

)3/2(
∥v∥2σ2

L + σ2
b

)
,

as claimed.

2.5.2 Proof of Theorem 2.2

At a high level, our proof of the lower bound proceeds by constructing two ensembles
of problem instances that are hard to distinguish from each other, and such that the
approximation error on at least one of them is large. The two instances are indexed by
values of a bit z ∈ {−1, 1}, and each instance is, in turn, obtained as a mixture over
2D−d centers; each center is indexed by a binary string ε ∈ {−1, 1}D−d. The problem is
then phrased as one of estimating the value of z from the observations; this is effectively
a reduction to testing and the use of Le Cam’s mixture-vs-mixture method.

Specifically, let u ∈ Sd−1 be an eigenvector associated to the largest eigenvalue of the
matrix (I −M0)

−1
(
γ2maxI −M0M

⊤
0

)
(I −M0)

−⊤. By the definition of the approximation
factor α(M0, γmax), we have:(

α(M0, γmax)− 1
)
· (I −M0)uu

⊤(I −M0)
⊤ ⪯ γ2maxI −M0M

⊤
0 .

Based on the eigenvector u, we further define the d-dimensional vectors:

w :=
√
α(M0, γmax)− 1 · (I −M0)u, and y :=

√
α(M0, γmax)− 1 · δu. (2.55)

Substituting into the above PSD domination relation yields that

ww⊤ +M0M
⊤
0 ⪯ γ2maxI. (2.56)
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Now consider the following class of (population) problem instances (L(ε,z), b(ε,z), v∗ε,z)
indexed by a binary string ε ∈ {−1, 1}D−d and a bit z ∈ {−1, 1}:

L(ε,z) :=


M0

√
d

D−dεd+1w · · ·
√
d

D−dεDw

0 0 · · · 0
...

...
0 0 · · · 0

 , v∗ε,z :=

√
2d
(
zy + (I −M0)

−1h0

)
√
2zδεd+1

...√
2zδεD

 ,

b(ε,z) := (I − L(ε,z))v∗ε,z =


√
2dh0√

2zδεd+1
...√

2zδεD

 . (2.57)

We take the weight vector ξ to be

ξ =
[︸ ︷︷ ︸

d

1
2d

· · · 1
2d ︸ ︷︷ ︸

(D − d)

1
2(D−d) · · · 1

2(D−d)

]
,

and the weighted inner product ⟨·, ·⟩ on the space X = RD is defined via

⟨p, q⟩ :=
D∑
j=1

pjξjqj for each pair p, q ∈ RD.

This choice of inner product then induces the vector norm ∥ · ∥ and operator norm ||| · |||X.
Next, we define the basis vectors via

ϕi =

{√
2dei for i = 1, 2, · · · , d, and√
2(D − d)ei for i = d+ 1, · · ·D.

By construction, we have ensured that ∥ϕi∥ = 1 for each i ∈ [D]. We let the subspace S
be the span of the first d standard basis vectors, i.e., S := span(e1, e2, · · · , ed).

For each binary string ε ∈ {−1, 1}D−d and signed bit z ∈ {−1, 1}, a straightforward
calculation reveals that the projected problem instance satisfies the identities

ΦdL
(ε,z)Φ∗

d =M0, and Φdb
(ε,z) = h0. (2.58a)

Also note that for any pair (ε, z), we have by construction that

inf
v∈S

∥v∗ε,z − v∥2 = 1

2(D − d)

D∑
j=d+1

(
√
2zδεj)

2 = δ2. (2.58b)
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In words, this shows that the ∥ · ∥-error of approximating v∗ε,z with the linear subspace
S is always δ, irrespective of which ε ∈ {−1, 1}D−d and z ∈ {−1, 1} are chosen.

Next, we construct the random observation models for the i.i.d. observations, which
are also indexed by the pair (ϵ, z). In particular, we construct the random matrix L

(ε,z)
i

and random vector b
(ε,z)
i via

L
(ε,z)
i :=


M0 0 · · · 0

√
dε

τ
(i)
L
w 0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 0

 , b
(ε,z)
i :=



√
2dh0
0
...
0√

2(D − d)zδε
τ
(i)
b

0
...
0


.

(2.59)

where the random indices τ
(i)
L and τ

(i)
b are chosen independently and uniformly at random

from the set {d + 1, d + 2, · · · , D}. By construction, we have ensured that for each
ε ∈ {−1, 1}D−d and z ∈ {−1, 1}, the observations have mean

E
[
L
(ε,z)
i

]
= L(ε,z), and E

[
b
(ε,z)
i

]
= b(ε,z).

This concludes our description of the problem instances themselves. Since our proof
proceeds via Le Cam’s lemma, we require some more notation for product distributions
and mixtures under this observation model. Let P(n)

ε,z denote the n-fold product of

the probability laws of the pair
(
L
(ε,z)
i , b

(ε,z)
i

)
. We also define the following mixture of

product measures for each z ∈ {−1, 1}:

P(n)
z :=

1

2D−d

∑
ε∈{±1}D−d

P(n)
ε,z .

We seek bounds on the total variation distance dTV

(
P(n)
1 ,P(n)

−1

)
.

With this setup, the following lemmas assert that (a) Our construction satisfies the
conditions in Assumption 2.1(S), and (b) The total variation distance is small provided
n ≲

√
D − d.

Lemma 2.7. For each binary string ε ∈ {−1, 1}D−d and bit z ∈ {−1, 1}:
(a) The population-level matrix L(ε,z) defined in equation (2.57) satisfies |||L(ε,z)|||X ≤ γmax.

(b) The random observations
(
L
(ε,z)
i , b

(ε,z)
i

)
defined in equation (2.59) satisfies Assump-

tion 2.1(S), for any scalar pair (σL, σb) such that σL ≥ γmax and σb ≥ δ.



2.5. PROOFS 51

Lemma 2.8. Under the set-up above, we have dTV

(
P(n)
1 ,P(n)

−1

)
≤ 12n2

D−d .

See Appendices A.2.1 and A.2.2 in the supplementary fileAppendix A for the proofs of
the two lemmas, respectively.

Part (a) of Lemma 2.7 and equations (2.58a)–(2.58b) together ensure that population-
level problem instance (L, b) we constructed belongs to the class Capprox(M0, h0, D, δ, γmax).
Part (b) of Lemma 2.7 further ensures the probability distribution PL,b belongs to the
class Gvar(σL, σb). Lemma 2.8 ensures that the two mixture distributions corresponding
to different choices of the bit z are close provided n is not too large. The final step
in applying Le Cam’s mixture-vs-mixture result is to show that the approximation
error is large for at least one of the choices of the bit z. We carry out this step by
splitting the rest of the proof into two cases, depending on whether or not we enforce
that our estimator v̂ is constrained to lie in the subspace S. Throughout, we use the

decomposition v̂ =
[
v̂1
v̂2

]
, where v̂1 ∈ Rd and v̂2 ∈ RD−d. Also recall the definition of the

vector y from equation (2.55).

Case I: v̂ ∈ S. This corresponds to the “proper learning” case where the estimator is
restricted to take values in the subspace S and v̂2 = 0. Note that for any ε ∈ {−1, 1}D−d,
we have

∥v∗ε,z − v̂∥2 = ∥v∗ε,z − ΠS(v
∗
ε,z)∥2 + ∥v∗ε,z − v̂∥2 = δ2 +

1

2d
∥v̂1 −

√
2dzy∥22.

Therefore, for any ε, ε′ ∈ {−1, 1}D−d, the following chain of inequalities holds:

1

2

(
∥v∗ε,1 − v̂∥2 + ∥v∗ε′,−1 − v̂∥2

)
= δ2 +

1

4d

(
∥v̂1 −

√
2dy∥22 + ∥v̂1 +

√
2dy∥22

)

= δ2 +
1

2d

(
∥v̂1∥22 + 2d∥y∥22

)
≥ δ2 + ∥y∥22 = α(M0, γmax) · δ2.

By Le Cam’s lemma, we thus have

inf
v̂n∈V̂S

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ α(M0, γmax)δ
2 ·
(
1− dTV(P(n)

−1 ,P
(n)
1 )
)

(i)

≥ (1− ω) · α(M0, γmax) · δ2,

where in step (i), we have applied Lemma 2.8 in conjunction with the inequality
D ≥ d+ 12n2

ω
.
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Case II: v̂ /∈ S. This corresponds to the case of “improper learning” where the
estimator can take values in the entire space X. In this case, for any pair ε, ε′ ∈
{−1, 1}D−d, we obtain

∥v∗ε,1 − v∗ε′,−1∥ ≥ ∥
[
2
√
2dy⊤ 0 · · · 0

]⊤
∥ = 2∥y∥2 = 2δ

√
α(M0, γmax)− 1.

Applying triangle inequality and Young’s inequality yields the bound

1

2
(∥v̂ − v∗ε,1∥2 + ∥v̂ − v∗ε′,1∥2) ≥

1

4
(∥v̂ − v∗ε,1∥ + ∥v̂ − v∗ε′,1∥)2

≥ 1

4
∥v∗ε,1 − v∗ε′,−1∥2 ≥ (α(M0, γmax)− 1) · δ2.

By Le Cam’s lemma, we once again have

inf
v̂n∈V̂X

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥
(
α(M0, γmax)− 1

)
· δ2 ·

(
1− dTV(P(n)

−1 ,P
(n)
1 )
)

≥ (1− ω) ·
(
α(M0, γmax)− 1

)
· δ2.

Putting together the two cases completes the proof.

2.6 Discussion

In this chapter, we studied methods for computing approximate solutions to fixed point
equations in Hilbert spaces, using methods that search over low-dimensional subspaces
of the Hilbert space, and operate on stochastic observations of the problem data. We an-
alyzed a standard stochastic approximation scheme involving Polyak–Ruppert averaging,
and proved non-asymptotic instance-dependent upper bounds on its mean-squared error.
This upper bound involved a pure approximation error term, reflecting the discrepancy
induced by searching over a finite-dimensional subspace as opposed to the Hilbert
space, and an estimation error term, induced by the noisiness in the observations. We
complemented this upper bound with an information-theoretic analysis, that established
instance-dependent lower bounds for both the approximation error and the estimation
error. A noteworthy consequence of our analysis is that the optimal approximation
factor in the oracle inequality is neither unity nor constant, but a quantity depending on
the projected population-level operator. As direct consequences of our general theorems,
we showed oracle inequalities for three specific examples in statistical estimation: linear
regression on a linear subspace, Galerkin methods for elliptic PDEs, and value function
estimation via temporal difference methods in Markov reward processes.

The results of this chapter leave open a number of directions for future work:
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• This chapter focused on the case of independently drawn observations. Another
observation model, one which arises naturally in the context of reinforcement
learning, is the Markov observation model. As discussed in Section 2.2.2.3, consider
the problem with L = γP and b = r, where P is a Markov transition kernel, γ is
the discount factor and r is the reward function. The observed states and rewards
in this setup are given by a single trajectory of the Markov chain P , as opposed
to being drawn i.i.d. from the stationary distribution. It is known [204] that the
resolvent formalism (a.k.a. TD(λ)) leads to an improved approximation factor
with larger λ ∈ [0, 1). On the other hand, larger choices of λ may lead to larger
variance and slower convergence for the stochastic approximation estimator, and
a model selection problem exists (See Section 2.2 in the monograph [200] for a
detailed discussion). It is an important future work to extend our fine-grained
risk bounds to the case of TD(λ) methods with Markov data. Leveraging the
instance-dependent upper and lower bounds, one can also design and analyze
estimators that achieve the optimal trade-off.

• This chapter focused purely on oracle inequalities defined with respect to a subspace.
However, the framework of oracle inequalities is far more general; in the context
of statistical estimation, one can prove oracle inequalities for any star-shaped set
with bounds on its metric entropy. (See Section 13.3 in the monograph [213] for
the general mechanism and examples.) For all the three examples considered in
Section 2.2.2, one might imagine approximating solutions using sets with nonlinear
structure, such as those defined by ℓ1-constraints, Sobolev ellipses, or the function
class representable by a given family neural networks. An interesting direction for
future work is to understand the complexity of projected fixed point equations
defined by such approximating classes.
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Chapter 3

Optimal and instance-dependent
guarantees for Markovian stochastic
approximations

Continuing the discussion in Chapter 2, we move on to the Markovian observation model.
In this chapter, we study stochastic approximation procedures for approximately solving
a d-dimensional linear fixed point equation based on observing a trajectory of length n
from an ergodic Markov chain. We first exhibit a non-asymptotic bound of the order
tmix

d
n
on the squared error of the last iterate of a standard scheme, where tmix is a mixing

time. We then prove a non-asymptotic instance-dependent bound on a suitably averaged
sequence of iterates, with a leading term that matches the local asymptotic minimax
limit, including sharp dependence on the parameters (d, tmix) in the higher order terms.
We complement these upper bounds with a non-asymptotic minimax lower bound that
establishes the instance-optimality of the averaged SA estimator. We derive corollaries
of these results for policy evaluation with Markov noise—covering the TD(λ) family of
algorithms for all λ ∈ [0, 1)—and linear autoregressive models. In combination with the
optimal oracle inequalities in Chapter 2, our instance-dependent characterizations open
the door to the design of fine-grained model selection procedures for hyperparameter
tuning (e.g., choosing the value of λ when running the TD(λ) algorithm).

3.1 Introduction

Linear Z-estimation problems—in which we are interested in computing the fixed
point of a linear system of equations—are widely used in many application domains,
including reinforcement learning and approximate dynamic programming [14, 200],
stochastic control and filtering [11, 20, 111], and time-series analysis [73]. In many
of these applications, the data-generating mechanism is modeled using an underlying
Markov chain. The resulting dependency among the observations presents challenges for
algorithm design as well as statistical analysis. In this chapter, our goal is to provide an
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instance-dependent statistical analysis—one that captures the difficulty of the particular
Z-estimation problem at hand—and to develop computationally efficient algorithms
that match these fundamental limits.

A linear Z-estimation problem in Rd is specified by a fixed point equation of the
form

θ = Lθ + b, (3.1)

where the matrix L ∈ Rd×d and the vector b ∈ Rd are parameters of the problem. In
settings of interest in this chapter, the problem parameters (L, b) are unknown, and
we observe only a sequence (Lt, bt)t≥1 of noisy observations, generated according to a
Markov process in the following manner. The Markov process generates a sequence
(st)t≥0 of states taking values in some underlying state space S. This chain is assumed
to be ergodic, with a unique stationary distribution ξ. The observed pair (Lt+1, bt+1) at
each time t depends on the current state st, and moreover, their expectations under the
stationary distribution ξ are equal to their population-level counterparts (L, b).

This general formulation includes a number of special cases of interest. In the
simplest setting, at each time t, we observe a matrix-vector pair of the form Lt+1 = L(st)
and bt+1 = b(st), where L : S → Rd×d and b : S → Rd are deterministic mappings such
that

Eξ
[
L(s)

]
= L, and Eξ

[
b(s)

]
= b. (3.2a)

Many applications involve additional sources of randomness beyond that naturally
associated with the Markov chain itself. In order to accommodate this possibility, we
can consider observations of the form

Lt+1 = Lt+1(st), and bt+1 = bt+1(st). (3.2b)

Here the mappings Lt+1 and bt+1 are now allowed to be i.i.d. random, independent of
st, but are required to be related to the deterministic mappings L and b via the relation

E
[
Lt+1(s)

]
= L(s), E

[
bt+1(s)

]
= b(s), for all s ∈ S. (3.2c)

By the tower property of conditional expectation, equations (3.2a) and (3.2c) imply
that Lt+1(st) and bt+1(st) are unbiased estimates of L and b, respectively.1

Stochastic approximation (SA) methods, dating back to the seminal work of [174],
are standard iterative procedures for using data to approximately compute θ. These
algorithms proceed in a streaming fashion: upon receiving each data point, an incremental
update is made and the (averaged or) final iterate is returned in a single pass. In this
way, each iteration of stochastic approximation incurs only mild computational and
storage costs. Given these attractive computational properties, it is natural to ask if
there are SA methods that also enjoy optimal statistical performance.

1However, equation (3.2c) does not require the observations to be conditionally unbiased.
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In this chapter, we analyze the SA procedure based on the updates

θt+1 := (1− η)θt + η(Lt+1θt + bt+1), for t = 0, 1, . . . (3.3a)

θ̂n :=
1

n− n0

n−1∑
t=n0

θt for n = n0 + 1, n0 + 2, . . .. (3.3b)

Equation (3.3a) describes a standard stochastic approximation update with constant
stepsize η > 0, whereas equation (3.3b) corresponds to an application of the Polyak–
Ruppert averaging procedure [169, 186] to the iterates, with burn-in period n0. When
each matrix observation Lt+1 has a constant rank independent of the dimension d—as
is the case for temporal difference learning methods in reinforcement learning (see
Section 3.2.2)—the SA method (3.3) can be implemented with O (d) computational and
storage cost per iteration.

There is an extensive body of past work on stochastic approximation methods
with Markov data. Here we provide an overview of the literature most germane to
our contributions, and defer a more detailed review to Appendix B.1. Asymptotic
convergence of SA procedures with Markovian data can be established using either the
ODE method [20] or the Poisson equation method [11]. [204] analyzes the asymptotic
convergence of SA in the specific context of temporal difference methods in reinforcement
learning. Although asymptotic guarantees provide helpful guidance, it is often most
useful to have non-asymptotic guarantees that account both for limited sample size and
scale of modern problems, and for these reasons, non-asymptotic analysis of Markovian
SA procedures has attracted much recent attention.

Assuming a mixing time bound on the Markov chain, a projected variant of linear
SA was analyzed by [16], who established non-asymptotic rates that are near-optimal
in their dependence on the sample size n. [194] analyzed the standard SA scheme
without the projection step used in [16], and obtained the same convergence rate
in both mean-squared error and higher moments. Under an appropriate Lyapunov
function assumption on the Markov chain, [56] proved finite-time bounds for linear
SA using stability properties of random matrix products. Variants and special cases
of SA procedures with Markov data have also been studied, including two-time-scale
algorithms [85], gradient-based optimization under Markov data [52], and estimation in
auto-regressive models [159, 109].

Despite this encouraging progress to date, two important questions still remain open,
and form the focus of this chapter:

• Sample complexity in high dimensions: The primary goal of non-asymptotic
analysis is to provide guarantees on the estimation error that have an explicit
dependence on the problem at hand, and that hold true for a reasonable range of
values of the sample size n. For instance, suppose the linear Z-estimation problem
in Rd is driven by an underlying Markov chain of mixing time tmix. Then under
natural noise assumptions, one should expect the mean-squared error to scale
as O (tmixd/n), with this being the dominant term whenever n ≳ tmixd. Such an
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error bound is particularly important for sieve estimators, where the problem
dimension d is adaptively chosen based on the sample size n. However, existing
analyses of linear SA do not provide such tight dimension-dependence. Using the
notation of this chapter, the estimation error bounds in the papers [194, 16] rely
on a uniform upper bound on the operator norm of the stochastic matrix Lt+1(st);
this quantity scales linearly with dimension d in many applications. Consequently,
the resulting bounds on the MSE have a sub-optimal dependence on dimension,
which is unsatisfactory for high-dimensional problems. Similarly, the bounds in
the papers [56, 108, 40] also exhibit a sub-optimal dependence on dimension. To
the best of our knowledge, the question of whether linear SA succeeds under
the minimal conditions on sample size—in particular, with n mildly larger than
d · tmix—remains open.

• Instance-dependent optimality: While many estimators may exhibit near-
optimal statistical performance in the globally minimax (i.e., worst-case) sense,
some of them perform significantly better than others when applied to practical
problem instances. This phenomenon motivates the study of local (i.e., instance-
dependent) performance in the non-asymptotic regime. Such results have recently
been established for linear Z-estimation in the i.i.d. setting by existing litera-
ture [164, 122, 98] and Chapter 2 of this dissertation. In particular, Theorem 2.3
in Chapter 2 provides a non-asymptotic analogs of classical theory on local asymp-
totic minimaxity (c.f. [209]), which establishes lower bounds by looking at the
worst-case family of instances in a local neighborhood of a given problem. In
the Markov setting, two questions naturally arise: (1) What does it mean for an
estimator to be locally optimal in a non-asymptotic sense? (2) Does the linear SA
estimator (3.3) match the local lower bound for every problem instance?

3.1.1 Contributions and organization

The primary goal of this chapter is to resolve these challenges, and provide a sharp
analysis of (averaged) linear SA algorithms. These answers are not merely of theoretical
interest: they also provide important guidance for practice, such as in choosing algorithm
parameters including the burn-in period and stepsize. In more detail:

• We perform a fine-grained analysis of linear SA and produce an upper bound on
its statistical error that transparently tracks the dependence on problem-specific
complexity as well as step-size. Furthermore, our bound holds true provided
n ≳ tmix · d, establishing that the algorithm does indeed attain a sharp sample
complexity guarantee in high dimensions.

• In a complementary direction to our upper bounds, we show a local minimax
lower bound with an appropriately defined notion of local neighborhood of Markov
chains. This lower bound certifies the statistical optimality of the linear SA
estimator, again in an instance-dependent sense.
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• We derive consequences of our general analysis for temporal difference methods
in reinforcement learning, demonstrating a key problem-dependent quantity in
matching upper and lower bounds.

One technical aspect of our analysis is noteworthy. En route to establishing bounds
with sharp dimension dependence, we introduce a careful “bootstrapping” argument:
starting with a loose bound, we progressively refine it via the repeated application of
certain self-bounding inequalities. We suspect that this method may be of independent
interest in providing sharp analyses of other stochastic approximation methods.

The remainder of this chapter is organized as follows. We complete this section by
introducing additional notation to be used throughout the chapter, and then providing a
more detailed discussion of related work. In Section 3.2, we provide the basic problem set-
up, discuss the underlying assumptions, and give some illustrative examples. Section 3.3
is devoted to the presentation of our main results, which include upper bounds on the
estimation error of stochastic approximation procedures, along with local minimax lower
bounds that apply to any estimator. In Section 3.4, we develop some consequences of
these results for specific models, including policy evaluation in reinforcement learning
and estimation in autoregressive models. Sections 3.5, 3.6 are devoted to the proofs of
Proposition 3.1, Theorem 3.1, respectively. We conclude with a discussion in Section 3.7.
The proof of Theorem 3.2 and some auxiliary results, as well as some corollaries, are
postponed to the appendix.

Additional notations: Throughout the chapter, we use Ft := σ
(
(bi, Li, si)i≤t

)
to

denote the natural filtration induced by the Markov observations.

3.2 Problem set-up

Recall from our earlier set-up (cf. equation (3.1)) that we are interested in solving a
fixed point equation of the form θ = Lθ + b, based on noisy observations of the pair
(L, b), as defined by the Markov observation model (3.2). We require that the matrix L
satisfies the conditions

κ :=
1

2
λmax

(
L+ L⊤) < 1, and |||L|||op ≤ γmax. (3.4)

3.2.1 Assumptions

We now introduce and discuss the remaining four assumptions that underlie our analysis.

3.2.1.1 Conditions on Markov chain

We first describe the conditions imposed on the underlying Markov chain in our observa-
tion model. Let {st}t≥0 denote a trajectory drawn from a Markov chain with transition
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kernel P . We assume that this chain has a unique stationary distribution ξ, and impose
the following mixing condition in Wasserstein-1 distance:

Assumption 3.1. There exists a natural number tmix and a universal constant c0 ≥ 1
such that for any x, y ∈ S, for all t = 0, 1, 2, . . ., we have the bounds

W1,ρ(δxP
tmix , δyP

tmix)
(a)

≤ 1

2
ρ(x, y), and W1,ρ(δxP

t, δyP
t)

(b)

≤ c0ρ(x, y). (3.5)

We assume throughout that the chain is initialized with a sample s0 ∼ ξ from the
stationary distribution. Given that our mixing time bound guarantees exponential decay
of the Wasserstein distance, this condition is mild: it can be removed by waiting O (tmix)
iterations for the process to mix.

3.2.1.2 Tail conditions on noise

In our observation model, the “noise” terms correspond to the differences Lt+1(st)−L(st)
and L(st)−L, along with analogous quantities for the vector b. Our second assumption
imposes conditions on these noise variables. We consider separate conditions on these
martingale Lt+1(st) − L(st) and Markov L(st) − L parts of the noise, as well as the
b-noise analogues.

Assumption 3.2. There exists an even integer p̄ ∈ [2,+∞] and non-negative constants
σL and σb, such that for any positive even integer p ≤ p̄, scalar t ≥ 0, vector u ∈ Sd−1,
and index j ∈ {1, . . . , d}, we have

E
[
⟨ej,

(
Lt+1(s)−L(s)

)
u⟩p | s

]
≤ p!σpL, and E

[
⟨ej, bt+1(s)− b(s)⟩p | s

]
≤ p!σpb ,

(3.6a)

as well as

Es∼ξ
[
⟨ej,

(
L(s)− L

)
u⟩p
]
≤ p!σpL, and Es∼ξ

[
⟨ej, b(st)− b⟩p

]
≤ p!σpb . (3.6b)

Note that this assumption is mildest for p̄ = 2, and strongest for p̄ = ∞. In the latter
case, when p̄ = ∞, the assumption requires Lt+1 and bt+1 to be sub-exponential random
variables in the standard coordinate directions (since log(p!) ≤ p log(p/2) by concavity
of the log function). This condition covers, for instance, the case where Lt+1 is the outer
product of sub-Gaussian random vectors, as in temporal difference learning methods.
In addition to accommodating this case, Assumption 3.2 also covers the heavier-tailed
setting in which only finitely many moments exist. In particular, when p̄ = 2, the second
moment assumption coincides with Assumption 2.1(W) made in Chapter 2.

An important quantity in our analysis is the effective noise level given by

σ̄ := sup
p∈[2,p̄]

sup
j∈[d]

p−1
(
E
[
⟨ej, (Lt+1(st)− L)θ̄ + (bt+1(st)− b)⟩p

])1/p
. (3.7)

Note that under Assumption 3.2, we have the upper bound σ̄ ≤ σL∥θ̄∥2 + σb.
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3.2.1.3 Metric space conditions

For most of our analysis, we impose the following condition:

Assumption 3.3. The metric space (S, ρ) has diameter at most one.

Note that our assumption of unit diameter is arbitrary; boundedness suffices. In order
to accommodate the general case, it suffices to rescale the parameters σL and σb.

When applying our theory to unbounded spaces (e.g., S = Rd), we use a truncation
argument to show that there is an event over a reduced state space on which this
condition holds with probability tending exponentially to 1. (See Appendix B.2 for the
details of this argument.)

3.2.1.4 Lipschitz condition

Finally, we place a Lipschitz assumption—under the metric ρ—on the mapping from
the metric space S to the stochastic operators. Given the Markov chain setup in the
metric space (S, ρ), it is alluring to assume a dimension-free Lipschitz bound on the
mappings (Lt, bt). However, as the space S has diameter bounded by 1, such Lipschitz
constants typically depend on dimension for practical problems. Concretely, view the
L-scale parameters (κ, γmax) as constants and assume that the observations Lt+1(st)
each have rank at most r. We then have

E
[
|||Lt+1(st)|||op

]
≥

E
[
|||Lt+1(st)|||nuc

]
r

≥
trace

(
E
[
Lt+1(st)

])
r

=
trace(L)

r
. (3.8)

The trace trace(L) typically scale as Θ(d), even in the “easy case” when L is a constant
multiple of identity matrix.

So the Lipschitz constant for the mapping Lt : S → Rd×d is at least Ω(d). On the
other hand, as a d-dimensional standard Gaussian random variable has norm Ω(

√
d)

with high probability, it is natural to assume the Lipschitz constant for the vector-valued
mapping bt : S → Rd to be of order at least Ω(

√
d). We therefore make the following

assumption:

Assumption 3.4. There exist constants σL, σb > 0 such that, almost surely for any
x, y ∈ S, we have

|||Lt(x)−Lt(y)|||op ≤ σLd · ρ(x, y) and ∥bt(x)− bt(y)∥2 ≤ σb
√
d · ρ(x, y) (3.9)

for all t = 1, 2, . . ..

Note that in Assumption 3.4, we explicitly rescale the RHS of the inequalities
with factors that depend on the problem dimension d, so that the pair (σL, σb) should
indeed be viewed as dimension-free. The notation (σL, σb) is actually overloaded in
Assumptions 3.2 and 3.4. In practice, we can take the maximum of the bounds in the
two assumptions. Besides, as shown in Appendix B.2, for certain natural problem classes,
Assumption 3.2 indeed implies Assumption 3.4 with discrete metric, up to logarithmic
factors.
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3.2.2 Some illustrative examples

Our assumptions cover a broad range of ergodic Markov chains, and the fixed-point
equation (3.1) associated with their stationary distribution naturally arises from several
problems. In this section, we describe a few concrete examples of our general setup. We
first discuss the class of Markov chains satisfying our assumptions, and then describe
the linear Z-estimators associated with such problems.

3.2.2.1 Examples of Markov chains

By varying our choice of the metric ρ, we recover several important classes of Markov
chains that satisfy Assumptions 3.1 and 3.3.

• Consider a Markov chain defined on a countable state space S, and consider the
discrete metric ρ(x, y) := 1x ̸=y. In this context, Assumption 3.1 corresponds to
mixing time bound in total variation—viz.

dTV(δxP
tmix , δyP

tmix) ≤ 1
2

for all pairs x, y ∈ S.

This mixing condition is satisfied for some finite tmix when the Markov chain is
irreducible, aperiodic and positive recurrent. Moreover, this metric space has unit
diameter, so that Assumption 3.3 holds as well.

• As another example, consider the state space S = B(0, 1) ⊆ Rd equipped with
the Euclidean metric ρ(x, y) = ∥x − y∥2. We can define a Markov chain on
this space via the random evolution Xk+1 = Tk+1(Xk), where the random non-
linear operators {Tk}k≥1 ⊆ SS are drawn i.i.d. from some distribution. We
assume that the expected operator T̄ := E[T1] satisfies the contraction condition
∥T̄ (x)− T̄ (y)∥2 ≤ γ∥x− y∥2 with some γ < 1. Assuming the stochastic operator
T to be Lipschitz and to satisfy a second moment bound, this dynamical system
satisfies the Wasserstein contraction condition under the Euclidean metric.

3.2.2.2 Examples of linear Z-estimators

We now describe some interesting examples of linear Z-estimators, to which we will
return in later sections.

Example 3.1 (Approximate policy evaluation). We begin by considering the temporal
difference (TD) algorithm for approximate estimation of value functions. This problem
arises in the context of Markov reward processes (MRPs), which are Markov chains that
are augmented with a reward function r : S → R. A trajectory from a Markov reward
process is a sequence {(st, Rt)}t≥0, where {st}t≥0 is the Markov trajectory of states,
and Rt is a random reward, corresponding to a conditionally unbiased estimate (given
st) of the reward function value r(st). Given a discount factor γ ∈ [0, 1), the expected
discount reward defines the value function v∗(s) = E

[∑∞
t=0 γ

tRt | s0 = s
]
.
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This value function is connected to linear Z-estimators via the Bellman principle. Let
P denote the transition operator of the Markov chain, and let ξ denote the stationary
distribution. Note that the P maps the space L2(S, ξ) to itself. With this notation,
the value function v∗ is known to be the unique fixed point of the Bellman evaluation
equation

v = γPv + r. (3.10)

In general, this equation is non-trivial to solve, especially given a limited trajectory
length. In practice, it is standard to compute approximate solutions using linear basis
expansions [27, 204], and this approach underlies the family of TD algorithms.

Let {ϕj}dj=1 be a collection of linearly independent real-valued functions defined
on the state space, and consider the linear subspace S of all functions of the form
Vθ(s) =

∑d
j=1 θjϕj(s). This subspace defines the projected Bellman equation

v̄ = ΠS
(
γP v̄ + r

)
, (3.11)

where ΠS is the orthogonal projection operator under L2(S, ξ).
By definition, the projected fixed point v̄ can be written in the form v̄(s) =∑d
j=1 θ̄jϕj(s) for some vector θ̄ ∈ Rd. Denote the vector-valued mapping ϕ = [ϕj]

d
j=1,

some simple calculations show that this parameter vector must satisfy the linear system

Σ0θ̄ = γΣ1θ̄ + Es∼ξ
[
R0(s)ϕ(s)

]
, (3.12)

where Σ0 = Es∼ξ
[
ϕ(s)ϕ(s)⊤

]
is the second-moment matrix of ϕ(s) under the stationary

distribution, and Σ1 = E[ϕ(s)ϕ(s+)⊤] is the cross-moment operator of the Markov chain.
In defining this cross-moment, the expectation is taken over s ∼ ξ and s+ ∼ P (s, ·).

This problem can be viewed within our framework by considering a Markov chain
on the augmented state space Ωt = (st, st+1). Equation (3.12) defines a fixed point
equation under the stationary distribution of this Markov chain. Define the minimum
and maximum eigenvalues µ := λmin(Σ0) and β := λmax(Σ0), along with the observation
functions

bt+1(Ωt) =
1
β
Rt(st)ϕ(st), and Lt+1(Ωt) = Id − 1

β

[
ϕ(st)ϕ(st)

⊤ − γϕ(st)ϕ(st+1)
⊤].
(3.13)

With these choices, the stochastic approximation procedure (3.3) is the widely used
TD(0) algorithm. On the other hand, for a stationary Markov chain (st)t∈Z, the fixed-
point equation θ̄ = E [Lt+1(Ωt)] · θ̄ + E [bt+1(Ωt)] is equivalent to Eq (3.12). Note that
though the expression for the mappings bt+1 and Lt+1 depends on unknown parameter
β, they can be absorbed into the stepsize choice, and the algorithm works well without
such knowledge.

Typically, the Euclidean norm ∥ϕ(s)∥2 of the feature vectors scales as
√
d, and under

the stationary distribution ξ, the variance of any coordinate of ϕ(s) is of constant order.
Under these conditions, the cross-moment matrix Σ1 has operator norm of constant order.
On the other hand, as for the random observations, we have the scalings |||Lt+1|||op = O(d)

and ∥bt+1∥2 = O(
√
d), so that Assumptions 3.2 and 3.4 are satisfied. ♣
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In the context of TD, it is natural to consider a sieve estimator. Given a collection
of basis functions {ϕj}∞j=1, we can define the nested family S1 ⊂ S2 ⊂ · · · , where Sd
denotes the span of the sub-collection {ϕj}dj=1. Here the choice of the sieve parameter d
is key: larger values reduce the approximation error at the expense of increasing the
estimation error. We discuss how this can be done in Section 3.4.

Another extension of the TD(0) algorithm—one that becomes feasible under the
Markovian observation model—is the TD(λ) family of procedures. A fundamental
question is how well the solution of the projected fixed-point equation (3.11) approximates
the true value function V ∗. Theorem 2.1 in Chapter 2 analyzes this quantity, and
provides matching upper and lower bounds in the i.i.d. setting. However, the Markovian
observation model actually allows this approximation error to be reduced, albeit at the
cost of increased estimation error, as discussed in our next example.

Example 3.2 (Policy evaluation with TD(λ)). The family of TD(λ) algorithms is
motivated by the following observation: since the value function v∗ is the fixed point
of Eq (3.10), it is also the fixed point of the composition of itself. Concretely, for any
k ≥ 1, we have:

v∗ = (γP )kv∗ +
k−1∑
j=0

(γP )jr.

For any λ ∈ [0, 1), we take the weighted average of the above (infinite) collection of
equations using exponentially-decaying weight (1, λ, λ2, · · · ), and obtain the following
equation.

v = (1− λ)
∞∑
k=0

λk(γP )k+1v +
∞∑
k=0

λk(γP )kr. (3.14a)

The solution v∗ to the equation (3.10) also solves Eq (3.14a).
Following the same route as TD(0), for a given subspace S of functions, we seek a

solution v̄(λ) to the projected fixed equation equation

v̄(λ) = (1− λ)
∞∑
k=0

λkΠS(γP )
k+1v̄(λ) +

∞∑
k=0

λkΠS(γP )
kr, (3.14b)

in which the operator P has been replaced by the projection ΠSP . Although the fixed
points of equation (3.14a) and the Bellman equation (3.10) coincide, the projected
version (3.14b) has a different set of fixed points.

Since the value function v̄(λ) lies in the linear space S, it has a representation
of the form v̄(λ)(s) =

∑d
j=1 θ̄

(λ)
j ϕj(s) for some coefficient vector θ̄(λ) ∈ Rd. From

equation (3.14b), this vector must satisfy a linear system of the form[ ∞∑
k=0

(λγ)kΣk

]
θ̄(λ) =

[ ∞∑
k=0

(λγ)kγΣk+1

]
θ̄(λ) +

∞∑
k=0

(λγ)kE
[
R0(s0)ϕ(s−k)

]
, (3.15)
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where {sk}∞k=−∞ is a stationary Markov chain following the transition kernel P , and
we define Σk = E[ϕ(s−k)ϕ(s0)⊤] for each integer k. As it should, when we set λ = 0,
equation (3.15) reduces to the TD(0) update from equation (3.12).

In order to use stochastic approximation methods to solve this equation, we consider
an augmented Markov process (st+1, st, gt)t∈Z in the space S2 × Rd, which evolves as

st+1 ∼ P (st, ·), and gt = ϕ(st) + γλgt−1. (3.16a)

If feature vectors ϕ(st) lie in a compact set almost surely, we have gt =
∑+∞

k=0(γλ)
kϕ(st−k).

Let ξ̃ be the stationary distribution of this augmented Markov chain.2 In terms of
an element Ω = (s, s+, g) drawn according this stationary distribution, the fixed-point
equation (3.14b) admits the succinct representation

Eξ̃
[
gϕ(s)⊤

]
θ̄(λ) = γEξ̃

[
gϕ(s+)⊤

]
θ̄(λ) + Eξ̃

[
R0(s)g

]
. (3.16b)

By choosing the observation functions

Lt+1(Ωt) = Id − ν ·
(
gtϕ(st)

⊤ − γgtϕ(st+1)
⊤), bt+1(Ωt) = ν ·Rt(st)ϕ(st), (3.16c)

for a scalar ν > 0, this algorithm is a special case of our general set-up. In particular,
by substituting the infinite-sum expression for the random variable gt into Eq (3.16b),
we obtain the projected linear equation (3.15) under the low-dimensional representation.
See Section 3.4 for a more detailed verification of the assumptions needed to apply our
main results for this problem. ♣

For our last example, we turn to a different class of problems involving vector
autoregressive (VAR) models for time series [131].

Example 3.3 (Parameter estimation in autoregressive models). An m-dimensional
VAR model of order k describes the evolution of a random vector Xt as a kth-order
Markov process. The model is specified by a collection of m×m matrices {A∗

j}kj=1, and
the random vector evolves according to the recursion

Xt+1 =
k∑
j=1

A∗
jXt−j+1 + εt+1, (3.17)

where the noise sequence
(
εt
)
t≥0

is i.i.d. and zero-mean and supported on a bounded
set.

Considering the (k + 1)-fold tuple Ωt = (Xt+1, Xt, · · · , Xt−k+1), the process
(
Ωt

)
t≥0

is Markovian. Under appropriate stability assumptions on the model parameter, the
process mixes rapidly under the (k + 1)m-dimensional Euclidean metric. Let ξ̃ denote

2Such a stationary distribution exists and is unique under suitable assumptions. See 3.4.2 for
details.
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its stationary distribution, and suppose for convenience that the chain is observed at
stationarity.

In order to estimate the model parameters, we consider the following set of Yule–
Walker estimation equations:

E
[
Xt+1X

⊤
t−ℓ
]
= A∗

1E
[
XtX

⊤
t−ℓ
]
+ A∗

2E
[
Xt−1X

⊤
t−ℓ
]
+ · · ·+ A∗

kE
[
Xt−k+1X

⊤
t−ℓ
]
, (3.18)

for ℓ = 0, 1, · · · , k − 1.
These equations form a km2-dimensional linear system for estimating km2-dimensional

parameters. Note that the parameters live in the space of matrix sequences, and so we
slightly abuse our notation for simplicity: L denotes a linear operator from Rk×m×m

to itself, and b is an element in Rk×m×m. At the sample level, for any collection
A := {Aj}kj=1 ∈ Rk×m×m of system matrices, the stochastic observations are given by[

bt+1(Ωt)
]
ℓ
= ν Xt+1X

⊤
t−ℓ for ℓ = 0, 1, . . . , k − 1, and(

Lt+1(Ωt)
)
[A]ℓ = Aℓ − ν

k−1∑
j=0

AjXt−jX
⊤
t−ℓ, for ℓ = 0, 1, . . . , k − 1.

Once again, the parameter ν is a scaling constant needed to fit into the fixed-point
equation framework, and is absorbed into the stepsize choice of the algorithm. ♣

3.3 Main results

We now turn to the statement of our main results, beginning with our upper bounds in
Section 3.3.1, followed by lower bounds in Section 3.3.2.

3.3.1 Instance-dependent upper bounds

In this section, we begin by stating some upper bounds (Theorem 3.1) on the behavior of
the Polyak–Ruppert averaged SA scheme (3.3b). These bounds are instance-dependent,
in the sense that they are specified in terms of an explicit function of the operator L and
the fixed point θ̄. We then state a second result (Proposition 3.1) on the non-averaged
iterates, which plays a key role in proving Theorem 3.1.

3.3.1.1 Instance-dependent bounds on the averaged iterates

For any state s ∈ S, define the functions

εMG(s) := (b1(s)− b(s)) + (L1(s)−L(s))θ̄, and εMkv(s) := b(s) +L(s)θ̄ − θ̄.

Note that for a fixed state s, the quantity εMG(s) depends on the random variables
b1(s) and L1(s), and so is a random vector, whereas by contrast, the quantity εMkv(s)
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is deterministic. Letting (s̃t)
∞
t=−∞ be a stationary Markov chain under the transition

kernel P , we then define the matrices

Σ∗
MG := Eξ

[
cov

(
εMG(s) | s

)]
, and Σ∗

Mkv :=
∞∑

t=−∞

E
[
εMkv(s̃t)εMkv(s̃0)

⊤]. (3.19)

Overall, the performance of our algorithm depends on the matrix sum Σ∗ := Σ∗
MG +

Σ∗
Mkv, as well as the effective noise variance σ̄2 defined in Eq (3.7). In terms of these

quantities, we have the following guarantee:

Theorem 3.1. Under Assumptions 3.1–3.3, suppose that we set the stepsize η and

burn-in parameter n0 as η =
(
c(σ2

Ld + γ2max)(1 − κ)n2tmix

)−1/3
and n0 = 1

2
n, where c

is a suitably chosen universal constant. Then for any sample size n satisfying n
log2 n

≥
2tmix(σ

2
Ld+γ

2
max)

(1−κ)2 log(c0d), the Polyak–Ruppert estimate (3.3b) has MSE bounded as

E
[
∥θ̂n − θ̄∥22

]
≤ c′

n
Tr
(
(I − L)−1(Σ∗

MG + Σ∗
Mkv)(I − L)−⊤)+ c′

(
σ̄2dtmix

(1−κ)2n

)4/3
log2 n.

(3.20)

See Section 3.6 for the proof of this theorem.

A few remarks are in order. First, and as shown in the next section, the first term
n−1Tr

(
(I − L)−1Σ∗(I − L)−1

)
is optimal for the Markovian stochastic approximation

problem in an instance-dependent sense. This term appears in existing central limit
results for Markovian stochastic approximation [61], whereas our bound captures this
dependence in a non-asymptotic manner. When the Markov chain is uniformly geomet-
rically ergodic, a central limit theorem for the averaged iterate θ̂n directly follow from
classical Markovian CLT (see [143], Chapter 17).

The first term can always be upper bounded by c′ σ̄2

(1−κ)2ntmixd · log2(c0d).3 On the

other hand, disregarding dependence on (σL, σb) and logarithmic factors in the sample

size, the second term in the bound scales as O
((

tmixd
(1−κ)2n

)4/3)
. Consequently, up to

polylogarithmic factors, we have

E
[
∥θ̂n − θ̄∥22

]
≲

σ̄2tmixd

(1− κ)2n
. (3.21)

Thus, at least in a worst-case sense, the second term is always dominated by the first
term.

We note that Theorem 3.1 makes two types of tail assumptions on the random
observations: Assumption 3.2 with p̄ = 2 requires dimension-free second moment bounds

3This can be easily seen from exponential decay of the correlation; in particular, see equation (3.75)
in the proof of the theorem.
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in any coordinate direction, whereas the Lipschitz condition (Assumption 3.4) together
with Assumption 3.3 (boundedness of the domain) imply a (dimension-dependent)
uniform upper bound on the noise. The two assumptions play very different roles
in the analysis of high-dimensional problems. As we will see in Proposition 3.3, such
assumptions are naturally satisfied in the context of sieve estimators, for which dimension
d of the problem is selected adaptively based on sample size n.

Finally, we also note that the requirement on the sample size n is nearly optimal,
since we require n = Ω̃

(
tmixd
(1−κ)2

)
to make the estimation error (3.21) less than a constant

(by seeing σL and γmax as constants). Up to an additional O (tmix) factor, the sample
size requirement in Theorem 3.1 also matches that of linear stochastic approximation
in the i.i.d. setting established in existing literature [115, 150] and 2. This additional
O (tmix) factor is unavoidable, which can be seen from the following reduction from the
Markov to the i.i.d. setting. Consider a problem instance in the i.i.d. setup, given by a
probability distribution P over Rd×d × Rd. Defining the state (Lt, bt), consider a lazy
Markov chain that remains at the same state with probability 1− 1

tmix
, and jumps to

an independent state drawn from P with probability 1
tmix

. A Markov trajectory of size
n in this lazy Markov chain is approximately equivalent to O (n/tmix) samples in the
i.i.d. model, and results in a multiplicative blow-up of O (tmix) in the sample complexity
requirement for the Markov case.

3.3.1.2 Bounds on the non-averaged iterates

The proof of Theorem 3.1 involves first analyzing the non-averaged iterates. Since the
upper bound established in this step is of independent interest, we state and discuss it
here:

Proposition 3.1. Under Assumptions 3.1—3.3, there are universal positive constants
(c0, c1) such that for any integer p ∈ {1} ∪ [log n, p̄/2], scalar τ ≥ 2ptmix log(c0d), and
positive stepsize η ∈

(
0, 1−κ

2cp3(σ2
Ld+γ

2
max)τ

]
, we have

(
E∥θt − θ̄∥2p2

)1/p ≤ e−
1
2
η(1−κ)t(E∥θ0 − θ̄∥2p2

)1/p
+

cp3η

1− κ
σ̄2τd (3.22)

for all t = 1, . . . , n.

See Section 3.5 for the proof of this proposition.
Note that the guarantees on the unaveraged iterates in Proposition 3.1—unlike those

of Theorem 3.1 for the averaged iterates—do not match the optimal instance-dependent
behavior. This is to be expected, since at least asymptotically, the unaveraged sequence
converges to a Gaussian random vector with covariance specified by the solution of a
Riccati equation. (For details, see Section 4.5.3 of [11]). This covariance term need not
match the optimal statistical error.

On the other hand, by choosing η ≍ logn
(1−κ)n , the bound in Proposition 3.1 matches

the worst-case bound in equation (3.21), up to log factors. We also note that in
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Proposition 3.1, the exponent p can take values in two ranges: regardless of the value of
p̄ ∈ [2,∞], one can always take p = 1 and obtain an upper bound on the mean-squared
error E

[
∥θt − θ̄∥22

]
. This bound only requires Assumption 3.2 to hold true with p̄ ≥ 2,

which covers many important examples (see Section 3.4). On the other hand, when
Assumption 3.2 is satisfied with p̄ ≥ 2 log n and a stronger moment assumption is
imposed, one can obtain a p-th moment bound for any p ≥ [2 log n, p̄]. This bound
can be readily converted into a high-probability bound for the last iterate of stochastic
approximation. It is worth noting that we study these two cases separately, using slightly
different proof techniques.

It is worthwhile making some comparisons between Proposition 3.1 and existing
results on the unaveraged forms of Markovian stochastic approximation. As we have
noted in our examples, in many cases, the quantities (σL, σb, σ̄) do not depend on the
dimension, in which case the error bound in Proposition 3.1 grows linearly with dimension
d. In comparison, in terms of our notation, the error bounds in the papers [16, 194] both

exhibit quadratic dependency on the quantity
maxs∈S |||Lt(s)|||op

1−κ . As we noted previously
in equation (3.8), this quantity scales linearly in dimension when the observations have
a constant rank (independent of dimension), so that (even after optimal parameter
tuning), the bounds from these parameters scale at least proportionally to d2

n
. This

scaling should be contrasted with the O(d/n) guarantees from our bounds. On the other
hand, the analysis in [56] involves a different mixing assumption, and so is not directly
comparable to our results. However, it is worth noting that their bound ∥θt − θ̄∥2 also
has an explicit O (d/

√
n) term (cf. equation (32) in their paper), showing that the MSE

bound grows quadratically with dimension.

3.3.2 Local minimax lower bounds

Thus far, we established instance-dependent upper bounds for the averaged SA scheme
with Markov noise. It is natural to wonder whether these bounds can be improved.
Answering this question requires the development of local minimax lower bounds, which
we describe in this section.

3.3.2.1 Set-up and local neighborhoods

We begin with the set-up and the definition of local neighborhoods for our lower bounds.
Let P be an irreducible Markov transition kernel on a finite state space S with associated
stationary measure ξP . Consider the solution θ̄(P ) to the following fixed-point equation

θ̄(P ) = EξP
[
L(s)

]
· θ̄(P ) + EξP

[
b(s)

]
. (3.23)

where the maps b and L are known to the estimator, whereas the Markov transition
kernel is unknown. For some fixed P0 with stationary measure ξ0, we would like to
lower bound the number of observations required to estimate θ̄(P0) to a given accuracy.
In order to obtain such a lower bound, we consider the fixed point problem (3.23)
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over a local neighborhood4 of the pair (P0, ξ0). We assume that the estimator is based
on a Markov trajectory {st}nt=0, with initial state s0 drawn according to the original5

stationary distribution ξ0, and successive states evolving according to the transition
kernel P .

In order to quantify the complexity of estimation localized around the Markov
transition kernel P0, we define the following two notions of local neighborhood:

NProb

(
P0, ε

)
:=
{
P :

∑
x∈S

ξ0(x) · χ2 (P (x, ·) || P0(x, ·)) ≤ ε2
}
, (3.24a)

NEst

(
P0, ε

)
:=
{
P : ∥θ̄(P )− θ̄(P0)∥2 ≤ ε

}
. (3.24b)

The two notions of neighborhood focus on different types of locality restrictions on the
model class: the local problem class NProb contains all the Markov transition kernels
that are “globally close” to a given kernel P0, measured by a weighted χ2 divergence.
It is worth noting that this weighted χ2 divergence has an operational interpretation.
Suppose we draw x ∼ ξ0, and then draw the next state y ∼ P0(x, ·) accordingly the
original Markov kernel P0, as well as y

′ ∼ P (x, ·) under the kernel P . Then the weighted
χ2 divergence is the χ2 divergence between the joint laws of (x, y) and (x, y′).

On the other hand, the local class NEst contains Markov transition kernels P such
that the solution θ̄(P ) to the fixed-point equation (3.23) lies in a local neighborhood
of the given solution θ̄(P0), measured by the Euclidean distance. This problem class
captures the complexity specifically for solving the fixed-point equation, without the
need to estimate the entire transition kernel. In particular, it is easy to construct a
Markov kernel P such that the solution θ̄(P ) is very close to θ̄(P0), but the distance
between the transition kernels P and P0 (e.g. measured in weighted χ2 divergence) is
arbitrarily large.

3.3.2.2 Instance-dependent lower bound

Our lower bound is proved on the smallest worst-case risk attainable over the intersection
of NProb and NEst. We use the shorthand notation L(0) := Eξ0

[
L(s)

]
. Also recall

the covariance matrix Σ∗
Mkv =

∑∞
t=−∞ E

[
εMkv(s̃t)εMkv(s̃0)

⊤], as previously defined in
equation (3.19), for a stationary trajectory (s̃t)t∈Z under the transition kernel P0. Our
bound depends on the local radius

εn = n−1/2
√
trace

(
(I − L(0))−1Σ∗

Mkv(I − L(0))−⊤
)
, (3.25)

which is the contribution of Markovian noise to the upper bound stated in Theorem 3.1.
We are now ready to state our lower bound. Recall that we have assumed that

the kernel P0 is irreducible and aperiodic. We also assume the mixing condition

4Doing so is necessary to rule out trivial estimators, and the possibility of super-efficiency.
5In our construction, both kernels P0 and P are rapidly mixing and their stationary measure are

sufficiently close in TV distance that the choice of initial distribution does not affect the result. Drawing
s0 ∼ ξ0 is made for theoretical convenience.
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(Assumption 3.1) holds with the discrete metric ρ(x, y) = 1{x ̸=y} and mixing time tmix,
and that supp

(
P0(s, ·)

)
≥ 2 for all s ∈ S.

Theorem 3.2. Under the assumptions stated above, there exist universal positive
constants (c, c1, c2) such that for any sample size n lower bounded as

n ≥ ct2mixσ
2
Ld

2 log2 d

(1−κ)2 , and n2ε2n ≥ 2c(1+σ2
L)σ̄

2t4mixd
2

(1−κ)4 log6
(

d
min
s
ξ0(s)

)
, (3.26a)

we have the minimax lower bound

inf
θ̂n

sup
P∈N′

E
[
∥θ̂n − θ̄(P )∥22

]
≥ c2ε

2
n, (3.26b)

where N′ := NProb

(
P0, c1

√
d
n

)
∩NEst(P0, c1εn).

See Appendix B.5 for the proof of this theorem.

A few remarks are in order. First, note that the minimax lower bound is with respect

to the problem class NProb

(
P0, c1

√
d
n

)
∩NEst(P0, c1εn), which requires both the transition

kernel P and the solution θ̄(P ) to be close to the given problem instance (P0, θ̄(P0)).
The size of the weighted χ2 neighborhood scales with the standard parametric rate√
d/n, as desired in such problems. On the other hand, the size of the neighborhood

around θ̄(P0) is proportional to the local radius εn that appears in the lower bound.
Operationally, this result indicates that even if the estimator knows in advance that
θ̄(P ) lies in the ball B(θ̄(P0), c1εn), one cannot do much better than simply outputting
an arbitrary point in this ball without looking at the data.

Second, it should be noted that quantity ε2n matches (up to a constant factor) the
optimal mean-squared error given by the local asymptotic minimax theorem [209, 70]. In
contrast to such asymptotic theory, however, Theorem 3.2 applies when n is finite, and
does not impose any regularity assumptions on the estimator. Furthermore, the radius
εn that is used to define the local neighborhood NEst(P0, εn) is optimal in the following
sense. On the one hand, since the plug-in estimator is asymptotically normal [70], for
any decreasing sequence ε′n such that ε′n > εn and ε′n → 0+, the minimax risk within
the neighborhood NEst(P0, ε

′
n) behaves asymptotically as ε2n up to constant factors. On

the other hand, for any decreasing sequence ε′n such that ε′n < εn, the minimax risk in
the neighborhood NEst(P0, ε

′
n) is at most ε′n. In the latter case, the neighborhood is so

small that it provides more information than the data provides.
Theorem 3.2 matches the Markov noise term in Theorem 3.1, establishing its optimal-

ity when the martingale part of the noise vanishes, i.e., Lt(s) = L(s) and bt(s) = b(s).
The lower bound does not capture the martingale part of the noise because we assume that
the functions L : S → Rd×d and b : S → Rd are known to the estimator. In the setting
where these functions are also observed only through noisy i.i.d. data (Lt, bt), Theorem 2.3
in Chapter 2 implies a lower bound of the form c2n

−1 trace
(
(I−L(0))−1Σ∗

MG(I−L(0))−⊤).
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Combining it with Theorem 3.2 implies a minimax lower bound involving the term
c′2n

−1 trace
(
(I−L(0))−1(Σ∗

Mkv+Σ∗
MG)(I−L(0))−⊤) in a properly defined local neighbor-

hood, thus establishing the optimality of Theorem 3.1. Finally, we note that Theorem 3.2
requires the sample size to be at least t2mixd

2, which is more stringent than the O (tmixd)
requirement in the upper bound. While Theorem 3.1 holds true with a linear sample-size
n = O (d), it is only shown to be instance-optimal for larger n = Ω(d2). This mismatch
is due to the fact that small perturbations of the Markov transition kernel in certain
directions can destroy its fast mixing property. That being said, Theorem 3.2 is still a
finite-sample result, with polynomial dependency on the quantities

(
tmix, d,

1
1−κ

)
, and

poly-logarithmic dependency on the smallest stationary probability.

3.4 Some consequences for specific problems

In this section, we specialize our analysis to the examples described in Section 3.2.2,
namely approximate policy evaluation using TD algorithms, and estimation in autore-
gressive time series models. By verifying the conditions needed to apply Theorem 3.1
and Proposition 3.1, we obtain some more concrete corollaries of our general theory.

3.4.1 TD(0) method

Recall the TD(0) algorithm for policy evaluation, as previously described in Example 3.1.
We are interested in estimating the solution v∗ of the Bellman equation (3.10), and an
approximation scheme is employed using the basis functions (ϕj)

d
j=1. Using the shorthand

⟨θ, ϕ(s)⟩ =
∑d

j=1 θjϕj(s) for the Euclidean inner product in Rd, with observation model
(Lt+1(Ωt), bt+1(Ωt)) defined in Eq (3.13), the averaged SA procedure (3.3) is given by:

θt+1
(a)
= θt − η

{
⟨ϕ(st)− γϕ(st+1), θt⟩ −Rt+1(st)

}
ϕ(st), and θ̂n

(b)
= 1

n−n0

n−1∑
t=n0

θt.

(3.27)

To be clear, the update (3.27)(a) is the standard TD(0) algorithm with stepsize η,
whereas the addition of the averaging step (3.27)(b) yields the Polyak–Ruppert averaged
version of the scheme. Note that we re-scale the stepsize η by a factor of β for notational
convenience. In the following subsections, we derive corollaries of our general theory for
the averaged scheme under different mixing conditions on the underlying Markov chain.

3.4.1.1 Markov chains with mixing in total variation distance

We first assume that the Markov chain satisfies a mixing condition (cf. Assump-
tion 3.1) in the discrete metric: i.e., after tmix steps, we have dTV(δsP

tmix , δs′P
tmix) ≤ 1

2

for any pair s, s′ ∈ S. Let ξ denote the stationary distribution of the Markov chain
that generates the trajectory {st}t≥0, and let P denote its transition kernel. Note that
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the augmented state vector Ωt = (st, st+1) evolves according to a Markov process with
mixing time tmix + 1. Moreover, the stationary distribution of the pair Ω = (s, s+) has
the form s ∼ ξ, s+ ∼ P (· | s). We denote the stationary covariance of the feature vec-
tors as B := Es∼ξ

[
ϕ(s)ϕ(s)⊤

]
, and also define the minimum and maximum eigenvalues

µ := λmin(B) and β := λmax(B). We assume that

∥B−1/2ϕ(s)∥2
(a)

≤ ς
√
d and |Rt(s)|

(b)

≤ ς for all s ∈ S, and (3.28a)

Eξ
[
⟨B−1/2ϕ(s), u⟩4

]
≤ ς4 for all u ∈ Sd−1. (3.28b)

In order to state our result, we define the following quantities:

M := γB−1/2 · Es∼ξ,s+∼P (s,·)
[
ϕ(s)ϕ(s+)⊤

]
·B−1/2,

εMkv(s, s
+) := B−1/2

(
ϕ(s)⊤θ̄ − γϕ(s+)⊤θ̄ − r(s)

)
ϕ(s),

εMG(s) := B−1/2(R(s)− r(s))ϕ(s)

We also define the following covariance matrices according to Eq (3.19):

Σ∗
Mkv :=

∞∑
t=−∞

E
[
εMkv(st, st+1)εMkv(s0, s1)

⊤],
Σ∗

MG := Es∼ξ
[
E
[
εMG(s)εMG(s)

⊤ | s
]]
.

Finally, we define the quantity

σ̄2 := ς2 ·
√
E
[(
ϕ(st)⊤θ̄ − γϕ(st+1)θ̄ −Rt(st)

)4]
, (3.29)

and let κ := 1
2
λmax(M +M⊤). It is easy to see that κ ≤ γ < 1. Assuming that µ > 0,

we are then ready to state our main result for the TD(0) method.

Corollary 3.1. Under the setup above, take the stepsize η and burn-in period n0 as

η = 1
cβ((ς4+1)d(1−κ)n2tmix)1/3

, and n0 =
1
2
n, (3.30)

and suppose that n
log3 n

≥ 2tmix(ς
4+1)dβ2

(1−κ)2µ2 . The estimator v̂n := θ̂nϕ obtained from the

Polyak–Ruppert procedure (3.27) satisfies the bound

E
[
∥v̂n − v̄∥2L2(S,ξ)

]
≤ c

n
Tr
{
(Id −M)−1(Σ∗

Mkv + Σ∗
MG)(Id −M)−⊤}

+ c
(
β2σ̄2dtmix

µ2(1−κ)2n

)4/3
log2 n, (3.31)

where v̄ is the solution to the projected fixed-point equation (3.11) and c > 0 is a universal
constant.
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See Appendix B.6.1.1 for the proof of this corollary.

A few remarks are in order. First, we measure the estimation error in the canonical
∥ · ∥L2(S,ξ) norm, instead of the Euclidean distance in Rd. Consequently, the proof of
this corollary actually uses a generalized version of Theorem 3.1 proved for weighted ℓ2

norms. On the other hand, we note that the error bound (3.31) is with respect to the
solution v̄ to the projected fixed-point equation. In the well-specified case where v∗ ∈ S,
this solution coincides with the value function v∗. In general, the approximation error
needs to be taken into account, and was the focus of Chapter 2. In conjunction with
this result, Corollary 3.1 implies the error bound

E
[
∥v̂n − v∗∥2L2(S,ξ)

]
≤ c
[
1 + λmax

(
(Id −M)−1(γ2Id −MM⊤)(Id −M)−⊤)] inf

v∈S
∥v − v∗∥2L2(S,ξ)

+ c
n
Tr
{
(Id −M)−1(Σ∗

Mkv + Σ∗
MG))(Id −M)−⊤}+ c

(
β2σ̄2dtmix

µ2(1−κ)2n

)4/3
log2 n. (3.32)

In Section 3.4.2 to follow, we provide a general recipe to trade off approximation and
estimation errors to choose the value of λ in the class of TD(λ) algorithms. Before that,
we discuss two extensions of Corollary 3.1.

3.4.1.2 Markov chains with mixing in Wasserstein metric

Note that for Corollary 3.1, the mixing time condition is imposed with total variation
distance. When the state space S is continuous, e.g., the set S is a subset of Rm, mixing
in Wasserstein distance could capture the geometry of the underlying metric better.
In this section, we extend our analysis to such settings, highlighting the dimension
dependency in the sample complexity.

Concretely, we consider a Markov chain (st)t≥0 on a compact domain S ⊆ Rm, and
a feature mapping ϕ : S → Rd. We assume that the Markov chain admits a unique
stationary measure ξ, and the mixing time assumption holds in Wasserstein-1 distance,
so that W1

(
δxP

tmix , δyP
tmix
)
≤ 1

2
∥x− y∥2 for all x, y ∈ S. For the sake of normalization,

we assume that S ⊆ B(0, 1) and ϕ(0) = 0. On the feature mapping ϕ, we assume the
following:

∃µ, β > 0, µId ⪯ B := Es∼ξ
[
ϕ(s)ϕ(s)⊤

]
⪯ βId, (3.33a)

∀x, y ∈ S, ∥B−1/2
(
ϕ(x)− ϕ(y)

)
∥2 ≤ ς

√
d∥x− y∥2, (3.33b)

∀u ∈ Sd−1, Es∼ξ
[
⟨u, B−1/2ϕ(s)⟩4

]
≤ ς4, (3.33c)

∀s, s′ ∈ S, t ≥ 1, |Rt(s)−Rt(s
′)| ≤ ς∥s− s′∥2, |Rt(s)| ≤ ς a.s. (3.33d)

Here, we regard the parameters (ς, µ, β) as dimension-independent positive constants.
Since the state space S has diameter bounded by 2, the feature mapping ϕ satisfying

equation (3.33a) necessarily has Lipschitz constant of order O
(√

d
)
. For a simple

example, take the state x itself as the feature vector (after appropriate re-scaling), which
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corresponds to the case of m = d and ϕ(x) =
√
d · x.

With this set-up, we have the following guarantee:

Corollary 3.2. Assuming the conditions in equation (3.33), taking stepsize and burn-in
period as equation (3.30), for the Polyak–Ruppert averaged stochastic approximation
procedure (3.27), the bound (3.31) holds.

See Appendix B.6.1.2 for the proof.

Corollary 3.2 shows that the same instance-dependent bound holds true for a
continuous state space setting. Such a bound is useful for many applications, one
of which is the case of quadratic value functions, where the dimension satisfies the
relation d = m2 the mapping ϕ takes the form ϕ : x 7→ m · xx⊤. Assuming that the
process (st)t≥0 is supported in a unit ball B(0, 1) and has well-conditioned stationary
covariance, it is easy to verify that Assumptions (3.33) are satisfied with dimension-free
constants (ς, µ, β). This example is particularly useful for policy evaluation in Linear
Quadratic Regulators (LQR). Nevertheless, our results hold more generally for any
random dynamical system that is rapidly mixing in the W1 distance.

3.4.1.3 Analysis of a sieve estimator

The optimal dimension dependency in Theorem 3.1 allows us to obtain optimal estimators
for various classes of non-parametric problems, in which the dimension is a parameter to
be chosen. In particular, sieve methods are a class of non-parametric estimators based
on nested sequences of finite-dimensional approximations. In this section, we analyze
the behavior of a stochastic approximation sieve estimator in the Markovian setting.
The optimal dimension dependence in our theorem recovers the minimax optimal rates
for estimation, while our instance-dependent bounds help in capturing more refined
structure in the problem instance.

Concretely, assuming that the Hilbert space L2(S, ξ) is separable, let (ϕj)∞j=1 be a
set of (not necessarily orthogonal) basis functions. We consider the case where the
mixing condition holds true with total variation distance6. The following assumptions
are imposed on the basis functions:

∀j ∈ N+, sup
x∈S

|ϕj(x)| ≤ ς, (3.34a)

∀d ∈ N+, µId ≤
[
Es∼ξ

(
ϕj(s)ϕℓ(s)

)]
j,ℓ∈[d] ≤ βId, (3.34b)

∀t ≥ 1, sup
x∈S

|Rt(x)| ≤ ς. (3.34c)

The first assumption is standard in nonparametric regression, and satisfied by many
useful basis functions such as the Fourier basis and Walsh-Hadamard basis. The second

6By following the approach in the previous subsection, the analysis can also be extended to the
case of mixing in Wasserstein distance.
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assumption relaxes the orthogonality requirement on the bases, by only requiring the
Gram matrix to be well-conditioned.

We define the noise level σ̄ using the second moment:

σ̄2 := ς2 ·
√

E
[(
v̄(st)− γv̄(st+1)−Rt(st)

)2]
. (3.35)

Once again, we run the averaged stochastic approximation procedure (3.27) on this
problem. A crucial point of departure from the parametric models discussed above is
that the number of basis functions dn in sieve estimators is chosen based on the problem
structure and sample size. Let S(dn) := span(ϕ1, ϕ2, · · · , ϕdn) denote the subspace
spanned by the first dn basis functions. The following result is a direct corollary of our
theorem, and covers the case of fixed dn; we discuss the trade-off between approximation
and estimation error in the choice of dn presently.

Corollary 3.3. Assuming the conditions in equation (3.34), take the stepsize and burn-
in period as in equation (3.30). Assuming that µ, β, ς ≍ 1, the Polyak–Ruppert averaged
stochastic approximation procedure (3.27) satisfies the bound (3.31) with d = dn.

See Appendix B.6.1.3 for the proof.

Recall that by taking into account the approximation error, the error for estimating
the true value function v∗ takes the following form:

E
[
∥v̂n − v∗∥2L2(S,ξ)

]
≤ c
[
1 + λmax

(
(I −M)−1(γ2Id −MM⊤)(I −M)−⊤)] inf

v∈S
∥v − v∗∥2L2(S,ξ)

+ c
n
Tr
(
(I −M)−1(Σ∗

Mkv + Σ∗
MG)(I −M)−⊤)+ c

(
σ̄2tmixdn
(1−κ)2n

)4/3
log2 n.

Let {ψj}+∞
j=1 be an orthonormal basis of L2(S, ξ) such that span(ψ1, · · · , ψd) =

span(ϕ1, · · · , ϕd) for any d ≥ 1. (For instance, one can let {ψj}+∞
j=1 be the Gram-Schmidt

orthonormalization of the original basis functions). Given a non-increasing sequence
{αj}∞j=1 of positive reals such that limj→+∞ αj = 0, we first let H0 be a linear subspace of
L2(S, ξ), consisting of all the finite linear combination of basis vectors {ψj}+∞

j=1, equipped
with the following inner product:

∀u, v ∈ H0, ⟨u, v⟩H0 :=
∞∑
j=1

α−1
j · ⟨u, ψj⟩ · ⟨v, ψj⟩.

Note that the summation shown above is actually finite, since both both sequences
(⟨u, ψj⟩)+∞

j=1, (⟨v, ψj⟩)+∞
j=1 only have finite non-zero entries. We then define the inner

product space (H, ⟨·, ·⟩H) as the completion of (H0, ⟨·, ·⟩H0). It is easy to see that H is
a Hilbert space, and a linear subspace of L2(S, ξ).

For any v∗ ∈ H, the estimation error is at most (in the worst-case)

E
[
∥v̂n − v∗∥2L2(S,ξ)

]
≤ c

1−γ · αdn∥v
∗∥2H + cσ̄2dntmix

(1−γ)2n . (3.36)
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For example, when the eigenvalues of Hilbert space H decay as αj ≍ j−2s for some

s > 0, the estimator achieves a rate of O
(
(tmix/n)

2s
2s+1

)
, which matches the minimax

optimal rate proved by [54] in the i.i.d. setting, but with a multiplicative correction
to the effective sample size by a factor tmix to accommodate Markovian observations.
Furthermore, since one can estimate the quantities (M,Σ∗

Mkv,Σ
∗
MG) in the bound (3.31)

using O (d) samples, instance-dependent model selection can in principle be conducted.
Bounds of the form (3.36) thus open the door to asking important questions of this
type.

3.4.2 TD(λ) methods

Now we turn to stochastic approximation methods for the TD(λ) projected fixed-point
equation (3.14b), with some given λ ∈ [0, 1). With observation model (Lt+1(Ωt), bt+1(Ωt))
given by Eq (3.16c), the averaged SA procedure (3.3) can be written as

θt+1 = θt − η
{
⟨ϕ(st)− γϕ(st+1)

⊤, θt⟩ −Rt(st)
}
gt, where (3.37a)

gt = γλgt−1 + ϕ(st) and, (3.37b)

θ̂n = 1
n−n0

n−1∑
t=n0

θt. (3.37c)

The update on gt is the so-called “eligibility trace” in the TD(λ) algorithm. As before,
we assume the two bounds in equation (3.28a), and assume that the mixing time
condition 3.1 holds true for the chain (st)t≥1, with discrete metric and mixing time tmix.
We consider the augmented Markov chain Ωt :=

(
st, st+1,

1−γλ
ς
√
βd
gt
)
∈ S2 × B(0, 1) and

begin by establishing mixing conditions on this augmented chain.

Proposition 3.2. Under the setup above, consider the metric

ρ
(
(s1, s2, h), (s

′
1, s

′
2, h

′)
)
:= 1

4

(
1s1 ̸=s′1 + 1s2 ̸=s′2 + ∥h− h′∥2

)
. (3.38a)

Taking τ = 4
(
tmix +

1
1−γλ

)
, the augmented chain

{
Ωt = (st, st+1,

1−γλ
ς
√
βd
gt)
}
t≥0

satisfies the
mixing bound

W1,ρ

(
L(Ωτ ),L(Ω′

τ )
)
≤ 1

2
ρ
(
Ω0,Ω

′
0

)
(3.38b)

for two chains (Ωt)t≥0 and (Ω′
t)t≥0 starting from Ω0 and Ω′

0, respectively. In particular,

the stationary distribution ξ̃ of the chain (Ωt)t≥0 exists and is unique.

See Appendix B.6.2.1 for the proof of this proposition.

Taking this proposition as given, we are now ready to present our main corollary for
TD(λ) procedures. We consider the following instantiation of quantities in Theorem 3.1:
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The projected linear operator (1−λ)
∑+∞

k=0 λ
k(γΠSP )

k+1 in the equation (3.14b) can
be represented in the orthonormal basis of the subspace S as

Mλ := Id −B−1/2E(s,s+, 1−γλ
ς
√
βd
g)∼ξ̃
[
gϕ(s)⊤ − γgϕ(s+)⊤

]
B−1/2

= (1− λ)B−1/2

∞∑
t=0

λtγt+1E
[
ϕ(s0)ϕ(st+1)

]
B−1/2.

The Markovian and martingale part of the noise (in the low-dimensional subspace S)
takes the following form:

εMkv,λ

(
s, s+,

1− γλ

ς
√
βd

g
)
= B−1/2

(
ϕ(s)⊤θ̄ − γϕ(s+)θ̄ − r(s)

)
g,

εMG,λ

(
s, s+,

1− γλ

ς
√
βd

g
)
= B−1/2(R0(s)− r(s))g

Finally, we define the covariance matrices Σ∗
Mkv,λ and Σ∗

MG,λ according to Eq (3.19):

Σ∗
Mkv,λ :=

∞∑
t=−∞

E
[
εMkv,λ

(
st, st+1,

1− γλ

ς
√
βd

gt
)
εMkv,λ

(
s0, s1,

1− γλ

ς
√
βd

g0
)⊤]

,

Σ∗
MG,λ := Es∼ξ

[
E
[
εMG,λ(s)εMG,λ(s)

⊤ | s
]]
.

As before, we let β := λmax(B), µ := λmin(B) and κλ :=
1
2
λmax(Mλ +M⊤

λ ), and define
the quantity σ̄ according to equation (3.29). Note that a straightforward calculation

reveals that κλ ≤ (1−λ)γ
1−λγ < 1. Assuming that µ > 0, we are then ready to state our main

result for TD(λ) methods.

Corollary 3.4. Under the setup above, take the stepsize and burn-in period as

η = (1−γλ)2/3

cβ
(
(ς4+1)d(1−κλ)n2

(
tmix+

1
1−γλ

))1/3 , and n0 =
1
2
n, (3.39a)

and suppose that n
log3 n

≥
2(tmix+

1
1−γλ ) (ς

4d+1)β2

(1−κλ)2(1−γλ)2µ2
. Then the value function estimate v̂n(s) :=

⟨θ̂n, ϕ(s)⟩ obtained from the Polyak–Ruppert procedure (3.37) has MSE bounded as

E
[
∥v̂n − v̄(λ)∥2L2(S,ξ)

]
≤ cn−1Tr

(
(Id −Mλ)

−1(Σ∗
Mkv + Σ∗

MG)(Id −Mλ)
−⊤)

+ c
( β2σ̄2d

(
tmix+

1
1−γλ

)
µ2(1−κλ)2(1−γλ)2n

)4/3
log2 n, (3.39b)

where v̄(λ) is the solution to the projected fixed-point equation (3.11).

See Appendix B.6.2.2 for the proof of this corollary.
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A few remarks are in order. First, using the same argument as in Corollaries 3.2
and 3.3, one can extend the results for TD(λ) to the cases of continuous state spaces
with Wasserstein mixing, as well as to nonparametric sieve estimators. As is well-known,
different choices of the tuning parameter λ interpolate the “temporal difference” method,
in which we aim at solving the Bellman equation, and the “Monte Carlo” method, in
which the value function is estimated directly by averaging the rollout of a Markovian
trajectory. For example, on the one hand, letting λ = 0 recovers the instance-dependent
upper bound for TD(0) method in Corollary 3.1. On the other hand, by taking λ = γ,
we have κλ ≤ γ

1+γ
≤ 1

2
, and the dependence on the discount factor γ appears only

through the variance of the noise, instead of through the conditioning of the matrix Mλ.
In the next section, we sketch a recipe for the instance-dependent selection of λ that
also takes the approximation error into account.

3.4.2.1 Using instance-dependent results to select λ

Recall that the TD(λ) algorithm aims at estimating the solution v̄(λ) to the projected
fixed-point equation (3.14b). The linear operator in the unprojected fixed-point equa-
tion (3.14a) satisfies the norm bound

|||(1− λ)
∞∑
k=0

λkγk+1P k+1|||L2(S,ξ)→L2(S,ξ) ≤ (1− λ)
∞∑
k=0

λkγk+1 = (1−λ)γ
1−λγ .

Consequently, invoking Theorem 2.1 of Chapter 2, the approximation error satisfies the
bound

∥v̄(λ) − v∗∥2L2(S,ξ) ≤ α
(
Mλ,

(1−λ)γ
1−λγ

)
· inf
v∈S

∥v − v∗∥2L2(S,ξ),

where α(M, z) := 1+ λmax

(
(Id−M)−1(z2Id−MM⊤)(Id−M)−⊤) is the approximation

factor. Combining with Corollary 3.4, we obtain the following bound on the distance to
the true value function:

E
[
∥v̂n− v∗∥2L2(S,ξ)

]
≤ cα

(
Mλ,

(1−λ)γ
1−λγ

)
· inf
v∈S

∥v− v∗∥2L2(S,ξ)+ c
( β2σ̄2d

(
tmix+

1
1−γλ

)
µ2(1−κλ)2(1−γλ)2n

)4/3
log2 n

+ c
n
Tr
(
(Id −Mλ)

−1(Σ∗
Mkv + Σ∗

MG)(Id −Mλ)
−⊤) (3.40)

for a universal constant c > 0.
It can be seen that α

(
Mλ,

(1−λ)γ
1−λγ

)
≤ c′ 1−λγ

1−γ for a universal constant. We also recall

that κλ ≤ (1−λ)γ
1−λγ . If we take the parameters (µ, β, ς) to be of constant order, in the

worst case, the upper bound (3.40) takes the simplified form

E
[
∥v̂n − v∗∥2L2(S,ξ)

]
≤ c

1− λγ

1− γ
inf
v∈S

∥v − v∗∥2L2(S,ξ) + c

(
tmix +

1
1−γλ

)
d

(1− γ)3n
.
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From such an upper bound, it may appear that the optimal choice of λ is always
λ = γ ∧ (1− 1/tmix), so that the approximation factor is minimized and the variance
remains controlled. However, this choice could be overly conservative, since the actual
variance with small λ can be significantly smaller, with the feature vectors still having
bounded one-step cross-correlation. Choosing the parameter λ close to 1 cannot take
advantage of small one-step correlation. On the other hand, a fine-grained bound of the
form (3.40) can be used to perform instance-dependent model selection, as follows:

• Construct a uniform finite grid 0 = λ1 < λ2 < · · · < λm = γ for possible values of
λ.

• For each ℓ ∈ [m], compute the TD(λℓ) estimator, and construct empirical plug-in

estimates
(
M̂λ,n, Σ̂∗

Mkv,λ,n, Σ̂∗
MG,λ,n

)
for the matrices

(
Mλ,Σ

∗
Mkv,λ,Σ

∗
MG,λ

)
by

replacing the expectations by empirical averages. Similarly replace θ̄(λ) by θ̂n.

• Estimate the approximation factor α
(
Mλ,

(1−λ)γ
1−λγ

)
and the covariance (Id −

Mλ)
−1(Σ∗

Mkv + Σ∗
MG)(Id − Mλ)

−⊤ by plugging in the estimated matrices de-
scribed above, for each λ = λℓ with ℓ ∈ [m]. Based on prior knowledge about the
scale of the optimal approximation error infv∈S ∥v− v∗∥2L2(S,ξ), select λℓ in the grid

that minimizes our estimate of the total error according to equation (3.40).

Note that the procedure above is simply a sketch; a formal proof of correctness
would show bounds that are uniform over all m estimators. It is an important direction
of future work to provide sharp non-asymptotic analysis of such a model selection
procedure.

3.4.3 Autoregressive models

Next, we turn to Example 3.3, the multivariate auto-regressive model. We study the
stochastic approximation procedure in which, for any i ∈ [k], we have

A
(i)
t+1 = A

(i)
t − η

( k−1∑
j=0

A
(j)
t Xt−jX

⊤
t+1−i −Xt+1X

⊤
t+1−i

)
, and Â(i)

n =
1

n− n0

n−1∑
t=n0

A
(i)
t .

The first step in our analysis is to establish necessary and sufficient conditions for
the existence and uniqueness of the stationary distribution of the process (3.17). The
following km× km matrix plays a crucial role in this context:

R∗ =


A∗

1 A∗
2 · · · A∗

k

Im 0 · · · 0
0 Im 0 · · · 0

0
. . . 0

0 · · · 0 Im 0

 .
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In the noiseless case, the stability of the linear dynamical system is equivalent to the
following Lyapunov stability condition (see e.g. [160], Section 3.3):

∃P∗ ≻ 0, Q∗ ≻ 0, such that R⊤
∗ P∗R∗ = P∗ −Q∗. (3.41)

Clearly we have P∗ ≻ Q∗. We let β := λmax(P∗) and µ := λmin(Q∗). Based on
stability theory for discrete-time linear systems [29], condition (3.41) is necessary for
the stationary distribution to exist. In the following proposition, we show that this
condition is also sufficient, with a concrete mixing time bound.

Proposition 3.3. Under the Lyapunov stability condition (3.41) and assuming that

the noise has bounded first moment E
[
∥εt∥2

]
<∞, the stationary distribution ξ̃ for the

sliding window Ωt = (Xt+1, Xt, · · · , Xt−k+1) of the auto-regressive process (3.17) exists
and is unique. Furthermore, the mixing assumption 3.1 is satisfied with Wasserstein
distance in R(k+1)m and a mixing time bound tmix = ck + cβ

µ

(
1 + log β

µ

)
.

See Section B.6.3.1 for the proof of this claim.
In addition to this mixing guarantee, we also make the following assumptions on the

noise:

E
[
εt
]
= 0, sup

u∈Sd−1

E
[
⟨u, εt⟩4

]
≤ ς4, and ∥εt∥2 ≤ ς

√
m, a.s. (3.42)

We are now in a position to consider the problem of parameter estimation us-
ing stochastic approximation. Consider the vectorized version of the parameter
θ = vec

( [
A(1);A(2); · · · ;A(k)

] )
∈ Rkm2

. The population-level Yule–Walker estimation
equation (3.18) can be written as( [

Γj−i
]
i,j∈[k]︸ ︷︷ ︸

H∗

⊗Im
)
θ = vec

([
Γ1; Γ2; · · · ; Γk

])
, (3.43)

where Γi := E
[
XiX

⊤
0

]
∈ Rm×m, for i ∈ Z. We assume that

1

2

(
H∗ + (H∗)⊤

)
⪰ h∗Ikm, for some h∗ > 0.

In order to state the main corollary of Theorem 3.1 to auto-regressive models, the
following quantities are relevant:

εMkv(Ωt) := vec
(( k−1∑

j=0

A(j)
∗ Xt−j −Xt+1

)
·
[
X⊤
t−1 X⊤

t−2 · · ·X⊤
t−k
] )

Σ∗
Mkv :=

∞∑
t=−∞

E
[
εMkv(Ωt)εMkv(Ω0)

⊤].
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Corollary 3.5. Under the setup above, take the stepsize and burn-in period as

η = 1

c
(
n2
(

β
µ
log β

µ

)
(h∗)2ς4k3m2β8/µ8

)1/3 , and n0 =
1
2
n, (3.44a)

and suppose that n
log3 n

≥
(
k+ β

µ
log β

µ

)
ς4k3m2 β8

µ8(h∗)2
. Then the Polyak–Ruppert estimator

(Â
(j)
n )j∈[k] satisfies

k∑
j=1

E
[
|||Â(j)

n − A∗
j |||2F
]
≤ c

n
Tr
((
H∗ ⊗ Im

)−1
ΣMkv

(
H∗ ⊗ Im

)−1)
+
{
km2·λmax

(
E
[
εMkv(s0)εMkv(s0)

⊤
])

(h∗)2n

(
k +

β

µ
log

β

µ

)}4/3

log2 n. (3.44b)

A few remarks are in order. First, the leading-order term in the bound (3.44b)
matches the variance of asymptotic efficient estimators for AR(m) models, up to a
constant factor (see [29], Section 8). This simply follows from the fact that the plug-in
Yule-Walker estimator is asymptotically efficient for auto-regressive models. On the
other hand, Corollary 3.5 is completely non-asymptotic, holding true for any reasonably
large sample size. Note that the sample complexity lower bound exhibits an O (β9/µ9)
dependency on the conditioning β/µ of the Lyapunov stability certificate (P∗, Q∗). In
particular, a term linear in β/µ arises from the mixing time β

µ
log β

µ
, and all other factors

are from the almost-sure bounds on ∥Xt∥2 and moment bound supu∈Sm−1⟨u, Xt⟩4. If we
instead assumed these quantities were bounded explicitly as in some prior work [109],
the factor β8ς4k2/µ8 in the sample size requirement and stepsize choice can be replaced
by such a bound.

3.5 Proof of Proposition 3.1

We begin by proving the bound on the last iterate claimed in Proposition 3.1. Define
the error term ∆t := θt − θ̄, as well as the noise terms

Zt+1 := Lt+1 −L(st), ζt+1 := (Lt+1 −L(st))θ̄ + (bt+1 − b(st)), (3.45a)

Nt := L(st)− L, νt := (L(st)− L)θ̄ + (b(st)− b). (3.45b)

Using this notation, we have the recursion

∆t+1 = (I − η(I − L))∆t + η
(
Nt + Zt+1

)
∆t + η(νt + ζt+1). (3.46)

Taking squared norms on both sides yields the bound ∥∆t+1∥22 ≤
∑4

i=1 Ti, where

T1 := ∥(I − η(I − L))∆t∥22,
T2 := 2η⟨(I − η(I − L))∆t, Nt∆t + νt⟩,
T3 := 2η⟨(I − η(I − L))∆t,

(
Zt+1∆t + ζt+1

)
⟩, and

T4 := 4η2
(
∥Nt∆t∥22 + ∥Zt+1∆t∥22 + ∥ζt+1∥22 + ∥νt∥22

)
.
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Beginning with the term T1, expanding the square and then invoking the condi-
tion (3.4) yields

T1 = ∥∆t∥2 − 2η⟨∆t, (I − L)∆t⟩ + η2∥(I − L)∆t∥2

≤
(
1− 2η(1− κ) + 2η2(1 + γ2max)

)
∥∆t∥2.

As for the cross terms involved in T2 and T3, we note that

2⟨(I − L)∆t, Nt∆t⟩ ≤ ∥(I − L)∆t∥22 + ∥Nt∆t∥22 ≤ 2(1 + γ2max)∥∆t∥22 + ∥Nt∆t∥22,
2⟨(I − L)∆t, νt⟩ ≤ ∥(I − L)∆t∥22 + ∥νt∥22 ≤ 2(1 + γ2max)∥∆t∥22 + ∥νt∥22,

2⟨(I − L)∆t, Zt+1∆t⟩ ≤ ∥(I − L)∆t∥22 + ∥Zt+1∆t∥22 ≤ 2(1 + γ2max)∥∆t∥22 + ∥Zt+1∆t∥22,
2⟨(I − L)∆t, ζt+1⟩ ≤ ∥(I − L)∆t∥22 + ∥ζt+1∥22 ≤ 2(1 + γ2max)∥∆t∥22 + ∥ζt+1∥22.

We collect the above bounds on the sum
∑4

i=1 Ti and use the stepsize bound
η ≤ 1−κ

12(1+γ2max)
, which results in the recursive inequality

∥∆t+1∥22 ≤
(
1− η(1− κ)

)
∥∆t∥22 + 2η

(
⟨∆t, Nt∆t⟩+ ⟨∆t, νt⟩

)︸ ︷︷ ︸
:=H1(t)

+ 2η
(
⟨∆t, Zt+1∆t⟩+ ⟨∆t, ζt+1⟩

)︸ ︷︷ ︸
:=H2(t)

+ 8η2
(
∥Nt∆t∥22 + ∥Zt+1∆t∥22 + ∥ζt+1∥22 + ∥νt∥22

)︸ ︷︷ ︸
:=H3(t)

.

Multiplying both sides by eη(1−κ)(t+1) and using the fact that
(
1− η(1− κ)

)
≤ e−η(1−κ),

we have

eη(1−κ)(t+1)∥∆t+1∥22 ≤ eη(1−κ)t∥∆t∥22+2ηeη(1−κ)(t+1)
(
H1(t)+H2(t)

)
+8η2eη(1−κ)(t+1)H3(t).

Unrolling this expression yields

eη(1−κ)n∥∆n∥22 ≤ ∥∆0∥22 + 2η
n−1∑
t=0

eη(1−κ)(t+1)
(
H1(t) +H2(t)

)
+ 8η2

n−1∑
t=0

eη(1−κ)(t+1)H3(t),

(3.47)

which is the key recursion underlying our analysis.

3.5.1 Analyzing the recursion (3.47)

Note that the running sumM2(n) :=
∑n−1

t=0 e
η(1−κ)tH2(t) is, by construction, a martingale

adapted to the filtration (Ft)t≥0. In contrast, the analogous quantity defined in terms of
the process H1 is not an adapted martingale. In order to circumvent this obstacle, our
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proof is based on introducing a surrogate version H̃1 of the process H1, such that the
running sum

M̃1(n) :=
n−1∑
t=0

eη(1−κ)(t+τ)H̃1(t+ τ)

can be decomposed as a sum of τ martingales. See the proof of Lemma 3.1 for the
details of the construction of H̃1. This decomposition allows us to apply standard
maximal inequalities for martingales. Of course, we also need the bound the moments
of the differences H̃1(t)−H1(t); see Lemma 3.1 for the bound that we provide on this
difference.

We prove the MSE bounds and higher-moment bounds using slightly different analysis
tools. In order to study the mean-squared error (the case p = 1), we note that both

M̃1(t) and H2(t) have zero expectation for any t ≥ 0. Taking expectations on both sides
of equation (3.47), we obtain the bound

eη(1−κ)nE
[
∥∆n∥22

]
≤ ∥∆0∥22 + 2η

n−1∑
t=0

eη(1−κ)(t+1)E
[ ∣∣∣H1(t)− H̃1(t)

∣∣∣ ]
+ 8η2

n−1∑
t=0

eη(1−κ)(t+1)E
[
H3(t)

]
. (3.48)

For higher moments, our analysis of the recursion (3.47) is based on a Lyapunov
function Φn and auxiliary function Λn given by

Φn :=
(
E
[
sup

0≤t≤n
eη(1−κ)tp∥∆t∥2p2

])1/p
, and Λn = max

t∈{0,1,...,n}
e−

η(1−κ)t
2 Φt.

By applying Minkowski’s inequality to the recursion (3.47), we obtain the upper bound

Φn ≤ Φ0 + 4η
(
E sup

0≤t≤n
|M̃1(t)|p

)1/p
+ 4η

(
E
( n−1∑
t=0

eη(1−κ)t|H1(t)− H̃1(t)|
)p)1/p

+ 4η
(
E sup

0≤t≤n
|M2(t)|p

)1/p
+ 16η2

(
E
( n−1∑
t=0

eη(1−κ)tH3(t)
)p)1/p

. (3.49)

In order to complete the proof, we need to control each of the terms on the right-
hand side. The following auxiliary results provide the needed control; in all cases, the
quantities (c, c0) etc. denote universal constants; the number n in the following lemmas
is seen as a general iteration index, instead of the total sample size in the final statement
of the theorem.

Our first auxiliary result guarantees the existence of the surrogate variables H̃1(t)
with desirable properties:
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Lemma 3.1. There is a surrogate version {H̃1(t)}t≥0 of the process {H1(t)}t≥0 such that

E
[
H̃(t)

]
= 0 for any t ≥ 0, and for any integer p ∈ [1, p̄/2], scalar τ ≥ cptmix log(c0tmixd)

and stepsize η ≤ 1
ctmix(γmax+pσLd)

, we have the following bounds for any n > 0:(
E
[ ∣∣∣H1(n)− H̃1(n)

∣∣∣p ])1/p ≤ cηp2τ
(
(dσ2

L + γ2max) ·
(
E∥∆n−τ∨0∥2p2

) 1
p + σ̄2d

)
, (3.50a)

and for any p ≥ 2, we have that(
E sup

0≤t≤n
|M̃1(t)|p

)1/p ≤ cp3/2√
η(1− κ)

(
σL

√
dΦn + σ̄

√
eη(1−κ)nΦnd

)
. (3.50b)

See Section 3.5.2 for the proof of this claim. We note that it is especially challenging to
prove the bound (3.50a).

Our second auxiliary result is a more straightforward bound on a martingale supremum:

Lemma 3.2. The process M2 is a martingale adapted to the filtration (Ft)t≥0. Further-
more, for each p ∈ [1, p̄/2], τ ≥ 2ptmix log(c0d) and η ≤ 1

c(γmax+σLd)τ
, for any n > 0, we

have that (
E sup

0≤t≤n
|M2(t)|p

)1/p ≤ cp3/2τ 1/2√
η(1− κ)

(
σL

√
dΦn + σ̄

√
eη(1−κ)nΦnd

)
. (3.51)

See Section 3.5.3 for the proof of this claim.

Finally, our third auxiliary result provides control on the process H3(t):

Lemma 3.3. There is a universal constant c such that given τ ≥ cptmix log(c0tmixd) and
stepsize η ≤ 1

ctmix(γmax+σLd)
, for any p ∈ [1, p̄/2], we have(

E
[
H3(t)

p
])1/p ≤ c

(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∨0∥2p2

])1/p
+ cp2σ̄2d. (3.52)

See Section 3.5.4 for the proof of this claim.

We now use these three lemmas to complete the proof of Proposition 3.1. We prove
the case of p̄ = 2 and p̄ ≥ log n separately.

Proof in the case of p̄ = 2: By Lemma 3.1 with τ = ctmix log(c0tmixd) and Cauchy–
Schwarz inequality, we have that

E
[ n−1∑
t=0

eη(1−κ)t|H̃1(t)−H1(t)|
]
≤ cητ

n−1∑
t=0

eη(1−κ)t
(
(σ2

Ld+ γ2max)E
[
∥∆t−τ∨0∥22

]
+ σ̄2d

)
≤ cτ σ̄2d

1− κ
eη(1−κ)n + ceητ(σ2

Ld+ γ2max)
n−1∑
t=0

eη(1−κ)tE
[
∥∆t∥22

]
.
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Similarly, by applying Lemma 3.3 to the last term of equation (3.48), we obtain the
bound

n−1∑
t=0

eη(1−κ)(t+1)E
[
H3(t)

]
≤ cσ̄2d

(1− κ)η
eη(1−κ)n + ce(σ2

Ld+ γ2max)
n−1∑
t=0

eη(1−κ)tE
[
∥∆t∥22

]
.

Combining them with the decomposition (3.48), for any n = 1, 2, · · · , we find that
eη(1−κ)nE

[
∥∆n∥22

]
is upper bounded by

∥∆0∥22 + c
ητ σ̄2d

1− κ
eη(1−κ)n + cη2τ(σ2

Ld+ γ2max)
n−1∑
t=0

eη(1−κ)tE
[
∥∆t∥22

]
. (3.53)

In order to exploit this recursive upper bound, we define the partial sum sequence
Sn :=

∑n
t=0 e

η(1−κ)tE
[
∥∆t∥22

]
. Equation (3.48) implies that

Sn ≤ S0 + c
ητ σ̄2d

1− κ
eη(1−κ)n +

(
1 + cη2τ(σ2

Ld+ γ2max)
)
Sn−1

≤ S0 ·
n∑
t=0

ecη
2τ(σ2

Ld+γ
2
max)t + c

ητ σ̄2d

1− κ
·

n∑
t=0

ecη
2τ(σ2

Ld+γ
2
max)t+η(1−κ)(n−t)

≤ 3

(1− κ)η
eη(1−κ)n/3S0 +

3cτ σ̄2d

(1− κ)2
eη(1−κ)n.

Substituting back into the recursion (3.53) yields

E
[
∥∆n∥22

]
≤ 6

(1− κ)η
e−η(1−κ)n/3∥∆0∥22 + c

ητ σ̄2d

1− κ
+ cη2τ(σ2

Ld+ γ2max) ·
2cτ σ̄2d

(1− κ)2

≤ e−η(1−κ)n/2∥∆0∥22 + c′
ητ σ̄2d

1− κ
,

which completes the proof of the MSE bound.

Proof in the case of p̄ ≥ log n: Now we turn to prove the p-th moment bound under
Assumption 3.2 with p̄ ≥ log n. Recall that we analyze the growth of the Lyapunov
function Φn, and we start from the decomposition (3.49).

The first term in equation (3.49) is simply ∥∆0∥22, and the second term is controlled
using equation (3.50b) in Lemma 3.1. In order to bound the third term, we apply
Hölder’s inequality, and obtain the bound

E
( n−1∑
t=0

eη(1−κ)t
∣∣∣H1(t)− H̃1(t)

∣∣∣ )p ≤ ( n−1∑
t=0

e
η(1−κ)pt
2(p−1)

)p−1 ·
n−1∑
t=0

e
ηp(1−κ)t

2 E
[ ∣∣∣H1(t)− H̃1(t)

∣∣∣p ].
By equation (3.50a) in Lemma 3.1, this quantity is at most

(η(1− κ))1−pe
η(1−κ)pn

2

n−1∑
t=0

e
ηp(1−κ)t

2

(
cτ
(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∨0∥2p2

])1/p
+ cτp2σ̄2d

)p
.
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We then obtain the inequality:

(
E
( n−1∑
t=0

eη(1−κ)t
∣∣∣H1(t)− H̃1(t)

∣∣∣ )p)1/p
≤ cp2

eη(1−κ)n

η(1− κ)
σ̄2τd+ c

(
p2σ2

Ld+ γ2max

)
τ
e

1
2
η(1−κ)n

η(1− κ)

( n−1∑
t=0

e
1
2
ηp(1−κ)tE

[
∥∆t∥2p2

])1/p
≤ cp2

eη(1−κ)n

η(1− κ)
σ̄2τd+ c

(
p2σ2

Ld+ γ2max

)
τ
e

1
2
η(1−κ)n

η(1− κ)

( n−1∑
t=0

e−
1
2
ηp(1−κ)tΦp

t

)1/p
≤ cp2

eη(1−κ)n

η(1− κ)
σ̄2τd+ c

(
p2σ2

Ld+ γ2max

)
τ
e

1
2
η(1−κ)n

η(1− κ)
n1/pΛn.

Similarly, the fourth term on the right hand side is controlled using Lemma 3.2, and
the bounds for the last term are based on Lemma 3.3 and the same strategy as above.
Concretely, combining Hölder’s inequality with the bound (3.52) yields

E
( n−1∑
t=0

eη(1−κ)tH3(t)
)p ≤ ( n−1∑

t=0

e
η(1−κ)pt
2(p−1)

)p−1 ·
n−1∑
t=0

e
ηp(1−κ)t

2 E[H3(t)
p].

This quantity is at most

(η(1− κ))1−pe
η(1−κ)pn

2

n−1∑
t=0

e
ηp(1−κ)t

2

(
c
(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∨0∥2p2

])1/p
+ cp2σ̄2d

)p
.

Noting that each term satisfies the inequality e
ηp(1−κ)t

2

(
E
[
∥∆t−τ∨0∥2p2

])1/p ≤ Λn for

t ∈ [0, n]. We conclude that the moment
(
E
(∑n−1

t=0 e
η(1−κ)tH3(t)

)p)1/p
is upper bounded

by

cp2
eη(1−κ)n

η(1− κ)
σ̄2d+ c

(
p2σ2

Ld+ γ2max

)e 1
2
η(1−κ)n

η(1− κ)
n1/pΛn.

Collecting the above bounds and substituting into the decomposition (3.49), we note
that

Φn ≤ Φ0 + c

√
p3η

1− κ

(
σL

√
dΦn + σ̄

√
eη(1−κ)nΦnd

)
+ cp2

eη(1−κ)n

η(1− κ)
σ̄2τd+

(
p2σ2

Ld+ γ2max

)e 1
2
η(1−κ)n

η(1− κ)
τn1/pΛn

≤ Φ0 + 4cσL

√
p3τηd

1− κ
Φn +

1

4
Φn + cη

σ̄2p3dτ

1− κ
· eη(1−κ)n

+ cp2η
eη(1−κ)n

1− κ
σ̄2τd+ cη

(
p2σ2

Ld+ γ2max

)e 1
2
η(1−κ)n

1− κ
τΛn
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In the last step, we apply Young’s inequality to the term
√
eη(1−κ)nΦnd, and use the

condition p ≥ log n to the last term so that n1/p ≤ e.
Taking the stepsize η ≤ 1−κ

64c2σ2
Lτdp

3 , we arrive at the following bound valid for any

n ∈ [1, ep]:

e−
η(1−κ)n

2 Φn ≤ 2Φ0 + cp3η
e

1
2
η(1−κ)n

1− κ
σ̄2τd+ cη

p2σ2
Ld+ γ2max

1− κ
τΛn.

Note that the right-hand-side of above expression is monotonic increasing in the index
n. For any integer pair (t, n) such that 0 < t ≤ n ≤ ep, we have the inequality:

e−
η(1−κ)t

2 Φt ≤ 2Φ0 + cp3η
e

1
2
η(1−κ)t

1− κ
σ̄2τd+ cη

p2σ2
Ld+ γ2max

1− κ
τΛt

≤ 2Φ0 + cp3η
e

1
2
η(1−κ)n

1− κ
σ̄2τd+ cη

p2σ2
Ld+ γ2max

1− κ
τΛn.

Given the value of n fixed and taking supremum over t ∈ {0, 1, 2, · · · , n} in the left-
hand-side, we arrive at the conclusion:

Λn = sup
t∈{0,1,··· ,n}

e−
η(1−κ)t

2 Φt ≤ 2Φ0 + cp3η
e

1
2
η(1−κ)n

1− κ
σ̄2τd+ cη

p2σ2
Ld+ γ2max

1− κ
τΛn.

Given the stepsize η ≤ 1−κ
2c(p3σ2

Ld+γ
2
max)τ

, we arrive at the bound

(
E∥∆t∥p2

)1/p ≤ e−
1
2
η(1−κ)nΛn ≤ e−

1
2
η(1−κ)n(E∥∆0∥p2

)1/p
+

cp3η

1− κ
σ̄2τd,

which completes the proof of the theorem.

It remains to prove our three auxiliary lemmas.

3.5.2 Proof of Lemma 3.1

We break the proof into three steps. In the first step, given in Section 3.5.2.1, we
construct the surrogate process, whereas the remaining two steps are devoted to the
proving the bounds (3.50b) and (3.50a), as detailed in Sections 3.5.2.2 and 3.5.2.3
respectively.

3.5.2.1 Construction of the surrogate process

We first claim that for any t = 1, 2, . . . and any τ ∈ {0, . . . , t}, there is a random variable
s̃t ∈ S such that s̃t | Ft−τ ∼ ξ, and(

E
[
ρ(st, s̃t)

p | Ft−τ
])1/p ≤ c0 exp

(
− τ

2tmixp

)
for each p ≥ 2. (3.54)

Here c0 is a universal constant.
Our construction is based on the following bound on the Wasserstein distance:
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Lemma 3.4. Under Assumptions 3.1 and 3.3, the Wasserstein distance is upper bounded
as

W1,ρ

(
δxP

τ , ξ
)
≤ c02

−⌊ τ
tmix

⌋
,

valid for any x ∈ S and τ ≥ 0.

See Appendix B.3.1 for the proof of this claim.

We now use Lemma 3.4 to construct the desired process. We begin by constructing
a coupling conditionally on the σ-field Ft−τ : let s̃t be a state whose conditional law is ξ,
satisfying the identity:

E
[
ρ(st, s̃t) | Ft−τ

]
= W1,ρ

(
L(st | Ft−τ ), ξ

)
. (3.55)

The existence of such s̃t is guaranteed by the definition of Wasserstein distance. We
now bound the relevant quantities based on this construction.

Combining the identity (3.55) with Lemma 3.4 yields

E
[
ρ(st, s̃t) | Ft−τ

]
≤ c0 · 2

−⌊ τ
tmix

⌋
. Applying Cauchy–Schwarz inequality and invoking

Assumption 3.3, we find that(
E
[
ρ(st, s̃t)

p | Ft−τ
])1/p ≤ (E[ρ(st, s̃t) | Ft−τ

]) 1
2p ·
(
E
[
ρ(st, s̃t)

2p−1 | Ft−τ
]) 1

2p

≤
(
E
[
ρ(st, s̃t) | Ft−τ

]) 1
2p

≤ c0 · 2
1− τ

2tmixp , (3.56)

which establishes the claim.
We now use the sequence of random variables s̃t just constructed to define the

extended filtration F̃t := σ
(
(sk)0≤k≤t, (s̃k)0≤k≤t,

(
(Lk, bk)

)
0≤k≤t

)
, as well as the surrogate

quantities

ν̃t :=
(
L(s̃t)− L

)
θ̄ +

(
b(s̃t)− b

)
, and

H̃1(t) := ⟨∆(t−τ)∨0, ν̃t⟩+ ⟨∆(t−τ)∨0,
(
L(s̃t)− L

)
∆(t−τ)∨0⟩.

Note that by definition, we have E
[
H̃1(t) | F̃(t−τ)∨0

]
= 0 for each t = 0, 1, 2, . . ..

3.5.2.2 Proof of the bound (3.50b)

We first perform a decomposition on the process M̃1. In particular, for ℓ ∈ {0, 1, · · · , τ −
1}, we define the stochastic process M̃

(ℓ)
1 (n) :=

∑n−1
t=0 e

η(1−κ)(t+τ)H̃1(t + τ)1{tmod τ=ℓ}.

Clearly, we have M̃1(n) =
∑τ−1

ℓ=0 M̃
(ℓ)
1 (n) for any n ≥ 0. Furthermore, we note for any

t ≥ 0, we have the relations:

E
[
H̃1(t+ τ) | F̃t

]
= 0, and H̃1(t) ∈ F̃t.
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So for each ℓ ∈ [0, τ − 1], the process M̃
(ℓ)
1 is a martingale adapted to the filtration(

F̃t

)
t≥0

.

By the BDG inequality, we have the maximal inequality
(
E sup0≤t≤n |M̃

(ℓ)
1 (t)|p

)1/p ≤
cp
(
E
(
[M̃

(ℓ)
1 ]n

)p/2)1/p
, valid for all ℓ = 0, 1, . . . , τ−1. Similarly, for the quadratic variation

term [M̃
(ℓ)
1 ]n, we have that

E
[(
[M̃

(ℓ)
1 ]n

)p/2]
= E

[( ⌊n−1
τ

⌋∑
k=0

eη(1−κ)(kτ+τ+ℓ)∥H̃1(kτ + ℓ)∥22
)p/2]

≤
( ⌊n−1

τ
⌋∑

k=0

eη(1−κ)p(kτ+τ+ℓ)E
[
∥H̃1(kτ + ℓ)∥p2

])
·
( n−1∑
t=0

e−
p2

2p−4
τη(1−κ)t) p−2

2 ,

which is at most

(
ητ(1− κ)

)− p
2
+1

n−1∑
t=τ

eη(1−κ)tp
(
E
[ ∣∣2⟨∆t−τ , (L(s̃t)− L)∆t−τ ⟩

∣∣p ]
+ E

[
|2⟨ν̃t, ∆t−τ ⟩|p

])
1{tmod τ=ℓ}.

Invoking the tail condition in Assumption 3.2 under the stationary distribution, we have
that

E
[ ∣∣2⟨∆t−τ , (L(s̃t)− L)∆t−τ ⟩

∣∣p | Ft−τ
]
≤
(
pσL

√
d · ∥∆t−τ∥22

)p
, and

E
[
|⟨ν̃t, ∆t−τ ⟩|p | Ft−τ

]
≤
(
pσ̄

√
d · ∥∆t−τ∥2

)p
.

Substituting into the moment bounds for [M̃
(ℓ)
1 ]n and combining the results for ℓ =

0, 1, · · · , τ − 1 using Minkowski’s inequality, we arrive at the bound(
E sup

0≤t≤n
|M̃1(t)|p

)1/p
≤

τ−1∑
ℓ=0

(
E sup

0≤t≤n
|M̃ (ℓ)

1 (t)|p
)1/p

≤
τ · n

1
p
√
p(

ητ(1− κ)
) 1

2
+ 1

p

{
pσL

√
d · max

0≤t≤n

[
eη(1−κ)t

(
E∥∆t∥2p2

)1/p]
+ e

η(1−κ)n
2 pσ̄

√
d max

0≤t≤n

[
eη(1−κ)t/2

(
E∥∆t∥p2

)1/p]}
≤
√

τp

η(1− κ)

(
pσL

√
dΦn + pσ̄

√
eη(1−κ)nΦnd

)
,

which completes the proof of this lemma.
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3.5.2.3 Proof of the bound (3.50a)

By Minkowski’s inequality, we can upper bound the error as(
E
[
(H1(t)− H̃1(t))

p
])1/p ≤∑6

k=1 Jk, where

J1 :=
(
E
[
⟨∆t−τ , νt − ν̃t⟩p

])1/p
, J3 :=

(
E
[
⟨∆t−τ ,

(
L(s̃t)−L(st)

)
∆t−τ ⟩p

])1/p
,

J2 :=
(
E
[
⟨∆t −∆t−τ , νt⟩p

])1/p
J4 :=

(
E
[
⟨∆t −∆t−τ , Nt∆t−τ ⟩p

])1/p
J5 :=

(
E
[
⟨∆t, Nt(∆t −∆t−τ )⟩p

])1/p
, J6 :=

(
E
[
⟨∆t −∆t−τ , Nt(∆t −∆t−τ )⟩p

])1/p
The terms J1 and J3 can be controlled using the bound on ρ(st, s̃t) and the Lipschitz
condition (3.4); doing so yields the bound

J1 ≤ σ̄d
(
E
[
∥∆t−τ∥p2 · E

[
ρ(st, s̃t)

p | Ft−τ
]])1/p ≤ 2c0σ̄d

(
E∥∆t−τ∥p2

)1/p · 2− τ
2ptmix , and

J3 ≤ σLd
(
E
[
∥∆t−τ∥2p2 · E

[
ρ(st, s̃t)

p | Ft−τ
]])1/p ≤ 2c0σLd

(
E∥∆t−τ∥2p2

)1/p · 2− τ
2ptmix .

Given the time lag parameter τ ≥ cptmix log(c0tmixd) ≥ 2ptmix log
(
d
η

)
, we have the

bound

J1 ≤ ησ̄
√
d
(
E∥∆t−τ∥p2

)1/p
, and J3 ≤ ηησL

√
d
(
E∥∆t−τ∥2p2

)1/p
. (3.57)

Turning to the J2 term, applying the Cauchy–Schwarz inequality yields

J2 ≤
(
E∥∆t −∆t−τ∥2p2

) 1
2p ·
(
E∥νt∥2p2

) 1
2p

(i)

≤
(
E∥∆t −∆t−τ∥2p2

) 1
2p · pσ̄

√
d. (3.58)

where step (i) follows from Assumption 3.2.
The terms J4 and J5 can be controlled via once again replacing st with its surrogate

s̃t. First, by Cauchy–Schwarz inequality, we note that

J4 ≤
(
E∥∆t −∆t−τ∥2p2

) 1
2p ·
(
E∥Nt∆t−τ∥2p2

) 1
2p ,

J5 ≤
(
E∥∆t −∆t−τ∥2p2

) 1
2p ·
(
E∥N⊤

t ∆t−τ∥2p2
) 1

2p .

Using the decomposition Nt = (L(s̃t)− L) + (L(st)−L(s̃t)), we note that(
E∥Nt∆t−τ∥2p2

) 1
2p ≤

(
E∥(L(s̃t)− L)∆t−τ∥2p2

) 1
2p +

(
E∥(L(st)−L(s̃t))∆t−τ∥2p2

) 1
2p .

We bound the conditional expectations of the quantities above. The first term can be
controlled via Assumption 3.2:

E
[
∥(L(s̃t)− L)∆t−τ∥2p2 | Ft−τ

]
≤ (σLp

√
d)2p∥∆t−τ∥2p2 ,

and the second term is controlled using the Lipschitz condition 3.4:

E
[
∥(L(st)−L(s̃t))∆t−τ∥2p2 | Ft−τ

]
≤ (σLd)

2p · E
[
ρ(st, s̃t)

2p | Ft−τ
]
· ∥∆t−τ∥2p2

≤ (σLd)
2p · c0 · 2

1− τ
tmix · ∥∆t−τ∥2p2 .
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Consequently, taking τ ≥ 2tmixp log(c0d), we have the bounds(
E∥Nt∆t−τ∥2p2

) 1
2p ≤ σLp

√
d ·
(
E∥∆t−τ∥2p2

) 1
2p , and(

E∥N⊤
t ∆t−τ∥2p2

) 1
2p ≤ σLp

√
d ·
(
E∥∆t−τ∥2p2

) 1
2p .

Putting together the pieces, we arrive at the bound

J4 + J5 ≤ 2
(
E∥∆t −∆t−τ∥2p2

) 1
2p · σLp

√
d ·
(
E∥∆t−τ∥2p2

) 1
2p . (3.59)

By the Lipschitz condition (3.4) and the assumed boundedness (3.3) of the metric space,
the term J6 admits the simple upper bound

J6 ≤
(
E
[
|||Nt|||pop∥∆t −∆t−τ∥2p2

]) 1
p ≤ σLd

(
E∥∆t −∆t−τ∥2p2

) 1
p (3.60)

From all of these bounds, we see that the remaining crucial piece is to bound E∥∆t −
∆t−τ∥2p2 . In order to do so, we require the following two helper lemmas

Lemma 3.5. Given p ≥ 2 and ℓ > 0, the iterates (3.3a) with stepsize η ≤
(
6(γmax +

σLd)ℓ
)−1

satisfy the bound(
E
[
∥∆t+ℓ −∆t∥p2

])1/p ≤ eηℓ(γmax + σLd)
(
E
[
∥∆t∥p2

])1/p
+ 3ηpℓ

√
dσ̄, (3.61a)

and consequently,

1

2

(
E
[
∥∆t∥p2

])1/p − 6ηpℓ
√
dσ̄ ≤

(
E
[
∥∆t+ℓ∥p2

])1/p ≤ e
(
E
[
∥∆t∥p2

])1/p
+ 6ηpℓ

√
dσ̄. (3.61b)

See Appendix B.3.2 for the proof of this claim.

Our second auxiliary result is of a bootstrap nature: it is based on assuming that
for some given an integer p ≥ 2, fix any integer τ ≥ 2tmixp log(c0d), there exist positive
scalars ωp, βp > 0 such that(

E
[
∥∆t+ℓ −∆t∥p2

])1/p ≤ ηωp ·
(
E
[
∥∆t∥p2

])1/p
+ ηβpσ̄ (3.62)

for any t ≥ 0, η ≤ 1
48(γmax+σLd)τ

and ℓ ∈ [0, τ ]. We then have the following guarantee:

Lemma 3.6. When the condition (3.62) holds, then, for any t ≥ 0, η ≤ 1
48(γmax+σLd)τ

,

and ℓ ∈ [0, τ ], we have

(
E
[
∥∆t+ℓ −∆t∥p2

])1/p ≤ η
(
12
(
p
√
dσL + γmax

)
ℓ+

ωp
2

)((
E∥∆t∥p2

)1/p
+ ηp(τ + ℓ)

√
dσ̄
)

+ η
(
2pℓ

√
d+

1

2
βp
)
σ̄. (3.63)
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See Appendix B.3.3 for the proof of this claim.

We now complete the proof of the bound (3.50a) by using a bootstrapping argument

in order to obtain a sharp bound on E∥∆t −∆t−τ∥p2. Let ω
(0)
p := eτ(γmax + σLd) and

β
(0)
p := pτ

√
d, and define the following recursion:{
ω
(i+1)
p = 1

2
ω
(i)
p + 12

(
p
√
dσL + γmax

)
τ,

β
(i+1)
p = 1

2
β
(i)
p + 2pτ

√
d+ 2η

(
12
(
p
√
dσL + γmax

)
τ + 1

2
ω
(i)
p

)
pτ

√
d.

It can be seen that as i → ∞, the sequence (ω
(i)
p , β

(i)
p ) converges to a unique limit

(ω∗
p, β

∗
p); this limit is the unique fixed point of the iterates defined above.

By Lemma 3.6, if the iterates satisfy the bound (3.62) with constants
(
ω
(i)
p , β

(i)
p

)
,

then it also satisfy the bound with constants
(
ω
(i+1)
p , β

(i+1)
p

)
. By Lemma 3.5, the iterates

satisfy bound with constants
(
ω
(0)
p , β

(0)
p

)
. An induction argument then yields the bound

for any
(
ω
(i)
p , β

(i)
p

)
. In particular, the bound is satisfied by the fixed point

(
ω∗
p, β

∗
p).

Solving directly for the fixed-point equation, we find that

ω∗
p = 24

(
p
√
dσL + γmax

)
τ, and β∗

p = 4pτ
√
d+ 96η

(
p
√
dσL + γmax

)
pτ 2

√
d.

Taking the stepsize η ≤ 1
48(γmax+pσLd)τ

, we arrive at the bound(
E
[
∥∆t+ℓ −∆t∥p2

])1/p ≤ 24ητ
(
p
√
dσL + γmax

)(
E∥∆t∥p2

)1/p
+ 6ηpτ

√
dσ̄, (3.64)

for any t ≥ 0 and ℓ ∈ [0, τ ].
Collecting the bounds (3.57), (3.58), (3.59), (3.60) and (3.64) and taking the stepsize

η ≤ 1
c(γmax+pσLd)τ

, we arrive at the bound(
E
[
(H1(t)− H̃1(t))

p
])1/p ≤ cηp2τ

(
(dσ2

L + γ2max) ·
(
E∥∆t−τ∥2p2

) 1
p + σ̄2d

)
,

thereby completing the proof of the bound (3.50a).

3.5.3 Proof of Lemma 3.2

By the BDG inequality, we have
(
E sup0≤t≤n |M2(t)|p

)1/p ≤ cp
(
E
(
[M2]n

)p/2)1/p
, valid

for all ℓ = 0, 1, . . . , τ − 1.
As for the quadratic variation [M2]n, applying Hölder’s inequality yields

E
[(
[M2]n

)p/2]
= E

[( n−1∑
t=0

eη(1−κ)t∥H2(t)∥22
)p/2]

≤
( n−1∑
t=0

eη(1−κ)tpE
[
∥H2(t)∥p2

])
·
( n−1∑
t=0

e−
p2

2p−4
η(1−κ)t) p−2

2

≤
(
η(1− κ)

)− p
2
+1

n−1∑
t=0

eη(1−κ)tp
(
E
[
|2⟨∆t, Zt+1∆t⟩|p

]
+ E

[
|2⟨ζt+1, ∆t⟩|p

])
.
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For the moment terms above, we invoke Assumption 3.2, and obtain the following
bounds:

E
[
|⟨∆t, Zt+1∆t⟩|p | Ft

]
≤ ∥∆t∥p2 · E

[( d∑
j=1

⟨ej, Zt+1∆t⟩2
)p/2 | Ft

]
≤
(
pσL

√
d · ∥∆t∥22

)p
,

E
[
|⟨ζt+1, ∆t⟩|p | Ft

]
≤ ∥∆t∥p2 · E

[( d∑
j=1

⟨ej, ζt+1⟩2
)p/2 | Ft

]
≤
(
pσ̄

√
d · ∥∆t∥2

)p
.

Substituting into the bound above, we find that(
E
[(
[M2]n

)p/2])1/p
≤ (η(1−κ))−

1
p ·n

1
p√

η(1−κ)

{
pσL

√
d · max

0≤t≤n

[
eη(1−κ)t

(
E∥∆t∥2p2

)1/p]
+ e

η(1−κ)n
2 pσ̄

√
d max

0≤t≤n

[
eη(1−κ)t/2

(
E∥∆t∥p2

)1/p]}
≤ 1√

η(1−κ)

(
pσL

√
dΦn + pσ̄

√
eη(1−κ)nΦnd

)
.

3.5.4 Proof of Lemma 3.3

Recall the definitions (3.45a) and (3.45b). By Minkowski’s inequality, we have the upper
bound(
E
[
H3(t)

p
])1/p ≤ (E∥Nt∆t∥2p2

)1/p
+
(
E∥Zt+1∆t∥2p2

)1/p
+
(
E∥ζt+1∥2p2

)1/p
+
(
E∥νt∥2p2

)1/p
,

(3.65)

For the martingale part of the noise, we note that Assumption 3.2 implies that(
E∥Zt+1∆t∥2p2 | Ft

)1/p ≤ p2σ2
Ld · ∥∆t∥22, and

(
E∥ζt+1∥2p2

)1/p ≤ p2σ̄2d.

For the additive Markov noise, applying Assumption 3.2 yields
(
E∥νt∥2p2

)1/p ≤ p2σ̄2d.
For the Markov part of the multiplicative noise, we make use of the construction

given in Section 3.5.2.1, where we showed that for a given τ > 0, there exists a random

variable s̃t such that s̃t | Ft−τ ∼ ξ, and E
[
ρp(st, s̃t) | Ft−τ

]
≤ c0 · 2

1− τ
tmix . Observe the

decomposition

Nt∆t =
(
L(st)− L(s̃t)

)
∆t−τ +

(
L(s̃t)− L

)
∆t−τ +Nt

(
∆t −∆t−τ

)
.

Using the Lipschitz condition (3.4), we have that

E
[
∥
(
L(st)− L(s̃t)

)
∆t−τ∥2p2 | Ft−τ

]
≤ c0 · 2

1− τ
tmix

(
σLd∥∆t−τ∥2

)2p
.

For any τ ≥ 2ptmix log d, we have the bound(
E
[
∥
(
L(st)− L(s̃t)

)
∆t−τ∥2p2

])1/p ≤ p2σ2
Ld ·

(
E∥∆t∥2p2

)1/p
.
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By the moment bounds (3.2) on the stationary distribution, we have

E
[
∥
(
L(s̃t)− L

)
∆t−τ∥2p2 | Ft−τ

]
≤
(
2pσL

√
d∥∆t−τ∥2

)2p
.

For the last term, we use the Lipschitz condition 3.4 as well as the boundedness
condition 3.3 of metric space. In conjunction with the inequality (3.64), for τ ≥
2ptmix log(c0d) and stepsize η ≤ 1

48τ(σLd+γmax)
, we arrive at the bound(

E
[
∥Nt(∆t −∆t−τ )∥2p2

])1/p
≤ σ2

Ld
2 ·
(
E
[
∥∆t −∆t−τ∥2p2

])1/p
≤ cη2σ2

Ld
2τ 2
(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∥2p2

])1/p
+ cη2p2σ2

Lσ̄
2d3τ 2

≤ c
(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∥2p2

])1/p
+ cp2σ̄2d,

for a universal constant c > 0.
Collecting the bounds above and substituting into our initial bound (3.65), we find

that (
E
[
H3(t)

p
])1/p ≤ c

(
p2σ2

Ld+ γ2max

)(
E
[
∥∆t−τ∥2p2

])1/p
+ cp2σ̄2d,

as claimed.

3.6 Proof of Theorem 3.1

From the defining equations (3.3a) and (3.3b), we have the telescoping relation

θn−θn0

η(n−n0)
= 1

n−n0

n−1∑
t=n0

(
θt − Lt+1θt − bt+1

)
= (I − L)(θ̂n − θ̄) + 1

n−n0
Ψn0,n +

1
n−n0

Υn0,n

(3.66)

where Ψn0,n =
∑n−1

t=n0

(
Lt+1θt+bt+1−E

[
Lt+1θt+bt+1|Ft

])
and Υn0,n :=

∑n−1
t=n0

(
L(st)θt+

b(st)− Lθt − b
)
. Some algebra yields

θ̂n − θ̄ =
(I−L)−1

(
θn−θn0

)
η(n−n0)

− (I−L)−1Ψn0,n

n−n0
− (I−L)−1Υn0,n

n−n0
=: I1 + I2 + I3 (3.67)

From the triangle inequality, it suffices to bound the norms of I1, I2 and I3.
In the following, we prove a slightly stronger claim, which gives bounds on an

arbitrary quadratic loss functional. In particular, given a matrix Q ≻ 0, we seek bounds

on the Q-norm ∥θ̂n − θ̄∥Q :=

√
(θ̂n − θ̄)⊤Q(θ̂n − θ̄).

3.6.1 Bounding the three terms

We now bound each term in the decomposition (3.67) in turn.
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3.6.1.1 Bounding the term I1

The bound for term I1 follows directly from Proposition 3.1. In particular, given a
sample size n ≥ 8

η(1−κ) log
(
∥θ0 − θ̄∥2d/η

)
and burn-in period n0 = n/2, we have

E
[
∥θn − θ̄∥22

]
≤ cη

1− κ
σ̄2τd, and E

[
∥θn0 − θ̄∥22

]
≤ cη

1− κ
σ̄2τd.

Noting that |||(I − L)−1|||op ≤ (1− κ)−1, we conclude that

E
[
∥I1∥2Q

]
≤ λmax(Q)E

[
∥I1∥22

]
≤ λmax(Q) · cσ̄2τd

η(1−κ)3n2 . (3.68)

3.6.1.2 Bounding the term I2

For the term I2, note that the process (Ψt)t≥n0 is a martingale adapted to the natural
filtration. Its second moment equals the quadratic variation:

E
[
∥I2∥2Q

]
=

4

n2
E
[
[Q1/2(I − L)−1Ψ]n0,n

]
=

4

n2

n−1∑
t=n0

E
[
∥(I − L)−1

(
(Lt+1 −L(st))θt + bt+1 − b(st)

)
∥2Q
]
.

By the Cauchy–Schwarz inequality, we have the bound

E
[
∥I2∥2Q

]
≤ 8

n2

n−1∑
t=n0

E
[
∥(I − L)−1ζt+1∥2Q

]
+ 8

n2

n−1∑
t=n0

E
[
∥(I − L)−1Zt+1∆t∥2Q

]
≤ 16

n
Tr
(
Q(I − L)−1Σ∗

MG(I − L)−⊤)+ 16σ2
Lλmax(Q)d

(1−κ)2n2

n−1∑
t=n0

E
[
∥∆t∥22

]
≤ 16

n
Tr
(
(I − L)−1Σ∗

MG(I − L)−⊤)+ λmax(Q) ·
16σ2

Ld

(1−κ)2n · cηdτ
1−κ σ̄

2. (3.69)

3.6.1.3 Bounding the term I3

Applying the Cauchy-Schwarz inequality yields

E
[
∥(I − L)−1Υn0,n∥22

]
≤ 2E

[
∥
n−1∑
t=n0

(I − L)−1νt∥22
]
+ 2E

[
∥
n−1∑
t=n0

(I − L)−1Nt∆t∥22
]
. (3.70)

We make use of the two auxiliary lemmas in order to control the terms in the decompo-
sition (3.70).
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Lemma 3.7. Under the setup above, for a sample size n satisfying the bound n
logn

≥
2tmix log(c0d), there exists a universal constant c > 0 such that

E
[
∥
n−1∑
t=n0

(I − L)−1νt∥2Q
]
≤ (n− n0) · Tr

(
Q(I − L)−1Σ∗

Mkv(I − L)−⊤)
+ λmax(Q) ·

ct2mixσ̄
2d

(1− κ)2
log2(c0d).

See Section 3.6.2.1 for the proof of this claim.

Lemma 3.8. Under the above conditions, there exists a universal constant c > 0s such
that for any scalar τ ≥ 3tmix log

2(c0dn), stepsize η ∈
(
0, 1−κ

cτ(σ2
Ld+γ

2
max)

]
and burn-in time

n0 ≥ τ + 2
(1−κ)η log(nd), we have E

[
∥
∑n−1

t=n0
Nt∆t∥22

]
≤ cη2n2τ 2d2σ2

Lσ̄
2.

See Section 3.6.2.2 for the proof of this claim.

We now exploit the preceding two lemmas to upper bound the term I3. We have

E
[
∥I3∥2Q

]
(3.71)

≤ 2
(n−n0)2

E
[
∥
n−1∑
t=n0

(I − L)−1νt∥2Q
]
+ 2

(n−n0)2
E
[
∥
n−1∑
t=n0

(I − L)−1Nt∆t∥2Q
]

≤ 8Tr
(
Q(I−L)−1Σ∗

Mkv(I−L)−⊤
)

n
+ λmax(Q) · ct2mixσ̄

2d

(1−κ)2n2 log
2(c0d) + λmax(Q) ·

cη2τ2d2σ2
Lσ̄

2

(1−κ)2 .

(3.72)

Collecting the bounds (3.68), (3.69), and (3.72), we find that

E
[
∥θ̂n − θ̄∥2Q

]
≤ c

n
Tr
(
Q(I − L)−1(Σ∗

MG + Σ∗
Mkv)(I − L)−⊤)

+ λmax(Q) ·
[ cσ̄2tmixd

η(1− κ)3n2
+

16σ2
Ld

(1− κ)2n
· cηdtmix

1− κ
σ̄2
]

+ λmax(Q) ·
[ ct2mixσ̄

2d

(1− κ)2n2
log2(c0dn) +

cη2t2mixd
2σ2

Lσ̄
2

(1− κ)2
]
.

For a sample size n lower bounded as n
log2 n

≥ 2tmix(σ
2
Ld+γ

2
max)

(1−κ)2 log(c0d), we can take the

optimal stepsize η =
[
c
(
(1− κ)n2tmix(σ

2
Ld+ γ2max)

)]−1/3
. With this choice, we have

E
[
∥θ̂n − θ̄∥2Q

]
≤ c

n
Tr
(
Q(I − L)−1(Σ∗

MG + Σ∗
Mkv)(I − L)−⊤)

+ cλmax(Q) ·
( σ2

Ldtmix

(1− κ)2n

)4/3
log2 n. (3.73)

Setting Q := Id completes the proof.



3.6. PROOF OF THEOREM 3.1 97

3.6.2 Proof of auxiliary results

In this section, we prove the two auxiliary results used in the proof of Theorem 3.1:
namely, Lemma 3.7 and Lemma 3.8.

3.6.2.1 Proof of Lemma 3.7

Given an integer k ≥ 0, we define the k-step correlation under the stationary Markov
chain as

µk := Es∼ξ,s′∼Pkδs

[
⟨Q1/2(I − L)−1ν(s), Q1/2(I − L)−1ν(s′)⟩

]
.

Clearly, we have µ0 ≥ 0, and by Cauchy–Schwarz inequality, for any k ≥ 0, there is:

|µk| ≤
√

Es∼ξ∥(I − L)−1ν(s)∥2Q ·
√
Es′∼ξ∥(I − L)−1ν(s′)∥2Q = µ0.

The desired quantity can be written as Tr
(
Q1/2(I − L)−1Σ∗

Mkv(I − L)−⊤Q1/2
)
= µ0 +

2
∑+∞

k=1 µk. Expanding the squared norm yields

E
[
∥
n−1∑
t=n0

Q1/2(I − L)−1νt∥22
]
=

∑
n0≤t1,t2≤n−1

E
[
⟨Q1/2(I − L)−1ν(st1), Q

1/2(I − L)−1ν(st2)⟩
]

= (n− n0)µ0 + 2

n−n0−1∑
k=1

(n− n0 − k)µk.

We claim that the cross-correlations µk satisfy the bound

|µk| ≤ c0
σ̄2|||Q|||opd2

(1− κ)2
· 21−

k
2tmix . (3.74)

We return to prove this fact momentarily. Taking it as given, this inequality, in
conjunction with the bound |µk| ≤ µ0, can be employed to bound the tail sums needed
for the proof. We have∣∣∣∣∣

n−n0−1∑
k=1

kµk

∣∣∣∣∣ ≤
τ∑
k=1

τ |µk|+
∞∑

k=τ+1

k|µk| ≤ τ 2µ0 + 2c0
σ̄2|||Q|||opd2

(1− κ)2

∞∑
k=τ+1

k · 2−
k

2tmix .

With the choice τ := 2tmix log(c0d), simplifying yields∣∣∣∣∣
n−n0−1∑
k=1

kµk

∣∣∣∣∣ ≤ τ 2σ̄2d|||Q|||op
(1− κ)2

+ 2c0
σ̄2d2|||Q|||op
(1− κ)2

· 2tmix

(
τ + 1 + 2tmix

)
· 2−

τ+1
tmix

≤ 2τ 2σ̄2d

(1− κ)2
|||Q|||op,
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and for n satisfying n
logn

≥ 2 log(c0dtmix), we have:

∞∑
k=n−n0

|µk| ≤ 2c0
σ̄2d2|||Q|||op
(1− κ)2

∑∞
k= 1

2
n ·2

− k
2tmix ≤ 2c0

σ̄2d2|||Q|||op
(1−κ)2 · 2−

n
2tmix ≤ 2c0

σ̄2d
(1−κ)2n2 |||Q|||op.

Putting together these bounds yields

E
[
∥
n−1∑
t=n0

(I − L)−1νt∥2Q
]
= (n− n0)

(
µ0 + 2

∞∑
k=1

µk
)
− 2(n− n0)

∞∑
k=n−n0

µk − 2

n−n0−1∑
k=1

kµk

≤ (n− n0) · Tr
(
(I − L)−1Σ∗

Mkv(I − L)−1
)
+

3τ 2σ̄2d

(1− κ)2
|||Q|||op,

which completes the proof of the lemma.

Proof of equation (3.74) Let s0 ∼ ξ and (st)t≥0 be a stationary Markov chain starting
from s0. By the construction given in Section 3.5.2.1, there exists a random variable s̃k,

such that s̃k is independent of s0, s̃k ∼ ξ, and such that E
[
ρ(sk, s̃k) | s0

]
≤ c0 · 2

1− k
tmix .

We then obtain the bound

|µk| =
∣∣E[⟨Q1/2(I − L)−1ν(s0), Q

1/2(I − L)−1ν(sk)⟩
]∣∣

≤
∣∣E[⟨Q1/2(I − L)−1ν(s0), E

[
Q1/2(I − L)−1ν(s̃k) | s0

]
⟩
]∣∣

+
∣∣E[Q1/2⟨(I − L)−1ν(s0), E

[
Q1/2(I − L)−1

(
ν(sk)− ν(s̃k)

)
| s0
]
⟩
]∣∣

≤ 0 +
√

E
[
∥Q1/2(I − L)−1ν(s0)∥22

]
·
√

E
[
∥Q1/2(I − L)−1

(
ν(sk)− ν(s̃k)

)
∥22
]

≤ √
µ0 ·

1

1− κ

√
E
[
ρ(sk, s̃k)2 · (σL∥θ̄∥2 + σb)2d2

]
≤ c0

σ̄d

1− κ

√
µ0 · 2

1− k
2tmix . (3.75)

On the other hand, applying the moment condition (3.2) yields µ0 ≤ 1
(1−κ)2 ·

E
[
∥ν(s0)∥2Q

]
≤ σ̄2d

(1−κ)2 |||Q|||op. Substituting this bound into our previous inequality (3.75)
completes the proof.

3.6.2.2 Proof of Lemma 3.8

The proof of this claim relies on a bootstrap argument: we bound the summation of
interest by a more complicated summation that involves product of noise matrices.
Recursively applying the result for m = log d times yields the desired bound.
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Lemma 3.9. Given any integer m ≥ 0, deterministic sequence 0 = k0 < k1 < · · · <
km < n0, and scalar τ ≥ 3mtmixp log(c0dn), we have the second moment bound

E
[
∥
n−1∑
t=n0

( m∏
j=0

Nt−kj
)
∆t−km∥22

]
≤ 2n2d2mσ2m+2

L · cη

1− κ
dtmixσ̄

2 + 4η2τ
km+τ∑

km+1=km+1

E
[
∥

n∑
t=n0

{m+1∏
j=0

Nt−kj∆t−km+1

}
∥22
]

+ 4η2τ
km+τ∑

km+1=km+1

E
[
∥

n∑
t=n0

{ m∏
j=0

Nt−kj
(
νt−km+1 + ζt−km+1+1

)}
∥22
]
, (3.76a)

and in the special case m = 0, we have

E
[
∥
n−1∑
t=n0

Nt∆t∥22
]

≤ cσ2
Ld ·

(
nτ + n2η2σ2

Ldτ
2
) cη

1− κ
dtmixσ̄

2 + 4η2τ
τ∑

k1=1

E
[
∥

n∑
t=n0

NtNt−k1∆t−k1∥22
]

+ 4η2τ
τ∑

k1=1

E
[
∥

n∑
t=n0

Nt

(
νt−k1 + ζt−k1+1

)
∥22
]
. (3.76b)

See Appendix B.4.1 for the proof of this lemma.
The following lemma controls the last term of the bound (3.76a):

Lemma 3.10. Under the setup above, there exists a universal constant c > 0, such that
for any integer m > 0 and deterministic sequence 0 = k0 < k1 < · · · < km < n0, we
have:

E
[
∥
n−1∑
t=n0

(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)
∥22
]
≤ c
(
n2 + nd(km + tmix log(c0d))

)
σ2m
L d2mσ̄2.

See Appendix B.4.2 for the proof of this lemma.

Taking these lemmas as given, we now proceed with the proof of Lemma 3.8. Given
the scalar τ := 3tmix log

2(c0dn), we define

Hm := sup
0=k0<k1<···<km≤τ

E
[
∥
n−1∑
t=n0

( m∏
j=0

Nt−kj
)
∆t−km∥22

]
for m = 0, 1, 2, · · · , log d. By equation (3.76b) and Lemma 3.10, we have the bound

H0 ≤ cσ2
Ld ·

(
nτ + n2η2σ2

Ldτ
2
) cη

1− κ
dtmixσ̄

2 + 4η2τ 2H1

+ 4cη2τ 2
(
n2 + nd(τ + tmix log(c0d))

)
σ2
Ld

2σ̄2

≤ 4η2τ 2H1 + c′η2n2τ 2d2σ2
Lσ̄

2.
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In deriving the last inequality, we used the inequalities η ≤ 1−κ
σ2
Ldτ

and n ≥ 1
(1−κ)η .

By equation (3.76a) and Lemma 3.10, we have the recursive relation

Hm ≤ 4η2τ 2Hm+1 + cn2d2m+1τσ2m+2
L · η log

3 n

1− κ
σ̄2 + cη2τ 2n2σ2m+2

L d2m+2σ̄2

≤ 4η2τ 2Hm+1 + cn2σ2m
L d2mσ̄2 · log3 n.

Recursively applying these bounds yields

H0 ≤ (4η2τ 2)mHm + cη2n2τ 2d2σ2
Lσ̄

2 + c ·
m−1∑
q=1

(4η2τ 2)qn2σ2q
L d

2qσ̄2

≤ (4η2τ 2)mHm + 3cη2n2τ 2d2σ2
Lσ̄

2.

In order to control the term Hm, we employ the coarse bound

E
[
∥
n−1∑
t=n0

( m∏
j=0

Nt−kj
)
∆t−km∥22

]
≤ n

n−1∑
t=n0

E
[
∥
( m∏
j=0

Nt−kj
)
∆t−km∥22

]
≤ n2(σLd)

2m+2 · cηtmixdσ̄
2

1− κ
.

Taking the supremum and noting that η ≤ 1−κ
σ2
Ldτ

leads to Hm ≤ cn2σ2m
L d2m+2σ̄2.

Consequently, we have established that H0 ≤ 3cη2n2τ 2d2σ2
Lσ̄

2
[
1 +

(
2ητσLd

) 2m+2
2m
]
.

Taking m = ⌈log d⌉ and η ≤ 1
6τσLd

, we have (2ητσLd
2m+2
2m )2m < 1, and thus H0 ≤

6cη2n2τ 2d2σ2
Lσ̄

2 log3 n, which completes the proof of this lemma.

3.7 Discussion

In this chapter, we established sharp instance-optimal guarantees for linear stochastic
approximation (SA) procedures based on Markovian data. Under ergodicity along
with natural tail conditions, we proved non-asymptotic upper bounds on the squared
error of both the last iterate of a standard SA scheme, as well as the Polyak–Ruppert
averaged sequence. The results highlight two important aspects: an optimal sample
complexity of O(tmixd) for problems in dimension d with mixing time tmix; and an
instance-dependent error upper bound for the averaged estimator with carefully chosen
stepsize. Complementary to the upper bound, we also showed a non-asymptotic local
minimax lower bound over a small neighborhood of a given Markov chain instance,
certifying the statistical optimality of the proposed estimators. Our proof of the upper
bounds uses a bootstrapping argument of possibly independent interest.

Throughout the chapter, we have introduced novel techniques of analysis and mo-
tivated several open questions. In the following, we collect a few interesting future
directions:
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• Nonlinear stochastic approximation and controlled dynamics: This chap-
ter focuses on linear Z-equations where the underlying Markov chain does not
involve a control. Though this setting already covers many important examples (as
described in Section 3.2.2), its applicability to practical problems is still relatively
restricted. To set up a general framework, one could consider a controlled Markov
chain (st)t≥0 where the transition is given by st+1 ∼ P (·|st, θt). For any θ ∈ Rd,
let ξθ be the stationary distribution of the Markov chain P (·|·, θ) induced by the
control θ. Given a non-linear operator H : S × Rd → Rd, suppose that we wish
to solve the equation Es∼ξ(θ)

[
H(θ; s)

]
= 0; see [11] for a summary of classical

asymptotic theory for such problems. The analysis tools introduced in this chapter
provide an avenue by which one could obtain optimal sample complexity bounds
(especially in terms of dimension dependency) and instance-dependent guarantees
for such problems.

• Online statistical inference: By carefully choosing the burn-in period, one can
show that the Polyak–Ruppert estimator θ̂n is asymptotically normal and locally
minimax optimal. In particular, under suitable conditions, the following limiting
result holds true (see [61] for details):

√
n(θ̂n − θ̄)

d−→ N
(
(Id − L)−1(Σ∗

MG + Σ∗
Mkv)(Id − L)−⊤). (3.77)

In order to construct confidence intervals for the solution θ̄ with streaming data,
it suffices to estimate the asymptotic covariance in equation (3.77). In the i.i.d.
setting, online procedures have been developed to estimate such covariances, with
non-asymptotic error guarantees [39]. The problem becomes more subtle in the
Markovian setting, as the matrix Σ∗

Mkv involves auto-correlations of the noise
process. It is an important open direction to construct online estimators of this
matrix to enable inference in a streaming fashion.

• Model selection and optimal methods for policy evaluation The policy
evaluation problem involves manual choice of two important parameters: the
feature vector dimension d and the resolvent parameter λ in TD(λ). In Sec-
tion 3.4.1.3 and 3.4.2, we provide optimal instance-dependent guarantees on both
the approximation factor and the estimation error, for a fixed choice of d and λ.
An important direction of future research is to select such parameters adaptively
based on data, possibly under a streaming computational model. Ideally, we
want the risk of such estimator to attain the infimum of the right hand side of
equation (3.39b), over λ ∈ (0, 1) and d ∈ N+. A possible candidate approach
towards such a model selection problem is the celebrated Lepskii method for
adaptive bandwidth selection [118].

.
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Part II

Off-policy estimation of linear
functionals
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Chapter 4

A non-asymptotic theory for
semi-parametric efficiency

The problem of estimating a linear functional based on observational data is canonical in
both the causal inference and bandit literatures. We analyze a broad class of two-stage
procedures that first estimate the treatment effect function, and then use this quantity
to estimate the linear functional. We prove non-asymptotic upper bounds on the
mean-squared error of such procedures: these bounds reveal that in order to obtain non-
asymptotically optimal procedures, the error in estimating the treatment effect should
be minimized in a certain weighted L2-norm. We analyze a two-stage procedure based
on constrained regression in this weighted norm, and establish its instance-dependent
optimality in finite samples via matching non-asymptotic local minimax lower bounds.
These results show that the optimal non-asymptotic risk, in addition to depending on
the asymptotically efficient variance, depends on the weighted norm distance between
the true outcome function and its approximation by the richest function class supported
by the sample size.

4.1 Introduction

A central challenge in both the casual inference and bandit literatures is how to estimate
a linear functional associated with the treatment (or reward) function, along with
inferential issues associated with such estimators. Of particular interest in causal
inference are average treatment effects (ATE) and weighted variants thereof, whereas
with bandits and reinforcement learning, one is interested in various linear functionals
of the reward function (including elements of the value function for a given policy).
In many applications, the statistician has access to only observational data, and lacks
the ability to sample the treatment or the actions according to the desired probability
distribution. By now, there is a rich body of work on this problem (e.g., [178, 177, 41, 4,
215, 133]), including various types of estimators that are equipped with both asymptotic
and non-asymptotic guarantees. We overview this and other past work in the related
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work section to follow.
In this chapter, we study how to estimate an arbitrary linear functional based on

observational data. When formulated in the language of contextual bandits, each such
problem involves a state space X, an action space A, and an output space Y ⊆ R.
Given a base measure λ on the action space A—typically, the counting measure for
discrete action spaces, or Lebesgue measure for continuous action spaces—we equip each
x ∈ X with a probability density function π(x, ·) with respect to λ. This combination
defines a probability distribution over A, known either as the propensity score (in causal
inference) or the behavioral policy (in the bandit literature). The conditional mean of
any outcome Y ∈ Y is specified as E[Y | x, a] = µ∗(x, a), where the function µ∗ is known
as the treatment effect or the reward function, again in the causal inference and bandit
literatures, respectively.

Given some probability distribution ξ∗ over the state space X, suppose that we
observe n i.i.d. triples (Xi, Ai, Yi) in which Xi ∼ ξ∗, and

Ai | Xi ∼ π(Xi, ·), and E
[
Yi | Xi, Ai

]
= µ∗(Xi, Ai), for i = 1, 2, . . . , n. (4.1)

We also make use of the conditional variance function

σ2(x, a) := E
[(
Y − µ∗(X,A)

)2 | X = x,A = a
]
, (4.2)

which is assumed to exist for any x ∈ X and a ∈ A.
For a pre-specified weight function g : X× A → R, our goal is to estimate the linear

functional

τ ∗ ≡ τ(I∗) :=

∫
A
Eξ∗
[
g(X, a) · µ∗(X, a)

]
dλ(a), (4.3)

With this set-up, the pair I∗ := (ξ∗, µ∗) defines a particular problem instance.
Throughout the chapter, we focus on the case where both the propensity score π and
the weight function g are known to the statistician.

Among the interesting instantiations of this general framework are the following:

• Average treatment effect: The ATE problem corresponds to estimating the
linear functional

τ ∗ = Eξ∗
[
µ∗(X, 1)− µ∗(X, 0)

]
.

It is a special case of equation (4.3), obtained by taking the binary action space
A = {0, 1} with λ being the counting measure, along with the weight function
g(x, a) := 2a− 1.
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• Weighted average treatment effect: Again with binary actions, suppose that
we adopt the weight function g(x, a) := (2a− 1) · w(x), for some given function
w : X → R+. With the choice w(x) := π(x, 1), this corresponds to average
treatment effect on the treated (ATET).

• Off-policy evaluation for contextual bandits: For a general finite action
space A, a target policy is a mapping x 7→ πtar(x, ·), corresponding to a probability
distribution over the action space. If we take the weight function g(x, a) := πtar(x, a)
and interpret µ∗ as a reward function, then the linear functional (4.3) corresponds
to the value of the target policy πtar. Since the observed actions are sampled
according to π—which can be different than the target policy πtar—this problem is
known as off-policy evaluation in the bandit and reinforcement learning literature.

When the propensity score is known, it is a standard fact that one can estimate τ(I) at
a
√
n-rate via an importance-reweighted plug-in estimator. In particular, under mild

conditions, the inverse propensity weighting (IPW) estimator, given by

τ̂ IPWn :=
1

n

n∑
i=1

g(Xi, Ai)

π(Xi, Ai)
Yi, (4.4)

is
√
n-consistent, in the sense that τ̂ IPWn − τ ∗ = Op(1/

√
n).

However, the problem is more subtle than might appear at might first: the IPW
estimator τ̂ IPWn fails to be asymptotically efficient, meaning that its asymptotic variance
is larger than the optimal one. This deficiency arises even when the state space X and
action space A are both binary; for instance, see §3 in Hirano et al. [76]. Estimators
that are asymptotically efficient can be obtained by first estimating the treatment effect
µ∗, and then using this quantity to form an estimate of τ(I). Such a combination leads
to a semi-parametric method, in which µ∗ plays the role of a nuisance function. For
example, in application to the ATE problem, Chernozhukov et al. [41] showed that any
consistent estimator of µ∗ yields an asymptotically efficient estimate of τg(I); see §5.1
in their paper. In the sequel, so as to motivate the procedures analyzed in this chapter,
we discuss a broad range of semi-parametric methods that are asymptotically efficient
for estimating the linear functional τ(I).

While such semi-parametric procedures have attractive asymptotic guarantees, they
are necessarily applied in finite samples, in which context a number of questions remain
open:

• As noted above, we now have a wide array of estimators that are known to
be asymptotically efficient, and are thus “equivalent” from the asymptotic
perspective. It is not clear, however, which estimator(s) should be used when
working with a finite collection of samples, as one always does in practice. Can we
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develop theory that provides more refined guidance on the choice of estimators in
this regime?

• As opposed to a purely parametric estimator (such as the IPW estimate),
semi-parametric procedures involve estimating the treatment effect function µ∗.
Such non-parametric estimation requires sample sizes that scale non-trivially with
the problem dimension, and induce trade-offs between the estimation and approxi-
mation error. In what norm should we measure the approximation/estimation
trade-offs associated with estimating the treatment effect? Can we relate this
trade-off to non-asymptotic and instance-dependent lower bounds on the difficulty
of estimating the linear functional τ?

The main goal of this chapter is to give some precise answers to these questions.
On the lower bound side, we establish instance-dependent minimax lower bounds on
the difficulty of estimating τ . These lower bounds show an interesting elbow effect,
in that if the sample size is overly small relative to the complexity of a function class
associated with the treatment effect, then there is a penalty in addition to the classical
efficient variance. On the upper bound side, we propose a class of weighted constrained
least-square estimators that achieve optimal non-asymptotic risk, even in the high-order
terms. Both the upper and lower bounds are general, with more concrete consequences
for the specific instantiations introduced previously.

Related work: Let us provide a more detailed overview of related work in the areas
of semi-parametric estimation and more specifically, the literatures on the treatment
effect problem as well as related bandit problems.

In this chapter, we make use of the notion of local minimax lower bounds which,
in its asymptotic instantiation, dates back to seminal work of Le Cam [117] and
Hájek [72]. These information-based methods were extended to semiparametric settings
by Stein [196] and Levit [119, 120], among other authors. Under appropriate regularity
assumptions, the optimal efficiency is determined by the worst-case Fisher information
of regular parametric sub-models in the tangent space; see the monograph [17] for a
comprehensive review.

Early studies of treatment effect estimation were primarily empirical [6]. The
unconfoundedness assumption was first formalized by Rosenbaum and Rubin [182],
thereby leading to the problem setup described in Section 4.1. A series of seminal
papers by Robins and Rotnitzky [178, 177] made connections with the semi-parametric
literature; the first semi-parametric efficiency bound, using the tangent-based techniques
described in the monograph [17], was formally derived by Hahn [71].

There is now a rich body of work focused on constructing valid inference procedures
under various settings, achieving such semiparametric lower bounds. A range of meth-
ods have been studied, among them matching procedures [184, 1], inverse propensity
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weighting [71, 76, 79, 214], outcome regression [38, 78], and doubly robust methods [177,
41, 135, 62]. The two-stage procedure analyzed in the current chapter belongs to the
broad category of doubly robust methods.

In their classic paper, Robins and Ritov [176] showed that if no smoothness assump-
tions are imposed on the outcome model, then the asymptotic variance of the IPW
estimator cannot be beaten. This finding can be understood as a worst-case asymptotic
statement; in contrast, this chapter takes an instance-dependent perspective, so that
any additional structure can be leveraged to obtain superior procedures. Robins et
al. [179] derived optimal rates for treatment effect estimation under various smoothness
conditions for the outcome function and propensity score function. More recent work
has extended this general approach to analyze estimators for other variants of treatment
effect (e.g., [96, 4]). There are some connections between our proof techniques and the
analysis in this line of work, but our focus is on finite-sample and instance-dependent
results, as opposed to global minimax results.

Portions of our work apply to high-dimensional settings, of which sparse linear models
are one instantiation. For this class of problems, the recent papers [25, 26, 214] study
the relation between sample size, dimension and sparsity level for which

√
n-consistency

can be obtained. This body of work applies to the case of unknown propensity scores,
which is complementary to our studies with known behavioral policies. To be clear,
obtaining

√
n-consistency is always possible under our set-up via the IPW estimator;

thus, our focus is on the more refined question of non-asymptotic sample size needed to
obtain optimal instance-dependent bounds.

Our work is also related to the notion of second-order efficiency in classical asymp-
totics. Some past work [43, 43, 34] has studied some canonical semi-parametric problems,
including estimating the shift or period of one-dimensional regression functions, and
established second-order efficiency asymptotic upper and lower bounds in the exact
asymptotics framework. Our instance-dependent lower bounds do not lead to sharp
constant factors, but do hold in finite samples. We view it as an important direction for
future work to combine exact asymptotic theory with our finite-sample approach so as
to obtain second-order efficiency lower bounds with exact first-order asymptotics.

There is also an independent and parallel line of research on the equivalent problem
of off-policy evaluation (OPE) in bandits and reinforcement learning. For multi-arm
bandits, the paper [123] established the global minimax optimality of certain OPE
estimators given a sufficiently large sample size. Wang et al. [215] proposed the “switch”
estimator, which switches between importance sampling and regression estimators; this
type of procedure, with a particular switching rule, was later shown to be globally
minimax optimal for any sample size [133]. Despite desirable properties in a worst-case
sense, these estimators are known to be asymptotically inefficient, and the sub-optimality
is present even ignoring constant factors (see Section 3 of the paper [76] for some relevant
discussion). In the more general setting of reinforcement learning, various efficient off-
policy evaluation procedures have been proposed and studied [83, 225, 227, 90]. Other
researchers [232, 229, 7, 227] have studied procedures that are applicable to adaptively
collected data. It is an interesting open question to see how the perspective of this
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chapter can be extended to dynamic settings of this type.

Additional notation: Here we collect some notation used throughout the chapter.
Given a pair of functions h1, h2 : A → R such that |h1h2| ∈ L1(λ), we define the inner
product

⟨h1, h2⟩λ :=
∫
h1(a)h2(a) dλ(a)

4.2 Non-asymptotic and instance-dependent upper

bounds

We begin with a non-asymptotic analysis of a general class of two-stage estimators
of the functional τ(I). Our upper bounds involve a certain weighted L2-norm—see
equation (4.8a)—which, as shown by our lower bounds in the sequel, plays a fundamental
role.

4.2.1 Non-asymptotic risk bounds on two-stage procedures

We first provide some intuition for the class of two-stage estimators that we analyze,
before turning to a precise description.

4.2.1.1 Some elementary intuition

We consider two-stage estimators obtained from simple perturbations of the IPW estima-
tor (4.4). Given an auxiliary function f : X× A → R and the data set {(Xi, Ai, Yi)}ni=1,
consider the estimate

τ̂ fn =
1

n

n∑
i=1

{ g(Xi, Ai)

π(Xi, Ai)
Yi − f(Xi, Ai) + ⟨f(Xi, ·), π(Xi, ·)⟩λ

}
. (4.5)

By construction, for any choice of f ∈ L2(ξ∗ × π), the quantity τ̂ fn is an unbiased
estimate of τ , so that it is natural to choose f so as to minimize the variance var(τ̂ fn) of
the induced estimator. As shown in Appendix C.1.1, the minimum of this variational
problem is achieved by the function

f ∗(x, a) :=
g(x, a)µ∗(x, a)

π(x, a)
− ⟨g(x, ·), µ∗(x, ·)⟩λ, (4.6a)

where in performing the minimization, we enforced the constraints ⟨f(x, ·), π(x, ·)⟩λ = 0
for any x ∈ X. We note that this same function f ∗ also arises naturally via consideration
of Neyman orthogonality.
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The key property of the optimizing function f ∗ is that it induces an estimator τ̂ f
∗

n

with asymptotically optimal variance—viz.

v2semi := var
(
⟨g(X·), µ∗(X, ·)⟩λ

)
+

∫
A
Eξ∗
[g2(X, a)
π(X, a)

σ2(X, a)
]
dλ(a), (4.6b)

where σ2(x, a) := var(Y | x, a) is the conditional variance (4.2) of the outcome. See Ap-
pendix C.1.1 for details of this derivation.

4.2.1.2 A class of two-stage procedures

The preceding set-up naturally leads to a broad class of two-stage procedures, which
we define and analyze here. Since the treatment effect µ∗ is unknown, the optimal
function f ∗ from equation (4.6a) is also unknown to us. A natural approach, then, is
the two-stage one: (a) compute an estimate µ̂ using part of the data; and then (b)
substitute this estimate in equation (4.6a) so as to construct an approximation to the
ideal estimator τ̂ f

∗

n . A standard cross-fitting approach (e.g., [41]) allows one to make
full use of data while avoiding the self-correlation bias.

In more detail, we first split the data into two disjoint subsets B1 := (Xi, Ai, Yi)
n/2
i=1

and B2 := (Xi, Ai, Yi)
n
i=n/2+1. We then perform the following two steps:

Step I: For j ∈ {1, 2}, compute an estimate µ̂
(j)
n/2 of µ∗ using the data subset Bj, and

compute

f̂
(j)
n/2(x, a) :=

g(x, a)µ̂
(j)
n/2(x, a)

π(x, a)
− ⟨g(x, ·), µ̂(j)

n/2(x, ·)⟩λ. (4.7a)

Step II: Use the auxiliary functions f̂
(1)
n/2 and f̂

(2)
n/2 to construct the estimate

τ̂n :=
1

n

n/2∑
i=1

{ g(Xi, Ai)

π(Xi, Ai)
Yi − f̂

(2)
n/2(Xi, Ai)

}
+

1

n

n∑
i=n/2+1

{ g(Xi, Ai)

π(Xi, Ai)
Yi − f̂

(1)
n/2(Xi, Ai)

}
.

(4.7b)

As described, these two steps should be understood as defining a meta-procedure, since
the choice of auxiliary estimator µ̂

(j)
n/2 can be arbitrary.

The main result of this section is a non-asymptotic upper bound on the MSE of any
such two-stage estimator. It involves the weighted L2-norm ∥ · ∥ω given by

∥h∥2ω :=

∫
A
Eξ∗
[g2(X, a)
π(X, a)

h2(X, a)
]
dλ(a), (4.8a)

which plays a fundamental role in both upper and lower bounds for the problem. With
this notation, we have:
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Theorem 4.1. For any estimator µ̂n/2 of the treatment effect, the two-stage estima-
tor (4.7) has MSE bounded as

E
[
|τ̂n − τ ∗|2

]
≤ 1

n

{
v2semi + 2E

[
∥µ̂n/2 − µ∗∥2ω

]}
. (4.8b)

See Section 4.4.1 for the proof of this claim.

Note that the upper bound (4.8b) consists of two terms, both of which have nat-
ural intepretations. The first term v2semi corresponds to the asymptotically efficient
variance (4.6b); in terms of the weighted norm (4.8a), it has the equivalent expression

v2semi = var
(
⟨g(X·), µ∗(X, ·)⟩λ

)
+ ∥σ∥2ω. (4.8c)

The second term corresponds to twice the average estimation error E
[
∥µ̂n/2 − µ∗∥2ω

]
,

again measured in the weighted squared norm (4.8a). Whenever the treatment effect
can be estimated consistently—so that this second term is vanishing in n—we see that
the estimator τ̂n is asymptotically efficient, as is known from past work [41]. Of primary
interest to us is the guidance provided by the bound (4.8b) in the finite sample regime:
in particular, in order to minimize this upper bound, one should construct estimators µ̂
of the treatment effect that are optimal in the weighted norm (4.8a).

4.2.2 Some non-asymptotic analysis

With this general result in hand, we now propose some explicit two-stage procedures that
can be shown to be finite-sample optimal. We begin by introducing the classical idea of an
oracle inequality, and making note of its consequences when combined with Theorem 4.1.
We then analyze a class of non-parametric weighted least-squares estimators, and prove
that they satisfy an oracle inequality of the desired type.

4.2.2.1 Oracle inequalities and finite-sample bounds

At a high level, Theorem 4.1 reduces our problem to an instance of non-parametric
regression, albeit one involving the weighted norm ∥ · ∥ω from equation (4.8a). In non-
parametric regression, there are many methods known to satisfy an attractive “oracle”
property (e.g., see the books [206, 213]). In particular, suppose that we construct an
estimate µ̂ that takes values in some function class F . It is said to satisfy an oracle
inequality for estimating µ∗ in the norm ∥ · ∥ω if

E
[
∥µ̂− µ∗∥2ω

]
≤ c inf

µ∈F

{
∥µ− µ∗∥2ω + δ2n(µ;F)

}
(4.9)

for some universal constant c ≥ 1. Here the functional µ 7→ δ2n(µ;F) quantifies the ∥ · ∥2ω-
error associated with estimating some function µ ∈ F , whereas the quantity ∥µ− µ∗∥2ω
is the squared approximation error, since the true function µ∗ need not belong to the
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class. We note that the oracle inequality stated here is somewhat more refined than the
standard one, since we have allowed the estimation error to be instance-dependent (via
its dependence on the choice of µ).

Given an estimator µ̂ that satisfies such an oracle inequality, an immediate conse-
quence of Theorem 4.1 is that the associated two-stage estimator of τ ∗ ≡ τ(I) has MSE
upper bounded as

E
[
|τ̂n − τ ∗|2

]
≤ 1

n

(
v2semi + 2c inf

µ∈F

{
∥µ− µ∗∥2ω + δ2n(µ;F)

})
. (4.10)

This upper bound is explicit, and given some assumptions on the approximability of
the unknown µ∗, we can use to it choose the “complexity” of the function class F in a
data-dependent manner. See Section 4.2.4 for discussion and illustration of such choices
for different function classes.

4.2.2.2 Oracle inequalities for non-parametric weighted least-squares

Based on the preceding discussion, we now turn to the task of proposing a suitable
estimator of µ∗, and proving that it satisfies the requisite oracle inequality (4.9). Let
F be a given function class used to approximate the treatment effect µ∗. Given our
goal of establishing bounds in the weighted norm (4.8a), it is natural to analyze the
non-parametric weighted least-squares estimate

µ̂m := argmin
µ∈F

{ 1

m

m∑
i=1

g2(Xi, Ai)

π2(Xi, Ai)

{
µ(Xi, Ai)− Yi

}2}
, (4.11)

where {(Xi, Ai, Yi)}mi=1 constitute an observed collection of state-action-outcome triples.
Since the pairs (X,A) are drawn from the distribution ξ∗(x)π(x, a), our choice of

weights ensures that

E
[ g2(X,A)
π2(X,A)

{
µ(X,A)− Y

}2]
= ∥µ− µ∗∥2ω + E

[ g2(X,A)
π2(X,A)

σ2(X,A)
]
.

so that (up to a constant offset), we are minimizing an unbiased estimate of ∥µ− µ∗∥2ω.
In our analysis, we impose some natural conditions on the function class:

(CC) The function class F is a convex and compact subset of the Hilbert space L2
ω.

We also require some tail conditions on functions h that belong to the difference set

∂F := {f1 − f2 | f1, f2 ∈ F}.

There are various results in the non-parametric literature that rely on functions being
uniformly bounded, or satisfying other sub-Gaussian or sub-exponential tail conditions
(e.g., [213]). Here we instead leverage the less restrictive learning-without-concentration
framework of Mendelson [138], and require that the following small probability condition
holds:
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(SB) There exists a pair (α1, α2) of positive scalars such that

P
[ ∣∣∣ g(X,A)π(X,A)

h(X,A)
∣∣∣ ≥ α1∥h∥ω

]
≥ α2 for all h ∈ ∂F . (4.12)

If we introduce the shorthand h̃ = g
π
h, then condition (4.12) can be written equivalently

as P
[
|h̃(X,A)| ≥ α1∥h̃∥2

]
≥ α2, so that it is a standard small-ball condition on the

function h̃; see the papers [106, 138] for more background.

As with existing theory on non-parametric estimation, our risk bounds are determined
by the suprema of empirical processes, with “localization” so as to obtain optimal rates.
Given a function class H and a positive integerm, we define the Rademacher complexities

S2
m(H) := E

[
sup
f∈H

{ 1

m

m∑
i=1

εig
2(Xi, Ai)

π2(Xi, Ai)

(
Yi − µ∗(Xi, Ai)

)
f(Xi, Ai)

}2]
, and (4.13a)

Rm(H) := E
[
sup
f∈H

1

m

m∑
i=1

εig(Xi, Ai)

π(Xi, Ai)
f(Xi, Ai)

]
, (4.13b)

where (εi)
n
i=1 are i.i.d. Rademacher random variables independent of the data.

With this set-up, we are now ready to state some oracle inequalities satisfied by the
weighted least-squares estimator (4.11). As in our earlier statement (4.9), these bounds
are indexed by some µ ∈ F , and our risk bound involves the solutions

1
s
Sm
(
(F − µ) ∩ Bω(s)

)
≤ s , and (4.14a)

1
r
Rm

(
(F − µ) ∩ Bω(r)

)
≤ α1α2

32
. (4.14b)

Let sm(µ) and rm(µ), respectively, be the smallest non-negative solutions to these
inequalities; see Proposition C.2 in Appendix C.1.2 for their guaranteed existence.

Theorem 4.2. Under the convexity/compactness condition (CC) and small-ball con-
dition (SB), the two-stage estimate (4.7) based on the non-parametric least-squares
estimate (4.11) satisfies the oracle inequality

E
[(
τ̂n − τ ∗

)2] ≤ 1

n

{
v2semi + c inf

µ∈F

(
∥µ− µ∗∥2ω + δ2n(µ;F)

)}
(4.15a)

where the instance-dependent estimation error is given by

δ2n(µ;F) := s2n/2(µ) + r2n/2(µ) + e−c
′n diam2

ω(F ∪ {µ∗}), (4.15b)

for a pair (c, c′) of constants depending only on the small-ball parameters (α1, α2).
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See Section 4.4.2 for the proof of this theorem.

A few remarks are in order. The bound (4.15a) arises by combining the general
bound from Theorem 4.1 with an oracle inequality that we establish for the weighted
least-squares estimator (4.11). Compared to the efficient variance v2semi, this bound
includes three additional terms: (i) the critical radii sn/2(µ) and rn/2(µ) that solve
the fixed point equations; (ii) the approximation error under ∥ · ∥ω norm; and (iii) an
exponentially decaying term. For any fixed function class F , if we take limits as the
sample size n tends to infinity, we see that the asymptotic variance of τ̂n takes the form

v2semi + c inf
µ∈F

∥µ− µ∗∥2ω.

Consequently, the estimator may suffer from an efficiency loss depending on how well
the unknown treatment effect µ∗ can be approximated (in the weighted norm) by a
member of F . When the outcome noise Yi − µ∗(Xi, Ai) is of constant order, inspection
of equations (4.14a) and (4.14b) reveals that—as n tends to infinity—the critical radius
sn/2(µ) decays at a faster rate than rn/2(µ). Therefore, the non-asymptotic excess risk—
that is, any contribution to the MSE in addition to the efficient variance v2semi—primarily
depends on two quantities: (a) the approximation error associated with approximating
µ∗ using a given function class F , and (b) the (localized) metric entropy of this function
class. Interestingly, both of these quantities turn out to be information-theoretically
optimal in an instance-dependent sense. More precisely, in Section 4.3, we show that an
efficiency loss depending on precisely the same approximation error is unavoidable; we
further show that a sample size depending on a local notion of metric entropy is also
needed for such a bound to be valid.

4.2.3 A simulation study

We now describe a simulation study that helps to illustrate the elbow effect predicted
by our theory, along with the utility of using reweighted estimators of the treatment
effect. We can model a missing data problem by using A ∈ A := {0, 1} as a binary
indicator variable for “missingness”—that is, the outcome Y is observed if and only if
A = 1. Taking ξ as the uniform distribution on the state space X := [0, 1], we take the
weight function g(x, a) = a, so that our goal is to estimate the quantity Eξ[µ∗(X, 1)].
Within this subsection, we abuse notation slightly by using µ to denote the function
µ(·, 1), and similarly µ∗ for µ∗(·, 1).

We allow the treatment effect to range over the first-order Sobolev smoothness class

F :=
{
f : [0, 1] → R | f(0) = 0, ∥f∥2H1 :=

∫ 1

0

(
f ′(x)

)2
dx ≤ 1

}
,

corresponding (roughly) to functions that have a first-order derivative f ′ with bounded
L2-norm. The function class F is a particular type of reproducing kernel Hilbert space
(cf. Example 12.19 in the book [213]), so it is natural to consider various forms of kernel
ridge regression.
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Three possible estimators: So as to streamline notation, we let Sobs ⊆ {1, . . . ,m}
denote the subset of indices associated with observed outcomes—that is, ai = 1 if and
only if i ∈ Sobs. Our first estimator follows the protocol suggested by our theory: more
precisely, we estimate the function µ∗ using a reweighted form of kernel ridge regression
(KRR)

µ̂m,ω := arg min
µ∈L2([0,1])

{∑
i∈Sobs

g2(Xi, 1)

π2(Xi, 1)

{
Yi − µ(Xi)

}2
+ λm∥µ∥2H1

}
, (4.16a)

where λm ≥ 0 is a regularization parameter (to be chosen by cross-validation). Let τ̂n,ω
be the output of the two-stage procedure (4.7) when the reweighted KRR estimate is
used in the first stage.

So as to isolate the effect of reweighting, we also implement the standard (unweighted)
KRR estimate, given by

µ̂m,L2 := arg min
µ∈L2([0,1])

{ ∑
i∈Sobs

{
Yi − µ(Xi)

}2
+ λm∥µ∥2H1

}
. (4.16b)

Similarly, we let τ̂n,L2 denote the estimate obtained by using the unweighted KRR
estimate as a first-stage quantity.

Finally, so as to provide an (unbeatable) baseline for comparison, we compute the
oracle estimate

τ̂n,oracle :=
1

n

n∑
i=1

{(Yi − µ∗(Xi))Ai
π(Xi, 1)

+ µ∗(Xi)
}
. (4.16c)

Here the term “oracle” refers to the fact that it provides an answer given the unrealistic
assumption that the true treatment effect µ∗ is known. Thus, this estimate cannot be
computed based purely on observed quantities, but instead serves as a lower bound for
calibrating. For each of these three estimators, we compute its n-rescaled mean-squared
error

n · E
[
|τ̂n,⋄ − τ ∗|2

]
with ⋄ ∈

{
ω,L2, oracle

}
. (4.17)

Variance functions: Let us now describe an interesting family of variance functions σ2

and propensity scores π. We begin by observing that if the standard deviation function σ
takes values of the same order as the treatment effect µ∗, then the simple IPW estimator
has a variance of the same order as the asymptotic efficient limit v2semi. Thus, in order to
make the problem non-trivial and illustrate the advantage of semiparametric methods,
we consider variance functions of the following type: for a given propensity score π and
exponent γ ∈ [0, 1], define

σ2(x, 1) := σ2
0

[
π(x, 1)

]γ
, (4.18)
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where σ0 > 0 is a constant pre-factor. Since the optimal asymptotic variance vsemi

contains the term E
[σ2(X,1)
π(X,1)

]
, this family leads to a term of the form

σ2
0 E
[

1

{π(X, 1)}1−γ

]
,

showing that (in rough terms) the exponent γ controls the influence of small values of
the propensity score π(X, 1). At one extreme, for γ = 1, there is no dependence on
these small values, whereas the other extreme γ = 0, it will be maximally sensitive to
small values of the propensity score.

Propensity and treatment effect: We consider the following two choices of propen-
sity scores

π1(x, 1) :=
1
2
−
(
1
2
− πmin

)
sin(πx), and (4.19a)

π2(x, 1) :=
1
2
− {1

2
− πmin) sin(πx/2)}, (4.19b)

where πmin := 0.005. At the same time, we take the treatment effect to be the “tent”
function

µ∗(x) =
1

2
−
∣∣x− 1

2

∣∣ for x ∈ [0, 1]. (4.20)

Let us provide the rationale for these choices. Both propensity score functions take
values in the interval [πmin, 0.5], but achieve the minimal value πmin at different points
within this interval: x = 1/2 for π1 and at x = 1 for π2. Now observe that for the
missing data problem, the risk of the näıve IPW estimator (4.4) contains a term of

the form E[µ
∗(X)2

π(X,1)
]. Since our chosen treatment effect function (4.20) is maximized at

x = 1/2, this term is much larger when we set π = π1, which is minimized at x = 1/2.
Thus, the propensity score π1 serves as a “hard” example. On the other hand, the
treatment effect is minimized at x = 1, where π2 achieves its minimum, so that this
represents an “easy” example.
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(a) γ = 0, π = π1
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(b) γ = 0, π = π2
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(c) γ = 0.5, π = π1
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(d) γ = 0.5, π = π2
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(e) γ = 1, π = π1

250 500 750 1000 1250 1500 1750 2000
Sample size n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d 
M

SE

Normalized MSE for = 2 and = 1
Risk for the oracle n, oracle

Risk for the estimator n,

Risk for the estimator n, 2

(f) γ = 1, π = π2

Figure 4.1: Plots of the normalized MSE n · E[|τ̂n,⋄ − τ ∗|] for ⋄ ∈ {ω,L2, oracle} versus
the sample size. Each marker corresponds to a Monte Carlo estimate based on the
empirical average of 1000 independent runs. As indicated in the figure titles, panels
(a–f) show the normalized MSE of estimators for combinations of parameters: exponent
γ ∈ {0, 0.5, 1} in the top, middle and bottom rows respectively, and propensity scores
π1 and π2 in the left and right columns, respectively. For each run, we used 5-fold cross
validation to choose the value of regularization parameter λn ∈ [10−1, 102].
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Simulation set-up and results: For each choice of exponent γ ∈ {0, 0.5, 1} and
each choice of propensity score π ∈ {π1, π2}, we implemented the reweighted estimator
τ̂n,ω, the standard estimator τ̂n,L2 and the oracle estimator τ̂n,oracle. For each simulation,
we varied the sample size over the range n ∈ {2000, 4000, . . . , 18000, 20000}. For each
run, we use 5-fold cross validation to choose the value of regularization parameter
λn ∈ [10−1, 102]. For each estimator and choice of simulation parameters, we performed
a total of 1000 independent runs, and used them to form a Monte Carlo estimate of the
true MSE.

Figure 4.1 provides plots of the n-rescaled mean-squared error (4.17) versus the
sample size n for each of the three estimators in each of the six set-ups (three choices of
γ, crossed with two choices of propensity score). In order to interpret the results, first
note that consistent with the classical theory, the n-rescaled MSE of the oracle estimator
stays at a constant level for different sample sizes. (There are small fluctuations, to be
expected, since the quantity τ̂n,oracle itself is an empirical average over n samples.) Due
to the design of our problem instances, the näıve IPW estimator (4.4) has much larger
mean-squared error; in fact, it is so large that we do not include it in the plot, since
doing so would change the scaling of the vertical axis. On the other hand, both the
reweighted KRR two-stage estimate τ̂n,ω and the standard KRR two-stage estimate τ̂n,L2

exhibit the elbow effect suggested by our theory: when the sample size is relatively small,
the high-order terms in the risk dominate, yielding a large normalized MSE. However,
as the sample size increases, these high-order terms decay at a faster rate, so that the
renormalized MSE eventually converges to the asymptotically optimal limit (i.e., the risk
of the oracle estimator τ̂n,oracle). In all our simulation instances, the weighted estimator
τ̂n,ω, which uses a reweighted non-parametric least-squares estimate in the first stage,
outperforms the standard two-stage estimator τ̂n,L2 that does not reweight the objective.
Again, this behavior is to be expected from our theory: in our bounds, the excess MSE
due to errors in estimating the treatment effect is measured using the weighted norm.

4.2.4 Implications for particular models

We now return to our theoretical thread, and illustrate the consequences of our general
theory for some concrete classes of outcome models.

4.2.4.1 Standard linear functions

We begin with the simplest case, namely that of linear outcome functions. For each
j = 1, . . . , d, let ϕj : X × A → R be a basis function, and consider functions that are

linear in this representation—viz. fθ(x, a) =
∑d

j=1 θjϕj(x, a) for some parameter vector

θ ∈ Rd. For a radius1 R2 > 0, we define the function class

F :=
{
fθ | ∥θ∥2 ≤ R2

}
.

1We introduce this radius only to ensure compactness; in our final bound, the dependence on R2 is
exponentially decaying, so that it is of little consequence.
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Our result assumes the existence of the following moment matrices:

Σ := E
[
g2(X,A)

π2(X,A)
ϕ(X,A)ϕ(X,A)⊤

]
, and

Γσ := E
[
g4(X,A)

π4(X,A)
σ2(X,A)ϕ(X,A)ϕ(X,A)⊤

]
.

With this set-up, we have:

Corollary 4.1. Under the small-ball condition (SB), given a sample size satisfying the
lower bound n ≥ c0

{
d+ log(R2λmax(Σ))

}
, the estimate τ̂n satisfies the bound

E
[
|τ̂n − τ ∗|2

]
≤ 1

n

{
v2semi + c inf

µ∈F
∥µ− µ∗∥2ω

}
+

c

n2
trace

(
Σ−1Γσ

)
, (4.21)

where the constants (c0, c) depend only on the small-ball parameters (α1, α2).

See Appendix C.2.1 for the proof of this corollary.
A few remarks are in order. First, Corollary 4.1 is valid in the regime n ≳ d,

and the higher order term scales as O (d/n2) in the worst case. Consequently, the
optimal efficiency v2semi + infµ∈F ∥µ− µ∗∥2ω is achieved when the sample size n exceeds
the dimension d for linear models.2

It is worth noting, however, that in the well-specified case with µ∗ ∈ F , the high-
order term c

n2 trace(Σ
−1Γσ) in equation (4.21) does not necessarily correspond to the

optimal risk for estimating the function µ∗ under the weighted norm ∥ · ∥ω. Indeed, in
order to estimate the function µ∗ with the optimal semi-parametric efficiency under
a linear model, an estimator that reweights samples with the function 1

σ2(Xi,Ai)
is

the optimal choice, leading to a higher order term of the form c
n2 trace(Σ

−1Σ), where

Σ := E
[

1
σ2(X,A)

ϕ(X,A)ϕ(X,A)⊤
]
.3 In general, the question of achieving optimality with

respect to both the approximation error and high-order terms (under the ∥ · ∥ω-norm) is
currently open.

4.2.4.2 Sparse linear models

Now we turn to sparse linear models for the outcome function. Recall the basis function
set-up from Section 4.2.4.1, and the linear functions fθ =

∑d
j=1 θjϕj(x, a). Given a

radius R1 > 0, consider the class of linear functions induced by parameters with bounded
ℓ1-norm—viz.

F :=
{
fθ | ∥θ∥1 ≤ R1

}
.

2We note in passing that the constant pre-factor c in front of the term n−1 infµ∈F ∥µ− µ∗∥2ω can
be reduced to 1 using the arguments in Corollary 4.5.

3Note that

[
Σ̄ Σ
Σ Γσ

]
= cov

([ σ(X,A)−1ϕ(X,A)
g(X,A)
π(X,A)σ(X,A)ϕ(X,A)

])
⪰ 0. Taking the Schur complement we

obtain that Γσ ⪰ ΣΣ−1Σ, which implies that trace(Σ−1Γσ) ≥ trace(Σ−1Σ).
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Sparse linear models of this type arise in many applications, and have been the subject
of intensive study (e.g., see the books [75, 213] and references therein).

We assume that the basis functions and outcome noise Y − µ∗(X,A) satisfy the
moment bounds

E
[ ∣∣∣∣ g(X,A)π(X,A)

(
Y − µ∗(X,A)

)∣∣∣∣ℓ ] ≤ (σ̄
√
ℓ)ℓ, for any ℓ = 1, 2, . . ., and (4.22a)

max
j=1,...,d

E
[ ∣∣∣∣ g(X,A)π(X,A)

ϕj(X,A)

∣∣∣∣ℓ ] ≤ (σ
√
ℓ)ℓ, for any ℓ = 1, 2, . . .. (4.22b)

Under these conditions, we have the following guarantee:

Corollary 4.2. Under the small-ball condition (SB) and the moment
bounds (4.22), for any sparsity level k = 1, . . . , d and sample size n such that

n ≥ c0

{
σ2k log(d)
λmin(Σ)

+ log2(d) + log(R1 · λmax(Σ))
}
, we have

E
[
|τ̂n − τ ∗|2

]
≤ v2semi

n
+
c

n
inf

∥θ̄∥1=R1

∥θ̄∥0≤k

{
∥µ∗ − ⟨θ̄, ϕ(·, ·)⟩∥2ω +

σ̄2∥θ̄∥0 log(d)
n

· σ2

λmin(Σ)

}
,

where the constants (c0, c) depend only on the small ball parameters (α1, α2).

See Appendix C.2.2 for the proof of this corollary.
A few remarks are in order. First, the additional risk term compared to the

semiparametric efficient limit v2semi/n is similar to existing oracle inequalities for sparse
linear regression (e.g., §7.3 in the book [213]). Notably, it adapts to the sparsity level
of the approximating vector θ̄. The complexity of the auxiliary estimation task is
characterized by the sparsity level ∥θ̄∥0 of the target function, which appears in both the
high-order term of the risk bound and the sample size requirement. On the other hand,
note that the ∥ · ∥ω-norm projection of the function µ∗ to the set F may not be sparse.
Instead of depending on the (potentially large) local complexity of such projection, the
bound in Corollary 4.2 is adaptive to the trade-off between the sparsity level ∥θ̄∥0 and
the approximation error ∥µ∗ − ⟨θ̄, ϕ(·, ·)⟩∥ω.

4.2.4.3 Hölder smoothness classes

Let us now consider a non-parametric class of outcome functions. With state space
X = [0, 1]dx and action space A = [0, 1]da , define the total dimension p := dx+ da. Given
an integer order of smoothness k > 0, consider the class

Fk :=
{
µ : [0, 1]p → R | sup

(x,a)∈[0,1]p
|∂αµ(x, a)| ≤ 1 for any αNp satisfying ∥α∥1 ≤ k

}
.

Here for a multi-index α ∈ Np, the quantity ∂αf denotes the mixed partial derivative

∂αf(x, a) :=
( p∏
j=1

∂αj

∂x
αj

j

)
f(x, a).
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We impose the following assumptions on the likelihood ratio and random noise

E
[ ∣∣∣∣ g(X,A)π(X,A)

(
Y − µ∗(X,A)

)∣∣∣∣ℓ ] ≤ (σ̄
√
ℓ)ℓ and (4.23a)

E
[ ∣∣∣∣ g(X,A)π(X,A)

∣∣∣∣ℓ ] ≤ (σ
√
ℓ)ℓ, for any ℓ ∈ N+. (4.23b)

Additionally, we impose the L2 − L4 hypercontractivity condition√
E
[( g(X,A)

π(X,A)
f(X,A)

)4] ≤M2→4 E
[( g(X,A)

π(X,A)
f(X,A)

)2]
for any f ∈ Fk, (4.23c)

which is slightly stronger than the small-ball condition (SB).
Our result involves the sequences rn := cσ,p/k n

−k/p log n, and

sn := cσ,p/kσ̄ ·


n− k

2k+p if p < 2k

n−1/4
√
log n if p = 2k,

n− k
2p if p > 2k,

where the constant cσ,p/k depends on the tuple (σ, p/k,M2→4).
With this notation, when the outcome function is approximated by the class Fk, we

have the following guarantee for treatment effect estimation:

Corollary 4.3. Under the small-ball condition (SB) and the moment bounds (4.23)(a)–
(c), we have

E
[
|τ̂n − τ ∗|2

]
≤ 1

n

{
v2semi + c inf

µ∈Fk

∥µ∗ − µ∥2ω
}
+
c

n

{
s2n + r2n

}
, (4.24)

where the constant c depends only on the small-ball parameters (α1, α2).

See Appendix C.2.3 for the proof of this corollary.

It is worth making a few comments about this result. First, in the high-noise regime
where σ̄ ≳ 1, the term sn is dominant. This particular rate is optimal in the Donsker
regime (p < 2k), but is sub-optimal when p > 2k. However, this sub-optimality only
appears in high-order terms, and is of lower order for a sample size4 n such that log n≫
(p/k). Indeed, even if the least-square estimators is sub-optimal for nonparametric
estimation in non-Donsker classes, the reweighted least-square estimator (4.11) may still
be desirable, as it is able to approximate the projection of the function µ∗ onto the class
Fk, under the weighted norm ∥ · ∥ω.

4In fact, this lower bound cannot be avoided, as shown by our analysis in Section 4.3.2.1.
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4.2.4.4 Monotone functions

We now consider a nonparametric problem that involves shape constraints—namely, that
of monotonic functions. Let ϕ : X× A → [0, 1] be a one-dimensional feature mapping.
We consider the class of outcome functions that are monotonic with respect to this
feature—namely, the function class

F :=
{
(x, a) → f

(
ϕ(x, a)

)
| f : [0, 1] → [0, 1] is non-decreasing

}
.

We assume the outcome and likelihood ratio are uniformly bounded—specifically, that

|Yi| ≤ 1 and

∣∣∣∣ g(Xi, Ai)

π(Xi, Ai)

∣∣∣∣ ≤ b almost surely for i = 1, 2, . . . , n. (4.25)

Under these conditions, we have the following result:

Corollary 4.4. Under the small-ball condition (SB) and boundedness condition (4.25),
we have

E
[
|τ̂n − τ ∗|2

]
≤ 1

n

{
v2semi + c inf

µ∈F
∥µ− µ∗∥2ω

}
+
c

n

(b2
n

)2/3
, (4.26)

where the constants (c0, c) depend only on the small-ball parameters (α1, α2).

See Appendix C.2.4 for the proof of this corollary.
Note that compared to Corollaries 4.1– 4.3, Corollary 4.4 requires a stronger uniform

bound on the likelihood ratio g/π: it is referred to as the strict overlap condition in the
causal inference literature. In our analysis, this condition is required to make use of
existing bracketing-based localized entropy control. Corollary 4.4 holds for any sample
size n ≥ 1, and we establish a matching lower bound as a consequence of Proposition 4.1
to be stated in the sequel. It should be noted that the likelihood ratio bound b might
be large, in which case the high-order term in Corollary 4.4 could be dominant (at least
for small sample sizes). As with previous examples, optimal estimation of the scalar τ ∗

requires optimal estimation of the function µ∗ under ∥ · ∥ω-norm. How to do so optimally
for isotonic classes appears to be an open question.

4.2.5 Non-asymptotic normal approximation

Note that the oracle inequality in Theorem 4.2 involves an approximation factor depend-
ing on the small-ball condition in Assumption (SB), as well as other universal constants.
Even with sample size n tending to infinity, the result of Theorem 4.2 does not ensure
that the auxiliary estimator µ̂n/2 converges to a limiting point. This issue, while less
relevant for the mean-squared error bound in Theorem 4.2, assumes importance in the
inferential setting. In this case, we do need the auxiliary estimator to converge so as to
be able to characterize the approximation error.
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In order to address this issue, we first define the orthogonal projection within the
class

µ := argmin
µ∈F

∥µ− µ∗∥ω. (4.27)

Our analysis also involves an additional squared Rademacher complexity, one which
involves the difference µ∗ − µ. It is given by

D2
m(H) := E

[
sup
f∈H

{ 1

m

m∑
i=1

εi
g2(Xi, Ai)

π2(Xi, Ai)

[
µ∗(Xi, Ai)− µ(Xi, Ai)

]
f(Xi, Ai)

}2]
. (4.28a)

We let dm > 0 be the unique solution to the fixed point equation

1
d
Dm

(
(F − µ) ∩ Bω(d)

)
= d. (4.28b)

The existence and uniqueness is guaranteed by an argument analogous to that used in
the proof of Proposition C.2.

In order to derive a non-asymptotic CLT, we need a finite fourth moment

M4 := E
[{ g(X,A)
π(X,A)

(
Y − µ(X,A)

)
+ ⟨g(X, ·), µ(X, ·)⟩λ

}4]
.

The statement also involves the excess variance

v2(µ) := E
[
var
( g(X,A)
π(X,A)

·
{
µ∗(X,A)− µ(X,A)

}
| X
)]
.

With these definitions, we have the following guarantee:

Corollary 4.5. Under Assumptions (CC) and (SB), the two-stage estimator (4.7)
satisfies the Wasserstein distance bound

W1

(√
nτ̂n, Z

)
≤ 4

√
M4

[vsemi+v(µ)]

1√
n
+ c
{
rn/2 + sn/2 + dn

}
+ diamω(F ∪ {µ∗}) · e−c′n,

(4.29)

where Z ∼ N
(
0, v2semi + v2(µ)

)
, and the pair (c, c′) of constants depend only on the

small-ball parameters (α1, α2).

See Section 4.4.3 for the proof of this corollary.

A few remarks are in order. First, in the limit n → +∞, Corollary 4.5 guaran-
tees asymptotic normality of the estimate τ̂n, with asymptotic variance v2semi + v2(µ).
In contrast, the non-asymptotic result given here makes valid inference possible at a
finite-sample level, by taking into account the estimation error for auxiliary functions.



4.3. MINIMAX LOWER BOUNDS 123

Compared to the risk bound in Theorem 4.2, the right-hand-side of equation (4.29) con-

tains two terms: the first term
4M2

4

(vsemi+v(µ))
√
n
is the Berry–Esseen error, and an additional

critical radius dn/2 depending on the localized multiplier Rademacher complexity. When
the approximation error µ∗ − µ is of order o(1), the multiplier Rademacher complexity
Dn/2 becomes (asymptotically) smaller than the Rademacher complexity Sn/2, resulting
in a critical radius dn/2(µ) smaller than sn/2(µ). On the other hand, the efficiency loss
in Corollary 4.5 is the exact variance v2(µ) with unity pre-factor, which exhibits a
smaller efficiency loss compared to Theorem 4.2.

Excess variance compared to approximation error: It should be noted that the
excess variance term v2(µ) in Corollary 4.5 is smaller than the best approximation error
infµ∗∈F ∥µ− µ∗∥2ω. Indeed, the difference ∆ := ∥µ− µ∗∥2ω − v2(µ) can be written as

∆ = E
[( g(X,A)
π(X,A)

·
(
µ∗ − µ

)
(X,A)

)2]
− E

[
var
( g(X,A)
π(X,A)

·
(
µ∗ − µ

)
(X,A) | X

)]
= Eξ∗

[
⟨g(X, ·), (µ∗ − µ)(X, ·)⟩2λ

]
. (4.30)

When considering minimax risk over a local neighborhood around the function µ∗,
the difference term computed above is dominated by the supremum of the asymptotic
efficient variance v2semi evaluated within this neighborhood. Consequently, the upper
bound induced by Corollary 4.5 does not contradict the local minimax lower bound
in Theorem 4.3; and since the difference ∥µ − µ∗∥2ω − v2(µ) does not involve the
importance weight ratio g/π, this term is usually much smaller than the weighted norm
term ∥µ− µ∗∥2ω.

On the other hand, Corollary 4.5 and equation (4.30) provide guidance on the way
of achieving the optimal pointwise exact asymptotic variance. In particular, when we
choose a function class F such that ⟨h(x, ·), g(x, ·)⟩λ = 0 for any h ∈ F and x ∈ X, the
expression (4.30) becomes a constant independent of the choice of µ. For such a function
class, a function µ that minimizes the approximation error ∥µ− µ∗∥2ω will also minimize
the variance v2(µ). Such a class can be easily constructed from any function class H
by taking a function h ∈ H and replacing it with f(x, a) := h(x, a)− ⟨h(x, ·), g(x, ·)⟩λ.
And the optimal variance can still be written in the form of approximation error:

v(µ) = ∥µ− µ̃∗∥ω, where µ̃∗(x, a) := µ∗(x, a)− ⟨µ∗(x, ·), g(x, ·)⟩λ.

Indeed, the functional v can be seen as the induced norm of ∥ · ∥ω in the quotient space
generated by L2

ω modulo the subspace L2(ξ∗) that contains functions depending only on
the state but not action.

4.3 Minimax lower bounds

Thus far, we have derived upper bounds for particular estimators of the linear functional
τ(I), ones that involve the weighted norm (4.8a). In this section, we turn to the
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complementary question of deriving local minimax lower bounds for the problem.
Recall that any given problem instance is characterized by a quadruple of the form
(ξ∗, π, µ∗, g). In this section, we state some lower bounds that hold uniformly over all
estimators that are permitted to know both the policy π and the weight function g.
With (π, g) known, the instance is parameterized by the pair (ξ∗, µ∗), and we derive two
types of lower bounds:

• In Theorem 4.3, we study local minimax bounds in which the unknown probability
distribution ξ∗ and potential outcome function are allowed to range over suitably
defined neighborhoods of a given target pair (ξ∗, µ∗), respectively, but without
structural conditions on the function classes.

• In Proposition 4.1, we impose structural conditions on the function class F used
to model µ∗, and prove a lower bound that involves the complexity of F—in
particular, via its fat shattering dimension. This lower bound shows that if the
sample size is smaller than the function complexity, then any estimator has a
mean-squared error larger than the efficient variance.

4.3.1 Instance-dependent bounds under mis-specification

Given a problem instance I∗ = (ξ∗, µ∗) and an error function δ : X×A → R, we consider
the local neighborhoods

Nval

δ (µ
∗) :=

{
µ | |µ(x, a)− µ∗(x, a)| ≤ δ(x, a) for (x, a) ∈ X× A

}
, (4.31a)

Nprob(ξ∗) :=
{
ξ | DKL (ξ ∥ ξ∗) ≤ 1

n

}
. (4.31b)

Our goal is to lower bound the local minimax risk

Mn

(
Cδ(I∗)

)
:= inf

τ̂n
sup

I∈Cδ(I∗)

E |τ − τ̂n|2 where Cδ(I∗) :=
{
(ξ, µ) ∈ Nprob(ξ∗)

}
×Nval

δ (µ
∗).

(4.32)

Let us now specify the assumptions that underlie our lower bounds.

Assumptions for lower bound: First, we require some tail control on certain random

variables, stated in terms of the (2, 4)-moment-ratio ∥Y ∥2→4 :=

√
E[Y 4]

E[Y 2]
.

(MR) The random variables

Z(X,A) :=
δ(X,A)g(X,A)

π(X,A)
, and Z ′(X,A) := ⟨µ∗(X, ·), g(X, ·)⟩λ − τ(I∗)

(4.33)

have finite (2, 4)-moment ratios M2→4 := ∥Z∥2→4 and M ′
2→4 := ∥Z ′∥2→4.
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Second, we require the existence of a constant cmax > 0 such that the distribution ξ∗

satisfies the following compatibility condition.

(COM) For a finite state space X, we require ξ∗(x) ≤ cmax/|X| for all x ∈ X. If X is
infinite, we require that ξ∗ is non-atomic (i.e., ξ∗({x}) = 0 for all x ∈ X), and set
cmax = 1 for concreteness.

Finally, we impose a lower bound on the local neighborhood size:

(LN) The neighborhood function δ satisfies the lower bound

√
n δ(x, a) ≥ g(x, a)σ2(x, a)

π(x, a)∥σ∥ω
for any (x, a) ∈ X× A. (4.34)

In the following statement, we use c and c′ to denote universal constants.

Theorem 4.3. Under Assumptions (MR), (COM) and (LN), given a sample size
lower bounded as n ≥ c′max{(M ′

2→4)
2,M2

2→4}, the local minimax risk over the class
Cδ(I∗) is lower bounded as

Mn

(
Cδ(I∗)

)
≥ c

n

{
v2semi if n ≥ |X|

cmax

v2semi + ∥δ∥2ω otherwise.
(4.35)

We prove this claim in Section 4.5.1.

It is worth understanding the reasons for each of the assumptions required for this
lower bound to hold. The compatibility condition (COM) is needed to ensure that
no single state can take a significant proportion of probability mass under ξ∗. If this
condition is violated, then it could be possible to construct a low MSE estimate of
the outcome function via an empirical average, which would then break our lower
bound. The neighborhood condition (LN) ensures that the set of problems considered
by the adversary is large enough to be able to capture the term ∥σ∥2ω in the optimal
variance v2semi. Without this assumption, the “local-neighborhood” restriction on certain
states-action pairs could be more informative than the data itself.

Now let us understand some consequences of Theorem 4.3. First, it establishes
the information-theoretic optimality of Theorem 4.2 and Corollary 4.5 in an instance-
dependent sense. Consider a function class F that approximately contains the true
outcome function µ∗; more formally, consider the δ-approximate version of F given by

Fδ :=
{
µ̃ ∈ L2

ω | ∃µ ∈ F such that |µ(x, a)− µ̃(x, a)| ≤ δ(x, a) for all (x, a) ∈ X× A
}
,

and let us suppose that µ∗ ∈ Fδ. With this notation, Theorem 4.3 implies a lower
bound of the form

inf
τ̂n

sup
µ∈Fδ

ξ∈Nprob(ξ∗)

E
[
|τ − τ̂n|2

]
≥ c

n

{
sup
µ∈F

var
(
⟨g(X, ·), µ(X, ·)⟩λ + ∥σ∥2ω + ∥δ∥2ω

}
. (4.36)
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Thus, we see that the efficiency loss due to errors in estimating the outcome function
is unavoidable; moreover, this loss is measured in the weighted norm ∥ · ∥ω that also
appeared centrally in our upper bounds.

It is also worth noting that for a finite cardinality state space X, Theorem 4.3
exhibits a “phase transition” in the following sense: for a sample size n≫ |X|, the lower
bound is simply a non-asymptotic version of the semi-parametric efficiency lower bound
(up to the pre-factor5 c > 1). On the other hand, when n < |X|, then the term ∥δ∥2ω/n
starts to play a significant role. For an infinite state space X without atoms, the lower
bound (4.35) holds for any sample size n.

By taking µ∗ = 0 and δ(x, a) = 1 for all (x, a), equation (4.35) implies the global
minimax lower bound

inf
τ̂n

sup
∥µ∥∞≤1, ξ=ξ∗

E
[
|τ − τ̂n|2

]
≥ c

n

∫
A
Eξ∗
[g2(X, a)
π(X, a)

]
dλ(a), (4.37)

valid whenever n ≤ |X|.
The χ2-type term on the right-hand side of this bound is related to—but distinct

from—results from past work on off-policy evaluation in bandits [215, 133]. In this past
work, a term of this type arose due to noisiness of the observations. In contrast, our
lower bound (4.37) is valid even if the observed outcome is noiseless, and the additional
risk depending on the weighted norm arises instead from the impossibility of estimating
µ∗ itself.

4.3.2 Lower bounds for structured function classes

As we have remarked, in the special case of a finite state space (|X| <∞), Theorem 4.3
exhibits an interesting transition at the boundary n ≍ |X|. On the other hand, for an
infinite state space, the stronger lower bound in Theorem 4.3—namely, that involving
∥δ∥2ω—is always in force. It should be noted, however, that this strong lower bound
depends critically on the fact that Theorem 4.3 imposes no conditions on the function
class F of possible treatment effects, so that the error necessarily involves the local
perturbation δ.

In this section, we undertake a more refined investigation of this issue. In particular,
when some complexity control is imposed upon F , then the lower bounds again exhibit
a transition: any procedure pays a price only when the sample size is sufficiently small
relative to the complexity of F . In doing so, we assess the complexity of F using the
fat-shattering dimension, a scale-sensitive version of the VC dimension [95, 3].

(FS) A collection of data points (si)
N
i=1 is shattered at scale δ by a function class

H : X → R means that for any subset S ⊆ {1, . . . , N}, there exists a function
f ∈ H and a vector t ∈ RN such that

f(si) ≥ ti + δ for all i ∈ S, and f(si) ≤ ti − δ for all i /∈ S. (4.38)

5Using slightly more involved argument, this pre-factor can actually be made arbitrarily close to
unity.



4.3. MINIMAX LOWER BOUNDS 127

The fat-shattering dimension fatδ(H) is the largest integer N for which there exists
some sequence (si)

N
i=1 shattered by H at scale δ.

In order to illustrate a transition depending on the fat shattering dimension, we
consider the minimax risk

Mn(F) := inf
τ̂n

sup
µ∈F
ξ∈P(X)

E
[
|τ̂n − τ(ξ, µ)|2

]
,

specializing to the case of a finite action space A equipped with the counting measure λ.
We further assume that the class F is a product of classes associated to each action, i.e.,
F =

⊗
a∈A Fa, with Fa being a convex subset of real-valued functions on the state space

X. We also assume the existence6 of a sequence {sj}Dj=1 that, for each action a ∈ A, is
shattered by Fa at scale δa. Analogous to the moment ratio assumption (MR), we need
an additional assumption that

M2→4 := ∥ g(X,A)
π(X,A)

δA∥2→4 < +∞, for X ∼ U({xj}Dj=1) and A ∼ π(X, ·). (4.39)

Proposition 4.1. With the set-up given above, there are universal constants (c, c′) such
that for any sample size satisfying n ≥M2

2→4 and n ≤ c′D, we have the lower bound

Mn(F) ≥ c

n

{ 1

D

D∑
j=1

∑
a∈A

g2(sj, a)

π(sj, a)
δ2a

}
. (4.40)

See Section 4.5.2 for the proof of this claim.

A few remarks are in order. First, if we take ξ to be the uniform distribution over
the sequence {xj}Dj=1, the right-hand-side of the bound (4.40) is equal to c

n
∥δ∥2ω. Thus,

Proposition 4.1 is the analogue of our earlier lower bound (4.32) under the additional
restriction that the treatment effect function µ∗ belong the given function class F . This
lower bound holds as long as n ≤ c′D, so that the fat shattering dimension D as opposed
to the state space cardinality |X| (for a discrete state space) demarcates the transition
between different regimes.

An important take-away of Proposition 4.1 is that the sample size must exceed the
“complexity” of the function class F in order for the asymptotically efficient variance
v2semi to be dominant. More precisely, suppose that—for some scale δ > 0—the sample
size is smaller than the fat-shattering dimension fatδ(F). In this regime, the näıve
IPW estimator (4.4) is actually instance-optimal, even when there is no noise. Observe

that its risk contains a term of the form
∑

a∈A E
[g2(X,a)
π(X,a)

]
, which is not present in the

asymptotically efficient variance v2semi.
By contrast, suppose instead that the sample size exceeds the fat-shattering dimension.

In this regime, it is possible to obtain non-trivial estimates of the treatment effect, so

6Thus, per force, we have D ≤ fatδa(Fa) for each a ∈ A.
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that superior estimates of τ ∗ are possible. From the point of view of our theory, one can
use the fat shattering dimension fatδ(F) to control the δ-covering number [140], and
hence the Rademacher complexities that arise in our theory. Doing so leads to non-trivial
radii (sn/2, rn/2) in Theorem 4.2, and consequently, the asymptotically efficient variance
will become the dominant term. We illustrate this line of reasoning via various examples
in Section 4.2.4.

It should be noted that a sample size scaling with the fat-shattering dimension is
also known to be necessary and sufficient to learn the function µ∗ with o(1) error [95, 9,
3]. These classical results, in combination with our Proposition 4.1 and Theorem 4.2,
exhibit that necessary conditions on the sample size for consistent estimation of the
function µ∗ are equivalent to those requiring for achieving the asymptotically efficient
variance in estimating the scalar τ ∗.

Worst-case interpretation: It is worthwhile interpreting the bound (4.40) in a
worst-case setting. Consider a problem with binary action space A = {0, 1} and
g(x, a) = 2a− 1. Suppose that we use a given function class H (consisting of functions
from the state space X to the interval [0, 1]) as a model7 of both of the functions µ∗(·, 0)
and µ∗(·, 1). Given a scalar πmin ∈ (0, 1/2), let Π(πmin) be the set of propensity score
functions such that π(x, 1) ∈ [πmin, 1− πmin] for any x ∈ X. By taking the worst-case
over this class, we find that there are universal constants c, c′ > 0 such that

sup
π∈Π(πmin)

inf
τ̂n

sup
µ∗∈H

E
[
|τ̂n − τ |2

]
≥ c


1

n
+

δ2

nπmin

for n ≤ c′fatδ̄(F),

1

n
otherwise,

(4.41)

for any δ ∈ (0, 1). The validity of this lower bound does not depend on noise in the
outcome observations (and therefore applies to noiseless settings). Since πmin ∈ (0, 1),
any scalar δ ≫ √

πmin yields a non-trivial risk lower bound for sample sizes n below the
threshold fatδ̄(F).

Relaxing the convexity requirement: Proposition 4.1 is based on the assumption
each function class Fa is convex. This requirement can be relaxed if we require instead
that the sequence {xi}Di=1 be shattered with the inequalities (4.38) all holding with
equality—that is, for any subset S, there exists a function f ∈ H and a vector t ∈ RD

such that

f(si) = ti + δ for all i ∈ S, and f(si) = ti − δ for all i /∈ S. (4.42)

For example, any class of functions mapping X to the binary set {0, 1} satisfies this
condition with D = VC(F) and δ = 1/2. In the following, we provide additional
examples of non-convex function classes that satisfy equation (4.42).

7We write µ∗ ∈ H as a shorthand for this set-up.
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4.3.2.1 Examples of fat-shattering lower bounds

We discuss examples of the fat-shattering lower bound (4.40) in this section. We first
describe some implications for convex classes. We then treat some non-convex classes
using the strengthened shattering condition (4.42).

Example 4.1 (Smoothness class in high dimensions). We begin with a standard Hölder
class on the domain X = [−1, 1]p. For some index k = 1, 2, . . ., we consider functions
that are k-order smooth in the following sense

F (Lip)
k :=

{
f : [−1, 1]p → R | sup

x∈X
max

α∈Np, ∥α∥1≤k
|∂αf(x)| ≤ 1

}
. (4.43)

By inspection, the class F is convex. We can lower bound its fat shattering dimension
by combining classical results on L2-covering number of smooth functions [103] with the
relation between fat shattering dimension and covering number [140], we conclude that

fatt
(
F (Lip)
k

)
≥ 2p/k, for a sufficiently small scale t > 0. (4.44)

Consequently, for a function class with a constant order of smoothness (i.e., not scaling
with the dimension p), the sample size required to approach the asymptototically optimal
efficiency scales exponentially in p. ♣

Example 4.2 (Single index models). Next we consider a class of single index models
with domain X = [−1, 1]p. Since our main goal is to understand scaling issues, we may
assume that p is an integer power of 2 without loss of generality. Given a differentiable
function φ : R → R such that φ(0) = 0 and φ′(x) ≥ ℓφ > 0 for all x ∈ R, we consider
ridge functions of the form gβ(x) := φ

(
⟨β, x⟩

)
. For a radius R > 0, we define the class

FGLM

R :=
{
gβ | ∥β∥2 ≤ R

}
. (4.45)

Let us verify the strengthened shattering condition (4.42). Suppose that the vectors
{xj}pj=1 define the Hadamard basis in p dimensions, and so are orthonormal. Taking
tj = 0 for j = 1, . . . , p, given any binary vector ζ ∈ {−1, 1}p, we define the p-dimensional
vector

β(ζ) =
1

p

p∑
j=1

φ−1
(
ζjaR

)
xj,

Given the orthonormality of the vectors {xj}pj=1, we have

⟨β(ζ), xℓ⟩ = φ−1
(
ζℓaR

)
for each ℓ = 1, . . . , p,

and thus gβ(ζ)(sℓ) = ζℓaR for each ℓ = 1, 2, . . . , p. Consequently, the function class
FGLM

R satisfies the strengthened shattering condition (4.42) with fat shattering dimension
D = p and scale δ = aR. So when the outcome follows a generalized linear model, a
sample size must be at least of the order p in order to match the optimal asymptotic
efficiency. ♣



4.4. PROOFS OF UPPER BOUNDS 130

Example 4.3 (Sparse linear models). Once again take the domain [−1, 1]p, and consider
linear functions of the form fβ(x) = ⟨β, x⟩ for some parameter vector β ∈ Rp. Given
a positive integer s ∈ {1, . . . , p}, known as the sparsity index, we consider the set of
s-sparse linear functions

F sparse
s :=

{
fβ | |supp(β)| ≤ s, and ∥β∥∞ ≤ 1

}
. (4.46)

As noted previously, sparse linear models of this type have a wide range of applications
(e.g., see the book [75]).

In Appendix C.2.5, we prove that the strong shattering condition (4.42) holds with
fat shattering dimension D ≍ s log

(
ep
s

)
. Consequently, if the outcome functions µ∗

follow a sparse linear model, at least Ω
(
s log

(
ep
s

))
samples are needed to make use of

this fact. ♣

4.4 Proofs of upper bounds

In this section, we prove the upper bounds on the estimation error (Theorem 4.1
and Theorem 4.2), along with corollaries for specific models.

4.4.1 Proof of Theorem 4.1

The error can be decomposed into three terms as τ̂n − τ ∗ = T∗ − T1 − T2, where

T∗ :=
1

n

n∑
i=1

{
g(Xi,Ai)
π(Xi,Ai)

Yi − τ ∗ − f ∗(Xi, Ai)
}
,

T1 :=
1

n

n/2∑
i=1

(
f̂
(2)
n/2(Xi, Ai)− f ∗(Xi, Ai)

)
,

T2 :=
1

n

n∑
i=n/2+1

(
f̂
(1)
n/2(Xi, Ai)− f ∗(Xi, Ai)

)
.

Since the terms in the summand defining T∗ are i.i.d., a straightforward computation
yields

E[T 2
∗ ] =

1

n
E
[(

g(Xi,Ai)
π(Xi,Ai)

Yi − τ ∗ − f ∗(Xi, Ai)
)2]

=
v2semi

n
,

corresponding to the optimal asymptotic variance. For the cross term E[T1T2], applying
the Cauchy-Schwarz inequality yields

|E[T1T2]| ≤
√

E[T 2
1 ] ·
√

E[T 2
2 ] ≤ 1

2n
E
[
∥µ̂n/2 − µ∗∥2ω

]
.

Consequently, in order to complete the proof, it suffices to show that

E[T 2
1 ] = E[T 2

2 ] =
1
2n
E
[
∥µ̂n/2 − µ∗∥2ω

]
, and (4.47a)

E[T1T∗] = E[T2T∗] = 0. (4.47b)
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Proof of equation (4.47a): We begin by observing that E
[
T 2
1 | B2

]
= 1

2n
∥f̂ (2)

n/2−f ∗∥2ξ×π.
Now recall equations (4.6a) and (4.7a) that define f ∗ and f̂

(2)
n/2 respectively. From these

definitions, we have

∥f̂ (2)
n/2 − f ∗∥2ξ×π = EX∼ξ

[
varA∼π(X,·)

( g(X,A)
π(X,A)

(
µ̂
(2)
n/2(X,A)− µ∗(X,A)

)
| X
)
| B2

]
≤ E(X,A)∼ξ×π

[ g2(X,A)
π2(X,A)

(
µ̂
(2)
n/2(X,A)− µ∗(X,A)

)2 | B2

]
= ∥µ̂(2)

n/2 − µ∗∥2ω.

Putting together the pieces yields E[T 2
1 ] ≤ 1

2n
E[∥µ̂(2)

n/2 − µ∗∥2ω] as claimed. A similar

argument yields the same bound for E[T 2
2 ].

Proof of equation (4.47b): We first decompose the term T∗ into two parts:

T∗,j :=
1

n

nj/2∑
i=n(j−1)/2+1

{ g(Xi, Ai)

π(Xi, Ai)
Yi − τ ∗ − f ∗(Xi, Ai)

}
, for j ∈ {1, 2}.

Since for any x ∈ X, the functions f ∗(x, ·) and f̂
(2)
n/2(x, ·) are both zero-mean under

π(x, ·), we have the following identity.

E
[
T∗,2T1 | B2

]
=

1

n

n/2∑
i=1

E
[
T∗,2 · E

[
f̂
(2)
n/2(Xi, Ai)− f ∗(Xi, Ai) | Xi

]
| B2

]
= 0.

Similarly, we have E
[
T∗,1T2

]
= 0. It remains to study the terms E

[
T∗,jTj

]
for j ∈ {1, 2}.

We start with the following expansion:

T∗,1 · T1 =
1

n2

n/2∑
i=1

{ g(Xi, Ai)

π(Xi, Ai)
Yi − τ ∗ − f ∗(Xi, Ai)

}
·
(
f̂
(2)
n/2(Xi, Ai)− f ∗(Xi, Ai)

)
+

1

n2

∑
1≤i ̸=ℓ≤n/2

{ g(Xi,Ai)
π(Xi,Ai)

Yi − τ ∗ − f ∗(Xi, Ai)
}
·
(
f̂
(2)
n/2(Xℓ, Aℓ)− f ∗(Xℓ, Aℓ)

)
.

For i ̸= ℓ, by the unbiasedness of T∗, we note that:

E
[{ g(Xi, Ai)

π(Xi, Ai)
Yi − τ ∗ − f ∗(Xi, Ai)

}
·
(
f̂
(2)
n/2(Xℓ, Aℓ)− f ∗(Xℓ, Aℓ)

)
| B2, Xℓ

]
= 0.

So we have that:

E
[
T∗,1T1

]
= 1

2n
E
[{ g(X,A)
π(X,A)

µ∗(X,A)− τ ∗ − f ∗(X,A)
}
·
(
f̂
(2)
n/2(X,A)− f ∗(X,A)

)]
= 1

2n
E
[(

⟨g(X, ·), µ∗(X, ·)⟩ − τ ∗
)
·
(
f̂
(2)
n/2(X,A)− f ∗(X,A)

)]
= 1

2n
E
[(

⟨g(X, ·), µ∗(X, ·)⟩ − τ ∗
)
· E
[
f̂
(2)
n/2(X,A)− f ∗(X,A) | X,B2

]]
= 0.
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4.4.2 Proof of Theorem 4.2

Based on Theorem 4.1 and the discussion thereafter, it suffices to prove an oracle
inequality on the squared error E

[
∥µ̂n − µ∗∥2ω

]
. So as to ease the notation, for any pair

of functions f, g : X× A → R, we define the empirical inner product

⟨f, g⟩m :=
1

m

m∑
i=1

g2(Xi, Ai)

π2(Xi, Ai)
f(Xi, Ai)g(Xi, Ai),

and the induced norm ∥f∥m :=
√
⟨f, f⟩m.

With this notation, observe that our weighted least-squares estimator is based on

minimizing the objective ∥Y − µ∥2m = 1
m

∑m
i=1

g2(Xi,Ai)
π2(Xi,Ai)

(
Yi − µ(Xi, Ai)

)2
, where we have

slightly overloaded our notation on Y— viewing it as a function such that Y (Xi, Ai) = Yi
for each i.

By the convexity of Ω and the optimality condition that defines µ̂m, for any function
µ ∈ F and scalar β ∈ (0, 1), we have ∥Y − µ∥2m ≤ ∥Yi −

(
tµ + (1 − t)µ̂m

)
∥2m. Taking

the limit t→ 0+ yields the basic inequality

∥∆̂m∥2m ≤ ⟨µ∗ − Y, ∆̂m⟩m + ⟨∆̂m, ∆̃⟩m, (4.48)

where define the estimation error ∆̂m := µ̂m−µ, and the approximation error ∆̃ := µ∗−µ.
By applying the Cauchy–Schwarz inequality to the last term in equation (4.48), we find
that

⟨∆̂m, ∆̃⟩m ≤ ∥∆̂m∥m · ∥∆̃∥m ≤ 1

2
∥∆̂m∥2m +

1

2
∥∆̃∥2m.

Combining with inequality (4.48) yields the bound

∥∆̂m∥2m ≤ 2

m

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
∆̂m(Xi, Ai) + ∥∆̃∥2m, (4.49)

where Wi := µ∗(Xi, Ai)− Yi is the outcome noise associated with observation i.
The remainder of our analysis involves controlling different terms in the bound (4.49).

There are two key ingredients in the argument:

• First, we need to relate the empirical L2-norm ∥·∥m with its population counterpart
∥ · ∥ω. Lemma 4.1 stated below provides this control.

• Second, using the Rademacher complexity Sm from equation (4.13a), we upper
bound the weighted empirical average term associated with the outcome noise
Wi = µ∗(Xi, Ai) − Yi on the right-hand-side of equation (4.49). This bound is
given in Lemma 4.2.
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Define the event

Eω :=
{
∥f∥2m ≥ α2α

2
1

16
∥f∥2ω for all f ∈ F∗ \ Bω(rm)

}
. (4.50)

The following result provides tail control on the complement of this event.

Lemma 4.1. There exists a universal constant c′ > 0 such that

P(E c
ω) ≤ exp

(
− α2

2

c′
m
)
. (4.51)

See Section 4.4.2.1 for the proof.

For any (non-random) scalar r > 0, we also define the event

E (r) :=
{
∥∆̂m∥ω ≥ r

}
.

On the event Eω ∩ E (rm), our original bound (4.49) implies that

∥∆̂m∥2ω ≤ 32

α2α2
1m

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
∆̂m(Xi, Ai) +

16

α2α2
1

∥∆̃∥2m. (4.52)

In order to bound the right-hand-side of equation (4.52), we need a second lemma
that controls the empirical process in terms of the critical radius sm defined by the fixed
point relation (4.14a).

Lemma 4.2. We have

E
[
1E (sm) ·

2

m

m∑
i=1

Wi
g2(Xi,Ai)
π2(Xi,Ai)

∆̂m(Xi, Ai)
]
≤ sm

√
E
[
∥∆̂m∥2ω

]
. (4.53)

See Section 4.4.2.2 for the proof.

With these two auxiliary lemmas in hand, we can now complete the proof of the
theorem itself. In order to exploit the basic inequality (4.52), we begin by decomposing

the MSE as E
[
∥∆̂m∥2ω

]
≤
∑3

j=1 Tj, where

T1 := E
[
∥∆̂m∥2ω1Eω∩E (rm)∩E (sm)

]
,

T2 := E
[
∥∆̂m∥2ω1[E (rm)∩E (sm)]c

]
, and T3 := E

[
∥∆̂m∥2ω1E c

ω

]
.

We analyze each of these terms in turn.
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Analysis of T1: Combining the bound (4.52) with Lemma 4.2 yields

T1 ≤ 32
α2α2

1m
E
[
1E (rm) ·

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
∆̂m(Xi, Ai)

]
+ 16

α2α2
1
E
[
∥∆̃∥2m

]
≤ 32

α2α2
1
sm

√
E
[
∥∆̂m∥2ω

]
+ 16

α2α2
1
E
[
∥∆̃∥2m

]
= 32

α2α2
1
sm

√
E
[
∥∆̂m∥2ω

]
+ 16

α2α2
1
∥∆̃∥2ω, (4.54a)

where the final equality follows since E
[
∥∆̃∥2m

]
= ∥∆̃∥2ω, using the definition of the

empirical L2-norm, and the fact that the approximation error ∆̃ is a deterministic
function.

Bounding T2: On the event [E (rm) ∩ E (sm)]
c = E c(rm) ∪ E c(sm), we are guaranteed

to have ∥∆̂m∥2ω ≤ s2m + r2m, and hence

T2 ≤ s2m + r2m. (4.54b)

Analysis of T3: Since the function class F is bounded, we have

T3 ≤ diam2
ω(F ∪ {µ∗}) · P

(
E c
ω

)
≤ diam2

ω(F ∪ {µ∗}) · e−cα2
2m (4.54c)

for a universal constant c > 0.

Finally, substituting the bounds (4.54a), (4.54b) and (4.54c) into our previous

inequality E
[
∥∆̂m∥2ω

]
≤
∑3

j=1 Tj yields

E
[
∥∆̂2

m∥ω
]
≤ 32sm

α2α2
1

√
E[∥∆̂m∥2ω] + 16

α2α2
1
∥∆̃∥2ω + (s2m + r2m) + diam2

ω(F ∪ {µ∗}) · e−cα2
2m.

Note that this is a self-bounding relation for the quantity E
[
∥∆̂2

m∥ω
]
. With the choice

m = n/2, it implies the the MSE bound

E
[
∥µ̂n/2 − µ∗∥2ω

]
≤ 2E

[
∥µ̂n/2 − µ∥2ω

]
+ 2E

[
∥∆̂n/2∥2ω

]
≤
(
2 + 2c′

α1α2
2

)
∥∆̃∥2ω + c′

α2
1α

4
2
s2n/2 +

c′

α1α2
2
r2n/2 + diam2

ω(F ∪ {µ∗}) · e−cα2
2n/2,

for a pair (c, c′) of positive universal constants. Combining with Theorem 4.1 and taking
the infimum over µ ∈ F completes the proof.

4.4.2.1 Proof of Lemma 4.1

The following lemma provides a lower bound on the empirical norm, valid uniformly
over a given function class H ⊆

{
h/∥h∥ω | h ∈ F∗\{0}

}
.
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Lemma 4.3. For a failure probability ε ∈ (0, 1), we have

inf
h∈H

∥h∥2m ≥ α2α
2
1

4
− 4α1Rm(H)− cα2

1 ·
{√

log(1/ε)
m

+ log(1/ε)
m

}
(4.55)

with probability at least 1− ε.

See Appendix C.1.3 for the proof of this lemma.

Taking it as given for now, we proceed with the proof of Lemma 4.1. For any
deterministic radius r > 0, we define the set

Hr :=
{
h/∥h∥ω | h ∈ F∗, and ∥h∥ω ≥ r

}
.

By construction, the sequence {Hr}r>0 consists of nested sets—that is, Hr ⊆ Hs for
r > s—and all are contained within the set

{
h/∥h∥ω | h ∈ F\{0}

}
. By convexity of the

class F , for any h ∈ F such that ∥h∥ω ≥ r, we have r h/∥h∥ω ∈ F ∩B(r). Consequently,
we can bound the Rademacher complexity as

Rm(Hr) = E
[
sup
h∈Hr

m∑
i=1

εi
g(Xi, Ai)h(Xi, Ai)

π(Xi, Ai)

]
≤ 1

r
E
[

sup
h∈F∗∩Bω(r)

m∑
i=1

εi
g(Xi, Ai)h(Xi, Ai)

π(Xi, Ai)

]
=

1

r
Rm(F∗ ∩ Bω(r)).

By combining this inequality with Lemma 4.3, we find that

inf
f∈F\Bω(r)

∥f∥2m
∥f∥2ω

≥ α2α
2
1

4
− 4α1

r
Rm

(
F∗ ∩ Bω(r)

)
− cα2

1 ·
{√ log(1/ε)

m
+

log(1/ε)

m

}
(4.56)

with probability at least 1 − ε. This inequality is valid for any deterministic radius
r > 0.

By the definition (4.14b) of the critical radius rm, inequality (4.14b) holds for any
r > rm. We now set r = rm in equation (4.56). Doing so allows us to conclude that
given a sample size satisfying m ≥ 1024c2

α2
2

log(1/ε), we have

4α1

rm
Rm

(
F∗ ∩ Bω(rm)

)
≤ α2α

2
1

16
, and cα2

1 ·
{√ log(1/ε)

m
+

log(1/ε)

m

}
≤ α2α

2
1

16
.

Combining with equation (4.56) completes the proof of Lemma 4.1.

4.4.2.2 Proof of Lemma 4.2

Recall our notation Wi := µ∗(Xi, Ai) − Yi for the outcome noise. Since the set Ω is
convex, on the event E (sm), we have

1

∥∆̂m∥ω

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
∆̂m(Xi, Ai) ≤ 1

sm
sup

h∈F∗∩Bω(sm)

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
h(Xi, Ai).

(4.57)



4.4. PROOFS OF UPPER BOUNDS 136

Define the empirical process supremum

Zm(sm) := sup
h∈F∗∩Bω(sm)

1

m

m∑
i=1

Wi
g2(Xi, Ai)

π2(Xi, Ai)
h(Xi, Ai).

Since the all-zeros function 0 is an element of F∗ ∩ Bω(sm), we have Zm(sm) ≥ 0.
Equation (4.57) implies that

E
[
1E (sm) · 2

m

m∑
i=1

g2(Xi,Ai)
π2(Xi,Ai)

(
µ∗(Xi, Ai)− Yi

)
∆̂m(Xi, Ai)

]
≤ E

[∥∆̂m∥ω
sm

Zm(sm)
]
≤
√
E
[
∥∆̂m∥2ω

]
·
√
s−2
m E

[
Z2
m(sm)

]
, (4.58)

where the last step follows by applying the Cauchy–Schwarz inequality.
Define the symmetrized random variable

Z ′
m(sm) := sup

h∈F∗∩Bω(sm)

1

m

m∑
i=1

εi
g2(Xi, Ai)

π2(Xi, Ai)

(
µ∗(Xi, Ai)− Yi

)
h(Xi, Ai),

where {εi}mi=1 is an i.i.d. sequence of Rademacher variables, independent of the data. By
a standard symmetrization argument (e.g., §2.4.1 in the book [213]), there are universal
constants (c, c′) such that

P
[
Zm(sm) > t

]
≤ c′P

[
Z ′
m(sm) > ct

]
, for any t > 0.

Integrating over t yields the bound

E[Z2
m(sm)] ≤ c2c′E[Z ′2

m(sm)] = c2c′S2
m(sm)

(i)
= c2 c′s2m,

where equality (i) follows from the definition of sm. Substituting this bound back into
equation (4.58) completes the proof of Lemma 4.2.

4.4.3 Proof of Corollary 4.5

Define the function f(x, a) := g(x,a)
π(x,a)

µ(x, a)− ⟨g(x, ·), µ(x, ·)⟩λ, which would be optimal
if µ were the true treatment function. It induces the estimate

τ̂n,f̄ =
1

n

n∑
i=1

{ g(Xi, Ai)

π(Xi, Ai)

(
Yi − µ(Xi, Ai)

)
+ ⟨g(Xi, ·), µ(Xi, ·)⟩λ

}
,

which has (n-rescaled) variance n · E
[ ∣∣τ̂n,f̄ − τ ∗

∣∣2 ] = v2semi + v2(µ), where v2semi is the

efficient variance, and v2(µ) := var
(
g(X,A)
π(X,A)

·
(
µ∗ − µ

)
(X,A)

)
. Let us now compare
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two-stage estimator τ̂n with this idealized estimator. We have

E[|τ̂n,f − τ̂n|2] ≤
2

n2
E
[∣∣ n/2∑

i=1

(f − f̂
(2)
n/2)(Xi, Ai)

∣∣2]+ 2

n
E
[∣∣ n∑

i=n/2+1

(f − f̂
(1)
n/2)(Xi, Ai)

∣∣2]
≤ 4

n
E
[
∥µ̂n/2 − µ∥2ω

]
.

Thus, we are guaranteed the Wasserstein bound

W1

(√
nτ̂n,

√
nτ̂n,f̄

)
≤ W2

(√
nτ̂n,

√
nτ̂n,f̄

)
≤ 2
√
E
[
∥µ̂n/2 − µ∥2ω

]
.

Consequently, by the triangle inequality for the Wasserstein distance, it suffices to
establish a normal approximation guarantee for the idealized estimator τ̂n,f̄ , along
with control on the error induced by approximating the function µ using an empirical
estimator.

Normal approximation for τ̂n,f̄ : We make use of the following non-asymptotic
central limit theorem:

Proposition 4.2 ([183], Theorem 3.2 (restated)). Given i.i.d. zero-mean random vari-
ables {Xi}ni=1 with finite fourth moment, the rescaled sum Wn :=

∑n
i=1Xi/

√
n satisfies

the Wasserstein bound

W1

(
Wn, Z

)
≤ 1√

n

{
E[|X1|3]
E[X2

1 ]
+

√
2E[X4

1 ]

πE[X2
1 ]

}
where Z ∼ N (0,E[X2

1 ]).

Since we have E[|X1|3] ≤
√

E[X2
1 ] · E[X4

1 ], this bound implies that W1

(
Wn, Z

)
≤

2√
n
·
√

E[X4
1 ]/E[X2

1 ]. Applying this bound to the empirical average τ̂n,f̄ yields

W1

(√
nτ̂n,f̄ ,Z

)
≤ 2√

n
·
√

M4

v2semi+v
2(µ)

,

as claimed.

Bounds on the estimation error ∥µ̂n/2 − µ∥ω: From the proof of Theorem 4.2,
recall the basic inequality (4.48)—viz.

∥∆̂m∥2m ≤ 1

m

m∑
i=1

Wi
g2(Xi,Ai)
π2(Xi,Ai)

∆̂m(Xi, Ai) + ⟨∆̂m, ∆̃⟩m, (4.59)

where Wi = µ∗(Xi, Ai)− Yi is the outcome noise.

As before, we define the approximation error ∆̃ := µ∗−µ. Since µ = argminh∈F ∥h−
µ∗∥ω is the projection of µ∗ onto F , and µ̂m ∈ F is feasible for this optimization problem,
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the first-order optimality condition implies that ⟨∆̂m, ∆̃⟩ω ≤ 0. By adding this inequality
to our earlier bound (4.59) and re-arranging terms, we find that

∥∆̂m∥2m ≤ 1

m

m∑
i=1

g2(Xi,Ai)
π2(Xi,Ai)

(
µ∗(Xi, Ai)− Yi

)
∆̂m(Xi, Ai) +

(
⟨∆̂m, ∆̃⟩m − ⟨∆̂m, ∆̃⟩ω

)
.

(4.60)

Now define the empirical process suprema

Zm(r) := sup
h∈F∗∩Bω(r)

1

m

m∑
i=1

g2(Xi, Ai)

π2(Xi, Ai)

(
µ∗(Xi, Ai)− Yi

)
h(Xi, Ai), and

Z ′
m(s) := sup

h∈F∗∩Bω(s)

1

m

m∑
i=1

( g2(Xi, Ai)

π2(Xi, Ai)
h(Xi, Ai)∆̃(Xi, Ai)− ⟨∆̃, h⟩ω

)
.

From the proof of Theorem 4.2, recall the events

Eω :=
{
∥f∥2m ≥ α2α2

1

16
∥f∥2ω, for any f ∈ F∗ \ Bω(rm)

}
, and E (r) :=

{
∥∆̂m∥ω ≥ r

}
.

Introduce the shorthand um = max{rm, sm, dm}. On the event Eω ∩E (um), the basic
inequality (4.60) implies that

α2α
2
1

16
∥∆̂m∥2ω ≤ ∥∆̂m∥2m

(i)

≤ Zm(∥∆̂m∥ω) + Z ′
m(∥∆̂m∥ω)

(ii)

≤ ∥∆̂m∥ω
rm

Zm(rm) +
∥∆̂m∥ω
sm

Z ′
m(sm),

where step (ii) follows from the non-increasing property of the functions r 7→ r−1Zm(r)
and s 7→ s−1Z ′

m(s).
So there exists a universal constant c > 0 such that

E
[
∥∆̂m∥2ω1Eω∩E (um)

]
≤ c

α2
2α

4
1

{ 1

s2m
E
[
Z2
m(sm)

]
+

1

d2m
E
[{
Z ′
m(dm)

}2]}
.

Via the same symmetrization argument as used in the proof of Theorem 4.2, there exists
a universal constant c > 0 such that

E[Z2
m(sm)] ≤ cS2

m

(
F∗ ∩ Bω(sm)

)
, and E

[(
Z ′
m(dm)

)2] ≤ cD2
m

(
F∗ ∩ Bω(dm)

)
.

By the definition of the critical radius sm, we have

1

sm
Sm
(
F∗ ∩ Bω(sm)

)
= sm, and

1

dm
Dm

(
F∗ ∩ Bω(dm)

)
= dm.

Combining with the moment bound above, we arrive at the conclusion:

E[∥∆̂m∥2ω] ≤ E
[
∥∆̂m∥2ω1Eω∩E (um)

]
+ E

[
∥∆̂m∥2ω1E (um)c

]
+ E

[
∥∆̂m∥2ω1E c

ω

]
≤
(
1 +

c

α4
2α

2
1

)
·
(
r2m + s2m + d2m

)
+ diam2

ω(F ∪ {µ∗}) · P(E c
ω)

≤
(
1 +

c

α4
2α

2
1

)
·
(
r2m + s2m + d2m

)
+ diam2

ω(F) · e−cα2
2m.

Substituting into the Wasserstein distance bound completes the proof of Corollary 4.5.
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4.5 Proofs of minimax lower bounds

In this section, we prove the two minimax lower bounds—namely, Theorem 4.3 and
Proposition 4.1.

4.5.1 Proof of Theorem 4.3

It suffices to show that the minimax risk Mn ≡ Mn

(
Cδ(I∗)

)
satisfies the following three

lower bounds:

Mn ≥ c

n
varξ∗

(
⟨g(X, ·), µ∗(X, ·)⟩λ

)
for n ≥ 4(M ′

2→4)
2, (4.61a)

Mn ≥ c

n
∥σ∥2ω for n ≥ 16, (4.61b)

Mn ≥ c

n
∥δ∥2ω for n ∈

[
M2

2→4, c
′|X|/cmax

]
. (4.61c)

Given these three inequalities, the minimax risk Mn can be lower bounded by the
average of the right-hand side quantities, assuming that n is sufficiently large. Since c is
a universal constant, these bounds lead to the conclusion of Theorem 4.3.

Throughout the proof, we use Pµ∗,ξ to denote the law of a sample (X,A, Y ) under
the problem instance defined by outcome function µ∗ and data distribution ξ. We
further use P⊗n

µ∗,ξ to denote its n-fold product, as is appropriate given our i.i.d. data
(Xi, Ai, Yi)

n
i=1.

4.5.1.1 Proof of the lower bound (4.61a)

The proof is based on Le Cam’s two-point method: we construct a family of probability
distributions {ξs | s > 0}, each contained in the local neighborhood Nprob(ξ∗). We
choose the parameter s small enough to ensure that the probability distributions P⊗n

ξs,µ∗

and P⊗n
ξ∗,µ∗ are “indistinguishable”, but large enough to ensure that the functional values

τ(ξs, µ
∗) and τ(ξ∗, µ∗) are well-separated. See §15.2.1–15.2.2 in the book [213] for more

background.
More precisely, Le Cam’s two-point lemma guarantees that for any distribution

ξs ∈ Nprob(ξ∗), the minimax risk is lower bounded as

Mn ≥ 1

4

{
1− dTV

(
P⊗n
µ∗,ξs

,P⊗n
µ∗,ξ∗

)}
·
{
τ(ξs, µ

∗)− τ(ξ∗, µ∗)
}2
, (4.62)

Recall that throughout this section, we work with the sample size lower bound

n ≥ 4(M ′
2→4)

2. (4.63)

Now suppose that under the condition (4.63), we can exhibit a choice of s within the
family {ξs | s > 0} such that the functional gap satisfies the lower bound

τ(ξs, µ
∗)− τ(ξ∗, µ∗) ≥ 1

16
√
n

√
var
(
⟨g(X, ·), µ∗(X, ·)⟩λ

)
, (4.64a)
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whereas the TV distance satisfies the upper bound

dTV

(
P⊗n
µ∗,ξs

,P⊗n
µ∗,ξ∗

)
≤ 1

3
. (4.64b)

These two inequalities, in conjunction with Le Cam’s two point bound (4.62), imply the
claimed lower bound (4.61a).

With this overview in place, it remains to define the family {ξs | s > 0}, and prove
the bounds (4.64a) and (4.64b).

Family of perturbations: Define the real-valued function

h(x) := ⟨µ∗(x, ·), g(x, ·)⟩λ − Eξ∗
[
⟨µ∗(X, ·), g(X, ·)⟩λ

]
,

along with its truncated version

htr(x) :=

h(x) if |h(x)| ≤ 2M ′
2→4 ·

√
Eξ∗ [h2(X)], and

sgn(h(x)) ·
√
Eξ∗ [h2(X)] otherwise.

For each s > 0, we define the tilted probability measure

ξs(x) := Z−1
s ξ∗(x) exp

(
shtr(x)

)
, where Zs =

∑
x∈X ξ

∗(x) exp
(
shtr(x)

)
.

It can be seen that the tilted measure satisfies the bounds

exp
(
− s∥htr∥∞

)
≤ ξs(x)

ξ∗(x)
≤ exp

(
s∥htr∥∞

)
for any x ∈ X,

whereas the normalization constant is sandwiched as

exp
(
− s∥htr∥∞

)
≤ Zs ≤ exp

(
s∥htr∥∞

)
.

Throughout this section, we choose

s := (4∥htr∥L2(ξ∗)

√
n)−1, (4.65a)

which ensures that

s∥htr∥∞ =
1

4
√
n
· ∥htr∥∞
∥htr∥L2(ξ∗)

(i)

≤ 1√
8n

2M ′
2→4∥h∥L2(ξ∗)

∥h∥L2(ξ∗)

(ii)

≤ 1

8
, (4.65b)

where step (i) follows from the definition of the truncated function htr, and step (ii)
follows from the sample size condition (4.63).
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Proof of the lower bound (4.64a): First we lower bound the gap in the functional.
We have

τ(ξs, µ
∗)− τ(ξ∗, µ∗) = Eξs [⟨µ∗(X, ·), g(X, ·)⟩λ]− Eξ∗ [⟨µ∗(X, ·), g(X, ·)⟩λ]

= Eξ∗
[
h(X)eshtr(X)

]
/ Eξ∗

[
eshtr(X)

]
. (4.66)

Note that |shtr(X)| ≤ 1/8 almost surely by construction. Using the elementary inequality
|ez − 1− z| ≤ z2, valid for all z ∈ [−1/4, 1/4], we obtain the lower bound

Eξ∗
[
h(X)eshtr(X)

]
≥ Eξ∗

[
h(X)

]
+ sEξ∗

[
h(X)htr(X)

]
− s2Eξ∗

[
|h(X)| · |htr(X)|2

]
(4.67)

Now we study the three terms on the right-hand-side of equation (4.67). By definition,
we have Eξ∗ [h(X)] = 0. Since the quantities h(X) and htr(X) have the same sign almost
surely, the second term admits a lower bound

Eξ∗
[
h(X)htr(X)

]
≥ E

[
h2tr(X)

]
≥ 1

2
E
[
h2(X)

]
,

where the last step follows from Lemma C.2.
Focusing on the third term in the decomposition (4.67), we note that Cauchy-Schwarz

inequality yields

Eξ∗
[
|h(X)| · |htr(X)|2

]
≤
√

E
[
h2(X)

]
·
√

E
[
h4(X)

]
≤
√
M ′

2→4 ·
{
E
[
h2(X)

]}3/2

,

where the last step follows from the definition of the constant M ′
2→4.

Combining these bounds with equation (4.67) and substituting the choice (4.65a) of
the parameter s, we obtain the following lower bound on the functional gap

Eξ∗
[
h(X)eshtr(X)

]
≥ s∥h∥2L2(ξ∗) − s2

√
M ′

2→4∥h∥3L2(ξ∗)

≥ 1

8
√
n
∥h∥L2(ξ∗) −

√
M ′

2→4

16n
∥h∥L2(ξ∗)

≥ 3

32
√
n
∥h∥L2(ξ∗),

where the last step follows because n ≥ 4(M ′
2→4)

2.
On the other hand, since |shtr(X)| ≤ 1/8 almost surely, we have Eξ∗

[
eshtr(X)

]
≤ 3/2.

Combining with the bound above and substituting into the expression (4.66), we find
that we find that

τ(ξs, µ
∗)− τ(ξ∗, µ∗) ≥ 3

32
√
n
∥h∥L2(ξ∗) / Eξ∗

[
eshtr(X)

]
≥ 1

16
√
n
∥h∥L2(ξ∗),

which is equivalent to the claim (4.64a).
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Proof of the upper bound (4.64b): Pinsker’s inequality ensures that

dTV

(
P⊗n
µ∗,ξs

,P⊗n
µ∗,ξ∗

)
≤
√

1

2
χ2
(
P⊗n
µ∗,ξs

|| P⊗n
µ∗,ξ∗

)
, (4.68)

so that it suffices to bound the χ2-divergence. Beginning with the divergence between
ξs and ξ

∗ (i.e., without the tensorization over n), we have

χ2 (ξs || ξ∗) = varξ∗
(
ξs(X)/ξ∗(X)

)
=

1

Z2
s

varξ∗
(
eshtr(X) − 1

)
≤ exp

(
2s∥htr∥∞

)
· Eξ∗

[
|eshtr(X) − 1|2

]
≤ exp

(
4s∥htr∥∞

)
· s2Eξ∗

[
h2tr(X)

]
. (4.69)

where the last step follows from the elementary inequality |ex − 1| ≤ e|x| · |x|, valid for
any x ∈ R. Given the choice of tweaking parameter s, we have exp

(
4s∥htr∥∞

)
≤ 2.

The definition of the truncated function htr implies that Eξ∗
[
h2tr(X)

]
≤ Eξ∗ [h2(X)].

Combining this bound with our earlier inequality (4.69) yields

χ2 (ξs || ξ∗) ≤ 2s2Eξ∗
[
h2tr(X)

]
≤ 1

8n
,

which certifies that ξs ∈ Nprob(ξ∗), as required for the validity of our construction.
Finally, by the tensorization property of the χ2-divergence, we have

χ2
(
P⊗n
µ∗,ξs

|| P⊗n
µ∗,ξ∗

)
≤
(
1 +

1

8n

)n
− 1 ≤ 3

20
.

Combining with our earlier statement (4.68) of Pinsker’s inequality completes the proof
of the upper bound (4.64b).

4.5.1.2 Proof of equation (4.61b)

The proof is also based on Le Cam’s two-point method. Complementary to equa-
tion (4.61a), we take the source distribution ξ∗ to be fixed, and perturb the outcome
function µ∗. Given a pair µ(s), µ(−s) of outcome functions in the local neighborhood
Nval
δ , Le Cam’s two-point lemma implies

Mn ≥ 1

4

{
1− dTV

(
P⊗n
µ(s),ξ

∗ ,P⊗n
µ(−s),ξ

∗

)}
·
{
τ(ξ∗, µ(s))− τ(ξ∗, µ(−s))

}2
, (4.70)

With this set-up, our proof is based on constructing a pair (µ(s), µ(−s)) of outcome
functions within the neighborhood Nval

δ (µ∗) such that

τ(ξ∗, µ(s))− τ(ξ∗, µ(−s)) ≥
1

2
√
n
∥σ∥ω, and (4.71a)

dTV

(
P⊗n
µ(s),ξ

∗ ,P⊗n
µ(−s),ξ

∗

)
≤ 1

3
. (4.71b)
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Construction of problem instances: Consider the noisy Gaussian observation
model

Yi | Xi, Ai ∼ N
(
µ∗(Xi, Ai), σ

2(Xi, Ai)
)

for i = 1, 2, . . . , n. (4.72)

We construct a pair of problem instances as follows: for any s > 0, define the functions

µ∗
(s)(x, a) = µ∗(x, a) + s g(x,a)

π(x,a)
σ2(x, a), and µ∗

(−s)(x, a) = µ∗(x, a)− s g(x,a)
π(x,a)

σ2(x, a)

for any (x, a) ∈ X× A.
Throughout this section, we make the choice s := 1

4∥σ∥ω
√
n
. Under such choice, the

compatibility condition (4.34) ensures that

|µ(zs)(x, a)− µ∗(x, a)| = s
g(x, a)

π(x, a)
σ2(x, a) ≤ δ(x, a),

for any (x, a) ∈ X× A and z ∈ {−1, 1}
This ensures that both µ(s) and µ(−s) belong to the neighborhood Nval

δ (µ∗). It
remains to prove the two bounds required for Le Cam’s two-point arguments.

Proof of equation (4.71a): For the target linear functional under our construction,
we note that

τ(ξ∗, µ(s))− τ(ξ∗, µ(−s)) = 2sEξ∗
[
⟨ g(X, ·)
π(X, ·)

σ2(X, ·), g(X, ·)⟩λ
]
= 2s∥σ∥2ω =

1

2
√
n
∥σ∥ω,

which establishes the bound (4.71a).

Proof of the bound (4.71b): It order to bound the total variation distance, we study
the KL divergence between the product distributions P⊗n

µ(zs),ξ
∗ for z ∈ {−1, 1}. Indeed,

we have

DKL

(
P⊗n
µ(s),ξ

∗ ∥ P⊗n
µ(−s),ξ

∗

)
(i)
= nDKL

(
Pµ(s),ξ∗ ∥ Pµ(−s),ξ

∗

)
(ii)

≤ nE
[
DKL

(
L(Y | X,A)|µ(s) ∥ L(Y | X,A)|µ(−s)

) ]
, (4.73)

where in step (i), we use the tensorization property of KL divergence, and in step (ii),
we use convexity of KL divergence. The expectation is taken with respect to X ∼ ξ∗

and A ∼ π(X, ·).
Noting that the conditional law L(Y | X,A)|µ(zs) is Gaussian under both problem

instances, we have

DKL

(
L(Y | x, a)|µ(s) ∥ L(Y | x, a)|µ(−s)

)
=

4s2g2(x, a)

π2(x, a)
σ2(x, a).
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Substituting into equation (4.73), we find that DKL

(
P⊗n
µ(s),ξ

∗ ∥ P⊗n
µ(−s),ξ

∗

)
≤ 4ns2∥σ∥2ω.

For a sample size n ≥ 16, with the choice of the perturbation parameter s = 1
4
√
n∥σ∥ω ,

an application of Pinsker’s inequality leads to the bound

dTV

(
P⊗n
µ(s),ξ

∗ ,P⊗n
µ(−s),ξ

∗

)
≤
√

1

2
DKL

(
P⊗n
µs,ξ∗ ∥ P⊗n

µ(−s),ξ∗

)
≤ 1

2
√
2
, (4.74)

which completes the proof of equation (4.71b).

4.5.1.3 Proof of equation (4.61c)

The proof is based on Le Cam’s mixture-vs-mixture method (cf. Lemma 15.9, [213]). We
construct a pair (Q1,Q−1) of probability distributions supported on the neighborhood
Nval

δ (µ∗); these are used to define two mixture distributions with the following properties:

• The mixture distributions have TV distance bounded as

dTV

(∫
P⊗n
µ,ξ∗dQ

∗
1(µ),

∫
P⊗n
µ,ξ∗dQ

∗
−1(µ)

)
≤ 1

4
. (4.75)

See Lemma 4.4 for details.

• There is a large gap in the target linear functional when evaluated at functions in
the support of Q∗

1 and Q∗
−1. See Lemma 4.5 for details.

For any binary function ζ : X × A → {−1, 1}, we define the perturbed outcome
function

µζ(x, a) := µ∗(x, a) + ζ(x, a) · δ(x, a) for all (x, a) ∈ X× A.

By construction, we have µζ ∈ Nval

δ (µ
∗) for any binary function ζ. Now consider the

function

ρ(x, a) :=


g(x, a)δ(x, a)

∥δ∥ωπ(x, a)
|g(x, a)|δ(x, a)

π(x, a)
≤ 2M2→4∥δ∥ω

sgn
(
g(x, a)

)
, otherwise.

It can be seen that E[ρ2(X,A)] ≤ 1 where the expectation is taken over a pair X ∼ ξ∗

and A ∼ π(X, ·).
For a scalar s ∈

(
0, 1

2M2→4

]
and a sign variable z ∈ {−1, 1}, we define the probability

distribution

Qs
z := L(µζ), where ζ ∼

∏
x∈X,a∈A

Ber
(1 + zsρ(x, a)

2

)
. (4.76)

Having constructed the mixture distributions, we are ready to prove the lower
bound (4.61c). The proof relies on the following two lemmas on the properties of
the mixture distributions:
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Lemma 4.4. The total variation distance between mixture-of-product distributions is
upper bounded as

dTV

(∫
P⊗n
µ,ξ∗dQ

s
1(µ),

∫
P⊗n
µ,ξ∗dQ

s
−1(µ)

)
≤ 2s

√
n+ 4 · e−n/4. (4.77)

Lemma 4.5. Given a state space with cardinality lower bounded as |X| ≥ 128cmax/s
2,

we have

Pµ∼Qs
1

{
τ(ξ∗, µ) ≥ τ(ξ∗, µ∗) +

s

8
∥δ∥ω

}
≥ 1− 2 · e−4, and (4.78a)

Pµ∼Qs
−1

{
τ(ξ∗, µ) ≤ τ(ξ∗, µ∗)− s

8
∥δ∥ω

}
≥ 1− 2 · e−4. (4.78b)

We prove these lemmas at the end of this section.
Taking these two lemmas as given, we now proceed with the proof of equation (4.61c).

Based on Lemma 4.5, we define two sets of functions as follows:

E1 :=
{
µζ | ζ ∈ {−1, 1}X×A, τ(ξ∗, µζ , ) ≥ τ(ξ∗, µ∗) +

s

8
∥δ∥ω

}
, and

E−1 :=
{
µζ | ζ ∈ {−1, 1}X×A, τ(ξ∗, µζ) ≤ τ(ξ∗, µ∗)− s

8
∥δ∥ω

}
.

When the sample size requirement in equation (4.61c) is satisfied, Lemma 4.5 implies
that Qs

z(Ez) ≥ 1− e−4 for z ∈ {−1, 1}. We set s = 1
16

√
n
, and define

Q∗
z := Qs

1

∣∣Ez, for z ∈ {−1, 1}. (4.79)

By construction, the probability distributions Q∗
1 and Q∗

−1 have disjoint support, and
for any pair µ ∈ supp(Q∗

1) ⊆ E1 and µ′ ∈ supp(Q∗
−1) ⊆ E−1, we have:

τ
(
ξ∗, µ

)
≥ τ

(
ξ∗, µ∗)+ ∥δ∥ω

128
√
n
, and τ

(
ξ∗, µ′) ≤ τ

(
ξ∗, µ∗)− ∥δ∥ω

128
√
n
. (4.80)

Furthermore, combining the conclusions in Lemma 4.4 and Lemma 4.5 using Lemma C.1,
we obtain the total variation distance upper bound:

dTV

(∫
P⊗n
µ,ξ∗dQ

∗
1(µ),

∫
P⊗n
µ,ξ∗dQ

∗
−1(µ)

)

≤ 1

1− 2 · e−4
dTV

(∫
P⊗n
µ,ξ∗dQ

s
1(µ),

∫
P⊗n
µ,ξ∗Q

s
−1(µ)

)
+ 4 · e−4

≤ 1/8 + 4 · e−n/4

1− 2 · e−4
+ 4 · e−4 ≤ 1

4
,

which completes the proof of equation (4.75).
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Combining equation (4.80) and (4.75), we can invoke Le Cam’s mixture-vs-mixture
lemma, and conclude that

Mn ≥ 1
4

{
1− dTV

(∫
P⊗n
µ,ξ∗dQ

∗
1(µ),

∫
P⊗n
µ,ξ∗dQ

∗
−1(µ)

)}
· inf
µ∈supp(Q1)
µ′∈supp(Q−1)

[
τ(ξ∗, µ)− τ(ξ∗, µ′)

]2
+

≥ c∥δ∥2ω
n

,

for a universal constant c > 0. This completes the proof of equation (4.61c).

Proof of Lemma 4.4: Our proof exploits a Poissonization device, which makes the
number of observations random, and thereby simplifies calculations. For z ∈ {−1, 1},
denote the mixture-of-product distribution:

Q(s,⊗n)
z :=

∫
P⊗n
µ,ξ∗dQ

s
z(µ).

We construct a pair
(
Q(s,Poi)

1 ,Q(s,Poi)
−1

)
of mixture distributions as follows: randomly draw

the sample size ν ∼ Poi(2n) independent of ζ and random sampling of data. For each

z ∈ {−1, 1}, we let Q(s,Poi)
z be the mixture distribution:

Q(s,Poi)
z :=

+∞∑
k=0

Q(s,⊗k)
z · P(ν = k).

By a known lower tail bound for a Poisson random variable (c.f. [22], §2.2), we have

P
[
ν ≥ n︸ ︷︷ ︸
=:Ẽn

]
≥ 1− e−n/4, (4.81)

We note that on the event Ẽn, the probability law Q(s,⊗n)
z is actually the projection of

the law Q(s,Poi)
z

∣∣Ẽn on the first n observations. Consequently, we can use Lemma C.1 to
bound the total variation distance between the original mixture distributions using that
of the Poissonized models:

dTV

(
Q(s,⊗n)

1 ,Q(s,⊗n)
−1

)
≤ dTV

(
Q(s,Poi)

1

∣∣Ẽn,Q(s,Poi)
−1

∣∣Ẽn)+ 4P
(
Ẽ c
n

)
≤ 1

P
(
Ẽn
)dTV

(
Q(s,Poi)

1 ,Q(s,Poi)
−1

)
+ 4 · e−n/4

≤ 2dTV

(
Q(s,Poi)

1 ,Q(s,Poi)
−1

)
+ 4 · e−n/4, (4.82)

valid for any n ≥ 4.
It remains to bound the total variation distance between the Poissonized mixture

distributions. We start by considering the empirical count function

M(x, a) :=
ν∑
i=1

1
{
Xi = x, Ai = a

}
for all (x, a) ∈ S × A,
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Note that conditionally on the value of ν, the vector (M(x, a))x∈X,a∈A follows a multino-
mial distribution. Since ν ∼ Poi(2n), we have

∀x ∈ X, a ∈ A M(x, a) ∼ Poi
(
2nξ∗(x)π(x, a)

)
, independent of each other.

For each (x, a) ∈ X×A and z ∈ {−1, 1}, we consider a probability distribution Q′
z(x, a)

defined by the following sampling procedure:

(a) Sample M(x, a) ∼ Poi
(
2nξ∗(x)π(x, a)

)
.

(b) Sample ζ(x, a) ∼ Ber
(1+szρ(x,a)

2

)
.

(c) Generate a (possibly empty) set of M(x, a) independent observations from the
conditional law of Y given X = x and A = a.

By independence, for any z ∈ {−1, 1}, it is straightforward to see that:

Q(s,Poi)
z =

∏
(x,a)∈S×A

Q′
z(x, a),

Pinsker’s inequality, combined with the tensorization of the KL divergence, guarantees
that

dTV

(
Q(s,Poi)

1 ,Q(s,Poi)
−1

)
≤
√

1

2
DKL

(
Q(s,Poi)

1 ∥ Q(s,Poi)
−1

)
=

√
1

2

∑
x∈X,a∈A

DKL

(
Q′

1(x, a) ∥ Q′
−1(x, a)

)
. (4.83)

Note that the difference between the probability distributions Q′(x, a) and Q′
−1(x, a)

lies only in the parameter of the Bernoulli random variable ζ(x, a), which is observed if
and only if M(x, a) > 0. By convexity of KL divergence, we have:

DKL

(
Q′

1(x, a) ∥ Q′
−1(x, a)

)
≤ P

(
M(x, a) > 0

)
·DKL

(
Ber
(1 + sρ(x, a)

2

)
∥ Ber

(1− sρ(x, a)

2

))
≤ 4
(
1− e−2nξ∗(x)π(x,a)

)
· s2ρ2(x, a)

≤ 8nξ∗(x)π(x, a)s2ρ2(x)

≤ 8ns2ξ∗(x)
g(x, a)δ2(x, a)

π(x, a)∥δ∥2ω
Substituting back to the decomposition result (4.83), we conclude that

dTV

(
Q(s,Poi)

1 ,Q(s,Poi)
−1

)
≤

√√√√1

2

∑
x∈X,a∈A

8ns2ξ∗(x)
g2(x, a)δ2(x, a)

π(x, a)∥δ∥2ω
≤ 2s

√
n.

Finally, combining with equation (4.82) completes the proof.
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Proof of Lemma 4.5: Under our construction, we can compute the expectation of
the target linear functional τ(I) under both distributions. In particular, for z = 1, we
have

Eµ∼Qs
1

[
τ(ξ∗, µ)

]
= τ(ξ∗, µ∗) +

s

2
· Eξ∗

[ ∫
A
δ(X, a)g(X, a)ρ(X, a)dλ(a)

]
≥ τ(ξ∗, µ∗) +

s

2∥δ∥ω
· E
[δ2(X,A)g(X,A)2

π2(X,A)
1
{ |g(X,A)|δ(X,A)

π(X,A)
≤ 2M2→4∥δ∥ω

}]
,

where the last expectation is taken with respect to X ∼ ξ∗ and A ∼ π(X, ·).
Applying Lemma C.2 to the random variable g(X,A)δ(X,A)/π(X,A) yields

E
[δ2(X,A)g2(X,A)

π2(X,A)
1
{ |g(X,A)|δ(X,A)

π(X,A)
≤ 2M2→4∥δ∥ω

}]
≥ 1

2
E
[δ2(X,A) g2(X,A)

π2(X,A)

]
.

Consequently, we have the lower bound on the expected value under Qs
1

Eµ∼Qs
1

[
τ(ξ∗, µ)

]
≥ τ(ξ∗, µ∗) +

s

4
∥δ∥ω. (4.84a)

Similarly, under the distribution Qs
−1, we note that:

Eµ∼Qs
−1

[
τ(ξ∗, µ)

]
≤ τ(ξ∗, µ∗)− s

4
∥δ∥ω. (4.84b)

We now consider the concentration behavior of random function µ ∼ Qs
z for each

choice of z ∈ {−1, 1}. Since the random signs are independent at each state-action
pair (x, a) ∈ X× A, we can apply Hoeffding’s inequality: more precisely, with with
probability 1− 2e−2t, we have∣∣τ(ξ∗, µ)− Eµ∼Qs

z

[
τ(ξ∗, µ)

]∣∣ (i)≤√t ·
∑

x∈X,a∈A

ξ∗2(x)g2(x, a)δ2(x, a)

≤
√
tcmax

|X|
·
∑

x∈X,a∈A

ξ∗(x)g2(x, a)δ2(x, a) ≤

√
t · cmax

|X|
∥δ∥ω,

where in step (i), we use the compatibility condition ξ∗(x) ≤ cmax

|X| for any x ∈ X.
Given a state space with cardinality lower bounded as |X| ≥ 128cmax/s

2, we can
combine the concentration bound with the expectation bounds (4.84) so as to obtain

Pµ∼Qs
1

{
τ(ξ∗, µ) ≥ τ(ξ∗, µ∗) + s

√
t

128
∥δ∥ω

}
≥ 1− 2 · e−2t, and

Pµ∼Qs
−1

{
τ(ξ∗, µ) ≤ τ(ξ∗, µ∗)− s

√
t

128
∥δ∥ω

}
≥ 1− 2 · e−2t.

Setting t = 2 completes the proof of Lemma 4.5.
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4.5.2 Proof of Proposition 4.1

Let the input distribution ξ∗ be the uniform distribution over the sequence {xj}Dj=1. It
suffices to show that

inf
τ̂n

sup
µ∈F

E
[
|τ̂n − τ(ξ∗, µ)|2

]
≥ c

n

{ 1

D

D∑
j=1

∑
a∈A

g2(sj, a)

π(sj, a)
δ2a

}
. (4.85)

Recall that we are given a sequence {xj}Dj=1 such that for each a ∈ A, the function
class Fa shatters it at scale δa. Let {tj,a}Dj=1 be the sequence of function values in the
fat-shattering definition (4.38). Note that since the class F is convex, we have

D⊗
j=1

⊗
a∈A

[tj,a − δa, tj,a + δa] ⊆
⊗
a∈A

{
(fa(xj))j∈[D] | fa ∈ Fa

}
.

Note that this distribution satisfies the compatibility condition with cmax = 1 and the
hyper-contractivity condition with a constant M2→4 = ∥g(X,A)δA/π(X,A)∥2→4. Invok-
ing equation (4.61c) over the local neighborhood Nval

δ (t) yields the claimed bound (4.85).

4.6 Discussion

We have studied the problem of evaluating linear functionals of the outcome function
(or reward function) based on observational data. In the bandit literature, this problem
corresponds to off-policy evaluation for contextual bandits. As we have discussed,
the classical notion of semi-parametric efficiency characterizes the optimal asymptotic
distribution, and the finite-sample analysis undertaken in this chapter enriches this
perspective. First, our analysis uncovered the importance of a particular weighted
L2-norm for estimating the outcome function µ∗. More precisely, optimal estimation
of the scalar τ ∗ is equivalent to optimal estimation of the outcome function µ∗ under
such norm, in the sense of minimax risk over a local neighborhood. Furthermore, when
the outcome function is known to lie within some function class F , we showed that a
sample size scaling with the complexity of F is necessary and sufficient to achieve such
bounds non-asymptotically.

Our result lies at the intersection of decision-making problems and the classical
semi-parametric theories, which motivates several promising directions of future research
on both threads:

• Our analysis reduces the problem of obtaining finite-sample optimal estimates for
linear functionals to the nonparametric problem of estimating the outcome function
under a weighted norm. Although the re-weighted least-square estimator (4.11)
converges to the best approximation of the treatment effect function in the
class, it is not clear whether it always achieves the optimal trade-off between the
approximation and estimation errors. How to optimally estimate the nonparametric
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component under weighted norm (so as to optimally estimate the scalar τ ∗ in
finite sample) for a variety of function classes is an important direction of future
research, especially with weight functions.

• The analysis of the current chapter was limited to i.i.d. data, but similar issues
arise with richer models of data collection. There are recent lines of research on
how to estimate linear functionals with adaptively collected data (e.g. when the
data are generated from an exploratory bandit algorithm [228, 189, 97]), or with
an underlying Markov chain structure (e.g. in off-policy evaluation problems for
reinforcement learning [83, 225, 90, 227]). Many results in this literature build
upon the asymptotic theory of semi-parametric efficiency, so that it is natural
to understand whether extensions of our techniques could be used to obtain
finite-sample optimal procedures in these settings.

• The finite-sample lens used in this chapter reveals phenomena in semi-parametric
estimation that are washed away in the asymptotic limit. This chapter has
focused on a specific class of semi-parametric problems, but more broadly, we
view it as interesting to see whether such phenomena exist for other models in
semi-parametric estimation. In particular, if a high-complexity object—such as
a regression or density function—needs to be estimated in order to optimally
estimate a low-complexity object—such as a scalar—it is important to characterize
the minimal sample size requirements, and the choice of nonparametric procedures
for the nuisance component that are finite-sample optimal.
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Chapter 5

Beyond semi-parametric efficiency: a
kernel-based analysis

Continuing the discussion in Chapter 4, we study optimal procedures for estimating a
linear functional based on observational data. In many problems of this kind, a widely
used assumption is strict overlap, i.e., uniform boundedness of the importance ratio,
which measures how well the observational data covers the directions of interest. When
it is violated, the classical semi-parametric efficiency bound and the bounds in Chapter 4
can easily become infinite, so that the instance-optimal risk depends on the function class
used to model the regression function. For any convex and symmetric function class F ,
we derive a non-asymptotic local minimax bound on the mean-squared error in estimating
a broad class of linear functionals. This lower bound refines the classical semi-parametric
one, and makes connections to moduli of continuity in functional estimation. When F
is a reproducing kernel Hilbert space, we prove that this lower bound can be achieved
up to a constant factor by analyzing a computationally simple regression estimator. We
apply our general results to various families of examples, thereby uncovering a spectrum
of rates that interpolate between the classical theories of semi-parametric efficiency
(with

√
n-consistency) and the slower minimax rates associated with non-parametric

function estimation.

5.1 Introduction

Estimation and inference problems based on observational data arise in various applica-
tions, and are studied in the fields of causal inference, econometrics, and reinforcement
learning. An interesting subclass of such problems are semi-parametric in nature: they
involve estimating the value of a linear functional in the presence of one or more unknown
non-parametric “nuisance” functions.

More concretely, suppose that we observe n i.i.d. triples of the form (Xi, Ai, Yi),
where each triple is drawn according to the following procedure

• the state variable Xi is drawn from some distribution ξ∗ over the state space X.
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• the action variable Ai is drawn with conditional distribution Ai | Xi ∼ π(· | Xi),
where π is a behavioral policy, also known as the propensity score in the causal
inference literature.

• the response or outcome variable Yi has conditional expectation E
[
Yi | Xi, Ai

]
=

µ∗(Xi, Ai), where µ
∗ is the regression function, also known as the treatment effect.

The distribution ξ∗ and regression function µ∗ are both unknown, and we would like
to estimate a known functional that depends on both of them. More precisely, given
a known family of functions {ω(· | x) | x ∈ X}, where each ω(· | x) is a signed Radon
measure over the action space A, consider the functional

(µ, ξ) 7→ Lω(µ, ξ) := EX∼ξ

[∫
A
µ∗(X, a)dω(a | X)

]
=

∫
X

∫
A
µ∗(x, a) dω(a | x) dξ(x).

(5.1)

Our goal is to estimate τ ∗ := Lω(µ
∗, ξ∗)—the value of this functional at the unknown

pair (µ∗, ξ∗). The behaviorial policy π is also unknown, and it plays the role of another
non-parametric nuisance, since it affects the joint distribution of the samples (Xi, Ai)
that we observe. Special cases of this set-up include estimating the average treatment
effect (ATE), and off-policy evaluation for contextual bandit problems. We also consider
a variant in which, instead of taking the expectation over X ∼ ξ, we evaluate at a fixed
state s0. This latter set-up is appropriate for the conditional average treatment effect
(CATE).

There are a variety of settings—involving particular assumptions on the regression
function and behavioral policy—under which estimates of τ ∗ based on n samples are
consistent at the classical

√
n-rate. Moreover, via the classical notion of semi-parametric

efficiency [120], we have a refined understanding of the optimal instance-dependent
constants that should accompany this

√
n-rate [71]. However, there are also various

settings—of interest in practice—in which the efficiency bound is infinite, and the
classical

√
n-convergence no longer holds. This issue is not only theoretical in nature:

when applied to problems of this type, many standard estimators for τ ∗—being motivated
by classical considerations—no longer perform well.

At a high level, there are at least two types of phenomena that can invalidate classical√
n-consistency. First, if both the regression function and behavioral policy need to

be estimated from classes with high complexity, the difficulty of doing so—as opposed
to only the fluctuations intrinsic to the target functional—can become dominant. For
instance, the paper [179] studies a variety of such cases involving Hölder classes; see
also the paper [96] for related results on CATE estimation. Second, the semi-parametric
efficiency bound involves certain moments of the ratio dg

dπ
. This so-called importance

ratio measures how well the observational data, as controlled by the behavioral policy
π, “covers” the regions of space relevant for estimating the functional. If this coverage
is especially bad, then the importance ratio need not have finite moments. This latter
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cause of breakdown in semi-parametric efficiency is the primary motivation for the
theory and methodology put forth in this chapter.

In the literature on causal inference with observational studies, it is common to
impose the so-called strict overlap condition [76, 41, 197]. The strict overlap condition
amounts to imposing a uniform bound on the importance ratio, and so precludes the
possibility of infinite moments. Such uniform boundedness conditions also appear
frequently in the closely related literature on bandits and reinforcement learning. On
one hand, this condition is known to be necessary in a worst-case sense: as shown by
Khan and Tamer [100], when neither strict overlap nor structural conditions on the
regression function are imposed, then it is no longer possible to obtain

√
n-consistency.

It should be noted, however, that the uniform boundedness condition can be quite
stringent. For instance, in some recent work, D’Amour et al. [42] show that it rules
out many interesting cases of practical interest, especially when the model involves
high-dimensional covariates. Motivated by this dilemma, there is a line of past and
on-going work (e.g., [38, 78, 134]) that proposes estimators that exploit some kind of
structure in the regression function. Despite this progress, we currently have a relatively
limited understanding of optimal methods for estimating linear functionals based on
observational data without imposing the strict overlap condition.

With this context, the main contributions of this chapter are to provide some insight
into the nature of optimal methods for estimating linear functionals without (strict)
overlap. Our first main result is a general non-asymptotic lower bound on the mean-
squared error of any estimator. This lower bound involves a novel variance functional,
which depends both on the function class F used to model the regression function and
the behavior of the importance ratio. Turning to upper bounds, we focus on the class of
reproducing kernel Hilbert spaces (RKHSs) as models for the regression function, and
provide a computationally simple procedure that achieves our local minimax lower bound.
Thus, for RKHS-based models of the regression function, we are able to identify the
instance-dependent and non-asymptotic local minimax risk up to a constant pre-factor.
As we illustrate by a range of examples, this mean-squared error can exhibit a range
of scalings, from the classic

√
n-consistency for well-behaved problems to much slower

non-parametric rates in cases where the importance ratio is badly behaved.

5.1.1 An illustrative simulation

So as to provide intuition for the results to follow, let us consider a simple family
of problems for which the strict overlap assumption is violated, and compare the
performance of the estimator proposed in this chapter to other alternatives. More
specifically, we consider a missing data problem where the action a ∈ A = {0, 1} is
an indicator of “missingness”. With the state space S = [0, 1], we construct a weight
function g and behavioral policy π for which the importance ratio takes the form

dg

dπ
(0 | x) = 1, and

dg

dπ
(1 | x) ∼ (1− x)−α where α ≥ 0 is a parameter. (5.2)
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The parameter α controls the heaviness of the tails exhibited by the importance ratio:
when α = 0, the importance ratio is simply a constant, whereas as α increases, its tails
become increasingly heavy. Above α > 1, it no longer has a finite second moment, and
this transition point turns out to be interesting.
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(a) Light tails: α = 0.5 (b) Heavy tails: α = 2.0

Figure 5.1: Log-log plots of mean-squared error versus sample size n for four different
estimators fo τ ∗: procedure Opt-KRR is analyzed in this chapter, whereas CV-KRR
is a related method with regularization parameter chosen by cross-validation. We also
compare to the classical IPW estimate along with a truncated version of IPW. (a) Setting
α = 0.5 yields a propensity score with light tails, and our theory predicts classical
n−1-decay of the MSE for Opt-KRR. (b) Setting α = 2.0 yields a heavy-tailed problem,
and our theory guarantees consistency of Opt-KRR at the rate n−3/4.

In Figure 5.1, we compare the performance of four different methods: the classical
Inverse Propensity Weighting (IPW) estimator [181] (we review this estimator in Sec-
tion 5.4), a truncated version of IPW [100], the optimal kernel-based procedure proposed
in this chapter (Opt-KRR), as well as a sub-optimal kernel-based procedure where the
regularization parameter is chosen by cross validation (CV-KRR). In each panel and for
each estimate τ̂n, we plot the mean-squared error E[(τ̂n − τ ∗)2] versus the sample size n
on a log-log scale. Panel (a) corresponds to the setting α = 0.5: in this case, our theory
predicts that the minimax mean-squared error should decay as n−1, as expected for MSE
in the classical regime of

√
n-consistency. All four methods are relatively well-behaved

for this problem; for our proposed method (Opt-KRR), performing a linear regression of
log-MSE on log n gives a slope estimate of −1.00± 0.01. Panel (b), in contrast, exhibits
very different behavior: by setting α = 2.0, we obtain a much harder problem. Here
the IPW performance is very erratic due to the heavy tails of the importance ratio; the
truncated version is better behaved, but still has larger error than Opt-KRR. In fact,
the theory given in this chapter, when specialized to this family, predicts that for any

α > 1, the optimal mean-squared error should decay at the rate n− 3
α+2 . Thus, if we set
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α = 2, then we expect to see an error decay with exponent −3/4. In order to estimate
the decay rate of Opt-KRR, we again perform a linear regression of the log MSE on
log(n), and obtained an estimated slope −0.76 ± 0.01. Once again, we see excellent
agreement with the theory.

5.1.2 Our contributions

We summarize the contributions made in the remainder of the chapter.

• First, working in the setting where the regression function belongs to a known
function class, we establish a general non-asymptotic local minimax lower bound
for estimating linear functionals from observational data. The lower bound is
defined by a variational problem the captures the interplay between the geometry
of the function class and the importance ratio. As the proof is based on Le Cam’s
two point approach, portions of the bound involve a certain modulus of continuity.

• Second, specializing to the regression function belonging to a ball within a repro-
ducing kernel Hilbert space (RKHS), we analyze a class of multi-stage outcome
regression estimators. Under certain regularity conditions on the RKHS and the
conditional covariance function, we establish a non-asymptotic upper bound that
matches our minimax lower bound (up to a constant factor).

• Third, we illustrate our general result by applying it to a range of problems, thereby
obtaining a variety of novel minimax rates. For treatment effect estimation when
the importance ratio diverges at certain points, we show that minimax risk depends
on the interaction between this singularity and the geometry of the Hilbert space.
In the setting of contextual bandits with continuous states and actions, we give
results on off-policy evaluation of deterministic policies, thereby obtaining novel
minimax rates that are adaptive to the complexity of the state-action space.

Notably, our multi-stage kernel-based estimator requires no knowledge of the un-
derlying behavioral policy or propensity score π. This property is very attractive from
the implementation point of view. At the same time, its performance in terms of MSE
matches our minimax lower bound, which applies to a broader family of estimators
including those that know the behavioral policy. Thus, we see an interesting implication
of our results: as long the regression function is a member of a RKHS, knowledge of
the behavioral policy plays no role in determining the minimax risk rate. This is in
sharp contrast with Hölder classes of the non-Donsker type, where both parts of the
model play an important role [179, 96]. Finally, although the value of minimax risk itself
depends on the behavioral policy, the tuning parameter in our kernel-based estimator
does not.
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5.1.3 Related work

Now let us discuss various bodies of related work so as to situate our work within a
broader context.

Instance-optimality for non/semi-parametric estimation: For regular para-
metric models, the classical local asymptotic minimax (LAM) framework of Le Cam
and Hajek [117, 72] specifies the instance-optimal behavior of estimators as n → ∞.
Levit [120] extended this framework to semi-parametric settings by considering the
collection of all finite-dimensional sub-models. For the specific class of linear functional
estimation problems considered here, Hahn [71] laid out the asymptotic lower bounds,
whereas Chapter 4 studies the same question within a non-asymptotic framework.

Beyond the classical
√
n-regime, instance-dependent optimality for semi-parametric

and non-parametric estimation have been established under various settings. In the
literature, exact local asymptotic minimax risks are obtained for Sobolev space regres-
sion [167, 30], spectral density estimation [101], and shape-constrained estimation [74].
For estimation problems involving linear functionals, Donoho [53] establishes information-
theoretic optimality (up to constant factors) of certain class of minimax linear estimators;
in the regression setting, this framework applies to fixed design problems as opposed
to the random design setting of interest here. Also studying fixed design regression
using spline methods, the unpublished work of Speckman [193] is based on a class of
under-smoothed estimators. These spline-based estimators are a special case of the more
general RKHS set-up considered here for the random design setting, and we also find
that a form of under-smoothing is optimal. While all the preceding results are stated
as global minimax risks, due to the location-family structure of the underlying model
and simplifying noise assumptions, the bounds are also instance-optimal, albeit in a less
refined manner.

Overlap and coverage assumptions for off-policy estimation: The overlap
assumption, first proposed by Rosenbaum and Rubin [182], requires that the behavioral
policy or propensity score takes value within the open interval (0, 1).1 In our general
set-up, the overlap assumption is equivalent to requiring that the importance ratio dg

dπ

exists everywhere. Such a condition, along with the unconfoundedness assumption,
together imply identifiability of the average treatment effect [182], but could lead to
arbitrarily slow rates. In the literature, a popular choice is the much stronger strict
overlap assumption [76, 41], which requires the importance ratio to be uniformly bounded.
Khan and Tamer [100] shows that strictly overlap is a necessary condition for uniform√
n-consistency in the worst case. On the other hand, recent work [42] revealed that

the strict overlap condition can be stringent in some natural high-dimensional problem
setups. By making stronger assumptions about the regression function, the strict overlap

1In the classical binary treatment setup, the action space is A = {0, 1}, and the propensity score is
defined as π(x) := P(A = 1|X = x).
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condition can be relaxed [38, 80], while still achieving the semi-parametric efficiency
bound in the

√
n regime. The case of infinite semi-parametric efficiency bound, known

as the irregular identification regime, has been studied by prior works [100, 134], where
truncated versions of IPW estimators are proposed and analyzed in some special cases.
Moreover, instability in the behavior of these estimators has been documented in both
simulation and real-data experimental studies [129, 92, 63].

Uniform boundedness of the importance ratio is also a canonical assumption in the
bandit and reinforcement learning literature. Focusing on off-policy evaluation for bandit
algorithms, Wang et al. [215] proposed a “switch estimator” that involves truncating
the importance ratio. Ma et al. [133] showed that this procedure is worst-case optimal
for multi-arm bandits. For off-policy reinforcement learning problems, uniform bounds
on the importance ratio, known as coverage or concentrability coefficients, appear in
various papers [89, 225, 222]. Most closely related to our results are the bounds in the
paper [227], which apply to MDPs with linear function approximation and involve a
finer-grained measure of the overlap between the behavioral and target policies.

Kernel and nonparametric methods for off-policy estimation: There is also
a line of past work on studying various non-parametric procedures for estimating the
average treatment effect under different structural conditions. Under the strict overlap
condition combined with Hölder conditions imposed on both the importance ratio and
regression function, minimax rates for ATE estimation have been established [179, 175],
albeit with pre-factors depending on the instance that need not be optimal. In the
Donsker regime considered here, these minimax rates coincide with the classical

√
n-rate,

due to the presence of strict overlap. Our results reveal different phenomena that
can arise without strict overlap—more specifically, the optimal rate is determined not
only by the complexities of the importance ratio and the regression function classes,
but also by any singularity in the importance ratio, and how it interacts with the
functional to be estimated. Additionally, our results also apply to estimation of one-point
linear functionals, a generalization of conditional or heterogeneous average treatment
effects. Again with the focus on Hölder classes, some recent work [66, 96] has exhibited
rate-optimal non-parametric procedures. In recent years, due to their flexibility and
computational tractability, kernel-based approaches have been the focus of research in
the causal estimation literature [191, 192, 163], where kernel-based estimators have been
developed for various functionals.

Recent work on off-policy estimation has explored the use of minimax linear esti-
mators. In the fixed-design setup, the papers [4, 87, 88] apply the classical framework
of minimax linear estimators [53, 193] to the estimation problem for the sample av-
erage treatment effect (SATE), and establish guarantees of both the asymptotic and
non-asymptotic flavors. Hirshberg et al. [77] studied a minimax linear estimator for the
treatment effect when the regression function belongs to an RKHS; as in the classical
work [193], this estimator can be reformulated in terms of a standard kernel ridge
regression estimate, as can the two-stage procedure that we analyze in the simpler
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homoskedastic setting. Under the strict overlap condition and some additional regularity
assumptions, they prove asymptotic efficiency as well as non-asymptotic bounds on the
empirical loss function. In a more general set-up with general function classes, Hirshberg
and Wager [78] proposed an augmented minimax linear estimator andestablished non-
asymptotic normal approximation results. When specialized to off-policy estimation,
their results yield non-asymptotic normal approximation in the classical regime with
finite semi-parametric efficiency bound, but independent of the strict overlap assumption.
An important contrast with our results is that these bounds involve both error and
approximation error associated with the importance ratio (via the Riesz representer); in
contrast, such terms do not arise in our approach.

5.2 Problem set-up and preview

We begin in Section 5.2.1 with a precise formulation of the problem and discussion of
some examples. In Section 5.2.2, we describe the classical semi-parametric efficiency
bound, and detail how our analysis moves beyond it.

5.2.1 Problem set-up and some examples

Given some probability distribution ξ∗ over the state space X, suppose that we observe
n i.i.d. triples (Xi, Ai, Yi) in which Xi ∼ ξ∗, and

Ai | Xi ∼ π(· | Xi), and E
[
Yi | Xi, Ai

]
= µ∗(Xi, Ai), for i = 1, 2, . . . , n. (5.3)

In addition to the regression function µ∗, our analysis also involves the conditional
variance function

σ2(x, a) := E
[
|Y − µ∗(X,A)|2 | X = x,A = a

]
, (5.4)

which is assumed to exist for any pair (x, a) ∈ X× A.
As previously described, given a collection of signed Radon measures ω(· | x) over

the action space A, one for each x ∈ X, our goal is to estimate the value τ ∗ = Lω(µ
∗, ξ∗)

of the bilinear functional

(µ, ξ) 7→ Lω(µ, ξ) :=

∫
S

∫
A
µ(x, a)dω(a | x)dξ(x) (5.5)

evaluated at the pair µ = µ∗ and ξ = ξ∗. We require that the signed measures defining
Lω satisfy the condition∫

A
d |ω(a | x)| ≤ 1 for each x ∈ S. (5.6)

This holds automatically when each ω(· | x) is a conditional probability distribution, as
in off-policy evaluation for contextual bandits.

Various types of weight functions g arise in practice:
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Average treatment effect (ATE): This linear functional arises with the binary ac-
tion action space A = {0, 1}, and weight function ω(a | x) = a− 1

2
for all x. With

this choice, we have

τ ∗ =
1

2
EX∼ξ∗

[
µ∗(X, 1)− µ∗(X, 0)

]
,

so that τ ∗ is proportional to the usual average treatment effect (i.e., equal up to
the pre-factor 1/2 that arises from our choice of normalization).

Off-policy evaluation for multi-arm contextual bandits: In the multi-arm set-
ting of a contextual bandit, we have a finite action space A, and each weight
function ω(· | x) defines a conditional probability over the action space, which can
be interpreted as a stochastic policy. We say that the weight functions g define the
target policy whereas the conditional distributions π define the behavioral policy.

Contextual bandits with continuous arms: In this case, we take the action space
A to be a compact subset of Rd. For a deterministic target policy T : X → A, we
let ω(· | x) be the unit atomic mass at T (x).

Also of interest—in addition to the functional (5.5)—is the variant obtained by
replacing the expectation over X ∼ ξ∗ with evaluation at a known state x0—namely

Lω(µ
∗, δx0) :=

∫
A
µ∗(x0, a)dω(a | x0), (5.7)

where δx0 can be thought of as a point mass at x0. While the functional is determined
by δx0 , the samples Xi themselves are still drawn from the distribution ξ∗ over the state
space.

Particular examples of the functional (5.7) include the conditional average treatment
effect (CATE) in the causal inference literature, whereas in off-policy reinforcement
learning, it includes the problem of evaluating the policy at a fixed state x0 based on
off-policy observations.

5.2.2 Moving beyond classical semi-parametric efficiency

In this section, we explain how this chapter moves beyond classical semi-parametric
efficiency.

Recap of classical results: We begin by explaining the usual semi-parametric
efficiency bound, which is meaningful when the importance ratio dg

dπ
exists and has

suitably controlled moments. Under these conditions, it is possible to obtain estimates
τ̂n of τ ∗ that converge at a

√
n-rate. We can thus ask about the variance associated with

the rescaled error
√
n(τ̂n − τ ∗), and in particular the smallest one that can be achieved.
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For estimating τ ∗ = Lω(µ
∗, ξ∗), it is known [71] that the smallest variance achievable,

in the sense of semi-parametric efficiency, is given by

v2semi(µ
∗, dg

dπ
) = varX∼ξ∗

(∫
A
µ∗(X, a)dω(a | X)

)
︸ ︷︷ ︸

V 2
ξ∗ (µ

∗)

+Eξ∗·π
{[

dg
dπ
(A | X)

]2
σ2(X,A)

}
︸ ︷︷ ︸

V 2
σ (
dg
dπ

)

,

(5.8)

where Eξ∗·π denotes expectation over a pair X ∼ ξ∗ and A ∼ π(· | X).
This optimal variance consists of two term. The first term V 2

ξ∗(µ
∗) captures the

fluctuations in an estimate of τ ∗ due to the randomness in sampling the states from ξ∗.
This term depends on the regression function µ∗, but not on the conditional variance
function σ2. In contrast, the second term V 2

σ (
dg
dπ
) depends on both the importance

ratio dg
dπ

and the conditional variance function σ2 but not on the regression function: it

captures the interaction between the noise and the importance ratio dg
dπ
. It is this latter

term that can diverge if the importance ratio is ill-behaved, and accordingly, it is the
term that takes a more refined form in our analysis.

Non-asymptotic bounds: With this context, our main contributions are to move
beyond classical (asymptotic) semi-parametric efficiency in the following ways:

• We use Le Cam’s method to prove a general non-asymptotic minimax lower bound
on estimating functionals from observational data without the overlap condition,
but with µ∗ belonging to a convex function class F .

• When F is a reproducing kernel Hilbert space (RKHS), we show that this lower
bound can be achieved by a four-stage kernel regression procedure, and we compute
an explicit representation of the minimax risk (sharp up to constant pre-factors).

Let us describe our explicit representation of the non-asymptotic minimax risk in the
RKHS setting. Consider an RKHS H that is a subset of L2(ξ∗ · π), and suppose that
the regression function µ∗ belongs to the Hilbert ball BH (R) of radius R in this space.
We show that the non-asymptotic minimax risk replaces the second term V 2

σ (
dg
dπ
) in the

classical semi-parametric efficiency bound (5.8) with a novel quantity associated with the
eigenvalues and eigenfunctions associated with the RKHS. More precisely, any RKHS
of the Mercer type is associated with a sequence {λj}∞j=1 of positive eigenvalues, and
associated eigenfunctions {ϕj}∞j=1. We let Λ = diag{λj}∞j=1 be a diagonal matrix defined
by the eigenvalues, and using the eigenfunctions, we define an infinite-dimensional vector
u = u(ξ∗) with elements

(u)j := EX∼ξ∗
[ ∫

A
ϕj(X, a)dω(a | X)

]
for j = 1, 2, . . ., (5.9a)



5.2. PROBLEM SET-UP AND PREVIEW 161

along with the infinite-dimensional matrix Γσ with elements

[Γσ]jk := Eξ∗·π
[

1
σ2(X,A)

ϕj(X,A)ϕk(X,A)
]

for j, k = 1, 2, . . .. (5.9b)

We prove that when the regression function µ∗ lies within a ball of radius R within
this RKHS, then the minimax mean-squared error for estimating τ ∗ is proportional to
1
n

{
V 2
ξ∗(µ

∗) + Ṽ 2
σ,n(π, g;BH (R))

}
, where

Ṽ 2
σ,n(π, g;BH (R)) := u⊤

(
Γσ +

1
R2n

Λ−1
)−1

u. (5.10)

Note that Ṽ 2
σ,n(π, g;BH (R)) depends (among other quantities) on the sample size n, and

it can actually diverge as n→ ∞. This type of divergence leads to non-parametric rates
for estimating the functional τ ∗. Indeed panel (b) in Figure 5.1 provides an illustration
of this phenomenon in one particular setting.

Connection to classical semi-parametric efficiency: To understand the connec-
tion between our result and the the classical semi-parametric efficiency bound (5.8), let
us consider2 the following special case:

• The importance ratio dg
dπ

exists, and the classical semi-parametric efficiency bound
is finite.

• The problem is homoskedastic, with constant conditional variance function
σ2(x, a) = σ2 for all pairs (x, a).

Under homoskedasticy, the matrix Γσ is diagonal with 1
σ2 along its diagonal, using the

fact that the eigenfunctions are orthonormal in L2(ξ∗ · π). Since the matrix Λ−1 is also
diagonal, we find that

Ṽ 2
σ,n(π, g;BH (R)) =

∞∑
j=1

u2j
1
σ2 +

1
R2nλj

≤ σ2

∞∑
j=1

u2j . (5.11a)

When the importance ratio dg
dπ

exists, we can write

[u]j := EX∼ξ∗
[ ∫

A
ϕj(X, a)dω(a | X)

]
= Eξ∗·π

[
ϕj(X,A)

dg
dπ
(A | X)

]
, (5.11b)

so that uj is the basis coefficient of dg
dπ

when expanded in the eigenbasis {ϕj}j≥1. Thus,
by Parseval’s theorem, we see that equation (5.11a) implies that

Ṽ 2
σ,n(π, g;BH (R)) ≤ Eξ∗·π

[(dg
dπ

(A | X)
)2
σ2
]

= V 2
σ (

dg
dπ
), (5.11c)

2Note that our theory does not require these assumptions, but imposing them makes clear the
connection to classical semi-parametric efficiency.
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so that the Hilbert-restricted functional is always upper bounded by the classical semi-
parametric quantity V 2

σ (
dg
dπ
). In fact, when the semi-parametric efficiency bound is finite

and the RKHS is suitably rich—that is, “universal”—then Ṽ 2
σ,n(π, g;BH (R)) converges

to V 2
σ (

dg
dπ
) as n tends to infinity. All of these facts hold more generally for heteroskedastic

noise, as we detail in Propositions 5.1 and 5.2 to follow in Section 5.3.1.2.

5.3 Main results and their consequences

We now turn to precise statements of our main results, along with discussion of their
consequences for various examples. In Section 5.3.1.1, we state and prove non-asymptotic
lower bounds that hold for any convex and symmetric function class F used to model
the regression function. We specialize these lower bounds to reproducing kernel Hilbert
spaces in Section 5.3.1.2, where we derive the functional (5.10) discussed in the previous
section.

In Section 5.3.2, we turn to the complementary question of deriving upper bounds
for reproducing kernel Hilbert spaces. We begin with the simpler homoskedastic case
in Section 5.3.2.1 before turning to the more challenging heteroskedastic case in Sec-
tion 5.3.2.2. Finally, Section 5.3.3 is devoted to the consequences of these results for
various specific examples.

5.3.1 Non-asymptotic lower bounds

Suppose that we model the regression function µ∗ using a class F of real-valued functions
defined on the state-action space S × A. In this section, we prove some non-asymptotic
minimax lower bounds for both the averaged quantity τ ∗ = Lω(µ

∗, ξ∗) and the one-point
quantities τ ∗x0 = Lω(µ

∗, δx0). In order to cover both cases in a unified way, for any
distribution ν over the state space S, let us define3

Vσ,n(ν, π, g;F) :=
√
n sup
f∈F

{
Lω(f, ν) | Eξ∗·π

[ f2(X,A)
σ2(X,A)

]
≤ 1

4n

}
. (5.12)

5.3.1.1 General lower bounds

Local minimax bounds describe the behavior of optimal estimators in a local neighbor-
hood of a given instance. For the problem at hand, we define a given problem instance
via the pair I∗ = (µ∗, ξ∗). The behavioral policy π, conditional variance function σ2,
and the weight function g are shared across all instances. Our local neighborhood of a
given instance I∗ is given by

Nn(µ
∗, ξ∗) :=

{
ξ s.t. χ2 (ξ || ξ∗) ≤ 1

n
, and µ ∈ F s.t. ∥µ− µ∗∥2L2(ξ∗·π) ≤

σ̄2

n

}
, (5.13)

3To explain our notational choices, in the special case that ν = ξ∗ and F = BH (R), this functional
is proportional to the quantity Ṽ 2

σ,n(π, g;BH (R)) that we defined previously, as shown in the sequel
(cf. Proposition 5.1 in Section 5.3.1.2).
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and it defines the local minimax risk

Mn(I∗;F) := inf
τ̂n

sup
(µ,ξ)∈Nn(µ∗,ξ∗)

E
[
|τ̂n − Lω(µ, ξ)|2

]
, and (5.14a)

Mn(I∗, x0;F) := inf
τ̂n

sup
µ∈Nn(µ∗,ξ∗)

E
[
|τ̂n − Lω(µ, δx0)|

2 ]. (5.14b)

With a slight abuse of notation, in the definition (5.14b), we have written µ ∈ Nn(µ
∗, ξ∗)

to mean (µ, ξ∗) ∈ Nn(µ
∗, ξ∗). For the rest of this chapter, we will drop I∗ in the notation

when it is clear from the context.
In stating lower bounds for estimating Lω(µ

∗, ξ∗), we require that the effective noise
in the observations—namely Z(X) :=

( ∫
A µ

∗(X, a)dω(a | X)− τ ∗
)
for X ∼ ξ∗—has a

bounded kurtosis:

∥Z∥2→4 :=

√
E[Z4]

E[Z2]
≤M2→4(ξ

∗) <∞. (5.15)

With this condition in place, we are ready to state a lower bound.

Theorem 5.1. There exists a universal constant c such that for any problem instance
I∗ = (µ∗, ξ∗) with µ∗ ∈ 1

2
F :

(a) Under the moment condition (5.15) and given a sample size n ≥ 16M2
2→4(ξ

∗), the
local minimax risk (5.14a) is lower bounded as

Mn(I∗,F) ≥ c

n

{
V 2
ξ∗(µ

∗) + V 2
σ,n(ξ

∗, π, g;F)
}
. (5.16a)

(b) Given a sample size n ≥ 16, the local minimax risk (5.14b) is lower bounded as

Mn(I∗, x0;F) ≥ c

n
V 2
σ,n(δx0 , π, g;F). (5.16b)

See Section 5.5.1 for the proof.

The lower bound (5.16a) consists of two terms. The first term V 2
ξ∗(µ

∗) captures
uncertainty induced by not knowing the distribution ξ∗; in our lower bound, we obtain
it by applying the Le Cam argument to allowable perturbations of ξ∗. The second term
captures the effective noise induced by a combination of the additive noise, and potential
lack of coverage of the behavioral policy π.

The reader should observe the contrast between the bound (5.16a), applicable to a
ξ∗-averaged functional, and the bound (5.16b) that applies to a one-point functional.
The latter bound takes a similar form, except that the term V 2

ξ∗(µ
∗) no longer appears.

Here knowledge of ξ∗ is irrelevant, because the functional to be estimated is known, and
does not depend on it.
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It is worth emphasizing that Theorem 5.1 and its corollaries are all stated for a fixed
behavior policy π. Accordingly, the stated lower bounds apply even to “oracle” estimators
that know the behaviorial policy. In practice, this function often not known, especially
for observational studies in causal inference. However, as we show in the following section,
when we specialize to reproducing kernel Hilbert spaces (cf. Theorems 5.2 and 5.3 to
follow), this lower bound can achieved (up to universal constants) via a simple procedure
that operates without any knowledge of the policy π. Thus, a surprising consequence of
our theory is that, at least for the RKHS case, knowledge of the behavioral policy π has
no effect on the minimax risk. This statement is not true in general, as demonstrated
by past work on Hölder classes [179, 96].

We also note that the lower bounds in Theorem 5.1 are related to past work for
estimating linear functionals in fixed design regression (e.g., [193, 195, 53]). As in this
work, the quantity (5.12) can be seen as a modulus of continuity for the functional
f 7→ Lω(f, ν). Our work deals instead with a random design setting, so that the proof
techniques are different. Moreover, it is not always possible to achieve the lower bounds
in Theorem 5.1; in particular, as we noted above, for certain types of Hölder classes
and unknown behavioral policies, sharp lower bounds require an argument that involves
mixtures (as opposed to the two-point Le Cam argument that underlies Theorem 5.1).

5.3.1.2 Explicit representation for reproducing kernels

As noted in Section 5.2.2, when F is a reproducing kernel Hilbert space (RKHS), our
minimax lower bounds are sharp (up to a constant pre-factor), and the optimal risk
has an explicit expression. To set up the problem, we consider functions belonging to a
subset of L2(P∗) where dP∗(x, a) = dξ∗(x)dπ(a | x) is a distribution over U := S ×A. In
particular, let K be a real-valued kernel function defined on the Cartesian product space
U×U. We assume that the kernel function is continuous and positive semi-definite, and
we let H be the associated reproducing kernel Hilbert space (RKHS). Associated with
the kernel function is the kernel integral operator

f 7→ K(f)(z) :=

∫
U
K(u, u′)f(z′)dP∗(u′)

By Mercer’s theorem [141], under mild regularity conditions, this operator has real
eigenvalues {λj}∞j=1, all of which are non-negative due to the assumption of positive
semidefiniteness, along with eigenfunctions {ϕj}∞j=1 that are orthonormal in L2(P∗).
Under such notations, the minimax risk can be represented in terms of these sequences.

Recall the definition (5.12) of the quantity Vσ,n(ν, π, g;F), where ν = ξ∗ or ν = δx0
are the two cases of primary interest in this chapter. For any distribution ν over the
state space, we define the infinite-dimensional vector u(ν) with components

uj(ν) := EX∼ν

[ ∫
A
ϕj(X, a)dω(a | X)

]
. (5.17a)
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This vector is a generalization of our previous definition (5.9a), which was specialized
to ν = ξ∗. We also recall from equation (5.9b) the infinite-dimensional matrix Γσ with
elements

[Γσ]jk := Eξ∗·π
[

1
σ2(X,A)

ϕj(X,A)ϕk(X,A)
]
, (5.17b)

and the diagonal matrix Λ = diag{λj}∞j=1. With these definitions, we have

Proposition 5.1. For the RKHS ball BH (R) :=
{
f | ∥f∥H ≤ R

}
and any distribution

ν over the state space, we have

1

2
V 2
σ,n(ν, π, g;BH (R))

(a)

≤ uT (ν)
(
Γσ +

1
R2n

Λ−1
)−1

u(ν)
(b)

≤ 4 V 2
σ,n(ν, π, g;BH (R)). (5.18)

See Section 5.5.2.1 for the proof.

As discussed in Section 5.2.2, the functional is closely related to the classical semi-
parametric efficiency bound. The following result makes this connection precise:

Proposition 5.2. Under the setup of Proposition 5.1, if the RKHS H is dense in
L2(ξ∗ · π) and vsemi(µ

∗, dg
dπ
) < +∞, then we have

lim
n→∞

Vσ,n(ξ
∗, π, g;BH (R)) =

1

2

√
Eξ∗·π

[(dg
dπ

(A | X)
)2 · σ2(X,A)

]
.

See Section 5.5.2.2 for the proof.

5.3.2 Achieving the lower bounds for kernel classes

We now show how the lower bounds in Theorem 5.1 can be achieved when the regression
function µ∗ is assumed to lie within some reproducing kernel Hilbert space (RKHS). The
setup for RKHS can be found in Section 5.3.1.2. Our theory involves these eigenvalues
and eigenfunctions via the following notion of effective dimension:

D(ρ) := sup
(x,a)∈S×A

∞∑
j=1

λjϕ
2
j(x, a)

λj + ρ
for any scalar ρ > 0. (5.19)

Similar notions of effective dimension have been used in past work [230, 33]. Roughly
speaking, the quantity D(ρ) provides a characterization of the global complexity of the
RKHS at the scale ρ > 0.

5.3.2.1 Homoskedastic case

Let us warm up by describing a simpler (but possibly sub-optimal) bound that ignores
any possible heteroskedasticity. More specifically, we suppose that the conditional
variance function is uniformly bounded as σ2(x, a) ≤ σ̄2 for all pairs (x, a), and prove
results in terms of σ̄.

In this case, the procedure is very simple to describe, and consists of two steps.
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Two-stage procedure: Given a data set of size 2n, we split it evenly into two sets
(X (I)

i , A
(I)

i , Y
(I)

i )i∈[n] and (X (II)

i , A
(II)

i , Y
(II)

i )i∈[n], each of size n. Each step in our procedure
uses one of the data splits.

Stage I: Given a regularization parameter ρn > 0, compute the kernel
ridge regression (KRR) estimate on data split I:

µ̂n := argmin
f∈H

{ 1
n

n∑
i=1

(
Y (I)

i − f(X (I)

i , A
(I)

i )
)2

+ ρn∥f∥2H
}
. (5.20a)

Stage II: Use the estimate µ̂n and split II to compute the empirical average

τ̂n =
1

n

n∑
i=1

{∫
A
µ̂n(X

(II)

i , a)dω(a | X (II)

i )
}

(5.20b)

In practice, so as to make most efficient use of the data, one could also perform a
form of cross-fitting (e.g., [41]). However, given that our main goal is to show that the
lower bounds from Theorem 5.1 are achieved up to constant factors, it suffices to focus
attention on the simpler procedure given here.

Assumptions: In our analysis of this method, we assume that the kernel function K
is κ-uniformly bounded:

sup
(x,a)∈X×A

K
(
(x, a), (x, a)

)
≤ κ2. (Kbou(κ))

This condition is frequently used in the literature on kernel methods. It is satisfied, for
instance, for any continuous kernel function K on a compact domain X× A.

In addition, we assume that the zero-mean noise variables W (x, a) := Y − µ∗(x, a)
are uniformly σ-sub-Gaussian, meaning that for all pairs (x, a), we have

E
[
etW (x,a)

]
≤ e

t2σ2

2 for all t ∈ R. (subG(σ))

We are now equipped to state our first main upper bound. It requires that the ratio
of sample size and effective dimension at scale ρn is lower bounded as

n

D(ρn)
≥ c

σ2

σ̄2
log
(nRκ
σ̄δ

)
· log2(n) where ρn = σ̄2

R2n
, (5.21a)

for a universal constant c > 0. We discuss this condition at more length following the
statement.
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Our result involves the higher-order term

Hn(δ) := c
log(1/δ)

n

{
κR + σ

√
D(ρn) log(n)

}
, (5.21b)

where δ ∈ (0, 1) is a user-specified failure probability. It can be verified that under the
sample size condition (5.21a), we have Hn(δ) = o(n−1/2), so this term is of higher order
in the analysis. Finally, the dominant term in our upper bound is the quantity

Vσ̄,n(ξ
∗, π, g;BH (R))2 := σ2

∞∑
j=1

λju
2
j

λj +
σ2

R2n

. (5.21c)

Theorem 5.2. Under the (Kbou(κ)) and (subG(σ)) conditions, suppose that µ∗ ∈
BH (R), there exists a universal constant c > 0, such that for any δ ∈ (0, 1) and sample
size 2n satisfying the bound (5.21a). Then the two-stage estimate τ̂n computed with
regularization ρn = σ̄2

R2n
satisfies

|τ̂n − τ ∗| ≤ c
{
Vξ∗(µ

∗) + Vσ̄,n(ξ
∗, π, g;BH (R))

}√
log(1/δ)

n
+Hn(δ), (5.22)

with probability at least 1− δ.

See Section 5.5.3 for the proof.

Let us make a few comments about this result, and its connection to our lower bounds.

Comparison with Theorem 5.1: As noted, the dominant term in the bound (5.22)
is the first one. When the noise is homoskedastic (i.e., constant conditional variance),
then this first term matches the lower bound given in Theorem 5.1 up to constants
and the logarithmic factor4 in the failure probability δ. When the conditional variance
function is not constant, then our bound (5.22) no longer matches Theorem 5.1. We
rectify this shortcoming in Section 5.3.2.2, where we analyze a more refined four-stage
procedure that adapts to heteroskedasticity.

It should be emphasized that the two-stage estimator analyzed in Theorem 5.2 does
not require any knowledge of the behavioral policy π. At the same time, as we just
described, for homoskedastic noise, it matches the lower bound from Theorem 5.1, which
applies even to oracle estimators that know the policy. Thus, we conclude that at least
in the special case of an RKHS, knowledge of the behavior policy does not alter minimax
risks (apart from possibly in constant factors).

4While we have stated a high probability guarantee, a simple modification yields an estimator
with mean-squared error guarantees. In particular, since |τ∗| ≤ supx,a |µ∗(x, a)| ≤ R

√
κ by the

Cauchy–Schwarz inequality, we can construct a truncated estimator

τ̃n := sgn
(
τ̂n
)
·min

{
|τ̂n|, R

√
κ
}
.

By construction, we have |τ̃n− τ∗| ≤ |τ̂n− τ∗| almost surely, and since τ̃n is a bounded random variable,
the high-probability bounds established in Theorem 5.2 can be converted to a MSE bound whose
leading term matches Theorem 5.1 up to a constant factor.
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Tuning parameter: The only tuning parameter in the estimator is the regularization
weight ρn = σ̄2

R2n
. This choice depends on the signal-to-noise-ratio, as measured by the

ratio R2/σ̄2, but does not depend on kernel eigenvalues or other aspects of the problem.
We note that this choice also appears in the classical work on linear functional estimation
in fixed design settings [193, 195], but the analysis leading to it in our random design
setting is quite different.

The decay rate ρn ≍ n−1 of the regularization parameter is much faster than the
standard one required to achieve optimal mean-squared error when estimating the full
regression function (c.f. [213], Chapter 13). Consequently, the first stage of our procedure
outputs an under-smoothed estimate of the regression function µ∗, and using this estimate
in the second stage produces an optimal estimate of the functional. This difference
arises because the bias-variance trade-off that underlies estimating the functional of µ∗

is very different from that associated with estimating the full regression function µ∗. In
particular, when estimating a functional, we pay for variance only at the direction of
the target functional, whereas the bias induced by regularization wholly appears in the
estimation error.

Lower bound on sample size: Finally, let us comment on the required lower
bound (5.21a) on the sample size. There are various conditions that ensure (5.21a). For
example, in various examples, it is possible to show that the effective dimension satisfies
the bound

D(ρ) ≤ D0

ρ1−ω
for some scalar ω ∈ (0, 1]. (5.23)

In Section 5.3.3, we discuss various concrete applications in which this growth condition
holds. Under the bound (5.23), the sample size condition (5.21a) is satisfied as long as

n

log3/ω
(
nRκ
σ̄δ

) ≥ cD
1/ω
0 R

2
ω
−2σ

2
ω σ̄2− 4

ω .

In Appendix D.1, we present various conditions under which the effective dimension
satisfies a growth condition that ensures the sample size condition (5.21a) can be satisfied.
Moreover, in Appendix D.2, we present alternative guarantees that do not rely on any
additional growth conditions.

5.3.2.2 Extension to heteroskedasticity

We now turn to the more challenging problem of achieving the minimax optimal risk in
the heteroskedastic case. In this case, we propose and analyze a four-stage procedure.
Since the conditional variance function is non-constant and unknown, we need to estimate
it, and the first two steps of our four-stage procedure are devoted to this task.

Let us provide a high-level perspective. The first stage generates a rough estimate µ̃n
of the regression function µ∗. In the second stage, we first use µ̃n to compute estimates
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Zi :=
{
Yi − µ̃n(Xi, Ai)

}2
of the squared noise associated with a new set S of triples

{(Yi, Xi, Ai)}i∈S . We then compute an estimate of the conditional variance function of
the form

σ̂2
n := A

(
{(Xi, Ai, Zi)}i∈S

)
, (5.24)

for a suitably chosen estimator A. We allow the conditional variance estimator A to take
different forms depending on the application, so our set-up provides a family of possible
procedures, indexed by this choice. In our theory, we require only a relatively mild form
of accuracy from the estimator, which we refer to as robust pointwise accuracy.

Now let us specify all four stages in more detail. Given sample size 4n, we split the
data evenly into four pieces, and perform the following four steps:

Stage I: Using the first dataset (X (I)

i , A
(I)

i , Y
(I)

i )ni=1 and regularization pa-
rameter ρn > 0, compute the pilot estimate

µ̃n := argmin
µ∈H

{ 1
n

n∑
i=1

(
Y (I)

i − µ(X (I)

i , A
(I)

i )
)2

+ ρ(I)

n ∥µ∥2H
}
. (5.25a)

Stage II: Using the second dataset (X (II)

i , A
(II)

i , Y
(II)

i )ni=1 and the procedure
A, compute the squared noise estimates Z (II)

i := (Y (II)

i − µ̃n(X
(II)

i , A
(II)

i ))2 based
on the pilot estimate (5.25a), and then compute the estimate

σ̂2
n := A

({
X (II)

i , A
(II)

i , Z
(II)

i

}
i∈[n]

)
of the conditional variance function. (5.25b)

Stage III: Using the third dataset (X (III)

i , A(III)

i , Y (III)

i )ni=1, regularization pa-
rameter ρ(III)

n > 0, and the estimated function σ̂2
n, compute the weighted

regression estimate

µ̂n := argmin
µ∈H

{ 1
n

n∑
i=1

1

σ̂2
n(X

(III)

i , A(III)

i )

(
Y (III)

i − µ(X (III)

i , A(III)

i )
)2

+ ρ(III)

n ∥µ∥2H
}
. (5.25c)

Stage IV: Using the fourth dataset (X (IV)

i , A(IV)

i , Y (IV)

i )ni=1 and the weighted
regression estimate (5.25c), compute the empirical average

τ̂n =
1

n

n∑
i=1

∫
µ̂n(X

(IV)

i , a)dω(a | X (IV)

i ) (5.25d)

We remark that the idea of re-weighting with estimated conditional variance has
been utilized in literature, in the context of parameter estimation for linear models.
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See the paper [180] and references therein for detailed discussion. We now turn to the
analysis of the 4-stage procedure. Rather than analyze a particular estimator A of the
conditional variance function, let us lay out an abstract condition that handles a variety
of different estimators

Robust pointwise variance estimators: This property is a way of certifying that
the estimator A provides an ε-accurate estimate in a pointwise sense: for any fixed pair
(s0, a0), with probability at least 1− δ, we have∣∣∣A({Xi, Ai, Zi

}
i∈[n]

)
(s0, a0)− σ2(s0, a0)

∣∣∣ ≤ ε. (5.26)

The key is to quantify how errors in the inputs Zi as approximations of the squared
noise (Yi − µ∗(Xi, Ai))

2 affect this guarantee. We do so via a pair of functions on the
inputs (ε, δ), known as the tolerance function t and sample threshold M respectively.

Definition 1. The procedure A is (t,M)-pointwise-robust if for any pair (ε, δ) ∈ [0, 1]2,
any dataset {Zi}ni=1 of size n ≥M(ε, δ), consisting of variables such that for each i ∈ [n]5∣∣E[Zi | Xi, Ai]− σ2(Xi, Ai)

∣∣ ≤ t(ε, δ) and ∥Zi | Xi, Ai∥ψ1 ≤ 4
(
σ2 + t(ε, δ)

)
, (5.27)

then for any fixed pair (x0, a0), the bound (5.26) holds with probability 1− δ.

There are various estimators that satisfy the robust pointwise risk property; see Ap-
pendix D.4 for further discussion.

In order to analyze the 4-stage procedure, we require one additional condition on
the conditional variance function: there are scalars 0 < σ ≤ σ̄ <∞ such that

σ(x, a) ∈ [σ, σ̄] for all (x, a). (σ-INT)

We also require that the sample size satisfies the lower bounds

n

D(ρ(I)
n )

≥
{
c
σ2

σ2
log
(nRκ
σδ

)
· log2 n

}
, (5.28a)

n ≥M
(
σ/2, δ/(2n)

)
and

n

σD(ρ(I)
n ) log(n/δ)

≥ 1

t
(
σ2

2
, δ
2n

) . (5.28b)

With this set-up, we are now ready to state a guarantee on our 4-state procedure.
Note that it has two tuning parameters: the regularization parameter ρ(I)

n from the first
stage regression, and the regularization parameter ρ(III)

n from the weighted regression in
the third stage. Our guarantee applies to the procedure using the parameters

ρ(I)

n =
σ̄2

R2n
and ρ(III)

n =
1

R2n
. (5.29)

5In the definition (5.27), the quantity σ is the sub-Gaussian parameter (cf. condition (subG(σ))),
whereas ∥ · ∥ψ1

is the Orlicz(1)-norm, or sub-exponential parameter.
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Theorem 5.3. In addition to the assumptions of Theorem 5.2, suppose that the con-
ditional variance function satisfies the interval condition (σ-INT), the estimator A is
(t,M)-robust, and the sample size 4n satisfies the lower bounds (5.28a) and (5.28b).
Then using regularization parameters from equation (5.29), the 4-stage procedure yields
an estimate τ̂n such that

|τ̂n − τ ∗| ≤ c
{
Vξ∗(µ

∗) + Vσ,n(ξ
∗, π, g;BH (R))

}√ log(1/δ)

n
+Hn(δ), (5.30)

with probability 1−δ, where the higher-order term Hn(δ) was previously defined (5.21b).6

See Section 5.5.4 for the proof.

A few remarks are in order. First, Theorem 5.3 is adaptive to the heteroskedastic
nature of the observation noise — the term V 2

σ,n(ξ
∗, π, g;F) involves the actual conditional

variance σ, instead of its uniform upper bound σ̄. With such a fine-grained variance,
the bound (5.30) achieves the instance-dependent optimality result in Theorem 5.1, up
to universal constants and high-order terms. (See footnote 4 for the connection between
high-probability bounds and mean-squared error bounds.)

We note that the sample size condition (5.28a) is slightly stronger than the condi-
tion (5.21a) used in Theorem 5.2, with the variance upper bound σ̄2 in the denominator
replaced by the lower bound σ2. Theorem 5.3 further requires an additional sample
size condition (5.28b), which comes from the sample complexity of the robust pointwise
estimator σ̂n.

Extension to estimating one-point functionals: Now we extend our results to
estimating the one-point functional τ ∗(x0) := Lω(µ

∗, δx0). In this case, the target
functional is known, so that the fourth stage of the four-stage procedure is not necessary.
It suffices to split the data into three folds in total, and we plug in the regression function
µ̂n directly to obtain the estimate

τ̂n(x0) := Lω(µ̂n, δx0) =

∫
A
µ̂n(x0, a)dω(a | x0). (5.31)

This estimate satisfies optimal guarantees matching Theorem 5.1(b) up to a constant
factor. In particular, under the setup of Theorem 5.3, for any x0 ∈ X, we have

|τ̂n(x0)− τ ∗(x0)| ≤ c · Vσ,n(δx0 , π, g;BH (R))

√
log(1/δ)

n
, (5.32)

with probability 1− δ. See Section 5.5.4.4 for the proof.

A few remarks are in order. First, the upper bound in equation (5.32) matches the
local minimax lower bound in Theorem 5.1(b) up to universal constant factors, exhibiting

6We take ρn = ρ(I)n in its expression.
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its optimality in an instance-dependent sense.7 As opposed to Theorems 5.2 and 5.3,
the optimal instance-dependent risk is achieved (up to universal constants) without
additional high-order terms. The choice of parameters and sample size requirement
in (5.32) is exactly the same as the one in Theorem 5.3, and does not depend on the query
point x0. Such an adaptive property makes the estimator useful in practice, allowing
for a plug-and-play approach: one only needs to run stages I–III of the four-stage
framework (5.25), and generate an estimator µ̂n. By substituting such an estimator in
equation (5.25d) using another fold of data, or in equation (5.31) for any query point
x0, optimal and adaptive guarantees can always be achieved.

5.3.3 Consequences for some concrete examples

In this section, we develop some consequences of our general theory for some specific
classes of problems, including the missing data problem without overlap (Section 5.3.3.1),
for which we presented an illustrative simulation in Section 5.1.

5.3.3.1 A missing data example without overlap assumption

Consider the classical missing data setting, where the action space is A = {0, 1} and the
weight is given by ω(a | x) = a for any x ∈ X. Assume without loss of generality that
Y = 0 whenever A = 0. We slightly abuse the notation to use µ∗ : X → R to denote the
outcome function µ∗(·, 1) and use π : X → [0, 1] to denote the propensity score π(1 | ·).
Similarly, we use K(x, x′) to denote K(x, 1), (x′, 1)), and let the kernel function be 0 if
one of the arguments has action equal to 0. Under this simplified notation, the inner
product of L2(ξ∗ · π) takes the form

⟨f1, f2⟩ :=
∫
X
f1(x)f2(x)π(x)dξ

∗(x),

and we are interested in estimating the average treatment effect and its conditional
analogue

τ ∗ := Eξ
[
µ∗(X)

]
, and Lω(µ

∗, δx0) := µ∗(x0).

For concreteness, we let the state space be a unit interval X = [0, 1] and take the input
distribution ξ be the uniform distribution on X. In order to illustrate the effect of the
lack of the overlap condition on the risk, given a scalar α > 0, we construct the following
propensity score function

π(x) = (1− x)α for any x ∈ [0, 1]. (5.33)

Our goal is to understand the effect of a singularity in the importance ratio with
local α-th order polynomial growth. The specific location of such singularity, and any

7Following the discussion in footnote 4, the high-probability bound can be readily converted into a
mean-squared error bound using a simple truncation method.
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properties apart from the existence of this α-th order singularity are not germane to our
comparison, so that we have chosen the particular form (5.33) for technical convenience.

We consider an RKHS H corresponding to the first-order Sobolev space on [0, 1]
(see [213], Chapter 12). Its kernel function is given by K(x, x) = min{x, x′}, and the
corresponding RKHS H consists of functions f satisfying f(0) = 0, and

∥f∥2H :=

∫ 1

0

(
f ′(x)

)2
dx < +∞.

We assume that the regression function µ∗ : X → R belongs to this RKHS, with
∥µ∗∥H ≤ 1/2. Finally, we take the conditional variance as σ2(x, a) ≡ 1 for any state-
action pair (x, a), and assume that the sub-Gaussian parameter σ is of order one.

With this set-up, we are ready to compute minimax rates for various linear functionals.
Throughout this section, we use the notation an ≍ bn to denote that the ratio an/bn
satisfies finite positive upper and lower bounds depending on the constants (α, x0) but
independent of n. As mentioned before, we omit the problem instance I∗ in the notations
Mn

(
I∗,F

)
and Mn

(
I∗, x0;F

)
for minimax risk rates.

Corollary 5.1. Under the above set-up, for any function µ∗ ∈ BH(1/2), the minimax
risk for estimating the linear functional τ ∗ is given by

Mn

(
BH(1)

)
≍


n−1 α < 1,

n−1 log n α = 1,

n− 3
α+2 α > 1.

(5.34a)

For the one-point functional Lω(µ
∗, δx0), we have

Mn

(
x0;BH(1)

)
≍


0 x0 = 0,

n−1/2 x0 ∈ (0, 1),

n
−1
2+α x0 = 1,

(5.34b)

See Appendix D.5.1 for the proof.

A few remarks are in order. For the average treatment effect τ ∗, the optimal rate of
estimation exhibits a phase transition depending on the local growth exponent α. In
the regime α ∈ [0, 1), the importance ratio is sufficiently well-behaved that the classical
quantity vsemi is finite, so that we obtain convergence at the classical

√
n-rate. Slower

rates arise once α ≥ 1, where the variance v2semi is infinite. A large value of α yields
fewer observations in the neighborhood of x = 1, which in turn leads to slower rate
of convergence. Note that even if the target τ ∗ is defined as a global average over the
interval [0, 1], the optimal rate of convergence is still affected by the singularity within
the interval.8 Finally, we note that although Corollary 5.1 exhibits a wide spectrum of

8The proofs in Appendix D.5.1 can be easily extended to propensity score functions with zeros at
any finite subset of [0, 1], with arbitrary behavior except for the local growth conditions around the
zeros.
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rates, they all can be achieved adaptively—that is, using an estimator that requires no
knowledge of the behavioral policy π nor the exponent α.

Let us make a few comments on the conditional average treatment effect Lω(µ
∗, δx0).

In this case, the problem becomes trivial at x0 = 0, as the functions in the Sobolev space
H satisfy µ∗(0) = 0. The optimal rate is n−1/2 for any x0 ∈ (0, 1), which corresponds to
the minimax one-point rate for Sobolev regression in literature [206]. A much slower
minimax rate is observed at x0 = 1, where the scarcity of outcome observations is
controlled by the exponent α. These rates, just as in the ATE case, can be achieved
using an estimator without any knowledge of the function π.

5.3.3.2 Off-policy evaluation with continuous actions

Now we consider a continuum-arm bandit setup. For simplicity, we work with the state
space X = [0, 1]dx and the action space A = [0, 1]da , and let the distributions ξ, π(· | x)
be the uniform distribution on the spaces X and A, respectively, for any x ∈ X. Given a
scalar s > (dx + da)/2, we let the RKHS H = Hs be the Sobolev space of order s, with
periodic boundary conditions (so that the state-actions spaces are seen as tori).

Under this setup, the eigenfunctions are given by the standard (complex) Fourier
bases on the torus Tdx+da , which can be written in a product form{

(x, a) 7→ ϕj(x)ψk(a)
}
j,k≥0

,

where {ϕj}j≥0 and {ψk}k≥0 are the Fourier bases on the tori Tdx and Tda , respectively.
Note that these eigenfunctions are uniformly bounded in sup norm.

Throughout this section, we view the problem parameters (dx, da, s) as universal
constants, and suppress any constant factor depending only on them. For the Sobolev
space Hs, let λj,k be the eigenvalue associated to the eigenfunction indexed by j, k, which
satisfies the decay condition (see [12])

λj,k ≍ min
{
j−2s/dx , k−2s/da

}
. (5.35)

Combining the eigendecay assumption and the boundedness condition on the eigenfunc-
tions, we can verify that condition (Kbou(κ)) holds; in particular, we have

κ2 := sup
x,a

∑
j,k≥0

λj,kϕ
2
j(x)ψ

2
k(a) ≤ sup

x,a

∑
j,k≥0

λj,k <∞,

where the last inequality follows from the fact s > (da + dx)/2.
Given a deterministic target policy T : X → A, we let ω(· | x) be the atomic measure

on T (x) for x ∈ S, so that the linear functionals of interest take the following form:

τ ∗ :=

∫
X
µ∗(x, T (x))dx, and Lω(µ

∗, δx0) := µ∗(x0, T (x0)).
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Finally, we let the conditional variance function be unity σ2 ≡ 1, and assume that the
sub-Gaussian parameter σ is of order one. Let µ∗ be any function lying in the Hilbert
ball BH(1/2).

Note that in this example, the importance ratio dg
dπ

is not well-defined, as the measure
ω(· | x) is atomic, for any x ∈ S. Nevertheless, estimation is still possible, and our
general frameworks provide precise characterization of the minimax risks, stated as
follows.

Corollary 5.2. Under the above setup, we have

Mn

(
BH(1)

)
≍

varξ
(
µ∗(X,T (X))

)
n

+
∑
j,k≥1

|⟨ϕj, ψk ◦ T ⟩|2

n+ j2s/dx + k2s/da
, (5.36a)

Mn

(
x0;BH(1)

)
≍ n

da+dx
2s

−1, for any x0 ∈ Tdx . (5.36b)

Furthermore, under the worst-case target policy, we have

sup
T

Mn

(
BH(1)

)
≍ n

da
2s

−1. (5.36c)

See Appendix D.5.2 for the proof.

A few remarks are in order. For the one-point functional Lω(µ
∗, δx0), the optimal

rate given by equation (5.36b) is exactly the optimal rate for estimating a (da + dx)-
dimensional Sobolev function at the point (x0, T (x0)). For the averaged functional τ ∗,
in the worst case, we only need to pay for the dimension da of the action space, due to
the averaging effect in the state space. Moreover, the precise complexity for estimation
is characterized by equation (5.36a), which depends on the behavior of the target policy
T . Such an instance-optimal risk is achieved by the estimator τ̂n. Finally, we remark
that though the statement of Corollary 5.2 is for a deterministic target policy T , the
result naturally extends to general randomized target policies.

5.4 Simulation studies

In this section, we present the results of some simulation studies in which we compare
our procedures with other methods. In particular, we perform experiments on two
classes of missing data problems, one defined by the family of singular importance
ratios discussed in Section 5.3.3.1 and the heavy-tailed example proposed by Khan and
Tamer [100], with some generalizations. These two examples allow us to explore two
different ways in which unbounded importance ratios can arise.

Concretely, we perform experiments in which the goal is to estimate the treatment
effect based on missing data. Let the state space be the real line X = R, and let the
action space be binary, A = {0, 1}. We use the action a ∈ A to model missingness, so
that we only observe the outcome Y if and only if A = 1. For simplicity, we slightly
abuse notation, and let µ∗ denote the function µ∗(·, 1). Similarly, we use π to denote the
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function π(1 | ·). The goal is to estimate the linear functional (5.1) with ω(a | x) = a,
i.e.,

τ ∗ = Eξ
[
µ∗(X)

]
.

Throughout this section, we consider the homoskedastic case with σ2(x, a) ≡ 1. By
equation (5.8), the semi-parametric efficiency bound for this problem takes the form

v2semi = varξ∗
(
µ∗(X)

)
+

∫ ∞

−∞

ξ(x)

π(x)
dx, (5.37)

which may or may not be finite.
For the rest of this section, we describe and discuss the construction of simulation

problem instances, as well as various choices of estimators under our consideration. We
then present the simulation results.

Four possible estimators: We compare the performance of four possible estimators
for the average treatment effect — two of which are based on inverse propensity weights,
while the other two (including our estimator) are based on outcome regression.

First, we consider the näıve inverse propensity weighting (IPW) estimator, defined
as

τ̂n,ipw =
1

n

n∑
i=1

YiAi
π(Xi)

. (5.38)

Note that the estimator τ̂n,ipw always has finite expectation, with E[τ̂n,ipw] = τ ∗. Assum-
ing that the outcome functions are bounded, the variance of τ̂n,ipw, if exists, is given
by

E
[
|τ̂n,ipw − τ ∗|2

]
≍ n−1

(
v2semi + Eξ

[1 + [µ∗(X)]2

π(X)

])
≍ 1

n

∫ ∞

−∞

ξ(x)

π(x)
dx.

In general, if the second moment does not exist, the näıve IPW estimator may converge
to a heavy-tailed stable law, at a rate slower than

√
n. (c.f. [86], Chapter 14)

Khan and Tamer [100] suggested improving the näıve IPW by removing data with
extremely small propensity scores. Given a truncation level γn, we define the estimator

τ̂n,trunc =
1

n

n∑
i=1

YiAi
π(Xi)

1[π(Xi) ≥ γn], (5.39)

where 1[π(Xi) ≥ γn] is equal to 1 when π(Xi) ≥ γn, and zero otherwise.
Now we turn to the outcome-regression estimators based on kernel ridge regression,

as defined in the two-stage framework (5.20). In order to improve the universal constant
factors (which are not covered by our theory), we use a cross-fit procedure, i.e., we gen-
erate an estimator τ̂ (I)

n from the framework (5.20). By switching the role of (X (I)

i , A
(I)

i , Y
(I)

i )
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and (X (II)

i , A
(II)

i , Y
(II)

i ) and applying the same two-stage framework, we obtain another
estimator τ̂ (II)

n , and the final estimator is given by

τ̂n =
1

2

(
τ̂ (I)

n + τ̂ (II)

n

)
. (5.40)

In terms of the regularization parameter ρn, we consider two possible choices:

• Optimal choice: based on the optimal theoretical prediction in equation (5.21a),
we set ρn = 0.5

n
for any n > 0. We call this estimator τ̂n,opt.

• Cross validation: for each sample size n, we use cross validation to find the
regularization parameter that minimizes the mean-squared error in predicting µ∗.
We call this estimator τ̂n,cv.

It is worth noticing that the optimal choice of the regularization parameter ρn for
estimating the scalar τ ∗ does not correspond to the optimal choice in estimating the
regression function µ∗. Indeed, as we will see in the simulation results, the common cross-
validation approach in non-parametric estimation leads to sub-optimal semi-parametric
performance under our framework, and under-smoothing is crucial to the optimal
guarantees.

5.4.1 Simulation results with heavy-tailed covariates

We first present the simulation setup and results on the heavy-tailed covariate examples
proposed by Khan and Tamer [100].

Model set-up: We consider the following choices for the distribution ξ∗ over data:

Standard normal: ξN(x) =
1√
2π

exp
(
− x2/2

)
,

Standard logistic: ξL(x) =
(
ex/2 + e−x/2

)−2
,

Standard Cauchy: ξC(x) =
1

π(1 + x2)
.

Among these choices, the normal distribution possesses the lightest tail, while the tail
of the Cauchy distribution is the heaviest.

We carry out our simulation studies using the regression function

µ∗(x) = 1 + cos(x) for x ∈ R.

This specific choice is not essential to our study; we have simply chosen a bounded and
smooth regression function. Note that many estimators under our consideration involve
shrinkage, regularization, or truncation steps, which make the output contract towards 0.
In order to ensure a fair comparison, we include offset 1 so that the regression function
is non-negative, and the target functional is bounded away from zero.
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Figure 5.2: Plots of the mean-squared error E
[
|τ̂n,⋄ − τ ∗|2

]
versus sample size n. Each

curve corresponds to a different algorithm ⋄ ∈
{
ipw, trunc, opt, cv

}
. Each marker corre-

sponds to a Monte Carlo estimate based on the empirical average of 2000 independent
runs. For the cross-validated estimator τ̂n,cv, the choice of regularization parameter is
based on averaging the cross validation results of the first 50 runs. As indicated by the sub-
figure titles, each panel corresponds to a problem setup (ξ, π) ∈

{
ξL, ξN, ξC

}
×
{
πL, πN

}
.

Both axes in the plots are given by logarithmic scales. Some of the curves may overlap
with each other.
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In order to implement the kernel-based procedures, we use a Laplacian kernel

K(u, u′) := exp
(
− 2|u− u′|

)
, for u, u′ ∈ R.

For the behavioral policy π, we use the cumulative distribution functions of logistic and
normal distributions, respectively.

πN(x) =

∫ ∞

x

1√
2π

exp
(
− y2/2

)
dy, and πL(x) =

1

1 + ex
.

Note that for both choices, the value π(x) approaches 0 as x increases; the rate of decay
is faster under the normal model than the logistic model.

The paper [100] considers the density function ξ = ξL, along with propensity score
functions π ∈

{
πN, πL

}
. Under both setups, the semi-parametric efficiency bound

derived in equation (5.37) are infinite, while certain rates of convergence are still
achieved via truncation-based estimators (see Section 4.1 of [100] for details). Khan and
Tamer proposed truncating at the threshold Xi ≤

√
log n for π = πN, and Xi ≤ log n

for π = πL. Indeed, they are the thresholds that ensures that the truncated inverse
propensity weight is uniformly bounded by a polynomial of n, under propensity scores
πL and πN, respectively. In our simulation studies, we consider all possible combinations
of ξ ∈

{
ξN, ξL, ξC

}
and π ∈

{
πN, πL

}
. We choose γn = π(log n) under the logistic

propensity score πL, and γn = π(
√
log n) under the normal propensity score πN, which

yield near-optimal truncation levels, regardless of the choice of data distribution ξ.
Intuitively, heavier tail of the distribution ξ and lighter tail of the propensity score π
together lead to less regular behavior for estimators based on important weighting.

Among our simulation setups, the only case that yields finite vsemi is that of (π =
πL, ξ = ξN); other recent work [197, 82] has also studied this particular configuration.
For the other five setups, the classical theories for

√
n-consistency and semi-parametric

efficiency are not available, due to the singular behavior of propensity scores.

Simulation results: In Figure 5.2, we demonstrate the simulation results for different
estimators under aforementioned setups. The sample size varies within the range n ∈
{50, 100, 200, 400, 800, 1600, 3200, 6400, 12800}, and the mean-squared error is estimated
through empirical average over 2000 independent runs.

From our simulation results, it can be observed that our estimator τ̂n,opt consistently
outperforms other three baselines. When tuning the regularization parameter using
cross validation, however, the estimator τ̂n,cv performs significantly worse, over all the
simulation instances. This shows that under-smoothing is crucial to the performance of
outcome-regression estimators, and that the optimal bias-variance trade-off in function
and scalar estimation problems are drastically different. The truncated IPW estimator
also yields a reasonable and robust performance, but in most settings, its rate of
convergence (represented as the slope of the curve in log-log plot) is worse than τ̂n,opt.
The näıve IPW estimator, on the other hand, can be highly unstable, especially for
heavy-tailed data distributions ξL and ξC. Finally, we remark that the two classes
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of estimators are not comparable in general, as they use different information — the
IPW-based estimators τ̂n,ipw and τ̂n,trunc use the information of the true propensity score
π, which is not needed for τ̂n,opt and τ̂n,cv; on the other hand, the outcome regression
estimators τ̂n,opt and τ̂n,cv require the treatment effect function to lie in an RKHS, while
the truncated IPW estimator τ̂n,trunc only requires it to be bounded.

It is also useful to discuss the difference in the performance of estimators under
various setups. In the classical

√
n-regime with π = πL and ξ = ξN, the truncation does

not happen with high probability, and the näıve IPW estimator yields the same MSE as
the truncated one, as shown in Figure 5.2(c). In other five cases, the estimation error
of τ̂n,ipw is unstable, and worse than the truncated analogue. It can be observed from
that the slopes of the green curves are around 1 in the log-log plots in panels (a)–(d) of
Figure 5.2, but are much flatter in panels (e) and (f). This observation suggests that
the optimal rate of convergence may be near-parametric under the logistic and normal
model, while a slower minimax rate could be unavoidable in the Cauchy setting.

5.4.2 Simulation results with singular importance ratio

In this section, we report complete simulation results for the missing data prob-
lem, but with singular importance ratios, as previously described in Section 5.1.1—
in particular, see equation (5.2). We run the four estimators discussed above, and
compare their performance. The simulation setup is essentially the same as Sec-
tion 5.4.1, with the only difference being that the sample size varies within the range
n ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800}.9 In defining the truncation-based es-
timator τ̂n,trunc, we use the truncation level γn = 1/

√
n; this choice yields the optimal

rate of convergence among truncated IPW estimators.
In Figure 5.3, we present the results of our simulations. The problem instances are

generated from the family of singular models (5.2) with exponents α ∈ {0.5, 1, 2, 3}. It
can be seen that the simulation results match well with our theoretical prediction: in
the classical regime with α = 0.5, all the four estimators yield the same rate, while τ̂n,opt
achieves slightly better instance-dependent behavior; in the critical regime α = 1, the
four estimators start to exhibit diverging behavior; in the harder regimes of α ∈ {2, 3},
the optimal estimator τ̂n,opt achieves the sharpest slope, significantly outperforming the
other three alternatives.

5.5 Proofs

In this section, we collect the proofs of our main results, with some auxiliary results
deferred to the appendices.

9We made this slight modification so as to avoid the rare event that no outcome is observed.
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Figure 5.3: Plots of the mean-squared error E
[
|τ̂n,⋄ − τ ∗|2

]
versus sample size n for

⋄ ∈
{
ipw, trunc, opt, cv

}
. The simulation parameters are exactly the same as Figure 5.2,

except for the underlying problem instances. As indicated by the sub-figure titles, each
panel corresponds to an exponent α ∈ {0.5, 1, 2, 3}. We have already presented part of
the results (the cases of α = 0.5 and α = 2) in Section 5.1.

5.5.1 Proof of Theorem 5.1

Throughout this section, we adopt the shorthand Mn(I∗,F) ≡ Mn(F), since I∗ remains
fixed throughout.

5.5.1.1 Proof of Theorem 5.1(a)

This proof exploits some techniques introduced in Chapter 4. Recalling that c is a
universal constant, it suffices to prove the following two claims:

Mn(I∗,F)
(a)

≥ c

n
V 2
ξ∗(µ

∗), and Mn(I∗,F)
(b)

≥ c

n
V 2
σ,n(ξ

∗, π, g;F). (5.41)
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Beginning with the bound (5.41)(a), we first observe that the minimax risk over
the class Nn(µ

∗, ξ∗) is lower bounded by the risk with fixed outcome function µ∗ and
underlying distribution in the neighborhood of ξ∗, i.e.,

Mn(F) ≥ Mn({µ∗}) = inf
τ̂n

sup
(ξ,µ∗)∈Nn(µ∗,ξ∗)

E
[
|τ̂n − τ(µ∗, ξ)|2

]
.

But by Theorem 4.3 in Chapter 4, this minimax risk is lower bounded by c
n
V 2
ξ∗(µ

∗),
which establishes the claim.

We now turn to proving the bound (5.41)(b), and we do so via a version of Le
Cam’s two point lower bound. More precisely, for a fixed underlying distribution
ξ∗, we construct a pair (µ+, µ−) of outcome functions within the neighborhood

{
µ :

∥µ− µ∗∥L2(ξ∗·π) ≤ σ̄2

n

}
∩ F such that if we let Pµ,ξ be the distribution of observations

under the ground truth (µ, ξ), there is

dTV

(
P⊗n
µ+,ξ∗

,P⊗n
µ−,ξ∗

) (a)

≤ 1

2
, and Lω(µ+, ξ

∗)− Lω(µ−, ξ
∗)

(b)

≥ c√
n
Vσ,n(ξ

∗, π, g;F)

(5.42)

Le Cam’s two-point lemma (see e.g. [213], Chapter 15) then implies

Mn(F) ≥ 1

4

{
1− dTV

(
P⊗n
µ+,ξ∗

,P⊗n
µ−,ξ∗

)}
·
{
Lω(µ+, ξ

∗)− Lω(µ−, ξ
∗)
}2

≥ c2

8n
V 2
σ,n(ξ

∗, π, g;F),

completing the proof of equation (5.41)(b)
In order to prove the two bounds in line (5.42), we first need to specify the problem

instances.

Construction of problem instances: We consider the noisy observation model

Yi | Xi, Ai ∼ N
(
µ∗(Xi, Ai), σ

2(Xi, Ai)
)

for i = 1, 2, . . . , n. (5.43)

We may assume that Vσ,n(ξ
∗, π, g;F) > 0 without loss of generality (otherwise the lower

bound is trivial). By the defining equation (5.1) and (5.12), and the symmetry of the
function class F , there exists a function q0 : X× A → R such that

Eξ∗
[ ∫

A
q0(X, a)dg(a | X)

]
≥ Vσ,n(ξ∗,π,g;F)

2
, and

q0√
n
∈ F , Eξ∗·π

[
q20(X,A)

σ2(X,A)

]
≤ 1

4
.

Using this function, we construct the outcome functions

µ+ := µ∗ + 1
2
√
n
q0, and µ− := µ∗ − 1

2
√
n
q0.
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Since µ∗ ∈ 1
2
F and 1

2
√
n
q0 ∈ 1

2
F , we have µ+, µ− ∈ F by convexity and symmetry. On

the other hand, we have the distance bound

∥µ∗ − µ+∥2L2(ξ∗·π) =
1

4n
Eξ∗·π

[
q20(X,A)

]
≤ σ̄2

4n
Eξ∗·π

[ q20(X,A)
σ2(X,A)

]
≤ σ̄2

16n
.

Consequently, we have µ+ ∈ Nval

n (µ
∗) ∩ F . Similarly, we also have µ− ∈ Nval

n (µ
∗) ∩ F .

Proof of equation (5.42)(a): We bound the KL divergence between the product
measures. Let L(Y |X,A) denote the conditional law of Y given the pair (X,A), we
note that

DKL

(
P⊗n
µ+,ξ∗

∥ P⊗n
µ−,ξ∗

)
(i)
= n ·DKL

(
Pµ+,ξ∗ ∥ Pµ−,ξ∗

)
(ii)

≤ n · E
[
DKL

(
L(Y |X,A)

∣∣
µ+

∥ L(Y |X,A)
∣∣
µ−

) ]
= n · 1

4n
· E
[ q20(X,A)
σ2(X,A)

]
≤ 1

4
,

where we use tensorization of KL divergence in step (i), and use convexity of KL
divergence in step (ii).

Applying Pinsker’s inequality yields

dTV

(
P⊗n
µ+,ξ∗

,P⊗n
µ−,ξ∗

)
≤
√

1

2
DKL

(
P⊗n
µ+,ξ∗

∥ P⊗n
µ−,ξ∗

)
≤ 1

2
√
2
,

which proves equation (5.42)(a).

Proof of equation (5.42)(b): Straightforward calculation yields

Lω(µ+, ξ
∗)− Lω(µ−, ξ

∗) =
1√
n
Eξ∗
[ ∫

A
q0(X, a)dg(a | X)

]
≥ 1

2
√
n
Vσ,n(ξ

∗, π, g;F).

5.5.1.2 Proof of Theorem 5.1(b)

Similar to the proof of Theorem 5.1, we use Le Cam’s two-point lemma. By the
definition (5.12) of the variance functional Vσ,n(δx0 , π, g;F), there exists a function
q0 : X× A → R, such that∫

A
q0(x0, a)dg(a | x0) ≥

Vσ,n(δx0 , π, g;F)

2
,

q0√
n
∈ F , and Eξ∗·π

[ q20(X,A)
σ2(X,A)

]
≤ 1

4
.

Using this function, we construct the outcome functions

µ+ := µ∗ +
1

2
√
n
q0, and µ− := µ∗ − 1

2
√
n
q0.
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Under the construction (5.43), following the derivation of equation (5.42)(a), we have

dTV

(
P⊗n
µ+,ξ∗

,P⊗n
µ−,ξ∗

)
≤ 1

2
.

On the other hand, the gap satisfies

Lω(µ+, δx0)− Lω(µ−, δx0) =
1√
n

∫
A
q0(x0, a)dg(a | x0) ≥

1

2
√
n
Vσ,n(δx0 , π, g;F).

Applying Le Cam’s lemma yields the claim.

5.5.2 Proof of Propositions 5.1 and 5.2

In this section, we prove our two propositions that characterize the variance functional
in the case of an RKHS.

5.5.2.1 Proof of Proposition 5.1

The claim consists of two inequalities, and we split our proof accordingly.

Proof of inequality (5.18)(b): By definition, we have

Vσ,n(ν, π, g;BH (R))

=
√
n sup
f∈H

{ ∣∣∣∣Eν[ ∫
A
f(X, a)dg(a | X)

]∣∣∣∣ | ∥f∥H ≤ R and Eξ∗·π
[
f2(X,A)
σ2(X,A)

]
≤ 1

4n

}
≥ sup

q∈H

{
Eν
[ ∫

A
q(X, a)dg(a | X)

]
| ∥q∥2H
R2n

+ 4Eξ∗·π
[
q2(X,A)
σ2(X,A)

]
≤ 1
}
, (5.44)

where we have made the change of variable f = q/
√
n.

Any function q ∈ H has a basis expansion of the form q =
∑∞

j=1 θjϕj, whence

Eν
[ ∫

A
q(X, a)dg(a | X)

]
= ⟨θ, u⟩ℓ2 , where u ≡ u(ν), and

1
R2n

∥q∥2H + 4Eξ∗·π
[
q2(X,A)
σ2(X,A)

]
= θ⊤

{
(R2n)−1Λ−1 + 4 Γσ

}
θ,

where we use the eigen-value representation ∥q∥2H = θ⊤Λ−1θ.
We make the choice

θ =
{
(R2n)−1Λ−1 + 4Γσ

}−1
u/∥
{
(R2n)−1Λ−1 + 4Γσ

}−1/2
u∥ℓ2 .

Substituting this choice into equation (5.44) yields

V 2
σ,n(ν, π, g;BH (R)) ≥ u⊤

{
(R2n)−1Λ−1 + 4Γσ

}−1
u ≥ 1

4
u⊤
{
(R2n)−1Λ−1 + Γσ

}−1
u,

which establishes inequality (b).
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Proof of inequality (5.18)(a): Turning to the other inequality in the claim, the same
change of variable and followed by basis expansion yields

Vσ,n(ν, π, g;BH (R))

= sup
q∈H

{ ∣∣∣∣Eν[ ∫
A
q(X, a)dg(a | X)

]∣∣∣∣ | 1
R
√
n
∥q∥H ≤ 1, Eξ∗·π

[
q2(X,A)
σ2(X,A)

]
≤ 1

4

}
≤ sup

q∈H

{
Eν
[ ∫

A
q(X, a)dg(a | X)

]
| 1

R2n
∥q∥2H + Eξ∗·π

[
q2(X,A)
σ2(X,A)

]
≤ 5

4

}
= sup

θ∈ℓ2

{
⟨θ, u⟩ℓ2 | θ⊤

(
(R2n)−1Λ−1 + Γσ

)
θ ≤ 5

4

}
≤

√
5
2
·
√
u⊤
{
(R2n)−1Λ−1 + Γσ

}−1
u,

which completes the proof of inequality (a).

5.5.2.2 Proof of Proposition 5.2

Throughout this proof, we use ∥ · ∥2 as a shorthand for the L2(ξ∗ · π)-norm. The
variational formulation (5.12) can be re-written as

Vσ,n(ξ
∗, π, g;BH (R)) = sup

{
⟨f, dg

dπ
⟩ | Eξ∗·π

[ f2(X,A)
σ2(X,A)

]
≤ 1

4
, ∥f∥H ≤ R

√
n
}
. (5.45)

Clearly, the function n 7→ Vσ,n(ξ
∗, π, g;BH (R)) is non-decreasing, and since

vsemi(µ
∗, dg

dπ
) < +∞, it is uniformly bounded from above. Therefore, by taking n→ +∞,

the limit exists. Moreover, we have

lim
n→∞

Vσ,n(ξ
∗, π, g;BH (R)) ≤ 1

2

√
Eξ∗·π

[(
dg
dπ
(A | X)

)2 · σ2(X,A)
]
.

Now the function (x, a) 7→ σ(x, a) dg
dπ
(a | x) belongs to L2(ξ∗ · π). Combined with the

uniform upper bound supx,a σ
2(x, a) ≤ σ̄2, it follows that the function σ2 dg

dπ
also belongs

to L2(ξ∗ · π). Since the Hilbert space H is universal (and hence dense in L2(ξ∗ · π)), it
follows that for any ε > 0, we can find a function hε ∈ H such that ∥hε − σ2 dg

dπ
∥2 ≤ ε.

Now define the rescaled function qε := hε/(2∥σ dgdπ∥2). With this definition, we have

E
[
q2ε(X,A)
σ2(X,A)

]
≤ 1

4
∥σ dg

dπ
∥−2
2 E

[{ ∣∣σ(X,A) · dg
dπ
(A | X)

∣∣+ ∣∣hε − σ2 dg
dπ

∣∣
σ

(X,A)
}2]

≤ ∥σ dg
dπ
∥−2
2

{
1+ε
4
E
[
σ2(X,A) ·

(
dg
dπ
(A | X)

)2]
+ 1

ε
E
[(hε−σ2 dg

dπ
σ

)2
(X,A)

]}
≤ 1 + ε

4
+

ε

σ2
,

along with the bound ∥qε∥H ≤ ∥σ dg
dπ
∥−1
2 ∥hε∥H <∞.
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We now define the rescaled function q := 1

1+ε+
4ε
σ2

qε. Given a sample size lower

bounded as n ≥ ∥hε∥2H/(R2∥σ dg
dπ
∥2L2(ξ∗·π)), the above inequalities imply that the rescaled

function q satisfies the constraints in the optimization problem (5.45). Substituting this
choice into the objective function, we find that

Eξ∗
[ ∫

A
q(X, a)dg(a | X)

]
≥ 1− ε− 4ε/σ2

2∥σ dg
dπ
∥2

Eξ∗
[ ∫

A
hε(X, a)dg(a | X)

]
≥ 1− ε− 4ε/σ2

2∥σ dg
dπ
∥2

{
∥ dg
dπ
σ∥22 − E

[(
hε − σ2 dg

dπ

)
· dg
dπ
(A | X)

]}
.

The Cauchy–Schwarz inequality implies that

E
[(
hε − σ2 dg

dπ

)
· dg
dπ

(A | X)
]
≤ ∥hε − σ2 dg

dπ
∥2 ·

1

σ
∥σ dg

dπ
∥2,

where we have used the fact that σ(x, a) ≥ σ for all pairs (x, a).
Combining the two bounds together and taking the limit, we conclude that

lim
n→∞

Vσ,n(ξ
∗, π, g;BH (R)) ≥ Eξ∗

[ ∫
A
q(X, a)dg(a|X)

]
≥ 1−ε−ε/σ2

2
∥σ dg

dπ
∥2 − 1−ε−ε/σ2

2σ
ε.

Since the choice of ε is arbitrary, this concludes the proof of this proposition.

5.5.3 Proof of Theorem 5.2 and variants

Let us first introduce some notation used in the proof. Our proof involves the diagonal
operator Λ−1 := diag

(
{λ−1

k }∞k=1

)
, and the weighted ℓ2-norms

∥z∥2λ :=
∞∑
j=1

λjz
2
j , and ∥z∥2λ−1 :=

∞∑
j=1

λ−1
j z2j . (5.46a)

5.5.3.1 Set-up for auxiliary results

We define the empirical feature vector ûn := 1
n

∑n
i=1

∫
A ϕ(X

(II)

i , a)dg(a | X (II)

i ). By the
kernel boundedness assumption Kbou(κ), we have ∥u∥λ < ∞ and ∥ûn∥λ < ∞ almost
surely. We also define a linear operator Ψ from the Hilbert space H to the sequence space
ℓ2 with components [Ψ(f)]j = ⟨f, ϕj⟩L2(ξ∗·π). Since µ∗ and µ̂n belong to the Hilbert
space H, it is meaningful to define

β∗ := Ψ(µ∗), and β̂n := Ψ(µ̂n).
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Note that for any function f ∈ H, we have

∥Ψf∥2λ−1 =
+∞∑
j=1

λ−1
j ⟨f, ϕj⟩2L2(ξ∗·π) =

∞∑
j=1

⟨f,
√
λjϕj⟩2H = ∥f∥2H <∞.

Consequently, the inner products ⟨u, β⟩ ≤ ∥u∥λ · ∥β∥λ−1 are well-defined for u ∈ {u, ûn}
and β ∈ {β∗, β̂n}. Fubini’s theorem guarantees that target functional τ ∗ and the
estimator τ̂n can be written as

τ ∗ =
∞∑
k=0

⟨µ∗, ϕk⟩L2(ξ∗·π) · Eξ∗
[∫

A
ϕk(X, a)dg(a | X)

]
= ⟨u, β∗⟩, and

τ̂n = n−1

∞∑
k=0

⟨µ̂(1)
n , ϕk⟩L2(ξ∗·π)

n∑
i=1

∫
A
ϕk(X

(II)

i , a)dg(a | X (II)

i ) = ⟨ûn, β̂n⟩.

We therefore have the following error decomposition:

τ̂n − τ ∗ = ⟨ûn − u, β∗⟩+ ⟨u, β̂n − β∗⟩+ ⟨ûn − u, β̂n − β∗⟩. (5.47)

The rest of this section is devoted to bounds on each terms appearing in this decompo-
sition. In particular, we require two auxiliary results. Recall the shorthand notation
V 2
ξ∗(f) := varX∼ξ∗

( ∫
A f(X, a)dω(a | X)

)
.

Lemma 5.1. Under Assumptions (Kbou(κ)) and (subG(σ)), for any function f ∈ H,
we have

|⟨ûn − u, Ψf⟩| ≤ 2Vξ∗(f)

√
log(1/δ)

n
+ 6κ∥f∥H

log(1/δ)

n
. (5.48a)

with probability at least 1 − δ. Furthermore, given a sample size n ≥ log(1/δ) and a
scalar ρ > 0, we have

∥(I + ρΛ−1)−1/2
(
ûn − u

)
∥ℓ2 ≤

√
D(ρ)

n
log(1/δ) (5.48b)

with probability 1− δ.

See Section 5.5.3.3 for the proof.

Lemma 5.2. Suppose that the kernel bound (Kbou(κ)) and tail condition (subG(σ))
are in force. Then for any infinite-dimensional vector z and scalar δ ∈ (0, 1), with the
regularization parameter ρn = σ̄2

R2n
, and under the sample-size condition (5.21a), we have∣∣∣⟨z, β̂n − β∗⟩

∣∣∣ ≤ c∥
(
I + ρnΛ

−1
)−1/2

z∥ℓ2 ·
{
σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) ·

log(1/δ) log n

n

}
,

(5.49)

with probability at least 1− δ.

See Section 5.5.3.4 for the proof.
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5.5.3.2 Main argument

Taking these two lemmas as given, we now prove Theorem 5.2 by bounding each term
in the decomposition result (5.47). First, recalling that β∗ = Ψµ∗, we can apply the
bound (5.48a) to find that

|⟨ûn − u, β∗⟩| ≤ 2Vξ∗(µ
∗)

√
log(1/δ)

n
+ 6κR

log(1/δ)

n
(5.50)

with probability at least 1 − δ/3. Second, by the boundedness of basis functions, we
have u ∈ ℓ∞, so that Lemma 5.2 can be applied to obtain∣∣∣⟨u, β̂n − β∗⟩

∣∣∣ ≤ c∥
(
I + ρnΛ

−1
)−1/2

u∥ℓ2 ·
{
σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) ·

log(1/δ) log n

n

}
≤ 2c∥

(
I + ρnΛ

−1
)−1/2

u∥ℓ2σ̄
√

log(1/δ)

n
, (5.51)

with probability 1−δ/3, where the last step follows from the sample-size condition (5.21a),

as the condition ensures that σ
√
D(ρn) · log(1/δ) logn

n
≤ σ̄

√
log(1/δ)

n
.

Next, we apply equation (5.48b) in combination with Lemma 5.2, and obtain the
following inequality with probability 1− δ/3∣∣∣⟨ûn − u, β̂n − β∗⟩

∣∣∣
≤ c∥

(
I + ρnΛ

−1
)−1/2(

ûn − u
)
∥ℓ2 ·

{
σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) ·

log(1/δ) log n

n

}
≤ c

√
D(ρn)

n
log(1/δ) ·

{
σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) ·

log(1/δ) log n

n

}
(i)

≤ cσ
√
D(ρn)

log(1/δ) log n

n

{
1 +

√
D(ρn) log(1/δ)

n

}
(ii)

≤ 2cσ
√
D(ρn)

log(1/δ) log n

n
. (5.52)

where step (i) follows from the relation σ̄ ≤ σ, whereas the final step follows from the

sample size condition (5.21a), as it ensures D(ρn) log(1/δ)
n

≤ 1.
Combining the inequalities (5.50), (5.51), and (5.52) completes the proof of Theo-

rem 5.2.

5.5.3.3 Proof of Lemma 5.1

We simplify notation by omitting the superscript (II), and using (Xi, Ai, Yi) to denote
the data.
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Proof of the directional bound (5.48a) : By definition, we have

⟨ûn, Ψf⟩ =
1

n

n∑
i=1

∫
A
⟨ϕ(Xi, a), Ψf⟩dω(a | Xi)

=
1

n

n∑
i=1

Zi where Zi :=
∫
A f(Xi, a)dω(a | Xi).

Similarly, the population-level vector u satisfies ⟨u, Ψf⟩ = Eξ∗ [Z], so that our prob-
lem amounts to bounding the fluctuations of the sample average 1

n

∑n
i=1 Zi around

its mean. Our approach is via Bernstein’s inequality, and applying it requires
control on both the variance and absolute value of Zi. By inspection, we have
var(Zi) = V 2

ξ∗(f) = var
( ∫

A f(X, a)dω(a | X)
)
and moreover, we claim that

|Zi| ≤ κ · ∥f∥H. (5.53)

With these two bounds in hand, invoking Bernstein’s inequality (see e.g. [136]) yields

P (|⟨ûn − u, Ψf⟩| ≥ t) ≤ 2 exp

(
−nt2

2V 2
ξ∗(f) + 3κ∥f∥Ht

)
,

setting the right hand side as δ and solving for t, we complete the proof of the directional
bound (5.48a).

It remains to prove the claim (5.53). Using our boundedness condition (5.6) on g,
we have

|Zi| =
∣∣∣∣∫

A
f(Xi, a)dω(a | Xi)

∣∣∣∣ ≤ sup
(x,a)∈S×A

|f(x, a)|

(i)

≤ sup
(x,a)∈S×A

∑
k≥1

λk |ϕk(x, a)| · |⟨f, ϕk⟩H|

(ii)

≤ sup
(x,a)∈S×A

(∑
k≥1

λkϕ
2
k(x, a)

)1/2
·
(∑
k≥1

λk⟨f, ϕk⟩2H
)1/2

where step (i) follows by expanding f into a basis representation f =
∑+∞

k=1 λk⟨f, ϕk⟩Hϕk;
and step (ii) follows from the Cauchy–Schwarz inequality. Now by Mercer’s theorem, we
have the relation (∑

k≥1

λk⟨f, ϕk⟩2H
)1/2

= ∥f∥H,

whereas the boundedness condition (Kbou(κ)) implies that
∑

k≥1 λkϕ
2
k(x, a) ≤

K
(
(x, a), (x, a)

)
≤ κ2, for any (x, a) ∈ X × A. Putting together the pieces yields

the claimed bound (5.53).
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Proof of the preconditioned bound (5.48b): Defining Ui :=
∫
A ϕ(Xi, a)dω(a | Xi)

so that ûn = 1
n

∑n
i=1 Ui, the norm on the left-hand-side of Eq (5.48b) can be equivalently

written as an empirical process supremum

∥(I + ρΛ−1)−1/2
(
ûn − u

)
∥ℓ2 = sup

z⊤(I+ρΛ−1)z≤1

1

n

n∑
i=1

z⊤(Ui − u) =: Hn

In order to bound the expected supremum, we simply use the Cauchy–Schwarz inequality
to arrive at the bound

E
[
Hn

]
≤
{
E
[
∥(I + ρΛ−1)−1/2 · 1

n

n∑
i=1

(Ui − u)∥2ℓ2
]}1/2

≤
√
n−1E

[
∥(I + ρΛ−1)−1/2Ui∥2ℓ2

]
,

where the second inequality comes from the fact that Ui’s are i.i.d.
In order to bound this quantity, we use Talagrand’s concentration inequality (c.f. [213],

Theorem 3.8 and remarks). With probability 1− δ, we have

Hn ≤ 2E
[
Hn

]
+ c
(

sup
z⊤(I+ρΛ−1)z≤1

E[(z⊤(Ui − u))2] log(1/δ)
n

)1/2
+ c sup

(x,a)∈X×A
∥(I + ρΛ−1)−1/2ϕ(x, a)∥ℓ2 · log(1/δ)

n
. (5.54)

Since the Radon measure g satisfies the bound (5.6), the summand Ui satisfies the
almost sure upper bound

∥(I + ρΛ−1)−1/2Ui∥ℓ2 ≤ sup
(x,a)∈S×A

∥(I + ρΛ−1)−1/2ϕ(x, a)∥ℓ2 =
√
D(ρ)

The bound (5.54) then becomes

Hn ≤ c
√
D(ρ) ·

{√ log(1/δ)

n
+

log(1/δ)

n

}
,

which completes the proof of equation (5.48b).

5.5.3.4 Proof of Lemma 5.2

For notational simplicity, we omit the supscript (I) in (Xi, Ai, Yi). Using the basis
expansion µ =

∑
k≥0 β(k)ϕk, we have the equivalence

β̂n = Ψ · argmin
µ∈H

{ 1
n

n∑
i=1

(
Yi − µ(Xi, Ai)

)2
+ ρn∥µ∥2H

}
= arg min

β∈ℓ2(N)

{ 1
n

n∑
i=1

(
Yi − ⟨β, ϕ(Xi, Ai)⟩

)2
+ ρn∥β∥2λ−1

}
.
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Define the noise variable εi := Yi − µ∗(Xi, Ai) along with the empirical covariance

operator Γ̂n := 1
n

∑n
i=1 ϕ(Xi, Ai)ϕ(Xi, Ai)

⊤. Using this notation, we can write

β̂n − β∗ =
(
Γ̂n + ρnΛ

−1
)−1 · 1

n

n∑
i=1

{
εiϕ(Xi, Ai)− ρnΛ

−1β∗

}
.

Our approach to controlling the projection of this quantity in any fixed direction z
consists of two steps:

• First, conditionally on the state-action pairs (Xi, Ai)
n
i=1, we exhibit a high-

probability upper bound on the error z⊤
(
β̂n− β∗

)
with respect to the randomness

in the outcomes Yi. The bound depends on the behavior of the empirical covariance
operator Γ̂n of feature vectors; see Lemma 5.3 for details.

• Second, we relate the empirical covariance operator Γ̂n with its population
analogue (which is the identity operator I, since (ϕj)

∞
j=1 forms an orthonormal

basis). The form of infinite-dimensional concentration results is exactly the form
required in the first step. See Lemma 5.4 for details.

Let us give precise statements of the two auxiliary results needed in the proof:

Lemma 5.3. Conditionally on the state-action sequence (Xi, Ai)
n
i=1, for any z ∈ ℓ∞(N),

we have∣∣∣z⊤(β̂n − β∗)
∣∣∣ ≤ c∥

(
Γ̂n + ρnΛ

−1
)−1/2

z∥ℓ2

×
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+ σ sup

(x,a)

∥
(
Γ̂n + ρnΛ

−1
)−1/2

ϕ(x, a)∥ℓ2 · log(1/δ) logn
n

}
, (5.55)

with probability at least 1− δ.

See Appendix D.3.1 for the proof.

Our next auxiliary result relates the sample covariance operator Γ̂n with the popula-
tion one. Here we state a somewhat general result, since we use it both here and in our
later proof of Theorem 5.3.

Consider a weight function (x, a) 7→ q(x, a) ∈ [q, q], where (q, q) are a pair of positive
scalars. Define the empirical operator

Γ̂n,q := n−1

n∑
i=1

q(Xi, Ai)ϕ(Xi, Ai)ϕ(Xi, Ai)
⊤,

along with its its population version Γ∗,q := E
[
Γ̂n,q

]
. For the current proof, it suffices to

take q(x, a) = 1.
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Lemma 5.4. For scalars δ, ω ∈ (0, 1), consider a regularization parameter ρn satisfying
the relation

(q/q) log
(
κ2

ρnδ

)
· D
(
ρn/q
)

n
≤ ω

16
. (5.56)

Then we have

(1− ω)
(
Γ∗,q + ρnΛ

−1
)
⪯ Γ̂n,q + ρnΛ

−1 ⪯ (1 + ω)
(
Γ∗,q + ρnΛ

−1
)

(5.57)

with probability at least 1− δ.

See Appendix D.3.2 for the proof.

Taking these two lemmas as given, we now proceed with the proof of Lemma 5.2.
We define the event

E :=
{
Γ̂n + ρnΛ

−1 ⪰ 1
2
(I + ρnΛ

−1)
}
.

With the given choice ρn = σ̄2

R2n
, for a sample size n satisfying the requirement (5.21a),

we have

log
( κ2
ρnδ

)D(ρn)

n
≤ 1

32
.

By applying Lemma 5.4 with q(x, a) ≡ 1, we are guaranteed that P(E ) ≥ 1− δ.
Conditioned on the event E , the definition of effective dimension guarantees that

sup
(x,a)∈S×A

∥
(
Γ̂n + ρnΛ

−1
)−1/2

ϕ(x, a)∥ℓ2

≤
√
2 sup
(x,a)∈S×A

∥
(
I + ρnΛ

−1
)−1/2

ϕ(x, a)∥ℓ2 ≤
√
2D(ρn).

Consequently, conditioned on the event E , Lemma 5.3 guarantees that∣∣∣z⊤(β̂n − β∗)
∣∣∣

≤ c∥
(
Γ̂n + ρnΛ

−1
)−1/2

z∥ℓ2 ·
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+ σ
√

2D(ρn) · log(1/δ) logn
n

}
≤ 2c∥

(
I + ρnΛ

−1
)−1/2

z∥ℓ2 ·
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) · log(1/δ) logn

n

}
,

with probability at least 1− δ.
Substituting the choice ρn = σ̄2

R2n
, we note that

√
ρn∥µ∗∥H ≤ √

ρnR ≤ σ̄√
n
, leading to

the bound with probability 1− δ∣∣∣z⊤(β̂n − β∗)
∣∣∣ ≤ 2c∥

(
I + ρnΛ

−1
)−1/2

z∥ℓ2 ·
{
σ̄

√
log(1/δ)

n
+ σ
√
D(ρn) · log(1/δ) logn

n

}
,

which completes the proof of Lemma 5.2.
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5.5.4 Proof of Theorem 5.3 and corollaries

The proof consists of three parts: we first establish guarantees on the auxiliary estimators
µ̃n and σ̂2

n, and then use these guarantees to bound the error of the two-stage estimator
τ̂n. Concretely, we prove the following claims in turn.

• For any fixed state-action pair (s0, a0) and any δ ∈ (0, 1), the first-stage estimator
µ̃n satisfies the bound

|µ̃n(s0, a0)− µ∗(s0, a0)| ≤ cσ

√
D(ρ(I)

n )

n
log(1/δ), (5.58a)

with probability 1− δ. See Section 5.5.4.1 for the proof.

• For any fixed state-action pair (s0, a0), the second-stage estimator σ̂n satisfies the
bound

1

2
σ2(s0, a0) ≤ σ̂2

n(s0, a0) ≤ 2σ2(s0, a0), (5.58b)

with probability 1− δ/n. See Section 5.5.4.2 for the proof.

• Using an approach analogous to that in the proof of Theorem 5.2, we represent
the target functionals using basis functions, and recall the error decomposition

τ̂n − τ ∗ = ⟨ûn − u, β∗⟩+ ⟨u, β̂n − β∗⟩+ ⟨ûn − u, β̂n − β∗⟩, (5.58c)

where we denote β∗ := Ψµ∗ and β̂n := Ψµ̂n. The errors in the sample average
feature vector ûn can be controlled using Lemma 5.1 just as in the proof of The-
orem 5.2, while bounding the error for the weighted least-square estimator β̂n
requires new ingredients; see Lemma 5.5 to follow.

Lemma 5.5. Under the conditions of Theorem 5.3, with probability 1 − δ, for any
infinite-dimensional vector z, we have∣∣∣z⊤(β̂n − β∗)

∣∣∣ ≤ c∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

z∥ℓ2
√

log(1/δ)

n
, (5.59)

where c > 0 is a universal constant.

See Section 5.5.4.3 for the proof.

Having set up the basic ingredients, we are now ready to prove the main claims
of Theorem 5.3. We bound each terms in the decomposition result (5.58c) as follows.

Applying the bound (5.48a) from Lemma 5.1 with f = µ∗, with probability 1− δ,
we have

|⟨ûn − u, β∗⟩| ≤ 2Vξ∗(µ
∗)

√
log(1/δ)

n
+ 6κR

log(1/δ)

n
. (5.60)
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Applying Lemma 5.5 with z = u yields the bound

|⟨u, β̂n − β∗⟩| ≤ c∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

u∥ℓ2
√

log(1/δ)
n

≤ 2cVσ,n(ξ
∗, π, g;BH (R))

√
log(1/δ)

n
.

(5.61)

valid with probability 1− δ. Here the second step follows from Proposition 5.1.
Finally, applying Lemma 5.5 with z = ûn − u,10 as well as equation (5.48b)

in Lemma 5.1, with probability 1− δ, we have the upper bound∣∣∣⟨ûn − u, β̂n − β∗⟩
∣∣∣ ≤ c∥

(
Γσ + ρ(III)

n Λ−1
)−1/2

(ûn − u)∥ℓ2
√

log(1/δ)

n

≤ cσ̄∥
(
I + σ̄2ρ(III)

n Λ−1
)−1/2

(ûn − u)∥ℓ2
√

log(1/δ)

n

≤ cσ̄

√
D(σ̄2ρ(III)

n )
log(1/δ)

n

= cσ̄

√
D(ρ(I)

n )
log(1/δ)

n
. (5.62)

Combining equations (5.60), (5.61), and (5.62) completes the proof of Theorem 5.3.

5.5.4.1 Proof of equation (5.58a)

Define the infinite-dimensional vectors

β̃n := Ψµ̃, and β∗ := Ψµ∗.

The error can be written in the form of the basis function representation

µ̃n(s0, a0)− µ∗(s0, a0) = ⟨β̃n − β∗, ϕ(s0, a0)⟩.

Invoking Lemma 5.2 with z = ϕ(s0, a0), we have∣∣∣⟨ϕ(s0, a0), β̂n − β∗⟩
∣∣∣

≤ c∥
(
I + ρ(I)

nΛ
−1
)−1/2

ϕ(s0, a0)∥ℓ2 ·
{
σ̄

√
log(1/δ)

n
+ σϕmax

√
D(ρ(I)

n ) ·
log(1/δ) log n

n

}
,

holding true with probability 1− δ.
Recall the definition (5.19) of effective dimension, we have the uniform upper bound

∥
(
I + ρ(I)

nΛ
−1
)−1/2

ϕ(x0, a0)∥ℓ2 ≤ sup
(x,a)

∥
(
I + ρ(I)

nΛ
−1
)−1/2

ϕ(x, a)∥ℓ2 ≤
√
D(ρ(I)

n )

Substituting back and using the sample-size condition (5.28a) completes the proof of
equation (5.58a).

10Note that the vector ûn is independent of (X (III)

i , A(III)

i , Y (III)

i )ni=1, so that Lemma 5.5 is applicable.
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5.5.4.2 Proof of equation (5.58b)

Define the σ-field B1 := σ
(
{X (I)

i , A
(I)

i , Y
(I)

i }ni=1

)
. Clearly, the first-stage regression function

µ̃n is measurable in B1. Since each data-point (X (II)

i , A
(II)

i , Y
(II)

i ) at the second stage is
independent of B1, equation (5.58a) guarantees that

P

{∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣ ≥ 2cσ

√
D(ρ(I)

n )

n
log(n/δ)

}
≤ δ

2n2
.

Applying union bound and the tower property yields

E

[
P
{
max
i∈[n]

∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣ ≥ 2cσ

√
D(ρ(I)

n )

n
log(n/δ)

}
| B1

]

≤
n∑
i=1

P

{∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣ ≥ 2cσ

√
D(ρ(I)

n )

n
log(n/δ)

}
≤ δ

2n
. (5.63)

For the noisy observation we construct in this step, the conditional expectation takes
the form

E
[
(Y (II)

i − µ̃n(X
(II)

i , A
(II)

i ))2 | X (II)

i , A
(II)

i ,B1

]
= σ2(X (II)

i , A
(II)

i ) + (µ̃n − µ∗)2(X (II)

i , A
(II)

i )︸ ︷︷ ︸
=:b(X

(II)
i ,A

(II)
i )

.

We further note that for any p > 0, we have

E
[ ∣∣∣(Y (II)

i − µ̃n(X
(II)

i , A
(II)

i )
)2∣∣∣p | X (II)

i , A
(II)

i ,B1

]
≤ 22pE

[ ∣∣∣(Y (II)

i − µ∗(X (II)

i , A
(II)

i )
)2∣∣∣p | X (II)

i , A
(II)

i ,B1

]
+ 22p

∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣2p

≤ 42pppσ2p + 22pbp(X (II)

i , A
(II)

i ),

which verifies the tail assumption ∥Y (II)

i − µ̃n(X
(II)

i , A
(II)

i )
)2∥ψ1 ≤ 4(σ2 + b(X (II)

i , A
(II)

i ))
conditionally on X (II)

i , A
(II)

i and B1.
Having verified the observation assumption (5.27), we are ready to apply the robust

pointwise risk property satisfied by the estimating procedure A. By definition, given a
sample size n ≥ m

(
σ2/2, δ/(2n)

)
, for any ε > 0 and δ ∈ (0, 1), we have

P
{ ∣∣σ̂2

n(s0, a0)− σ2(s0, a0)
∣∣ ≤ σ2/2 | B1

}
≥ P

{
max
i∈[n]

|b(X (II)

i , A
(II)

i )| ≤ b(σ2/2, δ/(2n)) | B1

}
− δ

2n
, (5.64)

almost surely.
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Given a sample size satisfying the requirement in equation (5.28b), we have

P
{
max
i∈[n]

|b(X (II)

i , A
(II)

i )| ≤ b(σ2/2, δ/(2n)) | B1

}
≥ P

{
max
i∈[n]

∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣ ≤ cσ

√
D(ρ(I)

n )

n
log(n/δ) | B1

}
, (5.65)

almost surely.
Combining equations (5.63), (5.64), and (5.65) and taking expectations with respect

to (X (I)

i , A
(I)

i , Y
(I)

i ), we conclude that

P
{ ∣∣σ̂2

n(s0, a0)− σ2(s0, a0)
∣∣ ≤ σ2/2

}
= E

[
P
{ ∣∣σ̂2

n(s0, a0)− σ2(s0, a0)
∣∣ ≤ σ2/2 | B1

}]
≥ E

[
P
{
max
i∈[n]

∣∣µ̃n(X (II)

i , A
(II)

i )− µ∗(X (II)

i , A
(II)

i )
∣∣ ≥ 2cσ

√
D(ρ(I)

n )

n
log(n/δ)

}
| B1

]
− δ

2n

≥ 1− δ

n
.

On the event |σ̂2
n(s0, a0)− σ2(s0, a0)| ≤ σ2/2, we have

1

2
σ2(s0, a0) ≤ σ2(s0, a0)− σ2/2 ≤ σ̂2

n(s0, a0) ≤ σ2(s0, a0) + σ2/2 ≤ 2σ2(s0, a0),

completing the proof of equation (5.58b).

5.5.4.3 Proof of Lemma 5.5

First, by the guarantee (5.58b) from the second stage and a union bound, we have

P
{
∃i ∈ [n],

σ̂2
n

σ2
(X (III)

i , A(III)

i ) /∈
(
1, 2
)}

≤
n∑
i=1

P
{ σ̂2

n

σ2
(X (III)

i , A(III)

i ) /∈
(
1, 2
)}

≤ δ. (5.66)

Defining the event

E (III) :=
{1
2
σ2(X (III)

i , A(III)

i ) ≤ σ̂2
n(X

(III)

i , A(III)

i ) ≤ 2σ2(X (III)

i , A(III)

i ), for any i ∈ [n]
}
,

we have P
(
E (III)

)
≥ 1− δ, with respect to the randomness of both the state-action pairs

(X (III)

i , A(III)

i )ni=1 and the function σ̂2
n.

The remainder of the proof is analogous to that of Lemma 5.2. For notational sim-
plicity, we omit the supscript (III) in (Xi, Ai, Yi). Under the basis function representation,
we have

β̂n = Ψ · argmin
µ∈H

{ 1
n

n∑
i=1

σ̂−2
n (Xi, Ai)

(
Yi − µ(Xi, Ai)

)2
+ ρ(III)

n ∥µ∥2H
}

= arg min
β∈ℓ2(N)

{ 1
n

n∑
i=1

σ̂−2
n (Xi, Ai)

(
Yi − ⟨β, ϕ(Xi, Ai)⟩

)2
+ ρ(III)

n ∥β∥2λ−1

}
.
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Defining the noise εi := Yi − µ∗(Xi, Ai) and the empirical covariance operator

Γ̂σn :=
1

n

n∑
i=1

σ̂−2
n (Xi, Ai)ϕ(Xi, Ai)ϕ(Xi, Ai)

⊤,

the error vector admits the representation

β̂n − β∗ =
(
Γ̂σn + ρ(III)

n Λ−1
)−1 1

n

n∑
i=1

{
σ̂−2
n εiϕ(Xi, Ai)− ρ(III)

n Λ−1β∗

}
We can bound such an error conditionally on the state-action pairs (Xi, Ai)

n
i=1 and the

estimated conditional covariance function σ̂n, as stated in the following lemma.

Lemma 5.6. Under the set-up above, conditionally on the function σ̂n and the state-
action pairs (Xi, Ai)

n
i=1 such that the event E (III) happens, with probability 1− δ, we have

the upper bound∣∣∣z⊤(β̂n − β∗)
∣∣∣ ≤ c∥

(
Γ̂σn + ρn,∗Λ

−1
)−1/2

z∥ℓ2

×

{
2

√
log(1/δ)

n
+

log n log(1/δ)σ

nσ2
sup
(x,a)

∥
(
Γ̂σn + ρn,∗Λ

−1
)−1/2

ϕ(x, a)∥ℓ2
}

(5.67a)

See Appendix D.3.4 for the proof.

Taking this lemma as given, we proceed with the proof of Lemma 5.5. Define the
truncated variance function and the corresponding reweighted operator.

σ̃n(x, a) :=

{
σ̂2
n(x, a) if σ̂2

n(x,a)
σ2(x,a)

∈
(
1/2, 2

)
,

σ2(x, a) otherwise
and

Γ̃σn :=
1

n

n∑
i=1

1

σ̃2
n(Xi, Ai)

ϕ(Xi, Ai)ϕ(Xi, Ai)
⊤.

Conditioned on the event E (III), we have Γ̃σn = Γ̂σn. On the other hand, we invoke
Lemma 5.4 with the weight function q = σ̃−2

n and ω = 1/2. Note that the condition (5.56)
becomes

(σ̄2/σ2) log
( κ2

ρ(III)
n δ

)
·
D
(
ρ(III)
n σ̄2

)
n

≤ 1

32
,

which is satisfied under the sample size requirement (5.28a) and regularization parameter
choice (5.29). Therefore, on the event E (III), with probability 1− δ, we have

1

2

(
Γσ + ρ(III)

n Λ−1
)
⪯ Γ̃σn + ρ(III)

n Λ−1 = Γ̂σn + ρ(III)

n Λ−1 ⪯ 2
(
Γσ + ρ(III)

n Λ−1
)
. (5.68)
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Substituting equation (5.68) into the guarantee from Lemma 5.3, we find that

∣∣∣⟨z, β̂n − β∗⟩
∣∣∣ ≤ 4c∥

(
Γσ + ρ(III)

n Λ−1
)−1/2

z∥ℓ2·
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log(1/δ)

n

+
log n log(1/δ)σ

nσ2
sup
(x,a)

∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2
}
.

By the definition (5.19) of effective dimension, we have

sup
(x,a)

∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2 ≤ σ̄ sup
(x,a)

∥
(
I + σ̄2ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2 = σ̄

√
D(ρ(I)

n ).

Moreover, given the condition (5.28a) on the sample size, it follows that√
log(1/δ)

n
≥ logn log(1/δ)σ2

nσ2

√
D(ρ(I)

n ) ≥ logn log(1/δ)σ
nσ2 sup

(x,a)

∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2 .

Thus, we conclude that∣∣∣⟨z, β̂n − β∗⟩
∣∣∣ ≤ 8c∥

(
Γσ + ρ(III)

n Λ−1
)−1/2

z∥ℓ2
√

log(1/δ)

n

with probability 1− δ, with establishes the claim in Lemma 5.5.

5.5.4.4 Proof of equation (5.32)

Recall the definition (5.17a) of the infinite-dimensional vector u(δx0)

u(δx0) =

∫
A
ϕ(x0, a)dω(a | x0).

Using this definition, the estimation error admits a basis-function representation

τ̂n(x0)− τ ∗(x0) = ⟨β̂n − β∗, ũ(x0)⟩,

where the vectors β̂n and β∗ are defined in Section 5.5.3.1.
Applying Lemma 5.5 with z = ũ(x0) yields∣∣∣⟨ũ(x0), β̂n − β∗⟩

∣∣∣ ≤ c∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

ũ(x0)∥ℓ2
√

log(1/δ)

n
. (5.69)

By Proposition 5.1, we have

∥
(
Γσ + ρ(III)

n Λ−1
)−1/2

ũ(x0)∥2ℓ2 = ũ⊤(x0)
(
Γσ +

1
R2n

Λ−1
)−1

ũ ≤ 4V 2
σ,n(δx0 , π, g;F).

Substituting back completes the proof of the claim (5.32).
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5.6 Discussion

In this chapter, we studied the problem of estimating linear functionals based on
observational data. Our main focus was the challenging setting in which the importance
ratio is poorly behaved. In such settings, the classical semi-parametric efficiency
bound—based on a presumptive

√
n-rate of convergence—can be infinite, and so fail

to characterize the problem. So as to remedy this deficiency, the main contribution of
this chapter was to propose a modified risk functional, defined as the optimal value of
a variational problem that respects the geometry of the function class. The resulting
minimax risks interpolate between the classical regimes of semi-parametric efficiency
with the

√
n-rate, and nonparametric rates for functional estimation. Focusing on the

case of RKHS, we analyze an outcome-based regression estimator, and showed that it
achieves our instance-dependent lower bound (up to a universal constant pre-factor).
This estimator is attractive in not requiring any knowledge of the behavioral policy.
Nonetheless, despite its agnostic nature, it matches our lower bound that applies even
to oracle estimators that have full knowledge of the policy. When applied to various off-
policy estimation problems with singularities in the importance ratio, our results uncover
a novel class of minimax rates, as well as instance-dependent optimality, adaptively
achieved by our estimators.

While this chapter takes an initial step in characterizing instance-dependent opti-
mality for off-policy estimation beyond semi-parametric efficiency, there are many open
directions.

• Our optimality results impose assumptions on the conditional variance function
σ2. We either require it to be uniformly bounded (for achieving the worst-case
variance bound V 2

σ (
dg
dπ
)), or require additional structure that allows for consistent

estimation (for optimal adaptation to the conditional variance structure). It
is not clear if such requirements are necessary. In the classical

√
n-regime of

semi-parametric efficiency, regime, AIPW estimators adapt to the conditional
variance structure without knowledge of σ2; for instance, see the paper [41]. An
important open question, therefore, is whether such adaptivity is possible in the
more challenging regime considered by this chapter without additional assumptions
on the conditional variance.

• In this chapter, we established achievability of our lower bounds only for repro-
ducing kernel Hilbert spaces. Thus, an important question is to what extent our
results can be extended to more general function classes. We conjecture that the
minimax linear estimation strategy [53, 78] could yield an optimal estimator–in
the same sense as the results presented in this chapter—for any function class
F satisfying the Donsker property. For non-Donsker classes, it is known from
past work [179] that knowledge of the behavior policy plays a role. An important
direction of future research, therefore, is to identify the optimal risk for estimation,
jointly determined by the structural assumptions on the treatment effect function,
the behavior policy function, and singularities in the importance ratio function.
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• Our results focus on the classical off-policy contextual bandit setup, where the
data (Xi, Ai, Yi)

n
i=1 are independent and identically distributed. However, many

decision-making problems involve collecting data in an adaptive manner (e.g., by
running a bandit algorithm), or following a Markov chain (e.g., in reinforcement
learning). The importance ratio can easily grow unbounded in these settings,
leading to practical challenges [225, 97]. Being optimally agnostic to the singular
behavior of the importance ratio, we suspect that our estimation framework and
risk functional should be helpful for problems of this type.
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Appendix A

Proofs and discussion deferred from
Chapter 2

A.1 Proofs deferred from Section 2.5.1

In the following subsections, we prove Lemmas 2.5 and 2.6, the two technical lemmas
used in the proof of the bound (2.45b).

A.1.1 Proof of Lemma 2.5

Recall that Lemma 2.5 provides a bound on the error of the non-averaged iterates
{vt}t≥1, as defined in equation (2.24a). Using the form of the update, we expand the
mean-squared error to find that

E∥vt+1 − v∥2 = E∥(I − ηI + ηΠSL)(vt − v) + ηΠS(Lt+1 − L)vt + ηΠS(bt+1 − b)∥2

(i)
= E∥(I − ηI + ηΠSL)(vt − v)∥2 + η2E∥ΠS(Lt+1 − L)vt +Πϕ(bt+1 − b)∥2

(ii)

≤ (1− η(1− κ))E∥vt − v∥2 + 2η2E∥ΠS(Lt+1 − L)(vt − v)∥2

+ 2η2E∥ΠS(Lt+1 − L)v +ΠS(bt+1 − b)∥2. (A.1)

In step (i), we have made use of the fact that the noise is unbiased, and in step (ii), we
have used the fact that for any ∆ in the subspace S and any stepsize η ∈

(
0, 1−κ

1+|||L|||2X

)
,

we have

∥(I − ηI + ηΠSL)∆∥2 = (1− η)2∥∆∥2 + η2∥ΠSL∆∥2 + 2(1− η)η⟨∆, ΠSL∆⟩

≤
{
1− 2η + η2 + η2|||L|||2X + 2(1− η)ηκ

}
∥∆∥2

≤
(
1− η(1− κ)

)
∥∆∥2.
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Turning to the second term of equation (A.1), the moment bounds in Assumption 2.1(W)
imply that

E∥ΠS(Lt+1 − L)(vt − v)∥2 =
d∑
j=1

E⟨ϕj, (Lt+1 − L)(vt − v)⟩2 ≤ E∥vt − v∥2σ2
Ld.

Finally, the last term of equation (A.1) is also handled by Assumption 2.1(W), whence
we obtain

E∥ΠS(Lt+1 − L)v +ΠS(bt+1 − b)∥2 ≤ 2
d∑
j=1

E⟨ϕj, (Lt+1 − L)v⟩2

+ 2
d∑
j=1

E⟨ϕj, bt+1 − b⟩2 ≤ 2∥v∥2σ2
Ld+ 2σ2

bd.

Putting together the pieces, we see that for any stepsize η ∈
(
0, 1−κ

4σ2
Ld+1+|||L|||2X

)
, we have

E∥vt+1 − v∥2 ≤ (1− η(1− κ) + 2η2σ2
Ld)E∥vt − v∥2 + 4η2(∥v∥2σ2

Ld+ σ2
bd)

≤
(
1− η(1− κ)

2

)
E∥vt − v∥2 + 4η2(∥v∥2σ2

Ld+ σ2
bd).

Finally, rolling out the recursion yields the bound

E∥vn − v∥2 ≤ e−(1−κ)ηn/2E∥v0 − v∥2 + 8η

1− κ
(∥v∥2σ2

Ld+ σ2
bd),

which completes the proof.

A.1.2 Proof of Lemma 2.6

Recall that v satisfies the fixed point equation v = ΠSLv + ΠSb. Using this fact, we can
derive the following elementary identity:

vn0 − vn
η(n− n0)

=
1

n− n0

n−1∑
t=n0

(
vt − ΠSLt+1vt − ΠSbt+1

)
= (I − ΠSL)(v̂n − v) +

1

n− n0

n−1∑
t=n0

ΠS(Lt+1 − L)(vt − v)︸ ︷︷ ︸
=:Ψ

(1)
n

+
1

n− n0

n−1∑
t=n0

ΠS
(
(Lt+1 − L)v + bt+1 − b

)
︸ ︷︷ ︸

=:Ψ
(2)
n

. (A.2)
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Re-arranging terms and applying the Cauchy–Schwarz inequality, we have

∥v̂n − v∥2 ≤ 3

(n− n0)2η2
∥(I − ΠSL)

−1(vn − vn0)∥2

+
3

(n− n0)2

(
∥(I − ΠSL)

−1Ψ(1)
n ∥2 + ∥(I − ΠSL)

−1Ψ(2)
n ∥2

)
.

Note that the quantities Ψ
(1)
n and Ψ

(2)
n are martingales adapted to the filtration

Fn := σ({Li, bi}ni=1), so that

E∥v̂n − v∥2 ≤ 3

(n− n0)2

n−1∑
t=n0

E∥(I − ΠSL)
−1ΠS(Lt+1 − L)(vt − v)∥2

+
3

(n− n0)2

n−1∑
t=n0

E∥(I − ΠSL)
−1ΠS

(
(Lt+1 − L)v + bt+1 − b

)
∥2

+
3

(n− n0)2η2
E∥(I − ΠSL)

−1(vn − vn0)∥2.

We claim that for any vector v ∈ X, we have

(I − ΠSL)
−1ΠSv = Φ∗

d

(
(I −M)−1Φdv

)
. (A.3)

Taking this claim as given for the moment, by applying equation (A.3) with v =
(Lt+1 − L)(vt − v) and v = (Lt+1 − L)v + bt+1 − b, respectively, we find that

E∥(I − ΠSL)
−1ΠS(Lt+1 − L)(vt − v)∥2 = E∥(I −M)−1Φd(Lt+1 − L)(vt − v)∥22,

and

E∥(I − L)−1ΠS
(
(Lt+1 − L)v + bt+1 − b

)
∥2 = E∥(I −M)−1Φd

(
(Lt+1 − L)v + bt+1 − b

)
∥22.

Putting together the pieces, we obtain

E∥v̂n− v∥2 ≤ 3

n− n0

trace
(
(I −M)−1 · cov

(
Φd(b1 − b) +Φd(L1 −L)v

)
· (I −M)−⊤

)
+

3

(n− n0)2

n∑
t=n0

E∥(I −M)−1Φd(Lt+1 − L)(vt − v)∥22 +
3E∥vn − vn0∥2

η2(n− n0)2(1− κ)2
,

as claimed.
It remains to prove the identity (A.3).

Proof of claim (A.3): Note that for any vector v ∈ X, the vector z := (I−ΠSL)
−1ΠSv

is a member of S, since z = ΠSLz +ΠSv. Furthermore, since {ϕj}dj=1 is a standard basis
for S, we have z = ΠSz = Φ∗

dΦdz, and consequently,

Φdz = ΦdLz + Φdv = (ΦdLΦ
∗
d)Φdz + Φdv =MΦdz + Φdv.

Since the matrix M is invertible, we have Φdz = (Id−M)−1Φdv. Consequently, we have
the identity z = Φ∗

dΦdz = Φ∗
d(Id −M)−1Φdv, which proves the claim.
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A.2 Proofs deferred from Section 2.5.2

In the following subsections, we prove Lemma 2.7 and 2.8, the two technical lemmas
used in the proof of Theorem 2.2.

A.2.1 Proof of Lemma 2.7

We prove the two parts of the lemma separately. Once again, recall our definition of the
pair (w, y) from equation (2.55).

Proof of part (a): In order to study the operator norm of the matrix L(ε,z) in the

Hilbert space X, we consider a vector p =
[
p(1)

p(2)

]
∈ RD, with p(1) ∈ Rd and p(2) ∈ RD−d.

Assuming ∥p∥ = 1, we have

∥L(ε,z)p∥2 = 1

2d
∥M0p

(1) + w ·
√
d

D − d

D∑
j=d+1

εjp
(2)
j ∥22.

By the Cauchy–Schwarz inequality, we have∣∣∣∣∣
√
d

D − d

D∑
j=d+1

εjp
(2)
j

∣∣∣∣∣
2

≤ d

(D − d)2

( D∑
j=d+1

ε2j

)( D∑
j=d+1

(
p
(2)
j

)2)
=

d

D − d
∥p(2)∥22.

Define the vector a1 := 1√
2d
p(1) ∈ Rd and a2 := 1√

2(D−d)
∥p(2)∥2. Clearly, we have

1 = ∥p∥2 = ∥a1∥22 + a22, and so

∥L(ε,z)p∥2 ≤ 1

2d
· sup
t∈[−1,1]

∥M0p
(1) +

√
2da2tw∥22

=
1

2d
·max

(
∥M0p

(1) +
√
2da2w∥22, ∥M0p

(1) −
√
2da2w∥22

)
= max

(
∥M0a1 + a2w∥22, ∥M0a1 − a2w∥22

)
≤ |||

[
M0 w

]
|||2op.

Equation (2.56) implies that |||
[
M0 w

]
|||2op = λmax

(
M0M

⊤
0 + ww⊤

)
≤ γ2max, and

therefore, for all ε ∈ {−1, 1}D−d and z ∈ {−1, 1}, we have

|||L(ε,z)|||X = sup
∥p∥=1

∥L(ε,z)p∥ ≤ γmax,

as desired.
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Proof of part (b): Consider any pair of vectors p, q ∈ RD such that ∥p∥ = ∥q∥ = 1.

Using the decompositions p =
[
p(1)

p(2)

]
and q =

[
q(1)

q(2)

]
, with p(1), q(1) ∈ Rd, p(2), q(2) ∈

RD−d, we have

E⟨p, (L(ε,z)
i − L(ε,z))q⟩2 ≤ 1

(2d)2
E
(√

dετLq
(2)

τ
(i)
L

w⊤p(1)
)2

=
1

4d
·
(
w⊤p(1)

)2
· E
(
q
(2)

τ
(i)
L

)2

≤ 1

4d
∥p(1)∥22 · ∥w∥22 ·

1

D − d
∥q(2)∥22

≤ ∥w∥22 · ∥p∥2 · ∥q∥2 ≤ ∥w∥22.

Recall that M0M
⊤
0 + ww⊤ ≤ γ2maxId by equation (2.56). Consequently, we have

∥w∥42 ≤ ∥M⊤
0 w∥22 + ∥w∥42 ≤ γ2max∥w∥22, which implies that ∥w∥2 ≤ γmax. Therefore, the

noise assumption in equation (2.12a) is satisfied with parameter σL = γmax.
For the noise on the vector b, we note that

E⟨b(ε,z)i − b, p⟩2 ≤ 1

4(D − d)2
E
(√

2(D − d)zδε
τ
(i)
b
p
(2)

τ
(i)
b

)2
≤ δ2

2
E
(
p
(2)

τ
(i)
b

)2
≤ δ2

2
· 1

D − d
∥p(2)∥22 ≤ δ2∥p∥2 = δ2,

showing the the the noise assumption (2.12b) is satisfied with σb = δ.

A.2.2 Proof of Lemma 2.8

Recall that τ
(i)
L , τ

(i)
b are the random indices in the i-th sample. We define E to be the

event that the indices
(
τ
(i)
L

)n
i=1
,
(
τ
(i)
b

)n
i=1

are not all distinct, i.e.,

E :=
{
∃i1, i2 ∈ [n], s.t. τ

(i1)
L = τ

(i2)
b

}
∪
{
∃i1 ̸= i2, s.t. τ

(i1)
L = τ

(i2)
L

}
∪
{
∃i1 ̸= i2, s.t. τ

(i1)
b = τ

(i2)
b

}
.

We claim that

P(n)
1 |E C = P(n)

−1 |E C . (A.4)

Assuming equation (A.4), we now give a proof of the upper bound on the total
variation distance δ. We use the following lemma:

Lemma A.1. Given two probability measures P1,P2 and an event E with P1(E ),P2(E ) <
1/2, we have

dTV(P1,P2) ≤ dTV(P1|E C ,P2|E C) + 3P1(E ) + 3P2(E ).



A.2. PROOFS DEFERRED FROM SECTION 2.5.2 222

In order to bound the probability of E , we apply a union bound. Under either of
the probability measures P(n)

1 and P(n)
−1 , we have the following bound:

P(E ) ≤
∑
i,j∈[n]

P
(
τ
(i)
L = τ

(j)
b

)
+
∑
i1<i2

P
(
τ
(i1)
L = τ

(i2)
L

)
+
∑
i1<i2

P
(
τ
(i1)
b = τ

(i2)
b

)
≤ 2n2

D − d
.

Applying Lemma A.1 in conjunction with equation (A.4) yields

dTV(P(n)
1 ,P(n)

−1 ) ≤
12n2

D − d
. (A.5)

It remains to prove claim (A.4) and Lemma A.1.

Proof of equation (A.4): For D ≥ 2n+d, we define a probability measure Q through
the following sampling procedure:

• Sample a subset S ⊆ {d + 1, · · · , D} of size 2n uniformly at random over all
possible

(
D−d
2n

)
possible subsets.

• Partition the set S into two disjoint subsets S = SL ∪ Sb, each of size n. The
partition is chosen uniformly at random over all

(
2n
n

)
possible partitions. Let

SL :=

{
τ̃
(1)
L , τ̃

(2)
L , · · · , τ̃ (n)L

}
and Sb :=

{
τ̃
(1)
b , τ̃

(2)
b , · · · , τ̃ (n)b

}
.

• For each i ∈ [n], sample two random bits ζ
(i)
L , ζ

(i)
b

i.i.d.∼ U({−1, 1}).

• Let Q be the probability distribution of the observations (Li, bi)
n
i=1, that are

constructed from the tuple (τ̃
(i)
L , τ̃

(i)
b , ζ

(i)
L , ζ

(i)
b ) defined above. Specifically, we let

Li :=


M0 0 · · · 0

√
dζ

(i)
L w 0 · · · 0

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0

...
...

0 0 · · · 0

 , bi :=



√
2dh0
0
...
0√

2(D − d)ζ
(i)
b δ

0
. . .
0


,

where the vector
√
dζ

(i)
L w appears at the τ̃

(i)
L -th column of the matrix Li, and the

scalar
√
2(D − d)ζ

(i)
b δ appears at the τ̃

(i)
b -th row of the vector bi.



A.3. PROOF OF COROLLARY 2.1 223

For either choice of the bit z ∈ {±1}, we claim that the probability measure P(n)
z |E C

is identical to the distribution Q. To prove this claim, we first note that conditioned
on the event E C , the indices (τ

(i)
L , τ

(i)
b )ni=1 actually form a uniform random subset of

{d + 1, · · · , D} with cardinality 2n, and the partition into (τ
(i)
L )ni=1 and (τ

(i)
b )ni=1 is a

uniform random partition, i.e.,(
τ
(i)
L , τ

(i)
b

)n
i=1

∣∣E C d
=
(
τ̃
(i)
L , τ̃

(i)
b

)n
i=1
, under both P(n)

1 and P(n)
−1 . (A.6)

Given an index subset
(
t
(i)
L , t

(i)
b

)n
i=1

⊆ {d + 1, · · · , D} that are mutually distinct,

conditioned on the value of
(
τ
(i)
L , τ

(i)
b

)n
i=1

=
(
t
(i)
L , t

(i)
b

)n
i=1

, the observed random bits under

the probability distribution P(n)
z are given by

ε
τ
(1)
L
, ε
τ
(2)
L
, · · · , ε

τ
(n)
L
, zε

τ
(1)
b
, · · · , zε

τ
(n)
b
,

which are 2n independent Rademacher random variables.
On the other hand, the random bits ζ

(1)
L , ζ

(2)
L , · · · , ζ(n)L , ζ

(1)
b , ζ

(2)
b , · · · , ζ(n)b are also

2n independent Rademacher random variables. Consequently, for any index subset(
t
(i)
L , t

(i)
b

)n
i=1

⊆ {d+1, · · · , D} that are mutually distinct, we have the following equality-
in-distribution:(

ε
τ
(i)
L
, zε

τ
(i)
b

)n
i=1

∣∣∣(τ (i)L = t
(i)
L , τ

(i)
b = t

(i)
b )ni=1

d
=
(
ζ
(i)
L , ζ

(i)
b

)n
i=1

∣∣∣(τ̃ (i)L = t
(i)
L , τ̃

(i)
b = t

(i)
b )ni=1.

(A.7)

Putting equations (A.6) and (A.7) together completes the proof.

Proof of Lemma A.1: Given a function f with range contained in [0, 1], we have∣∣∣∣∫ f(x)P1(dx)−
∫
f(x)P2(dx)

∣∣∣∣
≤
∣∣∣∣∫

E

f(x)P1(dx)

∣∣∣∣+ ∣∣∣∣∫
E

f(x)P2(dx)

∣∣∣∣+ ∣∣∣∣∫
E C

f(x)P1(dx)−
∫

E C

f(x)P2(dx)

∣∣∣∣
≤ P1(E ) + P2(E ) + P1(E

C) ·
∣∣∣∣
∫

E C f(x)P1(dx)

P1(E C)
−
∫

E C f(x)P2(dx)

P2(E C)

∣∣∣∣+ |P1(E C)−P2(E C)|
P2(E C)

≤ P1(E ) + P2(E ) + dTV(P1|E C ,P2|E C) + 2|P1(E )− P2(E )|
≤ 3(P1(E ) + P2(E )) + dTV(P1|E C ,P2|E C),

which completes the proof.

A.3 Proof of Corollary 2.1

We begin by applying Theorem 2.1 with ω = 1. Applying Lemmas 2.1 and 2.2 yield the
desired bounds on the approximation error in parts (a) and (b). We also claim that

En(M,Σ∗) ≤ (σ2
L∥v∥2 + σ2

b )d

(1− κ)2n
, (A.8a)
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and that given a sample size such that n ≥ cσ2
Ld

(1−κ)2 log
2
(

∥v0−v∥2d
1−κ

)
>

cσ2
Ld

(1−κ)2 , we have

Hn(σL, σb, v) ≤
σL

1− κ

√
d

n
· (σ

2
L∥v∥2 + σ2

b )d

(1− κ)2n
≤ (σ2

L∥v∥2 + σ2
b )d

(1− κ)2n
, (A.8b)

Combining these two auxiliary claims establishes the corollary. It remains to establish
the bounds (A.8).

Proof of claim (A.8): Let us first handle the contribution to this error from the noise
variables bi. We begin with the following sequence of bounds:

trace
(
(I −M)−1 cov(Φd(b1 − b))(I −M)−⊤

)
= trace

(
(I −M)−⊤(I −M)−1 · cov(Φd(b1 − b))

)
≤ |||(I −M)−⊤(I −M)−1|||op · ||| cov(Φd(b1 − b))|||nuc
≤ |||(I −M)−1|||2op trace

(
cov(Φd(b1 − b))

)
.

By the assumption κ(M) < 1, for any vector u ∈ Rd, we have that

(1− κ)∥u∥22 ≤ ⟨(I −M)u, u⟩ ≤ ∥(I −M)u∥2 · ∥u∥2.

Consequently, we have the bound |||(I − M)−1|||op ≤ 1
1−κ(M)

. For the trace of the

covariance, we note by Assumption 2.1(W) that

trace
(
cov(Φd(b1 − b))

)
=

d∑
j=1

⟨ϕj, b1 − b⟩2 ≤ σ2
bd.

Putting together the pieces yields trace
(
(I −M)−1 cov(Φd(b1 − b))(I −M)−⊤) ≤ σ2

bd

(1−κ)2 .
Turning now to the contribution to the error from the random observation Li, we

have

trace
(
(I −M)−1 cov(Φd(L1 − L)v)(I −M)−⊤

)
≤ |||(I −M)−1|||2op trace

(
cov(Φd(L1 − L)v)

)
.

Once again, Assumption 2.1(W) yields the bound

trace
(
cov(Φd(L1 − L)v)

)
=

d∑
j=1

⟨ϕj, (L1 − L)v⟩2 ≤ σ2
L∥v∥2d,

and combining the pieces proves the claim.
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Proof of claim (A.8b): The proof of this claim is immediate. Simply note that for

n ≥ cσ2
Ld

(1−κ)2 log
2
(

∥v0−v∥2d
1−κ

)
>

cσ2
Ld

(1−κ)2 , we have

Hn(σL, σb, v) ≤
σL

1− κ

√
d

n
· (σ

2
L∥v∥2 + σ2

b )d

(1− κ)2n
≤ (σ2

L∥v∥2 + σ2
b )d

(1− κ)2n
.

A.4 Proof of Theorem 2.3

In order to prove our local minimax lower bound, we make use of the Bayesian Cramér–
Rao bound, also known as the van Trees inequality. In particular, we use a functional
version of this inequality. Before stating the result, it is useful to introduce the general
setup and basic notation for parametric models. Given a family PΘ =

(
Pη : η ∈ Θ

)
of probability distributions of sample X ∈ X, parameterized by η ∈ Θ, where Θ is an
open subset of Rd. Assume that each element in this family is absolute continuous
with respect to a base measure λ over X, and denote the Radon–Nikodym derivative
by pη :=

dPη

dλ
. Assuming differentiability and integrability of relevant quantities, for any

η ∈ Θ, we define the Fisher information matrix I0(η) for a single sample as

I0(η) := n · EX∼Pη

[
∇η log pη(X)∇η log pη(X)⊤

]
∈ Rd×d.

For i.i.d. samples of size n, the Fisher information is given by In(η) := n · I0(η).
Now we are ready to state the Bayesian Cramér–Rao lower bound.

Proposition A.1 (Theorem 1 of [68], special case). Given a prior distribution ρ with
bounded support contained within Θ, let T : supp(ρ) 7→ Rp denote a locally smooth

functional. Then for any estimator T̂ based on sample X and for any smooth matrix-
valued function C : Rd → Rp×d, we have

E
η∼ρ

E
X∼pη

[
∥T̂ (Xn

1 )− T (η)∥22
]
≥

( ∫
trace

(
C(η) ∂T

∂η
(η)

)
ρ(η)dη

)2

∫
trace

(
C(η)I(η)C(η)⊤

)
ρ(η)dη+

∫
∥∇·C(η)+C(η)·∇ log ρ(η)∥22ρ(η)dη

.

Recall that our lower bound is local, and holds for problem instances (L, b) such
that the pair (ΦdLΦ

∗
d,Φdb) is within a small ℓ2 neighborhood of a fixed pair (M0, h0).

We proceed by constructing a careful prior on such instances that will allow us to apply
Proposition A.1; note that it suffices to construct our prior over the d× d matrix ΦdLΦ

∗
d

and d-dimensional vector Φdb. For the rest of the proof, we work under the orthonormal
basis {ϕj}dj=1. We also use the convenient shorthand x̄0 := Φdv0.

As a building block for our construction, we consider the one-dimensional density

function µ(t) := cos2
(
πt
2

)
· 1t∈[−1,1], borrowed from Section 2.7 of Tsybakov [206]. It

can be verified that µ defines a probability measure supported on the interval [−1, 1].
We denote by µ⊗d the d-fold product measure of µ. Let Z and Z ′ denote two random
vectors drawn i.i.d. from the distribution µ⊗d.
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We use an auxiliary pair of Rd-valued random variables (ψ, λ) given by

ψ :=
1√
n
Σ

1
2
b Z and λ :=

1√
n
Σ

1
2
LZ

′. (A.9)

Our choice of this pair is motivated by the fact that the Fisher information matrix of
this distribution takes a desirable form. In particular, we have the following lemma.

Lemma A.2. Let ρ : R2d → R+ denote the density of (ψ, λ) defined in equation (A.9).
Then

I(ρ) = nπ
[Σ−1

b 0
0 Σ−1

L

]
.

We now use the pair (ψ, λ) in order to define the ensemble of population-level problem
instances

M (ψ,λ) :=M0 + ∥x̄0∥−2
2 λ(x̄0)

⊤ and h(ψ,λ) := h0 + ψ. (A.10)

In order to define the problem instance in the Hilbert space X, we simply let L(ψ,λ) :=
Φ∗
dM

(ψ,λ)Φd and b
(ψ,λ) := Φ∗

dh
(ψ,λ), for a given basis (ϕi)

d
i=1 in the space S.

The matrix-vector pair (L(ψ,λ), b(ψ,λ)) induces the fixed point equation x̄ψ,λ =
M (ψ,λ)x̄ψ,λ + h(ψ,λ), and its solution is given by

x̄ψ,λ = (I −M (ψ,λ))−1h(ψ,λ) = (I −M0 − ∥x̄0∥−2
2 λ(x̄0)

⊤)−1(h0 + ψ).

Note that by construction, the Jacobian matrix formed by taking the partial derivative
of x̄ψ,λ with respect to ψ and λ is given by

∇ψ,λx̄ψ,λ =
[
(I −M (ψ,λ))−1 ∥x̄0∥−2

2 (x̄0)
⊤(I −M (ψ,λ))−1(h0 + ψ) · (I −M (ψ,λ))−1

]
.

Now define the observation model via L
(ψ,λ)
i := Φ∗

dM
(ψ,λ)
i Φd and b

(ψ,λ)
i := Φ∗

dh
(ψ,λ)
i ,

where

M
(ψ,λ)
i :=M (ψ,λ) + ∥x̄0∥−2

2 wi(x̄0)
⊤ and h

(ψ,λ)
i := h(ψ,λ) + w′

i, (A.11)

where wi ∼ N(0,ΣL) and w
′
i ∼ N(0,Σb) are independent.

The following lemma certifies some basic properties of observation model constructed
above.

Lemma A.3. Consider the ensemble of problem instances defined in equations (A.10)
and (A.11). For each pair (ψ, λ) in the support of ρ, each index j ∈ [d] and each unit
vector u ∈ Sd−1, we have

|||M (ψ,λ) −M0|||F ≤ σL

√
d

n
, and ∥h(ψ,λ) − h0∥2 ≤ σb

√
d

n
, (A.12a)

cov
((
M

(ψ,λ)
1 −M (ψ,λ)

)
x̄0

)
= ΣL, and cov

(
h
(ψ,λ)
1 − h(ψ,λ)

)
= Σb, (A.12b)

E
(
e⊤j
(
M

(ψ,λ)
1 −M (ψ,λ)

)
u
)2

≤ σ2
L, and E

(
e⊤j h

(ψ,λ)
1 − h(ψ,λ)

)2
≤ σ2

b . (A.12c)
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Lemma A.3 ensures that our problem instance lies in the desired class In particular,
equation (A.12a) guarantees that the population-level problem instance

(
L(ψ,λ), b(ψ,λ)

)
lies in the class Cest; on the other hand, equation (A.12b) and (A.12c) guarantees that
the probability distribution PL,b we constructed lies in the class Gcov.

Some calculations yield that the Fisher information matrix for this observation model
is given by

In(ψ, λ) = I0(ψ, λ) = n

[
Σ−1
b 0
0 Σ−1

L

]
,

for any ψ, λ ∈ Rd.
We will apply Proposition A.1 shortly, for which we use the following matrix C:

C(ψ, λ) := ∇ψ,λx̄ψ,λ
∣∣
(0,0)

· I0(ψ, λ)−1 =
[
(I −M0)

−1Σb (I −M0)
−1ΣL

]
.

Note that by construction, the matrix C does not depend on the pair (ψ, λ).
We also claim that if n ≥ 16σ2

L|||(I −M0)
−1|||2opd, then the following inequalities hold

for our construction:

Tb := Eρ
[
trace

(
(I −M0)

−1Σb(I −M (ψ,λ))−⊤
)]

≥ 1

2
trace

(
(I −M0)

−1Σb(I −M0)
−⊤
)
and (A.13a)

TL := Eρ
[(x̄0)⊤x̄ψ,λ

∥x̄0∥22
trace

(
(I −M0)

−1ΣL(I −M (ψ,λ))−⊤
)]

≥ 1

3
trace

(
(I −M0)

−1ΣL(I −M0)
−⊤
)
. (A.13b)

Taking these two claims as given for the moment, let us complete the proof of the
theorem. First, note that

Eρ
[
trace

(
C(ψ, λ) · ∇ψ,λx̄

⊤
ψ,λ

)]
= Eρ

[
trace

(
(I −M0)

−1Σb(I −M (ψ,λ))−⊤
)]

+ Eρ
[(x̄0)⊤x̄ψ,λ

∥x̄0∥22
trace

(
(I −M0)

−1ΣL(I −M (ψ,λ))−⊤
)]

≥ 5

6
trace

(
(I −M0)

−1Σb(I −M0)
−⊤
)
. (A.14)

Second, since In(·, ·) and C(·, ·) are both constant functionals, we have that

E
[
trace

(
C(ψ, λ)In(ψ, λ)C(ψ, λ)

)]
= trace

(
(I −M0)

−1(ΣL + Σb)(I −M0)
−⊤
)
.

(A.15)
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Additionally, Lemma A.2 yields

E∥∇ · C(ψ, λ) + C(ψ, λ) · ∇ log ρ(ψ, λ)∥22
= trace

(
C(0, 0) · E

[
∇ log ρ(ψ, λ)∇ log ρ(ψ, λ)⊤

]
C(0, 0)⊤

)
= nπ · trace

(
(I −M0)

−1(ΣL + Σb)(I −M0)
−⊤
)
. (A.16)

We are finally in a position to put together the pieces. Applying Proposition A.1
and combining equations (A.14), (A.15), and (A.16), we obtain the lower bound

∫
E∥x̂n(Ln1 , bn1 )− x̄ψ,λ∥22ρ(dψ, dλ) ≥

trace
(
(I −M0)

−1(ΣL + Σb)(I −M0)
−⊤
)

9(1 + π)n
,

(A.17)

for any estimator x̂n that takes values in Rd.
For the problem instances we construct, note that

v(ψ,λ) = (I − ΠSL
(ψ,λ))−1ΠSb

(ψ,λ) = Φ∗
d(I −M (ψ,λ))−1h(ψ,λ) = Φ∗

dx̄ψ,λ.

For any estimator v̂n ∈ V̂X, we note that

∥v(ψ,λ) − v̂n∥2 ≥ ∥ΠS(v
(ψ,λ) − v̂n)∥2 = ∥Φdv̂n − x̄ψ,λ∥22.

Recall by Lemma A.3 that on the support of the prior distribution ρ, the population-
level problem instance

(
L(ψ,λ), b(ψ,λ)

)
lies in the class Cest, and that the probability

distribution PL,b we constructed lies in the class Gcov. We thus have the minimax lower
bound

inf
v̂n∈V̂n

sup
(L,b)∈Cest

PL,b∈Gcov

E∥v̂n(Ln1 , bn1 )− v∥2 ≥ inf
x̂n

sup
(ψ,λ)∈supp(ρ)

E∥x̂n(Ln1 , bn1 )− x̄ψ,λ∥22

≥
∫

E∥x̂n(Ln1 , bn1 )− x̄ψ,λ∥22ρ(dψ, dλ) ≥ c ·
trace

(
(I −M0)

−1Σ∗(I −M0)
−⊤
)

n

for c = 1
9(1+π)

> 0, which completes the proof of the theorem.

A.4.1 Proof of Lemma A.2

We first note that λ is independent of ψ, and consequently ρ = ρb ⊗ ρa, where ρb, ρL are
the marginal densities for ψ and λ respectively. Since the Fisher information tensorizes
over product measures, it suffices to compute the Fisher information of ρL and ρb
separately.
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By a change of variables, we have

ρL(λ) = n
d
2 det(ΣL)

− 1
2 · µ⊗d

(√
nΣ

−1/2
L λ

)
.

Substituting this into the expression for Fisher information, we obtain

I(ρa) =

∫
(∇ log ρL(λ))(∇ log ρa(λ))

⊤ρL(λ)dλ

=

∫ (√
nΣ

−1/2
L ∇ log µ⊗d(y)

)
·
(√

nΣ
−1/2
L ∇ log µ⊗d(z)

)⊤
µ⊗d(z)dz

= nΣ
−1/2
L · EZ∼µ⊗d

[
(∇ log µ⊗d(Z))(∇ log µ⊗d(Z))⊤

]
︸ ︷︷ ︸

I

(
µ⊗d

) ·Σ−1/2
L .

Finally, since µ⊗d is a product measure, we have I
(
µ⊗d
)
= I(µ) · Id = πId, and

hence I(ρL) = πnΣ−1
L . Reasoning similarly for ρb, we have that I(ρb) = πnΣ−1

b . This
completes the proof.

A.4.2 Proof of Lemma A.3

We prove the three facts in sequence.

Proof of equation (A.12a): Note that the scalars σL and σb satisfies the compatibility
condition (2.36), we therefore have the bounds

|||M (ψ,λ) −M0|||F = ∥x̄0∥−1
2 · ∥λ∥2 ≤ n−1/2∥x̄0∥−1

2 ·
√

trace(ΣL) ≤ σL

√
d

n
,

∥h(ψ,λ) − h0∥2 = ∥ψ∥2 ≤
√
n−1 trace(Σb) ≤ σb

√
d

n
,

which completes the proof of the first bound.

Proof of equation (A.12b): Straightforward calculation leads to the following identi-
ties

cov
((
M

(ψ,λ)
1 −M (ψ,λ)

)
x̄0

)
= cov

(
∥x̄0∥−2

2 w1x̄
⊤
0 x̄0

)
= cov(w1) = ΣL,

cov
(
h
(ψ,λ)
1 − h(ψ,λ)

)
= cov(w′

1) = Σb.
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Proof of equation (A.12c): Given any index j ∈ [d] and vector u ∈ Sd−1, we note
that:

E
(
e⊤j
(
M

(ψ,λ)
1 −M (ψ,λ)

)
u
)2

=
1

∥x̄0∥42
E
(
e⊤j w1 · x̄⊤0 u

)2
≤ 1

∥x̄0∥22
E
(
e⊤j w1

)2
=

1

∥x̄0∥22
e⊤j ΣLej ≤ σ2

L,

where the last inequality is due to the compatibility condition (2.36).

Similarly, for the noise h
(ψ,λ)
1 − h(ψ,λ), we have:

E
(
e⊤j
(
h
(ψ,λ)
1 − h(ψ,λ)

))2
= E

(
e⊤j w

′
1

)2
= e⊤j Σbej ≤ σ2

b ,

which completes the proof of the last condition.

A.4.3 Proof of claims (A.13)

We prove the two bounds separately, using the convenient shorthand Ib for the LHS of
claim (A.13a) and Ia for the LHS of claim (A.13b).

Proof of claim (A.13a): We begin by applying the matrix inversion formula, which
yields

(I −M (ψ,λ))−1 = (I −M0)
−1 − 1

∥x̄0∥22 − (x̄0)⊤(I −M0)λ
(I −M0)

−1λ(x̄0)
⊤(I −M0)

−1︸ ︷︷ ︸
=:H

.

For n ≥ 16σ2
Ld, we have

∣∣(x̄0)⊤(I −M0)λ
∣∣ ≤ 2∥x̄0∥2 · ∥λ∥2 ≤ 2∥x̄0∥2

√
n−1 trace(ΣL) ≤ 2σL∥x̄0∥22

√
d

n
≤ 1

2
∥x̄0∥22,

To bound Tb from below, we note that

Tb = trace
(
(I −M0)

−1Σb(I −M0)
−⊤
)
− trace

(
(I −M0)

−1ΣbE[H⊤]
)

≥ trace
(
(I −M0)

−1Σb(I −M0)
−⊤
)

− |||(I −M0)
−1Σb(I −M0)

−⊤|||nuc · |||(I −M0)
⊤E[H]⊤|||op

= trace
(
(I −M0)

−1Σb(I −M0)
−⊤
)
·
(
1− |||E[H](I −M0)|||op

)
.
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When n ≥ 4σ2
Ld, we have

|||E[H](I −M0)|||op ≤
∞∑
k=0

1

∥x̄0∥22
|||E
[((x̄0)⊤(I −M0)λ

∥x̄0∥22

)k
(I −M0)

−1λ(x̄0)
⊤
]
|||op

≤ 1

∥x̄0∥22

∞∑
k=1

E
( ∣∣∣∣(x̄0)⊤(I −M0)λ

∥x̄0∥22

∣∣∣∣k · |||(I −M0)
−1λ(x̄0)

⊤|||F
)

≤ 2σ2
L|||(I −M0)

−1|||op
d

n
.

Therefore, for n ≥ 16σ2
L|||(I −M0)

−1|||opd, we obtain the lower bound

Tb ≥
1

2
trace

(
(I −M0)

−1Σb(I −M0)
−⊤
)
,

as desired.

Proof of claim (A.13b): We note that

x̄ψ,λ = x̄0 −Hh0 + (I −M0)ψ −Hψ.

Consequently, we have

TL = E
[ x̄⊤0 (x̄0 −Hh0 + (I −M0)ψ −Hψ)

∥x̄0∥22
trace

(
(I −M0)

−1ΣL((I −M0)
−⊤ −H⊤)

)]
.

Since λ is independent of ψ and H is dependent only upon λ, by taking expectation
with respect to ψ, we have that

TL = E
[(x̄0)⊤(x̄0 −Hh0)

∥x̄0∥22
· trace

(
(I −M0)

−1ΣL((I −M0)
−⊤ −H⊤)

)]
.

We note that

|(x̄0)⊤Hh0|
∥x̄0∥22

=
|(x̄0)⊤(I −M0)

−1λ|
∥x̄0∥22 − (x̄0)⊤(I −M0)

≤ 2|||(I −M0)
−1|||opσL

√
d

n
.

Therefore, for n ≥ 16σ2
L|||(I −M0)

−1|||2opd, we have the bound 1
2
≤ (x̄0)⊤(x̄0−Hh0)

∥x̄0∥22
≤ 3

2
, and

consequently, we have

TL ≥ 1

2
trace

(
(I −M0)

−1ΣL(I −M0)
−⊤
)
− 3

2
E
∣∣∣trace((I −M0)

−1ΣLH
⊤
)∣∣∣

≥ 1

2
trace

(
(I −M0)

−1ΣL(I −M0)
−⊤
)

− 3

2
|||(I −M0)

−1ΣL(I −M0)
−⊤|||nuc · E|||H(I −M0)|||op

≥ 1

2
trace

(
(I −M0)

−1ΣL(I −M0)
−⊤
)
·
(
1− 3E|||H(I −M0)|||op

)
.
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For the matrix H(I −M0), we have the almost-sure upper bound

|||H(I −M0)|||op ≤ 2

∥x̄0∥22
|||(I −M0)

−1λ(x̄0)
⊤|||op

≤ 2

∥x̄0∥2
· ∥(I −M0)

−1λ∥2 ≤ 2|||(I −M0)
−1|||opσL

√
d

n
.

Thus, provided n ≥ 18σ2
L|||(I −M0)

−1|||2opd, putting together the pieces yields the lower
bound

TL ≥ 1

3
trace

(
(I −M0)

−1ΣL(I −M0)
−⊤
)
.

A.5 Proof of Corollary 2.2

Define the terms ∆1 := 2
3
α(M0, γmax)δ

2 and ∆2 := c · En(M0,ΣL + Σb). We split our
proof into two cases.

Case I: if ∆1 ≤ ∆2. Consider the function class:

C̃ :=
⋃

(M ′,h′)∈N(M0,h0)

Capprox(M
′, h′, D, 0, γmax).

Clearly, we have the inclusion C̃ ⊆ Cfinal. Moreover, for a problem instance in C̃, we
have A(S, v∗) = 0, and consequently v∗ = v. Note that the construction of problem
instances in Theorem 2.3 can be embedded in X of any dimension D, and the linear
operator L constructed in the proof of Theorem 2.3 satisfies the bound

|||L(ψ,λ)|||X ≤ |||M (ψ,λ)|||op ≤ |||M0|||op + σL

√
d

n
≤ γmax.

Consequently, the class C̃ contains the population-level problem instances (M (ψ,λ), h(ψ,λ))
constructed in the proof of Theorem 2.3, for any choice of ψ, λ ∈ Rd. Invoking Theo-
rem 2.3, we thus obtain the sequence of bounds

inf
v̂n∈V̂X

sup
(L,b)∈Cfinal
PL,b∈Gcov

E∥v̂n − v∗∥2 ≥ inf
v̂n∈V̂X

sup
(L,b)∈C̃

PL,b∈Gcov

E∥v̂n − v∗∥2 = inf
v̂n∈V̂X

sup
(L,b)∈C̃

PL,b∈Gcov

E∥v̂n − v∥2

= inf
v̂n∈V̂X

sup
(L,b)∈Cest

PL,b∈Gcov

E∥v̂n − v∥2

≥ ∆2.
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Case II: if ∆1 > ∆2. In this case, we consider the class of noise distributions

G̃ := Gcov(0, 0, σL, σb).

Clearly, G̃ is a sub-class of Gcov. Note that the observation model
(
L
(ε,y)
i , b

(ε,y)
i

)n
i=1

constructed in the proof of Theorem 2.2 satisfies the following identities almost surely:

ΦdL
(ε,y)
i Φ∗

d = ΦdL
(ε,y)Φ∗

d, Φdb
(ε,y)
i = Φdb

(ε,y).

So the problem instances constructed in the proof of Theorem 2.2 belongs to class G̃.
Invoking Theorem 2.2, we obtain the bound

inf
v̂n∈V̂X

sup
(L,b)∈Cfinal
PL,b∈Gcov

E∥v̂n − v∗∥2 ≥ inf
v̂n∈V̂X

sup
(L,b)∈Cfinal

PL,b∈G̃

E∥v̂n − v∗∥2 ≥ 2

3
(α(M0, γmax)− 1)δ2 = ∆1.

Combining the results in two cases, we arrive at the lower bound:

inf
v̂n∈V̂X

sup
(L,b)∈Cfinal
PL,b∈Gcov

E∥v̂n − v∗∥2 ≥ max(∆1,∆2)

≥ 1

2
∆1 +

1

2
∆2 ≥

1

3
(α(M0, γmax)− 1)δ2 +

c

2
En(M,ΣL + Σb),

which completes the proof of the corollary.

A.6 Proof of Theorem 2.4

We begin by defining some additional notation needed in the proof. For a non-negative
integer k, we use Hk ∈ R2k×2k to denote the Hadamard matrix of order k, recursively
defined as:

H0 := 1, Hk :=

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
, for k ≥ 1

For any integer q ≥ 2, we define

Jq :=


0 1 0 · · · 0
0 0 1 · · · 0

...
...

0 0 · · · 0 1
0 0 · · · 0 0

 ,

which is a q × q Jordan block with zeros in the diagonal.
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Now we turn to the proof of the theorem. We assume that D is an integer multiple of
q, and that m := D−d

q
is an integer power of 2; the complementary case can be handled

by adjusting the constant factors in our bounds. Similarly to the proof of Theorem 2.2,
we let u ∈ Sd−1 be an eigenvector associated to the largest eigenvalue of the matrix
(I −M0)

−1
(
γ2maxI −M0M

⊤
0

)
(I −M0)

−⊤, and define the d-dimensional vectors:

w :=
√
α(M0, γmax)− 1 · (I −M0)u, and y :=

√
α(M0, γmax)− 1 · δu.

We first construct the following (D − d)× (D − d) block matrix, indexed by the bits
(εij)1≤i≤q,1≤j≤m:

J (ε) :=


Im diag(ε1j · ε2j)mj=1 0 · · · 0 0
0 Im diag(ε2j · ε3j)mj=1 · · · 0 0

...
. . . . . .

...
0 0 · · · Im diag(ε(q−1)j · εqj)mj=1

0 0 · · · 0 Im

 .
(A.18a)

Each submatrix depicted above is an m×m matrix, and the diagonal blocks are given
by identity matrices. We use this construction to define the population-level instance
(L(ε,z), b(ε,z)) as follows:

L(ε,z) :=


M0

√
d/2

D−d zε11w

√
d/2

D−d zε12w · · ·
√
d/2

D−d zε1mw 0 · · · 0

0
0
... 1

2
J (ε)

0

 , and

b(ε,z) :=



√
2dh0
0
...
0

δ√
2
εq1
...

δ√
2
εqm


. (A.18b)

It can then be verified that the solution to the fixed point equation v∗ε,z = (I−L(ε,z))−1b(ε,z)
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is given by

v∗ε,z =



√
d
q
zy +

√
2d(I −M0)

−1h0√
2δε11√
2δε12
...√

2δεq1
...√

2δεqm


. (A.18c)

Similarly to the proof of Theorem 2.2, we take the subspace S to be the one spanned by
first d coordinates, and take the weight vector be

ξ =
[︸ ︷︷ ︸

d

1
2d

· · · 1
2d ︸ ︷︷ ︸

(D − d)

1
2(D−d) · · · 1

2(D−d)

]
.

The inner product is then given by ⟨p, p′⟩ :=
∑D

j=1 pjξjp
′
j for vectors p, p

′ ∈ RD.

It remains to define our basis vectors. For j ∈ [d], we let ϕj :=
√
2dej. For the

orthogonal complement S⊥, we use the basis vectors[
ϕd+1 ϕd+2 · · · ϕd+qm

]
=

[
0√

2q Hlog2m ⊗ Iq

]
.

Recall that Hk ∈ R2k×2k denotes the Hadamard matrix of order k, and ⊗ denotes
Kronecker product. The first d rows of the matrix are zeros, while the following
D − d = mq columns are given by the Kronecker product. By the definition of
Hadamard matrix, we have ∥ϕi∥ = 1 and ⟨ϕi, ϕj⟩ = 0 for i ̸= j.

As before, the construction of equations (A.18a)-(A.18c) ensures that for any choice
of the binary string ε ∈ {−1, 1}mq and bit y ∈ {−1, 1}, the oracle approximation error
is equal to

A(S, v∗ε,z) = inf
v∈S

∥v∗ε,z − v∥2 = 1

2(D − d)

q∑
i=1

m∑
j=1

(
√
2δεij)

2 = δ2. (A.19a)

Furthermore, straightforward calculation yields that the projected matrix-vector pair
takes the form

ΦdL
(ε,z)Φ∗

d =M0, and Φdb
(ε,z) = h0. (A.19b)

Now, we construct our observation model from which samples
(
L
(ε,z)
i , b

(ε,z)
i

)n
i=1

are
generated. For each i ∈ [n] and j ∈ [m], we sample independently Bernoulli random

variables χ
(i)
0j , χ

(i)
1j , · · · , χ

(i)
qj

i.i.d.∼ Ber(1/m). For k = 1, 2, · · · , q − 1, define the random
matrix

Z
(ε)
k := diag

(
mχ

(i)
(k−1)jε(k−1)jεkj

)m
j=1
. (A.20a)
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The random observations are then generated by the random matrix

J
(ε)
i :=


Im Z

(ε)
1 0 · · · 0 0

0 Im Z
(ε)
2 · · · 0 0

...
. . . . . .

...

0 0 · · · Im Z
(ε)
q−1

0 0 · · · 0 Im

 , (A.20b)

where once again, the diagonal blocks correspond to m×m identity matrices. We use
this random matrix to generate the observations

L
(ε,z)
i =


M0 χ01

√
d/2

q
zε11w χ02

√
d/2

q
zε12w · · · χ0m

√
d/2

q
zε1mw 0 · · · 0

0
0
... 1

2
J
(ε)
i

0


(A.20c)

and

b
(ε,z)
i =

[√
2dh⊤0 ︸ ︷︷ ︸

D − d−m

0 · · · 0 mχq1
δ√
2
εq1 · · · mχqm

δ√
2
εqm
]⊤
. (A.20d)

This concludes our description of the problem instances themselves. As before,
our proof proceeds via Le Cam’s lemma, and we use similar notation for product
distributions and mixtures under this observation model. Let P(n)

ε,z denote the n-fold

product of the probability laws of (L
(ε,z)
i , b

(ε,z)
i ). We also define the following mixture of

product measures for each z ∈ {−1, 1}:

P(n)
z :=

1

2D−d

∑
ε∈{±1}m×q

P(n)
ε,z .

We seek bounds on the total variation distance

∆ := dTV

(
P(n)
1 ,P(n)

−1

)
.

With this setup, the following lemmas assert that (a) Our construction satisfies
the operator norm condition and the noise conditions in Assumption 2.1(S) with the
associated parameters bounded by dimension-independent constants, and (b) The total
variation distance ∆ is small provided n≪ m1+1/q.

Lemma A.4. For q ∈
[
2, 1√

2(1−1∧γmax)

]
, and any ε ∈ {−1, 1}m×q and z ∈ {−1, 1},

(a) The construction in equation (A.18b) satisfies the bound |||L(ε,z)|||X ≤ γmax.
(b) The observation model defined in equation (A.20a)-(A.20d) satisfies Assump-
tion 2.1(S) with σL = γmax + 1 and σb = δ/q.
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Lemma A.5. Under the setup above, we have

∆ ≤ 12nq+1

mq
.

Part (a) of Lemma A.4 and equation (A.19a)-(A.19b) together ensure that
population-level problem instance (L, b) we constructed belongs to the class
Capprox(M0, h0, D, δ, γmax). Part (b) of Lemma A.4 further ensures the probability distri-
bution PL,b belongs to the class Gvar(σL, σb). Lemma A.5 ensures that the two mixture
distributions corresponding to different choices of the bit z are close provided n is not
too large. The final step in applying Le Cam’s mixture-vs-mixture result is to show that
the approximation error is large for at least one of the choices of the bit z.

Given any pair ε, ε′ ∈ {−1, 1}q×m, we note that

∥v∗ε,1 − v∗ε′,−1∥ ≥ ∥
[
2
√

d
q
y⊤ 0 · · · 0

]⊤∥ =

√
2

q
∥y∥2 =

√
2

q

√
α(M0, γmax)− 1 · δ.

Applying triangle inequality and Young’s inequality, we have the bound

1

2
(∥v̂ − v∗ε,1∥2 + ∥v̂ − v∗ε′,1∥2) ≥

1

4
(∥v̂ − v∗ε,1∥ + ∥v̂ − v∗ε′,1∥)2

≥ 1

4
∥v∗ε,1 − v∗ε′,−1∥2 ≥

α(M0, γmax)− 1

2q2
δ2.

Finally, applying Le Cam’s lemma yields

inf
v̂n∈V̂X

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ α(M0, γmax)− 1

2q2
δ2 ·

(
1− dTV(P(n)

−1 ,P
(n)
1 )
)

and using Lemma A.5 in conjunction with the condition D ≥ d+ 3qn1+1/q, we arrive at
the final bound

inf
v̂n∈V̂X

sup
(L,b)∈Capprox

PL,b∈Gvar(σL,σb)

E∥v̂n − v∗∥2 ≥ α(M0, γmax)− 1

2q2
δ2

as desired.

A.6.1 Proof of Lemma A.4

We prove the two parts of the lemma separately.
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Proof of part (a): We first show the upper bound on the operator norm. For any

vector p ∈ RD, we employ the decomposition p =
[
p(1)

p(2)

]
with p(1) ∈ Rd and p(2) ∈ Rqm.

Assuming that ∥p∥2 = 1
2d
∥p(1)∥22 + 1

2(D−d)∥p
(2)∥22 = 1, we have that

∥L(ε,z)p∥2 = 1

2d
∥M0p

(1) + w · z
√
d

D − d

m∑
j=1

ε1jp
(2)
j ∥22 +

1

2(D − d)
∥1
2
J (ε)p(2)∥22.

Define the vector a1 :=
1√
2d
p(1) and scalar a2 :=

1√
2(D−d)

∥p(2)∥2 for convenience; we have

the identity ∥a1∥22+a22 = 1. Following the same arguments as in the proof of Lemma 2.7,
we then have

1

2d
∥Mp(1) + w · z

√
d

D − d

m∑
j=1

ε1jp
(2)
j ∥22

≤ 1

2d
sup

t∈[−1,1]

∥M0p
(1) +

√
d

q
a2tw∥22

≤ max
(
∥M0a1 +

1

q
√
2
a2w∥22, ∥M0a1 −

1

q
√
2
a2w∥22

)
≤ |||

[
M0 w

]
|||2op
(
∥a1∥22 +

1

2q2
a22

)
.

By the definition of the vector w, we have the bound

|||
[
M0 w

]
|||2op = λmax

(
M0M

⊤
0 + ww⊤

)
≤ γ2max.

On the other hand, note that

1

2(D − d)
∥1
2
J (ε)p(2)∥22 ≤

1

8(D − d)
|||J (ε)|||2op · ∥p(2)∥22 =

1

4
|||J (ε)|||2opa22,

and consequently, that

∥L(ε,z)p∥2 ≤ γ2max

(
∥a1∥22 +

1

2q2
a22

)
+

1

4
|||J (ε)|||2op · a22. (A.21)

In order to bound the operator norm of the matrix J (ε), we use the following fact about
operator norm, proved at the end of this section for convenience. For any block matrix
T = [Tij]1≤i,j≤q, with each block Tij ∈ Rm×m, we have

|||[Tij]1≤i,j≤q|||op ≤ |||
[
|||Tij|||op

]
1≤i,j≤q|||op. (A.22)

Applying equation (A.6.1) to matrix J (ε) yields the bound

|||J (ε)|||op ≤ |||Iq + Jq|||op.
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Recall that Jq is the Jordan block of size q with zeros in the diagonal. Straightforward
calculation yields the bound

(Iq + Jq)(Iq + Jq)
⊤ ⪯


2 1 0 · · · 0 0
1 2 1 · · · 0 0

...
...

0 0 · · · 1 2 1
0 0 · · · 0 1 2

 =: Cq.

Note that Cq is a tridiagonal Toeplitz matrix, whose norm admits the closed-form
expression

|||Cq|||op = 2 + 2 cos
( π

q + 1

)
≤ 4− 4

q2
.

Therefore, we have |||J (ε)|||op ≤
√

|||Cq|||op ≤
√
4− 4/q2. Substituting into equation (A.21),

we obtain

∥L(ε,z)p∥2 ≤ γ2max

(
∥a1∥22 +

1

2q2
a22

)
+
(
1− 1

q2

)
· a22.

Invoking the condition q ≤ 1√
2(1−1∧γmax)

, we have the bound

∥L(ε,z)p∥2 ≤ γ2max

(
∥a1∥22 +

a22
2q

)
+
(
1− 1

q2

)
a22 ≤ γ2max(∥a1∥22 + a22) = γ2max,

Since the choice of the vector p is arbitrary, this yields

|||L(ε,z)|||X ≤ γmax,

which completes the proof.

Proof of part (b): Next, we verify the noise conditions in Assumption 2.1(S). For

a vector p ∈ X such that ∥p∥ = 1, denote it with p =
[
p(1)

p(2)

]
, where p(1) ∈ Rd and

p(2) ∈ RD−d. We have the identity 1
2d
∥p(1)∥22 + 1

2(D−d)∥p
(2)∥22 = 1.

For the noise b
(ε,z)
i − b(ε,z), we note that

E⟨p, b(ε,z)i − b(ε,z)⟩2 ≤ 1

4(D − d)2

m∑
j=1

E
(
(mχqj − 1)

δ√
2
εqj

)2(
p
(2)
(q−1)m+j

)2
≤ 1

4(D − d)2
· mδ

2

2
∥p(2)∥22 ≤

δ2

q2
.

Consequently, equation (2.12b) is satisfied for σb = δ/q.
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In order to bound the noise in the L component, we consider the first d basis vectors
and the last (D − d) basis vectors separately. First, note that for each k ∈ [d], we have

E⟨ϕk,
(
L
(ε,z)
i − L(ε,z)

)
p⟩2 = 1

4d2
E
(√d/2

D − d

m∑
j=1

z(mχ
(i)
1j − 1)ε1jp

(2)
j ·

√
2dw⊤ek

)2
≤ 1

4
∥w∥22 ·

m

(D − d)2

m∑
j=1

(
p
(2)
j

)2
≤ ∥w∥22

4q
.

Following the derivation in Lemma 2.7, we have ∥w∥2 ≤ γmax, and consequently, we
have the bound

E⟨ϕk,
(
L
(ε,z)
i − L(ε,z)

)
p⟩2 ≤ γ2max.

On the other hand, for k ≥ d + 1, the basis vector ϕk is constructed through the
Hadamard matrix. Let ψ(k) := (2q)−1/2 · ϕk, and note that the entries of ψ(k) are
uniformly bounded by 1. Letting k − d = (k0 − 1)m + k1 for some choice of integers
k0 ∈ [q] and k1 ∈ [m], we have

E⟨ϕk, (L(ε,z)
i − L(ε,z))p⟩2

≤ 1

4(D − d)2
E
( m∑
j=1

(mχ
(i)
k0j

− 1)εk0jε(k0+1)j ·
√

2qψ
(k)
d+(k0−1)m+j · p

(2)
k0m+j

)2
≤ 2mq

4(D − d)2

m∑
j=1

(
ψ

(k)
d+(k0−1)m+j

)2 · (p(2)k0m+j

)2
≤ 1

2(D − d)
∥p(2)∥22 = ∥p(2)∥2 ≤ 1.

This verifies that equation (2.12a) is satisfied with parameter σL = γmax + 1.

Proof of equation (A.6.1): For any vector x ∈ Rmq, consider the decomposition
x⊤ =

[
x⊤1 · · · x⊤q

]
with xj ∈ Rm for each j ∈ [q]. We have the bound

∥Tx∥22 =
q∑
i=1

∥
q∑
j=1

Tijxj∥22 ≤
q∑
i=1

( q∑
j=1

|||Tij|||op∥xj∥2
)2

= ∥
[
|||Tij|||op

]
1≤i,j≤q ·

[
∥xj∥2

]
1≤j≤q∥

2
2 ≤ |||

[
|||Tij|||op

]
1≤i,j≤q|||

2
op · ∥x∥22,

which proves this inequality.
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A.6.2 Proof of Lemma A.5

For each j ∈ [m], define the event

Ej :=
{
for all i ∈ {0, 1, · · · , q}, there exists ℓi ∈ [n] such that χ

(ℓi)
ij = 1

}
. (A.23)

Let E :=
⋃m
j=1 Ej. We note that under both P(n)

1 and P(n)
−1 , we have the inequality

P(E ) ≤
m∑
j=1

P(Ej) =
m∑
j=1

q∏
i=0

{
1− P

(
χ
(ℓ)
ij = 1 for all ℓ ∈ [n]

)}
= m ·

(
1−

(m− 1

m

)n)q+1

≤ nq+1

mq
.

As before, our choice of the event E was guided by the fact that the two mixture
distributions are identical on its complement. In particular, we claim that

P(n)
1 |E C = P(n)

−1 |E C . (A.24)

Taking this claim as given for the moment and applying Lemma A.1, we arrive at the
bound

dTV(P(n)
1 ,P(n)

−1 ) ≤
12nq+1

mq
.

This completes the proof of this lemma. It remains to prove equation (A.24).

Proof of equation (A.24): We first note that both P(n)
1 are P(n)

−1 are m-fold
i.i.d. product distributions: given z = 1 or z = −1, the random objects(
(εij)1≤i≤q, (χ

(ℓ)
ij )0≤i≤q,1≤ℓ≤n

)m
j=1

are independent and identically distributed. Now

for each j ∈ [m], let Q(n)
z,j be the joint law of the random object (ρ(ℓ))nℓ=1, where

ρ(ℓ) =
(
zχ

(ℓ)
0j ε1j, χ

(ℓ)
1j ε1jε2j, · · · , χ

(ℓ)
(q−1)jε(q−1)jεqj, χ

(ℓ)
qj εqj

)
. It suffices to show that

∀j ∈ [m], Q(n)
1,j |E C

j = Q(n)
−1,j|E C

j . (A.25)

To prove equation (A.25), we construct a distribution Q(n)
∗,j , and show that it is equal to

both of the conditional laws above. In analogy to the proof of Theorem 2.2, we construct
Q(n)

∗,j according to the following sampling procedure:

• Sample the indicators (χ
(ℓ)
ij )0≤i≤q,1≤ℓ≤n, each from the Bernoulli distribution Ber(1/m),

conditioned1 on the event E C
j .

1Note that P(E C
j ) > 0 in this sampling procedure. So the conditional distribution is well-defined.
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• For each i ∈ {0, 1, · · · , q}, sample a random bit ζ(i) ∼ U({−1, 1}) independently.

• For each ℓ ∈ [n], generate the random object

ρ(ℓ) =
(
χ
(ℓ)
0j ζ

(0), χ
(ℓ)
1j ζ

(1), · · · , χ(ℓ)
(q−1)jζ

(q−1), χ
(ℓ)
qj ζ

(q)
)
.

In the following, we construct a coupling between Q(n)
z,j |E C

j and Q(n)
∗,j , for any z ∈

{−1, 1}, and show that they are actually the same.

First, we couple the random indicators (χ
(ℓ)
ij )0≤i≤q,1≤ℓ≤n under Q(n)

z,j |E C
j and Q(n)

∗,j
directly so that they are equal almost surely. By the first step in the sampling procedure,
we know that the conditional law of these indicators are the same under both probability
distributions.

By definition (A.23), we note that

E C
j =

{
there exists i ∈ {0, 1, · · · , q}, such that χ

(ℓ)
ij = 0 for all ℓ ∈ [n]

}
.

Let the random variable ι ∈ {0, 1, · · · , q} be the smallest such index2 i. We construct
the joint distribution by conditioning on different values of ι. First, note that the value
of the random variable ζ(ι) is never observed, so we may set it to be an independent
Rademacher random variable without loss of generality, and this does not affect the law
of the random object (ρ(ℓ))nℓ=1 under consideration. Now consider the following three
cases:

Case I: ι = 0: In this case, we have χ
(ℓ)
0j = 0 for all ℓ ∈ [n]. So the first coordinate

of each ρ(ℓ) is always zero. We define the following random variables in the probability
space of (εij)

q
i=1:

ζ(q)
′
:= εqj, and ζ(i)

′
:= εijε(i+1)j for i ∈ {1, 2, · · · , q − 1}.

Since (εij)
q
i=1 are i.i.d. Rademacher random variables, it is easy to show by induction

that the random sequence
(
ζ(i)

′)q
i=1

is also i.i.d. Rademacher, which has the same law

as (ζ(i))qi=1. Consequently, we can construct the coupling such that
(
ζ(i)
)q
i=1

=
(
ζ(i)

′)q
i=1

almost surely. Under this coupling, when ι = 0, the random objects (ρ(ℓ))nℓ=1 generated
under both probability distributions are almost-surely the same.

Case II: ι ∈ {1, 2, · · · , q− 1}: In this case, we have χ
(ℓ)
ιj = 0 for any ℓ ∈ [n]. We define

the following random variables in the probability space of (εij)
q
i=1:

ζ(0)
′
:= zε1j, and ζ(i)

′
:= εijε(i+1)j for i ∈ {1, 2, · · · , q − 1} \ {ι}, and ζ(q)

′
:= εqj.

Note that the tuple of random variables (ζ(i)
′
)ι−1
i=0 lives in the sigma-field σ(ε1j, · · · , ειj),

and (ζ(i)
′
)qi=ι+1, on the other hand, lives in the sigma-field σ(ε(ι+1)j, · · · , εqj), so these

2Note that under the joint distribution we construct, ι is well-defined almost surely.
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two tuples are independent. For any fixed bit z ∈ {−1, 1}, it is easy to show by

induction that
(
ζ(i)

′)ι−1

i=0
is an i.i.d. Rademacher random sequence. Similarly, applying

the induction backwards from q to ι + 1, we can also show that
(
ζ(i)

′)q
i=ι+1

is also
an i.i.d. Rademacher random sequence. Putting together the pieces, we see that the
random variables

(
ζ(i)

′)
0≤i≤q,i̸=ι are i.i.d. Rademacher, and have the same law as the

tuple
(
ζ(i)
)
0≤i≤q,i ̸=ι. We can therefore construct the coupling such that they are equal

almost surely. Under this coupling, the random objects (ρ(ℓ))nℓ=1 generated under both
probability distributions are almost-surely the same.

Case III: ι = q: In this case, we have χ
(ℓ)
ιj = 0 for any ℓ ∈ [n]. We define the following

random variables in the probability space of (εij)
q
i=1:

ζ(0)
′
:= zε1j, and ζ(i)

′
:= εijε(i+1)j for i ∈ {1, 2, · · · , q − 1}.

Note that (εij)
q
i=1 are i.i.d. Rademacher random variables. For each choice of the bit

z ∈ {−1, 1}, we can show by induction that the random sequence
(
ε(i)

′)q
i=1

is also

i.i.d. Rademacher, which has the same law as the tuple (ε(i))qi=1. Making them equal
almost surely in the coupling leads to the corresponding random object (ρ(ℓ))nℓ=1 being
almost-surely equal.

Therefore, we have constructed a coupling between Q(n)
z,j |E C

j and Q(n)
∗,j so that the

generated random objects are always the equal, for any z ∈ {−1,+1}. This shows that

Q(n)
1,j |E C

j = Q(n)
∗,j = Q(n)

−1,j|E C
j ,

which completes the proof of equation (A.25), and hence, the lemma.

A.7 Proof of the bounds on the approximation

factor

In this section, we prove the claims on the quantity α(M,γmax) that defines the optimal
approximation factor.

A.7.1 Proof of Lemma 2.1

Recall that

α(M, s) = 1 + λmax

(
(I −M)−1(s2Id −MM⊤)(I −M)−⊤

)
. (A.26)

In the following, we prove upper bounds for the two different cases separately.
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Bounds in the general case: By assumption, we have |||M |||op ≤ s, and consequently,

0 ⪯ s2Id −MM⊤ ⪯ s2.

Thus, we have the sequence of implications

α(M, s)− 1 = λmax

(
(I −M)−1(s2I −MM⊤)(I −M)−⊤

)
= |||(I −M)−1(s2I −MM⊤)(I −M)−⊤|||op
≤ |||(I −M)−1|||op · |||s2Id −MM⊤|||op · |||(I −M)−1|||op
≤ |||(I −M)−1|||2op · s2,

which proves the bound.

Bounds under non-expansive condition: When s ≤ 1, we have

s2I −MM⊤ ⪯ I −MM⊤ =
1

2
(I −M)(I +M⊤) +

1

2
(I +M)(I −M⊤).

Consequently, we have the chain of bounds

α(M, s)− 1 ≤ λmax

(
(I −M)−1(I −MM⊤)(I −M)−⊤

)

=
1

2
λmax

(
(I +M)⊤(I −M⊤)−1 + (I −M)−1(I +M)

)

≤ 1

2
|||(I +M)⊤(I −M⊤)−1|||op +

1

2
|||(I −M)−1(I +M)|||op

≤ |||(I −M)−1|||op + |||(I −M⊤)−1|||op

= 2|||(I −M)−1|||op.

Finally, we note that if κ(M) < 1, then for any u ∈ Rd, we have

(1− κ(M))∥u∥22 ≤ ⟨(I −M)u, u⟩ ≤ ∥(I −M)u∥2 · ∥u∥2.

Consequently, we have |||(I −M)−1|||op ≤ 1
1−κ(M)

, which completes the proof of this
lemma.

A.7.2 Proof of Lemma 2.2

Once again, recall the definition

α(M, s) = 1 + λmax

(
(I −M)−1(s2Id −MM⊤)(I −M)−⊤

)
.
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Since M is symmetric, let M = PΛP⊤ be its eigen-decomposition, where Λ =
diag(λ1, λ2, · · · , λd), and note that

α(M, s) = 1 + λmax

(
P (I − Λ)−1(s2 − Λ2)(I − Λ)−1P⊤

)
= 1 + λmax

(
(I − Λ)−2(s2 − Λ2)

)
= 1 + max

1≤i≤d

(γ2max − λ2i
(1− λi)2

)
,

which completes the proof.

A.8 Proofs for the examples

In this section, we provide proofs for the results related to three examples discussed in
Section 2.4. Note that Corollary 2.3 follows directly from Theorem 2.1. Moreover, the
proof of Corollary 2.4 builds on some technical results, and so we postpone the proof
of all results related to elliptic equations to Appendix A.8.3. We begin this section
with proofs of results related to temporal difference methods, i.e., Corollary 2.5 and
Proposition 2.1.

A.8.1 Proof of Corollary 2.5

Recall our definition of the positive definite matrix B, with Bij = ⟨ψi, ψj⟩. Letting
θt := B1/2ϑt, the iterates (2.41a) can be equivalently written as

θt+1 = θt − ηB ·
(
ϕ(st+1)ϕ(st+1)

⊤θt − γϕ(st+1)ϕ(s
+
t+1)

⊤θt +Rt+1(st+1)ϕ(st+1)
)
,

(A.27)

and the Polyak–Ruppert averaged iterate is given by θ̂n := 2
n

∑n−1
t=n/2 θt. We also define

θ̄ := Φdv, which is the solution to projected linear equations under the orthogonal basis.
Clearly, we have θ̄ = B1/2ϑ̄.

We now claim that if n ≥ c0ς4β2

µ2(1−κ(M))2
d log2

(
∥ϑ0−ϑ̄∥2dβ
µ(1−κ(M))

)
, then

∥Φ∗
dθ̄ − v∗∥2 ≤ α(M,γ)A(S, v∗), and (A.28a)

E∥θ̂n − θ̄∥22 ≤ cEn(M,Σ∗) + c
(
1 + ∥v̄∥2

)( ς2β

(1− κ(M))µ

√
d

n

)3
. (A.28b)

Taking both inequalities as given for now, we proceed with the proof of this corollary.
Combining equation (A.28a) and equation (A.28b) via Young’s inequality, we arrive at
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the bound

E∥v̂n − v∗∥2

≤ (1 + ω)∥Φ∗
dθ̄ − v∗∥2 +

(
1 +

1

ω

)
E∥θ̂n − θ̄∥22

≤ (1 + ω)A(S, v∗) + c
(
1 +

1

ω

)[
En(M,Σ∗) +

(
1 + ∥v̄∥2

)( ς2β

(1− κ(M))µ

√
d

n

)3]
,

which completes the proof of this corollary.

Proof of equation (A.28a): By equation (2.23) and the definition of θ̄, we have

θ̄ = γMθ̄ + Eξ[R(s)ϕ(s)].

It is easy to see that Φ∗
dθ̄ solves the projected Bellman equation (2.22). Note furthermore

that the projected linear operator is given by

ΦdLΦ
∗
d = γΦdPΦ

∗
d =M.

Invoking the bound in equation (2.45a), we complete the proof of this inequality.

Proof of equation (A.28b): Following the proof strategy for the bound (2.45b), we
first show an upper bound on the iterates E∥ϑt − ϑ̄∥2 under the non-orthogonal basis
(ψj)j∈[d], and then use this bound to establish the final estimation error guarantee under
∥ · ∥-norm.

Recall the stochastic approximation procedure under the non-orthogonal basis:

ϑt+1 = ϑt − η
(
ψ(st+1)ψ(st+1)

⊤ϑt − γψ(st+1)ψ(s
+
t+1)

⊤ϑt −Rt+1(st+1)ψ(st+1)
)
.

Let M̃ := Id − 1
β
B1/2

(
Id −M

)
B1/2 and h̃ := 1

β
E[R(s)ψ(s)]. We can view equa-

tion (2.41a) as a stochastic approximation procedure for solving the linear fixed-point

equation ϑ̄ = M̃ϑ̄+ h̃, with stochastic observations

M̃t := Id − β−1
(
ψ(st)ψ(st)

⊤ − γψ(st)ψ(s
+
t )

⊤
)
, and h̃t := β−1R(st)ψ(st).

To verify Assumption 2.1(W), we note that for p, q ∈ Sd−1, the following bounds directly
follows from the condition (2.42):

E
(
p⊤
(
M̃t − M̃

)
q
)2

≤ 2β−2E
(
(p⊤ψ(st)) · (ψ(st)⊤q)

)2
+ 2β−2E

(
(p⊤ψ(st)) · (ψ(s+t )⊤q)

)2
≤ 2β−2

√
E
(
p⊤ψ(st)

)4
· E
(
ψ(st)⊤q

)4
+ 2β−2

√
E
(
p⊤ψ(st)

)4
· E
(
ψ(s+t )

⊤q
)4

≤ 4ς4

β2
∥B1/2p∥22 · ∥B1/2q∥22 ≤ 4ς4,



A.8. PROOFS FOR THE EXAMPLES 247

and

E
(
p⊤
(
h̃t − h̃

))2
≤ β−2E

(
R(st) · p⊤ψ(st)

)2
≤ β−2

√
E
[
R(st)4

]
· E
(
p⊤B1/2ϕ(st)

)4
≤ ς4/β.

Consequently, for the stochastic approximation procedure in equation (2.41a), Assump-
tion 2.1(W) is satisfied with σL = 2ς2 and σb = ς2/

√
β.

To establish an upper bound on κ(M̃), we note that

1− κ(M̃) =
1

β
λmin

(
B −B1/2M +M⊤

2
B1/2

)
=

1

β
inf

u∈Sd−1
(B1/2u)⊤

(
Id −

M +M⊤

2

)
(B1/2u)

≥ µ

β
inf

u∈Sd−1
u⊤
(
Id −

M +M⊤

2

)
u ≥ µ

β

(
1− κ(M)

)
.

Invoking Lemma 2.5, for η < c0(1−κ(M))µ
(ς4d+1)β2 , we have

E∥ϑt − ϑ̄∥22 ≤ e−
µ
2
(1−κ(M))ηtE∥ϑ0 − ϑ̄∥22 +

8ηβ

(1− κ(M))µ

(
∥ϑ∥22ς4d+ ς4d/β

)
. (A.29)

On the other hand, applying Lemma 2.6 to the stochastic approximation procedure (A.27)
under the orthogonal coordinates, we have the bound

E∥v̂n − v∥2 ≤ 6

n− n0

trace
(
(I −M)−1Σ∗(I −M)−⊤

)
+

6

(n− n0)2

n∑
t=n0

E∥(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)∥22

+
3E∥

(
Id −B1/2M̃B−1/2

)−1
(θn − θn0)∥22

η2β2(n− n0)2
. (A.30)

Straightforward calculation yields

E∥(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)∥22
= β2E∥(I −M)−1B−1/2(M̃t+1 − M̃)(ϑt − ϑ̄)∥22.

For any vector p ∈ Rd, using condition (2.42), we note that

E∥B−1/2(M̃t − M̃)p∥22
≤ 2β−2E∥ϕ(st)ϕ(st)⊤B1/2p∥22 + 2β−2E∥ϕ(st)ϕ(s+t )⊤B1/2p∥22

≤ 2β−2
√
E∥ϕ(st)∥42 ·

√
E
(
ϕ(st)⊤B1/2p

)4
+ 2β−2

√
E∥ϕ(st)∥42 ·

√
E
(
ϕ(s+t )

⊤B1/2p
)4

≤ 4β−1ς4d.
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Substituting into the identity above, we obtain

E∥(I −B1/2M̃B−1/2)−1B1/2(M̃t+1 − M̃)B−1/2(θt − θ̄)∥22 ≤
4βς4d(

1− κ(M)
)2E∥ϑt − ϑ̄∥22.

For the third term in equation (A.30), we note that

E∥
(
Id −B1/2M̃B−1/2

)−1
(θn − θn0)∥22 = β2E∥(I −M)−1B−1/2(ϑn − ϑn0)∥22

≤ 2β2

µ
(
1− κ(M)

)2(E∥ϑn − ϑ̄∥22 + E∥ϑn0 − ϑ̄∥22
)
.

Putting together the pieces and invoking the bound (A.29), we see that if n0 ≥
c0

1
µη(1−κ) log

(
dβ

µ(1−κ)

)
, then

E∥v̂n − v∥2 ≤ 6En(M,Σ∗) +
[ 24βς4d(

1− κ(M)
)2
n
+

48

µ
(
1− κ(M)

)2
η2n2

]
· sup
n0≤t≤n

E∥ϑt − ϑ̄∥22

≤ 6En(M,Σ∗) + c
β3

µ2
(
1− κ(M)

)3[ς4ηdn +
1

ηβ2n2

](
∥ϑ̄∥22ς4d+ ς4d/β

)
.

Now note that ∥ϑ̄∥22 = ∥B−1/2θ̄∥22 ≤ µ−1∥v∥2, and so choosing the step size η := 1
c0ς2β

√
dn

yields

E∥v̂n − v∥2 ≤ 6En(M,Σ∗) + c
β3ς6

µ3
(
1− κ(M)

)3(dn)3/2.
This completes the proof of equation (A.28b), and thus the corollary.

A.8.2 Proof of Proposition 2.1

Our construction and proof is inspired by the proof of Theorem 2.2, with some crucial
differences in the analysis that result from the specific noise model in the MRP setting.
Letting D and d be integer multiples of four without loss of generality, we denote the
state space by S = {1, 2, · · · , D}. We decompose the state space into S = S0 ∪ S1 ∪ S2,
with S0 := {1, 2, · · · , 2d}, S1 := {2d + 1, · · · , d + D

2
}, and S2 := {d + D

2
+ 1, · · · , D}.

Define the scalars ρ = min(γ, ν) ∈ (0, 1) and τ := δ√
2(1−ρ)

∧ 1. In the following, we

assume that δ <
√

2(1− ρ). When δ ≥
√

2(1− ρ), the lower bound for a smaller class

CMRP(ν, γ,D,
√

2(1− ρ)) directly applies to the original class CMRP(ν, γ,D, δ).
Given a sign z ∈ {−1, 1} and subsets Γ1 ⊆ S1 and Γ2 ⊆ S2 such that |Γi| = 1

2
|Si| for

each i ∈ {1, 2}, we let Γ̄i := Si \ Γi for i ∈ {1, 2}. We then construct Markov reward
processes (P (Γ1,Γ2,z), r(Γ1,Γ2,z)) and feature vectors (ψ(Γ1,Γ2,z)(si))

D
i=1, indexed by the tuple
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Figure A.1: A graphical illustration of the MRP instance constructed above. For this
instance, we let d = 1, |S1| = 4 and |S2| = 4, so that the total number of states is
D = 10. In the graph, solid rounds stand for states, and arrows stand for the possible
transitions. The numbers associated to the arrows stand for the probability of the
transitions, and the equations r = · · · standard for the reward at a state. The sets S0,
S1 and S2 are separated by red dotted lines, and the sets Γ1, Γ̄1, Γ2, and Γ̄2 are marked
by transparent rectangles. A blue round stands for a state with positive value function,
and an orange round stands for a state with negative value function.

(Γ1,Γ2, z). Entry (i, j) of the transition matrix is given by

P (Γ1,Γ2,z)(i, j) :=



ρ i = j ∈ S0,
1−ρ
2

i, j ∈ S0, |i− j| = d,
1−ρ
|S1| (i, j) ∈

(
{1, · · · , d} × Γ1

)
∪
(
{d+ 1, · · · , 2d} × Γ̄1

)
,

2
|S2| (i, j) ∈

(
Γ1 × Γ2

)
∪
(
Γ̄1 × Γ̄2

)
,

1
d

(i, j) ∈
(
Γ2 × {1, 2, · · · , d}

)
∪
(
Γ̄2 × {d+ 1, · · · , 2d}

)
0 otherwise.

(A.31a)



A.8. PROOFS FOR THE EXAMPLES 250

The reward function at state i is given by

r(Γ1,Γ2,z)(i) :=


zτ i ∈ Γ1,

−zτ i ∈ Γ̄1,

0 otherwise.

(A.31b)

This MRP is illustrated in Figure A.1 for convenience. It remains to specify the feature
vectors, and we use the same set of features for each tuple (Γ1,Γ2, z). The i-th such
feature vector is given by

ψ(i) :=


√

3−ρ
2
dei i ∈ {1, 2, · · · , d},

−
√

3−ρ
2
dei−d i ∈ {d+ 1, · · · , 2d},

0 otherwise.

(A.31c)

It can be verified that for any tuple (z,Γ1,Γ2), the Markov chain is irreducible and
aperiodic, and furthermore, that the stationary distribution of the transition kernel
P (Γ1,Γ2,z) is independent of the tuple (Γ1,Γ2, z), and given by

ξ =
[
︸ ︷︷ ︸

2d

1
(3−ρ)d · · · 1

(3−ρ)d ︸ ︷︷ ︸
D − 2d

1−ρ
(3−ρ)(D−2d)

· · · 1−ρ
(3−ρ)(D−2d)

]
.

By construction, we have Eξ[ψ(s)ψ(s)⊤] = Id under the stationary distribution. For
the projected transition kernel, we have

E[ψ(s)ψ(s+)⊤] =
3− ρ

2
·
(
ρ− 1− ρ

2

)
Id ⪯ ρId ⪯ νId. (A.32)

Given the discount factor γ ∈ (0, 1), let c0 := (1−ρ)/2
1−γ(ρ−(1−ρ)(1−γ2)/2) for convenience.

Straightforward calculation then yields that the value function for the problem instance(
P (Γ1,Γ2,z), r(Γ1,Γ2,z)

)
at state i is given by

v∗Γ1,Γ2,z
(i) =



c0zτ i ∈ {1, 2, · · · , d},
−c0zτ i ∈ {d+ 1, · · · , 2d},
(1 + γ2c0)zτ i ∈ Γ1,

−(1 + γ2c0)zτ i ∈ Γ̄1,

γc0zτ i ∈ Γ2,

−γc0zτ i ∈ Γ̄2.

For ρ > 1/2, we have the bounds

c0 ≥
1

4
· 1− ρ

1− γρ
≥ 1− ρ

4(1− ρ2)
≥ 1

8
, and c0 ≤

1− ρ

1− γρ
≤ 1.
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Consequently, we have |v∗Γ1,Γ2,z
(i)| ≍ |v∗Γ1,Γ2,z

(j)| for each pair (i, j), where ≍ denotes an
equivalence up to a universal constant factor.

Note that by our construction, the subspace S spanned by the basis functions
ψ(1), ψ(2), · · · , ψ(2d) is given by

S =
{
v ∈ L2(S, ξ) : v(s) = 0 for s /∈ S0, and v(i+ d) = −v(i) for all i ∈ [d]

}
.

Consequently, we have

inf
v∈S

∥v − v∗Γ1,Γ2,z
∥2 = 1− ρ

3− ρ
·
(1
2
(1 + γ2c0)

2τ 2 +
1

2
γ2c20τ

2
)
≤ 2(1− ρ)τ 2 = δ2. (A.33)

Putting the equations (A.32) and (A.33) together, for any tuple (Γ1,Γ2, z), we con-
clude that the problem instance (P (Γ1,Γ2,z), r(Γ1,Γ2,z), γ, ψ((Γ1,Γ2,z))) belongs to the class
CMRP(ν, γ,D, δ).

Having verified particular properties of our MRP construction, we are now ready
to carry out the lower bound argument via Le Cam’s lemma, as above. We define the
following mixture distributions for each z ∈ {−1, 1}:

P(n)
z :=

(
|S1|
|S1|/2

)−2 ∑
Γ1⊆S1,Γ2⊆S2

|Γ1|=|Γ2|= 1
2
|S1|

P⊗n
Γ1,Γ2,z

,

where PΓ1,Γ2,z is the law of an observed tuple (si, s
+
i , r(si)) under the MRP(

P (Γ1,Γ2,z), γ, r(Γ1,Γ2,z)
)
, and P⊗n

Γ1,Γ2,z
denotes its n-fold product. Our next result gives a

bound on the total variation distance between P(n)
1 and P(n)

−1 .

Lemma A.6. Under the set-up above, we have dTV

(
P(n)
1 ,P(n)

−1

)
≤ Cn2

D−2d
.

Taking this lemma as given, we now turn to the proof of the proposition. Consider
any estimator v̂ for the value function. For any pair Γ1,Γ2 and Γ′

1,Γ
′
2, we have

∥v̂ − v∗Γ1,Γ2,1
∥2 + ∥v̂ − v∗Γ′

1,Γ
′
2,−1∥2 ≥

1

2
∥v∗Γ1,Γ2,1

− v∗Γ′
1,Γ

′
2,−1∥2 ≥

1

2
c20τ

2 ≥ δ2

64(1− ρ)
.

Let C denote the constant appearing in Lemma A.6, and suppose that D > 2C(n2 + d).
Invoking Le Cam’s lemma yields the lower bound

inf
v̂n

sup
(P,γ,r,ψ)∈CMRP

≥ c

1− ρ
δ2
(
1− dTV(P(n)

1 ,P(n)
−1 )
)
≥ c′

1− νγ
δ2,

which completes the proof.
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A.8.2.1 Proof of Lemma A.6

Our argument is spiritually similar to the proof of Theorem 2.2, but involves some
delicate technical work owing to the nature of the sampling model. In contrast to the
proof of Theorem 2.2, the underlying mixing components here are indexed by random
subsets of a given size, instead of random bit strings. This sampling procedure introduces
additional dependency, so that the arguments in the proof of Theorem 2.2 do not directly
apply. Instead, we use an induction-type argument by constructing the coupling directly.

Similarly to before, we construct a probability distribution Q(n) and bound the total

variation distance between Q(n) and P(n)
z for each z ∈ {−1, 1}. In particular, for k ∈ [n],

we let Q(k) be the law of k independent samples drawn from the following observation
model:

• (Initial state:) Generate the state si ∼ ξ.

• (Next state:) If si ∈ S1, then generate s+i ∼ U(S2). If si ∈ S2, then generate s+i ∼ U(S0).
On the other hand, if si ∈ S0, then generate S ∼ U(S1) and let3

s+i =


si w.p. ρ,

(si + d) mod 2d w.p. 1−ρ
2 ,

S w.p. 1−ρ
2 .

(A.34)

• (Reward:) If si ∈ S1, randomly draw Ri = ζ(i) ∼ U({−1, 1}), and output ζ(i)τ as the
reward. Otherwise, output the reward Ri = 0.

To bound the total variation distance dTV(Q(n),P(n)
z ), we use the following recursive

relation, which holds for each k = 0, 1, · · · , n− 1:

dTV

(
Q(k+1),P(k+1)

z

)
≤ dTV

(
Q(k),P(k)

z

)
+ sup

(si,s
+
i ,Ri)ki=1

dTV

(
Q(k+1)|(si, s+i , Ri)

k
i=1,P(k+1)

z |(si, s+i , Ri)
k
i=1

)
. (A.35)

Owing to the i.i.d. nature of the sampling model for Q(k+1), note that we have the

equivalence (sk+1, s
+
k+1, Rk+1)|(si, s+i , Ri)

k
i=1

d
= (sk+1, s

+
k+1, Rk+1).

At this juncture, it is helpful to view the probability distributions P(k)
1 and P(k)

−1 via
the following two-step sampling procedure: First, for j ∈ {1, 2}, sample the subsets
Γj ⊆ Sj uniformly at random from the collection of all subsets of size |Sj|/2. Then,
generate k i.i.d. samples (si, s

+
i , Ri)

k
i=1 according to the observation model (A.31a)-

(A.31b). Consequently, for the rest of this proof, we view Γ1 and Γ2 as random sets.
With this equivalence in hand, the following technical lemma shows that the posterior

distribution of the subsets (Γ1,Γ2) conditioned on sampling the tuple (si, s
+
i , Ri)

k
i=1 is

very close to the distribution of subsets chosen uniformly at random.

3The expression a mod b denotes the remainder of a divided by b, when a and b are integers.
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Lemma A.7. There is a universal positive constant c such that for each bit z ∈ {±1}
and indices j ∈ {1, 2} and k ∈ [n], the following statement is true almost surely. For each

tuple (si, s
+
i , Ri)

k
i=1 in the support of P(k)

z , the posterior distribution of Γj conditioned on

(si, s
+
i , Ri)

k
i=1 ∼ P(k)

z satisfies

max
s∈Sj\∪k

i=1{si,s
+
i }

∣∣∣∣P(Γj ∋ s | (si, s+i , Ri)
k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.

In words, for any “observable” tuple (si, s
+
i , Ri)

k
i=1 and each state s ∈ Sj\∪ki=1{si, s+i },

the posterior probability of the event {Γj ∋ s} conditioned on observing the tuple
(si, s

+
i , Ri)

k
i=1 is close to 1/2 provided D− d is large relative to k. In addition to the sets

Γj, j = 1, 2 being close to uniformly random, we also require the following analog of a

“birthday-paradox” argument in this setting. For convenience, we let Tk :=
⋃k
i=1{si, s

+
i }

denote the subset of states seen up until sample k.

Lemma A.8. There is a universal positive constant c such that for each k ∈ [n] and

each distribution M(k+1) ∈
{
P(k+1)
−1 ,P(k+1)

−1 ,Q(k+1)
}
, the following statement holds almost

surely. For each tuple (si, s
+
i , Ri)

k+1
i=1 in the support of M(k+1), the probability the tuple

of states
{
sk+1, s

+
k+1

}
conditioned on (si, s

+
i , Ri)

k
i=1 ∼ M(k) satisfies

P
({

sk+1, s
+
k+1

}
∩ Tk ∩ (S1 ∪ S2) ̸= ∅︸ ︷︷ ︸
:=E

(1)
k+1

| (si, s+i , Ri)
k
i=1

)
≤ ck

D − d
. (A.36)

In words, Lemma A.8 ensures that if D − d is large relative to k, then the states
seen in sample k + 1 are different from those seen up until that point (provided we only
count states in the set S1 ∪ S2). Lemmas A.7 and A.8 are both proved at the end of
this section; we take them as given for the rest of this proof.

Now consider tuples (sk+1, s
+
k+1, Rk+1) ∼ P(k+1)

z |(si, s+i , Ri)
k
i=1 and

(s̃k+1, s̃
+
k+1, R̃k+1) ∼ Q(k+1)|(si, s+i , Ri)

k
i=1; we will now construct a coupling be-

tween these two tuples in order to show that the total variation between between the
respective laws is small. First, note that under both P(k+1)

z and Q(k+1), the initial
state is drawn from the stationary distribution, i.e., sk+1, s̃k+1 ∼ ξ, regardless of the
sequence (si, s

+
i , Ri)

k
i=1. We can therefore couple the two conditional laws together so

that sk+1 = s̃k+1 almost surely. To construct the coupling for the rest, we consider the
following three cases:

Coupling on the event sk+1 ∈ S0: We begin by coupling the reward random variables;
we have Rk+1 = R̃k+1 = 0 under both conditional distributions, so this component of the
distribution can be coupled trivially. Next, we couple the next state: By construction of
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the observation models (A.31a) and (A.34), we have

P
(
s+k+1 = sk+1|sk+1

)
= P

(
s̃+k+1 = s̃k+1|s̃k+1

)
= ρ, and

P
(
s+k+1 = sk+1 + d mod 2d | sk+1

)
= P

(
s̃+k+1 = s̃k+1 + d mod 2d | s̃k+1

)
=

1− ρ

2
,

and so these two components of the distribution can be coupled trivially. It remains to
handle the case where sk+1 ∈ S0 and s+k+1 ∈ S1. By the symmetry of elements within

set S1, we note that on the event
(
E (1)
k+1

)C
, both random variables s̃+k+1 and s+k+1 are

uniformly distributed on the set S1 \ Tk. Consequently, on the event
(
E (1)
k+1

)C
, we can

couple the conditional laws so that s+k+1 = s̃+k+1 almost surely.

Coupling on the event sk+1 ∈ S1: As before, we begin by coupling the rewards, but

first, note that on the event
(
E (1)
k+1

)C
, we have sk+1 ∈ S1 \ Tk. Invoking Lemma A.7,

under P(k)
z and conditionally on the value of sk+1, we have the bound∣∣∣∣P(sk+1 ∈ Γ1 | (si, s+i , Ri)

k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.

Now the reward function (A.31b) satisfies r(s) = zτ for s ∈ Γ1 and r(s) = −zτ for

s ∈ Γ̄1. On the other hand, under Q(k+1), the reward R̃k+1 takes value of τ and −τ ,
each with probability half. Consequently, there exists a coupling between Rk+1 and
R̃k+1 such that

P
(
Rk+1 ̸= R̃k+1, sk+1 ∈ S1︸ ︷︷ ︸

:=E
(2)
k+1

| (si, s+i , Ri)
k
i=1

)
≤ ck

D − d
.

Next, we construct the coupling for next-step transition conditionally on the current step.

By the symmetry of elements within set S2, we note that under
(
E (1)
k+1

)C
, both random

variables s̃+k+1 and s+k+1 are uniformly distributed on the set S2 \ Tk. Consequently, on
the event

(
E (1)
k+1

)C
, we can couple the conditional laws so that s+k+1 = s̃+k+1 almost surely.

Coupling on the event sk+1 ∈ S2: In this case, we have Rk+1 = R̃k+1 = 0 under
both conditional distributions, so this coupling is once again trivial. It remains to

construct a coupling between next-step transitions s+k+1 and s̃
+
k+1. On the event

(
E (1)
k+1

)C
,

we have sk+1 ∈ S2 \ Tk. Under P(k)
z and conditionally on the value of sk+1, Lemma A.7

leads to the bound ∣∣∣∣P(sk+1 ∈ Γ2 | (si, s+i , Ri)
k
i=1

)
− 1

2

∣∣∣∣ ≤ ck

D − d
.
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By definition, under P(n)
z , we have that s+k+1 ∼ U({1, 2, · · · , d}) when sk+1 ∈ Γ2,

and s+k+1 ∼ U({d + 1, · · · , 2d}) when sk+1 ∈ Γ̄2. Under Q(n), we have s̃+k+1 ∼
U({1, 2, · · · , 2d}). Consequently, there exists a coupling such that

P
(
s+k+1 ̸= s̃+k+1, sk+1 ∈ S2︸ ︷︷ ︸

:=E
(3)
k+1

| (si, s+i , Ri)
k
i=1

)
≤ ck

D − d
.

Putting together our bounds from the three cases, note that for any sequence
(si, s

+
i , Ri)

k
i=1 on the support of Q(k) and P(k)

z , we almost surely have

dTV

(
L
[
(sk+1, s

+
k+1, Rk+1)

∣∣ (si, s+i , Ri)
k
i=1

]
,L
[
(s̃k+1, s̃

+
k+1, R̃k+1)

∣∣ (si, s+i , Ri)
k
i=1

])
≤

3∑
j=1

P
(
E (j)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤ c′k

D − d
,

where the final inequality follows from applying Lemma A.8. Substituting into the
recursion (A.35), we conclude that for any z ∈ {−1, 1}, we have

dTV

(
Q(n),P(n)

z

)
≤

n−1∑
k=0

3∑
j=1

sup
(si,s

+
i ,Ri)ki=1

P
(
E (j)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤ c′n2

D − d
,

which completes the proof of this lemma.
It remains to prove the two helper lemmas.

Proof of Lemma A.7: Given z ∈ {±1}, we define the sets

Z1 :=
{
si : i ∈ [k], si ∈ S1, Ri = zτ

}
, Z̄1 :=

(
{si}i∈[k] ∩ S1

)
\ Z1, and

Z2 :=
{
si : i ∈ [k], si ∈ S2, s

+
i ∈ [d]

}
, Z̄2 :=

(
{si}i∈[k] ∩ S2

)
\ Z2

By the reward model (A.31b) in our construction, for any valid pair of subsets
(Γ1,Γ2), under the law P⊗k

Γ1,Γ2,z
, the observations (si, s

+
i , Ri)

k
i=1 have positive probability

if and only if Z1 ⊆ Γ1 and Γ1 ∩ Z̄1 = ∅. Furthermore, by the symmetry between the
elements in Γ1, for any Γ1 such that Z1 ⊆ Γ1 and Γ1 ∩ Z̄1 = ∅, the probability of
observing (si, s

+
i , Ri)

k
i=1 under P⊗k

Γ1,Γ2,z
is independent of the choice of Γ1. Consequently,
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the probability under the mixture distribution P(k)
z can be calculated as

P
(
Γ1 ∋ s | (si, s+i , Ri)

k
i=1

)
=

∑
s∈Γ′

|Γ′|=|S1|/2

P
(
(si, s

+
i , Ri)

k
i=1 | Γ1 = Γ′

)
· P(Γ1 = Γ′)

P
(
(si, s

+
i , Ri)ki=1

)

=

∣∣∣{Γ′ ⊆ S1 : |Γ′| = 1
2
|S1|, Z1 ⊆ Γ′, Z̄1 ∩ Γ′ = ∅, s ∈ Γ′

}∣∣∣∣∣∣{Γ′ ⊆ S1 : |Γ′| = 1
2
|S ′|, Z1 ⊆ Γ′ Z̄1 ∩ Γ′ = ∅

}∣∣∣
=

(
|S1| − |Z1| − |Z̄1|
|S1|/2− |Z1|

)−1(|S1| − |Z1| − |Z̄1| − 1

|S1|/2− |Z1| − 1

)
=

|S1|/2− |Z1|
|S1| − |Z1| − |Z̄1|

.

By definition, we have |Z1|+ |Z̄1| ≤ k, and |S1| = D−2d
2

. For D ≥ d+ 8k, this yields∣∣∣∣P(Γ1 ∋ s | (si, s+i , Ri)
k
i=1

)
− 1

2

∣∣∣∣ ≤ 4k

D − 2d
≤ 8k

D − d
.

Similarly, by the transition model (A.31a) in our construction, for any Γ2 ⊆ S2 with
|Γ2| = 1

2
|S2|, under the law P⊗k

Γ1,Γ2,z
, the observations (si, s

+
i , Ri)

k
i=1 have positive proba-

bility if and only if Z2 ⊆ Γ2 and Γ2 ∩ Z̄2 = ∅. Following exactly the same calculation as
above, we arrive at the bound∣∣∣∣P(Γ2 ∋ s | (si, s+i , Ri)

k
i=1

)
− 1

2

∣∣∣∣ ≤ 8k

D − d
,

as desired.

Proof of Lemma A.8: Under the conditional distribution M(k+1)|(si, s+i , Ri)
k
i=1, for

each s ∈ S1 ∪ S2, we have

P
(
sk+1 = s

)
≤ 2

|S1|
, and P

(
s+k+1 = s

)
≤ 2

|S1|
.

Applying the union bound yields

P
(
E (1)
k+1 | (si, s

+
i , Ri)

k
i=1

)
≤

∑
i∈[k]

si∈S1∪S2

(
P
(
sk+1 = si

)
+ P

(
s+k+1 = si

))
+

∑
i∈[k]

si∈S1∪S2

(
P
(
sk+1 = s+i

)
+ P

(
s+k+1 = s+i

))

≤ 8k

|S1|
≤ 32k

D − d
,

which completes the proof.
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A.8.3 Proofs of results for elliptic equations

In this section, we prove our results for the elliptic equation example in Section 2.2.2.2,
splitting the section into proofs of technical results and Corollary 2.4.

A.8.3.1 Technical results from Section 2.2.2.2

The main technical result that was assumed in Section 2.2.2.2 is collected as a lemma
below.

Lemma A.9. There exists a bounded, self-adjoint, linear operator Ã ∈ L and a function
g ∈ Ḣ1 such that, for all u, v ∈ Ḣ1,

⟨u, Ãv⟩Ḣ1 = ⟨u, Av⟩L2 , (A.37a)

⟨u, g⟩Ḣ1 = ⟨u, f⟩L2 , (A.37b)

and such that

µ∥u∥2Ḣ1 ≤ ⟨u, Ãu⟩Ḣ1 ≤ β∥u∥2Ḣ1 . (A.37c)

We prove the three claims in turn.

Proof of equation (A.37a): For any pair of test functions u, v ∈ Ḣ1, integration by
parts and the uniform ellipticity condition yield

⟨u, Av⟩L2 = −
∫
Ω

u(x)∇ ·
(
a(x)∇v(x)

)
dx =

∫
Ω

∇u⊤a∇vdx ≤ β∥u∥Ḣ1 · ∥v∥Ḣ1 .

Now given a fixed function v ∈ Ḣ1, the above equation ensures that ⟨·, Av⟩L2 is a
bounded linear functional. By the Riesz representation theorem, there exists a unique
function v′ ∈ Ḣ1 with ∥v′∥Ḣ1 ≤ β∥v∥Ḣ1 such that

∀u ∈ Ḣ1, ⟨u, Av⟩L2 = ⟨u, v′⟩Ḣ1 .

Clearly, the mapping from v to v′ is linear, and we have ∥v′∥Ḣ1 ≤ β∥v∥Ḣ1 for any v ∈ Ḣ1.

Thus, the mapping v 7→ v′ is a bounded linear operator. Using Ã to denote this operator,
equation (A.37a) then directly follows. It remains to verify that Ã is self-adjoint. Indeed,
for u, v ∈ Ḣ1, we have the identity

⟨u, Ãv⟩Ḣ1 = ⟨u, Av⟩L2 =

∫
Ω

∇u⊤a∇vdx = −
∫
Ω

v∇ · (a∇u)dx = ⟨v, Au⟩L2 = ⟨v, Ãu⟩Ḣ1 ,

which proves the self-adjoint property.
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Proof of equation (A.37b): Since the domain Ω is bounded and connected, there
exists a constant ρP , depending only on Ω, such that the following Poincaré equation
holds:

∥v∥2L2 ≤
1

ρP
∥v∥2Ḣ1 for all v ∈ Ḣ1. (A.38)

For any test function u ∈ Ḣ1, equation (A.38) leads to the bound

⟨u, f⟩L2 ≤ ∥f∥L2 · ∥u∥L2 ≤ 1

ρP
∥f∥L2 · ∥u∥Ḣ1 .

So ⟨·, f⟩L2 is a bounded linear functional on Ḣ1. Again, by the Riesz representation
theorem, there exists a unique g ∈ Ḣ1 such that ⟨u, f⟩L2 = ⟨u, g⟩Ḣ1 for all u ∈ Ḣ1,
which completes the proof.

Proof of equation (A.37c): For any test function u ∈ Ḣ1, we note that

⟨u, Ãu⟩Ḣ1 = ⟨u, Au⟩L2 =

∫
Ω

(
∇u(x)

)⊤
a(x)

(
∇u(x)

)
dx.

From our uniform ellipticity condition, we know that µIm ⪯ a(x) ⪯ βIm for any x ∈ Ω.

Substituting this relation yields µ∥u∥2Ḣ1 ≤ ⟨u, Ãu⟩Ḣ1 ≤ β∥u∥2Ḣ1 , as claimed.

A.8.3.2 Proof of Corollary 2.4

The matrices M,ΣL,Σb for the projected problem instances can be obtained by straight-
forward calculation. In order to apply Theorem 2.1, it remains to verify the assumptions.

By Lemma A.9, the operator L is self-adjoint in X, and is sandwiched as 0 ≤
⟨u, Lu⟩Ḣ1 ≤

(
1− µ

β

)
∥u∥2Ḣ1 for all u ∈ X. This yields the operator norm bound |||L|||X ≤

1− µ
β
.

Now we verify the conditions in Assumption 2.1(W). For any basis function ϕj with
j ∈ [d] and vector v ∈ Ḣ1, we have

E⟨ϕj, (Li − L)u⟩2Ḣ1

≤ 1

β2
E
(∫

Ω

δxi∇ϕj(x)⊤a(xi)∇u(x)dx
)2

+
1

β2
E
(∫

Ω

δxi∇ϕj(x)⊤Wi∇u(x)dx
)2

=
1

β2

∫
Ω

(
∇ϕj(x)⊤a(x)∇u(x)

)2
dx+

1

β2

∫
Ω

E
(
∇ϕj(x)⊤Wi∇u(x)

)2
dx

≤ 1

β2

∫
Ω

∥∇ϕj(x)∥22|||a(x)|||2op∥∇u(x)∥22dx+
2

β2

∫
Ω

∥∇ϕj(x)∥22 · ∥∇u(x)∥22dx

≤
(
1 +

2

β2

)
max
j∈[d]

sup
x∈Ω

∥∇ϕj∥22 ·
∫
Ω

∥∇u(x)∥22dx

≤ σ2
L∥u∥2Ḣ1 ,
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and

E⟨ϕj, bi − b⟩2Ḣ1 ≤
1

β2
E
(∫

Ω

δyiϕj(y)f(yi)dy
)2

+
1

β2
E
(∫

Ω

δyiϕj(y)gidy
)2

=
1

β2

∫
Ω

ϕj(y)
2f(y)2dy +

1

β2

∫
Ω

ϕj(y)
2E[g2i ]dy

≤ 1

β2
sup
x∈Ω

|ϕj|2
∫
Ω

(
f(y)2 + 1

)
dy

=
∥f∥2L2 + 1

β2
max
j∈[d]

sup
x∈Ω

|ϕj|2.

Therefore, Assumption 2.1(W) is satisfied with constants (σL, σb). Invoking Theorem 2.1
completes the proof.

A.9 Additional simulation studies

In this appendix, we present additional details of simulation related to the optimal
oracle inequalities. We first describe the simulation setup in the simulation studies
shown in Figure 2.1, and then present simulation results related to the statistical error
term En(M,Σ∗).

A.9.1 Models underlying simulations in Figure 2.1

The simulation results shown in Figure 2.1 are generated by constructing random
transition matrices based on the following random graph models:

Erdös-Rényi random graph: Given d,N ∈ N+ and a > 1, we consider the following
sampling procedure. Let G be an Erdös-Rényi random graph with N vertices and
edge probability p = a

N
, and take G̃ to be its largest connected component. (When

c > 1, the number of vertices in G̃ is of order Θ(N). See the monograph [57] for

details.) For each vertex v ∈ V (G̃), we associate it with an independent standard

Gaussian random vector ϕv ∼ N (0, Id). Let V (G̃) be the state space and let the

Markov transition kernel P be the simple random walk on G̃.

In Figure 2.1 (a), we take the number of vertices to be N = 3000 and the feature
dimension to be d = 1000. The edge density parameter is chosen as a = 3. The
resulting giant connected component contains 2813 vertices.

Random geometric graph: Given a pair of positive integers (d0, N) and scalar r > 0,
we consider the following sampling procedure. For each vertex i ∈ [N ], we associate
it with an independent standard Gaussian random vector xi ∼ N (0, Id). The
graph G is then constructed such that (i, j) ∈ E(G) if and only if ∥xi − xj∥2 ≤ r.

(See the monograph [166] for more details of this random graph model.) Take G̃
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to be the largest connected component of G. We take V (G̃) as the state space,

and for each v ∈ V (G̃), we let the feature vector be ϕv = xv. Finally, we let P be

the simple random walk on G̃.

In Figure 2.1 (b), we take the number of vertices to be N = 3000 and the feature
dimension to be d0 = 2. The distance threshold is chosen as r = 0.1. The resulting
giant connected component contains 2338 vertices.

Despite their simplicity, the two random graph models capture distinct types of
the behavior of the resulting random walk in feature space: in the former model, the
transition kernel makes “big jumps” in the feature space, and the correlation between
two consecutive states is small; in the latter model, the transition kernel makes “local
moves” in the feature space, leading to large correlation. This is reflected by the fact
that the parameter κ(M) in Lemma 2.1 is smaller in the former case and larger in the
latter ease.

A.9.2 Simulation results on the statistical error En(M,Σ∗)

We also conduct simulation studies on the statistical error En(M,Σ∗) in Theorems 2.1
and 2.3. We consider the averaged stochastic approximation procedures applied to
policy evaluation with linear function approximation, resulting in the TD(0) algorithm
discussed in Section 2.4.3 . As in the approximation factor studies, the simulations for
statistical error are based on Markov reward processes defined by random walks over
two types of random graphs: the Erdös-Rényi graphs and the geometric random graphs;
see Section A.9.1 for details. We make the following additional setup:

• Let d be the dimension of feature vectors ϕv. Given a vector β∗ ∈ Rd and a positive
scalar h, we sample the reward function r as follows:

r(v) ∼ N (ϕ⊤
v β∗, h

2), independently for each v ∈ V (G̃),

and the noisy reward is further given by R(s) ∼ N (r(s), σ2), for some σ > 0.

• For the geometric random graph, we augment the feature vectors using low-
dimensional polynomials. Concretely, instead of taking the feature vector ϕv to be
the vector xv itself, for any integer k > 0, we let:

ϕv :=
[ d0∏
j=1

xαj
v

]
α∈Nd, ∥α∥1≤k

.

Note that due to the “curse-of-dimensionality”, under our setup, the locality
behavior of geometric random graph is relevant only if the dimension of the
feature vectors is low. Such augmentation in the feature space turns the stochastic
approximation problem into a high-dimensional one, thereby rendering it a non-
trivial problem.
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Figure A.2: Plots of empirical MSE and theoretical bounds as a function of the discount
factor γ in the policy evaluation problem. (See the text for a discussion.) (a) Results
for an Erdös-Rényi random graph model with N = 3000, projected dimension d = 100,
and a = 30. The resulting number of vertices in the graph G̃ is 3000. The value of 1− γ
is plotted in log-scale, and the value of approximation factor is plotted on the standard
scale. (b) Results for a random geometric graph model with N = 3000, projected

dimension d0 = 3, k = 4, and r = 1. The resulting number of vertices in the graph G̃ is
2991 and the resulting feature dimension is d = 31. Both the discount rate 1− γ and
the approximation factor are plotted on the log-scale. The fluctuations in the plot are
due to randomness of the estimators.

In our simulation, we generate the Markov reward process as above, on which we
run the Polyak–Ruppert averaged stochastic approximation procedure (2.41) and obtain
the value function estimator v̂n,PRJ. In our simulation, we take stepsize η = 1/

√
dn and

burn-in period n0 = n/5.
We also consider the plug-in solution v̂n,plug defined as:

ϑ̂n,plug :=
( n∑
t=1

(
ψ(st)ψ(st)

⊤ − γψ(st)ψ(s
+
t )

⊤))−1

·
( n∑
t=1

Rtψ(st)
)
, and

v̂n,plug := ϑ̂⊤
n,plugψ.

To illustrate how well the theoretical predictions match the actual performance, we
measure their error of estimating the projected fixed-point v. In particular, we empirically
evaluate the MSE for the estimators v̂n,PRJ and v̂n,plug by averaging the squared error
∥v̂n − v∥2 over m independent experiments. We also compute the risk functional
En(M,Σ∗) for each problem instance, as well as its worst-case upper bound rn,worst :=
n−1Tr(Σ∗)/(1− κ(M))2.

In Figure A.2, we demonstrate the simulation results of empirical MSE and theoretical
risk functionals for above problem instances, as a function of the discount rate 1− γ.
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The discount rate ranges from 10−4 to 10−0.5, and the reward model described above is
generated by setting β∗ ∼ N (0, Id/d), h = 0.5 and σ = 1. We take the number of trials
m to be 10.

It can be seen from Figure 2.1 that, under both models, the theoretical bound
En(M,Σ∗) is matched well by both the plug-in estimator v̂n,plug and the estimator v̂n,PRJ

produced by Polyak-Ruppert averaging, while the latter is off by a constant factor. This
is because the burn-in period discards a constant fraction of initial iterates. In both
cases, the statistical risks increases with discount rate getting close to 0. However, the
variation is within a small range (by factor of 2) for Erdös–Rényi graphs, while being
significant (by a factor of 20) in geometric random graphs. This phenomenon is similar
to that of approximation factor, as both of them are related to the one-step correlation
matrix M — with a Markov chain having higher one-step correlation in the feature
space, the matrix M becomes closer to the matrix γId, making both the approximation
factor and the statistical rate large for discount factors close to 1. Finally, we note that
the worst-case statistical rate rn,worst existing in many previous analysis (see e.g. [115])
is an accurate prediction of the actual performance in the Erdös–Rényi, while being
off by a factor of 10 in the geometric random graph case. This illustrates the value of
establishing instance-dependent bounds for the statistical error in these problems.
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Appendix B

Proofs and discussion deferred from
Chapter 3

B.1 Additional related work

Chapter 3 analyzes stochastic approximation algorithms based on Markov data, and
has consequences for reinforcement learning. So as to put our results into context, we
now provide more background on past work in these areas.

B.1.1 Statistical estimation based on Markov data

There is a large body of past work on statistical estimation based on observing a single
trajectory of a Markov chain; for example, see [18] for an overview of some classical
results. For the problem of functional estimation under the stationary distribution,
the asymptotic efficiency of plug-in estimators1 has been established for discrete-state
Markov chains [165, 70] and Itô diffusion processes [113]. In Chapter 3, we provide
non-asymptotic bounds, both upper and lower, that depend on a certain instance-
dependent functional that also appears in an asymptotic analysis. More recent work has
seen non-asymptotic results for statistical estimation with Markovian data, including
the estimation of transition kernels [220, 126], mixing times [81], the parameters of
Gaussian hidden Markov models [223], as well for certain testing problems [47]. These
papers can be roughly divided into two categories. Papers in the first category focus on
estimating parameters for each individual state of the Markov chain (e.g., transition
kernels), and thus require sample sizes that scale with the complexity of the state space
(e.g., its cardinality in the discrete case). By contrast, papers in the second category
are concerned with estimating properties of the Markov chain (e.g., the expectation
of a functional under the stationary distribution), and the sample complexity of such
problems need not depend on the size of the state space. Our results in Chapter 3 falls
within the second category.

1These papers refer to such methods as “empirical” estimators.
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B.1.2 Stochastic approximation methods

The use of recursive stochastic procedures for solving fixed point equations dates back
to the seminal work of [174]; see the reference books [20, 11, 111] for more background.
By averaging the iterates of the SA procedure, it is known that one can obtain both an
improved convergence rate and central limit behavior [169, 186]. A variety of stochastic
approximation procedures now serve as the workhorse for modern large-scale machine
learning and statistical inference [161, 21], and many algorithmic techniques are known
to accelerate their convergence [67, 84, 121]. In particular, non-asymptotic bounds
matching the optimal Gaussian limit have been established in a variety of settings [157,
64, 50, 150].

While the instance-dependent nature of this line of investigation aligns with the
objective of our work, prior work either assumes an i.i.d. observation model or imposes a
martingale difference assumption on the noise.2 The first study of SA procedures without
a martingale difference assumption was initiated by [112], who give a general criteria for
convergence, as well as [127, 128], who analyzed linear problems motivated by control and
filtering. [142] analyzed general SA problems for controlled Markov processes by applying
the Kushner–Clark lemma. In addition to this classical work, stochastic approximation
in the Markov setting has attracted much recent attention. [37] provides finite-sample
error bounds on the averaged iterate of Markovian linear stochastic approximation,
with an optimal leading-order term. Central limit theorems [61] and non-asymptotic
convergence rates [93] have been established for controlled Markov processes. In addition
to the papers discussed in Section 3.1, several recent works have considered particular
aspects of SA with Markov data, including two-time-scale variants [52, 94], observation
skipping schemes for bias reduction [108], Lyapunov function-based analysis under
general norms [40], and proving guarantees under weaker ergodicity conditions [49].

B.1.3 Application to RL problems

Markovian observations arise naturally in the context of stochastic control and rein-
forcement learning (RL). See [11] for a historical survey of algorithms for stochastic
control and filtering with Markovian stochastic approximation, and the books [14, 200]
for more background on the RL setting. In RL problems, SA algorithms are typically
used to solve Bellman equations, a class of linear or non-linear fixed-point equations. In
policy evaluation problems, temporal difference (TD) methods [198] use linear stochastic
approximation to estimate the value function of a given policy, with asymptotic conver-
gence guarantees [48, 204, 24] and non-asymptotic bounds [16, 98]. In the non-linear case,
the Q-learning algorithm [216] is a stochastic approximation method that estimates the
Q-function of a Markov decision process from data. There is a long line of past work on
this algorithm, including convergence guarantees [203, 201, 59], results on linear function
approximation for optimal stopping problems [205, 16], and non-asymptotic rates under

2In the linear equation setup, the martingale difference noise assumes that E[Lt+1 | Ft] = L and
E[bt+1 | Ft] = b, which does not cover the Markov case.
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general norms in both the i.i.d. setting [211, 19] as well as the Markovian setting [40]. A
class of variants of TD and Q-learning are also studied in literature, including actor-critic
methods [107], SARSA [185], and methods that employ variance-reduction [190, 98,
212, 99]. A concurrent preprint to this manuscript [125] proves lower bounds on the
oracle complexity of policy evaluation with access to temporal difference operators, and
develops an acceleration scheme with variance reduction to achieve these lower bounds
while retaining the optimal sample complexity.

It should be noted that an important feature of reinforcement learning is function
approximation, i.e., using a given function class (e.g. a linear subspace) to approximate
the solution to the Bellman equation of interest. This method enables estimation with
a sample size depending on the intrinsic complexity of the function class, instead of
the cardinality of state-action space. On the other hand, an approximation error is
induced by projecting the Bellman equation onto this function class. This trade-off is
central to the class of TD algorithms, as studied in a line of past work [204, 226, 15,
158]. Chapter 2 of this dissertation focuses on the i.i.d. setting, and shows that projected
linear equations have a non-standard tradeoff between approximation and estimation
errors. The results in Chapter 3 is complementary in nature, building on this work by
analyzing the more challenging setting of Markov observations. Among the concrete
consequences of Chapter 3 are an instance-optimal analysis of TD algorithms in the
Markov setting with linear function approximation. This analysis provides the basis for
a principled choice of the parameter λ in the broader class of TD(λ) algorithms.

B.2 Auxiliary truncation results

In this section, we present two auxiliary results on the relations between assump-
tions 3.2, 3.3, and 3.4. These results are based on truncation arguments.

B.2.1 Assumption 3.2 (almost) implies assumption 3.4 under
discrete metric

For the discrete metric ρ(x, y) := 1x ̸=y, the Lipschitz assumption 3.4 is equivalent to
the following uniform upper bounds:

|||Lt+1(st)− L|||op ≤ σLd and ∥bt+1(st)− b∥2 ≤ σb
√
d.

The following proposition provides uniform high-probability upper bounds on such
quantities based on the moment assumption:

Proposition B.1. Under Assumption 3.2 with p̄ = +∞, there exists a universal
constant c > 0, such that for any δ > 0, the following bounds hold true uniformly over
t = 1, 2, · · · , n, with probability 1− δ:

|||Lt+1(st)− L|||op ≤ cd · σL log
nd

δ
and ∥bt+1(st)− b∥2 ≤ c

√
d · σb log

nd

δ
. (B.1)
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We prove this proposition at the end of this section.
When the random observations (Lt+1, bt+1) are not almost-surely bounded, but

satisfies the moment assumption 3.2 with p̄ = +∞, we can apply our theorems on the
event that Eq (B.1) holds true, and the main theorems hold true conditionally on such
an event, with constants (σL, σb) inflated with a factor log(nd/δ).

Proof of Proposition B.1: For a given t ∈ [n], we note that:

|||Lt+1 − L|||2op ≤ |||Lt+1 − L|||2F =
d∑

j,ℓ=1

[
e⊤j
(
Lt+1 − L

)
eℓ

]2
.

For each pair j, ℓ ∈ [d], Assumption 3.2 implies that:

P
(∣∣e⊤j (Lt+1(st)− L

)
eℓ
∣∣ ≥ cσL log(nd/δ)

)
≤ δ

2d2n

Taking union bound over all the coordinate pairs (j, ℓ) and substituting into above
expansion, we have that:

P
(
|||Lt+1 − L|||op ≥ cd · σL log(nd/δ)

)
≤ δ/(2n).

Similarly, for the vector-valued observations bt+1, we have the following bounds with
probability 1− δ/n:

∥bt+1 − b∥22 ≤
d∑
j=1

(
e⊤j (bt+1 − b)

)2 ≤ cσ2
bd · log2(nd/δ).

Taking union bound over t = 1, 2, · · · , n, we complete the proof of this proposition.

B.2.2 On the stationary tail and boundedness assumption 3.3

Note that in many applications, the Markov chain (st)t≥0 lives in an unbounded state
space. However, as long as the stationary distribution ξ of P is sufficiently light-tailed,
a simple truncation argument applies, which we illustrate for completeness. Concretely,
suppose that there exists a constant σρ > 0, such that the following bound holds true
for any p ≥ 2:

Es∼ξ
[
ρ(s, s0)

p
]
≤ p! · σpρ. (B.2)

Given a stationary Markovian trajectory {st}nt=1, consider the event

En,δ =
{
∀t ∈ [1, n], ρ(s0, st) ≤ 2σρ log

n
δ

}
.

By the tail assumption (B.2) and a union bound, it directly follows that P
(
En,δ
)
≥ 1− δ.

Consider a truncated Markov transition kernel P ′ defined as

P ′(x, Z) := P
(
x, Z ∩ B

(
0, 2σρ log(n/δ)

))
+ P

(
x,B

(
0, 2σρ log(n/δ)

)c)
1s0∈Z ,
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for x ∈ S and Z ⊆ S.
In words, the Markov chain P ′ attempts to make the transition from st to st+1

according to the transition kernel P ′. If the state st+1 lies in the ball B
(
0, 2σρ log(n/δ)

)c
,

we keep it as is; otherwise, we let the next-step transition be deterministically s0.
Given a trajectory {s′t}nt=1 of the Markov chain P ′, there exists a coupling such that

P
(
{st}nt=1 ̸= {s′t}nt=1

)
≤ P

(
E c
n,δ

)
≤ δ.

One can then proceed by working on the high probability event En,δ, where the Markov
chain has a effective diameter of O

(
σρ log

n
δ

)
.

B.3 Auxiliary results underlying Proposition 3.1

This appendix is devoted to the proofs of auxiliary lemmas that are used in the proof of
Proposition 3.1.

B.3.1 Proof of Lemma 3.4

Throughout the proof, we let x ∈ S be an arbitrary but fixed state. Note that any
positive integer τ can be represented as τ = ktmix + q with k ∈ N+ and 0 ≤ q ≤ tmix − 1.
We show the desired claim by induction over k ≥ 0.

Base case: When k = 0, Assumption 3.3 implies that

W1,ρ(δxP
τ , ξ) ≤ sup

s,s′
ρ(s, s′) ≤ 1 ≤ c0,

so that the base case (k = 0) holds for our induction proof.

Induction step: At step k of the argument, the induction hypothesis ensures that

W1,ρ

(
δxP

ktmix+q, ξ
)
≤ c0 · 2−k, for q = 0, 1, · · · , tmix − 1. (B.3)

We now need to show that the result holds for any τ = (k + 1)tmix + q, where q ∈
{0, 1, . . . , tmix − 1} is arbitrary. We do so via a coupling argument. Take a random
initial state y ∼ ξ, and consider two processes {st}t≥0 and {s′t}t≥0 starting from x
and y, respectively. Their joint distribution is defined as follows: choose the coupling
between the law of sktmix+q and s

′
ktmix+q

to satisfy the identity E
[
ρ(sktmix+q, s

′
ktmix+q

)
]
=

W1,ρ

(
δxP

ktmix+q, ξ
)
. Conditionally on (sktmix+q, s

′
ktmix+q

), Assumption 3.1 guarantees the
existence of a coupling between δsktmix+q

P tmix and s′ktmix+q
P tmix such that

E
[
ρ
(
s(k+1)tmix+q, s

′
(k+1)tmix+q

)
| (sktmix+q, s

′
ktmix+q

)
]
≤ 1

2
ρ(sktmix+q, s

′
ktmix+q

).

Taking expectation on both sides and substituting with equation (B.3), we find that

W1,ρ

(
δxP

(k+1)tmix+q, ξ
)
≤ E

[
ρ
(
s(k+1)tmix+q, s

′
(k+1)tmix+q

)]
≤ c0 · 2−(k+1),

which completes the proof of the induction step.
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B.3.2 Proof of Lemma 3.5

Our proof is based on the following intermediate claim(
E
[
∥∆t+ℓ∥p2

])1/p ≤ e
(
E
[
∥∆t∥p2

])1/p
+ 6ηpℓ

√
d
(
σL∥θ̄∥2 + σb

)
. (B.4)

This bound, which we return to prove at the end of this section, is a weaker form of the
claim in the lemma.

We now use the bound (B.4) to prove the lemma. Applying Minkowski’s inequality
to the recursive relation (3.46), we find that for any p ≥ 2, the pth moment is upper
bounded as(

E
[
∥∆t+ℓ+1 −∆t∥p2

])1/p
≤
(
E
[
∥∆t+ℓ −∆t∥p2

])1/p
+ η
(
E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p
+ η
(
E
[
∥νt+ℓ + ζt+ℓ+1∥p2

])1/p
.

For the martingale part of the noise, we take the decomposition Lt+ℓ+1 = L(st+ℓ) +
Zt+ℓ+1. By Assumption 3.2 and Hölder’s inequality, we have the bounds

E
[
∥Zt+ℓ+1∆t+ℓ∥p2 | Ft

]
≤ d

p
2

d∑
j=1

E
[
⟨ej, Zt+ℓ+1∆t+ℓ⟩p | Ft

]
≤
(
pσL

√
d
)pE[∥∆t+ℓ∥p2 | Ft

]
,

E
[
∥ζt+ℓ+1∥p2 | Ft

]
≤ d

p
2

d∑
j=1

E
[
⟨ej, ζt+ℓ+1⟩p | Ft

]
≤ (p

√
d)p ·

(
σL∥θ̄∥2 + σb

)p
.

Similarly, for the Markov part of the noise, we have:

E
[
∥νt+ℓ+1∥p2

]
≤ (p

√
d)p ·

(
σL∥θ̄∥2 + σb

)p
.

On the other hand, the Lipschitz condition (3.4) and the boundedness condition (3.3)
of the metric space imply that

|||Lt+ℓ+1(s)− L|||op ≤ σLd, and ∥b(s)− b∥2 ≤ σb
√
d for all s ∈ S.

Substituting into the decomposition above, we arrive at the bounds(
E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p ≤ (γmax + σLp
√
d+ σLd)

(
E
[
∥∆t+ℓ∥p2

])1/p
, and(

E
[
∥νt+ℓ + ζt+ℓ+1∥p2

])1/p ≤ 2p
√
d
(
σL∥θ̄∥2 + σb

)
.

Applying equation (B.4) yields(
E
[
∥∆t+ℓ+1 −∆t∥p2

])1/p ≤ (E[∥∆t+ℓ −∆t∥p2
])1/p

+ eη(γmax + σLd)
(
E
[
∥∆t∥p2

])1/p
+ 2(1 + 6ηℓ)ηp

√
d
(
σL∥θ̄∥2 + σb

)
.
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Solving this recursion leads to the bound(
E
[
∥∆t+ℓ −∆t∥p2

])1/p ≤ eηℓ(γmax + σLd)
(
E
[
∥∆t∥p2

])1/p
+ 3ηpℓ

√
d
(
σL∥θ̄∥2 + σb

)
,

which establishes the first claim.
Since the stepsize is upper bounded as η ≤

(
2eηℓ(γmax + σLd)

)−1
, we have the lower

bound (
E
[
∥∆t+ℓ∥p2

])1/p ≥ (E[∥∆t∥p2
])1/p − (E[∥∆t+ℓ −∆t∥p2

])1/p
≥ 1

2

(
E
[
∥∆t∥p2

])1/p − 3ηpℓ
√
d
(
σL∥θ̄∥2 + σb

)
,

which, in conjunction with the bound (B.4), establishes the second claim.

Proof of equation (B.4): Applying Minkowski’s inequality to the recursive rela-
tion (3.46) yields (for any p ≥ 2) a bound on the pth conditional moment:(
E
[
∥∆t+ℓ+1∥p2

])1/p ≤ (E[∥(I − ηLt+ℓ+1)∆t+ℓ∥p2
])1/p

+ η
(
E
[
∥νt+ℓ + ζt+ℓ+1∥p2

])1/p
. (B.5)

Our next step is to bound the two terms above.
Substituting into the recursive relation (B.5), and applying Minkowski’s inequality,

we find that the moment
(
E
[
∥∆t+ℓ+1∥p2

])1/p
is upper bounded by

(1 + ηγmax)
(
E
[
∥∆t+ℓ∥p2

])1/p
+ ησLd

(
E
[
∥∆t+ℓ∥p2

])1/p
+ 2ηp

√
d
(
σL∥θ̄∥2 + σb

)
.

Solving this recursive inequality leads to(
E
[
∥∆t+ℓ∥p2

])1/p ≤ exp
(
ηℓ(γmax + σLd)

)((
E
[
∥∆t∥p2

])1/p
+ 2ηpℓ

√
d
(
σL∥θ̄∥2 + σb

))
.

For any stepsize η ∈
(
0, 1

(γmax+σLd)ℓ

]
, we have(

E
[
∥∆t+ℓ∥p2

])1/p ≤ e
(
E
[
∥∆t∥p2

])1/p
+ 6ηpℓ

√
d
(
σL∥θ̄∥2 + σb

)
,

which establishes the claim.

B.3.3 Proof of Lemma 3.6

For notational simplicity, we extend the process (∆t)t≥0 to the entire set Z of integers, in
particular by defining ∆t := ∆0 for negative integer t. Note that under our assumption,
Lemma 3.5 and the assumed bound (3.62) both hold true for the extended process, with
index set t ∈ Z. Moreover, as in the proof of Lemma 3.5, for each p ≥ 2, we have the
moment bound(

E
[
∥∆t+ℓ+1 −∆t∥p2

])1/p ≤ (E[∥∆t+ℓ −∆t∥p2
])1/p

+ η
(
E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p
+ η
(
E
[
∥νt+ℓ + ζt+ℓ+1∥p2

])1/p
.
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Our next step is to exploit the coarse bound (3.62) so as to obtain upper bounds

on the second term
(
E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p
. Given the time lag τ > 0, we take the

decomposition ∆t+ℓ = ∆t+ℓ−τ + (∆t+ℓ − ∆t+ℓ−τ ), and by Minkowski’s inequality, we
have that(
E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p ≤ (E[∥Lt+ℓ+1∆t+ℓ−τ∥p2
])1/p

+
(
E
[
∥Lt+ℓ+1(∆t+ℓ −∆t+ℓ−τ )∥p2

])1/p
.

(B.6)

The latter term of the bound (B.6) can be controlled through Assumption 3.4:

∥Lt+ℓ+1(st+ℓ)(∆t+ℓ −∆t+ℓ−τ )∥2 ≤ (γmax + σLd)∥∆t+ℓ −∆t+ℓ−τ∥2, a.s.

The distance ∥∆t+ℓ − ∆t+ℓ−τ∥2 is controlled via the coarse bound (3.62). Putting
together the pieces, we find that(

E
[
∥Lt+ℓ+1(∆t+ℓ −∆t+ℓ−τ )∥p2

])1/p ≤ η
(
γmax + σLd

)
·
(
ωp
(
E
[
∥∆t+ℓ−τ∥p2

])1/p
+ βpσ̄

)
.

(B.7)

In order to bound the former term
(
E
[
∥Lt+ℓ+1∆t+ℓ−τ∥p2

])1/p
in the bound (B.6), we

invoke Lemma 3.4, and obtain a random variable s̃t+ℓ, such that

s̃t+ℓ | Ft+ℓ−τ ∼ ξ, and
(
E
[
ρ(st+ℓ, s̃t+ℓ−τ )

p | Ft+ℓ−τ
])1/p ≤ c0 · 2

1− τ
2tmixp . (B.8)

By Assumption 3.2, we have the bounds

E
[
∥Zt+ℓ+1∆t+ℓ−τ∥p2 | Ft+ℓ−τ

]
≤ (p

√
dσL)

p∥∆t+ℓ−τ∥p2, and (B.9a)

E
[
∥
(
L(s̃t+ℓ−τ )− L

)
·∆t+ℓ−τ∥p2 | Ft+ℓ−τ

]
≤ (p

√
dσL)

p∥∆t+ℓ−τ∥p2. (B.9b)

Invoking the moment bound (B.8) and using the Lipschitz condition (3.4), we find that

E
[
∥
(
L(s̃t+ℓ−τ )−L(st+ℓ−τ )

)
·∆t+ℓ−τ∥p2 | Ft+ℓ−τ

]
≤ E

[
|||L(s̃t+ℓ−τ )−L(st+ℓ−τ )|||pop | Ft+ℓ−τ

]
· ∥∆t+ℓ−τ∥p2

≤
(
σLc0d · 2

1− τ
2tmixp∥∆t+ℓ−τ∥2

)p
. (B.9c)

Finally, we have the operator norm bound

∥L∆t+ℓ−τ∥2 ≤ γmax∥∆t+ℓ−τ∥2. (B.9d)

Collecting the results from equations (B.9)(a)—(d), we arrive at the bound(
E
[
∥Lt+ℓ+1∆t+ℓ−τ∥p2 | Ft+ℓ−τ

])1/p ≤ (2p√dσL + γmax + σLc0d · 2
1− τ

2tmixp
)
∥∆t+ℓ−τ∥2.

(B.10)
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According to Lemma 3.5, given a stepsize bounded as η ≤
(
6(γmax + σLd)τ

)−1
, we have(

E∥∆t+ℓ−τ∥p2
)1/p ≤ 2

(
E∥∆t+ℓ∥p2

)1/p
+ 12ηpτ

√
d
(
σL∥θ̄∥2 + σb

)
.

Collecting the bounds (B.7) and (B.10), and substituting into the decomposi-
tion (B.6), for τ ≥ 2tmixp log(c0d), we arrive at the inequality:(

E
[
∥Lt+ℓ+1∆t+ℓ∥p2

])1/p
≤ 2
((
p
√
dσL + γmax

)
+ ηωp

(
γmax + σLd

))
·
((
E∥∆t+ℓ∥p2

)1/p
+ ηpτ

√
dσ̄
)

+ η
(
γmax + σLd

)
βpσ̄.

By following the derivation in the proof of Lemma 3.5, we can show that the third
term is upper bounded as(

E
[
∥νt+ℓ + ζt+ℓ+1∥p2

])1/p ≤ 2p
√
d(σL∥θ̄∥2 + σb).

Substituting back into the original decomposition, we find that the difference in moments

D :=
(
E
[
∥∆t+ℓ+1 −∆t∥p2

])1/p − (E[∥∆t+ℓ −∆t∥p2
])1/p

is bounded as

D ≤ 2η
{(
p
√
dσL + γmax

)
+ ηωp

(
γmax + σLd

)}
·
((
E∥∆t+ℓ∥p2

)1/p
+ ηpτ

√
dσ̄
)

+
(
2ηp

√
d+ η2

(
γmax + σLd

)
βp
)

Lemma 3.5 implies that
(
E
[
∥∆t+ℓ∥p2

])1/p ≤ e
(
E
[
∥∆t∥p2

])1/p
+ 6ηpℓ

√
dσ̄ and solving the

recursion, we arrive at the bound(
E
[
∥∆t+ℓ −∆t∥p2

])1/p
≤ 12ηℓ

((
p
√
dσL + γmax

)
+ ηωp

(
γmax + σLd

))
·
((
E∥∆t∥p2

)1/p
+ ηp(τ + ℓ)

√
dσ̄
)

+
(
2ηp

√
d+ η2

(
γmax + σLd

)
βp
)
ℓσ̄

≤ η
(
12
(
p
√
dσL + γmax

)
ℓ+ ωp

2

)((
E∥∆t∥p2

)1/p
+ ηp(τ + ℓ)

√
dσ̄
)
+ η
(
2pℓ

√
d+ 1

2
βp
)
σ̄,

for any τ ≥ 2tmixp log(c0d) and stepsize choice η ≤ c
48(γmax+σLd)

.

B.4 Auxiliary results underlying Theorem 3.1

In this appendix, we prove two auxiliary lemmas that were used in the proof of Theo-
rem 3.1.
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B.4.1 Proof of Lemma 3.9

According to Lemma 3.4, given τ > 0 fixed, for any t ≥ τ + km, there exists a random
variable s̃t−km such that s̃t−km | Ft−km−τ ∼ ξ, and E

[
ρ(st−km , s̃t−km) | Ft−τ−km

]
≤

c0 · 2
1− τ

tmix . By Assumption 3.1, conditionally on the pair of states (st−km , s̃t−km), we
have the following bound for j ∈ [m]:

Wρ,1

(
P kj−kj−1δst−kj

, P kj−kj−1δs̃t−kj

)
≤ c0 · ρ

(
st−kj , s̃t−kj

)
, a.s.

Consequently, there exists a sequence of random variables (s̃t−kj )0≤j≤m−1, such that the
following relations hold true for j = 1, 2, · · · ,m:

s̃t−kj−1
| Ft−km ∼ P kj−kj−1δs̃t−kj

, and

E
[
ρ
(
s̃t−kj−1

, st−kj−1

)
| Ft+k−ℓ

]
≤ cm+1−j

0 · ρ
(
st−km , s̃t−km

)
.

Based on above construction, we consider the following decomposition:

( m∏
j=0

Nt−kj
)
∆t−km =

( m∏
j=0

N(st−kj)−
m∏
j=0

N(s̃t−kj)
)
∆t−km−τ +

( m∏
j=0

N(s̃t−kj)
)
·∆t−km−τ

+
( m∏
j=0

N(st−kj)
)
·
(
∆t−km −∆t−τ−km

)
:= Q1(t) +Q2(t) +Q3(t).

(B.11)

In the following, we bound the moments for the summation of the three terms above,
respectively. For the first term, we note the telescoping equation:

m∏
j=0

N(st−kj)−
m∏
j=0

N(s̃t−kj) =
m∑
q=0

( q−1∏
j=0

N(st−kj)
)(
L(st−kq)−L(s̃t−kq)

)( m∏
j=q+1

N(s̃t−kj)
)
.

Note that each matrix in the product has operator norm uniformly bounded by σLd.
We can then use the Lipschitz condition 3.4 as well as the bound on the distance
ρ(st−kq , s̃t−kq), and obtain the bound

E
[
|||

m∏
j=0

N(st−kj)−
m∏
j=0

N(s̃t−kj)|||2op | Ft−km−τ
]

≤ (m+ 1) · (σLd)m
m∑
q=0

E
[
|||L(st−kq)−L(s̃t−kq)|||2op | Ft−km−τ

]
≤ (m+ 1)2(c0σLd)

m+1 · 2−
τ
tmix .
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Applying the bound on ∥∆t−τ∥2 in Proposition 3.1 and taking τ ≥ 3mtmixp log(c0dn),
we find that

E
[
∥Q1(t)∥22

]
≤ E

[
E
[
|||

m∏
j=0

N(st−kj)−
m∏
j=0

N(s̃t−kj)|||2op | Ft−km−τ
]
· ∥∆t−τ−km∥22

]
≤ (m+ 1)2(c0σLd)

m+1 · 2−
τ
tmix cσ̄2 ητd log2 n

1−κ ≤ σm+1
L

n2 σ̄2. (B.12)

Now we turn to bounding the term Q2(t). First, we note that

E
[
∥Q2(t)∥22

]
≤ E

[
|||
m−1∏
j=0

N(s̃t−kj)|||2op · ∥N(s̃t−km)∆t−km−τ∥22
]

≤ (σLd)
2mE

[
∥N(s̃t−km)∆t−km−τ∥22

]
≤ (σLd)

2m · σ2
Ld · E

[
∥∆t−km−τ∥22

]
.

By Proposition 3.1, for t ≥ n0 and n0 ≥ 2(τ + km), we have: E
[
∥∆t−km−τ∥22

]
≤

cη
1−κtmixdσ̄

2. If m = 0, we have that E
[
N(s̃t+τ ) | Ft

]
= 0 almost surely for each t ≥ n0.

For m ≥ 1, the conditional unbiasedness does not hold true, but we still have the
following upper bound on the bias

|||E
[ m∏
j=0

N(s̃t+km+τ−kj) | Ft

]
|||op

= sup
u,v∈Sd−1

E
[
⟨u,

m∏
j=0

N(s̃t+km+τ−kj)v⟩
]

≤ sup
u,v∈Sd−1

E
[
∥N(s̃t+km+τ )

⊤u∥2 · |||
m−1∏
j=1

N(s̃t+km+τ−kj)|||op · ∥N(s̃t+τ )v∥2
]

≤ (σLd)
m−1 sup

u,v∈Sd−1

√
E∥N(s̃t+km+τ )⊤u∥22 · E∥N(s̃t+τ )v∥22

≤ (σLd)
m−1 · σ2

Ld.

Denote Yt :=
∏m

j=0N(st−kj) and Ỹt :=
∏m

j=0N(s̃t−kj) for any t ≥ km. We have the
expansion:

E
[
∥
n−1∑
t=n0

Q2(t)∥22
]
≤ 2E

[
∥
n−1∑
t=n0

E[Ỹt] ·∆t−km−τ∥22
]
+ 2E

[
∥
n−1∑
t=n0

(Ỹt − E[Ỹt]) ·∆t−km−τ∥22
]

≤ 2n
(
dmσm+1

L

)2 n∑
t=n0

E∥∆t−km−τ∥22

+ 2
∑

n0≤s,t≤n−1

E
[
⟨(Ỹt − E[Ỹt]) ·∆t−km−τ , (Ỹs − E[Ỹs]) ·∆s−km−τ ⟩

]
.



B.4. AUXILIARY RESULTS UNDERLYING THEOREM 3.1 274

Note that in the special case of m = 0, we have E[Ỹt] = 0 so that the bound holds
without the first term on the RHS.

For t > s+ τ + km, we have the relations

E
[
(Ỹt − E[Ỹt]) ·∆t−km−τ | F̃t−km−τ

]
= 0, and (Ỹs − E[Ỹs]) ·∆s−km−τ ∈ F̃t−km−τ ,

meaning that the product term vanishes when |s− t| > τ + km. Therefore, we arrive at
the bound

E
[
∥
n−1∑
t=n0

Q2(t)∥22
]

≤

{(
2n2
(
dmσm+1

L

)2
+ 4n(km + τ) · (σLd)2m · σ2

Ld
)
· cη
1−κdtmixσ̄

2 m ≥ 1,

4nτσ2
Ld ·

cη
1−κdtmixσ̄

2 m = 0.
(B.13)

Now we turn to the last term in the decomposition (B.11). We start with the decompo-
sition:

∆t −∆t−τ = η
τ∑
ℓ=1

(
Lt−ℓ+1(st−ℓ)∆t−ℓ + νt−ℓ + ζt−ℓ+1

)
.

We therefore have the following decomposition:

E
[
∥
n−1∑
t=n0

Q3(t)∥22
]

≤ 4η2E
[
∥

n∑
t=n0

{
Yt ·

( τ∑
ℓ=1

Zt−km−ℓ+1∆t−km−ℓ
)}

∥22
]
+ 4η2E

[
∥

n∑
t=n0

{
Yt ·

(
L

τ∑
ℓ=1

∆t−km−ℓ
)}

∥22
]

+ 4η2E
[
∥

n∑
t=n0

{
Yt ·

( τ∑
ℓ=1

Nt−km−ℓ∆t−km−ℓ
)}

∥22
]

+ 4η2E
[
∥

n∑
t=n0

{
Yt ·

( τ∑
ℓ=1

(νt−km−ℓ + ζt−km−ℓ+1)
)}

∥22
]

For the martingale component of the noise, note that each term
∏m

j=0N(st−kj) ·
Zt−ℓ+1(st−ℓ) has zero conditional mean conditioned on Ft−ℓ. We have that

E
[
∥

n∑
t=n0

YtZt−km−ℓ+1(st−km−ℓ)∆t−km−ℓ∥22
]
=

n−1∑
t=n0

E
[
∥YtZt−km−ℓ+1(st−km−ℓ)∆t−km−ℓ∥22

]
≤ (σLd)

2(m+1)

n−1∑
t=n0

E
[
∥Zt−km−ℓ+1(st−km−ℓ)∆t−km−ℓ∥22

]
≤ σ2m+4

L d2m+3n · cη
1−κdtmixσ̄

2.
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From the Lipschitz condition (3.4) and the boundedness condition (3.3) on the metric
space, it follows that |||Yt|||op ≤ (σLd)

m+1 almost surely. Using this fact, the second term
can be bounded as

E
[
∥

n∑
t=n0

{
Yt ·

(
L

τ∑
ℓ=1

∆t−km−ℓ
)}

∥22
]
≤ nτ(σLd)

2m+2γ2max

n−1∑
t=n0

τ∑
ℓ=1

E∥∆t−km−ℓ∥22

≤ n2τ 2(σLd)
2m+2γ2max ·

cη
1−κdtmixσ̄

2.

Collecting equations (B.12) and (B.13) as well as the above bounds for Q3, we arrive at
the upper bound E

[
∥
∑n−1

t=n0

(∏m
j=0Nt−kj

)
∆t−km∥22

]
≤
∑3

j=1 Tj, where

T1 := n2d2mσ2m+2
L

(
1 + η2τ 2γ2maxd

2σ2
L + η2τ 2d3σ2

L/n
)
· cη
1−κdtmixσ̄

2

T2 := 4η2E
[
∥

n∑
t=n0

{
Yt
( τ∑
ℓ=1

Nt−km−ℓ∆t−km−ℓ
)}

∥22
]
, and

T3 := 4η2E
[
∥

n∑
t=n0

{
Yt
( τ∑
ℓ=1

(νt−km−ℓ + ζt−km−ℓ+1)
)}

∥22
]
.

In the special case of m = 0, we have:

E
[
∥
n−1∑
t=n0

Nt∆t∥22
]
≤ cσ2

Ld ·
(
nτ + n2η2σ2

Ldτ
2
) cη

1− κ
dtmixσ̄

2

+ 4η2τ
τ∑

k1=1

E
[
∥

n∑
t=n0

NtNt−k1∆t−k1∥22
]

+ 4η2τ
τ∑

k1=1

E
[
∥

n∑
t=n0

Nt

(
νt−k1 + ζt−k1+1

)
∥22
]
.

which completes the proof of this lemma.

B.4.2 Proof of Lemma 3.10

We study the bias and variance of the summation separately. For the bias term, we
have:

∥E
[(m−1∏

j=0

Nt−kj
)(
νt−km + ζt−km+1

)]
∥2

= sup
z∈Sd−1

E
[
⟨
(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)
, z⟩
]

(i)

≤ sup
z∈Sd−1

√
E∥N⊤

t z∥22 ·
[
E∥
(m−1∏
j=1

Nt−kj
)(
νt−k + ζt−k+1

)
∥22
]1/2

(ii)

≤ σL
√
d · (σLd)m−1 · 2σ̄

√
d = 2(σLd)

mσ̄, (B.14)
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where step (i) uses the Cauchy–Schwarz inequality, and step (ii) follows by invoking the
moment assumption 3.2 as well as the Lipschitz assumption 3.4.

For t ∈ [km, n], we define

λt :=
(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)
− E

[(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)]
.

We have

E
[
∥λt∥22

]
≤ E

[(m−1∏
j=0

|||Nt−kj |||2op
)
· ∥νt−km + ζt−km+1∥22

]
≤ (σLd)

2m · E
[
∥νt−k + ζt−k+1∥22

]
≤ d2m+1σ2m

L σ̄2.

For integers t ≥ 0 and ℓ ≥ km, by Lemma 3.4, there exists a random variable s̃t+ℓ−km ,

such that s̃t+ℓ−km | Ft ∼ ξ, and that E
[
ρ(st+ℓ−km , s̃t+ℓ−km) | Ft

]
≤ c0 · 2

1− ℓ−km
tmix . By

Assumption 3.1, conditionally on the pair of states (st+ℓ−km , s̃t+ℓ−km), we have the
following bound for j ∈ [m]:

Wρ,1

(
P kj−kj−1δst+ℓ−kj

, P kj−kj−1δs̃t+ℓ−kj

)
≤ c0 · ρ

(
st+ℓ−kj , s̃t+ℓ−kj

)
, a.s.

Consequently, there exists a sequence of random variables (s̃t+ℓ−kj)0≤j≤m−1, such that
the following relations hold true for j = 1, 2, · · · ,m:

s̃t+ℓ−kj−1
| Ft+ℓ−km ∼ P kj−kj−1δs̃t+ℓ−kj

, and

E
[
ρ
(
s̃t+ℓ−kj−1

, st+ℓ−kj−1

)
| Ft+ℓ−km

]
≤ cm+1−j

0 · ρ
(
st+ℓ−km , s̃t+ℓ−km

)
.

Given the random variables constructed above, we can then construct the proxy random
variable for λt+ℓ:

λ̃t+ℓ :=
(m−1∏
j=0

N(s̃t+ℓ−kj)
)(
ν(s̃t+ℓ−km) + ζt+ℓ−km+1(s̃t+ℓ−km)

)
− E

[(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)]
.

By stationarity, we have E
[
λ̃t+ℓ | Ft

]
= 0 almost surely. In order to bound the difference,

we note the telescope relation: λ̃t+ℓ − λt+ℓ =
∑m−1

q=0 E
(mix)
q + Ē(mix), where

E(mix)
q :=

( q−1∏
j=0

N(st+ℓ−kj)
)(
L(s̃t+ℓ−kq)−L(st+ℓ−kq)

)( m−1∏
j=q+1

N(s̃t+ℓ−kj)
)

·
(
ν(s̃t+ℓ−km) + ζt+ℓ−km+1(s̃t+ℓ−km)

)
,
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and

Ē(mix) :=
m−1∏
j=0

N(st+ℓ−kj)

·
(
ν(s̃t+ℓ−km) + ζt+ℓ−km+1(s̃t+ℓ−km)− ν(st+ℓ−km) + ζt+ℓ−km+1(st+ℓ−km)

)
.

Using the Wasserstein distance bounds and Lipschitz condition 3.4, we find the
conditional expectation A = E

[
∥E(mix)

q ∥2 | Ft

]
is bounded as

A ≤ (σLd)
m−1E

[
|||L(st+ℓ−kq)−L(s̃t+ℓ−kq)|||op · ∥ν(s̃t+ℓ−k) + ζt+ℓ−k+1(s̃t+ℓ−k)∥2 | F̃t

]
≤ (σLd)

m

√
E[ρ(st+ℓ−kq , s̃t+ℓ−kq)2 | F̃t] ·

√
E[∥ν(s̃t+ℓ−k) + ζt+ℓ−k+1(s̃t+ℓ−k)∥22 | F̃t]

≤ (σLd)
mc0 · 2

1− ℓ−kq
2tmix · 2dσ̄,

and the conditional expectation B = E
[
∥Ē(mix)∥2 | Ft

]
is bounded as

B ≤ (σLd)
m
√

E
[
∥ζt+ℓ−k+1(st+ℓ−k)− ζt+ℓ−k+1(s̃t+ℓ−k)∥22 | Ft

]
+ (σLd)

m
√

E
[
∥ν(st+ℓ−k)− ν(s̃t+ℓ−k)∥22 | Ft

]
≤ (σLd)

mdσ̄c0 · 2
1− ℓ−km

2tmix .

Consequently, we can bound the cross term as

E
[
⟨λt, λt+ℓ⟩

]
= E

[
⟨λt, E

[
λ̃t+ℓ | Ft

]
⟩
]
+ E

[
⟨λt, E

[
λt+ℓ − λ̃t+ℓ | Ft

]
⟩
]

≤ 0 + E
[
∥λt∥2 · E

[
∥λt+ℓ − λ̃t+ℓ∥2 | Ft

]]
≤ 12c0d

m+1σmL σ̄ · 2−
ℓ−k

2tmix ·
√

E∥λt∥22

≤ 12c0d
2m+2σ2m

L σ̄2 · 2−
ℓ−k

2tmix .

Taking τ = 16tmix log(c0d), we can control the cross terms in two different ways:

E
[
⟨λt, λt+ℓ⟩

]
≤

{√
E∥λt∥22 ·

√
E∥λt+ℓ∥22 ≤ d2m+1σ2m

L σ̄2, 0 ≤ ℓ ≤ km + τ,

12c0d
2m+2σ2m

L σ̄2 · 2−
ℓ−k

2tmix ≤ d2mσ2m
L σ̄2 ℓ ≥ km + τ.

Summing them up these terms yields

E
[
∥
n−1∑
t=n0

λt∥22
]
=

n−1∑
t=n0

E∥λt∥22 + 2
∑

n0≤t1<t2≤n−1

E
[
⟨λt1 , λt2⟩

]
≤ (k + τ + 1)nd2m+1σ2m

L σ̄2 + n2d2mσ2m
L σ̄2.
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Combining with the bound (B.14), we find that

E
[
∥
n−1∑
t=n0

(m−1∏
j=0

Nt−kj
)(
νt−km + ζt−km+1

)
∥22
]

= ∥
n−1∑
t=n0

E
[(m−1∏

j=0

Nt−kj
)(
νt−km + ζt−km+1

)]
∥22 + E

[
∥
n−1∑
t=n0

λt∥22
]

≤ c
(
n2 + (km + τ)nd

)
σ2m
L d2mσ̄2,

for a universal constant c > 0.

B.5 Proof of Theorem 3.2

Our strategy is to prove a Bayes risk lower bound. We construct a prior distribution
over transition kernels by perturbing the base matrix P0 appropriately. We then apply
the Bayesian Cramér–Rao lower bound to obtain our result.

Let us describe the construction in more detail. For each s ∈ S, suppose we have a
perturbation vector hs ∈ RS . Use these to define the perturbed transition kernel

Ph(x, y) :=
P0(x,y) ehx(y)∑
z∈S P0(x,z)ehx(z) for each x, y ∈ S.

Note that by construction, for any x ∈ S and any hx ∈ RS , we have
supp

(
Ph(x, ·)

)
= supp

(
P0(x, ·)

)
. Since P0 is irreducible and aperiodic, so is Ph. There-

fore, the stationary distribution ξh of Ph exists and is unique. When the perturbation is
small enough, a quantitative perturbation principle can be obtained, which we collect in
Lemma B.1 below.

It remains to specify how the perturbation vectors are generated. We parameterize
h with a linear transformation, writing h = Qw for a linear operator Q to be specified
shortly, and a random vector w ∈ Rd drawn from a distribution ρ. In particular,
given a collection of vectors {qx(y)}x,y∈S ⊆ Rd, we consider the linear transformation
Q : Rd → RS×S given by w 7→

[
⟨w, qx(y)⟩

]
x,y∈S .

Next we specify the prior ρ, and along with some associated notation. Define
the subspace Hh :=

{
f ∈ RS : Eξh [f(s)] = 0

}
, and note that Ph maps Hh to itself.

Furthermore, since Ph is irreducible and aperiodic, the mapping (I −Ph) is invertible on
Hh. Consequently, for any function f : S → R, the following Green function operator is
well-defined:

Ahf := (I − Ph)
−1
∣∣
Hh

·
(
f − Eξh [f ]

)
∈ RS .

We also define an operator Ph on the space of real-valued functions on S as follows:

Phf(x) := EY∼Ph(x,·)[f(Y )].



B.5. PROOF OF THEOREM 3.2 279

Importantly, Ph is an operator mapping functions to functions, and distinct from the
matrix Ph. It is straightforward to see that the operator Ph commutes with the operator
Ah, for any perturbation matrix h. Finally, for any h ∈ RS×S and for all x ∈ S, we
define

gh(x) =
(
Id − Eξh [L(s)]

)−1(AhL(x) · θ̄(Ph) +Ahb(x)
)
. (B.15)

Since the proof works under the perturbed probability transition kernel Ph, it is
useful to study the effect of small perturbation on its stationary distribution. The
following lemma provides non-asymptotic bounds on the mixing time of perturbed
Markov chain and its stationary distribution ξh, which will be useful throughout the
proof.

Lemma B.1. Under the setup above, suppose that hmax := maxx∈S ∥hx∥∞ < 1
128tmix

.
Then the perturbed transition kernel satisfies the following.

• The Markov transition kernel Ph satisfies the mixing condition (Assumption 3.1)
with the discrete metric and mixing time 4tmix.

• The stationary distribution ξh satisfies the bound

max
s∈S

{
log ξ0(s)

ξh(s)
, log ξh(s)

ξ0(s)

}
≤ tmix

(
2 + log h−1

max + log 1
minx ξ0(x)

)
hmax.

See Section B.5.1 for the proof of this lemma.
With this notation in hand, we are ready to construct the prior distribution on w.

We begin with the following one-dimensional density function, taken from [206]:

µ(t) := cos2
(
πt
2

)
· 1t∈[−1,1]. (B.16a)

Also, define the positive-definite matrix Λ := EX∼ξ0
[
covY∼P0(X,·)

(
g0(Y ) | X

)]
, and let

Λ = UDU⊤ denote its eigen-decomposition. For a random variable ψ ∼ µ⊗d, define the
perturbation parameter

w = 1√
n
UD−1/2ψ, (B.16b)

and let its density denote the prior distribution ρ. Note that for any w ∈ supp(ρ), we
have

∥Λw∥2 = ∥UD1/2ψ∥2 = ∥D1/2ψ∥2 ≤
√

trace(D)/n =
√
trace(Λ)/n. (B.16c)

The final ingredient in our construction is to specify the linear transformation Q. For
each x, y ∈ S, we set

qx(y) := g0(y)− Es′∼P0(x,·)
[
g0(s

′)
]
, (B.16d)
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where the Green function g is defined in equation (B.15). Recall that h = Qw for w ∼ ρ.
This specifies our prior over transition kernels, and concludes the construction.

Next, we state a Bayesian Cramér-Rao lower bound used in the proof. Consider a
class PΘ =

(
Pη : η ∈ Θ

)
of probability distributions of sample X ∈ X, parameterized by

η ∈ Θ, where Θ is an open subset of Rd. Recalling Proposition A.1 from Appendix A
implies that

E
η∼ρ

E
X∼pη

∥T̂ (X)− T (η)∥22 ≥
( ∫

trace
(
∂T
∂η

(η)
)
ρ(η)dη

)2
∫
trace

(
I(η)
)
ρ(η)dη+

∫
∥∇ log ρ(η)∥22ρ(η)dη

. (B.17)

In order to complete the proof, we provide non-asymptotic estimates on the three
quantities involved in the right-hand-side of Eq (B.17). These require a few technical
lemmas, whose proofs can be found at the end of the section.

Bounds on the term trace
(
∇wθ̄

)
: We state two technical lemmas that are helpful in

bounding this quantity. The first computes the Jacobian matrix of the desired functional
θ̄(h) with respect to the parameter w.

Lemma B.2. Under the given set-up, for any w ∈ Rd, we have

∇wθ̄(Ph) = EX∼ξh

[
covY∼Ph(X,·)

{
gh(Y )− Phgh(X), g0(Y )− P0g0(X) | X

}]
. (B.18)

See Section B.5.2 for the proof of this lemma. Next, we control the RHS of equation (B.18)
by replacing gh with g0.

Lemma B.3. Under the given set-up and for a sample size lower bounded as n ≥
ct2mixσ

2
Ld

2 log2 d

(1−κ)2 and maxx∈S ∥hx∥∞ ≤ 1
128tmix

, we have

EZ∼ξh
[
∥gh(Z)− g0(Z)∥22

]
≤ c(1+σ2

L)σ̄
2t4mixd

2

(1−κ)4n log6 d
minx ξ0(x)

.

Furthermore, for any w in the support of ρ, we have

∥θ̄(Ph)− θ̄(P0)∥2 ≤ 3
2

√
trace(Λ)/n+

√
c(1+σ2

L)σ̄
2t4mixd

3

(1−κ)4n2 log6 d
minx ξ0(x)

.

See Section B.5.3 for the proof of this lemma.

Combining these two lemmas yields

trace
(
∇wθ̄

)
≥ EX∼ξh

[
varY∼Ph(X,·)

(
g0(Y )− P0g0(X) | X

)]
− EX∼ξh

[√
varY∼Ph(X,·)

(
g0(Y )− P0g0(X) | X

)]
·
√

EZ∼ξh
[
∥gh(Z)− g0(Z)∥22

]
≥ trace

(
Λ
)
−
√
trace

(
Λ
)
· c(1+σL)σ̄t

2
mixd

(1−κ)2
√
n

log3 d
minx ξ0(x)

.

Now given a sample size lower bounded as n ≥ ct2mixσ
2
Ld

2 log2 d

(1−κ)2 +
2c(1+σ2

L)σ̄
2t4mixd

2

(1−κ)4 trace(Λ) log6 d
minx ξ0(x)

,
we can conclude that

trace
(
∇wθ̄

)
≥ 1

2
trace(Λ) for any w in the support of ρ. (B.19)
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Bounds on the Fisher information I(n)(w): We now state an upper bound on the
Fisher information of the observed trajectory:

Lemma B.4. Under the given set-up, for any w ∈ Rd, if hmax := maxx ∥h∥∞ satisfies
the inequality h−1

max ≥ ctmix

(
log h−1

max + log(min ξ0)
−1
)
, we have

I(n)(w) := Eh
[
∇w logPh

(
sn0
)
∇w logPh

(
sn0
)⊤] ⪯ 3n

2
EX∼ξh

[
covY∼Ph(X,·)

(
qX(Y ) | X

)]
.

See Section B.5.4 for the proof of this lemma.

In order to apply the preceding lemma, we must verify the condition on hmax for our
setting. Under our construction, we have maxx∈S ∥hx∥∞ = maxx,y∈S⟨g0(y)−P0g0(x), w⟩.
Note that Assumption 3.2 and Lemma B.7 in Section B.5.7 together imply the following
bound for any δ > 0:

ξ0
(
s : |⟨g0(s), w⟩| ≤ cσ̄tmix∥w∥2

1−κ · log3 d
δ

)
> 1− δ.

Taking δ := 1
2
mins∈S ξ0(s) > 0, we have the uniform bound

max
s∈S

|⟨g0(s), w⟩| ≤ cσ̄tmix∥w∥2
1−κ log3

(
d/min

s
ξ0(s)

)
.

Note that P0 is a probability transition kernel, for any s ∈ S, the vector P0g0(s)
lies in the convex hull of

(
g0(s

′)
)
s′∈S . So we have the bound maxs∈S |⟨P0g0(s), w⟩| ≤

maxs∈S |⟨g0(s), w⟩| ≤ cσ̄tmix∥w∥2
1−κ log3

(
d/mins ξ0(s)

)
. Putting them together leads to the

bound

max
x∈S

∥hx∥∞ ≤ 2cσ̄tmix∥w∥2 log3
(
d/min

s
ξ0(s)

)
.

Now given a sample size

n ≥ ct3mixσ̄
2 · trace(Λ) · log3 d

mins ξ0(s)
, (B.20)

we have that maxx ∥hx∥∞ < 1
128tmix

. This satisfies the condition in Lemma B.1 in the
appendix. Applying this lemma, we see that the condition

h−1
max ≥ ctmix

(
log h−1

max + log(min ξ0)
−1

is satisfied, so that Lemma B.4 guarantees that

trace
(
I(n)(w)

)
⪯ 3n

2
EX∼ξh

[
varY∼Ph(X,·)

(
g0(Y )− P0g0(X) | X

)]
⪯
(
3
2

)3
n · EX∼ξ0

[
varY∼P0(X,·)

(
g0(Y ) | X

)]
= 27n

8
trace

(
Λ
)
. (B.21)

The last inequality follows because ξh ⪯ 3
2
ξ0 Ph(x, ·) ⪯ 3

2
P0(x, ·) for all x ∈ S.
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Bounds on the prior Fisher information: From Lemma A.2 in Appendix A, the
density ρ of w has Fisher information

I(ρ) = UD1/2I
(
µ⊗d)D1/2U⊤ = nπΛ. (B.22)

Consequently, we have
∫
∥∇ log ρ(w)∥22ρ(w) dw trace

(
I(ρ)

)
= nπ · trace(Λ).

Putting together the pieces: Combining the bounds (B.19), (B.21), and (B.22)
and applying Proposition A.1, we obtain the lower bound

inf
θ̂n

∫
Rd

EXn
1 ∼PQw

[
∥θ̂n − θ̄(PQw)∥22

]
ρ(dw) ≥ 1

4(5+π)n
trace(Λ). (B.23)

It remains to relate the matrix Λ to the local complexity εn in the theorem. In order to
do so, we require the following lemma.

Lemma B.5. Under the setup above, for any function f : S → R such that Eξ0 [f(s)] =
0, we have EX∼ξ0,Y∼P0(X,·)

[(
A0f(Y ) − P0A0f(X)

)2]
=
∑∞

k=−∞ E
[
f(s0)f(sk)

]
, where

(sk)k∈Z is a stationary Markov chain following P0.

See Section B.5.5 for the proof of this lemma.

Applying Lemma B.5 with fj(s) = ⟨(Id − L(0))−1
(
L(s)θ̄(P0) + b(s)

)
, ej⟩ for j =

1, 2, · · · , d respectively, we arrive at the chain of equalities

trace(Λ) =
d∑
j=1

EX∼ξ0,Y∼P0(X,·)
[(
A0fj(Y )− P0A0fj(X)

)2]
=

d∑
j=1

∞∑
k=−∞

E
[
fj(s0)fj(sk)

]
= trace

(
(I − L(0))−1Σ∗

Mkv(I − L(0))−⊤) = nε2n.

Thus, the right-hand-side of equation (B.23) is exactly ε2n
4(5+π)

.
It remains to bound the size of the neighborhood. Given a sample size n satisfying

the bound (B.20), Lemma B.3 implies that ∥θ̄(Ph)− θ̄(P0)∥2 ≤
√

trace(Λ)
n

. Consequently,

for any w on the support of ρ, we have PQw ∈ NEst(P0, 2εn).
On the other hand, for any w ∈ supp(ρ) and any x ∈ S and perturbation h = Qw,

we have

χ2 (Ph(x, ·) || P0(x, ·)) = EY∼P0(x,·)
[(Ph(x,Y )

P0(x,Y )
− 1
)2]

= varY∼P0(x,·)

(
ehx(Y )∑

z∈S P0(x,z)ehx(z)

)
(i)

≤ varY∼P0(x,·)
(
ehx(Y )

)
≤ EY∼P0(x,·)

[(
ehx(Y ) − 1

)2]
(ii)

≤ e · EY∼P0(x,·)
[
hx(Y )2

]
,
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where step (i) follows by using Jensen’s inequality to assert that∑
z∈S

P0(x, z)e
hx(z) ≥ e

∑
z∈S P0(x,z)hx(z) = 1,

and step (ii) follows from the inequality |ex − 1| ≤ e · |x|, valid for x ∈ [−1, 1].
Accordingly, the average χ2-divergence admits the bound∑
x∈S

ξ0(x)χ
2 (Ph(x, ·) || P0(x, ·)) ≤ e · EX∼ξ0,Y∼P0(X,·)

[
⟨w, g0(Y )− P0g0(X)⟩2

]
≤ e · w⊤Λw ≤ ed

n
.

For any w on the support of ρ, we thus have PQw ∈ NProb(P0, e
√

d
n
), as claimed. The

Bayes risk lower bound (B.23) then implies the desired minimax lower bound.

B.5.1 Proof of Lemma B.1

The proof relies on a total variation distance bound on the transition kernel. In particular,
for each s ∈ S, we have

dTV

(
P0(x, ·), Ph(x, ·)

)
≤
√

1
2
χ2 (P0(x, ·) || Ph(x, ·)) =

√
1
2

∑
y∈S

P0(x, y) ·
(Ph(x,y)
P0(x,y)

− 1
)2

(i)

≤
√

1
2

(
e∥hx∥∞ − 1

)2 (ii)

≤ e ·max
x∈S

∥hx∥∞. (B.24)

In step (i), we use the fact

Ph(x, y)

P0(x, y)
=

ehx(y)∑
z∈S P0(x, y)ehx(z)

∈ [e−∥hx∥∞ , e∥hx∥∞ ],

and in step (i), we use the fact ∥hx∥∞ < 1.
Next, we turn to proofs of the two claims. We first prove the mixing time bound.

Note that the non-expansive condition (3.5)(b) is automatically satisfied with c0 = 1
for total variation distance (by a näıve coupling). Given a fixed pair x, y ∈ S, invoking
Lemma 3.4 with τ = 4tmix yields the existence of a joint distribution over the random
sequence {xk}0≤k≤τ and {yk}0≤k≤τ , such that {xk} and {yk} follows the Markov chain
P0, starting from x0 = x and y0 = y, respectively. Furthermore, we have the bound
P
(
xτ ̸= yτ

)
≤ 1

4
.

Now we construct a coupling between the original chain and perturbed chain. Taking
the initial point x̃0 = x, we iteratively construct the sequence {x̃k}0≤k≤τ as follows:
given x̃k and xk, we construct the conditional distribution of x̃k+1 as follows:

• If xk = x̃k, we let P
(
x̃k+1 ̸= xk+1 | xk, x̃k

)
= dTV

(
P0(xk, ·), Ph(xk, ·)

)
.
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• If xk ̸= x̃k, we simply take x̃k+1 and xk+1 to be conditionally independent, following
their respective transition kernels.

We construct the sequence {ỹk}0≤k≤τ in a similar fashion.
By the union bound, it follows that

P
(
xτ ̸= x̃τ

)
≤

τ−1∑
k=0

E
[
P
(
xk+1 ̸= x̃k+1 | xk = x̃k

)]
=

τ−1∑
k=0

E
[
dTV

(
P0(xk, ·), Ph(xk, ·)

)]
≤ 4etmix ·max

x∈S
∥hx∥∞ < 1

8
.

In the last step, we have used the total variation distance bound (B.24).
Similarly, the process {ỹk} satisfies the bound P

(
yτ ≠ ỹτ

)
< 1

8
. Putting together the

pieces, we conclude that

dTV

(
δxP

τ
h , δyP

τ
h

)
≤ P

(
x̃τ ̸= ỹτ

)
≤ P

(
x̃τ ̸= xτ

)
+ P

(
xτ ̸= yτ

)
+ P

(
yτ ̸= ỹτ

)
< 1

8
+ 1

4
+ 1

8
= 1

2
,

which shows that the perturbed chain Ph satisfies the condition (3.5)(a) with mixing
time τ = 4tmix.

Next, we prove the perturbation result for the stationary distribution. Given any
fixed initial distribution π0, note that for any deterministic sequence (x0, x2, · · · , xn),
we have the following expression for the Radon-Nikodym derivative:

dPh

(
x0,x1,··· ,xn

)
dP0

(
x0,x1,··· ,xn

) =
n−1∏
k=0

Ph(xk,xk+1)

P0(xk,xk+1)
=

n−1∏
k=0

ehxk (xk+1)∑
y∈S e

hxk
(y)P (xk,y)

.

We then have the max-divergence bound

D∞
(
Ph
(
xn0
)
|| P0

(
xn0
))

:= sup
xn0∈Sn

∣∣∣∣log dPh

(
x0,x1,··· ,xn

)
dP0

(
x0,x1,··· ,xn

) ∣∣∣∣ ≤ n ·max
x

∥hx∥∞.

Taking the marginal distribution, we see that the bound D∞ (π0P
n
h || π0P n

0 ) ≤ n · hmax

holds for any initial distribution π0 and any n > 0.
To obtain the desired claim, we take the initial distribution to be the stationary

distribution ξh of the chain Ph, and let n = tmix log
(

2
hmax·minx ξ0(x)

)
. Note that ξhP

n
h = ξh

in such case. On the other hand, by Lemma 3.4, the total variation distance can be

upper bounded as dTV

(
ξhP

n
0 , ξ0

)
≤ 2

1− n
tmix ≤ hmax · minx∈S ξ0(x). Therefore, for any

x ∈ S, we have ∣∣∣ ξhPn
0 (x)

ξ0(x)
− 1
∣∣∣ ≤ dTV

(
ξhP

n
0 ,ξ0

)
minx∈S ξ0(x)

≤ hmax <
1

2
.

Invoking the inequality | log z| ≤ 2|z − 1| for |z| ≤ 1/2, we can translate the bound into
a max-divergence bound

D∞ (ξhP
n
0 || ξ0) = max

x∈S

∣∣∣log ξhP
n
0 (x)

ξ0(x)

∣∣∣ ≤ 2hmax.



B.5. PROOF OF THEOREM 3.2 285

Finally, applying the triangle inequality yields

D∞ (ξh || ξ0) ≤ D∞ (ξhP
n
h || ξhP n

0 ) +D∞ (ξhP
n
0 || ξ0)

≤ (n+ 2)hmax ≤ tmix

(
2 + log h−1

max + log 1
minx ξ0(x)

)
hmax,

which proves the second claim.

B.5.2 Proof of Lemma B.2

We first consider the functional h 7→ θ̄(Ph) :=
(
I −Eξh [L(s)]

)−1Eξh [b(s)]. Note that the
stationary distribution ξh satisfies the identity ξhPh = ξh. Taking derivatives, we obtain
the following equality for all x, y ∈ S:

∂ξh
∂hx(y)

· (I − Ph) = ξh ·
∂Ph
∂hx(y)

= ξh(x)Ph(x, y) ·
[
1z=y − Ph(x, z)

]
z∈S .

Note that the linear operator (I − Ph) is invertible on the subspace Hh. For any
f ∈ Hh, we have

∂

∂hx(y)
Eξh
[
f(s)

]
=
∑
z∈S

∂ξh(z)

∂hx(y)
· f(s)

= ξh(x)Ph(x, y) ·
[
1z=y − Ph(x, z)

]
z∈S ·

(
I − Ph

)−1∣∣
Hh

· f.

In the above expression, the notation
(
I − Ph

)−1∣∣
Hh

denotes the inverse of the operator
I − Ph within the subspace Hh, a bounded linear operator on this space. Note that the
derivative is invariant under translation. For any f ∈ RS , define the auxiliary function
f̃ := f − Eξh [f ], and write

∂

∂hx(y)
Eξh
[
f(s)

]
=

∂

∂hx(y)
Eξh
[
f̃(s)

]
= ξh(x)Ph(x, y) ·

[
1z=y − Ph(x, z)

]
z∈S ·

(
I − Ph

)−1∣∣
Hh

· f̃

= ξh(x)Ph(x, y) ·
[
1z=y − Ph(x, z)

]
z∈S ·

(
I − Ph

)−1∣∣
Hh

·
(
f − Eξh [f ]

)
= ξh(x)Ph(x, y) ·

(
Ahf(y)−

∑
z∈S

Ph(x, z)Ahf(z)
)
. (B.25)

On the other hand, we can express the desired functional θ̄(Ph) in the form above. In
particular, setting L(h) := Eξh

[
L(s)

]
and b(h) := Eξh

[
b(s)

]
, we see that for any x, y ∈ S,

we have

∂θ̄(Ph)

∂hx(y)
=
(
I − L(h)

)−1 ∂L(h)

∂hx(y)

(
I − L(h)

)−1
b(h) +

(
I − L(h)

)−1 ∂b(h)

∂hx(y)

=
(
I − L(h)

)−1(( ∂

∂hx(y)
Eξh
[
L(s)

])
· θ̄(Ph) +

∂

∂hx(y)
Eξh
[
b(s)

])
.
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Following the formula (B.25), we conclude that

∂θ̄(Ph)

∂hx(y)
= ξh(x)Ph(x, y)

(
I − L(h)

)−1[Ah

(
L(y)θ̄(Ph) + b(y)

)]
− ξh(x)Ph(x, y)

∑
z∈S

Ph(x, z)
(
I − L(h)

)−1[Ah

(
L(z)θ̄(Ph) + b(z)

)]
. (B.26)

Recall the shorthand notation from before, where for each s ∈ S, we defined

gh(s) =
(
I − L(h)

)−1[Ah

(
L(s)θ̄(Ph) + b(s)

)]
.

Given w ∈ Rd, if we parameterize the perturbation as h = Qw, the chain rule yields

∇wθ̄(Ph) = Q⊤ · ∇hθ̄(Ph)

=
∑
x∈S

ξh(x)
(∑
y∈S

Ph(x, y)g(y)qx(y)
⊤ −

(∑
y∈S

Ph(x, y)g(y)
)(∑

y∈S

Ph(x, y)gh(y)qx(y)
)⊤)

= EX∼ξh
[
covY∼Ph(X,·)

(
gh(Y )− Phgh(X), qX(Y ) | X

)]
,

as claimed.

B.5.3 Proof of Lemma B.3

The following technical lemma is used throughout the proof, and proved in Section B.5.6.

Lemma B.6. Given a perturbation vector w satisfying ∥w∥2 ≤ 1−κ
2ctmixσL

√
d·|||Λ|||op log d

, for

h = Qw, the matrix I − L(h) is invertible, with |||
(
I − L(h)

)−1|||op ≤ 2
1−κ .

Before proceeding with the proof, we note two direct consequences of Lemma B.7
from Section B.5.7. First, by taking f(x) := ⟨ej, L(x)u⟩ and f(x) := ⟨ej, b(x)⟩, applying
the tail assumption 3.2 and the boundedness assumption 3.4, we have the following
second moment estimate for any u ∈ Sd−1 and j ∈ [d]:

EX∼ξh
[
⟨ej, AhL(X)u⟩2

]
≤ ct2mixσ

2
L log

2 d, and (B.27a)

EX∼ξh
[
⟨ej, Ahb(X)⟩2

]
≤ ct2mixσ

2
b log

2 d. (B.27b)

Second, by taking fj(x) := ⟨ej, L(x)θ̄(Ph) + b(x)⟩, for any integer p ≥ 1 and K > 0,
Markov’s inequality yields the bound

PX∼ξh

[
Ahfj(X) ≥ K

]
≤ K−2pEX∼ξh

[
Ahfj(X)2p

]
≤
(
cp2tmix(σL∥θ̄∥2+σb) log d

K

)2p
.

By taking K = 2cp2tmix(σL∥θ̄∥2 + σb) log d and p = −2 logminx∈S ξ0(x), we find that

PX∼ξh

[
Ahfj(X) ≥ 8ctmix(σL∥θ̄∥2 + σb) log

3
(

d
minx∈S ξ0(x)

)]
<

1

2
min
x∈S

ξ0(x) ≤ min
x∈S

ξh(x),
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Since ξh is a discrete measure, this high-probability bound implies a deterministic bound

Ahfj(x) ≤ 8ctmix(σL∥θ̄∥2 + σb) log
3
(

d
minx′∈S ξ0(x

′)

)
for all x ∈ S.

Combining the estimates for all j coordinates yields the bound

max
x∈S

∥gh(x)∥2 ≤ 1
1−κ max

x∈S
∥Ah

[
fj(x)

]
j∈[d]∥2 ≤

ctmix(σL∥θ̄∥2+σb)
√
d

1−κ log3
(

d
minx∈S ξ0(x)

)
.

(B.28)

Given the two lemmas and facts derived above, we now proceed to the proof of
Lemma B.3. Taking derivatives on both sides of equation (B.15), we obtain

∇wgh(z) =
(
Id − L(h)

)−1 · AhL(z) · ∇wθ̄(Ph)

+
(
Id − L(h)

)−1 ·
(
∇wAh

)(
L(z)θ̄(Ph) + b(z)

)
−
(
Id − L(h)

)−1∇w

(
L(h)

)(
Id − L(h)

)−1
(AhL(z) · θ̄(Ph) +Ahb(z))

=: J1(h, z) + J2(h, z) + J3(h, z).

We then have the integral relation

gh(z)− g0(z) =

∫ 1

0

∇wgsh(z) · w ds =

∫ 1

0

(
J1(sh, z) + J2(sh, z) + J3(sh, z)

)
· w ds.

It thus suffices to prove individual upper bounds on the terms J1(sh, z) ·w, J2(sh, z) ·w
and J3(sh, z) · w.

Bounds on the term J1(sh, z) · w: Invoking Lemma B.2, we have

∇wθ̄(Ph) = EX∼ξh,Y∼Ph(X,·)
[(
gh(Y )− Phgh(X)

)(
g0(Y )− P0g0(X)

)⊤]
.

Consequently,

∥∇wθ̄(Ph)w∥2
≤ ∥ covX∼ξh,Y∼Ph(X,·)

(
g0(Y )− P0g0(X)

)
· w∥2

+ ∥EX∼ξh
[
covY∼Ph(X,·)

(
gh(Y )− g0(Y )− P0g0(X) + P0g0(X), g0(Y )− P0g0(X)

)]
w∥2.

For perturbation matrix h satisfying the condition max
x∈S

∥hx∥∞ ≤ 1
128tmix

, Lemma B.1

implies the sandwich relations

1
2
ξ0 ⪯ ξh ⪯ 3

2
ξ0, and 1

2
P0(x) ⪯ Ph(x, ·) ⪯ 3

2
P0(x), for all x ∈ S.

For the first term in above decomposition, we have

∥ covX∼ξh,Y∼Ph(X,·)
(
g0(Y )− P0g0(X)

)
· w∥2

≤ 3
2
∥ covX∼ξ0,Y∼P0(X,·)

(
g0(Y )− P0g0(X)

)
· w∥2

= 3
2
∥Λw∥2 ≤ 3

2

√
trace(Λ)/n,
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where the last inequality is due to the bound (B.16c).
For the second term in the decomposition, we have

∥E
[
cov

(
gh(Y )− g0(Y )− P0g0(X) + P0g0(X), g0(Y )− P0g0(X) | X

)]
· w∥2

= sup
v∈Sd−1

E
[(
gh(Y )− g0(Y )− P0g0(X) + P0g0(X)

)⊤
v ·
(
g0(Y )− P0g0(X)

)⊤
w
]

≤ sup
v∈Sd−1

√
E
[
⟨
(
gh(X)− g0(X)

)
, v⟩2

]
·
√

E
[((

g0(Y )− P0g0(X)
)⊤
w
)2]

≤ 3
2

√
w⊤Λw

√
E∥gh(X)− g0(X)∥22,

where X ∼ ξh, Y ∼ Ph(X, ·).
By equation (B.16b), on the support of the prior density, we have the bound

w⊤Λw = n−1ψ⊤D−1/2U⊤ΛUD−1/2ψ ≤ d
n
. Consequently, we have the upper bound

∥∇wθ̄(Ph)w∥2 ≤ 3
2

√
trace(Λ)

n
+ 3

2
·
√

d
n
· EX∼ξh∥gh(X)− g0(X)∥22. (B.29)

Collecting the bounds above and invoking equation (B.27) and Lemma B.6, we
obtain the following bound on the desired term:

EY∼ξh
[
∥J1(ℓh, Y )w∥22

]
≤ |||
(
Id − L(ℓh)

)−1|||2op · EY∼ξh
[
∥AℓhL(Y ) · ∇wθ̄(Pℓh)w∥22

]
≤ 4

(1−κ)2 ·
3
2
EY∼ξℓh

[
∥AℓhL(Y ) · ∇wθ̄(Pℓh)w∥22

]
≤ 6

(1−κ)2 · ct
2
mixσ

2
Ld log

2 d · ∥∇wθ̄(Pℓh)w∥22

≤ ct2mixσ
2
Ld log

2 d

(1−κ)2 · trace(Λ)
n

+
ct2mixσ

2
Ld

2 log2 d

(1−κ)2n sup
0≤ℓ≤1

EX∼ξℓh∥gℓh(X)− g0(X)∥22.

Bounds on the term J2(sh, z) · w: For any function S → Rd and x, y ∈ S, we note
that

∂
∂hx(y)

Ahf = −(I − Ph)−1|Hh
· ∂Ph

∂hx(y)
· (I − Ph)−1|Hh

f

= −Ah ·
[
1s=xPh(x, y) ·

(
1s′=y − Ph(x, s

′)
)]
s,s′∈S · Af

= −Ah ·
[
1s=xPh(x, y) ·

(
Ahf(y)−

∑
s′

Ph(x, s
′)Ahf(s

′)
)]
s∈S .

We can then derive the formula for derivative with respect to the parameter w, as(
∇wAh

)
f(z) =

∑
x,y∈S

( ∂

∂hx(y)
Ahf(z)

)
· qx(y)⊤

= −
∑
x,y∈S

Ph(x, y)Ah1x(z) ·
(
Ahf(y)− PhAhf(x)

)
·
(
g0(y)− P0g0(x)

)⊤
= −

∑
x,y∈S

∞∑
t=0

(
P t
h(z, x)− ξh(x)

)
Ph(x, y)

(
Ahf(y)− PhAhf(x)

)(
g0(y)− P0g0(x)

)⊤
.
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Substituting f(z) = L(z)θ̄(Ph) + b(z), we note that Ahf = gh, and consequently,(
∇wAh

)(
L(z)θ̄(Ph) + b(z)

)
=

∞∑
t=0

(
EX∼P t

h(z,·),Y∼Ph(X,·)
[(
gh(Y )− Phgh(X)

)(
g0(Y )− P0g0(X)

)⊤]
− EX∼ξh,Y∼Ph(X,·)

[(
gh(Y )− Phgh(X)

)(
g0(Y )− P0g0(X)

)⊤])
=:

∞∑
t=0

Dt(z).

Next, we estimate the difference term above in two different ways, depending on the
value of t. On the one hand, note that

EZ∼ξh∥EX∼P t
h(Z,·),Y∼Ph(X,·)

[(
gh(Y )− Phgh(X)

)(
g0(Y )− P0g0(X)

)⊤]
w∥22

≤ sup
x,y∈S

∥gh(y)− Phgh(x)∥22 · EX∼ξh,Y∼Ph(X,·)
[
⟨w, g0(Y )− P0g0(X)⟩2

]
≤ 4 sup

x∈S
∥gh(x)∥22 · EX∼ξh,Y∼Ph(X,·)

[
⟨w, g0(Y )− P0g0(X)⟩2

]
,

where the bound for the factor supx∈S ∥gh(x)∥22 follows from equation (B.28). For the
latter term in the display above, we note that

EX∼ξh,Y∼Ph(X,·)
[
⟨w, g0(Y )− P0g0(X)⟩2

]
≤ 2EX∼ξ0,Y∼P0(X,·)

[
⟨w, g0(Y )− P0g0(X)⟩2

]
≤ 2w⊤Λw = 2d

n
.

Putting together the pieces yields the first estimate

EZ∼ξh
[
∥Dt(Z)w∥22

]
≤ ct2mixσ̄

2d2

(1−κ)2n log6
(

d
minx∈S ξ0(x)

)
.

On the other hand, given z ∈ S and the Markov chain (st)t≥0 starting from s0 =
z, for any t > 0, there exists a random state s̃t such that s̃t ∼ ξh, and we have

P
(
s̃t ̸= st

)
≤ 2

⌊ t
tmix

⌋
. Define a random variable s̃t+1 by setting s̃t+1 = st+1 whenever

st = s̃t, and drawing s̃t+1 ∼ P (s̃t, ·) otherwise. From this construction, we have

∥Dt(z)w∥2 ≤ sup
u∈Sd−1

{
E
[
u⊤
(
gh(st+1)− Phgh(st)

)
· w⊤(g0(st+1)− P0g0(st)

)
| z
]

− E
[
u⊤
(
gh(s̃t+1)− Phgh(s̃t)

)
· w⊤(g0(s̃t+1)− P0g0(s̃t)

)
| z
]}

≤ sup
u∈Sd−1

E
[
u⊤
(
gh(st+1)− Phgh(st)

)
· w⊤(g0(st+1)− P0g0(st)

)
1st ̸=s̃t | z

]
+ sup

u∈Sd−1

E
[
u⊤
(
gh(s̃t+1)− Phgh(s̃t)

)
· w⊤(g0(s̃t+1)− P0g0(s̃t)

)
1st ̸=s̃t | z

]
.



B.5. PROOF OF THEOREM 3.2 290

Applying the Cauchy–Schwarz inequality twice yields

EZ∼ξh
[
∥Dt(Z)w∥22

]
≤ E

[
∥gh(st+1)− Phgh(st)∥42

]1/2 · E[w⊤(g0(st+1)− P0g0(st)
)8]1/4 · E[1st ̸=s̃t]1/4

+ E
[
∥gh(s̃t+1)− Phgh(st)∥42

]1/2 · E[w⊤(g0(s̃t+1)− P0g0(s̃t)
)8]1/4 · E[1st ̸=s̃t]1/4

≤ ct4mix

(1− κ)4
σ̄4d∥w∥22 · log6 d · 2

1− t
4tmix ,

corresponding to the second estimate.
Finally, setting τ = ctmix log

tmixd
1−κ yields

EZ∼ξh
[
∥

∞∑
t=0

Dt(Z)w∥22
]
≤
( ∞∑
t=0

e−
t
τ
)
·
( ∞∑
t=0

e
t
τ EZ∼ξh

[
∥Dt(Z)w∥22

])
≤ ct4mixσ̄

2d2

(1−κ)2n log6
(

d
minx∈S ξ0(x)

)
,

so that

EZ∼ξh
[
∥J2(ℓh, Z)w∥22

]
≤ ct4mixσ̄

2d2

(1−κ)4n log6
(

d
minx∈S ξ0(x)

)
.

Bounds on the term J3(sh, z) · w: By equation (B.25), for any vector u ∈ Sd−1, we
have

∇w

(
L(h)u

)
=
∑
x,y∈S

ξh(x)Ph(x, y)
(
AhL

(h)(y)−
∑
z∈S

Ph(x, z)AhL
(h)(z)

)
u · qx(y)⊤.

For any z ∈ S, we obtain

∥∇w

(
L(h)

)
gh(z)w∥2

= sup
u∈Sd−1

EX∼ξh,Y∼Ph(X,·)
[
u⊤
(
AhL

(h)(Y )− PhAhL
(h)(X)

)
gh(z)qX(Y )⊤w

]
≤ sup

u∈Sd−1

√
E
(
u⊤
(
AhL(h)(Y )− PhAhL(h)(X)

)
gh(z)

)2 ·√E
[(
qX(Y )⊤w

)2]
≤ ctmixσL∥gh(z)∥2 log d ·

√
d
n
,

where the final inequality is due to equation (B.27). Combining with Lemma B.6, we
have the bound

EZ∼ξh
[
∥J3(ℓh, Z)w∥22

]
≤ cd2

(1−κ)2n · t2mixσ
2
L log

2 d · EZ∼ξh
[
∥gh(Z)∥22

]
≤ cσ2

Lσ̄
2t4mixd

2

(1−κ)4n log2 d.
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Finishing the proof. Collecting the bounds for J1, J2 and J3, for n ≥ ct2mixσ
2
Ld

2 log2 d

(1−κ)2 ,
we have

sup
0≤ℓ≤1

EZ∼ξh
[
∥gℓh(Z)− g0(Z)∥22

]
≤ c(1+σ2

L)σ̄
2t4mixd

2

(1−κ)4n log6
(

d
minx ξ0(x)

)
+ 1

2
sup
0≤ℓ≤1

EZ∼ξh
[
∥gℓh(Z)− g0(Z)∥22

]
,

which completes the proof of the first claim of the lemma.
For the second claim, we combine the first claim with equation (B.29) and obtain

∥∇wθ̄(Ph)w∥2 ≤ 3
2

√
trace(Λ)

n
+
√

c(1+σ2
L)σ̄

2t4mixd
3

(1−κ)4n2 log6
(

d
minx ξ0(x)

)
.

Taking the integral yields

∥θ̄(Ph)− θ̄(P0)∥2 ≤
∫ 1

0

∥∇wθ̄(Pℓh)w∥2dℓ

≤ 3
2

√
trace(Λ)

n
+
√

c(1+σ2
L)σ̄

2t4mixd
3

(1−κ)4n2 log6
(

d
minx ξ0(x)

)
,

which proves the second claim.

B.5.4 Proof of Lemma B.4

We first compute the Fisher information with respect to the perturbation vector h, and
then transform this via chain rule into a formula that holds with respect to the parameter
w. We are interested in the matrix I(n)(h) := Eh

[
∇h logPh(sn0 )∇h logPh(sn0 )⊤

]
. When

the Markov chain Ph is run under the initial distribution ξ0, the joint distribution
of the observed trajectory (st)

n
t=0 can be factorized as Ph

(
s0, s1, · · · , sn

)
= ξ0(s0) ·∏n

t=1 Ph(st−1, st).
Let us now study the Fisher information matrix. For any pair x, y ∈ S with

P (x, y) > 0, performing some algebra yields the expression

∂
∂hx(y)

logPh
(
s0, s1, · · · , sn

)
=

n∑
t=1

1st−1=x

(
1st=y − Ph(x, y)

)
.

Consider the natural filtration Ft := σ(s0, s1, · · · , st). Note that under the transition
kernel Ph, we have the identity

Eh
[
1st−1=x

(
1st=y − Ph(x, y)

)
| Ft−1

]
= 1st−1=x ·

(
Eh
[
1st=y | st−1 = x

]
− Ph(x, y)

)
= 0.

Therefore, the process {∇h logPh(s0, s1, · · · , sn)}n≥0 is a martingale adapted to the
filtration {Ft}t≥0. Its second moment is given by

S = E
[
∇h logPh(sn0 ) · ∇⊤

h logPh(sn0 )
]
=

n∑
t=1

E
[
∇h logPh(st−1, st) · ∇⊤

h logPh(st−1, st)
]
.
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We find that

S =
[
1x1=x2 ·

n∑
t=1

E
[
1x1=st−1 ·

(
1st=y1 − Ph(x1, y1)

)]
·
(
1st=y2 − Ph(x2, y2)

)]
(x1,y1),(x2,y2)

=
n∑
t=1

diag
({

Ph
(
st−1 = x

)
· Ph(x, y)

}
(x,y)

)
−

n∑
t=1

[
Ph(st−1 = x) · Ph(x, y1) · Ph(x, y2)

]
(x,y1),(x,y2)

.

Consequently, the Fisher information matrix is a block diagonal matrix I(n)(h) =

diag
({
I
(n)
x (h)

}
x∈S

)
, where each block matrix I

(n)
x (h) ∈ RS×S takes the form

I(n)x (h) =
n∑
t=1

Ph
(
st−1 = x

)
·
[
diag

({
Ph(x, y)

}
y∈S

)
−
[
Ph(x, y)

]
y∈S

[
Ph(x, y)

]⊤
y∈S

]
.

By Lemma B.1, for hmax satisfying the inequality h−1
max ≥ ctmix

(
log h−1

max +
log(min ξ0)

−1
)
for some constant c > 0, we have the bound 1

2
ξh ⪯ ξ0 ⪯ 3

2
ξh, and

hence 1
2
P k
h ξh ⪯ P k

h ξ0 ⪯ 3
2
P k
h ξh for each k = 0, 1, 2, . . .. From this sandwiching, we find

that

I(n)x (h) ⪯ 3
2

n∑
t=1

P t−1
h ξh(x) ·

[
diag

({
Ph(x, y)

}
y∈S

)
−
[
Ph(x, y)

]
y∈S

[
Ph(x, y)

]⊤
y∈S

]
= 3n

2
ξh(x)

[
diag

({
Ph(x, y)

}
y∈S

)
−
[
Ph(x, y)

]
y∈S

[
Ph(x, y)

]⊤
y∈S

]
.

Turning to the Fisher information, we compute

I(n)(w) = Q⊤I(n)(h)Q

⪯ 3n
2

∑
x∈S

ξh(x)
(∑
y∈S

Ph(x, y)qx(y)qx(y)
⊤ −

(∑
y∈S

Ph(x, y)qx(y)
)(∑

y∈S

Ph(x, y)qx(y)
)⊤)

= 3n
2
EX∼ξh

[
EY∼Ph(X,·)

[
qX(Y )qX(Y )⊤

]
− EY∼Ph(X,·)

[
qX(Y )

]
· EY∼Ph(X,·)

[
qX(Y )

]⊤]
= 3n

2
EX∼ξh

[
covPh(X,·)

(
qX(Y ) | X

)]
.

B.5.5 Proof of Lemma B.5

For each k ∈ Z, by the definition of the Green function, we note that

f(sk) = A0f(sk)− E
[
A0f(sk+1) | sk

]
= A0f(sk)− P0A0f(sk). (B.30)

By stationarity, we have
∞∑

k=−∞

E
[
f(sk)f(s0)

]
= E[f 2(s0)] + 2

∞∑
k=1

E
[
f(sk)f(s0)

]
(i)
= −E[f(s0)2] + 2E

[
f(s0) ·

∞∑
k=0

E
[
f(sk) | s0

]]
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where step (i) makes use of the dominated convergence theorem, in particular by noting
that

∣∣E[f(sk) | s0]∣∣ ≤ ∥f∥∞ · 21−k/tmix from Lemma 3.4. Consequently, we can write

∞∑
k=−∞

E
[
f(sk)f(s0)

]
= −E[f 2(s0)] + 2E

[
f(s0) · A0f(s0)

]
(ii)
= −E

[(
A0f(s0)− P0A0f(s0)

)2]
+ 2E

[(
A0f(s0)− P0A0f(s0)

)
· A0f(s0)

]
= E

[(
A0f(s0)

)2]− E
[(
P0A0f(s0)

)2]
,

where step (ii) follows from equation (B.30).
With E denoting expectation over X ∼ ξ0, Y ∼ P0(X, ·), we have

E
[(
A0f(Y )− P0A0f(X)

)2]
= E

[(
A0f(s1)− P0A0f(s0)

)2]
= E

[(
A0f(s1)

)2]
+ E

[(
P0A0f(s0)

)2]− 2E
[(
A0f(s1)

)
·
(
P0A0f(s0)

)]
= E

[(
A0f(s0)

)2]
+ E

[(
P0A0f(s0)

)2]− 2E
[
E
[
A0f(s1) | s0

]
·
(
P0A0f(s0)

)]
= E

[(
A0f(s0)

)2]− E
[(
P0A0f(s0)

)2]
,

and combining the pieces completes the proof of this lemma.

B.5.6 Proof of Lemma B.6

By following the derivation of equation (B.25), we find that

∂
∂hx(y)

L(h) = ξh(x)Ph(x, y)
{
AhL(y)−

∑
z∈S

Ph(x, z)AL(z)
}
.

Consequently, for any u ∈ Sd−1, we have the bound

|||∇w

(
L(h)u

)
|||op

≤ sup
z,v∈Sd−1

√
EY∼ξh

[(
z⊤AhL(Y )u

)2] ·√EX∼ξh,Y∼Ph(X,·)
[(
(g0(Y )− P0g0(X))⊤v

)2]
≤ sup

v∈Sd−1

√
EY∼ξh

[
∥AhL(Y )u∥22

]
· 3
2

√
EX∼ξ0,Y∼P0(X,·)

[(
(g0(Y )− P0g0(X))⊤v

)2]
≤ ctmixσL

√
d · |||Λ|||op log d.

We thus obtain

|||L(h) − L(0)|||op ≤ sup
u∈Sd−1

∥
(
L(h) − L(0)

)
u∥2 ≤

∫ 1

0

sup
u∈Sd−1

∥∇w

(
L(sQw)u

)
· w∥2ds

≤ ctmixσL
√
d · trace(Λ) log d · ∥w∥2.
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Now given a perturbation vector satisfying the bound ∥w∥2 ≤ 1−κ
2ctmixσL

√
d·|||Λ|||op log d

, we

have the following bound for any u ∈ Sd−1:

∥(I − L(h))u∥2 ≥ ∥(I − L(0))u∥2 − ∥(L(h) − L(0))u∥2 ≥ (1− κ)− |||L(h) − L(0)|||op ≥ 1−κ
2
,

which implies that |||I − L(h))−1|||op ≤ 2
1−κ , as claimed.

B.5.7 A useful moment bound

Finally, we state and prove a moment bound that is useful in multiple proofs. Recall
that the operator Ph is a the perturbed probability transition kernel under perturbation
matrix h, and the operator Ah is the Green function operator associated with this
transition kernel.

Lemma B.7. Consider a bounded function f : S → R, and a perturbation vector h
satisfying the condition in Lemma B.1. There there exists a universal constant c > 0,
such that for any integer p ≥ 1

(
EX∼ξh

[(
Ahf(X)

)2p]) 1
2p ≤ c p tmix

[
EX∼ξh

[
f(X)2p

]] 1
2p
log
{

∥f∥2p∞
EX∼ξh

[
f(X)2p

]}
The proof is similar to that of Lemma 3.7. For any function f : S → R such that

Eξh [f(X)] = 0, we first observe that Ahf(s) =
∑∞

k=0 Pk
hf(s) for all s ∈ S. Note that

Lemma B.1 guarantees that the perturbed chain satisfies Assumption 3.1 with mixing
time 4tmix. By Lemma 3.4 and the coupling definition of total variation distance, for
each t ≥ 0, there exists a random variable s̃t such that s̃t | s0 ∼ ξh, and P

(
s̃t ̸= st | s

)
≤

2
−⌊ t

4tmix
⌋
.

By construction, the state s̃t is independent of s. Consequently, we have the
equivalence Ahf(s) =

∑∞
k=0 E

[
f(sk)− f(s̃k) | s

]
, and for any α > 0,

Es∼ξh
[(
Ahf(s)

)2p] ≤ ( ∞∑
k=0

e2pαtE
(
E
[
f(sk)− f(s̃k) | s

])2p) · ( ∞∑
k=0

e−
2p

2p−1
αk
)2p−1

≤ α1−2p

∞∑
k=0

e2pαkE
[
|f(sk)− f(s̃k)|2p

]
.

We bound the moment of f(sk)− f(s̃k) for different values of k in two ways. On the
one hand, Young’s inequality directly leads to the following naive bound

E
[
|f(sk)− f(s̃k)|2p

]
≤ 22p−1

(
E
[
f(sk)

2p
]
+ E

[
f(s̃k)

2p
])

= 22pEs∼ξh
[
f(s)2p

]
.

On the other hand, for any bounded function f , we have

E
[
|f(sk)− f(s̃k)|2p

]
≤ ∥f∥2p∞ · P

(
sk ̸= s̃k

)
≤ ∥f∥2p∞ · 21−

k
4tmix .
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Combining the two estimates yields the bound

E
[
(Ahf(X))2p

]
≤ α1−2p

{
22p · e2pαττEs∼ξh

[
f(s)2p

]
+ ∥f∥2p∞

∞∑
k=τ+1

e2pαk · 21−
k

4tmix

}
,

valid for any α > 0 and τ > 0. Setting τ = c tmix log
∥f∥2p∞

E[f(X)2p]
and α = 1

16τp
yields the

claim.

B.6 Proofs for the examples

We collect the proofs of the consequences to specific examples in this section.

B.6.1 Proofs for TD(0)

We stated three corollaries applicable to this method, and in this section, we prove each
of them in turn.

B.6.1.1 Proof of Corollary 3.1

The bulk of the proof involves verifying the conditions needed to apply Proposition 3.1
and Theorem 3.1, but some additional care is needed in order to deal with non-
orthonormal basis functions (ϕj)j∈[d]. First, we note that the SA procedure (3.27)
can be equivalently written as

θt+1 = (1− ηβ)θt + ηβLt+1(Ωt)θt − ηβbt+1(Ωt), (B.31)

where Lt+1(Ωt) :=
(
Id − β−1ϕ(st)ϕ(st)

⊤ + γβ−1ϕ(st)ϕ(st+1)
⊤), and bt+1(Ωt) :=

β−1Rt(st)ϕ(st). This is an SA scheme with stepsize ηβ.
For any matrix A ∈ Rd×d, define κ(A) := 1

2
λmax

(
A+ A⊤). We verify the eigenvalue

condition (3.4) by noting that

1
2
λmax

(
L+ L⊤) = 1− 1

β
κ
(
γEs∼ξ,s+∼P (s,·)

[
ϕ(s)ϕ(s+)⊤

]
− Eξ

[
ϕ(s)ϕ(s)⊤

])
= 1− 1

β
λmax

(
B1/2

(
Id − M+M⊤

2

)
B1/2

)
= 1− µ

β
(1− κ) < 1,

and

|||L|||op ≤ 1 + 1
β

(
|||Es∼ξ,s+∼P (s,·)

[
ϕ(s)ϕ(s+)⊤

]
|||op + |||Eξ

[
ϕ(s)ϕ(s)⊤

]
|||op
)
≤ 3.

For the two-step sliding-window Markov chain Ωt = (st, st+1), Assumption 3.1 holds
with mixing time (tmix + 1) in the discrete metric, and the metric space has diameter at
most 1. It remains to verify the boundedness and moment assumptions.
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In order to verify Assumption 3.4, we note that the bounds (3.28a) imply that

|||Lt+1(st)|||op ≤ 1 + 1
β

(
|||ϕ(st)ϕ(st+1)|||op + |||ϕ(st)ϕ(st)⊤|||op

)
≤ (1 + ς2)d, and

∥bt+1(st)∥2 ≤ 1
β
|Rt(st)| · ∥ϕ(st)∥2 ≤ ς2

√
d/β.

Turning to the moment assumption, given any vector u ∈ Sd−1 and coordinate vector ej ,
we have the bounds

Es∼ξ,s+∼P (s,·)
[(
e⊤j ϕ(s)ϕ(s

+)⊤u
)2] ≤√Es∼ξ

[(
e⊤j ϕ(s)

)4] ·√Es∼ξ
[(
u⊤ϕ(s)

)4] ≤ β2ς4,

Es∼ξ
[(
e⊤j ϕ(s)ϕ(s)

⊤u
)2] ≤√Es∼ξ

[(
e⊤j ϕ(s)

)4] ·√Es∼ξ
[(
u⊤ϕ(s)

)4] ≤ β2ς4,

Es∼ξ
[(
e⊤j Rt(s)ϕ(s)

)2] ≤ ς2Es∼ξ
[(
e⊤j ϕ(s)

)2] ≤ βς4.

Finally, the quantity σ̄ from equation (3.29) is bounded as

max
j∈[d]

E
[
⟨ej, (Lt+1(Ωt)− L)θ̄ + (bt+1(Ωt)− b)⟩2

]
≤ max

j∈[d]

√
E
[
⟨ej, ϕ(st)⟩4

]
·
√(

E
[
ϕ(st)⊤θ̄ − γϕ(st+1)⊤θ̄ −Rt(st)

)4] ≤ σ̄2.

Invoking equation (3.73) with the test matrix Q := B and substituting with the
representation v(s) = ⟨θ, ϕ(s)⟩ yields the claim.

B.6.1.2 Proof of Corollary 3.2

We prove this corollary by verifying the assumptions used in our main theorem. Assump-
tion 3.2 directly follows from (3.33c) and the boundedness of reward; Assumption 3.1 is
exactly the W1 mixing time bound imposed on the Markov chain. In order to verify
that L(s, s+) = Id − β−1

(
ϕ(s)ϕ(s)⊤ − γϕ(s)ϕ(s+)⊤

)
satisfies Assumption 3.4, we first

note that

|||L(s1, s
+
1 )−L(s2, s

+
2 )|||op

≤ 1
β
|||ϕ(s1)ϕ(s1)⊤ − ϕ(s2)ϕ(s2)

⊤|||op + γ
β
|||ϕ(s1)ϕ(s+1 )⊤ − ϕ(s2)ϕ(s

+
2 )

⊤|||op.

By adding and subtracting terms, we have the bound

|||ϕ(s1)ϕ(s1)⊤ − ϕ(s2)ϕ(s2)
⊤|||op ≤

{
∥ϕ(s1)∥2 + ∥ϕ(s2)∥2

}
∥ϕ(s1)− ϕ(s2)∥2

(i)

≤ 2ς2βd∥s1 − s2∥2,

The step (i) follows from the Lipschitz condition (3.33b) and boundedness of the
metric space S. More precisely, we have ∥ϕ(s1) − ϕ(s2)∥2 ≤ ς

√
βd∥s1 − s2∥2 and

∥ϕ(s1)∥2 = ∥ϕ(s1)− ϕ(0)∥2 ≤ ς
√
βd. A similar argument yields that

|||ϕ(s1)ϕ(s+1 )⊤ − ϕ(s2)ϕ(s
+
2 )

⊤|||op ≤ ς2d
(
∥s+1 − s+2 ∥2 + ∥s1 − s2∥2

)
.
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Putting together the pieces, we have shown that the mapping L : S → Rd×d is 3ς2d-
Lipschitz with respect to the metric ρ

(
(s1, s

+
1 ), (s2, s

+
2 )
)
= ∥s1 − s2∥2 + ∥s+1 − s+2 ∥2.

Similarly, for the vector observation bt(s) = Rt(s)ϕ(s), we note that for any s1, s2 ∈ S,

∥bt(s1)− bt(s2)∥2 ≤ |Rt(s1)−Rt(s2)| · ∥ϕ(s1)∥2 + |Rt(s2)| · ∥ϕ(s1)− ϕ(s2)∥2
≤ 2ς

√
d/β∥ϕ(s1)− ϕ(s2)∥2,

which shows that b : S → Rd/β is 2ς2
√
d-Lipschitz. Having verified the assumptions, we

complete the proof by following the same steps as in the proof as Corollary 3.1.

B.6.1.3 Proof of Corollary 3.3

In order to verify that Assumption 3.4 holds with respect to the discrete metric, note

that for any dn ≥ 1, we have ∥bt(s)∥2 ≤ ς
β

√∑dn
j=1 ϕ

2
j(s) ≤ ς2

β

√
dn, and

|||L(s1, s2)|||op ≤ 1 + 1
β

dn∑
j=1

ϕ2
j(s1) +

1
β

√√√√ dn∑
j=1

ϕ2
j(s1) ·

√√√√ dn∑
j=1

ϕ2
j(s2) ≤ 1+ς2

β
dn.

Turning to the moment condition, let E denote expectation over a pair s ∼ ξ and
s+ ∼ P (s, ·). Then for any vector u ∈ Sdn−1 and index j ∈ [dn], we have

E
[
⟨ej, L(s, s+)u⟩2

]
≤ 3 + 3

β2E
[(
⟨ej, ϕ(s)⟩ ⟨ϕ(s+), u⟩

)2]
+ 3

β2E
[(
⟨ej, ϕ(s)⟩ ⟨ϕ(s), u⟩

)2]
≤ 3 + 6

β2∥ϕj∥2∞ · E
[
⟨ϕ(s), u⟩2

]
≤ 3 + 6

β
ς2.

For each t = 1, 2, . . ., we also have E
[
⟨ej, bt+1(st)⟩2

]
≤ 1

β2∥Rt∥2∞ · Es∼ξ
[
ϕj(s)

2
]
≤ ς2

β
,

which is an order-one quantity. Following the same steps as in the proof as Corollary 3.1
then yields the claim.

B.6.2 Proofs for TD(λ)

We first prove Proposition 3.2—the mixing time result—and then use it to establish
Corollary 3.4.

B.6.2.1 Proof of Proposition 3.2

We prove the claim via a coupling argument. Consider two initial states Ω0 = (s0, s1, h0)
and Ω′

0 = (s′0, s
′
1, h

′
1). By Assumption 3.1 (mixing time) for the original chain in total

variation distance, there exists a coupling between a chains (st)t≥1 and (s′t)t≥1 starting
from s1 and s′1 respectively, such that P

(
s(k+1)tmix+1 ≠ s′(k+1)tmix+1 | {st, s′t}

ktmix+1
t=1

)
≤ 1

2
.

Furthermore, whenever st = s′t for some t ≥ 1, the two processes are always identical
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from then on. Let (gt)t≥0 and (g′t)t≥0 be the eligibility trace process (3.37b) associated
to (st)t≥0 and (s′t)t≥0, respectively, and let ht =

1−λγ
ς
√
βd
gt and h

′
t =

1−λγ
ς
√
βd
g′t.

Under this coupling, we note that P
(
s3tmix+1 ≠ s′3tmix+1

)
≤ 1

8
. Conditioning on the

event E :=
{
s3tmix+1 = s′3tmix+1

}
, for any t ≥ 3tmix + 1, we have

∥ht+1 − h′t+1∥2 = γλ∥ht − h′t∥2 = · · · = (γλ)t−3tmix−1∥h3tmix+1 − h′3tmix+1∥2. (B.32)

We split the remainder of the proof into two cases.

Case I: s1 ̸= s′1: The coupling bound implies that P(E ) ≥ 7
8
. On the event E , for

τ ≥ 3tmix + 1 + 4
1−γλ , we have the bound ∥ht+1 − h′t+1∥2 ≤ 1

16
∥h3tmix+1 − h′3tmix+1∥2 ≤ 1

8

almost surely. Under this coupling, we may write

E
[
ρ
(
(sτ , sτ+1, hτ ), (s

′
τ , s

′
τ+1, hτ )

)]
= 1

4

(
P
(
sτ ̸= s′τ

)
+ P

(
sτ+1 ̸= s′τ+1

)
+ E

[
∥hτ − h′τ∥2

])
≤ 3

4
P(E c) + 1

4
E
[
∥hτ − h′τ∥2 | E

]
≤ 1

8
= 1

2
· 1
4
1s1 ̸=s′1 ≤

1
2
ρ
(
(s0, s1, h0), (s

′
0, s

′
1, h0)

)
,

which proves the Wasserstein contraction in this case.

Case II: s1 = s′1 In this case, the coupling construction ensures that st = s′t for any
t ≥ 1. Invoking the bound (B.32) then yields

E
[
ρ
(
(sτ , sτ+1, hτ ), (s

′
τ , s

′
τ+1, hτ )

)]
= 1

4
E
[
∥hτ − h′τ∥2

]
≤ 1

8
∥h0 − h′0∥2 ≤ 1

2
ρ(Ω0,Ω

′
0),

which establishes contraction in this case. Combining the two cases proves the proposi-
tion.

B.6.2.2 Proof of Corollary 3.4

We note that the SA procedure (3.37a) can be written as

θt+1 = (1− ηβ)θt + ηβLt+1(Ωt)θt − ηβbt+1(Ωt),

where Lt+1(Ωt) =
(
Id − 1

β
gtϕ(st)

⊤ + γ 1
β
gtϕ(st+1)

⊤) and bt+1(Ωt) =
1
β
Rt(st)gt.

Recalling thatMλ = (1−λ)γ
∑∞

t=0 λ
tγt+1B−1/2E

[
ϕ(s0)ϕ(st+1)

⊤]B−1/2, we first study
the eigenvalues of the symmetrized version of Mλ, and relate these back to those of
L = Eξ̃

[
Lt+1(Ωt)

]
. Note that by the Cauchy–Schwarz inequality, for any vector u ∈ Sd−1,

we have

u⊤B−1/2E
[
ϕ(s0)ϕ(st)

⊤]B−1/2u ≤
√
E
[(
u⊤B−1/2ϕ(s0)

)2] · E[(u⊤B−1/2ϕ(st)
)2]

= 1.

We therefore have the bound 1
2
λmin(Mλ +M⊤

λ ) ≤ (1− λ)γ
∑∞

t=0(γλ)
t = (1−λ)γ

1−λγ . As in
the proof of Corollary 3.1, we can deduce that

1
2
λmax

(
L+ L⊤) = 1

β
λmax

(
B1/2

(Mλ+M
⊤
λ

2

)
B1/2

)
≥ (1−λ)γ

1−λγ .
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Next, we verify Assumption 3.2 on the noise moments. By the update rule (3.37b),
under a stationary trajectory, we have the expression gt =

∑∞
k=0(γλ)

kϕ(st−k). For any
u ∈ Sd−1, invoking Hölder’s inequality yields

E
[
⟨gt, u⟩4

]
≤
( ∞∑
k=0

(γλ)k
)3 · ∞∑

k=0

(γλ)kE
[
⟨u, ϕ(st−k)⟩4

]
≤ β2

(
ς

1−γλ

)4
.

In other words, for all standard basis vectors ej, we have

E
[
⟨ej, Lt+1(Ωt)u⟩2

]
≤ 1 + 2

β2

√
E
[
⟨ej, ϕ(st)⟩4

]
·
√

E
[
⟨gt, u⟩4

]
≤ 1 + 2 ς4

(1−γλ)2 ,

E
[
⟨ej, bt+1(Ωt)u⟩2

]
≤ ς2

β2E
[
⟨gt, ej⟩2

]
≤ ς4

β(1−γλ)2 .

It remains to verify Assumption 3.4. Note that for any pair Ω = (s, s+, h) and Ω′ =
(s′, s′+, h

′), the operator norm T := |||Lt+1(Ω) − Lt+1(Ω
′)|||op is almost surely upper

bounded as

T ≤ ς
√
d/β

1−λγ ·
(
|||h⊤ϕ(s)− (h′)⊤ϕ(s′)|||op + |||h⊤ϕ(s+)− (h′)⊤ϕ(s′+)|||op

)
≤ ς

√
d/β

1−λγ ·
{
|||(h− h′)⊤ϕ(s′)|||op

+ |||h⊤(ϕ(s′)− ϕ(s))|||op + |||(h− h′)⊤ϕ(s′+)|||op + |||h⊤(ϕ(s′+)− ϕ(s+))|||op
}

≤ 2ς2d
1−λγ

(
1s ̸=s′ + 1s+ ̸=s′+ + ∥h− h′∥2

)
= 8ς2d

1−λγρ(Ω,Ω
′).

Finally, we note that the quantity σ̄ defined in equation (3.29) satisfies the bound

sup
j∈[d]

E
[
⟨ej, (Lt+1(Ωt)− L)θ̄ + (bt+1(Ωt)− b)⟩2

]
≤ sup

j∈[d]

√
E
[
⟨ej, gt⟩4

]
·
√(

E
[
ϕ(st)⊤θ̄ − γϕ(st+1)⊤θ̄ −Rt(st)

)4] ≤ σ̄2

(1−γλ)2 .

Invoking equation (3.73), with the test matrix Q := B and substituting the expression
v(s) = ⟨θ, ϕ(s)⟩ yields the claim.

B.6.3 Proofs for vector autoregressive estimation

In this section, we present proofs of results on vector autoregressive models, as introduced
in Example 3.3.

B.6.3.1 Proof of Proposition 3.3

We prove the claim by a direct construction of the coupling. Given two initial points

Ω0 =
[
X⊤

1 , X
⊤
0 , · · · , X⊤

−k+1

]⊤
and Ω′

0 =
[
X ′⊤

1 , X
′⊤
0 , · · · , X ′⊤

−k+1

]⊤
, we consider a pair of

stochastic processes (Xt)t≥1 and (X ′
t)t≥1 starting from Ω0 and Ω′, respectively, driven by
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the same noise process (εt)t≥0. Introduce the shorthand Yt+1 =
[
Xt+1 . . . Xt−k+2

]⊤
(note that Yt+1 is a sliding window with length one unit shorter than Ωt). We have:

∥Yt+1 − Y ′
t+1∥2P∗ = ∥R∗ (Yt − Y ′

t )∥2P∗ = ∥Yt − Y ′
t ∥2P∗ − ∥Yt − Y ′

t ∥2Q∗

≤
(
1− µ

β

)
∥Yt − Y ′

t ∥2P∗ .

Consequently, the augmented processes Ωt = (Xt+1, Xt, · · · , Xt−k+1) and Ω′
t =

(X ′
t+1, X

′
t, · · · , X ′

t−k+1) satisfy the bound

∥Ωt−Ω′
t∥2 ≤ ∥Yt+1 − Y ′

t+1∥2 + ∥Yt− Y ′
t ∥2 ≤ 1√

λmin(P∗)

(
∥Yt+1 − Y ′

t+1∥P∗ + ∥Yt− Y ′
t ∥P∗

)
≤ 2
√

λmax(P∗)
λmin(P∗)

(
1− µ

2β

)t∥Ω0 − Ω′
0∥2

Note that since P∗ ⪰ Q∗, we have λmin(P∗) ≥ λmin(Q∗) = µ. Taking tmix = cβ
µ

(
1+log β

µ

)
yields the contraction bound ∥Ωtmix

− Ω′
tmix

∥2 ≤ 1
2
∥Ω0 − Ω′

0∥2. Taking expectations on
both sides completes the proof.

B.6.3.2 Proof of Corollary 3.5

We begin by showing norm bounds and moment bounds on the process (Xt)t≥0. By defini-

tion (3.17) of the process and stability, the block vector Yt :=
[
Xt Xt−1 · · · Xt−k+1

]⊤
satisfies the recursion Yt =

∑∞
i=0R

i
∗εt−ie1, where e1 is the standard block basis vector

equal to identify on the first block. We therefore have the bound

∥Xt∥2 ≤ 1
µ
∥Yt∥P∗ ≤

∞∑
i=0

∥Ri
∗εt−ie1∥P∗ ≤ 1

µ

∞∑
i=0

(
1− µ

β

)i∥εt−ie1∥P∗ ≤ β2

µ2
ς
√
m.

Moreover, for each u ∈ Sm−1, we have

E
[
⟨Xt, u⟩4

]
≤
( ∞∑
i=0

e
− iµ
6β
)3 · ∞∑

i=0

e
iµ
2β E

[
⟨Ri

∗εt−ie1, ue1⟩4
]

≤ c
(
β/µ

)3 · ∞∑
i=0

e
iµ
2β · β4

µ4
· e−

iµ
β ς4 ≤ c′

(
β2ς
µ2

)4
.

Next, we proceed with verifying the assumptions used in Theorem 3.1. Letting ν :=
1/|||H∗|||op, the stochastic approximation procedure can be rewritten as

θt+1 = (1− η
ν
)θt

+ η
ν

(
θt − ν

([
Xt−jX

⊤
t+1−i

]
i,j∈[m]

⊗ Im
)
θtν · vec

( [
Xt+1X

⊤
t · · · Xt+1X

⊤
t−k+1

] ))
.

Observe that the matrix L := Ikm2 − νH∗ ⊗ Im satisfies the eigenvalue bound

1
2
λmax(L+ L⊤) ≤ 1− ν

2
λmin(H

∗ + (H∗)⊤) ≤ 1− νh∗.
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On the other hand, the empirical observations satisfy the almost-sure bounds

|||Lt+1(Ωt)− L|||op ≤ ν · |||
[
Xt−jX

⊤
t+1−i

]
i,j∈[m]

|||op ≤ ν · β4

µ4
ς2mk and

|||bt+1(Ωt)− b|||op ≤ ν · |||
[
Xt+1X

⊤
t · · · Xt+1X

⊤
t−k+1

]
|||F ≤ ν · β4

µ4
ς2m

√
k.

For two collections of matrices U =
(
U (j)

)k
j=1

and V =
(
V (j)

)k
j=1

⊆ Rm×m such that∑k
j=1 |||U (j)|||2F =

∑k
j=1 |||V (j)|||F = 1, the corresponding moment can be bounded as

E
[
⟨vec(U),

(
Lt+1(Ωt)− L

)
vec(V)⟩2

]
≤ ν2E

[( k−1∑
ℓ=0

⟨U (ℓ),

k−1∑
j=0

V (j)Xt−jX
⊤
t−ℓ⟩F

)2]
,

which is in turn at most

ν2k2
k−1∑
ℓ=0

k−1∑
j=0

√
E
[
X⊗4
t−ℓ
][
(U (ℓ))⊤U (ℓ), (U (ℓ))⊤U (ℓ)

]
·
√
E
[
X⊗4
t−j
][
(V (j))⊤V (j), (V (j))⊤V (j)

]
.

In order to bound this last quantity, we let (U (ℓ))⊤U (ℓ) =
∑m

i=1 λ
2
iuiu

⊤
i be its singular

value decomposition, and note that

E
[
X⊗4
t−ℓ
][
(U (ℓ))⊤U (ℓ), (U (ℓ))⊤U (ℓ)

]
= E

[
X⊗4
t−ℓ
][ m∑

i=1

λ2iuiu
⊤
i ,

m∑
i=1

λ2iuiu
⊤
i

]
=
∑
i,i′

E
[
X⊗4
t−ℓ
]
[ui, ui, ui′ , ui′ ] · λ2iλ2i′ ≤ c′

(
β2ς
µ2

)4(∑
i

λ2i
)2

= c′
(
β2ς
µ2

)4|||U (ℓ)|||2F .

Putting together the pieces, we have

E
[
⟨vec(U),

(
Lt+1(Ωt)− L

)
vec(V)⟩2

]
≤ ν2k2c′

(
β2ς
µ2

)4 · k−1∑
ℓ=0

k−1∑
j=0

|||U (ℓ)|||2F |||V (j)|||2F ≤ c
(
ν · β4kς2

µ4

)2
.

Similarly, we can prove analogous moment bounds on bt+1(Ωt). In particular, for indices
ℓ ∈ [k] and i, j ∈ [m], we consider the coordinate direction of the (i, j) entry in the ℓ-th
matrix to deduce that

E
[
⟨eℓ,i,j, (bt+1(Ωt)− b)⟩2

]
≤ ν2E

[
⟨eie⊤j , Xt+1Xt−ℓ+1⟩2

]
≤ ν2

√
E
[
⟨e⊤j , Xt+1⟩4

]
·
√

E
[
⟨e⊤i , Xt−ℓ+1⟩4

]
≤ c′

(
ν · β2ς

µ2

)4
.

Applying Theorem 3.1 completes the proof of this corollary.
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Appendix C

Proofs and discussion deferred from
Chapter 4

C.1 Proofs of auxiliary results in the upper bounds

In this section, we state and prove some auxiliary results used in the proofs of our
non-asymptotic upper bounds.

C.1.1 Some properties of the estimator τ̂ fn

In this appendix, we collect some properties of the estimator τ̂ fn defined in equation (4.5).

Proposition C.1. Given any deterministic function f ∈ L2(ξ × π) for any a ∈ A, we
have E[τ̂ fn] = τg(I). Furthermore, if ⟨f(x, ·), π(x, ·)⟩λ = 0 for any x ∈ X, we have

n · E
[
|τ̂ fn − τg(I)|

2
]
= varξ

(
⟨g(X, ·), µ∗(X, ·)⟩λ

)
+

∫
A
E
[σ2(X, a)g2(X, a)

π(X, a)

]
dλ(a)

+

∫
A
E
[
π(X, a)

∣∣∣f(X, a)− g(X,a)µ∗(X,a)
π(X,a)

+ ⟨g(X, ·), µ∗(X, ·)⟩λ
∣∣∣2 ]dλ(a). (C.1)

This decomposition immediately implies the claims given in the text. The only
portion of the MSE decomposition (C.1) that depends on f is the third term, and by
inspection, this third term is equal to zero if and only if

f(x, a) = g(x,a)µ∗(x,a)
π(x,a)

− ⟨g(x, ·), µ∗(x, ·)⟩λ for all (x, a) ∈ X× A.

Proof. Since the action Ai follows the probability distribution π(Xi, ·) conditionally on
Xi, we have E

[
f(Xi, Ai) | Xi

]
= ⟨π(Xi, ·), f(Xi, ·)⟩λ, and the estimator τ̂ fn is always

unbiased. Since the function f is square-integrable with respect to the measure ξ × π,
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the second moment can be decomposed as follows:

E
[ ∣∣∣∣ g(Xi, Ai)

π(Xi, Ai)
Yi − f(Xi, Ai) +

∫
A
π(Xi, a)f(Xi, a)dλ(a)

∣∣∣∣2 ]
=

∫
A
E
[
π(Xi, a) ·

∣∣∣∣ g(Xi, a)

π(Xi, a)
Yi − f(Xi, a)

∣∣∣∣2 ]dλ(a)
=

∫
A
E
[σ2(X, a)g2(X, a)

π(X, a)

]
dλ(a) +

∫
A
E
[
π(X, a) ·

∣∣∣∣g(X, a)µ∗(X, a)

π(X, a)
− f(X, a)

∣∣∣∣2 ]dλ(a)
Conditionally on the value of X, we have the bias-variance decomposition∫

A
π(X, a) ·

∣∣∣∣g(X, a)µ∗(X, a)

π(X, a)
− f(X, a)

∣∣∣∣2 dλ(a)
= ⟨g(X, ·), µ∗(X, ·)⟩2λ

+

∫
A
π(X, a) ·

∣∣∣∣f(X, a)− g(X, a)µ∗(X, a)

π(X, a)
+ ⟨g(X, ·), µ∗(X, ·)⟩λ

∣∣∣∣2 dλ(a).
Finally, we note that

E
[
⟨g(X, ·), µ∗(X, ·)⟩2λ

]
− τ 2(I)

=
(
E
[
⟨g(X, ·), µ∗(X, ·)⟩λ

])2
= varξ

(
⟨g(X, ·), µ∗(X, ·)⟩λ

)
.

Putting together the pieces completes the proof.

C.1.2 Existence of critical radii

In this section, we establish the existence of critical radii sm(µ) and rm(µ) defined in
equations (4.14a) and (4.14b), respectively.

Proposition C.2. Suppose that the compatibility condition (CC) holds, and that the
Rademacher complexities Sm

(
(F − µ) ∩ Bω(r0)

)
and Rm

(
(F − µ) ∩ Bω(r0)

)
are finite

for some r0 > 0. Then:

(a) There exists a unique scalar sm = sm(µ) > 0 such that inequality (4.14a) holds for
any s ≥ sm, with equality when s = sm, and is false when s ∈ [0, sm).

(b) There exists a scalar rm = rm(µ) > 0 such that inequality (4.14b) holds for any
r ≥ rm.

Proof. Denote the shifted function class F∗ := F − µ. Since the class F is convex by
assumption, for positive scalars r1 < r2 and any function f ∈ F∗ ∩ Bω(r2), we have
r1
r2
f ∈ F∗ ∩ Bω(r1).

1

r2
Rm(F∗ ∩ Bω(r2)) ≤

1

r2
Rm

(r2
r1

·
(
F∗ ∩ Bω(r1)

))
=

1

r1
Rm(F∗ ∩ Bω(r1)).
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So the function r 7→ r−1Rm(F∗ ∩ Bω(r)) is non-increasing in r. A similar argument
ensures that the function s 7→ s−1S(F∗ ∩ Bω(s)) is also non-increasing in s.

Since the function class F is compact in L2
ω, we have D := diamω(F ∪ {µ∗}) < +∞,

and hence

Rm(F∗) = Rm

(
F∗ ∩ Bω(D)

)
≤ D

r0
Rm

(
F∗ ∩ Bω(r0)

)
< +∞,

which implies that Rm

(
F∗ ∩ Bω(r)

)
< +∞ for any r > 0. Similarly, the Rademacher

complexity S
(
F∗ ∩ Bω(s)

)
is also finite.

For the inequality (4.14a), the left hand side is a non-increasing function of s,
while the right hand side is strictly increasing and diverging to infinity as s → +∞.
Furthermore, the right-hand-side is equal to zero at s = 0, while the left-hand side is
always finite and non-negative for s > 0. Consequently, a unique fixed point sm ≥ 0
exists, and we have

s−1S
(
F∗ ∩ Bω(s)

){< s, for s > sm, and

> s, for s ∈ (0, sm).

As for inequality (4.14b), the left-hand-side is non-increasing, and we have

lim
r→+∞

r−1R(F∗ ∩ Bω(r)) ≤ lim
r→+∞

r−1R(F∗) = 0.

So there exists rm ≥ 0 such that inequality (4.14b) holds for any r ≥ rm.

C.1.3 Proof of Lemma 4.3

We define the auxiliary function

ϕ(t) :=


0 t ≤ 1,

t− 1 1 ≤ t ≤ 2,

1 t > 2.

First, observe that for any scalar u > 0, we have

1

m

m∑
i=1

g2(Xi, Ai)

π2(Xi, Ai)
h2(Xi, Ai) ≥

1

m

m∑
i=1

u2 · I
[ |g(Xi, Ai)h(Xi, Ai)|

π(Xi, Ai)
≥ u

]
≥ 1

m

m∑
i=1

u2 · ϕ
( |g(Xi, Ai)h(Xi, Ai)|

π(Xi, Ai)u

)
=: Z(ϕ)

m (h).
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Second, for any function h ∈ H, we have

E
[
Z(ϕ)
m (h)

]
= u2 ·

∑
a∈A

Eξ
[
π(X, a)ϕ

( |g(X, a)h(X, a)|
π(X, a)u

)]
≥ u2

∑
a∈A

Eξ
[
π(X, a) · I

[ |g(X, a)h(X, a)|
π(X, a)u

≥ 2
]]

= u2 · PX∼ξ,A∼π(X,·)

( |g(X,A)h(X,A)|
π(X,A)

≥ 2u
)
.

Recall that the constant α1 is the constant factor in the small-ball probability condi-
tion (SB). Choosing the threshold u := c1

2
and using the equality ∥h∥ω = 1, we see that

the small-ball condition implies that

PX∼ξ,A∼π(X,·)

( |g(X,A)h(X,A)|
π(X,A)

≥ 2u
)
≥ α2.

Now we turn to study the deviation bound for Z
(ϕ)
m (h). Using known concentration

inequalities for empirical processes [2]—see Proposition C.4 in Appendix C.4 for more
detail—we are guaranteed to have

sup
h∈H

(
Z(ϕ)
m (h)− E

[
Z(ϕ)
m (h)

])
≤ 2E sup

h∈H

(
Z(ϕ)
m (h)− E

[
Z(ϕ)
m (h)

])
+ cα2

1 ·
{√ log(1/ε)

m
+

log(1/ε)

m

}
.

with probability at least 1− ε.
For the expected supremum term, standard symmetrization arguments lead to the

bound

E sup
h∈H

(
Z(ϕ)
m (h)− E

[
Z(ϕ)
m (h)

])
≤ α2

1

m
· E
[
sup
h∈H

m∑
i=1

εiϕ
(2|h(Xi, Ai)g(Xi, Ai)|

α1π(Xi, Ai)

)]
.

Note that since ϕ is a 1-Lipschitz function, we may apply the Ledoux-Talagrand
contraction (e.g., equation (5.6.1) in the book [213]) so as to obtain

E
[
sup
h∈H

m∑
i=1

εiϕ
(2|h(Xi, Ai)g(Xi, Ai)|

α1π(Xi, Ai)

)]
≤ 4

α1

E
[
sup
h∈H

m∑
i=1

εig(Xi, Ai)

π(Xi, Ai)
h(Xi, Ai)

]
.

Combining the pieces yields the lower bound

1

m

m∑
i=1

g2(Xi,Ai)
π2(Xi,Ai)

h2(Xi, Ai)

≥ α2α2
1

4
− 4α1

m
E
[
sup
h∈H

m∑
i=1

εig(Xi, Ai)

π(Xi, Ai)
h(Xi, Ai)

]
− cα2

1 ·
{√

log(1/ε)
m

+ log(1/ε)
m

}
, (C.2)

uniformly holding true over h ∈ H, with probability 1− ε, which completes the proof of
the lemma.



C.2. PROOFS OF THE COROLLARIES 306

C.2 Proofs of the corollaries

This section is devoted to the proofs of Corollaries 4.1—4.4, as stated in Section 4.2.4.

C.2.1 Proof of Corollary 4.1

Let us introduce the shorthand fθ(x, a) := ⟨θ, ϕ(x, a)⟩ for functions that are linear in the
feature map. Moreover, for a vector θ̄ ∈ Rd and radius r > 0, we define the recentering
function µ(x, a) := ⟨θ̄, ϕ(x, a)⟩.

Our proof strategy is to bound the pair of critical radii (sm, rm), and we do so by
controlling the associated Rademacher complexities. By a direct calculation, we find
that

(F − µ) ∩ Bω(r) ⊆
{
fθ | θ⊤Σθ ≤ r2

}
, where Σ := E

[ g2(X,A)
π2(X,A)

ϕ(X,A)ϕ(X,A)⊤
]
.

We can therefore bound the Rademacher complexities as

S2
m

(
(F − µ) ∩ Bω(r)

)
≤ E

[
sup

∥θ∥Σ≤r

{ 1

m
⟨θ,

m∑
i=1

εig
2(Xi, Ai)

π2(Xi, Ai)
(Yi − µ∗(Xi, Ai))ϕ(Xi, Ai)⟩

}2]
=
r2

m
trace

(
Σ−1Γσ

)
,

and

Rm

(
(F − µ) ∩ Bω(r)

)
≤ E

[
sup

∥θ∥Σ≤r

1

m
⟨θ,

m∑
i=1

εig(Xi, Ai)

π(Xi, Ai)
ϕ(Xi, Ai)⟩

]
≤ r

√
d

m
.

By definition of the fixed point equations, the critical radii can be upper bounded as

sm ≤
√
m−1 trace

(
Σ−1Γσ

)
, and rm ≤

{
+∞, m ≤ 1024

α2
1α

2
2
d

0, m > 1024
α2
1α

2
2
d
.

Combining with Theorem 4.2 completes the proof of this corollary.

C.2.2 Proof of Corollary 4.2

We introduce the shorthand fθ(x, a) = ⟨θ, ϕ(x, a)⟩ for functions that are linear in
the feature map. Given any vector θ̄ ∈ Rd such that ∥θ̄∥1 = R1, define the set
S = supp(θ̄) ⊆ [d] along with the function µ(x, a) = ⟨θ̄, ϕ(x, a)⟩. For any radius r > 0
and vector θ ∈ (F − µ) ∩ Bω(r), we note that

∥θSc∥1 = ∥θSc + θ̄Sc∥1 = ∥θ + θ̄∥1 − ∥θS + θ̄S∥1 ≤ R1 − ∥θ̄S∥1 + ∥θS∥1 ≤ ∥θS∥1.
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Recalling that Σ = E
[ g2(X,A)
π2(X,A)

ϕ(X,A)ϕ(X,A)⊤
]
, we have the inclusions

(F − µ) ∩ Bω(r) ⊆ r ·
{
fθ | ∥θSc∥1 ≤ ∥θS∥1, ∥θ∥Σ ≤ 1

}
⊆ r ·

{
fθ | ∥θ∥1 ≤ 2

√
|S|/λmin(Σ)

}
⊆ 2r

√
|S|/λmin(Σ) · conv

({
± ϕj

}d
j=1

)
. (C.3)

where the second step follows from the bound ∥θS∥1 ≤ ∥θS∥2
√

|S| ≤ ∥θ∥Σ
√
|S|/λmin(Σ),

valid for any θ ∈ Rd.
For each coordinate j = 1, . . . , d, we can apply the Hoeffding inequality along with

the sub-Gaussian tail assumption (4.22) so as to obtain

P
[∣∣∣ 1
m

m∑
i=1

εig(Xi, Ai)

π(Xi, Ai)
ϕ(Xi, Ai)

⊤ej

∣∣∣ ≥ t
]
≤ 2e−

2mt2

σ2 for any t > 0/

Taking the union bound over j = 1, 2, . . . , d and then integrating the resulting tail
bound, we find that

E
[

max
j=1,...,d

∣∣∣ 1
m

m∑
i=1

g(Xi, Ai)

π(Xi, Ai)
εiϕj(Xi, Ai)

∣∣∣] ≤ σ

√
log d

m
.

Combining with equation (C.3), we conclude that

Rm

(
(F − µ) ∩ Bω(r)

)
≤ 2rσ

√
|S| · log(d)
mλmin(Σ)

,

for any µ(x, a) = ⟨θ̄, ϕ(x, a)⟩ with θ̄ supported on S.
Consequently, defining the constant c0 =

4096
α2
1α

2
2
, when the sample size satisfies m ≥

c0|S|σ
2 log(d)
λmin(Σ)

, the critical radius rm is 0.

Now we turn to bound the critical radius sm. By the sub-Gaussian condition (4.22),
we have the Orlicz norm bound∥∥∥ g2(Xi, Ai)

π2(Xi, Ai)
εiϕj(Xi, Ai)(Yi − µ∗(Xi, Ai))

∥∥∥
ψ1

≤
∥∥∥ g(Xi, Ai)

π(Xi, Ai)
ϕj(Xi, Ai)

∥∥∥
ψ1

· ∥ g(Xi, Ai)

π(Xi, Ai)
(Yi − µ∗(Xi, Ai))∥ψ1 ≤ σσ̄.

Invoking a known concentration inequality (see Proposition C.4 in Appendix C.4), we
conclude that there exists a universal constant c1 > 0 such that

P

(∣∣∣∣∣ 1m
m∑
i=1

g2(Xi, Ai)

π2(Xi, Ai)
εiϕj(Xi, Ai)(Yi − µ∗(Xi, Ai))

∣∣∣∣∣ ≥ t

)

≤ 2 exp

(
−c1mt2

σ2σ̄2 + tσσ̄ log(m)

)
,
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for any scalar t > 0.
Taking the union bound over j = 1, 2, . . . , d and integrating out the tail yields

E

max
j∈[d]

∣∣∣∣∣ 1m
m∑
i=1

g(Xi, Ai)

π(Xi, Ai)
εiϕj(Xi, Ai)

∣∣∣∣∣
2
 ≤ c2σ

2σ̄2
{√ log d

m
+

log d · logm
m

}2

,

Given a sample size lower bounded as m ≥ log2 d, the derivation above guarantees that
the Rademacher complexity is upper bounded as

S
(
(F − µ) ∩ Bω(r)

)
≤ crσσ̄

√
|S| · log(d)
mλmin(Σ)

,

and consequently, the associated critical radius satisfies an upper bound of the form

sm ≤ cσσ̄
√

|S| log(d)
mλmin(Σ)

. Combining with Theorem 4.2 completes the proof of Corollary 4.2.

C.2.3 Proof of Corollary 4.3

Clearly, the function class Fk is symmetric and convex. Consequently, for any µ ∈ Fk,
we have

(Fk − µ) ∩ Bω(r) ⊆ (2Fk) ∩ Bω(r).

For any pair µ1, µ2 ∈ (2F)∩Bω(r), by the sub-Gaussian assumption in equations (4.23),
we have that

E
[( g(Xi, Ai)

π(Xi, Ai)
εi(µ1 − µ2)(Xi, Ai)

)2]
= ∥µ1 − µ2∥2ω, and

∥ g(Xi, Ai)

π(Xi, Ai)
εi(µ1 − µ2)(Xi, Ai)∥ψ1 ≤ σ∥µ1 − µ2∥∞.

By a known concentration inequality (see Proposition C.4 in Appendix C.4), for any
t > 0, we have

P

(∣∣∣∣∣ 1m
m∑
i=1

g(Xi, Ai)

π(Xi, Ai)
εi(µ1 − µ2)(Xi, Ai)

∣∣∣∣∣ ≥ t

)

≤ 2 exp

(
−c1mt2

∥µ1 − µ2∥2ω + tσ∥µ1 − µ2∥∞ log(m)

)
,

We also note that the Cauchy–Schwarz inequality implies that

E
[

sup
∥µ1−µ2∥ω≤δ

1

m

m∑
i=1

g(Xi, Ai)

π(Xi, Ai)
εi(µ1 − µ2)(Xi, Ai)

]
≤ δ.



C.2. PROOFS OF THE COROLLARIES 309

By a known mixed-tail chaining bound (see Proposition C.5 and equation (C.9) in
Appendix C.4), we find that

Rm

(
(Fk − µ) ∩ Bω(r)

)
≤ c√

m
J2

(
(2Fk) ∩ Bω(r), ∥ · ∥ω; [δ, r]

)
+
cσ logm

m
J1

(
(2Fk) ∩ Bω(r), ∥ · ∥∞; [δ, 2]

)
+ 2δ, (C.4)

for any scalar δ ∈ [0, 2]. Observing the norm domination relation ∥f∥ω ≤ σ∥f∥∞ for
any function f , we have J2

(
(2Fk) ∩ Bω(r), ∥ · ∥ω; [δ, r]

)
≤ J2

(
2σFk, ∥ · ∥∞; [δ, r]

)
. As a

result, in order to control the right-hand-side of equation (C.4), it suffices to bound the
covering number of the class Fk under the ∥ · ∥∞-norm.

In order to estimate the Dudley chaining integral for the localized class, we begin
with the classical bound [103]

logN
(
Fk, ∥ · ∥∞; ε

)
≤
(c
ε

)p/k
,

where c > 0 is a universal constant. Using this bound, we can control the Dudley entropy
integrals for any α ∈ {1, 2}, q > 0, and interval [δ, u] with u ∈ {r, 2}. In particular, for
any interval [δ, u] of the non-negative real line, we have

Jα
(
qFk, ∥ · ∥∞; [δ, u]

)
≤
∫ u

δ

(cq
ε

) p
αk
dε ≤ cq

p
αk ·


αk
αk−pu

1− p
αk if p < αk,

log
(
u/δ
)

if p = αk,
αk
p−αk

(
c
δ

) p
αk

−1
if p > αk.

(C.5)

We set δ =
(
σ
m

)k/p
, and use the resulting upper bound on the Dudley integral to control

the Rademacher complexity; doing so yields

Rm

(
(Fk − µ) ∩ Bω(r)

)
≤ cσ,p/k ·


r1−

p
2k /

√
m+ logm ·m−k/p if p < 2k,

log(m)/
√
m if p = 2k,

m−k/p if p > 2k.

Solving the fixed point equation (4.14b) yields

rm ≤ c′σ,p/km
−k/p · logm,

where the constant cσ,p/k and c′σ,p/k depend on the parameters (σ, p/k), along with the

small ball constants (α1, α2).
Turning to the critical radius sm, we note that each term in the empirical process

associated with the observation noise satisfies

E
[{ g2(Xi, Ai)

π2(Xi, Ai)
(Yi − µ∗(Xi, Ai))εi(µ1 − µ2)(Xi, Ai)

}2]
≤

√
E
[{ g(Xi, Ai)

π(Xi, Ai)
(Yi − µ∗(Xi, Ai))

}4]
·

√
E
[{ g(Xi, Ai)

π(Xi, Ai)
(µ1 − µ2)(Xi, Ai)

}4]
≤ σ̄2M2→4∥µ1 − µ2∥2ω,
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and

∥ g
2(Xi, Ai)

π2(Xi, Ai)
(Yi − µ∗(Xi, Ai))εi(µ1 − µ2)(Xi, Ai)∥ψ1

≤ ∥ g(Xi, Ai)

π(Xi, Ai)
(Yi − µ∗(Xi, Ai))∥ψ2 · ∥

g(Xi, Ai)

π(Xi, Ai)
(µ1 − µ2)(Xi, Ai)∥ψ2

≤ σ̄σ∥µ1 − µ2∥∞.

Following the same line of derivation in the bound for the Rademacher complexity Rm,
we use the mixed-tail chaining bound to find that

Sm
(
(Fk − µ) ∩ Bω(r)

)
≤ cσ̄

√
M2→4√
m

J2

(
(2Fk) ∩ Bω(r), ∥ · ∥ω; [δ, r]

)
+
cσ̄σ logm

m
J1

(
(2Fk) ∩ Bω(r), ∥ · ∥∞; [δ, 2]

)
+ 2δ,

valid for all δ ∈ [0, 2]. The Dudley integral bound (C.5) then implies

Sm
(
(Fk − µ) ∩ Bω(r)

)
≤ cσ,p/kσ̄ ·


r1−

p
2k /

√
m+ logm ·m−k/p if p < 2k,

log(m)/
√
m if p = 2k,

m−k/p if p > 2k,

where the constant cσ,p/k depends on the parameters (σ, p/k) and the constant M2→4.
Solving the fixed point equation yields

sm ≤ cσ,p/kσ̄ ·


m− k

2k+p if p < 2k,

m−1/4
√
logm if p = 2k,

m− k
2p if p > 2k.

Combining with Theorem 4.2 completes the proof of Corollary 4.3.

C.2.4 Proof of Corollary 4.4

For any µ ∈ F , define the function class

H :=
{
(x, a) → g(x, a)

π(x, a)
f(x, a) | f ∈ Bω(r) ∩ (F − µ)

}
.

Clearly, the class H is uniformly bounded by b, and for any f ∈ F , we have the upper

bound E
[ ∣∣∣ g(X,A)π(X,A)

f(X,A)
∣∣∣2 ] = ∥f∥2ω ≤ r2.

Invoking a known bracketing bound on empirical processes (cf. Prop. C.6 in Ap-
pendix C.4), we have

E
[
sup
h∈H

1

m

m∑
i=1

εih(Xi, Ai)
]
≤ c√

m
Jbra

(
H, ∥ · ∥L2 ; [0, r]

){
1 +

bJbra

(
H, ∥ · ∥L2 ; [0, r]

)
r2
√
m

}
(C.6)
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For functions ℓ, f, u : [0, 1] → R, such that f is contained in the bracket [ℓ, u], we let:

ℓ̃(x, a) :=
g(x, a)

π(x, a)

{
ℓ(ϕ(x, a))1g(x,a)>0 + u(ϕ(x, a))1g(x,a)<0 − µ(x, a)

}
,

ũ(x, a) :=
g(x, a)

π(x, a)

{
u(ϕ(x, a))1g(x,a)>0 + ℓ(ϕ(x, a))1g(x,a)<0 − µ(x, a)

}
.

It is easily observed that the function (x, a) 7→ g(x,a)
π(x,a)

(f − µ)(x, a) lies in the bracket

[ℓ̃, ũ], and for any probability law Q on X× A, we have ∥ũ− ℓ̃∥L2(Q) ≤ b · ∥u− ℓ∥L2(Qϕ),
where Qϕ is the probability law of ϕ(X,A) for (X,A) ∼ Q.

It is known (cf. Thm 2.7.5 in the book [208]) that the space of monotonic functions
from [0, 1] to [0, 1] has ε-bracketing number under any L2-norm bounded by exp

(
c/ε
)

for any ε > 0. Substituting back into the bracketing entropy bound (C.6) yields

Rm

(
Bω(r) ∩ (F − µ)

)
≤ c
{√br

m
+

b2

rm

}
.

From the definition of the fixed point equation, we can bound the critical radius r as

rm ≤ cb

m
+

cb√
m
,

where c > 0 is a universal constant.
Turning to the squared Rademacher process associated with the outcome noise, we

construct the function class

H′ :=
{
(x, a, y) → y · g

2(x, a)

π2(x, a)
f(x, a) | f ∈ Bω(r) ∩ (F − µ)

}
.

For functions ℓ, f, u : [0, 1] → R, such that f is contained in the bracket [ℓ, u], we can
similarly construct

ℓ̃(x, a, y) := y · g
2(x, a)

π2(x, a)

{
ℓ(ϕ(x, a))1y>0 + u(ϕ(x, a))1y<0 − µ(x, a)

}
,

ũ(x, a, y) := y · g
2(x, a)

π2(x, a)

{
u(ϕ(x, a))1y>0 + ℓ(ϕ(x, a))1y<0 − µ(x, a)

}
.

It is easily observed that the function (x, ay) 7→ y · g(x,a)
π(x,a)

(f − µ)(x, a) lies in the bracket

[ℓ̃, ũ], and for any probability law Q on X×A×R, we have ∥ũ− ℓ̃∥L2(Q) ≤ b2 ·∥u−ℓ∥L2(Qϕ),
where Qϕ is the probability law of ϕ(X,A) for (X,A, Y ) ∼ Q. Applying the bracketing
bound yields

E
[
sup
h∈H′

1

m

m∑
i=1

εih(Xi, Ai, Yi − µ∗(Xi, Ai))
]

≤ c√
m
Jbra

(
H′, ∥ · ∥L2 ; [0, br]

){
1 +

bJbra

(
H′, ∥ · ∥L2 ; [0, br]

)
(br)2

√
m

}
≤ cb

(√ r

m
+

1

rm

)
.
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Denote Zm := suph∈H′
1
m

∑m
i=1 εih(Xi, Ai, Yi − µ∗(Xi, Ai)). By a standard functional

Bernstein bound (e.g., Thm. 3.8 in the book [213]), we have the tail bound

P
[
Zm ≥ 2E[Zm] + t

]
≤ 2 exp

(
−mt2

56(br)2 + 4b2t

)
for any t > 0.

Combining with the expectation bound, we conclude that Sm =
√
E[Z2

m] ≤ 2cb
(√

r
m
+

1
rm

)
. By definition of fixed point equation, the critical radius can be upper bounded

sm ≤ c
(
b2

m

)1/3
, and substituting this bound into Theorem 4.2 completes the proof of this

corollary.

C.2.5 Strong shattering for sparse linear models

In this section, we state and prove the claim from Example 4.3 about the size of the fat
shattering dimension for the class of sparse linear models.

Proposition C.3. There is a universal constant c > 0 such that the function class Fs

of s-sparse linear models over Rp satisfies the strong shattering condition (4.42) with fat
shattering dimension D = cs log(e p/s) at scale δ = 1.

Proof. We assume without loss of generality (adjusting constants as needed) that
p/s = 2k is an integer power of two. Our argument involves constructing a set of
vectors by dividing the p coordinates into s blocks. Let the matrix A ∈ {0, 1}k×2k be
such that by sequentially writing down the elements in j-th column, we get the binary
representation of the integer (j − 1), for j = 1, 2, . . . , 2k. Let (a⊤i )1≤i≤k be the row
vectors of the matrix A. For i ∈ [k] and j ∈ s, we construct the p-dimensional data
vector as xi,j = ai ⊗ ej, where the ej ∈ Rs is the indicator vector of j-th coordinate.
The cardinality of this set is given by∣∣{xi,j : i ∈ [k], j ∈ s

}∣∣ = ks =
1

log 2
· s log(p/s).

It suffices to construct a hypercube packing for this set. Given a binary vector v ∈ {0, 1}k,
we let J(v) ∈ {1, 2, . . . , 2k} such that the J(v)-th column of the matrix A is equal to v.
(Note that our construction ensures that such a column always exists and is unique.)

Given any binary vector ζ ∈ {0, 1}k×s, we construct the following vector:

βζ :=
s∑
i=1

e
(
J(ζi,1, ζi,2, . . . , ζi,k)

)
⊗ ei

where the function e : [2k] → R2k maps the integer j to the indicator vector of j-th
coordinate.

We note that the vector β is supported on s-coordinates, with absolute value of each
coordinate bounded by 1. Moreover, our construction ensures that i ∈ [k] and j ∈ [s],

β⊤
ζ xi,j = a⊤i e

(
J(ζi,1, ζi,2, . . . , ζi,k)

)
= ζi,j.
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Therefore, we have planted a hypercube
∏

i∈[k],j∈s
(
xi,j, {0, 1}

)
in the graph of the

function class F sparse
s , which completes the proof of the claim.

C.3 Some elementary inequalities and their proofs

In this section, we collect some elementary results used throughout Chapter 4 and this
appendix, as well as their proofs.

C.3.1 Bounds on conditional total variation distance

The following lemma is required for the truncation arguments used in the proofs of our
minimax lower bounds. In particular, it allows us to make small modifications on a pair
of probability laws by conditioning on good events, without inducing an overly large
change in the total variation distance.

Lemma C.1. Let (µ, ν) be a pair of probability distributions over the same Polish
space S, and consider a subset E ⊆ S such that min

{
µ(E ), ν(E )

}
≥ 1 − ε for some

ε ∈ [0, 1/4]. Then the conditional distributions (µ | E ) and (ν | E ) satisfy the bound

dTV(µ, ν)− 4ε
(i)

≤ dTV

[
(µ | E ), (ν | E )

] (ii)

≤ 1
1−εdTV(µ, ν) + 2ε. (C.7)

Proof. Recall the variational definition of the TV distance as the supremum over
functions f : S → R such that ∥f∥∞ ≤ 1. For any such function f , we have

|Eµ[f(X)]− Eν [f(X)]|
≤ |Eµ[f(X)1X∈E ]− Eν [f(X)1X∈E ]|+ Eµ[|f(X)| 1E c ] + Eν [|f(X)| 1X∈E c ]

≤
∣∣∣∣Eµ[f(X)1X∈E ]

µ(E )
− Eν [f(X)1X∈E ]

ν(E )

∣∣∣∣+ ∣∣∣∣ 1

µ(E )
− 1

ν(E )

∣∣∣∣Eν [|f(X)|] + 2ε

≤ dTV

(
(µ | E ), (ν | E )

)
+ 4ε,

and re-arranging yields the lower bound (i).
On the other hand, in order to prove the upper bound (ii), we note that∣∣Eµ|E [f(X)]− Eν|E [f(X)]

∣∣
=

1

µ(E )

∣∣∣∣Eµ[f(X)1X∈E ]− Eν [f(X)1X∈E ]
µ(E )

ν(E )

∣∣∣∣
≤ 1

µ(E )
|Eµ[f(X)1X∈E ]− Eν [f(X)1X∈E ]|+ Eν [|f(X)|] ·

∣∣∣∣µ(E )

ν(E )
− 1

∣∣∣∣
≤ 1

1− ε
dTV(µ, ν) + 2ε,

which completes the proof.
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C.3.2 A second moment lower bound for truncated random
variable

The following lemma is frequently used in our lower bound constructions.

Lemma C.2. Let X be a real-valued random variable with finite fourth moment, and
define the (2–4)-moment constant M2→4 :=

√
E[X]4/E[X2]. Then we have the lower

bound

E
[
X2 · 1

{
|X| ≤ 2M2→4

√
E[X2]

}]
≥ 1

2
E[X2].

Proof. Without loss of generality, we can assume that E[X2] = 1. Applying Cauchy–
Schwarz inequality implies that

E
[
X21

{
|X| ≥ 2M2→4

}]
≤
√

E
[
X4
]
·
√

P
(
|X| ≥ 2M2→4

)
≤M2→4 ·

√
P
(
|X| ≥ 2M2→4

)
.

By Markov’s inequality, we have

P
(
|X| ≥ 2M2→4

)
≤ E[X2]

4M2
2→4

=
1

4M2
2→4

.

Substituting back to above bounds, we conclude that E
[
X21

{
|X| ≥ 2M2→4

}]
≤ 1

2
, and

consequently,

E
[
X21

{
|X| ≤ 2M2→4

}]
= E[X2]− E

[
X21

{
|X| ≥ 2M2→4

}]
≥ 1

2
,

which completes the proof.

C.4 Empirical process results from existing

literature

In this appendix, we collect some known bounds on the suprema of empirical processes.

C.4.1 Concentration for unbounded empirical processes

We use a concentration inequality for unbounded empirical processes. It applies to a
countable class F of measurable functions, and a supremum of the form

Z := sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣
where {Xi}ni=1 is a sequence of independent random variables such that E[f(Xi)] = 0
for any f ∈ F .



C.4. EMPIRICAL PROCESS RESULTS FROM EXISTING LITERATURE 315

Proposition C.4 (Theorem 4 of [2], simplified). There exists a universal constant c > 0
such that for any t > 0 and α ≥ 1, we have

P [Z > 2E(Z) + t] ≤ exp

(
−t2

4v2

)
+ 3 exp

(
−
( t

c∥ max
i=1,...,n

sup
f∈F

|f(Xi)|∥ψ1/α

)1/α)
,

where v2 := supf∈F
∑n

i=1 E[f 2(Xi)] is the maximal variance.

The countability assumption can be easily relaxed for separable spaces. A useful
special case of Proposition C.4 is by taking the class F to be a singleton and letting
α = 1, in which case the bound becomes∣∣∣∣∣ 1n

n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ c

√
var
(
f(X)

) log(1/δ)
n

+
c log n

n
∥f(X)∥ψ1 · log(1/δ),

with probability 1− δ.

C.4.2 Some generic chaining bounds

We also use a known generic chaining tail bound. It involves a separable stochastic
process (Yt)t∈T and a pair (d1, d2) of metrics over the index set T . We assume that there
exists some t0 ∈ T such that Yt0 ≡ 0.

Proposition C.5 (Theorem 3.5 of Dirksen [51]). Suppose that for any pair s, t ∈ T ,
the difference Ys − Yt satisfies the mixed tail bound

P
(
|Ys − Yt| ≥

√
ud1(s, t) + ud2(s, t)

)
≤ 2e−u for any u > 0. (C.8a)

Then for any ℓ ≥ 1, we have the moment bound{
E
[
sup
t∈T

|Yt|ℓ
]}1/ℓ

≤ c
(
γ2(T, d1) + γ1(T, d2)

)
+ 2 sup

t∈T

(
E |Yt|ℓ

)1/ℓ
, (C.8b)

where γα(T, d) is the generic chaining functional of order α for the metric space (T, d).

For a set T with diameter bounded by r under the metric d, the generic chaining
functional can be upper bounded in terms of the Dudley entropy integral as

γα(T, d) ≤ cJα
(
T, d; [0, r]

)
for each α ∈ {1, 2}

(e.g., cf. Talagrand [202]). Furthermore, suppose that the norm domination relation
d1(s, t) ≤ a0d2(s, t) holds true for any pair s, t ∈ T . Let r1, r2 be the diameter of the



C.4. EMPIRICAL PROCESS RESULTS FROM EXISTING LITERATURE 316

set T under the metrics d1, d2, respectively. If we apply Proposition C.5 to a maximal
δ-packing for the set T under metric d1, we immediately have{

E
[
sup
t∈T

|Yt|p
]}1/p

≤ c
{
J2

(
T, d1; [δ, r1]

)
+ J1(T, d2; [δ/a0, r2])

}
+
{
E sup

s,t∈T
d1(s,t)≤δ

|Ys − Yt|p
}1/p

+ 2 sup
t∈T

(
E |Yt|p

)1/p
. (C.9)

C.4.3 Bracketing entropy bounds

Finally, we use the following bracketing integral bound for empirical processes:

Proposition C.6 (Lemma 3.4.2 of [208]). Let F be a class of measurable functions,
such that E[f 2(X)] ≤ r2 and |f(X)| ≤ M almost surely for any f ∈ F . Given n i.i.d.
samples {Xi}ni=1, we have

E
[
sup
f∈F

1

n

n∑
i=1

f(Xi)− E[f(X)]
]
≤ c√

n
Jbra

(
F , ∥ · ∥L2 ; [0, r]

){
1 +

MJbra

(
F , ∥ · ∥L2 ; [0, r]

)
r2
√
n

}
.
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Appendix D

Proofs and discussion deferred from
Chapter 5

D.1 Properties of effective dimension

In this section, we develop various bounds on the effective dimension under decay rates
on the eigenvalues, along with some regularity conditions on the eigenfunctions.

D.1.1 Regularity conditions on eigenfuncions

The most straightforward assumption on the eigenfunctions is the uniform boundedness
condition

∥ϕj∥∞ = sup
(x,a)

|ϕj(x, a)| <∞ for all j = 1, 2, . . . . (D.1)

This condition appears frequently in the literature [219, 139, 54, 163], but as noted, it
is not satisfied by all kernels. See paper [231] and Appendix D.5.1 for some natural
counterexamples.

In this chapter, we consider the following relaxed growth condition: there exists a
scalar ν ∈ [0, 1/2), such that the sup-norm of eigenfunctions satisfy the bound

ϕmax := sup
j≥1

sup
(x,a)

λνj |ϕj(x, a)| <∞. (Eig(ν))

We note that the requirement ν ∈ [0, 1/2) is natural, since the kernel boundedness
condition (Kbou(κ)) implies that condition (Eig(ν)) holds with ν = 1/2 and ϕmax = κ.
An exponent ν strictly less than 1/2 guarantees slightly more regularity. The growth
condition (Eig(ν)) with ν = 0 is equivalent to the uniform boundedness conditiion (D.1).
However, when ν > 0, the relaxed condition, on the other hand, is much weaker. For
example, it is shown by Mendelson and Neeman [139] that the counterexample in the
paper [231] satisfies equation (Eig(ν)) for any ν > 0.
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Under Assumption (Eig(ν)), we have the upper bound

D(ρ) ≤
∞∑
j=1

sup
(x,a)

λjϕ
2
j(x, a)

λj + ρ
≤ ϕ2

max

∞∑
j=1

λ1−2ν
j

λj + ρ
. (D.2)

This upper bound, when combined with decay conditions on the eigenvalue sequence
{λj}∞j=1, allows us to derive explicit bounds on the effective dimension. Two natural
classes of eigenvalue decay are the polynomial condition

λj ≤ λ0j
−α for some α > 1, (D.3a)

and the exponential decay

λj ≤ λ0 exp(−c0j) for some c0 > 0. (D.3b)

Proposition D.1. Under Assumptions (Kbou(κ)) and (Eig(ν)), we have

(a) For eigenvalues with α-polynomial-decay (D.3a) for some α > 1
1−2ν

, we have

D(ρ) ≤ cρ−
1
α
−2ν . (D.4a)

(b) For eigenvalues with exponential decay (D.3b), we have

D(ρ) ≤ c log
(
λ0
ρ

)
. (D.4b)

In these bounds, the constant c can depend on problem parameters (λ0, α, c0, ν) but is
independent of ρ. See Appendix D.1.2 for the proof.

In our main theorems, the bounds on the effective dimension is used to establish
the sample size requirement (5.21a) and (5.28a). In order for them to be true, up to
logarithmic factors of (n, σ, σ−1, R), we need sample sizes

n ≳
(
σ/σ

) 2α
α−1−2να ·

(
R/σ̄

) 1+2αν
α−1−2να , under Proposition D.1(a),

n ≳
(
σ/σ

)2
, under Proposition D.1(b).

In words, the sample size requirement depends on two important objects: the tail
conditions of the observation noise W = Y − µ∗(X,A), measured by the ratio between
its largest Orlicz norm and smallest variance; and the richness of the kernel class,
measured by the eigenvalue decay rates and the radius of the RKHS ball.

D.1.2 Proof of Proposition D.1

Since the eigenvalue sequence converges to zero, the cut-off integer J := sup{j ≥ 1 |
λj > ρ} is guaranteed to be finite. By the definition of the effective dimension, we have

D(ρ) =
∞∑
j=1

λ1−2ν
j

λj + ρ
≤
∑
j≤J

λ−2ν + ρ−1
∑
j>J

λ1−2ν
j ≤ ρ−2νJ + ρ−1

∑
j>J

λ1−2ν
j .
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We prove the results for two cases separately.

For the polynomially-decaying eigenvalues, we have J ≤
(
λ0
ρ

)1/α
, and∑

j>J

λ1−2ν
j ≤ λ0

∑
j>J

j−α(1−2ν) <
1

α(1− 2ν)− 1
J1−α(1−2ν).

Combining these bounds yields

D(ρ) ≤ λ
1/α
0 ρ−2ν−1/α +

1

α(1− 2ν)− 1
λ
1/α−1+2ν
0 ρ−1/α−2ν ≤ c(λ0, ν, α)ρ

−1/α−2ν .

For exponentially-decaying eigenvalues, we have J ≤ c−1
0 log

(
λ0
ρ

)
, and∑

j>J

λ1−2ν
j ≤ λ0

∑
j>J

exp
(
− c0(1− 2ν)j

)
≤ λ0

(1− 2ν)c0
exp(−c0(1− 2ν)J) ≤ ρ

c0
,

which leads to the effective dimension bound

D(ρ) ≤ c(c0, λ0, ν) log
(λ0
ρ

)
,

completing the proof of Proposition D.1.

D.2 Relaxing the effective dimension condition

Recall that Theorem 5.2 requires certain growth conditions on the effective dimension.
In this section, we discuss how these conditions can be relaxed, thereby obtaining a
bound that remains instance-optimal up to logarithmic factors.

D.2.1 Near-optimal rates

Our result involves the modified regularization parameter

ρn =
σ̄2

R2n
∨ 32κ2 log(n/δ)

n
, (D.5)

along with the modified higher-order term H′
n :=

(
σ + κR

) log(n/δ)√
n

.

Corollary D.1. Suppose that Assumptions Kbou(κ) and subG(σ) are in force, and we
that implement the method with regularization parameter (D.5). Then for for any sample
size n ≥ 2 and any δ ∈ (0, 1), we have

|τ̂n − τ ∗| ≤ cvξ(µ
∗)

√
log(1/δ)

n
+
c(σ + κR)

σ̄
vσ
(
BH(R);n

) log(n/δ)√
n

+ cH′
n (D.6)

with probability at least 1− δ.
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See Appendix D.2.2 for the proof.

A few remarks are in order. First, Corollary D.1 holds for any sample size, and is
completely agnostic to conditions on the effective dimension D. Compared to the optimal
instance-dependent bounds in Theorem 5.2, Corollary D.1 exhibits two differences:

• The variance functional Vσ̄,n(ξ
∗, π, g;BH (R)) is multiplied with a problem-

dependent factor σ+κR
σ̄

, as well as logarithmic factors in the ratio n/δ.

• The high-order term H′
n is of order Θ(n−1/2), with additional logarithmic factors.

Such a convergence rate is slower than the high-order term bound Hn established
in Theorem 5.2, which decays at a rate o(n−1/2)

Due to these two major differences, the bound in Corollary D.1 may not be always
instance-optimal. However, we remark that the near-optimal rate of convergence (as
a function of sample size n) is still preserved. In the high-noise regime where the
quantities (σ, σ̄, κR) are of the same order, the leading-order terms in Theorem 5.2
and Corollary D.1 differ only by logarithmic factors. The term H′ is dominated by the
leading-order one, up to logarithmic factors. In combination, results in Corollary D.1
under the weak assumptions can be worse than Theorem 5.2 only by logarithmic factors
and problem dependent constants. Note that a variety of convergence rates can be
established beyond the classical

√
n-regime (see Section 5.3.3 for concrete examples).

These convergence rates, though depending on the intricate properties of the policy π,
are automatically achieved without the effective dimension condition.

D.2.2 Proof of Corollary D.1

We use the same notation (ûn, βn, β∗) as in the proof of Theorem 5.2. Recall from the

decomposition (5.47) that τ̂n − τ ∗ = ⟨ûn − u, β∗⟩ + ⟨u, β̂n − β∗⟩ + ⟨ûn − u, β̂n − β∗⟩.
Since the bound (5.50) does not rely on the effective dimension, it still holds under our
current assumptions—that is, we have

|⟨ûn − u, β∗⟩| ≤ 2Vξ∗(µ
∗)

√
log(1/δ)

n
+ 6κR log(1/δ)

n
, (D.7)

with probability 1− δ.
The rest of this section is devoted to the control of the other two terms in the

decomposition. We use the following lemma, which is analogous to Lemma 5.2.

Lemma D.1. Uner the assumptions of Corollary D.1, for any fixed z ∈ ℓ2, we have∣∣∣⟨z, β̂n − β∗⟩
∣∣∣ ≤ c∥

(
I + ρnΛ

−1
)−1/2

z∥ℓ2 · (σ + κR)

√
log(n/δ) log(1/δ)

n
.

with probability at least 1− δ.
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See Appendix D.3.3 for the proof.

Taking this lemma as given, we proceed with the proof of Corollary D.1. Apply-
ing Lemma D.1 with z = u, we have∣∣∣⟨u, β̂n − β∗⟩

∣∣∣ ≤ c∥
(
I + ρnΛ

−1
)−1/2

u∥ℓ2 · (σ + κR)
log(n/δ)√

n

≤ c∥
(
I +

σ̄2

R2n
Λ−1

)−1/2
z∥ℓ2 · (σ + κR)

√
log(n/δ) log(1/δ)

n

≤ 4cvσ
(
BH(R);n

)
· σ + κR

σ̄
· log(n/δ)√

n
, (D.8)

with probability at least 1− δ.
In our next step, we apply equation (5.48b) from Lemma 5.1, as well as condi-

tion (Kbou(κ)). Doing so yields

∥
(
I + ρnΛ

−1
)−1/2

(ûn − u)∥ℓ2 ≤ c

√
D(ρn)

n
log(1/δ) ≤ cκ

√
log(1/δ)

ρnn
≤ c,

with probability 1− δ.
Combining with Lemma D.1 yields∣∣∣⟨ûn − u, β̂n − β∗⟩

∣∣∣ ≤ c∥
(
I + ρnΛ

−1
)−1/2

(ûn − u)∥ℓ2 · (σ + κR)
log(n/δ)√

n

≤ c′(σ + κR)
log(n/δ)√

n
. (D.9)

Combining equations (D.7), (D.8) and (D.9) completes the proof of Corollary D.1.

D.3 Proof of technical lemmas

We collect the proofs of auxiliary lemmas in the proof of Theorem 5.2 in this section.

D.3.1 Proof of Lemma 5.3

We start with the decomposition

z⊤
(
β̂n − β∗

)
=

1

n

n∑
i=1

Wi︸ ︷︷ ︸
noise part

− ρnz
⊤Λ−1β∗︸ ︷︷ ︸

bias part

,

where Wi := εi z
⊤(Γ̂n + ρnΛ

−1
)−1

ϕ(Xi, Ai).
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Beginning with the bias term, we note that∣∣∣z⊤(Γ̂n + ρnΛ
−1
)−1 · ρnΛ−1β∗

∣∣∣ = ρn ·
∣∣∣⟨Λ−1/2

(
Γ̂n + ρnΛ

−1
)−1

z, Λ−1/2β∗⟩
∣∣∣

≤ ρn∥µ∗∥H · ∥Λ−1/2
(
Γ̂n + ρnΛ

−1
)−1

z∥ℓ2

≤ √
ρn∥µ∗∥H · ∥

(
Γ̂n + ρnΛ

−1
)−1/2

z∥ℓ2 . (D.10)

Here the final step is based on the fact that ∥Ax∥ℓ2 ≤ ∥Bx∥ℓ2 for any pair (A,B) of
operators such that A ⪯ B.

For the stochastic part, we note that the noise variables {εi}ni=1 are independent
conditioned on (Xi, Ai)

n
i=1. For each i ∈ [n], the conditional variance takes the form

var
(
Wi | (Xi, Ai)

n
i=1

)
= σ2(Xj, Aj) ·

∣∣∣ϕ(Xi, Ai)
⊤(Γ̂n + ρnΛ

−1
)−1

z
∣∣∣2 .

Summing up these relations yields

var
( 1
n

n∑
i=1

Wi | (Xi, Ai)
n
i=1

)
= z⊤(Γ̂n + ρnΛ

−1
)−1

n∑
i=1

σ2(Xj, Aj)ϕ(Xi, Ai)ϕ(Xi, Ai)
⊤(Γ̂n + ρnΛ

−1
)−1

z

≤ σ̄2∥Γ̂1/2
n

(
Γ̂n + ρnΛ

−1
)−1

z∥22.

Introducing the shorthand M = Γ̂n+ ρnΛ
−1, by the noise tail assumption (subG(σ))

and Adamczak’s concentration inequality [2], conditionally on (Xi, Ai)
n
i=1, we have∣∣∣∣∣z⊤M−1 · 1

n

n∑
i=1

{
εiϕ(Xi, Ai)

}∣∣∣∣∣
≤ cσ̄∥Γ̂1/2

n M−1z∥ℓ2
√

log(1/δ)
n

+max
i∈[n]

∣∣z⊤M−1ϕ(Xi, Ai)
∣∣ σ logn log(1/δ)

n
,

with probability 1− δ.
In order to control the max term on the RHS, we invoke the Cauchy–Schwarz

inequality, thereby finding that∣∣z⊤M−1ϕ(Xi, Ai)
∣∣ ≤ ∥M−1/2z∥ℓ2 · sup

(x,a)∈S×A
∥M−1/2ϕ(x, a)∥ℓ2 .

Combining above two bounds yields∣∣∣∣∣z⊤M−1 · 1
n

n∑
i=1

{
εiϕ(Xi, Ai)

}∣∣∣∣∣
≤ c∥

(
M−1/2z∥ℓ2

{
σ̄

√
log(1/δ)

n
+ σ sup

(x,a)∈S×A
∥M−1/2ϕ(x, a)∥ℓ2 · log(1/δ) logn

n

}
, (D.11)
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with probability 1− δ.
Combining equations (D.10) and (D.11), we conclude that∣∣∣⟨z, β̂n − β∗⟩

∣∣∣ ≤ c∥M−1/2z∥ℓ2

·
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+ σ sup

(x,a)∈S×A
∥M−1/2ϕ(x, a)∥ℓ2 · log(1/δ) logn

n

}
,

which completes the proof of Lemma 5.3.

D.3.2 Proof of Lemma 5.4

For use in this proof, we note that the population-level covariance operator Γ∗,q satisfies
the sandwich relation

qI ⪯ Γ∗,q ⪯ qI. (D.12)

Our argument adopts the approach used in the paper [132], but involves more refined
arguments so as to obtain sharper bounds that allow small value of ρn. By multiplying
with the operator (Γ∗,q + ρnΛ

−1)−1/2 from both the left and the right of equation (5.57),
we find that it suffices to bound the operator norm of the following pre-conditioned
error operator:

∆̂n := (Γ∗,q + ρnΛ
−1)−1/2

(
Γ̂n,q − Γ∗,q

)
(Γ∗,q + ρnΛ

−1)−1/2.

Note that ∆̂n is sum of i.i.d. random operators. In order to bound its operator norm, we
invoke a known Bernstein inequality in Hilbert spaces. It applies to an i.i.d. sequence
{Xi}ni=1 of self-adjoint zero-mean operators on a separable Hilbert space V.

Proposition D.2 (Minsker [144]). Consider a sequence such that

|||E[X2
i ]|||op ≤ σ2, trace(E[X2

i ]) ≤ V <∞, and |||Xi|||op ≤ U, almost surely.

Then we have the concentration inequality

P
(
|||

n∑
j=1

Xi|||op ≥ t
)
≤ 14V

σ2
exp

(
− t2/2

nσ2 + tU/3

)
, for any t > 0.

A form of this result is stated as as Theorem 3.1 in the paper [144]; see also §3.1 of the
same paper for the extension to the infinite-dimensional case.

Using this auxiliary result, let us now prove Lemma 5.4. In doing so, we make use
the shorthand notation ϕi := ϕ(Xi, Ai) and q

i := q(Xi, Ai), along with the sequence of
random linear operators

∆i := (Γ∗,q + ρnΛ
−1)−1/2

(
qiϕi(ϕi)⊤ − Γ∗,q

)
(Γ∗,q + ρnΛ

−1)−1/2 for each i ∈ [n].
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We need to bound the relevant quantities required to apply Proposition D.2. Beginning
with the variance, we have

E
[
∆2
i

]
(D.13)

⪯ E
[{

(Γ∗,q + ρnΛ
−1)−1/2

(
qiϕi(ϕi)⊤ − Γ∗,q

)
(Γ∗,q + ρnΛ

−1)−1/2
}2]

= E
[{
qi(ϕi)⊤(Γ∗,q + ρnΛ

−1)−1ϕi
}
·
{
(Γ∗,q + ρnΛ

−1)−1/2qiϕi(ϕi)⊤(Γ∗,q + ρnΛ
−1)−1/2

}]
.

(D.14)

Define the quantity Φmax := sup(x,a)

∣∣q(x, a)ϕ(x, a)⊤(Γ∗,q + ρnΛ
−1)−1ϕ(x, a)

∣∣. We can
use this uniform bound to control the right-hand-side of the relation (D.14), and obtain

E
[
∆2
i

]
⪯ Φmax · E

[
(Γ∗,q + ρnΛ

−1)−1/2qiϕi(ϕi)⊤(Γ∗,q + ρnΛ
−1)−1/2

]
= Φmax · (Γ∗,q + ρnΛ

−1)−1/2Γ∗,q(Γ∗,q + ρnΛ
−1)−1/2

We can then bound the operator norm and trace of E[∆2
i ] as

|||E
[
∆2
i

]
|||op ≤ Φmax · |||(Γ∗,q + ρnΛ

−1)−1/2Γ∗,q(Γ∗,q + ρnΛ
−1)−1/2|||op ≤ Φmax, (D.15a)

and by equation (D.12), we have

trace
(
E
[
∆2
i

])
≤ Φmax · trace

(
(Γ∗,q + ρnΛ

−1)−1Γ∗,q
)
≤ qΦmax · trace

(
qI + ρnΛ

−1)−1
)
.

(D.15b)

Finally, we note that

|||∆i|||op ≤ trace
(
(Γ∗,q + ρnΛ

−1)−1/2qiϕi(ϕi)⊤(Γ∗,q + ρnΛ
−1)−1/2

)
= qi(ϕi)⊤(Γ∗,q + ρnΛ

−1)−1ϕi ≤ Φmax (D.15c)

almost surely.
Combining the different parts of equation (D.15) with Proposition D.2 yields the

tail bound

P
(
|||∆̂n|||op ≤ t

)
≤ 14q trace

(
(qI + ρnΛ

−1)−1
)
· exp

{
−nt2/2

(1 + t/3)Φmax

}
,

valid for any t > 0.
Noting that trace

(
(qI + ρnΛ

−1)−1
)
≤ ρ−1

n trace(Λ) ≤ κ2

ρn
, for the event Eδ defined as

Eδ :=

{
|||∆̂n|||op ≤

√
2Φmax

n
log
( κ2
ρnδ

)
+

6Φmax

n
log
( κ2
ρnδ

)}
,

we have P(Eδ) ≥ 1− δ.
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Note that the quantity Φmax admits the bound

Φmax ≤ q sup
x∈X,a∈A

∣∣ϕ(x, a)⊤(qI + ρnΛ
−1)−1ϕ(x, a)

∣∣ ≤ q/q ·D
(
ρn/q

)
.

On the event Eδ, the conditions (5.56) imply that |||∆̂n|||op ≤ ω. Therefore, we
conclude that the following bound holds true with probability 1− δ:

(1− ω)I ⪯ (Γ∗,q + ρnΛ
−1)−1/2

(
Γ̂n,q + ρnΛ

−1
)
(Γ∗,q + ρnΛ

−1)−1/2 ⪯ (1 + ω)I,

which completes the proof of Lemma 5.4.

D.3.3 Proof of Lemma D.1

Recall the error decomposition in the proof of Lemma 5.2:

β̂n − β∗ =
(
Γ̂n + ρnΛ

−1
)−1 · 1

n

n∑
i=1

{
εiϕ(Xi, Ai)− ρnΛ

−1β∗

}
,

where we define the noise function εi := Yi − µ∗(Xi, Ai).
Since Lemma 5.3 does not depend on the condition (5.21a) on the effective dimension,

conditionally on the state-action pairs (Xi, Ai)
n
i=1, with probability 1− δ, we have∣∣∣z⊤(β̂n − β∗)

∣∣∣ ≤ c∥
(
Γ̂n + ρnΛ

−1
)−1/2

z∥ℓ2

×
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+ σ sup

x∈S,a∈A
∥
(
Γ̂n + ρnΛ

−1
)−1/2

ϕ(x, a)∥ℓ2 · log(1/δ) logn
n

}
.

(D.16)

On the other hand, note that under Assumption (Kbou(κ)), given the regularization
parameter choice (D.5), we have

log
( κ2
ρnδ

)D(ρn)

n
≤ log

( κ2
ρnδ

) κ2

nρn
≤ 1

32
,

which verifies the condition (5.56) with q = q = 1 and ω = 1/2. Invoking the empirical
covariance concentration lemma 5.4 with q ≡ 1 yields

1

2
(I + ρnΛ

−1) ⪯ Γ̂n + ρnΛ
−1 ⪯ 2(I + ρnΛ

−1), with probability 1− δ.

We can therefore control the the relevant terms in equation (D.16), leading to the
following inequalities with probability 1− δ.

∥
(
Γ̂n + ρnΛ

−1
)−1/2

z∥ℓ2 ≤ 2∥
(
I + ρnΛ

−1
)−1/2

z∥ℓ2 , and,

sup
(x,a)∈S×A

∥
(
Γ̂n + ρnΛ

−1
)−1/2

ϕ(x, a)∥ℓ2 ≤ ρ−1/2
n · sup

(x,a)∈S×A
∥Λ1/2ϕ(x, a)∥ℓ2 ≤ κ/

√
ρn,
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where the last step follows from the uniform upper bound (Kbou(κ)).
Substituting these results back into equation (D.16), and taking the regularization

parameter according to equation (D.5), we conclude that∣∣∣z⊤(β̂n − β∗)
∣∣∣ ≤ 4c∥

(
I + ρnΛ

−1
)−1/2

z∥ℓ2
{√

ρn∥µ∗∥H + σ̄

√
log(1/δ)

n
+
σκ log(1/δ) log n

n
√
ρn

}
≤ c′∥

(
I + ρnΛ

−1
)−1/2

z∥ℓ2 · (σ + κR)

√
log(n/δ) log(1/δ)

n
,

with probability 1− δ, which proves Lemma D.1.

D.3.4 Proof of Lemma 5.6

As with the proof of Lemma 5.3, we decompose the error into a noise and bias term—
namely

⟨z, β̂n − β∗⟩ =
1

n

n∑
i=1

Wi︸ ︷︷ ︸
noise part

− ρ(III)

n z⊤
(
Γ̂σn + ρ(III)

n Λ−1
)−1

Λ−1β∗︸ ︷︷ ︸
bias part

,

where Wi := z⊤
(
Γ̂σn + ρ(III)

n Λ−1
)−1

εiσ̂
−2
n ϕ(Xi, Ai)

For the bias part, applying the Cauchy–Schwarz inequality yields

ρ(III)

n

∣∣∣z⊤(Γ̂σn + ρ(III)

n Λ−1
)−1

Λ−1β∗

∣∣∣ ≤ ρ(III)

n ∥Λ−1/2β∗∥ℓ2 · ∥Λ−1/2
(
Γ̂σn + ρ(III)

n Λ−1
)−1

z∥ℓ2
(i)

≤
√
ρ(III)
n ∥µ∗∥H · ∥

(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

z∥ℓ2
(ii)

≤ 1√
n
∥
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

z∥ℓ2 , (D.17)

where in step (i), we use the fact |||Λ−1/2
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2|||op ≤ (ρ(III)

n )−1/2, and in step
(ii), we substitute with the regularization parameter choice ρ(III)

n = 1
Rn

.
For the noise part, we use Adamczak’s concentration inequality to establish high-

probability bounds. We start with the expression for the conditional variance

E
[
W 2
i | Xi, Ai, σ̂n

]
=
σ2(Xi, Ai)

σ̂4
n(Xi, Ai)

(
z⊤
(
Γ̂σn + ρ(III)

n Λ−1
)−1

ϕ(Xi, Ai)
)2
,

which leads to the bound

1

n

n∑
i=1

E
[
W 2
i | Xi, Ai, σ̂n

]
≤ max

i∈[n]

σ4(Xi, Ai)

σ̂4
n(Xi, Ai)

· z⊤
(
Γ̂σn + ρ(III)

n Λ−1
)−1

Γ̂σn
(
Γ̂σn + ρ(III)

n Λ−1
)−1

z

≤ 4z⊤
(
Γ̂σn + ρ(III)

n Λ−1
)−1

z. (D.18)
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In the last step, we use the fact σ̂2
n(Xi, Ai) ≥ 1

2
σ2(Xi, Ai) for any i ∈ [n].

On the other hand, for any p > 0, we have the conditional moment bound{
E
[
|Wi|p | Xi, Ai, σ̂n

]}1/p

≤ √
pσ ·

∣∣∣z⊤(Γ̂σn + ρ(III)

n Λ−1
)−1

σ̂−2
n ϕ(Xi, Ai)

∣∣∣
≤

2
√
pσ

σ2
∥
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

z∥ℓ2 · sup
(x,a)

∥
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2 . (D.19)

Combining equations (D.18) and (D.19) with Adamczak’s inequality, we conclude that

| 1
n

n∑
i=1

Wi| ≤ c∥
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

z∥ℓ2
{
2

√
log(1/δ)

n

+
log n log(1/δ)σ

nσ2
sup
(x,a)

∥
(
Γ̂σn + ρ(III)

n Λ−1
)−1/2

ϕ(x, a)∥ℓ2
}
. (D.20)

Finally, putting together equations (D.17) and (D.20) completes the proof of this lemma.

D.4 Conditional variance estimation

In this section, we discuss the problem of estimating the conditional variance function
(x, a) 7→ σ2(x, a).

D.4.1 Some conditional variance estimators

In this section, we construct concrete estimators for the conditional variance σ2 that
satisfy the robust pointwise risk property. In combination with the four-stage frame-
work (5.25), these results immediately lead to instance-optimal results in Theorem 5.3.

Kernel ridge regression: Consider a positive semi-definite kernel function Kσ :
(X× A)× (X× A) → R that defines an RKHS Hσ with the Mercer decomposition

Kσ

(
(s1, a1), (s2, a2)

)
=

∞∑
j=1

λjϕj(s1, a1)ϕj(s2, a2). (D.21)

We assume that the RKHS Hσ satisfies the regularity assumption (Kbou(κ)), and that
the true conditional variance function lies in this RKHS, i.e.,

∥σ2∥Hσ ≤ Rσ. (D.22)

Following the definition (5.19), for any ρ > 0 we define Dσ(ρ) as the effective dimension
associated to the regularization parameter ρ > 0 for the RKHS Hσ.



D.4. CONDITIONAL VARIANCE ESTIMATION 328

We consider the penalized least-square estimator

σ̂2
n := argmin

h

{ 1
n

n∑
i=1

(
Zi − h(Xi, Ai)

)2
+ ρ∥h∥2Hσ

}
. (D.23)

Proposition D.3. Let ρ0(ε) be the smallest value of ρ such that ρDσ(ρ) ≤
(
ε/Rσ

)2
,

the estimator (D.23) with parameter choice ρn = ρ0(ε) satisfies the robust pointwise risk
property with

m(ε, δ) := c
σ4 log(1/δ)

ε2
Dσ(ρ0(ε)) + c

(Rσ)2

σ4ρ0(ε)
, and b(ε, δ) :=

ε

c
√
Dσ(ρ0(ε))

. (D.24)

See Section D.4.2.1 for the proof.

A few remarks are in order. First, Proposition D.3 requires that the effective
dimension of the RKHS Hσ to satisfy that ρDσ(ρ) → 0 for ρ→ 0+. A similar condition
is also imposed on the RKHS H used to estimate the treatment effect function, which
can be verified under certain conditions on the eigenfunctions. (see equation (D.2)
and Proposition D.1 in the appendix for the statement of such results.) In particular,
suppose that the effective dimension satisfies a decay condition D(ρ) ≤ D0ρ

ω−1 for some

scalar ω ∈ (0, 1], by seeing the scalars (D0, R
σ, σ) as constants, we choose ρ0(ε) = ε

2
ω

the condition (D.24) becomes

m(ε, δ) ≍ ε−2/ω log(1/δ) and b(ε, δ) ≍ ε1/ω,

Such a requirement on the sample size m and the bias upper bound b may not always
achieve the optimal rate for estimating the function σ2. However, since we only need
the estimation error to be smaller than a constant σ2/2, as required in equation (5.28b),
a polynomial dependency on the accuracy level ε and poly-logarithmic dependency on
the failure probability δ suffices our purposes.

Local average estimator: Let the statespace X be a compact subset of Rd and let
the action space A be discrete. Define the class of L-Lipschitz functions as

FL =
{
f : X → R, |f(x)− f(y)| ≤ L∥x− y∥2 for any x, y ∈ X

}
We assume that the conditional variances are smooth enough.

σ2(·, a) ∈ FL, for each a ∈ A. (D.25)

To make estimation possible with random design, we need an additional regularity
assumption on the density.

inf
x∈X,a∈A

(
ξ∗ · π

)(
B(x, r)× {a}

)
≥ p0r

d0 , for any r ∈ (0, r0). (D.26)



D.4. CONDITIONAL VARIANCE ESTIMATION 329

Given a tuning parameter rn > 0, we consider the local averaging estimator

σ̂2
n(x0, a0) := |Ŝx0,a0 |−1

∑
i∈Ŝx0,a0

Zi, where Ŝx0,a0 :=
{
i ∈ [n] : Xi ∈ B(x0, rn), Ai = a0

}
.

(D.27)

Proposition D.4. For any ε > 0 and δ ∈ (0, 1), there exists a universal constant c > 0,
such that the estimator (D.27) satisfies the robust pointwise risk property with

m(ε, δ) =
L2d0 log(1/δ)

p0

(c
ε

)d0+2

+
log(1/δ)

L2p0r
d0+1
0

Ld0
log(1/δ)

p0
logd0+2(1/ε), and

b(ε, δ) = ε/2.

See Section D.4.2.2 for the proof.

A few remarks are in order. Compared to Proposition D.3, the local average estimator
only requires the target function σ2(·, a) to be Lipschitz, for any a ∈ A. In dimension
larger than 1, this usually requires less order of smoothness than the RKHS case
in Proposition D.3, while being less flexible with the structure of the function class.
The regularity condition (D.26) ensures that any small ball in X and any action a
get sufficiently large probability of being sampled. For example, when the probability
distribution ξ has a density function uniformly bounded by ξmin > 0, and when the
probability of choosing any action a is at least πmin, the condition (D.26) is satisfied
with p0 = cdξminπmin and d0 = d, for a constant cd > 0 depending only on d. More
generally, even if the function (x, a) 7→ ξ∗(x)π(x, a) can attain 0 at some points, as long
as appropriate growth conditions are imposed around these points, the condition (D.26)
will still be satisfied. Finally, though we only study the Lipschitz case, in literature
optimal results for general Hölder classes have been established for the estimation
problems of conditional variance [188]. In combination with their results, we can also
obtain optimal instance-dependent guarantees in Theorem 5.3.

D.4.2 Proofs of robust pointwise risk properties

In this appendix, we establish the robust pointwise risk properties for various estimators
discussed in Appendix D.4.

D.4.2.1 Proof of Proposition D.3

The proof is similar to that of Lemma 5.2, with specific treatment given to the deter-
ministic bias part. Define the infinite-dimensional vectors

β∗ := Ψ(σ2) and β̂n := Ψ(σ̂2
n).

We can represent the error using basis functions.

σ2(s0, a0)− σ̂2
n(s0, a0) = ⟨β̂n − β∗, ϕ(s0, a0)⟩.
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Defining the noise and bias parts

εi := Zi − E[Zi | Xi, Ai], and b(Xi, Ai) := E[Zi | Xi, Ai]− σ2(Xi, Ai).

We also define the empirical covariance operator

Γ̂n :=
1

n

n∑
i=1

ϕ(Xi, Ai)ϕ(Xi, Ai)
⊤,

the error vector β̂n − β∗ admits a representation

β̂n − β∗ =
(
Γ̂n + ρΛ−1

)−1 1

n

n∑
i=1

{
εi(Xi, Ai)ϕ(Xi, Ai) + b(Xi, Ai)ϕ(Xi, Ai)− ρΛ−1β∗

}
.

(D.28)

Define the event

Eε,δ :=
{
max
1≤i≤n

|b(Xi, Ai)| ≤ b(ε, δ)
}
.

Clearly, the error consists of three parts: a part induced by stochastic (unbiased)
noise εi; a part involving the observation bias b(Xi, Ai); and the bias introduced by the
regularization ρ. We claim that the following bounds hold true with probability 1− δ
on the event Eε,δ.∣∣∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1

)−1 1

n

n∑
i=1

εiϕ(Xi, Ai)

∣∣∣∣∣ ≤ c
(
σ2 + b(ε, δ)

)√Dσ(ρ) log(1/δ)

n
.

(D.29a)∣∣∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1 1

n

n∑
i=1

b(Xi, Ai)ϕ(Xi, Ai)

∣∣∣∣∣ ≤ cb(ε, δ)
√
Dσ(ρ), (D.29b)∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1

)−1
ρΛ−1β∗

∣∣∣ ≤ cRσ
√
ρDσ(ρ). (D.29c)

Taking these three bounds as given, for any ε > 0 and δ ∈ (0, 1), we take ρ0(ε) be

the smallest value of ρ such that ρDσ(ρ) ≤
(
ε
Rσ

)2
(which is guaranteed to exist for if

n ·Dσ(1/n) → 0), the robust pointwise risk condition is satisfied with

m(ε, δ) = c
σ4 log(1/δ)

ε2
Dσ(ρ0(ε)) + c

(Rσ)2

σ4ρ0(ε)
, and b =

ε

c
√
Dσ(ρ0(ε))

,

completing the proof of Proposition D.3.
The rest of this section is devoted to the proofs of equations (D.29a)– (D.29c).
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Proof of equation (D.29a): By definition, note that the noise satisfies the conditional
ψ1-norm bound

∥εi | Xi, Ai∥ψ1 ≤ 4(σ2 + |b(Xi, Ai)|).

Invoking Adamczak’s concentration inequality, conditionally on (Xi, Ai)
n
i=1, with proba-

bility 1− δ, we have∣∣∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1 1

n

n∑
i=1

εi(Xi, Ai)ϕ(Xi, Ai)

∣∣∣∣∣
≤ c
(
σ2 +max

i∈[n]
|b(Xi, Ai)|

)
×

{
∥Γ̂1/2

n (Γ̂n + ρΛ−1
)−1

ϕ(s0, a0)∥ℓ2
√

log(1/δ)

n

+ sup
x′,a′

∣∣∣ϕ(x′, a′)⊤(Γ̂n + ρΛ−1
)−1

ϕ(s0, a0)
∣∣∣ log n log(1/δ)

n

}
.

On the event Eε,δ, we have maxi∈[n] |b(Xi, Ai)| ≤ b(ε, δ). By Lemma 5.4, with probability
1− δ, we have

sup
x,a

∥(Γ̂n + ρΛ−1
)−1/2

ϕ(x, a)∥ℓ2 ≤ 2 sup
x,a

∥(I + ρΛ−1
)−1/2

ϕ(x, a)∥ℓ2 ≤ c
√
Dσ(ρ).

Putting together the pieces completes the proof of equation (D.29a).

Proof of equation (D.29b): Applying the Cauchy–Schwarz inequality to the finite
summation yields∣∣∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1

)−1 1

n

n∑
i=1

b(Xi, Ai)ϕ(Xi, Ai)

∣∣∣∣∣
2

≤ 1

n

n∑
i=1

∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1

b(Xi, Ai)ϕ(Xi, Ai)
∣∣∣2

= max
i∈[n]

b2(Xi, Ai)

× 1

n

n∑
i=1

ϕ(s0, a0)
⊤(Γ̂n + ρΛ−1

)−1
ϕ(Xi, Ai)ϕ(Xi, Ai)

⊤(Γ̂n + ρΛ−1
)−1

ϕ(s0, a0)

≤ max
i∈[n]

b2(Xi, Ai) · ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1

ϕ(s0, a0)

On the other hand, we can apply Lemma 5.4 to the empirical covariance operator Γ̂n
in the RKHS Hσ. Given the regularization parameter ρ ≥ cκ2 log(n/δ)

n
, with probability

1− δ, we have

1

2
(I + ρΛ−1) ⪯ Γ̂n + ρΛ−1 ⪯ 2(I + ρΛ−1).
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Consequently, on the event Eε,δ, we have the upper bound∣∣∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1 1

n

n∑
i=1

b(Xi, Ai)ϕ(Xi, Ai)

∣∣∣∣∣
≤ cb(ε, δ) · sup

x,a
∥(Γ̂n + ρΛ−1

)−1/2
ϕ(x, a)∥2ℓ2

≤ 2cb(ε, δ) · sup
x,a

∥(I + ρΛ−1
)−1/2

ϕ(x, a)∥2ℓ2

= 2cb(ε, δ)Dσ(ρ).

with probability 1− δ.

Proof of equation (D.29c): By Cauchy–Schwarz inequality, we note that∣∣∣ϕ(s0, a0)⊤(Γ̂n + ρΛ−1
)−1

ρΛ−1β∗

∣∣∣
≤ √

ρ · ∥(Γ̂n + ρΛ−1
)−1/2

ϕ(s0, a0)∥ℓ2 · |||(Γ̂n + ρΛ−1
)−1/2

(ρΛ−1)1/2|||op · ∥Λ−1/2β∗∥ℓ2

≤ 2
√
ρRσ∥(Γ̂n + ρΛ−1

)−1/2
ϕ(s0, a0)∥ℓ2 .

By Lemma 5.4, with probability 1− δ, we have

∥(Γ̂n + ρΛ−1
)−1/2

ϕ(s0, a0)∥ℓ2 ≤ 2∥(I + ρΛ−1
)−1/2

ϕ(s0, a0)∥ℓ2 ≤ 2
√
Dσ(ρ),

which proves equation (D.29c).

D.4.2.2 Proof of Proposition D.4

We start with a decomposition of the error

σ̂2
n(x0, a0)− σ2(x0, a0) =

∣∣∣Ŝx0,a0∣∣∣−1 ∑
i∈Ŝx0,a0

{
εi + b(Xi, Ai) +

(
σ2(Xi, Ai)− σ2(x0, a0)

)}
,

(D.30)

where the noise εi is defined as εi := Zi − E[Zi|Xi, Ai] for each i ∈ [n].

Recall from the definition of the set Ŝx0,a0 that for each i ∈ Ŝx0,a0 , we have Ai = a0
and Xi ∈ B(x0, rn). Applying the Lipschitz condition D.25 then leads to the bound∣∣∣Ŝx0,a0∣∣∣−1 ∑

i∈Ŝx0,a0

∣∣σ2(Xi, Ai)− σ2(x0, a0)
∣∣ ≤ Lrn. (D.31)

Defining the event

Eε,δ :=
{
max
i∈[n]

|b(Xi, Ai)| ≤ b(ε, δ)
}
,
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on this event, we can control the additional bias in the observations∣∣∣Ŝx0,a0∣∣∣−1 ∑
i∈Ŝx0,a0

|b(Xi, Ai)| ≤ b(ε, δ). (D.32)

For the stochastic noise, we claim the following bound holds true whenever the tuning

parameter rn satisfies rn ≤ r0 and p0nr
d0
n

log2 n
≥ log(1/δ).

∣∣∣ ∑
i∈Ŝx0,a0

εi

∣∣∣ ≤ c

√
log(1/δ)

np0r
d0
n

, with probability 1− δ, on the event Eε,δ (D.33)

We prove this inequality at the end of this section.
Combining equations (D.31), (D.32), and (D.33), we choose the local radius as

rn :=
{ log(1/δ)

L2p0n

} 1
d0+2

.

Whenever the sample size n satisfies

n ≥ log(1/δ)

L2p0r
d0+1
0

, and
n

logd0+2 n
≥ Ld0

log(1/δ)

p0
,

on the event Eε,δ, we have the upper bound with probability 1− δ,

∣∣σ̂2
n(x0, a0)− σ2(x0, a0)

∣∣ ≤ b(ε, δ) + c · L
2d0
d0+2

{ log(1/δ)
p0n

} 1
d0+2

.

Proof of equation (D.33): We start by exhibiting a lower bound on the cardinality

of the set Ŝx0,a0 . When the averaging radius rn satisfies rn ≤ r0, by the density
condition (D.26), we have

p∗ := P
(
i ∈ Ŝx0,a0

)
≥ p0r

d0
n , for each i ∈ [n].

The indicators 1i∈Ŝx0,a0
are independent for each i ∈ [n]. By Chernoff bound in the

entropy form, we have

P
(
|Ŝx0,a0| ≤

np∗
2

)
≤ exp

{
− nDKL (p∗/2 ∥ p∗)

}
≤ exp (−cp∗n) ,

for a universal constant c > 0.
Defining the event

E ′ :=
{
|Ŝx0,a0 | ≥

np∗
2

}
,
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the concentration inequality above implies that P(E ′) ≥ 1−δ whenever np∗ ≥ c′ log(1/δ).
Let us condition on the state-action pairs (Xi, Ai)

n
i=1 such that the event Eε,δ∩E ′ holds

true, applying Adamczak’s concentration inequality to its summation, with probability
1− δ under the conditional law, we have∣∣∣ ∑

i∈Ŝx0,a0

εi

∣∣∣ ≤ c
(
σ2 + b(ε, δ)

)
·
{√ log(1/δ)

|Ŝx0,a0|
+

log(1/δ) log n

|Ŝx0,a0|

}
,

for a universal constant c > 0.
Taking into account the random design points (Xi, Ai)

n
i=1, as long as the sample size

and the radius satisfies

np∗ ≥ np0r
d0
n ≥ log(1/δ) · log2 n,

with probability 1− δ, we have∣∣∣ ∑
i∈Ŝx0,a0

εi

∣∣∣ ≤ c

√
log(1/δ)

np0r
d0
n

,

which proves equation (D.33).

D.5 Proofs for the examples

We collect the proofs for the examples in this section.

D.5.1 Proof of Corollary 5.1

We first establish the effective dimension condition (5.23) by verifying the sup-norm
growth bound (Eig(ν)). Doing so ensures that the optimal risk is determined (up
to universal constant factors) by the risk functionals V 2

ξ∗(µ
∗) + V 2

σ,n(ξ
∗, π, g;F) and

V 2
σ,n(δx0 , π, g;F). We then use Theorems 5.1 and 5.3 to prove the bounds (5.34a)

and (5.34b), respectively.

D.5.1.1 Establishing the effective dimension condition

We start by establishing tight bounds on the sup-norm growth condition (Eig(ν)), which
comes with a non-trivial (yet well-controlled) exponent ν. This result is of independent
interest, illustrating the growth of eigenfunctions as a natural phenomenon for RKHS
applied to data whose densities have singularities.

Lemma D.2. Under the set-up above, there exists a pair of positive constants c1, c2
that depends only on α, such that for each j ≥ 1, the eigenfunctions ϕj (normalized with
∥ϕj∥L2(ξ) = 1) associated to eigenvalue λj satisfy

c1λ
− α

4(α+2)

j ≤ ∥ϕj∥∞ ≤ c2λ
− α

4(α+2)

j .
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See Section D.5.1.5 for the proof of this lemma.
Consequently, the condition (Eig(ν)) is satisfied with exponent ν = α

4(α+2)
and

constant ϕmax depending only on α. With eigenvalue decay λj ≍ j−2 of the first-order
Sobolev space (see [218]), Proposition D.1 yields

D(ρ) ≍ ρ−
α+1
α+2 , and D(ρn)/n ≍ n− 1

α+2 .

which ensures the regularity condition (5.21a) for sample size n larger than a threshold
depending only on α.

D.5.1.2 Proof of equation (5.34a)

Note that for any function f ∈ BH(1) and x ∈ [0, 1], the Cauchy–Schwarz inequality
yields

|f(x)| =
∣∣∣∣∫ x

0

f ′(t)dt

∣∣∣∣ ≤
√
x ·
∫ x

0

(f ′(t))2dt ≤
√
x.

So we have ∥µ∗∥∞ ≤ 1 and consequently Vξ∗(µ
∗) ≤ 1.

By the definition (5.1), the variance function Vσ,n(ξ
∗, π, g;F) is defined (up to

universal constant factors) as the optimum value of the following variational problem:

sup
q

{∫ 1

0

q(x)dx

}
, such that (D.34a)

q(0) = 0,

∫ 1

0

(q′(x))2dx ≤ n, and

∫ 1

0

(1− x)αq2(x)dx ≤ 1. (D.34b)

It suffices to establish upper and lower bounds on the variance functional
Vσ,n(ξ

∗, π, g;F) under different regimes.
Our proof relies on a technical lemma regarding the constraint (D.34b), stated as

Lemma D.3. Under the constraint (D.34b), we have

sup
x∈[0,1]

|q(x)| ≤ cαn
1+α

2(2+α) , and sup
x∈[0,1−ε]

|q(x)| ≤ cα,εn
1/4,

for a constant cα depending on α > 0, and a constant cα,ε depending on α > 0 and
ε ∈ (0, 1).

We prove this lemma in Section D.5.1.4.

Taking it as given, we now proceed the proof of equation (5.34a). It suffices to
establish upper and lower bounds on the variance functional Vσ,n(ξ

∗, π, g;F) under
different regimes.
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Upper bounds on the variance functional: Given a function q satisfying the
constraint (D.34b), for any ε ∈ (0, 1), we decompose the integral

∫ 1

0
q(x)dx into parts∫ 1−ε

0
and

∫ 1

1−ε, and bound them in different ways.
By the Cauchy–Schwarz inequality, we note that

(∫ 1−ε

0

q(x)dx
)2

≤
∫ 1−ε

0

(1− x)αq2(x)dx ·
∫ 1−ε

0

dx

(1− x)α
≤


1

1−α α < 1,

log(1/ε) α = 1,
1

α−1
ε1−α α > 1.

(D.35)

For the second part, integration-by-parts yields∫ 1

1−ε
q(x)dx = q(1)− (1− ε)q(1− ε)−

∫ 1

1−ε
xq′(x)dx = εq(1− ε) +

∫ 1

1−ε
(1− x)q′(x)dx.

For the integral term, applying the Cauchy–Schwarz inequality yields

|
∫ 1

1−ε
(1− x)q′(x)dx| ≤ ∥q∥H ·

√∫ 1

1−ε
(1− x)2dx ≤

√
ε3n. (D.36)

By Lemma D.3, we have

|εq(1− ε)| ≤ εn
1+α

2(2+α) . (D.37)

Combining equations (D.35), (D.36), (D.37) yields

∣∣∣∣∫ 1

0

q(x)dx

∣∣∣∣ ≤ √
ε3n+ cαεn

1+α
2(2+α) + c′α ×


1 α < 1,√

log(1/ε) α = 1,

ε−(α−1)/2 α > 1.

We consider three cases:

• When α < 1, we take ε = 0, and obtain that Vσ,n(ξ
∗, π, g;F) ≲α 1.

• When α = 1, we take ε = n−1, and obtain that Vσ,n(ξ
∗, π, g;F) ≲

√
log n.

• When α > 1, we take ε = n
−1
α+2 , and obtain that Vσ,n(ξ

∗, π, g;F) ≲α n
α−1

2(α+2) .

Lower bounds on the variance functional: On the lower bound side, for positive
scalars ε ∈ (0, 1) and h > 0, we construct the function

qε,h(x) :=

{
0 x ≤ 1− ε,
h
ε
(x− 1 + ε) x > 1− ε.
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Clearly, we have qε,h(0) = 0, and straightforward calculation yields∫ 1

0

qε,h(x)dx =
εh

2
,

∫ 1

0

(q′ε,h(x))
2dx =

h2

ε
, and

∫ 1

0

(1− x)αq2ε,h(x)dx ≤ εα+1h2.

For α > 1, under the choice of parameters

ε = n
−1
2+α , and h = n

1+α
2(2+α) ,

we have that
∫ 1

0
qε,h(x)dx ≍ n

α−1
2(2+α) .

For α < 1, taking ε = 1 and h = 1, we have that
∫ 1

0
qε,h(x)dx ≍ 1.

Consequently, for α ̸= 1, we have the lower bounds

Vσ,n(ξ
∗, π, g;BH (R)) ≳α

{
n

α−1
2(α+2) , α > 1,

1 α < 1.
(D.38)

For the case of α = 1, we use a different construction. Define the function

qn(x) :=

{
(logn)−1/2

1−x , x ∈ [0, 1− n−1/3],

n1/3(log n)−1/2, x ∈ [1− n−1/3, 1].

Straightforward calculation yields∫ 1

0

(q′n(x))
2dx =

n

12 log n
< n, and

∫ 1

0

q2n(x)(1− x)dx =
1

3
+

1

2 log n
< 1,

which verifies the constraint (D.34b).
Therefore, we can lower bound the quantity Vσ,n(ξ

∗, π, g;BH (R)) using the value of
the variational problem at qn, leading to the result

Vσ,n(ξ
∗, π, g;BH (R)) ≥

∫ 1

0

qn(x)dx ≥ 1

3

√
log n. (D.39)

Combining equations (D.38) and (D.39) completes the proof of the lower bound on
Vσ,n(ξ

∗, π, g;BH (R)).

D.5.1.3 Proof of equation (5.34b)

By Theorem 5.1 and the claim (5.32), the minimax risk is determined by the variance
functional Vσ,n(δx0 , π, g;F), defined as the optimum value of the variational problem

sup
q

|q(x0)|, such that q(0) = 0,

∫ 1

0

(q′(x))2dx ≤ n, and

∫ 1

0

(1− x)αq2(x)dx ≤ 1.

(D.40)

If x0 = 0, we have the trivial solution Vσ,n(δx0 , π, g;F) = 0. The rest of this section
deals with the case of x0 = 1 and x0 ∈ (0, 1), respectively.
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Case I: x0 = 1. By Lemma D.3, we have |q(1)| ≤ cαn
1+α

2(1+α) for any function q satisfying
the constraints in the variational problem (D.40). On the other hand, consider the
function

q(x) :=

{
0 x ≤ 1− n

−1
2+α ,

n
3+α

2(2+α)
(
x− 1 + n

−1
2+α

)
x > 1− n

−1
2+α .

Straightforward calculation verifies that the function q satisfies the constraint in the

variational problem (D.40), with q(1) = n
1+α

2(2+α) . Combining with the upper bound
establishes that

Vσ,n(δx0 , π, g;F) ≍ n
1+α

2(2+α) .

Case II: x0 ∈ (0, 1). For any function q satisfying the constraint in the variational
problem (D.40), Lemma D.3 yields

|q(x0)| ≤ cα,x0n
−1/4, for constant cα,x0 depending on α and x0.

On the other hand, given n ≥ max
(
x0

−2, (1− x0)
−1
)
, we construct the function

q(x) = max
{n1/4

2
− n3/4

2
|x− x0|, 0

}
.

Straightforward calculation verifies that the function q satisfies the constraint in the
variational problem (D.40), with q(x0) = n1/4/2. Combining with the upper bound
establishes that

Vσ,n(δx0 , π, g;F) ≍ n1/4.

Putting together the results under two cases completes the proof of equation (5.34b).

D.5.1.4 Proof of Lemma D.3

For any x ∈ [0, 1] and y ∈ [0, x], by applying the Cauchy–Schwarz inequality, we find
that

|q(y)| ≥ |q(x)| − |q(y)− q(x)| ≥ |q(x)| −

√
(x− y)

∫ x

y

q′(t)2dt ≥ |q(x)| −
√
(x− y)n.

Substituting into the second constraint in equation (D.34b) yields

1 ≥
∫ 1

0

(1− y)αq2(y)dy ≥
∫ x

0

(1− y)α
[
|q(x)| −

√
(x− y)n

]2
+
dy

≥
∫ q2(x)

n

0

(z + 1− x)α
(
|q(x)| −

√
nz
)2
dz ≥

∫ q2(x)
2n

0

zα
(
|q(x)| −

√
nz
)2
dz

≥ 1

4(1 + α)
· |q(x)|

4+2α

n1+α
.
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Since the choice of x ∈ [0, 1] is arbitrary, it follows that

sup
x∈[0,1]

|q(x)| ≤ cαn
1+α

2(2+α) . (D.41)

On the other hand, when x is bounded away from 1, following the same derivation, we
have

1 ≥
∫ q2(x)

n

0

(z + 1− x)α
(
|q(x)| −

√
nz
)2
dz

≥
∫ q2(x)

2n

0

(1− x)α
(
|q(x)| −

√
nz
)2
dz ≥ (1− x)α

4n
q4(x),

which implies that

sup
x∈[0,1−ε]

|q(x)| ≤ cα,εn
1/4 (D.42)

Putting together the pieces completes the proof of Lemma D.3.

D.5.1.5 Proof of Lemma D.2

Since we focus on the ratio between L2-norm and sup-norm of the eigenfunction ϕj, we
slightly abuse the notation, and use ϕj to denote a constant multiple of an eigenfunction
of K under L2 associated to the eigenvalue λj. The orthogonality condition gives

λjϕj(x) =

∫ 1

0

K(x, y)ϕj(y)π(y)dy. (D.43)

Substituting the kernel function K the integral equation (D.43), we have

λjϕj(x) =

∫ x

0

yϕj(y)π(y)dy + x ·
∫ 1

x

ϕj(y)π(y)dy.

Taking the derivative twice yields the ordinary differential equation

λjϕ
′′
j (x) + (1− x)αϕj(x) = 0 on [0, 1].

Define the auxiliary function ψj(z) := ϕj
(
λ

1
2+α

j (1− z)
)
, the differential equation can be

converted into a standard form

ψ′′
j (z) + zαψj = 0, for z ∈

(
0, λ

−1
2+α

j

)
Using Jα : R+ → R to denote the Bessel function of first kind (see [217]), the ODE
above admits the closed-form solution

ψj(z) =
√
z

{
γ1(j)J −1

α+2

( 2

α + 2
zα/2+1

)
+ γ2(j)J 1

α+2

( 2

α + 2
zα/2+1

)}
, for z ∈

(
0, λ

−1
2+α

j

)
.

(D.44)
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for a pair of constants γ1(j) and γ2(j) that may depend on j.
Since we focus on the ratio between L2-norm and sup-norm of ψj, we can assume

γ21(j) + γ22(j) = 1 without loss of generality. Let ϕj be induced by such function ψj.
Under this setup, we claim the following relations for any j ≥ 1

c ≤ ∥ϕj∥∞ ≤ c, (D.45a)

cλ
α

4α+8

j ≤ ∥ϕj∥L2(π) ≤ cλ
α

4α+8

j , (D.45b)

for a pair (c, c) of constants depending only on α.
Renormalizing the eigenfunction ϕj to the quantity ϕj/∥ϕj∥L2(ξ), we conclude that

c/c · λ
− α

4(α+2)

j ≤ ∥ ϕj
∥ϕj∥L2(ξ)

∥∞ ≤ c/c · λ
− α

4(α+2)

j ,

which proves Lemma D.2.
The rest of this section is devoted to the proofs of equations (D.45a) and (D.45b).

Proof of equation (D.45a): For α > 0 fixed, by definition, we note have

inf
j≥1

∥ϕj∥∞ ≥ inf
γ21+γ

2
2=1

sup
z∈[1,2]

∣∣∣∣γ1J −1
α+2

( 2

α + 2
zα/2+1

)
+ γ2J 1

α+2

( 2

α + 2
zα/2+1

)∣∣∣∣
= sup

z∈[1,2]

∣∣∣∣γ∗1J −1
α+2

( 2

α + 2
zα/2+1

)
+ γ∗2J 1

α+2

( 2

α + 2
zα/2+1

)∣∣∣∣ ,
where the constants (γ∗1 , γ

∗
2) minimizes the expression above (the expression is uniformly

continuous in (γ1, γ2, z), which implies continuity of the supremum in (γ1, γ2), and
guarantees existence of a minimizer on a compact domain). Since Bessel functions J −1

1+α

and J 1
1+α

are linearly independent on any open interval [217], there exists a constant

c > 0 depending only on α, such that

inf
j≥1

∥ϕj∥∞ ≥ c.

On the other hand, using the asymptotic formulae for Bessel functions, we note that∣∣∣∣J ±1
α+2

( 2

α + 2
zα/2+1

)∣∣∣∣ =
{
O
(
1/
√
z
)

z → 0,

O
(
z−

α
4
− 1

2

)
|z| → ∞.

Combining with the expression (D.44) implies that the class of functions {ϕj}j≥1 admits
a uniform upper bound c, which is independent of j.
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Proof of equation (D.45b): Define the auxiliary functions

ψ̃j(z) = 1z>1

√
α + 2

π
z−

α
4

{
γ1(j) cos

( 2

α + 2
zα/2+1 − απ

4(α + 2)

)
+ γ2(j) cos

( 2

α + 2
zα/2+1 +

απ

4(α + 2)

)}
. (D.46)

By the asymptotic approximation properties for Bessel functions [217], we have∣∣∣ψ̃j(z)− ψj(z)
∣∣∣ ≤ c′(1 + z)−1− 3

4
α, for any z ∈ R.

for a constant c′ > 0 depending only on α.

Let ϕ̃j := ψ
(
λ

−1
2+α

j (1− x)
)
, we have

∥ϕj − ϕ̃j∥2L2(π) ≤
∫ 1

0

∣∣∣ψj((1/λj) 1
2+α (1− x)

)
− ψ̃j

(
(1/λj)

1
2+α (1− x)

)∣∣∣2 π(x)dx
≤ c′

∫ 1

0

xα

1 +
(
(1/λj)

1
2+αx

)2+ 3
2
α
dx

≤ c2(α)λ
α+1
α+2

j , (D.47)

where the constant c2(α) depends only on α.

For the function ϕ̃j, we can compute its L2(π)-norm.

∥ϕ̃j∥2L2(π) = λ
1+α
2+α

j

∫ ( 1
λj

)
1

2+α

1

ψ̃2
j (z)z

αdz

=
2

α + 2
· λj

1+α
2+α

∫ 1/
√
λj

1

ψ̃2
j

(
θ

2
2+α

)
θ

α
α+2dθ

=
2

π
· λ

1+α
2+α

j

∫ 1/
√
λj

1

{
γ1(j) cos

(2θ − απ/4

α + 2

)
+ γ2(j) cos

(2θ + απ/4

α + 2

)}2

dθ.

(D.48)

Note that the integral is with respect to a periodic function, we have the upper bound∫ 1/
√
λj

1

{
γ1(j) cos

(2θ − απ/4

α + 2

)
+ γ2(j) cos

(2θ + απ/4

α + 2

)}2

dθ ≤ c3(α) · λ
− 1

2
j ,

and the lower bound∫ 1/
√
λj

1

{
γ1(j) cos

(2θ − απ/4

α + 2

)
+ γ2(j) cos

(2θ + απ/4

α + 2

)}2

dθ

≥
{ 1

π(α + 2)
√
λj

− 2
}

×
∫ π(α+2)

0

{
γ1(j) cos

(2θ − απ/4

α + 2

)
+ γ2(j) cos

(2θ + απ/4

α + 2

)}2

dθ
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For any pair (γ1, γ2) such that γ21 + γ22 = 1, we have∫ 2π

0

{
γ1 cos

(
θ − απ/4

α + 2

)
+ γ2 cos

(
θ +

απ/4

α + 2

)}2

dθ

= π − 2γ1γ2

∫ 2π

0

cos
(
θ − απ/4

α + 2

)
cos
(
θ +

απ/4

α + 2

)
dθ

= π − 2πγ1γ2 cos
( απ

2α + 4

)
≥ π

{
1− cos

( απ

2α + 4

)}
,

which is a positive constant depending only on α, and independent of γ1 and γ2.
Substituting these bounds back to equation (D.48) yields

c′4(α)λ
α

4α+8

j ≤ ∥ϕ̃j∥L2(π) ≤ c′3(α)λ
α

4α+8

j

Combining with equation (D.47) completes the proof of equation (D.45b).

D.5.2 Proof of Corollary 5.2

We prove the claims about the averaged functional τ ∗ and the one-point functional
Lω(µ

∗, δx0) separately in the following two subsections.

D.5.2.1 Bounds on the minimax risk for the averaged functional

By Theorems 5.1 and 5.3, we have Mn

(
BH(1)

)
≍ n−1

{
V 2
ξ∗(µ

∗) + V 2
σ,n(ξ

∗, π, g;F)(F ;n)
}
.

Taking the measure ω(· | x) = δx for any x ∈ X, it can be seen that

V 2
ξ∗(µ

∗) = varX∼ξ

(
µ∗(X,T (X))

)
.

By the generalized Morrey’s embedding theorem (e.g., see §5.6.3 in Evans [58]), for any
smoothness index s > (dx + da)/2, we have

sup
(x,a)∈S×A

|µ∗(x, a)| ≤ c′∥µ∗∥H ≤ c′,

for a constant c′ depending on the triple (dx, da, s). So we have V 2
ξ∗(µ

∗) ≲ 1 in the worst
case.

Since the conditional variance function is a constant, we have

V 2
σ,n(ξ

∗, π, g;F) =
∑
j,k≥1

u2j,k
1 + 1

n
1
λj,k

,

where we define the projection coefficients

uj,k =

∫
X
ϕj(x)ψk(T (x))dx = ⟨ϕj, ψk ◦ T ⟩L2(X).
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By the eigenvalue decay condition (5.35), we have λ−1
j,k ≍ j2s/dx + k2s/da , which implies

that

n−1V 2
σ,n(ξ

∗, π, g;F)(F ;n) ≍ Vσ̄,n(ξ
∗, π, g;BH (R)) =

∑
j,k≥1

|⟨ϕj, ψk ◦ T ⟩L2(X)|2

n+ j2s/dx + k2s/da
, (D.49)

which proves the instance-dependent bound.
By Parseval’s identity, for each k ≥ 1, we have

∞∑
j=1

⟨ϕj, ψk ◦ T ⟩2L2(X) = ∥ψk ◦ T∥2L2(X) ≤ ∥ψk∥2∞ = 1.

Substituting into the instance-dependent bound (D.49), we have the worst-case instanti-
ation

1

n
V 2
σ,n(ξ

∗, π, g;F)(F ;n) ≤
n

da
2s∑

k=1

∞∑
j=1

|⟨ϕj, ψk ◦ T ⟩L2(X)|2

n
+

∞∑
k=n

da
2s

∞∑
j=1

|⟨ϕj, ψk ◦ T ⟩L2(X)|2

k2s/da

≤
{
1 +

2s

2s− da

}
n

da
2s

−1.

Thus, we obtain the worst-case upper bound supT Mn

(
BH(1)

)
≲ n

da
2s

−1.
On the other hand, for any a0 ∈ A, taking the target functional Ta0(x) ≡ a0 for any

x ∈ X, we have

n−1V 2
σ,n(ξ

∗, π, g;F) =
∑
j,k≥1

|ψk(a0)|2|⟨ϕj, 1⟩L2(X)|2

n+ j2s/dx + k2s/da
=
∑
k≥1

|ψk(a0)|2

n+ 1 + k2s/da

For the Fourier basis ψk, we have |ψk(a0)| for any a0 ∈ A, which leads to the lower
bound

sup
T

Mn

(
BH(1)

)
≳
∑
k≥1

1

n+ 1 + k2s/da
≳ n

da
2s

−1.

D.5.2.2 Minimax bounds for the one-point functional

For any x0 ∈ X, Theorem 5.1(b) and equation (5.32) imply that Mn

(
x0;F

)
≍

n−1V 2
σ,n(δx0 , π, g;F). By the variational representation of V 2

σ,n(δx0 , π, g;F), it can be
seen that

V 2
σ,n(δx0 , π, g;F) ≍

∑
j,k≥1

|ϕj(x0)ψk(T (x0))|2

1 + n−1λj,k
=
∑
j,k≥1

1

1 + n−1λj,k
,

where the last equation follows from the fact that the complex Fourier bases ϕj and ψk
take value at unit circle.



D.5. PROOFS FOR THE EXAMPLES 344

Substituting with the eigenvalue decay condition (5.35), we obtain that

n−1V 2
σ,n(δx0 , π, g;F) ≍

∑
j,k≥1

1

n+ j2s/dx + k2s/da
=: Sn.

It remains to study the summation Sn. On the one hand, we note that

Sn ≥
n

dx
2s∑

j=1

n
da
2s∑

k=1

1

n+ j2s/dx + k2s/da
≥ 1

3
n

dx+da
2s

−1.

On the other hand, we have the upper bound

Sn ≤ cdx,s

∞∑
j=1

(
n+ j2s/dx

) da
2s

−1 ≤ cdx,da,sn
dx+da

2s
−1.

Therefore, we conclude that Mn(x0;F) ≍ n
dx+da

2s
−1 for any x0 ∈ X and deterministic

policy T .
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