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Abstract 

In Silico Metabolic Modeling of Single Th17 Cells Reveals Regulators of Autoimmunity 

by 

Allon Shlomo Wagner 

Doctor of Philosophy in Electrical Engineering and Computer Science 

University of California, Berkeley 

Professor Nir Yosef, Chair 

 

Metabolism is a major regulator of immune cell function, but it remains difficult to study the 
metabolic status of individual cells with current technologies. Here, we present Compass, an 
algorithm to characterize cellular metabolic states based on single-cell RNA sequencing (scRNA-
Seq) and flux balance analysis. We applied Compass to associate metabolic states with Th17 
functional variability (pathogenic potential) and recovered a metabolic switch between 
glycolysis and fatty acid oxidation, akin to known Th17/Treg differences, which we validated by 
metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine 
and downstream polyamine metabolism. Indeed, polyamine-related enzymes expression were 
enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation 
of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and 
remodeled the transcriptome and epigenome of Th17 cells towards a Treg-like state. In vivo 
perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and 
attenuated tissue inflammation in central nervous system (CNS) autoimmunity. 

The introduction highlights the motivation to this study, which stems from the conjunction of 
two transformative developments of recent years – the emergence of single-cell RNA 
sequencing technologies and the growing appreciation of cellular metabolism as key player in 
health and disease. Chapter 1 introduces lays the groundwork by introducing the fields of 
computational modeling of metabolism, immunometabolism, and single-cell genomics. Chapter 
2 then introduces the Compass algorithm that serves as the computational framework to the 
rest of the study. Chapter 3 turns to T helper 17 (Th17) cells and emphasizes their diverse 
effector phenotype, which makes them an attractive system to query with computationally-
informed metabolic methods. A Compass-based study reveals a parallel diversity of metabolic 
phenotypes within the Th17 cell type. In the next chapters we demonstrate our computational 
framework’s ability to discover metabolic regulators of Th17 inflammatory potential 
(pathogenicity). Chapters 4 and 5 complement one another; chapter 4 restricts its analysis to 
the well-studied central carbon metabolism pathways, whereas chapter 5 presents an 
unsupervised network-wide analysis that uncovers a novel metabolic regulator in the peripheral 
polyamine pathway. Chapter 6 follows on this discovery and shows that chemical and genetic 
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perturbations of the polyamine pathway lead to a sizable shift in both the molecular and 
effector profiles of Th17 cells. It is suggested that polyamine metabolism might be a novel 
therapeutic target in autoimmune disorders by showing that in vivo inhibition of two different 
enzymes in the pathway alleviates experimental autoimmune encephalomyelitis (EAE) – a 
murine model for human multiple sclerosis.  
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Chapter 1 

Introduction 

 Setting the table, part 1: metabolism and computation 

1.1.1 Metabolism and immunometabolism – an (almost) forgotten field is revived and a new 
field is born 

The early- and mid-twentieth century were a golden era for biochemistry and metabolic 
research (Chandel, 2014). Seminal discoveries, such as the discovery of the glycolysis pathway, 
the Krebs cycle, the Warburg effect, the Cori cycle, and the urea cycle were made, and awarded 
their discoverers with Nobel recognition. However, with the discovery of DNA and growing 
understanding of and interest in genomics, focus shifted away from metabolism. In addition, 
many metabolic genes are lethal if deleted in model organisms, and their biallelic deficiency in 
human is rare and often results in debilitating cognitive and physical impairments (Hamosh et 
al., 2000; Marsden et al., 2006; Pampols, 2010). These contributed to a common perception of 
metabolism as a largely homeostatic process that runs parallel to other cellular circuits, more 
relevant to human disease. 

The tides began to shift ca. 2008, first in the discipline of cancer research, where altered energy 
metabolism gained universal recognition is a hallmark of cancer (Hanahan and Weinberg, 2011) 
alongside previous hallmarks of the disease (Hanahan and Weinberg, 2000). Other discoveries 
demonstrated that metabolic dysregulation in cancer was not limited to energy pathways. One 
key discovery was that mutations in isocitrate dehydrogenase (IDH), common in multiple cancer 
types, result in neomorphic enzyme activity that converted α-ketoglutarate to the 
oncometabolite 2-hydroxyglutarate (2HG) (Dang et al., 2010; Ward et al., 2010), which 
interferes with DNA demethylation and can produce an hypermethylated epigenomic landscape 
(Figueroa et al., 2010). This early discovery exemplifies the confluence of two major paradigm 
shifts. First, the realization that altered metabolism is fundamental to tumor survival. Second, 
the understanding that the metabolic subsystem is not self-contained, and is capable of 
regulating cell behavior, for example through epigenomic (Mews et al., 2017; Wellen et al., 
2009), epitranscriptomic (Cho et al., 2021), or post-transcriptional (Chang et al., 2013) 
modifications. 
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Aberrant metabolism thus became universally recognized as a major mediator and therapeutic 
target in almost any major health concern: cancer, neurodegeneration, cardiovascular 
disorders, and even normal aging. The stage was set for the emergence of the discipline of 
immunometabolism, the study of metabolism in immune cells. Today, immunometabolism is a 
copiously active field of research. It has revealed metabolic regulation of inflammation in 
almost all contexts, including anti-viral immunity, autoimmunity, and anti-tumor response 
(Buck et al., 2017; Certo et al., 2020; Chapman et al., 2019; Diskin et al., 2021; Elia and Haigis, 
2021; Geltink et al., 2018; Ho and Kaech, 2017; Hotamisligil, 2017; Jung et al., 2019; Makowski 
et al., 2020; O’Neill et al., 2016; Roy et al., 2021; Russell et al., 2019; Varanasi et al., 2020; Voss 
et al., 2021). 

1.1.2 Flux Balance Analysis (FBA) – metabolism begs computation 

Cellular metabolism is commonly abstracted as a network, with nodes being metabolites and a 
directed edge (u,v) connecting metabolites u,v if there exists a reaction with u as a substrate 
and v as a product (see below for generalizations of the network abstraction). The metabolic 
network is highly complex and interconnected, even in unicellular model organisms, and its 
network theoretical properties have been studied and compared to other natural and man-
made networks (Newman, 2018). Standard visual representations of metabolic pathways, as 
well as common metabolic databases (KEGG, MetaCyc) omit some of the edges for accessibility 
and simplicity. 

Due to the scale and complexity of the metabolic network, a metabolic perturbation can create 
cascading effects and alter a seemingly distant part of the network or cut across traditional 
pathway definitions. Therefore, computational tools are needed to contextualize observations 
on specific reactions or enzymes into a systems-level understanding of metabolism and its 
dysregulation in disease.  

Chemical stoichiometry describes the conversion of substrates into products (Petrucci et al., 
2016), for instance: 

2 ⋅ Mg + O' ⟶ 2 ⋅ MgO 

Here, 2 moles of magnesium (Mg) react with one mole of dioxygen (O2, with each molecule of 
dioxygen containing 2 oxygen atoms) to produce 2 moles of magnesium oxide (MgO). The 
coefficients needed to preserve mass balance in the equation are called the stoichiometric 
coefficients. 

In general notation, reactions take the form: 
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𝑎 ⋅ 𝑋 + 𝑏 ⋅ 𝑌 +⋯⟶ 𝑐 ⋅ 𝑍 + ⋯ 

The mathematical object describing biochemical stoichiometry is the formal representation of 
the metabolic network. This representation may take many forms depending on the 
computational goals and contexts. 

By neglecting the stoichiometric coefficients and retaining only the ordered relation 
〈{𝑋, 𝑌}, {𝑍}〉  , we may view the metabolic network as a hypergraph, where nodes are 
metabolites and directed hyperedges connect substrates to products. The hypergraph is often 
simplified by transformation into a bipartite (two-mode) graph, where nodes are either 
reaction or metabolites and directed edges connect substrates to reactions and reactions to 
products (Jha et al., 2015). Multiple studies have simplified the bipartite graph further to one-
mode graphs of reactions or metabolites, where directed edges represent 2-step paths from 
nodes in the bipartite graph (Palsson, 2015). If this procedure is applied to transform the bi-
partite graph into a one-mode graph with metabolite nodes, we obtain the standard network 
representation of metabolism presented above.  

A biochemical reaction, or an hyperedge in the metabolic hypergraph, is associated with 
metadata. The stoichiometric coefficients were already discussed. Under physiological 
conditions, many of the biochemical reactions are enzymatically catalyzed, and the enzymes or 
genes coding them are associated with the hyperedge as well. Notably, many reactions can be 
catalyzed by isozymes (enzymes with different amino-acid sequence capable of catalyzing the 
same reaction), or require a protein complex, coded by multiple genes, to take place. This 
naturally gives rise to boolean expressions over gene literal, where OR and AND relations 
correspond to genes coding isozymes and parts of protein complexes, respectively. Genetic 
deletions are then modeled by assigning truth values to gene literals according to their 
functional status, and discarding reactions whose associated boolean expression is unsatisfied 
(Heirendt et al., 2019). 

Computational treatments of metabolism that take account of the stoichiometric coefficients 
model biochemical fluxes, namely the instantaneous rate by which substrates are converted to 
products. These methods largely fall into one of two broad categories. One approach is 
modeling metabolic reaction kinetics by ODEs (Hahl and Kremling, 2016; Palsson, 2011). The 
major obstacles to this approach are computational tractability, limiting the number of feasibly 
simulated reactions in the system, and the scarcity of available data concerning pertinent 
kinetic constants in human physiological conditions. A second approach eliminates kinetic 
constants by assuming chemical steady-state (Palsson, 2015). Hybrid approaches have been 
suggested as well (Antoniewicz, 2013; Mahadevan et al., 2002; Martínez et al., 2015; Yugi et al., 
2005). 
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Flux balance analysis (FBA) is a family of algorithms for flux modeling on genome-scale 
metabolic network. The vector of flux values per reaction (flux distribution) is constrained by 
thermodynamic (e.g., reaction irreversibility) and chemical (e.g., nutrient availability), which 
limit the space of feasible flux distributions (Orth et al., 2010). FBA then employs constraint-
based optimization to solve for points of interest in the high-dimensional flux distributions 
space (Burgard et al., 2003; Lewis et al., 2010; Segrè et al., 2002; Wagner et al., 2013; Yizhak et 
al., 2013).  

 Setting the table, part 2: single-cell genomics 

1.2.1 The emergence of genome-scale single-cell assays 

Until recently, most genomic profiling studies have analyzed cell populations, although even 
cells of the same 'type' can exhibit substantial heterogeneity, reflecting finer sub-types, 
regulated functional variation, or inherent stochasticity (Altschuler and Wu, 2010; Ben-Moshe 
et al., 2019; Gaublomme et al., 2015; Grun et al., 2015; Halpern et al., 2017; Hildreth et al., 
2021; Katzenelenbogen et al., 2020; Kennedy et al., 2020; Kumar et al., 2019; Levine et al., 
2021; Shalek et al., 2013, 2014; Zeisel et al., 2015). However, during the 2010’s, rapid 
technological advances have enabled genome-wide profiling of RNA (Hashimshony et al., 2012; 
Klein et al., 2015; Macosko et al., 2015; Picelli et al., 2013; Ramskold et al., 2012; Tang et al., 
2009), DNA (Hou et al., 2012; Leung et al., 2015; Lohr et al., 2014; Navin et al., 2011; Wang et 
al., 2014; Xu et al., 2012; Zong et al., 2012), protein (Bandura et al., 2009; Bendall et al., 2011; 
Bodenmiller et al., 2012; Chattopadhyay et al., 2006), epigenetic modifications (Farlik et al., 
2015; Guo et al., 2013, 2014; Rotem et al., 2015; Smallwood et al., 2014), chromatin 
accessibility (Buenrostro et al., 2015; Cusanovich et al., 2015), and other molecular events 
(Nagano et al., 2013) in single cells. Specialized assays capable of measuring more than one of 
these data modalities in single cells (Angermueller et al., 2016; Dey et al., 2015; Kearney et al., 
2021; Lareau et al., 2021; Macaulay et al., 2015; Mimitou et al., 2019; Stoeckius et al., 2017), 
measuring single-nucleus RNA (Grindberg et al., 2013; Habib et al., 2016; Lacar et al., 2016; Lake 
et al., 2016), which is particularly suitable for frozen tissues, have since been introduced. Efforts 
are also invested towards single-cell assays of RNA in its spatial context. Pioneering 
technologies conceded the individual cell resolution (Ståhl et al., 2016), or the 
comprehensiveness of transcriptomic profiling (Chen et al., 2015; Shah et al., 2016). More 
recent work is now overcoming these barriers with microscopy (Eng et al., 2019) or sequencing 
systems (Lee et al., 2021; Rodriques et al., 2019; Stickels et al., 2020; Vickovic et al., 2019). 
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1.2.2 Single-cell RNA sequencing – challenges and opportunities 

In this work, we study single-cell RNA-Sequencing (scRNA-Seq), one of the most widely used 
data modalities in single-cell functional genomics. The scale and precision of scRNA-Seq is 
continually increasing (Aldridge and Teichmann, 2020; Svensson et al., 2018), reaching millions 
of cells in massively parallel assays that multiplex samples through antibody (cell hashing) 
(Stoeckius et al., 2018) or lipid tagging (McGinnis et al., 2019). The newfound frontiers allowed 
addressing profound biological questions that were previously out of reach (Tanay and Regev, 
2017) and undertaking the ambitious project to collaboratively create an atlas of all human cell 
types in health (Regev et al., 2017a; Rozenblatt-Rosen et al., 2021) and disease (Rozenblatt-
Rosen et al., 2020). However, single-cell data poses unique challenges owing to its unique 
characteristics stemming from the underlying biotechnology (Hie et al., 2020; Wagner et al., 
2016), and the new questions that it can address need novel computational approaches to be 
answered (Argelaguet et al., 2021; Lähnemann et al., 2020). Here, we present the challenges 
and opportunities of single-cell transcriptomics from a computational point of view. The 
conceptual framework we put forth is largely based on an early and influencial review, in which 
we anticipated some of the key research direction of the field (Wagner et al., 2016). 

1.2.3 The many facets of a cell's identity 

Single-cell genomics offers novel data modalities, and requires rethinking and formulating of 
our conceptual frameworks and mental models of its empirical results. Here, we offer our 
attempt to address the need to more formally define some concepts required for reasoning 
about single-cell genomics. 

We define a cell's identity as the outcome of the instantaneous intersection of all factors that 
affect it (Figure 1). We refer to the more permanent aspects in a cell's identity as its type (e.g., a 
hepatocyte typically cannot turn into a neuron) and to the more transient elements as its state. 
Cell types are often organized in a hierarchical taxonomy, as types may be further divided into 
finer subtypes; such taxonomies are often related to a cell fate map, reflecting key steps in 
differentiation. Cell states arise transiently during time-dependent processes, either in 
a temporal progression that is unidirectional (e.g., during differentiation, or following an 
environmental stimulus) or in a state vacillation that is not necessarily unidirectional and in 
which the cell may return to the origin state. Vacillating processes can be oscillatory (e.g., cell-
cycle or circadian rhythm) or can transition between states with no predefined order (e.g., due 
to stochastic, or environmentally controlled, molecular events). These time-dependent 
processes may occur transiently within a stable cell type (as in a transient environmental 
response), or may lead to a new, distinct type (as in differentiation). A cell's identity is also 
affected by its spatial context, which includes the cell's absolute location, defined as its position 
in the tissue (e.g., the location of a cell along the dorsal–ventral axis during embryo 
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development determines its exposure to a morphogen gradient), and the cell's neighborhood, 
or the identity of neighboring cells. 

The cell's identity is manifested in its molecular contents. Genomic experiments measure these 
in molecular profiles, and computational methods infer information on the cell's identity from 
the measured molecular profiles (inevitably, the molecular profile also reflects allele-intrinsic 
and technical variation that must be handled properly by computational methods before any 
analysis is done). We refer to this as inferring facets of the cell's identity, or 
inferring factors that created the cell's identity, to stress that none describes it fully, but each is 
an important, distinguishable aspect. 

By analogy, we relate the biological factors that shape a cell's identity to basis vectors that span 
a space of cell identities. Similarly, the computationally inferred facets of the cell's identity are 
likened to basis vectors that span a space of cell molecular profiles. In many cases, 
computational analysis methods find such basis vectors directly (as discussed in main text) and 
these indeed relate well to biological facets of identity. However, this idealized definition, and 
the present computational tools, are likely to be insufficient to capture the true nature of this 
space. In particular, basis vectors in algebra are defined to be independent of each other, but 
facets of a cell's identity that we would like to distinguish and identify separately—such as its 
type, location, and state—may be largely dependent on one another. For example, the spatial 
position of a cell in a solid organ is a fixed element of its identity that is usually distinguished 
from its 'type' but is nevertheless not independent of cell type. In another example, whereas a 
cell cycle phase may have invariant characteristics across systems (Kowalczyk et al., 2015; 
Macosko et al., 2015; Tirosh et al., 2016), the ability of a cell to enter the cell cycle and the 
duration of the phase can depend on cell type and can influence other temporal processes like 
differentiation. As the field of single-cell genomics develops, it may be possible to define 
abstractions, possibly employing data-driven categories rather than ones imposed by prior 
conceptions, that are mathematically precise and reflect the key biological components. 
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Figure 1. Diverse factors combine to create a cell's unique identity, and computational methods reveal 
them. 

(A) A cell participates simultaneously in multiple biological contexts. The illustration depicts a particular 
cell (blue) as it experiences multiple contexts that shape its identity simultaneously (from left to right): 
environmental stimuli, such as nutrient availability or the binding of a signaling molecule to a receptor; a 
specific state on a developmental trajectory; the cell cycle; and a spatial context, which determines its 
physical environment (e.g., oxygen availability), cellular neighbors, and developmental cues (e.g., 
morphogen gradients). (B) The biological factors affecting the cell combine to create its unique, 
instantaneous identity, which is captured in the cell's molecular profile. Computational methods dissect 
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the molecular profile and tease apart facets of the cell's identity, which are akin to 'basis vectors' that 
span a space of possible cellular identities. Key examples include (counterclockwise from top): (1) 
discrete cell types (e.g., cell populations in the retina (Macosko et al., 2015)); cell type frequency can 
vary by multiple orders of magnitude from the most abundant to the rarest subtype; (2) continuous 
phenotypes (e.g., the pro-inflammatory potential of each individual T cell, quantified through a gene 
expression signature derived from bulk pathogenic T cell profiles (Gaublomme et al., 2015)); (3) 
unidirectional temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal 
vacillation between cellular states (e.g., oscillation through cell cycle; (Kowalczyk et al., 2015)); (5) 
physical location (e.g., a cell's location during embryo development determines its exposure to 
morphogen gradients. Dividing an organ into discrete spatial bins, combined with independent data on 
landmark genes, allows inference of spatial bins (highlighted) from which single cells had likely 
originated (Satija et al., 2015). The scatterplots represent single cells (dots) projected onto two 
dimensions (e.g., first two principal components or non-linear projections such as t-SNE or UMAP). 

1.2.4 Sources of biological and technical variation in single-cell RNA-sequencing 

We distinguish three sources of variation in scRNA-seq (Figure S1, top). The first is technical 
variation, which is due to factors such as differences in cell integrity and lysis, RNA capture and 
cDNA conversion, and detection (Kim et al., 2015; Kolodziejczyk et al., 2015). The second is 
allele-intrinsic variation, namely stochastic factors intrinsic to the molecular mechanisms that 
control gene expression (Raj and van Oudenaarden, 2008; Raj et al., 2006; Stewart-Ornstein et 
al., 2012). For example, the bursting statistics of transcriptional initiation coupled to variable 
rates of mRNA degradation can lead to fluctuations in transcript levels over time in one cell, 
and to differences between otherwise 'identical' cells measured at a single time point. This 
inherent stochasticity does not correlate between two alleles of the same gene. The third is 
allele-extrinsic variation, due to factors (Raj and van Oudenaarden, 2008; Swain et al., 2002) 
extrinsic to the process of transcription, such as the presence of certain regulators or 
differences in stable chromatin state. These factors contribute to establishing differences 
between cell types or states, either stably or transiently, but are correlated between two alleles 
of the same gene (Stewart-Ornstein et al., 2012). 

Although most studies aim to understand allele-extrinsic variation and its function, technical 
and allele-intrinsic variations are major confounders. Some technical variation is common to 
both scRNA-seq and bulk (population) RNA-Seq, whereas several other factors—including zero 
inflation due to false negatives, overamplification, and cell doublets—are specific to the 
technical variation between single-cell profiles. In some cases, the extent of technical variation 
is affected by biological differences, undermining definitions of quality and limiting our ability 
to remove technical variation. For example, because smaller cells typically harbor less RNA, 
they appear to be lower in quality. Similarly, some cell types may be harder to capture or lyse. 
Finally, some cells are characterized by transcriptional profiles functionally dominated by very 
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high expression of a few transcripts, whereas others have far more complex transcriptomes. 
Indeed, it was reported that technical quality features were highly correlated with biological 
cell type (Ilicic et al., 2016). 

One has to address the unique analytical and technical challenges of scRNA-Seq before one can 
fully exploit its wealth of information towards biological discovery. The analytical challenges 
include (1) designing experiments and performing power analysis (e.g., how many cells do we 
need to profile for a given task? At what depth?); (2) preprocessing to distinguish biological 
from technical variation, especially false-negative gene detections (dropouts); (3) inferring the 
key aspects of a cell atlas, from discrete sub-types to continuous spatiotemporal ordering of 
cells; and (4) deriving molecular mechanisms from cell-to-cell variation. In each of these areas, 
we must grapple with common technical challenges, such as noise, sparsity, and false 
negatives; ever-increasing scale, which defies many traditional implementations of basic tasks 
in genomics; partial dependencies between the multiple facets of a cell's identity (its type, 
state, position, etc.), such that variation in one biological dimension may be a confounder for 
another; and the need for accessible and interpretable visualizations. Novel computational 
methods are required to overcome these challenges and exploit the biological signals in single-
cell data (Figure S1, bottom). 

1.2.5 Single-cell transcriptomics allows addressing novel research questions 

To understand a cell — the basic unit of life — we must determine the multiple factors that 
shape its identity. These include its position in a taxonomy of cell types, the progress of 
multiple time-dependent processes that take place simultaneously, the cell's response to 
signals from its local environment, and the precise location and neighborhood in which it 
resides (Figure 1A). The factors that together span the space of possible cell identities can be 
likened to the basis vectors that span a linear space, yet, unlike basis vectors, they may be 
intricately dependent on one another. 

Large-scale single-cell data allow us to address biological questions that were previously out of 
reach. First, we can now explore the identity of an individual cell and the factors underlying it 
through the comprehensive lens of the cell's unique molecular profile (Figure 1B). By 
decomposing this profile to its separate components, it should be possible to determine, in a 
data-driven way, the specific physiological and molecular features of each of these factors, 
without relying on prior definitions, hypotheses, or markers. Second, construction of a 
comprehensive atlas of all human cell types and sub-types—including their activity states, 
dynamic transitions, physical locations, and lineage relationships through development—has 
become a tangible goal (Regev et al., 2017b; Rozenblatt-Rosen et al., 2017, 2021). Even 
preliminary progress toward such an atlas would help elucidate the organization and function 
of tissues in health and disease. In addition, single-cell data allow us to study the regulatory 
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circuitry that governs cells at a resolution that had been impossible with data collected from 
bulk cell populations. Finally, single cells are the basic component of complex tissues. Through 
deconvolution of a complex sample, such as a tumor biopsy (Katzenelenbogen et al., 2020; 
Ringel et al., 2020; Tirosh et al., 2016), one may infer its cellular composition and characterize 
the rare (Grun et al., 2015), functionally important (Choi et al., 2021; Culemann et al., 2019; 
Mathewson et al., 2021), and unknown (Tasic et al., 2016; Vieira Braga et al., 2019) cell types it 
contains. 

The factors that jointly define a cell's identity may not only be the discrete categories that are 
often assumed when classifying cells into major types (Zeisel et al., 2015) but may also 
represent a continuous spectrum (Gaublomme et al., 2015), or a combination of discrete and 
continuous categories (Antebi et al., 2013; Korem et al., 2015; Patel et al., 2014; Tasic et al., 
2016). First, in contexts such as development and physiology, some facets of cellular identity 
are transient in time and space. Temporal processes may, for example, progress along one or 
more trajectories (e.g., differentiation, (Marioni and Arendt, 2017)); oscillate continuously 
between cellular states (e.g., the cell cycle (Kowalczyk et al., 2015; Pollen et al., 2015) or 
circadian rhythm (Lande-Diner et al., 2015); or be influenced by the physical position and 
neighborhood of the cell (Adler et al., 2019; Ben-Moshe et al., 2019; Halpern et al., 2017; 
Kennedy et al., 2020; Nitzan et al., 2019; Satija et al., 2015). Moreover, even within a type, cells 
may span a continuous range of functional phenotypes (e.g., T cells of a single type, but with a 
range of inflammatory versus regulatory phenotypes, (Gaublomme et al., 2015; Pompura et al., 
2021)). While each such facet of a cell's identity is often considered separately, they are at least 
partly interdependent. Cataloging sources of biological variation, and understanding how they 
combine to determine a cell's identity, is an integral task in the compilation of a human cell 
atlas. This will reopen definitions of a cell's type and will allow a more sophisticated view of a 
cell, not only as an instance of a predefined type, but rather as the sum of the biological factors 
that shaped it. We expect that, eventually, the measured genomic profiles of a cell will be used 
to characterize these factors and to quantify their relative contributions to forming its identity. 
By analogy, the sources of biological variation that determine a cell's identity are akin to basis 
vectors that span a linear space—namely, their combinations produce all possible points in the 
space. However, unlike basis vectors in algebra, they can in fact be dependent, which further 
complicates their identification and interpretation, and poses a problem of statistical 
identifiability. For instance, cells in a given position may be more quiescent compared to other 
positions, which complicates the inference of the biological variation that should be attributed 
to cell cycle versus spatial position (Buettner et al., 2015). 
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 Setting the table, part 3: T helper 17 and T regulatory cells – the odd 
siblings 

The immune system has an integral suppressive branch to suppresses its inflammation-inducing 
branches, which allows resolution of inflammation once a pathogen has been removed limits 
damage by self-activating lymphocyte and chronic inflammation. CD4+ T regulatory (Treg) cells 
are thought to be one of the most important parts of the suppressive branch and are required 
for immune tolerance and homeostasis (Josefowicz et al., 2012; Sakaguchi et al., 2008, 2020). 
The transcription factor Forkhead box protein P3 (FOXP3) is a master regulator of the Treg gene 
expression program, although its role in human Treg cells is less understood than in mouse 
(Vignali et al., 2008). People suffering from genetic mutations that eliminate FOXP3 function 
develop a severe autoimmune disease called IPEX (immunodysregulation, polyendocrinopathy 
and enteropathy, X-linked syndrome in early infancy. 

In vivo, T regulatory cells can develop in the thymus as a functionally distinct group (tTreg, 
thymus-derived Treg), or differentiate from naïve T cells in peripheral sites (pTreg, peripheral 
Treg) (Abbas et al., 2013; Sakaguchi et al., 2020; Shevach and Thornton, 2014). In vitro, at least 
in mouse, Treg cells can be induced from naïve CD4+ T cells (iTreg, induced Treg) by antigen 
activation in the presence of TGF-β1 (Kretschmer et al., 2005). Perhaps surprisingly, however, in 
vitro antigen activation in the presence of both TGF-β1 and IL-6 induces differentiation into a 
different cell type – T helper 17 (Th17) that can generate massive tissue inflammation (Korn et 
al., 2009). Th17 cells are thought to take part in host defense against certain pathogens, but 
also studied because they are implicated in severe autoimmune disease, including, for example, 
multiple sclerosis, psoriasis, and lupus. 

The shared lineage differentiation factor hints at an intimate connection between the Th17 and 
Treg types. Indeed, it seems that they are reciprocally regulated, with inhibition of one fate 
leading to promotion of the other, which gave rise to the paradigm of a Th17/Treg balance 
(Eisenstein and Williams, 2009; Wu et al., 2018).  

More recently, it was discovered by us and others that substantial heterogeneity of effector 
profiles exists also within the Th17 cell type (Gaublomme et al., 2015; Stockinger and Omenetti, 
2017; Wang et al., 2015). Th17 cells. Th17 do not exclusively pro- inflammation, but rather can 
also protect mucosal tissues by promoting homeostasis, maintaining barrier function, and 
restraining opportunistic microbiota (Bettelli et al., 2008; Conti et al., 2014; Gaffen et al., 2011; 
Guglani and Khader, 2010; Korn et al., 2009; Ouyang et al., 2008; Romani, 2011; Yang et al., 
2014). The Janus-faced nature of Th17 cells, manifest also in their close relation to the hallmark 
suppressive Treg type, motivates a single-cell approach to studying them. 
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 Putting it all together 

1.4.1 Motivations for the present study 

Thanks to technological breakthroughs of the past decade, single-cell transcriptomics is now 
cost-effective and readily accessible. Immense datasets are already available in the public 
domain, and ambitious efforts are underway to sequence all human cell types (Regev et al., 
2017a). At the same time, extant assays to directly query cellular metabolic states are currently 
limited in their comprehensiveness, availability, or ability to study individual cells. This, together 
with the growing interest in cellular metabolism and the benefits afforded by computational 
analysis in the study of cellular metabolism, motivated us to develop an in silico method to 
predict cellular metabolic profiles based on single-cell transcriptomics. 

FBA methods proved particularly useful when contextualized with functional genomic data 
(Bordbar et al., 2014), usually gene expression of bulk cell populations. The advent of single-cell 
RNA-Seq (scRNA-Seq) now offers an opportunity to harness FBA to study the metabolic 
heterogeneity of single cells. Importantly, single-cells form a natural perturbation system, 
where every cell can be considered a realization of a sampling process from a high-dimensional 
distribution. The statistical power afforded by the number of observations (cells) in current 
datasets allows for extensions of FBA that were previously out of reach. 

Metabolism is an established regulator of the Th17 and Treg cells, as well their balance with 
respect to one another (Barbi et al., 2013; Berod et al., 2014; Gerriets et al., 2015; Johnson et 
al., 2018; Michalek et al., 2011; Pompura et al., 2021; Wang et al., 2015; Watson et al., 2021). 
We hypothesized that metabolism similarly regulated the effector functions of Th17 subtypes. 
However, most cellular assays, including metabolic assays, are targeted and difficult to 
undertake at a single-cell resolution. Furthermore, low cell numbers may prohibit direct 
metabolic assays, for example, in the study of immune cells present at tissue sites. In contrast, 
scRNA-Seq is broadly accessible and rapidly collected in concentrated efforts to reach a 
complete representation of human physiology (Regev et al., 2017a). A computational method is 
thus required to capitalize on the opportunities afforded by scRNA-Seq for contextualization of 
metabolic models, while systematically addressing the unique challenges of this data modality 
(e.g., its sparsity). 

1.4.2 Our contribution 

Here, we present Compass, an FBA algorithm that uses single-cell transcriptomic profiles to 
characterize cellular metabolic states at single-cell resolution and with network-wide 
comprehensiveness. The combination of single-cell granularity and genome-scale (i.e., non-
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targeted) molecular profiling is presently a singular advantage of scRNA-Seq over other 
metabolic data modalities, such as metabolomics or proteomics. By leveraging scRNA-Seq, 
Compass allows an unsupervised, network-wide search for metabolic targets, agnostically of 
a priori pathway boundaries, and including ancillary pathways that are normally less studied, 
yet important for cellular function (Puleston et al., 2017). 

Compass is a step towards two important scientific goals – the integration of massive functional 
genomic data with molecular-level modeling, and turning human cell atlases from a 
phenomenological into an actionable resource that can be computationally mined for novel 
therapeutic targets. FBA algorithms build on manual and semi-automatic curation of metabolic 
models to make predict the way cells utilize their metabolic networks and configure fluxes 
through it to meet their function needs. Previous studies used gene expression to inform FBA 
prediction, but were hampered by the limited number of observations (samples) in a typical 
dataset. The introduction of single-cell transcriptomics, in which cells are observations in a 
natural perturbation system (alternatively, realizations of a low-dimensional latent generative 
process, (Lopez et al., 2018)) allows Compass to utilize FBA without an assumed objective 
function (Damiani et al., 2019) that might be inappropriate in many cases of mammalian cells 
(Wagner et al., 2013). Thus, Compass is a step towards bridging massive, atlas-scale 
transcriptomics, and modeling of molecular processes at a single biochemical level. Moreover, 
the use of FBA  also allows conducting large-scale in silico perturbation experiments (Alper et 
al., 2005; Burgard et al., 2003; Lee et al., 2007; Park et al., 2007; Pharkya et al., 2003, 2004; 
Ranganathan et al., 2010; Yizhak et al., 2013) to detect metabolic targets that shift a give cell 
state towards a desired cell state, for example from a disease to a healthy molecular profile 
(Wagner et al., 2015). Thus, Compass is a step towards an actionable human cell atlas in the 
realm of cellular metabolism.   

We applied Compass to Th17 cells, uncovering substantial immunometabolic diversity 
associated with their inflammatory effector functions. In addition to differential wiring of 
central carbon metabolism, we unexpectedly found – based on computational predictions – 
that the glycolytic reaction catalyzed by phosphoglycerate mutase (PGAM) wan promoting an 
anti-inflammatory phenotype in Th17 cells. This was a surprising finding since high glycolytic 
activity is commonly thought to be associated with pro-inflammatory T effector functions 
(Geltink et al., 2018; MacIver et al., 2013; O’Neill et al., 2016; Pearce et al., 2013; van der Windt 
and Pearce, 2012). A network-wide Compass analysis identified the polyamine pathway as a 
critical regulator of Th17 effector function, which we experimentally validated. This 
demonstrates that Compass is able to uncover novel metabolic targets regulating inflammation 
in peripheral, understudied metabolic pathways. 
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Chapter 2 

Compass — an algorithm for comprehensive characterization 
of single-cell metabolism 

The widespread adoption of single-cell transcriptomics (Svensson et al., 2018), combined with 
its ability to comprehensively profile cellular RNA pools (in contrast to the more targeted nature 
of extant metabolomic assays) motivated us to develop a computational framework for 
inference of metabolic profiles based on single-cell RNA-Seq. In this chapter, we offer a detailed 
presentation of the Compass algorithm, which underlies the rest of this study. 

Metabolic dysregulation is now recognized as a key element in many disease conditions that 
severely affect people worldwide, including cancer, neurodegeneration, cardiovascular disease 
and even normal aging. We therefore believe that development of computational paradigms 
for studying metabolism, in our case based on single-cell transcriptomes, is a timely and much 
needed contribution. 

 Definitions 

2.1.1 Stoichiometric matrix (S) 

A stoichiometric matrix S describes the set of possible metabolic reactions in the system. Its 
rows correspond to metabolites, columns to reactions, and entries hold the stoichiometric 
coefficients of the reactions available to the cells. Observe that by transforming the entries into 
{-1, 0, 1} according to their sign, we obtain the hypergraph representation of the metabolic 
network. 

2.1.2 Metabolic flux (v) 

A metabolic flux is the instantaneous rate in which a chemical reaction occurs, and measured in 
units of mol X gDW-1 X hr-1, with gDW denoting gram dry weight. Let x be metabolite 
concentrations in the system (as a function of time t), and v be the metabolic fluxes (also called 
flux distribution). Then: 

𝑆	 ⋅ 𝑣 =
𝑑𝑥
𝑑𝑡  
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Compass belongs to the family of static FBA algorithms (Orth et al., 2010), which assumes 
metabolic steady-state, i.e. 

𝑆	 ⋅ 𝑣 = 0. 

Equivalently, we limit the space of feasible flux distributions to ker	(𝑆). 

2.1.3 Genome-scale metabolic model (GSMM) 

Compass leverages prior knowledge about the metabolic network of the cells in question in the 
form of a Genome-Scale Metabolic Model (GSMM), which includes the following components 
(Heirendt et al., 2019; Monk et al., 2014; O’Brien et al., 2015; Palsson, 2015): 

• A stoichiometric matrix S 
o Reactions are partitioned into cellular compartments representing membrane-

enclosed space in which a biochemical reaction may take place, for example the 
cytosol, golgi, or mitochondria.  

o Metabolites are represented separately for each compartment. For example, 
cytosolic citrate and mitochondrial citrate correspond to two rows in S. 

o Reactions may contain non-zero coefficients for metabolites located in different 
compartment to represent physiological transportation of metabolites across 
membranes. These reactions are called Transport reactions. 

o The extracellular space is represented as an additional compartment. 
o Reactions may have exactly one non-zero coefficient if the corresponding 

metabolite is located in the extracellular space. These reactions are called 
exchange reactions and used to import metabolites into or export them from the 
system. It is standard convention to assign -1 as the non-zero coefficient of 
exchange reactions. 

• Upper and lower bounds on fluxes through the reactions corresponding to columns of S. 
o Lower bounds of exchange reactions limit metabolite uptake and used to 

simulate constraints on nutrient availability. Note these are the lower, and not 
upper, bounds because the exchange coefficient is -1. 

• A set if genes coding enzymes that catalyze reactions in the network 
• Gene-to-reaction associations: 

o Every reaction is associated with a boolean expression over gene literals and the 
{∨,∧} operators. 

o Every gene is assigned a truth value based on its presence or absence in the cell’s 
genome. A gene may be absent, for example, in a knockout genotype. 

o The boolean expressions code the dependency of reactions on their catalyzing 
proteins. Usually, an OR relationship corresponds to isozymes, namely two 
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enzymes capable of catalyzing the same reaction, and AND relationship 
corresponds to enzyme complexes. 

 Algorithm overview 

We reasoned that even though the mRNA expression of enzymes is not an accurate proxy for 
their metabolic activity, a global analysis of the metabolic network (as enabled by RNA-Seq) in 
the context of a large sample set (as offered by single-cell genomics) coupled with strict criteria 
for hypotheses testing, would provide an effective framework for predicting cellular metabolic 
states. This led us to develop the Compass algorithm, which integrates scRNA-Seq profiles with 
prior knowledge of the metabolic network to infer metabolic states of cells (Figure 2A).  

The metabolic network is encoded in a Genome-Scale Metabolic Model (GSMM) that includes 
reaction stoichiometry, biochemical constraints such as reaction irreversibility, nutrient 
availability, and gene-enzyme-reaction associations. Here, we use Recon2, which comprises of 
7,440 reactions and 2,626 unique metabolites (Thiele et al., 2013). To explore the metabolic 
capabilities of each cell, Compass solves a series of constraint-based optimization problems 
(formalized as linear programs) that produce a set of numeric scores, one per reaction. 
Intuitively, the score of each reaction in each cell reflects how well adjusted is the cell’s overall 
transcriptome to maintaining high flux through that reaction. Henceforth, we refer to the 
scores as quantifying the “potential activity” of a metabolic reaction (or “activity” in short when 
it is clear from the context that Compass predictions are discussed). 

Compass belongs to the family of Flux Balance Analysis (FBA) algorithms that model metabolic 
fluxes (the rate by which chemical reactions convert substrates to products), through 
constrained-based optimization (Lewis et al., 2012; O’Brien et al., 2015; Orth et al., 2010; 
Palsson, 2015). The first step of Compass is agnostic to gene expression and computes, for 
every metabolic reaction r, the maximal flux 𝑣D

EFG  it can carry while imposing only stoichiometry 
and mass balance constraints. Next, Compass assigns every reaction in every cell a penalty 
inversely proportional to the mRNA expression associated with the enzyme(s) catalyzing the 
reaction in that cell. Finally, for every reaction r and every cell Compass finds a flux distribution 
(an assignment of flux values to every reaction in the network) that minimizes the overall 
penalty incurred, while maintaining a flux of at least 𝜔 ⋅ 𝑣D

EFG (here, 𝜔 = 0.95) through r. The 
additive inverse of this penalty term is the reaction score. 
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Figure 2. Algorithm overview. 

(A) Computation of Compass scores matrix. Compass leverages the topology and stoichiometry of the 
metabolic network to analyze single-cell RNA expression. Briefly, it computes a reaction-penalties 
matrix, where the penalty of a given reaction is inversely proportional to the expression of its respective 
enzyme-coding genes. The reaction-penalties matrix is the input to a set of flux-balance linear programs 
that produce a score for every reaction in every cell, namely the Compass score matrix. (B) Soft 
information sharing between a cell and its k-nearest neighbors mitigates technical noise in single-cell 
data. (C) Downstream analysis of the score matrix. Metabolic reactions are hierarchically clustered into 
meta-reactions; scores are used in differential expression of reactions, detection of reactions correlated 
with a phenotype of interest, dimensionality reduction, and data-driven network analysis. 

The use of genome-scale metabolic networks allows the entire metabolic transcriptome to 
impact the computed score for any particular reaction, rather than just the mRNA coding for 
the enzymes that catalyze it. We reasoned that this helps reduce the effect of instances where 
mRNA expression does not correlate with metabolic activity and of scRNA-Seq dropouts 
(Wagner et al., 2016). Compass further mitigates data sparsity effects through information-
sharing on a k-nearest neighbors graph, similar to other scRNA-Seq algorithms (Baran et al., 
2019; van Dijk et al., 2018; Grün, 2019; Haghverdi et al., 2018; Huang et al., 2018; Lun et al., 
2016) (Figure 2B).  

The output of Compass is a quantitative profile for the metabolic state of every cell, which is 
then subject to downstream analyses (Figure 2C). The statistical power afforded by the large 
number of individual cells in a typical scRNA-Seq study adds robustness and allows these 
downstream analyses to gain biological insight despite the high dimension of the metabolic 
space in which Compass embeds cells. 

 Notation 

In the following sections we denote: 

• n: number of cells (or RNA libraries). 
• m: number of metabolic reactions in the GSMM. 
• C:  the set of cells in the data.  (|C|= n). 
• R: the set of metabolic reactions in the GSMM. (|R|= m). 
• rev(r): the reverse unidirectional reaction of reaction r, which has the same 

stoichiometry but proceeds in the opposite direction. 
• g: number of genes in a given transcriptome dataset. 
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• S: the stoichiometric matrix defined in the GSMM, where rows represent metabolites, 
columns represent reactions, and entries are stoichiometric coefficients for the 
reactions comprising the metabolic network. Reactions for uptake and secretion of a 
metabolite are encoded as having only a coefficient of 1 and -1 in the metabolite’s row 
entry, respectively, and 0 otherwise.  

For a matrix M = (mi,j) and a function f : ℝ ➝ ℝ we use f (M ) to denote (where the 
intention is obvious from the context) the respective point-wise transformation, namely f (M ) := (f 
(mi,j)). 

 Transcriptome-agnostic preparatory step 

For a given GSMM (here, Recon2), we run once a preparatory step that does not depend on 
transcriptome data and cache the results (Algorithm 1). 

Constraint (i) constrains the system to steady state (Varma and Palsson, 1994).  Constraint (ii) is 
interpreted as ∀i: αi ≤ vi ≤ βi and encodes directionality and capacity limits for reactions, 
including uptake and secretion limits. Constraint (iii) ensures that when evaluating the 
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{ } 

maximum flux for each reaction, its reverse reaction carries no flux to avoid the creation of a 
futile cycle. This does not prevent futile cycles longer than 2 edges, which can be avoided only 
by more time-consuming computations (Schellenberger et al., 2011). 

Note that the GSMM may contain blocked reactions (vopt = 0) that can be excluded from the 
next steps to speed the computation. 

 From gene expression to reaction expression 

By reaction expression, we denote a matrix {R(G)}m×n that is conceptually similar to the gene 
expression matrix Gg×n. The columns are the same RNA libraries (e.g., cells) as in {G}, but rows 
represent single metabolic reactions rather than transcripts. An entry Rr,j in the matrix R(G) is a 
quantitative proxy for the activity of reaction r in cell j. We omit the dependence on gene 
expression matrix and denote simply R when G is obvious from the context. 

The reaction expression matrix is created by using the boolean gene-to-reaction mapping 
included in the GSMM, similar to the approach taken by (Becker and Palsson, 2008; Shlomi et 
al., 2008) Let G = xi,j  and consider a particular reaction r in a particular cell j. If a single gene 
with linear-scale expression x is associated with r, then the reaction’s expression will be 
Rr,j = log2(x + 1). If no genes are associated with r then Rr,j = 0. 

If the reaction is associated with more than one gene, then this association is expressed as a 
boolean relationship. For example, two genes which encode different subunits of a reaction’s 
enzyme are associated using an AND relationship as both are required to be expressed for the 
reaction to be catalyzed. Alternately, if multiple enzymes can catalyze a reaction, the genes 
involved in each will be associated via an OR relationship. For reactions associated with multiple 
genes in this manner, the boolean expression is evaluated by taking the sum or the mean of 
linear-scale expression values x when genes are associated via an OR or AND relationship, 
respectively. This way, the full gene(s)-to-reaction associations is evaluated to arrive at a single 
summary expression value for each reaction in the GSMM. 

 Information sharing between single cells (smoothing) 

To mitigate the sparseness and stochasticity of single-cell measurements, Compass allows for a 
degree of information-sharing between cells with similar transcriptional profiles. Given a gene 
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expression G, we compute k-nearest neighbors (kNN) graph based Euclidean distances in 
reduced dimension, obtained by taking the top 20 principal components of G. The PCA is 
computed over all the genes in G, not only metabolic ones. 

Let R(G) = {ri,j} and  

 

Then RN (G) = {rN
i,j} where 

 

 Main algorithm 

Compass transforms a gene expression matrix {G}g×n, where rows represent genes and columns 
represent RNA libraries (usually, single cells, although bulk RNA can also be used as discussed 
below) into a matrix {C}m×n of scores where rows represent metabolic reactions, columns are 
the same RNA libraries as in the gene expression, and an entry quantifies a proxy for potential 
reaction activity. More precisely, the entry quantifies the propensity of the cell to use that 
reaction. 

The algorithm is summarized in (Algorithm 2).  First, we convert the gene expression matrix 
Gg×n into a reaction expression matrix Rm×n which is parallel to the gene expression matrix, but 
with rows representing single metabolic reactions rather than transcripts. We convert R into a 
penalty matrix Pm×n by point-wise inversion. Whereas R represents gene expression support 
that a reaction is functional in the cell, P represents the lack thereof (which will be used in a 
linear program below). The computation of R and P occurs also for the neighborhood of each 
cell for to smooth results and mitigate single-cell technical noise.  Then, we solve a linear 
program for every reaction r in every cell i to find the minimal resistance of cell i to carry 
maximal flux through r. Last, we scale the scores, which also entails negating them such that 
that larger scores will represent larger potential activities (instead of larger penalties, hence 
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smaller potential activity). The final scores indicative of a cell’s propensity to use a certain 
reaction. We interpret it as a proxy for the potential activity of the reaction in that cell. 

In step 10 of Algorithm 2, a high penalty yr,c indicates that cell c is unlikely, judged by 
transcriptomic evidence, to use reaction r. Cells whose transcriptome are overall more aligned 
with an ability to carry flux through a reaction will be assigned a lower penalty yr,c. With regards 
to the correctness of the step, recall that that the GSMM is unidirectional and therefore ∀i. vi > 
0. 
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 Meta-reactions  

Rows in the Craw matrix that correspond to reactions that are topologically close in the 
metabolic network can be highly correlated. We therefore hierarchically cluster Craw rows by 
Spearman distance. We call the resulting clusters meta-reactions and each represents a set of 
closely correlated metabolic reactions. Note that the division into meta-reactions is data-driven 
and does not rely on canonical metabolic pathway definitions. Therefore, the division is dataset-
dependent — for example, two reactions might be closely correlated and clustered in the same 
meta-reaction in one cell type, but not in another. 

After computing the hierarchical clusters over rows of Craw, we merged leaves in which 
Spearman similarity (namely 1 − ρ, with ρ being the Spearman correlation) by averaging the 
respective rows. In the present work, we used ρ = 0.98. We denote the row-merged matrix 
{Cmeta−raw}mXn. 

 Scaling raw compass scores 

By definition, all entries in Cmeta−raw are non-negative. We scale it in Algorithm 3 (the min in the 
second step denotes matrix-wide minimal entry) 

 Algorithm generalization 

One of the intuitions behind Compass is that the statistical power afforded by the number of 
observations (cells) in single-cell RNA-Seq allows increasing dimensionality by computing a new 
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feature set based on the gene expression data and the GSMM. Here, we used an intuitive set of 
objective functions — for each reaction in the network, we defined one objective function 
which is to maximize the flux it carries (recall that the network is unidirectional and therefore 
all reactions carry non-negative fluxes). This allows intuitive interpretation of the Compass 
scores as quantitative proxies to reaction activities. However, the algorithm can be generalized 
by using an arbitrary set of linear objective functions that pertain to cellular metabolism. 

 Scalability 

For prohibitively large datasets, the number of cells (observations) can be reduced by 
partitioning the cells into small clusters and treating the average of each cluster as an 
observation in downstream analysis. Two implementations of this approach are micropools 
(DeTomaso et al., 2019) implemented in the VISION R package (https://github. 
com/YosefLab/VISION), and meta-cells (Baran et al., 2019) (https://tanaylab. 
github.io/metacell). No pooling was necessary for the analysis presented in this 
manuscript (i.e., the results are on a single cell level). If cell clusters are large enough, one may 
choose to skip the information-sharing procedure, which is equivalent to setting the parameter 
λ = 0 in Algorithm 2. 

In addition, the number of reactions in the GSMM can be reduced as well by not executing 
Algorithm 2 on blocked reactions (Section 1.3) non-core reactions (Section 1.11.2), or reactions 
outside a predetermined set of metabolic pathways that are of interest. We note that we do not 
suggest excluding non-blocked reactions from the network altogether (which would result in 
neglecting their effects on reactions that are of interest), but rather only excluding them from 
the R(G) matrices in Algorithm 2. 

 Metabolic model considerations 

2.12.1 Metabolic network 

We used the Recon2 GSMM (Thiele et al., 2013) which we transformed into a unidirectional 
network by replacing bidirectional reactions with the respective pair of unidirectional reactions. 
Consequently, flux values are always non-negative. 
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2.12.2 In silico growth medium 

The results of flux balance analysis significantly depend on the nutrients made available to the 
GSMM, referred to as the in silico growth medium. Since exact medium composition is mostly 
unknown even for common in vitro protocols and in vivo models, we chose a rich in silico 
medium where all nutrients for which a transporter exits are made available in an unlimiting 
quantity. 

 Gene expression considerations 

2.13.1 Gene expression input 

The main input is gene expression matrix G in which rows correspond to genes and columns to 
RNA libraries. We assume that G is (i) already normalized to remove batch and other nuisance 
effects; (ii) scaled to CPMs or TPMs. In the present work we used TPMs; and (iii) in linear (i.e., 
not log) scale. 

2.13.2 Metabolic genes 

Throughout this work, metabolic genes are defined as the set of genes annotated in Recon2. 
Note that Compass uses only the expression of metabolic genes and ignores other transcripts. 

2.13.3 Running Compass on bulk (i.e., non-single-cell) inputs 

The current manuscript presents the algorithm in the context of single cells, where Compass 
leverages the statistical power afforded by the large number of observations (cells). 
Nevertheless, there is no inherent limitation preventing one from applying Compass to study 
bulk (i.e., non-single-cell) transcriptomic data. In this case, we recommend disabling the 
information-sharing feature by setting lambda = 0 in Algorithm 2. There is also no limitation 
preventing one from applying Compass to non-RNA-Seq transcriptomic data, such as 
microarrays. 
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 Code and data availability 

2.14.1 Software 

Compass is available at https://github.com/YosefLab/Compass. 

The algorithm is highly parallelizable. It currently supports execution on multiple threads in a 
single machine, submission to a Torque queue, and execution on a single machine on Amazon 
Web Services (AWS). The current implementation relies on the IBM ILOG CPLEX Optimization 
Studio, which is free for academic use. 

2.14.2 Sequencing data 

Sequencing data used in this study has been deposited to GEO under accession GSE164999. The 
data published in (Gaublomme et al., 2015; Wang et al., 2015) and reanalyzed here was 
deposited as GSE74833. 

 Limitations of the study 

Compass is subject to the limitations of static FBA. The Recon2 metabolic network is incomplete 
(e.g., lacks annotation of enzyme moonlighting functions), and pertains to a generalized human 
cell. Consequently, the current version of Compass does not consider the differences between 
human and mouse metabolism, or tissue-specificity of the metabolic network. The algorithm 
makes the simplifying assumption of metabolic steady-state, and heuristically aggregates 
expression of multiple genes that are linked to a reaction. The inference of metabolic programs 
based on transcriptomes does not consider post-transcriptional and post-translational 
regulation, which could be particularly important for metabolic adaptations on short 
timescales. Last, the metabolic state of a cell depends on the nutrients available in its 
environment, which are often poorly characterized. Here, our computations assume an 
environment rich with nutrients, which accords with the studied in vitro growth media. A more 
accurate representation of the cellular environment should increase the Compass’s predictive 
capabilities. 
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Chapter 3 

Querying the metabolic states of single T helper 17 (Th17) 
cells 

In this chapter, we introduce the T helper 17 (Th17) and the closely related T regulatory (Treg) 
cells as a model system for heterogenous effector profiles within populations of immune cells. 
We present an in vitro Th17 system that allows controlled inquiry into the molecular 
underpinnings of their functional heterogeneity, and leverage Compass to conduct a network-
wide search for metabolic targets associated with Th17 inflammatory potential (pathogenicity). 

 Th17 cells are a model system for effector-metabolic heterogeneity 

3.1.1 Th17 manifest heterogeneous effector profiles 

We and others have studied transcriptional and functional diversity among T helper 17 cells 
(Gaublomme et al., 2015) and Foxp3+ regulatory T cells (Tregs) (Miragaia et al., 2019). Th17 and 
Treg cells share lineage signals, and their balance shapes the outcome of tissue inflammation 
(Eisenstein and Williams, 2009; Omenetti and Pizarro, 2015). While TGF-β1 alone induces 
Foxp3+ Tregs in vitro, a combination of TGF-β1 and IL-6 induce Th17 cells in vitro and in vivo 
(Bettelli et al., 2006; Mangan et al., 2006; McGeachy and Cua, 2008; Veldhoen et al., 2006).  

On top of the Th17/Treg balance, there exists functional diversity within the Th17 
compartment. Th17 cells may induce disease, but they also protect mucosal tissues by 
promoting tissue homeostasis, maintaining barrier function, and restraining opportunistic 
microbiota (Bettelli et al., 2008; Conti et al., 2014; Gaffen et al., 2011; Guglani and Khader, 
2010; Korn et al., 2009; Ouyang et al., 2008; Romani, 2011; Yang et al., 2014). Murine Th17 cells 
induced by TGF-β1+IL-6 in vitro produce IL-17 but are incapable of inducing potent tissue 
inflammation upon adoptive transfer (Jager et al., 2009; McGeachy et al., 2007) without 
additional stimuli, such as IL-1b and IL-23 (Awasthi et al., 2009; Chung et al., 2009; Cua et al., 
2003; Ghoreschi et al., 2010; Lee et al., 2012; McGeachy et al., 2009). Therefore, there appear 
to be at least two different types of Th17 cells: homeostatic ones that do not promote tissue 
inflammation, to which we refer as non-pathogenic Th17 cells; and ones that produce IL-17 
together with IFNg and GM-CSF and induce tissue inflammation/ autoimmunity, to which we 
refer as pathogenic Th17 cells  (Lee et al., 2014). Distinct types of Th17 cells have also been 
identified in humans, where cells similar to mouse pathogenic Th17 cells are specific for 
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immune response to Candida albicans, while cells similar to the non-pathogenic mouse Th17 
are observed with Staphylococcus aureus infection (Zielinski et al., 2012). Thus, Treg, non-
pathogenic Th17, and pathogenic Th17 cells represent a functional spectrum in tissue 
homeostasis, infection and tissue inflammation in vivo and can be differentiated with different 
cytokine cocktails in vitro. 

 

3.1.2 Motivation for studying Th17 metabolic heterogeneity 

Metabolism is an established regulator of the Th17/Treg axis (Barbi et al., 2013). We 
hypothesized that metabolism similarly regulated the effector functions of Th17 subtypes. 
However, most cellular assays, including metabolic assays, are targeted and difficult to 
undertake at a single-cell resolution. Furthermore, low cell numbers may prohibit direct 
metabolic assays, for example, in the study of immune cells present at tissue sites. In contrast, 
scRNA-Seq is broadly accessible and rapidly collected in concentrated efforts to reach a 
complete representation of human physiology (Regev et al., 2017a). A computational method is 
thus required to capitalize on the opportunities afforded by scRNA-Seq for contextualization of 
metabolic models, while systematically addressing the unique challenges of this data modality 
(e.g., its sparsity). 

 Th17 functional states are associated with metabolic states 

We used Compass to study the metabolism of Th17 cells differentiated in vitro into two 
extreme functional states (Figure 3A) – pathogenic (Th17p) and non-pathogenic (Th17n). We 
analyzed a dataset we generated in a previous study that included 139 Th17p and 151 Th17n 
cells sorted for IL-17A/GFP+ (Gaublomme et al., 2015; Wang et al., 2015). We computed 
Compass scores and aggregated reactions that were highly correlated across the entire dataset 
(Spearman rho ≥ 0.98) into meta-reactions (median of two reactions per meta-reaction; Figure 
S2A) for downstream analysis. We tested the robustness of Compass by running the algorithm 
on the same gene expression input with added random noise. The deviation of the noised 
Compass scores from the original output did not exceed the deviation induced by the noise to 
the gene expression input (Figures S2B-C). 

To investigate the main determinants of metabolic heterogeneity between Th17 cells, we first 
analyzed the Compass output as a high dimensional representation of the cells which parallels 
the one produced by scRNA-Seq, but with features corresponding to metabolic meta-reaction 
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rather than genes. We performed principal component analysis (PCA) on the meta-reaction 
matrix, while restricting it to 784 meta-reactions (out of 1,911) that are associated with core 
metabolism (Supplementary Methods), spanning conserved and well-studied pathways for 
generation of ATP and synthesis of key biomolecules. 

The first two principal components (PCs) were associated with overall metabolic activity and T 
effector functions (Figures 3B; S3A-B). PC1 correlated with the cell’s total metabolic activity, 
defined as the expression ratio of genes coding metabolic enzymes out of the total protein 
coding genes (Pearson rho = 0.36, p < 4e-10), as well as a transcriptional signature of late stages 
of Th17 differentiation over time (Yosef et al., 2013) (Figure S3C; Supplementary Methods; 
Pearson rho = 0.18, p < 0.003) (Supplementary Methods). PC2 and PC3 represented a choice 
between ATP generation through aerobic glycolysis versus fatty acid oxidation, similar to 
previous observations in comparisons of Th17 to Tregs, or Teff to Tmem (Geltink et al., 2018). 
Accordingly, these PCs correlated with multiple Th17 pathogenicity markers, as well as a 
signature of Th17 pathogenicity consisting of cytokines, chemokines and transcription factors 
(TFs) that are associated with each phenotypic group (Lee et al., 2012) (Figure S3D,E). PC2 and 
PC3 were also associated with nitrogen metabolism, and were enriched in urea cycle targets 
whose power to modulate Th17 pathogenicity is demonstrated below. 
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Figure 3. Compass-based exploration of metabolic heterogeneity in Th17 cells. 

(A) The experimental system. Naive CD4+ T cells differentiated into pathogenic (Th17p) or non-
pathogenic (Th17n) IL-17+ T cells cause severe or mild CNS autoimmunity upon adoptive transfer, 
respectively. (B) PCA of the Compass score matrix with top loadings shown. (C) Compass-score 
differential activity test between Th17p and Th17n cells (STAR Methods). (D) Spearman correlation of 
Compass scores with the expression of pro-pathogenic (magenta) or pro-regulatory (green) Th17n genes 
(Lee et al., 2012). Non-significant correlations (BH-adjusted p ≥ 0.1) shown in grey. Rows are 489 meta-
reactions that belong to core pathways (STAR Methods), and significantly correlated or anti-correlated 
with at least one of the genes. (E) Differential activity (as in C) of metabolic reactions. Reactions (dots) 
are partitioned by Recon2 pathways and colored by the sign of their Cohen d’s statistic. 

 Compass predicts metabolic regulators of Th17 cell pathogenicity 

To detect metabolic targets associated with the pathogenic capacity of individual Th17 cells, we 
defined pro-pathogenic and pro-regulatory reactions as ones that were significantly 
differentially active in Th17p or Th17n, respectively (Figures 3C; S3F; 1,213 / 6,563 reactions, 
Benjamini-Hochberg (BH) adjusted Wilcoxon rank sum p < 0.001). Many of these reactions were 
also correlated with the expression of cytokines and TFs relevant for Th17 function (Figures 3D; 
S3G; note that these genes do not code metabolic enzymes and thus were not used by 
Compass). Notably, many classically defined metabolic pathways included both reactions 
predicted to be pro-pathogenic and pro-regulatory (Figure 3E), highlighting the value in 
examining single reactions within a global network rather than conducting a pathway-level 
analysis. A similar result is obtained at the gene expression level — many metabolic pathways 
included both genes that were upregulated and genes that were downregulated in Th17p 
compared to Th17n (Figure S3H). 

Compass highlighted differences in central carbon metabolism between the Th17p and Th17n 
states, which mirror those found between Th17 and Treg. The algorithm predicted that 
glycolytic reactions were generally more active in Th17p than in Th17n (Figures 3C, 4A). This 
parallels previous results showing that Th17 upregulate glycolysis, and failure to do so 
promotes a Treg fate (Gerriets et al., 2015; Michalek et al., 2011; Shi et al., 2011). Compass also 
predicted an increased activity in Th17p through two segments of the TCA cycle, but not the 
cycle as a whole (Figures 3C, 4A). A similar breakdown of the TCA cycle in relation with pro-
inflammatory function has been described in macrophages where M1 polarization divided the 
TCA cycle at the same two points: isocitrate dehydrogenase (Jha et al., 2015), and succinate 
dehydrogenase (Mills et al., 2016), which supported macrophage inflammatory functions (Mills 
and O’Neill, 2014; Shi et al., 2019).  
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In fatty acid (FA) metabolism, Compass predicted that cytosolic acetyl-CoA carboxylase (ACC1), 
the committed step towards FA synthesis, was upregulated in Th17p, whereas the first two 
steps of long-chain FA oxidation (long chain fatty acyl-CoA synthetase and carnitine O-
palmitoyltransferase (CPT)) were predicted to be higher in Th17n. These predictions mirror a 
known metabolic difference between the Th17 and Treg lineages, where Th17 rely on de novo 
FA synthesis (Berod et al., 2014), whereas Tregs scavenge them from their environment and 
catabolize them and produce ATP through beta-oxidation (Michalek et al., 2011; Pompura et 
al., 2021). We note, however, that recent evidence suggests that CPT may be upregulated in 
Treg over Th17, but is not functionally indispensable for Treg to obtain their effector 
phenotypes (Raud et al., 2018). 

Multiple amino-acid metabolism reactions were also differentially active between Th17p and 
Th17n (Figure 3C). Amino acids are important for Th17 cell differentiation (Sundrud et al., 
2009), and Compass adds further granularity to these findings. In particular, it predicted that 
serine biosynthesis from 3-phosphoglycerate, and three downstream serine fates — 
sphingosines, choline, and S-adenosyl-methionine (SAM) — were higher in Th17p. On the other 
hand, parts of urea cycle and arginine metabolism are significantly associated with both Th17 
states, (Figure 3C), suggesting that alternative fluxing within this subsystem may be associated 
with diverging Th17 cell function. 
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Chapter 4 

Computationally-informed analysis of central carbon 
metabolism 

In this chapter, we validate some of the predictions Compass made with respect to differences 
between the metabolic programs of pathogenic Th17 (Th17p) and non-pathogenic Th17 
(Th17n) cells. We show that Th17p preferentially produce ATP by elevating glycolysis and 
shunting its products into the TCA for oxidative phosphorylation, whereas Th17n cells oxidize 
fatty acids for that purpose. Next, Compass recovers a specific glycolytic enzyme (PGAM) which 
is associated with a pro-regulatory Th17 effector profile, contrary to what could be expected 
according to standard understanding of lymphocyte metabolism. These findings demonstrate 
that Compass is able to advance understanding even of central and well-studied metabolic 
pathways. 

 Pathogenic Th17 maintain higher aerobic glycolysis and TCA activity, 
whereas non-pathogenic Th17 oxidize fatty acids to produce ATP 

We validated the Compass prediction that Th17p and Th17n differ in their central carbon 
metabolism (Figure 4A). First, we assayed glycolysis and mitochondrial function of Th17 cells 
(Figure 4B). Th17p had higher extracellular acidification rate (ECAR) than Th17n, indicating 
accumulation of lactate due to aerobic glycolysis. Th17p also generated more ATP in a 
mitochondria dependent fashion, consistent with the predicted higher entrance of pyruvate 
into the TCA cycle despite the diversion of some pyruvate towards the lactate fate. 

LC/MS metabolomics indicated that glycolytic metabolites were higher in Th17p than in Th17n 
(Figure 4C, top). When further pulsed with fresh media containing glucose for 15 minutes, 
there was a substantial increase in glycolytic metabolites in Th17p but less so in Th17n. After 3 
hours, the level of these metabolites decreased back to steady state (Figure S4A). TCA 
metabolites, apart from succinate, were more abundant at steady-state in Th17p than in Th17n 
(Figure 4C, middle), consistent with Compass prediction that two parts of the TCA cycle, but not 
the cycle as a whole were upregulated in Th17p. Therefore, both Compass and the 
metabolomics data point to succinate as a potential metabolic control point. 

To test whether not only absolute metabolite levels, but also the relative allocation of carbon 
into alternative fates differ between Th17p and Th17n, we performed carbon tracing with 13C-
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glucose. Consistent with our predictions, Th17p had higher relative abundance of 13C-labeled 
glycolytic metabolites (Figure 4D). Furthermore, Th17p preferentially incorporated glucose-
derived carbon into serine (which branches from glycolysis; Figure S4B) and its downstream 
product choline (Figure 4D), confirming a Compass prediction (Figure 3C). Conversely, Th17p 
had lower relative abundance of 13C-labeled TCA metabolites (Figure 4D), suggesting that the 
higher level of TCA intermediates observed in Th17p at steady state (Figure 4C) might not be 
supported from glucose, but rather from other sources (Johnson et al., 2018; Pucino et al., 
2019). Taken together, our results suggest that Th17p cells have higher overall activity through 
the TCA cycle at steady-state, but quickly switch to aerobic glycolysis when glucose is readily 
available in the environment. 

We next validated the prediction that Th17n cells prefer beta-oxidation. Metabolomics analysis 
shows that Th17n were enriched in acyl-carnitine metabolites, particularly short- to medium-
length acyl groups (Figures 4C, S4A), indicating active lipid transport through the mitochondrial 
membrane. When etomoxir was used to block acyl-carnitine transportation, oxygen 
consumption rate decreased in Th17n but not Th17p (Figure 4E). While etomoxir has off-target 
effects (Divakaruni et al., 2018; Raud et al., 2018), overall our data supports the hypothesis that 
Th17n cells ultimately divert fatty acid breakdown products into the electron transport chain to 
generate ATP. 
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Figure 4. Differential usage of glycolysis and fatty acid oxidation by pathogenic and non-pathogenic 
Th17 cells. 

(A) Central carbon metabolism overlaid with Compass predictions for differentially active reactions; 
Th17p vs. Th17n, BH-adjusted Wilcoxon rank sum p < 0.1 denoted in non-grey. (B) Mitostress test by 
Seahorse assay of differentiated T cells (68h). (C-D) LC/MS metabolomics (n=6 mice; C shows means and 
SE error bars) of cells harvested at 68h (C, left), replated in fresh media with no additives (C, right) or 
with 13C-tagged glucose for 15 minutes (D). D shows the ratio of 13C-tagged carbon out of the total 
carbon content associated with the metabolite. (E) T cells were measured for their oxygen consumption 
rate measured in T cells with control or 40uM etomoxir (n=2, each with 6 mouse replicates). 

 The glycolytic enzyme phosphoglycerate mutase (PGAM) suppresses Th17 
cell pathogenicity  

Thus far, our analysis relied on an inter-population comparison between the extreme states of 
Th17n and Th17p cells. However, we have previously shown that there is also considerable 
continuous variation in the transcriptomes of Th17n cells, which spans into pathogenic-like 
states (Gaublomme et al., 2015). To explore the relationship between metabolic heterogeneity 
and pathogenic potential within the Th17n subset, we next performed an intra-population 
analysis of Th17n cells. This also demonstrates that Compass can be applied to scRNA-Seq data 
in cases where the states of interest (e.g., Th17n vs. Th17p) are either unknown or cannot be 
experimentally partitioned into discrete types.  

We correlated the Compass scores associated with each reaction with the pathogenicity gene 
signature scores of the respective cells (Figures 5A, S5A), and found that some glycolytic 
reactions were predicted to be negatively, rather than positively (as in the inter-population 
analysis), associated with Th17 pathogenicity. The most notable of these reactions was the one 
catalyzed by the enzyme phosphoglycerate mutase (PGAM), which was negatively associated 
with pathogenicity in the intra-population analysis of Th17n cells, but positively associated with 
Th17p cells in the inter-population analysis (Figure 4A). This prediction was unexpected 
because increased glycolysis is generally thought to support pro-inflammatory phenotypes in T 
cells  (Chang et al., 2013; Doedens et al., 2013; Finlay et al., 2012; Gemta et al., 2019; Gerriets 
et al., 2015; Ho et al., 2015; Kono et al., 2019; Macintyre et al., 2014; Michalek et al., 2011; 
Peng et al., 2016; Shi et al., 2011). 

To functionally validate the glycolytic targets associated with Th17 cell pathogenicity by the 
intra-population analysis, we used chemical inhibitors against enzymes driving the top two 
glycolytic reactions that were most positively correlated (regulated by pyruvate kinase muscle 
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isozyme [PKM], and glucose-6-phosphate dehydrogenase [G6PD]) and top two that were most 
negatively correlated (phosphoglycerate mutase [PGAM], and glucokinase [GK]) with the 
pathogenicity score (Figure 5B). The inhibitors were shikonin (inhibits PKM2), 
dehydroepiandrosterone (DHEA, inhibits G6PD), epigallocatechin-3-gallate (EGCG, inhibits 
PGAM1), and 2,3-dihydroxypropyl-dichloroacetate (DCA, inhibits GK). 

We first analyzed the effects of inhibitors on Th17n and Th17p cell differentiation and function 
using flow cytometry (Figure 5C). Due to the possibly deleterious effects of blocking these 
central reactions on cell viability, we used the highest dose of each inhibitor that did not affect 
cell viability (compared to solvent alone). We further used flow cytometry to restrict the 
analysis to cells that had undergone one division (d1) so as to exclude arrested cells or cells that 
have been blocked from activation and expansion. In addition, since two different solvents 
(DMSO and methanol) were needed for different inhibitors, every treatment group was 
matched with an appropriate vehicle control. We found that IL-17 expression conformed to the 
prediction made by Compass. It was significantly upregulated by chemical inhibition of the two 
enzymes (PGAM or GK) predicted to suppress pathogenicity, and downregulated by chemical 
inhibition of the two enzymes (G6PD or PKM) predicted to promote pathogenicity (Figure 5C). 
This was further confirmed when profiling a larger set of cytokines secreted by Th17 cells: 
inhibition of PKM or G6PD curtailed all cytokine production suggesting that these enzymes are 
important for overall T effector functions. In contrast, cells with PGAM or GK inhibition, at the 
optimal concentration, mostly retained their cytokine profile with a few exceptions (Figure 
S5B). 

To analyze the impact of perturbing glycolytic enzymes on the transcriptome, we used bulk 
RNA-Seq to profile Th17n and Th17p cells grown in the presence of either the predicted pro-
regulatory inhibitor DHEA (inhibiting G6PD) or the predicted pro-inflammatory inhibitor EGCG 
(inhibiting PGAM) (Figure 5D-F). The first principal component (PC1), which is the main axis of 
variation in the data, represented as expected, the pathogenicity phenotype. In both Th17n and 
Th17p cells, EGCG shifted cell profiles towards a more pathogenic state on PC1, whereas DHEA 
shifted them to a less pathogenic state (Figure 5D). The difference between the two vehicle 
controls was inconsequential compared to cell type and interventions. 

To better interpret the drug-induced transcriptional changes, we examined individual genes 
whose expression is associated with either Th17n or Th17p effector function as wells as global 
transcriptomic shifts (Figure 5E-F). A comparison of DHEA to vehicle control identified a large 
number of effector genes that are modulated. These include a significant decrease in IL23R and 
TBX21 transcripts in both Th17p and Th17n, two genes critical for Th17 cell pathogenicity, and 
in IL9 and IL1RN, two genes highly expressed in non-pathogenic Th17 cells (Lee et al. 2012). 
Conversely, EGCG clearly strengthened the pathogenic transcriptional program in Th17n, 
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globally upregulating pro-inflammatory genes (e.g., IL22, IL7R, and CASP1) and (to a more 
limited extent) downregulating pro-regulatory ones (e.g., IKZF3). The global shift towards the 
pro-inflammatory Th17 program was observed both in metabolic and non-metabolic 
transcripts, supporting the hypothesis that PGAM inhibition by EGCG effected a network-wide 
metabolic shift that mediated emergence of a pro-inflammatory Th17 program (Figure 5F).  

To verify that the effect of EGCG was mediated by a specific inhibition of PGAM (rather than an 
off-target effect) we conducted a carbon tracing assay in which the cell’s medium was 
supplemented with 13C-glucose. PGAM inhibition with EGCG led to a sharp decrease (from 51% 
13C ratio to 7% in Th17n and from 55% to 33% in Th17p) in 13C contents of 2PG (PGAM’s 
product) but not 3PG (PGAM’s substrate) or any other glycolytic metabolite that we were able 
to measure (Figure 5G). Interestingly, 13C ratio of PEP (one step downstream of 2PG) was not 
changed as well. This suggests that the effect of the inhibitor is restricted (at least within 
glycolysis) to the PGAM reaction that lies directly downstream of 3PG. 

As the serine biosynthesis pathway is more active in Th17p than in Th17n (Figure 3C) and lies 
directly downstream of 3PG (Figure 5B), we asked whether inhibiting serine biosynthesis can 
rescue the effect of PGAM inhibition. To this end, we treated Th17n cells with inhibitors to 
PGAM and PHGDH (phosphoglycerate dehydrogenase), alone or in combination. We found that 
further inhibiting PHDGH rescued the upregulation of Tbet and IFNg induced by EGCG but not 
its impact on IL-10 suppression (Figure 5H).  

Taken together, an intra-population Compass analysis predicted that within the Th17n 
compartment, the glycolytic PGAM reaction inhibits, rather than promotes, pathogenicity. This 
prediction relied on heterogeneity within the Th17n population, yielding results that are 
contrary to those from inter-population comparisons of Th17 to Treg or Th17p to Th17n. EGCG 
specifically inhibited this reaction, and promoted a transcriptional state indicative of a more 
pro-inflammatory potential, as evidenced by a global shift in the transcriptome toward a Th17p-
like profile. RNA-Seq further supported the hypothesis that EGCG mediates its effects by 
altering the cellular metabolic profile. 
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Figure 5. An unexpected role for PGAM in mediating TGFb-induced Th17 pathogenicity. 

(A) Intra-population analysis in two biological replicates. Th17nu (Th17n unsorted) corresponds to the 
set of 130 T cells stimulated by the Th17n cytokines but unsorted for IL-17A-GFP+ in (Gaublomme et al., 
2015) (the Th17n and Th17nu cell populations, see Figure 3A). Dots are single metabolic reactions, and 
axes denote Spearman correlation with the pathogenic signature. Colors denote whether the reaction 
was decided as pro-inflammatory, pro-regulatory, or non-significantly (NS) associated with either state 
by the inter-population analysis. SPT = serine-pyruvate transaminase (EC 2.6.1.51). Rev = reverse 
(backwards) direction. (STAR Methods). (B) Schematics of central carbon metabolism, the highlighted 
magenta and green reactions are the two predicted to be most correlated and anti-correlated with the 
computational pathogenicity score within the Th17n compartment, respectively. Reported inhibitors of 
these reactions are denoted. (C) Effects of inhibiting candidate genes on Th17 cytokines as measured by 
flow cytometry are shown. Naïve T cells were differentiated under pathogenic (Th17p) and non-
pathogenic (Th17n) Th17 cell conditions in the presence of control solvent or inhibitors. Cells were pre-
labeled with division dye and protein expression is reported for cells that have gone through one 
division (d1) to exclude arrested cells. (D) PCA of bulk RNA-Seq of d1 Th17 cells. (E) Differential gene 
expression due to EGCG and DHEA treatment. Red and blue dots represent genes associated with the 
pro-pathogenic and pro-regulatory Th17 transcriptional programs, respectively (red genes are ones 
belonging either to the list of pro-pathogenic Th17 markers (Supplementary Methods) or to the Th17 
pro-inflammatory covariation module defined by (Gaublomme et al., 2015); blue genes are similarly 
defined). (F) Histograms of the logFC per gene in differential expression of EGCG- vs. DMSO-treated 
cells. A separate histogram is shown for Th17p-associated (magenta), Th17n-associated (green), and 
non-significantly associated (grey) genes. Genes were partitioned into these three groups by differential 
expression in bulk RNA-Seq (same libraries as shown in panel D) between DMSO-treated Th17p and 
Th17n cells with significance threshold of BH-adjusted p ≤ 0.05 and log2 fold-change ≥ 1.5 in absolute 
value. (G) ratio of 13C-tagged carbon to total carbon in Th17 cells cultured for 15 minutes in the 
presence of 13C-glucose. Three metabolites are shown: PGAM’s substrate (3-phosphoglycerate), 
product (2-phosphoglycerate), and the next downstream metabolite along the glycolytic pathway 
(phosphoenolpyruvate). (H) Th17n cells were differentiated in the presence of solvent alone, EGCG, 
PHDGH inhibitor (PKUMDL-WQ-2101), or the combination. Cells were harvested at 96h for flow 
cytometry. 

 PGAM inhibition exacerbates, whereas G6PD inhibition ameliorates, Th17-
mediated neuroinflammation in vivo 

To test the functional relevance of the transcriptome shifts induced by EGCG and DHEA in vivo, 
we used the adoptive T cell transfer system, so that the effect of inhibitors is limited to T cells 
rather than all cells in the host. We generated Th17n and Th17p cells from naive CD4+ T cells 
isolated from 2D2 TCR-transgenic mice, with specificity for MOG 35-55, and transferred them 
into wildtype mice to induce EAE.  
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Consistent with Compass prediction, Th17p cells treated with DHEA reduced the severity of 
disease at peak of EAE in the recipients (Figure 6A). By the time the mice were sacrificed, 
however, the number of lesions in CNS was not significantly different (Figure 6B), and surviving 
mice showed no significant alterations in antigen-specific cytokine secretion in response to 
MOG, except for increased IL-2 in the DHEA treated group (Figure S6A). More interestingly, and 
in agreement with Compass predictions, EGCG-treated Th17n cells induced EAE, albeit in mild 
form, whereas solvent treated cells failed to produce any consequential neuroinflammation 
(Figure 6C). Recipients of EGCG-treated Th17n cells had a significantly higher EAE incidence rate 
(10/12) compared with the control group (0/12, Fisher’s exact p = 1.1*10-4). Consistent with the 
clinical disease, histological analyses revealed an increased number of CNS lesions in in both the 
meninges and the parenchyma of mice that were injected with EGCG-treated Th17 cells (Figure 
6D). While there was only a small difference in antigen-specific T cell proliferation (Figure 6E), 
there was a significant increase in secretion of IL-17, IL-17F, IL-22 and IL-6 (Figure 6F and Figure 
S6B) in response to antigen in cells isolated from draining lymph node of mice transferred with 
EGCG-treated Th17n cells. As EGCG treated non-pathogenic Th17n cells induced only mild EAE, 
we asked whether EGCG will further enhance encephalitogenicity of Th17 cells if IL-23 is 
included in the differentiation cultures, which stabilizes the Th17 phenotype (Aggarwal et al., 
2003; Awasthi et al., 2009; McGeachy et al., 2009; Zhou et al., 2007). IL-23- treatment indeed 
enhanced EAE disease severity, but still Th17n cells treated with IL-23+EGCG induced 
significantly more severe EAE than their IL-23+solvent-treated counterparts (Figure 6G). 
Histopathology across all experiments revealed that EGCG treatment of Th17n cells promoted, 
whereas DHEA treatment Th17p cells restricted, optic neuritis/perineuritis in host mice (Figure 
6H). Interestingly, mice transferred with EGCG-treated Th17 cells (Th17n or Th17n with IL-23) 
were the only experimental group to produce Wallerian degeneration in proximal spinal nerve 
roots (Figure 6I, J). 

In conclusion, Compass correctly predicted metabolic targets including glycolytic pathways 
whose deletion affected Th17 function. Importantly, it was able to pinpoint a glycolytic reaction 
that suppresses Th17 pathogenicity, which runs contrary to the current understanding that 
aerobic glycolysis as a whole is associated with a pro-inflammatory phenotype in Th17 cells. 
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Figure 6. EGCG exacerbates and DHEA ameliorates Th17-induced EAE in vivo. 

2D2 TCR–transgenic Th17 cells were adoptively transferred after differentiation in vitro in the 
presence of an inhibitor or vehicle as indicated. (A,C,G) Clinical outcome of EAE; (B,D) 
Histological score based on cell infiltrates in meninges and parenchyma of CNS; (E-F) Draining 
lymph node (cervical) from respective mice were isolated and pulsed with increasing dose of 
MOG35-55 peptide for 3 days and (E) subjected to thymidine incorporation assay; or (F) 
measurement of cytokine secretion by Legendplex and flow cytometry. Concentrations were 
normalized through division by the respective response to no antigen control. 
(H-I) Independent pathological report of CNS isolated from mice with EAE at end point (d35 for 
EGCG experiments; d28 for DHEA experiment); Optic nerves were not found in the histologic 
section from one animal in the EGCG+IL-23 group. (J) Representative histology of spinal cord 
and spinal nerve roots.  There is greater meningeal inflammation and Wallerian degeneration 
(digestion chambers, arrows) in posterior spinal nerve roots in EGCG vs. Control mice. PC, 
posterior column; PH, posterior horn. Individual mouse numbers are indicated. The smaller 
panel shows VK 39875 mouse section at higher magnification. All are H. & E., 40X objective. 
Three similar experiments were performed. 
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Chapter 5 

Computationally-informed analysis of peripheral metabolism 
In this chapter, we turn to peripheral (also called ancillary, or secondary) metabolism – a loose 
term to capture parts of the metabolic network other than the main energy producing 
pathways, which can be crucial to function of immune cells (Puleston et al., 2017) as well as 
other organs. Since Compass leverages RNA-Seq inputs, it is able to make network-wide 
predictions in understudied parts of the metabolic network cut across traditional pathway 
boundaries. Indeed, this was one of our motivations to develop an in silico method that 
transforms transcriptomes into predicted metabolic profiles in the first place. Here, we show 
that Compass predicts that arginine metabolism, and particularly its downstream polyamine 
branch, are associated with Th17 effector function, and validate this prediction through 
functional assays. 

 Identifying the polyamine pathway as a candidate regulator of Th17 
function 

The polyamine pathway stood out as one of the most significantly associated with differences 
in Th17 pathogenicity according to Compass predictions (Figure 7A). We constructed a data-
driven metabolic network anchored around putrescine, the starting metabolite in canonical 
polyamine synthesis, by including adjacent metabolites whose reactions are predicted to be 
associated with pathogenicity (Figure 7B). While several polyamine-associated genes were 
differentially expressed between Th17p and Th17n, the network tied the differential polyamine 
metabolism to differences in upstream and downstream metabolic reactions which could not 
be captured from differential gene expression directly. Specifically, Compass predicted that 
Th17n cells are more active in arginine metabolic pathways, upstream of putrescine, and in 
alternative fates of putrescine (other than conversion to spermidine along the canonical 
polyamine synthesis pathway). 
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 Cellular polyamines are suppressed in regulatory T cells and non-
pathogenic Th17 

We asked whether critical enzymes of the polyamine pathway (Figure 7C) were differentially 
expressed between CD4+ T cell subsets using qPCR. Ornithine decarboxylase 1 (ODC1) and 
spermidine/spermine N1 acetyltransferase 1 (SAT1) are the rate-limiting enzymes of polyamine 
biosynthesis and catabolic processes, respectively. SAT1 level was higher in Th17p than in 
Th17n or Treg, while ODC1 was similarly expressed in Th17n and Th17p, but significantly lower 
in Treg. Interestingly, argininosuccinate synthetase 1 (ASS1), an enzyme upstream of polyamine 
biosynthesis was upregulated in Th17n, consistent with Compass-predicted alternative flux in 
the polyamine neighborhood (Figure 7D). Collectively, these data suggest that the polyamine 
pathway may be associated with functional state in Th17 and other T cell lineages.  

We next measured polyamine metabolites using an enzymatic assay and LC/MS metabolomics 
(Supplementary Methods). Compared to Th17p, Treg and Th17n had reduced levels of total 
polyamines (Figure 7E), reflecting reduced import, reduced biosynthesis, or increased export of 
polyamines in these cells. We then measured metabolites in the polyamine neighborhood 
(Figures 7F, S7A). Consistent with Compass’s predictions, there was higher creatine content in 
Th17n than in Th17p. While cellular ornithine (polyamine precursor) was comparable between 
Th17p and Th17n, Th17p had higher levels of putrescine and acetyl-putrescine (Figure 7F). Of 
note, cellular spermidine and acetyl-spermidine were not different between the conditions, and 
spermine was not detected (Figure 7F). The reduced putrescine and its acetyl form in Th17n are 
unlikely due to increased export, as we observed very little polyamines in the media of either 
Th17n or Th17p (Figure S7A). These data suggest that polyamines accumulate within Th17p and 
that the main function of SAT1 in Th17p may be to recycle rather than to export polyamines. 

Arginine and citrulline can be used to synthesize the polyamine precursor ornithine. We used 
carbon- or hydrogen-labeled arginine or citrulline to study polyamine biosynthesis (Figure 
S7B, C). We harvested cells and media for LC/MS at 0, 1, 5 and 24 hours post addition of labeled 
arginine. While labeled cellular guanidinoacetic acid, a byproduct of arginine conversion into 
ornithine, was comparable between Th17n and Th17p, over time Th17p cells accumulated 
more intracellular putrescine, acetyl-putrescine and acetyl-spermidine (Figure S7B), consistent 
with increased polyamine biosynthesis and/or recycling activity in these cells. Conversely, 
Th17n accumulated more labeled arginine than Th17p. This prompted us to investigate 
whether Th17n can also better synthesize (as opposed to better uptake) arginine, which would 
be consistent with higher ASS1 expression (Figure 7D) in these cells. We pulsed cells with 
labeled citrulline, an arginine precursor, and indeed observed higher levels of labeled arginine 
in Th17n (Figure S7C). Collectively, the targeted metabolomics and tracing data suggest that 
Th17n accumulate arginine, and that Th17p preferentially synthesize or recycle polyamines. We 



 

 

 

 

47 

conclude that differences in polyamine biosynthesis are associated with the different Th17 
functional states. 
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Figure 7. Prediction and metabolic validation of the polyamine pathway as a regulator of Th17 
function.  

(A) X-axis: Compass-score differential activity test; Th17p vs. Th17n. BH-adjusted Wilcoxon rank sum p 
signed by the direction of change. Y-axis: Spearman correlation between Compass scores and cell 
pathogenicity scores (Supplementary Methods). Dots are meta-reactions, green dots are meta-
reactions containing at least one reaction that appears in the network of panel B. All reactions 
comprising the meta-reaction labelled “polyamine metabolism” are denoted in panel B. (B) A metabolic 
network that is preferentially active in Th17n based on Compass results. Green arrows represent 
reactions predicted to be significantly associated with the Th17n program; double arrows are reactions 
belonging to the meta-reaction labeled “polyamine metabolism” in panel A. SAM: S-Adenosyl-
Methionine; SAH: S-Adenosyl-Homocysteine. GABA: gamma-aminobutyric acid. (C) Schematic polyamine 
pathway based on KEGG. (D-F) T cells were differentiated (Supplementary Methods; shown is a 
representative of 2-3 experiments with 3-4 mice each) and harvested at 48h for qPCR (D), and 68h for 
polyamine enzymatic assay (E) and metabolomics (E-F). 

 ODC1 or SAT1 inhibition restricts Th17 function in a putrescine-dependent 
manner 

We studied the effects of polyamine pathway inhibitors on Th17 differentiation in vitro. 
Difluoromethylornithine (DFMO), an irreversible inhibitor of ODC1, suppressed polyamines and 
inhibited IL-17 expression in both Th17n and Th17p (Figures 8A-B, S8A). DFMO also inhibited 
the expression of other canonical Th17 cytokines such as IL-17A, IL-17F, IL-21 and IL-22, while 
promoting IL-9 levels in culture supernatant (Figure 8C). IL-17 inhibition does not appear to be 
solely related to IL-2 regulation (Bowlin et al., 1987), as DFMO promoted IL-2 expression in 
Th17p, but not Th17n (Figure 8C). In support of this view, IL-2 neutralization did not rescue the 
inhibitory effects of DFMO (Figure S8B-E). DFMO reduced cell proliferation (data not shown) 
and this likely contributed to its suppression of Th17 effector functions. However, when 
considering only cells that had divided exactly once, as means to select cells that are equally 
potent proliferators, DFMO treatment led to a lower frequency of IL-17+ cells (data not shown). 
Therefore, DFMO can regulate Th17 also independently of proliferation. The increased 
secretion of IL-9 (a Th9 cytokine) by DFMO-treated cells also suggests that DFMO does not 
inhibit Th17 function solely by reducing cell viability. 

Turning to Th17 transcription factors, DFMO suppressed Rorgt and Tbet expression in Th17p 
but not Th17n (Figure 8D), suggesting a nuanced effect. Consistently, DFMO decreased pStat3, 
and not total Stat3 protein levels, only in Th17p (Figure S8F). IL-17 inhibition is not due to 
increased Foxo1 activity, another critical regulator of Th17 function, as DFMO promoted 
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pFoxo1(S256) (Figure S8F). Given the reciprocal regulation of Th17 and Treg, and as DMFO also 
impacted polyamine levels in Tregs (Figure S8A), we asked whether DFMO regulates Foxp3 
even under Th17 differentiation conditions. DFMO increased the frequency of Foxp3+ cells in 
Th17n but not Th17p (Figure 8E), presumably because TGF-β1 is required for Foxp3 expression.  

To determine whether other enzymes of the polyamine pathway also regulate Th17 function, 
we used inhibitors of spermine synthase (SRM) and spermidine synthase (SMS) (Figure 8A). 
Similar to DFMO, inhibitors of any of the biosynthesis enzymes suppressed IL-17 and promoted 
IL-9 and Foxp3 expression, the latter in Th17n (Figure 8F). Furthermore, using diminazene 
aceturate to inhibit SAT1, a rate-limiting enzyme of polyamine acetylation and recycling, had 
similar effects (Figure 8F). SAT1 and ODC1 are probably part of a self-regulating feedback loop, 
as perturbation in one was previously reported to affect the other (Jell et al., 2007; Mounce et 
al., 2016; Pegg, 2008). Consistent with this finding, inhibition of ODC1 with DFMO suppressed 
SAT1 expression in Th17 cells (Figure S8G). 

Finally, we confirmed that the effect of DFMO was through inhibition of ODC1, as addition of 
putrescine to cells treated with DFMO completely reversed their phenotype (Figure 8G). 
Interestingly, addition of putrescine with SAT1 inhibition partially reversed the upregulation of 
Foxp3, but not the suppression of IL-17 (Figure 8H). This suggests that ODC1 and SAT1 have not 
only shared but also (despite their proximity in the metabolic network) distinct functions in the 
regulation of the T effector program. 
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Figure 8. Chemical and genetic perturbations of the polyamine pathway suppress canonical Th17 
cytokines. 

(A) Polyamine pathway schematic depicting chemical inhibitors. (B-E) Flow cytometry of differentiated 
cells on day 3 (d3); B,D,E intracellular staining; C secreted cytokines by legendplex. DFMO or solvent 
control (water) was added at d0. (F) Inhibition of polyamine pathway targets in in vitro differentiated 
Th17n. (G-H) Addition of 2.5mM putrescine has a rescue effect in cultures with inhibited ODC1 (G) or 
SAT1 (H). (I) Flow cytometry of T cells differentiated from WT or ODC1-/- mice under the indicated 
conditions (n=4 mice). Statistical significance computed by paired t-test or one-way ANOVA, as 
appropriate for the context, with Bonferroni adjustment for multiple comparisons. 

 ODC1-/- Th17 cells upregulate Foxp3 expression  

To further confirm the effects of polyamine pathway inhibition on T cells, we differentiated 
Th17 cells from WT and ODC1-/- mice. Similar to DFMO treatment, there was complete 
inhibition of Th17 canonical cytokines, such as IL-17A, IL-17F and IL-22, but not IFNg, in ODC1-/- 
Th17 cells (Figures 8I, S8H). Although ODC1 deficiency did not lead to a decrease in Rorgt 
expression (data not shown), the loss of Th17 canonical cytokines is consistent with loss of the 
Th17 program. Furthermore, ODC1-/- Th17n upregulated Foxp3, consistent with promotion of a 
Treg program (Figure 8I). Finally, the observed effects of ODC1-/- were rescued by addition of 
putrescine (Figures 8I, S8H). 
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Chapter 6 

The polyamine pathway regulates Th17-induced 
autoimmunity 

In the previous chapter, we established the importance of polyamine metabolism in 
determining Th17 effector profiles. Here, we support this observation through analysis of in 
vitro molecular profiles and in vivo phenotypes of polyamine perturbations. We show that 
polyamine perturbations substantially shift the transcriptome and chromatin accessibility 
landscapes of Th17 cells towards a pro-tolerance, Treg-like profile. We find that the 
transcription factor JMJD3 is required to restrict Th17 differentiation and favor a Treg fate in a 
polyamine-dependent manner. Deletion of the polyamine synthesizing enzyme ODC1 abrogates 
the promotion of Th17 differentiation by JMJD3 deficiency. Next, we test two perturbations of 
the polyamine perturbation in vivo – a chemical inhibitor (supplementation of DFMO in drinking 
water) and a genetic knokcout. 

 DFMO restricts Th17-cell transcriptome and epigenome in favor of Treg-like 
state 

To gain mechanistic insight, we profiled bulk RNA from Th17p, Th17n, and iTreg cells treated 
with DFMO or control (Supplementary Methods). DFMO had a profound impact on the 
transcriptome of all three lineages, driving Th17 cells towards a Treg profile (Figure 9A). We 
next determined the aggregate effect of DFMO on genes that are up-regulated (n=1,284), 
down-regulated (n=1,255) or comparable (n=8,257) in untreated Th17 vs. Treg (Figure 9B). In 
both Th17p and Th17n, DFMO suppressed the Th17-specific in favor of the Treg-specific 
transcriptome (Figure 9C). Canonical Th17 cell genes such as IL17a, IL17f, and IL23r were 
suppressed, whereas Treg related genes, such as Foxp3 and CCL3, were upregulated (Figure 
9B). There was no consistent effect of DFMO on Treg or genes expressed comparably in Th17 
and Treg (Figure 9C). Thus, the polyamine pathway is important for restricting the Treg-like 
program in Th17 cells in both Th17p and Th17n states.  

DFMO also promoted a subset of genes that are characteristic to Th17n but not to Th17p or 
iTreg (Figure S9A). Notably, DFMO treatment in both Th17n and Th17p led to elevated levels of 
the pro-regulatory IL-9 transcript (Lee et al., 2012), consistent with the aforementioned protein 
analysis (Figure 8C) and the initial Compass prediction (Figure 3D). This accords with polyamine 
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metabolism promoting Th17 over Treg fate on the one hand, while being associated with a 
Th17n fate (marked by high IL-9 expression) over Th17p on the other. Furthermore, DFMO-
treated Th17 upregulated the CD5L/AIM transcript, which we showed to be predominantly 
expressed by Th17n (Wang et al., 2015). 

While DFMO profoundly altered the Th17 transcriptome, it did not consistently restrict 
phosphorylation of key Th17 cell regulators, particularly not in Th17n (Figure S8F). We 
hypothesized that polyamines may impact the epigenome, which was also suggested by the 
altered expression of many chromatin modifiers in DFMO-treated cells (Figure S9B). To test this 
hypothesis, we measured chromatin accessibility by ATAC-Seq in Th17n and iTreg cells 
(Supplementary Methods). Overall, DFMO treatment resulted in considerable changes in 
accessible regions in both lineages (Figure S9C). We asked whether DFMO preferentially altered 
accessibility in Th17- and Treg-specific regions by partitioning all accessible peaks into those 
more accessible (n=10,431), less accessible (n=3,421), or comparably accessible (n=34,591) in 
untreated Th17n vs. Treg (Figure 9D). Consistent with the RNA-Seq data, DFMO restricted 
accessibility in Th17-specific regions and favored accessibility in Treg-specific regions (Figure 
9D). Differentially accessible regions were found near loci encoding key effector molecules. For 
instance, DFMO restricted peaks in the promoter and intergenic regions of IL17a-IL17f that 
correspond to Rorgt binding sites known to regulate IL-17 expression (Figure 9E; based on a 
ChIP-Seq of Th17 cells by (Xiao et al., 2014)). Thus, DFMO can shape chromatin accessibility in 
favor of a Treg epigenomic landscape, and this may contribute to the emergence of a Treg-like 
transcriptional program in DFMO-treated Th17 cells. 
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Figure 9. DFMO treatment promotes Treg-like transcriptome and epigenome.  

T cells were harvested at 68h for live cell sorting and population RNA-Seq (A-C) and ATAC-Seq (D-F). A, 
PCA plot of the RNA-Seq. B, Volcano plots (upper) and qPCR validation (lower) of genes affected by 
DFMO treatment. C-D, Density plot showing DFMO effects on transcriptome (C) and chromatin 
accessibility (D). Genes or loci are divided into those up-regulated or more accessible, respectively, in 
Th17 cells (orange), Treg (violet) or neither (grey) (Supplementary Methods). E, IGV plots of IL17a 
region; Rorgt binding sites with significantly altered accessibility by DFMO are highlighted; a 
representative (WT1) of 3 mice is shown. F, Rows show hypergeometric enrichment computed for peaks 
annotated with a genomic feature by Chip-Seq (Ciofani et al., 2012) or DNA binding motifs 
(Supplementary Methods). Dots are fold enrichment of peaks more accessible in DFMO-treated (blue) 
or untreated (grey) Th17n against a background of iTreg peaks. G, Differentiated cells were rested at 
68h and harvested at 120h for analysis of intracellular Foxp3 or GM-CSF, and IL-10 secretion. BH-
adjusted p < 0.0001 denoted ****; p < 0.001 denoted ***. A representative of 2 experiments with 4 
mice each. H, Cells from G were harvested at 68h for RNA-Seq (n=4). Density plots showing JMJD3 
deficiency and DFMO treatment effects. Treg and Th17 programs were defined similarly to panel C. 

 The chromatin regulator JMJD3 maintains Treg-like state in Th17 cells in a 
polyamine-dependent manner  

To investigate which TFs may be responsible for the suppression of the Th17-specific program 
and upregulation of the Treg program, we looked for putative binding sites overlapping with 
regions whose accessibility is modulated by DFMO. When considering genomic regions that are 
typically more accessible in Tregs compared to Th17 and may be modulated by DFMO (Figures 
9F, S9D), we found that in Th17n cells, DFMO increased chromatin accessibility near potential 
binding sites of JMJD3 along with a number of POU-domain containing TFs.  

As JMJD3 regulates T cell plasticity (Ciofani et al., 2012; Li et al., 2014; Liu et al., 2015), we 
tested whether the  transcriptional shifts induced by DFMO were altered in JMJD3fl/flCD4cre T 
cells. JMJD3 deficiency reduced Foxp3 expression and abrogated the upregulation of Foxp3 and 
IL-10 by DFMO in Th17n (Figure 9G). On the other hand, both JMJD3 deficiency and ODC1 
inhibition suppressed GM-CSF expression in Th17p (Figure 9G). Of note, DFMO did not alter 
JMJD3 expression in Th17 cells (data not shown). These data suggest that JMJD3 and ODC1 
have both distinct and overlapping functions. Consistent with the flow cytometry data, JMJD3 
deficiency in Th17n resulted in a global transcriptome-wide shift restricting the Treg and (to a 
lesser extent) promoting the Th17 program (Figure 9H). This agrees with previous findings that 
JMJD3 ablation in vivo promoted intestinal Th17 differentiation (Li et al., 2014). Notably, ODC1 
inhibition by DFMO abolished the suppression of the Treg program by JMJD3 deficiency 
(differences between solid and dotted curves in Figures 9H, S9E). However, the milder 
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transcriptomic shift towards the Th17 program in JMJD3fl/flCD4cre mice was not reversed with 
further ODC1 inhibition by DFMO. In the other direction, JMJD3 had little global impact on the 
effects of DFMO (Figure S9F). We conclude that JMJD3 requires uninhibited ODC1 activity to 
sustain the Treg program, whereas the promotion of the Th17 program and the suppression of 
the Treg program by ODC1 activity do not require JMJD3. 

 Perturbation of ODC1 and SAT1, key enzymes of the polyamine pathway, 
alleviates EAE 

We investigated the polyamine pathway in vivo in the context of EAE, a central nervous system 
(CNS) autoimmune disease, via two approaches: chemical inhibition of ODC1 and T-cell specific 
genetic deletion of SAT1 (Figure 10). As targeting multiple nodes in the polyamine pathway 
upregulated Foxp3 during Th17 differentiation in vitro (Figures 8-9), we hypothesized that 
perturbing rate-limiting enzymes in vivo would regulate the induction of EAE. 

We first tested ODC1 inhibition by adding DFMO to the drinking water of mice immunized with 
MOG/CFA for EAE induction. DFMO delayed the onset and severity of EAE (Figure 10B), and 
reduced antigen-specific recall responses as measured by T cell proliferation in the draining 
lymph node (dLN) (Figure 10C). Further analysis of T cells isolated from the CNS showed no 
difference in cytokine production, but increased frequency of Foxp3+ CD4+ T cells (Figure 10D 
and data not shown). These results agree with polyamine biosynthesis regulating the Th17/Treg 
balance in favor of Th17, and consequently the induction of autoimmune CNS inflammation.  

Since administration of DFMO via drinking water could affect multiple cell types, we also 
genetically deleted SAT1 in CD4+ T cells (SAT1fl/flCD4cre). We confirmed that genetic SAT1 
deficiency in Th17 abrogated polyamine acetylation (Figure 10E). Notably, loss of SAT1 also 
reduced (non-acetylated) putrescine levels, supporting a feedback mechanism as discussed 
above (Figure S8G). 

We observed delayed onset and severity of EAE in SAT1fl/flCD4cre mice (Figure 10F), as well as 
inhibition of antigen-specific recall responses (Figure 10G), similar to the effects observed with 
DFMO treatment. Although cytokine production was unaltered ex vivo by SAT1 deficiency, 
there was a trend towards decreased antigen-dependent IFNg, IL-17 and TNF production, and 
increased IL-9 (Figure 10H, S9A). Foxp3+CD4+ T cells were increased with a concomitant 
decrease of Rorgt+CD4+ T cells isolated from the CNS of SAT1fl/flCD4cre mice (Figure 10I). 
Notably, the frequencies of Foxp3+ or Rorgt+ cells were not different in dLN (Figure S10B), 
suggesting that the effect of SAT1 on T cells may be amplified in tissue recall responses. In 
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conclusion, we demonstrated using both chemical and genetic perturbations at multiple levels 
that the polyamine pathway is an important mediator of autoimmune inflammation. 

 Limitations of the study 

Concerning polyamine metabolism, chemical inhibitions of several target enzymes led to similar 
effects on Th17 cells, but genetic deletions of ODC1 and SAT1 did not produce identical results. 
While both ODC1 and SAT1 deletion promoted Foxp3 expression, ODC1 but not SAT1 
suppressed Th17 cytokines in vitro (Figure 8I and data not shown). Further studies are 
necessary to understand the mechanistic roles and reciprocal regulation between the enzymes 
of the polyamine pathway in vivo. 
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Figure 10. Targeting ODC1 and SAT1 alleviates experimental autoimmune encephalomyelitis (EAE). 

(A) Polyamine pathway schematics; (B-D) Effects of chemical inhibition of ODC1 by DFMO in drinking 
water on MOG35-55/CFA induced EAE in wildtype mice. B, Clinical score over time. C, Antigen-specific 
proliferation of cells isolated from draining lymph node (dLN) at d23 (STAR Methods). D, Flow cytometry 
of T cells isolated from CNS at d15. (E-I) Effects of genetic perturbation of SAT1. E, Abundance of 
metabolites in differentiated WT or SAT1-/- T cells. (F-I) EAE was induced in WT and SAT1fl/flCD4cre mice. F, 
Clinical score (left) and histological score (right) showing the number of CNS infiltrates. G-H, Antigen-
specific response of cells from dLN (d23) is analyzed by proliferation (G) and antigen-specific cytokine 
secretion by legendplex (H). I, Flow cytometry of cells isolated from CNS at d15. Linear regression 
analysis (b, c, f, g), two-way ANOVA (e) and Student t-test (d, i) were used for statistical analysis. 
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Chapter 7 
 

Conclusions 
We presented Compass, a flux balance analysis (FBA) algorithm to study metabolism in single-
cell transcriptomic data and validated a number of its predictions by molecular and functional 
analyses. These results support the power of transcriptomic-based FBA to make valid 
predictions in a mammalian system. The network-wide approach enabled Compass to 
successfully predict metabolic targets in both central and ancillary pathways. 

Static FBA assumes that the system under consideration operates in chemical steady state 
(Varma and Palsson, 1994). Even under this assumption, there remains an infinite number of 
feasible flux distributions that satisfy the preset biochemical constraints. Therefore, most 
studies assume that cells aim to optimize some metabolic function, usually biomass production 
(Damiani et al., 2019). However, while biomass maximization may successfully predict 
phenotypes in unicellular organisms (Lewis et al., 2010), it is ill-suited for studying mammalian 
cells (Adler et al., 2019). To overcome this challenge, rather than optimizing a single metabolic 
objective, Compass optimizes a set of objective functions, each estimating the degree to which 
a cell’s transcriptome supports carrying the maximal theoretical flux through a given reaction. 
The result is a high dimensional representation of the cell’s metabolic potential (one coordinate 
per reaction). A biological signal (e.g., differential reaction activity) can be detected despite the 
high-dimension owing to the statistical power afforded by the large number of cells in a typical 
scRNA-Seq dataset. Nonetheless, there is no inherent limitation preventing one from applying 
Compass to study bulk (i.e., non-single-cell) transcriptomic data. 

Compass correctly predicted the role of aerobic glycolysis in the induction of pathogenic Th17 
and the role of beta-oxidation in the induction of pro-regulatory Th17, mirroring previous 
findings in comparisons of Th17 to Treg. However, a Compass-based data-driven analysis based 
on scRNAseq unexpectedly revealed that not all glycolytic reactions promote the pro-
inflammatory phenotype in Th17 cells. This result was obtained via an intra-population analysis 
of individual cells. It serves as a further example to the power of studying single-cell 
heterogeneity within seemingly homogenous populations (here, Th17n), which allowed us to 
identify a novel regulator that would have otherwise been missed at a population level (here, a 
comparison of Th17p and Th17n). The computational prediction and the data corroborating it 
also demonstrate that despite the common assumption that glycolysis promotes pro-
inflammatory functions in Th17 cells and other immune compartments (Geltink et al., 2018; 
MacIver et al., 2013; O’Brien and Finlay, 2019; O’Neill and Pearce, 2016; O’Neill et al., 2016; 
Pearce and Everts, 2015; Pearce et al., 2013; van der Windt and Pearce, 2012), the role of 
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glycolysis in induction of pro-inflammatory phenotypes may more nuanced (Newton et al., 
2016; Van den Bossche et al., 2017). 

Compass also predicted that novel targets in peripheral metabolism were associated with Th17 
pathogenicity, one of which was the polyamine pathway. We investigated the metabolic 
circuitry centered around the polyamine pathway, and demonstrated its critical role in 
promoting pathogenicity and restricting a Treg like program in Th17 cells. Because of reciprocal 
generation of Th17/Treg cells, the effects observed with the inhibition of polyamine pathway 
may be unique to diseases where Th17 cells are the effector cells. The significance of the 
polyamine pathway in autoimmunity contexts is further supported by anecdotal data that 
polyamine levels are increased in several autoimmune diseases (Hsu et al., 1994; Karouzakis et 
al., 2012) and it is thought that aberrant polyamine metabolism contributes to autoantigen 
stabilization (Brooks, 2013). Here, we present a mechanism through which the polyamine 
pathway can regulate epigenome and thereby Th17/Treg balance and impact development of 
autoimmunity. We showed that difluoromethylornithine (DFMO), which inhibits a key step of 
polyamine synthesis, substantially alters the Th17 effector profile. Since DFMO is a well-
tolerated, FDA-approved drug (Casero et al., 2018), there might be grounds for drug 
repurposing of DFMO for use in immune disorders. 

One of the outstanding challenges in the field of single cell genomics is translating the vast data 
sets presented in cell atlases into an actionable knowledge resource, i.e. using observed cell 
states to deduce molecular mechanisms and targets (Tanay and Regev, 2017). Compass was 
designed with this challenge in mind, and addresses it in the metabolic cellular subsystem, 
which can be tractably modeled in silico. In light of the wide appreciation of cellular metabolism 
as a critical regulator of physiological processes in health and disease, we expect Compass to be 
useful in predicting cell metabolic states, as well as actionable metabolic targets, in diverse 
physiological and pathologic contexts. 
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× 

Chapter 8 
 

Extended methods 

 Experimental models 

8.1.1 T cell differentiation culture 

Naive CD4+CD44-CD62L+CD25-T cells were sorted using BD FACSAria sorter and activated with 
plate-bound anti-CD3 (1µg/ml) and anti-CD28 antibodies (1µg/ml) in the presence of cytokines 
at a concentration of 0.5 106 cells/ml. For T cell differentiations the following combinations of 
cytokines were used: pathogenic Th17: 25ng/ml rmIL-6, 20ng/ml rmIL-1b (both Miltenyi Biotec) 
and 20ng/ml rmIL-23 (RD systems); non-pathogenic Th17: 25ng/ml rmIL-6 and 2ng/ml of 
rhTGFb1 (Miltenyi Biotec); iTreg: 2ng/ml of rhTGFb1; Th1: 20ng/ml rmIL-12 (RD systems); Th2: 
20ng/ml rmIL-4 (Miltenyi Biotec). For differentiation experiments, cells were harvested at 68 
hours for RNA analysis or ATAC-Seq and 72-96h for flow cytometry analysis and Seahorse assay. 

8.1.2 Mice 

C57BL/6 wildtype (WT) mice were obtained from Jackson Laboratory (Bar Harbor, ME). WT 2D2 
transgenic mice were bred in house.   SAT1flox mice were kindly provided by Dr. Manoocher 
Soleimani (University of Cincinnati), which we crossed to CD4cre to generate conditional T cell 
deletion of SAT1. ODC1fl/flCD4cre were gifted by Dr. Erika Pearce (Max Planck Institute). For 
experiments, mice were matched for sex and age, and most mice were 6–10 weeks old. 
Littermate WT or Cre- mice were used as controls. All experiments were performed in 
accordance to the guidelines outlined by the Harvard Medical Area Standing Committee on 
Animals at the Harvard Medical School or the Brigham and Women’s hospital Institutional 
Animal Care and Use Committees (Boston, MA). 

8.1.3 Experimental Autoimmune Encephalomyelitis (EAE) 

For adoptive transfer EAE, naive T cells (CD4+CD44-CD62L+CD25-) were isolated from 2D2 TCR-
transgenic mice and activated with anti-CD3 (1µg /ml) and anti-CD28 (1µg /ml) in the presence 
of differentiation cytokines for 68h. Cells were rested for 2 days and restimulated with plate-
bound anti-CD3 (0.5µg/ml for pathogenic condition; 1µg/ml for non-pathogenic condition) and 
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anti-CD28 (1µg /ml) for 2 days prior to transfer. Equal number (2 to 8 million) cells were 
transferred per mouse intravenously. 

For active EAE immunization, MOG35-55 peptide was emulsified in complete freund adjuvant 
(CFA). Equivalent of 40µg MOG peptide was injected per mouse subcutaneously followed by 
pertussis toxin injection intravenously on day 0 and day 2 of immunization. Mice were treated 
with 0.5% DFMO in drinking water for 10 days as indicated. DFMO was replenished every third 
day.  

EAE was scored as previously published (Jager et al., 2009).  

 Experimental procedures 

8.2.1 Flow cytometry 

Intracellular cytokine staining was performed after incubation for 4-6h with Cell Stimulation 
cocktail plus Golgi transport inhibitors (Thermo Fisher Scientific) using the BD Cytofix/Cytoperm 
buffer set (BD Biosciences) per manufacturer’s instructions. Transcription factor staining was 
performed using the Foxp3/Transcription Factor Staining Buffer Set (eBioscience). Proliferation 
was assessed by staining with CellTrace Violet (Thermo Fisher Scientific) per manufacturer’s 
instructions. Apoptosis was assessed using Annexin V staining kit (BioLegend). Phosphorylation 
of proteins to determine cell signaling was performed with BD Phosflow buffer system (BD 
bioscience) as per manufacturer’s instructions. 

 
8.2.2 Seahorse assay 

Seahorse assay was performed and seahorse media was prepared following manufacturer 
instructions (Agilent). Approximately 50,000 T cells were seeded per well in 96 well plate for 
seahorse assay and readout were normalized against cell count. 

 
8.2.3 Inhibitors and metabolites 

Inhibitors are added at the time of differentiation as follows: 100-200µM DFMO, 500µM trans-
4-methylcyclohexylamine (MCHA, both Sigma), 500µM N-(3-Amino-propyl)cyclohexylamine 
(APCHA, Santa Cruz Biotechnology), 50µM diminazene aceturate (Dize, Cayman Chemical) with 
or without 2.5 mM putrescine (Sigma, P7505) as indicated. 
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8.2.4 qPCR 

RNA was isolated using RNeasy Plus Mini Kit (Qiagen) and reverse transcribed to cDNA with 
iScript cDNA Synthesis Kit (Bio-Rad). Gene expression was analyzed by quantitative real-time 
PCR on a ViiA7 System (Thermo Fisher Scientific) using TaqMan Fast Advanced Master Mix 
(Thermo Fisher Scientific) with the following primer/probe sets:  

• Ass1 (Mm00711256 m1) 
• Odc1 (Mm02019269 g1) 
• Sat1 (Mm00485911 g1) 
• Srm (Mm00726089 s1) 
• Sms (Mm00786246 s1) 
• Il-17a (Mm00439618 m1) 
•  Il-17f (Mm00521423 m1) 
• Foxp3 (Mm00475162 m1),  
• Tead1 (Mm00493507 m1) 
• Taz (Mm00504978 m1) 
• Actb (Applied Biosystems) 

Expression values were calculated relative to Actb detected in the same sample by duplex qPCR. 

8.2.5 Polyamine ELISA 

Cell pellets of in vitro differentiated cells were frozen down and further processed with the 
Total Polyamine Assay Kit (BioVision Inc.) according to the manufacturer’s instructions. 

 
8.2.6 Legendplex 

Cytokine concentrations in supernatants of in vitro cultures were analyzed by the LegendPlex 
Mouse Th Cytokine Panel (13-plex) (BioLegend) according to the manufacturer’s instructions 
and analyzed on a FACS LSR II (BD Biosciences). 
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 RNA-Seq 

8.3.1 Bulk RNA sequencing 

For population (bulk) RNA-seq, in vitro differentiated T cells were sorted for live cells and lysed 
with RLT Plus buffer and RNA was extracted using the RNeasy Plus Mini Kit (Qiagen). Full-length 
RNA-Seq libraries were prepared as previously described [Singer et al., 2016] and paired-end 
sequenced (75 bp 2) with a 150 cycle Nextseq 500 high output V2 kit. 

 
8.3.2 Smart-Seq single-cell RNA sequencing 

Full experimental details are given in (Gaublomme et al., 2015). Briefly, we sequenced CD4+ 
naive T cells 48hrs post polarization under the pathogenic (Th17p) or non-pathogenic (Th17n), 
ultimately retaining after quality tests 151 IL-17A/GFP+ Th17n cells, and 139 IL-17A/GFP+ Th17p 
cells. Unlike (Gaublomme et al., 2015), in the present study we analyze only IL-17A/GFP+ sorted 
cells. 

8.3.3 Estimation of transcript abundance from RNA libraries 

We aligned single-cell SMART-Seq libraries with Bowtie2, quantified TPM gene expression with 
RSEM, and performed QC as we described in detail in a previous publication [Fletcher et al., 
2017]. This computational pipeline is a massively revised and updated version of the one 
originally used to analyze these libraries (Gaublomme et al., 2015). Batch effects and other 
nuisance factors were normalized with a model chosen empirically with SCONE (Cole et al., 
2017) [Cole et al., 2019]. Bulk RNA-Seq were processed with a modified variant of the same 
pipeline, or with a Kallisto (Bray et al., 2016) pipeline. Both gave similar results. 

8.3.4 Differential gene expression 

For the Smart-Seq libraries, due the absence of UMIs in the dataset, differentially expressed 
genes were called through a linear model fitted to TPM values with the limma R package and 
with a mean-variance trend added to the empirical Bayes prior (Ritchie et al., 2015). For the 
bulk RNA libraries, differentially expressed genes were called with limma-trend or 
limma-voom (Law et al., 2014) depending on the variance of library sizes, as recommended 
in the limma package manual. Differentially expressed genes (DEGs) were decided by cutoffs 
of BH-adjusted p ≤ 0.05 fold-change of at least 1.5 in absolute value. 
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8.3.5 Further bioinformatic analysis of RNA-Seq data 

Bulk RNA libraries from DFMO- or vehicle-treated Th17p, Th17n, or Treg were studied with 3 
replicates per condition for a total of 18 libraries as shown in Figure 9A. In all subsequent 
analyses, genes are considered differentially expressed by the cutoffs defined above. 

The PCA shown in Figure 9A was computed on the set of 3,414 that were differentially 
expressed in comparisons of vehicle-treated Th17 (i.e., Th17n or Th17p) vs. with iTreg, or 
vehicle-treated Th17p vs. Th17n to focus it on the subspace of the transcriptome relevant to 
Th17 pathogenicity phenotypes. 

Genes that are associated with a Th17 or Treg programs (orange and purple, respectively, in 
Figure 9B-C) were determined by differential expression test between bulk RNA libraries of 
vehicle-treated Th17 (i.e., Th17n or Th17p) one side and iTreg on the other. Similar results were 
obtained when the definition of the Th17 program (orange curve) and Treg programs was 
based on a comparison of only Th17n against iTreg cells. 

A similar analysis was performed on the independent bulk-RNA dataset that involved Jmjd3 
conditional knockout (Figures 9H, S9E-F). Th17 and Treg programs were defined based on 
differential expression of the vehicle-treated conditions from the dataset (i.e., not borrowed 
from the results of comparison within the previous dataset).  Note, however, that no Th17p 
cells were included in this dataset, and therefore the Th17 program (orange curve) in Figures 
9H, S9E-F is based on a comparison of Th17n against iTreg cells. Th17 and Treg-associated peaks 
in ATAC-Seq (Figure 9D) were similarly defined based on the ATAC-Seq dataset. 

To further stratify genes into Th17-related programs (Figure S9A; based on the bulk RNA 
dataset shown in Figure 9A), we applied a heuristic based on four comparisons (all in vehicle-
treated cells): 

• Th17 (i.e., Th17n or Th17p) vs. iTreg 
• Th17p vs. iTreg 
• Th17n vs. iTreg 
• Th17p vs. Th17n 

The comparisons are decided based on differentially expression with the cutoffs defined above. 
A label is assigned to each gene as follows: 

1. IF   Th17 vs. iTreg == iTreg AND 

Th17p vs. iTreg == iTreg AND 
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× 

Th17n vs. iTreg == iTreg 

THEN RETURN Treg (purple) 

2. ELSE IF  Th17 vs. iTreg ≠ iTreg AND 

Th17p vs. iTreg == Th17p AND 

Th17p vs. Th17n == Th17p 

THEN RETURN Th17p (magenta) 

3. ELSE IF  Th17 vs. iTreg ≠ iTreg AND 

Th17n vs. iTreg == Th17n AND 

Th17p vs. Th17n == Th17n 

THEN RETURN Th17n (green) 

4. ELSE IF  Th17 vs. iTreg == Th17 

THEN RETURN Th17 (orange) 

5. ELSE RETURN NS (grey) 

The gene is associated with the Th17n, Th17p, general Th17, or Treg program by the returned 
label. 

 LC/MS metabolomics and carbon tracing 

8.4.1 Assays 

For untargeted metabolomics, Th17 cells were differentiated as described. Culture media were 
snap frozen. Cells were harvested at 96h. 1 106 cells per sample were snap frozen and extracted 
in either 80% methanol (for fatty acids and oxylipids) or isopropanol (for polar and nonpolar 
lipids). Two liquid chromatography tandem mass spectrometry (LC-MS) methods were used to 
measure fatty acids and lipids in cell extracts. 
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For carbon tracing experiments Th17 cells were differentiated as described. At 68hrs, cells were 
washed and cultured in media supplemented with 8 mM [U-13C]-glucose for 15min or 3hrs. 
Alternatively, at 68hrs, cells were washed and cultured in media supplemented with arginine 
(13C6, Sigma, Cat 643440) or aspartic acid (13C4, Sigma, Cat 604852) for 1, 5 and 24 hours. 

8.4.2 Statistical analysis 

Differentially abundant metabolites were found with Student’s t-test and a significance 
threshold of BH-adjusted p < 0.1. 

To find metabolites with differential 13C relative abundance, we computed the ratio yi,j of 13C 
out of the total carbon contents for each metabolite i in sample j. Let |Ci| be the number of 
carbon atoms in metabolite i, and let xc,i,j be the measured signal of metabolite i in sample j 
(subsequent to all normalization and QC procedures) in which there are exactly c 13C atoms. 
We define the 13C/C ratio: 

 Downstream analysis of Compass scores 

8.5.1 Core metabolic reactions and meta-reactions 

In this work, we define we core metabolism based on reaction metadata included in the Recon2 
database. Recon2 assigns a confidence score to each reaction based on the level of evidence 
supporting it between 1 (no evidence) and 4 (biochemical evidence), with 0 denoting reactions 
whose confidence was not evaluated. Since pathways generally considered part of primary 
metabolism are also the best studied ones, we define a reaction as belonging to core 
metabolism if (a) its Recon2 confidence is either 0 or 4; and (b) it is annotated with an EC 
(Enzyme Commission) number. We chose to label reactions with unevaluated confidence (i.e., 
Recon2 confidence score of 0) as part of core metabolism because some of them were found to 
be key reactions in primary metabolic pathways based on manual correction. Our definition of 
core metabolism is equivalent to taking the set of all metabolic reactions in Recon2, but 
excluding reactions that either don’t have an annotated EC number or for which the Recon2 
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curators explicitly specified they do not have direct biochemical support. We define a meta-
reaction as belonging to core metabolism if it contains at least one core reaction. Core 
pathways are defined as Recon2 subsystems that have at least 3 core reactions. Metabolic 
genes are defined as the set of genes annotated in Recon2. 

8.5.2 Finding reactions with differential potential activity 

To test for differential potential-activity of reactions based on Compass predictions, we 
computed for each meta-reaction M the Wilcoxon’s rank sum between the Compass scores of 
M in the two populations of interest (here, Th17p and Th17n). Effect size were further assessed 
with Cohen’s d statistic, defined as the difference between the sample means over the pooled 
sample standard deviation. Let n1, x1, s1 be the number of observations in population 1, and the 
sample mean and standard deviation of their scores in a given meta-reaction, respectively (with 
a similar notation for population 2). Then 

with  

The resulting p values are adjusted with the Benjamini-Hochberg (BH) method. Note that so far, 
the computation was done for meta-reactions. We assigned all reactions r ∈ M the Cohen’s d 
and Wilcoxon’s p value that were computed for M .  We call a reaction differentially active if its 
adjusted p is smaller than 0.1. The computation was done on all reactions in the network 
(namely, both core and non-core reactions). 

8.5.3 Manual curation of central carbon predictions 

We manually curated the significant predictions of the central carbon metabolism pathways 
discussed in the manuscript (glycolysis, TCA cycle, and fatty acid synthesis/oxidation). Recon2 
takes account of metabolite localization, and reactions may be functional in more than one 
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cellular compartment. For every reaction, we picked the prediction corresponding to the 
pertinent cellular compartment (here, cytosol or mitochondria, as shown in Figure 4A). Note 
that Compass operates independently on the forward and backward directions of every 
reaction, and that the direction is denoted in the pathway diagrams of this manuscript. 

 Transcriptomic signatures 

8.6.1 Th17 Pathogenicity and other T cell state signatures 

We used a transcriptomic signature that we have previously shown to capture a Th17 cell’s 
pathogenic capacity (Gaublomme et al., 2015; Wang et al., 2015). Briefly, for each cell compute 
the average z-scored expression (log(1 +TPM)) of pro-pathogenic markers (CASP1, CCL3, CCL4, 
CCL5, CSF2, CXCL3, GZMB, ICOS, IL22, IL7R, LAG3, LGALS3, LRMP, STAT4, TBX21) and pro-
regulatory markers (AHR, IKZF3, IL10, IL1RN, IL6ST, IL9, MAF), with the latter group multiplied 
by -1. 

8.6.2 A compendium of T cell state signatures 

A compendium of T cell state transcriptomic signatures was described in (Gaublomme et al., 
2015). Every signature consists of two gene subsets: a set of positively associated genes and an 
optionally empty set of negatively associated genes. A scalar signature value is computed for 
every cell based on its transcriptome profile as described above for pathogenicity. Signatures 
that are based on KEGG (Kanehisa et al., 2017) pathways or similar resources are constructed 
by defining the set of positively-associated genes as the ones belonging to the pathway and 
defining the set of negatively-associated genes as an empty set. 

8.6.3 Total metabolic activity of a cell 

We defined the total metabolic activity of a cell as the sum expression of metabolic enzyme 
coding genes over the sum expression of all protein coding genes in log-scale TPM (transcripts 
per million) units. We computed the partial correlation between this quantity and cell PC1 
coordinates, while controlling for the sum expression of all protein coding genes in the cells 
(the aforementioned divisor) to verify the correlation does not arise from the ratio of protein-
coding to non-protein coding RNA in the RNA libraries. The correlation was more significant 
when not controlling for the covariate (Pearson rho = 0.56, p < 3·10−16). 
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8.6.4 Late-stage Th17 differentiation 

We defined a transcriptomic signature for late-stage differentiation of Th17 cells based on 
microarray data from [Yosef et al., 2013].   We assigned microarrays into three differentiation 
stages as described in that paper into early (up to 4h), intermediate (6-16h) and late (20-72h) 
and fitted with the limma R package a linear model for the discrete 3-level stage covariate. We 
called differentially expressed genes (BH-adjusted p  <  0.05 and log2 fold-change ≥ 3) and used 
them to define a transcriptomic signature as described above. 

 ATAC-Seq 

8.7.1 Library preparation 

For population ATAC-Seq, in vitro differentiated T-cells were sorted for live cells and stored in 
Bambanker freezing media (Thermo Fisher Scientific) at -80◦C until further processing. Prior to 
library preparation, cells were thawed at 37◦C and washed with PBS. For ATAC-Seq, cell pellets 
were lysed and tagmented in 1X TD Buffer, 0.2µl TDE1 (Illumina), 0.01% digitonin, and 0.3X PBS 
in 40µl reaction volume following the protocol described in (Corces et al., 2016). Transposition 
reactions were incubated at 37for 30 min at 300 rpm. The DNA was purified from the reaction 
using a MinElute PCR purification kit (QIAGEN). The whole resulting product was then PCR-
amplified using indexed primers with NEBNext High-Fidelity 2X PCR Master Mix (NEB). First, we 
performed 5 cycles of pre-amplification. We sampled 10% of the pre-amplification reaction for 
SYBR Green quantitative PCR to assess the number of additional cycles needed for final 
amplification. After purifying the final library with the MinElute PCR purification kit (QIAGEN), 
the library was quantified for sequencing using qPCR and a Qubit dsDNA HS Assay kit 
(Invitrogen). Libraries were sequenced on an Illumina NextSeq 550 system with paired-end 
reads of 37 base pairs in length. 

8.7.2 Alignment of ATAC-Seq and peak calling 

All ATAC-Seq reads were trimmed using Trimmomatic (Bolger et al., 2014) to remove primer 
and low-quality bases. Reads smaller than 36bp were dropped. Reads were then passed to 
FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] 
to check the quality of the trimmed reads. The paired-end reads were then aligned to the 
mm10 reference genome using bowtie2 (Langmead and Salzberg, 2012), allowing maximum 
insert sizes of 2000 bp, with the --no-mixed and --no-discordant parameters added. 
Reads with a mapping quality (MAPQ) below 30 were removed. Duplicates were removed with 
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PicardTools, and the reads mapping to the blacklist regions and mitochondrial DNA were also 
removed. Reads mapping to the positive strand were moved +4bp, and reads mapping to the 
negative strand were moved -5bp following the procedure outlined in (Buenrostro et al., 2013) 
to account for the binding of the Tn5 transposase. 

Peaks were called using macs2 on the aligned fragments (Zhang et al., 2008) with a qvalue 
cutoff of 0.001 and overlapping peaks among replicates were merged. 

8.7.3 Tests of differential accessibility 

Differential accessibility was assessed using DESeq2 (Love et al., 2014)  with a matrix of peaks 
(merging all samples) by samples. Similar to common practice in the analysis of differential 
gene expression, our analysis of differential accessibility was conducted using the number of 
observed Tn5 cuts (i.e., number of reads). 

Peaks that are associated with a Th17 or Treg programs (orange and purple, respectively, in 
Figure 9D) were determined by differential accessibility test between libraries of vehicle-
treated (water) Th17n and Th17p on one side (unpublished dataset) and Treg on the other with 
BH-adjusted p ≤ 0.05 and absolute value of log2 fold-change of at least 1. 

8.7.4 Reprocessing of published ChIP-Seq data 

ChIP-Seq Peaks from (Xiao et al., 2014) were transferred from mm9 to mm10 using the UCSC 
liftOver tool. ChIP-Seq replicates from (Ciofani et al., 2012) were downloaded and were 
trimmed using Trimmomatic [Bolger et al., 2014] to remove primer and low-quality bases. 
Reads were then passed to FastQC [http://www.bioinformatics.babraham. 
ac.uk/projects/fastqc/] to check the quality of the trimmed reads. These single-end 
reads were then aligned to the mm10 reference genome using bowtie2 (Langmead and 
Salzberg, 2012) allowing maximum insert sizes of 2000 bp, with the --no-mixed and --no-
discordant parameters added. Reads with a mapping quality (MAPQ) below 30 were 
removed. Duplicates were removed with PicardTools, and the reads mapping to the blacklist 
regions and mitochondrial DNA were also removed. 

ChIP-Seq peaks were called in each replicate, versus a control sample, using macs2 (Zhang et 
al., 2008) with a qvalue cutoff of 0.05. 

8.7.5 Enrichment of motifs and ChIP-Seq peaks in differentially accessible regions 

Peaks were considered differentially accessible if they had a BH-adjusted p < 0.05. We 
calculated fold enrichment of various genomic features in these peaks (described below) versus 
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a background set of peaks. q-values were estimated using q-value R package 
[http://github.com/jdstorey/qvalue] 

8.7.6 Motifs and annotation tracks 

PWM’s for motifs were downloaded from the 2018 release of JASPAR (Khan et al., 2018). We 
used FIMO (Grant et al., 2011) to identify motifs in mm10, and applied the default threshold of 
10−4. We also included the following genomic features from the UCSC Genome Browser 
[http://genome.ucsc.edu]: the ORegAnno database (Lesurf et al., 2016), conserved 
regions annotated by the PHAST package (Siepel et al., 2005), and repeat regions annotated by 
RepeatMasker [http://www.repeatmasker.org]. 

8.7.7 GREAT pathways and genes 

Loci were associated with genes and pathways using GREAT (McLean et al., 2010), submitted 
with the rGREAT R package [https://github.com/jokergoo/rGREAT]. We 
retrieved pathways found in the MSigDB Immunologic Signatures, MSigDB Pathways, and GO 
Biological Processes databases. 

8.7.8 Statistical Analysis of non-sequencing data 

Unless otherwise specified, the tests performed were two-tail Welch t-tests using Prism 
software. P values were adjusted with the Bonferroni method for multiple comparisons where 
appropriate. P value less than 0.05 is considered significant (P < 0.05 = *; P < 0.01 
= **; P < 0.001 = ***) unless otherwise indicated. 
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Supplementary Figures 

Figure S1. Biological and technical factors combine to determine the measured genomic profiles of 
single cells; computational methods remove technical effects and tease apart facets of the biological 
variation, related to Figure 1. 

The sources of variation that affect single-cell genomics data are (1) technical factors that reflect 
variance due to the experimental process (e.g., batch effects); (2) factors that are intrinsic to the process 
under study (e.g., transcription) and reflect stochastic fluctuations (e.g., transcriptional or translational 
bursts in mRNA or proteins) that do not correlate between two alleles of the same gene; and (3) factors 
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that are extrinsic to the process under study, reflecting the presence of different cell types and states 
(e.g., concentrations of key transcription, translation, or metabolic factors). Computational methods are 
needed to remove the nuisance technical variation (although they typically cannot completely eliminate 
it) before the biological variation can be confidently explored. Most single-cell studies explore allele-
extrinsic factors and can be classified as either cell-centric or gene-centric. Cell-centric analyses aim to 
catalog the cells into phenotypic groups, whether discrete (e.g., clustering) or continuous (e.g., temporal 
ordering). Gene-centric analyses aim to understand the dynamics and regulation of the generating 
mechanisms (e.g., transcriptional circuits). 
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Figure S1
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Figure S1b
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Figure S2. Algorithm overview, related to Figure 2. 

(A) Cumulative distribution function (CDF) of number of reactions per meta-reaction. (B-C) Random 
noise ε was added to the input gene expression matrix with two transcription noise models 
(“symmetric” and “regular”) as described in the Supplementary Methods. (B) Left column: expression for 
every gene was scaled to [0,1] range. Two-dimensional density was computed over the of original and 
noised expression per gene is shown; right column: similarly, compass scores for every reaction were 
scaled to [0,1] and 2d density for raw and noised scores is shown. (C) Total probability mass under the 
2d density surface was computed for (d0) the main diagonal; (d1) the two diagonals above and below 
the main diagonal; (d2) similarly, the two diagonals above and below the d1 diagonals. 
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Figure S2, Part 2
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Figure S3. Compass-based exploration of metabolic heterogeneity within the Th17 compartment, 
related to Figure 3. 

(A-E) PCA of Compass space restricted to core meta-reactions, see main text. (A) PC1 scores plotted 
against PC2 and PC3 scores. (B) Enrichment of metabolic pathways in the positive or negative directions 
of top principal components. Enrichment is computed with GSEA (Subramanian et al., 2005) over single 
reactions (rather than genes, as in the common applications). Colors are -log10(BH-adjusted p), 
truncated at 4, with p being the GSEA p value. Pathways correspond to Recon2 subsystems. (C) PC1 
scores plotted against computational signatures of cellular metabolic activity and Th17 differentiation 
time course (Supplementary Methods). (D) Spearman correlation of top PCs with known pro-pathogenic 
(magenta) and pro-regulatory (green) marker genes, none of which is metabolic. Only significant 
correlations (BH-adjusted p < 0.1) are shown in color. (E) Spearman correlation of computational 
transcriptome signatures with the top principal components. Only significant correlations (BH-adjusted p 
< 0.1) are shown in color and non-significant correlation coefficients are greyed out. See Supplementary 
Methods for signature computation. (F) Same analysis as shown in Figure 3c, but showing all reactions 
(and not just ones belonging to certain pathways, as in the main figure). (G) We computed a pro-
pathogenic score for each reaction by taking the ratio of pro-pathogenic and pro-regulatory markers 
with which it correlates and anti-correlates, respectively (BH-adjusted p < 0.1 for a Spearman 
correlation) out of the 23 marker genes (listed in Figure 3D and Supplementary Methods). Similarly, we 
computed pro-regulatory reaction scores. Only core reactions are shown. (H) Same analysis as shown in 
Figure 3E, only at the gene expression level (and not reaction level based on Compass scores). Genes are 
grouped by KEGG pathways (and may be annotated as belonging to more than one pathway). 
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Figure S4. Differential usage of glycolysis and fatty acid oxidation by pathogenic and non-pathogenic 
Th17 cells, related to Figure 4. 

(A) Parallel of main Figure 4C showing also 3h after fresh media pulse. (B) The glycolysis pathway, as 
shown in main Figure 5A, highlighting its junction with serine biosynthesis. 
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Figure S5. An unexpected role for PGAM in mediating Th17 pathogenicity, related to Figure 5. 

(A) Same data as shown in Figure 5a, highlighting the reactions with significant adjusted Fisher p value in 
the intra-population analysis (B) Supernatant from Th17 cell cultures performed for Figure 5C are 
harvested for cytokine analysis using Legendplex. 
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Figure S6. EGCG exacerbates and DHEA ameliorates Th17-induced EAE in vivo, related to Figure 6. 

Cytokine secretion after three days of culture with increasing dose of MOG35-55 peptide from cells 
isolated from draining lymph node (cervical) of mice transferred with (A) methanol or DHEA treated 
Th17p cells as or (B) DMSO or EGCG. Concentrations were normalized through division by the respective 
response to no antigen control. 
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Figure S7. Prediction and metabolic validation of the polyamine pathway as a candidate in regulating 
Th17 cell function, related to Figure 7.  

(A) Metabolomics analysis of the polyamine pathway as in Figure 2H. Cell lysates as well as media from 
Th17n and Th17p differentiation cultures are shown. (B-C) Carbon tracing in the polyamine pathway. 
Th17n and Th17p cells were differentiated as described (STAR Methods), lifted to rest at 68 hours and 
pulsed with C13 labeled Arginine (B) or Citrulline (C) followed by LC/MS analysis at time points indicated.  
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Figure S5, Part 1

Th17p Th17n iTreg
0

50

100

150

200

P
ol

ya
m

in
e 

co
nc

. (
pm

ol
/w

el
l) Ctrl

DFMO

A 

F 

B 

D 

C 

E 

pSTAT3 (Y705) STAT3 FoxO1 pFoxO1 (S256) pFoxO1 (T240) 

0
500

1000
1500
2000
2500

Fo
xO

1 
[M

FI
]

0
500

1000
1500
2000
2500

pF
ox

O
1(

S
er

25
6)

[M
FI

]

0
200
400
600
800

1000

pF
ox

O
1(

Th
r2

40
/

Fo
xO

3A
(T

hr
32

)
[M

FI
]

Ctrl
DFMO

0
100
200
300
400
500

pF
ox

O
1(

Th
r2

40
/

Fo
xO

3A
(T

hr
32

) 
[M

FI
]

Ctrl
DFMO

0

500

1000

1500

pF
ox

O
1(

S
er

25
6)

[M
FI

]

0
500

1000
1500
2000

Fo
xO

1 
[M

FI
]

0

100

200

300

S
TA

T3
 [M

FI
]

0
100
200
300
400

S
TA

T3
 [M

FI
]

0

500

1000

1500

pS
TA

T3
 [M

FI
]

0
500

1000
1500
2000

pS
TA

T3
 [M

FI
]

Th17p 

Th17n 

Th17p 

Th17n 

Isotype anti-IL-2
0

5

10

15

20

%
 o

f C
D

4 
T 

ce
lls

IL-17
** **

Isotype anti-IL-2
0

2

4

6

8

10

%
 o

f C
D

4 
T 

ce
lls

Foxp3

Isotype anti-IL-2
0

20000

40000

60000

IL-2
C

on
c.

 (p
g/

m
L)

Isotype anti-IL-2
0

50

100

150

IFNg

C
on

c.
 (p

g/
m

L)
Isotype anti-IL-2

0

20

40

60

80

100

C
on

c.
 (p

g/
m

L)

IL-10

Ctrl
DFMO

Isotype anti-IL-2
0

20

40

60

%
 o

f C
D

4 
T 

ce
lls

IL-17
** **

Isotype anti-IL-2
0

2

4

6

8

10

%
 o

f C
D

4 
T 

ce
lls

Foxp3
*

Isotype anti-IL-2
0

20000

40000

60000

IL-2

C
on

c.
 (p

g/
m

L)

Isotype anti-IL-2
0

50

100

150

IFNg

C
on

c.
 (p

g/
m

L)

Isotype anti-IL-2
0

200

400

600

800

1000

IL-10

C
on

c.
 (p

g/
m

L)

Ctrl
DFMO

**



 

 

 

 

92 
 

Figure S5, Part 2
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Figure S8. Chemical and genetic interference with the polyamine pathway suppress canonical Th17 
cell cytokines, related to Figure 8.  

(A) The effect of DFMO on cellular polyamine concentration is measured by an enzymatic assay. Th17p, 
Th17n and iTregs are differentiated in the presence of DFMO and harvested at 96 hours for analysis. (B-
E) IL-2 neutralization does not regulate the effect of ODC1 inhibition. 10ug/ml of anti-IL-2 antibody or 
isotype control were added at the time of Th17n or Th17p cell differentiation with control or DFMO. 
Cells were analyzed by B,D, flow cytometry and C,E, supernatant were analyzed for cytokine secretion. 
Welch t-test significance is denoted. (F) Protein and phospho-protein analysis by flow cytometry for 
Th17n and Th17p cells treated with control of DFMO. (G) The effect of DFMO on enzymes in the 
polyamine pathway as measured by qPCR. Th17p and Th17n cells were differentiated in the presence of 
control or DFMO and harvested at 48h for RNA extraction and qPCR analysis. (H) The effect of genetic 
perturbation of ODC1 on cytokine production from Th17p (upper panels) and Th17n cells (lower panels). 
Supernatant from Th17p and Th17n differentiation culture was harvested at 96 hours and analyzed by 
legendplex for cytokine concentration.  
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Figure S9. DFMO treatment promotes Treg-like transcriptome and epigenome, related to Figure 9.  

(A) Log2 fold changes for a comparison between DFMO-treated and vehicle-treated Th17n cells (x-axis), 
and Th17n vs. iTreg cells (both vehicle-treated; y-axis) are based on the same data described in 
manuscript Figure 9A-C. Dots represent genes, which are divided into 5 groups based on differential 
expression in untreated cells (Supplementary Methods). Dashed lines correspond to the logFC threshold 
used in differential expression calling log2(1.5) (Supplementary Methods). Differentially expressed 
genes by either of the comparisons shown in the axes are opaque and transparent otherwise. (B) 
Volcano plots showing affected chromatin modifiers by DFMO treatment in Th17n, Th17p and iTreg 
cells. (C) Number of differentially expressed (DE) peaks between DFMO and vehicle-treated cells as a 
function of the significance threshold. Upper panel, log2FC used as threshold; Lower panel, BH-adjusted 
P used as threshold. (D) Similar analysis to Figure 9F, only using Th17 background instead of Treg. I.e., 
dots represent fold enrichment of peaks more accessible in DFMO-treated (blue) or untreated (grey) 
Th17n cells against a background of Th17 peaks as described in the manuscript (i.e., this analysis 
considers only peaks that were differentially more accessible in untreated Th17 compared to untreated 
iTreg, corresponding to the orange curve in Figure 9D). (E-F) Cells were cultured under Th17n or iTreg 
condition with DFMO or solvent control (water) as in Figure 9 and harvested at 68h for RNA-Seq. Treg 
and Th17 programs were defined as in Figure 9H (Supplementary Methods). E, Histogram showing the 
effects of JMJD3 conditional knockout (cKO) in control vs DFMO-treated Treg cells. F, Histogram showing 
the effects of DFMO in WT vs JMJD3fl/flCD4cre in Th17n and Treg cells. 
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Figure S7
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Figure S10. Targeting ODC1 and SAT1 alleviate EAE, related to Figure 10.  

Cells were isolated from CNS or inguinal lymph node (iLN) of WT or SAT1fl/flCD4cre mice on day 15 post 
EAE induction (similar experiments as in Figure 7F). (A) Intracellular cytokines were measured by flow 
cytometry after 4-hour PMA/ionomycine stimulation ex vivo in the presence of brefaldin and monensin. 
(B) Transcription factors were analyzed directly ex vivo by intracellular staining. 
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