
Specifying and Generating Abstract Models for Formal

Security Analysis

Adwait Godbole
Kevin Cheang
Yatin Manerkar
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-230

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-230.html

September 8, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported by DARPA contract FA8750-20-C0156, NSF
grant 1837132 and a gift from Intel Corporation.

Specifying and Generating Abstract Models for
Formal Security Analysis

Adwait Godbole∗, Kevin Cheang∗, Yatin A. Manerkar†, Sanjit A. Seshia∗
∗University of California, Berkeley
†University of Michigan, Ann Arbor

Abstract— Hardware execution attacks exploit subtle mi-
croarchitectural interactions to leak secret data. While checking
programs for the existence of such attacks is essential, verification
of software against the full hardware implementation does not
scale. Verification using abstract formal models of the hardware
can help provide strong security guarantees while leveraging
abstraction to achieve scalability. However, hand-writing accurate
abstract models is tedious and error-prone. Hence, we need
techniques to automatically generate models which enable sound
yet scalable security analysis.

In this work, we propose micro-update models as a modelling
framework that enables sound and abstract modelling of mi-
croarchitectural features. We also develop algorithms to semi-
automatically generate micro-update models from RTL. We im-
plement our modelling and generation framework in a prototype
tool. We evaluate our approach and tool by synthesizing micro-
update models for the Sodor5Stage processor and components
from the cva6 (Ariane) processor. We demonstrate how these
models can be generated hierarchically, thus increasing scalability
to larger designs. We observe up to 8× improvement in run time
when performing analysis with the generated models as compared
to the source RTL.

I. INTRODUCTION

The landscape of hardware execution attacks has evolved
since Spectre [38] and Meltdown [40]. Recent attacks exploit
deeper microarchitectural state such as store buffers and line-
fill-buffers [16], [55], [63], [64]. Checking software for the
presence of these attacks requires analyses that take this mi-
croarchitectural state into account. However, owing to microar-
chitectural complexity, verification of software programs di-
rectly against the source RTL does not scale with the program
being verified. Abstract formal models that only represent
parts of the microarchitecture relevant to the attack while
eliding the rest are simpler and more interpretable than the
RTL. Verifying SW against such models instead of the source
HW can improve scalability. However, accurate modelling is
necessary for preserving strong guarantees; imprecise models
can lead to software being deemed secure when in reality it
is not.

Several recent works apply formal methods to verify soft-
ware against hardware attacks [9], [17], [27], [48], and to
identify new ones [22], [61]. These works perform verifica-
tion against manually crafted abstract models that preserve
only the vulnerability-relevant components of the HW design.
However, manually writing models while ensuring accuracy
of preserved components is tedious and error-prone, and re-
quires a deep understanding of the microarchitecture. While a

security analyst can indicate which source design components
they want to perform software-side security analysis against,
it is hard to manually specify how these components should
behave so that the model is sufficiently accurate. Thus, it
is desirable to have a technique that, given some signals-of-
interest, generates a formal model that accurately captures the
behaviours of these signals w.r.t. the source RTL.

In this work, we propose micro-update models as a mod-
elling formalism that can be used in security analysis of
software running on the source RTL design. To address the
challenges involved in hand-writing models, we develop a
framework to mostly automatically generate micro-update
models from RTL designs. The generated model achieves
abstraction by capturing signals-of-interest specified by the
user, eliding the rest, and achieves accuracy by ensuring
functional equivalence of these signals w.r.t. the source RTL.
This guarantees soundness, i.e. security properties over the
signals-of-interest (e.g. information-flow/non-interference (NI)
[20], [25]) that hold on the lifted model also hold on the RTL.

By imperatively modelling functional behaviours of the
signals-of-interest, the micro-update model: (a) enables
correct-by-construction generation as the model can be
checked against the source RTL (e.g. with a functional equiv-
alence proof) and (b) enables sound verification of SW w.r.t.
security properties (e.g. NI). In contrast, ISA-based models
(e.g. [18], [26]), are equivalent only w.r.t. the architectural
state, and lack microarchitectural detail necessary for secu-
rity analysis. On the other hand, approaches such as µspec
[42], [43] formulate axiomatic ordering models that abstract
away functional behaviours. Due to the lack of imperatively
modelled state, µspec requires global invariants for checking
accuracy with the source RTL. Defining these invariants is
challenging [29], [44]. Secondly, properties such as NI [20],
[25], which requires a model that preserves functional be-
haviours cannot be expressed with these models. In conclusion,
imperatively modelling functional behaviours of the signals-
of-interest makes checking alignment with source RTL, and
security properties on SW easier with the micro-update model.

Our micro-update model generation framework is based
on lifting, which aims to extract high-level code from low-
level source implementations while maintaining important
properties with respect to the source. While lifting has been
demonstrated in the PL and systems domains [3], [4], [35],
[56], we extend it to hardware. We demonstrate how lifting can

Fig. 1: Schematic for the Sodor5Stage processor. Our mod-
ification, the load buffer (LB), is shown in grey.

be performed hierarchically, thereby increasing its scalability.
Thus our techniques aid in generating micro-update models
from RTL, which then can be used for software security
analysis.

Contributions. Our contributions are as follows:
• Micro-update models as a new formalism: We propose

micro-update models as a formalism for abstract modelling
of hardware designs. Micro-update models provide us with
finer temporal resolution than ISA-level models and pre-
serve functional behaviour. Thus, they provide accurate
abstractions of the hardware against which software can
be verified for microarchitectural attacks.

• Synthesis techniques for micro-update models: We de-
velop a methodology to generate micro-update models from
RTL using a novel instantiation of oracle-guided synthesis1

[33], [34], [53]. We show how one can generate models
hierarchically, improving the scalability of synthesis.

• Empirical Demonstration: We evaluate our approach on
the Sodor5Stage processor [62] and components from
the cva6 processor [1] by generating micro-update models
for them. We demonstrate how applying the generated
models to perform security analysis of software can lead
to performance improvements over the source RTL.
Outline. In §II we motivate and contrast the features of our

modelling approach with existing ones through an example.
In §III we describe the structure of our models and their
semantics. In §IV we describe the techniques that we use to
generate our models. We discuss the experimental evaluation
in §V. Finally, §VI discusses limitations, §VII is related work
and §VIII concludes.

II. MOTIVATING EXAMPLE

A. Example: modified Sodor5Stage core

Sodor5Stage [62] is a 5-stage in-order processor imple-
menting the RV32UI instruction set [66]. We augment this
processor design with a new component, called a load buffer
(LB) as shown in Fig. 1. The LB caches the most recently
loaded value in its data field. It also maintains an address
field and a valid bit marking whether the entry in the buffer
is valid (not outdated). This cached value can be consumed
by a subsequent load if its address matches and the entry is
valid:

canLoad ≡ (loadAddr == addr) ∧ valid

However, the entry is flushed by any subsequent store in-
struction to prevent reads from outdated entries. This feature

1Oracles are humans/tools that provide guidance to the synthesis engine in
a specified format through a query-response interface.

Behaviour with swexe.

Behaviour with swmem.

Fig. 2: Different microarchitectural behaviours (with a 1-cycle
memory latency) for different implementation choices of sw.

Fig. 3: Pipeline stages for two possible implementations for
the sw instruction: in (a) the LB flush happens during the
exe stage, while in (b) it happens during the mem stage; (c)
illustrates that the refill of the LB due to the lw instruction
takes place in its wb stage.

does not change the ISA-level behaviour of the processor
(program counter, register file and memory); its effects are
purely microarchitectural. Now we discuss how a hypothetical
attack can leak information by using the LB as a side channel.

B. The lb optimization vulnerability

Features such as the LB, while not architecturally visible,
can have several possible microarchitectural implementations.
In our example, exactly when the store instruction (sw) inval-
idates the LB entry depends on the implementation. In Fig.
3(a,b) we consider two such implementations for sw. In Fig.
3(a) the LB invalidation (flush) takes place during the exe

stage of the sw instruction, while in (b) it does so during the
mem stage. We call these implementations swexe and swmem
respectively. The implementation of a load (lw) is identical
across these cases (ref. Fig. 3(c)). It loads from memory in
the mem stage and refills the LB in the wb stage.

While architecturally invisible, such implementation dif-
ferences crucially affect security analysis. To see this let us
consider the effect of executing a load consecutively followed
by a store, and compare them across the swexe and swmem
implementations. In the case of lw;swexe (Fig. 2 top), the
LB has a valid entry at the end of execution (refilled due to
the lw instruction). On the other hand, in the case of lw;swmem
(Fig. 2 bottom), the LB entry is flushed by the sw after the
refill caused by lw. Consequentially, lw;swexe leads to an LB
which is tainted (due to the lw), while lw;swmem does not.

A timing-based side-channel (e.g. Prime+Probe [24], [41]),
can allow an attacker to infer the contents of the LB through a
timing measurement. In such a case, the lw;swexe can lead to
secret data (e.g. private keys) getting revealed to the attacker
through the LB side channel. On the other hand, since the
lw;swmem sequence leads to a sanitized LB, (i.e. the LB is
untainted), a timing measurement cannot reveal victim secrets.

2

Such microarchitectural details can render software insecure
under certain implementations, while secure under others.
Hence analyses checking software security must operate on
models that expose microarchitectural detail.

C. Instruction-level approaches

Models that capture ISA-level behaviours [14], [18], [26],
[57], [65] are precise only with respect to software-visible
architectural state (e.g. program counter, register file, memory,
and CSRs). However, as §II-B shows, hardware attacks (e.g.,
[16], [38], [40], [55], [63], [64]) manifest at the microarchite-
cural level and exploit software-invisible features (e.g. caches,
buffers, predictors). Consequentially, ISA-level models cannot
express these attacks. This is also true of instruction-level-
abstraction (ILA) based approaches [30], [32], [71] which aim
to model accelerators in addition to general-purpose cores.

The issue with ISA-level approaches is not only with the
state elements modelled, but also with their temporal seman-
tics. To illustrate this, let Ji1; i2K denote the effect (semantics)
of the sequence of two (software) instructions on the HW
design. If one is only concerned with the architectural state,
σarch, the effect of Ji1; i2K is equivalent to the effect of these
instructions executed in sequentially and in isolation, Ji1K
followed by Ji2K (i.e., i1 finishes execution before i2 begins):

σarch Ji1; i2K σ′
arch ⇐⇒ σarch Ji1K σ′′

arch Ji2K σ′
arch

However, the effect of a stream of instructions with respect to
the microarchitectural state σµarch can be different than that
of individual instructions operating in isolation:

σµarch Ji1; i2K σ′
µarch ⇍⇒ σµarch Ji1K σ′′

µarch Ji2K σ′
µarch

In the LB example, the semantics of both swexe and swmem
are identical when executed in isolation. This is true even with
respect to the LB state, as both flush the LB before finishing
execution. ISA-based models (including ILA) define semantics
for isolated execution between the fetch and commit points of
that instruction (orange lines in Fig. 3). Consequentially, an
ISA-based model, even if it were enriched with the LB state,
would model swmem and swexe identically.

While isolated instruction-level modelling is appropriate for
architectural state, it falls short when representing the microar-
chitecture. In the LB example, the difference between swexe
and swmem instructions emerges only when they interact with
a lw instruction. In summary, we need a model that captures
the microarchitectural interactions between instructions.

D. Axiomatic ordering-based approaches

Approaches such as µspec [42] model the microarchitecture
as a set of axiomatic ordering constraints over the entire
execution of a program. Executions satisfying these constraints
are valid (can be observed) while others cannot. Since these
constraints are over full executions, µspec can express be-
haviours of instructions executing simultaneously (as in a
pipeline), and does not suffer from the isolation problem
discussed earlier.

µspec largely captures only ordering constraints, abstracting
away the functional behaviour. However, functional behaviour
is often necessary to model low-level security-relevant mi-
croarchitecure. Consider a victim program running on a pro-
cessor with an LRU-cache. Such processors can leak victim
secrets through the LRU state [69]. Detecting such vulnera-
bilities in the victim program requires security properties that
precisely identify memory accesses which lead to attacker-
distinguishable LRU states. A non-interference (NI) [25], [60]
property identifies such accesses by requiring that subsequent
attacker-observable cache hit/miss outcomes should not de-
pend on victim secrets. However, since expressing security
properties such as NI requires a model that exposes the
functional behaviour of signals, it is infeasible with µspec
models. A micro-update model however, can represent the
low-level LRU policy functionally, enabling NI-based analysis.
µspec-based security analysis approaches (e.g. [48], [61])

work around this by explicitly identifying execution fragments
which are indicative of vulnerabilities, e.g., exploit patterns
(§3A-II in [61]) or transmitters (§3.2.1 in [48]). While NI uni-
formly captures all possible vulnerable cases as a single prop-
erty, these execution fragments (patterns/transmitters) must be
manually enumerated. This requires a deep understanding of
the microarchitecture and can result in false negatives if some
vulnerable execution fragments are missed.

The second advantage of the micro-update model is that it
is operational. That is, it represents executions as imperative
transitions performed on some state at every step. This allows
checking per-step equivalence (§IV-B) with the RTL design
with a model checker (e.g. SymbiYosys [19], JasperGold).
Such checks are essential to ensure accuracy when lifting
a model. Ordering-based models, on the other hand, are
axiomatic and define behaviours in terms of declarative con-
straints. Checking these constraints against the RTL requires
global invariants (i.e. invariants over full executions as op-
posed to individual steps). These invariants can be difficult to
generate and check automatically (e.g. [29], [44]), which in
turn makes checking accuracy with respect to the source RTL
more difficult.

In conclusion, the micro-update model (a) represents exe-
cutions at a finer granularity than ISA models, (b) preserves
functional behaviour enabling NI-based security analysis and
(c) represents executions operationally, thus allows easier
equivalence checking with the source RTL.

III. MICRO-UPDATE MODELS

In this section, we illustrate the micro-update model through
Figure 4. Fig. 4(A) and (B) respectively illustrate a simplified
processor pipeline and some micro-updates for that pipeline.
Each micro-update is an imperative code snippet that de-
scribes the functional operation performed on signals in the
model. Signals in the model are mapped to equivalent signals
from the source RTL. For example, the flush micro-update
(lb flush) in Fig. 4(B) operates on the LB: it clears the data
and address fields and sets the valid bit to zero. While micro-
updates (§III-A2) define the functional operation performed

3

Fig. 4: (A) A simplified processor with a LB and bypassing paths (greyed), (B) non-exhaustive set of micro-updates for this
processor, (C) guards corresponding to these micro-updates, (D) sample instructions with some of the induced micro-updates.

on signals, guards (ref. Fig. 4(C)) are Boolean predicates that
control when a micro-update is triggered. Guards (§III-A3)
are defined over a set of trigger signals. For example, the
guard for lb flush is true (and lb flush is executed) at
cycles where the instruction in the memory stage (instr -
queue[2]) is a store. Trigger signals typically are top-level
inputs to the source design. The model as a whole captures
a slice of the design, as identified by the signals-of-interest
(§III-A1).

Example 1: Consider an addi instruction running on the
processor in Fig. 4(A). During execution addi interacts
with several components (e.g. decode unit), by invoking
multiple micro-updates. Each micro-update is executed when
the corresponding guard (Fig. 4(C)) evaluates to true (e.g.
decode itype is executed when instr queue[1],
the decoded instruction, is an I-type instruction). While
instr queue[1] depends on a single instruction in-
put, in general, guards can depend on multiple inputs. For
example, if rs1 addr(instr queue[1]) == rd -
addr(instr queue[2]), then there is a data dependency
between the current and previous instructions. In this case, the
alu compute alu out bypass imm micro-update is
invoked (ref. Fig. 4(D)) instead of alu compute rs imm
(which uses data from the RF). While we take the example of
addi, the model can be extended with other instructions and
thus captures a thicker slice of the RTL (with more signals,
micro-updates and guards). We illustrate some micro-updates
for sw in Fig. 4(D) (last column).
We now discuss how this model addresses concerns from §II.

a) Finer temporal resolution: ISA-based approaches de-
fine instruction semantics as if instructions execute atomically
in isolation. The micro-update model decomposes instruction
execution into several micro-updates, and evaluates guards and
micro-updates on a per-cycle basis. Consequently, a micro-
update model has finer temporal resolution than ISA-based
models by identifying the exact cycle at which a microar-
chitectural state update happens (blue markings in Fig. 3).
Hence, the micro-update model can differentiate between cases

that have identical ISA-level but different microarchitectural
behaviour. For example, it can differenciate between the swexe
and swmem implementations (as introduced in §II-B), and
specifically identify (lw;swexe) as being vulnerable.

Imperatively modelled functional detail: While an ax-
iomatic modelling approach such as µspec also provides
finer temporal resolution (through microarchitectural events),
it lacks functional detail. A micro-update model, however,
captures functional behaviour through micro-update bodies
(Fig. 4(B)). As discussed in §II-D, this allows specification
of security properties like NI. Secondly, micro-updates de-
scribe imperative operations on the model state (§III-A1). This
enables per-cycle equivalence proofs with the RTL, which is
essential for accurate model lifting. This contrasts with µspec-
like axiomatic approaches which require global invariants (
[29], [44]).

A. Components of the micro-update model

1) Signals: A micro-update model captures a design slice
which is identified by a set of signals-of-interest, which we
denote as Sdata. When generating the model, the user can
specify these based on the RTL signals over which they wish
to perform security analysis. At each cycle, each data signal
from Sdata is mapped to a value by an assignment σdata :
Sdata → V.

2) Micro-updates: A micro-update is an imperative code-
block that typically operate on small subsets of signals (Fig.
4(B)). The model as a whole comprises a set of micro-updates,
L. At each cycle, signals from Sdata are updated based on
the micro-updates from L that are invoked during that cycle.
The body of each micro-update t ∈ L provides the semantics
JtK, which defines how t transforms the Sdata signals when
invoked. An instruction typically performs several of these
micro-updates during its lifetime, as Fig. 4(D) illustrates.

3) Trigger signals and guards: The micro-updates are
invoked based on a Boolean condition called a guard. A guard
for a micro-update t is a boolean condition Gt evaluated
over the trigger signals Strig: Gt(Strig) ∈ {true,false}.
The micro-update t is executed at a cycle iff Gt evaluates to

4

true. Trigger signals typically correspond to top-level inputs
of the RTL design (e.g. instruction the data memory ports).
Thus the micro-update model can directly relate micro-update
invocation to the instructions inputs provided to the design.
This is beneficial since it allows micro-update models to be
easily connected to software-side analyses (which operate over
ISA instructions).

B. Properties of micro-updates

Uses and modifies: Knowledge of the signals used
and modified by each micro-update allows us to optimize
synthesis of the micro-update model (§IV-D2). This in-
formation can be extracted from the micro-update code
blocks (e.g., by an AST traversal). We denote the set of
signals used and modified by micro-update t as use(t)
and mod(t). For example, lb refill in Fig. 4(B)
has use(t) = {mem addr,mem data} and mod(t) =
{lb addr,lb data,lb valid}.

Sequential and combinational micro-updates: We allow
micro-updates of two types: combinational and sequential.
These resemble sequential and combinational logic seen in
Verilog-like HDLs and have similar semantics.

M -set: We use the term M -set to identify a set of micro-
updates that can be triggered at the same cycle of execution.
Not all sets of micro-updates can be a valid M -set. For an
M -set to be valid, there should not be any combinational
cycles, and the constituent micro-updates must modify disjoint
signals. Both these conditions can be checked from the uses
and modifies information. The effect of triggering an M -set
follows the usual sequential and combinational semantics.

IV. MICRO-UPDATE MODEL SYNTHESIS

In this section, we discuss our framework (Fig. 5) to gen-
erate micro-update models using formal synthesis techniques.
We begin by discussing the key challenges that we face.

A. The challenge posed by formal synthesis

While (semi)-automated approaches to synthesize formal
models from RTL are useful, formal synthesis is challenging
(more so than formal verification), since it requires a search
over model candidates, while also verifying them for cor-
rectness. Synthesizing models involving ordering/timing con-
straints (e.g. for hardware) is especially challenging (compared
to program synthesis [46], [58]) since the generated model
must capture temporal constraints in addition to functional
correctness. We navigate this complexity by decomposing
the synthesis objective of a monolithic model into smaller
functional (micro-updates) and temporal (guards) components.

Since individual micro-updates operate on small, local sub-
sets of signals, identifying them is easier compared to identify-
ing the right coordination between micro-update invocations.
The latter requires a deep understanding of inter-dependencies
between micro-updates. This is hard to do manually; e.g.
∼10 out of 42 RTL-bug issues in the cva6 processor [2]
were due to imprecisely coordinated inter-dependencies. Our
synthesis procedure does the heavy lifting of determining this
choreography of micro-update invocations.

B. Problem formulation and guarantee

Our synthesis framework allows the user to specify the
signals Sdata, which they wish to be captured by the generated
model. The choice of Sdata exposes the tradeoff inherent to
the development of formal models: models for a larger Sdata,
while more detailed, are harder to synthesize and analyze, and
vice-versa. Given an RTL design, the signals Sdata, and library
L, our goal is to generate guards Gt for each t ∈ L, so that
Property Sdata-equivalence holds.

Property 1 (Sdata-Equivalence): Our synthesis technique
generates models in which the behaviours of identified signals-
of-interest (Sdata) are equivalent to behaviours of correspond-
ing signals in the source design.
This property is guaranteed to hold because of the equivalence
check performed as the final signoff on the model (§IV-F).
With Property 1, a non-interference-based security proof on
the model is guaranteed to imply security of the source design.
We demonstrate an application of this in §V-B1 and §V-C3.

C. Synthesis overview: Figure 5

Our synthesis procedure operates in two phases. In the
first phase, we generate simulation traces (§IV-D1) and use
these traces to generate candidate M -sets (§IV-D2). These M -
sets, while consistent with the simulation traces, may contain
spurious candidates that do not apply generally. We use two
techniques to weed out spurious candidates: distinguishing
oracles and cover properties (§IV-D3). Once we eliminate
these, we move to the second phase: guard synthesis (§IV-E).
Guard synthesis takes in M -sets from the previous phase
as well as the set of trigger signals and synthesizes guards
for each micro-update. Guard synthesis results in a complete
micro-update model which we check for Sdata-equivalence
(§IV-F).

1) Signals-of-interest and RTL-mapping: The synthesis
procedure takes as input the signals Sdata (§III-A1) to be
included in the micro-update model, and a mapping from
these signals to corresponding signals in the RTL design. The
generated model then satisfies the Sdata-equivalence property
(Property 1).

2) Micro-update library: We also require the user to pro-
vide a library of micro-updates (L in Fig. 5). Candidate M -set
generation (§IV-D) searches over L to construct valid M -sets
for the simulated traces. As mentioned before, since micro-
updates operate on small subsets of signals, specifying this
library only requires local understanding of the design. In our
experiments, we observe that library specification time was
negligible compared to design harnessing/instrumentation.

Micro-update library sensitivity: We now comment on
the sensitivity of synthesis to the user-provided micro-update
library. Firstly, libraries which have incorrect or irrelevant
micro-updates (e.g. LB micro-updates for a model with only
ALU operations) does not affect the soundness of the gen-
erated model. Such micro-updates are filtered out by candi-
date M -set generation, i.e., their guard is assigned false.
Since this phase does not invoke (costly) solvers, synthesis
performance is also not heavily affected. Libraries which are

5

Fig. 5: Synthesis pipeline for generating micro-update models.

counter 0 1 2 3

inst exe addi r11,r10,16 lb r5,r4(16) addi r13,r12,16 · · ·

inst mem xori r3,r2,16 addi r11,r10,16 lb r5,r4(16) addi r13,r12,16

lb data 10 10 30 30

lb addr 20 20 40 40

lb valid 0 0 1 1

mem data 60 30 30 80

mem addr 70 40 40 90

Fig. 6: A sample execution trace from simulation.

incomplete, i.e. do not contain all micro-updates necessary to
justify the simulation traces, fail during M -set generation. In
such cases, our approach identifies the failing simulation step
and signals. This helps to add missing micro-updates.

D. Generating M -sets

1) Simulator-based trace generation: We generate a set of
random test traces of the RTL execution from a simulator
(e.g. iverilog [67]). These traces must include all the signals
from Sdata. Figure 6 shows a fragment of such a trace which
includes signals for the memory port, and the LB component
described in §II.

2) Generating candidate M -sets: A candidate M -set is a
set of micro-updates that transforms the assignment to Sdata
some cycle i of a trace into the assignment at the next cycle
i+ 1. As the first part of the synthesis procedure, we extract
candidate M -sets that match the simulation traces. For each
step of the simulation traces, we obtain a pre-post assignment
pair, (σdata, σ

′
data). For example, from the second step in Fig.

6 we extract: σdata = [lb data 7→ 10, · · ·] and σ′
data =

[lb data 7→ 30, · · ·]. The generation of candidate M -sets
for (σdata, σ

′
data) is performed via a depth-first-search (DFS)

over micro-updates from the library L. The DFS explores a
sequence of micro-updates, which incrementally transforms
σdata into σ′

data. A naive DFS will consider all possible
sequences of micro-updates. However, typically, several micro-
updates do not depend on each other. We exploit this notion
of independence to eliminate redundant search.

In general, we say that micro-update t′ depends on micro-
update t if t′ is combinational and use(t′) ∩ mod(t) is non-
empty. Since sequential micro-updates only consume values
from the previous step, they are not dependent on anything.
Subsets of independent micro-updates can be searched inde-
pendently in the DFS, which avoids redundant orderings.

Search pruning is also performed based on the fact that only
one micro-update modifies a given signal at each step. Hence,
after choosing a micro-update modifying a signal s, the DFS

ignores all other micro-updates modifying s. While the number
of micro-update subsets is exponential, these strategies avoid
search-space explosion, making candidate M -set generation
robust to the size of the micro-update library L.

Even though each candidate M -set generated by the DFS
transforms the assignment σdata into σ′

data, some of these
candidates may be spurious, as we now illustrate.

Example 2 (Spurious M -sets): Consider the trace in Fig. 6.
For the third transition (counter=2 to 3), the lb refill
micro-update (Fig. 4B) correctly updates the LB signals.
However, the lb hold micro-update (not shown) which
maintains the same values would would also work for this
cycle since the signals do not change. The DFS procedure
will generate both of these as candidates. However, we note
that in the design (Fig. 3) the LB is only refilled when the mem

stage instruction, inst mem, is a load. This is not the case
for this transition since inst mem is an addi instruction.
Hence, lb refill is a spurious candidate which we need
to filter out.

3) Eliminating spurious M -sets: We eliminate such spuri-
ous M -sets using (a) distinguishing oracles (§IV-D3) and (b)
cover properties (§IV-D3).

Using a distinguishing oracle: A distinguishing oracle
[33] identifies a test program (and its corresponding trace) on
which two given M -sets, M1,2, differ in their behaviour. Run-
ning M -set generation on distinguishing traces only generates
one of the two M -set candidates, eliminating ambiguities such
as the one in Example 2.

Example 2 (continued): If applied to the M -sets M1 and
M2 which include micro-updates lb hold and lb refill
respectively, a distinguishing oracle generates a trace which
includes the first transition (counter=0 to 1) of Example
2. We note that only the lb hold micro-update applies
for this transition (since the LB entry remains invalid). The
distinguishing oracle can also generate a trace with the sec-
ond transition (counter=1 to 2), where only lb refill
applies. The distinguishing oracle can be used to specifically
identify traces where M1 (or M2) is applicable and the other
is not.

Adapting the technique from [33], a distinguishing oracle
can be implemented by invoking a hardware model checker
(e.g. SymbiYosys [19]) as follows. Given candidate M -sets
M1,M2, we create two copies of the micro-update model. The
first copy invokes micro-updates from M1 while the second
from M2. Then we invoke the hardware model checker to
generate a trace such that at some cycle i, the two copies
have equal values of all used signals, while at the next cycle

6

(i+ 1), M1 and M2 generate different values for at least one
modified signal. Since M1 and M2 generate different values
for some signal, only one of these can be a valid candidate
M -set for the transition from cycle i to i+ 1. Thus the trace
generated by the model checker distinguishes M1 and M2.

A typical case (§V-B) where the distinguisher helps is when
a functional unit operates on one of several possible inputs
(e.g. in the case of bypassing). In such cases, one can identify
traces in which a specific bypass path is invoked.

Using cover properties: For a Boolean formula ϕ, cover
properties of the form cover(ϕ) can be supplied to a hard-
ware verification tool (e.g. JasperGold, SymbiYosys [19]).
The tool, for a given cover property ϕ, aims to generate an
execution in which ϕ holds. While the distinguishing oracle
is useful when identifying traces on which specific M -sets
do/do not apply, cover properties can be used to identify
traces where certain guard predicates do/do not evaluate to
true. Traces satisfying the cover property can then be added
to the trace corpus for future M -set generation. This allows
the generation of rare executions that were not seen during the
initial simulation.

Example 3 (Using cover properties): Consider a simple 3-
stage pipeline where the trigger signals correspond to the three
instructions in the pipeline: Strig = {ifet, iexe, iwb}. Consider
a bypassing path micro-update that is triggered when there is
a data dependency between iexe and ifet, and iexe does not
write to zero. The guard corresponding to this micro-update
is:

ϕbypass ≡ (rd(iexe) = rs1(ifet)) && (rd(iexe) ̸= 5’b00000)

Since this condition requires matching register source/desti-
nation fields, the probability of it holding is somewhat low
(∼ 1/32), and it may be missed during random simulation
(§IV-D1). In such cases, the lack of example transitions for
the bypassing path would result in the micro-update not
being represented in the generated model. The cover property
cover(ϕbypass) generates an execution in which this path
is triggered, mitigating this. Thus, the user can generate rare
executions not observed in simulation.

E. Guard synthesis

The M -sets generated in the previous stage indicate micro-
update invocations that specifically produce the simulation
traces. However, we now want to generalize this to all traces by
synthesizing the guards (§III-A3). This generalization results
in the final micro-update model satisfying Property 1.

We formulate guard synthesis using Syntax Guided Syn-
thesis (SyGuS) which is a type of formal synthesis. The
formal synthesis problem aims to generate an implementation
of an object (typically a function) such that the generated
implementation satisfies some given specification. SyGuS [6]
builds on this core idea by restricting the search space of
synthesis function implementations to terms from a context-
free grammar and where the specification for the synthesis
function is provided in the SMT-LIB format [11], [12]. SyGuS
is supported by multiple synthesis solvers (we use CVC5 [10]).

We formulate the guard Gt for micro-update t as a synthesis
function over the trigger signals. For guard Gt we extract pairs
(σi

trig, b
i) from the simulation traces and corresponding M -

sets. Here, σi
trig is the trigger signal assignment at step i, and

bi is a Boolean representing whether t belongs to a valid M -
set at step i. We ensure that the synthesized guard is consistent
with these pairs through the following synthesis constraints.

The first constraint is that for step i, if bi is false (meaning
that micro-update t wasn’t a part of any valid M -set), then the
guard Gt must evaluate to false on σi

trig:
∧

i(b
i∨¬Gt(σ

i
trig)).

If not, the generated model would be incorrect at step i.
Additionally, for each signal s ∈ Sdata, we require that

exactly one micro-update modify s at each step. We define
the set of micro-updates that modify s as m(s). The following
formula enforces the “exactly one” constraint for signal s:
(
∧

t ̸=t′∈m(s)(¬Gt(σtrig)∧¬Gt′(σtrig)))∧(
∨

t∈m(s) Gt(σtrig)).
On posing this problem to a SyGuS solver, the solver returns

expressions for each guard Gt in terms of the trigger signals.
This guard expression, together with the micro-update bodies,
gives us a complete model. The inability of the solver to
synthesize some guard implies that the set of predicates was
insufficient, i.e. there are factors outside this set that the guard
depends on. The user can then try strategies such as adding
more trigger signals, or increasing the SyGuS grammar depth.

F. Equivalence checks

Finally the generated model is checked against the source
design for Sdata-equivalence (Property 1). If the equivalence
proof fails, we get back a counterexample trace. This trace
is fed back into the trace database and the synthesis loop is
repeated. Future iterations of synthesis use this new trace, and
hence avoid synthesizing the same (incorrect) model.

G. Hierarchical synthesis

The approach discussed so far monolithically generates
micro-update models from the source RTL. However, our ap-
proach can benefit from the hierarchy inherent to RTL designs,
which is what we now discuss. Consider a micro-update model
with signals S1 generated from a design component C1. Now
suppose we want to generate a model with signals S for
a (larger) component C, of which C1 is a sub-component.
By reusing the model for C1, we only need to generate
the slice of the model corresponding to signals S \ S1 (i.e.
signals in S but not S1). In particular, this requires generating
guard predicates only for micro-updates relevant to S \ S1.
This decomposition leads to smaller synthesis queries, thus
improving performance.

Hierarchical synthesis, however, requires that (a) the signals
S1 from the sub-component (C1) not be directly driven by
logic outside the component, and (b) that the trigger signals
for C1 map to trigger signals for the parent component C
in a straightforward way. Here (a) ensures that S1 signals
preserve their behaviour in the larger model, and (b) ensures
that the guards from C1 in terms of trigger signals from
C. We demonstrate an application of this in §V-C2, where
we first generate a model for the store unit of cva6

7

(C1). Then we reuse it when generating a model for the
load store unit (C), of which the the store unit
is a sub-component.

V. EXPERIMENTAL EVALUATION

A. Methodology

We implement our framework in a Python-based tool called
PAUL (Python-based Atomic-Update Language toolkit). The
user specifies signals-of-interest (§IV-C1), a library of micro-
updates over these signals (§IV-C2), and a set of predicates
for the guards. The tool allows the user to simulate the design
over input programs, generate M -sets (§IV-D), and synthesize
guards (§IV-E).

Hyperparameters: While Fig. 5 indicates the general
synthesis pipeline, in practice, there are knobs that can be
used to guide the synthesis. Both the distinguishing (§IV-D3)
and cover (§IV-D3) trace generation require calls to a model
checker, which can be time-consuming. The user can selec-
tively apply these checks. For the distinguishing oracle, this
amounts to choosing two M -sets to distinguish between, while
for the cover property oracle, this amounts to providing a
(possibly partial) predicate valuation.

Backend setup: PAUL interfaces with iverilog [67] for
simulation, and the Yosys [68] based SymbiYosys [19] for
model checking. SymbiYosys, uses Boolector [49] and ABC
[5] as backend solvers. We perform experimentation on an
Intel Core-i7-10610U processor at 2.3GHz with 16GB RAM.

Evaluation overview: We conduct two case studies
by synthesizing micro-update models for: (a) Sodor5Stage

(§V-B) and (b) components from cva6 (§V-C1). We demon-
strate how the hierarchical lifting of micro-update models
(§V-C2) can improve scalability. We showcase applications
of the lifted models for security verification of software.
We demonstrate better performance compared to verification
against the source RTL, and strong soundness guarantees
(which are often lacking in hand-written models).

B. Case Study: The Sodor5Stage processor

The Sodor5Stage is a 5-stage in-order processor [62] with
a simple scratchpad memory. We augment this design with the
load buffer (LB) feature (as discussed in §II). We now discuss
the results of model lifting, referring to Table I.

We generate three models from the processor corresponding
to different ISA subsets (rows in Tab. I): ALUI (ALU imme-
diate), ALUR (ALU register), and ALULS (ALU immediate
+ memory instructions). In each case, we identify a set of
signals (Sdata) and the library of micro-operations (L). In all
models, we have a queue of the previous five instructions as
the control state. Since this is a 5-stage design, this suffices
to represent all inter-instruction interactions.

M -set generation: In each case, we perform simulation
over the respective instruction subsets by constraining the
opcode. We extract the transitions and generate the candidate
micro-update M -sets for these simulation traces. We observe
that for the comparison instructions (e.g. slt), comparisons
of several bypassing-path signals have the same (0/1) result

leading to spurious M -sets. We provide the counts of dis-
tinguishing and cover traces used to eliminate these spurious
cases in Table I. As M -sequence generation does not involve
(costly) solvers, it requires much less time (¡5s) as compared
to guard synthesis.

Guard synthesis and equivalence: In the second phase
of the synthesis, we use the M -sets to synthesize guards
by formulating a SyGuS [6] query. We use cvc5 [10] as
the SyGuS solver. Finally, we check the candidate micro-
update model for Sdata-equivalence with respect to the source
RTL. We perform this check using a bounded model checking
(BMC) query with SymbiYosys ([19]) model checker. We use
a depth of 15 steps for BMC which ensures that all possible
inter-instruction interactions across the pipeline are explored.

1) Do lifted models aid software security analysis?: In this
section, we explore whether/how lifting micro-update models
improves the trustworthiness and performance of security
analysis. We begin by recalling the Bounds-Check-Bypass
(BCB) gadget from the Spectre vulnerability [37], [38].

Spectre BCB background: Figure 7(A) shows the Spec-
tre BCB gadget and Fig. 7(B) shows assembly fragments
for the array2 access in the gadget. Fig. 7(C) shows the
assembly fragment after a minor modification to the gadget
(changing &= to =). In B (but not C), two ALU instructions
separate the lw instruction (101ba) from the sw instruction
(101c4). Inlays in Fig. 7 depict timing diagrams for execu-
tions of B,C on Sodor5Stage with the LB modification, under
the swexe implementation. In B, swexe flushes the LB after
the lw refills it. However, in C, swexe flushes LB before the
refill. If the lb addr were attacker observable (as discussed
in §II-B), B would be safe, while C would not.

This example shows how small changes to the microarchi-
tecture such as the LB can render the hand-written abstract
models adopted by existing approaches [9], [17], [22], [27]
imprecise. As an example, the abstract model from [17]
which is designed to check Spectre variants would flag both
Fig. 7(B), (C) as vulnerabilities, leading to false positives.
However, as we now demonstrate, the lifted micro-update
model can distinguish between these outcomes and specifically
flag the offending (C) case, thus resulting in more trustworthy
analysis.

Semantic information-flow experiment: We now demon-
strate how the lifted (ALULS) model can be used to perform
semantic information-flow analysis on software. We check
whether there exists an information-flow from certain source
(src) signals to the lb addr signal when executing small
litmus test programs. Note that lb addr is assumed to be
adversary-observable (§II-B). If this check passes, it guar-
antees that victim secrets (e.g. private keys) are not leaked
through the LB side-channel when the test program is exe-
cuted. We formulate information-flow as a variant of the non-
interference [20] hyperproperty. We check this by invoking the
SymbiYosys model checker.

Table II draws a comparison of the run times of these
information-flow checks when performed against the lifted
model and the source design. Each check (row in Tab. II) is

8

Model slice Signals-of-interest (Sdata) |Sdata| |L| Simulation
examples

Distinguish/
cover examples

Guard
synthesis

Equivalence
proof (d = 15)

I-type ALU S1 = decode, register file I/O, ALU, bypassing 15 25 190 1 1m1s 10m9s
R-type ALU S1 = decode, register file I/O, ALU, bypassing 15 29 190 3 2m14s 11m57s

ALU + lw + sw S2 = S1∪ memory ports, LB 20 37 190 8 57m 34m24s

TABLE I: Model parameters, example counts, synthesis and equivalence check times for the generated models for Sodor5Stage.

Fig. 7: Subtle program changes can expose vulnerabilities:
(A) Ex. 1 from Kocher’s [37] examples that is vulnerable to
a Spectre [38] attack. (B, C) Compiled assembly from the
original example, and the example after changing the &= to =.
The accompanying waveforms show how (C) remains tainted
under swexe while (B) does not.

Symbolic instruction
sequence (testcase)

Source
signals (src)

Outcome
Safe/Unsafe

Design
runtime

Model
runtime

nop lw mem Safe 2m43s 8s
nop lw mem,regs Unsafe 3m50s 11s

nop alui lw mem Safe 2m37s 12s
nop sw lw mem Safe 2m30s 9s
nop lw lw regs Unsafe 4m15s 8m51s

nop(lw+ alui)2 sw mem,regs Safe 4m49s 38s
nop(lw+ alui)3 sw mem,regs Safe 5m11s 1m31s

TABLE II: Comparison of information-flow proof run times
over some representative testcases. Tests are over symbolic
sequences of instructions represented as a regular expression in
the first column. The source run time is over the Sodor5Stage
RTL (with swmem) while model run time is over our lifted
ALULS model.

performed on a 1-4 instruction symbolic litmus tests (where
the opcode is fixed and other fields are unconstrained). We
observe that verification against the lifted model results in
improved performance over the source RTL in most cases. We
can guarantee the soundness of this analysis since the lifted
model preserves Sdata-equivalence with the source model
(Property 1). This demonstrates that model lifting can improve
the trustworthiness of security analysis over hand-written
models while providing performance improvements over the
source design.

C. Case Study: The cva6 (Ariane) processor

In this section, we apply our lifting methodology to com-
ponents from the cva6 (Ariane) processor [1]. Ariane is a
6-stage application-class processor implementing the RISC-
V 64-bit instruction set. We focus on lifting four memory-
facing modules in Ariane: TLB, write-buffer, store-unit, and
load-store-unit. Micro-architectural units involved in memory

operations (e.g. load/store buffers) are especially prone to
side-channel exploits. For instance, MDS attacks (e.g. [16],
[55], [63], [64]) swipe in-flight data from such buffers. Hence
accurately modelling such units when performing security
analysis is essential.

This case study explores two key questions: (1) in §V-C2 we
investigate whether hierarchical synthesis (§IV-G) can improve
the scalability of lifting and (2) in §V-C3 we apply the
lifted models to perform security analysis, and demonstrate
significant improvements to verification runtime.

We now briefly describe the components we lift (for details
see [1], [47]). The TLB [8], [52] is housed inside the memory
management unit (MMU) of the processor and uses a PLRU
(pseudo-least-recently-used) eviction scheme [51]. The write-
buffer (wbuffer) is a coalescing buffer for the write-through
data-cache, and sits between the core, data-cache and data-
memory. The store unit (store unit) maintains a queue
of pending store requests from the core. Requests are initially
queued into a speculative queue and are later moved to a
commit queue (upon receiving a commit signal from the core).
The load store unit (load store unit) consists of the
load and store unit sub-modules. It only handles one request
at a time and stalls if there is a load-after-store conflict with
an unfulfilled store operation (at the same address).

1) Generating micro-update models for cva6: We now
discuss the generation of micro-update models for the afore-
mentioned components, summarizing results in Tab. III.

TLB and wbuffer: For the TLB and wbuffer, we
generate micro-update models in which the signals-of-interest
(Sdata) include all entries in these buffers. For example, each
wbuffer entry has three 1-bit signals representing its state:
s = (valid,dirty,txnblk). The micro-update library
L consists of five micro-updates that: (1, 2) receive a fresh
write request or a replayed request to the same address, (3, 4)
initiate or conclude a memory transaction, and (5) a nop (no
operation). As reported in Tab. III while guard synthesis takes
the maximum time of all the steps, the overall generation time
of either model is less than ∼4m.

store unit and load store unit: The load-
store unit is much more complex than the TLB and wbuffer,
must handle inter-instruction dependencies while interfacing
between the core (for requests/commits) and the memory
(for requests/responses). This is reflected in the micro-update
model synthesis times (Tab. III). While the store unit can
be synthesized monolithically, monolithic guard synthesis for
the load store unit hits a time out (� in Tab. III) of 1
hr.

2) Can hierarchical synthesis help improve scalability?:
Since monolithic synthesis does not scale, we attempt hierar-

9

Module Extracted signals-of-interest (Sdata) M -set generation Guard synthesis Equivalence proof (d = 15)
TLB states of buffer entries ¡1s 4s 6s

wbuffer states of buffer entries (valid,dirty,txnblk) 1s 2m47s 1m10s
store unit store queue, store req. states 1s 5m17s 2m58s

load store unit
store queue, store req. states, load req. state

(e.g. valid, spec, commit, memresp)
2s TO (�) 1m49s2s 11m38s (⋆)

TABLE III: Summary of the micro-update generation from the components of cva6. The row marked with (�) denotes
monolithic synthesis, while for (⋆) we use hierarchical synthesis (§IV-G), by reusing the store unit (sub-module) generated
previously.

Symbolic instruction
sequence (testcase)

Constraint on the
testcase program

Safe/
UnSafe

Design
runtime

Model
runtime

alui sw lw alui NONE US 34s 17s
alui sw lw alui regs equal (RE) S 3m57s 48s
alui sw lw alui addr(sw) == addr(lw) S 1m16s 34s
lw1 sw lw2 alui NONE US 1m29s 25s
lw1 sw lw2 alui RE US 1m10s 27s
lw1 sw lw2 alui addr(sw) == addr(lw2) S 54s 24s
lw1 sw lw2 alui RE, rd(lw1) ̸= rs1(sw) US 1m 28s

lw1 sw lw2 alui RE, rd(lw1) ̸= rs1(sw) ∧
rd(lw1) ̸= rs1(lw2) S 1m48s 44s

lw1 sw lw2 lw3 RE, rd(lw1) ̸= rs1(sw) ∧
rd(lw1) ̸= rs1(lw2) US 9m4s 1m2s

lw1 sw lw2 lw3 RE,
rd(lw1) ̸= rs1(sw) ∧

rd(lw1) ̸= rs1(lw2) ∧
rd(lw1) ̸= rs1(lw3)

S 12m36s 1m29s

TABLE IV: Security analysis checking whether the test cases
result in different timing behaviours. “Design” and “Model”
runtimes are for the load store unit RTL and lifted
model, respectively.

chical synthesis (§IV-G) to generate a micro-update model for
the load store unit. Hierarchical synthesis is feasible
since the two requirements outlined in §IV-G are satisfied: (a)
store unit signals are not directly written to by outside
logic and (b) almost all inputs to the load store unit
are directly passed to the store unit. The exception
to (b) is an input signalling whether the incoming re-
quest into the load store unit is a load/store. We
needed to condition it being a store before passing it to the
store unit. By adopting the previously (monolithically)
synthesized store unit, we only needed to synthesize
the non-store unit guards. While monolithic synthesis
timed out, we could generate the model using the hierarchical
approach in ∼12m (⋆ in Tab. III).

Hierarchical synthesis is generally suitable when the com-
position is performed at module boundaries of the RTL. Such
cases tend to satisfy condition (a) from §IV-G. However, as
seen in this case, condition (b) from §IV-G may be harder to
satisfy if there is intermediate logic between the trigger signals
of the parent module and those of submodules. While the logic
was manually identifiable in this case, in the future one could
use a version of guard synthesis to extract it. Thus hierarchical
lifting leads to better scalability when synthesizing complex
models. However, this might require the user to provide
additional instrumentation/hints.

3) Does performance of security analysis improve with the
micro-update model compared to source RTL?:

a) Experimental setup: We investigate whether using
the lifted model can improve the performance of security

verification. However, since we only lifted a model corre-
sponding to the load store unit, we first wrap the
generated model in a simple processor shim. This shim
executes alui, lw, and sw instructions. While alui
instructions are executed locally, the shim interfaces with the
load store unit for sw and lw instructions. Execution
is stalled if the load store unit is busy. We also wrap
the source load store unit RTL in an identical shim
for a valid comparison. We now conduct an experiment to
compare security analysis run times when using the (shim-
wrapped) lifted model/source load store unit RTL as
the underlying HW platform (similar to §V-B1).

b) The load store unit timing channel and
results: In our experiment, we analyze whether a
given a software instruction sequence is vulnerable to a
load store unit-based timing channel. We formulate
invulnerbility as a non-interference [20] property stating
that the timing behaviour of the instruction sequence is
independent of victim data (we assume that the victim’s
secret resides in data memory). We check this property by
invoking the SymbiYosys model checker. If the check passes,
the instruction sequence is secure while a counterexample
would indicate a vulnerability.

We present our results in Tab. IV, where rows denote the
symbolic test cases that are checked. The test cases are based
on read gadgets seen in hardware attacks. We observe that
verification run times with the lifted model are up to 8× lower
than the source RTL. This tends to increase for larger tests.

We also note that certain test programs are unsafe (US).
This is the case since the load store unit blocks loads
when there are previous pending stores at the same address.
Thus, the timing behaviour of sw · lw when the lw and sw
are on the same address is different than when they are on
different addresses. If the address constitutes a victim secret,
an attacker could infer the secret through a timing-based attack
[24].

This demonstrates that models lifted from security-relevant
design components can be used to check the existence of vul-
nerabilities in SW with significant performance improvement.

Evaluation highlights: Our experiments demonstrate: (a)
the feasibility of micro-update model lifting, and the ability to
improve scalability through hierarchical synthesis, and (b) the
application of the lifted models to perform security analysis of
software with greater reliability than handwritten models and
better performance than with source RTL.

10

VI. DISCUSSION AND LIMITATIONS

Manual effort: The main manual effort required in
our approach is for identifying signals-of-interest (Sdata),
the micro-update library (L) and design instrumentation. The
first is fundamental to our framework as Sdata captures
the design slice the user is interested in analyzing. While
the current approach requires a user-specified micro-update
library, going forward we foresee automating this by utilizing
techniques such as specification/invariant-mining [21], [39]. A
large chunk of effort in our case studies was in understanding
and instrumenting the designs. This can be reduced if lifting
is performed in lockstep with the design phase/with the aid of
designers.

Signals-of-interest and analysis coverage: While we
require the user to identify the signals-of-interest, automati-
cally identifying the complete attack surface is a major open
challenge. Prior work on analyzing hardware exploits also rely
on manually identified signals (e.g. [9], [17], [27], [48], [61]).
Through the signal-of-interest (Sdata), our approach exposes
a tradeoff between model coverage and scalability. While a
model capturing with smaller Sdata is less detailed, it can still
be used to prove security against multiple attack scenarios
targeting those signals (e.g. in §V-C3 we study security impli-
cations of a load store unit against several instruction
sequences). For generating a model with high coverage, hier-
archical synthesis (§IV-G) can improve scalability.

VII. RELATED WORK

Several approaches propose formal specifications/models at
the ISA-level, such as the RISC-V specification [66], as well as
formal models of ISA-level semantics (e.g. in SAIL [26] and
Kami [35]). Approaches such as instruction-level-abstraction
(ILA) [30], [31], [71], [72] extend these models to include
additional architectural state (e.g. accelerator state). ILA-
MCM [72] also considers a model which is composed of code
blocks, however, these are composed axiomatically. These
models have been extensively used for specification [7] and
verification of processor designs (e.g. [14], [54], [57], [65]).
There is also work on synthesizing such models from hardware
[59]. However, as discussed in §II-C, these approaches are not
precise enough to model microarchitecture-level interactions,
which is essential for accurate security analysis.

There is work on developing microarchitectural models
of hardware, such as µspec [43]. µspec has been used to
model memory consistency [42], coherence [45], and security
properties [61]. More recently, there has been work on gener-
ating µspec models from RTL [29]. [48] uses a µspec based
model to detect vulnerabilities. As discussed in §II-D, these
models have difficulty capturing functional details necessary
for checking semantic security properties.

Approaches that define [28] and verify [9], [17], [22],
[27] security properties from a software standpoint manually
develop platform models for program execution. This is error-
prone due to subtle microarchitectural interactions. In §V-B1
we demonstrated how micro-update models generated with
strong guarantees can increase the level of assurance of these

approaches. [70] develop a speculative platform model with
a guarantee of invulnerability to some attacks, while [13]
develops a methodology to validate platform models.

UPEC [23] performs verification of RTL by checking
whether executing read gadgets (e.g. [36], [38]) leads to a
security vulnerability. This is orthogonal since we lift models
from RTL for scalable software verification. In particular, a
UPEC-like approach could be soundly performed on the lifted
model owing to our equivalence guarantee (§IV-B). Moreover,
as our results indicate, verification against the lifted model is
more performant as compared to the RTL.

Micro-updates bear resemblance to rules from BlueSpec
[50] or transactions from TLM [15]. However, our focus is
modelling and lifting as opposed to hardware design.

VIII. CONCLUSION

In this work, we proposed micro-update models as a for-
malism for developing abstract formal models of the microar-
chitecture. By accurately preserving security-relevant microar-
chitectural detail, micro-update models provide an abstract
yet sound substrate for performing scalable security verifi-
cation of software. To address the challenge in hand-writing
formal models, we developed a semi-automated technique
to hierarchically synthesize micro-update models from RTL.
We evaluated our approach by synthesizing models from
the Sodor5Stage and cva6 processors. We demonstrated
how the generated models can be used to soundly perform
semantic security analysis, with improved performance over
the source RTL. Our modelling and lifting framework can
allow HW designers to increase the level of assurance of
security analysis while reducing the efforts involved in formal
model development.

ACKNOWLEDGEMENTS

This work was supported by DARPA contract FA8750-20-
C0156, NSF grant 1837132 and a gift from Intel Corporation.

REFERENCES

[1] CVA6 (Ariane) User Manual. https://docs.openhwgroup.org/projects/
cva6-user-manual/index.html.

[2] CVA6 RTL Bug Issues. https://github.com/openhwgroup/cva6/issues?q=
is%3Aissue+label%3AType%3ABug+label%3AComponent%3ARTL+
is%3Aopen. Accessed: 2023-02-20.

[3] Maaz Bin Safeer Ahmad and Alvin Cheung. Optimizing data-intensive
applications automatically by leveraging parallel data processing frame-
works. Proceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[4] Maaz Bin Safeer Ahmad and Alvin Cheung. Automatically leveraging
MapReduce frameworks for data-intensive applications. Proceedings of
the 2018 International Conference on Management of Data, 2018.

[5] Alan Mischenko et al. Berkeley ABC tool. https://github.com/
berkeley-abc/abc, 2022.

[6] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. 2013 Formal Methods in Computer-Aided Design, pages 1–8,
2013.

[7] Alasdair Armstrong, Thomas Bauereiß, Brian Campbell, Alastair David
Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark
Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian David Bede
Stark, Neelakantan R. Krishnaswami, and Peter Sewell. Isa semantics
for armv8-a, risc-v, and cheri-mips. Proceedings of the ACM on
Programming Languages, 3:1 – 31, 2019.

11

https://docs.openhwgroup.org/projects/cva6-user-manual/index.html
https://docs.openhwgroup.org/projects/cva6-user-manual/index.html
https://github.com/openhwgroup/cva6/issues?q=is%3Aissue+label%3AType%3ABug+label%3AComponent%3ARTL+is%3Aopen
https://github.com/openhwgroup/cva6/issues?q=is%3Aissue+label%3AType%3ABug+label%3AComponent%3ARTL+is%3Aopen
https://github.com/openhwgroup/cva6/issues?q=is%3Aissue+label%3AType%3ABug+label%3AComponent%3ARTL+is%3Aopen
https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc

[8] Remzi H. Arpaci-Dusseau. Operating systems: Three easy pieces. login
Usenix Mag., 42, 2017.

[9] Musard Balliu, Mads Dam, and Roberto Guanciale. Inspectre: Break-
ing and fixing microarchitectural vulnerabilities by formal analysis.
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020.

[10] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength smt solver. In TACAS, 2022.

[11] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[12] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Handbook of Satisfiability,
2009.

[13] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale.
Validation of side-channel models via observation refinement. MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2021.

[14] Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessor control. In CAV, 1994.

[15] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview.
First IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (IEEE Cat. No.03TH8721), pages 19–
24, 2003.

[16] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[17] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 288–
28815, 2019.

[18] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, and Arvind. Kami: a platform for high-level parametric
hardware specification and its modular verification. Proceedings of the
ACM on Programming Languages, 1:1 – 30, 2017.

[19] Claire Wolf, et. al. Symbiyosys. https://github.com/YosysHQ/sby, 2022.
[20] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. 2008 21st

IEEE Computer Security Foundations Symposium, pages 51–65, 2008.
[21] Michael D. Ernst and David Notkin. Dynamically discovering likely

program invariants. 2000.
[22] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. Automatic

detection of speculative execution combinations. Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022.

[23] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Sub-
hasish Mitra, Dominik Stoffel, and Wolfgang Kunz. A formal approach
for detecting vulnerabilities to transient execution attacks in out-of-order
processors. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

[24] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, 8:1–27, 2016.

[25] Joseph A. Goguen and José Meseguer. Unwinding and inference control.
1984 IEEE Symposium on Security and Privacy, pages 75–75, 1984.

[26] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher
Pulte, Susmit Sarkar, and Peter Sewell. An integrated concurrency and
core-isa architectural envelope definition, and test oracle, for ibm power
multiprocessors. 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 635–646, 2015.

[27] Marco Guarnieri, Boris Köpf, José Francisco Morales, Jan Reineke,
and Andrés Sánchez. Spectector: Principled detection of speculative
information flows. 2020 IEEE Symposium on Security and Privacy (SP),
pages 1–19, 2020.

[28] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. 2021 IEEE Symposium on
Security and Privacy (SP), pages 1868–1883, 2021.

[29] Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and
Caroline Trippel. Synthesizing formal models of hardware from rtl for
efficient verification of memory model implementations. MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021.

[30] Bo-Yuan Huang, Hongce Zhang, Aarti Gupta, and Sharad Malik. ILAng:
A modeling and verification platform for SoCs using instruction-level
abstractions. In TACAS, 2019.

[31] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel,
Aarti Gupta, and Sharad Malik. Instruction-level abstraction (ila):
A uniform specification for system-on-chip (soc) verification. ArXiv,
abs/1801.01114, 2018.

[32] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel,
Aarti Gupta, and Sharad Malik. Instruction-level abstraction (ila). ACM
Transactions on Design Automation of Electronic Systems (TODAES),
24:1 – 24, 2019.

[33] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-
guided component-based program synthesis. 2010 ACM/IEEE 32nd
International Conference on Software Engineering, 1:215–224, 2010.

[34] Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via
Inductive Learning. Acta Informatica, 54(7):693–726, 2017.

[35] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. Verified lifting of stencil computations. Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2016.

[36] Vladimir Kiriansky and Carl A. Waldspurger. Speculative buffer over-
flows: Attacks and defenses. ArXiv, abs/1807.03757, 2018.

[37] Paul Kocher. Spectre mitigations in microsoft’s c/c++ compiler, 2018.
[38] Paul C. Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Michael

Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. 2019 IEEE Symposium on Security and Privacy (SP), pages
1–19, 2019.

[39] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable spec-
ification mining for verification and diagnosis. Design Automation
Conference, pages 755–760, 2010.

[40] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul C. Kocher, Daniel
Genkin, Yuval Yarom, and Michael Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security Symposium, 2018.

[41] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 605–622. IEEE Computer Society, 2015.

[42] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. Pipecheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. 2014 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 635–646, 2014.

[43] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. Coatcheck: Verifying memory ordering at the hardware-os
interface. Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2016.

[44] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pel-
lauer. Rtlcheck: Verifying the memory consistency of rtl designs. 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 463–476, 2017.

[45] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. Ccicheck: Using µhb graphs to verify the coherence-
consistency interface. 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 26–37, 2015.

[46] Zohar Manna and Richard J. Waldinger. A Deductive Approach to
Program Synthesis. In TOPL, 1979.

[47] Valentin Martinoli, Yannick Teglia, Abdellah Bouagoun, and Régis
Leveugle. CVA6’s Data cache: Structure and Behavior, 2022.

[48] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel.
Axiomatic hardware-software contracts for security. Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022.

[49] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J.
Satisf. Boolean Model. Comput., 9(1):53–58, 2014.

[50] Rishiyur S. Nikhil. Bluespec System Verilog: efficient, correct RTL
from high level specifications. Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for Co-
Design, 2004. MEMOCODE ’04., pages 69–70, 2004.

[51] David A. Patterson and John L. Hennessy. Computer architecture: A
quantitative approach. 1969.

12

https://github.com/YosysHQ/sby

[52] David A. Patterson and John L. Hennessy. Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface. 2013.

[53] Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia. Satisfiabil-
ity and synthesis modulo oracles. In VMCAI, 2022.

[54] Alastair David Reid, Rick Chen, Anastasios Deligiannis, David Gilday,
David Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter
Vrabel, and Ali Mustafa Zaidi. End-to-end verification of arm ®
processors with isa-formal. 2016.

[55] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019.

[56] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, H. Balakrishnan, George Varghese, Nick McKe-
own, and Steve Licking. Packet transactions: High-level programming
for line-rate switches. Proceedings of the 2016 ACM SIGCOMM
Conference, 2016.

[57] Jens Ulrik Skakkebæk, Robert B. Jones, and David L. Dill. Formal
verification of out-of-order execution using incremental flushing. In
CAV, 1998.

[58] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A.
Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS XII, 2006.

[59] Pramod Subramanyan, Bo-Yuan Huang, Yakir Vizel, Aarti Gupta, and
Sharad Malik. Template-based parameterized synthesis of uniform
instruction-level abstractions for soc verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37:1692–
1705, 2018.

[60] Tachio Terauchi and Alexander Aiken. A capability calculus for
concurrency and determinism. In TOPL, 2008.

[61] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Security
Verification via Automatic Hardware-Aware Exploit Synthesis: The
CheckMate Approach. IEEE Micro, 39:84–93, 2019.

[62] UCB-BAR. Sodor processor collection. https://github.com/ucb-bar/
riscv-sodor, 2013.

[63] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue In-Flight Data Load. 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105, 2019.

[64] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs via Cache
Evictions. 2021 IEEE Symposium on Security and Privacy (SP), pages
339–354, 2021.

[65] Miroslav N. Velev and Randal E. Bryant. Superscalar processor verifica-
tion using efficient reductions of the logic of equality with uninterpreted
functions to propositional logic. In CHARME, 1999.

[66] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanovic. The risc-v instruction set manual. 2014.

[67] Steven Williams. iverilog. https://github.com/steveicarus/iverilog, 2022.
[68] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog

synthesis suite. 2013.
[69] Wenjie Xiong and Jakub Szefer. Leaking information through cache

lru states. 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 139–152, 2020.

[70] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-
rellas, and Christopher W. Fletcher. Speculative taint tracking (stt): A
comprehensive protection for speculatively accessed data. IEEE Micro,
40:81–90, 2020.

[71] Yu Zeng, Aarti Gupta, and Sharad Malik. Automatic generation of
architecture-level models from rtl designs for processors and accel-
erators. 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 460–465, 2022.

[72] Hongce Zhang, Caroline Trippel, Yatin A. Manerkar, Aarti Gupta,
Margaret Martonosi, and Sharad Malik. Ila-mcm: Integrating memory
consistency models with instruction-level abstractions for heterogeneous
system-on-chip verification. 2018 Formal Methods in Computer Aided
Design (FMCAD), pages 1–10, 2018.

13

https://github.com/ucb-bar/riscv-sodor
https://github.com/ucb-bar/riscv-sodor
https://github.com/steveicarus/iverilog

	Introduction
	Motivating Example
	Example: modified Sodor5Stage core
	The lb optimization vulnerability
	Instruction-level approaches
	Axiomatic ordering-based approaches

	Micro-update models
	Components of the micro-update model
	Signals
	Micro-updates
	Trigger signals and guards

	Properties of micro-updates

	Micro-update model synthesis
	The challenge posed by formal synthesis
	Problem formulation and guarantee
	Synthesis overview: Figure 5
	Signals-of-interest and RTL-mapping
	Micro-update library

	Generating M-sets
	Simulator-based trace generation
	Generating candidate M-sets
	Eliminating spurious M-sets

	Guard synthesis
	Equivalence checks
	Hierarchical synthesis

	Experimental Evaluation
	Methodology
	Case Study: The Sodor5Stage processor
	Do lifted models aid software security analysis?

	Case Study: The cva6 (Ariane) processor
	Generating micro-update models for cva6
	Can hierarchical synthesis help improve scalability?
	Does performance of security analysis improve with the micro-update model compared to source RTL?

	Discussion and Limitations
	Related work
	Conclusion
	References

