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Abstract

Sparsity-aware communication for distributed graph neural network training

by

Ujjaini Mukhopadhyay

Masters of Sciences in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Katherine Yelick, Chair

Graph neural network (GNN) training has low computational intensity and thus communi-
cation costs can limit scalability. Sparse-matrix dense-matrix multiplication (SpMM), where
the dense matrix is tall and skinny, is the bottleneck in full-graph training of GNNs. Pre-
vious work on distributing SpMM focused on sparsity-oblivious algorithms, where blocks
of the matrices are communicated regardless of the sparsity pattern. This provides pre-
dictable communication patterns that can be overlapped with computation and maximizes
the use of optimized collective communication functions, but it wastes significant bandwidth
by communicating unnecessary data.

We present sparsity-aware algorithms that communicate only the parts of matrix blocks that
are needed based on the sparsity pattern of the input graph. We couple our sparsity-aware
SpMM algorithm with a communication-avoiding (1.5D) approach and a specialized graph
partitioning algorithm that minimizes the maximum data volume communicated per process
in addition to the total data volume. This addresses communication load imbalance and
therefore total cost better than average volume alone. We explore the trade-offs from different
graph problems and machine sizes, with the combined optimizations showing up to 14x
improvement on 256 GPUs relative to a popular GNN framework based on communication-
oblivious SpMM.
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Chapter 1

Introduction

Graph neural networks (GNNs) have recently demonstrated success for many scientific and
engineering problems, such as protein structure prediction in structural biology, track recon-
struction in particle physics, and traffic prediction in autonomous driving.

While GNNs typically have fewer layers than CNNs, the graphs can be enormous, making
GNN training expensive in both time to solution and memory footprint. Because GNNs
represent graphs which encode dependencies, even mini-batch training (only training on a
small subset of vertices) can lead to neighborhood-explosion, a phenomenon where the entire
graph is processed for one step of training. While there are sampling algorithms that can
mitigate the effects of neighborhood explosion, they often introduce approximation error [12,
9, 24]. Thus, in this work we focus on full-graph training. Sparse-matrix tall-skinny-dense-
matrix multiplication (SpMM) has been identified as the bottleneck of GNN training [23],
especially for the full-graph training case we consider in this paper. Prior work addressed
time and memory costs by distributing GNN training across multiple compute nodes [23,
13, 18].

One way to parallelize full-graph GNN training on distributed-memory architectures
is to utilize a sparsity-oblivious approach where parts of the matrices that are communi-
cated throughout the algorithm execution is fixed regardless of the pattern of the sparse
matrix. A sparsity-oblivious approach has several benefits, such as straightforward general-
ization from dense matrix algorithms, ability to overlap communication with computation
due to predictable communication phases, and the ability to utilize well-optimized collec-
tive communication functions that often use less bandwidth than performing point-to-point
communication with the same amount of data among the same set of senders and receivers.

In this work, we take the alternative sparsity-aware approach that takes advantage of the
sparsity of the input graph to avoid transferring parts of the dense matrices. For example in
1D block-row SpMM, if the local sparse matrix stored in process P (i) has an empty column
j, then the jth row of the dense matrix need not be communication to process P (i). We
extend this idea to all GNN training steps. Unfortunately, input graphs do not often come
in an order that maximizes this kind of structured sparsity that allows the sparsity-aware
algorithm to minimize communication.
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Graph and hypergraph partitioning has a long and celebrated history in scientific com-
puting, which is documented in recent surveys [7, 8]. Perhaps one of the most canonical uses
of graph/hypergraph partitioning is for sparse matrix-vector multiplication (SpMV) typi-
cally within an iterative sparse solver such as conjugate gradient. However, the overhead
of partitioning often takes many SpMV iterations to amortize, limiting the widespread use
of partitioners in production codes. Partitioning is also utilized to parallelize more heavy-
weight kernels such as SpMM and sparse-matrix sparse-matrix multiplication [6, 3], where
it is often easier to amortize the overhead of the partitioning as these operations incur much
more computation and communication than parallel SpMV.

In contrast to sparse iterative solvers, GNN training has significantly more work to do,
easily making up for the cost of partitioning with the reduction in runtime. This is because
(1) the main workhorse is SpMM, as opposed to SpMV, (2) each epoch of training performs
2(L− 1) SpMM operations where L is the number of neural network layers, and (3) it takes
hundreds of epochs for GNN training to converge to the desired accuracy, and (4) the sparsity
pattern of the matrix that represents the input graph does not change throughout training,
so partitioning only needs to be done once.

Graph and hypergraph partitioners by default optimize the total communication volume,
while attempting to balance the computational load (e.g., by assigning the same number of
nonzeros per processor in the case of sparse matrix partitioning). However, most popular
partitioners such as Metis [15] do not provide a mechanism to balance the communication.
When each process pair sends and receives different amounts of data with point-to-point
messages, this causes a load imbalance in communication where the overall time spent in
communication is dominated by the process that sends (or receives) the largest amount of
data. As the communication cost of the parallel SpMM is more bandwidth-bound than it is
latency-bound (i.e., the sizes of the transferred messages are large, often multiple megabytes)
due to large lengths of the feature vectors that need to be communicated, disregarding the
load imbalance in communication can be severe for performance and hurt scalability as we
demonstrate in this paper.

To alleviate this issue, we rely on a recently-proposed partitioning method [2] that aims
to minimize the maximum amount of communicated data besides total amount.

Our contributions in this paper are as follows:

• For all steps of GCN (graph convolutional network) training, we present sparsity-aware
algorithms that only communicate parts of dense matrices that will result in nonzero
output when multiplied with the sparse matrix.

• We use graph partitioning to amplify the communication-reducing effect of sparsity-
aware algorithms. We employ a specialized partitioner that is designed to minimize
the maximum amount of communication between pairs of communicating processors,
which avoid load balance in communication.

• We demonstrate the generality of my approach by integrating the sparsity-awareness
to both 1D and communication-avoiding 1.5D algorithms.



CHAPTER 1. INTRODUCTION 3

• We demonstrate significant performance improvements for full-graph GNN training,
compared to both the sparsity-oblivious approach as well as a sparsity-aware implemen-
tation that uses off-the-shelf partitioners that only minimize the total communication
volume.
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Chapter 2

Background

2.1 Graph Neural Networks

Graph Neural Networks take as input a graph G = (V,E), where V is the set of vertices
and E is the set up edges. This graph can represent any network structure found in the
real world, such as protein-protein interaction, particle tracks, metagenomic read overlaps,
social networks, and transportation networks. While GNNs can solve a wide variety of
machine learning problems, we focus on node classification without loss of generality. In this
problem, each vertex takes an associated feature vector as input, and a subset of vertices have
an associated label. The objective of the network is to classify unlabeled vertices in the graph
using input features, graph connectivity, and vertex labels. To that end, the neural network
maps vertices to low-dimensional embedding vectors such that similar vertices have similar
embedding vectors. More concretely, the similarity of two vertices u, v ∈ V with embedding
vectors zu and zv, respectively, is simply the dot-product zTu zv. The feature vectors for each
vertex are represented as a tall-skinny dense matrix H ∈ Rn×f .

GNNs follow the message-passing model, consisting of a message step and an aggregate

step per iteration of training [12]. The message step creates a message per edge in the
graph. The aggregate step takes a vertex v and combines the messages across all of that
v’s incoming neighbors. The output is multiplied with a parameter weight matrix, and
the result is an embedding vector zv. Message-passing can be expressed in terms of sparse
matrix multiplication as Zl ← ATHl−1Wl. This formulation represents forward propagation
in Graph Convolution Networks (GCNs), introduced by Kipf and Welling [16]. In addition,
forward propagation includes an activation function Hl ← σ(Zl). After several layers of both
steps, the network outputs an embedding vector per vertex, after which the network inputs
vectors and labels into a loss function for backpropagation. Prior work has shown that the
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Table 2.1: List of symbols and notations used by our algorithm

Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (n× n)
Hl Embedding matrix in layer l (n× f)
Wl Weight matrix in layer l (f × f)
Gl Matrix form of ∂L

∂Zl
ij

(n× f)

Zl input matrix to activation function (n× f)
σ Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
α Latency
β Reciprocal bandwidth

operations for GCN training, for both forward and backward propagation, are [23]:

Zl ← ATHl−1Wl

Hl ← σ(Zl)

Gl−1 ← AGl(Wl)T ⊙ σ′(Zl−1)

Wl−1 ←Wl−1 −Yl−1

Here, the first two operations represent forward propagation in GCN training, while the last
two compute the input and weight gradients respectively.

2.2 Related Work

Literature in parallel training of GNNs is extended, with many contributions from academia,
government, and industry research labs. A recent ACM computings survey article focuses on
the computational aspects of GNN training, and covers many systems and frameworks [1].
In this paper, we focus on full-graph training (as opposed to mini-batch training) and hence
focus on works that support full-graph training. Dorylus [22] and DistGNN [19] are two
noteworthy examples of distributed full-graph training on CPUs. ROC [14], CAGNET [23],
and BNS-GCN are similarly noteworthy examples of distributed full-graph training on GPUs.

Graph partitioning has been previously employed by DistDGL for reducing communica-
tion in GNN training. DistDGL uses a key-value store for storing vertex embedding and
focuses on mini-batch training. Their partitioning algorithm also does not minimize the
maximum communication volume, potentially resulting in load imbalances in communica-
tion.

SpMM, which is the workhorse of full-batch GNN training, has been the target of re-
cent parallelization efforts. Selvitopi et al. [20] presented and investigated 1.5D and 2D
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sparsity-oblivious algorithms under bulk-synchronous and asyncronous communication sce-
narios specifically focusing on a setting with distributed-memory nodes with GPUs. Koanan-
takool et al. [17] investigated communication costs of a number of 1.5D and 2D distributed
SpMM algorithms and gave a recipe which one to utilize according to different factors such
as replication factor, relative sparsity, etc. Graph/hypergraph partitioning in the context
of SpMM has extensively been studied by Acer et al. [2]. Pointing out that optimizing the
single partitioning objective of total volume may often result in poor scalability for this op-
eration, they propose a general framework that relies on multiple constraints to encapsulate
various communication cost metrics related to volume throughout the partitioning. Among
the partitioners that address multiple communication cost metrics and can show benefits in
the parallelization of SpMM are shown by Deveci et al. [11] and Slota et al. [21].
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Chapter 3

Sparsity-Aware SpMM Algorithms

In this section, we present our 1D and 1.5D sparsity-aware distributed SpMM implemen-
tations for full-batch GNN training. These algorithms are adapted from their sparsity-
oblivious versions, presented in prior literature [17]. The memory costs for a GNN are
dominated by the input graph (A) and node activations (H0 . . .HL−1), with a total cost
of O(nnz (A) + nfL). Both 2D and 3D SpMM algorithms exist in the literature as well.
However, others show that 2D and 3D algorithms are less performant for full-batch GNN
training, so we choose to focus on 1D and 1.5D algorithms.

Sparsity-aware algorithms improve on their sparsity-oblivious versions by communicating
less data, and consequently improving runtime [5]. In the sparsity-oblivious SpMM algo-
rithms communication occurs in units of entire block rows of the dense H matrix regardless
of the matrix structure of A. This approach is simple and has predictable communication
patterns, and can take advantage of highly optimized logarithmic collective operations. How-
ever, these algorithms also unnecessarily communicate rows of H that will not be read in the
local SpMM computation because they would be multiplied by zeros that are not explicitly
stored. We introduce sparsity-aware algorithms that communicate specific rows of H, at the
cost of linear in process count communication and storing row indices that must be sent.

Both algorithms take as input

1. A ∈ Rn×n : sparse adjacency matrix,

2. Hl−1 ∈ Rn×f l−1
: dense input activations matrix,

3. W ∈ Rf l−1×f l
: dense training matrix,

and output Hl : Rn×f l
: dense output activations matrix.

3.1 Sparsity-Aware 1D Algorithm

Our 1D algorithm assumes bothAT andH are distributed in block rows across processes, the
same distribution as the sparsity-oblivious algorithms. Each process receives n/P contiguous
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=

P0

P1

P2

P3

P0

P1

P2

P3

P0 P1 P2 P3

AHl

Hl-1

Figure 3.1: The above image shows the specific rows of H Process 0 requests. The dots
represent nonzeros and note that only the subcolumns which contain at least one nonzero
are requested. Even if a subcolumn contains more than one nonzero, the corresponding row
on H is only requested once by that process. Here, P0 requests 2 rows from P1, 1 row from
P2, and 1 row from P3. The rows that are requested are highlighted on H l−1. Also note
that no diagonal blocks are communicated because processors already own the corresponding
block row of H l−1.

rows of both AT and H. We use AT
i and Hi to refer to the block rows of AT and H that

exist on process P (i).

AT =

 AT
1
...

AT
p

 =

 AT
11 . . . AT

1p
...

. . .
...

AT
p1 . . . AT

pp

 ,H =

 H1
...

Hp

 (3.1)

Our sparsity-aware algorithms first has each process P (i) locally compute NnzCols(i, j) for
j = 1 . . . n. For a given i, j pair, NnzCols(i, j) returns a vector of the nonzero column ids
in AT

ij. These nonzero column ids of AT
ij specify the rows of H needed to compute AT

ijHj.

Let Zl be an intermediate product ATHl−1. Like its sparsity-oblivious counterpart, our
sparsity-aware 1D algorithm, the computation for Zl

i for process P (i) is

Zl
i = Zl

i +AT
i H = Zl

i +

p∑
j=1

AT
ij Hj
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Algorithm 1 Sparsity-Aware 1D algorithm for GNN forward propagation. A and Hl are
distributed in block rows across p processes. NnzCols(i, j) returns the nonzero column
indices in AT

ij, and is computed as a preprocessing step.

1: procedure Block1DSAFW(A,Hl−1,W,Hl)
2: for all processes P (i) in parallel do
3: T← [H[NnzCols(i, 0), :]; . . . ;H[NnzCols(i, P − 1), :]
4: AllToAllv(T, P (:))
5: for k = js to js+ s− 1 do
6: Ĥl−1[NnzCols(i, k)] = T [k]
7: Zl ← Zl + SpMM(AT, Ĥl−1)

8: Hl ← GEMM(Zl,W)

Note that process P (i) stores AT
i locally, but not Hj for i ̸= j. In the sparsity-oblivious

algorithm, each process P (j) would broadcast its entire block row Hj to all other processes.
Our sparsity-aware 1D algorithm ensures that each process P (j) only sends the necessary
rows of H to each other process. Algorithm 1 describes how to compute Zl in more detail.

Equation Zl = ATHl−1Wl

In Algorithm 1, the only communication is an all-to-allv call that exchanges rows of H (recall
that Wl is fully-replicated, so no communication is necessary). A single process will receive
data from P −1 other processes, and the time taken by this operation can be upper-bounded
by the maximum value of NnzCols(i, j), across all pairs of processes i, j, times f . To reduce
clutter, we use cutP (A) to denote this number. This results in the following per-process
communication cost with the α− β model.

Tcomm = α(P − 1) + (P − 1)cutP (A)fβ

Equation Hl = σ(Zl)

No communication is necessary as Hl is partitioned by rows. This step is identical to the
sparsity-oblivious algorithm.

Equation Gl−1 = AGl(Wl)T ⊙ σ′(Zl−1)

The communication in this step is identical to the communication in forward propagation
(Section 3.1). Recall that, for undirected graphs A = AT, and no communication is needed
for transposition. For directed graphs, we store bothA andAT. In addition, A, Gl, and Zl−1

are all partitioned into block rows. Since A is sparse and Gl is dense, we use our sparsity-
aware SpMM implementation to compute AGl. The communication pattern is identical to
that outlined in Algorithm 1.
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=

P0,1

P2,3

P4,5

P6,7

P0

P2

P4

P6

+

P1

P3

P5

P7

P0 P2 P4 P6 P1 P3 P5 P7

Hl-1 Hl-1

Hl A
replica 0

A
replica 1

Figure 3.2: The above diagram shows the rows of H that are requested by P0 and P1 in
the case of useing p = 8 processors and c = 2 replication factor. Note that every block
row of A and H is replicated c number of times. As with the 1D algorithm, only the rows
corresponding to nonzero subcolumns are requested from H. Here, P0 requests 2 rows from
P2 while P1 requests one row from P5 and one row from P7.

Equation Yl−1 = (Hl−1)TAGl

Communication in this step is a small 1D outer product. Locally multiplying Hl−1AGl

yields a single matrix per process of size f × f that must be reduced across processes. We
treat this communication cost as a lower-order term.

3.2 Sparsity-Aware 1.5D Algorithm using

Point-to-Point Communication

In 1.5D algorithms, processes are organized in a P/c× c process grid [17, 23]. In this regime,
both AT and H are partitioned into P/c block rows, and each block row is replicated on
c processes. Alternatively, instead of replicating a block row across c processes, one can
split the block row of A into c chunks. Thus, the communication cost to replicate could be
less. However, asymptotically, the communication of the SpMM algorithm does not change.
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Specifically, each process in process row P (i, :) stores AT
i and Hi.

AT =

 AT
1
...

AT
p/c

H =

 H1
...

Hp/c

 (3.2)

Similar to 1D, each submatrix AT
i is further partitioned in p/c block columns.

Let T be the intermediate product of ATHl−1. Each process row P (i, :) computes the
following:

Ti = Ti +AT
i H = Ti +

p/c∑
j=1

AT
ij Hj

However, each process only computes a partial sum above this summation. Of the p/c terms,
each process in P (i, :) sums q = p/c2 distinct terms in parallel. These partial sums are then
summed across all c processes in P (i, :) with an all-reduce call. The result is the final Ti

matrix replicated on each process in P (i, :). The computation done on process P (i, j) is

Ti = Ti +AT
i H = Ti +

(j+1)q∑
k=jq

AT
ik Hk (3.3)

Like the 1D algorithm, a process P (i, j) would store AT
ik locally, but accessing Hk for all val-

ues of k requires communication. The sparsity-oblivious counterpart for 1.5D communicates
entire block rows of H. Our sparsity-aware version communicates the rows of H needed
for local SpMM computation, with an added space and latency cost of communicating the
necessary row indices.
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Algorithm 2 Sparsity-Aware 1.5D algorithm using Point-to-Point communication for GNN
forward propagation. A and Hl are distributed on a p/c × c process grid. NnzCols(i, j)
returns the nonzero column indices in AT

ij, and is computed as a preprocessing step.

1: procedure Block1.5DSAFW(A,Hl−1,W,Hl)
2: for all processes P (i, j) in parallel do
3: s = p/c2 ▷ number of stages
4: for k = 0 to s− 1 do
5: q = j s+ k
6: if P (i, j) = P (q, j) then
7: for l = 0 to p/c do
8: srows = NnzCols(l, j)
9: ISend(Hl−1[srows, :], P (l, j))

10: rrows = NnzCols(i, q)
11: Recv(Ĥl−1[rrows, :], P (q, j))
12: Ẑl ← Ẑl + SpMM(AT

iq, Ĥ
l−1)

13: Zl ← AllReduce(Ẑ, +, P (i, :))
14: Hl ← GEMM(Zl,W)

Equation Zl = ATHl−1Wl

We describe our sparsity-aware 1.5D algorithm in Algorithm 3. Each iteration q of the outer
loop for process P (i, j) receives the rows of H at row indices NnzCols(i, q), followed by a
local SpMM operation. The number of rows received is upper bounded by cutP (G). Finally,
the all-reduce has each process row reduce matrices of size n/(p/c) × f . This will be a
lower-order term. This yields the following overall communication cost:

Tcomm = α(
P 2

c3
) +

P 2

c3
cutP (A)/cfβ

In practice, cutP (A) will, up until a transition point, scale down roughly by P/c since
the graph partitioner partitions A into P/c partitions. Having P/c in the denominator of
cutP (G) yields a bandwidth term that scales down by c.

Equation Hl = σ(Zl)

No communication is necessary as Hl is partitioned by rows. This step is identical to the
sparsity-oblivious algorithm.

Equation Gl−1 = AGl(Wl)T ⊙ σ′(Zl−1)

Like the 1D algorithm, no communication is required to transpose AT to A, since we either
assume a symmetric matrix or explicitly store the transpose. Matrices A, Gl, and Zl−1 are
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all partitioned in block rows, and A is sparse while Gl is dense. Thus, multiplying AGl−1

follows the same communication pattern as Algorithm 3. The communication cost is the
same as Section 3.2.

Equation Yl−1 = (Hl−1)TAGl

Like the 1D algorithm, communication in this step is a small outer product. Locally mul-
tiplying (Hl−1)TAGl yields a single matrix per process of size f × f that must be reduced
across processes. We treat this communication as a lower-order term.

3.3 Sparsity-Aware 1.5D Algorithm using All-to-All

Communication

Algorithm 3 Sparsity-Aware 1.5D algorithm using All-to-All communication for GNN for-
ward propagation. A and Hl are distributed on a p/c×c process grid. NnzCols(i, j) returns
the nonzero column indices in AT

ij, and is computed as a preprocessing step. rows is simply
an array of p/c pointers.

1: procedure Block1.5DSAFWA2A(A,Hl−1,W,Hl)
2: for all processes P (i, j) in parallel do
3: s = p/c2 ▷ number of stages
4: for k = 0 to s− 1 do
5: q = j s+ k
6: if P (i, j) = P (q, j) then
7: for p in P (:, j) do
8: rows[p] = H[NnzCols(p, i), :]

9: AllToAllv(rows, P (: j))
10: for k = 0 to p/c− 1 do
11: if rows(k) ! = ∅ then
12: Ĥl−1[NnzCols(i, k), :] = rows(k)
13: Ẑl ← Ẑl−1 + SpMM(AT

ik, Ĥ
l−1)

14: Zl ← AllReduce(Ẑ, +, P (i, :))
15: Hl ← GEMM(Zl,W)

By switching the 1.5D Algorithm from using Point-to-point communication to All-to-All
communication, we can reduce the number of communication stages. Instead of waiting for
one set of sends and receives to complete before communicating more data, by sending them
all at once, we can utilize more bandwidth, which might be able to decrease communication
costs. However, the amount of communication (number of messages and size of each message)
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still remains the same so the theoretical cost of communication computed above in section
3.2 remains the same.
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Table 4.1: Average and maximum amount of data communicated in a single SpMM where
the sparse matrix is distributed with Metis graph partitioner (instance: Amazon, f = 300).

data size (MB)

p average max load imbalance %

16 199.6 333.5 67.1%
32 132.9 241.6 81.8%
64 83.9 164.0 95.4%
128 52.5 117.3 123.3%
256 32.6 86.4 164.9%

Chapter 4

Graph Partitioning

Distribution of the sparse and dense matrices in both sparsity-oblivious and sparsity-aware
GNN training can be achieved by a simple 1D block distribution where each block has
roughly the same number of rows. Randomly permuting the adjacency matrix A could lead
to better load balance. However, it has two main shortcomings that can hinder scalability.
First, it completely disregards the amount of communication during the training. This is
valid even for the sparsity-aware training despite the fact that it selectively communicates
only the rows of H that are needed by a process. A random permutation that is applied
prior to training for achieving good computational load balance may exacerbate this issue as
it may cause many nonzero column segments in off-diagonal blocks of A, which determine
which rows of H to communicate. Another shortcoming is that an even distribution of rows
of A may not always yield good computational load balance if the number of nonzeros in
these rows are not even, which is usually the case in real-world graphs. Both of these issues
can be remedied by distributing the matrices with a graph partitioner.

In sparsity-aware GNN training, P (i) needs to receive rows of Hj corresponding to the
nonzero column segments in its off-diagonal blocks AT

ij, where i ̸= j. Compared to sparsity-
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oblivious training, the sparsity-aware training aims to avoid receiving the entire Hj by not
communicating the rows of Hj corresponding to the zero column segments. However, if there
are not many such zero-column segments in off-diagonal blocks, which is likely to happen if
the graph is randomly permuted to get good computational load balance, the sparsity-aware
training may not yield a big reduction in communication time. Partitioning the adjacency
matrix with a graph partitioner prior to training among p processes helps in reducing the
number of nonzero column segments in addition to achieving computational load balance.
Graph partitioning is commonly used to parallelize sparse iterative solvers, usually focusing
on distributing the computations related to SpMV in them. The partitioning models for
SpMV can easily be extended to SpMM, the bottleneck operation in full-batch GNN training
in this work. However, when distributing the adjacency matrix to processors for SpMM, it
is necessary to consider the imbalance of nonzeros assigned to each process as well as the
imbalance in communicated data as anything done for SpMV is amplified with a factor of
at most f .

Among the two factors mentioned above, the first can easily be addressed by enforcing
a stricter load balance constraint in partitioning. The second factor of communication load
imbalance is more difficult to address as most partitioners usually only aim at reducing the
total edgecut in partitioning, which corresponds to reducing total amount of transferred data.
The problem of high load imbalance in communication can be severe as the overall communi-
cation time is determined by the bottleneck process, i.e., the process that communicates the
maximum amount of data. Table 4.1 presents various statistics regarding communication
in a single SpMM obtained by using the partitioner Metis [15] on Amazon data in GNN
training for p ∈ {16, 32, 64, 128, 256}. The large sizes of messages in megabytes coupled with
communication load imbalance which can be as high as 165% (i.e., the bottleneck process
sending 2.7x the amount of data of an average process) makes it imperative to address this
issue in order not to make communication a bottleneck.

To alleviate this issue, we utilize a partitioner that can handle multiple communication
cost metrics related to volume [2]. This partitioner can simultaneously handle metrics such
as total volume of communicated data, maximum send volume, maximum receive volume,
etc. In our work we rely on this partitioner to optimize the total and maximum send volume
metrics.
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Chapter 5

Experimental Setup

5.1 System Details

All of our experiments are run on the Perlmutter system at NERSC, on which each node is
equipped with 4 NVIDIA A100 GPUs with 40GB HBM memory. There are 2 NVLink links
between each pair of GPUs within a node each with a bandwidth of 25GB/s. Each GPU
is connected to an AMD EPYC 7793 CPU with a PCIe 4.0 bus. The CPU is connected 4
HPE Slingshot 11 NICs also using a PCIe 4.0 bus. Each NIC supports a 25GB/s bandwidth.
Thus, within one node, our bandwidth is limited by the NVLink between each GPU, but
when working with more than 4 GPUS (multiple nodes), our bandwidth is limited by the
NIC bandwidth.

5.2 Implementation Details

We use PyTorch’s torch.distributed package with a backend in NCCL 2.11.4 for dis-
tributed communication. We start by dividing our adjacency matrix into block rows. These
block rows are, by default, equally-sized, but if we have use a partitioner, the block rows may
be variable in size depending on the returned partitions. We compute the nonzero column
segments within these block rows, and communicate them to all other processors. For this,
we perform a number of all-to-all calls. This step is only done once before GNN training
starts, and thus, we do not include it as part of our training time because this time will be
amortized as the number of epochs we train our network for increases.

Then, we create a 3-layer GNN architecture discussed in [16]. The model has a default of
16 hidden layers and 0 weight decay. For every experiment, we run the training loop for 100
epochs. We replace the distributed 1D multiplications with our sparsity-aware 1D algorithm
or 1.5D algorithm. As mentioned above, the 1D algorithm uses all-to-all communication.
While an all-to-all is simply a series of point-to-point sends and receives across each pair
of processes, NCCL has optimized this such that the entire set of sends and receives is
blocking as a whole, but each individual call is not separately blocking. This behavior is
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achieved through NCCL’s use of ncclGroupStart() and ncclGroupEnd() which is used
within the torch.distributed API [10]. Our 1.5D algorithm uses isends and recvs. By
using torch.distributed’s batch isend irecv API, we can take advantage of the same
grouping behavior as the all-to-all calls. This way, the isend is non-blocking.

For any underlying SpMM calls, we created a C++ extension of CuSPARSE’s csrmm2 as
described in [23]. We use CUDA 11.7.

5.3 Datasets

We ran experiments for the 1D and 1.5D algorithms on the Reddit, Amazon, and Protein
datasets. Table 5.1 presents some properties of these graphs. Each vertex of the Reddit
graph represents a post and an edge exists between two vertices if the same user commented
on both posts [12]. This is our smallest and densest dataset. The vertices of the Amazon
graph encode different products, and an edge exists if there exists a buyer that purchases
both products [14]. This is our sparsest dataset. Finally, the vertices of the Protein graph
represents proteins, and there exists an edge between two vertices if the respective proteins
exhibit a certain degree of similarity. This is the largest graph in our dataset. For the
Protein graph, we have used an induced subgraph consisting of 1/8 of the vertices of the
larger original graph in [4]. Note that all three graphs are symmetric, so only the adjacency
matrix needs to be stored because A = AT.

For the Reddit dataset, we used the original features and labels as in [12]. For Amazon
and Protein datasets, we chose an arbitrary number of features and labels for each dataset,
and use the adjacency matrix to encode the relationship between vertices.

Table 5.1: Datasets used in our experiments

Graph Vertices Edges Features Labels
Reddit 232,965 114,848,857 602 41
Amazon 14,249,639 230,788,269 300 24
Protein 8,745,542 2,116,240,124 300 24

Graph Partitioning

When we use a partitioner, the sparse matrix is permuted according to the partition ids
provided by the partitioner. We use a symmetric permutation of the sparse matrix. For
these experiments, we use the partitioner in [2] that optimizes both total communication
across all processors and maximum send-communication volume for a single processor. It
suffices to use the partitioner only once since the pattern of the sparse adjacency matrix
does not change throughout the GNN training. The overhead of this pre-processing stage is
not included in the reported runtimes in our experiments.
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We have also compared the accuracy between these sparsity-aware implementations of the
1D and 1.5D algorithms and the preceding sparsity-oblivious implementations, and there has
been no change in accuracy apart from any floating-point accumulation. This makes sense
as we have not changed the underlying multiplication operations. Thus, in the following
sections, we will only focus on the performance benefits.
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Chapter 6

Results

6.1 Performance of 1D Sparsity-Aware Algorithm

Figure 6.1: 1D performance results for sparsity-oblivious, sparsity-aware, and graph parti-
tioning. Note that these are log-log plots of the number of GPUs versus the time for a single
epoch. For Reddit, we use p=4, 16, 32, 64. For Amazon and Protein datasets, we also use
p=128 and 256. Missing data in the line segments on Amazon for p=4 and on Protein for
p=4 means that this trial of the experiment ran out of memory.

The performance of our 1D sparsity-aware training is compared against the 1D sparsity-
oblivious training in Figure 6.1. We compare three schemes: the sparsity-oblivious training
denoted with CAGNET, the sparsity-aware training described in Section 3 and denoted as
SA, and its enhancement with graph partitioning as described in Section 4 and denoted as
SA+GVB. We plot the average time spent at each epoch during the training with these
schemes against the number of processes in x axis.
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Figure 6.2: 1D performance breakdown. The x-axis of each plot refers to the number of
GPUs used. This breakdown includes local computation, alltoall, and bcast. We compare
results against CAGNET [23]. SA represents just a sparsity-aware implementation, and
SA + GVB refers to our sparsity-aware implementation used in conjunction with graph
partitioning. The sparsity-oblivious CAGNET implementation involves the broadcast and
local computation, which in this case consists of the local SpMM computations. The sparsity-
aware implementations used in the middle and right bar involves a single all-to-all call and
a series of local computations which includes gathering the data to send, allocating space in
GPU memory, as well as the local SpMM computation.

We can see that the original sparsity-oblivious scales up with the number of processors
because the amount of data sent is proportional to the number of processors. The Reddit
dataset, however, seems to be latency bounded where each epoch, where regardless of the
algorithm or the number of processes, training time for one epoch takes less than a second.
The Amazon data shows that for a small number of processors (p = 16), the sparsity-aware
algorithm makes little to no difference to the resulting training time. This means that
the block rows are wide enough to the end that the number of nonzero subcolumns is not
significantly less than the total number of subcolumns in that block. Thus, the benefit of
sparsity-aware algorithms is seen for higher process counts (p ≥ 32) where communication
is proportional to the edgecut. The same pattern appears in the Protein results where for
lower process counts (p < 64), the sparsity-aware algorithm takes longer than the original
algorithm. In these cases, the cost of using point-to-point communication which scales
linearly based on the amount of data instead of broadcasts which scales logarithmically is
not displaced by communicating only rows that correspond to nonzero subcolumns. Like
before, this is because the edgecut is not small enough. Interestingly, the sparsity-aware
timing does not seem to be increasing either for lower process count. As p increases (p > 64),
the sparsity-aware implementation starts to show benefit and the timing per epoch shows a
promising decreasing trend.

A granular breakdown is presented in Figure 6.2. The original algorithm timings seem
to be overwhelmingly dominated by communication. While the Reddit data seems to be
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latency-bound, at a higher process count (p ≥ 32), the data shows cost of communication is
decreasing. This is more prevalent in the Amazon dataset, where comparing just the original
sparsity-oblivious implementation and sparsity-aware implementation, communication costs
start to decrease at p ≥ 32. The local computation cost stays about the same because it is
mostly made of the local SpMM computation which is common across both implementations.

Graph Partitioning Performance

Figure 6.3: Benefits of Graph-VB (GVB) and Metis partitioners for sparsity-aware (SA) 1D
training. The x-axis represents the number of GPUs used. The y-axis is the time per epoch.
For this comparison, we use p=4,16,32, and 64. Note that this is also a log-log plot. The
missing line segments represent that this trial of the experiment ran out of memory.

We further utilize graph partitioner Graph-VB [2] in 1D sparsity-aware GNN training to
distribute the sparse adjacency matrix. As seen in Figure 6.1, utilizing a partitioner greatly
benefits the training performance by reducing the overall execution time drastically. The
main reason for this can be seen Figure 6.2 in which the communication bottleneck is largely
overcome with the help of the partitioner where SA+GVB is further able to improve upon
SA. Compared to SA, SA+GVB usually reduces the communication time. In the Protein
graph, it can actually reduce the communication to such a degree that it is almost non-
existent. The degree of reduction in communication is dependent on the sparsity pattern of
the graphs: Reddit and Amazon graphs are more irregular than the Protein graph, which
makes the job of the partitioner easy in the latter and difficult in the former. However,
it may sometimes increase the local computation time (compare the blue and green bars
of SA and SA+GVB in Figure 6.2). This is because we used a rather loose constraint on
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computational load balance in partitioning in favor of further decrease in communication
costs. Since SA is oblivious to reducing communication while distributing the sparse matrix,
it can solely focus on, and obtain better computational load balance than SA+GVB.

We next compare Graph-VB (SA+GVB) against Metis (SA+METIS) to assess the effect
of addressing multiple cost metrics in reducing communication and present the results on the
Amazon and Protein graphs in Figure 6.3. In the Amazon graph it is clearly seen SA+GVB
results in lower training time by successfully reducing the overhead of the bottleneck process,
sometimes leading to more 2x performance benefit. In the Protein graph both partitioners
exhibit similar behavior. In this instance both partitioners reduce the edgecut drastically
(only a few thousand edges become cut out of hundreds of millions edges). Hence, the
determining factor in training time between these two schemes becomes the computational
load balance, in which SA+GVB performs slightly worse since it relies on variants of multi-
constraint partitioning. These results show that it is possible to further improve the training
performance with a more capable partitioner than a plain partitioner, especially on difficult
instances whose sparsity pattern is more irregular.

6.2 Performance of 1.5D Sparsity-Aware Algorithm

For both the Amazon and Protein datasets, the sparsity-aware point-to-point algorithm
does not outperform the original sparsity-oblivious algorithm for lower process counts as
seen in Figure 6.4. We conclude that this is because the original algorithm uses broadcasts
whereas the sparsity-oblivious algorithm uses point-to-point communication. At higher pro-
cess counts, we see benefit of a sparsity-aware algorithm using collective communication,
especially in the Amazon dataset. We expect from our analysis that as c increases, the com-
munication time (and thus the total time) decreases. This is observed clearly in the original
algorithm as well as the sparsity-aware version using point-to-point communication. The
sparsity-aware algorithms on the graph partitioned dataset reveals much better runtimes
both for Amazon (a larger, but less dense graph) and Protein (a smaller, but far denser
graph) using both the point-to-point communication and collective communication opera-
tions. Note that when using graph partitioning, we require k = p/c partitions (rather than
p partitions as in the 1D algorithm) and the edgecut only decreases up to a certain point
until it starts increasing again. This point depends on the input graph. Thus, we expect
that the sparsity-aware algorithm combined with graph partitioning will have decreasing
runtimes until p = kc after which point, the runtime will start increasing again. We see
this occur quite clearly with the Amazon dataset, where the minimum runtime for c = 2
occurs at p = 32 and for c = 4, p = 64. While this pattern is not as visible in the Protein
data, we can see the formation of a minimum, signaling that there is an optimal number of
partitions. However, we show that when using all-to-all communication, we can reduce the
latency because instead of sending many messages in different stages of communication, we
send all messages in one stage of communication. Lowering latency enables better scaling to
a larger number of processors. This is shown in Figure 6.4 the data by a decreasing trend
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Figure 6.4: 1.5D performance results for sparsity-oblivious (CAGNET), sparsity-aware using
Point-to-Point (P2P) communication and all-to-all (A2A) communication, and graph parti-
tioning for Amazon and Protein datasets for c=2 (solid line with circle markers) and c=4
(dashed line with triangle markers). The x-axis of each plot refers to the number of GPUs
used. We use p=16, 32, 64, 128, 256. Note that c represents the replication factor and that
this is a log-log plot.

for the all-to-all version of the sparsity-aware algorithm.
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Chapter 7

Conclusion

We have demonstrated a sparsity-aware approach to reducing communication between pro-
cessors during GNN training resulting in a lower runtime per epoch. We evaluated the
sparsity-aware approach against three datasets (Reddit, Amazon, and Protein) of different
size and density revealing that for 1D vertex partitioning, for the cost of storing nonzero
columns of the adjacency matrix and altering the communication pattern from broadcasts
to point-to-point communication, there is an overwhelming benefit in communication time,
thus reducing the original bottleneck in training times. We also show that using a parti-
tioner that optimizes for both total communication volume (total number of edges crossing
partitions) and maximum send communication volume (maximum number of edges from one
processor to all others), we reduce load imbalance in communication, thus further reducing
runtimes. Our results with respect to the 1.5D algorithm show that the same idea of sparsity-
awareness combined with graph partitioning can be applied to other communication-avoiding
partitioning schemes, such as 2D or 3D.
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[7] Aydın Buluç et al. “Recent Advances in Graph Partitioning”. In: Algorithm Engineer-
ing - Selected Results and Surveys. Vol. 9220. Lecture Notes in Computer Science, 2016.
doi: 10.1007/ 978-3-319-49487-6 4 .
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