Learned Formal Proof Strengthening for Efficient
Hardware Verification

Minwoo Kang

Azade Nova

Eshan Singh

Geetheeka Sharron Bathini
Yuriy Viktorov

John Wawrzynek, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-260
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-260.html

December 1, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to express my deep gratitude to my advisor, Prof. John
Wawrzynek, for the continued support and guidance. | would also like to
thank Prof. Sophia Shao for serving as my second reader. Finally, | thank
the collaboration, mentoring, and support by the Google CI2 team
members who co-authored this work.

DocuSign Envelope ID: D55475A0-59D5-4772-A671-EEC6F0576EAA

Learned Formal Proof Strengthening
for Efficient Hardware Verification

by Minwoo Kang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Wawrzynek

sk sk sk sk ok ok

DocuSigned by:

Soy(u'oc Sleas

BD2654DZDCAS400—

Professor Sophia Shao
Second Reader

8/9/2023

(Date)

Learned Formal Proof Strengthening for Efficient Hardware Verification

by

Minwoo Kang

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor John Wawrzynek, Chair
Professor Sophia Shao

Summer 2023

Abstract
Learned Formal Proof Strengthening for Efficient Hardware Verification
by
Minwoo Kang
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor John Wawrzynek, Chair

Proof decomposition via assume-guarantee with helper properties, i.e. helpers, is one of the most
promising approaches to address the complexity of hardware formal verification (FV). While
helpers can be hand-crafted by human experts, state-of-the-art methods replace this labor-intensive
process with circuit analysis, from which a large set of helper candidates can be quickly synthesized.
However, these candidates are often of lower-quality, and distilling the full auto-generated set down
to a subset of high-quality, appropriate helpers still requires significant computational or manual
effort. In this work, we propose a novel approach to automate helper quality assessment: Learned
Formal Proof Strengthening (LFPS), a neural model that can accurately predict helper effectiveness
without having to run actual formal proofs. The LFPS model jointly learns representations of
property specifications expressed in SystemVerilog and the graph representation of the circuit under
verification. When evaluated against three RTL designs from industrial SoCs, our model is shown
to achieve significant predictive performance, with an average of 98.2% accuracy and 98.3% F-1
score. Once trained, the model can also serve as a fast predictor for search algorithms: we show that
LFPS neural-guided search can outperform random sampling in finding sets of helper candidates
that achieve inductive proof strengthening.

Contents

Contents
1 Introduction
2 Preliminaries

3 Learned Formal Proof Strengthening
3.1 Problem Definition
3.2 Model Architecture e

4 Datasets and Data Augmentation
4.1 Dataset Generation e e
4.2 Data Augmentation e e e e

5 Experiments
5.1 Next Helper Effectiveness Prediction
5.2 Ablation Study: Data Augmentation
5.3 Searching for Effective Helper Subsets

6 Related Work
7 Conclusion

Bibliography

10
10
12

15
15
16
17

19

20

21

Chapter 1

Introduction

Hardware verification is a crucial and growing stage in the digital circuit design process, necessary
to make sure critical bugs do not escape detection [14]. Unlike simulation-based verification, formal
verification (FV) can mathematically prove that a design meets a given specification for all possible
input stimuli [23], finding all difficult to detect, corner-case bugs. Such formal specifications of
the expected behaviors for a design are referred to as assertions, and it is the goal of FV to obtain
guarantees that the assertions hold in all design states, which we refer to as formal proofs [9].
However, FV suffers greatly from the increasing complexity of the design due to the exponential
growth of the number of design states [11]. As a result, FV often fails to reach a formal proof or
find a counterexample for an assertion, despite running for days on multi-core CPU servers.

Proof decomposition via assume-guarantee with helper properties provides a promising ap-
proach to addressing this problem, by using simpler, proven properties (i.e. helpers) to reduce the
complexity of the assertion [16]. Practical adoption of this approach, however, remains hindered
by the cost of producing meaningful helper properties. Aside from the manual development by
a human expert, the state-of-the-art in helper generation is based on assertion mining methods
that produce a large set of candidates using circuit analysis [38, 17, 7, 26, 37]. However, these
auto-generated assertions are often of lower-quality [32] such that the full set of candidates needs to
be reduced to the most reasonable subset. Furthermore, the same given helper that achieves proof
strengthening for one assertion might not be effective for another assertion we intend to prove. To
the best of our knowledge, there are no known heuristics to reliably estimate such effectiveness of
individual helper assertions, let alone of arbitrary sets of helpers. The remaining option is to run
actual formal proofs, where each iteration takes at least 30 minutes. Therefore, a brute-force search
over all combinations of helpers quickly becomes impractical, and random or naive heuristic-based
search is the only available method to search for appropriate helper subsets.

This work presents a first approach towards learning to reason about formal properties of
hardware designs. We suggest that in the absence of established heuristics, a data-driven approach
can provide breakthroughs in automating the reasoning about helper effectiveness. In particular,
we base our proposal on the fact that hardware designs are typically described at the register-
transfer level (RTL) using a hardware description language (HDL) such as SystemVerilog [14].
Formal properties are expressed in the corresponding SystemVerilog Assertion (SVA) syntax which

CHAPTER 1. INTRODUCTION

Dataset Generation

Supervised Training

Generate Induction Q
Helpers LFPS Model ; Proof with
3 Found Helpers Proof
Commercial ' .
Assertion Predict Helper Set 3 Commercial Strengthenlng
Target RTL Synthesis Tool Effectiveness i FV Proof Engine
Assertions !
Helper ‘
Templates
P RTL Graph l @ @ T
_ | | Helper Subset Search:
—> . Evaluate Next Helper Effectiveness
e |teratively Build Helper Set (x_1, x_2, ... x_L)

Neural Model-Guided Search

Figure 1.1: Overall workflow of auto-generating helper assertions, rapidly evaluating helper effec-
tiveness via the LFPS model, and iteratively searching for the best subset out of a large pool of
auto-generated candidates. Set of helpers found by the neural model-guided search are then used as
assumptions to strengthen the inductive proof of the target assertion.

consists of: (1) Boolean, arithmetic, or temporal logic operators, and (2) natural language text
describing the user-defined variable names. Motivated by the recent success of machine learning
models in understanding natural languages [13, 20, 33, 6, 28] and software programs [31, 8, 3, 4],
we investigate the viability of learning representations of formal properties through their textual
descriptions.

To this end, we present Learned Formal Proof Strengthening (LFPS)—an end-to-end neural
approach of learning to predict helper effectiveness. As illustrated in Fig. 1.1, we first auto-generate
candidate helpers using a commercial assertion mining tool, and also extract a high-level graph
representation of the RTL that capture syntax-level dependencies between SystemVerilog signal
variables. Then, we take random subsets of helpers and measure their effectiveness by running
formal proofs to produce supervised datasets. We train our proposed LFPS model on this data
towards autoregressively predicting the effectiveness of new helpers, and we demonstrate how
the trained model could be used as a fast predictor to search for appropriate helper subsets. The
following summarize our key contributions:

e Proposal and formalization of a new learning task with significant implications in industrial
hardware verification. In Section 3.1 and 4.1, we detail the problem of learning to predict the
effectiveness of helper properties and describe methods of data generation for this task.

e A novel neural architecture to capture the semantics of formal assertions and context of the
underlying digital circuit. In Section 5.1, we show that the model is capable of accurately

CHAPTER 1. INTRODUCTION 3

predicting helper effectiveness for real-world, industrial designs with significant complexity—we
achieve on average, a 98.2% accuracy and a 98.3% F-1 score.

e A data augmentation methodology to resolve fundamental challenges in supervised dataset
generation for the proposed task: size limitations and label imbalance. We show in 5.2 that our
proposed data augmentation significantly improves model accuracy, up to a 23.2 % increase in
accuracy.

e A proof-of-concept neural-guided search algorithm based on the train LFPS model. In Section
5.3, we show that a naive implementation of model-guided beamsearch outperforms random
search for two out of three RTL designs, improving pass@1 by up to 0.45 and pass@5 by up to
0.25.

Chapter 2

Preliminaries

Hardware FV aims to determine if a digital circuit implementation satisfies a given specification.
This specification consists of a list of properties written as Boolean formulae. As assumptions,
they constrain the input stimuli applied by the FV tool; and as assertions, they define the expected
behavior to be checked by the tool.

An example of a RTL design containing a flip-flop (FF) pipeline is shown in Fig. 2.1. A
target assertion concerning the given example is also shown on the right of the same figure. This
assertion describes an end-to-end property of the design regarding data integrity—input data to the
module should be correctly observed as outputs after a set number of cycles. Formally verifying

module flip_flop_pipeline #(

parameter Width=1; parameter Depth=3;
X
. N in_vid —>
input clk, input rst, = N
input in_vid, input [Width-1:0] in_data; v /I Target Assertion

output out_vld, output [Width-1:0] out_data; property eZe_data._lntegrlty_A;
: @(posedge clk) disable iff (rst)

)
1l Implementation (g in_vid |-> ##Depth out_vid
logic [Depth:0] ff_vid; - && (out_data == $past(in_data, Depth);
logic [Depth:0][Width-1:0] ff_data; endproperty
assign ff vid[0] =in_vid;

assign ff_data[0] = in_data; L Il Helper Assertions

assignout_vld = ff_vid[Depth]; y Y % N
assign out_data = ff_data[Depth]; in_vid —”@—r‘
G 1 :
always_ff(@posedge clk) begin E V :
{ vid[i] |-> ##1ff vid[i+1] &&
'
|

if(rst) begin
(ff_datal[i+1] == $past(ff_datalil));

ff_vid[Depth:1] <= ‘0; g
end else begin . in_data 5 endproperty
ff vid[Depth:1] <= ff vid[Depth-1:0); S R . G end

ff_data[Depth:1] <= ff_data[Depth-t:0;, | Tttt ’\7 ””””” -
end

end
endmodule

for (genvar i=0; i < Depth; i++) begin: gen_helpers
property helper_data_integrity_A;
@(posedge clk) disable iff (rst)

\
I
I
I
I
I
I
I
I
I
]

e2e_data_integrity helper_data_integrity

Figure 2.1: Left: An example RTL module expressed in SystemVerilog. Right: Data integrity
assertion and related helpers for the RTL module, expressed in SVA syntax. Center: RTL graph
representing the given example, with nodes for clock and reset omitted. Orange nodes indicate
module input ports; solid blue indicate internal FFs; and red indicate output ports. Nodes highlighted
by a light-green background are nodes to which the target assertion maps. The connection between
nodes highlighted in light-blue represent the helpers used as assumptions to strengthen the proof of
the target.

CHAPTER 2. PRELIMINARIES 5

any assertion typically refers to performing mathematical k-induction [36]. k-induction proofs have
a reasonable time-complexity for small numbers of k, but are generally NP-hard [30]. As a result,
FV with k-induction remains limited by design complexity.

To address this proof complexity challenge, we consider proof decomposition, which aims
to strengthen the inductive proof of the target assertion by supplying appropriate sets of helper
properties [16]. Example of such helpers are shown on the right of Fig. 2.1. Without the use of
helpers, proving the target assertion requires checking the design behavior end-to-end. This is
visually represented in the figure by the discontinuity between nodes that map to the target assertion,
highlighted in light-green.

On the other hand, the shown helpers concern relationships between the internal FF states and
the module input/output ports. Compared to proving the full, end-to-end behavior of the design,
proving the helpers is a more manageable task. And once proven, these helpers can be used as
assumptions about the design, reducing the state space that the proof engine needs to examine in
order to reach a formal proof for the target assertion. In Fig. 2.1, the effects of using helpers as
assumptions is represented by the connection between nodes annotated in light-blue. Note how
the use of helpers as assumptions bridges the previously discontinued set of nodes highlighted in
light-green.

Chapter 3

Learned Formal Proof Strengthening

3.1 Problem Definition

A RTL design can be represented as a dataflow graph of G = (V, &, A), where nodes V are ports or
signals in the design, edges & represent assignments connecting signals at the RTL, feature matrix
A represents node attributes including name, type, fan-in, fan-out, etc. Let the set of undetermined
target assertions be 7 = {auree} and the set of all synthesized helper assertions be X = {x}.

We are interested in learning to predict the effectiveness of sets of helpers. A direct approach

would be to model the effectiveness of arbitrary sets of helper candidates {x;} € X up to some
maximum size |X;| < L. However, for a large pool of helper candidates |X| >> 1 and multiple
target assertions |7 |, the total complexity of learning to predict all possible combinations of helper
subsets and target assertions becomes quickly intractable, since the number of combinations grows
exponentially ~ |77 - |X]|~.
Autoregressive Classification of Next Helper Effectiveness. A promising alternative approach
is to learn the conditional probability of whether the addition of a new helper assertion further
improves complexity reduction of the proof, on top of the already assumed subset of helpers.
Modeling this conditional probability enables an autoregressive approach to incrementally predict
effectiveness of candidate helper given existing helpers.

Formally, suppose we have a dataset D, where each data point (y, x, {x;}, Gareer, G) consists of
a previously assumed set of helpers {x;} C X, the target assertion dee, RTL graph G, the next
helper candidate x, and the corresponding binary label, y, describing whether the new helper further
improves proof complexity reduction. In other words, a binary label is assigned for an unexplored
helper x € X'\ {x;} as:

y =1 & proof_bound(x U {x;}, darger, G)
— proof_bound({x;}, dureer, G) > 0.

We can then express the conditional probability as:

Pr(y; X| {xi}’ Atarget» g)

CHAPTER 3. LEARNED FORMAL PROOF STRENGTHENING

Assertion Set

Embedding
Target Assertion
(in_data |-> out_data) Assertion Helper
—_— e —> CLS —> Effectiveness
Encoder Head
Helper Assertion U (LSTM/Transformer) Prediction
(in_valid |-> fifo_valid)
I LTI Circuit
. . Context
Assertion2Node Mapping l Embedding
RTL Graph —
i o
N o |
é:ol:;::t - Pooling based on
- > - > R .
Encoder Assertion2Node Mapping
(GCN) — [
i |

Figure 3.1: Model architecture for classifying helper assertions by their effectiveness in reducing
inductive proof complexity. The full model comprises of an assertion specification encoder and a
circuit graph context encoder.

3.2 Model Architecture

We propose a model architecture that jointly learns and leverages representations of formal assertion
specifications and the underlying circuit context. We hypothesize that capturing both representations
leads to more accurate predictions and better model generalization to subsets of helper assumptions
unseen during training. The overall architecture is described in Fig. 3.1, including the two parallel
encoders for the assertion specifications and circuit context, and a final classifier head that combines
the two embeddings.

Assertion Encoder (AE). This encoder takes the formal property specification expressed in SVA
syntax as inputs and outputs an embedding that summarizes the target assertion dyeei, previously
assumed helpers {x;}, and the next helper candidate x. To do so, the textual representations of each
assertion must first be tokenized into vectors of integers. Consider the following example, a part of
the example helper property from Fig. 2.1:

ff_v1d[i] |-> ##1 ff_v1d[i+1]

The raw specification text contains a mix of natural language tokens describing the signal or
port names (e.g. £f_vld) and SVA operators (|->, ##, +). We tokenize the given example into a
sequence of tokens as:

[££, v1d, [1, i, [->, ##, 1, £f, vld, [1, (, i, +, 1,)]

CHAPTER 3. LEARNED FORMAL PROOF STRENGTHENING 8

LSTM Assertion Set

Embedding

Embeddings D:ljjj Assertion Set Embedding
Token ESTM

Embeddings t ‘ Transformer Encoder ‘

Embedding Layer t
T3 Hiz [His | Hia | His Hez [His | Hia

T | T2 Ta | Ts |i| Hu | Hu HL5|
Starget | T1| T2 |Ts|Ta|Ts mummm Si Target Assertion Helper Assertion 1)\ Helper Assertion L)

Target Assertion Helper Assertions Target / Assumed Helpers Next Helper

Figure 3.2: Left: LSTM-based Assertion Encoder—individual assertions are first encoded into
separate assertion embeddings, and then passed to a second LSTM layer to produce an embedding
for the full set of assertions. For brevity, token sequences are represented for the case of n = 5.
Right: Transformer-based Assertion Encoder architecture—all token sequences of assertions are
concatenated with separation tokens and passed to the Transformer encoder.

Note that we use a simple, custom tokenization scheme. In this work, we do not consider existing
tokenizers for natural language (e.g. WordPiece [34] or Byte-Pair Encoding [35]) or that for software
programs [20], since they cannot natively process SystemVerilog syntax. Future work may explore
improvements to the simple tokenizer we are using or find ways to extend existing tokenizers.

Formally, for each helper in the subset {x;}, we refer to its tokenized helper specification
as S; = [Hio,H,1,...,H;,]. Similarly, we refer to the tokenization of the target assertion as
Starget = [Ty, Ty,...,T,].

LSTM-based AE. Formal property specifications, similar to natural language sentences, are
inherently sequential. Based on this intuition, we employ a recurrent neural network (RNN) such as
Long-Short Term Memory (LSTM) [18] to model each property specification based on its sequence
of token embeddings. The left figure of Fig. 3.2 visualizes this process of passing a sequence of
tokens §; to the embedding layer, and the output sequence of token embeddings then fed into a
LSTM layer. In short, the latent representation of each assertion is formulated as:

AssertEmbed(x;) = LSTM(Embed(S,-)).

The equation above shows the case for helpers, but the same formulation applies to target assertions
as well.

From this, multiple assertion embeddings are produced: one for the target assertion and one for
each of the helpers. A second layer of LSTM then aggregates the sequence of assertion embeddings
to output the final embedding summarizing the entire set of assertions.

Transformer-based AE. However, recall that in the problem formulation of next helper effectiveness
prediction (Section 3.1), we explicitly differentiate the context component (already assumed helpers

CHAPTER 3. LEARNED FORMAL PROOF STRENGTHENING 9

X and target assertion dy,reet) from the question component (next helper candidate x) of the input list
of assertion specifications. This partitioning of the input token sequence is similar to how generative
Question Answering (QA) tasks are formulated for language models (LMs).

To enable this explicit conditioning, and to capture the interrelations between potentially larger
sets of helpers, we replace the LSTM-based encoder with a Transformer Encoder backbone with
multi-head self-attention [40], as shown on the right of Fig. 3.2. Similar to BERT [13], this
Assertion Encoder uses segment embeddings to differentiate between the context and question token
sequences. We also include the special classification token ([CLS]) and separation token ([SEP])
to mark the beginning and end of each token sequence. The output hidden vector for the [CLS]
token is read out from the Transformer encoder as the assertion set embedding, summarizing the
entire set of helpers and target assertion:

AssertSetEmbed(aarger, {Xi}, X) =
Transformer(Concat (S[arget, S,,....S L))

where the previously assumed set {x;} contains L — 1 helpers. The token sequence for the next
candidate helper x is represented as the final, L-th token sequence S;.

Circuit Context Encoder (CCE). This module takes the RTL Graph G = (V, &, A) as input and
passes through a message-passing GNN. Also given as input are mappings between each assertion
x and a subset of nodes in the RTL graph. , V, C V, that correspond to signals that constitute the
assertion specification. This mapping between each assertion and graph nodes are pre-computed
during dataset generation. Node embeddings corresponding to each assertion are then mean-pooled
to generate a circuit context embedding per assertion. With a /-layer GNN backbone, the circuit
context embedding for each assertion x; can thus be derived as:

CircuitContextEmbed(x;) = Pool({A"v € V. }).

where 4" is th final, /-th GNN layer node embedding of node v in the RTL Graph. And finally, the
circuit embedding concerning all assertions in the data point are computed by mean-aggregating all
circuit context embeddings. In choosing the particular GNN architecture, we follow [39] and use

the graph convolutional networks (GCN)[21] as the encoder model capturing latent representations
of the high-level RTL graph.

Classifier Head. Embeddings produced by both encoders are concatenated and fed into a final
linear layer with sigmoid activation. Final outputs are binary predictions on the effectiveness of the
new helper candidate x.

10

Chapter 4

Datasets and Data Augmentation

4.1 Dataset Generation

To the best of our knowledge, this is the first work to apply deep learning to the problem of estimating
helper property effectiveness in reducing proof complexity, or more broadly, to the problem of
reasoning about formal properties of digital circuits. Furthermore, there are no established datasets
or benchmarks for hardware verification that: (1) concern industry-scale designs and (2) include
formal testbenches with appropriate formal properties. Therefore, as part of this work, we generate
new datasets for the next helper effectiveness classification.

We consider a total of three RTL designs, each a component of an industrial ML accelerator
SoC design. 1IR1W FIFO is a classical single-stream FIFO queue implementation; OoO-Read buffer
is a buffer implementation with in-order writes but out-of-order read operations; the Direct Memory
Access (DMA) controller is an implementation of a typical controller module that tracks the validity
of data transfers between hosts and end points of a DMA interface. High-level design details about
the complexity of RTL used in this work are summarized in Table 4.1.

As target assertions, we take five data integrity assertions from the formal testbenches of each
design. Data integrity refers to a commonly used suite of checks to ensure the correctness of
data flow through the design that are highly relevant in formal verification. The considered target
assertions do not converge (reach a full proof) within six hours of running induction proof engines
using Cadence Jasper FPV, an industry-standard formal property verification tool.

For each RTL design, we run an industry-grade formal property mining tool, Jasper Behavioral
Property Synthesis (BPS), to generate a set of auto-generated helpers. Inputs to BPS are the full
set of SystemVerilog files describing the RTL design and five RTL simulation traces generated
from running random test programs about each design. We also supply a list of templates shown in
Table 4.2, based on which BPS matches its internal extracted list of signal candidates to synthesize
assertions. Once generated, we run formal engines through Jasper FPV to prove all synthesized
assertions and mark those that are successfully proven within two hours of wall-clock runtime. Only
the assertions that are proven within this timeout are considered as helper assertion candidates and
used for dataset generation. The exact number of final helper candidates for each RTL are listed in

CHAPTER 4. DATASETS AND DATA AUGMENTATION 11

Table 4.1: High-level details about the RTL designs used in this study. TB stands for testbench.

Parameter Count 1R1W FIFO 0Oo00-Read Buffer DMA Controller
Helpers Generated 1617 1443 2332
Assumptions 0 17 33
Covers 80 109 471
Embedded Assertions 46 224 216
Flip-Flops (FFs) 29 164 161

Gates 1295 8386 8348

Lines of Code (LOC) 3996 10232 17184

Table 4.2: BPS templates used in this study. All templates are base on assertions that check for data
integrity.

Template Name Signal List Expression Signal Constraints

Data Integrity 1 X,Y X|->7Y; X.width=1, Y.width=1

Data Integrity 2 X,Y X |-> (Y == 0); X.width=1

Data Integrity 3 X,Y,Z X && (Y == 0) == Z; X.width=1, Z.width=1

Data Integrity 4 X,Y,Z X & (Y == 0)) == Z; X.width=1, Z.width=1

Data Integrity 5 X,Y X ==Y, X.name, Y.name=~".*value"
Data Integrity 6 X,Y,Z X |-> (Y >= 2); X.width=1

Data Integrity 7 X,Y,Z X |-> (Y == Z2); X.width=1

Data Integrity 8 X,Y,Z X |-> (Y == Z); X.width=1

Data Integrity 9 X X <= N\; X.width=1, number N.value>0
Data Integrity 10 X,Y,Z X ==0) & 'Y |-> !'Z ; Y.width=1, Z.width=1

the first row of Table 4.1.

For each design, we randomly sample a total of 2000 sequences of helpers, each of length 5.
Since we consider five target assertions, there are 400 sequences of five helpers sampled for each
target assertion. For each sequence of helpers, e.g. [xi, X20, X31, X1500, X100], W€ attempt an induction
proof of the target with Jasper FPV assuming the assertions {x;}, {x1, xX20}, ..., {X1, X20, X315 X1500, X100}
In other words, a total of five separate induction proof attempts are performed per sequence. All
proof bounds are measured by setting the verification tool to time out at 30 minutes. The ground-
truth label, y, is assigned by comparing the bounds reached by assuming two incrementally large
sets of helpers. For example for the data point with ssumed helper set {x;} = {x, x50} and next helper
candidate x = x3;, the label is computed by comparing the bound reached by assuming {x;, xo} and

CHAPTER 4. DATASETS AND DATA AUGMENTATION 12

Table 4.3: Binary label ratio in the training datasets, broken down by target assertion. Before data
augmentation, significant label imbalance is observed; after data augmentation, label imbalance is
resolved for most cases.

1R1W FIFO 000-Read Buffer | DMA Controller
Target Assert ID

Before After | Before After Before After
0 0.178 0.515 | 0.296 0.669 0.024 0.097
1 0.299 0.666 | 0.335 0.705 0.008 0.040
2 0.263 0.626 | 0.272 0.645 0.148 0.446
3 0.150 0.458 | 0.316 0.684 0.053 0.208
4 0.18 0.516 | 0.355 0.724 0.125 0.403

by assuming {xi, x50, x31}. Thus, a total of 10K data points are collected per RTL design with 2K
points per each target assertion. We perform a standard 60%-20%-20% split of train, validation,
and test data in all experiments.

4.2 Data Augmentation

Two distinctive challenges arise when applying supervised learning to our problem. The first
challenge is the cost of obtaining supervised labels. Labeling each data point requires an actual
attempt of running formal proof with the helpers assumed. And the time to resolve whether the
helpers are actually effective typically requires at least half an hour, even for relatively small RTL
designs. Concretely, for this work, we collect 10K data points with a 30 minute timeout on Jasper
FPV, all sessions running on cloud VMs with 8 vCPU cores from Intel Xeon Processors. The
total compute cost of producing each dataset is SK CPU-hours, and we repeat the data collection
for three separate designs. We parallelize data collection with 200 CPU instances, bringing down
the nominal wall-clock time of data collection to 25 hours per dataset. Nonetheless, the total
computational cost remains the same, and this parallelization is only possible with access to such a
large amount of compute resources as well as licenses for the commercial FV tool. Overall, the time
and computational burden of obtaining ground-truth labels fundamentally limits the size supervised
datasets that can be created for the learning problem at hand.

Second, due to the nature of auto-generated helper candidates, the likelihood of finding effective
helper subsets is relatively low. This implies that a dataset collected from evaluating a list of
randomly selected helper subsets can have significant label imbalance with a very low ratio of
positive labels. For example, Table 4.3 summarizes the ratio of positive labels per target assertion
in each dataset we generated for this work. We observe a noticeable degree of label imbalance,

CHAPTER 4. DATASETS AND DATA AUGMENTATION 13

particularly for the DMA Controller design. While this is a common challenge in many real-world
applications of machine learning, label imbalance combined with limitations to supervised dataset
size can significantly hinder model training.

Assertion-Level Augmentation. In response to the challenges listed above, we introduce a
data augmentation methodology that leverages inherent symmetries found in Boolean formulae
describing property specifications. Consider the following example, adapted from the helper
assertion in Fig. 2.1:

in_vld |-> ff_data[i+1] == $past(ff_datal[i])

Out of the two logical operators in the assertion, the second operator, ’==", indicating a logical
comparison is associative. Therefore, a logically equivalent assertion can be constructed by swapping
the left- and right-hand sides around the operator:

in_vld |-> $past(ff_datal[i]) == f£f data[i+1].

We refer to this idea as assertion-level data augmentation.

Set-Level Augmentation. On a different-level, augmented data can also be obtained from re-
ordering the sequence of helpers that appear in the context helper set {x;}, which we refer to
as set-level augmentation. This is based on the observation that the relative ordering of already
assumed helpers does not impact whether the newly added helper will further improve or hurt
proof complexity reduction. For example, consider a data point in the dataset (x, {x;}, diarger, ¥)) € D
where {x;} = [x1, X20, X31, X500] € X. An equivalent augmentation can be obtained from a random

——

permutation of the previously assumed list of helpers {x;}, such as {x;} = [x20, X31, X1, X500].

Augmented Training Data. We address the imbalance in the original dataset with our proposed
data augmentation methods. Specifically, we augment positive label data in the training set only,
leaving the validation and test sets unchanged to reflect the original distribution of labels. We use
both levels of augmentation, including up to four assertion-level augmentations and one set-level
augmentation for each positive data point. The resulting change in label ratios is summarized in
Table 4.3. After data augmentation, we achieve closer to 50%-50% balance in labels for most
designs and target assertions.

CHAPTER 4. DATASETS AND DATA AUGMENTATION 14

Table 4.4: Hyperparameter search space. Different sets of hyperparamters are considered depending
on the Assertion Encoder architecture. GNN-related parameters are only relevant for the full LFPS
model architecture which includes the Circuit Context Encoder module.

Hyperparameter Values Considered
All Models

Optimizer AdamW

Batch Size {64}

Learning Rate {le-5 ~ 1e-3}

Loss Function

{Cross Entropy, Focal Loss}

Classifier Head Layers {1}
Classifier Dropout Rate {0.0, 0.1}
Dropout {0.0, 0.1}

MLP and LSTM-based Assertion Encoders
MLP Layers {2, 4}
Embedding Dim (d0del) {64,128, 256 }

Transformer-based Assertion Encoders

Transformer Configs (diode1, Num Layers)

BERT-“Nano” = (64,1)
BERT-Tiny (128, 2)
BERT-Mini (256, 4)

GNN-based Circuit Context Encoders
GCN Layers
GCN Embedding Dim

{2,4}
(64,128, 256}

15

Chapter 5

Experiments

5.1 Next Helper Effectiveness Prediction

Baselines. We compare the full LPFS model performance against three baseline neural approaches.
All three baselines do not contain the GCN-based CCE module for circuit graph encoding, and each
use a different model architecture for the assertion encoder All models are implemented in Python
using the Tensorflow library [1]. As discussed in Section 3.2, the Transformer AE operates on the
entire token sequence, a concatenation of token sequences for the target assertion, assumed helpers,
and the next to-be-added helper. The first token is fixed to be the classification token ([CLS]),
from which the full assertion set embedding is read out. We use a maximum sequence length
of 512, identical to BERT [13], with zero-padding. For the MLP and LSTM based AE models,
each assertion is first encoded into a separate assertion embedding. As a result, a zero-padded
token sequence of individual target and helper assertion are given to the MLP or a single-layer
LSTM. For the MLP encoder, the outputs of the MLP encoder are mean-aggregated to produce the
final assertion set embedding; for the LSTM encoder, each assertion embeddings are passed as a
sequence to the next level LSTM as inputs. The LSTM output for the final assertion embedding,
corresponding to the next helper to be added, is used as the assertion set embedding.

Training Setup. For each neural model, we perform an independent hyperparameter search—
details about each hyperparameter space are listed in Table 4.4. In all approaches, we use the largest
augmented dataset, where up to four assertion-level augmentations and one set-level augmentation
are included for data points with positive labels. We also train all of the models to minimize either
the binary cross entropy loss or focal loss [27] for up to 150 epochs with mini-batch size 64 and the
AdamW [29] optimizer. For Transformer-based models, we use the Noam learning rate schedule
[40] with one tenth of the total training steps as warm-up and a decay factor of 0.5; in all other
models, a fixed learning rate schedule is used. All models are trained on a single Nvidia V100 GPU.

We evaluate the models and report their performances in three metrics—binary accuracy,
precision, and recall—as shown in Table 5.1. Note that precision and recall are particularly
important metrics in our evaluation as the test datasets can be highly imbalanced in labels. We make

CHAPTER 5. EXPERIMENTS 16

Table 5.1: Accuracy of the LFPS model compared against baseline architectures on the task of
autoregressive next helper effectiveness classification. The full model including both the GCN-based
CCE and Transformer-based AE achieves the highest or close-to-highest accuracy, precision, and
recall for all RTL designs.

Model 1IR1W FIFO 000-Read Buffer DMA Controller
Accuracy Precision Recall | Accuracy Precision Recall | Accuracy Precision Recall
LSTM AE 0.941 0.929 0.971 0.982 0.987 0.987 0.978 0.747 0.966

0.946 0.957 0.948 0.982 0.984 0.991 0.987 0.969 0.983

MLP AE 0.698 0.711 0.804 0.769 0.764 0.967 0.925 0.667 0.053
Transformer AE

Full LFPS Model
(GCN CCE + Transformer AE)

0.967 0.985 0.977 0.982 0.986 0.990 0.988 0.978 0.981

three observations from the results. (1) As expected, accurately summarizing the sequential nature
of token sequences representing each elaborated assertion text is critical to model performance. This
is shown by comparing the performances of the MLP-based assertion encoders and the LSTM-based
encoders. (2) Differentiating between the context segment, consisting of the target assertion and the
already assumed helpers, and the question segment, referring to the next helper to be considered,
further improves predictive performance. This is shown by the performance difference between the
LSTM model and the Transformer encoder model, which incorporates segment embeddings as in
BERT. (3) Finally, comparing the Transformer-based models with and without the circuit context
encoder, we observe that providing information learned from the structural characteristics of the
RTL graph can help improve predictions about helper effectiveness.

5.2 Ablation Study: Data Augmentation

We next perform an ablation study on how the predictive performance of LFPS model varies by
the amount of augmented data used during training. Recall that we only augment the training
dataset, not the test dataset, and only include augmentations for original data points with positive
labels, as an effort to reduce label imbalance. The full LFPS model with both the GCN-based CCE
and Transformer Encoder AE are trained, first with no augmentations, and then with varying sizes
of augmented training datasets. Specifically, we allow up to two, three and four assertion-level
augmentations per positive data point.

Figure 5.1 summarizes the results. For all RTL designs, we find that having even the smallest
amount of augmentation significantly improves both accuracy and F1-score. Further improvements
are observed as we increase the amount of augmented training data but at a slower rate. Note that
baseline of no data augmentation is produced using other known techniques to improve model
training over imbalanced data, e.g. focal loss [27] as the training loss function. Overall, we observe
that addressing label imbalance directly with oversampling additionally contributes to improved
performance. Increasing the number of augmentations further provides more training data leading
to better training of larger model configurations considered in our hyperparameter space.

CHAPTER 5. EXPERIMENTS 17

Accuracy Fl-score

] =
0.95fj 0.91
0.90/ 0.8
—e— 1R1W FIFO

0.71 000 Read Buffer

ﬁl

0.851 —«— DMA Controller
0.6
0.801
0.51
0.75 i i i 0.4k | | | |
1 2 3 4 5 1 2 3 4 5
A Aug. Positive Data Size A Aug. Positive Data Size

Figure 5.1: Binary accuracy and Fl1-score of the LFPS model trained with datasets of varying
amounts of data augmentation. The horizontal axis refers to the normalized count of positive data
points in the training set; the smallest value of 1 refers to the case without any augmentations and
largest value close to 5X is the case with up to four assertion-level augmentations and one set-level
augmentation per data point. Vertical axis represents the accuracy metrics; higher is better.

5.3 Searching for Effective Helper Subsets

In this section, we showcase a proof-of-concept implementation of neural model-guided search
based on the trained LFPS model. In particular, we consider a simple beam search with the model
used to guide the ranking of candidate subsets at each step. For a beam width of B, this beam search
is initialized with an empty set of helpers X,-o = 0 and a full set of candidates X for a given target
Auarger € 7. At each time step ¢, we evaluate the conditional probability of all remaining helpers
Pr(y = 1; x| X}, Garger, @), YXx € X'\ X, through model inference and choose the top-B candidates.
Incrementally, each beam builds up the set of helpers X, until: (1) the set contains a total of five
helpers, or (2) the model predicts that none of the remaining helpers further improve helper set
effectiveness.

We evaluate the performance of LFPS-guided beam search against vanilla random search that
samples sets of five helpers without replacement. We take two cases of the beam search, using
(1) the Transformer-based AE-only model and (2) the full LFPS model, including the GCN-based
CCE, as the next helper effectiveness predictor. For both cases we use a beam width of B = 5. For
a fair comparison, we allow random search to consider a total of five randomly sampled helper
subsets (same number as beam width used) and take the best subset. As the metric of evaluation, we
consider pass@k. Here, pass@k measures if the search retrieves a set of appropriate helpers that
induces proof bound improvements when used as assumptions. As there are five target assertions,
each a separate test case, pass@k is calculated the number of passing test cases out of five. For
random sampling, we capture the variance in search performance by repeating the search over 20

CHAPTER 5. EXPERIMENTS 18

Table 5.2: Evaluation of LFPS model-based beam search in finding effective helper subsets,
compared against random sampling. The evaluation metric pass@k is calculated out of five test
cases, corresponding to each of the five target assertions. LFPS-guided beam search outperforms
random sampling for all values of k for IRIW FIFO and OoO-Read Buffer, but underperforms for
the DMA Controller due to limitations of the naive beam serach implementation.

pass@k
Search Method k 1RIW FIFO O0O-Read Buffer DMA Controller
1 024021 035+021 0.24 +0.16
Random Search 3 047+0.23 0.64 + 0.15 0.39 +0.17
5 0.55+£0.23 0.79 £ 0.15 041 +0.15
Transformer AE-Only 1 0.60 0.60 0.00
LFPS-Guided Beam Search 3 0.60 0.60 0.00
uide ca carc 5 060 060 000
GCN CCE + Transformer AE 1 0.60 0.80 0.20
LFPS-Guided Beam Search 3 0.60 0.80 0.20
uide ca carc 5 0.80 0.80 020

iterations and reporting the average and standard deviation of measured pass@k. LFPS model-based
beam search, on the other hand, is deterministic by implementation and retrieves the same top-k
subsets every time.

Results on search method performance are shown in Table 5.2. For the first two designs, we
observe that model-based beam search achieves a higher pass@k for all values of k considered
compared to random. Our approach, however, does not perform well on the last case of DMA
Controller. This result can be attributed to: (1) limitations of the naive beam search algorithm that is
unable to explore candidates beyond the fixed top-k model predictions and (2) the scarcity of helper
candidates that induce proof strengthening, as shown in the relatively low ratio of positive labels
in the dataset collect for this RTL designs (See Table 4.3). Future work based on more advanced
search algorithms, e.g. stochastic beam search [22], should be able to quickly overcome on this
limitation.

19

Chapter 6

Related Work

Formal Techniques for Verification Complexity Reduction. Prior work proposed various ap-
proaches to reduce FV complexity via proof decomposition. Abstraction is one example [2, 10,
12] where the goal is to remove design details that are irrelevant to the property of interest. While
some abstraction-based methods are simple to implement, e.g. reducing the size of a data bus or
memory, more complex abstractions are prone introducing false errors and thus require significant
domain expertise. More recently, automated helper mining has been actively explored [26, 17].
However, these works are usually restricted to a specific set of target properties and highly regular
design structures [7], or rely on the compositional structure of the problem and need to run formal
proofs, facing scalability issues [15]. Others works are able to produce a set of helper candidates
that may be useful in FV [38] and rank them [32], but the ranking criteria is limited to the context
of simulation-based verification and not applicable to FV. It remains a critical problem to quickly
discern which helpers are appropriate for each target assertion, since using an inappropriate helper
can fail to reduce, if not worsen, proof complexity.

Applications of ML to Formal Methods. Prior work that apply statistical or machine learning
to improve formal methods have mostly focused on directly improving SAT/SMT solvers and
automatic theorem provers [19, 24, 5, 41]. Our work is related to some of these works in that
we also attempt to replace or augment parts of formal methods that have historically relied on
heuristics. For example, [25] learns better heuristics to solve Quantified Boolean Formulas (QBFs)
more efficiently with deep reinforcement learning (RL). However, there are substantial differences
between this work and prior applications of ML: (1) in terms of scale, the hardware designs we
discuss in this work are much larger and complex, by orders-of-magnitude, compared to the formulae
and theorems considered in prior work; (2) this work proposes to automate proof strengthening
through assume-guarantee decomposition, which is orthogonal to ideas for improving solvers and
algorithms for theorem proving.

20

Chapter 7

Conclusion

In this work, we introduce the new task of learning to predict helper effectiveness, a major step
towards fully automated formal proof decomposition. Our proposed neural architecture, LFPS,
jointly learns representations of formal property specifications and circuit context to accurately
predict the effectiveness of each additional helper. We further demonstrate that the trained model
can be incorporated into a search algorithm and effectively serve as a fast evaluator of candidate
helper subsets.

We envision several promising directions for future work. First, this work presents the potentials
of learning about formal properties from natural language-like descriptions of their specification.
A potential next step would be to assess if pre-trained language models [13, 20, 31, 8, 33] could
be applied in our problem domain. Also, a neural approach that combines both steps of helper
candidate auto-generation and evaluating helpers by their effectiveness in proof strengthening would
be an interesting research direction, similar to prior work on program synthesis and neuro-symbolic
methods [4, 3, 42].

21

Bibliography

[1] Martién Abadi et al. “Tensorflow: a system for large-scale machine learning.” In: OSDI.
Vol. 16. Savannah, GA, USA. 2016, pp. 265-283.

[2] Zaher S. Andraus and Karem A. Sakallah. “Automatic Abstraction and Verification of
Verilog Models”. In: Proceedings of the 41st Annual Design Automation Conference. DAC
’04. San Diego, CA, USA: Association for Computing Machinery, 2004, pp. 218-223. 1sBN:
1581138288. por: 10.1145/996566.996629. urL: https://doi.org/10.1145/996566.
996629.

[3] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint
arXiv:2108.07732 (2021).

[4] Matej Balog et al. “Deepcoder: Learning to write programs”. In: arXiv preprint arXiv:1611.01989
(2016).

[5] Kshitij Bansal et al. “Learning to reason in large theories without imitation”. In: arXiv
preprint arXiv:1905.10501 (2019).

[6] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural informa-
tion processing systems 33 (2020), pp. 1877-1901.

[7] Satrajit Chatterjee and Michael Kishinevsky. “Automatic generation of inductive invariants
from high-level microarchitectural models of communication fabrics”. In: Formal Methods
in System Design 40 (2012), pp. 147-169.

[8] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv preprint
arXiv:2107.03374 (2021).

[9] Edmund M. Clarke et al. “Bounded model checking using satisfiability solving”. In: Formal
methods in system design 19 (2001), pp. 7-34.

[10] Edmund M. Clarke et al. “Counterexample-Guided Abstraction Refinement for Symbolic
Model Checking”. In: J. ACM 50.5 (Sept. 2003), pp. 752—794. 1ssn: 0004-5411. por: 10.
1145/876638.876643. urL: https://doi.org/10.1145/876638.876643.

[11] Edmund M. Clarke et al. “Model checking and the state explosion problem”. In: Tools for
Practical Software Verification: LASER, International Summer School 2011, Elba Island,
Italy, Revised Tutorial Lectures (2012), pp. 1-30.

BIBLIOGRAPHY 22

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Dennis Dams and Orna Grumberg. “Abstraction and Abstraction Refinement”. In: Handbook
of Model Checking. Cham: Springer International Publishing, 2018, pp. 385—419. 1sBn: 978-
3-319-10575-8. por: 10.1007/978-3-319-10575-8_13. urL: https://doi.org/10.
1007/978-3-319-10575-8_13.

Jacob Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

Harry Foster. “The 2022 Wilson Research Group IC/ASIC Functional Verification Treads,””.
In: White Paper. Wilson Research Group and Mentor, A Siemens Business (2022).

Mihaela Gheorghiu Bobaru, Corina S Pasdareanu, and Dimitra Giannakopoulou. “Automated
assume-guarantee reasoning by abstraction refinement”. In: Computer Aided Verification:
20th International Conference, CAV 2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings
20. Springer. 2008, pp. 135-148.

Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani. “You assume, we guarantee:
Methodology and case studies”. In: Computer Aided Verification: 10th International Confer-
ence, CAV’98 Vancouver, BC, Canada, June 28—July 2, 1998 Proceedings 10. Springer. 1998,
pp- 440-451.

Samuel Hertz, David Sheridan, and Shobha Vasudevan. “Mining hardware assertions with
guidance from static analysis”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 32.6 (2013), pp. 952-965.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural Comput.
9.8 (Nov. 1997), pp. 1735-1780. 1ssn: 0899-7667. por: 10.1162/neco.1997.9.8.1735.
URL: https://doi.org/10.1162/neco.1997.9.8.1735.

Sean B Holden et al. “Machine learning for automated theorem proving: Learning to solve
SAT and QSAT”. In: Foundations and Trends® in Machine Learning 14.6 (2021), pp. 807-
989.

Aditya Kanade et al. “Learning and evaluating contextual embedding of source code”. In:
International conference on machine learning. PMLR. 2020, pp. 5110-5121.

Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional
networks”. In: arXiv preprint arXiv:1609.02907 (2016).

Wouter Kool, Herke Van Hoof, and Max Welling. “Stochastic beams and where to find them:
The gumbel-top-k trick for sampling sequences without replacement”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 3499-3508.

Thomas Kropf. Introduction to formal hardware verification. Springer Science & Business
Media, 1999.

Vitaly Kurin et al. “Can Q-learning with graph networks learn a generalizable branching
heuristic for a SAT solver?” In: Advances in Neural Information Processing Systems 33
(2020), pp. 9608-9621.

BIBLIOGRAPHY 23

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Gil Lederman et al. “Learning heuristics for quantified boolean formulas through deep
reinforcement learning”. In: arXiv preprint arXiv:1807.08058 (2018).

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. “General LTL specification mining”.
In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE. 2015, pp. 81-92.

Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: ICCV. 2017, pp. 2980-2988.

Yinhan Liu et al. “Roberta: A robustly optimized BERT pretraining approach”. In: arXiv
preprint arXiv:1907.11692 (2019).

Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv
preprint arXiv:1711.05101 (2017).

Florent R. Madelaine and Barnaby Martin. “On the complexity of the model checking
problem”. In: CoRR abs/1210.6893 (2012). arXiv: 1210.6893. urL: http://arxiv.org/
abs/1210.6893.

Arvind Neelakantan et al. “Text and code embeddings by contrastive pre-training”. In: arXiv
preprint arXiv:2201.10005 (2022).

Debjit Pal, Spencer Offenberger, and Shobha Vasudevan. “Assertion Ranking Using RTL
Source Code Analysis”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39.8 (2020), pp. 1711-1724. por: 10.1109/TCAD.2019.2921374.

Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: The Journal of Machine Learning Research 21.1 (2020), pp. 5485-5551.

Mike Schuster and Kaisuke Nakajima. “Japanese and korean voice search”. In: 2012 ICASSP.
IEEE. 2012, pp. 5149-5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural machine translation of rare
words with subword units”. In: arXiv preprint arXiv:1508.07909 (2015).

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. “Checking safety properties using
induction and a SAT-solver”. In: Formal Methods in Computer-Aided Design: Third Inter-
national Conference, FMCAD 2000 Austin, TX, USA, November 1-3, 2000 Proceedings 3.
Springer. 2000, pp. 127-144.

Pashootan Vaezipoor et al. “Learning branching heuristics for propositional model counting”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 2021, pp. 12427—-
12435.

Shobha Vasudevan et al. “GoldMine: Automatic assertion generation using data mining and
static analysis”. In: 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). 2010, pp. 626—629. por: 10.1109/DATE.2010.5457129.

Shobha Vasudevan et al. “Learning semantic representations to verify hardware designs”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 23491-23504.

BIBLIOGRAPHY 24

[40] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[41] Minchao Wu et al. “Tacticzero: Learning to prove theorems from scratch with deep rein-
forcement learning”. In: Advances in Neural Information Processing Systems 34 (2021),
pp- 9330-9342.

[42] Lisa Zhang et al. “Neural guided constraint logic programming for program synthesis”. In:
Advances in Neural Information Processing Systems 31 (2018).

