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Abstract

Smart and Robust Biomedical Interfaces

by

Andy J Zhou

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Co-chair

Professor Rikky Muller, Co-chair

Wearable biosensing devices are becoming more and more ubiquitous, and new medical
devices are being used to relieve previously untreatable diseases. Smart biomedical interfaces
such as these depend on some form of device intelligence, enabling local processing of recorded
biosignals to perform tasks such as hand gesture recognition or detection of neurological
disease states. The devices and the algorithms they employ, however, must be robust to a
variety of interferers and confounding factors that often prevent their practical use.

This thesis descries methods to improve robustness in implantables and wearables through a
variety of means, demonstrating them in two different applications. The first part presents
the Wireless Artifact-free Neuromodulation Device, or WAND, which enables closed-loop
neuromodulation by cancelling self-interference artifacts that normally prevent simultaneous
neural recording and stimulation. The second part then describes the FlexEMG system for
hand gesture recognition using electromyography, which employs a hyperdimensional com-
puting algorithm capable of incrementally learning hand gestures in a variety of situational
contexts such as changing limb positions. These systems have been deployed in realistic ani-
mal and human subject experiments that better approximate real-world use to demonstrate
the hardware and algorithmic improvements towards robustness.
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Chapter 1

Introduction

1.1 Smart wearable and medical devices

With the rise of the Internet of Things, computers have been incorporated into our cities, into
our homes, and onto, as well as into, our bodies. Wearable computers provide the ability to
continuously track our health and fitness through vital signs and activity monitoring; provide
new and inventive modalities for interpersonal as well as human-computer interaction (HCI);
and enable monitoring of, treatment against, and rehabilitation from diseases that affect large
portions of our population (Figure 1.1).

Consumer smart watches and fitness bands, such as the Apple Watch or Fitbit, can mea-
sure physiological signals like heart rate, electrocardiogram (ECG), and blood oxygenation
level, while also tracking activity such as exercise and sleep. There is growing interest, as
well, in smart glasses and hearable technologies worn on or in the ears, which can correct
or augment a user’s senses and potentially allow non-invasive access to neurological signals
[1]. The number of adult smart wearable users in the US is expected to eclipse a quarter of
the population by 2021 and continue to grow through 2024, with 80% of studied consumers
saying they would use wearable fitness devices [2].

The rise in popularity of augmented and virtual reality (AR/VR) applications has brought
with it a need for better methods for user input, which may also be provided by smart devices.
For truly immersive experiences, consumer electronics must be able accurately measure user
intent with high throughput, something that has been limited by traditional mechanisms
relying on text, speech, or physical controls with limited input channels. Wearable, non-
invasive neuromuscular interfaces show promise in providing more natural and direct control
for HCI, relying on recording and learning from biosignals to interpret the wearer’s intentions
[3, 4].

In the medical field, smart wearable and implantable sensors have enabled 24-hour, in-
home vital signs monitoring, giving physicians continuous access to better assessments of
baseline health, improved data for making diagnoses, and the ability to provide fast emer-
gency response or prevention. Through these means, better at-home healthcare can also
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reduce the length and frequency of hospital visits. Smart medical devices can range from sim-
ple monitoring systems that unobtrusively measure vital signs much like consumer wearables
[5], to complex, closed-loop systems that must be invasively implanted to deliver therapy in
response to the patient’s measured state of health [6, 7].

Figure 1.1: Examples of smart wearables and medical devices. a) Consumer smart
watch with capability to record biopotentials for health monitoring, as well as motion sensors
for activity recognition. Adapted from [8]. b) Augmented/virtual reality wearable devices
for tracking user movements, recognizing gestures, and providing haptic feedback in vir-
tual scenarios. Adapted from [9]. c) Implantable medical device for seizure detection and
responsive therapy. Adapted from [10].

Wearable and implantable devices interact with the human body either through sensing
some biological phenomenon or through actuation to produce a biological effect. Across a
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broad range of applications, device complexity levels, and levels of invasiveness, most devices
share a few basic building blocks (Figure 1.2).

Figure 1.2: General block diagram for smart wearable or implant. Main components
include a sensing module for recording physiological signals, a processing module consisting
of the “brains” of the device, an actuation module for effecting physiological change or
controlling additional systems, and a control module for powering and communication.

First, there is the interface to the body, which can occur through transduction of a
variety of modalities (e.g., chemical, motion, or magnetic) into electrical signals. In this
thesis I will focus on biopotentials, or physiological signals that are already electrical by
nature. These can be measured using microelectronic circuits through electrodes that serve
as the interface between the device and biological matter. As with many other applications
in which sensing electrical signals is required, the sensing block usually consists of signal
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amplification, conditioning, and digitization. This converts the analog biopotential into
digital values which are more suited for processing and computation.

In the other direction, devices may also have actuation blocks which allow them to ef-
fect change, either through physiological channels or by controlling additional devices like
a robotic arm. Many medical implants, such as cardiac pacemakers and deep brain stim-
ulators, are capable of actuation only, delivering electrical stimulation at a constant rate
through electrodes back to the tissue until the device is turned off or reconfigured. In these
cases, the actuation sub-system is directly controlled by the user or physician, relying on
a communication channel for data up-link and command down-link. The system control
block handles this communication, as well as powering the device. Ideally powering and
communication are wireless, enabling safer implantation and more mobility when using the
device.

Finally, the devices can have some form of on-board processing, which is what makes
them “smart” and can tie the sensing and actuating blocks together. It is often beneficial
for wearable and implantable devices to have more complex on-board processing abilities
in addition to data streaming or logging. Performing computation locally precludes the
need to stream out large amounts of raw data, which in turn can increase privacy and
security, lower processing latency, and potentially reduce power consumption. Recently,
improvements in integrated circuits have enabled unprecedented amounts of computation to
be performed with low power requirements and in small form factors. Processing steps may
include extraction of useful features from the recorded data, as well as machine learning for
interpretation of the data. Decisions made by more complex processing blocks can be used to
identify certain patterns from the sensed biosignals and adjust actuation controls in response.
An example of this is the Neuropace RNS system [6] for responsive seizure detection and
therapeutic stimulation, depicted in Figure 1.1c. Recorded neural activity is analyzed for
patterns related to seizures. When detected, therapeutic stimulation is triggered, relieving
the patient’s symptoms and “correcting” the neural state. This is what is meant by closing
the loop in neural interface devices.

1.2 Challenges facing robust performance

Much attention has been given to building smart devices and developing the algorithms that
they employ, with the goal of accurately identifying or predicting patterns in the recorded
signals. However, the human body can be a noisy environment for deploying these algo-
rithms. Performance of a biosignal processing algorithm or machine learning model can be
degraded due to external interferers and confounding factors, which reduce signal quality and
inhibit accurate extraction of features on which the algorithms rely. Interferers can include
random or correlated noise from the recording interface or background biological activity;
large, environmental signals like power-line interference; or artifacts arising from non-ideal
conditions such as motion and self-interference. Problems with confounding factors arise
due to incomplete or biased data that is used for algorithm development. For example,
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initial training of a machine learning model may be limited to data that isn’t representative
of real-world usage, especially when training is specific to a user or patient and must be
done in a time efficient manner. There exist a variety of methods to address interfering and
confounding factors, which I broadly split into two categories: 1) modeling and anticipating
them, and 2) learning and adapting to them.

1.2.1 Anticipating and modeling interferers

Because many interferers are known to designers at the outset, they can be characterized and
then mitigated with targeted strategies based on their known properties. Typical interferers
that can be modeled and dealt with in this way include electromagnetic interference, signal
drift, motion artifact, and self-interference. Strategies for cancelling the interference can be
very basic, such as using a 50 or 60 Hz notch filter to cancel out power-line interference
or using AC-coupled recording front-ends to reject large DC offsets and drift caused by
unstable electrode-tissue interfaces. On the other hand, when interferers have more complex
characteristics, algorithm designers must first understand their key properties and how they
originate to design effective interference cancellation. Once characteristics that differentiate
them from the signals of interest have been found, strategies for preventing or mitigating
the interference can be built into multiple parts of the signal chain.

1.2.2 Learning and adapting to confounders

The above method relies on the ability to know beforehand what kind of interfering and
confounding factors will be present during device operation. While some confounding factors
can be modeled and handled in a way similar to interference cancellation, it is often more
practical to instead rely on statistical machine learning models to capture their effects. This
is because it can be difficult or even impossible to hand-design very accurate models for
a confounding effect, which would rely on a priori knowledge of how the confounder is
produced and how it interacts with the signals or features of interest. Large amounts of data
must first be collected to learn this information, and new confounders may be discovered
after deployment of a strategy, requiring re-engineering of the model.

Machine learning can enable design of algorithms that handle confounding factors without
being explicitly instructed by the implementer on how to do so. These algorithms often
rely on statistical methods, which means a large amount of data must be gathered for the
algorithm to fully “understand” the problem. Because of this, continuous or incremental
learning has become quite popular recently for addressing problems where new information
must be continuously incorporated into classification models as the amount of relevant data
grows or changes over time.
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1.3 Scope of this thesis

This introduction gave a broad overview of smart wearables and implantables, as well as
of the problems affecting the robustness of the algorithms that they employ. In the rest
of this thesis, I will present the work I’ve done to address this challenge in various ways.
Almost all of the results discussed here involve a low-power device platform developed in
a joint effort between numerous collaborators from various research groups and industry
partners. In my research, we’ve used this platform for the medical application of closed-loop
neuromodulation, and it has also been adapted for non-invasive electromyography (EMG)-
based gesture recognition, which has applications in both consumer wearables for AR/VR
and prosthetics control for rehabilitation.

In Chapter 2, I cover closed-loop neuromodulation, where the main challenge to robust-
ness that I address is self-interference due to stimulation artifact. Stimulation artifact is
a known source of signal degradation that arises when simultaneously recording neural ac-
tivity and delivering electrical stimulation to the brain, hindering the extraction of neural
biomarkers. Because the source of the artifact is the device itself, we can model and build an
understanding of how and when artifacts arise, allowing us to remove them through system
co-design of the different device building blocks. Only then can we have truly concurrent
sensing and stimulation for closed-loop neuromodulation.

Chapters 3 and 4 describe a different approach for improving robustness in EMG-based
gesture recognition, where machine learning techniques are used to identify which gestures a
user is performing based on their measured neuromuscular activity. Typically, gesture classi-
fiers are trained in controlled settings that don’t fully match what they would be deployed in,
limiting the accuracy of the classification models during real-world situations. Variations due
to everyday use of an EMG-based gesture recognition device introduce confounding factors
from changing the upper limb position, instability of the electrode interface, and electrode
shift, all of which must be learned by the model for generalization to a larger number of
situational contexts. This can be achieved by introducing data from additional sensors,
providing more information about both the gestures and the confounders. Additionally, as
the amount of required training data grows, the training process can be split into multiple,
smaller steps for incrementally updating the model only when it is necessary.

The following chapters are organized as follows:

• Chapter 2 begins with a review of techniques for stimulation artifact prevention, mitiga-
tion, and cancellation in closed-loop neuromodulation systems. I then present WAND,
the Wireless Artifact-free Neuromodulation Device, which incorporates a number of
strategies in the co-design of multiple system blocks to achieve artifact-free recording
during stimulation. WAND’s capabilities are demonstrated through in vivo in ex-
periments with a non-human primate, showing the ability to run simple closed-loop
neuromodulation algorithms.

• Chapter 3 describes the system adapted for real-time, in-sensor classification of hand
gestures using electromyography. Newly dubbed the FlexEMG system, the WAND
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platform was re-purposed for non-invasive EMG acquisition and processing, leveraging
a custom screen-printed electrode array that could be worn around the forearm. Ges-
ture classification was performed using hyperdimensional (HD) computing, a neuro-
inspired computing paradigm capable of fast, incremental learning. Results from a
full in-sensor implementation of the HD algorithm show that the classification model
can be updated using solely on-board computations to improve generalization in new
situational contexts.

• Chapter 4 extends the work from Chapter 3 to demonstrate classification improve-
ments using HD computing in a larger number of situational contexts. For this, I
conducted gesture recognition experiments in 8 different limb positions to demonstrate
the negative impact of limb position variation on classification accuracy, as well as
how to counteract that degradation. Key results include an efficient way to incorpo-
rate limb position information into the classification model through sensor fusion, as
well as an analysis of different configurations for training the HD classification model
incrementally.

• Chapter 5 concludes the thesis and discusses possible future directions for the work.
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Chapter 2

Artifact-Free Closed-Loop
Neuromodulation

Electronic neural interfaces allow us to record brain activity, as well as modulate it through
electrical stimulation. Algorithms for recognizing patterns and brain states from recorded
neural signals can be used to drive closed-loop neuromodulation for optimized therapy in
treating neurological disorders. However, self-interference from stimulation artifact during
simultaneous sensing and stimulation is a major issue for closed-loop neuromodulation sys-
tems. In this chapter, I first describe the origin of stimulation artifacts and review method-
ologies for cancelling them or reducing their effects. I then present the Wireless Artifact-Free
Neuromodulation Device (WAND), with which my collaborators and I achieve effective ar-
tifact cancellation using system-level co-design of the neural stimulator, neural recording
front-end, and signal processing blocks. WAND provides a platform enabling research appli-
cations which require high-throughput and high channel count data streaming, low-latency
biosignal processing, and simultaneous sensing and stimulation. We demonstrate its abilities
through in vivo recording, open-loop stimulation, and closed-loop experiments with a rhesus
macaque.

2.1 Introduction

Recent times have seen a surge of clinical applications for neural recording and stimula-
tion in the treatment of neurological disorders, largely as a result of major investments
into neuroscience research such as the Brain Research through Advancing Innovative Neu-
rotechnologies (BRAIN) Initiative. For instance, deep brain stimulation (DBS) is a form of
therapy widely researched and clinically prescribed for the treatment of Parkinson’s disease
[11–13]. Additionally, responsive neurostimulation for treating epilepsy uses recorded neural
biomarkers to trigger therapeutic stimulation [6, 14–16]. These therapies depend on de-
vices that provide an electrical interface to the brain, enabling both electrical stimulation to
modulate neural activity and recording of neural biopotentials for disease state monitoring
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and research. Figure 2.1 shows example clinical electronic neural interfaces (including the
NeuroPace RNS offering seizure detection and responsive therapy and the Medtronic Activa
RC offering DBS for treatment of movement disorders) as well as how a neural interface
may be implanted. The main unit, housing the pulse generator, processing unit, and power
supply, is implanted in a cavity in the skull. In the case of the NeuroPace RNS device, the
unit is connected to two leads: one for recording electrocorticography (ECoG) from the sur-
face of the brain, and another penetrating the cortex for delivering stimulation to targeted
anotomical regions. These devices are extremely invasive, only used in cases of severe and
advanced disease. Still, they have been implanted in hundreds of thousands of patients to
provide tremendous quality-of-life improvements in ameliorating symptoms that have been
otherwise untreatable.

Figure 2.1: Example clinical neural interfaces. Some widely used electronic neural
interfaces are used to treat neurological diseases and include the NeuroPace RNS (device
upper left, implantation cartoon right) and the Medtronic Activa RC (lower left). These
devices typically contain a pulse generation unit, stimulating leads, and, in the case of the
NeuroPace RNS, a sensing ECoG lead. Image sources: [10, 17]

2.1.1 Electronic neural interfaces

The electrical nature of neural activity lends itself well to excitation and observation using
modern microelectronic circuits. The basic signaling and processing unit of the nervous
system is the neuron, a cell which can produce electrical activity depending on inputs from
other neurons or from sensory stimuli [18] (Figure 2.2). When the input potentials to a
neuron satisfy certain timing conditions and cause the voltage across the cell membrane to
cross a certain threshold, the receiving neuron generates a large spike in voltage called an
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action potential. These spikes are characterized as brief depolarizations and repolarizations
of the membrane voltage (Figure 2.2) which can withstand long-distance transmission to
different regions of the nervous system and in turn drive the activity of other neurons. The
spiking of an individual neuron can encode information through its rate or timing, and the
collective spiking of vast, complex networks of billions of neurons encodes human function,
experience, and intent. Neural interfaces include both afferent (stimulation) devices that
affect neural activity and efferent (recording) devices which are described below.

Figure 2.2: Neuron with flow of information. Inputs from other neurons come in at the
dendrites and are integrated in the cell body. Upon integration of the right inputs, action
potentials are produced and travel down the axon to other neurons.

Electrical neural stimulation

The cell membrane of a neuron can be modeled as a capacitance, and application of charge
from an external source produces similar changes in polarization that can artificially induce
or inhibit spiking activity. This is the fundamental idea behind electrical neural stimulation,
and the required charge can be delivered using an electrode connected to a current source
and placed near the body of a target neuron. The effects of electrical stimulation were
observed in experiments as early as the 18th century, where dead frogs’ muscles were made to
contract by stimulating their nerves [19]. Modern devices such as retinal [20] and cochlear [21]
implants are able to produce visual and audio percepts for the seeing and hearing impaired by
stimulating sensory neurons with different patterns. Since the early 2000s, neurostimulation
in deep, subcortical brain regions has been approved by the FDA to treat a wide variety of
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neurological diseases, including essential tremor, Parkinson’s disease, and epilepsy. Although
the exact mechanisms behind therapeutic stimulation are still unclear, most models suggest
that electrical stimulation serves to disrupt or prevent abnormal neurological activity like
excessive oscillations [22] and adverse discharges [23].

Electrical neurostimulation patterns are typically hand-chosen by physicians based on the
measured efficacy of the treatment. Due to the inexact nature of electrode-tissue interface
impedances, stimulation pulses are typically current-controlled rather than voltage-controlled
in order to deliver more precise amounts of charge. Figure 2.3 illustrates some common
configurations for delivering stimulation. The most basic stimulation waveform is a single
cathodic pulse (Figure 2.3a), which is the most likely to induce action potentials. Stimulation
may be delivered in a monopolar configuration (Figure 2.3c), where the return path for the
current is distant and is typically the device’s packaging, or in a bipolar configuration (Figure
2.3d) in which the return path is through another local electrode. It must be noted that the
area of effect for stimulation can be rather large, inducing activity in a region of neurons
rather than any specific neuron. This can be slightly better controlled through the use of
current steering by providing multiple return paths and delivering current through multiple
electrodes [24].

A single cathodic pulse may leave residual charge at the electrode interface, potentially
harming neural tissue and damaging electrodes through corrosion. Therefore, a passive
recharge phase may be added after each monopolar pulse to short the source electrode and
return path and clear built up charge. Biphasic stimulation (Figure 2.3b), consisting of a
cathodic pulse followed by an anodic pulse in the opposite direction, is more commonly used
to promote balance in the total amount of charge delivered. Typical tunable parameters
include amplitude or duration of each of the pulses, the interphase gap or delay between the
two phases of a biphasic pulse, and the period between successive pulses in a stimulation pulse
train. Bipolar stimulation configurations can also benefit from additional passive recharge
through shorting electrodes.

Recording neural biopotentials

Working in the reverse direction, recording neural signals can be performed by connecting
those same electrodes to an electrical amplifier and analog-to-digital converter (ADC) to
capture the signals produced by nearby neurons. With the proper hardware, spikes produced
by individual neurons can be recorded to decode neural activity. It is very hard to be
extremely selective in terms of which neurons are being recorded due to the difficulty of
fine positioning of electrodes as well as the general propagation of electrical signals. A single
recording electrode will typically pick up the activity of not only the nearest neurons, but also
of the larger population of neurons within a local sphere (Figure 2.4a). The superposition
of this activity, which includes both spiking and other subthreshold potentials, is another
type of recorded signal called the local field potential, or LFP. Recording of LFP can be
more robust, as it depends less on precise electrode positioning and is effected less by local
gliosis due to implantation [25]. A recorded neural trace with sufficient bandwidth will
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Figure 2.3: Basic stimulation configurations. a) The most basic stimulation waveform
consists of a single cathodic pulse, which depolarizes target neuron populations. Tunable
parameters include the amplitude and pulse width of the cathodic current pulse (dictating
the total charge delivered), as well as the period between successive pulses. b) An anodic
pulse can be added to balance charge delivery in biphasic pulses. Typically the cathodic
and anodic pulses are charge balanced. An interphase gap may be added between the two
phases to improve stimulation efficacy. c) Stimulation may be delivered in a monopolar
configuration, where only a single electrode is active and the return path for the current
(which could be the device packaging) is distant. d) A bipolar stimulation configuration
utilizes two electrodes: one to source current, and one to sink it.

contain both spiking (higher frequency, 250 Hz - 10 kHz) and LFP (lower frequency, 1-500
Hz) components. Typical amplitudes of these signals recorded from intracortical penetrating
electrodes range from millivolts for spikes down to a few microvolts for LFP.

Because action potentials from multiple neurons may be included in recordings, a typical
first processing step after digitization is spike sorting. Different spike morphologies are
identified as being produced by different neurons, and newly detected spikes are then assigned
to different neurons for counting and timing purposes. For robust spike sorting, recorded
neural data must be low noise and low distortion and have a high enough sampling rate to
be able to differentiate different spikes.

For LFP recordings, we are less interested in the time domain characteristics of the sig-
nal, and we focus more on the amplitude and phase modulation of its frequency components.
Oscillatory behavior, as seen in LFP, is generally healthy and allows for dynamic communi-
cation and plasticity between spatially distant neuron populations [27]. LFP is often divided
into smaller frequency bands as shown in Figure 2.4b, with lower frequencies being associ-
ated with sleep and relaxation, while higher frequencies are associated with movement and
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Figure 2.4: Makeup of recorded neural signals. a) Neural signals record activity from
a large population of neurons. High frequency components consist of spikes from the most
proximal cells, while lower frequency components are local field ptentials that consist of
superimposed population acivity. Adapted from [26]. b) Local field potential (LFP) can be
subdivided into different frequency bands that modulate with different activities and brain
states.

sensory activity. Many signs and symptoms of movement disorders relate to abnormal os-
cillatory synchronization. For instance, excessive beta oscillations can lock neural networks
into ineffective states, inhibiting voluntary movement [22].

2.1.2 Closed-loop neuromodulation

Neural interfaces can be bi-directional (capable of both afferent and efferent interactions),
though most applications of neurostimulation are open-loop, in that stimulation parame-
ters are pre-programmed, and stimulation pulses are triggered externally or scheduled in
advance. For example, Medtronic DBS devices are often programmed to continuously de-
liver stimulation until toggled by a physician or patient using an external device. Although
this practice is generally effective, it is far from optimal. Continuous stimulation can cause
side effects such as impaired speech, dyskinesia, or cognitive impairment [28], and excess
stimulation unnecessarily drains precious device battery power. Ideally, clinical neural inter-
faces would be able to autonomously provide personalized, optimal treatment that is halted
when side effects are induced and that only acts when there is a demand for therapy. This
requires “closing the loop” by continuously sensing the patient’s neural state and tuning
therapy parameters (Figure 2.5). Looking forward, closed-loop therapies can be utilized to
treat complex conditions whose symptoms are not always present, necessitating simultaneous
sensing, biomarker computation, and targeted therapeutic stimulation in the brain.

In order to deliver closed-loop neuromodulation, devices must be bi-directional while
also possessing some processing capabilities to run closed-loop algorithms on-board. One
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Figure 2.5: Closing the loop on neuromodulation. By continuously sensing the neural
state through recording and local signal processing, stimulation parameters can be adaptively
tuned for optimal effect.

of the more successful closed-loop neuromodulation devices is the NeuroPace RNS system
for responsive neurostimulation. The device senses electrocorticographic (ECoG) activity
and monitors it for abnormal, epileptiform activity. Once such activity is detected, the
device is triggered to deliver cortical stimulation which disrupts that activity and treats the
seizure [23]. Closed-loop DBS has also recently been proposed as an improvement over open-
loop DBS for treatment of Parkinson’s disease where stimulation is only delivered when the
patient is symptomatic, improving battery life and reducing side effects [29]. A gamma band
oscillation biomarker has been proposed for detection of dyskenisia as a result of stimulation
and can be used to abort therapy when sensed [30].

2.2 The challenge of stimulation artifact

While responsive neurostimulators have shown a lot of promise and have made tremendous
impact in healthcare, there are still some major limitations in using therapeutic stimulation
in a closed-loop, on-demand manner. Stimulation pulses create interference with recording
electronics, appearing as artifacts which mask the underlying neural signal and make si-
multaneous sensing and stimulation a challenge [31]. To continuously record neural activity
while simultaneously delivering stimulation, neuromodulation systems must be resistant to
large stimulation artifacts and be able to actively remove artifacts from the recorded signals
for real-time biomarker computation. Figure 2.6 shows an example of adaptive closed-loop
neuromodulation using LFP feedback. Stimulation artifacts contaminate the recorded signal
and prevent robust detection of biomarkers. Note that even an out-of-band stimulation sig-
nal can corrupt the entire sensing spectrum. To enable real-time feedback, neuromodulation



CHAPTER 2. ARTIFACT-FREE CLOSED-LOOP NEUROMODULATION 15

systems attempt to mitigate artifact through the electrode configuration, resilient recording
front-ends, and back-end cancellation methods.

Figure 2.6: Stimulation artifacts in closed-loop devices. Often, stimulation artifacts
can be orders of magnitude larger than the underlying neural signals, completely masking
the power spectrum if not handled properly. Cancellation methods can be applied in the
front-end analog domain, in the digital back-end, or both. Adapted from [32].

In order to effectively and efficiently remove or prevent stimulation artifacts, we must
first gain an understanding of their origin. By modeling and understanding stimulation
artifacts, the most appropriate measures for a given application can be chosen. In this
section, we review several techniques that involve artifact-preventing system configurations,
resilient recording front-ends, and back-end signal processing for removing recorded artifacts.
Co-designing and integrating these artifact cancellation techniques will be key to designing
neuromodulation systems that can stimulate and record at the same time. The information
presented in this section is adapted from a review done in collaboration with Prof. Benjamin
Johnson [32].

2.2.1 Origin of stimulation artifacts in neural interfaces

Stimulation artifacts typically consist of large voltage transients coinciding with the delivery
of stimulation pulses. Their morphologies are dependent upon stimulator architecture and
performance, stimulation waveform, and electrode configuration. Recorded artifacts con-
sist of a short, high-amplitude peak (direct artifact) followed by a slow, exponential decay
(residual artifact) superimposed on the local neural activity. Cancellation of these artifact
components is crucial for analyzing spikes, as well as LFP and ECoG. Artifacts may be mis-
classified as spikes by some detection algorithms, and subsequent spikes cannot be recorded
until the electrode voltage has returned to within the input range of the recording amplifier.
The artifact peaks and ensuing decay together create strong distortions in the power spec-
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trum at the stimulation frequency and also spreading into frequency bands of interest for
LFP and ECoG (Figure 2.6).

To demonstrate the origin of stimulation artifacts, a simplified electrode model with
biphasic current stimulation waveforms is shown in Figure 2.7. The electrode-tissue inter-
face can be modeled with an equivalent circuit consisting of simple linear components: the
electrode double-layer capacitance (CDL) models charge stored at the interface, the charge
transfer resistance (RCT ) models Faradaic exchange currents from oxidation or reduction,
and the spread resistance (RS) models tissue resistivity [33]. These parameters all depend
on the electrode area, geometry, material, surface roughness, and surrounding medium, and
example values are given for a 1 mm diameter platinum electrode in brain tissue.

Figure 2.7: Electrical model of stimulation electrode and waveforms. Stimulation
artifact, which can be measured as VOFFSET across the double-layer capacitance, depends
on the accuracy of the charge balance and the time constant associated with dissipating
residual charge. Adapted from [32].

During the first phase ΦC , a cathodic current ISTIM is delivered through the electrode
interface, causing a voltage drop across the spread resistance and charging up the double-
layer capacitance. The electrode is then disconnected from all sources for an interphase gap
period, where the charge on the double-layer capacitance remains. This is followed by the
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anodic phase ΦA during which current is sunk in the reverse direction, causing an opposite
voltage drop across the spread resistance and discharging the capacitance. An additional
shorting phase Φshort (not shown in the waveforms) allows for further discharging after the
anodic phase.

Ideally, the cathodic and anodic phases of biphasic stimulation are perfectly matched with
the same amount of charge (QC = QA) and completely discharge the electrode capacitance,
CDL. In this case, the system would only experience direct artifact lasting the duration of
the stimulation pulse. However, any mismatch in current amplitude (IC 6= IA) or pulse width
(ΦC 6= ΦA) leaves residual charge on the capacitors, resulting in a persisting artifact voltage
that discharges slowly. Residual artifact duration depends on the degree of mismatch and the
time constant associated with dissipating residual charge. Aside from saturating recording
front-ends, slow discharge can limit stimulation frequency since accumulated charge creates
a DC current at the electrode, resulting in tissue damage and corrosion from electrolysis [33,
34].

This model only describes the generation of stimulation artifact on the electrode through
which stimulation current is delivered. In addition, we can also model how that artifact
spreads to neighboring electrodes. Because of the finite input resistances of neural front-
end amplifiers, neighboring recording electrodes that aren’t actively used for stimulation
can still suffer both direct and indirect artifacts (Figure 2.8). This non-ideality has two
negative effects: 1) it can further imbalance the amount of current or charge across different
components during the anodic and cathodic phases of stimulation, and 2) even the small
amounts of current through the recording electrode interface can generate large voltages
compared to the neural signal amplitudes.

Figure 2.8: Spread of stimulation artifact to neighboring recording electrodes.
Finite amplifier input impedances (and other return paths to ground) can hurt charge bal-
ancing and cause artifacts to appear on recording-only electrodes. As shown by the purple
arrows, not all of the current sourced by the driven electrode is sunk through the return
electrode.
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Precise modeling of the artifact is difficult since electrode impedance is in reality nonlinear
and varies with voltage. Furthermore, electrode impedance can change over time with chronic
implantation [35]. The linear model, however, is effective for estimating the peak voltage
due to stimulation and duration of an artifact [36–38], both of which are important in
designing counter-measures against stimulation artifacts for specific system specifications
and applications.

2.2.2 A taxonomy of artifact cancellation methods

Many aspects of device and experiment design all contribute to the generation and severity
of stimulation artifacts. Table 2.1 describes a number of state-of-the-art solutions which
we detail in the sections below. We first describe system configurations and preventative
measures that attempt to reduce the amount of stimulation artifact that can be produced.
Next, we discuss mitigation methods that enable cancellation or removal of recorded artifacts.
These can be divided into categories of front-end circuit resiliency methods and back-end
digital signal processing methods.

Preventative measures

Figure 2.9 describes methods to prevent the generation of stimulation artifacts, limiting
the amplitude and duration of recorded artifacts and making them more manageable. As
discussed above, a major source of artifacts is residual charge left on capacitive elements of
the electrode-tissue interface resulting from mismatch between stimulation phases. Several
techniques have been utilized to improve stimulator phase matching. Pulse timing is typically
well-controlled, whereas different current sources commonly have an amplitude mismatch of
1%, which is enough to produce significant artifact [36]. Some systems monitor voltage
across the double-layer capacitance at the electrode from accumulated charge and calibrate
the second phase current to minimize this offset [39]. Other systems calibrate prior to
stimulation via current-copying using the using the cathodic current source as a reference
for the anodic current [40, 41]. Another alternative uses an H-bridge circuit, which is a
stimulator topology that utilizes a single current source and a set of switches that allows the
same current source to be used in both stimulation phases [42–44]. This method has been
shown to achieve a mismatch between pulses of less than 0.02% [42].

Even stimulation pulses that are perfectly balanced with equal charge in each phase can
generate large and long artifacts if recorded using inadequate circuits. Some work uses a
tri-phasic stimulation waveform to minimize artifact duration [45]. Chu et al. [46] took an
alternative approach by modeling the brain and interface as a communication channel and
designing a waveform shape that inverts the transfer function, thereby reducing the artifact
duration by 73%.

Deliberate placement of stimulation, recording, and reference electrodes has also been
shown to reduce the stimulation artifact. For example, a symmetric configuration between
stimulation and recording electrodes can present the artifact as a common-mode signal,
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Figure 2.9: Artifact prevention methods. a) The voltage across the stimulation electrode
can be monitored to detect residual charge and apply corrective current pulses [39]. b) H-
bridge architectures re-use the same current source for both phases of biphasic stimulation,
ensuring current matching. Adapted from [42]. c) Equalization can be applied to stimulation
pulses in order to null out the long residual artifacts from the electrode/tissue “channel”.
Adapted from [46]. d) Symmetric placement of stimulation and recording electrodes creates
a common-mode artifact on recording channels, which can be cancelled through differential
amplification. Adapted from [11].

which can more easily be rejected by differential recording amplifiers [11]. Peterson et al.
[47] eliminated a common ground between the recording and stimulation subsystems, allow-
ing the recording reference to track common-mode artifacts. So far, the presented prevention
techniques do not entirely eliminate artifacts, but do ease requirements on front-end acqui-
sition.

Front-end artifact immunity

High fidelity recording of extracellular neural activity requires low-noise instrumentation
to detect neural signals down to microvolt amplitudes. Noise performance trades off with
power consumption, so recording front-ends, consisting of neural signal amplification and
digitization circuitry, typically dominate the overall power of a neural recording system



CHAPTER 2. ARTIFACT-FREE CLOSED-LOOP NEUROMODULATION 21

[75, 76]. As a result, neural recording designs have primarily focused on optimizing power
efficiency to extend battery life, reduce wireless power harvesting requirements, or minimize
heat dissipation [77–80]. As recording systems scale to higher channel counts (> 1000),
power-efficient design is further exacerbated by tight area constraints [49, 81, 82] and high
communication data rates [83].

Due to these constraints, most existing neural recording designs have not considered
concurrent stimulation and are susceptible to artifacts. For example, power-efficient front-
ends typically have a large gain to maximize their sensitivity. A high gain reduces the power
requirements of subsequent processing stages, such as an analog-to-digital converter (ADC),
but also causes the amplifier to saturate when presented with large stimulation artifacts.
Furthermore, conventional front-ends utilize a low frequency high-pass corner to block DC
offsets [78–80], but this results in a slow recovery from saturation due to the large, rapid
transient voltage of a stimulation artifact (Figure 2.10a). Non-linearity from clipping and
long-lasting residual artifacts hide the underlying neural signal.

Figure 2.10: Example artifact waveforms for different front-end artifact resiliency
methods. Recorded analog signals (solid purple) contain artifacts that distort the underly-
ing neural signals (dotted green) to various degrees. a) Conventional low-power front-ends
have a low dynamic range and large input capacitors which saturate easily and discharge
residual artifact slowly. b) Saturation of the front-end can be prevented by increasing the
dynamic range, retaining linearity of superposition of the artifact and underlying neural
signal. c) Rapid recovery from saturation and residual artifact reduces the duration of the
effect of the artifact, minimizing data loss. d) High dynamic range recording and rapid
recovery minimizes the amount of recorded and digitized artifact. Adapted from [32].

Newer front-end techniques have focused on mitigating the effects of stimulation arti-
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facts by preventing saturation. One such technique is to increase the dynamic range of the
recording circuits, enabling them to withstand and record larger voltages without signifi-
cantly increasing the electronic noise (Figure 2.10b). With these front-ends, large artifacts
are fully captured without saturation and clipping. A direct approach is to decrease the
gain in signal amplification, ensuring the amplified artifact can remain in the linear range
of successive amplifier stages [48]. This way signal linearity is maintained and stimulation
artifact can, in theory, be removed digitally in the back-end. However, this method sacri-
fices power efficiency by necessitating a higher supply voltage and a higher-resolution ADC
for signal digitization. Another approach is to reduce the requirement for a large dynamic
range by subtracting, using hardware methods, a model of the artifact at the input during
stimulation to keep signals within a smaller range. The model of the artifact is learned
through template building [49, 50], filtering the stimulation pulse [51], or creating a replica
artifact signal [52]. This technique holds promise, but can degrade the signal-to-noise ratio
(SNR) of the underlying neural signal [51]. Alternatively, disconnecting the front-end via a
series switch at the input prevents artifacts from reaching the recording circuitry [14, 53–56].
However, this approach can suffer from slow transient settling once reconnected.

While spikes may be detected and analyzed even when superimposed on the long decays
following amplifier saturation, these settling responses severely degrade LFP and ECoG
signals. Thus, a resilient recording front-end must also rapidly recover from a saturating
signal, as shown in Figure 2.10c. Resetting the recording circuits at every sample can clear
the saturating charge and eliminate the long transient responses that result. Several designs
add hard reset switches [42, 57] or a controllable weak resistance [36, 58, 84] to reset the
amplifier and rapidly return to the baseline voltage. In some cases, stimulation causes charge
to accumulate on the recording electrode, so some work actively discharges the electrode itself
to an averaged pre-stimulus voltage [36–38].

Johnson et al. [42] combines techniques by resetting at every sample while also increasing
front-end dynamic range, resulting in both saturation prevention and rapid recovery as shown
in Figure 2.10d. The design uses a mixed-signal approach that combines analog and digital
domains, and places the ADC inside the amplifier feedback loop. This has several advantages,
as it reduces normally-saturating signal swings while providing the same overall gain, allowing
for an increased input range of 100s of mV while maintaining power and noise performance.
As a result, recorded stimulation artifacts may be more simple to cancel digitally.

Back-end neural signal recovery

Back-end signal processing techniques can be applied to the digitized signals at the ADC
output to remove remaining stimulation artifacts. We divide these techniques into three
categories: 1) data reconstruction (Figure 2.11, top), 2) artifact subtraction (Figure 2.11,
middle), and 3) component decomposition (Figure 2.11, bottom). Although many of these
techniques originated as offline methods, some have been implemented online for real-time
artifact cancellation. Closed-loop and responsive applications require fast, low-complexity,
and low-power online implementations.
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Figure 2.11: Back-end artifact cancellation methods. These methods attempt to re-
cover the neural signal (green) from the recorded signals with artifacts (purple). a) Simplest
back-end techniques identify the target segments and reconstruct the underlying data us-
ing interpolation. b) Subtractive methods remove artifact by subtracting estimated artifact
waveforms. Estimation is done through template building or adaptive filtering. c) Recorded
waveforms can be separated into artifactual and neural components. Clean neural compo-
nents are used to reconstruct the underlying signal. Adapted from [32].

Reconstruction methods remove samples contaminated with artifacts and replace them
with interpolated values (Figure 2.11, top). Sample-and-hold methods hold over the last
known good sample for the duration of each artifact [60, 61]. This requires only a single
sample of memory, but may cause significant distortion. To reduce distortion, samples may
be replaced by linear interpolation between the nearest clean samples [62], an estimation
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from a learned Gaussian probability density for data segments [63], or a reconstruction using
cubic spline interpolation [64]. Hoffman et al. [63] report an SNR of between 30 and 40
dB for linear interpolation and Gaussian estimation. Although simple to implement, data
reconstruction requires artifact detection. This can be done using blind detection algorithms
[61–63], or using timing indicators from the stimulator [42, 50].

Subtraction and decomposition algorithms assume that the artifact is linearly super-
imposed onto the neural signal and can be subtracted either sample-by-sample or as an
interference source. Theoretically, these algorithms allow for the most accurate recovery of
the underlying signal, crucial for spike detection and sorting.

First introduced as an offline method [61, 66, 67], template subtraction has been imple-
mented in both online hardware [65] and software [50, 59] (Figure 2.11, middle). Templates
may be formed from averaging artifacts [50, 59, 61, 65–69] or fitting artifacts to a predefined
function type [31, 66, 70]. These subtraction techniques suffer from varying artifact mor-
phology resulting from undersampling the artifact shape and misalignment of stimulation
and sample timing [68]. To improve template accuracy, more complex methods resample and
shift the artifact waveforms and templates [68, 69]. Similarly, adaptive filtering estimates
the artifact by filtering the stimulation pulse [51] or the artifact recorded on a neighboring
channel [85], then subtracts it while filter coefficients are adapted. These subtraction meth-
ods can be implemented with low latency, but require artifact detection, template building
and on-board memory for template storage. Templates must be updated often to track any
changes to artifact shape or stimulus waveform, otherwise signal distortion may occur. Often
estimated templates take time to converge, resulting in varying levels of cancellation over
time.

Component decomposition methods separate ensembles of recorded channels into artifact
and non-artifact components and reconstruct a clean neural signal with only the non-artifact
components (Figure 2.11, bottom). Ensemble empirical mode decomposition [71, 72] and
independent component analysis [71, 73] are common approaches to blindly separating arti-
facts from neural source. While these methods offer great accuracy in reconstruction, they
also involve the most intensive computation, requiring iterative processing steps. Therefore,
to our knowledge, they have to date not been implemented for online use.

2.2.3 System-level co-design for effective cancellation

It is clear from the above discussion that individual artifact prevention and mitigation tech-
niques often depend on each other to be the most effective. For example, preventative or
front-end methods alone are not sufficient for full cancellation of stimulation artifact. At the
same time, adequate artifact prevention and front-end mitigation methods are required to
enable back-end cancellation of sampled artifacts. For example, since subtractive algorithms
require linearity of superimposed neural and artifact signals, they must be paired with high
dynamic range front-ends to prevent signal loss. Therefore, back-end signal processing and
resilient front-ends must be co-designed in closed-loop neuromodulation systems for sufficient
artifact cancellation. Culaclii et al. [50] demonstrate a system that implements template
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subtraction in two stages separated between the front-end and back-end. Front-end sub-
traction keeps the recorded signal within the linear range of the amplifiers without requiring
gain reduction, and back-end subtraction cancels any remaining artifact.

The performance required out of stimulation artifact cancellation methods also depends
quite a bit on the target application. For example, back-end data reconstruction methods
lose information during the artifact, degrading SNR and potentially also removing action
potentials which are typically shorter in duration than the artifact. Thus, interpolation
is better suited to lower frequency recordings like LFP and ECoG than spike recordings.
Ideally, this technique is paired with rapid recovery front-ends to keep the artifact short. High
dynamic range is less critical as saturated data is discarded anyway. High dynamic range
front-ends, however, are essential for subtraction and component decomposition techniques,
which require the undistorted artifact waveform.

2.3 WAND: Wireless Artifact-Free Neuromodulation

Device

Although there have been many successful applications, closed-loop neuromodulation is still
very much in its early stages. Progress has often been challenged by the lack of available
tools, with existing systems limited by low channel counts, lack of algorithmic flexibility, and
stimulation artifact. To enable advanced research in closed-loop neuromodulation, there is
a need for a flexible research platform for testing and implementing these various closed-
loop paradigms that is also wireless, compact, robust, and safe. Here, I describe work done
in collaboration with Prof. Samantha Santacruz, Prof. Benjamin Johnson, Dr. George
Alexandrov, Dr. Ali Moin, Fred Burghardt, and Prof. Jose Carmena to build and test
WAND [74]. WAND combines: (1) two custom, 64-channel neural interface application
specific integrated circuits (ASICs) supporting simultaneous low-noise recording and high-
current stimulation, specifically designed to minimize stimulation artifact [42]; (2) flexible
and reprogrammable back-end processing on a SoC FPGA for cancelling residual artifacts,
computing neural biomarkers, running closed-loop algorithms, and controlling stimulation;
and (3) a robust, bidirectional wireless link to a graphical user interface (GUI) for device
configuration and control, as well as data logging. These features are tightly integrated into
a small form factor, low-power device, enabling many proposed closed-loop and responsive
neuromodulation applications, as well as offering a platform for developing new ones.

2.3.1 Application-driven system design

We designed WAND to be a general-purpose tool with immediate applicability in various
research environments. Inclusion of a wide feature-set is balanced by limitations in device
size and power. A useful closed-loop neuromodulation research platform requires unification
of multi-channel recording, biomarker detection, and microstimulation technologies into a



CHAPTER 2. ARTIFACT-FREE CLOSED-LOOP NEUROMODULATION 26

single unit with careful consideration of their interactions. Wireless, multi-channel recording-
only devices capture activity from wide neuronal populations [86, 87], but do not have the
built-in ability to immediately act on that information and deliver stimulation. Several
complete closed-loop devices have been proposed and demonstrated, but in addition to their
susceptibility to stimulation artifacts, they are also limited by low channel-counts [6, 11, 88,
89] and low wireless streaming bandwidth [6, 11, 88–90]. Most recently, a number of fully-
integrated and optimized closed-loop neuromodulation system-on-a-chips (SoCs) have been
presented, but full system functionality has not yet been adequately demonstrated in vivo
[14, 91–96]. While future versions may be paired with miniaturized external battery packs
and controllers, current systems built around these SoCs require large, stationary devices to
deliver power inductively from a close range [91, 93, 94]. This limits studies to using small,
caged animals.

A custom neuromodulation integrated circuit (NMIC) was designed by Prof. Benjamin
Johnson and Cortera Neurotechnologies, Inc. to deliver stimulation pulses ranging from
subthreshold currents (down to 20 µA) to those required by DBS (5 mA), and to record
local field potentials (LFPs) with a bandwidth of up to 500 Hz [42]. We chose LFP as the
signal of interest for its usefulness in medical applications as an indicator of disease [97–
101]. There is also evidence that LFP can be used for motor decoding in brain-machine
interfaces [25, 102–105], with comparable accuracy and better longevity than spike decoders
[25]. This signal is also extremely useful to understanding neural processing and incredibly
relevant for a variety of basic neuroscience studies, from investigating how neural oscillations
coordinate movement [106–108] to cued transitions between dynamic states in cortico-basal
ganglia circuits [109] and working memory [110, 111]. Finally, the lower (1 kHz) sampling
rate required for LFP recording utilizes lower wireless bandwidth for real-time streaming,
allowing the use of low-power, off-the-shelf radios.

Our decision to target LFP recording and DBS-like stimulation settings informed our
selection of stimulation artifact mitigation and cancellation methods. Since LFP is a lower
bandwidth signal, it is especially important that the slowly-decaying residual artifacts be
reduced to a minimum. The NMICs were designed with improved stimulation and recording
architectures to actively clear large residual artifacts and minimize their effects on the front-
end circuits [42]. This then motivated our implementation of back-end linear interpolation
in an on-board SoC FPGA to completely remove stimulation artifacts in real time. In par-
ticular, the reduced artifact duration allows for a computationally inexpensive but effective
back-end cancellation solution at the cost of losing only one or two samples. Below, we show
that such information loss has very little effect on the LFP power spectrum, which is our tar-
get neural biomarker. These innovations allow for online, real-time biomarker computation
for closed-loop stimulation.

2.3.2 Device architecture

WAND was designed in collaboration with Prof. Benjamin Johnson, Dr. George Alexandrov,
Dr. Ali Moin, and Fred Burghardt. WAND components and architecture are shown in Figure
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2.12. For experiments with the rhesus macaque, the form factor was designed to fit into
the polyetherimide housing for a custom chronically implanted microelectrode array (Gray
Matter Research, Bozeman, MT). The device has a board area of 10.13 cm2 and weight of
17.95 g together with a rechargeable 500 mAh Li-ion battery pack, allowing 11.3 hours of
continuous, wireless operation (Figure 2.12a). The main components of WAND are the pair
of custom NMICs, an SoC FPGA, a radio SoC, and support circuitry for power regulation
and programming (Figure 2.12b, d). Most of these components have also been carried over
into an even smaller version of the device, the WANDmini (Figure 2.13), which sacrifices
one of the NMICs for a smaller, more conventional footprint.

Each NMIC consists of 64 recording channels and 4 stimulators that can address any of
the 64 channels, meaning that stimulation can occur simultaneously on up to 8 channels by
leveraging stimulators across the two on-board NMICs. Multi-site stimulation is desirable
for implementing specific spatiotemporal patterns of stimulation, with many recent studies
performing stimulation on 2 – 8 channels simultaneously [112–117]. Using WAND, the stim-
ulation channels can be dynamically assigned, thus allowing this device to be utilized for
multi-site stimulation on up to 8 channels concurrently in a highly flexible manner. Ulti-
mately, stimulation can be delivered using an open-loop paradigm or a closed-loop approach
that relies on continuous sensing of on-board computed biomarkers.

Stimulation parameters are rapidly reprogrammable (Figure 2.14) by writing to regis-
ters on the NMIC through commands transmitted from a GUI or automatically based on
calculations performed on-board. All stimulation settings listed in Table 2.2, as well as se-
lection of stimulation sites and triggering of pulses, can be set through the same interface. A
new setting can be preloaded while stimulating with a previous setting, potentially reducing
latency between biomarker state detection and the resulting stimulation update.

Unlike conventional neural interface ICs, the NMICs enable simultaneous low-noise, low-
power neural recording of LFP with high-compliance electrical stimulation (Figure 2.12c).
The NMIC prevents large amplitude residual artifacts by employing stimulators with highly
accurate charge balancing [42]. Accurate charge balancing is achieved by reusing the same
current source for both phases of a biphasic pulse and a return-to-ground stimulator archi-
tecture. To address both direct and residual artifact, the NMIC recording front-ends are
designed simultaneously for low noise (1.6 µVrms mean channel noise) recording and a large
linear input range of 100mV. The input range is over 10 times larger than conventional de-
signs [76, 78] and avoids saturation in the presence of a large stimulation artifacts (10’s of
mV) while still being able to resolve µV level neural signals. This large range of resolvable
signals is achieved with a mixed-signal architecture that integrates the analog-to-digital con-
verter (ADC) into the feedback loop, thereby reducing the required gain and signal swings.
The architecture also resets at every sample, enabling memory-less sampling and rapid re-
covery from stimulation artifacts [42]. Therefore, stimulation artifacts do not persist beyond
the samples when stimulation is occurring, and a minimal amount of data is lost when using
reconstructive back-end cancellation methods such as interpolation.

All 128 channels of neural data from both NMICs are sampled, digitized (15 bits, 1 kS/s),
and serialized on chip and transmitted to the on-board SoC FPGA with a 166 MHz Advanced
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Figure 2.12: WAND system architecture. a) The 3D computer-aided design (CAD)
model of WAND with the primate headstage and battery pack, shown without polyether-
imide case. b) Top- and bottom-view photographs of the WAND circuit board showing its
relevant subsystems and dimensions. c) Micrograph of custom neuromodulation integrated
circuit (NMIC) with annotated subcircuits: DC-DC converters, stimulation core, bandgap,
digital core, 64 front-ends and stimulation multiplexer (stim mux). d) Functional diagram
of the WAND system showing data and power connections on the main device board, and
connections to the microdrive electrode array, battery, and a wireless base station. Adapted
from [74].

RISC Machine (ARM) Cortex-M3 processor (SmartFusion2 M2S060T, Microsemi) acting as
a master module. Custom software can be developed in the C programming language for
a variety of reasearch applications, enabling the use of WAND as a general purpose tool.
Additionally, custom design of the FPGA fabric can allow for development of more energy-
efficient implementations of algorithms in which higher performance is crucial. The FPGA
forms a custom 2 Mbps digital signal and clock interface with each of the NMICs, aggregating
data and commands in hardware first-in first-out memories (FIFOs) in both uplink and
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Figure 2.13: WANDmini system. Top- and bottom-view photographs of the WANDmini
circuit board, with US quarter coin for scale.

Figure 2.14: Rapid stimulation setting updates. Stimulation settings can be updated
every pulse at maximum frequency (255 Hz). Additionally, multiple current sources can be
multiplexed to a single electrode to create higher amplitude stimulation or complex wave-
forms, for example. Adapted from [74].

downlink directions [118]. Software running on the included Cortex M3 microprocessor
then aggregates neural and other sensor data, cancels stimulation artifact, selects a subset
of data to be streamed back to the base station, and runs closed-loop neuromodulation
algorithms (Figure 2.12d). The FPGA fabric and Cortex M3 software are reprogrammable
through a serial wire debug interface allowing customization for different applications. The
SoC FPGA also interfaces with a 2 Mbps 2.4 GHz Bluetooth low-energy radio (nRF51822,
Nordic Semiconductor) via serial peripheral interface (SPI) running at 3.08 MHz to form a
bidirectional, half-duplex link with the base station and GUI, allowing for communication
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Parameter Value Unit

Stimulation subsystem
Nominal supply voltage 3, 6, 9, or 12 V
Stimulation compliance 11.8 V
Number of stimulation units 4
Number of addressable channels 66
Stimulation settings
Stimulation current resolution 20, 40, 60, or 80 µA
Maximum stimulation current 5.04 mA
Pulse duration resolution 15.625 µs
Maximum pulse width 500 µs
Interphase gap 31.25 - 1000 µs
Short time 31.25 - 1000 µs
Frequency 15-255 Hz

Adapted from [32].

Table 2.2: NMIC stimulator programmability.

up to 2 m from the subject. We developed a custom radio protocol using a time division
duplex scheme, allowing low-bitrate commands to be sent from the base-station to the board
and high-bitrate neural recordings to be continuously streamed out for logging. The exact
division between uplink and downlink can be adjusted to suit the application and streaming
state, with a maximum effective bitrate of ≈1.6 Mbps. Two streaming modes are available.
In open-loop mode, 96 channels of data are streamed to the base station. In closed-loop
mode, only the control channel and one of the stimulation channels are streamed, along with
the calculated power spectral density.

A wireless base station consisting of a radio (nRF51822 Evaluation Kit, Nordic Semicon-
ductor) and an SPI-to-USB bridge (CP2130EK, Silicon Labs) is used to communicate with
WAND (Figure 2.12d). A custom Python GUI was developed to control and monitor data
streamed from WAND on a PC (Figure 2.15). Users can setup the system for multiple use
cases, visualize real-time neural recordings, configure all NMIC settings, and configure the
closed-loop classification algorithm. Recorded data is saved in HDF5 data format along with
relevant use case settings, NMIC configurations, and other notes for the recording.
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2.4 In vivo characterization of WAND

To demonstrate the various functions of WAND, we performed a series of in vivo experiments
with a non-human primate (NHP) that validate long-term, high-fidelity, and wireless multi-
channel recording; real-time, complete removal of stimulation artifacts for accurate recovery
of neural signals; and on-board biomarker detection for closed-loop stimulation to disrupt
movement preparatory activity during a delayed-reach task. These experiments were led by
Prof. Samantha Santacruz, were performed in compliance with the NIH Guide for the Care
and Use of Laboratory Animals, and were approved by the University of California, Berkeley
Institutional Animal Care and Use Committee (protocol AUP-2014-09-6720).

2.4.1 High-fidelity, multi-channel wireless neural recording

To evaluate the quality of recordings made using WAND, we recorded 96 channels of LFP
activity from a male rhesus macaque (Macaca mulatta, weight 9.1 kg, age 9 years) using
a chronically implanted microdrive electrode array (Gray Matter Research, Inc.; Bozeman,
MT, Figure 2.12a) with access to both cortical and subcortical nuclei (Figure 2.16a). The
device was head-mounted, and electrical contact with the electrodes was achieved through
a PCB, while Omnetics headers were used to connect the PCB to neural recording systems
such as WAND or standard tethered electrophysiology equipment. We compared WAND
recordings with sequentially recorded neural data from a wired, state-of-the-art, commer-
cial neurophysiology system (Tucker-Davis Technologies [TDT], Alachua, FL). Respective
recordings from each system have qualitatively similar signal properties, as assessed by com-
puting the power spectral densities (PSD) of the recorded data (Figure 2.16b, c). The WAND
recordings exhibit lower 60 Hz interference due to the lack of long interface cables and better
isolated recording references.

To demonstrate robust detection of biomarkers in WAND recordings and establish a
baseline for neuromodulation experiments, we recorded LFP activity during a standard self-
paced, center-out joystick task (Figure 2.17a, b). For this task, the subject was trained to
use a joystick to control a cursor on a computer screen and move to circular targets presented
on the screen. The joystick was affixed to the front of the primate chair and the subject was
free to use either hand at any point in the task to control the joystick. Each trial began
with the subject holding the cursor at a center circular target for 500 ms. Following this
hold period, a peripheral target appeared at one of eight target locations equally distributed
around the center target at a distance of 10 cm and the center target was removed from the
screen, acting as a “go cue”. The subject would then move the cursor (i.e. “reached”) to the
peripheral target and held at this target for another 500 ms. If successful, the subject was
administered a small juice reward lasting 800 – 1000 ms. A trial was considered successful
if the subject completed the two hold periods within a 10 s period.

During this behavior, ongoing beta and high-gamma rhythms are inversely modulated
by task-related periods of movement (Figure 2.17c, d). Beta band oscillations are found to
emerge during specific motor actions and notably prior to instructed reaches or movements
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Figure 2.16: Wireless, multi-channel recording with WAND. a) Representative 3-
second segments of 96 channels of simultaneous LFP recordings taken from one NHP during
freely moving behavior. b, c) Comparison of mean PSD (Welch’s method, one 5 min record-
ing, 512 ms windows, 256 ms overlap) from channel 20 (b) and channel 7 (c) for recordings
taken from WAND and subsequent recordings taken from a commercial wired neurophysi-
ology system (TDT). Shaded area represents the standard deviation (s.d.). Adapted from
[74].

[107, 119, 120]. In pre-motor and motor areas, this rhythm has been linked to neural activity
related to motor preparation [121–124]. The subject had an average reaction time (RT) of
183.3 ± 4.8 (standard error of the mean [SEM]) ms across 400 trials. For LFP signals
recorded from pre-motor and motor areas, we found that RT was significantly correlated
with the average power of beta band activity around the Go Cue (Pearson’s correlation: r
= 0.12, p = 0.03).

To validate long-term, wireless system functionality, we performed unconstrained, over-
night recordings for five nights in the subject’s home cage, recharging the battery between
each session (Figure 2.18a). Overnight recordings were carried out with the subject moving
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Figure 2.17: LFP recordings during center-out joystick task. a) Diagram of the
center-out joystick task with timeline of task periods for movement and reward. The orange
patch on the NHP’s head represents the location of the WAND device and headstage implant.
b) Representative LFP recordings from three channels during the center-out task. c) Trial-
averaged (n = 400) beta (13 – 22 Hz) and high-gamma (70 – 200 Hz) power aligned to the
Go Cue during the center-out task. Shaded area represents the standard error of the mean.
d) Beta power aligned to the Go Cue. Each row represents activity from a single trial. Trials
are organized by the time to Target Hold following the Go Cue. Adapted from [74].

freely throughout the home environment and were typically taken from approximately 8 pm
to 6 am. The subject was pair-housed with an NHP cagemate and was in social contact
with the cagemate throughout the recording session. It worth noting that the dimensions
of the homecage environment could accommodate up to four NHPs, and thus it is feasible
to utilize WAND for recording from a small population of socially housed animals without
compromising the streaming wireless signal integrity. The base station receiver was mounted
on the ceiling approximately 0.5 m from the top of the cage and was connected to a computer
running the custom GUI application for acquiring the neural recordings. We recorded on
average of 10.2 consecutive hours per night, with a mean packet error rate (PER) below
0.5% and median PER below 0.1%, where each transmitted wireless packet contained 1
ms of neural data from all streamed channels. Offline analysis of the data revealed useful
sleep-related biomarkers. Delta (0 – 4 Hz; Figure 2.18b) and theta (4 – 7 Hz; Figure 2.18c)
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frequency bands are known to have elevated power during sleep states relative to wake states
[125, 126]. K-complexes are sleep-specific phasic waveforms that occur spontaneously and
are observed through the obtained neural recordings during epochs of increased delta power
(Figure 2.18d-g), consistent with classification of sleep state intervals.

2.4.2 Artifact cancellation performance

True simultaneous recording and stimulation is enabled through co-design of the NMIC ar-
tifact prevention and mitigation methods with back-end cancellation algorithms running on
the on-board microcontroller. To demonstrate WAND’s ability to recover neural signals from
stimulation artifacts in real-time, we performed experiments delivering open-loop stimula-
tion while recording LFP. There were two types of microelectrodes used in the semichronic
array. The first were tungsten electrodes with epoxylite insulation (500 – 800 kOhm; FHC),
a standard electrode type for acute neural recording experiments. The second type were
platinum-iridium (PtIr) electrodes with parylene-C insulation, which are standard for neuro-
modulation experiments (200 – 350 kOhm; Microprobes; Alpha Omega). Electrical stimu-
lation in this study was exclusively performed using the PtIr microelectrodes. Stimulation
electrodes were chosen to be the same ones for the chosen closed-loop experiment (described
in the next section). During the open-loop stimulation experiments, the monkey was in-chair
and did not perform any tasks. For each set of stimulation parameters, we recorded three
consecutive 30-second segments of LFP: (1) without stimulation, (2) with stimulation turned
on but without back-end artifact cancellation, and (3) with artifact cancellation turned on
(Figure 2.19). Biphasic stimulation, with amplitudes swept in 40 µA steps between 40 µA
and 160 µA, were delivered for pulse widths of 125 µs and 62.5 µs and with 100 Hz and 20
Hz stimulation frequencies.

Artifacts recorded with back-end cancellation disabled were sorted offline into 10-sample
windows aligned with the sample 0 being the clean sample before artifact starts and sample
1 being the first flagged sample of the artifact (Figure 2.20b). These segments were used
to analyze the size and consistency of recorded artifacts. Offsets were then subtracted from
each window such that sample 0 was 0 V. Artifact amplitude was calculated as the average
sum of the magnitudes of samples 1 and 2. Artifact duration was then calculated as the
average number of samples for which the magnitude was greater than -60 dB of the maximum
calculated artifact amplitude.

During the train of identical bipolar, biphasic stimulation pulses, the segment of LFP
with uncancelled artifact (Figure 2.19, middle section) demonstrated varying artifact mor-
phology due to the non-integer ratio between the sampling rate and the stimulation fre-
quency (99.8482 Hz shown) (Figure 2.20a). Stimulation pulses occurring completely within
a single sample integration window caused only a single sample direct artifact, while pulses
occurring at the boundary between two integration windows caused the direct artifact to
last two samples. We calculated averaged templates of single- and double-sample artifacts
(Figure 2.20b) for varying stimulation amplitudes and pulse widths, and confirmed a linear
relationship between these parameters and the artifact amplitude (Figure 2.20c). For all



CHAPTER 2. ARTIFACT-FREE CLOSED-LOOP NEUROMODULATION 36

Figure 2.18: Overnight, untethered recording of brain signals from an NHP during
sleep. a) Schematic diagram of in-cage wireless recordings. b, c) Delta (0.5 – 4 Hz) (b) and
theta (4 – 7 Hz) (c) power from two-hour segment of overnight recording beginning at 8:51
pm. The powers are significantly correlated as shown inset in (b) (Pearson’s correlation: R2
– 0.61, p ¡ 0.001). K-means was used to classify the activity into states of increased (light
blue background) and decreased (white background) delta and theta activity (n = 14061
observations). d, e, f) Example K-complexes from the caudate (d, e) and from the anterior
cingulate cortex (ACC) (f). g) Spectrogram of activity from channel 54 during the same
time window as the waveform shown in (f). Increased delta power occurs coincidently with
the K-complex. Adapted from [74].

stimulation parameters within our protocol, recorded direct artifacts on the non-stimulating
electrodes remained well within the 100 mV linear input range of the front-end amplifiers,
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Figure 2.19: Stimulation artifact analysis and on-board cancellation experiment.
One second segments of raw signals recorded during different epochs of the open-loop stim-
ulation experiment: baseline LFP with no stimulation (white), stimulation with no artifact
cancellation (red), and stimulation with artifact cancellation (blue). The inset plots show
zoomed 0.4s segments of the LFP during transitions from no stimulation to stimulation
without artifact cancellation (left inset), and from stimulation without artifact cancellation
to stimulation with artifact cancellation (right inset). In this example, biphasic pulses were
delivered at 100 Hz with 160 µA amplitude and 125 µs pulse width per phase. Adapted from
[74].

despite the high voltages ( 10 V) induced on the stimulating electrodes, thus demonstrating
saturation-free recording in the presence of stimulation.

Following both single- and double-sample direct artifacts, the residual artifacts were very
small and brief, visible only in the averaged templates (Figure 2.20b, inset). Following a
single-sample direct artifact, the residual artifact was already suppressed to within -60 dB
of the peak amplitude by the following sample, and to within the electronic noise floor of
1.6 µVrms by the second sample. Residual artifacts following double-sample direct artifacts
were fully suppressed below the noise floor. These results demonstrate that the recording
front-ends rapidly recovered from stimulation pulses, minimizing data distortion.

The residual stimulation artifacts still caused broadband contamination of the recorded
spectrum, which we quantified with the ratio, R = 32.78 dB, of signal power integrated
from 1 – 200 Hz of LFP during stimulation to baseline LFP (Figure 2.21a, b). Since the
recorded artifacts were short in duration (1-2 samples), we chose to implement a method
of linear interpolation for artifact cancellation in the back-end [62]. Samples coinciding
with stimulation pulses were flagged by the NMIC, ensuring accurate detection of artifacts.
Samples were then buffered in the microcontroller, and artifacts were removed by linearly
interpolating between the pre-artifact sample and the sample following the maximum possible
direct artifact duration (Figure 2.20a).

While more sophisticated techniques may be employed, we found that this simple linear
interpolation was sufficient to suppress the artifact power below the neural signal spectrum.
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Figure 2.20: Stimulation artifact morphology analysis. a) Different cases of relative
phase between stimulation pulse and sampling periods for samples St at time t (left) with
example resulting samples St, artifact flags, and cancelled samples using linear interpolation
(right). b) Averaged templates of single- (blue) and double-sample (red) flagged artifacts.
The inset is a zoomed portion showing decay of artifact to within -60 dB of the artifact peak
(shaded gray). Error bars are the SD (n = 2106 for single-flag and n = 897 for double-flag).
c) Average amplitude of artifact from stimulation amplitudes between 40 µA and 160 µA
and pulse widths of 125 µs (blue) and 62.5 µs (red). Error bars are the SD (n = 3003
artifacts). Adapted from [74].

Interpolation over two samples at 100 Hz in baseline LFP data without stimulation caused
no significant degradation of the spectrum (R = 0.0091 dB). Furthermore, this method did
not depend on the actual values of the artifacts and was not affected by the varying artifact
morphology, which would have complicated and increased convergence times of template
subtraction and adaptive filtering techniques. With on-board artifact cancellation enabled,
we were able to recover the baseline LFP spectrum for signals recorded during the simulation
pulse train with R = -0.60 dB (Figure 2.21a, b).

2.4.3 Real-time in vivo biomarker extraction and closed-loop
experiment

To further demonstrate WAND’s ability to mitigate stimulation artifacts in real-time, and
to perform responsive stimulation using on-board computations, we designed a closed-loop
stimulation experiment to disrupt movement preparatory activity during a delayed-reach
task (Figure 2.22a). Previous work in macaque monkeys has shown that microstimulation
delivered to dorsal premotor (PMd) and primary motor (M1) cortical sites during the delay
hold period of a delayed-reach task disrupts preparatory activity and causes an increase in
RT [123]. In the study, stimulation was timed synchronous to the task and was not triggered
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Figure 2.21: Stimulation artifact cancellation in frequency domain. a) Spectrogram
of full 90-second recording during the different stimulation epochs for the example in Figure
2.19. b) Welch power spectral density estimate for each 30-second epoch for the example in
Figure 2.19. Adapted from [74].

on recorded neural activity. We reproduced this result by detecting periods of preparation
(holding) prior to movement using recorded neural activity in M1 and delivering stimulation
to electrodes in PMd in response. In this way, stimulation was automatically controlled by
WAND, running in a closed-loop manner relying solely on neural activity and completely
separate from the task.

Beta band activity (13 – 30 Hz) is known to reflect movement states, with lower beta
band power associated with periods of movement and higher beta band power associated with
the absence of movement. Thus, we chose beta band power as the WAND control signal
for closed-loop classification of hold periods prior to movement. In this way, closed-loop
operation of WAND was completely agnostic to the behavior task states, and stimulation
delivery relied solely on the control signal. We heuristically selected a policy of delivering a
preconfigured stimulation pulse train when both the beta power and it derivative (calculated
over 512-sample windows with 256-sample overlap) exceeded programmed thresholds during
the delayed-reach task (Figure 2.22b). Stimulation was enabled when both the beta power
exceeded 33 µV-rms and the delta of the beta power exceeded 10.45 µV-rms.

The pulse train parameters were selected to closely match values used in previous work
(333 Hz for 57 ms) [123] within WAND specifications. Biphasic, bipolar stimulation was
delivered to a pair of PtIr electrodes in PMd. Stimulation pulses were 160 µA in amplitude
with 125 µs pulse widths and 31.25 µs shorting phase. Pulse trains were 18 pulses long and
delivered at 256 Hz. To avoid stimulation multiple times within the same delay hold period,
our policy also incorporated a “dead time” of three calculation periods, or 768 ms. Neural
activity was recorded throughout the task, and while stimulation turn-off could be based
on neural signature, we chose to adhere to durations used in previous work to demonstrate
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Figure 2.22: In vivo closed-loop experiment. The goal was to disrupt movement
preparatory activity during a delayed-reach task. a) Description of closed-loop paradigm,
where recorded activity in M1 is used to control stimulation in dorsal premotor cortex (PMd).
b) Diagram of the delayed-reach task and the closed-loop algorithm implemented during this
task. Stimulation is delivered when beta power and its derivative exceed their thresholds.
Adapted from [74].

reproducibility of an established result.
Post-hoc analysis showed that RT increased significantly in trials when stimulation was

delivered during the hold period prior to the Go Cue, relative to trials when it was not
(Figure 2.23a). The increase of 22.0 ms in average RT, consistent with previous results for
microstimulation delivered in PMd, and the change in the distribution of RT (Figure 2.23b)
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Figure 2.23: Effect of closed-loop stimulation on NHP reaction time. a) The mean
RTs for trials (n = 997) in which stimulation was delivered successfully during the hold
period compared to when it was not. Error bars are the SEM. Significance was determined
using a two-sided Mann-Whitney U-test (U = 44193.5, n1 = 131, n2 = 763, *p = 0.003).
b) Normalized RT histograms and log-normal fit to approximate the respective probability
density functions. Adapted from [74].

indicate that neural preparatory activity was successfully disrupted using our closed-loop
neuromodulation approach. This functional change in behavior serves as a representative
demonstration of how WAND may be used to compute biomarkers in real-time as part of a
closed-loop stimulation paradigm and perform online stimulation artifact mitigation.

2.5 Discussion

Closed-loop neuromodulation holds the promise of transforming disease treatment to be per-
formed in an intelligent, patient-specific, and on-demand manner using devices that learn
neurological biomarkers and automatically adapt stimulation for optimized therapies. To
enable this vision, future devices will have hundreds to thousands (or more) of recording and
stimulation channels with embedded signal processing and intelligence. In this chapter, we
first reviewed the state-of-the-art for addressing one of the numerous challenges in realizing
such devices: the ability to perform recording, stimulation, and computation simultaneously
and unhindered by stimulation artifact. Through this review, we conclude that an optimized
system must combine preventative, front-end, and back-end techniques, which, in combina-
tion, we believe are key to obtaining the best results in recording the full underlying neural
signal during stimulation and thereby enabling true closed-loop neuromodulation.

We then shared our approach to this problem in demonstrating WAND, a small form
factor, wireless neuromodulation device enabling simultaneous recording and stimulation for
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a variety of research purposes. Artifact cancellation is made possible due to the full-system
co-design. Using custom NMIC recording front-ends [42] with wide dynamic ranges and fast
recovery from artifacts, as well as accurate timing information indicating which samples are
affected by both direct and residual artifacts, we can design simple, yet effective cancellation
algorithms in the digital back-end using linear interpolation. In all, integration of a cus-
tom ASIC with an on-board FGPA and radio enables high-quality, long-term multi-channel
recording and stimulation during free behavior, full cancellation of stimulation artifacts, flex-
ible programmability, and low-latency processing for delivery of closed-loop microstimulation
based on detected biomarkers.

Table 1 summarizes WAND system specifications and compares them to other state-of-
the-art closed-loop neural interfaces that have been fully packaged and validated in vivo at
the time of original publication. We view WAND as a deployable research tool ready for use
with large animals and potentially humans, and we therefore limit our comparisons to similar
devices that can operate fully wirelessly and autonomously to make immediate impact on
scientific and clinical discovery. Our criteria include fully on-board recording, computation,
and stimulation ability; wireless data streaming or on-board memory for data storage; and
an implantable or wearable power source. The Neurochip-2 [88], PennBMBI [89], NeuroPace
RNS [6], and Activa PC + S [11, 127, 128] devices allow for flexible biomarker detection
and triggered stimulation, but with a low number of channels. A device developed at the
University of Toronto [44, 90, 129] enables recording and stimulation on more channels, but
all of these devices still stream data at a low rate, preventing large-scale multi-site analysis.
WAND improves upon these limitations as the only device to our knowledge that incor-
porates a large number of recording and stimulation channels, have a wireless data rate to
support a large number of streaming channels, and also provide closed-loop neuromodulation
capabilities. It is also, to our knowledge, the only neural interface system that actively can-
cels stimulation artifacts through both hardware and software techniques for completely
artifact-free recording during stimulation. Although the Neurochip-2 and Activa PC+S de-
vices utilize some hardware and experimental setup techniques, large residual artifacts still
appear to effect performance during stimulation [11, 88].

In addition to the systems described in Table 2.3, a number of new, comparable systems
have emerged since our initial demonstration of WAND that have made further progress the
in field of closed-loop neuromodulation. A wide range of system-on-chip integrated circuits
have been demonstrated with concurrent, full-fledged recording, stimulation, and biosignal
processing and classification capabilities [132, 133]. Medtronic has also since received FDA
approval for its new Percept PC DBS device with “BrainSense” technology, allowing it to
simultaneously record and deliver DBS using specially designed leads [7]. With the Per-
cept PC, clinicians will be able to monitor and make better judgements on the quality of
individualized DBS treatment.

The experiments shown here are intended to outline and demonstrate the capabilities
enabled by WAND, paving a path toward use of this technology as a tool in clinical and
neuroscientific research. Even in it’s current configuration running the presented closed-loop
algorithm, it has the potential to already be applicable in human research. For example, in
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Parkinson’s Disease patients treated with DBS, a spectral peak biomarker linked to dyskine-
sia, an adverse effect of DBS therapy, has been discovered [97]. The closed-loop paradigm we
demonstrate in this work can be easily modified for this application, as our current biomarker
detection algorithm can already be used to sense this spectral peak. Modifying the control
policy to reduce stimulation amplitude rather than trigger stimulation when the peak is
detected can thereby reduce the incidence of this undesirable side effect.

Additionally, the WAND platform, in its various form factors, has already been applied to
other biosignal recording and classification applications. WANDmini has been used in a non-
invasive neural interface for recording in-ear electroencephalography (EEG) [1]. The system
has also been adapted for recording surface electromyography (EMG) for classification of
muscle activity in hand gesture recognition [134, 135]. In the next chapter, I will describe
how we have leveraged the in-sensor compute capabilities to implement a learning algorithm
complete with on-board model training and updates for gesture recognition in a wearable
form factor.
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Chapter 3

Real-Time, In-Sensor Gesture
Recognition

Hand gesture recognition based on recorded muscle activity has many applications in human-
computer interaction and can potentially also be of use in controlling active prosthetics for
rehabilitation. A practical, wearable device for performing gesture recognition should be en-
ergy efficient, light-weight, and unobtrusive, all while providing good classification accuracy
using adaptable online machine learning models. In this chapter, I first cover the basics of
hand gesture recognition using surface electromyography, as well as some challenges affect-
ing the robustness of classification algorithms. I then introduce the FlexEMG system, which
combines: (1) high channel count, high density electromyography recording using a flexible,
screen-printed electrode array with (2) in-sensor signal processing and machine learning for
real-time gesture recognition and incremental updates to the classification model. My collab-
orators and I utilize a brain-inspired hyperdimensional (HD) computing classification model,
which allows us to implement the entire flow of model training, inference, and updates all in
the on-board hardware. We demonstrate real-time classification performance in a series of
gesture recognition tasks within various situational contexts.

3.1 Introduction

Hand gestures are an integral part of human-to-human communication and, as such, have the
potential to be leveraged for more natural human-computer interaction (HCI), providing a
fast and effective physical medium for communicating with and controlling intelligent devices.
Accurate and efficient gesture recognition enables intuitive control for applications ranging
from controlling poly-articulated robotic hands [136] to interacting with mobile devices and
game interfaces [137].

Various methods exist for detecting or inferring hand gestures, as shown in Figure 3.1.
A common method employed in many commercial devices (such as the Microsoft Kinect
or the Leap Motion Controller [138]) is based on vision and depth sensing using external
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Figure 3.1: Various modalities for hand gesture recognition. a) Vision-based methods
rely on external sensors to reconstruct a user’s position and movements. b) Glove-based
methods require a user to wear sensors directly on their digits to sense motion in the joints.
c) Inertial-based methods sense coarse movements through small, wearable sensors. d)
Electromyography (EMG)-based methods sense muscle activity and the users intentions.

sensors (Figure 3.1a). Using LIDAR, high quality reconstructions of a user’s hand, arm, or
additional body parts can be generated to then infer the gesture being performed. While
highly accurate, these vision-based methods rely on heavy computation and external sensors
which make them inappropriate for wearable applications. “Cyber-glove” systems can be
worn on the hand and fingers to directly detect their motions [139, 140], typically using
resistive force or strain sensors to measure joint angle (Figure 3.1b). These systems offer
accurate gesture recognition in a wearable form-factor, but can be bulky and obtrusive from
covering the entire hand. Inertial sensors can also be used to classify gestures based on motion
sensing using a combination of accelerometers and gyroscopes (Figure 3.1c) [141]. Although
the sensors are very small, they are typically worn on the wrist, and thus cannot sense
finer digit motions. Additionally, inertial sensors are typically better suited for classifying
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dynamic gestures and movements rather than static postures. This makes inertial sensing a
good auxiliary input for hand gesture recognition, and it is often incorporated in addition
to other gesture sensing modalities [3, 141].

In comparison to the other listed methodologies for gesture recognition, methods based
on electromyography (EMG) (Figure 3.1d) may offer a good balance of accuracy, wearability,
and unobtrusiveness. Hand gestures and movements are produced through contraction and
relaxation of various groups of muscles in the hand and forearm. These muscles are composed
of groups of muscle fibers which are innervated and activated by motor neurons, which in
turn are innervated by other neurons in a person’s nervous system. The basic unit of this
signal chain is called the motor unit, which consists of a single motor neuron and the specific
group of muscle fibers it excites (Figure 3.2) [142]. The target signal of EMG is the motor
unit action potential (MUAP), which is a summation of the motor neuron action potential
and the responses of the innervated muscle fibers. It is possible to use penetrating electrodes
implanted intramuscularly to record individual MUAPs, much like single-unit spike recording
from the central nervous system as described in Chapter 2.

Figure 3.2: Basic motor unit of neuromuscular system. A lower motor neuron originat-
ing in the spinal cord innervates various muscle fibers within a muscle and electrochemically
excites them.
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Hand gestures may be recognized based on the measured activity of large populations of
these motor units. In fact, unlike the methods described above which measure the gestures
and the resulting motion, EMG-based gesture recognition more directly measures the cause of
gestures and potentially even the intent behind them. The ability to accurately classify hand
gestures and movements using electromyography depends heavily on the instrumentation
used to record EMG signals, as well as the algorithms for decoding or recognizing patterns
within the activity.

3.1.1 Electromyography systems and devices

The most basic, but also the most accurate, way to measure electromyography is to use in-
tramuscular electrodes connected to an amplifier for recording of individual MUAPs (Figure
3.3). There are many drawbacks to this, including a high level of invasiveness and requiring
many transcutaneous wires to route from the electrodes to external acquisition equipment.
One situation in which this is not an issue is when EMG recording is added as a subsystem
part of an already highly invasive procedure: intramuscular EMG can be used to allow pa-
tient control of bone-implanted osseointegrated prosthetics [143]. In these systems, leads to
intramuscular electrodes can be routed through channels already part of a larger implanted
system.

Figure 3.3: EMG electrode recording sites with various levels of invasiveness.

Alternatively, intramuscular EMG recording can be improved through the use of wireless
interfaces, precluding the need to route signals through tissue and skin [144–146]. Wireless
power and communication in these subdural implants improve stability for chronic use with
lower risk of infection, but the invasiveness of implantation is still a barrier to widespread
adoption.

Surface EMG is a non-invasive method of acquiring motor unit signals by placing record-
ing electrodes on the surface of the skin rather than inside or on the surface of the muscles
(Figure 3.3). This enables EMG recording to be used in wearable devices rather than im-
plants, opening it up to many new applications. Traditionally, EMG is recorded using wet
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electrodes with an electrolytic gel for improved impedances. In laboratory settings, these
electrodes are connected to bench-top biosignal acquisition units which enable multi-channel
recordings from multiple electrode sites.

When limited to just a few electrodes, a lot of care must be taken for optimal electrode
placement [147]. A few shortcomings of surface EMG, as compared to implanted or intra-
muscular EMG, arise because measurements of the electrical activity are made through skin
and tissue. This leads to a great deal of attenuation of the signal, reducing MUAP ampli-
tudes from millivolts down to 10’s of microvolts or less. Electrodes must be placed directly
over muscles to maximum amplitude signals, and recordings are limited to those superficial
muscle fibers. Signals from deeper targets are blocked and attenuated far more. Further-
more, the distance makes it impossible to single out individual motor units for recording. A
single electrode will instead measure the superimposed activity of a large number of motor
units in its vicinity, including those from multiple different muscles. This crosstalk makes it
difficult to directly correlate the signal from a single electrode with the activity of a single
muscle or group of motor units.

Thus, slight changes in electrode positioning can greatly affect both the signal quality and
the targeted structures of surface EMG recordings. Recently, high-density surface EMG has
been proposed to alleviate the problem (Figure 3.4a). Instead of deliberately and precisely
placing a few electrodes, a large grid of densely-packed electrodes (> 50) can be positioned
over a general area on the skin. While typical individually placed electrodes can measure over
25 mm in diameter, dense electrode arrays can have recording sites every few millimeters.
These sensors require custom-made electrodes acquisition setups to provide tight enough
grouping and handle recording the high bandwidth signal from all of the channels [148, 149].
Since all of the signals are simultaneously captured, it is now up to the researcher (or back-end
algorithm) to decide which channels contain important information for the task. Channels
can be dropped using feature selection techniques, but now the burden of precise placement
is no longer on the wearer properly donning the device. Furthermore, useful information can
be extracted from the higher channel count, enabling detection of new muscle characteristics
[150, 151], more accurate or robust algorithms [149], as well as the possibility of deconvolving
and separating out activity from individual motor units [152–155].

While these high-density EMG recording systems may enable easier and more plentiful
access to desired signals, they are far from wearable and cannot be used in most everyday
activities and applications. A few examples of more wearable EMG recording devices have
emerged in the past few years (Figure 3.4). These include the Myo armband [3], which has
been very popular in the research community, as well as the CTRL-kit [4] from CTRL-Labs
(now part of Facebook Reality Labs). These devices feature a fewer number of recording
channels spaced evenly around a wrist-/forearm-worn armband, as well as an accelerometer
for measuring movement and posture. These signals are captured and digitized by on-
board electronics which transmit them over Bluetooth in real-time for logging or control of
applications. Ideally, a future wearable EMG device for everyday use merges the best aspects
of all of these devices: high-quality recording on a large number of channels; wearable
and wireless form factor; and, as we will discuss later, on-sensor processing and learning
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Figure 3.4: Example EMG devices with desirable characteristics. a) High-density
surface EMG recording for large channel count acquisition [148]. b) Fully wearable, com-
mercial devices with wireless connectivity [3, 4].

capabilities.

3.1.2 Machine learning approaches to gesture recognition

Inferring the gestures and movements performed by a user based on their EMG signals is
a well-studied problem, and a wide variety of signal processing and machine learning tech-
niques have been leveraged with good accuracy in a lab setting. A wide range of EMG-based
control strategies for human-computer interaction with various levels of complexity have been
proposed. The simplest and earliest is direct EMG control, in which the power or amplitude
of a recorded EMG signal can be directly used to modulate some single degree-of-freedom
(DOF) actuator, be it a digital cursor or a joint in a prosthetic [156]. This, however, is a very
unnatural mode of user interaction, requiring users to activate specific muscles rather than
perform normal movements. At the other extreme, EMG decoders take a similar approach
to traditional brain-machine interfaces [157]. Much like true neural interfaces, individual
MUAPs may be decoded from decomposed surface EMG signals to derive motor unit re-
cruitment for a very fine-grained representation of muscle activity [158]. At a slightly higher
level, EMG can also be decomposed into muscle “synergies” which correlate to individual
degrees of freedom in the arm and hand [159]. While these methods would clearly give the
best performance, they depend on computationally expensive decomposition algorithms and
very high-quality recordings.
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EMG-based pattern recognition lies between these extremes on the spectrum of control
strategies. Rather than directly deriving control signals from EMG, features like signal am-
plitude or frequency components are extracted from the EMG signal given to a machine
learning algorithm. Labeled training data are used to build a classification model for select-
ing an inferred gesture from among a discrete set of gesture classes 3.5. Various machine
learning algorithms have been applied to this problem, including: k-nearest neighbors [160],
support vector machines (SVM) [161–163], linear discriminant analysis (LDA) [164], and
artificial neural networks [165, 166]. Most recently, hyperdimensional (HD) computing has
also applied for the gesture recognition task [134, 135, 167, 168].

Figure 3.5: Gesture classification using EMG pattern recognition. Features are
first extracted from the EMG signals and fed into a pattern recognition algorithm (top).
Typical algorithms for EMG pattern recognition include k-nearest neighbors, support vector
machines, linear discriminant analysis, and artificial neural networks (bottom).

Many of these methods can achieve comparable classification accuracy, so the choice of
which model to implement depends heavily on other application constraints. For instance,
the classification model may be deployed on a wearable device, as local (in-sensor) process-
ing has advantages over wirelessly streaming raw data to an external computational device.
These include reduced communication link bandwidth, lower radio power requirements, as
well as improved latency and security. In these cases, the computational complexity in infer-
ring the gesture becomes a limiting factor, with more complex algorithms requiring higher
energy and introducing longer latency. Modern, light-weight machine learning algorithms
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perform well when the training data align with the conditions that are expected during
deployment, but when the initial training of a classification model fails to capture a wide
set of conditions, the classification accuracy of the model degrades, resulting in sub-optimal
performance or poor user experience. For instance, recording EMG from a wearable device
is afflicted by many signal variations from sweating, fatigue, varying muscle contraction ef-
fort, and electrode displacement due to changing situational contexts such as limb and body
position or device doffing and donning [160, 169–173] (Figure 3.6). Therefore, the ability to
train and update an in-sensor classification model on the fly during practical application is
desirable.

Figure 3.6: Situational contexts encountered during EMG gesture recognition.
Context changes include different arm positions, prolonged wear of the device in a single
wear session, differences over multiple wear sessions, and the effort with which gestures
are performed. These changes can introduce EMG signal variations which confound the
classification of gestures.

In summary, a device for performing EMG gesture recognition should have: a small,
standalone form factor for autonomy; a high channel count and high-density electrode place-
ment for more comprehensive spatial coverage and improved classification accuracy; and
in-sensor intelligence that is generalizable or adaptable to various wear conditions and situa-
tional contexts. In the rest of this chapter, I present the FlexEMG device, which can satisfy
these requirements using a screen-printed, conformal electrode array and in-sensor adaptive
learning capabilities. Together with my collaborator Dr. Ali Moin, we implement a neuro-
inspired hyperdimensional computing algorithm locally for real-time gesture recognition, as
well as model training and updating under varying situational contexts. The system can
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classify 13 hand gestures with 97.12% accuracy for two subjects when training with a single
trial per gesture. A high accuracy (92.87%) is preserved when expanding to 21 gestures,
and accuracy is recovered by 9.5% by implementing model updates in response to varying
conditions, without additional computation on an external device.

3.2 FlexEMG: Wearable EMG device with in-sensor

learning capabilities

For the application of wearable, in-sensor hand gesture recognition using EMG, we started
off with a device platform very similar to the WAND system from Chapter 2. Dubbed the
FlexEMG device (Figure 3.7), the wearable EMG sensor has four main improvements over
the WAND platform: 1) a more standard rectangular shape and general purpose connectors
for various electrodes (as opposed to custom cortical microelectrodes); 2) the addition of
inertial measurement unit functionality to simultaneously measure biosignals as well as 6
axes of the accelerometer and gyroscope; 3) much more extensive utilization of the on-board
FPGA computation capability for gesture classification; and 4) interface with a custom,
screen-printed flexible electrode arrays for 64-channel surface EMG acquisition [135].

The system is an example of a hybrid method for interfacing soft, conformal sensors and
hard silicon-based integrated circuits. Working with Dr. Jonathan Ting, Dr. Natasha Ya-
mamoto, and Dr. Yasser Khan, we created both a prototype flexible electrode array, using
a standard, commercial flexible PCB process (not shown), as well as custom electrode array
made in a custom screen-printing process using conductive dielectric inks on a thin polyethy-
lene terephthalate (PET) sheet. The PET sheet is highly flexible and conforms well to the
complex three-dimensional form of forearm muscles during contractions and relaxations. The
electrodes were patterned as a uniform 16× 4 array of circular electodes (4.3 mm dia.) and
connective trances sing conductive silver ink (NovaCentrix CG57b) sintered by photonic cur-
ing (Figure 3.7b, c) [174]. The silver ink formulation included binders to help with cohesion
of the silver microflakes as well as adhesion to the substrate. Compared to high-density
electrode array fabrication methods reported in literature [175, 176], our screen-printing so-
lution with photonic sintering allows the use of temperature-sensitive substrate materials
and requires only sub-second curing time for cheaper and faster large-scale production. A
dielectric encapsulation layer (NovaCentrix DE SP1) was subsequently printed with via holes
for exposing the electrode pads while insulating the conductive traces from the skin. Each
printed layer was 15 µm thick. Overall dimensions (29.3 cm x 8.2 cm) were chosen to wrap
around the entire circumference of an above-average sized forearm, capturing activity of the
extrinsic flexor and extensor muscles involved in finger movements with low inter-electrode
pitch in both the proximal-distal and medial-lateral directions. Four electrodes per column
were spaced 14.3mm apart, and the columns were spaced 17.8mm apart with vertical offsets
of 7.15mm.

The flexible electrode array was interfaced to the main FlexEMG board (Figure 3.7d,
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e) using a Flat Flexible Connector (FFC) on a two-layer adapter board (Figure 3.7c). The
board was powered using a single 3.7 V, 240 mAh lithium-ion battery weighing 4 g. The
total weight of the wearable system was 26 g, with the computational unit PCB weighing 6 g
and the electrode array and adapter weighing 16 g. In this configuration, battery life during
continuous gesture recognition was approximately 6 hours, with power dissipation being
dominated by raw data packetization and wireless transmission at greater than 1 Mbps.

Figure 3.7: FlexEMG system for EMG-based gesture recognition. a) The device
donned on the forearm. b) Illustration of the screen-printing process. A squeegee and a
screen are used to print sEMG electrode arrays onto flexible substrates. The electrode pattern
is defined by features on the screen. c) The custom-designed, flexible 16×4 array of electrodes
that conforms to the forearm to provide high-density, large-area sEMG recordings without
individual wires. An adapter PCB with a Flat Flexible Connector (FFC conn.) is used to
interface the flexible electrode array with the rigid components. d) The miniaturized, 8-layer
printed circuit board (PCB) that accommodates the complex, rigid components responsible
for sensing, processing, and telemetry. e) Block diagram of the main components constituting
the wearable system. Adapted from [135].

3.2.1 Offline dataset collection

In order to assess signal quality, develop our gesture classification algorithm, and tune model
parameters, we used the system to record an offline dataset of sEMG signals from five healthy,
able-bodied, adult, male subjects who were asked to perform gestures in multiple contexts
that simulated everyday use of an sEMG acquisition system. All experiments were performed
in strict compliance with the guidelines of IRB and were approved by the Committee for
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Protection of Human Subjects at University of California, Berkeley (Protocol title: Flex
EMG Study. Protocol number: 2017-10-10425). Informed consent was obtained from all
participants. Two subjects were experienced with myocontrol, and the remaining three
subjects were new to myocontrol. The dataset included flexion and extension of different
finger degrees of freedom (DOF) (Figure 3.8), with single degree-of-freedom (single-DOF)
gestures being performed in four different situational contexts and multiple degree-of-freedom
(multi-DOF) gestures being performed in only the baseline situational context. The device
was worn by each subject as shown in Figure 3.7a, with the center of the array roughly aligned
to the ulna of their dominant arm. Before wrapping the array around the subject’s forearm,
a small drop of conductive hydrogel (SignaGel Electrode Gel, Parker Laboratories, Inc.)
was applied to each electrode surface individually to improve the skin-electrode interface
impedance. The array was laid on a flat surface with electrodes facing up, and the subject
was instructed to roughly align the center of the array to the ulna of their dominant hand.
The ends of the array were then wrapped around each side of the forearm while the subject
remained at rest, and the ends were joined together with strips of adhesive tape. A single
commercial Ag/AgCl electrode (H124SG, Covidien Kendall) was attached to the subject’s
elbow on the same arm as a reference potential for the voltage measurements.

Figure 3.8: Hand gesture classes. The single degree-of-freedom (DOF) gesture subset
includes individual finger flexions (flex.) and extensions (ext.) along with the “rest” gesture.
The multi-DOF gesture subset includes common, isometric hand postures involving multiple
fingers. Adapted from [135].

The changing situational contexts that were included in the offline dataset included
changing arm position, changing effort levels (not used for this study), new device wear ses-
sion, and prolonged wear of the device (Figure 3.6). Recordings were divided into sessions,
each representing a different use case or wear condition for the device, and each consist-
ing of a different subset of gestures (Table 3.1). During each recording session, the subject
performed 5 trials of each of the gestures. Each trial lasted 11 seconds, with the subject
being instructed to begin the gesture during the first two seconds and relax during the last
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two seconds. The middle 4 second period contained the steady-state portion of the gesture
performance, which was the only portion used in this analysis. Trials were each separated
by 3 second relax periods.

Session Gestures Context

1 Single-DOF Baseline, relaxed arm position
2 Multi-DOF Baseline, relaxed arm position
3 Single-DOF New arm position (arm wrestle)
4 Effort level Low effort, relaxed arm position
5 Effort level Medium effort, relaxed arm position
6 Effort level High effort, relaxed arm position
7 Single-DOF New wear session, relaxed arm position
8 Single-DOF Prolonged wear, relaxed arm position

Adapted from [135].

Table 3.1: Offline EMG recording sessions and situational contexts

3.2.2 EMG recording characterization

Figure 3.9a shows example waveforms recorded from all 64-channels during the flexion and
extension of the middle finger DOF. Each 50 ms segment of each waveform is colored based
on the mean absolute value (MAV) feature derived from that segment, indicating the local
amplitude of the sEMG. Activity in contrasting subsets of channels (overlaying the anterior
flexor muscles or posterior extensor muscles) can be seen in the antagonistic movements.
Signal quality as acquired using our wearable biosensing system was compared to available
recordings of the same gestures using a traditional commercial sEMG interface (Cometa
used in Ninapro DB4 [177–179]) as well as a benchtop high-density sEMG acquisition setup
(CapgMyo [148]). To compare the power spectrum of the recordings, we computed the
Welch’s power spectral density estimate for the channel with the highest SNR while per-
forming the middle extension gesture (gesture 4), the gesture that produced the highest
SNR across all three devices (Figure 3.9b). The frequency contents of the different record-
ings were qualitatively similar. Spot signal-to-noise ratio (SNR) was calculated by comparing
the power spectrum during a gesture performance to the power spectrum during rest (Figure
3.9c). Overall SNR (calculated as the integral of spot SNR) varied for different channels and
different gestures (Figure 3.9d). The Cometa and CapyMyo systems exhibited better peak
SNR for the best channels and associated best gestures, likely because those systems consist
of differential, bipolar recording configurations with improved common-mode noise rejection.
Despite this, median SNRs for the three systems were approximately the same.

Furthermore, SNR values for our system were similar before and after long, 2-hour wear
sessions during which subjects could sweat and the conductive gel could smear. On average,
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Figure 3.9: FlexEMG recorded signal quality. a) Example raw waveforms recorded
from all 64-channels during middle finger flexion and extension. Channels are organized
starting with channel 0 on the surface nearest the radius, with increasing channels wrapping
around the anterior side of the forearm, to the surface nearest the ulna ( channel 32),
and then around the posterior side back to the radius. Each 11 s gesture trial is divided
into 1.5 s rest, 2 s transition period to the gesture, 4 s hold period, 2 s transition period
back to rest, and 1.5 s rest based on the instructions given to the subject. The color of
the waveform indicates the local amplitude of the sEMG, as measured by mean absolute
value (MAV) calculated over 50 ms segments. b) Example Welch’s power spectral density
estimates of sEMG recordings from single channels of three systems, including a commercial
sEMG interface with individually placed bipolar electrodes (Cometa + Dormo, Ninapro
DB4 [177–179]), a benchtop high-density sEMG acquisition setup (CapgMyo [148]), and our
system. Solid lines represent the signal spectrum during performance of the middle extension
gesture, while dotted lines represent the signal spectrum during rest. Spectral densities are
normalized to the 0 Hz component of the rest spectrum for each recording system for ease
of comparison. c) Spot signal-to-noise ratio for the example performances in (b), measured
as the ratio between the middle flexion spectrum and the rest spectrum. d) Distribution
of overall signal-to-noise ratio for the three compared systems for all channels during the
performance of all single-DOF gestures. Shaded boxes are the probability density histogram
of SNR values, and lines are a Gaussian kernel fit to the distribution. Downward pointing
triangles represent the medians. Adapted from [135].

there was a slight increase of about 1.4 dB in SNR after the 2 hour wear session (Figure
3.10), indicating that signal quality remained after prolonged use.
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Figure 3.10: Effect of prolonged wear on signal quality. a) Distribution of SNR values
upon first donning the device (before prolonged wear) and after 2 hours of continuous wear of
the device (after prolonged wear). Univariate histograms of SNR before and after prolonged
wear are shown on the axes. Scattered points each represent different combination of subject,
channel, and gesture performed. Dashed line shows where SNR before and after prolonged
wear would be equivalent. b) Distribution of the change in SNR from before to after a 2 hour
period of prolonged wear. Shaded boxes are the probability density histogram of SNR shift
values (∆SNR), and lines are a Gaussian kernel fit to the distribution. Downward pointing
triangle is the median value, and vertical dashed line is the mean value. Adapted from [135].

3.3 Hyperdimensional computing for biosignal

classification

To perform the actual hand gesture recognition, we have implemented a model based on
hyperdimensional (HD) computing, an emerging computing paradigm that supports fast,
simple learning and is inherently robust against noise and errors [180]. HD computing takes
advantage of information being represented by very high dimensional vectors (hypervectors)
to perform otherwise complex tasks, such as classification or reasoning using simple compu-
tational operations [180]. This approach has already shown promising results in classification
tasks for physiological signals such as sEMG [134], electroencephalography (EEG) [181], and
electrocorticography (ECoG) [182], discriminating up to five classes on offline datasets.

A major advantage of HD computing over traditional methods described above for hand
gesture recognition is the simplicity with which a classification model can be trained and
updated. Classification is implemented as a nearest-prototype search, in which prototypes
are created by projecting features to the HD space and then superimposing training exam-
ples together. This computation is fast, and classification is robust due to the distributed
representation of information across a large number of elements.
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3.3.1 Fundamentals of HD computing

The human brain contains billions of neurons and synapses, suggesting that large circuits
are fundamental to its computational power. HD computing [180] explores this idea by per-
forming computation using vectors of very high dimensionality (e.g., 10,000). Hypervectors
can be combined into new vectors using well-defined vector space operations while maintain-
ing the original information with high probability, and the composite hypervectors can be
compared for similarity using a distance metric over the HD vector space.

In hyperdimensional spaces, the likelihood that any two randomly selected hypervectors
are nearly orthogonal is extremely high. For instance, in a bipolar HD space, initial “seed”
hypervectors can be generated at random using an equal number of randomly placed +1s
and −1s. Such HD vectors are used to represent the basic elements in the system (e.g.,
the electrodes [167]), and are stored in an item memory (IM) that functions as a fixed
symbol table. The following vector space operations can be used on the elements of the IM
to encode information: element-wise multiplication (×), or binding, takes two vectors and
yields a third vector that is dissimilar (orthogonal) to the two. Element-wise addition (+),
or bundling, takes several vectors and yields their mean vector that is maximally similar
to all of them. These operations, along with scalar multiplication (·) and permutation (ρ)
of vector components for sequences, form an algebraic field beyond arithmetic and linear
algebra.

Once composite hypervectors are formed that represent different features or patterns,
classification can be performed using a nearest-prototype approach (Figure 3.11. For in-
stance, in the gesture recognition case, we would like to generate a single class prototype for
each gesture class. Class prototypes are calculated by superimposing all training examples
from a particular class through the bundling operation, and the collection of prototypes is
stored in an associative memory. Similarity between a query hypervector and the class pro-
totypes is measured using Hamming distance, and the label of the most similar prototype
is chosen as the inferred gesture class. Because of the way information is distributed across
thousands of bits, this learning approach is very robust to noise. Furthermore, only small
amounts of data are required to build reasonably useful prototypes, enabling few-shot learn-
ing [134]. Finally, a single iteration over the training dataset is required to completely train
the model, which is in contrast with other neuro-inspired approaches in which training often
employs sophisticated, iterative frameworks and is much more computationally demanding
than classification (e.g., gradient descent with backpropagation).

3.3.2 EMG feature extraction and projection to hypervectors

For EMG-based gesture recognition using HD computing, we have developed a projection al-
gorithm that encodes the level of activity recorded by each electrode, the spatial distribution
of that electrode at each moment of time, and the progression of that spatial distribution
over several consecutive time windows. Figure 3.12 describes the algorithm for projecting
64-channel EMG data into 1,000-dimensional hypervectors. Importantly, the same projec-
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Figure 3.11: Classification of encoded hypervectors. Class prototypes are learned
through superposition of training examples, and inference is performed through nearest
neighbor search among the prototypes based on a similarity function θ. Adapted from [135].

tion process is used for both learning and inference, allowing reuse of hardware modules for
both in-sensor training and classification [183].

For each segment index t, the feature vector f t is projected into a hypervector St repre-
senting spatial information, i.e. which electrode channels have higher feature values (Figure
3.12b,c). Electrode channels are represented by unique, pseudo-random bipolar hypervec-
tors stored in an item memory (IM) which remains unchanged throughout the training and
deployment of the algorithm. Each electrode channel vector IM(ch) is scaled by its corre-
sponding feature value f tch, and all scaled vectors are summed element wise. The resultant
spatial hypervector is then formed as St = σ(ΣchIM(ch) ·f tch), where σ is a bipolar threshold
function that turns positive elements to +1 and negative elements to −1 (Figure 3.12c). The
group of N spatial hypervectors is then encoded into a single spatiotemporal hypervector Gt

(Figure 3.12b,d). The order in which they occur is encoded by performing a bitwise rotation
by k bits (ρk), with increasing k for older hypervectors (Figure 3.12d). The rotated hyper-
vectors are multiplied together element-wise, resulting in a single hypervector representing
the entire window of data.

As described in Figure 3.11, the encoded spatiotemporal hypervectors can be used either
as training examples for creating or updating a model, or as queries for inference using a
trained model. We implemented offline learning and classification experiments in MATLAB
in order to select features and tune our model hyperparameters. Cross validation was per-
formed for each experiment by dividing the relevant dataset into a training set, consisting
of one randomly selected trial of each gesture, and a testing set, consisting of the remaining
four trials of each gesture. This division was repeated 100 times per experiment. Mean
absolute value (MAV) was determined as the optimal feature function, along with the 250
ms classification window length, and 5 feature segments per classification window, by heuris-
tically comparing different hyperparameters in the HD encoding architecture described in
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Figure 3.12: HD projection from EMG data to hypervectors. a) Example EMG
data and feature values (in this case mean absolute value). Three example traces are shown
divided into 50 ms feature segments, with segments color coded based on feature values. b)
A single classification window at time t consists of N = 5 feature segments, and consecu-
tive classification windows overlap by N − 1 windows. Each feature segment f t is encoded
into a spatial hypervector St = fspat(f

t). The five consecutive spatial hypervectors are
then bound temporally to form a spatiotemporal hypervector representing the entire win-
dow Gt = ftemp(S

t, St+1, St+2, ..., S(t + N − 1)). The dotted gray line shows the division
between the low-dimensional feature domain and the high-dimensional hypervector domain.
c) Spatial encoding function fspat consists of computing a weighted sum of immutable item
memory (IM) hypervectors IM(ch) weighted (·) by their corresponding features fch. The
sum is bipolarized (σ) back to ±1. d) Temporal encoding function binds consecutive spatial
hypervectors St together through permutation by k bits (ρk) and elementwise multiply (×)
operations. Adapted from [135].



CHAPTER 3. REAL-TIME, IN-SENSOR GESTURE RECOGNITION 62

Figure 3.12a and b. We calculated 8 different features with feature segment lengths of 10,
15, 20, 25, 35, 50, 70, and 100 ms. The tested feature functions (listed in Table 3.2) were
chosen based on literature recommendations [184] as well as estimates of implementation
complexity. We then created overlapping classification windows which consisted of N con-
secutive feature segments (e.g., 250 ms classification windows consisting of 5 50 ms feature
segments are shown in Figure 3.12a and b). We tested all possible values of N for creating
classification windows less than or equal to 250 ms in length, based on latency requirements
recommended by the literature [185, 186].

Feature Description Calculation

DAMV Difference absolute mean value 1
N

∑N
k=1 |∆xk|

DASDV Difference absolute standard deviation value
√

1
N

∑N
k=1 ∆x2

k

MAV Mean absolute value 1
N

∑N
k=1 |xk|

MFL Maximum fractal length log10

(∑N
k=1 ∆x2

k

)
RMS Root mean square

√
1
N

∑N
k=1 x

2
k

WL Waveform length
∑N

k=1 |∆xk|

WAMPm Willison amplitude
∑N

k=1

{
1,∆xk > m

0,∆xk ≤ m

ZCm Zero crossing
∑N

k=1

{
1,∆xk > m, sgn(xk−1) 6= sgn(xk)

0, otherwise

Adapted from [135].

Table 3.2: EMG features tested for feature selection

To choose the best feature function, we picked the best performing classification win-
dow/feature segment size combination for each subject and feature. Figure 3.13a shows the
classification accuracy results for each feature. The mean absolute value (MAV) achieved
the best classification accuracy across the five subjects. Figure 3.13b shows classification
results for different feature segment and classification window length combinations using the
MAV feature. For shorter feature segment lengths, there exists an optimal classification win-
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dow length that is less than 250 ms. However, longer feature segment lengths still achieve
better accuracy, with the best performing combination being 50 ms feature segments with a
maximal, 250 ms classification window. This combination was used for all other analyses.

Figure 3.13: Feature and classification window selection. a) Comparison of classifi-
cation accuracy per subject for the different features listed in Table 3.2. For each subject,
the best performing feature segment and classification window length were selected for each
feature. Boxes cover the middle 50% of values, horizontal red lines denote medians, and
whiskers span the full range of data. Red x’s denote means. b) Classification accuracy
for different feature segment and classification window lengths for the MAV feature. For
each feature segment length, N such feature segments can be combined to form classification
windows of up to 250 ms. Adapted from [135].
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To assess whether all 64 electrode channels were necessary for optimal classification per-
formance, we ranked channels based on their importance according to two metrics. The first
metric was a univariate Fisher score, which normalizes between-class feature variance by
within-class variance [187]. The second metric was a feature gain parameter measured after
training a gradient boosted tree-based algorithm for discriminating gestures (500 trees with
tree depth of 2). This feature gain represented the relative weight of a feature in making
a prediction with the forest. Channel Fisher scores followed similar anatomical patterns,
indicating that channels placed over the flexor and extensor muscles produced features that
varied more with the different gesture classes (Figure 3.14a). Boosted trees feature impor-
tances were sparser, with a few channels much more important in making a prediction than
the rest.

Figure 3.14: Channel selection and effect on classification accuracy. a) Channel
importance as assessed using univariate Fisher score (left) and gain-based feature importance
from a gradient boosted tree-based classifier (right) for five subjects. Each circle represents an
electrode positioned as such in the array, and the color of the circle represents the normalized
feature score for that channel. b) Classification accuracy degrades when reducing the number
of channels for hypervector encoding. Five different methods were used to select the top
subset of channels: Fisher scores from the same subject (solid blue line, average over 5
subjects); Fisher scores from a different subject (dotted blue line, average over 5 subjects,
each tested with feature scores from all 4 other subjects); tree-based feature importance
from the same subject (solid red line); tree-based feature importance from a different subject
(dotted red line); and randomly (solid yellow line, averaged over 10 repetitions per subject).
Adapted from [135].

We ranked the electrodes based on their feature importances for each subject and each
metric and used these rankings to gradually drop out channels while applying our hyperdi-
mensional computing algorithm. Classification accuracy gradually decreased as fewer chan-
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nels were used and steeply degraded when fewer than 16 channels were kept (Figure 3.14b).
Notably, classification accuracy was better preserved when dropping channels based on the
subject’s own feature importance ranking as opposed to dropping channels based on a dif-
ferent subject’s rankings. In the latter case, performance was marginally, if at all, better
than randomly dropping channels. Figures 3.15c and 4d show the top 32 and top 16 channel
subsets for each subject based on the different rankings. Although there is some overlap, the
differences in these subsets are enough to cause the accuracy degradation of a few percent
when using channel rankings from a different subject.

Figure 3.15: Most useful channels for classification accuracy per subject. Top 32
and 16 channel subsets for each subject based on (c) Fisher score and (d) tree-based feature
importance. Adapted from [135].

3.3.3 Offline classification analysis

Figure 3.16 shows the classification accuracy results using the offline dataset. The left portion
of Figure 3.16a shows classification accuracy using the hyperdimensional computing model
in the baseline situational context for the single- and multi-DOF gesture subsets separately,
as well as for all 21 gestures together. The updated model for classifying all 21 gestures
was created by concatenating the associative memories previously trained separately for the
single- and multi-DOF gesture subsets, requiring no new training computations.

To model fast, online learning, all classification accuracies were measured using cross-
validation with one trial of each gesture for training and the remaining trials for testing. We
also implemented the standard leave-one-out cross validation (LOOCV) using 4 trials for
training and 1 trial for inference. Using LOOCV, the HD classifier achieves 92.47% accuracy
for single-DOF, 91.71% for multi-DOF, and 89.85% for all gestures, as compared to the
88.87%, 85.27%, and 84.53% respectively when training with only 1 trial. Thus, although
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Figure 3.16: Offline dataset classification accuracy with updates. a) Results with
10,000-bit hypervector dimension and floating-point features. b) Bitwise merge of two proto-
type hypervectors approximates finding weighted centroids of clusters from different contexts
of the same gesture class. The updated hypervector randomly takes elements from the stored
prototype hypervector and the new context prototype hypervector. The proportion of bits
taken from each hypervector determines the relative weight of each context in the updated
prototype. c) Results using a support vector machine model with a linear kernel. d) Results
using linear discriminant analysis. Adapted from [135].

slightly better performance could be achieved with more training data, one-shot learning
still produced viable results.

To measure classification accuracy of the HD model across different situational contexts,
we performed three experiments in which a model was trained using data from the initial,
baseline context and then used to classify gestures in a new dataset from a different context.
Figure 3.16a (right) shows the classification accuracy for the three tested contextual varia-
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tions: arm position, new wear session, and prolonged wear. Although training and inference
were performed on separate datasets, we still used a single trial of each gesture to train
the model, and reported accuracies are averages over each of the five training trials. For
each of the contextual variations, we saw accuracy degradations of 26.17% (arm position),
17.34% (new day/wear session), and 9.95% (prolonged wear), suggesting that updates were
necessary.

In order to update a stored prototype to incorporate information about a new situational
context for the same gesture, an approximated majority vote can be performed by merging
elements from both the stored and the newly computed prototype hypervectors (Figure
3.16b). Different proportions of new and old elements can be taken to weigh the contribution
of each context. As more contexts are encountered, this proportion can be changed to
tune the decay rate in order to avoid catastrophic forgetting of initial contexts. Very little
additional overhead is required to perform model updates, compared to standard gesture
recognition algorithms like support vector machines, in which new support vectors must be
selected amongst new and old training examples [188, 189], or linear discriminant analysis,
in which training set statistics must be recalculated to a relatively high degree of precision
[164, 190].

To test model updates, prototype hypervectors from the new contexts were trained using
only a single trial of each gesture and merged with the initial model. We wanted both the
initial and new contexts to have equal contributions to the updated model, so the merged
hypervector randomly took 50% of its elements from each prototype hypervector. Reported
classification accuracies are the average of all 25 combinations of initial context prototype
and new context prototype. After updating initial models for the new arm position, wear
session, and prolonged wear contexts, the classification accuracy on gestures in the new
context was improved significantly (22.66%, 14.96%, and 10.51%, respectively) at the ex-
pense of small degradation (7.46%, 6.37%, and 3.65%, respectively) in classifying the initial
context gestures. This accuracy degradation is due to the bitwise merge operation being
only an approximation of the accumulation required to fully retrain a model on data from
both contexts. This approximation introduces more error with increasingly distant context
prototypes.

We also performed the experiments with two traditional machine learning algorithms
commonly used for sEMG-based gesture recognition: support vector machine (Figure 3.16c)
and linear discriminant analysis (Figure 3.16d). Both models were implemented in MAT-
LAB. For the support vector machine model, we used a linear kernel with cost parameter
C = 500. For linear discriminant analysis, we implemented the standard MATLAB func-
tion included in the Statistics and Machine Learning toolbox, with maximum regularization
(gamma = 1) for the covariance matrix estimation. Both of these traditional methods per-
formed similarly well to our model, but with the distinction that the “updated” models in
both cases were actually retrained from scratch in order to incorporate training examples
from both contexts. This makes them less suitable for online implementation.
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3.4 In-sensor, real-time hand gesture learning and

classification

In order to implement the HD classification model efficiently in hardware description lan-
guage (HDL) for the FPGA on-board the FlexEMG device, certain optimizations needed to
be made. Chief among them were calculation of quantized features, efficient generation of
electrode IM hypervectors, and development of the associative memory for prototype stor-
age. Furthermore, we had to reduce hypervector dimensionality in order to fit our design
in within the constrained on-board resources. These modifications to the classification al-
gorithm were expected to decrease classification performance, but we also anticipated that
performing real-time classification could in fact improve accuracy due to the availability of
live visual feedback.

3.4.1 HDL implementation of training, classification, and model
updates

Raw 15-bit ADC codes were used as the input for feature extraction, with incremental
calculations of the 50-sample MAV performed with each new sample. The implemented
arithmetic operations consisted only of addition, two’s complement inversion, and arithmetic
right shift for division. Features were quantized and saturated to 6-bit integers based on
analysis of the offline dataset, optimizing for the dynamic range (range divided by step size)
given the arithmetic requirements. We also reduced the dimensionality of the hypervectors
from 10,000 bits in the offline analysis to 1,000 bits for the FPGA implementation in order
to reduce memory footprint. Figure 3.17 shows offline dataset accuracy results using these
lower-dimensional vectors and 6-bit quantized features, demonstrating only a few percent
accuracy degradation compared to the larger, original model.

Although described so far using bipolar ({−1,+1}1,000) hypervectors, the algorithm can
be equivalently implemented with binary ({0, 1}1,000) hypervectors by mapping from arith-
metic to Boolean operations [191]. Thousand-dimensional IM elements were generated se-
quentially using a cellular automaton with a hard-coded seed [192] for optimal memory usage.
The spatial hypervector was computed by iterating over the 64 channels, either adding or
subtracting the channel’s feature value from an accumulator value for each hypervector ele-
ment, depending on the bit value of that element in the associated cellular automaton output.
The resulting spatial hypervector was taken as the most significant bits (the sign bits) of the
accumulators. Temporal encoding was then performed using a 5-position shift register with
hard-wired rotation connections between each element, and the spatiotemporal hypervector
was generated using bit-wise XOR between the stored shift register elements. Prototypes
were generated by accumulating training examples using saturating up/down counters.

The associative memory was implemented as a shift register containing 21 prototype
hypervectors (Figure 3.18). Training simply involved shifting in new bundled vectors. During
inference, prototypes would be cycled through and individually compared with an incoming
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Figure 3.17: Offline dataset accuracy using hardware-optimized implementa-
tion. Simulated hardware design in MATLAB with 6-bit integer feature values and 1,000-
dimensional hypervectors. Adapted from [135].

query hypervector. For model updates, we implemented a hard-coded merge operation that
allowed half the bits from an incoming prototype to be merged with the currently stored
prototype.

The implementation utilized 84% of resources on our FPGA, with detailed utilization
generated using Synopsis Synplify Pro for Microsemi and illustrated in Figure 3.19. Simu-
lations verified that the algorithm (after acquiring the last sample of the last 50 ms feature
window) had a latency of 539 cycles, or 26 µs when running at 20.48 MHz (Table 3.3). The
FPGA modules for classification were thus clock gated to only be active during the first 26
µs after receiving a new sample, consuming no dynamic energy during the remaining time.

Simulations and source meter measurements showed that the in-sensor HD algorithm
operates with 2.437 µJ per sEMG sample and 4.39 µJ per classification every 50 samples
(Figure 3.20). The power consumption of the system was measured by an Agilent B2902A
precision source/measure unit in 20 µs intervals. Model training and updating consumed
similar energy to classification steps. In all, the on-board algorithm accounted for less than
6% of the overall device power.
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Figure 3.18: Hardware associative memory implementation with training and up-
date. Prototypes are stored in a shift register for sequential access. During prediction
(bottom path, black), a query hypervector is stored in a separate register and compared
with each prototype by first performing a bitwise XOR (

∧
) and then summing across the

resulting bits with an adder tree. During training (middle path, blue), input hypervectors
are sequentially written into the shift register. During model updates (top path, green), the
input hypervecgtor is merged into the currently accessed prototype using 50% of the bits.
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Figure 3.19: FPGA resource utilization for in-sensor HD classifier. Utilization is
separated for each submodule of the algorithm based on the number of look-up tables (LUTs,
left) and D flip flops (DFFs, right). Adapted from [135].

Submodule Clock cycles Time (w/ 20.48 MHz clock, µs)

Feature extractor 2 0.10
Spatial encoder 513 25.05
Temporal encoder 1 0.05
Associative memory 23 1.12

Total (inference) 539 26.32

Feature extractor 2 0.10
Spatial encoder 513 25.05
Temporal encoder 1 0.05

Total (bundling) 516 25.20

Feature extractor 2 0.10
Spatial encoder 513 25.05
Temporal encoder 1 0.05
Associative memory write 1 0.05
Associative memory predict 23 1.12

Total (train/update) 540 26.37

Adapted from [135].

Table 3.3: Algorithm latency.
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Figure 3.20: Algorithm power consumption during classification. The shorter peaks
occurring every 1 ms correspond to the accumulation of each new sample for feature ex-
traction. The taller peaks occurring every 50 ms include the additional power for the HD
encoder and accessing the AM. The radio transmits data containing raw EMG values as well
as classification labels in bursts of 3 samples. Adapted from [135].
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3.4.2 Situational context experiments

We verified the online, standalone operation of our device with two subjects who were familiar
with myocontrol. Four types of experiments were each conducted three times to test varying
device usage conditions with all training, inference, and updates performed completely on
board and in real time. A custom-made graphical user interface (GUI) was used to instruct
the user on what gesture to perform, transmit the correct gesture label and the operation
mode (train/infer/update) to the device, and log data. Both raw sEMG data and the
classified gesture class were streamed back to the GUI and displayed in real-time, giving the
subject visual feedback during inference modes.

Figure 3.21 shows example real-time prediction time series from the device during the
performance of single-DOF gestures in the baseline context immediately after device donning
and with a relaxed arm. Each gesture was performed once during training, including a trial
at the beginning for the rest gesture. Subjects were instructed to begin each gesture within a
2 second transition period, hold the gesture for a 4 second steady-state period, and relax back
to the rest gesture within a second transition period, with 3 seconds of relaxation between
each gesture. The GUI was configured to only enable training mode on the device during
the 4 second steady-state period. The exact same procedure was then repeated with the
device in inference mode. Figure 3.22 shows the overall classification accuracy and confusion
matrix for the 4 second steady-state periods of each gesture.

Actual gesture onset and offset times were determined offline with a combination of vi-
sual and change-point analysis methods in order to estimate a ground truth label (Figure
3.21). Although the classification model was not trained on data that included gesture tran-
sitions or relaxation between trials, the device still performed inference during these periods.
Gesture onset- and offset-aligned predictions across baseline context tests in all 24 experi-
ments are shown in Figure 3.23. A higher error rate during relax periods (during which the
prediction should be the rest gesture) is seen both before and after gesture performance, sug-
gesting that the short periods between gesture movements may be included as training data
to improve performance. Classification of the rest state is inherently more difficult, given
that our hypervector projection algorithm encodes relative feature values rather than abso-
lute feature values. Additionally, gesture transitions produced errors, requiring about 500
ms from gesture onset (including algorithm latency) to achieve 80% classification accuracy.
The larger amount of misclassification following gesture offset is in part due to unintended
movements in the opposite direction or of other finger degrees of freedom during transitions
back to rest.

Figures 3.24 and 3.25 show steady-state gesture classification accuracy for the different
experiments requiring online, in-sensor training and model updates. The first experiment
(Figure 3.24) demonstrated the ability to update the HD classification model with new
gestures. We trained and tested an initial model with only the single-DOF gesture subset
(Figure 3.24, yellow bar) and achieved an average classification accuracy of 98.34%. We then
updated the model with the multi-DOF gesture subset and tested on all 21 gestures (Figure
3.24, green bar) with 92.87% accuracy, a 5.47% degradation. Training and testing on the
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Figure 3.21: Real-time, in-sensor classification outputs. Examples of real-time predic-
tion outputs for four gesture trials. For each gesture trial, the top plot displays the features
calculated over 50 ms segments for all channels. The bottom plot shows the 20 Hz classifi-
cation results relative to trial timing. Purple vertical lines denote offline-calculated gesture
onset in the first transition period and gesture offset in the second transition period. Verti-
cal position of predictions represents gesture class, and predictions are color-coded based on
accuracy with respect to offline-estimated ground truth labels. Adapted from [135].

multi-DOF gesture only resulted in a similar accuracy of 95.04% (Figure 3.24, blue bar).
In the next three experiments, we demonstrated the ability to update the HD classification

model with new contexts using only the single-DOF gestures. The context changes we
explored were new arm position (going from relaxed position with the arm at the side to
elbow rested on an armrest in an arm-wrestling position), new day with the device doffed
and re-donned in between (>16 hr apart, mean 19 hr), and prolonged wear with the device
worn while going about daily activities for two hours. An initial model was trained and
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Figure 3.22: Confusion matrix of real-time classification in baseline context. Data
consists of only the 4-second hold periods of baseline context testing for real-time exper-
iments. White text values are percentages of correct predictions, red text value are per-
centages of incorrect predictions. Greyscale colored background represents proportion of
predicted classes. Adapted from [135].

tested in the baseline context (Figure 3.25, solid green bar). The model was then tested in
the new context, prior to updating (Figure 3.25, solid red bar). This resulted in on average
a 11.89% accuracy degradation. The model was then updated in the new context and tested
again (Figure 3.25, striped red bar). In the case of arm position, the updated model was
also tested in the initial context (Figure 3.25, striped green bar). In each case, accuracy
was recovered after updating the model for the new context with an average improvement
of 9.50% compared to the initial model.
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Figure 3.23: Gesture transitions during real-time classification. Gesture onset- (left)
and offset-aligned (right) prediction statistics over all baseline context tests. Each of the first
13 rows shows the averaged 20 Hz classification results for a given gesture, with more darkly
colored blocks indicating a higher proportion. Green blocks indicate correct predictions, and
red blocks indicate incorrect predictions. The bottom plots show the percentages of correct
(green) and incorrect (red) classifications over time, relative to the onset and offset times.
Adapted from [135].
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Figure 3.24: In-sensor training, update, and classification when adding new ges-
tures. Two subjects performed each experiment three times. Bars represent the mean
accuracy across all six trials, with overlaid data points for each individual trial. An initial
model was trained and tested on single-DOF gestures only (yellow bar). The model was
then updated with multi-DOF gestures to cover all 21 gestures (green bar). Results for a
separate model trained and tested on multi-DOF gestures only are also illustrated (blue bar).
Adapted from [135].
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Figure 3.25: In-sensor training, update, and classification across situational con-
texts. Two subjects performed each experiment three times. Bars represent the mean
accuracy across all six trials, with overlaid data points for each individual trial. For three
different context changes (arm position, new wear session, and prolonged wear), an initial
model was trained on the initial context (step 1) and tested on both the initial (step 2) and
the new (step 3) contexts (solid bars). The model was then updated using a single trial of
each gesture in the new context (step 4), and again tested (steps 5 and 6) on both contexts
(striped bars). Updated models were tested only in the new context for the new wear session
and prolonged wear experiments since the old context was no longer available. Adapted from
[135].
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3.5 Discussion

Here, I’ve reported on collaborative work towards a self-contained, wearable EMG biosensing
system called FlexEMG that uses HD computing to process and classify hand gestures. All
the functionalities of our system, including data acquisition using a printed flexible electrode
interface, as well as training and classification with a machine learning model, are incorpo-
rated into a compact device that requires no external computation. The FlexEMG system is
comfortable to wear and offers fast initial training, as well as on-the-fly adaptation, which are
crucial for wearable human-computer interaction applications in which physiological signals
vary from user to user and are not stationary. In contrast to other state-of-the-art gesture
recognition systems, our device can perform training, inference, and model updates locally
and in real time to adapt to changing situational contexts.

A comparison of our device to existing state-of-the-art EMG systems is given in Table
3.4. Our system is the only one tested in an incremental learning framework with in-sensor
training, inference in multiple new situational contexts, and incremental updates to adapt
to new contexts and recover accuracy. Compared to the systems that are capable of in-
sensor classification, ours has the most electrode channels by at least a factor of 8. The
custom-designed flexible electrode array and low-power integrated circuit front ends allow
us to maintain a small form factor and low power consumption, comparable to systems
with a smaller number of channels, which are important for device wearability. A more
detailed comparison of embedded device implementations is given in Table 3.5. Our custom
hardware implementation of the algorithm on an FPGA achieved the best classification
energy efficiency, even with more gesture classes. Note that the total energy required for
the processing (feature extraction and classification) was slightly higher compared to other
reports because of the larger number of channels.

Our results are promising for the development of standalone wearable devices with full,
in-sensor machine learning capabilities. Two natural extensions of this work are the incor-
poration of additional situational contexts (such as a larger variety of arm positions) and
the incorporation of additional sensor modalities (such as the on-board IMU), both of which
will be discussed in Chapter 4. As more information is encoded into gesture prototype hy-
pervectors, it may eventually become beneficial to trade off memory footprint for improved
classification performance and to represent gesture classes with more than one prototype
hypervector.
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Amma
et al. [149]

Liu
et al. [166]

Moin
et al. [134]

Pancholi and
Joshi [193]

Benatti
et al. [194]

Cerone
et al. [175]

FlexEMG

Wearable form
factor

7 3 3 3 7 3 3

Electrode type Flexible PCB Individual sur-
face patches

Flexible PCB Ag-AgCl
electrode
band

Individual Ag-
AgCl

Flexible PCB Flexible
screen-printed

Electrodes per
array

192 4 64 8 8 32 64

Wireless
streaming

7 3 3 7 3 3 3

In-sensor
classification

7 3 7 3 3 7 3

In-sensor model
training

7 7 7 3 3 7 3

In-sensor
adaptive update

7 7 7 7 7 7 3

Number of
classes

27 10 5 6 11 – 21

Accuracy 90.4% 94% 96.64% 94.14% 85% – 92.87%

Adapted from [135].

Table 3.4: High level comparison of FlexEMG with other EMG classification systems.
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Amma
et al. [149]

Benatti
et al. [162]

Liu
et al. [166]

Pancholi
and Joshi
[193]

Benatti
et al. [194]

Cerone
et al. [175]

FlexEMG

System
Dimensions – 85× 50mm2 34× 25mm2 – – 30 × 25mm2

PCB,
3.4 × 3 ×
1.5cm3

full unit

40 × 33mm2

device,
293 × 82mm2

electrode
array

Weight – – 15.2g,
4.6g battery

17.5g – 16.7g 6g board,
4g battery,
16g electrode
array

System power – 36.4mW
streaming,
86mW online
recognition

100.6mW 122.5mW 10.4mW 392.7mW 141.2mW

EMG acquisition
Electrode type Flexible PCB Individual

Ag-AgCl
Individual
surface
patches

Ag-AgCl
electrode
band

Individual
Ag-AgCl

Flexible PCB Flexible
screen-
printed

Number of
channels

96
differential

8
differential

4
differential

8
differential

8
differential

32
single-ended

64
single-ended

ADC resolution – 24 bits 12 bits 24 bits 24 bits 16 bits 15 bits
Input range – ±300 mV – – – 10 mVpp 100 mVpp
Sampling rate 2.048 kHz 1 kHz 1.6 kHz 1 kHz 1 kHz 2.048 kHz 1 kHz

Processing and ML algorithm
Feature set Root mean

square
Envelope Mean

absolute
value

Root mean
square,
waveform
length, zero
crossing,
slope sign
change

Root mean
square

– Mean
absolute
value

Algorithm Naive Bayes Support
vector
machine

Artifical
neural
network

Linear
discriminant
analysis

HD
computing

– HD
computing

Latency
(data window
/algorithm)

– 3ms/1ms 200-250ms
/<0.2ms

200ms with
75ms
increments/–

60ms/36µs – 250ms/26µs

Energy per feature
extraction

– – – – 0.86µJ – 121.85µJ

Onboard inference No Yes Yes Yes Yes – Yes
Onboard training No No No Yes Yes – Yes
Onboard updating No No No No No – Yes
Dataset 5 healthy 4 healthy 4 healthy 3 healthy, 1

amputee
10 healthy – 5 healthy

(offline),
2 healthy
(online)

Number of gestures 26 + rest 6 + rest 10 5 + rest 10 + rest – 20 + rest
Classification
accuracy

90.4% 89.20% 94% 94.14% 85% – 84.53%
offline,
92.87% online

Wireless
Protocol Wired Bluetooth Custom

2.5GHz
Wired Bluetooth WiFi Custom

2.4GHz
EMG streaming No Yes No No Yes Yes Yes
Classification
streaming

No Yes Yes No Yes no Yes

Adapted from [135].

Table 3.5: FlexEMG system specifications compared with other EMG classification systems.
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Chapter 4

Expanding the Learning Capacity of
HD Classifiers

In Chapter 3, I presented a classification algorithm for EMG-based hand gesture recognition
using hyperdimensional (HD) computing. In the work covered there, we demonstrated the
ability to update an HD classification model on-the-fly to incorporate information about a
single new situational context such as a different limb position. While this was a big step
towards continuous learning, real-world usage of a gesture recognition algorithm requires
performance in a larger number of contexts while still being limited to computationally
efficient operations. In this chapter, I first describe how the classification accuracy using
an HD model can be improved when performing gesture recognition in 8 different limb
position contexts. The methods include optimizing the representation of prototypes and
encoding additional information through sensor fusion. I then detail how an HD classification
model can be incrementally trained to learn more and more limb position contexts in which
gestures are performed. A range of different classifier configurations are presented that
trade off classification performance with the amount of memory required for storing HD
model parameters.

4.1 Introduction

Hand gesture recognition using electromyographic (EMG) signals produced by muscle ac-
tivity has many applications in human-machine interfaces and upper-limb prosthetic control
[157]. Various machine learning algorithms have been applied to the problem, including
support vector machines (SVM [161, 195]), linear discriminant analysis (LDA [196]), ar-
tificial neural networks [165], and hyperdimensional (HD) computing [134, 135, 167, 168].
Ideally, gesture recognition capabilities can be embedded on-board wearable or implantable
devices and prosthetics, eliminating the need for separate computation devices and inefficient
wireless streaming of raw EMG data. [135, 197]

For users of upper-limb prostheses, these technologies can enable higher levels of dexterity
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over existing control strategies while remaining unobtrusive. However, lack of robustness due
to the variable nature of EMG signals is one of the largest issues leading to abandonment
of smart prosthetics [198]. As discussed in Chapter 3, we have fully implemented an HD
classification model for gesture recognition on-board the FlexEMG device that is capable
of in-sensor training, update, and inference [135]. In that work, we showed the ability to
update the HD model for a single new situational context that could be a change in limb
position, prolonged wear of the device over several hours, or doffing and donning the device
on a new day. We saw this as a step toward addressing the time-varying nature of EMG
signals, which remains a major barrier to practical use. Over time, the conditions in which
a gesture classifier is deployed become different than the ones in which it is trained, leading
to accuracy degradation [199]. Furthermore, datasets collected for training often are not
fully representative of the entire distribution of data to be encountered during real-world
deployment.

The particular problem I will be addressing in this chapter is classification error due to a
larger number of changing limb positions. Users must be able to expect accurate classification
with their limb in various postures, but this causes recording electrodes to shift and affects
gesture performance as well as underlying muscle activity [200]. These changes can cause
accuracy degradation if overlooked during initial training, and they often necessitate more
complex classification models. This effect has been observed in a number of works, and
Figure 4.1 shows an example of how HD classifiers trained in specific limb positions fail to
perform well in others. A new dataset consisting of 8 different limb positions (see Section
4.2.1 for more details) was collected to evaluate performance in a larger number of limb
positions. Using the same methodology as described in Chapter 3, we trained separate HD
classification models for gesture recognition in each limb position and tested them both
within the same position and in all other positions. While within-position classification
accuracy (on the diagonal of the position confusion matrix) remained high, most of the time
the classifiers saw large performance degradations when testing with data from a different
position (off diagonals).

Many methods to address this issue have been proposed in the literature. The most com-
monly explored way is to augment training routines to include a larger number of contexts
outside of ideal initial conditions (Figure 4.2a). Works have used training sets consisting
of multiple limb positions [200–202], as well as other types of variations including temporal
variation [201] and contraction effort level [203]. As we demonstrate below, updating HD
classification models for multiple limb positions through prototype superposition in the man-
ner described in Chapter 3 [135] enables some generalization, but that method alone still
performs significantly worse than context-specific models. Because features based solely on
EMG can overlap and take on more complex distributions when considering multiple limb
positions, other methods have leveraged new input features or signal modalities that vary
with and provide information about the limb position. Some works append accelerometer
features to existing EMG feature vectors [200, 204], while others take a dual-stage classi-
fication approach (Figure 4.2b) [200, 205]. A separate gesture classifier can be trained for
each limb position, with the most appropriate one selected during deployment based on limb
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Figure 4.1: Classification accuracy degradation across different limb positions.
Example shown for a single subject performing 13 gestures in 8 different limb positions. A
separate HD classifier was trained for each limb position, and each classifier was tested in
all limb positions.

position classification using accelerometer signals and either an LDA [200, 205] or SVM [206]
model. A hybrid dual-stage classification approach has also been suggested, which consists
of multiple classifiers each trained in a subset of limb positions, using an accelerometer for
coarser limb position detection [202]. While these architectures improve classification accu-
racy, they come with significant implementation overhead. Memory allocation for storage
of model parameters increases linearly with the number of limb positions, and an additional
limb position classifier must also be implemented. These drawbacks have made dual-stage
classification unattractive for in-sensor implementation.
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Figure 4.2: Methods for incorporating EMG data from multiple limb positions. a)
Augmenting the dataset with multiple limb positions for training a single model. b) Training
multiple limb position-specific models and choosing the appropriate model for inference based
on limb position classification, e.g., using accelerometer signals.

For multiple limb positions, the overall training effort (for both the user and for finding
generalizable model parameters) increases regardless of the methodology for incorporating
the new data. As more training data is required, it becomes burdensome to the user and im-
practical to collect it all at once for batch training. Instead, classification models which can
be incrementally trained over several sessions may be more suited for this application. When
untrained limb position contexts are encountered during everyday use, smaller incremental
training datasets may be collected to update the existing model. Several works have demon-
strated and advocated for adaptable machine learning models and incremental learning to
address EMG variation. A general framework consists of selectively updating the training
dataset with new examples as new information is made available to the system (Figure 4.3)
[207]. This framework is agnostic to the type of classification model used and assumes that
it can be retrained in a supervised manner using the updated dataset. Adaptive, incremental
training for gesture recognition has been demonstrated using both SVM [208, 209] and LDA
[207, 210–213] classifiers. Much focus has been on how well models can adapt to gradual
changes in the EMG over prolonged periods of use. However, when the incrementally learned
contexts consist of multiple limb positions that all continue to be relevant, more attention
needs to be paid to how well models also retain past information. Incrementally adapting a
model to a new position must enable performance in the new context while also preserving
classification accuracy when used in previous contexts.

Again, a challenge for incremental learning of multiple contexts is the increasing amount
of memory required to store training examples for use in re-training or updating model
parameters, as well as with the parameters themselves. There has been a lack of emphasis
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Figure 4.3: General framework for incrementally learning multiple limb positions.
After training an initial model, updating the model through incremental training can occur
in one or both ways, described by the red path and the blue path. In the red path, the
training dataset is incrementally augmented, and a new model can be trained from scratch
at each incremental step. In the blue path, only the model parameters are retained, and new
data is incorporated by updated model parameters.

on implementing incremental learning methods with computational resource constraints in
mind. Because the incremental learning framework grows a dataset that must be retained
for use in subsequent training sessions, the memory footprint for storing training examples
(either directly or as learned model parameters) must be considered for efficient in-sensor
implementations. While model parameters effectively condense the information contained
in training examples for use during inference, some portion of the original training dataset
must usually be retained for training or updating the model. Online learning methods for
sample-by-sample SVM training [214, 215] require previous training examples to potentially
be promoted as support vectors, and models trained with stochastic gradient descent require
that data from different contexts be shuffled for effective training. Some form of training
example storage is needed, and it is therefore beneficial for a model’s parameters to capture
the necessary information for incremental training while also being able to incorporate new
data regardless of the order in which it arrives (Figure 4.3).

Here, I show that methods based on HD computing are able to satisfy these requirements
and can do so with computationally efficient operations for on-the-fly training. The process
of learning a new example consists entirely of accumulating it into the appropriate prototype,
a computation which compresses training examples into smaller model parameters and does
not depend on the order in which data is presented. This makes HD classifiers inherently
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amenable to incremental learning. In this chapter, I will describe how HD classifier proto-
types can be improved for better classification accuracy in multiple limb positions and can
also be trained incrementally and in a memory-efficient manner.

I first describe the EMG and accelerometer dataset I collected from 5 subjects to evaluate
the different HD classifier configurations. I then discuss two different methods for improving
classification using HD computing. I briefly cover the first method, which attempts to
better define class boundaries within the data by optimizing prototypes and maximizing
classification margin, as opposed to simply finding class centroids through superposition.
While this enabled good performance across the 8 different limb positions, it also required
many iterative computations that are impractical and ill-suited for incremental learning and
embedded implementation.

The second method for improving prototypes involves limb position encoding using the
accelerometer sensor [168]. Properties relating orthogonal vectors in HD spaces can be lever-
aged to reduce the amount of interference between training examples from different contexts
in superposition. I use these ideas as a foundation for a sensor fusion-based HD classification
architecture where accelerometer signals are encoded into limb position context hypervec-
tors. With this method, I show that we can effectively perform dual-stage classification while
storing the position-specific parameters in superposition, rather than separately. This allows
us to achieve higher classification accuracy without the drastic increase in memory footprint
that normally comes from dual-stage or cascaded classifiers.

Finally, I present a range of HD classifier configurations for incrementally learning hand
gestures in multiple limb positions. Together with the choice of a context encoding method,
I investigate choices for how new training hypervectors should be superimposed into existing
prototypes and how many prototypes per class are allowed. To evaluate these choices, I
created an incremental training scenario in which new limb position contexts were learned
one at a time in random order. I then compared the configurations using classification
accuracy and memory footprint as metrics, and I implemented incrementally trained SVM
and LDA models as traditional machine learning comparisons.

4.2 Limb position dataset and limits of direct

superposition

To test the various methodologies for hand gesture recognition in multiple limb position
contexts, I collected a new dataset with simultaneous EMG and accelerometer measurements
during the performance of 13 gestures in 8 different limb positions. In this section, I describe
that data collection process, as well as initial experiments demonstrating the degradation
in classification accuracy caused by direct superposition of training examples from multiple
limb positions to compute class prototype hypervectors.
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4.2.1 Dataset collection experiments

Figure 4.4: Multi-limb-position EMG dataset collection. a) Wearable, wireless EMG
and accelerometer acquisition device. b) 13 gesture classes, including rest + 12 single degree-
of-freedom movements. c) 8 static limb position contexts.

I collected a dataset from 5 subjects (2 male and 3 female) performing 13 gestures in 8
limb positions while measuring their forearm EMG and wrist-mounted accelerometer signals.
Experiments were performed in strict compliance with IRB guidelines and were approved by
the Committee for Protection of Human Subjects at the University of California, Berkeley.
Data were acquired using the FlexEMG device enabling compact and wireless biosignal
acquisition and streaming (Figure 4.4a) [135]. For this study I utilized a 64-channel electrode
array implemented on a flexible printed circuit board, as opposed to the custom screen-
printed silver electrode array from Chapter 3. In collaboration with Alisha Menon and Fred
Burghardt, I also added an on-board accelerometer (InvenSense MPU-6050) to measure
limb position. Data from the accelerometer x-, y-, and z-axes were sampled at 1 kS/s and
synchronized with the EMG data acquisition. The electrode array was wrapped around the
largest section of the dominant forearm to cover the extrinsic flexor and extensor muscles
involved in digit movements. The device was oriented such that the accelerometer was
positioned over the ulna approximately two inches from the wrist, measuring the movements
of the forearm. For this study, the FlexEMG device’s in-sensor learning capabilities were
not used, and raw EMG and accelerometer signals were wirelessly streamed to a laptop for
offline analysis. Figure 4.4b and c show the gesture classes and limb positions used for the
study. The 13 gesture classes included 12 single degree-of-freedom movements of each digit
along with the rest class (no movement). Eight different limb positions were chosen based
on literature to mimic ones that may be encountered in everyday use [206].



CHAPTER 4. EXPANDING THE LEARNING CAPACITY OF HD CLASSIFIERS 89

The experimental procedure consisted of one recording session per limb position, in which
each gesture was performed for three repetitions. A single repetition (Figure 4.5) consisted
of beginning in the default limb position (Position 0) and the rest gesture, transitioning
to the directed limb position within a two-second window, performing the directed gesture
within a two-second window, holding the gesture for four seconds, transitioning back to
the rest gesture within a two-second window, and returning to the default limb position
within a two-second window. A relaxation period of three seconds followed each repetition.
Directions for gesture and limb position and timing guidance were provided to the subject
through a custom graphical user interface, which also logged the wirelessly streamed data.
For analysis, only the central four-second steady-state period of the gesture performance was
used. Each period was divided into 50 ms windows for feature extraction of the average x-,
y-, and z-axis acceleration and mean absolute value of each of the 64 EMG channels.

Figure 4.5: Single data collection trial. 64-channel EMG mean absolute value (MAV)
features and 3-axis accelerometer features from an example repetition of middle finger ex-
tension in limb position 3, with annotated timing directions.
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4.2.2 Interference between contexts in superposition

For all of the methods involving HD computing in this chapter, I implemented the same
EMG projection algorithm as described in Section 3.3.2, except with the standard 10,000-
dimensional hypervectors rather than smaller 1,000-bit ones used for FPGA implementation.
As a refresher for the reader, I represent each electrode channel using an orthogonal 10,000-
D bipolar hypervector. First, spatial encoding is performed by computing a bipolarized
weighted sum of these hypervectors using the extracted feature values from each channel
as weights. Temporal information is then encoded using a permute and multiply operation
across five consecutive spatially encoded hypervectors. Thus, each encoded EMG hypervec-
tor represents 250 ms of EMG data, with an overlap of 200 ms.

Classification of query hypervectors was performed through nearest neighbor search
among class prototypes. Prototypes were calculated by superimposing training examples
from each class through element-wise majority, and similarity between prototypes and queries
was measured using Hamming distance. To demonstrate why improvements were still needed,
I implemented simple direct superposition of training examples from multiple limb positions
for building class prototypes. Figure 4.6a describes this process in two steps, where context-
specific prototypes were first formed through accumulation of training examples, and then
generalized prototypes were formed by accumulating the context-specific associative memo-
ries. For bipolarized hypervectors, bipolarization would occur after the second accumulation.
The same experiment was repeated for each of the subjects, with 5-fold cross-validation
used to generate training (4 folds) and testing (1 fold) datasets. Figure 4.6b shows the
classification accuracy degradation as more and more limb position contexts are stored in
superposition. While average classification accuracy within a single limb position is high for
all subjects, accuracy falls as more and more limb positions are stored in superposition in a
single set of class prototypes.

The source of error due to direct superposition can be analyzed by inspecting the element-
wise addition operation used before bipolarization, replacing Hamming similarity between
two hypervectors with the dot product (·). The prototype stored in the associative memory
for gesture g can be calculated as AM [g] =

∑
pAMp[g], where AMp[g] is the position-specific

prototype for gesture g in position p. Classifying a query hypervector X with gesture label
y from limb position context c is then computed as:

ŷ = argmax
g

(X · AM [g])

= argmax
g

(
X · AMc[g] +

∑
p 6=c

X · AMp[g]

)
(4.1)

We split each dot product into a position-specific classification term and an error term from
interference with other contexts. This error typically is not small, and it depends on the
similarity between prototypes from different gestures and different positions. In the next
two sections, we describe two methods for improving classification. Section 4.3 describes a
method that, after being initialized with prototypes computed using direct superposition,
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Figure 4.6: Direct superposition of EMG training examples in multiple contexts.
a) Architecture describing the superposition process in two steps. For each context, training
hypervectors from each gesture class are superimposed to form associative memories with
context-specific class prototypes. Then, multiple context-specific associative memories can be
superimposed together to form a generalized model for inference. b) Classification accuracy
using direct superposition, measured when training and testing a single HD model in different
sized subsets of limb position contexts. For each sized subset, all possible combinations of
limb position contexts are taken. Accuracy is shown as an average over these different subsets
and over 5 subject-specific experiments.

iteratively “corrects” and heuristically optimizes the prototypes for better class separateion.
Section 4.4 then describes methods for incorporating accelerometer signals for context en-
coding to minimize the interference error by orthogonalizing prototypes from different limb
positions.

4.3 HD prototype optimization

In prototype optimization for HD computing, the goal is to generate class prototypes through
methods other than computing class centroids in order to improve classification performance.
In this section, we first introduce learning vector quantization (LVQ), a prototype-based clas-
sification algorithm attempting to define optimal boundaries within the data and maximize
classification margin. We then turn to a heuristic approach that is more amenable to HD
computing with bipolar hypervectors.
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4.3.1 Generalized learning vector quantization

Learning vector quantization, like HD computing, is a prototype-based classification algo-
rithm [216]. The primary difference is that with HD computing, a simple superposition is
used to produce prototypes, whereas for LVQ, prototypes are created through an optimiza-
tion process with a cost function. The other difference is that traditional LVQ excels with
floating point features and Euclidean distance, whereas HD computing is more amenable
to operations in a binary or bipolar domain. Still optimization has its advantages: it at-
tempts to actually learn boundaries between classes rather than simply trying to form class
representations, and through this it optimizes classification performance.

A review of LVQ algorithms shows that they can roughly separated into two different
variants: 1) margin-based, where a distance-based cost function incorporates information
about the decision boundary and is to be optimized, and 2) heuristic, in which prototypes are
updated through measuring the amount of error they produce when performing classification
[216]. Here, we describe generalized LVQ (GLVQ), a margin-based algorithm [217]. In GLVQ,
prototypes may be initialized at random or based on the data, e.g., using the class centroids.
After initialization, the k class prototypes wg for g ∈ 1, 2, ...k are used to evaluate the cost
function:

J =
n∑
i=1

φ

(
d(xi, wcorrect)− d(xi, wwrong)

d(xi, wcorrect) + d(xi, wwrong)

)
(4.2)

where xi is an individual training example, n is the total number of training examples,
d(a, b) is a distance function between vectors a and b, wcorrect is the prototype representing
the correct class for example xi, wwrong is the nearest incorrect prototype, and φ(·) is a
monotonically increasing non-linear function. This cost-function is differentiable and can
thus be minimized using gradient descent.

For gesture recognition experiments, I applied GLVQ optimization to the projected EMG
hypervectors and compared the performance to prototypes generated through direct super-
position. Because the cost function must include a differentiable distance function, I selected
Euclidean distance for the optimization process even though all of the training examples were
bipolar hypervectors. Optimization also produced prototypes with floating-point values, so
I implemented three different types of inference for evaluating the classification accuracy.
The first kept the floating-point prototypes and used Euclidean distance as the classification
distance metric, keeping to what was used in the cost function. To make the inference more
similar to HD classification, I also replaced the Euclidean distance with cosine distance. Fi-
nally, to make the inference process identical to HD classification, I bipolarized the optimized
prototypes and used Hamming distance as the metric for classification.

Table 4.1 shows the classification accuracy results for a single subject in all 8 limb po-
sitions when comparing the GLVQ based methods to prototypes computed using direct
superposition. For this particular subject, the standard HD computing method of direct
superposition was only able to achieve 75.96% classification accuracy, a major degradation
when compared to the average 98.86% within-context classification for each limb position.
GLVQ using floating-point prototypes and Euclidean distance for classification was able to
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Prototype type Distance metric Accuracy

Bipolarized direct superposition Hamming distance 75.96%
Floating-point GLVQ Euclidean distance 95.61%
Floating-point GLVQ Cosine distance 84.93%

Bipolarized GLVQ Hamming distance 81.39%

Table 4.1: GLVQ prototype optimization accuracy.

mostly recover the classification accuracy to 95.61%, demonstrating the ability for GLVQ to
define much better separating planes in the HD space. However, this performance depended
a lot on the way prototypes were represented. If we first used cosine distance rather than Eu-
clidean distance for the nearest-neighbor search, this dropped accuracy to 84.93%. Further
simplifying the inference process by bipolarizing the prototypes and using Hamming distance
to compare queries reduced classification accuracy to 81.39%. This shows that while GLVQ
can find better prototypes, it also requires a much more complex inference computation and
larger storage for prototypes to be effectual.

4.3.2 Adaptive HD training and LVQ for bipolar hypervectors

To find a prototype optimization method that is better suited to inference using Hamming
distance, I turned to the heuristic LVQ2.1 algorithm [216] and adaptive training with HD
computing [218]. The basic concept behind LVQ2.1 is to iteratively nudge the closest correct
prototype and the closest incorrect prototype for each training example. The closest correct
prototype is nudged in the direction towards the training example to make it more similar,
with wcorrect ← wcorrect + α · (x − wcorrect) where α is the learning rate. Similarly, the
closest incorrect prototype is updated with wwrong ← wwrong−α · (x−wwrong). Adaptive HD
training takes a similar approach, except with superposition of training examples rather than
“nudging” their values using the error vector. Upon accumulating a new training example
onto the correct class’s prototype, if that example is still misclassified, then it is subtracted
from the prototype of the mistakenly selected class.

For my experiments, I extended this idea to a batch implementation of LVQ-style updates,
similar to the method described in [219]. In the first iteration, the entire batch of training
data is used to generate prototypes through direct superposition. Afterwards, all training
examples are classified using the current prototypes. For each class, the prototype wg for class
g is updated as follows: First all of the examples that produced a false negative (belonging
to class g but mistakenly classified with a different label) are collected, and their bipolarized
centroid wg,FN is found. Similarly, the centroid wg,FP is found for all of the false positive
examples that were incorrectly classified as gesture g. The prototype is then updated using a
bitwise merge to approximate wg ← wg +αwg,FN −βwg,FP . Here, α and β are learning rates
determining the proportion of bits to merge from the respective centroids during the update.
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Figure 4.7 shows the learning curve for this LVQ-style prototype update. After about 20
iterations, classification accuracy for the validation set stabilizes at around 93.18%. This
performance is almost as good as GLVQ prototypes with Euclidean distance classification,
but it requires only bipolar hypervectors for more efficient operation.

Figure 4.7: Learning curve of heuristic LVQ for HD classification. a) Architecture
describing the superposition process in two steps. For each context, training hypervectors
from each gesture class are superimposed to form associative memories with context-specific
class prototypes. Then, multiple context-specific associative memories can be superimposed
together to form a generalized model for inference. b) Classification accuracy using direct
superposition, measured when training and testing a single HD model in different sized
subsets of limb position contexts. For each sized subset, all possible combinations of limb
position contexts are taken. Accuracy is shown as an average over these different subsets
and over 5 subject-specific experiments.

While these optimization methods resulted in improvements over direct superposition,
the iterative nature of the processes and the requirement that training data from all contexts
be available during the training process makes prototype optimization unlikely to be adopted
for in-sensor, incremental model training. For such situations, we must instead turn to a
methodology in which superposition through incremental accumulation is the only required
operation on projected hypervectors. In the next section, we discuss how this can be made
possible by encoding context information with sensor fusion.
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4.4 Sensor fusion for context encoding

Although the same gesture classes are used in each of the different limb positions, EMG
signal variation due to context change can shift the data distribution enough that gesture
recognition in multiple limb positions can be viewed as a multi-task problem. It has been
shown that orthogonal, high-dimensional context vectors can be bound to neural network
weights to access task-specific models stored in superposition with other models for multi-task
learning with the same set of parameters [220]. A similar result has also been demonstrated
for HD classification, where orthogonal hypervectors representing different tasks were used as
keys to access task-specific prototypes stored in superposition [221]. These strategies could
be applicable here, requiring some method of determining the limb position context during
inference.

In this section, I describe a method of binding context hypervectors based on accelerome-
ter signals we call context-based orthogonalization [168]. I present an analysis of its expected
classification margin improvement, along with two architectures for projecting accelerometer-
based limb position information into context hypervectors. The first, which most closely
resembles dual-stage classification, requires identification of discrete limb position contexts
that are each represented by an orthogonal context hypervector. Context hypervectors are
selected during training and inference based on limb position labels and limb position classi-
fication using accelerometer signals, respectively. The second architecture I present directly
encodes accelerometer features into context hypervectors without the need to define discrete
contexts. My results show that sensor fusion for context-based orthogonalization can im-
prove classification accuracy for my multiple limb position dataset from 76.57% to 91.66%
without introducing significant implementation costs.

4.4.1 Context-based orthogonalization

Context-aware classification can be achieved using a dual-stage architecture as depicted in
Figure 4.8a, which resolves the issue of interference between contexts by separating them
completely. However, this method would require separate storage of context-specific pa-
rameters and scale memory footprint by the number of desired contexts. We can instead
orthogonalize gesture prototypes from different limb position contexts by binding them with
orthogonal context vectors prior to superposition [220, 221]. During inference, query hy-
pervectors are also bound to their corresponding context vectors before nearest neighbor
search.

Here, I show that context-based orthogonalization effectively enables dual-stage classifi-
cation while still allowing for superposition of parameters and thus memory efficiency. Figure
4.8b depicts the implementation for an HD classifier. Using similar notation as in Section
4.2.2, entries in the AM are now calculated as AM∗[g] =

∑
pCMp×AMp[g], where CMp is a

context hypervector representing limb position p and is orthogonal to context hyptervectors
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Figure 4.8: Context-aware HD classification architectures. a) Dual-stage classifica-
tion with limb position classification to select position-specific prototypes. Accelerometer
(acc.) data is used to classify the limb position context and choose from among the context-
specific models (AM0 through AM7). b) Context-based orthogonalization using classified
limb position to enable superposition of prototypes. Orthogonal context hypervectors (CM0

through CM7) are bound to EMG hypervectors during training and inference. c) Direct
encoding of accelerometer signals as context vectors without limb position classification.
Accelerometer context vectors are calculated on an example-by-example basis.

representing other positions. Classifying a query is now computed as:

ŷ = argmax
g

(CMc ×X · AM∗[g])

= argmax
g

(
CMc × CMc ×X · AMc[g] +∑

p 6=c

CMc × CMp ×X · AMp[g]

)
= argmax

g
(X · AMc[g] + ε)

(4.3)

Because binding a bipolar hypervector with itself results in the identity vector, the first term
of the dot product is again a position-specific term. Binding two random hypervectors with
each other results in a new, orthogonal hypervector, diminishing the dot product error term.

4.4.2 Classification margin analysis

A classification margin can be defined by viewing the task as a problem of noisy element
retrieval from the associative memory, with error due to both sample-by-sample variation
and prototype superposition. Since sample-by-sample variation should be zero-mean, we
neglect it in defining retrieval error for class y in context c:

dretrieve = d

(
CMc × AMc[y],

∑
p

CMp × AMp[y]

)
(4.4)
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where d(a, b) is the Hamming distance function. We can compare this with the distance to
the nearest incorrect class:

dwrong = d

(
CMc × AMc[y],

∑
p

CMp × AMp[g 6= y]

)
(4.5)

to approximate the classification margin:

m = (dwrong − dretrieve) / (dwrong + dretrieve) (4.6)

For the baseline case of direct superposition, we can just set all of the CMp context
vectors to be identical. I simulated a general classification task using randomly generated
prototypes with average pairwise distance of d0, regardless of class or context. Figure 4.9a
shows the retrieval error and incorrect classification distance when superimposing 11 contexts
with varying d0, both for direct superposition and with context encoding. While orthogonal
context encoding increases retrieval error to a constant value, it also increases incorrect
classification distances by a larger amount, leading to a larger classification margin as shown
in Figure 4.9b. This improvement in margin is shown for varying odd numbers of contexts
in Figure 4.9c. Even numbers of contexts perform identically to the next higher odd number
of contexts since the random tie-breaking required for superposition is equivalent to adding
in a new, orthogonal context. There is no improvement in margin over direct superposition
when there are three or fewer contexts, or in extreme cases where all prototypes are identical
or orthogonal. Otherwise, orthogonal context encoding always improves margin, with the
maximum improvement occurring with 11 contexts and d0 ≈ 0.3.

4.4.3 Sensor Fusion of Accelerometer Signals

I explored two different ways to generate context vectors using accelerometer features. First,
we can perform dual-stage classification and train a first stage classifier on accelerometer
signals to select between limb position context hypervectors. We can classify limb positions
using a simple linear SVM, and a context memory can be created with a randomly generated,
orthogonal vector representing each limb position. Figure 4.10a shows the accelerometer
features for different limb positions used to select between context memory hypervectors.

Alternatively, we can directly encode accelerometer signals into context hypervectors,
without the need to classify limb position (Figure 4.8d). Accelerometer signals are first
quantized between +1g and−1g into discrete levels which can be represented by hypervectors
from a continuous item memory (CIM) (Figure 4.10b). A separate memory is used for each
of three accelerometer axes, and encoded quantization levels are then bound together to form
a single context hypervector. The CIM preserves relationships between quantization levels,
representing extreme values (±1g) with two hypervectors that are dmax Hamming distance
apart and representing intermediate values as a mixture of these hypervectors. This ensures
similarity between examples from the same limb position, while still differentiating between
hypervectors representing different positions.
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Figure 4.9: Improvement in classification margin using orthogonal context encod-
ing. a) Retrieval error (green) and incorrect classification distance (red) for 11 contexts.
Dashed lines are with direct superposition, and solid lines are with context-based orthog-
onalization. b) Classification margins and margin improvement due to orthogonal context
encoding for 11 contexts. c) Margin improvement as a function of both the number of
contexts and distance between classes.

4.4.4 Experiments

To provide baseline comparisons with context-based orthogonalization methods, I imple-
mented two strategies from prior art for multi-limb position classifiers. The first was a true
dual-stage classifier [202] (Figure 4.8a), where I used an SVM to classify accelerometer sig-
nals and choose an associative memory containing position-specific prototypes. The second
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Figure 4.10: Methods for projecting accelerometer signals into hypervectors. a) Selection
of a context vector from an orthogonal context memory based on classified limb position
contexts using SVM. b) Using a continuous item memory to represent the quantized signal
from each accelerometer axis and binding the result.

Dual-stage Direct Context-based Accelerometer
classification superposition orthogonalization CIM encoding

Accuracy 96.56% 76.57% 91.66% 91.31%
Parameter 104 prototypes 13 prototypes 13 prototypes 13 prototypes

count 50 support vectors 50 support vectors
Memory 1020.3 kb 127.0 kb 131.6 kb 126.0 kb

Adapted from [202] Adapted from [135] This work This work

Table 4.2: Comparison of limb-position aware gesture recognition approaches.

was direct superposition of each of the limb position-specific associative memories without
any context information [135] (Figure 4.6a). Classification accuracy for all experiments was
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calculated using 10-fold cross-validation of the dataset.
The first two columns in Table 4.2 show the results for these baseline strategies. Dual-

stage classification, as expected, achieved the best-case scenario classification accuracy of
96.56% across all limb positions. However, this method has the major drawback of requir-
ing separate EMG and limb position classification modules, as well as > 8× the required
parameter storage compared to a single limb position model. On the other hand, the direct
superposition model is identical to a limb position-specific model in terms of implementation,
but it results in an accuracy degradation of 19.99%.

As points of comparison for memory footprint, I applied to our dataset a multi-class SVM
classifier with RBF kernel as well as an LDA classifer (Python scikit-learn). Limb position-
specific SVM models required on average 287 support vectors consisting of the same 320
floating point features used by our HD classifier to achieve comparable accuracy. For dual-
stage classification of all 8 limb positions, this resulted in an SVM parameter memory of
approximately 23 Mb, more than 22× the size of a dual-stage HD classification model (≈ 1
Mb). If instead I trained a single SVM model on all 8 limb positions, only 362 total support
vectors would be necessary. This decreases parameter memory to 3.5 Mb, which is still
larger than our HD classifier formulations, and it also requires that all applicable contexts
are known and accounted for at the initial training time. In contrast, HD classifier updates
can be performed at any point through simple superposition of prototype hypervectors.

For LDA, individual model size is the same whether trained with a single context or on
all contexts. In both cases, a 320 element mean vector for each gesture and a 320 × 320
element covariance matrix must be stored, which totals to 3.25 Mb per model and 26 Mb
for a dual-stage classification with 8 LDA models.

Orthogonal context encoding using a limb position classifier (Figure 4.8b) provided a
dramatic improvement in classification accuracy to 93.37%, while only increasing memory
footprint by 3.7% compared to the direct superposition case and limb position-specific models
(Table 4.2). The marginal increase in parameter memory was for storage of SVM parameters.
For our tests, 99.99% accuracy in limb position classification could be achieved while using
only up to 50 stored support vectors consisting of 32-bit floating point accelerometer features.
Including the HD classifier prototypes, which require 10,000 bits for each of the 13 classes,
the total parameter memory footprint is 131.6 kb.

Although light weight in terms of memory requirement, the use of a limb position SVM
does still require implementation of the decision function, adding to the model complexity.
Additionally, the SVM must be trained using discrete, labeled limb positions decided upon
before deployment. This limitation motivates direct encoding of accelerometer signals to
create an arbitrary number of context vectors.

I used a genetic algorithm [222] to determine optimal parameters for encoding accelerom-
eter features into context vectors (Figure 4.8c). Parameters for each subject were chosen
individually, and the number of quantization levels as well as the distance dmax between ex-
treme values in the CIM were allowed to be different for each accelerometer axis. CIM-based
accelerometer encoding was able to match context-based orthogonalization in classification
performance with an accuracy of 91.31% while removing the required overhead for a limb
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position classifier (Table 4.2). Generation of CIM hypervectors can be achieved through
re-use of components already existing in the main EMG projection architecture, adding very
little to implementation complexity.

These results show that by encoding accelerometer signals to include information about
the limb position, we can greatly improve classification accuracy of hand gestures in multiple
limb positions. However, this does not solve the problem of large initial training efforts. In
the next section, we detail how the HD classification model performs when trained incre-
mentally so that a single limb position may be learned one at a time, reducing the initial
effort of building the classification model.

4.5 Incremental learning with HD classifiers

Up to this point, I have described real-time, in-sensor gesture classification and simple model
updates using HD computing [135], as well as accelerometer encoding for incorporation of
context information to improve classification in multiple limb position contexts [168]. In this
section, I combine ideas from these works to describe an incremental learning framework for
HD computing. I analyze the various methods of maintaining and updating prototypes in
an incremental fashion and how they impact classification accuracy and memory footprint.
These methods include how accelerometer signals should be encoded to provide limb position
context information, how new training hypervectors should be superimposed into existing
prototypes, and also how many prototypes per class are allowed.

A key result I demonstrate is that performing the majority vote for incremental super-
position in two stages not only reduces the memory required to store intermediate values
between incremental training steps, but it also improves the accuracy across all seen limb po-
sition contexts. I then proceed to show how various configurations can be chosen to trade-off
classification accuracy and memory footprint, ranging from the smallest model with 85.71%
accuracy and 264 kb of required memory to the largest with 97.15% accuracy and 1.125
Mb of memory footprint. Finally, in comparing incrementally trained HD classifiers with
traditional machine learning models, I show that HD computing can achieve comparable
classification accuracies while requiring an order of magnitude smaller memory allocation,
making it ideal for implementation in devices where resources are limited.

4.5.1 Incremental learning setup

For my incremental learning experiment, I considered a scenario in which we train on a
sequence of m incremental training datasets S1,S2, ...,Sm where each set consists of Si =
{(xi,j, yi,j) |xi,j ∈ X, yi,j ∈ {1, 2, ..., k} , 1 ≤ j ≤ ni} with xi,j and yi,j being training examples
and labels, X being the feature space of raw features or projected hypervectors, k being
the number of classes, and ni being the number of training examples in each dataset Si.
Each incremental dataset consists of context-specific data, modeling a scenario in which new
limb positions are incrementally learned over time. We can represent the initial classifier
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trained on S1 as CLF1. Updated classifiers after each subsequent incremental training step
are CLFi = ftrain (Si, CLFi−1) , 1 < i ≤ m where each updated classifier only has access to
the latest dataset and the previously trained classifier parameters.

For each new incremental training dataset, we can compute candidate prototypes repre-
senting that specific context. Therefore, I use the terms “candidate prototype” and “context-
specific prototype” interchangeably. For HD computing, where incremental training and
batch training can differ are:

1. How candidate prototypes are incorporated into the model’s prototype memory, and

2. What representations of stored prototypes (or previous training examples) are available

We can either superimpose a candidate prototype with an existing stored prototype, or, if our
memory budget permits, we can store it as a new prototype such that multiple prototypes
represent the same gesture. I first describe various algorithmic design choices one can make
for incrementally superimposing new candidates with stored prototypes, beginning with a
method that produces an identical model as with batch training, and introducing configura-
tions with increasing optimization and approximation. I then describe the overall algorithm
with the ability to either superimpose candidate prototypes or store them separately for a
trade-off between memory footprint and classification performance.

4.5.2 Incremental prototype superposition

If all previous training examples are retained in memory as model “parameters”, then each
incremental step can consist of batch training with all data seen until this point, S =
S1 ∪ S2 ∪ ... ∪ Si (Figure 4.3). This storage would require D × n bits in memory, where
n =

∑
i ni is the combined size of all incremental datasets. However, we ultimately only

require the class centroids, and thus we only need to store their accumulated sums from each
class (Figure 4.11a). I will refer to this method as example accumulation, and, assuming
class-balanced training examples, this reduces the required memory footprint to be D× k×(
blog2

(
n
k

+ 1
)
c+ 1

)
bits, where blog2 (N + 1)c+1 is the memory required to accurately sum

N bipolar bits. For our dataset with 240 examples per class per context (n = 240×m×k =
24, 960), this amounts to a reduction from 10, 000 × 24, 960 ≈ 238 Mb required to store all
training examples down to 10, 000× 13× 11 ≈ 1.36 Mb to only store their sums.

The first optimization we can make is to only store and accumulate bipolarized can-
didate prototypes at each step (Figure 4.11b). Prototype accumulation requires fewer bits
per element than example accumulation, with overall memory footprint being D × k ×
(blog2 (m+ 1)c+ 1). In my case with 13 gestures and 8 limb positions, we now only require
10, 000× 13× 4 ≈ 508 kb of memory.

The benefit of prototype accumulation is two-fold: not only does it require less mem-
ory than example accumulation, but it also potentially improves classification performance.
Example accumulation from multiple contexts with differing class cluster spread creates pro-
totypes with unbalanced representation of the different contexts. By cluster spread, I refer
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Figure 4.11: HD classifier incremental superposition configurations. Each row of op-
erations in a) and b) shows updating a class prototype during an incremental training step.
Vertical arrows show values that must be preserved for the next incremental training itera-
tion. a) Example accumulation of all previously seen training examples. b) Accumulation
of bipolarized prototypes from each of the sequential training datasets requires a lower bit-
width representation in memory. Prototypes are accumulated using integer addition (shown)
or through bit-wise merge (replacing the purple blocks). c) Prototype representation for two
orthogonal contexts with varying cluster spread. Context 1 spread is held constant at 0.25
average pairwise Hamming distance, while Context 2 spread varies between 0 and 0.5. The
x axis is the ratio of the two cluster spreads. Solid lines show representation for example
accumulation, and dotted lines show representation for prototype accumulation.

to the average similarity between HVs belonging to the same class. In superposition using
majority vote, classes with low spread overwhelm more spread-out classes, leading to a pro-
totype that is more similar to the tighter class’s centroid and distant from the noisier class’s
centroid. This results in especially bad performance when encoding limb position information
with orthogonal context HVs, as the prototype may end up completely orthogonal to certain
contexts it is supposed to represent. On the other hand, prototype accumulation ensures
even context representation, as only a single HV from each context is included in the sum.
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I simulated accumulating two clusters of data, varying the ration between cluster spread of
each cluster (Figure 4.11c). The resulting prototype was always more similar to, and thus
more representative of, the cluster with lower spread when using example accumulation. In
contrast, prototype accumulation resulted in balanced representation.

Beyond this, we can approximate prototype accumulation to further reduce model param-
eter memory size. Rather than storing integer values, we instead only need 1 bit of memory
per prototype element if we use bit-wise merge to approximate accumulation (Figure 4.11b).
The ith candidate prototype can be merged into the stored prototype by randomly replacing
1/i of the stored bits with bits from the candidate. This “learning rate” of 1/i ensures that
all seen candidate prototypes are approximately equally represented [192]. While this results
in noisier prototypes, we reduce the parameter memory for our scenario to 10, 000×13 ≈ 127
kb. A comparative summary of these configurations is given in Table 4.3.

Configuration
Incremental superposition Parameter memory Parameter

operations calculation memorya

Example
σ
(∑i−1

l=1

(∑nl
j=1 xl,j

)
+
∑ni

j=1 xi,j

)
D × k ×

(
blog2

(
n
k

+ 1
)
c+ 1

)
1.36 Mb

accumulation

Prototype
σ
(∑i−1

l=1 σ
(∑nl

j=1 xl,j

)
+ σ

(∑ni
j=1 xi,j

))
D × k × (blog2 (m+ 1)c+ 1) 508 kb

accumulation

Prototype
merge

(
mergei−1

l=1

(
σ
(∑nl

j=1 xl,j

))
, σ
(∑ni

j=1 xi,j

))
D × k 127 kb

merge

aD = 10, 000; k = 13;n = 24, 960;m = 8; 1 Mb = 1024 kb = 10242 b

Table 4.3: Incremental hypervector superposition configurations

4.5.3 HD computing incremental learning algorithm

The alternative to superimposing a candidate prototype is inserting it as a separate proto-
type representing the same class. Interference caused by different contexts in superposition is
eliminated, and the method is akin to using an ensemble of classifiers. Whether a candidate
prototype is kept separate must be consistent across all gesture classes, requiring an addi-
tional D× k bits of parameter memory. This decision can be based on a memory budget for
the number of separated contexts allowed, msep. Before the budget is reached, the number of
prototypes per class grows with the number of incremental training steps. After meeting the
budget, one context will be selected as the target context for future superposition, either at
random or based on its age. In subsequent steps, either new prototypes or an existing sepa-
rate prototype will be superimposed onto the target prototype. The overall HD incremental
learning algorithm is described in Algorithm 1.
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Algorithm 1: HD classifier incremental training
Input: Memory budget of msep separate prototypes per class and one superimposed prototype

representing msup contexts per class; incremental superposition configuration; sequence of
incremental training datasets S1,S2, ...,Sm

Result: Incrementally trained HD classification model
1 for Si, i ∈ 1, 2, ...,msep + msup do
2 for g ∈ 1, 2, ..., k do
3 Compute candidate prototype for xi,j , yi,j ∈ Si∀yi,j == g
4 end
5 if i ≤ msep then
6 Store candidate prototypes as new AM prototypes
7 else
8 Randomly select between new context and stored separate contexts
9 if i = msep + 1 then

10 Set aside selected context prototypes as target prototypes
11 else
12 Accumulate selected context prototypes onto target prototypes using incremental

superposition configuration
13 end
14 end
15 end

4.5.4 Memory allocation

In addition to parameter memory, a local scratch memory must also be maintained for stor-
ing intermediate values during feature projection to hypervectors and incremental training
operations. Pseudo-random, orthogonal item memory hypervectors can be generated sequen-
tially using a rule 90 cellular automaton with hardwired seeds and connections [192, 223].
For spatial encoding, a single 32-bit floating point accumulator can be used to generate the
weighted sum for each element, which are all independent of each other. D bits are required
for storage of the bipolarized spatial hypervector. For temporal encoding, we must store the
previous Ntemporal− 1 projected spatial hypervectors as well, totaling a memory requirement
of D ×Ntemporal + 32 bits for projection of EMG data.

For projection and classification of accelerometer data, we can also generate continuous
item memories based on hardwired logic gates and seeds from the item memory genera-
tor [192]. A single D-bit memory is required for storage and sequential binding of the
three encoded accelerometer axes. If we wish to perform orthogonal encoding, we can also
implement a small HD model for context classification. This model can have a reduced
hypervector dimension by employing only a subset of the bits from accelerometer encoded
context hypervectors, and we found that a dimension Daccel = 316 was sufficient for a context
classification accuracy of 97.36%, within 0.5% of the accuracy achieved when using the full
10,000-D hypervectors.

For computation of candidate prototypes, incoming projected hypervectors can be accu-
mulated using a D-dimensional array of 8-bit saturating up/down counters for 240 training
examples per class in each incremental training dataset. This function is shared by the pa-
rameter storage memory in the example accumulation configuration, but a separate scratch
memory is required when using prototype accumulation or merge, or when multiple separate
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prototypes per class are allowed.
A summary of the memory footprints for the various HD classifier incremental learn-

ing configurations is given in Table 4.4. In building a configuration, an encoding method
(columns) must be chosen for incorporating context information, and an incremental su-
perposition method (rows) must be chosen to update superimposed prototypes. A list of
hyperparameters is given, along with values that have been implemented for hand gesture
recognition. In particular, selection of msep, the budget for separate prototypes per class
plays a large role in both accuracy and memory footprint.

4.5.5 Comparison methods

As comparisons to the HD classifier, I incrementally trained two traditional machine learn-
ing algorithms—support vector machine (SVM) and linear discriminant analysis (LDA)—
commonly used for EMG-based gesture recognition. I used the last Ntemporal = 5 MAV
features for each channel along with the 3 accelerometer axis features to build 323-element
input feature vectors. In addition, the entire dataset was standardized for a mean of 0 and
standard deviation of 1 when using SVM. I chose to compare models based on accuracy and
memory footprint only, as computation time or complexity comparisons would depend on
the exact implementations of each algorithm. For gesture recognition, classification through-
put is low (e.g., 20 classifications per second) and data windows are long (e.g., 250 ms), so
algorithm latency is a relatively small portion of the overall system latency. Incorporating
hardware re-use and time multiplexing can make it especially difficult to make fair compar-
isons.

I chose a linear SVM classifier which required no kernel function evaluation and produced
high classification accuracy results with our dataset. I tuned the regularization parameter C
using 5-fold cross-validation in a batch setting for each subject. The optimal value C = 0.1
offered the best classification performance while reducing the number of support vectors, thus
reducing memory footprint. Although storing individual support vectors is not required for
SVM inference, it is still needed for updating incrementally trained SVM models.
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I first implemented a linear classifier trained using stochastic gradient descent (SGD)
with hinge loss and L2 penalty, fitting the parameters for a linear SVM. This method did
not require storage of previous training examples, instead updating model weights through
a few iterations of gradient descent over each new incremental training dataset. Within each
limb position context, data from all gesture classes were made available at one time to allow
for shuffling. This necessitated a large scratch memory during each training step.

Next, I explored methods for augmenting and curating datasets for retraining. After each
incremental step, I reserved the model support vectors to augment the next incremental
training dataset [224]. Each new dataset could consist of either all gestures or a single
gesture in a new context. Fewer total steps were required when updating with all gestures,
but this relied on a larger scratch memory for temporarily storing the data. Because the
overall training effort and the resulting number of support vectors grow with the size of the
training dataset [215], I also explored methods to subsample from the new datasets. The first
method subsampled training examples which produced errors when tested on the existing
model, based on the assumption that these examples were most likely to become new support
vectors [225]. I further reduced the number of examples by also randomly subsampling a
percentage of the training sets, trading off generalization for reduced memory.

I then trained an ensemble of SVM models, with one model for each context. I still
enabled gesture-by-gesture training for each context-specific model, as well as training set
reduction by randomly subsampling. Memory footprints for the incrementally trained SVM
models were measured as the number of 323× 32-bit floating point support vectors retained
the next step. We also estimated the training scratch memory as the size of the subsampled
training dataset used. This underestimates the memory requirement, as we didn’t account
for data standardization or additional memory for solving the SVM quadratic programming
problem and computing coefficients for candidate support vectors.

For the LDA classifier, I first considered online updates to compute model parameters,
which consisted of 323 × 32-bit mean feature vectors for each class and an overall 323 ×
323× 32-bit covariance matrix. Model parameters could be updated on a sample-by-sample
basis in an exact manner, requiring only the previous parameters and scratch memory to
compute the update to the covariance matrix [226]. I also compared using an ensemble
of context-specific LDA classifiers, which requires the same incremental training effort, but
m-times the parameter storage memory.

4.5.6 Experiments

Context-specific classifiers

I first batch trained and tested separate, context-specific classifiers to again demonstrate the
necessity of incremental learning, including for the comparison SVM and LDA models. Using
5-fold cross-validation, I tested each context-specific model with data from the same context
(“within context”), as well as data from all other contexts (“across contexts”). Accuracy
results for the HD, SVM, and LDA classifiers are shown in Figure 4.12. All models were
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Figure 4.12: Classification accuracy within and across limb position contexts. Batch
trained context-specific models were tested in the same context (blue) as well as in other
contexts (red). Boxes show the quartiles, whiskers show the range, and individual diamonds
are outliers.

able to perform well within context, with LDA being especially consistent and accurate.
However, there were significant accuracy degradations when training and testing all models
in different contexts, thus requiring updates for generalizable performance.

Comparison of incremental superposition methods

Figure 4.13 demonstrates the ability of HD classifiers to learn different numbers of limb
position contexts through incremental superposition. For each value of msup, a model with
one prototype per class was incrementally trained using all possible combinations of msup

context-specific datasets. As a reference, I was able to achieve 98.95% accuracy with SVM
and 93.78% accuracy with LDA when batch training and testing in all 8 limb positions. Ac-
celerometer encoding and orthogonal encoding greatly improved classification accuracy for
larger msup, with the best performance achieved using orthogonal encoding and prototype
accumulation. This configuration leveraged both the reduced interference from orthogonal-
izing HVs of different contexts, as well as the more balanced representation of two-stage
bipolarization. The effect of unbalanced representation can be clearly seen in the example
accumulation results for accelerometer and orthogonal encoding of msup = 2 contexts, where
it was much more likely for a tighter cluster from one context to “overwhelm” a noisier
cluster from another. This effect was reduced as more contexts were superimposed, resulting
in increasing performance with orthogonal encoding for higher msup.

There was also a slight dependence of performance on the parity of msup, with odd
values outperforming even values when using context encoding. By orthogonalizing different
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Figure 4.13: Classification accuracy for increasing number of contexts in superpo-
sition. E.A. = example accumulation; P.A. = prototype accumulation; P.M. = prototype
merge.

contexts, the likelihood of ties in superposition was higher when summing an even number
of contexts. Ties should be broken at random, but slight differences in spread caused tie-
breaking to skew towards one context, reducing representation of others. Skewed tie-breaking
is less likely to occur when summing an odd number of contexts.

Finally, prototype merge is shown to be a useful approximation of prototype accumula-
tion only for small values of msup, similar to what we found with the FlexEMG in-sensor
implementation [135]. Beyond msup = 3 or 4, the limited capacity of merging orthogonal
HVs caused accuracy to degrade more.

Incremental HD classifier performance

For incremental learning performance evaluation, I first divided the gesture recognition
dataset into 5 folds for leave-one-out cross-validation. I further split training and testing
datasets into context-specific datasets. I generated a random ordering for the contexts and
provided each context-specific training dataset to the incremental learning algorithm one
at a time. After each step, the model was tested on all testing datasets corresponding to
the seen contexts, and this was continued until all contexts were learned. This process was
repeated for each subject individually, and at least 128 random context permutations were
generated for each experiment.

I measured three metrics during the incremental training process, the first being average
classification accuracy. I computed context-specific classification accuracy ai,j corresponding
to the accuracy of the jth seen context after i training steps. The average classification
accuracy was then computed as Ai = 1

i

∑i
j=1 ai,j.
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While accuracy reflected the overall performance, we can better analyze model deficien-
cies by computing forgetting and intransigence [227]. Forgetting quantifies how much the
incremental learning algorithm loses what it has learned in the past due to overwriting or
interfering with relevant parameters. I calculated forgetting for the jth seen context after
the ith step as fi,j = maxl∈{1,2,...,i−1} al,j−ai,j. The first term was the best classification accu-
racy ever achieved by the model, and the second was the accuracy with the updated model.
More positive values of fi,j were worse and indicated more forgetting, while negative values
indicated that the model had improved for that context after incrementally training with
other contexts. Average forgetting for each step was then computed as Fi = 1

i−1

∑i−1
j=1 fi,j.

Intransigence, on the other hand, measures the inability of the model to incrementally
learn a new context, as compared to when the model was batch trained. This was com-
puted as Ii = a∗i − ai,i, where a∗i was the batch trained model accuracy using the same
seen data. Like forgetting, poorer intransigence was represented by greater positive values.
For the incremental HD classifier, I measured intransigence against a batch-trained, fully
superimposed (msep = 0) HD model with example accumulation.

Figure 4.14 shows the performance metrics measured after each incremental step for
the various configurations of the HD classifier. In each 3 × 3 grid of Figs. 4.14a-c, each
configuration is represented by a single plot with different colored lines for varying msep.
Metrics were averaged over all subjects, all possible context permutations, and all possible
groupings of superimposed and separate contexts. Each step is shown as incrementally
learning an entire new limb position context, although the training process was able to
incorporate new context data one gesture at a time.

Average classification accuracy (Figure 4.14a) degraded as more contexts were stored in
superposition. This is expected from the superposition analysis, with the curves representing
msep = 0 in Figure 4.14a being identical to those in Figure 4.13. Higher msep budgets traded
off memory footprint for better performance. However, storing superimposed prototypes
together with separate prototypes also introduced some negative effects, as shown in the top
row of Figure 4.14d. Here, I plot the metrics achieved by each configuration after completing
all 8 incremental steps, demonstrating that there was at first a slight accuracy degradation
when increasing msep with accelerometer encoding, contrary to intuition. This was due to
certain pairs of contexts producing more similar accelerometer encoded context vectors (e.g.,
positions 0 and 4). With smaller, non-zero msep, there was an increased chance that one
of the pair was stored separately while the other was superimposed with a large number of
more distant contexts. Examples from the superimposed context could be most similar to
the separate paired context prototypes, causing misclassification.

The causes of accuracy degradation over incremental training steps can be seen in the
average amount of forgetting, plotted in Figure 4.14b. Compared to msep = 0, small non-zero
values for msep caused worse forgetting since superimposed contexts were randomly selected.
In these cases, there was a greater likelihood that prototypes for a context were at one
point stored separately, achieving maximum within-context accuracy, and then subsequently
superimposed, causing some accuracy degradation. Along with the paired context effect
explained above, this caused a peak in average forgetting after all incremental steps to fall
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near msep = 2 for no encoding and accelerometer encoding, as shown in the middle row
of Figure 4.14d. As I increased msep to allow for separate prototypes for all contexts, the
forgetting dropped to near 0. For orthogonal encoding, there was no peak, but rather a
dependence on the parity of msep when using example accumulation.

Finally, plotting intransigence shows that incrementally trained HD classifiers were for
the most part more capable of incorporating new context information than the batch trained
model due to their ability to store new prototypes separately (Figure 4.14c). This effect was
much more pronounced when not using any context encoding. When constrained to super-
impose new contexts, models exhibited higher intransigence with the number of incremental
training steps. However, using prototype accumulation with orthogonal encoding resulted in
negative intransigence even for msep = 0, suggesting that bipolarization in two stages should
also be leveraged during batch training for improved performance.
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Figure 4.14: Incremental learning performance using HD computing. Measured
performance metrics include a) accuracy, b) forgetting, and c) intransigence with respect
to a batch trained HD classifier with msep = 0. Within the 3 × 3 grids, each row of plots
represents a different incremental superposition configuration (E.A. = example accumulation;
P.A. = prototype accumulation; P.M. = prototype merge) and each column represents a
different context encoding method. Colors represent the value of msep. d) Summary of
results after the last incremental step with varying msep. Each row represents a different
metric, each column represents a different context encoding method, and line styles represent
the incremental superposition configuration.
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Incremental SVM and LDA performance

Figure 4.15: Performance comparison with SVM and LDA classifiers. Each col-
umn plots the accuracy, forgetting, and intransigence metrics for a) SVM updated through
stochastic gradient descent (SVM SGD), b) SVM with data augmentation using entire
context-specific datasets, c) SVM with data augmentation using misclassified examples from
entire context-specific datasets, d) SVM with data augmentation using gesture-by-gesture
datasets, e) SVM with data augmentation using misclassified examples from gesture-by-
gesture datasets, and f) incrementally trained LDA. For the SVM with augmented datasets,
different training percentages were used and plotted in different colors.

Figure 4.15 shows the performance of SVM and LDA in our incremental learning ex-
periments. The SVM trained using stochastic gradient descent (SVM SGD, Figure 4.15a)
experienced large amounts of accuracy degradation, with a classification accuracy of under
70% after all incremental training steps. This was almost entirely due to forgetting, a well
known issue with gradient descent-trained classifiers.

Methods of dataset augmentation for incrementally update an SVM classifier (Figure
4.15b-e) produced results with similar dependencies on the percentage of training data used,
with almost all error due to intransigence. Incrementally augmenting the dataset for each
context (Figure 4.15b) in one step produced more consistent accuracy early on than incre-
mentally augmenting gesture-by-gesture (Figure 4.15d). However, the performance difference
was marginal after all steps. Augmenting the dataset with only misclassified examples (Fig-
ure 4.15c, e) made a larger impact when incrementally training on entire contexts at a time
than gesture-by-gesture.



CHAPTER 4. EXPANDING THE LEARNING CAPACITY OF HD CLASSIFIERS 115

Finally, the performance of the LDA classifier (Figure 4.15f) showed that with accurate
mean and covariance updates, classification accuracy fell gracefully due to forgetting.

Comparison of memory footprint

Figure 4.16: Memory footprint and accuracy of incremental HD classifier config-
urations. (a) Differentiation between different HD classifier configurations. Total memory
includes both parameter storage and scratch memory for training. Shapes represent the
different incremental superposition configurations (E.A. = example accumulation; P.A. =
prototype accumulation; P.M. = prototype merge), and colors represent the different en-
coding methods. (b) Comparison of HD configurations with traditional models. HDC =
incremental HD; LDA ensemble = ensemble of context-specific LDA; LDA = incrementally
updated LDA; SVM ensemble = ensemble of context-specific SVM; SVM augment = in-
crementally retrained SVM using dataset augmentation; SVM SGD = SVM trained with
stochastic gradient descent.

Figure 4.16a shows memory footprint vs. classification accuracy for incremental HD clas-
sifier configurations after all incremental steps. As expected, superposition using example
accumulation required the largest memory footprint to store higher-precision accumulations.
Each configuration employing example accumulation was bested by a smaller configuration
using prototype accumulation or merge for equivalent or better accuracy. Between prototype
accumulation and merge configurations, accuracy depended mostly on the context encod-
ing method. The Pareto set consisted almost entirely of orthogonal encoding configurations,
except for the smallest, single-prototype configuration using prototype merge and accelerom-
eter encoding. At the other extreme, all of the configurations performed equally well when
msep = m.
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It is worth noting that while memory footprint comparison is a good baseline, it does
not paint the full picture. For example, of the configurations sized approximately 600 kb,
the most accurate used prototype merge with msep = 3 for a total of 4 prototypes per class.
Slightly below this in accuracy was the model using prototype accumulation with msep = 0.
Despite having the same memory footprint, inference for this configuration would be much
quicker, requiring 1/4 the number of comparisons with a query. Since a comparison consists
of D = 10, 000 XORs followed by a popcount of D bits, this could be a substantial saving
in inference computation without much sacrifice in terms of accuracy.

Finally, I compare the incremental HD classifier configurations with traditional machine
learning models in Figure 4.16b. The best HD configurations were able to achieve similar
accuracies while occupying over an order of magnitude smaller footprints.

The SVM trained using SGD was unable to produce acceptable results while also requiring
a large memory footprint. Performance of SVMs incrementally trained through dataset
augmentation was extremely dependent on the number of support vectors, which varied with
training percentage. Even the smallest SVM models were larger than the best performing HD
classifiers. Training an ensemble of context-specific SVMs improved the top-end classification
accuracy but resulted in the largest of models we tested.

I was able to achieve the highest classification accuracy overall with an ensemble of
context-specific LDA classifiers with a total memory footprint more than 26× the size of
the most accurate HD model. Incrementally updating a single LDA classifier required only
3× more memory but had poorer classification performance. My comparison shows that
incremental HD classifiers were considerably more memory efficient than traditional methods
and made up a large portion of the Pareto set when considering both memory footprint and
accuracy.

4.6 Discussion

In this chapter, I presented various configurations of incrementally trained HD classification
models for hand gesture recognition in different limb positions. Part of the choice in config-
uration was whether to and how to encode accelerometer signals along with EMG signals to
incorporate information about the limb position context.

I first described a sensor fusion-based method for context-aware classification of EMG
signals for gesture recognition. By using accelerometer signals to bind context information
to existing EMG parameters, we can achieve high classification accuracy in 8 limb positions
with a model that does not increase memory requirement over a single limb position. I first
evaluated the improvement in classification margin when using context-based orthogonaliza-
tion for an HD classifier, and I highlighted its dependency on relationships between class
prototypes and the number of contexts to be learned. I proposed two methods to generate
context vectors for different limb positions using accelerometer signals, and both methods
require minimal additions to a baseline HD computing gesture classifier, which can already
be fully implemented on a wearable device [135].



CHAPTER 4. EXPANDING THE LEARNING CAPACITY OF HD CLASSIFIERS 117

I then offer a range of choices for incremental hypervector superposition methods, and I
demonstrate how increasing the allowance for multiple class prototypes can improve classifi-
cation accuracy. These choices can be made depending on the memory footprint allowed by
a platform on which an in-sensor implementation is to be embedded. Incremental training
experiments show that HD classifiers can be efficiently updated in multiple limb position
contexts while maintaining competitive classification accuracy as compared with traditional
machine learning models that require considerably larger memories.

My results point towards a way to improve reliability of gesture recognition for wearables
in everyday situations, and the presented method can potentially be applied to other multi-
context biosignal classification applications [228–230].
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Chapter 5

Conclusions and Future Work

In this thesis, I presented two systems with which we demonstrated different forms of ro-
bustness to interference and confounding factors during deployment of a smart algorithm.

In Chapter 2, I first reviewed strategies for dealing with self-interference due to stimu-
lation artifact in systems requiring simultaneous neural recording and stimulation. I then
presented WAND, a device for closed-loop neuromodulation in which we co-designed the
front-end neural recording circuitry with the back-end digital artifact cancellation algorithms
to effectively remove stimulation artifacts from recorded neural signals. This enabled true
closed-loop control, in which neural biomarkers could be accurately extracted in real time
for analysis or classification while stimulation was being delivered on neighboring electrodes.

In Chapter 3, I then presented the FlexEMG system, which builds off of the hardware
of WAND for the application of hand gesture recognition using electromyography (EMG).
When integrating the device with a custom, screen-printed flexible electrode array and im-
plementing a hyperdimensional computing classification algorithm in the on-board FPGA,
we demonstrated real-time gesture recognition using a classification model that supported
in-sensor training and updates when new situational contexts had to be learned.

Chapter 4 then expanded on the hyperdimensional computing model more, covering var-
ious ways that it could be improved to generalize across a larger number of situational
contexts. In the case of performing gesture recognition in multiple limb positions, I showed
how limb position information derived from on-device accelerometers could be efficiently
encoded in the classifier to improve accuracy across all positions without significantly in-
creasing the number of model parameters to be stored. I then concluded by offering a range
of configurations for the hyperdimensional computing model in which we could incrementally
train the classifier over time to learn the limb positions one-by-one. For these configurations,
I discussed the trade-offs between classification accuracy, how previously learned training ex-
amples should be stored and represented for future use, and what operations should be used
for updating the stored parameters.

While we have demonstrated two realistic use cases of smart wearables and implantables,
there still remain a wide range of challenges to better performance of these devices. I will
conclude this thesis with a brief discussion of prospective work for the future of these projects.
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5.1 Enabling larger-scale closed-loop

neuromodulation research

One of the goals for open-sourcing the WAND architecture was for it to function as a general-
purpose research device, requiring only minor modifications to be re-optimized for new ap-
plications. Algorithmic development on the FPGA and microcontroller allows for extracting
other neural biomarkers such as band powers or line-lengths used to detect seizure onset
in epileptic patients [23], and new closed-loop classification and control algorithms may be
conceived for integrating neural activity from more recording channels. Future work can also
incorporate other features of WAND, such as the inertial sensor and multi-site stimulation,
as well as more efficient algorithm design utilizing custom hardware in the FPGA.

For stimulation artifact cancellation, further research in electrode configuration and im-
proved back-end artifact algorithms may allow recovery of the full underlying neural signal
with no lost samples, a limitation WAND still faces. The closed-loop experiment demon-
strated in Chapter 2 relied only on a single channel for recording and a single channel for
stimulation, and it is easy to imagine a scenario where far greater channel counts are re-
quired in both the afferent and efferent directions. In these cases, more complex models of
interactions between multiple stimulation and recording sites will be necessary to improve
efficacy and efficiency of artifact cancellation algorithms with low implementation costs.

5.2 Improved hybrid flexible electronic devices

On the hardware side for the FlexEMG system, there is still much room for improvement
in creating a more well-integrated, comfortable, and easy-to-use wearable. Beginning at the
electrode interface, one of the biggest drawbacks of the current FlexEMG setup is the use
of electrode gel or paste in applying the EMG electrodes to the forearm. While gel at first
improves the impedance of the interface and reduces the amount of electrode lifting and
motion artifact due to flexion in the array, it is tedious to apply and would be especially
burdensome for everyday use. Furthermore, it does not last very long, and can eventually
hurt signal quality [231]. Instead, EMG and other biosignals may be recorded using dry
electrodes on the skin, simplifying the donning process considerably [1, 3, 4]. Dry electrodes
have higher impedances and are more susceptible to noise, so novel electrode fabrication
techniques will be required to enable creation of large scale electrode arrays, such as the
one we use for forearm EMG, with geometries and surface characteristics conducive to good
recording quality. Improvements in the flexible substrate will also be necessary in order
to increase elasticity and enable better compression. Currently, the electrode array is held
in place with tape and slight adhesion due to the electrode gel; dry electrodes will require
greater compression to ensure contact and minimize the electrode impedance.

Additionally, there is much to be learned from actual in-sensor implementation (either
through development on the on-board FPGA or design of new, custom application-specific
integrated circuits) of the improved sensor-fusion methodology and incremental learning
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configurations for HD computing presented in Chapter 4. As demonstrated in Chapter 3,
there was a considerable improvement in classification accuracy when subjects were given
real-time visual feedback of the predicted label, enabling co-adaptation by the user and
the classification model. This type of co-adaptation, in which the user can change how
they perform the gestures to better match what the model expects, would likely enable
better performance with fewer incremental updates to further reduce memory footprint of
the model. In-sensor implementation would also enable better assessments of the hardware
implementation costs for the different configurations, as well as measurements of power
dissipation, which is crucial to keep at a minimum for wireless, battery-powered operation.
Ultimately, co-integration of the recording front-ends and classification back-end on the same
chip would be ideal, minimizing power and area and reducing component count for future
placement directly on the flexible substrate alongside the electrodes.

5.3 Toward continuous, unsupervised adaptation

Figure 5.1: Framework for continuous, unsupervised adaptation. A short initial
training session using labeled data is used to build the baseline classification model (black,
left). Incorporation of new information for incremental learning and model updates can
performed periodically using additional labeled data (right, blue). Unsupervised adaptation
implemented in the form of a loop, depending on the classification model’s predictions to
determine when updating is necessary, estimate labels for new data, and then following the
same update process (right, purple).

With respect to the gesture recognition algorithm itself, we have presented incremental
learning and model update methods that require supervision—we assume that ground-truth
labels can be provided for new training data. While this enables a user to “teach” the
classification algorithm new instances of the different classes, a more user-friendly approach
would be for the model to continuously learn and adapt in an unsupervised manner. This
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could potentially involve an additional part of the model that can detect changes in context
or errors in the classification output, followed by some way of estimating the labels for new
data to enable updates of model parameter. Figure 5.1 shows a high-level framework for
such a method of adaptation. Following initial supervised training of the model, it can be
updated either in a supervised way with new labeled data (which we have demonstrated in
this thesis), or in an unsupervised way based on the predicted labels.

In this way, a gesture recognition device would no longer need supervision from the user
or physician, but rather it could autonomously go about maintaining or improving its perfor-
mance capabilities. The biggest challenges in enabling this unsupervised adaptation loop are
the context change or error detection block and ground truth estimation block, which should
work in conjunction with one another. The goal for the first block is to identify situations
in which updates are needed, e.g., when new situational contexts that introduce accuracy
degradation are encountered. For our example with different limb positions, this may be
the detection of a unlearned limb position based on novelty detection in the accelerometer
signals. Error detection may also be based directly on the stream of predicted labels as
output by the model. Several works have demonstrated unsupervised adaptation strategies
based on the confidence or entropy of the classifier outputs [207, 232], but these methods
have not been able to match the performance of using supervised model updates. A primary
reason for this is ground truth estimation. Updates are required when errors are detected,
but because of the errors, the algorithm has no access to correctly labeled examples for re-
calculation of parameters. This suggests that a semi-supervised approach may be the most
suitable, in which the user provides labels for a small amount of data, and the algorithm fills
in the gaps for what remains.

Finally, a potential research avenue to explore which unifies all of the concepts in this
thesis could be development of closed-loop algorithms leveraging HD computing to run on
bi-directional neural interfaces. Neuromodulation applications such as seizure detection and
treatment face a similar set of problems as gesture recognition, in which the target biomarkers
used for detection of seizure events can change over time [233]. Hyperdimensional computing
has been previously applied to the seizure detection task [234], and such classifiers can also
leverage the incremental training abilities demonstrated in this work. It is easy to imagine
the next generation of implantable neural interfaces for epilepsy treatment to be robust to
both stimulation artifacts and the evolution of neural biomarkers over time.
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