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Hardware Accelerators and Optimization Algorithms for
Unconventional Computing

Philip Canoza

Abstract

Ising machines have emerged as a new paradigm in unconventional computing that can solve NP-Hard
problems. This report looks at both the hardware and algorithm design of these Ising machines. First
we will take a look at the implementations of two di↵erent hardware accelerators. The first accelerator
is a digitally-synthesized, Field Programmable Gate Array (FPGA) that performs synchronous Gibbs
sampling of a Restricted Boltzmann Machine (RBM). The second accelerator is an asynchronous neural
network that uses a mixed-analog signal neuron to drive stochastic local updates. On the algorithmic
side, we explore mappings of the Travelling Salesman Problem. In particular, we introduce a Quadratic
Unconstrained Binary Optimization (QUBO) mapping that uses the classical k-opt algorithm to perform
local search.
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1 Introduction

1.1 Motivation

As the demand for big data increases and the speed of traditional CPUs cannot keep pace, a new processing
paradigm is needed to tackle computing’s most di�cult problems. There is burgeoning research examining
these new paradigms, which uses the term “unconventional computing”. In particular, NP-Hard optimization
problems are ones that both scale exponentially and have relevant practical applications in a variety of fields.
A growing class of quantum-inspired classical computing solvers (sometimes called “Ising machines”) have
taken up this challenge, using hardware platforms such as Quantum Annealing [1] and the Optical Pumping
[2]. However, these platforms such as these are plagued by two issues:

1. infeasible hardware scaling to large-scale problems and

2. benchmarks for toy optimization problems such as Max Cut and infeasible algorithmic scaling for
real-world problems.

My research aims to tackle these scaling issues by engaging in both hardware and algorithm design for
Ising-based accelerators.

1.2 Outline

This technical report is organized as follows: first we give some background on the Ising model and its
optimization in Section 2. Then in Section 3 we examine the implementation of two hardware accelerators
that can solve the Ising model: a digital Field Programmable Gate Array (FPGA) neural network accelerator,
previously documented in [3]; and an asynchronous, mixed-signal neural network, previously documented in
reports by Datar [4] and Lu [5]. In this report, we will focus on parts of the hardware accelerators where
I contributed in the implementation. To see how these accelerators may be applied, in Section 4 we look
at relevant mappings and algorithms that can solve the Travelling Salesman Problem (TSP). Finally, we
conclude with some final remarks and possible future work.

2 Background

2.1 Ising model

The Ising model has it’s roots in statistical physics as a model of interacting spin magnets. Finding the
minimum energy of an Ising model is an example of a combinatorial optimization problem that is NP-
Hard[6][7][8]. Thus, if there is a mapping of a NP-Hard problem onto an Ising formulation, minimizing the
energy of the Ising model corresponds to solving the NP-hard problem. Ising problems can be formulated as
the following: let n be the number of spins/states. We must minimize the energy function E(s) over bipolar
states s 2 {�1, 1}n. The energy can be written as

E(s) =
1

2

nX

i=1

nX

j=1

Jijsisj +
nX

i=1

aisi (1)

where Jij is usually referred to as the weight matrix and ai is a bias vector.

Through out this paper, we will describe these problems using Ising, Quadratic Unconstrained Binary
Optimization (QUBO), and Boltzmann Machine somewhat interchangeably, as they all have equivalent
representations. The main di↵erence is that often QUBO and Boltzmann machine formulations use binary-
variables {0, 1}n. The conversion from Ising to Boltzmann Machine is fairly straight-forward[9]. To convert
to new weights W ⇤ and biases a⇤ we have

W
⇤ = 4W, a

⇤ = 2(a�W1) (2)
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Figure 1: Example of energy landscape being explored by a stochastic sampling algorithm. Lowest energy
state corresponds to the mode of the distribution.

To convert to a QUBO formulation, we simply need to absorb the bias vector into the weight matrix
representation W

0 and write the minimization problem in the form

x
T
W

0
x =

nX

i=1

nX

j=1

W
0
ijxixj (3)

One example of an Ising/QUBO problem that is prevalent in literature is Max Cut. It’s formulation can be
found in references [8] and [10]. Suppose we are given the graph (V,E). Then we map each vertex vi 2 V to
a spin si. If si = 0, then vi belongs to one side/set of the Max Cut. If si = 1, then vi belongs to the other
set. Then we simply must minimize the following energy

E(s) = �
X

(i,j)2E

(si + sj � 2sisj)

The Max Cut problem is often used for benchmarking Ising Machines due to the straightforward mapping
of the adjacency matrix with edges E to the Ising weight matrix.

2.2 Sampling as Optimization

Generally, our research group’s approach to solving Ising problems can loosely be described as hardware-
accelerated sampling techniques. This is done by mapping the Ising model to a Boltzmann Machine, what
is a probabilistic, neural network model. A more structured intro to Boltzmann Machines can be found in
this reference [11]. The probability of a state of the Boltzmann machine is related to the Ising energy in
Equation 1 through the following:

p(s) =
1

Z
e
�E(s)

where Z is a normalizing constant. Thus, sampling high probability states of the Boltzmann machine
corresponds to finding minimum energies of the Ising model, as seen in Figure 1.

This sampling can take many forms, with a basis in Markov Chain Monte Carlo (MCMC) algorithms. For
example, if we restrict the Boltzmann Machine representation to a bipartite graph, we can perform updates
in just two steps using Gibbs sampling. This is the basis of the sampling algorithm for the first hardware
accelerator in Section 3. Alternatively, we can let the network locally update in continuous time, following
Glauber Dynamics [12]. This is the basis of the analog mixed-signal hardware in the second part of Section 3.

There are many other ways to solve the Ising model. For a more complete literature review of Ising
machines, we refer the reader to the review by Mohensi et. al. [13].

5



Node update
connections

Weight
Array

Bias
Array

Memory
Controller

I/O Controller

PCIe bus

data_out

RBM

DESKTOP: C backend

FPGA

Hidden Node Registers

a) b)

Visible Node Registers

Adder Module

PRNG Sigmoid LUT

vn

<

hM

bn

Wn1

h1

0
1
0

WnM

0
1
0

Figure 2: Memory and compute hierarchy of the FPGA accelerator (left), and an example of a node update
connection (right)

3 Hardware Accelerators

In this section we will take a look at 2 di↵erent types of sampling-based hardware accelerators that can solve
Ising problems.

3.1 FPGA Accelerator

First we will examine a digital, FPGA-based hardware accelerator for the Restricted Boltzman Machine
(RBM). The majority of this section can be found in Patel et. al. [3]. This architecture has been used in
optimization problems such as integer factorization [3] and Max-Cut [9].

3.1.1 Overall Architecture

Figure 2 shows the overall architecture used in the FPGA accelerator. On the left is a diagram of the
memory and compute hierarchy. The RBM consists of memory to hold the weight, bias, and clamp values,
registers to hold the node values, and circuitry to perform the node updates, which take up the bulk of the
resources. The output is bu↵ered to the IO controller that communicates results to the PCIe bus. A C back-
end reads in the data stream from PCIe, and can program the weights and biases from the memory controller.

The right part of Figure 2 shows an example of a node update connection. Given M hidden nodes, the
figure depicts the circuitry to update the nth visible node. The hidden nodes binary mask the nth row of the
weight matrix. The results are accumulated in the adder module and added to the nth visible bias. It is then
passed through a sigmoid look-up table (LUT) and compared to the output of a pseudo-random number
generator (PRNG) to update the value of the visible node.

3.1.2 FPGA Programming

At the heart of the FPGA is the RBM computing core which performs the Gibbs sampling algorithm. All
programming was done using the Xilinx Vivado suite on the on the Xilinx Virtex UltraScale+ XCVU9P-
L2FLGA2104. The core was designed to output the most samples for the RBM sizes we had. The weights
and biases are stored in on-chip SRAM to decrease access time. The values are broadcast to the node update
modules each cycle, which performs the necessary operations for the sampling and take up the bulk of the
computation resources. There are no pipeline or data hazards, removing the need for any complex timing
schemes. Thus, if we instantiate a node update module for every node register, there is a new sample taken
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from the visible node registers every clock cycle, taking full advantage of the RBM’s parallelism.

Each node update module contains the logic to perform a matrix-row multiplications, a sigmoid func-
tion, and a comparison with a random number. The matrix-row multiplication is performed via a binary
mask and an adder module that accumulates the surviving weight values. Once each weight value is masked
appropriately, they are passed into an adder tree which accumulates the results of each multiplication. The
accumulators take the majority of LUT resources on the FPGA, and represent the bottleneck in the com-
putation. In our implementation, we use single cycle accumulation, but multi-cycle accumulation is possible
to save on hardware resources while scaling up for larger RBM sizes. A fixed point sigmoid function is
implemented as a LUT, which allows for speed without expensive hardware operations. A Python script
generates the LUT Verilog code in order to test di↵erent bit lengths and fixed point locations. Finally, a
linear feedback shift register (LFSR) generates a pseudo-random number. The number is compared to the
output of the sigmoid LUT and the relevant node is updated with the boolean result.

Results from the bank of visible node registers is bu↵ered to an IO controller with a FIFO. The IO
controller also uses a memory-mapped interface that can program the weights, clamps, and biases. The
controller communicates to our desktop via PCIe. A simple PCIe link is provided through a Xillybus IP
Core [14] which provides up to 800 MB/s data transfer rate. This is a su�cient speed to get all of the sample
data o↵ of the FPGA, but faster speeds are possible for future implementations. To handle the large data
stream from the bus, a C backend was created to serve data to existing Python code for RBM analysis.
This C backend is used for analysis of data and to judge the quality of the solution on the FPGA. This
FPGA pipeline provides an e�cient method for solving the problems of interest, where the limiting factor
in computation speed can become the FPGA sampling speed.

Next we will highlight salient aspects of the FPGA design that made the RBM algorithm amenable to
hardware acceleration: matrix multiplication, sigmoid approximation, and the random number generation.

3.1.3 Matrix Multiplication with Mask

The RBMs binary activations and fixed point weights allow for a very e�cient matrix multiplication module.
The binary activations convert multiplications into a binary mask, or a 2-to-1 mux using the activation value
as the switch. This results in multiplications reducing to atomic operations on the FPGA, greatly reducing
their area, power and latency. The usage of fixed point weights, instead of 32 bit floating point, is estimated
to decrease the area of the accumulator circuits by 8x [15]. The smaller area of each component allows us
to use a larger adder tree with less delay for accumulation as compared to 32 bit floating point operations,
resulting in more computation which can be completed in one cycle.

3.1.4 Sigmoid Approximation

Exact calculation of the sigmoidal activation function �(x) = 1
1+e�x is computationally expensive. To

accomplish direct calculation, at least 3 extra hardware instructions are needed, exponentiation, addition,
and division, which all incur a large hardware cost both in terms of latency and area. Instead, binary sigmoid
values are precomputed and enumerated in a look up table (LUT) for use in the FPGA. This implementation
allows for fast evaluation of the activation function without expensive hardware resources. After matrix
multiplication and bias addition, the computed value is passed through the LUT based activation function
to approximate the sigmoid.The Look Up Table values are hard-coded at synthesis time and thus do not
use any LUT resources. Finally, the sigmoids are synthesized as 9 7-input Multiplexers (F7 MUX) within
6 Combinational Logic Blocks (CLBs) amounting to 1% of the total available F7 MUXs, and <1% of the
total available CLBs. This is a common technique used in many FPGA and ASIC based neural network
accelerators, which is further adapted for our particular FPGA implementation. [16, 17, 18, 19] .

3.1.5 Pseudo-Random Number Generation

To generate high quality samples, uncorrelated random numbers need to be produced every cycle. To
accomplish this we use a 32 bit length Linear Feedback Shift Register (LFSR) pseudo random number
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generator. The 32-bit LFSR size creates 232 � 1 random bits, or 229 ⇡ 5 ⇥ 108 random 8 bit numbers.
To determine the best LFSR size, we characterized performance for the sampling algorithm by varying the
LFSR length and determining performance on the factorization problem. These results are presented in
Supplementary Figure 6. As, the total cost of these LFSR based random number generators amounts to just
5% of the design flip flop usage, and 2% of the lookup table usage we chose a longer than necessary LFSR
chain to minimize accuracy and performance problems from this element of the design. Each neuron has
its own LFSR and is seeded with a di↵erent value to minimize the possibility of correlation. Other PRNG
algorithms can produce higher quality random numbers [20, 21], but they require greater hardware resources
and are generally more complex. Based on our experiments, we found the LFSR random number generator
to be the simplest, as well as most performative pseudo-random number generator available on the FPGA.

3.2 PASSO

Next, let’s take a look at an asynchronous neural network made of stochastic, analog mixed-signal neurons.
This architecture is referred to as the Parallel Asynchronous Stochastic Sampling Optimizer (PASSO). This
accelerator was taped-out in Spring 2021 by Saavan Patel, Adhiraj Datar, Steven Lu, and myself. A more
detailed overview of the digital system design can be found in Datar’s technical report[4], and an analysis of
the analog circuit’s power, performance, and area can be found in Lu’s technical report [5].

3.2.1 Overall Architecture

Lu provides a good overall summary of the architecture [5]. The PASSO processor consists of a few main
blocks: the main analog core consisting of the main 16x16 fabric of 256 neurons, a small cluster of 4 neurons
for testing, SRAM, circuitry for streaming out outputs serially, and IO circuitry.

Before using the processor to solve a particular trained problem of interest, the processor first needs to
be properly configured. The configuration bits must be shifted into the configuration shift registers, which
are connected to form a long chain for the entire processor. There are 74 configuration bits for each neuron,
7 bits for each of the 32 trimmable current biases used for biasing the neurons, and 3 bits that encode the
sampling frequency and number of neurons sampled for the streamout of the processor, totaling to 19171
configuration bits [4].

To move the outputs of the neurons in the analog core o↵-chip for data processing and analysis, the
asynchronous neurons must be sampled with a sampling clock. The nominal sampling frequency is 300
MHz, but only 16 neurons can be sampled at once at this frequency due to IO limitations. The 3 bits used
to configure the sampling of the neurons defines presets of sampling frequency and the number of neurons
sampled, ranging from 16 neurons at 300MHz to all 256 neurons at 18.75 MHz, maintaining a constant
throughput of 4.8 Gsamples/sec [4].

Since the IO circuitry limits the speed of the o↵-chip data transfer, the sampled neuron outputs are
first written in burst mode into an SRAM bu↵er at the sampling clock frequency (maintaining the fixed
4.8 Gsamples/sec throughput) [4]. The SRAM bu↵er is then read out at a slower frequency to meet the IO
speed specifications (20MHz IO clock) and serialized. In the case of a 300MHz sampling frequency producing
16-bit samples, the SRAM is read at a frequency of 20/16 = 1.25 MHz [4].

3.2.2 Stochastic Neuron Circuit

We can see a schematic of the mixed-signal neuron in Figure 3. We use the inherent shot noise present in
advanced CMOS nodes to create a binary, stochastic neuron circuit, which we couple with adjacent neurons
through a digital fabric in an analog-mixed signal architecture. Each individual neuron amplifies noise to
create a Poisson clock that is combined with the output of the neuron synapse, pushed through a sigmoid,
and digitized. This is represented in Figure 3, where the green box demonstrates a high-level circuit for the
neuron.
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Figure 3: Schematic of mixed-signal neuron, both the stochastic analog portion (left) and the digital synpase
circuitry (right)

The neuron synapse is composed of a digital multiply-accumulate to calculate the activation probabilities,
followed by a digital-to-analog converter (DAC) to convert the sum to a bias voltage for the neuron. The
binary activations allow the multiplications to be converted to MUX and accumulate, vastly decreasing the
hardware cost. The neuron weights are stored in a distributed memory system which allows the architec-
ture to overcome problems arising from the von-Neumann bottleneck, as weights are stationary throughout
computation. This type of computation is shown in the purple box in Figure 3 in a fully combinational
(clock-free) design.

We can see the behavior of the mixed-signal portion of the neuron in Figure 4. Here, we modulate the
input to the analog neuron. At low voltages (red), the neuron output is clamped to logic zero. At middle
voltages (green), the neuron has a stochastic output that’s on average 0.4 V. At higher voltages (purple), the
neuron still has a stochastic output but mostly outputs a logic one. A closer look at the neuron layout can be
found in Figure 5, where you can see the digitally-synthesized synapse connect to the analog neuron via DAC.

3.2.3 IO Ring Design

To communicate with the outside world, the chip is connected to a multi-voltage IO ring. The IO ring
consists of drivers from the ARM GPIO library for GlobalFoundries GF12LP. This IO ring is connected to
C4 (flip chip) SNAG180 (tin-silver bumps with greater-than 180µm inter-bump spacing) IO Bumps through
the redistribution layer routing (RDL) of the final metal layer. The signals associated with each bump can
be found in Figure 6. In total, there are 64 IO bumps arranged in an 8x8 grid with a pitch of 230 µm. A
total view of the final die layout can be seen in Figure 7. You can also see the 64 IO bumps and RDL routing
in the chip arrival photo.

4 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is perhaps one of the most widely studied problems in combina-
torial optimization and serves as a testbed for new algorithmic ideas. It has many practical applications,
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Figure 4: Time series of neuron switching activity with di↵erent synapse voltages

Figure 5: Neuron layout. Here you can see the digitally-synthesized accumulator synapse,the analog neuron,
and the DAC that connects them
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Figure 6: C4 Bump layout for chip IO

Figure 7: Final die layout (left) and chip arrival photo (right)
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Figure 8: Example TSPLIB95 problem, burma14, as a fully connected graph (left), and an example solution
to the TSP known as a “tour” (right)

from vehicle routing and logistics to minimizing drill paths in printed circuit board manufacturing. It is con-
ceptually easy to understand yet NP-hard to solve, and thus makes a perfect application to explore various
Ising-based optimization methods.

The TSP problem can be formally defined as follows [22]: given an edge-weighted, completely connected,
directed graph G := (V,E,w), where V is the set of n := #V vertices, E is the set of directed edges, and
w : E 7! R+ a function assigning each edge e 2 E a weight w(e), the TSP problem is to find a minimum
weight Hamiltonian cycle in G; that is, a cyclic path that contains each vertex exactly once and has minimal
total weight.

Many Ising-based accelerators have explored the TSP problem. For instance, Feld et. al. has explored
it’s use as part of a hybrid method to solve the Capacitated Vehicle Routing Problem (CVRP) [23]. However,
in this paper, we will examine it’s simplest application: finding the optimal round trip through a number
of geographical locations, where vertices are “cities”, edge weights are “distances” and the cyclic path is
referred to as a “tour”. To evaluate performance of our optimization algorithms, we will benchmark against
instances from TSPLIB95 [24]. An example TSPLIB95 instance can be seen in Figure 8

4.1 TSP as a QUBO

The TSP can be formulated as a Ising problem in the following way [8]: for a N city problem, we will use
N

2 variables xv,i where v represents the vertex and i represents its order in the cycle. The Hamiltonian for
the problem is given by H = HA +HB where

HA = A

NX

v=1

0

@1�
NX

j=1

xv,j

1

A
2

+A

NX

j=1

 
1�

NX

v=1

xv,j

!2

+A

X

(uv)/2E

NX

j=1

xu,jxv,j+1 (4)

and

HB = B

X

(uv)2E

Wuv

NX

j=1

xu,jxv,j+1 (5)

where A and B are large, positive constants. Equation 4 encodes the constraints for the Hamiltonian cycle,
where the first term requires each city to occur only once, the second term enforces that each position in the
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Figure 9: Example TSP QUBO matrix from Feld et. al.[23]. A1 corresponds to city A in position 1 of the
Hamiltonian cycle. The red terms correspond to the first term in Eq. 4, the green terms correspond to the
second term in Eq.4, and the blue terms correspond to the terms from Eq. 5

FPGA Platform Memory Element Memory Size Max Num. Cities

Xilinx Ultrascale CLB FlipFlops 2,364 Kb 23
Max Distributed RAM 6.1 Mb 29

Total BRAM 75.9 Mb 55
UltraRAM 270 Mb 76

Intel Stratix 10 Max Embedded Memory 239.5 Mb 73
HBM 16 GB 211

Table 1: Scaling of the max number of TSP cities that can be solved given the FPGA memory element that
is storing the QUBO matrix.

cycle must be assigned exactly one city, and the third term ensures that only valid edges are used. Equation
5 ensures that we are finding the Hamiltonian cycle of minimum length. When choosing penalty values A

and B, a good choice is to have 0 < B ·max(Wuj) < A [23]. An example of the resulting QUBO matrix of
a 3 city problem can be seen in Figure 9.

This mapping gives a good starting point to solving the TSP with our hardware from Section 3. However,
we are immediately plagued by two problems. Problem one is the quadratic scaling of the mapping. The N2

scaling of the number of QUBO variables corresponds with a N
4 number of coe�cients to store in hardware.

Suppose we have 8 bit weights for our QUBO matrix. Table 1 shows how we are memory-limited given
a FPGA platform. Even if we were to use all 16 GB of High Bandwidth Memory (HBM) available on a
Intel Stratix 10, we could only solve a 200 city TSP problem. Thus, this mapping fails to solve problems of
reasonable size given the hardware constraints.

Problem two is the quality of solutions to the QUBO formulation as we scale up. Experiments show that
as the problem size increases, the solution quality significantly deteriorates, and the probability of obtaining
an optimal solution is very low for TSPs of any useful size [25]. Figure 10 shows the performance of a
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Figure 10: Performance of the TSP QUBO mapping on TSPLIB95 problem berlin52. The histograms show
the distribution of tour lengths found by multiple runs of the QUBO solver. As the length of the annealing
time increases, the proposed tour length decreases but fails to reach the optimum tour length

annealing-based QUBO solver on a 52 city problem (berlin52 from TSPLIB95). We see that as we increase
the anneal time, the tour length decreases and thus the solution quality increases. However, it fails to come
close to the optimal tour length.

4.2 Stochastic Local Search and k-opt

To address the issues of the TSP QUBO mapping, we will look to existing classical solving methods. In
practice, even state-of-the-art TSP solvers do not solve an entire TSP problem at once. Many methods
might start with a first guess as a solution, the repeatedly perform small changes with the goal of improving
the solution quality. Such methods are known as stochastic local search (SLS) [22]. There is a wide variety
of SLS algorithms, but here we will take a look at iterative improvement algorithms. In this scheme, the
candidate solution is improved by searching a local neighborhood for a solution that decreases in the loss
function. The candidate solution is iterated upon until we reach a local minima. This can be formally defined
as seen in Algorithm 1.

Algorithm 1: SLS Iterative Improvement algorithm [22]

Starting from a feasible solution s

while s is not a local optimum do
search the neighborhood for a neighbor s0

if new solution s
0 is better then

accept the new solution, s := s
0

end
end

The performance of iterative improvement depends on how we define the neighborhood relation. Most
iterative improvement algorithms for the TSP are based on the k-exchange neighborhood relation, colloquially
also known as k-opt. Here, a candidate solution is in the neighborhood if it can be obtained by deleting k
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Figure 11: Two possible ways to perform a 3-opt move, where edges (u1, u2), (u3, u4) and (u4, u5) are removed
from the complete tour [22]. In total, there are 7 ways to reconnect the subtours.

edges and then rewiring the resulting fragments into a complete tour by inserting a di↵erent set of k edges
[22]. That is, a k-opt move consists of removing k edges from a given tour and then reconnecting k segments
to possibly get a shorter tour [26]. An example of 3-opt moves can be seen in Figure 11.

4.3 QUBO Local Search

We can solve larger TSP problems with a QUBO solver more accurately by incorporating ideas from the SLS
algorithms of the previous section. To do this, we treat the neighborhood relation from iterative improvement
as a subproblem, and then model this subproblem as a QUBO. Instead of checking each candidate solution
in a given neighborhood, we let the QUBO solver propose a candidate solution by solving the subproblem.
This is referred to ”Quantum Local Search” (QLS) by Liu et. al. (see Algorithm 2). We see this is essentially
an SLS iterative improvement algorithm where a QUBO solver is a subroutine.

Algorithm 2: QLS algorithm [26]

Starting from a feasible solution s of the original problem of size N

for i = 0, 1, . . . do
Choose a subset of the N variables
Formulate the subproblem QUBO and use a QUBO solver to find a new feasible solution s

0

if new solution s
0 is better then

accept the new solution, s := s
0

end
end

For example of a subproblem to solve in this manner, let’s model a k-opt move as a QUBO problem. We
refer to the k tour fragments after deleting k edges as subtours. Let’s label each subtour by its starting and
ending city, where cities 2i and 2i + 1 corresponds to the i

th subtour. In total we have 2k cities. We can
define a new way to connect the subtours together by specifying the order of cities to visit in a length 2k
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Hamiltonian cycle. Thus, the QUBO variable xv,j corresponds to visiting city v as position j in the length
2k Hamiltonian cycle. To solve, we minimize H = HA +HB where

HA = A

2kX

v=1

0

@1�
2kX

j=1

xv,j

1

A
2

+A

2kX

j=1

 
1�

2kX

v=1

xv,j

!2

(6)

and

HB =
X

(uv)2E

Wuv

2kX

j=1

xu,jxv,j+1 (7)

Wuv =

(
�A if u, v = 2i, 2i+ 1 where 0 < i < k

Duv otherwise
(8)

The terms in Equation 6 have the same exact interpretation as those in Equation 4 of the original TSP
mapping. The modification occurs in Equation 7, where we now have two possible cases for weights between
xu,j and xv,j+1. The �A case in ensures that cities of the same subtour always occur one after the other in
the Hamiltonian cycle. Otherwise, the weight is just the distance between cities where Wuv = Duv. Solving
this QUBO thus solves the k-opt subproblem in a SLS iterative improvement algorithm. This is already an
improvement over the original TSP mapping, as now the number of variables scales quadratically with the
neighborhood size 4k2, rather than quadratically with the total TSP size N .

This is not the only way to define a QUBO subproblem that solves the TSP. Instead of a k-opt move,
Liu et. al. proposes a k-reversal move, as seen in Figure 12, where the decision variable yi corresponds to
reversing the order of the i

th subtour [26]. In their paper, they minimize the following QUBO function:

q(yk, y1) +
k�1X

i=1

q(yi, yi+1) (9)

where

q(yi, yj) = wvi,uj ȳiȳj + wuiujyiȳj + wvivj ȳiyj + wuivjyiyj (10)

and ȳi = 1� yi

This is actually equivalent to k-opt for k = 2 and 3, but only represents a subset of k-opt moves for larger
k. The advantage of this subproblem is that it can be formulated as a purely unconstrained problem, and
so does not need to model ordering constraints like seen in Equations 4 and 6. In addition, the number of
variables scales linearly with k, as opposed to the quadratic scaling of the previous mapping.

4.4 Benchmark comparison

In this section we examine the performance of the two QUBO Local Search algorithm mappings proposed in
the previous section. To focus on the e↵ects of the mappings rather than the QUBO solving algorithm, we
use the existing PyQUBO [27, 28] Python library as opposed to our hardware from Section 3. We will also
fix our neighborhood search size to k = 2. In Figure 13, we compare the performance of the original base
TSP QUBO mapping vs QUBO 2-opt as a function of the problem size. Here we plot the optimality gap,
which is defined as follows:

Optimality Gap =
Tour Length �Optimal Tour Length

Optimal Tour Length
(11)

As such, the closer the optimality gap is to zero the better. We see in Figure 13 that as the number of
cities increases, the TSP QUBO mapping solution quality su↵ers, while the QUBO Local Search method
(represented by QUBO 2-opt) performs well.
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Figure 12: Subproblem for TSP that reverses at most k segments of a tour.

Figure 13: Performance of Base TSP QUBO mapping vs 2-opt QUBO algorithm
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Problem Num. Cities QUBO Base QUBO 2-opt QUBO 2-reversal
burma14 14 0.30 0.01 0.01
berlin52 52 1.64 0.06 0.08
pr76 76 2.56 0.04 0.05
eil101 101 2.43 0.08 0.08

Table 2: Optimality gap showing performance over TSPLIB95 problems.

Problem Num. Cities QUBO Base QUBO 2-opt QUBO 2-reversal
burma14 14 0.08 1.68 0.44
berlin52 52 5.52 143.16 37.63
pr76 76 19.46 485.575 133.96
eil101 101 49.90 1172.54 294.06

Table 3: Runtime (seconds) of solvers over TSPLIB95 problems.

A closer look at the performance can be found in Table 2, where we compare the original TSP QUBO
mapping, QUBO 2-opt, and QUBO 2-reversal. Again, the solution quality of the original base mapping
su↵ers as the problem size increases. The performance of QUBO 2-opt and QUBO 2-reversal are similar.
This is expected, as the problems are identical for k = 2. However, we see a stark di↵erence in runtime
in Table 3. This is due to fact that the subproblem for QUBO 2-reversal is only size k = 2, whereas the
subproblem for QUBO 2-opt is size 4k2 = 16. That is, QUBO 2-opt is solving a larger QUBO problem
per iteration. We also note that since we are solving many more QUBO problems overall, the QUBO Local
Search algorithms take much longer than solving the base TSP mapping once.

5 Conclusion and Future Work

This report has been a brief look at unconventional computing methods centered around Ising machines.
This came in two parts: we took a look at two di↵erent hardware accelerators, and we examined a possible
application in the form of TSP. There are many veins of research that can follow from this work. For ex-
ample, on the hardware-side, we may try to continue to scale up our implementations. This can take the
form of multi-FPGA accelerators like those done by Ising machines based on Simulated Bifurcation [29]. Or
we could take our asynchronous neural network and scale up the number of neurons and/or increase the
connectivity of individual neurons. Both approaches could see larger problem sizes that can be mapped onto
our hardware accelerators.

On the algorithm side, there are many ideas that can expand on our work on TSP. This work has only
showed results of the k-opt algorithm for k = 2. We would expect solution quality to increase for larger
k. However, keeping fixed neighborhood sizes scales poorly, as the inner iterative improvement loop scales
with n

k [22]. This is remedied by algorithms such as the Lin-Kernighan algorithm (whose most popular
implementation is via Helsgaun, thus it is often referred to as LKH), which uses a variable neighborhood
search size to increase performance [30]. We may explore using an QUBO Local Search approach based o↵
of LKH. We can also break up the TSP problem in di↵erent ways. Dan et. al. has used clustering to create
smaller problems [25], and Sanyal et. al. has used graph neural networks [31]. Any one of these methods or
their combinations can lead to exciting developments for TSP algorithms.

Finally, we marry the two sections of the report and engage in hardware-algorithm co-design of a special-
ized accelerator for TSP. Such research would culminate in an Ising machine that takes advantage of both
our hardware scaling ideas as well as new algorithmic ideas based on local search.
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