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Abstract

High Speed Software Radio on General Purpose CPUs

by

Christopher William Yarp

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Professor John Wawrzynek, Chair

Real-time, high performance, radio signal processing has traditionally been implemented on
custom ASICs or FPGAs. While powerful and efficient, these hardware platforms require
extensive engineering effort to create and are relatively inflexible post deployment. Software
Radio (SR) presents a compelling alternative to ASIC and FPGA solutions by utilizing
the consistently expanding compute power available on CPUs. However, extracting the
parallelism available in a radio design and effectively mapping it to the different modes of
parallelism available on the CPU (SIMD units, superscalar out-of-order cores, MIMD across
cores) to obtain the desired performance is challenging, requiring in-depth knowledge of both
the signal processing design and CPU microarchitecture.

This project aims to demonstrate the feasibility of high-performance software radio by iden-
tifying causes behind gaps in expected performance vs. achieved performance, developing
solutions to address platform and design limitations, and improving designer productivity by
providing a flow from signal processing dataflow graphs to optimized multithreaded C appli-
cations. To achieve these goals, a variety of tools were developed including a custom written
dataflow-graph-to-C compiler (Laminar) which contains optimization passes specifically tar-
geting software implementations of streaming DSP. Performance modeling, benchmarking,
and telemetry collection are used to assist DSP co-design and provide insight for future CPU
designs.
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Chapter 1

Introduction

1.1 Motivation

Radio systems have become indispensable in modern society. FromWi-Fi to cellular data,
radios are ubiquitous and dependence on them is only growing [1]. Underpinning all modern
radio systems is a suite of signal processing tasks. Due to the performance required, much
of the signal processing workload has traditionally been conducted on specialized hardware
such as custom Application Specific Integrated Circuits (ASICs), purpose-built System-on-
Chips (SoCs), and Field Programmable Gate Arrays (FPGAs). While these platforms are
typically able to provide the required level of performance and efficiency, they have several
drawbacks:

• Designers typically require hardware engineering experience, familiarity with the un-
derlying hardware technology, and knowledge of Electronic Design Automation (EDA)
tools to achieve quality results.

• Iterating on designs is slow due to the speed of modern EDA tools and the long
fabrication times for ASICs and custom SoCs.

• High (ASCIs and custom SoCs) to moderate (FPGAs) fixed development and produc-
tion costs which can only be amortized with large volume production.

• Low (ASICs) to moderate (SoCs and FPGAs) flexibility after deployment.

Due to their large volume1 and limited battery capacity, wireless handsets and laptops
can justify their use of custom chips. By contrast, wireless infrastructure (including baseband
processing for cellular base stations) does not enjoy such large volume.2 As a consequence,

1In 2020 Apple sold just short of 200 million iPhones globally with a global market share of 14.8% [2].
The total number of smart phones, across all vendors, sold during the same period in North America alone
was 136 million [3].

2In 2020, there were 417,000 cell sites in the US [4]. Note that cell sites are typically not upgraded with
new hardware each year.
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producing custom ASICs and SoCs for cellular base stations is considerably less appealing.
While more affordable than short-run ASICs and SoCs, FPGAs still require a notable Non-
Recurring Engineering (NRE) effort to produce the design which is ultimately loaded onto
them.

Software-based solutions leveraging general-purpose processors are a promising alter-
native, particularly for the lower volume wireless infrastructure industry. The potential
advantages of software radio include the following.

• General purpose CPUs often have a low per-unit cost due to their wide use in multiple
industries.

• Many general purpose high-performance CPUs are generally available and incorporate
continued improvements over time (ex. increased core counts3 and wider SIMD / vector
units4) thanks in part to demands by a wide range of customers and competition from
other vendors.

• Software based solutions are flexible after deployment unlike ASIC-based solutions
which must include any flexibility at design time.

• Software development can leverage a mature ecosystem that includes fast compilers
and software engineering tools/practices to reduce time to market.

However, creating a high-performance software radio has proven challenging. In the au-
thor’s experience, implementing simple algorithms using one of the existing Software Defined
Radio (SDR) frameworks is often promising at low bandwidths but quickly becomes limited
when design complexity or bandwidth requirements increase. Despite modern CPUs oper-
ating at clock rates in the GHz range, matching the speeds of hardware implementations
requires the CPU to process a sample in under 100 cycles, on average. To put this concretely,
if a baseband specified for 3 samples/symbol is targeted a channel bandwidth of 20 MHz,
it would need to process complex samples5 at a rate of 60 Msps. On a CPU running at
an aggressive 3.7 GHz, this would require a sample to finish processing every 61.7 cycles on
average. Already difficult for a design of significant complexity, this constraint becomes more
challenging as wider bandwidths are desired. Given this implementation challenge, it is a
reasonable question to ask if general-purpose CPUs can possibly support the specifications
required to make a software radio competitive with a hardware implementation.

As a litmus test for the potential of software radio on modern general-purpose CPUs, a
simplified model was constructed using an early version of the Cyclops baseband, an FPGA
radio design which has been used for several projects at the Berkeley Wireless Research
Center (BWRC). The operators in the hardware design, excluding FSMs, were counted as

3For example, AMD increased the maximum core count of their Epyc server line from 32 in the Epyc
7001 series [5] to 64 in the Epyc 7002 series [6].

4Intel has increased the vector width from 256-bits (AVX/AVX2) to 512-bits (AVX512) in some of their
parts [7].

5Complex samples including real and imaginary components (a+ bi).
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shown in Table 1.1. Some of these operations involve complex numbers and were converted
to give a rough estimate of the number of primitive hardware operations in the design, as
shown in Table 1.2.

Required Operations Real Complex Mixed

Mult 57 76 6
Gain 313 18 0
Sum 327 111 0
Lookup Table Address Compute 11 0 0

Table 1.1: Required Hardware Operations (Excluding FSMs) in Early Cyclops Radio

Required Primitive Ops

Mult 769
Sum 748
Total 1517

Table 1.2: Required Hardware Primitive Operations (Excluding FSMs) in Early Cyclops
Radio

At the time, the newly released AMD Ryzen Threadripper 2990WX represented an in-
teresting target CPU featuring a base clock of 3.0 GHz, and 32 high-performance cores [8].
Each of these cores was superscalar, out-of-order, with 128-bit SIMD/vector units [9]. To get
an estimated performance upper bound of Cyclops on this CPU, the operators (which were
expected to be on single precision floating point values) were assumed to be independent.
The hypothetical upper bound execution rates of Cyclops using this simplified execution
model on the Threadripper 2990WX under different assumptions on the parallel resources
used on the CPU is shown in Table 1.3. Note that some operations run every cycle and some
less often (ideally every fourth sample). On the FPGA targets for Cyclops baseband, the
worst-case specification for these operators was that they would run every third sample. The
execution rates if these operators executed every sample and if they executed every third
cycle are both shown in Table 1.3.

These upper bounds are quite promising considering that a less complex version of the
Cyclops baseband used for the author’s master’s thesis [10] operated at a 250 MHz clock rate
on a Xilinx Zynq 7000 series FPGA and a more complex version of the baseband developed
for the Berkeley effort in the DARPA Spectrum Collaboration Challenge (SC2) operated
at 100 MHz on a Xilinx Kintex 7 FPGA. With the baseband spread across all 32 cores
on the system and making parallel use of all the floating-point units in scalar mode, the
performance upper bound exceeds that of the SC2 FPGA implementation by between two
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Scenario Upper Bound Max Sample Rate (Ms/s)

Slow Rx
Executes for
Each Sample

Slow Rx Executes
Every 1/3 Samples

(Worst Case)

Serial Execution (No Vectorization, No Parallel use
of FP Units)

1.98 2.92

1 Core, Parallel Use of FP Units (Scalar Mode) 7.79 11.5

1 Core, Parallel Use of FP Units (Vector Mode) 30.9 46.2

32 Cores, Serial in Core, Fully Parallel Across Cores 62.5 90.9

32 Cores, Parallel Use of FP Units in all Cores
(Scalar Mode)

231 333

32 Cores, Parallel Use of FP Units in all Cores
(Vector Mode)

750 1000

Table 1.3: Estimated Upper Bounds for Cyclops Executing on Ryzen Threadripper 2990WX
at 3.0 GHz Base Clock Rate

and three times. This illustrates the potential of software radio, but also makes it clear
that attaining competitive data rates requires aggressive utilization of the different parallel
resources available on the CPU.

1.2 Objectives and Contributions

The primary objective of this project is to evaluate the feasibility of software radio on
modern general-purpose CPUs by:

• Demonstrating a fast and efficient software radio system on a generally available CPU.

• Identifying limitations of radio designs and platforms that can impede performance.

• Evaluating and recommending software radio baseband co-design considerations and
optimization opportunities.

• Providing automation for optimization passes, facilitating their consistent application
across designs and design iterations.

To accomplish these goals, the project is broken into three main components.

• Cyclops: a complete radio baseband DSP design used as the primary demonstrator for
the project. It is under the author’s full control and allows exploration of software-
algorithm co-design considerations.
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• Laminar: an optimizing DSP Compiler for dataflow graphs. It provides a framework for
experimenting with different optimization techniques. It also automates optimization
passes and multicore code generation so that they can be applied consistently across
design revisions.

• Platform Characterization: A series of benchmarks which provide insight into the
capabilities of the target platform. The information obtained from these benchmarks
is used to inform expected performance and guide design tuning.

These components form the basis of a design cycle which involves passing the Cyclops
design to Laminar which creates a C implementation that is then compiled with a general-
purpose C compiler. Laminar-inserted telemetry collection code along with analysis scripts
are used to measure the performance of the executable. Measured performance and plat-
form characterization information are used to inform algorithmic changes in Cyclops and/or
change the parameters passed to Laminar. With these changes, the design cycle repeats
again.

Through multiple iterations of the design cycle, improvements to the Laminar compiler,
and changes to the Cyclops design to better match the CPU target, a high-performance
software realization of Cyclops capable of running at 104.5 Msps (with a maximum payload
rate of 278.7 Mbps when operating in 256 QAM mode) was achieved on an AMD Ryzen
Threadripper 3970X running at its base clock rate of 3.7 GHz. This dissertation details how
these results were achieved through logic implemented in the Laminar compiler, algorithm
co-design changes to the Cyclops baseband, and the use of platform characterization to
partition and map the design to CPU cores.

1.3 Prior and Related Work

There was a concentrated period of work exploring the mapping of signal processing
tasks to multiprocessor systems in the mid/late 1980s into the early/mid 1990s. Much of
this work was conducted at the University of California, Berkeley with representative works
including [11]–[15]. Some ideas developed in these works, including the use of synchronous
dataflow graphs [11], [12] and the self-timed strategy under the scheduling taxonomy noted
by Edward Lee and Soonhoi Ha in [13] are used in this project. However, the characteristics
of the target CPUs have changed since this period of research, with modern general-purpose
CPUs exhibiting the following:

• Less control over scheduling within the core with superscalar, out-of-order execution,
and potential speculative execution.

• A loss of control and visibility of the interconnect. Inter-core communication and
communication to memory is now handled by the cache coherency system.
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• Not all cores in the system are guaranteed to see a change to a memory location at the
same time (governed by the memory consistency model).

• A proliferation of many high-performance SIMD-enabled processing cores on a single
socket.

• Introduction of more complex caching systems and interconnect topologies.

• Increase memory access latency relative to compute latency6

• Evolution of C/C++ compilers with advanced optimization passes.

Some of these changes complicate the scheduling approaches used in previous works, as it is
now much more expensive to communicate with another core and access memory relative to
computing on a local core7. The cost of communication on modern systems makes it largely
infeasible to transact in single samples. It was also unclear at the onset of this project how
capable modern C/C++ compilers are at producing executables with instructions ordered to
perform best with the out-of-order scheduler on modern CPUs. This work aims to reevaluate
the feasibility of implementing radio DSP on multicore processors with modern software tools.

Related concepts to Synchronous Dataflow include the more general [18] Kahn Process
Network (KPN) described in Gilles Kahn’s seminal paper [19] and Communicating Sequential
Process (CSP) model described by C. A. R. Hoare [20]. Synchronous Dataflow can be
viewed as a restriction of these models with the added requirement that the number of
tokens consumed and produced by each process in the system is known a priori. Due to
the close relationship between these concepts, advances in describing and analyzing each of
these models can potentially be used by this project. For example, the Go language bases
its concurrency model on CSP [21] and could potentially be used as an input language for
describing DSP.

There exist several different frameworks for implementing radio and packet processing
in software. On the radio side, probably the most well-known is GNURadio [22] which
supports several different radio frontends [23] including the popular Ettus Research USRP
[24]. GNURadio allows signal processing blocks to be written in multiple different lan-
guages, typically C/C++ or Python with GNURadio handling the orchestration between
blocks. In conjunction with the RFNoC [25], GNURadio was used for the Berkeley effort

6For example, the Intel Pentium processor, released in 1993, has a compute operation latency of 76 ns
and a memory latency of 75 ns. The Intel Core i7, released in 2010, has a computation latency of 4 ns and
a memory latency of 37 ns [16].

7This effect is not isolated to DRAM and is present even when accessing caches. For example, a modern
AMD CPU has a L1 load-to-use latency of between 4 and 8 cycles, L2 load-to-use latency of at least 12
cycles, and an average L3 load-to-use latency of 39 cycles [17]. By comparison, the latency of an integer
multiply 3-4 cycles and the latency of a floating point multiply is two cycles on the same CPU (assuming
the operands are in registers) [17]. On these modern x86 64 CPUs, the only feasible method for cores to
communicate is via the cache coherency system. In the best-case scenario, the communicating cores are in
the same L3 cache domain. However, if they are apart, the communication requires transactions over the
interconnect between L3 domains, increasing latency.
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in the DARPA Spectrum Collaboration Challenge (SC2), in which the author was an active
participant. While it is clear that frameworks like GNURadio provide an exceptional tool
for education and experimentation with radio, extracting the desired level of performance
proved challenging in the SC2 project with GNURadio acting as the performance bottleneck
rather than the FPGA portion of the design. This project aims to address the challenges
experienced with GNURadio by taking more control over the orchestration and optimization
of the design while also providing additional insight into what aspects of the algorithms or
system architecture are hindering performance.

DPDK [26] is another framework focused on packet processing with a particular focus
on the upper layers of the network stack. While these layers are important and are key
to the Network Function Virtualization (NFV) goals of network operators [27], they are
generally outside the scope of this project, which is focused on the signal processing work in
the baseband. There is some support for baseband processing within DPDK, but it appears
to be currently focused on accelerating Forward Error Correction (FEC) with the desire to
later add support for additional baseband processing blocks [28]. Because of DPDKs focus
on the necessary upper layers of the network stack, it is probably a good companion to the
work undertaken in this project to produce a complete radio system.

There has recently been a push to open up the core of cellular Radio Access Networks
(RANs) to allow operators to select different components from different vendors. Initiatives
such as OpenRAN [29] and O-RAN [30] aim to standardize interfaces between components
in a typical RAN, allowing interoperability. There is also emphasis on enabling Network
Function Virtualization (NFV) and software-based solutions on standard hardware. There
are several efforts, including srsRAN (formerly srsLTE) [31], the OpenAirInterface 5G RAN
project [32], Intel FlexRAN [33], and NVidia Aerial [34] to run the PHY layer either fully
or partially in software either on CPU or GPU platforms. It is important to note that
these efforts are focused on 3GPP 4G and 5G standards and are aimed at deployment of
networks using those standards. 3GPP and O-RAN both define multiple split points for what
resides in hardware and what resides in software [35]. For example, NVidia Aerial uses a 7.2
split [34] which corresponds to the Low PHY and RF being implemented in hardware [35].
Specifically, with the 7.2 split the “FFT, CP removal, resource de-mapping and possibly
pre-filtering functions reside in the DU” on the uplink side and the “iFFT, CP addition,
resource mapping and precoding functions reside in the DU” on the downlink side8. With
the 7.2 split, a significant amount of signal processing, albeit standardized for this protocol,
is being conducted outside the scope of the software. While these efforts have produced
impressive results, their primary focus is the implementation of specific cellular baseband
standards. This project takes a more general view of investigating the problems faced when
mapping an entire radio DSP design to software and producing solutions to those problems
that can potentially be applied across multiple different baseband designs.

8The DU is the distributed unit while the rest of the functions reside in the CU or the central unit [36].
For designs seeking to implement the CU in software, there is typically the expectation that the DU is in
hardware.
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A set of programs with objectives analogous to this project are hardware simulators, such
as Synopsys VCS [37] and the open-source Verilator [38]. These tools are indispensable for
digital design and are relied upon to test and simulate designs before manufacturing. Due to
the high degree of complexity in some modern hardware designs, there is pressure on these
simulators to operate as quickly as possible while providing accurate results. Verilator has
recently integrated multithreaded execution to accelerate simulations [39]. While these pro-
grams share the same general objective of accelerating the simulation of digital designs, which
can often be viewed as dataflow (as will be discussed in section 5.1), they face additional
constraints on their execution with a need to provide bit and cycle accurate simulations that
cover the complex event semantics and signal types (such as high-z and don’t care) that are
present in HDL languages like Verilog. Sometimes these constraints can be relaxed to attain
higher simulation speed, such as Verilator converting synthesizable constructs to C/C++
and converting don’t care values to random values [39]. The project at the core of this
dissertation has the benefit of working in the more restricted domain of signal processing
DSP with opportunities for optimizations that are not possible for general-purpose digital
design simulation. This project is also centered on the software implementation being the
ultimate target of the design, rather than the software implementation acting a mirror to
what will ultimately be implemented in hardware. To this end, types (such as floating-point)
and operators which are well supported on modern CPUs but are potentially less efficient
when designing custom hardware9 are used.

MathWorks Matlab [40] and Simulink [41] are de facto programs of choice within the
digital communications industry for the design and evaluation of radio DSP designs. This
is in part to their convenient programming model that is familiar to many engineers and
their extensive libraries10 (called Toolboxes in Matlab parlance) of gold standard reference
models, algorithm implementations, analysis tools, and relatively rich documentation. There
is a suite of add-on products to Matlab and Simulink including a tool to convert Matlab
m-code and Simulink designs to C/C++ called Matlab and Simulink Coder, respectively
[44], [45]. To the author’s knowledge, at the start of this project, Simulink Coder only
produced single-threaded implementations of a given design. More recently, Simulink has
been adding support for multithreaded targets and SIMD. This initially appeared to be
focused on multi-model simulations [46] but expanded with the ability to support dataflow
domains using DSP toolbox [47] and is continuing to extend multicore support in recent
releases [48]. An attempt to evaluate the new DSP Toolbox dataflow support revealed
limitations11 which prevented the generation a C/C++ implementation of the Cyclops Rx
baseband demonstrator used in this project. However, the movement of MathWorks to

9For example, many hardware implementations of DSP algorithms use fixed point representations which
can carry the exact number of bits requited and can easily implement re-normalization logic with almost
free masks and shifts. Modern CPUs, by comparison, are generally byte-centric and require explicit masking
and shifting operations to perform the same operation.

10Including the frequently used DSP Toolbox[42] and Communications Toolbox [43].
11Limitations encountered at the time including the use of switches (ie. muxes), enabled subsystems, and

stateflow diagrams (FSMs).
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support multicore and additional SIMD use underscores the commercial interest in producing
high-performance software implementations of dataflow designs such as DSP.

One method to accelerate applications including, but not limited to, DSP is the use
of libraries and generators that produce optimized implementations for commonly used and
problematic compute kernels. These libraries and generators can be produced by third-party
researchers or by CPU/GPU vendors with expert knowledge of their hardware implemen-
tation. Examples of such libraries include Automatically Tuned Linear Algebra Software
(ATLAS) [49], FFTW [50], Spiral [51], Intel Math Kernel Library (MKL) / oneMKL [52],
AMD Optimizing CPU Libraries (AOCL) [53] (including AMD BLIS [54] and AMD FFTW
[55]), and NVidia CUDA-X Accelerated Libraries [56] (including cuBLAS [57] and cuFFT
[58]). These specialized libraries can provide substantial benefit, especially for complex and
well-researched problems such as General Matrix Matrix Multiplication (GEMM) and Fast
Fourier Transform (FFT). As such, these libraries could be used to augment the emitted op-
erations provided by this project’s DSP compiler, Laminar. This dissertation more broadly
considers the entire radio system, including inter-core communication concerns and baseband
co-design, and rather solely focusing on specific computational kernels12.

The difficulty of the general software optimization problem has led to the creation of
Domain-Specific Languages (DSLs), frameworks, and compilers which provide performance
benefits within a restricted domain that would be challenging for a general-purpose compiler
to achieve on its own. Examples include Halide [59] for image processing and TensorFlow
[60], Caffe [61], and PyTorch [62] for machine learning. Halide pays special attention to the
structure and locality of computation for its chosen domain of image processing. TensorFlow,
Caffe, and PyTorch all provide functions and optimizations that are important to machine
learning developers. This project can be viewed in a similar vein as a domain-specific com-
piler, Laminar, combined with design recommendations and evaluations for radio digital
signal processing on general-purpose CPUs.

While this project implements a domain-specific compiler (Laminar) for radio signal pro-
cessing, it is a source-to-source compiler which emits C code. General-purpose C compilers,
such as Clang/LLVM [63], gcc [64], or vendor-supplied compilers such as AMD Optimizing
C/C++ Compiler (AOCC) [65] are used to compile the final executable file. The compilers
include many optimizations [66], [67] such as auto-vectorization which can provide significant
performance gains for DSP algorithms that execute on CPUs equipped with SIMD/vector
units. Instead of trying to reimplement these optimizations, the Laminar compiler devel-
oped for this project seeks to use them by crafting C code which can easily be analyzed and
optimized by existing C compilers. This general strategy is discussed in detail in section 6.1.
Additional libraries and frameworks such as the Message Passing Interface (MPI) [68] and
the OpenMP parallel framework [69] can be used with compilers but are not used in this
project. This project targets single socket shared memory operation and does not require

12One strategy of this project is to represent designs in such a way that a standard C/C++ compiler can
easily and analyze some operators common to DSP designs and produce vectorized implementations of them.
For more complex algorithms such as FFT or GEMM when specialized matrix properties are not present,
the use of libraries such as these could potentially be used by the Laminar emitter.
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communication between multiple sockets and servers which MPI provides. Because of this,
MPI was viewed as more heavyweight than was necessary and is not used13. This project
also takes an alternate approach to that of OpenMP’s fork/join threading model [69] by
creating long-running threads that execute streaming dataflow and pass data via FIFOs.

In general, this is a very interesting time to investigate software radio. There is an
opportunity to reassess some of the execution models for DSP from the 1980s and 1990s,
such as synchronous dataflow and self-timed synchronization, on modern many-core general-
purpose CPUs. It is an area of active interest to the communications industry, with multiple
efforts underway to allow interoperability between different components that make up mod-
ern cellular networks, and the hope that some of these components can be implemented in
software. Academic research has also been ramping up in this area with works such as [70],
which focuses on Forward Error Correction (FEC) coding but also provides mechanisms for
accelerating general software radio, recently brought to the attention of the author. While
conducted independently and focusing on different areas, the general consistency of the ob-
servations in this project and that of [70] illustrate the promise of continued research into
software radio on general-purpose CPUs. Dataflow processing, an important component
of this project, has also been experiencing a resurgence in interest with machine learning
frameworks such as Caffe and TensorFlow making use of dataflow graphs for the source
description of neural networks [71] or when accelerating computations [72], respectively. A
domain-specific source-to-source compiler, combined with insight into common motifs in ra-
dio design and the advances in modern general-purpose C compilers, has the potential to
generate high-performance software radio implementations.

1.4 Dissertation Overview

As a project spanning several electrical engineering and computer science sub-specialties,
the early chapters of this dissertation aim to provide a common foundation on which soft-
ware radio can be evaluated. Chapter 2 introduces the basics of digital radio and baseband
signal processing. It also covers information about the Cyclops baseband used throughout
this dissertation as an example of a radio DSP workload and as a demonstrator for different
optimization techniques. Chapter 3 discusses the architecture of modern CPUs that run the
software radio applications generated by this project. Chapters 3 and 4 detail the different
modes of parallelism available in the CPU and radio baseband design. Effectively expressing
the parallelism in the radio design and mapping them to the parallel resources available on
the CPU is essential to achieve high-performance results and constitutes a major focus of
this work. Chapters 5 and 6 discuss the Laminar compiler and the optimization passes it
performs on the radio design. Chapter 7 focuses on the techniques and optimizations for
passing data between cores on the system. This also includes a discussion of how platform
characterization results are used to inform the partition-core mapping process. Chapter 8

13The execution model of the code produced by Laminar should be compatible with MPI and it should
be possible to use MPI for thread control and FIFO transfers if it is later determined to be advantageous.
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covers software radio algorithm co-design considerations that, if adopted, can address prob-
lems faced when mapping a given radio design to software. Chapter 9 covers experimental
results of Laminar generated realizations of the Cyclops baseband running on an AMD Ryzen
Threadripper 3970X and how these results could potentially be improved by running mul-
tiple instances of the radio, simultaneously. Concluding remarks, including a discussion of
remaining challenges, lessons learned, and future work are discussed in chapter 10.
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Chapter 2

Radio Baseband Processing

The target application of this research is the implementation of radio baseband process-
ing. While this work can be generalized to other signal processing tasks, exploiting our
knowledge of baseband processing allows us to introduce optimizations and specific to this
domain. As this research draws from disparate fields including computer architecture, DSP,
and communications, it is not expected that the reader will be familiar with all aspects of
the project. This section provides a primer on radio baseband processing and outlines the
structure of Cyclops [73], the radio design used as the demonstrator throughout this docu-
ment. For more information on general radio processing, see texts on digital communications
systems such as [74]–[76].

2.1 The Basics

The goal of digital communications systems is to send a set of data from one point to
another without the use of wires. In general, this is accomplished in the following steps:

1. Modulation: The digital data is converted into an analog signal. Typically, this signal
is centered around DC in the frequency domain and is called the baseband signal.

2. Mixing: The analog signal goes through a mixer which moves the center frequency of
the modulated signal to a higher frequency, called the carrier frequency. To put this
in a context most people are familiar with, the carrier frequency is what is dialed in
on a car radio to select the station to listen to.

3. Amplification and Transmission: The Mixed Signal is amplified and sent out of the
transmitter (Tx) antenna into the air.

4. The Channel: The transmitted signal moves through the environment, emanating from
the transmitter and eventually reaching the receiver.

5. Reception and Amplification: The signal is then detected by the receiver (Rx) antenna
and is then amplified.
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6. Mixing and Filtering: The received signal is passed through another mixer and filter
which moves the signal from the carrier frequency back to DC (the baseband signal)
and suppresses other received signals.

7. Demodulation: The received analog signal is then mapped back to a digital signal.

Tx Data

Digital 

Modulation

Mixing

PAPA

Amplification

Tx

Antenna

RF

Channel

Rx

Antenna

LNALNA

Amplification Mixing

Filtering
Digital

Demodulation

Rx Data

Figure 2.1: Idealized Radio Design

2.1.1 Impairments

In an ideal environment, not much signal processing would be required to achieve the
goals outlined above. However, real world conditions significantly complicate matters:

• The signal power density falls off with the square of the distance from the transmitter1.

– This demands high gain, linear, low distortion power amplifiers (PAs) on the Tx
side and low noise, high gain, linear, amplifiers (LNAs) on the Rx side.

– Because of signal attenuation in the air, the signal to noise ratio (SNR) at the
receiver suffers, making it harder to correctly decode the received data.

• Since the Tx and Rx are separated without wires, their oscillators and clocks are
typically not synchronized2.

– This results in the Tx and Rx having slightly different views of the carrier fre-
quency, resulting in Carrier Frequency Offset (CFO).

– This also means that the Rx may not know exactly when a piece of information
is being sent.

1This effect is visible in the received power expression for a signal propagating in free space, sometimes
called the Friis transmission equation, PR = PTGTAR

4πd2 . PR is the received power, PT is the transmitted
power, GT is the gain of the transmit antenna, AR is the effective area of the receive antenna, and d is the
distance between the transmitter and receiver [77].

2Synchronization against GPS as a reference is sometimes done for fixed, outdoor, installations.
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• Objects in the environment can send echoes of the transmitted signal to the receiver.
These delayed and attenuated versions of the signal cause the environment to appear
as a filter3.

• Motion of the Tx or Rx introduces a Doppler frequency shift which can be viewed as
a time varying CFO component.

While these impairments can be addressed in the analog domain, for example, by ad-
justing the Phase Locked Loops (PLLs) feeding the mixers to address CFO, it is typical to
digitize the received signal and perform corrections in the digital domain.

2.1.2 Data Converters and Analog QAM Modulation

To facilitate the signal processing in the digital domain, data converters are included in
the Tx and Rx chains. A Digital-To-Analog Converter (DAC) is included in the Tx chain
and an Analog-to-Digital Converter (ADC) is included in the Rx chain4. To satisfy the
Nyquist sampling theorem5, the data converters need to operate at a sampling rate at least
double the maximum frequency they plan to handle. Real signals are conjugate symmetric
across DC in the frequency domain, resulting in half of the sampling rate being available
as useful bandwidth. Many modern radios use a trick to utilize lower speed data converters
to capture a wider usable bandwidth. Quadrature Amplitude Modulation (QAM) allows a
signal to be split into two channels: in-phase (I) and quadrature (Q). On the modulator side,
the I channel is mixed up with a cos wave and the Q channel is mixed up with a sin wave
(which is 90◦ out of phase with the cos). The results are then summed together. The QAM
demodulator does the reverse operation, splitting the received signal and mixing down one
instance with a cos and the other with the sin wave. The composite signal can be viewed
as a complex phasor at the frequency of the sin/cos with its amplitude and phase derived
from the magnitude and angle of the point in the I/Q plane6. Because of this relationship,
the I and Q signals are typically viewed as the real and imaginary components of a complex
signal. Complex signals are not necessarily conjugate symmetric across DC in the frequency
domain, resulting in double the useful bandwidth at the cost of an additional ADC/DAC
channel. A diagram with a typical data converter and RF frontend topology is shown in
Figure 2.3.

3Finite Impulse Response (FIR) filters are constructed by summing delayed and attenuated/amplified
versions of the signal. For a fixed moment in time, the environment behaves like a frequency selective filter.

4The exact composition of the Tx and Rx chain can vary. For example, direct conversion transmitters
and receivers omit the analog mixing stage, utilizing high speed ADCs/DACs to handle signals directly at
the desired carrier frequency. The mixing operation is performed in the digital domain. Superheterodyne
radios mix to an intermediate frequency (IF) before mixing to either baseband or the carrier frequency

5See [78] for an explanation of the Nyquist sampling theorem which is also referred to as the Shannon
sampling theorem or simply as the Sampling Theorem.

6For a derivation of the phasor relationship for analog QAM modulation, see the appendices of [10].
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Figure 2.3: Data Converters and Attached RF Frontends (Modified from [10])

2.1.3 Baseband Representation of Digital Signal

While there are multiple ways to map digital data to analog signals, a very common
technique assigns bit patterns to coordinates on the I/Q plane referred to as constellation
points. The process of taking bits of data and mapping it to a constellation point is digital
modulation and the set of constellation points is referred to as the modulation scheme. The
waveform that is created is typically referred to as a symbol. Examples of two common
modulation schemes are shown in Figure 2.4.

The transmitted signal changes constellation points at the symbol rate. Because sharp
changes in the time domain result in wide spectral emissions, the transition between points
is typically smoothed through some form of low-pass filter. On the Tx side, it is common for
some of this filtering to be performed digitally. In addition to providing some degree of band
limiting, the Tx filtering is often used to shape the symbol to exhibit favorable properties
such as limited inter-symbol interference. To achieve this, the signal needs to be upsampled
to a faster rate before filtering7. On the Rx side, it is common for the ADC to run at a faster

7Otherwise, being sampled exactly at the Nyquist rate, it would be unable to effect the out-of-band
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Figure 2.4: Constellation Diagrams for Some Common Digital Modulation Schemes - Gen-
erated by Matlab/Simulink [79][80]

sample rate than the symbol rate. This serves multiple purposes, including:

• Allowing some filtering to be implemented in the digital domain, including the matched
shaping filter.

• Allowing the identification of the correct symbol sampling point and interpolating the
result completely in the digital domain.

• Providing frequency headroom for dealing with CFO in the digital domain.

An example of multiple symbol waveforms for the QPSK modulation scheme after lowpass
filtering is presented in Figure 2.5. The signal takes a different path depending on the
sequence of symbols and the length of the lowpass filter.

The ratio of the data converter sampling rates to the symbol rates is referred to as the
oversampling factor8.

emissions or effect the time domain shape of the symbol.
8Sampling at the symbol rate is theoretically possible but hard to implement. The highest frequency

component of the transmitted symbol, assuming proper smoothing, would be at half the symbol rate. This
would occur with alternating and opposite constellation points being sent. This would produce a sinusoid
with half the frequency of the symbol rate. This can be seen in the time domain eye diagram in Figure 2.5a
where transitions between two opposite symbols (along the real axis) results in half a sin wave
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Figure 2.5: Example of Transitions Between QPSK Constellation Points After Lowpass
Filtering

2.1.4 Impairment Effects on Baseband Signal

Given that much of the correction for the impairments presented in subsection 2.1.1 can
be accomplished in the digital domain, it is important to know how these impairments effect
the baseband signal.

Noise

One of the most fundamental impairments to radio systems is noise. Noise is present
in every radio system and is practically impossible to eliminate. There are often multiple
sources of noise including thermal noise which can be injected and amplified at different
points in the radio chain. One of the most analyzed channel models is Additive White
Gaussian Noise (AWGN) which models noise as a Gaussian distributed random variable
with a flat frequency spectrum which is added to the signal. The ratio of the signal power to
the noise power is referred to as the Signal-to-Noise Ratio (SNR) and is typically expressed
in dB. An example of QPSK symbols in an AWGN channel with an SNR of 15dB is presented
in Figure 2.6. The added noise results in the collection of received symbols forming point
clouds around the desired constellation points. The lower the SNR, the wider these point
clouds are, increasing the risk of a symbol crossing into the region of another constellation
point and being incorrectly decoded. The probability of a decoding error is also dependent
on the modulation scheme used with tightly packed constellation points having a higher
probability of error for a given SNR.

The use of Gaussian random variables allows AWGN to be analyzed analytically, some-
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Figure 2.6: QPSK in Additive White Gaussian Noise (AWGN), 15 dB SNR

thing usually infeasible for more complex channel models. One of the key insights provided
by the AWGN model is the theoretical capacity limit of a wireless channel, known as the
Shannon Capacity [77]. It is also possible to quantify the expected bit error rate for most
well-known modulation schemes operating in AWGN channels [77]. Matlab provides a func-
tion, berawgn, which returns these theoretical bit error rates for a given signal to noise
level expressed as EbN0 [81], [82]. Designers typically benchmark their radio’s performance
against the theoretical bit error rate to determine if further design iterations are warranted.
Bit Error Rate (BER) vs. SNR9 for different modulation schemes are shown in Figure 2.7.
Because higher order modulation schemes (with more bits per symbol) have higher densities
of constellation points, their BER performance is worse for a given SNR. Radios can only
practically tolerate a certain BER while providing sufficient performance to the upper layers
of the networks stack. As a consequence, most radio systems switch between modulation
schemes depending on the SNR present in the environment.

9Note that there can be some confusion in terms surrounding SNR. In this document, SNR refers to
Signal Power/Noise Power for the captured signal at the ADC. The noise power is integrated across the
entire captured spectrum. If oversampling is used, the transmitted baseband signal will only occupy a subset
of the captured spectrum. The Energy Per Symbol to Noise Power Spectral Density (EsN0) normalizes out
this oversampling factor. Energy Per Bit to Nose Power Spectral Density (EbN0) further normalizes out
the number of bits per symbol and is often used as a method to compare performance across modulation
schemes and radios. Both are presented for convenience as SNR can be intuitively easier to understand and
measure while EbN0 is often preferred by communications specialists.
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Symbol Timing Error

As was mentioned in subsection 2.1.1, most wireless systems do not have synchronized
transmitter and receiver oscillators/clocks. A properly lowpass filtered signal has an ideal
point to sample a given symbol, as shown in Figure 2.5a. Outside of this point, the signal
is transitioning between symbols. If sampled outside of the optimal sampling point, some of
this transition is captured. Sampling with a relatively small offset from the optimal sampling
point is shown in Figure 2.8. The symbol timing offset resultes a wider point cloud around
the constellation points, similar to the effect of noise. However, the point cloud is more
structured and is the result of sampling the different transition paths between constellation
points as shown in Figure 2.5b. If there is a frequency offset between the transmitter and
receiver symbol clocks, the point cloud will widen and contract over time according to point
in the transition between constellation points being sampled.

Carrier Offset and Doppler Shift

A similar problem to symbol timing error, as presented in section 2.1.4, is carrier phase
and frequency offset. Carrier offset, like symbol timing offset, occurs when the transmitter
and receiver oscillators feeding the mixer stages are not synchronized. The less severe case
occurs when the oscillators are locked in frequency but have a phase difference. A carrier
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Figure 2.8: QPSK in the Presence of Symbol Timing Phase Error

phase offset results in the signal being rotated about the origin in the receiver I/Q plane after
analog QAM demodulation10. The result of a small carrier phase offset is shown in Figure 2.9a
with the received symbols being rotated away from their corresponding constellation points.
If the transmitter and receiver oscillators have a frequency offset, Carrier Frequency Offset
(CFO) is introduced. This appears like a time-varying phase error between the Tx and Rx,
resulting in the received signal continuously rotating about the origin of the I/Q plane. An
example of a small CFO is shown in Figure 2.9b.

One other common cause of CFO occurs when radios are in motion relative to each other.
This motion causes an offset of the signal in the frequency domain due to the Doppler shift.
This CFO component can be time varying as the relative velocity between the Tx and Rx
changes.

2.1.5 Multi-path Fading and Frequency Selective Channels

Up to this point, the only consideration of the physical environment has been the distance
between the Tx and Rx, which affects the received power level. In reality, most radios
experience additional impairments from the environment they are placed in. Radio waves,
like light rays, can reflect off and refract through different materials. As a result, the energy
traveling from the Tx to the Rx can arrive via multiple paths. The direct path between
the Tx and Rx is typically referred to as the line-of-sight path. Without obstructions, it is
typically the strongest path. Other propagation paths cover longer distances, delaying the

10For a detailed explanation and derivation of this effect, see the appendices in [10].
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Figure 2.9: QPSK in the Presence of Carrier Impairments

signal reaching the receiver. They also tend to be weaker due to energy lost either through
reflection or refraction. These different paths all sum together in the air at the Rx antenna.

The result at the receiver is the sum of different delayed and attenuated versions of
the signal. This is the same mechanism which occurs in a Finite Impulse Response (FIR)
filter, which sums scaled and delayed versions of a signal. Just as FIR filters can change
the frequency response of a signal, the different reflections in the environment can cause the
frequency response of the signal at the Rx to be non-flat. The result is the distortion of the
received signal. There are multiple terms for this phenomenon, with multipath fading and
frequency selective channel being two common ones. Various multipath models have been
developed in an attempt to represent what radios may experience in the real world. For
more information on multipath fading, see [83].

2.2 Baseband Signal Processing with Cyclops

The purpose of radio baseband signal processing is to produce a signal to be sent out
of the DAC on the Tx side and to interpret the signal received by the ADC on the Rx
side. Any impairments that remain uncorrected in the analog domain must be resolved by
the baseband signal processing. Cyclops is an example of a radio baseband that handles
most impairments in the digital domain. Originally implemented on an FPGA for a 60 GHz
test/development platform and documented in the author’s master’s thesis [10], the design
was modified and extended for Berkeley’s DARPA Spectrum Collaboration Challenge (SC2)
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effort. After the conclusion of Berkeley’s run in SC2, the design was further modified and
improved as a demonstrator for mapping baseband designs onto general-purpose CPUs [73].

Cyclops assumes that it is connected to an analog QAM modulator and demodulator, as
described in subsection 2.1.2. The common convention of representing the signals exchanged
with the dual channel data converters as being complex (having both a real and imaginary
component) is taken. Cyclops is best described as a single carrier 11 radio which modulates
a stream of data into symbols which are then low pass filtered based on the symbol rate and
sent to the DAC.

Designed without a particular MAC in mind, Cyclops provides most compensation for
the physical channel in the receiver12. As a result, the bulk of the signal processing workload
is done by the receiver.

2.2.1 Transmitter

The Cyclops transmitter has two main functions:

• Modulate data into a target modulation scheme.

• Perform Tx pulse shaping (the Tx side of the matched filtering operation).

Framing, including preamble insertion, occurs outside of the Tx DSP with symbols and
their associated modulation schemes being sent to the transmitter. A high level of the
Cyclops Tx baseband processing is shown in Figure 2.10.

2.2.2 Receiver

As mentioned above, Cyclops was designed with most of the signal processing workload
contained in the receiver. A general outline of the Cyclops receiver is shown in Figure 2.11
with data generally flowing from the ADC through the following processing steps:

1. Receive Matched Filtering - correlating against the expected pulse shape of the signal
and reducing inter-symbol interference

2. Automatic Gain Control (AGC) - Normalizing the power of the received signal to an
expected level

11A popular alternative to single carrier radios is Orthogonal Frequency Division Multiplexing (OFDM)
based systems. While these two types of basebands take different approaches, especially in modulation/de-
modulation and equalization, they share some common challenges. For instance, both single carrier radios
and OFDM radios are sensitive to CFO. While there are some additional opportunities for exploiting paral-
lelism across sub-carriers post FFT in OFDM, the signal processing techniques explored in the single carrier
radio are still relevant to OFDM based systems. For more information on OFDM, see section A.1.

12Some radio systems perform pre-distortion at the transmitter to compensate for the channel character-
istics. Pre-distortion requires estimates about the channel characteristics at the receiver to be sent back to
the transmitter in a timely fashion to be effective.
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Figure 2.10: Cyclops Tx: Overview

3. Timing Recovery - Estimating and correcting for differences in the Tx and Rx symbol
clocks. Transitions from samples to symbols

4. Coarse CFO Correction - Estimates and Corrects for CFO

5. Equalization and Demodulation - Estimates and corrects for reflections in the envi-
ronment. Corrects for residual CFO and carrier phase error. Demodulates header and
payload data

6. Data Packing - Packing data from different modulation schemes into bytes to send to
the receiving program

The result at the end of these steps, assuming successful frame detection, is header and
payload data. The bulk of these processing steps are devoted to addressing the impairments
presented in subsection 2.1.1. As these steps represent the computational workload being
mapped to the CPU, a brief description of the larger units of the design are described below.

AGC

The AGC is responsible for normalizing the power of the incoming signal to a desired
level13. This simplifies some of the downstream processing blocks by allowing them to assume

13Many AGCs control the analog gain of a front end amplifier in the RFIC to maximise the dynamic
range of the signal captured by the ADC. While the algorithm used in Cyclops could be used to modify an
external amplifier, it presently only scales the digital value received by the ADC. A compelling approach
to maximize the dynamic range of the signal would be to use a hybrid scheme with an ADC running in a
closed-loop fashion in the RFIC.
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a fixed power level once the AGC settles. Blocks that rely on this property include peak
detection in Timing Recovery and equalization through the step size parameter. There are
multiple AGC topologies available and the one implemented approximates a log-exponential
design. An advantage of the log-exponential algorithm is that the time to settle should
be constant regardless of power of the incoming signal [84]. This provides some degree of
certainty on how much time other blocks have to settle once a signal is detected.

The log-exponential design is similar to the one used in an earlier version of the Cyclops
radio [10]. One change is that the estimation/correction control no longer includes the
receive matched filter in the loop, which has been relocated to before the AGC. This move
was practical once the number representation was changed from fixed-point arithmetic in
the early versions of Cyclops to floating-point in this version. The control loop also no
longer includes the power detection and averaging logic. The result of these modifications is
that the core AGC control loop contains less logic and less delay. In addition to improving
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the control system by avoiding unnecessary delay in the feedback chain, the reduction in
workload within the control loop reduces the need to partition across the loop.

To reduce the workload further, lookup tables (LUTs) are used to approximate the Ln
and Exp functions. These tables are implemented with a limited resolution and range which,
in principle, allows fast lookup.
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Timing Recovery is the most computationally intensive block in the Cyclops baseband.
This is due both to the large number of operations used to perform timing recovery and the
fact that this block runs at the sample rate rather than the symbol rate.

The Timing Recovery block has changed significantly from the non-data-aided approach
used in early versions of the Cyclops baseband [10]. The timing recovery block employs a two-
phase coarse/fine correction strategy to correct for both symbol clock frequency and phase
differences. The coarse correction is feed-forward and leverages properties of the preamble.
Like early versions of the Cyclops baseband [10], the preamble is based on the control PHY
preamble from 802.11ad [85] and consists of repeated Golay sequences14 [85]. The preamble

14Golay sequences come in complementary pairs, denoted as the A sequence and the B sequence. In
addition to producing relatively small false peaks and a small DC component, Golay sequences have an
additional property where the false peaks of the correlations of the A and B sequences cancel when summed
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is BPSK modulated and, like 802.11ad [85], is separated into 2 segments, called the Short
Training Field (STF) and the Channel Estimation Field (CEF). The Golay correlations of the
different segments of the preamble is shown in Figure 2.14. During the short training field,
the B Golay sequence is repeated several times. Once the first peak is detected, the Timing
Recovery block begins estimating the timing error. The number of samples until the next
peak along with information about the shape of the correlation peak is used to estimate the
timing phase difference between correlation peaks. The timing differences between adjacent
peaks are averaged to produce an estimate of the symbol timing frequency error. In the time
between correlation peaks, the frequency estimate is used to interpolate the desired timing
delay to realign the received signal. At each correlation peak, the requested timing delay is
reset to the newly estimated timing phase.
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Figure 2.14: Cyclops Preamble - Based on 802.11ad’s Preamble [85]

The timing delay estimate, which is computed in the Delay Accumulator block shown
in Figure 2.13, is used to drive a variable delay subsystem. This subsystem is capable of
delaying the incoming signal by integer numbers of samples as well as interpolating fractional
delays between samples via a Farrow Filter structure15. The Farrow Filter used is similar
to the one used in [10]. The core difference is that the Farrow Filter in the current Cyclops
baseband does not have any internal state. Vectors sized for the Farrow structure are sliced

[86]. See section 4.6 of [10] for more information about the properties of Golay complementary sequences.
Compared to the mmWave version of Cyclops, the number of repeated peaks has been adjusted and a 32
symbol Golay pair is used instead of a 128 symbol Golay pair.

15For information on the structure and function of the Farrow Filter, see [87]
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from a separate tapped delay block. The position of the slice selects the integer delay, and the
Farrow structure provides the fractional delay interpolation. This is due to a major change
since early versions of Cyclops where enabled subsystems (clock enabled subsystems) were
used along with a sampling clock to provide the integer delay portion of the variable delay
and decimation. The downside to this approach was that it prevented some optimizations
which can occur when a fixed decimation is known. Because the Tx symbol clock could
be faster than the Rx clock, it was possible for earlier versions of the Cyclops radio to
occasionally pass an extra symbol. The new version of the Cyclops baseband accommodates
this possibility by provisioning a tapped delay large enough to accommodate the maximum
expected symbol timing offset across the entire packet. Because the symbol phase of the
received packet is not known a priori and can change from packet to packet, a second tapped
delay and selector is used before decimation to select the appropriate decimation phase.
With these modifications, the implemented decimation from sample to symbol domain can
be fixed. For more information on the advantages of this design, see section 8.4.

Once the end of the STF is detected, the timing recovery system shifts into a feedback
mode. The frequency estimate is frozen16 and is used to interpolate the correct delay value
for subsequent samples/symbols. If the phase estimate and frequency estimate were perfect
and the underlying values were constant, this would be sufficient. However, in practice,
the estimates are not perfect and timing phase and frequency may potentially drift. To
handle these cases, an early-late detector is used to derive timing estimates17. The early-late
detector compares the correlation of the pulse shape of the current sample against the sample
before and the sample after. On average, the correlation before and after should be equal
in magnitude with the pulse shape correlation expected to be symmetric. An imbalance, on
average, indicates that the sampled value is either early or late. This correction is averaged,
run into a proportional integral (PI) block, and is then used to drive additional correction to
the requested delay value for the variable delay. By running the early-late detector on the
result of the variable delay, it creates a PI feedback control system. So long as the timing
frequency error estimate is close, the changes required from the early-late control system are
small, allowing it to have delay in the feedback path.

Coarse CFO Estimation/Correction

The Coarse CFO estimation/correction is the first part of a coarse/fine correction mech-
anism for CFO. Like Timing Recovery, the coarse CFO block uses the repeated Golay se-
quences in the STF portion of the preamble (shown in Figure 2.14) to estimate the CFO.
Unlike timing recovery, which uses the correlation shape of the peaks, the Coarse CFO block
uses the relative phase of subsequent correlation peaks to estimate the CFO. The estimate
starts when the first correlation peak in the STF is detected. The Coarse CFO block FSM

16The correlation shapes at the boundary of the STF and CEF are slightly different due to the new data
pattern, resulting in a bad final estimate. These final estimates are discarded before the timing frequency
error estimate is frozen.

17For more information on early-late detectors and early-late symbol timing recovery, see [88].
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Figure 2.15: Cyclops Rx: Coarse CFO

then enters a timekeeping mode, where it samples the correlation when it expects a peak.
This allows it to avoid issues if peak detection does not trigger in the presence of noise. The
CFO estimate is then transformed into an integer phase increment signal fed to a digital
Numerically Controlled Oscillator (NCO). The NCO outputs a complex exponential (ejθ)
oscillation with a frequency described by the phase increment. It uses a phase accumulator
and quarter-wave lookup table to generate the oscillation. See [89] for information on the
structure of NCOs. This oscillation is applied to the incoming signal to stop the rotation
of the constellation as described in section 2.1.4. In practice, the estimation has some error
that results in the constellation continuing to rotate, but very slowly. The residual CFO
error along with the carrier phase are corrected in the downstream equalization block.

Equalization and Demodulation

Equalization serves multiple purposes in the Cyclops baseband. As its name suggests,
it aims to correct for frequency selective fading in the RF environment as described in
subsection 2.1.5. Within the Cyclops radio, it also serves the additional function of correcting
any excess CFO error that was uncorrected by the Coarse CFO block as well as correcting
any carrier phase offset.

The core algorithm used by the Cyclops implementation of the equalizer (EQ) is LMS
which aims to minimize the Least Mean Squared error of the received signal by modifying the
taps of an FIR filter [90], [91]. LMS is an iterative stochastic18 gradient decent algorithm
which converges in the mean to the desired filter coefficients19 [90]. There are multiple
variations on LMS, and Cyclops uses two of them. The first is to introduce a variable step
size which decreases over time20. This aims to reduce the amount of coefficient jitter about

18Because LMS an approximation of the true gradient decent algorithm for a sample mean of one [90], it
can be described as stochastic gradient decent algorithm by the definition given in [92].

19Under certain conditions including the assumption that the environment is a Wide-Sense Stationary
(WSS) process.

20The method used in Cyclops uses a static step size reduction instead of the more complex method
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Figure 2.16: Cyclops Rx: Equalization and Demodulation

the desired point while still reaching the neighborhood of the solution in a reasonable amount
of time. The other variation is Block-LMS [93], [94] which does not adapt the filter coefficients
after each sample. Instead, the coefficients are held constant for multiple samples with the
coefficient update accumulated and applied after the block. This modification helps weaken
the dependencies in the feedback loop, allowing more independent processing to occur. The
benefits of this approach will be discussed in more depth in chapter 8.

Like the Timing Recovery block, the EQ block operates in two distinct modes depending
on the location within the packet current being received. At the transition between the
STF and CEF in the preamble, the ideal CEF is played back as the reference signal to the
LMS algorithm. For the rest of the preamble, the LMS trains against the known CEF field.
After the preamble, the EQ shifts into decision directed mode which assumes the closest
constellation point to the received point is correct and trains based off that assumption.
This allows the EQ to adapt to slowly changing channels as well as to continue correcting
for small residual CFO error. Because demodulation is required for decision feedback EQ,
demodulation also occurs within the EQ block rather than being separated into a different
logical unit. As part of its demodulation responsibilities, the EQ is also responsible for
decoding the modulation field in the header, which indicates the modulation scheme used
for the payload portion of the packet. The modulation field, which is the first part of the
BPSK encoded header, is encoded with a rep3 repetition code. This code repeats each bit of

discussed in [90].
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the modulation field three times. The Rep-Decoder block performs the majority operation
to decode the modulation field. If two or more of the repetitions are 1, the decoded bit is
1. Likewise, if two or more of the repetitions are 0, the decoded bit is 0. This encoding
allows the modulation scheme to be correctly decoded with single errors of each bit. If
the modulation field has more errors, the incorrect modulation scheme will be decoded,
and the packet will effectively be lost. Failure to decode the modulation field correctly is
considered a catastrophic failure condition for an individual packet, similar to cases where
estimation/correction blocks fail to converge.

Packet Control and Sequencing

Because several different blocks within the Cyclops Rx shift modes depending on what
part of the packet is being received, there needs to be some mechanism responsible for
tracking the different stages of packet reception as well as sending control signals to the
relevant blocks in the Rx chain. The Packet Control / Sequencing Block performs this logic
in the symbol domain portion of the baseband by analyzing information from the preamble
correlators. It in turn sends signals to the EQ, Timing Recovery, and AGC blocks to signal
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to them when to change modes. Over multiple revisions of the Cyclops baseband, some of
the functions of the Packet Control and Sequencing block have been distributed throughout
the radio. For example, some sequencing logic is now contained in the EQ and some of the
logic is replicated in the controller for the Timing Recovery block.

2.2.3 Performance

The Matlab/Simulink simulated BPSK and 256QAM performance of the Cyclops base-
band in an AWGN channel is shown in Figure 2.18 and Figure 2.19 respectively. The
performance is generally good with performance typically well within 1 dB of the ideal BER.
One exception is under low SNR conditions the radio suffers elevated bit errors and packet
decode errors, which are shown in Figure 2.20. This is likely due to the various estimation
and correction components failing to settle to the correct values in the low SNR case. Sim-
ulations with Timing Error and CFO were also conducted to verify the performance of the
Timing Recovery, Coarse CFO, and EQ blocks. Results from these simulation runs gener-
ally match the results without Timing Error or CFO which indicates that the radio can cope
with moderate imperfections present in real-world operation. For more information on the
methodology behind the BER sweep as well as the performance for all payload modulation
schemes, see section A.2.
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Chapter 3

Modes of Parallelism: CPUs

There are 2 basic ways to increase the performance of a CPU: increase the speed of
performing an operation or do more operations at once. Each has its own set of advantages
and disadvantages.

Prior to the 2010s, it was common for CPU vendors to increase the clock speed of their
parts year-over-year. This was thanks to semiconductor technology shrinking the size of
transistors (known as transistor scaling [95]), which let them switch faster. But as transistors
shrank, the wires connecting them shrank as well, increasing their electrical resistance1. The
industry followed two paths:

• Dennard Scaling: Linearly improving delay and keeping power density constant by
lowering the supply voltage as transistor dimensions shrink [95].

• Frequency Scaling: Quadratically improving delay and cubically increasing power den-
sity by keeping the supply voltage constant while transistor dimensions shrink [95].

Frequency scaling was popular due to the quadratic improvement in speed. However, there
was a heavy price to pay for this improvement in the form of rapidly growing power density.
Eventually, CPU vendors encountered what is often referred to as a power wall where power
and heat limitations blocked further use of frequency scaling.

Another effect of semiconductor process scaling is that the number of transistors per
unit area increases as transistor dimensions decreases. The rate of density improvement was
famously observed by Gordon Moore as the number of transistors increasing every 1-2 years
[95], [96]. The general trend of increased transistor density described by Moore’s Law has
continued as time has gone on. However, the speed at which density is increasing has slowed
with the increased challenge to scale semiconductor devices further. While the end of Moore’s
Law has been predicted for a long time, process technology experts have continued to find
new ways to increase density such as the development of the FinFET [97]. While Moore’s
Law will likely come to an end at some point, other techniques are being actively utilized to

1This increased wire resistance from interconnect scaling is not typically a problem at short distances
but can become problematic for long lengths [95].
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increase the amount of logic in modern CPUs. Several modern CPUs utilize multiple silicon
dies with high-speed interconnects using new packaging and interposer techniques. Utilizing
multiple dies also has the benefit of increasing the effective component yield vs. a large
single die, reducing component costs [98].

With the effective end to frequency scaling but the possibility of inserting more logic
into the same area, many of the CPU performance improvements over the past several years
have involved performing work in parallel. Unlike frequency scaling which improves all
workloads, parallel resources require that tasks be broken into independent work units to
provide performance improvements. Effectively extricating parallelism from the DSP design
and mapping it to the different modes of parallelism available on the CPU is at the core of
this project and is critical to attain the required performance.

While there are many Instruction Set Architectures (ISAs) available today including
ARM (and its variants), RISC-V, MIPS, and IBM Power, x86 64 is especially pervasive. x86,
and its extensions, have held the dominant positions for personal computing and servers for
some time, with Intel and AMD being the top producers. At the inception of this project
x86 64 based CPUs enjoyed high performance and were aggressive with core counts at the
high end. At the time, Intel had released 28 core server parts [99] and AMD had announced
32 core consumer and server parts. The core count has continued to increase with Intel
releasing a 58 core server part [99] and a 18 core consumer part [100] and AMD releasing 64
core consumer and server parts [6], [101].

Due to its position in the server and HPC space as well as delivering many high-
performance CPU cores, x86 64 was chosen as the target demonstration ISA for this project.
Many of the techniques and insights of this project will map to other ISAs but there will be
some x86 64 specific optimizations that will be mentioned.

3.1 Modern x86 64 CPUs

Modern x86 64 CPUs support multiple forms of parallelism, each of which requires dif-
ferent aspects from the target workload to be useful:

• Multiple Instruction / Multiple Data (MIMD) across cores.

• Single Instruction / Multiple Data (SIMD) vector execution units in cores.

• Superscalar, Out-of-Order, execution within cores.

• Pipelined, branch predicted, execution within cores.

• Simultaneous Multi-threading (SMT), execution within cores.

3.1.1 MIMD

The most flexible of these modes of parallelism is MIMD across cores. To put it simply,
each core can run a separate program operating on different sets of data. The operating
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system (OS) on most computers takes advantage of this parallelism by scheduling different
processes or threads onto different cores. For example, a desktop OS may schedule music
streaming playback to one core and photo editing to another core. This model of parallelism
works well if there are multiple independent or lightly dependent tasks that need to be run.
To take advantage of multiple cores in a single application, the software developer needs to
explicitly expose parallel workloads by either creating multiple threads of execution or by
using a framework such as OpenMP.

Communicating work between cores typically occurs through the memory and cache
subsystem, which will be discussed in section 3.2.

3.1.2 SIMD

Most Intel and AMD CPUs implement SIMD vector extensions to the x86 64 ISA. These
extensions include MMX, SSE (multiple versions), AVX (multiple versions), and FMA. AVX
and AVX2 support vectors that are 256 bits wide. Intel has implemented AVX-512 which
supports 512 bit-wide vectors. The SIMD model is that a single operation is executed
across multiple pieces of data. SIMD execution generally saves on overhead by amortizing
the cost of an instruction across multiple operations. A common problem when converting a
program to use SIMD/vector instructions occurs when operations occur conditionally. Many
SIMD extensions support a set of masked operations which allows the user to specify which
elements in a vector the operation should be performed on. Conditional operations can
be handled through masked vector instructions but there is an added cost. If a branch is
encountered with different elements in the vector taking diverging decisions, both paths need
to be executed with masking2. For more information on SIMD see [16]. For more information
on x86 64 ISA extensions, see [103], [104].

a[3]a[2]a[1]a[0]Operand A (Vector Reg)

SIMD
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Figure 3.1: Example of Scalar Operation (SISD) vs. SIMD with a Vector Length of 4

2There is an analogous problem with GPUs. Nvidia GPUs, for example, execute GPU threads in warps.
When a branch is encountered and threads within the warp take diverging control decisions, only a subset
of the threads in the warp are allowed to execute at a time. To see how this manifests in several generations
of Nvidia GPUs, see [102].
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3.1.3 Out-of-Order and Superscalar

The naive view of a CPU is that it executes the instructions in a program one at a time
in the order which they were written. While this is true for some CPUs, particularly in the
embedded space where cost and power efficiency are of paramount importance, most x86 64
CPUs used in laptops, desktops, and servers can execute instructions out-of-order. There
are many advantages to this approach such as allowing independent work to be executed
while another instruction is waiting for an operation to finish. Analysis of instructions
to be executed is performed so that instructions are only scheduled to be executed after
any dependent operations finish. Re-arranging the results of different instructions can be
accomplished in multiple way including using a re-order buffer or by maintaining a pool
of registers and dynamically renaming them as instructions are executed. The operation
queue, register renaming blocks, register files, and scheduling blocks of AMD Family 17h
CPU cores are shown in Figure 3.2. For more information on the different techniques used
and constraints on out-of-order CPU operation, see [16].

In addition to executing programs out-of-order, most x86 64 CPUs can execute more
than one instruction at a time across multiple different execution units. Processors that
are capable of executing more than one instruction at a time are referred to as superscalar.
Superscalar operation typically complements out-of-order execution as it allows multiple
independent instructions, which may not be contiguous in program order, to execute at
once. When multiple independent instructions are executed simultaneously, the CPU is said
to be exploiting Instruction Level Parallelism (ILP). For a concrete example of a recent
superscalar CPU, the AMD Family 17h Processors Models 30h and Greater (which includes
the Ryzen Threadripper 3970X 32-Core Zen2 CPU3) has four integer Arithmetic Logic Units
(ALUs), three Address Generation Units (AGUs), and four floating point / vector units per
core. Execution units can generally execute a subset of the CPU’s supported operations [17].
The different execution units in AMD Family 17h Models 30h and Higher cores is shown
in Figure 3.2 along with the different operations they are capable of executing. For more
details on the implementation of superscalar CPUs, see [16].

To take advantage of these different execution units, an ideal program would be composed
of many independent or lightly dependent operations which can be executed simultaneously.
When operator dependencies are present, it is best to make sure that enough indepen-
dent operations are present in the look-ahead window (the set of instructions considered for
scheduling) so that new instructions can be issued to the execution units in place of depen-
dent operations which need to wait for results. Because functional units can be specialized to
specific instruction types, the composition of operation types in the program can also influ-
ence achieved performance. As an example, the AMD Zen2 cores depicted in Figure 3.2 have
two floating-point units capable of floating-point multiplies and two different units capable
of floating-point additions. Assuming no outside bottlenecks or inter-instruction dependen-
cies, a program with an interleaved 50/50 split of floating-point multiplies and adds should
perform approximately 2x better than a program with just floating-point multiplies or adds.

3Ryzen Threadripper 3970X is CPU Family 17h, Model 31h
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3.1.4 Pipelining and Branch Prediction

Modern CPUs, including in-order CPUs, leverage pipelining to increase throughput. In-
stead of an instruction being fetched, executed, and completed within a single clock cycle,
the different phases of execution are split via pipeline registers. By reducing the critical path
through the CPU, pipelining typically enables faster clock rates at the expense of instruc-
tions now requiring multiple cycles to finish. In the absence of conflicts, a new instruction
can enter and another can exit the pipeline each cycle. By allowing multiple instructions
to be in the pipeline at once (each at a different phase of execution), the throughput of the
CPU generally increases while the latency for an individual instruction typically suffers. The
execution units of superscalar out-of-order CPUs are often pipelined, allowing new instruc-
tions to be issued to the execution unit before the last instruction had finished. For example,
the AMD Zen2 leverages pipelining with the throughputs of various instructions detailed in
[17]. For an example of pipelining in an in-order processor, see [105].

As useful as pipelining and out-of-order execution are for improving performance, it does
come at a cost when branch instructions are encountered. When a branch is encountered,
such as an if ... else, the next instruction to execute is dependent on the result of
the branch condition. This dependency interferes with both pipelining and out-of-order
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execution which provide improvements by beginning the execution of instructions before
previous ones have completed. A sub-optimal strategy would be for the pipeline to stall or
out-of-order execution to avoid scheduling new instructions until after the branch direction
has been determined. This effectively gives up the advantage provided by pipelining and
out-of-order execution in the regions surrounding branches and can be expensive, especially
if extensive pipelining is used in the CPU design. A popular alternative approach is to
predict the direction of a given branch and to speculatively execute the instructions along
the predicted path. If predicted correctly, this keeps the pipelines full and execution units
busy. If predicted incorrectly, the CPU needs to revert the results of any of the speculated
execution and execute the correct branch. The delay in performing this is referred to as the
misprediction penalty and can be very costly. The goal with most branch predictors is that,
after enough executions of the branch, a pattern can be identified which results in overall
performance improvements. For more information on branch prediction and how it manifests
in both in-order and out-of-order CPUs, see [16], [105].

Pipelining and branch prediction can both place constraints on high performance code.
In the presence of aggressively pipelined execution units, the number of independent in-
structions required to keep execution units busy increases. More independent instructions
are required to compensate for the additional number of cycles operations spend being exe-
cuted, preventing dependent operations from running for more cycles. The types of control
decisions present in the program can also have a strong impact on the performance of the
branch predictor. Loops which follow a predictable, fixed, pattern can often be predicted
correctly with modern techniques. However, unpredictable branching or branching with
complex patterns can interfere with the prediction logic, resulting in excessive branch mis-
prediction penalties.

3.1.5 Simultaneous Multi-Threading (SMT)

As mentioned above, leveraging the execution resources available in a CPU core requires
leveraging instruction level parallelism (ILP). On a general-purpose system, it is possible that
a single program may not be able to provide sufficient ILP, may not have the correct balance
of different instruction types, or may be bottle-necked on memory or I/O. Simultaneous
Multi-Threading (SMP, sometimes called hyper-threading in Intel contexts) aims to improve
efficiency by filling the execution gaps in one program with work for another program. This
multiplexing occurs at the hardware level and is presented to the OS/user as a given CPU
core having multiple (often two) virtual cores. Assuming the programs are independent this
should allow the CPU core to perform more total work in a given unit of time. The OS is free
to schedule work on these virtual CPUs and the core will multiplex between these threads.
The core maintains separate architected state for each virtual CPU and can typically switch
between executing instructions from these two virtual CPUs at relatively low cost. For
details on the AMD Zen2 implementation of SMT, see [9].

SMT is most helpful when a single system is executing multiple programs, each of which
does not have the required workload to keep the core busy. It can have downsides, however,
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as both virtual CPUs share some resources such as the cache, potentially causing contention.
In the context of this project, attempts will be made to maximize the amount of ILP available
to each core for the given signal processing application. SMP will generally be disabled to
provide tighter control over the execution and more consistent/predictable results.

3.2 Modern x86 64 Cache, Memory, and Core-Core

Communication

At the time of writing, DRAM performance has significantly lagged CMOS logic per-
formance [16]. It can take many clock cycles to fetch data from DRAM or write results
back into DRAM. To reduce the impact of this performance mismatch on overall system
performance, most modern high-performance processors employ extensive caching. Caching
is arranged in levels with the lowest level cache (L1) providing the fastest access and the
higher-level caches providing more capacity but less performance. Caches operate on lines
of data and the size of cache lines can vary between platforms. On AMD Zen2, the cache
line size is 64 bytes [17]. When data is requested, the cache line to which the data belongs
is fetched from the lowest level data cache (L1D). If the data is not resident there, the next
cache level is queried with the result copied into the lower-level cache and returned to the
core. If the data is not present in any cache level, a request is made to DRAM. Caches can
be either inclusive (having a copy of all the data in caches below it) or exclusive. Zen2’s L2
cache is inclusive while its L3 cache is exclusive except for data shared between cores [17].

A subsection of the cache hierarchy used in the Ryzen Threadripper 3970X CPU is
conceptually diagrammed in Figure 3.3. This CPU uses a multi-die-in-package approach
with 4 separate CCD compute dies on the same package substrate connected by an IOD I/O
die. Each core complex (CCX) of four cores shares a single L3 cache with each core having
private L2, L1 Data (L1D), and L1 Instruction (L1I) caches.

The importance of the memory subsystem of a modern CPU is often underestimated when
high-performance is needed. The memory subsystem is not only responsible for hosting pro-
grams themselves and the state they rely on, but also often the only feasible high-performance
mechanism to communicate across cores on the same platform. Careful consideration of the
memory subsystem and interconnect has been a hallmark of High-Performance Computing
(HPC) for a long time and is a key focus of HPC courses like CS267 at Berkeley [108]. De-
tails of the memory subsystem’s characteristics in the context of multiple cores is discussed
below.

3.2.1 Muti-Core Cache Coherence, MESI, and Memory
Consistency

When a CPU has multiple cores, there are choices on how to handle memory and caching.
One possibility would be to partition memory across the cores and for each to have its
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Figure 3.3: Ryzen Threadripper 3970X - Cache, CCX and CCD [17], [106], [107]

own cache. However, this would complicate the programming model for developers and
would require explicit mechanisms to communicate information among cores. An alternative
approach is for all the cores to share access to memory and for the different caches in the
system to maintain coherence. Coherence, in this context, specifies requirements on what
values can be returned for a read to a given cache line by different caches within the system
[16]. Conditions for coherence, as described by [16], include:

• If a given core writes to a memory location, and no other core writes to the location,
subsequent reads by that core should return the new value.

• When a cache line is written by one core, subsequent reads by other cores’ caches
should return the new value subject to enough time passing since the write.
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• In the case that multiple cores write to the same cache line, the writes appear in the
same order to all cores on the system (i.e., the writes are serialized).

Maintaining the coherent view of memory becomes the responsibility of the cache co-
herency protocol. Cache coherency is a complex topic with many different alternative imple-
mentations. In-depth information on cache coherency is available in computer architecture
texts such as [16]. While CPUs often use more complex cache coherency protocols (such as
AMD Zen1 Zeppelin, which uses a 7 state MDOEFSI cache coherency protocol [109]), it will
generally be sufficient in this document to view the cache coherency protocol as MESI like.
MESI is an acronym for the different states for cache lines in this protocol:

• Modified (M): The cache line has been modified in this local cache. The entry for this
cache line in all other caches should be invalid.

• Exclusive (E): This cache line is exclusively held by this core. Modifications can be
made by this core. The entry for this cache line in all other cores should be invalid.

• Shared (S): This cache line has copies in multiple cores. No modification can be made
without first obtaining exclusive access.

• Invalid (I): This cache line is not resident in this core’s cache.

A coherent view of memory is maintained by forcing cores to obtain exclusive access to the
cache line before modifying the data. See [16] for more information on MESI and other cache
coherency protocols.

By reading and writing the same memory locations, different cores in a multi-core CPU
can communicate via the cache coherency mechanism. The transportation of data from core-
to-core occurs via the cache coherency protocol. For example, assume that core A wants to
communicate some data to core B. Communication can occur in the following fashion:

1. A portion of the shared memory space is allocated with both cores A and B knowing
the address.

2. Core A writes data to the shared memory space. This causes it to request exclusive
access to the cache lines if it does not already have it. This request invalidates any
copy of requested cache lines in other cores’ caches. After the write, core A’s cache
holds the shared cache lines in the modified state.

3. Core B attempts to read the shared data. Its local cache should have the shared cache
lines in the invalid state either because it was not resident in the local cache or was
invalidated when core A acquired exclusive access to the cache lines. Core B’s cache
issues a request for the shared memory addresses causing the modified cache lines from
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core A to be written back to memory4 and shared with core B. Cores A and B will
then have the shared cache lines in the shared state in each of their private caches.

3.2.2 Memory Consistency Models

The cache coherency protocol is not the only thing to consider when communicating
between cores. While cache coherency should prevent writes by different cores creating an
incoherent view of memory, it does not guarantee a global ordering of how different memory
actions are viewed across the entire CPU. The order in which different memory operations
appear to the system is referred to as the memory consistency model. As with many aspects
of CPUs, different consistency models exist, and different CPU ISAs make different decisions
on which one to adopt. x86 64 typically provides a relatively strong memory consistency
model [103], [104], [110]. It is not as strong as full sequential consistency, which specifies
that memory operations among different threads appear in order with some interleaving
between the different threads, but it is one of the stronger memory consistency models used
in modern CPUs [110]. The x86 64 memory consistency model is described as Total Store
Ordering (TSO) [103], [110], and preserves order among writes but does not guarantee when
the write will be perceived by other cores. Details of the x86 64 memory consistency model
are available in the Intel and AMD architecture manuals [103], [104]. TSO is also discussed
as a relaxation to sequential consistency in [16].

Cache coherency and the memory consistency models carry exceptionally high importance
for modern multi-core systems. Outside of interrupts, cache coherency is often the only
feasible way to communicate between cores. Due to the complexity of the memory and
coherence models and the divergent decisions taken by different CPU ISAs, it can be difficult
to create portable solutions that work across different ISAs. In this project, x86 64’s specific
memory consistency model was used to create lockless single producer/consumer FIFOs
between cores. This may not be possible on all ISAs, particularly ones using weaker memory
consistency models. This project uses the C11 atomic constructs to indicate to the compiler
the necessary relationship between different memory operations. For x86 64, the compiler is
able to avoid the use of locks and explicit fences, but this may not be true for other ISAs.
The implementation of the FIFOs will be discussed in section 7.1.

3.2.3 Inter-die Interconnect Effects and Non-Uniform Memory
Access (NUMA)

As the number of cores in modern CPUs have increased, the cache and interconnect
have become more complex to provide the desired I/O and memory subsystem performance.

4An extension of the MESI cache coherency protocol utilizes another state, Owned (O), to allow the
delayed writeback of the modified lines to memory. AMD’s x86 64 CPUs reportedly use MOESI cache
coherency protocols [104]. The statement in [109] that the AMD Zepplin CPU uses a 7 state MDOEFSI
protocol suggests that the hardware implementations may utilize additional states. In general, it should be
sufficient to view the AMD cache coherency protocol as MOESI from the programmer’s perspective.
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Multi-socket systems5, which have existed in the server market for some time, further com-
plicating interconnect requirements by allowing multiple CPUs to exist in the same, cache
coherent, domain. A common implementation of these multi-socket systems was to connect
DRAM to each CPU in the system. Access from a CPU to the memory directly connected
to it was typically fast while access to memory connected to another CPU in the system
imposed a significant performance penalty. Architectures that provide different performance
when accessing memory depending on the location of the requesting CPU and the requested
memory are referred to as providing Non-Uniform Memory Access (NUMA). The boundaries
of fast memory access for a given set of cores defines what is typically referred to as a NUMA
Domain. Once a relatively niche issue for HPC developers, NUMA considerations have be-
come more important with the introduction of new many-core CPUs. For more information
on NUMA, see [16].

AMD has been a major proponent of multi-die-in-package technology to provide many
core CPUs at reasonable costs [98]. This approach spreads the components of the CPU across
multiple silicon dies which are connected via advanced packaging or silicon interposers. In
general, any time a signal goes “off-die” or “off-package” it incurs a latency and power
efficiency penalty. The first generation Epyc (and Threadripper 2990WX) CPUs utilized
multiple dies which contained both cores and local memory controllers6, creating noticeable
NUMA effects [98]. The second generation Epyc and (Threadripper 3970X) take a different
approach by using two different die types [98]:

• Compute Dies (CCDs) which contain CPU cores and caches.

• A single I/O Die (IOD) which contains the memory controllers, I/O controllers, system
level controllers, and an interconnect.

A conceptual diagram of the die layout of the Ryzen Threadripper 3970X is shown in Fig-
ure 3.47. Requests not serviced by a local L3 are sent over the interconnect to the IOD8[98].
Because each CCD needs to access the IOD to access memory, the NUMA effects are reduced
although not eliminated. The server IOD design, depicted in Figure 3.5, does not maintain
constant latency between CCD connections and DDR controllers [98]. While [98] describes

5Multi-socket systems have more than one CPU residing on a single motherboard.
6Only two of the dies on the Ryzen Threadripper 2990WX have DDR memory controllers and are directly

connected to memory. The other cores must communicate with neighboring dies via the interconnect to access
memory [111].

7This diagram assumes the Ryzen Threadripper 3970X IOD is similar to the 2nd Generation “Rome”
Epyc IOD with the number of DRAM channels reduced from 8 to 4 and lack of multi-socket capabilities.
[98] notes that the chiplet design from the 2nd Generation Epyc was later used for 64 core HEDT products,
ie. Threadripper. Figure 23 also shows the 3rd Generation Threadripper using a similar die layout to the
2nd Generation “Rome” Epyc server products. This is partially corroborated by technology media coverage
of the launch of the Ryzen Threadripper 3970X[113] noting its use of the 2nd Generation Epyc server parts
along with accompanying slides showing similar die sizing and layout to 2nd Generation Epyc.

8Testing performed as part of this project did not show a significant performance advantage going between
L3s on the same CCD vs L3s on different CCDs.
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Figure 3.4: Ryzen Threadripper 3970X - Die Layout [98], [106], [112]

the server IOD, it is suspected that the consumer Threadripper 3970X’s IOD is similar
with a reduction of memory channels from eight to four and the removal or deactivation of
socket-to-socket interconnect points.
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Simplified Figure 13 from Pioneering Chiplet Technology and Design for the AMD EPYC and Ryzen 
Processor Families: Industrial Product by Naffziger et al., ISCA 2021
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Chapter 4

Modes of Parallelism: Radio Signal
Processing

Chapter 3 primarily focused on the design of modern CPUs and the different modes of
parallelism available. This is only half of the equation as these parallel resources are of little
use unless the workload can leverage them. As was noted in section 3.1, the different modes
of parallelism available on the CPU perform best when the program being run has specific
characteristics. In the context of this project, the program is the radio signal processing
design. Fortunately, radio designs typically present multiple forms of parallelism. While
there are ways to extract additional parallelism out of the design, the following are examples
of parallelism which come directly from the radio signal processing domain. More details
about introducing additional parallelism into the Cyclops baseband will be discussed in
chapter 8.

4.1 Parallel Operators

It is not uncommon for DSP designs to conduct multiple computations in parallel. This
can take several forms and includes separate computational paths in feed-forward segments
of the design. For example, a single value may be fanned out to two different computational
paths which have no dependency besides the common source value. It is also possible that
two different inputs have independent computations performed on them before their results
are ultimately used in a common operation. In the example shown in Figure 4.1, Op1 and
Op2 can execute in parallel after Op0 has finished executing since they are not dependent
on each other. Op3 cannot execute, however, until both Op1 and Op2 have completed.

In hardware, pipelining is one technique to introduce parallelism by breaking a long
chain of combinational logic into separate chains which can execute in parallel separated by
a pipeline register. In hardware, pipelining along the critical path allows the clock rate to
be increased which, combined with work being conducted in parallel in each pipeline stage,
results in improved throughput. Pipelining can have a similar effect in software by breaking
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Figure 4.1: Example of Parallel Combinational Paths

long operator dependency chains. In this context, it is referred to as software pipelining1

and introduces ILP across the two segments broken by the pipelining. Techniques such as
retiming can be used to shift delays in the design to try to produce pipeline stages with
roughly equal amounts of work. This general technique has an impact on both hardware
and software implementations. However, there are other constraints in software, particularly
surrounding core-core communication, which often have a greater need for the delays.

+ + + + + +

Original

+ + + + + +z-1

Pipelined

+ + + z-1

+ + +z-1

T1 T2 T3 T4 T5 T6

T1 T2 T3

Figure 4.2: Example Software Pipelining ILP Improvement (T = Operator Execution Time)

1For more information on software pipelining, see Appendix H of [16].
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4.2 Vectorizable Structures

4.2.1 FIR Filters

Several widely used DSP and communications constructs lend themselves to vectoriza-
tion which exploits the SIMD parallelism present on the CPU. FIR filters are perhaps the
prototypical example as they are composed of a tapped delay and a dot product. The dot
product, being a vector operation itself, is vectorizable in modern CPUs and can even take
advantage of specialized Fused Multiply Accumulate (FMA) units. There are complications
with the tapped delay, but these will be discussed in subsection 6.2.3.

x[4]

b4b3b2b1b0

·
x[4]b0+x[3]b1+x[2]b2

+x[1]b3+x[0]b4

x[0]x[1]x[2]x[3]x[4]Sample Input

Tapped Delay

Coefficients

Dot Product Result

Figure 4.3: FIR Filter Described with Dot Product

4.2.2 Forward Error Correction (FEC) Decoders

Despite our best efforts, radios typically experience some errors when decoding a packet.
Forward Error Correction (FEC) is a technique to reduce the number of errors by includ-
ing redundant information in the transmission. There are many different FEC techniques
including block codes and convolutional codes, each with its own set of advantages and dis-
advantages. To be most effective, FEC codes often create complex dependencies between a
series of transmitted bits, which tends to make efficient implementations challenging.

While FEC is one of the more challenging aspects of a typical radio system to implement
efficiently in software, these blocks too present opportunities for parallelization. In the
course of this project, the potential for parallelizing the decoding of convolutional codes
was investigated. Specifically, the Viterbi decoder (originally described by Viterbi in [114]
and later made more accessible in [115]) was investigated. This popular decoder provides
the maximum likelihood decoding of the received signal2, a property which was shown in
the often cited tutorial paper by G.D. Forney [117]. A brief introduction to convolutional
encoding and the Viterbi algorithm is given in section A.3.

2The Viterbi algorithm is only the maximum likelihood decoding scheme when the traceback includes the
entire message. For practical implementations, traceback is typically limited to several times the constraint
length. A rule of thumb mentioned in [116] is that a traceback length longer than five times the constraint
length usually results in negligible performance loss.
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Figure 4.4: Example Viterbi Decoder Trellis (1 Iteration) for k=1, Generators 0b111, 0b110

Due to its usefulness and popularity in earlier communications systems, the Viterbi de-
coder has been extensively researched. This research includes methods to accelerate decoding
through various techniques including re-framing the algorithm to be more friendly for imple-
mentation. As originally posed in its trellis form, optimizing the Viterbi algorithm appears
possible but unfriendly. While the data dependencies are static, there can be large strides be-
tween elements for which the dependency exists. Hamming distances for a given round either
need to be re-computed for paths or pre-computed but used with an irregular dereference
during computation.

Several different works including [117]–[119] note that the Viterbi trellis bears a lot of
similarities to the Fast Fourier Transform (FFT) structure, another extensively researched
algorithm. While the Viterbi algorithm cannot utilize partial results like the FFT can, its
trellis can be decomposed into regular structures. These structures are butterflies and perfect
shuffle networks as described in [119]. This particular decomposition provides multiple ben-
efits from a vectorization standpoint. First, the computation can be more easily vectorized
across the different butterflies in the network as they share the same structure and operand
placement. Second, the perfect shuffle network is an interleaver. This is important as vector
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Figure 4.5: Viterbi Butterfly Structures

ISA extensions tend to include instructions to support interleaving/de-interleaving3. The
net result is that, just by re-structuring the Viterbi trellis, the Viterbi decoder can be made
much more vector friendly. An example of the butterfly networks for k = 1 and k = 2 are
shown in Figure 4.54. Examples of decomposed Viterbi decoders with k = 1 and different
constraint lengths5 (K) are shown in Figure 4.6. Specifically, Figure 4.6a is the refactor-
ing of the Viterbi trellis shown in its traditional form in Figure 4.4. By changing how the
shuffle network is incorporated, it is also possible to produce interleaved butterflies. This
re-organization can potentially assist in vectorizing across the butterflies in the forward pass
of the Viterbi algorithm by organizing state such that vectors contain a given input to n
different butterflies. Operations on that single input can then be vectorized across the dif-
ferent butterflies natively without re-organization. An example of Figure 4.6a’s interleaved
structure is shown in Figure 4.7. One downside is that is requires additional operations to
compute node addresses in the traceback portion of the Viterbi algorithm.

A further optimization trick comes from exploiting a property in some common generator
polynomials used by convectional codes. As noted in [120], for rate 1/n codes, certain gen-
erator polynomials result in the edges going into a node in the trellis having complementary
coded bits. In a butterfly, all four edges experience this complementary symmetric property,
as shown in Figure 4.8. The net result when using this subset of generators is that only

3For example, The AVX and AVX2 x86 vector extensions provide a variety of instructions which perform
interleaving including VPUNPCKLBW and VPUNPCKHBW which interleave bytes from two vector registers [103].
There are additional interleaving vector instructions for different word widths.

4k is a parameter for convolutional codes and is the number of bits shifted into the convolutional encoder
at a time.

5The constraint length (K) is a parameter of convolutional codes and denotes the length of the shift
register.
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Figure 4.6: Viterbi Decomposed into Butterfly and Shuffle Networks (k=1)
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a single Hamming distance needs to be calculated per butterfly in the forward pass of the
Viterbi algorithm.

A

A

B

B

Figure 4.8: Viterbi Decoder Trellis (k=1) when Polynomial Symmetry Present

Additional implementation tricks include re-normalizing the accumulated path metrics
along the forward pass [119] to reduce the required size of the accumulator. The frequency
of this re-normalization depends on the characteristics of the given convolutional code.

To see what the C compiler could accomplish without vector intrinsics or inline assembly,
a version of a rate 1/2 Viterbi decoder was written in C [121]. This version was compared to
several implementations of the Viterbi algorithm including multiple derivatives [122], [123]
of a decoder originally authored by Phil Karn (KA9Q) [124]. Much of the work in the
KA9Q derivatives appears to be geared towards supporting modern x86 64 CPUs. This
may have caused some performance degradation as the achieved performance is lower than
what was observed in the benchmarking results presented in [125]. Some of this performance
degradation could also be due to differences between the CPU platform used in [125] and
the 2.0 GHz CPU platform used in the tests presented in Table 4.1

This project’s implementation, before restructuring or optimization, produced a result
that was close to one of the KA9Q forks but was slower than others including the Spiral
portable version. Notably, none of the KA9Q derivatives nor the Spiral portable version were
able to achieve double digit Mbps processing rates on this platform. After re-organizing the
algorithm to use butterflies and the perfect shuffle networks and introducing polynomial
symmetry and re-normalization optimizations, this project’s C implementation was able
to achieve a processing rate of ≈39 Mbps. This is a notable improvement over the other
portable C implementations tested and showcases what the C compiler is capable of when
presented with a carefully considered implementation. The C compiler was able to properly
vectorize butterflies and interleave. There is still room for improvement, however, as it is still
slower than the specialized Spiral implementation which was able to achieve a 66.2539 Mbps
processing rate on the same platform. One notable difference is that the specialized Spiral
implementation makes extensive use of x86 64 SSE vector intrinsics and therefore would need
to be updated to support other vector extensions. Particularly relevant to this discussion
is that additional vector extensions for x86 64 have been introduced and widely adopted
since this generator was written. While modern processors can still execute SSE (128-bit
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wide vector) instructions, they now generally support AVX/AVX2 which uses 256-bit wide
vectors. Some high-end Intel processors even support AVX-512 which extends vector lengths
to 512-bits.

There is potential for both the performance of this work as well as the Spiral implemen-
tation to improve with some modifications. Traceback is one component of this project’s
implementation which could use further investigation. In particular, reversing the bit endi-
anness of state IDs could potentially avoid a bit reversal operation in the traceback step. The
Spiral implementation could potentially be improved by utilizing AVX/AVX2 instructions
which support double the vector width of SSE. For recent research on software implementa-
tions of FEC decoding that was recently brought to the author’s attention, see [70].

4.2.3 Common Operations Across Instances

The previous sections have focused on vectorization opportunities within single blocks in
a baseband. An alternative approach is to vectorize across instances of a given operation
if multiple instances exist. This can occur at both fine and coarse levels of granularity.
For example, one technique to accelerate FEC would be to interleave different convolutional
codes and to feed the lower rate de-interleaved results to convolutional coders operating
in parallel. Common operations across the different FEC decoders could potentially be
vectorized. Similarly, in OFDM type radios, common operations that occur post FFT, such
as equalization, can potentially be vectored across sub-carriers.

The concept can extend to an even coarser domain when multiple radio baseband in-
stances are running simultaneously on the same platform. This could occur for several
reasons, including in cellular deployments with multiple tower sectors being processed on a
common system or radios on separate frequency bands being processed in the same system.
Assuming that the instances of the basebands are identical apart from the input stream,
some common operations across the different instances of the baseband could be combined
and vectorized. This would most likely work best with the simpler datapath portions of
the baseband rather than the control portions or conditionally executed portions as control
decisions present an obstacle to effective vectorization. While vectorizing across multiple
basebands is a valid approach, this project has primarily focused on vectorizing within single
instances of the baseband. Techniques, such as sub-blocking, are used to facilitate additional
vectorization within a single instance of a design.

4.3 Opportunities for Increased Independence with

Protocol Co-design

As alluded to above, decisions made in the specification of the radio PHY and MAC
can affect the amount of parallelism that is easily extracted. Blocks such as FEC, which
have been historically challenging to implement in software, could be accelerated by creating
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Library Benchmark Speed (Mbps) Benchmark
Name

Benchmark
Config

gcc 7.5 gcc 10.2.0 Vendor
Compiler

ka9q-fec (KA9Q Fork)
[122]

5.74127 5.86174 6.29758 vtest27
(from
automake)

10000
2048-bit
frames

libfec (KA9Q Fork)
[123]

2.43474 2.43815 2.31306 vtest27
(from
cmake)

10000
2048-bit
frames

libfec (KA9Q Fork)
[123] - Modified
Cmake to turn on
optimization (Ofast)

5.7601 5.75628 6.30708 vtest27
(from
cmake)

10000
2048-bit
frames

This Work (before
butterfly / shuffle
network restructure)

≈2.5 ≈2.8 speedDecode 2048-bit
frames

Spiral Portable C
[125] (makefile with
Ofast, validation
change for clang)

7.46892 7.26308 8.30595 viterbi 10000
2054-bit
frames

Spiral SSE2 16 Way
- Intrinsics [125]
(makefile with Ofast,
validation change for
clang)

61.1791 63.086 66.2539 viterbi 10000
2054-bit
frames

This Work
(non-interleaved
butterfly, polynomial
symmetry, and
re-normalization, no
intrinsics)

≈31 ≈39 speedDecode 2048-bit
frames

Table 4.1: Rate 1/2, K=7 (Voyager) Viterbi Implementation Performance On 2 GHz CPU
Supporting 256-Bit Wide Vectors (AVX2)
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multiple independent or lightly dependent FEC blocks which operate in parallel. This would
require a change to the PHY spec to support interleaved FEC.

Another challenge with any software radio system is expanding the processing rate of
a single instance to support very wide bandwidths. For example, 802.11ad channels are
wider than 2GHz [85], [86]. To accomplish real-time processing on a modern 2 GHz server,
more than one complex sample would need to finish processing every CPU cycle on average.
Vectorization, superscalar execution, and multiple cores appear to make this theoretically
possible. However, difficult to vectorize constructs such as finite state machines (FSMs) as
well as instruction latencies within the CPU combined with communication challenges within
the memory subsystem make achieving these bandwidths with a single instance impractical,
if not impossible. Even with an OFDM based system where parallelization across subcarriers
is feasible, some operations exist pre-FFT and would need to run at the data converter rates.
The FFT and IFFT would also need to be exceptionally high performance, consuming and
producing samples at the required fast rate. One method to mitigate this would be to use
a channelized approach where the wide bandwidth was split into multiple smaller channels.
Each of these channels could be handled independently by a different instance of the baseband
with data interleaved across the different channels.

Splitting a larger frequency band into smaller isolated sub-bands is not a foreign concept
to communications systems. Notably, the Filtered Multitone (FMT) multi-carrier modula-
tion technique was proposed for Very High-Speed Digital Subscriber Lines (VDSL) [126].
This technique uses a channelizer to produce spectrally separate channels over which sep-
arate information can be sent. A conceptual view of the spectrum is shown in Figure 4.9.
One consideration for any multi-channel system is the degree of separation between adja-
cent channels. The wider the guard bands between channels, the less spectrally efficient the
overall system. However, the narrower the guard bands, the more crosstalk exists between
channels6, distorting the signals in each band. It is important to note that, even though
FMT style channelization introduces spectral inefficiency due to the use of guards between
subcarriers, alternative methods which use “cyclic extensions” also introduce inefficiency
[126]. Although OFDM leverages orthogonality between subcarriers, its use of the cyclic
prefix introduces an inefficiency as a subset of samples is repeated.

This approach was explored in an earlier stage of this project and was demonstrated
at the Berkeley Wireless Research Center (BWRC) Spring 2020 Research Retreat. In this
demonstration, four different instances of the baseband were used. The Tx side used a
single compute core for each channel while the Rx side used multiple cores per channel.
Channel combining at the transmit side and splitting of the channels at the receive side were
performed by polyphase channelizers. The channelizers performed the filtering operations as
well as the mixing operations to relocate channels between their selected carrier frequencies

6While crosstalk can theoretically be mitigated in systems with overlapping channels so long as the
channelizer design fulfills the perfect reconstruction criteria, the orthogonality between channels is effectively
lost in real world communication channels [126]. As noted in [126], the solution in the Discrete Multitone
(DMT) multi-carrier modulation schemes with significant overlap between subchannels is to use a cyclic
extension. This is a very similar mechanism to the cyclic prefix used in OFDM based systems.
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Ch0 Ch1 Ch2 Ch3

Figure 4.9: Example of Multi-Channel Operation in the Frequency Domain

and DC (baseband). In this demo, the channelizers were implemented in software with a
single compute core allocated for each. Payload data was interleaved across the different
channels on the Tx side and reassembled at the Rx side to provide a faster aggregate data
rate than what was possible in a single channel. A diagram of the demonstration along with
rate information is shown in Figure 4.10. Due to guard bands between channels, the rates
between the RF frontends and channelizers was greater than 1.
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Data Re-Assembler
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Rate >=1
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Figure 4.10: 4 Channel Demo (Color = Allocated CPU Core)

While the Spring 2020 Research Retreat demo was running at a much slower rate (≈ 4
Msps) than what can currently be achieved, the general principle can be adapted to base-
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bands operating on wider channels. One consideration when scaling to wider aggregate
bandwidths is that the channelizer needs to be able to operate at the rate of the full band-
width signal. This potentially makes the channelizer the bottleneck in the system. There are
several optimization techniques which can be applied to the channelizer including polyphase
techniques like those discussed in [127]. If the aggregate bandwidth is wide enough that
software implementations become impractical, relocating the channelizer into the RF fron-
tend is a compelling alternative. While relocating any signal processing into an FPGA or
ASIC connected to the data converters gives up some flexibility, channelizers are an ideal
candidate as they are mostly agnostic to the underlying PHY standard used on each channel.
This means that a single RF frontend with integrated channelizer could be used by many
different radio standards, increasing its market appeal. By providing channelization in the
RF frontend and allowing channelization in the PHY standard, software radio processing
could be made practical at aggregate bandwidths previously requiring specialized hardware
implementations.

4.4 Exploiting Frame Independence

So far, this chapter has discussed parallelization opportunities within a single instance of
a radio and parallelization across multiple instances of a radio operating simultaneously on
independent data-streams. Another opportunity exists if consecutively transmitted frames
in a communication system are independent relative to each other. In this case, one could
conceivably buffer up received frames and process each one independently with a different
instance of the radio baseband. Assuming frame boundary detection occurs efficiently, this
presents perhaps the simplest method to parallelize signal processing on a multi-core system.
The developer would only need to translate the radio signal processing design into a single-
threaded application running on a single core. Data for different frames would then be
buffered and routed to different cores in the system, each running a single instance of the
radio baseband. If there are n cores available on the system, n frames could be processed
simultaneously.

This is in contrast to another approach where a single baseband design is partitioned
to run across multiple cores of a CPU. Each core participating in the baseband processing
would be responsible for a certain subset of operations in the design. The cores could operate
simultaneously in a pipeline-like fashion. The difference between these two approaches is
shown on a hypothetical radio system depicted in Figure 4.11 with the independent frame
processing depicted in Figure 4.12 and the partitioned pipeline-like operation depicted in
Figure 4.13. Note that both implementations use the same number of cores.

4.4.1 Comparing Processing Approaches

A reasonable question when posed with the two different processing options presented
above is if there is a significant benefit from choosing one over the other. To tackle this
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Figure 4.11: Example Radio Design

question, let us analyze the throughput, latency, and time to decode a given frame with
these two schemes under the following assumptions:

• 20 Cores Operating at 2 GHz with 1 Op/Cycle.

• 1000 Operations Required / Sample.

• 60000 Samples / Frame.

Independent Frame Processing

With each frame processed independently (one frame per core), the time it takes to
process a single frame is:

(1000 operations/sample)(60000 samples/frame)

2 GOps/Second
= 30 ms (4.1)

Because there are 20 cores operating independently, the throughput of the system is:

20 frames

30 ms
= 666.7 FPS (4.2)

If performed as a batch, 20 frames finish decoding every 30 ms. If the processing is
staggered, a new frame finishes decoding every 1.5 ms. However, the time for each frame to
be decoded (from the time it first appears) is still 30 ms.

Pipelined Frame Processing

Let us take the case where a single radio baseband is distributed across the 20 cores. We
will assume, for now, that the splitting is ideal with each core performing 50 operations/sam-
ple and there is no overhead in communication between cores. Let us also assume that each
core operates on a block of 100 samples at a time, breaking the frame into 600 blocks. Each
core processes a block in:

(50 operations/sample)(100 samples/block)

2 Gops/Second
= 2.5 µs/block (4.3)
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Figure 4.12: Example Radio Design with Independent Frame Processing
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Figure 4.13: Partitioned Example Radio Design (Pipeline-Like Operation)
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Let us assume that the frame processing occurs in a pipeline involving all cores. The
time required to finish processing one frame is:

(600 blocks)(2.5 µs/block) + 19 ∗ (2.5 µs/block) = 1.548 ms (4.4)

The 19 term comes from priming the pipeline. After that, a new block finishes processing
every 2.5 µs. Because there are 600 blocks in the frame, the frame finishes decoding after
600, 2.5 µs, periods. Note that this is the worst-case scenario for frame latency. If there is a
fork in the design where two cores operate in parallel on the same block of data, this number
decreases.

With each core simultaneously working on an independent block, and the potential for
the end of one frame and the start of the next one to be present in the pipeline at the same
time, the throughput of this system is:

1

(2.5 µs/block) ∗ (600 blocks/frame)
= 666.7 FPS (4.5)

Deciding on a Processing Methodology

A key takeaway is that both methods provide the same throughput but the version with
independent frame processing on each core requires significantly more time to decode a
given frame even though the pipelined approach technically has higher latency (time from
data being available to process to the first partial result appearing). In most networking
contexts, the time to completely decode the content of the frame is most important because
the decision on whether to forward up to the next layer in the networking stack is based, in
many circumstances, on whether the frame (or upper layer) checksums are correct. Checksum
validation for most frame formats cannot be completed until the entire packet has been
decoded. Because of that, the complete packet decode time can effectively become latency
to an upper layer of the protocol stack. For some protocols, like TCP7, increased latency can
cause performance degradation. The challenge with running a single baseband across the
whole system is obtaining as close to optimal partitioning as possible while limiting overhead.
Load imbalance introduces inefficiency which slows down the entire signal processing chain,
as does any overhead involved with communicating between cores. The ideal approach is
likely a combination of partitioning basebands to run across multiple cores as well as using
multiple instances of the baseband. Those multiple instances could either process different
spectral channels of data using a filter bank approach or process separate frames.

7TCP’s congestion control mechanism relies on acknowledgments to properly set the congestion window
which controls the number of packets that can be in flight at once [128]. The acknowledgment cannot be
created until the entire packet has been decoded, as it must be checked for correctness. As noted in [129],
TCP starts conservatively and, especially for short flows, may never reach the maximum rate. The flow
completion times have a noticeable contribution from the round-trip time which is impacted by the time to
generate an acknowledgment.
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Chapter 5

Introduction to Laminar: Optimizing
DSP Compiler

It is clear from the past several chapters that there is a variety of parallelism available
within radio designs and CPUs. However, exploiting these different modes of parallelism can
be challenging for the designer, often requiring the design to be modified or re-organized to
expose the parallelism in a way that the CPU can exploit. The Laminar Optimizing DSP
Compiler [130] was written as a part of this project to provide a framework to experiment
with different optimization techniques and to improve designer productivity by automating
as much of the process as possible.

Laminar was written as a source-to-source compiler which takes the dataflow description
of a radio design and produces C code which can then be passed to an existing C compiler such
as clang/LLVM or a vendor provided optimizing compiler such as aocc (AMD Optimizing
C/C++ Compiler) or icc (Intel C/C++ Compiler). The Laminar compiler was written in
modules to support potential future expansion. The main components are:

• simulink_to_graphml: A set of scripts written Matlab m-code which walk a Simulink
model graph and export it to GraphML [131] (an XML based graph interchange for-
mat). The export scripts export evaluated parameters for specific blocks as well as
datatype information for arcs. If Stateflow FSMs are presents, they are synthesized to
C using Simulink Coder and are inserted into the graph as black boxes. For multi-core
implementations, the Simulink design should be annotated by the designer to identify
the partitions different nodes reside in.

• simulinkGraphMLImporter: A C++ application which imports the GraphML file ex-
ported by simulink_to_graphml and converts it to Laminar’s intermediate represen-
tation which is then written to a Laminar dialect GraphML file. This program also
strips out unused information from the Simulink export file. This executable effec-
tively constitutes the front-end of the Laminar compiler. Adding additional language
support to Laminar would involve creating a similar program which would ingest the
input language and produce a dataflow graph in the Laminar dialect of GraphML.
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• multiThreadedGenerator: A C++ application which takes in a Laminar GraphML file
and generates a multi-threaded C project including associated headers, I/O adapters,
and Makefiles. This is the main Laminar application which contains the optimization
passes, analysis passes, and C emitter.

Laminar uses the GraphML [131] graph interchange format as its method of graph seri-
alization. GraphML was chosen because of its support for node and arc properties, support
of nested graphs, support by other graph processing libraries such as NetworkX [132], sup-
port by visualization tools such as yEd [133], and its use of XML as its base. Because it
is XML based, GraphML can be imported using a standard XML parser such as Xerces-
C [134]. A general depiction of the Laminar flow from Simulink to C with the different
scripts/applications and intermediate files is shown in Figure 5.1.
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(in Matlab)

Laminar 
Simulink 
Importer

Laminar 
Compiler

Simulink Design (slx)
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Simulink Design (slx)
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Multithreaded C Implementation

.c/.h

Multithreaded C Implementation
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Figure 5.1: Laminar Components

From this point forward, references to Laminar will generally be referring to the primary
multiThreadedGenerator application. The details and rationale behind using dataflow as
the input and intermediate representation of the design will be discussed in section 5.1. The
operating principles and assumptions made by laminar will be discussed in section 5.2. The
general process performed by Laminar to produce C code from a given design, including
some of the basic optimization passes, will be described in section 5.3

5.1 Design Representation: Dataflow Graphs

Laminar’s input comes in the form of dataflow graphs. In a dataflow graph description of
a design, operators are written as nodes and data flowing between operators is represented by
directional arcs. The existence of an arc from a node A to a node B indicates a dependency
of node B on the result of node A. The inputs into and the outputs from the system are typ-
ically represented by source and sink nodes, although they are sometimes implicit. Laminar
represents all the inputs coming into the system as coming from one super input node and
all outputs from the system going to a single super output node. There are also single super
nodes representing unconnected operators, terminated (unused) results, and results to be
visualized1. The dataflow graphs used in Laminar are streaming where a continuous flow of

1Visualization sinks are currently unsupported by the Laminar flow but could be implemented in the
future.
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operators exists at the input source node with a continuous stream of results at the output
sink node. A graphical depiction of a Laminar dataflow graph is shown in Figure 5.2.
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Inputs
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Outputs
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Figure 5.2: Laminar Dataflow Graph Description

Streaming dataflow graphs are a natural description for DSP with most graphical de-
scriptions of DSP algorithms being expressed in a dataflow form. In these graphs, the unit
of data being transferred through the graph, from operator to operator, is generally samples.
New samples are typically introduced at a fixed rate with the period between samples being
referred to as a cycle time of the system. If the sample is coming directly from an ADC, the
data converter rate sets the cycle time. In Laminar, the number of samples ingested by each
block and results outputted are statically known, causing its descriptions to be classified as
synchronous dataflow as described in [11]. In Laminar, standard nodes ingest single samples
at their inputs and return single samples at their outputs in a cycle. Special rate transition
nodes are exceptions to this rule and can accept/produce different numbers of samples.

One important property of DSP dataflow graphs is the existence of delay nodes, labeled
as z−n with n being the delay expressed in samples. These blocks represent state in the
dataflow graph, as they save the past n samples to be returned later. By returning an input
from a previous cycle, these delays can break the dependency chain of the signals passing
through them. This dependency breaking property allows operators before and after the
delays, in the absence of other dependencies, to operate in parallel. This also allows loops to
be present in the design, so long as each loop contains at least one delay. Without a delay,
there becomes a circular dependency within a single clock cycle which may not be resolvable.

The DSP description of a dataflow graphs can be easily mapped into an abstraction
used in general digital hardware design called Register Transfer Level (RTL). RTL describes
a digital hardware design as sets of combinational logic between registers2 [135]. Delays
in DSP designs map to registers or memories in RTL with stateless operators mapping to
combinational logic. The cycle of new samples being introduced and propagated through
delay nodes in the DSP algorithm translates to clock cycles driving the registers in the
design. As in DSP design, loops may exist in RTL if they contain at least one register or
state element to break the dependency chain. Without a state element, the loop is referred to

2For more information on Hardware Description Languages (HDLs), RTL, and digital design, see texts
like [95].
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as a combinational loop and is typically not accepted as a valid digital hardware description
[136]. While such a combinational loop could be physically built, its behavior is ill-defined
under digital design abstractions and would require more detailed analysis such as analog
analysis.

There are several different options for representing dataflow graphs, including both graph-
ical and textual. One example is MathWorks Simulink [41] which provides a graphical in-
terface to describe systems and models including DSP designs. It is capable of simulating
the design and provides tools to analyze the design and to produce standalone hardware or
software descriptions of the design under certain constraints. MathWorks also provides a set
of add-on toolboxes for DSP [42] and communications [43] which aid in design and verifi-
cation. Cyclops was originally described in Simulink because of its dataflow representation,
the generally accepted golden reference blocks and functions available in the MathWorks
DSP and communications toolboxes, and the availability of Simulink HDL Coder [137] to
translate the design into an HDL description for hardware. While a Simulink to C/C++ tool
(Simulink Coder) exists [45], it did not, to the author’s knowledge, support multi-threaded
targets at the time this project began3.

While graphical tools like Simulink or LabView may first come to mind when considering
dataflow descriptions of DSP algorithms, it is possible to express them textually. Thanks
to the close relationship between RTL and DSP dataflow, designs can typically be naturally
represented in text using Hardware Description Languages (HDLs). HDLs, such as Verilog
and VHDL, provide textual ways to express hardware designs either structurally by describ-
ing the connection between modules or behaviorally by describing operations that occur on
a set of inputs. Legal HDL descriptions which do not use unsynthesizable simulation con-
structs4, can be synthesized into structural RTL descriptions. An example of such a mapping
from behavioral Verilog (shown in Listing 5.1) to an RTL description via the open source
Yosys synthesis tool [138] is shown in Figure 5.3. Note that the two sum operators in this
example can execute in parallel because a register (shown as $dff for D Flip-Flop) separates
them and there are no other dependencies between these operators. Also note that the in-
tegrator contains a register in the feedback path, making the loop legal. To illustrate the
close relationship of DSP dataflow graphs to RTL descriptions, the same design expressed in
MathWorks Simulink is shown in Figure 5.4. In the Simulink description, the clock signal is
implicit at the delay nodes. All registers operate in the same clock domain unless separated
by clock domain crossing nodes5.

3Simulink Coder has begun supporting threaded targets and SIMD support. For more information, see
section 1.3.

4Some HDL languages, such as Verilog have their origin as documentation and simulation languages [95]
and support operations that make sense in simulation but cannot be converted to hardware. As such, not
every Verilog design can be converted into an actual structural hardware description.

5Simulink supports several different simulation modes including ones with continuous step sizes. For
DSP designs such as Cyclops, the solver is set to use discrete step sizes. While some blocks allow inputs and
outputs of conflicting rates, Laminar does not support this and requires clock domains be clearly delineated
with explicit rate transition blocks with clearly defined semantics.
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1 module integrator_with_offset_out_pipeline(input [15:0] in ,

2 input [15:0] offset ,

3 input clk ,

4 input rst ,

5 output reg [15:0] out);

6 reg [15:0] sum_next;

7 reg [15:0] sum;

8 reg [15:0] sum_offset;

9

10 always @(*) begin

11 if(rst) begin

12 sum_next = 16’d0;

13 end else begin

14 sum_next = sum + in;

15 end

16

17 sum_offset = sum + offset;

18 end

19

20 always @(posedge clk) begin

21 sum <= sum_next;

22 out <= sum_offset;

23 end

24 endmodule

Listing 5.1: Example Verilog Integrator with Offset and Output Pipeline

integrator_with_offset_out_pipeline

clk

CLK

D
$8
$dff Q

CLK

D
$9
$dff Q

in

A

B
$2

$add Y

offset

A

B
$3

$add Y

out

rst

A

B

S

$6
$mux Y

sum

sum_next

sum_offset

16'0000000000000000

Figure 5.3: Yosys Synthesis of Example Verilog Design
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Figure 5.4: Simulink Representation of Example Verilog Design

As demonstrated above, dataflow graphs have the very desirable property that depen-
dencies between operators are explicit and unambiguous in the graph. Prerequisites can be
determined by simply tracing back along the arcs going into a particular node. Operator-
level parallelism is also explicitly expressed with operators that do not have a dependency
chain between them being able to execute in parallel. It was because of the power of the
representation as well as the tendency of DSP algorithms to be described diagrammatically
as dataflow that streaming, synchronous, dataflow graphs were selected as the input and
intermediate representation for Laminar. Simulink was selected as the frontend represen-
tation due to the simulation and analysis tools provided for design as well as the fact that
Cyclops was originally described and simulated in Simulink. Other dataflow graph repre-
sentations, such as synthesized HDL could potentially be adopted as input formats (under
specific clocking constraints).

5.2 Operating Model

As discussed above, Laminar operates on dataflow graph descriptions of a DSP design.
One of the major features of Laminar is to produce a multi-core implementation of the design



CHAPTER 5. INTRODUCTION TO LAMINAR: OPTIMIZING DSP COMPILER 68

using the partitioned approach mentioned in section 4.4. While automated partitioning
would be best from a designer productivity standpoint, it is a complex problem balancing
multiple concerns including load balancing across threads as well as accounting for potentially
heterogeneous communication overheads from modern hierarchical cache designs present in
many CPUs. For now, Laminar requires that the partitioning be specifically annotated by
the designer in the input graph. This is accomplished by placing a specially named Constant
node within a subsystem in Simulink. The inclusion of this annotation node indicates to
Laminar that all operators/nodes contained within the subsystem are to be contained within
the given partition. In the case that a node is nested within multiple subsystems with
conflicting subsystem annotations, the most specific annotation (the lowest in the hierarchy)
takes precedent. The name of the annotated node can be either LAMINAR_PARTITION or
VITIS_PARTITION with vitis being the original name of the Laminar compiler and unrelated
to the Xilinx tool of the same name.

Figure 5.5: Laminar Partition Annotation

Currently, Laminar maps partitions one-to-one onto individual POSIX threads (pthreads).
These threads are then typically mapped to a specific logical core on the system by setting
the pthread affinity mask for each thread, limiting the core eligibility of each thread to a sin-
gle core. Each of these threads shares the same virtual address space and can communicate
via shared memory. On modern Linux platforms, pthreads are implemented as light-weight
processes (LWP) and are scheduled by the operating system [139], [140]. To prevent other
processes from being scheduled on the same CPU cores, the isolcpus kernel option is used
to isolate all but one core from standard OS scheduling. For a user process to run on an
isolated core, the process/thread affinity must be explicitly set. For more information on the
isolcpus option, see [141], [142].

Any time there is an arc passing from one partition to another, information must be trans-
ferred between threads. This is accomplished by the automatic insertion of single producer,
single consumer, FIFOs at each arc cut by a partition boundary. Code is automatically
added to the source thread to write information to be sent into the FIFO. Similarly, code is
automatically added to the destination thread to read data from the FIFO. Because there
is a cost to access the FIFO due to the underlying cache coherency system, information is
typically sent in blocks of multiple samples to amortize the fixed cost associated with FIFO
access. The blocking size is configurable via the Laminar Command Line Interface (CLI).

Each partition is written into its own .c and associated .h files. Each file contains a
compute function which contains the operators in the DSP design, a thread function which
conforms to the pthread standard (accepting a void pointer argument and returning a void
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pointer) and manages interactions with FIFOs as well as calling the compute function, and
a reset function to clear the state within the partition. Each thread function is composed of
an outer loop which generally6 performs the following actions:

1. (Optional) Check telemetry timer and write telemetry to file. Typical telemetry re-
porting period is 1 second.

2. Wait for input FIFOs to be ready (have date to read). Poll input FIFOs until all are
ready.

3. Copy a block from each input FIFO into local buffers. Update the state of the input
FIFOs to indicate the read (dequeue) has occurred.

4. Execute the partition compute function

a) Iterate over samples in the block, executing the operations in the DSP design for
each sample. Results are written into buffers passed to the function through the
function call in the outer thread loop.

5. Wait for output FIFOs to be ready (have room to write data). Poll output FIFOs until
all are ready.

6. Write a block of results into output FIFOs. Update the state of the output FIFOs to
indicate the write (enqueue) has occurred.

Note that no global schedule is created for the execution of the compute functions by the
different threads. Each thread makes its own decision about when to execute based on the
availability of input data and space for results. This makes the Laminar execution model
self-timed in the Lee taxonomy described in [13].

The compute function is composed of the various operators in the partition emitted
in such an order that no operator runs before the values it is dependent on are available.
Operators are emitted in a style similar to static single assignment (SSA), which is an
intermediate representation used by several C compilers7. Temporary variables are created
for most operators which are assigned once. One exception is variables that are set as the
result of conditional logic, such as a multiplexer. In this case, the variable can be assigned
in multiple locations. Arrays containing the samples to process are passed to the compute
function by the thread function along with array pointers for results to be written into. State
for the partition is stored in a persistent structure which is passed by pointer to the compute
function.

6Experimentation with different execution modes including double buffered FIFOs and operating on
FIFO data in-place (without an intermediate copy) were tried and are still available in the Laminar CLI
options. This represents the operations conducted by each thread in the standard, default, mode of operation.

7The LLVM assembly language is based on SSA [143]. GCC also makes internal use of SSA when
optimizing code [144]. See [145] for information on static single assignment and its representation.
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while(true){
 if(input avail & space
      for output)
 {
 type_T in =
     Input[0].dequeue();
 type_T tmp1 = in * c2;
 type_T tmp2 = in * c3;
 Output[0].push(tmp1);
 Output[1].push(tmp2);
 }
}

Thread 2 (Core 2)

while(true){
 if(input avail & space
      for output)
 {
 type_T in =
     Input[0].dequeue();
 type_T tmp1 = in * c2;
 type_T tmp2 = in * c3;
 Output[0].push(tmp1);
 Output[1].push(tmp2);
 }
}

Thread 2 (Core 2)

type_T D1 = z_init_val;
while(true){
 if(input avail & space
      for output)
 {
 type_T in =
     Input[0].dequeue();
 type_T tmp = in + D1;
 D1 = tmp * c;
 Output[0].push(tmp);
 }
}

Thread 1 (Core 1)

type_T D1 = z_init_val;
while(true){
 if(input avail & space
      for output)
 {
 type_T in =
     Input[0].dequeue();
 type_T tmp = in + D1;
 D1 = tmp * c;
 Output[0].push(tmp);
 }
}

Thread 1 (Core 1)

z-1

Figure 5.6: Laminar Multi-Thread Generation Flow (Pseudo-code Result)

In addition to the partitions, Laminar also generates I/O adapter threads which provide
different ways to interface with the DSP design. The adapters provide the shim between a
given inter-process communication construct and the inter-partition FIFOs present within
the Laminar generated DSP design. From the perspective of the Laminar partition threads,
I/O appears like any other inter-partition FIFO. Current supported adapters include:

• POSIX Pipes: Support exchanging data via named POSIX pipes.

• Shared Memory: Supports exchanging data via OS allocated shared memory which is
mmap-ed into the memory space of the communicating applications. The semantics of
this interface were defined to be similar to the POSIX pipes interface and are defined
in BerkeleySharedMemoryFIFO [146]. This is currently the highest performance I/O
adapter.

• BSD Network Socket: Supports exchanging data via network sockets. This allows
stimulus to be provided and results analyzed by a different system. This is particularly
useful for checking a generated design against the original Simulink via the creation of
a custom block in Simulink which opens a socket connection to the generated design.
An example of this is shown in [147].

• Constant: Passes constant values to the design. Used to test basic functionality of the
compiled system.

Like the FIFOs in the Laminar generated partitioned design, the I/O threads transact
with outside applications in blocks. The block size is not necessarily the same as the block
size used within the application with re-buffering occurring in the I/O thread.
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5.3 Dataflow Graph to C Translation

Laminar, like many modern compilers, is constructed around the idea of passes over the
design which modify it in some way. Some of these passes are essential for the design to
be properly converted to C while optimization passes modify the design with a focus on
produce better quality of results (QoR). It should be noted that, while the optimization
passes are important, they do not constitute all optimization techniques taken by Laminar.
Other mechanisms include vector/matrix support, specialized implementations of some DSP
constructs, and different FIFO implementations. The options used in essential compiler
passes can also have a strong impact on achieved performance and therefore cannot be
neglected.

The general steps that Laminar takes to convert a design to C are8:

1. Radio Design with Annotation: The designer annotates the design with partition and
sub-blocking information.

2. Import Design: The dataflow graph is imported into an in-memory representation
within Laminar on which design passes can be performed.

3. Design Pruning (Optimization Pass): The design is pruned of unused operators and
arcs.

4. Clock Domain Handling: Clock Domains are discovered and configured.

5. Enabled Subsystem Context Expansion (Optimization Pass): Expands conditional ex-
ecution blocks to include additional combinational logic, when possible.

6. Discover and Mark Contexts (Partial Optimization Pass): Discovers and marks contex-
tually executed segments of the design including enabled subsystems and multiplexers.
Multiplexer context discovery can be viewed as an optimization pass as it seeks to
include as much combinational logic as possible in the different mutually exclusive
execution blocks.

7. Blocking and Sub-Blocking (Optimization Pass): Creates a global blocking domain
to facilitate partitions operating on blocks of samples transacted by FIFOs instead
of single samples. Creates sub-blocking domains and specialized implementations of
some operators so that they can operate on sub-blocks of samples, rather than a single
sample at a time inside the loop created by the global blocking domain.

8. Context Encapsulation: Wrapping operators in the discovered execution contexts, such
as enabled subsystems, multiplexers, clock domains, and blocking domains. This wrap-
ping helps the emitter when the design is ultimately written to C files.

8For an in-depth look at all the steps taken by Laminar see src/docs/generator.md [130]
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9. Create Context Update Nodes: Inserts nodes which represent updates for values af-
fected by conditional execution, such as the output of a multiplexer.

10. Discover Partition Crossings and Insert Partition/Thread Crossing FIFOs

11. FIFO Delay Ingestion: Pull delays at the boundaries of thread crossing FIFOs into the
FIFOs as initial conditions. Note that these delays need to exist outside of contextual
execution domains (with a few exceptions).

12. FIFO Merging (Optimization Pass): FIFOs between the same pair of partitions and
to/from the same contexts are merged to help amortize FIFO costs.

13. Report FIFO Communication

14. Check for Inter-Partition Deadlock Conditions

15. Create State Update Nodes: State updates can occur any time after the downstream
operators have been executed. Instead of forcing all state to update at the end of
a compute cycle, similar to how clock edges update all state in a hardware design,
state update nodes perform the state update operation and can be scheduled like other
operators.

16. Intra-Partition Operator Scheduling: Operators within partitions are scheduled such
that each operator will only be emitted after operators it is dependent on.

17. Report Partition Workload

18. Emit C: This includes emitting the C files for each partition including the thread,
compute, and reset functions. The operators are emitted in their scheduled order
within the compute function.

19. Emit I/O Adapters

Many of the core functions will be discussed in more depth in the following subsections.
Optimization passes will be primarily covered in chapter 6.

5.3.1 State Update Nodes and Scheduling

One interesting feature of implementing a streaming DSP design in software is that there
is more flexibility in how state updates can be handled compared to typical synchronous
digital logic. In a synchronous digital system, state is predominately updated on clock
edges. For registers in the same clock domain, this update occurs at approximately the same
time, subject to clock jitter and clock skew. For DSP designs implemented as synchronous
digital hardware, this means all delays within the same clock domain update at the same
time. The combinational logic implementing the operators DSP design operates between the
clock edges with their result required to be stable before the next clock edge. The maximum
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clock rate is set by the path in the design that takes the longest to produce its result, called
the critical path9.

Software implementations of DSP algorithms differ from the synchronous hardware im-
plementation in how results are computed and states are updated. Unlike the hardware
implementation where the results of combinational logic are computed in parallel, software
computes the results of combinational logic by executing discrete instructions, with most
producing their own intermediate result which may be stored in a variable (backed by either
a CPU register or memory). State in the DSP design is likewise stored in variables. Unlike
the hardware design where state updates on a clock edge, state in the software implementa-
tion is updated when the value of the state variable is overwritten by a new value. A sample
is completely processed after all operations in the design have been performed on it and
state has been updated for the next sample. This process can, and likely does, take multiple
clock cycles of the CPU executing instructions. While all state updates could be saved until
the end of sample processing, analogously to how all state is updated at the clock edge in
hardware, this is not strictly necessary in software. Rather, a state variable can be updated
any time after its result has been used by all dependent operations10 with their results stored
in their own temporary variables. Because Laminar emits code in a single assignment like
style, this occurs after most operations.

To take advantage of this property, Laminar explicitly represents state updates with
special StateUpdate nodes. A compiler pass in Laminar adds these state update nodes to the
design. Each stateful node type in Laminar is responsible for implementing a state update
node placement algorithm. Most delay-like state elements use the same basic approach,
creating a state update node which is dependent on the input to the stateful node being
computed and is also dependent on the immediate downstream nodes from the stateful node
being computed. An example of this can be seen in Figure 5.7 where the state update
node is dependent on the delay input11 as well as the two operators dependent on the delay.
These state update nodes can be scheduled like any other operator and are emitted like other
operators by the emitter. There are several potential benefits for scheduling state updates
to occur earlier. Scheduling a state update shortly after the value has been used could
potentially be more cache friendly than waiting until the end of computation for a sample
when the state may have been evicted from lower-level caches. In superscalar processors,
there is also a potential load/store unit bottleneck if all state is updated at the end of sample
processing. By distributing state updates throughout the computation, there is the chance

9For more information on clock networks, timing analysis, and digital design in general, see texts like
[95].

10This style of updating state actually does have a hardware analog called asynchronous design where
state updates occur via a form of handshaking without the use of a global clock. While this concept has been
around for quite some time and commercial examples do exist, it is less commonplace than synchronous design
- requiring a relatively major change in design methodology and tool-flow to exploit. For more information
on asynchronous hardware design, see [148].

11Laminar views scheduling the Delay node as scheduling the computation of the delay input. Because of
this convention, the StateUpdate node can be dependent on the Delay node rather than the upstream node.
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to take advantage of underutilized load/store units during computationally heavy segments
of sample processing.

Figure 5.7: Partial Laminar Intermediate Representation of Cyclops Golay Correlator Seg-
ment after StateUpdate Node Insertion, No Sub-blocking

5.3.2 Intra-Core Operator Emit Scheduling

An essential step in producing a procedural program from a dataflow graph is determining
the order in which operations are written in the resulting C file. C and the executable that
is compiled from it are imperative in nature, presented as a series of instructions which
a programmer generally views as occurring in program order12. Dataflow, as discussed
earlier, does not specify the order in which operations are executed but rather specifies the
dependencies between operators. The scheduler’s role is to take the constraints imposed by
the dataflow graph and produce an ordering of operators such that, if each operator was
executed one at a time, the correct result would be computed. In other words, it produces
a schedule of operators such that no operator is executed before its prerequisites have been
computed. This schedule directly translates to the order in which operations are written, as
instructions, into the executable file.

If the target CPU is in-order, and the C compiler does not change the order of operations,
the scheduler would determine the order in which instructions would be executed. However,
this will not be the case for most modern circumstances. As discussed in section 3.1, mod-
ern high-performance CPUs such as the ones used in this project tend to be out-of-order,
featuring look-ahead windows from which they can select instructions to execute. Because

12For more information on imperative languages, including C, and their heritage from von Neumann
architectures, see [149], [150].
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this type of CPU can change the order in which instructions are executed at runtime, the
instruction order in the executable does not necessarily determine the schedule in which
operations are executed. However, there is a practical limitation on the look-ahead window
size which means that, even if the CPU was performing some optimal form of scheduling,
the order in which instructions are present in the executable can still affect performance.

Modern C compilers do have the flexibility to re-order instructions, so long as the underly-
ing semantics of the program are preserved. The parameters of the C compiler optimizations
can be controlled via a host of CLI flags. While fine grain control is available, the number
of compiler options can be staggering. As such, a popular technique is to use a set of flags
which roughly configure the aggressiveness of optimizations from virtually none (-O0) to
high (-O3). Modern compiler can even re-order instruction instructions in potentially unsafe
ways13 via the -Ofast flag.

Because the C compilers can re-order instructions, it is important to determine if the
ordering generated by the Laminar intra-core scheduler has any impact on the resulting
performance. If the C compiler is capable of determining an optimal instruction ordering
for a program, the execution time should be the same regardless of the input instruction
ordering. To test this theory, two different scheduling heuristics were implemented in an
early version of Laminar. A single-thread realization of Cyclops was generated with each
heuristic. In addition, a single-thread version of Cyclops was generated with Simulink Coder
(circa 2019). These different implementations were generated with a variety of compiler and
optimization flags and benchmarked. The results are shown in Figure 5.8

Interestingly, there is a considerable difference in performance between the BFS and
DFS heuristics used by the Laminar scheduler, even with aggressive compiler optimizations
enabled. Note that the schedule only changed the order in which the operations were emitted
in the C file. This is not entirely unexpected as the optimal scheduling problem for parallel
machines (which the different execution units in a superscalar CPU can be viewed as) is
notoriously NP-hard14 [151] and it would be infeasible for the C compiler to perform for all
but the most simple programs (or small program segments). This does mean, however, that
the organization of the C file is important to the achieved performance, even when using
an optimizing C compiler. This is a theme which will be re-iterated several times with the
Laminar compiler and starts here with the intra-core emit scheduler.

Scheduling Procedure

Having discussed the objective of the scheduler and noting its importance, this section will
dig deeper into the mechanics used. There are two main steps when scheduling a partition:

1. Disconnecting State Elements in the Scheduling Graph

13Typically, these are transforms and re-orderings which are legal in a purely mathematical sense but are
unsafe in a numeric sense when paired with floating point arithmetic.

14NP-hardness stems from complexity analysis and is a class of problems for which no known polynomial
time algorithm exists.
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Figure 5.8: Performance of Early Cyclops Single Core Target with Different Generators,
Scheduling Heuristics, Compilers, and Compiler Options

2. Generating a Schedule of Operations (Must be a Topological Ordering of Nodes in the
Graph)

Scheduling nodes in a graph is a well-known problem in many fields including computing
as well as Industrial Engineering and Operations Research (IEOR). An analogous IEOR
problems to operator scheduling is assembly line scheduling [12]15. Owing to its wide appli-
cability across multiple fields, scheduling and its variants are heavily researched. Due to its
NP-hardness, practical solutions are restricted to heuristics and approximations algorithms
which make certain guarantees on the objective value of a result relative to the optimal.
Works such as [151] detail a variety of optimization algorithms discovered for a subset of
NP-hard problems.

15[12] identifies the synchronous dataflow graph scheduling problem as identical to assembly line problems
and cites [152], now commonly known as Hu-Level scheduling, as a well known heuristic. Based on a definition
of list scheduling as described in [153], [152] can be considered to be in the class of list scheduling algorithms.
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The techniques used in the Laminar compiler are variants of the well-known greedy list
scheduling algorithm. The algorithm, as described in [153] takes the following approach:

1. Find nodes in the graph which are ready to execute (i.e., have no incoming arcs) and
place them in a “ready” list

2. While the list is not empty:

a) Select a node from the list and schedule it.

b) Identify nodes connected to the output of the scheduled node. These are candidate
nodes to be added to the “ready” list.

c) Remove the scheduled node from the graph

d) Check the candidate nodes and see if any are ready to execute (no longer have
any incoming arcs).

e) Add newly ready nodes to the “ready” list, if any such nodes exist

3. If all nodes a scheduled, success! If nodes remain, a circular dependency exists in the
design and a topological ordering cannot be generated.

The different list scheduling heuristics come from how nodes are selected off the “ready”
list. The heuristic only has an impact if there are multiple nodes present in the list at once.
The DFS heuristic implemented in Laminar treats the “ready” list as a stack (last-in, first-
out). As nodes are scheduled and newly ready downstream nodes are placed on the stack,
they will be the next nodes to be scheduled. The BFS heuristic treats the list as a queue
(first-in, first-out). This heuristic places newly ready nodes at the end of the queue to be
scheduled after all of the existing nodes on the list.

It is important to note that the actual scheduling problem is more complex than the
assembly line sequencing problem as described in [152]. Because of the presence of the
shared CPU cache, the amount of time each operation/task takes can vary. Because of the
limited space in lower-level caches and registers, the order in which operations are executed
can determine what values reside in the cache and which were evicted. Re-using these evicted
values requires longer delays. This creates the undesirable characteristics that the cost of
each operation depends on the execution schedule itself.

One possible explanation as to why the DFS list scheduling heuristic appears to perform
better than BFS is that it may make better use of temporal locality in the cache. With BFS,
the execution traverses down the dataflow a layer at a time, generating a potentially large
volume of intermediate results. As the depth of the tree increases, these intermediate results
may not fit into the cache. DFS, by contrast, restricts the intermediate state to values which
should be used relatively soon, improving temporal locality which caches serve. There is a
downside to this approach, however, in that it may produce a string of dependent instructions
that leave CPU resources unused. This effect can be mitigated by wide look-ahead windows
in out-of-order CPUs but can become a problem for large chains of independent instructions
that exceed the look-ahead window.
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Due to its performance relative to BFS and its relatively competitive speeds compared
to a commercial dataflow graph to C solution, DFS was selected as the default heuristic for
Laminar. However, because of the wealth of scheduling heuristics available and the added
complexity of cache interactions, there is likely additional exploration that can be conducted
in this space. Adding additional heuristics to Laminar would be relatively simple, involving
the modification of the selection criteria used by the list scheduling algorithm. Algorithms
outside of list scheduling could also be implemented by replacing the call to the list scheduling
function with one of the developer’s choosing.

Modifications to List Scheduling Laminar makes some modifications to the list schedul-
ing algorithm by allowing scheduling to occur hierarchically. This allows nodes in conditional
execution contexts to be scheduled together, potentially reducing the number of condition
checks required. In this case, the contexts are represented as single nodes in the scheduling
graph. When a node representing a context is selected, the list scheduling algorithm is called
recursively on the nodes within the context. After the last node in the context is scheduled,
scheduling is allowed to continue as usual. Nested contexts are allowed with multiple levels
of recursion of the scheduling algorithm.

Breaking Dependency Chains

One important requirement of the scheduling problem is that the ordering constraints
form a Directed Acyclic Graph (DAG). Surprisingly to some, valid DSP algorithms repre-
sented as dataflow graphs are not required to be DAGs. Recalling from section 5.1, while
combinational/algebraic loops are not allowed, cycles are permitted so long as a delay exist
in the loop. At first glance, this appears incompatible with producing a legal schedule which
can be executed on the processor. However, there is a subtle difference between the pro-
vided representation of the DSP design and the reality of the software implementation. In
software, the objective is to produce a schedule of operations which can be used to process
a single sample. This schedule accomplishes what, in hardware, would be computed in com-
binational logic between clock edges (not inclusive). For a given sample, outputs of delays
are effectively constants. The inputs of delays are similar to sinks — their input must be
computed before the sample processing has finished. Before the next sample is processed,
the value at the sink node of the delay is transferred to the constant node.

Instead of creating two nodes for the purposes of scheduling, Laminar takes a shortcut.
Because constants do not need to be scheduled, the outputs of delays are disconnected in
the scheduling graph (a replica of the design graph used for scheduling). The delay nodes
themselves represent the inputs to the delay and are scheduled. By disconnecting the output
arcs, the dependency chains in legal loops are broken and, assuming no combinational loops
exist, the resulting scheduling graph is a DAG. A visual depiction of the different delay
representations used by Laminar is shown in Figure 5.9.
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Figure 5.9: Laminar Delay Representations

5.3.3 Emitter

The Laminar emitter is responsible for producing the various C files associated with
the design. Routines exist for generating the thread functions, compute functions, reset
functions, I/O functions, startup code, and Makefiles. The emitter itself is broken into several
different functions, mostly contained in the MultiThreadEmit namespace, and implemented in
src/Emitter/MultiThreadEmit.cpp and src/General/EmitterHelpers.cpp of [130].

The core emitter function, MultiThreadEmit::emitPartitionThreadC generates the .c and
associated .h header files for given partition.

Partition State Allocation

The header file, in addition to containing function declarations, also includes a declaration
of a structure type which contains all the backing storage for state elements in the DSP nodes
contained within the partition. This structure is allocated on the stack by the partition’s
thread function on startup. Diagnostic output printed by Laminar generated application has
shown that, at least in current version of pthreads on Ubuntu Linux, the stack spaces of the
different threads are reasonably separated in the virtual memory space. This state structure
is passed in calls to the compute function from the partition’s thread function. While this
method involves de-referencing a pointer to the structure, it has an important advantage to
Laminar’s original method of handling state: allocating global variables.

Core 0 State Core 1 State

Cache Line 0 Cache Line 1 Cache Line 2
0 64 128 192

Cache Line
Contention

Figure 5.10: Global Cache Line Contention

From the C compiler’s perspective, there was nothing special about the global variables
declared for each partition. As such, the different global variables were placed close together
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in memory. There is nothing functionally wrong with this as each thread only accessed
and modified its own variables. No synchronization should be required from a functional
standpoint on these global variables. However, an important divergence between the C
programming model and the hardware is that C (and the underling machine instructions)
can operate on bytes while the cache system operates on cache lines. Cache lines are typically
many bytes, 64 in the x86 64 CPUs used as the test platform for this project. With the
compiler placing global variables close together in memory, it was not uncommon for some
of the state variables of one partition to be in the same cache line as another partition. A
graphical depiction of this phenomena is shown in Figure 5.10. This leads to a cache line
being shared by multiple partitions. This would be OK if no variables were even written to
— the line would stay in the shared state in the cache of each participating core. However, as
these global variables represent state that is updated between samples, writing is a common
task. In a MESI style cache coherency protocol, as described in section 3.2, writing to the
cache line would require invalidating the entry in other caches and then acquiring exclusive
access to the cache line. After writing, other caches would then need to fetch the updated
cache line. Because of the cache coherency protocol, the cache line should remain un-
corrupted. However, each partition contending for access to the cache line would likely
experience performance degradation16. Due to different partitions potentially having varying
amounts state in the shared cache lines, the complexity of the cache coherency system, and
other factors, the performance degradation may not be experienced equally among partitions
and may vary run-to-run. This behavior was observed in some simple Laminar generated
designs where each partition was given the same FIR filter workload. An example from one
of these experiments is shown in Figure 5.11a17.

Cache line contention on global variables is unnecessary, given that each partition only
accesses its own state variables. If state variables for each partition were isolated to their own
cache lines, each partition’s CPU cache could maintain exclusive access to the lines. Unless
evicted from the cache, the lines holding the partition state would not need to be re-acquired.
Two methods to achieve this objective include the stack allocated structure, as described
above, and using alignment hints for the global variables to ensure that each variable was
aligned to the start of a new cache line. Using either the global variable alignment or the
locally allocated structure both reduced the workload imbalance with the structure method
ultimately being selected due to the potential for poor cache utilization with each variable
being allocated on a new cache line.

16Unless there is sufficient work to do that the increased latency can be hidden by other work.
17Note that a L3 boundary is crossed in this experiment which results in non-uniform communication

costs between partitions despite having the same computational workload. When comparing state allocation
techniques, the compute time is what one should be looking at most closely. Also note that some small
measurement error is possible with the telemetry reporting which can result in time being shifted between
groups, particularly Telemetry/Misc.
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Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 10.059 10.0781 12.8094 10.8051 11.6692

Waiting for Output FIFOs 5.8455 7.8458 5.8534 2.3229 5.6835

Waiting for Input FIFOs 2.1789 2.0951 2.1708 6.1703 4.3376

Writing Output FIFOs 1.6548 1.7498 2.9681 1.4488 1.6393

Reading Input FIFOs 2.2697 2.3838 2.4501 6.6688 2.4917

Compute 40.6575 38.5129 36.4135 35.2495 36.8441
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Workload Distribution: Unaligned Globals

(a) Unaligned Global State

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 10.0646 10.0721 11.901 11.601 12.5123

Waiting for Output FIFOs 10.3088 10.5532 7.6831 2.0906 6.3135

Waiting for Input FIFOs 2.1784 2.0955 2.165 5.557 3.3462

Writing Output FIFOs 1.7617 1.74 2.5257 1.4967 1.5651

Reading Input FIFOs 2.4855 2.3787 2.4493 6.0669 2.4828

Compute 35.0926 35.0522 35.1676 35.0796 35.672
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Workload Distribution: Aligned Globals

(b) Aligned Global State

Figure 5.11: Effect of Different State Allocation Techniques
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Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 10.078 10.0918 12.1618 11.2596 13.1692

Waiting for Output FIFOs 11.0136 11.4301 7.5633 2.2275 5.6418

Waiting for Input FIFOs 2.1819 2.0989 2.165 6.1126 4.9871

Writing Output FIFOs 1.8003 1.7452 3.3045 1.4496 1.45

Reading Input FIFOs 2.4706 2.3807 2.4355 6.6924 2.4594

Compute 35.2239 35.0215 35.1381 35.0267 35.0607
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Workload Distribution: Local Structures

(c) Local Structure

Figure 5.11: Effect of Different State Allocation Techniques

Emitting Operators

Operator emitting occurs by running through the ordered list of nodes in the partition,
arranged in scheduled order, and calling the emit function defined by each node’s class.
The implementation of this emit function is left up to the individual operator but typically
involves querying for statements from its predecessor nodes, producing intermediate state-
ments which are written to the C file, and returning an object representing the resulting C
expression for the requested output port. The emit function is called for each output of the
node and, if the output type is complex, for the real and imaginary components.

When a new node is emitted, its context stack is checked against that of the previously
emitted node. If the node is in a new context, the context conditional logic and output
variables (such as the output of a mux) are emitted before the node. If the new node is
outside of the context occupied by the previously emitted node, context closing code is
emitted first. This mechanism allows conditional statements like if/else and loops to be
emitted automatically based on the tracked context.

5.3.4 Debugging and Documentation

Laminar provides multiple debugging and documentation aids for DSP designers and
those seeking to modify the compiler. One useful feature is the ability to dump the Laminar
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in memory intermediate representation of the design to a .graphml file which can be plotted
or otherwise analyzed. In addition to containing the design structure, the files contain
attributes of nodes and arcs in the design. The yEd tool [133], provides a convenient way to
inspect exported files by plotting them and allowing the user to map the various node and
arc parameters to graphical attributes such as node and arc labels. An example of such a
visualization is shown in Figure 5.12.

Currently, intermediate representations are exported, if requested, at the following stages
of the compiler:

• Design Before Blocking.

• Design After Blocking.

• Design After Scheduling.

Another helpful debugging feature is the printing of information to the console during
compilation. Messages printed to the console include the actions of some optimization passes,
such as when a node is pruned from the design. Near the end of the process, a series of reports
are printed which give information on the number and type of nodes in each partition and
information about communication between partitions including how much initial state is
contained in each FIFO. In addition, two “Communication Graph” files are emitted which
represent information about inter-core communication in a .graphml format which can be
easily analyzed by other tools.

For those interested in modifying or extending the functionality of the Laminar compiler,
many of the functions and classes are documented using Doxygen flavored comments. HTML
and LATEXdocumentation on the Laminar implementation can be generated via the Doxygen
tool. A make target, docs, is provided which builds the documentation. An example of the
Doxygen generated HTML documentation is shown in Figure 5.13.
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Figure 5.12: Laminar Intermediate Pre-Blocking Representation of Cyclops Tx v1.8, Plotted
by yEd
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Figure 5.13: Doxygen Generated Documentation
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Chapter 6

Laminar Optimizations

One of the reasons for developing the Laminar compiler was to facilitate experimentation
with different optimization techniques in a structured and repeatable way. Chapter 5 intro-
duced the basics of the compiler and presented a list of passes over the design which are used
in the process of converting a DSP dataflow graph to a functioning C program. This chapter
will build on the discussion in chapter 5 by presenting the optimization techniques explored.
This not only includes explicit optimization passes but also specialized implementations of
DSP constructs.

6.1 Working with the C Compiler

There are many different paths one could have taken when producing Laminar. One
option was to augment an existing compiler, such as LLVM [154], with domain specific con-
structs and optimization passes. While this approach would be able to leverage the structure
of the existing compiler, it was determined early on that the LLVM IR was not ideally suited
for representing dataflow graphs and made constructing the types of optimization passes en-
visioned for this project more difficult. It appears that this assessment was not without merit
as the makers of LLVM have recently launched a new project, MLIR [155], which explicitly
mentions better supporting dataflow and machine learning descriptions like TensorFlow.

A distinct disadvantage of integrating into an existing compiler framework is that it
potentially limits the ultimate performance of the result with how well the base compiler is
implemented. At the onset of this project, LLVM had been steadily improving but GCC was
still considered by some to perform better with certain types of optimizations, owing in large
part to its mature code base. In addition to these free, open source, compilers commercial
offerings such as the Portland Group (PGI) family compilers and Intel C Compiler (icc)
were available and promised more optimized results1. Integrating into one of these compilers

1Since the onset of this project, compilers have undergone some consolidation with icc transitioning to
be LLVM based [156] and PGI being absorbed by NVidia [157]. However, vendor optimizing compilers, such
as the new version of icc and AMD Optimizing C/C++ compiler (aocc) are still present.
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would have precluded taking advantage of advances in other compilers including those in
vendor provided optimizing compilers.

These factors lead to the decision to develop Laminar as a source-to-source compiler.
By targeting C code, the Laminar result could be compiled with any C compiler, including
those specifically tuned by vendors for their underlying CPU architecture. In a similar vein,
Laminar attempts to avoid the explicit use of ISA intrinsics and instead leverages optimiza-
tion passes, such as auto-vectorization, which are present in most widely used C compilers.
This allows Laminar generated code to be portable across different vector extensions and
ISAs. As CPUs continue to improve and new ISA extensions are added, it is expected
that general-purpose compilers will be augmented to support these new capabilities. CPU
vendors certainly have a strong incentive to make sure that new features they add to their
parts are supported by widely used developer tools. By utilizing continued general-purpose
C development, Laminar can avoid required updates to support additional CPU ISAs and
new ISA extensions.

While relying on existing C compilers has the advantage of leveraging decades of compiler
research and development, there are some challenges that need to be addressed. As shown
in Figure 5.8, the input into the compiler can have a strong impact on the ultimate quality
of results, despite aggressive C compiler optimization being enabled. In general, it has been
observed in this project that the compiler generally performs best with tight, fixed-bound,
loops with easily analyzable dependencies. This observation is in line with the general wis-
dom surrounding HPC software development when using advanced compiler optimizations
such as auto-vectorization. Also, because general purpose compilers are generally restricted
from making transformations which would result in semantically different code, DSP specific
optimization that are not legal C transforms need to be performed before passing the gen-
erated code to the C compiler. Due to the desire to use existing C compilers which perform
best with code emitted in a certain style, Laminar’s code generation philosophy involves
generating code crafted so that it can be easily analyzed and optimized by the downstream
C compiler. Techniques to provide this include:

• Expressing DSP designs with vectorizable constructs, when possible.

• Providing specialized implementations of some DSP constructs.

• Encapsulating existing operators into tight loops (ex. through sub-blocking).

An interesting result of auto-generating code which is intended to be optimized by a
downstream compiler is that it often looks different than what some human developers would
write. For instance, intermediate arrays are typically produced by the Laminar compiler for
vector/matrix operations and are assigned only once. An astute developer may point out
that the declaration of many intermediate arrays is unnecessary and that a set of working
arrays can be shared among operators. The problem with this approach is that it can
complicate dependency analysis for the compiler. With compiler optimizations disabled
(-O0), the human optimized version indeed performs better, as one may expect. However,
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in the experience of this project, with more aggressive compiler optimizations (such as -O3
or -Ofast), the intermediate arrays were typically optimized away by the compiler.

6.2 Laminar Optimizations

Having discussed the general Laminar code generation approach above, the following
sections describe various ways in which the Laminar compiler optimizes a given design and
produces code targeted for downstream, optimizing, C compilers.

6.2.1 Context Discovery and Expansion

A core feature of Laminar, which was touched on in chapter 5, is support for conditionally
executed segments of a design. These regions are viewed in Laminar as execution contexts.
Examples of different types of contexts implemented in Laminar include2:

• Muxs.

• Enabled Subsystems.

• Downsample Clock Domains.

• Blocking/Sub-Blocking Domains.

Contexts for each of these node types are eventually encapsulated within container sub-
systems. In the current version of the scheduler, as described in section 5.3, the nodes within
the same context are scheduled together. The Laminar emitter keeps track of the context
stack of the previously emitted node and the current node to emit, automatically inserting
the context conditional logic as appropriate. For some contexts, such as enabled subsystems,
the extent of the context is known at the start of compilation from the design hierarchy. For
enabled subsystems, all nodes contained within the subsystem are automatically considered
to reside within the conditional context. Other nodes, such as multiplexers, require their
context to be discovered.

Mux Discovery

A multiplexer in a DSP or hardware design acts as a switch which passes the value of
one of its inputs, based on the value of the selector port, to its output. Without any clock
or power gating logic, the logic for the different inputs of the multiplexer would all be active
with the final value being selected from one of the inputs. There is power inefficiency with
this construction as only the logic at the input port that is ultimately selected needs to
run. However, there are downsides to clock or power gating the logic as it adds complexity
to the design. Synchronous digital logic timing analysis also needs to conservatively take

2Internally, these different contexts inherit from the ContextRoot class.



CHAPTER 6. LAMINAR OPTIMIZATIONS 89

the worst-case scenario through the multiplexer into account when computing the allowable
clock rate, even if the worst-case multiplexer input is rarely selected.

This contrasts with typical software implementations where the logic for each mux in-
put could be contained within if/else blocks or switch statements. Because instructions are
executed with some degree of serialization on limited execution resources, avoiding the ex-
ecution of instructions whose values would go unused could potentially improve the overall
execution time3. In cases where the complexity of calculating different inputs into the mul-
tiplexer is vastly different and the lower-complexity inputs are commonly taken, there can
be a substantial average performance improvement by conditionally executing the logic to
compute each input.

Because branching and looping is necessary in most programs, CPU implementations
have included optimizations to try to improve their execution. For example, many modern
CPUs (including the ones used in this project) implement branch prediction logic. By
observing previous branch behavior, the branch predictor attempts to guess the result of
an upcoming branch before it has been determined. If successful, the branch predictor
keeps the CPU pipeline filled and avoid stalls. If incorrect, the work computed along the
predicted branch is discarded and execution starts again along the correct branch. This
results in a branch misprediction penalty, which can be quite large. Branch prediction has
been extensively researched with multiple prediction schemes implemented with varying
degrees of complexity. In general, branches that commonly take one path are often correctly
predicted by the branch predictor after initial training. Cases involving simple and repeated
patterns taken by branches, such as in fixed bound loops, are also of interest to branch
prediction researchers. However, most CPU vendors do not provide all details of their branch
prediction logic. For some information on the branch predictor in the AMD CPUs used by
this project, see [17]. For more information on branch prediction in general, see [16], [105].

If we assume that the branch prediction logic is correct in most cases after startup, there
is little cost to conditionally executing code. Given the potential workload savings, it makes
sense to maximize the amount of logic that can be placed in the conditional blocks leading to
multiplexers. This is accomplished in a step referred to in Laminar as Discoverer and Mark
Contexts. In this step, Laminar traces back from each of the input ports into the multiplexer,
stopping at state elements, enabled subsystem boundaries, clock domain boundaries, sub-
blocking base length boundaries, and explicit context expansion barrier nodes which can be
inserted by the DSP designer. It also stops when a node in another partition is discovered.
Arcs which are traced back are marked. If a node is encountered with all its output arcs
marked, the trace-back recurses back to the inputs of that node. Nodes which have been
recursed on are only used to derive the input of the multiplexer, possibly via additional
operations. If their output was depended on by another node outside of computing the mux
input, the corresponding output arc would not have been marked. This would have prevented

3Even with superscalar out-of-order CPUs, executing unneeded instructions could take up slots in exe-
cution units which could otherwise be used for required operations, potentially creating a bottleneck for that
resource. Though they are often pipelined, execution units in superscalar CPUs typically serially execute
instructions from their scheduling queue.
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the recursive trace-back from occurring on the node. This is true if the dependency fanout
occurred later in the logic chain. Ultimately, the context discovered for a given mux input
is the set of combinational logic (contained within a given partition, clock domain, and sub-
blocking base) whose outputs are unused outside of computing the value of the multiplexer
input. State elements are excluded from the context as state updates occur regardless of
which input is selected. An example of the mux context discovery procedure is shown in
Figure 6.1.
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Figure 6.1: Example of Mux Context Discovery Procedure

Enabled Subsystem Expansion

Enabled subsystems are analogous to clock-gated and power-gated sections in hardware
designs. Like clock-gated design segments, state elements in enabled subsystems do not
update unless enabled. The outputs of enabled subsystems exhibit latch-like logic where
the output is passed through if the system is enabled, and the previously computed value is
passed if the system is disabled. Because the outputs exhibit this latching behavior and state
updates within the subsystem only occur if enabled, the logic within enabled subsystems only
needs to be executed in cases where the enabled signal is true. This allows enabled subsystems
to potentially take advantage of the same workload reduction advantages as described above
for multiplexer context discovery.
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Enabled subsystems, in the Laminar model, are comprised of a specialized enabled sub-
system container within which nodes can reside. At the boundaries of the enabled subsystem
are Enable Input and Enable Output nodes. Discovery of enabled subsystem contexts is rela-
tively easy as each node within the enabled subsystem is contained within the context. This
includes the enable input and output nodes. In the current version of the Laminar with
nodes in contexts scheduled together, the emitted C code for the operators contained within
the enabled subsystem are wrapped in a single if block. The latching logic is achieved by
the enable output nodes, which are also contained in the enabled context, passing their state
variable as the output to downstream nodes. If the enabled subsystem is run, the enable
output state variables are updated before any dependent nodes are executed. State update
nodes for delays inside the enabled subsystem are also contained within the enabled context
and are not executed if the subsystem is disabled.

On the input side, the idea behind enabled subsystem expansion is that combinational
logic which is only depended on by nodes within the enabled subsystem does not need
to execute unless the subsystem is running. In effect, the logic could be pulled into the
enabled subsystem. This could potentially reduce the workload on the CPU on average
if the enabled subsystem spends considerable time disabled. On the input side, enabled
subsystem expansion uses the same trace-back techniques as mux expansion except that the
marked arcs are maintained across the different enable input nodes. Once identified, nodes
in the expanded context are moved within the enabled subsystem and enable input nodes are
created at the new boundary points. A demonstration of this process is shown in Figure 6.2.

On the output side, there is also the potential that some combinational logic can be
moved within the enabled subsystem. In general, this is possible if all the inputs for the
combinational logic come from the enabled subsystem. To determine this, a trace-forward
version of the same approach used for the input side of the enabled subsystem is used. This
trace-forward version recurses only if all input ports to a node have been marked. Tracing
stops at state nodes and certain boundary nodes, just like the trace-back variant. After the
extended context is discovered, nodes within it are moved into the enabled subsystem and
enable outputs are created at the new boundary points.

When Contextual Execution may be Undesirable

While it seems to make sense that reducing the average workload by conditionally exe-
cuting code can provide performance improvements, there are some scenarios where it hurts
performance. One such case is when the condition on which logic is executed is hard to pre-
dict. This will result in the branch predictor potentially incorrectly predicting the branch
often, incurring regular misprediction penalties. Depending on the magnitude of the mis-
prediction penalty and the complexity of the branch predictor, better performance may be
achieved by removing the branch if possible. For example, if the branch was used to mask
a certain value, multiplying by zero can have a similar effect in certain situations. Even
though more logic may be executed in this case, so long as it is less than the misprediction
penalty, there should be improvement.



CHAPTER 6. LAMINAR OPTIMIZATIONS 92

Enabled Subsystem

1

15

3

9

7

5

13

11

23

25

19

21

17

2. Recurse

4. Recurse6. Stop on State

8. Stop, Out Arcs
10. Recurse

12. Stop on State

14. Stop, Out Arcs
18. Recurse

16. Recurse

24. Recurse

26. Stop, Out Arcs

20. Stop on State

22. Stop on State

X

+

-

ww

/

z-1

z-1

+

X

z-1

z-1

z-1

...

Enable Input

Enable Input

(a) Extended Context Discovery

Enabled Subsystem

z-1

z-1

X

z-1

z-1

z-1
...

X

+

-

ww

/

+

...

...

Enable Input

Enable Input

Enable Input

Enable Input

Enable Input

(b) After Node Relocation and Enable Input Move

Figure 6.2: Enabled Subsystem Context Expansion (Enable Line(s) Not Shown)



CHAPTER 6. LAMINAR OPTIMIZATIONS 93

Another case where conditional logic may be undesirable is when vectorization is avail-
able. If vectoring across samples, it is possible that a given operator will be enabled for
some sample and disabled for others. Vectorizing this type of code typically requires masked
vector operations where a mask must first be computed which is then used to limit the
vector operation to only impact specific elements. If the branching logic includes an else

clause, the inverted mask would then be required for operations in the else block. Both
branching paths would need to be executed if the vector contained a mixture of enabled
and disabled elements. It is possible on some platforms that, if all elements take the same
path, the execution of the alternate path is avoided. However, on conventional CPUs, this
would likely require branching on the value of the mask, introducing the potential for branch
misprediction penalties. Nested branches further complicate matters since each composite
path from the two branches would potentially need to be executed. This can quickly negate
any benefit from vectorizing. As such, it is sometimes desirable to avoid the use of branches
or enabled subsystems in the design when it is expected that vectorization could possibly
occur.

6.2.2 Vectorizable DSP Constructs

SIMD units are an exceptionally important resource for accelerating designs as they have
the potential to accomplish many computations simultaneously. While it can be challenging
for programmers to extract SIMD from their applications, DSP designs are often filled with
easily vectorizable constructs. One exceptionally common DSP block, the FIR filter, is com-
posed of a shift register and dot product with one constant operand (as shown in Figure 4.3).
The dot product is, itself, a vector operation. Laminar supports emitting dot products in the
form of a fixed bound loop with an outer accumulator. Inside the loop, the coefficients and
inputs are multiplied and the result accumulated. This operation is so common that hard-
ware exists within many x86 64 CPUs to accelerate the operation. The Fused Multiply-Add
(FMA) vector unit is capable of element wise multiplying two vectors and adding the result
to a third vector [17], [103]. By splitting the dot product into multiple accumulators, each of
which being an element in a vector register, a chain of FMAs can be used to generate partial
results which can then be reduced by summation into the final result4. This optimization of
the loop is possible with more aggressive C compiler optimization levels such as -Ofast.

Several other operators are implemented in Laminar to support element-wise vector or
matrix operations, such as element-wise sum, product, mux. Additional operators can be
converted to support element wise operation by using helper functions within Laminar and
the design pattern used in the sum operator to generate inner loops for element-wise opera-
tions.

4Due to floating point operations not being strictly associative, the modification of the dot product into
smaller segments and then reducing the result may lead to different numeric results. In a radio operating
with constrained dynamic range on the input and reasonable algorithms, it is not anticipated that this causes
many problems. Since radios operate in noisy environments, minor numeric differences often have a limited
effect on the ultimately decoded signal.
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6.2.3 Tapped Delay and Circular Buffer Implementations

While it would appear that FIR filters are easily vectorizable because the dot product
vector operation performs the computation, early implementations performed far below ex-
pectations. The problem is that, while the dot product operation itself is clearly vectorizable,
the shift register feeding the dot product can inhibit effective vectorization or contribute sig-
nificantly to the workload of the block.

The simplest implementation of a tapped delay in software mirrors a shift register in
hardware. The elements in the tapped delay are stored in an array with each element being
shifted over a position each iteration. This involves a significant amount of data movement
which the compiler cannot easily overlap with another iteration of the FIR filter, due to the
data dependencies. A compelling alternative is a circular buffer where the head of the buffer
is shifted through the array on each iteration. The new entry overrides the oldest entry in
the array. Because the circular buffer is of finite length, the head pointer needs to wrap
from the last element in the array back to the first. Care must be taken when accessing
elements in the buffer to properly handle wrap-around logic. While the address arithmetic
to handle the wraparound is simple, especially for buffer sizes which are powers of 2, the
wraparound interferes with the vectorization of the inner product. If the buffer is sized to
the tapped delay, the values can be easily read into vector registers only for one position of
the head pointer. In all other cases, the discontinuity would need to be specially handled.
Disassembling compiled binaries revealed that the C compilers were unable to come up with
an elegant solution to the problem on their own with one solution providing a vectorized
implementation of the dot product for cases when no wraparound was encountered with the
tapped delay but reverting to scalar instructions in the other cases. One attempt to address
this problem was to perform an intermediate copy of the circular buffer into a new buffer
using either simple for loops or calls to memcpy. This did improve performance relative to
using the circular buffer addressing logic in the for loop implementing the dot product. By
providing unit stride access to the elements in the shift register, the compiler was able to
auto-vectorize the dot product, as expected. However, this implementation is still inefficient,
requiring significant data movement.

From the earlier experiments, it was clear that limiting the amount of memory movement
as well as providing stride one access to the elements in the tapped delay were important
to achieving high performance. The shift register and re-buffered circular buffer provide the
stride one access but require extensive data movement. The classic circular buffer signifi-
cantly reduces data movement but gives up unit stride access. An alternative scheme was
implemented in Laminar which provides both unit stride access and reduced data movement
at the cost of a larger memory footprint. In this implementation, the tapped delay buffer
is oversized. In the example shown in Figure 6.3c, the buffer is double the required length.
The buffer is logically split in half with each half being a replica of the other. When a new
element arrives, it is written into both halves of the buffer. With this implementation, a
stride one version of the buffer can always be read. In the case where the head pointer is
not at the first element in the array, the tail end of the returned segment includes elements
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Figure 6.3: FIR Filter with Different Tapped Delay Implementations

from the replica. This version with double the buffer length allows the replica write to occur
unconditionally, avoiding a branch. However, if memory footprint is at a premium, the buffer
can be sized smaller with a conditional replica write. The size reduction is based on how
much delay the buffer is providing and how many elements are returned at a time.

The performance of each of these methods using different compilers was tested against the
Root Raised Cosine (RRC) FIR filter used in Cyclops with the results shown in Figure 6.4.
The specialized implementation of the tapped delay with over-provisioned buffer sizes and
replicated writes performed the best out of all methods as was expected, given its ability
to always provide unit stride access to tapped delay elements. For LLVM compilers, there
was a speedup of over 7.5x relative to the shift register implementation. The circular buffer
implementation with an intermediate copy to a stride one array improved performance over
the traditional implementation, particularly when using LLVM based compilers. Interest-
ingly, the LLVM based compilers outperformed GCC in almost all cases except for the shift
register implementation. The more recent version of GCC also slightly outperformed the
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Shift Reg. Circ. Buff.
Circ. Buff. w/

Re-Buffer

Circ. Buff. w/
Re-buffer
(Two Part
memcpy)

Circ. Buff.
Double Len.
(Uncondi-

tional Second
Write)

Circ. Buff. Min
Extra Len.

(Condi-tional
Second Write)

aocc 2.0.0 (based on llvm 10.0.0) 5.714285714 5.917159763 7.751937984 9.708737864 44.44444444 44.24778761

llvm 10.0.1 5.714285714 6.024096386 7.8125 9.708737864 43.47826087 43.66812227

gcc 10.2.0 10.27749229 3.448275862 6.289308176 10.89324619 24.81389578 27.17391304

gcc 7.5 6.896551724 2.551020408 2.024291498 6.578947368 9.803921569 9.803921569
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Figure 6.4: Computation Rate for RRC FIR Filter with Different Shift Register Implemen-
tations and C Compilers

LLVM based compilers for the circular buffer implementation with intermediate copy using
two calls to memcpy. Currently, the Laminar supports the shift register, traditional circular
buffer, and over-provisioned circular buffer with replica write implementations of the tapped
delay block.

Aside on How the Compiler Affects the Quality of Results

An interesting result of this experiment, outside of finding the best tapped delay rep-
resentation, was observing how much different compilers, including different version of the
same compiler, effected the quality of results. As was mentioned in subsection 5.3.2, general
purpose C compilers face very hard optimization problems, some of which are NP-hard. As
such, compilers are often constrained to heuristic solutions that are still being improved to
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this day. Additionally, new CPU releases can introduce new features or change costs that
compilers use to drive heuristics. Older compiler versions can lack tuning for newly released
CPUs, effecting their resulting performance. The different versions of GCC tested were re-
leased relatively close together with version 7.5 released on Nov 14, 2019, and version 10.2
released on July 23, 2020 [158]. Even taking version 7.1 into account, which was released
May 2, 2017 [158], there is a little over three-year difference between major versions. Despite
the short time difference between releases, the performance of the executable produced by
version 10.2 was observed to be over 2x faster than the executable produced by version 7.5.
This difference underscores that optimized C compilation is not a solved problem and is
still being developed today, over three decades since the initial release of gcc (May 23, 1987
[158]). Because the default compiler is often frozen for Linux distributions, such as Ubuntu
LTS5, users may need to specifically request newer compiler versions from their package man-
agement system or install them from source. While a hassle, use of an up-to-date compiler
can be an important factor in attaining good performance, particularly when using newly
released CPUs.

6.2.4 Blocking and Sub-Blocking

As discussed in section 5.2, transactions between cores/threads already typically transact
in blocks of samples to amortize fixed costs associated with FIFO transactions. In the initial
implementation of blocking, each thread looped over the samples received from the input
FIFOs. Disassembly of the compiled binaries revealed that the C compiler was often unable
to automatically vectorize these, often large and complex, loops. As discussed in section 6.1,
this is not entirely unexpected as the compiler optimizations typically perform best with
small, fixed bound, loops with easy dependency analysis. In addition to the loops containing
potentially complex structures, DSP state updates (as discussed in subsection 5.3.1) can
present an impediment to auto-vectorization by the C compiler.

One method to address this is to break the incoming block of samples into sub-blocks
which are operated on instead of individual samples. In the dataflow graph model, this
can be represented by adding (or extending) the dimension of the data types in the sub-
graph to be sub-blocked. An example of the general concept when sub-blocking by a factor
of 4 is shown in Figure 6.5. Sub-blocking has proven successful in other fields, such as
HPC [162]6, where proper sub-blocking allows some algorithms to present much more cache
friendly memory access behavior. Sub-blocking can also aid in auto-vectorization or auto-
unrolling by presenting tight fixed-bound loops for some operators, particularly ones without

5For example, the clang package for Ubuntu 18.04 LTS aliases to clang-6 (version 6.0) [159] while the
same package for Ubuntu 20.04 LTS aliases to clang-10 (version 10.0) [160]. Clang version 10.0 is available
on Ubuntu 18.04 LTS by explictally installing the clang-10 package [161].

6In the HPC context, this technique is often simply referred to as blocking with the algorithm operating
on the input data in blocks. The input in the HPC case is equivalent to the input block to the Laminar
compute function. Since the data was already blocked to amortize FIFO costs, operating on segments of the
block is referred to as sub-blocking in the Laminar contexts to distinguish the two levels of blocking.
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state where each element is independent. In addition to vectorizing over the samples in the
block, some operators can achieve additional performance and efficiency with specialized
blocked implementations. Laminar supports both specialized blocking implementations and
automatic encapsulation of operators in fixed bound loops.
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Figure 6.5: Sub-Blocking Concept on a Scalar Design (.* = Element-wise Multiply)

Improvements for Already Vectorized Constructs

Benefits of sub-blocking are not isolated to scalar ops. One of the key features of sub-
blocking individual operators, particularly stateless ones, is that it increases the amount of
independent work locally available. For scalar operators, this can lead to vectorization, as
discussed earlier. For vector and scalar ops, the local availability of independent work can
be used to keep CPU execution units occupied in the face of non-trivial operator latency.

A hypothetical execution schedule for the real component of the inner product of a 129-
tap RRC FIR filter on the AMD Ryzen 3970X is shown in Table 6.1. T0-7 represents the
FMA operations for taps 0 through 7 (inclusive) of the filter. The results of that computation
are stored in vector accumulator A0 (as noted in the column header of the FMA schedule).
This schedule assumes that memory operands for instructions are fetched before instruction
issue but does include the latency of the different operations as described in [17]. Since
the RRC filter is a complex filter with real coefficients, the real and imaginary components
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can be computed separately. While only the real component is shown here, one can assume
the imaginary component is running on the other FMA and vector/floating-point sum unit.
Because both the real and imaginary components need to be computed, and there are only
two FMA and two vector/floating-point sum units, all relevant vector units are involved in
the computation of the single filter.

One thing to note is that, while the FMA unit is fully pipelined and able to accept a
new operation in each cycle, there are five cycles of latency for an individual FMA operation
to complete. To keep the FMA unit busy, this requires five different vector accumulators.
With single precision floating point and 256-bit wide vector registers, this effectively means
there are 40 single precision accumulators which eventually need to be reduced to a single
sum. This presents a problem for smaller FIR filters with less than 40 taps as they would
be unable to keep the FMA pipeline full. There is a shorter three-cycle latency for vector
and scalar floating-point sums. Despite the decreased latency, the reduction stage of the
dot product requires more cycles from the time it begins to the time the final result is
available. This is primarily due to cycles lost while waiting for dependent operations to
finish. This is particularly acute in the final stages of the reduction where there is a chain
of dependent instructions that are latency bound. Also significant is the fact that the FMA
unit is generally not busy while the sum unit is working and vice versa. Ideally, multiple dot
products would be available to compute so that the FMA unit could begin operating on the
next dot product while the previous one was going through the reduction stage.

While branch prediction can potentially provide some additional operations for the FMA
units, there are limitations including the size of the partition loop as well as how many
outstanding predictions are allowed with tight loops. State updates for each outer-loop
iteration can also create false dependencies which can inhibit compiler optimizations, such
as unrolling, and prediction logic. To put this concretely, a partition containing an FIR filter
with no sub-blocking contains an outer loop over the samples in the block in which the result
of the FIR is computed. Within the loop, after the dot product logic has completed, the state
of the tapped delay is updated by moving the head pointer(s). On the next iteration, the
next sample is written into the buffer, overriding any previous value present. If the tapped
delay buffer (even if using the specialized circular buffer implementation with overallocation
and replicated writes) is sized such that the overwritten value is needed by the previous dot
product operation, the memory write will be prevented from occurring until all instructions
accessing it have finished7. A similar dependency hazard exists with the head pointer, whose
value is relied on to properly index within the array. Inspecting the disassembled binary
produced from the Laminar generated code shown in Listing 6.1 revealed that the compiler

7Speculative writes to memory are generally not permitted as they effect the state of the system in a
way that can be difficult to reverse if the speculation proves incorrect. However, memory write instructions
can potentially be executed speculatively if the CPU contains a write buffer that can hold writes until it can
be determined that the write can be committed to memory. While isolated to the store buffer, it is easier
to revert changes as the old value is still stored in the cache. However, dependency tracking is required to
ensure that any instruction that uses the speculated write value can be reverted if the speculative write is
later determined to be invalid.
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Clk FMA0 (5 Vector Accumulators + 1 Scalar for Partial Results) Sum0
A0/Misc. A1 A2 A3 A4 M0

0 T0-7
1 T8-15
2 T16-23
3 T24-31
4 T32-39
5 T40-47
6 T48-55
7 T56-63
8 T64-71
9 T72-79
10 T80-87
11 T88-95
12 T96-103
13 T104-111
14 T112-119
15 T120-127
16 T128
17 A1+A2
18
19 A3+A4
20 A0+(A1+A2)
21
22
23 (A0+A1+A2)

+(A3+A4)
24
25
26 vextract
27 Extract+Low
28
29
30 vpermilpd
31 vaddps
32
33
34 vmovshdup
35 vaddss
36
37
38 vaddss M0
39
40
41

Table 6.1: Hand-written Schedule for Real Component of 129 Tap RRC FIR Filter - Assumes
Memory Operands Fetched Before Instruction Issue - Green = Operation Complete
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did not unroll the outer loop but did vectorize the inner loop with FMA instructions and
reductions. The hazards can be easily avoided by allocating additional buffer space so that
all sample values required across the different dot products are present and the header index
used to compute addresses can remain constant during in a single iteration of the outer loop.
This is automatically accomplished by sub-blocking.

Sub-blocking provides a reliable method to increase the amount of parallel work available
to fill the holes in the execution unit pipelines. A sub-blocked dot product will be presented
with multiple, independent (from the perspective of the dot product operation), input vectors
that can be computed in parallel. Depending on the length of the dot product, larger
degrees of sub-blocking may be required to fill the gaps left open by the latency of the
FMA operations. The addition of multiple independent dot products can also simplify
the reduction step by allowing each separate dot product to use fewer vector accumulator
registers. For the case of more than 20 independent dot products, it is possible to completely
avoid the reduction step with each dot product occupying a single element in a vector register.
The five (or more) vector accumulators containing the individual accumulator for the twenty
(or more) different dot products allow the five-cycle latency of the FMA unit to be hidden.
An example of this occurring with the Cyclops RRC filter sub-blocked by a factor of 24 is
shown in Appendix D.

6.2.5 Blocking/Sub-Blocking and Loops

One challenge that exists with both blocking and sub-blocking involves loops. As was
stated in chapter 5, combinational loops are not allowed in a design being passed to Laminar.
However, loops are legal so long as they contain a delay which breaks the dependency chain
when processing individual samples. The same idea is true for blocking except that the units
change — instead of requiring a single delay to exist, loops which cross partition boundaries
need at least a block’s worth of state to avoid deadlock. In fact, at least this much state
must exist at one of the FIFOs participating in the loop so that it can be converted to an
initial value in the FIFO. Since FIFOs transact in blocks rather than individual samples,
this initial state becomes a token in a Kahn Process Network (KPN) [18] or synchronous
dataflow [11] view of the design8. With only one block of state, at most one partition in the
loop can be active at a time. Ideally, multiple blocks of data would be introduced to allow
multiple partitions to operate simultaneously.

Sub-blocking has a similar problem to the overall blocking case. Loops which have a
delay less than the sub-blocking length cannot be broken apart when sub-blocking — there
is a dependency within the sub-block. However, loops with delays equal to or larger than
the sub-blocking factor can be broken apart. This is because any node depending on the
value of the delay block is dependent on the input to the delay from one or more previously
computed blocks. This breaks the dependency chain in the loop at the sub-block level,

8The KPN model has theoretically unlimited buffers while the Laminar generated design has fixed length
buffers. However, the concept of tokens in loops still holds for Laminar.
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1 void rx_demo_partition1_compute(Partition1_state_t *stateStruct , const

float InputSamples_re [120] , const float InputSamples_im [120] , float

OutputSamples_re [120], float OutputSamples_im [120])

2 {

3 for (uint8_t blockingIdx = 0; blockingIdx < 120; blockingIdx ++)

4 {

5 float BlockingInput_re = InputSamples_re[blockingIdx ];

6 float BlockingInput_im = InputSamples_im[blockingIdx ];

7

8 // ---- Calculate TappedDelay ----

9 memcpy(stateStruct ->TappedDelay_state_re + stateStruct ->

TappedDelay_headIdx , &BlockingInput_re , sizeof(float) * 1);

10 memcpy(stateStruct ->TappedDelay_state_re + stateStruct ->

TappedDelay_headIdx - 64, &BlockingInput_re , sizeof(float) * 1);

11 memcpy(stateStruct ->TappedDelay_state_im + stateStruct ->

TappedDelay_headIdx , &BlockingInput_im , sizeof(float) * 1);

12 memcpy(stateStruct ->TappedDelay_state_im + stateStruct ->

TappedDelay_headIdx - 64, &BlockingInput_im , sizeof(float) * 1);

13

14 // ---- Calculate InnerProduct ----

15 float InnerProduct_Accum_re = ((float)0);

16 float InnerProduct_Accum_im = ((float)0);

17 for (unsigned long indDim0 = 0; indDim0 < 49; indDim0 ++)

18 {

19 InnerProduct_Accum_re += ((( float)(Coefs_re[indDim0 ]))) * ((( float)

(( stateStruct ->TappedDelay_state_re + stateStruct ->

TappedDelay_headIdx - 48)[indDim0 ])));

20 InnerProduct_Accum_im += ((( float)(Coefs_re[indDim0 ]))) * ((( float)

(( stateStruct ->TappedDelay_state_im + stateStruct ->

TappedDelay_headIdx - 48)[indDim0 ])));

21 }

22

23 // ---- State Update for TappedDelay ~~~~

24 stateStruct ->TappedDelay_headIdx = (( stateStruct ->TappedDelay_headIdx

+ 1) % 64) + 64;

25

26 (OutputSamples_re[blockingIdx ]) = InnerProduct_Accum_re;

27 (OutputSamples_im[blockingIdx ]) = InnerProduct_Accum_im;

28 }

29 }

Listing 6.1: Laminar Generated Cyclops Rx RRC Partition, Blocking: 120, Sub-Blocking:
Disabled, Comments and Variable Names Changed for Clarity
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allowing operators within the loop to be sub-blocked, assuming they are not inhibited by
some other factor.

Laminar Sub-Blocking Model and Automation

Laminar includes a compiler pass that handles blocking and sub-blocking within a design.
As discussed in section 5.3, Laminar creates a global blocking domain to handle blocked I/O
and blocked communication between FIFOs. Within the global blocking domain, the design
can further be sub-blocked with the requirement that the sub-blocking length be an integer
factor of the blocking length. As part of the process, the dimensionality of each arc in
the sub-blocked region is expanded with the outer dimensions equaling the sub-blocking
length and operators are replaced with their sub-blocked equivalents. For blocks without a
specialized sub-blocked implementation, Laminar wraps the block in its own blocking domain
with BlockingInput and BlockingOutput nodes at the boundaries. Within the inner blocking
domain, the dimensionality of the arcs are left unchanged with the outer arcs connected to
the blocking boundary nodes being expanded. The inner blocking domain creates a fixed
interval for loop which iterates over the elements in the sub-block. The operator is contained
within the for loop with the BlockingInput and BlockingOutput nodes handling indexing
into sub-blocked inputs and outputs, respectively. A depiction of sub-blocking a single
operator is shown in Figure 6.6.

Blocking 
Domain 
Output

Blocking 
Domain 

Input
OperatorSamples In Samples Out/

Sub-Block Size
/
1

/
1

/
Sub-Block Size

Figure 6.6: Laminar Sub-Blocking Domains

As discussed in subsection 6.2.5, loops can present a problem for automatic sub-blocking.
Specifically, loops which have dependencies on samples that are delayed by less than the sub-
blocking length cannot be broken and need to be executed on a sample-by-sample basis9.
To identify the nodes that need to be executed together in the same loop, Laminar performs
the following analysis on a copy of the graph:

1. Disconnect delays which are greater than or equal sub-blocking length.

9Smaller sub-blocking factors may allow the loop to be broken. However, there is currently a limitation
that all sub-blocking within a partition must have the same base sub-blocking length. This is due to the need
for more complex width adaptation and scheduling if more than one base sub-blocking length is present.
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2. Find Strongly Connected Components (SCC) within the design10.

Strongly Connected Components in directed graphs are maximal subgraphs in which
there is at least one directed path in each direction between each pair of nodes in the subgraph
[163]. From this property, each node in the strongly connected component participates
in at least one cycle11. Because delays greater than or equal to the sub-blocking length
were disconnected, breaking cycles with dependencies outside of a single sub-block, nodes
contained within strongly connected components have dependencies within the sub-block
and with each other and therefore cannot be separated when sub-blocking. For feed-forward
segments of the graph which, by definition, do not participate in a loop, each node is its own
strongly connected component.

After analysis, Laminar iterates over each identified strongly connected component and
either encapsulates it in a blocking domain (with the appropriate Blocking Input/Output
boundary nodes) or, if the strongly connected component contains a single node which
provides a specialized implementation, replaces it with the corresponding specialized imple-
mentation. An example of sub-blocking when dependencies inside a sub-block and outside
a sub-block exist are shown in Figure 6.7 and Figure 6.8, respectively. Note that the case
containing a loop with delay greater than the sub-blocking factor allows the individual blocks
within the loop to be in separate sub-blocking domains.

While exceptionally useful, there are some limitations of the automated sub-blocking
pass within Laminar. Currently, the base sub-blocking length is required to remain constant
within a partition. This avoids the added complexity of handling width adaptation and
scheduling segments that operate with different block sizes on a single CPU core. FIFOs
are implemented to work as width adapters and are used to support different base sub-
blocking lengths in different partitions. Contexts, such as ones discovered for multiplexers
and enabled subsystems, are currently restricted to reside in single sub-blocking domains.
This is because the condition on what code executes can change on a sample-by-sample basis,
complicating the blocking logic by requiring masking operations on the data being passed
between operators. There is one notable exception to this rule: clock domains.

Interaction with Clock Domains

Laminar limits clock domains to having static timing relationships with each other via
the use of static rate change blocks such as upsample, repeat, and downsample. Currently,
only integer downsample clock domains are supported in Laminar with the standard imple-
mentation using a counter and comparator to determine if the logic contained within the
clock domain should run. When sub-blocking, this would result in the entire clock domain

10Laminar implements the Tarjan’s algorithm for finding strongly connected components as described in
[163] based on the original paper, [164]. This algorithm is one of several linear time algorithms for finding
strongly connected components.

11For any pair of nodes A and B in the strongly connected component, by definition, there is at least one
directed path from A to B and from B to A. Concatenating these paths results in a cycle containing A and
B.
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Figure 6.7: Sub-Blocking Example with Dependency Loop within Sub-block
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being placed inside of a single sub-blocking domain, an undesirable result. However, for
certain configurations of the clock domain, a more elegant solution is possible. When the
decimation ratio is a factor of the sub-block size, the clock domain can be executed in every
iteration of the outer loop, just with a smaller vector of samples passed to it. For example,
a decimation by 3 of a sub-block size of 12 would result in every third sample in the sub-
block being passed to logic within the downsample domain. The resulting vector would be
of length 4. Likewise, sub-blocks exiting the clock domain can be easily adapted for use in
the outer clock domain by either zero-filling or repeating samples as appropriate based on
the output rate change block used. Inside the clock domain, the sub-blocking algorithm can
continue as normal with strongly connected components identified within the clock domain
that are either encapsulated in sub-blocking domains or specialized. An illustration of the
result for sub-blocking with compatible downsample domains is shown in Figure 6.9. When
operating in this mode, Laminar considers the clock domain to be operating in vector mode.

Execute Every 2 Samples

Downsample 2x x[n] + Repeat 2

Downsample 2y

x[n]

y[n]y[n]

…
a[n] = 

x[n] + y[n]

Execute Every 2 Samples

Downsample 2x x[n, n+1, n+2, n+3] + Repeat 2

Downsample 2y

x[n, n+2]

y[n, n+2]y[n, n+1, n+2, n+3]

…a[n, n+2]

a[n]

a[n, n, n+2, n+2]

a[n] only updated every 2 samples

Scalar Design

Sub-Blocked Design

Figure 6.9: Sub-Blocking with Clock Domains Operating in Vector Mode

While the sub-block length changes within the clock domain, this is legal in the current
Laminar implementation even though other mixing of sub-block lengths within a single
partition is not allowed. To reconcile this conflict, Laminar uses the term base sub-blocking
length to refer to the sub-block length at the base clock rate of the system. While the actual
sub-block length is allowed to change within clock domains, the base sub-blocking length is
required to remain constant within a partition. If the clock domain decimation ratio is not a
factor of the sub-blocking length, it is encapsulated like any other context when sub-blocked.
It is, therefore, important to select the sub-block size so that clock domains can operate in
vector mode.
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Specialized Blocking Implementations

While wrapping an operator in a sub-blocking domain typically results in an efficient vec-
torized implementation after being processed by an optimizing C compiler, some constructs
perform better with specialized implementations. One such operator is delay. Not only do
delays serve a special role in breaking dependency chains in loops, but their performance
can also be heavily impacted by their implementation. When operating in a sub-blocked de-
sign, standard delays with a delay less than the sub-block length behave similarly to tapped
delays since they return vectors of samples, shifted by an amount specified by the delay
length. Due to this similarity, delays can take advantage of the different implementation
types discussed in subsection 6.2.3 with minor modifications. Instead of ingesting a single
sample at a time, the implementations are modified to support the ingestion of multiple
samples at once. When using the oversized circular buffer approach, the buffer is sized to
accommodate a complete sub-block of samples at the input. For delays that are multiples of
the sub-blocking length, they can behave like standard delays operating on vectors of data
instead of scalars. Because they are multiples of the sub-blocking length, no blending from
samples in different sub-blocks is required at the output — sub-blocks can simply be stored
as elements in the delay to be outputted in a later iteration. To help support dependency
breaking properties in sub-blocked loops and to take advantage of favorable properties if the
delay is a multiple of the sub-blocking length, delays which are greater than the sub-blocking
length are broken up into two separate delays, one which is a multiple of the sub-blocking
length and one which contains the remainder (as shown in Figure 6.8c).

Another operator that takes advantage of a specialized blocking implementation is the
dot product (inner product). When sub-blocked by wrapping in a sub-blocking domain, the
outer loop iterated over the elements in the sub-block while the inner loop iterated over
the elements in the vector of samples. This ordering of the loops is disadvantageous when
computing FIR filters, particularly long ones. When computing FIR filters, the inner loop
iterates over all the coefficients in the filter. In the case when the filter is long, there may
not be enough architected vector registers to keep all coefficients present in the register
file. This results in some coefficients needing to be reloaded between the computation of
different inner products over the sub-block. Alternatively, the order of these two loops can
simply be exchanged. In this case, each of the dot products is computed for each coefficient.
This allows each segment of coefficients to be read into a register once for the computation
of a sub-block, shared across each of the dot products. Inspection of the disassembled
executable using these two techniques on a 49-tap RRC filter revealed that the compiler
was not performing the loop interchange itself, despite it being a well-known technique in
HPC12. This result was somewhat surprising as it is one of the ideal cases for automated loop
interchange with a simple exchange of the loops being possible without any modification of
indexing logic within the loop. However, analyzing loop interchange in general can be tricky
to statically analyze as cache behavior can be a dominant effect. In this baseband DSP

12For example, [165], an optimization guide for Intel processors details the potential benefits of loop
interchange.
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application, especially when finely partitioned across cores, the amount of required working
state is rather small. This can help alleviate some cache challenges that could be a factor in
more general loop interchange situations. In the RRC case, providing the specialized inner
product implementation resulted in a 17.24% performance improvement over the sub-block
domain encapsulation method.

Additional operators which provide specialized blocking implementations include rate
changes and constants. These blocks can leverage compressed representations of data which
will be discussed below.

Compressed Data Types

While not specific to blocking, opportunities for compressed datatypes are especially
abundant when dealing with sub-blocking and rate changes. For example, the repeat rate
change block duplicates samples at its output. When operating in vector mode, as shown
in Figure 6.9, the resulting vector contains multiple successive copies of each value. Any
time there is redundant information in a consistent pattern, there is an opportunity to use
a compressed representation. In the case of the “repeat by n” block, the actual size of
the resulting vector can be 1/n the length with each value only given once. By changing
the indexing logic, each value can be associated with multiple indexes. Depending on the
repetition factor and the size of the elements, this can result in substantial space savings,
reducing the amount of memory operations required and potentially improving cache per-
formance. Laminar contains support for handling compressed repeated data types and can
generate the appropriate indexing logic if the destination node uses the provided indexing
helper functions. The same technique is used by “constant” nodes when sub-blocked. Since
they, by definition, remain constant across different elements in a sub-block, they emit re-
peated types. Since constants can be vectors or larger arrays, such as when storing constant
coefficients for filters, the space savings when using the compressed repeat data type can be
substantial.

Another opportunity for compressing data being passed through the design comes when
tapped delays are sub-blocked. Before sub-blocking, if the input to a tapped delay is a scalar,
its output is a vector. After sub-blocking, the dimension of the output is expanded, in this
example to a matrix, with the new dimension being the sub-blocking length. The decision
on how the dimensionality should be expanded depends on the language being used with C
favoring prepending the dimension to the list. As shown in Figure 6.10, the resulting matrix
exhibits a specific symmetry across the primary diagonal. Specifically, the matrix fits the
definition of a Hankel Matrix where the elements along the skew-diagonals are constant [166],
[167], although the matrix arising from the sub-blocked tapped delay is not guaranteed to be
square13. In addition to having useful properties, the Hankel matrix can be compressed into
a vector representation with rows and columns easily provided with modified indexing logic
as demonstrated in Figure 6.11. Either row access or column access can be made fast due

13Some definitions specify Hankel matrices to be square. Under this stricter definition, these matrices
can probably be best viewed as Hankel-like.
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to the symmetry; however, the compiler needs to be aware of the access pattern to provide
the most effective indexing. Due to the amount of redundant data in the Hankel matrix, the
compressed form provides significant space savings and improves performance significantly
in FIR filter contexts by avoiding excessive data movement. Laminar supports the output
of compressed Hankel matrices from sub-blocked tapped delays. The tapped delays are still
able to use the multiple implementations discussed in subsection 6.2.3 with operators such
as dot products in FIR filters being able to leverage the compressed representation to reduce
memory operations and cache pressure.

Tapped Delay 2
(with Passthrough)

Oldest First

x Out1x[n] x[n-2, n-1, n]

Tapped Delay 2
(with Passthrough)

Oldest First

x Out1

x[n, n+1, n+2, n+3]

Row Major:
x[n-2, n-1, n  ;
  n-1,   n, n+1;
    n, n+1, n+2;
  n+1, n+2, n+3]

Col Major:
x[n-2, n-1, n  , n+1;
  n-1,   n, n+1, n+2;
    n, n+1, n+2, n+3]

Figure 6.10: Sub-Blocking Tapped Delays

Cyclops Performance Improvements

Due to the complexity of implementing automated sub-blocking, preliminary experiments
were conducted where segments of a Laminar generated Cyclops design were sub-blocked by
hand. These sections included FIR-heavy partitions, such as the RRC filter and equalization.
The results were so promising that the decision was made to automate sub-blocking into a
Laminar pass. To demonstrate the impact of this pass, two versions of Cyclops Rev 1.40 are
presented in Figure 6.12, one with sub-blocking disabled and one with sub-blocking enabled
using annotated sub-blocking values inserted in the design. While a few partitions suffer
a small performance drop, several experience substantial improvements with the Timing
Recovery Golay Correlator and Peak Detection partition experiencing over 2.8x computation
speedup. This approximately doubled the overall system performance.
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n-2 n-1 n n+1 n+2 n+3
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Due to the symmetry (Hankel Matrix), operating on opposite dimension can still be fast, though compiler needs to know the access pattern.
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n-2 n-1 n n+1 n+2 n+3

Figure 6.11: Hankel Matrix Compressed Representation

6.3 The Role of Design Modeling

With such a wide range of possible optimization techniques, it can be challenging to
determine which directions require the most attention. At several points in this project, a
rough model of Cyclops baseband demonstrator was created and compared against the results
achieved through the Laminar flow. This model, which was constructed by hand, along with
a fine grain partitioning of the radio was used to identify mismatches in expected performance
and achieved performance. One case where this analysis was exceptionally helpful was in
identifying a lack of expected vectorization speed-up, particularly in the RRC filter. With
the baseband executing on an AMD Epyc 7002 series CPU, a vectorization gain of about
eight was expected based on eight 32-bit single precision floating-point numbers fitting in a
256-bit vector register. However, as shown in Figure 6.13, the RRC filter accounted for a
similar ratio of the total compute time as was predicted from the model for a scalar design14.
This indicated that the expected vectorization gains were not being realized, which led to
an in-depth inspection of how the FIR filters were implemented. This effort culminated in
the circular buffer investigation discussed in subsection 6.2.3. After modifying the tapped
delay implementation, a speedup of 7.78x was observed in the RRC filter, which is close to

14The analytical model provided an estimate of the relative workloads of the different modules in the
design, excluding FSMs. The total workload of the model was scaled to the rate of a single-core version of
the radio (using shift register tapped delays) compiled by Laminar to produce the expected compute time for
each module. The model itself does not estimate execution times but rather the number of scalar operators
per module.
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Figure 6.12: Effects of Sub-Blocking on Cyclops Rev. 1.40
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Figure 6.12: Effects of Sub-Blocking on Cyclops Rev. 1.40

the expected vector performance gain.
An important thing to note about the Cyclops computation model is that it takes the

expected execution rates of each operator into account when estimating the compute load
of each module. The expected execution rate for each operator is determined based on clock
domains and the expected conditional execution behavior for a given packet duty cycle.
The impact of taking these different factors into account is shown in Figure 6.14. This
complicates the automation creation of the design model. While the expected activity factor
of operators in fixed-rate clock-domains can be easily determined by inspecting the compute
graph, determining how often nodes in conditional execution domains execute can be difficult
to gauge without simulating the design with representative test vectors or annotations by the
designer. This is a similar problem to what is experienced in EDA tool digital design power
estimation. The tool can provide rough power estimates with the expected static power draw
of the transistors and some assumed activity factor. However, the tool can provide better
estimates when activation factors are given for each transistor based on simulation data with
representative workloads for the circuit15.

15For an example of power modelling with different levels of detail in an EDA tool (Xilinx Vivado), see
[168].
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Chapter 7

Inter-Core Optimizations

The work performed by Laminar-generated programs can be broadly divided into two
types: computation and communication. The computational workload involves the exe-
cution of the various operators specified in the DSP design and was the primary focus of
chapter 6. However, the various compute optimizations within single cores are often not
sufficient to attain the levels of performance desired for the radio system, necessitating the
partitioning of the design across cores operating in parallel. As discussed in section 5.2,
data passing between partitions transit through single producer, single consumer, FIFOs
that are automatically inserted by Laminar during emit. A conceptual example of FIFO
insertion is shown in Figure 5.6. Because of the dependency of computation on receiving
input data, the performance of the FIFO can have a strong impact on overall performance.
This chapter discusses the implementation of the partition (core) crossing FIFOs, different
options available within Laminar, and ideas on how to further improve performance.

7.1 Lockless x86 64 Single Producer, Single

Consumer, FIFO

All FIFOs inserted by Laminar have a single producer (source partition) and a single
consumer (destination partition). Values which are communicated to multiple partitions
are communicated via independent FIFOs. Constraining each FIFO to only have a pair of
threads accessing it simplifies the required synchronization. On typical x86 64 architectures,
single producer, single consumer, FIFOs can be implemented without the use of explicit
locking constructs thanks to the stricter Total Store Ordering (TSO) memory model [103],
[110] mentioned in subsection 3.2.2. One such implementation uses two shared pointers to
contain the read and write positions, as well as a shared buffer to hold the data being sent
(shown in Figure 7.1). The dequeue operation at the consuming thread takes the following
steps:

1. The consuming thread reads the write pointer. If the write pointer was modified by
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the producing thread, the new value will be fetched via the cache coherency protocol.
If not, the value may already be present in the consuming thread’s cache and should
be fast to access.

2. Using the current position of the read pointer and the value in the write pointer, the
occupancy of the FIFO is computed locally by the consuming thread.

3. If the FIFO is not empty, the corresponding data is read from the shared buffer. This
data will have been last written by the producing thread and will be either invalid
or not resident in the consumer thread’s cache. The values will be pulled into the
consuming thread’s cache via the cache coherency protocol. If the FIFO is empty, the
consumer returns to step 1 and continues to poll the write pointer.

4. Read Pointer Update:

a) If copied to an intermediate array, the consumer updates the read pointer after all
reads have completed. If recently read by the producing thread, the read pointer
may be in the shared state with the consuming thread required to obtain exclusive
access to the read pointer via the cache coherency protocol before a new value
can be written.

b) If directly using the shared buffer values in the compute function (without an
intermediate copy to a local buffer), the read pointer is only updated after the
compute function is finished for the current block.

The enqueue operation at the producing thread takes the following steps:

1. The producing thread reads the read pointer. If the read pointer was modified by the
consuming thread, the new value will be fetched via the cache coherency protocol. If
not, the value may already be present in the producing thread’s cache and should be
fast to access.

2. Using the current position of the write pointer and the value in the read pointer, the
occupancy of the FIFO is computed locally by the producing thread.

3. If the FIFO is not full, data is written into the shared buffer. This data will have
been last read by the consuming thread and be in the shared state in the cache. The
producing thread will need to re-acquire exclusive access to the cache line containing
the addresses to be written via the cache coherency protocol. If the FIFO is full, the
producer returns to step 1 and continues to poll the read pointer.

4. After the writes to the shared buffer have completed, the write pointer is updated.
If the write pointer has been read by the consuming thread, it will be in the shared
state in the cache. The producing thread needs to re-acquire exclusive access before
the update can occur.
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Figure 7.1: Lockless FIFO (Loop in Arc Represents Polling, Red Represents Atomic Access)

While there are no guarantees on when a write will be perceived by other cores, writes
should appear in the same order to all the cores in the system under the TSO consistency
model1. This is important as it means that, if writes to the shared buffer occur before
the write pointer is updated, the values in the shared buffer will be up to date from the
perspective of the consuming thread once it’s reading of the write pointer indicates that
data has been enqueued on the FIFO. For this to work in practice, it is also important that
the reads and writes to the pointers are atomic (i.e. are perceived to occur at once). Problems
can arise if reading/writing the pointer occurs in multiple, separable, steps. In these cases,
it may be possible for a thread reading the value to retrieve a stale value for one part of the
pointer and an updated value for another part, leading to a corrupted read. Fortunately,
x86 64 supports atomic access for data types that are used for the pointers/indexes2.

It is important for the C compiler to be aware of the memory access requirements of
the FIFO. Specifically, the compiler should not re-order reads/writes across the read/write
pointer accesses, and it should be aware that the values of the pointers and data can be
changed outside of the function. Historically, this would have been achieved by using the
volatile keyword in C, indicating that a side effect may exist with access to a particular
memory location, along with other ISA and compiler-specific tricks [170], [171]. However,
the semantics surrounding the volatile keyword have historically been somewhat nebulous
and can slow down data access if used incorrectly. A more current best practice is to use
the standard atomic library, available in newer versions of the C language, to formalize con-
straints on memory access, including memory ordering and atomic operations [170]–[172].
Specifically, Laminar uses standard atomic’s release/acquire memory ordering semantics on

1There is relaxation of this requirement for string operations, which are discussed in [103].
2The C/C++ standard ‘atomic’ library provides a function, atomic is lock free, which can be used to

check if operations on a particular type are atomic [169], [170]. For the x86 64 systems used in this project,
each has indicated that the atomic operations on the FIFO pointers were lockless.
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the FIFO read/write pointers. Standard atomic prevents the compiler from reordering mem-
ory operations across the pointer accesses as appropriate and ensures that accesses to the
pointers are atomic. x86 64’s stricter memory ordering generally provides acquire/release
semantics without the use of locks or explicit memory fence instructions [170], [171], [173].
This should improve performance over schemes which require more complex handshaking
or enforced exclusive access to the FIFO. While standard atomic should insert appropriate
locking and fence instructions on ISAs with more relaxed memory models, specialized im-
plementations of the FIFO may perform better on those platforms. As this project focused
on x86 64 based CPUs, only the FIFO implementation described above is implemented.
However, adding additional FIFO implementations should not be overly onerous as Laminar
defines an abstract FIFO class to handle most interactions with compiler passes.

7.1.1 FIFO Options

Laminar generated FIFOs support several different configuration options, some of which
are revealed to the user via the CLI and some which require a minor tweak to the Laminar
source to use. One of the most useful options is the ability to use local copies of the read
and write pointers when possible, to avoid unnecessary latency fetching the current pointer
value. In this mode, a local copy of the opposing thread’s read or write pointer is kept
and used to compute the FIFO empty/full status as appropriate for the given thread. If
status indicates that the operation (enqueuing or dequeuing) can occur, the operation is
allowed to proceed. However, if the current FIFO status indicates that the desired operation
cannot occur, the current value of the opposing thread’s pointer is read and the local copy is
updated. The FIFO status can then be rechecked. For the consuming thread, this reduces
latency and cache coherency traffic if multiple items are present in the FIFO at the time the
write pointer was last checked. The thread can consume up to the number of items it last
knew were in the array before rechecking the pointer. The producing side is similar, with
the read pointer having a local copy and the amount of empty space in the FIFO being the
critical factor. In Laminar, this mode is known as index caching and can be enabled on the
consuming side, the producing side, both, or neither across all FIFOs in the design via a
command line option.

Another option involves how values are copied between the FIFO and local buffers (if
used). Options include classic for loops, calls to memcpy, calls to builtin memcpy inline, or
calls to a function using vector intrinsics to perform the copy (fast copy unaligned ramp in).
builtin memcpy inline is a LLVM/clang language extension which guarantees a special-

ized, inline implementation of memcpy will be used with the requirement that the size
of the copy be known at compile time [174]. While Laminar’s approach was to generally
avoid the use of compiler-specific features or intrinsics, this was one case where coaxing the
compiler to perform the desired action was challenging. In many cases, C compilers can
detect a memory copy operation implemented with a for loop and internally convert it to
a memcpy call. This is typically desired, as memcpy often provides the most efficient im-
plementation of memory copy operations on a given platform. However, it was observed in
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several disassembled binaries that the compiler would sometimes include calls to memcpy
rather than inline the operations contained within memcpy. Since all copy sizes are known
at compile time, the added delay of the function call along with the more general logic
in memcpy resulted in degraded performance relative to when the operations were inlined.
The builtin memcpy inline function forces the specialization and inlining of the opera-
tions which resulted in improved performance. There can be some occasional interference of
builtin memcpy inline with other compiler optimizations and is why the implementation

of the Delay block does not use it by default. The style of FIFO copying can be changed by
modifying the constructor in the ThreadCrossingFIFO class and re-compiling Laminar.

7.2 Communication/Computation Overlap

As can be seen in Figure 6.12b, communication takes a non-negligible amount of the total
time spent by each CPU core in a radio system. Currently, there is serialization of FIFO
transactions and performing useful computation on blocks. This is in part because the FIFO
conditions must be checked before read or write transactions can be performed. It is also
partially because data is copied to/from local buffers that the compute function interacts
with. While there can be some overlap due to speculative and out-of-order execution, this
is limited to the boundaries around the call to the compute function. With large blocks to
operate on, the amount of overlap provided would be small.

Ideally, communication and computation would overlap so that execution units in the
CPU can be performing productive work while data movement is occurring in parallel. In
general, overlapping communication and computation in systems with some degree of load
imbalance would mostly affect bottleneck threads as other threads will be forced to either
wait for input data to become available or wait for space in output FIFOs to open up3.
With ideal load balancing, a block always available at each input FIFO, and space always
available in each output FIFO, overlapping communication and computation can impact
each thread. Several different techniques to introduce more communication/computation
overlap were attempted with Laminar, some of which can still be emitted with command
line options. However, most attempts yielded either inconsistent or suboptimal results.

In-Place Buffer Access

The default FIFO behavior is for each accessing thread to copy data between a local buffer
and the shared buffer in the FIFO. This allows each thread to operate on its local copy of
the data without causing potentially unwanted cache coherency traffic. Unintended cache
contention can occur if a reading thread and a writing thread are both accessing a single

3Since Laminar uses fixed length FIFOs, in steady-state operation FIFOs going into bottleneck threads
will fill up on average and FIFOs exiting bottleneck threads will tend to be empty. One exception is when
feedback loops have insufficient initial state. In this case, participating threads in the loop can be artificially
starved.
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shared cache line in the FIFO buffer, possible if the size of an individual FIFO transaction is
not a multiple of the cache line size. The Laminar FIFOs support an alternate mode where
the threads can read/write directly to the shared buffer. One advantage of this approach is
reduced memory requirements as no duplicate copy of the data is required. Also, if data is
access by enabled subsystems, providing direct access to the shared buffer can reduce the
number of required memory read operations when the subsystem is disabled.

Initial tests of direct FIFO buffer action with a simple cascaded FIR filter design, similar
to the one used in the experiments depicted in Figure 5.11, operating on an Epyc 7002 series
processor appeared promising with overlap appearing to occur4. Results from the test are
shown in Figure 7.3 compared to the default FIFO implementation copying between local
buffers and the shared buffers shown in Figure 7.2. An early version of Cyclops running
with a 5% packet duty cycle, generated by an earlier version of Laminar, and running on the
Epyc 7002 series CPU yielded a net speedup. However, the results were not consistent across
threads with some experiencing a speedup and some experiencing a slowdown. Threads which
contained enabled subsystems appeared to show over 100% speedup, but this was likely due
to avoiding reads when the subsystems were disabled. This effect has been largely negated in
more recent, sub-blocked, versions of the Cyclops radio which use static decimation for the
symbol domain and have reduced their reliance on enabled subsystems to aid in vectorization.
When the packet duty cycle was elevated to ≈ 80%, overall performance was degraded when
using in-place FIFO access. When moving to the Ryzen Threadripper 3970X, use of in-place
FIFO access degraded performance for both 5% and 80% packet duty cycles.

The current Cyclops design with sub-blocking was tested with in-place FIFO access with
significant performance degradation observed (shown in Figure 7.4) compared to the version
with the default FIFO implementation (shown in Figure 6.12b). Because of the observed
performance degradation with the full baseband, the decision was made to offer in-place
FIFO access as an option but not to make it the default.

Double Buffering

In an effort to alleviate the problems encountered with in-place access to the FIFO buffer,
an alternative approach with multiple local buffers was attempted. This approach uses one
local buffer to contain the block currently being processed in the compute function and
another to contain blocks in transit. On the input side, a sample is copied into this secondary
local buffer during each execution of the blocking loop in the compute function5. The idea is
that this copy operation is not depended on by any operation in the compute function with
out-of-order execution allowing the load to execute in parallel with the compute function.
After the compute function completes executing, the local buffers are swapped for the next
block. A similar approach is used for the output FIFOs with one local buffer used to store
the results for the current block as they are computed, and another local buffer used to hold

4When using direct FIFO buffer access, the Laminar inserted telemetry measurements cannot isolate the
time spent accessing the FIFO. This time is included in the compute measurement.

5Sub-blocking was not yet implemented when this experiment was conducted.
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Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 10.2529 10.318 12.4714 10.2938 13.8806

Waiting for Output FIFOs 5.8303 5.7692 3.4776 1.6352 2.1181

Waiting for Input FIFOs 1.5592 1.5452 1.5568 2.2443 1.9683

Writing Output FIFOs 1.6361 1.7538 1.7168 1.4941 1.4253

Reading Input FIFOs 2.5062 2.4705 2.5696 6.0742 2.4944

Compute 35.1814 35.1096 35.174 35.2247 35.0796
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Figure 7.2: Cascaded FIR Filter Test (Early Laminar Version) - Default FIFO Implementa-
tion

the results for the last block. In each iteration of the blocking loop in the compute function,
a sample is copied from the secondary buffer to the shared FIFO buffer. Again, there should
be no dependencies between this operation and operations inside of the compute function,
allowing the out-of-order core to execute the store in parallel with operations in the compute
function (subject to the x86 64 memory consistency model).

The hope was that this approach would provide the benefits of computing with local
copies of data while being able to perform FIFO accesses in parallel. An initial test with
concatenated FIR filters (shown in Figure 7.5) was promising with performance similar
to that of the version with direct FIFO buffer access (shown in Figure 7.4). However,
performance was less consistent with one showing growth in the Compute + FIFO Access
time and slightly slower overall performance.

A principal disadvantage of the double buffer technique is the additional state required,
both in terms of memory and the data which must be available in FIFOs. The addition of a
second local array places increased pressure on lower-level caches, potentially evicting values
that are required for computation. If used on inputs, two blocks of input data are required
before a result is produced with double buffering. If double buffering is also used on outputs,
three blocks of data are required before an output is passed to downstream threads. This
is an acute problem for designs which contain feedback loops across partitions with limited
state. If viewed similarly to a KPN, each thread would consume two tokens immediately
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Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 6.8265 6.9445 6.8365 6.8263 6.8251

Waiting for Output FIFOs 4.1204 3.9795 3.7901 1.5805 1.9149

Waiting for Input FIFOs 1.5943 1.5797 1.8562 3.2561 3.0718

Compute + FIFO Access 35.3189 35.3563 35.3773 36.1973 36.0483
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Figure 7.3: Cascaded FIR Filter Test (Early Laminar Version) - In-Place FIFO Implemen-
tation

and would only produce a result on each received token after the second.
Because of the increased state requirements, tests on an early version of Cyclops were con-

ducted with reduced transaction block sizes. At 5% packet duty cycle, the Compute + FIFO
Access time was larger in most threads relative to the direct in-place FIFO buffer access.
This was possibly caused by the reduced transaction block size less effectively amortizing
the fixed costs associated with FIFO access. However, because the block size reduction was
required to employ double buffering on the Cyclops design, the double buffering technique
was set aside. Currently, double buffered FIFO implementations are not implemented for
sub-blocked designs.

Software Prefetching

Akin to the double buffering approach is the use of software prefetching instructions to re-
quest cache lines be pulled into a core’s local cache before the read is issued, avoiding latency
on the load6. Prefetching is a sufficiently important technique that hardware prefetching
units are included in many modern CPUs including the ones used in this project, such as the
Ryzen Threadripper 3970 [17]. These prefetching units analyze the memory operations is-
sued by the processor and attempt to anticipate future requests, prefetching values for those

6For more information on prefetching, including software prefetching, see [16], [175].
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Figure 7.4: Cyclops Rev. 1.40, Sub-Blocked, In-Place FIFO Access

requests ahead of time. Despite its simple premise, prefetching can be very challenging,
requiring a fine balance between fetching data into the cache early enough to be useful but
not so early that useful information is prematurely evicted to make room for the prefetched
value [175]. ISAs like x86 64 often provide software prefetching instructions that act as hints
for the CPU about what values will be accessed soon. However, software prefetching has had
an unreliable track record in general-purpose computing with its use sometimes degrading
performance relative to relying on the hardware prefetcher. The hope was that the more
predictable data access pattern in dataflow design would lend itself to software prefetching.

An attempt was made to add prefetch instructions to the compute function operating
with direct access to the shared FIFO buffer to prefetch samples ahead of the iteration in
which they would be used. However, this approach resulted in degraded performance over
simple direct FIFO buffer access. Software prefetching may be worth re-investigating at some
point, but it is likely that fine tuning will be required to, at the very least, avoid harming
performance.
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Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Telemetry/Misc 6.8816 6.8012 6.8605 6.7977 6.8082

Waiting for Output FIFOs 4.3426 4.4804 3.4156 1.6548 1.9423

Waiting for Input FIFOs 1.5869 1.5718 1.8865 3.4434 4.0282

Compute + FIFO Access 35.1779 35.1355 35.8264 36.0931 35.2104
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Figure 7.5: Cascaded FIR Filter Test (Early Laminar Version) - Double Buffer FIFO Imple-
mentation

7.3 Lockless, Reduced Handshake, FIFO Concept For

x86 Systems (Concept)

One challenge with FIFO communication on a conventional shared memory system is
that a handshaking procedure is required to determine if the FIFO is ready to support an
enqueue or dequeue operation at a given moment in time. While maintaining local copies of
the last known read and write pointers (as discussed earlier) can help reduce the number of
required handshakes in cases where multiple elements are available (on the consuming side)
or multiple empty slots are available (on the producing side), handshaking is still regularly
required. One method of addressing this relatively fixed overhead is to transfer multiple
samples at a time so that the cost of the handshake is amortized over more elements. This
is accomplished by blocking transactions between threads and has been an important tool
to improve overall performance.

Conceptually, another way to reduce the overhead associated with FIFO transactions
would be to virtually guarantee that data would be available at the consuming side and
room was available on the producing side. In this case, accessing the FIFO could occur
unconditionally without the required handshaking to check the FIFO status. One way to
achieve this would be to ensure that each thread in the system operated steadily at the same
rate so that the enqueuing and dequeuing rates of each FIFO were exactly matched. This
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type of operation is possible in digital hardware designs where different modules can share
common clocks. However, it was not clear if this would be possible on modern multicore
CPUs which often contain multiple power and clock domains that can be unsynchronized.
A series of experiments were conducted to see if this type of system was even possible on a
modern CPU and to quantify any performance gain that can be achieved.

The proposed Reduced Handshake FIFO is similar in structure to the standard FIFO
discussed earlier. Like the standard FIFO, there are shared read and write pointers which
track the state of the FIFO. The consuming thread modifies the read pointer, and the
producing thread modifies the write pointer. The threads share a buffer space where data
to be transacted is written by the producing side and read by the consuming side. The
Reduced Handshake FIFO adds another shared variable, called the rate adjustment variable.
Due to interrupts, kernel housekeeping, and the possibility of unsynchronized clocks, it is
anticipated that minor adjustments will need to be made to the speed of the communicating
threads. The consuming thread periodically reads this value and modifies its execution rate
accordingly. Rate adjustments were implemented using NOP insertion into the execution
loop but modifications to the core clock via DVFS is a compelling alternative. Each block
being transacted also optionally contains two ID fields. These ID fields, combined with
acquire/release semantics and the Total Store Ordering (TSO) x86 64 memory model, are
used to detect overflow or underflow errors. A separate shared variable is used for the reader
to signal that it has detected an overflow or underflow condition.

Thread
B

(Reader)

D0
D1
D2

0

Thread
A

(Writer)

Read Ptr.

D3

ID0A

ID1A

ID2A

ID3A

ID0B

ID1B

ID2B

ID3B

0
Rate Adjustment

0
Error Detected

Figure 7.6: Reduced Handshake FIFO (Dotted Line Represents Occasional Access, Red
Represents Atomic Access)

The FIFO is initialized to be half-full, as this provides the maximum headroom for an
overflow or an underflow. Before starting, the reading and writing threads touch the values in
the buffer and the shared flags in the same order they would if the system was in steady-state.
This sets the cache state to be as close as possible to what is present during steady-state
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operation and helps prevent a large transient startup rate imbalance between the producer
and consumer.

In this experiment, the producing thread acts as the speed controller. It can control its
own rate by inserting NOPs in its regular computation and can communicate the requested
rate changes to the consuming thread via the shared rate adjustment flag. Occasionally, the
writer checks the read pointer value and computes the FIFO occupancy. It then checks how
far away the occupancy is from the desired set point, half-full, and computes rate adjustments
for itself and the consuming thread. This computation attempts to keep the rate high while
alleviating any imbalance. Because the occupancy check occurs occasionally, the read pointer
is allowed to remain in the exclusive state in the consuming thread’s cache, allowing fast
writes. Because the consuming thread does not need to check the write pointer, the pointer
becomes a local variable of the producing thread and can be accessed quickly. Occasionally,
the reading thread checks the rate adjustment flag and reacts accordingly. Because this is
an infrequent check, it should have a relatively low impact on average performance. The
rate at which it needs to check is governed by how closely the rates of the two threads can
be maintained and how long the FIFO is (how much headroom exists before an overflow or
underflow).

Write Order

Read Order

D0ID0A ID0B

Actual Block Layout:

D0ID0A ID0B

Figure 7.7: Reduced Handshake FIFO Block Access Order and Organization

In steady-state operation, the producer unconditionally writes blocks to the shared buffer.
It can optionally include IDs which can be used to check if an overflow or underflow occurred.
One method of generating these IDs is to increase the ID by one each time, with two IDs
written for each block. When writing, IDA is written first, followed by the data (no constraint
of write ordering within the data), and then IDB. The consumer unconditionally reads
blocks from the shared buffer. If IDs are present, IDB is read first, followed by the data,
and then IDA. Because of the write ordering preservation of the TSO memory consistency
model, if IDB and IDA match what is expected, the data contained in the block should be
valid. IDB provides a mechanism for detecting underflow or overflow by comparing the ID
with the expected ID at the consumer. IDA guards against an overflow condition in which
the producer begins writing to the block after the reader has begun reading. If an error is
detected, the consumer can signal to the producer via the error detected flag. Depending on
the semantics of the system, this may require the program to reset and restart.
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Multiple rate adaptation algorithms can be used in this closed-loop control system.
Purely open-loop (no adaptation), bang-bang control, and PI control were all investigated.
For each of these methods, efforts were taken to reduce jitter from the OS as it can cause
momentary rate imbalances, requiring larger buffers to absorb. Most of these options are
configurable as boot options to the Linux kernel or can be set at runtime. They include:

• Isolating cores from the Linux Scheduler (isolcpus) and leaving at least one core for
the OS.

• Offloading interrupts from isolated cores (setting smp affinity masks).

• Locking core clock frequencies (or at the very least enforce the same upper bound).

• Disabling CPU boost.

• Offloading RCU callbacks to OS core.

• Disabling watchdog timers.

• Bringing isolated CPUs offline and online to migrate kernel tasks off of them.

For the rationale behind some of these options, see the following application notes on reducing
OS jitter: [141], [142], [176]–[178].

For open loop, a Linux driver (sir: Simple Interrupt Reporter) was created to both re-
port interrupt events and to disable interrupts on cores [179]. In addition, the kernel was
recompiled with support for NO HZ FULL enabled. The idea behind NO HZ FULL is to
reduce the number of Local Timer Interrupt (LOC) events by only scheduling hardware in-
terrupts when required on CPUs with only a single runnable task [176]. However, using the
telemetry from the sir driver, it was observed that NO HZ FULL tended to cause clusters
of Local Timer Interrupt events. Clusters typically appeared around low-resolution software
timer events and appeared to partially be due to timer servicing occurring in the softirq
handler. The interrupts clusters were problematic because they would interrupt the oper-
ation of threads long enough to cause an overflow or underflow condition to occur. It was
determined that avoiding NO HZ FULL resulted in better stability because, even though
potentially more interrupts would occur, they were spread out in time and occurred with
approximately the same frequency on the two cores participating in the experiment. Sur-
prisingly, the open-loop experiments, with proper tuning and interrupts disabled through
the sir driver, were able to run on the order of minutes without failure.

Of the two closed-loop control systems, the Proportional/Integral (PI) controller was the
most versatile and reliable. With parameter sweeps, good initial delays were set for each
participating thread in the communication. The P and I parameters were also set in the
producing/controlling thread. The results were promising with the system running to a test
limit of 2x106 transactions. The performance of the reduced handshake FIFO compared
to a traditional FIFO running on a Ryzen Threadripper 2990WX is shown in Figure 7.8.
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The reduced handshake FIFO does provide a speedup, especially at lower block sizes. As
the block size increases, the advantage decreases as the traditional FIFO can increasingly
amortize the fixed transaction costs. The plot in Figure 7.8 is noisy due to the vector intrinsic
copy function used in the experiment coupled with varying block sizes that are sometimes
not multiples of the vector length. A linear fit model based only on vector aligned block
sizes is shown as a smooth line on the plot.
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Figure 7.8: Reduced Handshake FIFO vs. Standard FIFO (using
fast copy unaligned ramp in Copy Function) - Intra-L3 on Ryzen Threadripper 2990WX

While promising, especially at low block sizes, there are some challenges in using the
reduced handshake FIFO in practice. In a practical DSP system split across several cores,
there will be a network of connections which will all need to be rate adapted relative to each
other. Interconnected local control systems can lead to oscillations that can be challenging
to handle. An alternative would be to have some central controller with global knowledge
of FIFO occupancies which would then issue rate change commands to each thread. With
global knowledge, it would potentially be easier to avoid over-correcting in one FIFO and
causing another to enter an error state. Another problem with practical systems comes from
the initialization of the FIFOs to the half-full state to provide a runway for load imbalances
to be corrected before an overflow or underflow occurs. While not an issue for feedforward
segments, this potentially requires extensive state in loops crossing multiple cores. Because
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of these challenges, this concept has not yet been integrated into the Laminar flow. However,
it likely deserves to be re-visited as it provides tangible performance benefits, especially with
small block sizes. The code used to drive this experiment is included in [180] along with
early versions of core-core benchmarks.

7.4 Inter-Core Communication Benchmarking

Communication between cores is such a significant component of the Laminar compute
model that understanding the expected performance is important to obtain the desired re-
sults. To aid in understanding, a series of benchmark suites were produced to test the
mechanisms used for core-core communication on the target platform. This includes esti-
mating the latency for two threads to exchange values via a single address in memory and
other patterns of data access including FIFOs. Early benchmarks are contained in [180].
These benchmarks provided useful information on the operating characteristics of the mem-
ory subsystem and were exceptionally important when evaluating performance jitter when
evaluating the reduced handshake FIFO concept described earlier.

As the FIFO implementation used in Laminar matured, the C++ based benchmarking
used in [180] was largely superseded by a suite of C based tests in [181] which more closely
paralleled the Laminar FIFO implementations. These benchmarks are used to evaluate the
expected performance of the cache coherency system under different operating conditions.
Scenarios include whether a single pair of threads or multiple pairs are active at once as well
as if paired threads are within the same L3 cache domain or reside in different domains. The
benchmark suite also includes memory bandwidth measurements to check the efficiency of
the memory copy methods as well as to compare against the advertised memory bandwidth
specifications for the part.

The FIFO test results, shown in Figure 7.9, highlight the different performance Laminar
programs experience when communicating within an L3 versus between L3s. It also shows
that the workload present can have a strong impact on performance. For example, there is a
significant throughput gap between a single pair of cores within an L3 communicating (top
blue line) versus when two pairs of cores within the L3 are communicating (orange line)7.
There is also a significant difference between a single pair of cores in different L3 domains
communicating compared to when multiple cores are communicating via the L3.

Comparing the inter-L3 results with what is expected from the memory bandwidth
(shown in Table 7.1), there is a gap. This could suggest that either the method used to
copy data to/from the cache is inefficient or that the interconnect system becomes congested
with cache coherency traffic (or a combination of both). Using memory benchmarks, which
read and write large arrays in memory that are much larger than the cache size, an estimate

7The gray line is when all cores across the system, except for two L3s which are hosting the OS during
the test, are paired up within their L3. This is to test if there is a significant cross L3 performance impact
when almost all communication is contained within L3 domains. The measurements suggest that there may
be some cross L3 effects but that it is small on average.
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Figure 7.9: Measured Throughput of Laminar FIFOs on Ryzen Threadripper 3970X with
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of the achieved memory bandwidth with the same memory access technique in the FIFO
transfers.

Based on DDR4-3200 DRAM, the maximum expected bandwidth per channel is 8∗3200 =
25GB/s. With 4 channels, the expected maximum aggregate memory bandwidth is 819.2
Gbps. This is close to the performance measured using 24 cores and suggests that the memory
access technique (memcpy variant) is performing well8 One possible method to reduce cache
coherency workload is the use of special non-temporal instructions which provide a hint to
the CPU that the data should not be cached [103], [104]. Stores using these non-temporal
instructions should have the advantage of avoiding cache pollution and maximizing memory
bus utilization [104]. However, there is a latency price to pay with this technique, as stored
data needs to completely transit to DRAM with subsequent fetches requiring a full DRAM

8Performance could potentially be improved by changing the NPS setting in the UEFI/BIOS to NPS4 as
described in the AMD Tuning Guide [182]. It should also be noted that only 24 of the 32 cores in the system
participated in the test. One L3 domain, which hosts the OS processes, was not included to avoid polluting
the measured performance. A second L3 domain was not included because, in the other test cases, it would
have been paired with the L3 domain hosting the OS processes. This was carried over to the DRAM tests
to facilitate a closer comparison to the other test cases.
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Mode FIFO Throughput
(Gbps -
Aggregate)

Memory Read
(Gbps)

Memory Write
(Gbps)

Single FIFO Between L3s 50.1 170 (Single Core) 129 (Single Core)

4 FIFOs (Between 2 L3s) 66 343 (Single L3) 179 (Single L3)

4 FIFOs Per L3 Pair * 3 L3 Pairs 135 552 (3 L3s) 230 (3 L3s)

Memory Transfer with 24 Cores
(DRAM Limited)

700 (24 Cores) 209 (24 Cores)

Table 7.1: Measured Throughput on Ryzen Threadripper 3970X with 3200 DDR4 - CPU
Clock Limited to 3.7 GHz, NPS AUTO, Harmonic Mean Over Block Sizes [3400, 4096] Bytes

read. These non-temporal instructions are also weakly ordered and write combining [104],
presenting a significantly weaker consistency model than the TSO ordering provided for most
x86 64 memory operations. As such, explicit use of memory fence instructions is required to
force the memory consistency model expected by the FIFOs.

A version of the FIFO using non-temporal instructions was created and tested against
other implementations. As expected, there was substantial performance degradation using
non-temporal instructions when the communicating threads were within the same L3 domain
(i.e., shared a common high-level cache). However, performance did improve for sufficiently
large block sizes when the communicating threads resided in different L3 domains (shown in
Figure 7.10). The crossover for when the non-temporal approach is better depends on the
specific scenario but ranged from around block sizes of around 400 to 150 Bytes. These block
sizes fall close to most of the block sizes in the Cyclops implementation making it uncertain
if moving to non-temporal FIFOs would be beneficial. Currently, non-temporal FIFOs are
not integrated into Laminar but could easily be added as a configuration option. However,
control should be available on a per-FIFO basis as use of non-temporal instructions when
threads in the same L3 domain are communicating results in significant performance loss.

7.5 Partition-Core Mapping

A significant result of the Laminar FIFO benchmarking analysis in section 7.4 is that
the mapping of threads to cores can have a large impact on the overall system performance.
Because the bandwidth is significantly lower and the latency is higher going between L3
domains versus within them, the performance of the overall system is typically maximized
by trying to constrain as much communication as possible to occur within L3 domains. Even
though Laminar has a fixed block size throughout the system, only being modified when
entering clock domains, the block size is in terms of samples. Depending on the datatypes of
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Figure 7.10: Non-Temporal FIFO Throughput Compared to Other FIFO Implementations
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Figure 7.10: Non-Temporal FIFO Throughput Compared to Other FIFO Implementations

data being sent between threads, the block size in bytes varies, affecting the effective transfer
rate.

Currently, the mapping of threads to specific cores is performed by the designer. To help
the designer in analyzing the communication patterns between partitions, an analysis tool
[183] was written using the NetworkX library [132]. The tool plots the different partitions,
the connections between them, and the volume of data moving through the design per block.
The designer uses this, along with the benchmarking results shown in section 7.4 to inform
the proposed mappings. These mappings can be quickly compiled and tested, creating a
design iteration loop that can be used to refine the placement. The communication analysis
for Cyclops Rev 1.40 running on the AMD Ryzen 3970X is shown in Figure 7.11. While there
are some mappings that appear suboptimal, they correspond well to the compute workload
imbalances present in the design to create a fast overall system.
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Inter-Partition Communication
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Figure 7.11: Communication Analysis of Cyclops Rev. 1.40 Receiver, Units: Bytes/Block
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Chapter 8

Software Radio Co-Design
Considerations

Chapters 5 - 7 discussed different methods employed by Laminar to optimize existing DSP
designs. As these techniques were integrated and tested, it became clear that modifications to
the source baseband design had the potential to improve performance on CPUs. While some
of these techniques are also applicable to hardware designs, they can have an outsized impact
when paired with the constraints imposed by the CPU platform. Each of the techniques
discussed in this chapter were employed in revision 1.40 of the Cyclops receiver.

8.1 Ensuring Sufficient State in Loops

As was discussed in depth in chapter 7, blocked transfers are an important tool to amortize
the fixed costs of a FIFO transfer. One consequence of operating on blocks is that initial
state in FIFOs can only be formed by delays which are complete integer multiples of the
block size being absorbed into the FIFO. When communication cycles exist among partitions
in the design, at least one block of samples is required to avoid deadlock. However, multiple
blocks of initial conditions are required to keep all partitions in the loop active at once.
This is the same case as fixed tokens traveling around a loop in a Kahn Processes Network
(KPN) [18] or synchronous dataflow design [11]. As a result, care must be taken to ensure
that sufficient state exists in communication loops to avoid artificially limiting performance
by forcing some partitions to sit idle while waiting for input data along one of the arcs in a
loop.

A cycle analysis tool [183], was written to help analyze communication cycles within a
design and to report how many blocks of state are available in each loop1. The summary
analysis for Cyclops Rev. 1.40 is shown in Figure 8.1 while information about a single
loop is shown in Figure 8.2. The minimum effective blocks of initial conditions per core
(initial conditions in cycle / number of cores in cycle) for Cyclops Rev. 1.40 is one, in the

1Some of this information is also available textually as a report generated by Laminar.
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tight Equalizer loop and one of the Timing Recovery loops. By inspecting these reports
throughout the development process, Cyclops was modified to include additional state in
loops, especially in slow changing non-critical control loops such as the reset loop.

Communication Cycles

AGC

TR Golay Corr & Peak

TR Var Delay

TR Control

TR Error Calc & Freq Est & Delay Accum

TR Symb Clk & Downsample

TR Early/LateSymb Golay Corr & Peak & Coarse CFO

4

EQ & Demod

9

EQ Adapt

9

Pkt Control & Data Packer

9

2

13

13

9

Figure 8.1: Cyclops Rev. 1.40 Receiver - Cycle Analysis Summary, Units: Blocks of Initial
Conditions in FIFO, Each Color is a Separate Loop

8.2 Coarse/Fine Control Systems

Adding additional delay to loops in a DSP design can be challenging. Many loops in
the design exist as part of feedback control systems whose dynamics change as additional
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Nodes In Cycle: 2, Init Conds: 2, Eff Init Conds: 2, Eff Init Conds Per Core: 1.00

EQ & Demod EQ Adapt2

Figure 8.2: Cyclops Rev. 1.40 Receiver - Cycle Analysis for EQ Loop, Units: Blocks of
Initial Conditions in FIFO

delay is inserted. This is a problem in both hardware and software. For example, multipliers
often need to be pipelined in hardware/FPGAs to attain reasonable clock rates. However,
the sheer amount of state required to accommodate blocked transfers in software presents
a substantial challenge. One established solution to this problem in radio baseband design
is the use of control systems separated into coarse and fine stages. The coarse phases are
often feedforward with the error signal being estimated from the incoming data, a correction
computed based on the estimate, and the correction being applied to the data. One downside
of feedforward estimation is that any error in the estimate will propagate to error in the
corrected values. The upside is that feedforward systems are easily pipelined or, in the case
of Laminar generated designs, can be spread across multiple cores that operate in parallel
without modification2. Feedback systems have the advantage that they can adapt their
correction to the remaining error detected after the correction is applied. Their self-correcting
properly allows them to adapt to changing circumstances. The downside is that feedback
control systems, by their very nature, require a feedback path from the post-correction values,
through the error estimation/correction computation block and back to the point where the
correction is applied. Adding delay to the feedback path without re-tuning can cause the
system to become unstable. One method to address this is to reduce the loop bandwidth,
which slows the rate of adaptation. A complication of this approach is that it can cause
the system to take a long time to correct large errors and to be unable to adapt to rapidly
changing errors.

Combining a coarse feedforward correction with a fine feedback correction (as shown in
Figure 8.3) helps alleviate some of the problems of both approaches when used in isolation.
The feedforward correction can potentially provide a solution quickly. However, residual
error out of the coarse correction is possible, especially if the feedforward estimation relies
on some component of the underlying signal (such as the preamble) that is not always
available. The feedback control system can correct any residual error that makes it through
the coarse correction block. Assuming that the coarse correction block did a reasonable
job correcting the error, the feedback control system’s loop bandwidth requirements are
reduced, facilitating the required pipelining if the feedback control loop has sufficient work

2The FIFOs behave similarly to pipeline stages from an execution standpoint, allowing each partition in
the feed-forward segment to execute in parallel in steady state operation. With no loops among partitions,
the initial state in FIFOs is not a limiting factor.
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that it needs to be split across partitions.

Fine Correct

Estimate Error

Data In Data Out

Estimate Error

Coarse Correct

Feed-Forward Feedback

Figure 8.3: Coarse/Fine Control System Structure

The coarse/fine control system design was used to update the Timing Control subsystem
which had became a significant bottleneck in the design. The timing error is estimated during
the preamble in a feedforward fashion which is then held after the preamble has concluded.
After the preamble, the system moves to a feedback scheme that corrects residual error from
the earlier correction via an early-late detector. The same technique is also used in the
equalizer where the CFO segment of the preamble is used to perform the initial training of
the LMS algorithm. In the header and payload portions of the packet, the equalizer changes
to a decision-directed feedback mode. Finally, the CFO correction now effectively uses the
coarse/fine technique by performing a coarse feedforward estimation during the preamble,
which is used to drive an NCO. The fine correction is effectively performed by the equalizer.
For more details on how these blocks operate, see subsection 2.2.2.

8.3 Blocked and Block-Aware Algorithms

A related technique to the coarse/fine control system technique is to aggregate operations
into blocks. By explicitly operating on blocks of data, it may be possible to obtain better
performance than what is available when relying on the automated sub-blocking provided by
Laminar alone. An example of this technique is the Cyclops equalizer, which uses Block-LMS
[93], [94]. The algorithm gathers error estimates into a block of n symbols from which a new
set of correction coefficients are computed every n samples. This is accomplished internally
by placing the coefficient computation in a downsample domain with a repeat output. Thanks
to the compressed datatype, the FIR portion of the equalizer can use constant coefficients
for a block’s worth of inputs, reducing the required work to load new coefficients for each
input. Also, the blocked computation allows the coefficient correction accumulation to be
heavily vectorized even though it relies on a loop with state to hold the previous coefficient
values. Instead of the coefficient accumulator running every cycle and passing its output to
the correction FIR filter only every nth symbol, the accumulator is only modified every n
iterations with the aggregate correction coming from the block of n symbols. The block size
of the Block-LMS algorithm is set to be the same as the sub-blocking length to facilitate
these improvements.



CHAPTER 8. SOFTWARE RADIO CO-DESIGN CONSIDERATIONS 139

Keeping the eventual sub-blocking length in mind can also help extract the most perfor-
mance from the Laminar sub-blocking pass. For example, the AGC originally had a tight
feedback path which forced the entire loop to be contained in a single sub-blocking domain.
By slightly increasing the delay in the loop to a multiple of the sub-blocking length, the
sub-blocking pass was able to break the loop apart and sub-block each component, leading
to a significant performance gain.

8.4 Fixed Decimation

Early versions of Cyclops made extensive use of enabled sub-systems. They formed
the basis for the symbol domain and were used in other locations in an attempt to reduce
workload. As the Laminar compiler became more sophisticated, the enabled subsystem
became a source of performance problems.

Prior to the introduction of explicit downsample domains in Laminar, the Timing Re-
covery system generated a strobe signal which was used to indicate when a valid symbol
was available at the output. This strobe signal was used to drive an enabled sub-system
surrounding the symbol domain of the design. At the time, the enabled subsystem provided
a degree of performance improvement because the logic contained within it would not run
for every sample. However, because Laminar transacts in fixed-sized (in terms of samples)
blocks and it was not known a priori which samples would be processed by the symbol do-
main, all samples were passed from the Timing Recovery block to CPU cores handling the
symbol domain. With n samples per symbol, this resulted in approximately3 n − 1 unused
samples being communicated per symbol on average. This is a significant inefficiency that,
when paired with limited core-core rates, can result in noticeable performance overhead. By
moving to a static decimation, the compiler now knows a priori how many samples will make
it through the downsample operator for each block. This allows only the samples which will
be processed by the symbol domain components of the design to be communicated between
cores.

As discussed in subsection 6.2.4, enabled subsystems can also interfere with vectoriza-
tion. Since the decision on when the subsystem executes is determined on a sample-by-sample
basis, some form of masked vector operation is required. Currently, Laminar’s automated
sub-blocking pass constrains enabled subsystems to be contained within a single sub-blocking
domain due to the complexities brought on by the masking requirement. Replacing the sym-
bol domain enabled subsystem with a fixed decimation clock domain allowed sub-blocking
to operate on structures contained within it, resulting in performance gains across many of
the partitions in the symbol domain.

3Timing frequency offset can cause slightly more or less samples being unused on average.
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8.5 Use of Floating Point

The original Cyclops design was aimed at FPGAs which did not include floating-point
hardware units. To better fit the target platform, numbers were represented in fixed-point
form. This allowed the design to take advantage of the integer multipliers in the DSP units
and the specialized integer adder hardware. By contrast, the x86 64 CPUs used in this
project not only have floating-point units; they have more floating-point multipliers than
integer multipliers. Combined with the fact that floating-point automatically handles the
re-normalization operations, which would otherwise need to be performed with shift and
masking instructions after a subset of fixed-point operations, made floating-point arithmetic
especially appealing. It was generally a simple process converting from 14 and 16-bit fixed-
point numbers to 32-bit single-precision floating-point due to an increase in resolution from
those types. However, there were components including a specialized rolling average4 that
reacted poorly to the numeric properties of floating-point arithmetic. These blocks were
removed and replaced with more conventional alternatives that were insensitive to floating-
point associativity.

8.6 Other Laminar Modifications

In addition to the changes described above, Laminar underwent additional modifications
to improve its overall performance. Additional changes include:

• Leveraging the delay insensitivity of reset and parameter freeze lines to introduce
additional state into control feedback paths.

• Removing debugging I/O ports when possible, to reduce the required communication
between cores.

• Replacing Stateflow FSMs with implementations more suitable to Laminar optimiza-
tion passes.

• Replacing Ln and Exp operators with low-resolution Lookup Tables (LUTs) to reduce
computation workload.

• Removing enabled subsystems from Timing Recovery Early-Late and AGC to help
facilitate vectorization with sub-blocking.

4The rolling average used an accumulator and input history to subtract elements that exited the rolling
average window. When a large input entered the system, the accumulator would be pushed out of the
resolution of smaller samples. New samples would have no impact to the accumulator but would be recorded
in the sample history. After the large element was subtracted from the accumulator, the smaller elements
would still be in the history. These smaller items would eventually be subtracted, resulting in a biased
estimate.
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• Reducing Root Raised Cosine (RRC) filter order.5

• Reducing LMS equalizer length.

8.7 Increased Complexity Modifications

The success of the Laminar optimizations and Cyclops design modifications made it
possible introduce some additional logic to the Cyclops radio to improve its efficiency and
add additional features. One of the largest changes was a redesign of the Timing Recovery
block to be more reliable. The changes to timing recovery, along with the addition of a
decision feedback mode to the equalizer, allowed the implementation of 256 QAM support.
This increased the maximum number of bits per symbol from 4 (16 QAM) to 8 (256 QAM),
quadrupling the maximum data rate possible in the payload portion of packets. Changes to
the Timing Recovery block also made it possible to change from operating with 4 samples
per symbol to operating with 3 samples per symbol. This change increased the workload in
the symbol domain for a given sample rate but also increased the bandwidth used from 1/4
to 1/3 of the total captured bandwidth.

5If increased order is required resulting in the RRC becoming the bottleneck, the RRC can be easily
partitioned thanks to relatively little interaction with other partitions and being purely feedforward.
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Chapter 9

Experimental Results

One objective of the various Laminar optimizations and Cyclops baseband revisions dis-
cussed throughout this document was the demonstration of a high-performance software
radio. This chapter details the culmination of these techniques in the Revision 1.40 Cyclops
demo and the framework used to evaluate performance.

9.1 Cyclops Demo

In isolation, radio baseband signal processing does not perform useful work. Only when
data is available at the Tx, transmitted as a frame, and decoded by the Rx is the radio
performing its desired function. It is therefore important when demonstrating the generated
designs to produce relevant stimuli capable of driving the Tx and Rx and to provide a
mechanism to interpret the results. To accomplish this task, a suite of applications and
scripts was written [184] to provide a unidirectional end-to-end demonstration of the Cyclops
radio and to report/record the performance achieved while running. This suite, referred to
as cyclopsDemo, is composed of seven main components:

• The Laminar generated Cyclops Tx Baseband Application.

• The Laminar generated Cyclops Rx Baseband Application.

• cyclopsASCIILink [185]: An application which generates valid Cyclops Frames for Tx
and displays received Cyclops frames.

• bladeRFToFIFO [186] / uhdToPipes [187] / dummyAdcDac: A program which handles
communication with an external radio platform or acts as an internal passthrough from
Tx to Rx.

• Web Based Telemetry Dashboard: To showcase real-time performance in a human
readable form.
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• Scripts to facilitate the building and cleanup of the demo applications, including driving
the Laminar compiler.

• Scripts to run the demo either interactively or in a headless environment with perfor-
mance results collected.

The various applications are linked via named POSIX pipes or shared-memory FIFOs
[146] that present an interface similar to that of POSIX pipes. Relatively early in the
project, it was determined that the POSIX pipes presented a performance bottleneck. All
recent demonstrations use shared-memory FIFOs. The structure of the demo is shown in
Figure 9.1 with cyclopsASCIILink acting as the source for the Tx baseband and the sink for
the Rx baseband. The Tx and Rx basebands are each connected to a program which either
facilitates communication with an external radio frontend or passes samples from the Tx to
the Rx. bladeRFToFIFO and uhdToPipes both facilitate connections to bladeRF and USRP
hardware, respectively. dummyAdcDac provides a mechanism to test the Cyclops baseband
without an external ADC/DAC connected. While the execution rate can be limited by the
speed of the ADC/DAC for the bladeRFToFIFO and uhdToPipes drivers, dummyAdcDac
presents no such limitation and passes samples from Tx to Rx as fast as possible. When
reporting the speed throughout this document, the dummyAdcDac driver was typically used
as it allows the speed to become limited by the capability of the signal processing rather
than the capability of the radio frontend.
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Figure 9.1: Cyclops Demo Architecture

cyclopsASCIILink provides both the stimulus to the Tx baseband as well as the sink for
the Rx. Due to the fixed block size in the Laminar execution model, framing for the Tx
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and de-framing for the Rx both occur in the cyclopsASCIILink application rather than in
the generated DSP code. When generating the frames, it pulls sections from an ASCII text
string ([188] from Project Gutenberg used as the example text). Because the performance of
the Laminar generated signal processing applications is what is under investigation, random
frames are produced before data starts streaming to the Tx baseband to avoid artificially
introducing a bottleneck in the cyclopsASCIILink test application. After a frame is com-
pletely sent to the Tx baseband, the next frame is randomly selected from the pre-assembled
frames. The duty cycle of frames sent to the Tx (the amount of blank space between packets)
can be set as a parameter to cyclopsASCIILink. For most Cyclops Rx results presented in
this document, the duty cycle was set to 100% or back-to-back packets.

One of the scripts included in cyclopsDemo, build.sh, manages:

• Compiling the Laminar compiler.

• Generating the Cyclops Tx and Rx baseband sources using Laminar.

• Compiling the generated Tx and Rx basebands into executables.

• Compiling cyclopsASCIILink, bladeRFToFIFO, uhdToPipes, and dummyAdcDac.

A script, runDemoTmuxSharedMem.sh, sets runtime options for the demo and starts the
various components in order. The programs are run from within a tmux session, which allows
interactive inspection of the different programs involved in the demo (as shown in Figure 9.2).
An optional web-based dashboard [189] is provided to help visualize the telemetry emitted
by the Laminar generated executables in real time. An example of the interface is shown in
Figure 9.3.

In general, demos and tests are conducted after a clean reboot of the system to return it
as close to a known state as possible. To facilitate this, a simple job queue and runner [190]
was written which reboots the system between jobs. This provided a mechanism for running
jobs in a repeatable way after enforcing a system reboot. When operating in a headless
non-interactive mode, the runDemoAndCollectResultsSharedMemory.sh script is executed
which runs the demo for a specific amount of time (3 minutes in most configurations) and
then saves results and run information for later retrieval. When booting, the system uses
a series of kernel options provided by grub to reduce OS jitter and to present as little
interference as possible to the signal processing and test applications. An example of the
grub configuration is shown in section B.2. One of the most important options is isolcpus
which specifies a list of CPUs to be isolated from the OS scheduler. All except one core are
isolated with one core left to handle regularly scheduled OS tasks. Tasks are scheduled on
the isolated cores by specifically setting the process CPU affinity masks. For the Cyclops
revision 1.40 demo, the number of cores assigned to each process are:

• Cyclops Tx Baseband: 2 Compute + 1 I/O (3 Total).

• Cyclops Rx Baseband: 12 Compute + 1 I/O (13 Total).
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Figure 9.2: Cyclops 1.40 Tmux Demo - Dummy ADC/DAC

• cyclopsASCIILink: 1 Total.

• Radio I/O: dummyAdcDac - 1 Total, bladeRFToFIFO - 2 Total, uhdToPipes - 3 Total.

• OS + Misc: 1 Total.

In addition to the non-default kernel options, a series of scripts [191] are run on boot via
a systemd service to set runtime configurable options. The scripts:

• Set the CPU governor to “userspace” control and set the desired frequency to a constant
value (the stock clock speed of the CPU for experiments in this document).

• Disable boost mode on all CPUs.

• Set the real-time (RT priority) run time to unlimited.

• Disable the IRQ balance service.

• Move interrupts off isolated cores (when possible) by setting. smp affinity masks.

• Offline and online isolated CPUs to migrate kernel tasks off them.
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(a) Live Workload Breakdown Per Thread

(b) Historical Compute Utilization (Percent of Workload Spent Computing) and Rate

Figure 9.3: Cyclops 1.40 Demo - Live Telemetry Dashboard
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For more information on these techniques to reduce OS jitter see the discussion in section 7.3
and [141], [142], [176]–[178].

9.2 Cyclops Performance

Detailed results of running cyclopsDemo with revision 1.40 of the Cyclops receiver on
a Ryzen Threadripper 3970X operating at 3.7 GHz are shown in Figure 9.4. In this run,
Laminar was configured to insert additional telemetry collection in the Cyclops Rx threads
which included how much time is spent in various stages of execution (on average). This
is accomplished by inserting clock reads at various points in the outer thread function. At
the end of each phase, the difference between the timer values is taken and is added to an
accumulator for the time spent in that given phase of execution. Compiler barriers are placed
around the timers to prevent the re-ordering of the timer instructions. However, there is some
slop in the timer measurement with the adjacent operations due to out-of-order execution in
the CPU. Periodically, the counters are written to a log file. In addition to the localized timer
reads, the time between telemetry reports is also tracked. The difference between the sum
of the individual execution region times and the overall time is reported as Telem/Misc as
this unaccounted time should, in theory, be the time spent collecting and writing telemetry.
Plots like Figure 9.4 presented throughout this document are stacked bar plots generated by
an analysis script in [192] and plotted via Excel.

The results for Cyclops revision 1.40 are exceptionally encouraging, with the average
execution speed reaching 88.52 Msps with 100% frame duty cycle using 12 compute cores
and one I/O for the receiver DSP. When the level of reported telemetry is reduced to just
report the achieved rate in the I/O thread, the average execution rate increases to 104.5
Msps. This is a giant leap forward compared earlier versions of the Cyclops baseband which
ran at approximately 2 Msps with 4 samples per symbol on a single core (see Figure 5.8).

Telemetry Lvl Msamp/s Msymb/s Mbps Payload (256 QAM)

Fine Grain 88.52 29.51 236.1

I/O Only 104.5 34.83 278.7

Table 9.1: Cyclops 1.40 Performance, Dummy ADC/DAC

9.2.1 Using a Real Radio Frontend: bladeRF 2.0 xA9

An earlier version of Cyclops supporting 256 QAM was demonstrated at the Berkeley
Wireless Research Center (BWRC) Fall 2021 Research Retreat using a bladeRF 2.0 xA9
[193] radio interface. The bladeRF xA9 was connected to the host computer using USB3
and was configured for an external loopback via cable and attenuator from one Tx port to
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Figure 9.4: Cyclops 1.40 Performance, Dummy ADC/DAC, Breakdown Telemetry Collected

one Rx port. While the bladeRF board is capable of a 61.44 Msps sample rate [193], it is
limited to an aggregate of 80 Msps across all ports as reported by libbladeRF [194]. For a
single board operating in full duplex mode, which was required for the demo, this limited
the achievable rate to 40 Msps (40 Msps allocated to the Tx channel and 40 Msps allocated
to the Rx channel). The ADC/DAC rate of the bladeRF limited the rate of the Cyclops
baseband to 40 Msps, which was reported by the telemetry retrieved from the Tx and Rx
baseband applications.

This the sample rate limitation can be sidestepped by using two independent bladeRF
boards connected to separate USB3 interfaces on the system to avoid sharing bandwidth
between the boards. However, doing this would require fine-tuning the bladeRF FIFO trans-
action properties to avoid underflow and overflow.

Some RF impairments were encountered when testing with the bladeRF 2.0 out of the
box. These impairments included I/Q imbalance, DC offset, and increased noise and reduced
gain when sampling at high rates. The DC offset shifts the constellation while the I/Q
imbalance turns the normally square constellation and warps it to resemble an elongated
rectangle or parallelogram. These distortions are hard for the EQ to correct and should
ideally be handled by calibrating the RF frontends. While some degree of calibration is
possible using an external loopback, the use of lab quality signal generators is best as it
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provides known signals to calibrate against. A note from the bladeRF vendor shows the
effect that proper DC offset and I/Q calibration have on the signal [195]. IQ imbalance
compensation is performed in bladeRFToFIFO if provided with calibration information for
the specific bladeRF board. The RFIC the bladeRF is based on (AD9361) also requires a
set of internal filters to be properly set to provide the highest quality signal [196], [197]. By
modifying the filter settings used by the libbladeRF driver, the noise when capturing larger
bandwidths was reduced. However, there was still a reduction in overall gain which is a
problem when operating with the imited resolution ADC. As a result of the impairments,
Cyclops performs best on the bladeRF when operating in 16QAM mode.

9.2.2 Performance with Simultaneous Multi-Threading (SMT)

To achieve the high levels of performance desired in this project, a significant emphasis
has been placed on presenting the CPU with enough independent work to fully leverage its
parallel resources. This has taken the form of Laminar compiler optimizations and base-
band co-design. One area which has remained challenging is the overlap of communication
and computation. Multiple methods were discussed in section 7.2 with none providing the
performance boost desired. One potential method which had not yet been explored was the
use of the Simultaneous Multi-threading (SMT) CPU feature, discussed in subsection 3.1.5.
SMT allows a core which would otherwise be unable to fill schedule slots with useful work
from a given program to execute instructions from another program. This can apply to both
arithmetic instructions as well as memory access instructions.

For most of this project, SMT was disabled as it can introduce contention for shared re-
sources such as the caches, register files, and certain scheduling resources1. For threads which
provide sufficient Instruction Level Parallelism (ILP) to keep the CPU compute resources
busy, enabling SMT and assigning another compute heavy thread to the same core would
probably not provide much benefit and could potentially reduce performance due to resource
contention. However, with the standard FIFO implementation described in section 7.1, each
compute thread stalls while waiting for FIFO communication to occur. Because future com-
pute operations depend on the FIFO data being retrieved, they cannot be executed, leaving
the compute resources idle. With SMT enabled and two threads scheduled to run on the
same physical CPU (scheduled on the two logical CPUs aliased to the same physical core),
it is possible for one thread to continue executing compute instructions while the other is
stalled waiting for FIFOs.

To test the effect of SMT on running multiple instances of the radio on the same CPU, the
cyclopsDemo was modified to run two instances of the baseband simultaneously [198]. The
partitions of each instance were mapped to logical CPUs such that the identical partition
from each instance would run on the same physical core. For example, the RRC of both
instances ran on physical core 12. The cyclopsASCIILink and dummyAdcDac instances were

1See [17] for information on what resources are statically partitioned and which are shared when SMT
mode is enabled on the Ryzen Threadripper 3970X.
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mapped to different physical cores to avoid any additional contention in these programs
becoming a potential bottleneck. Due to the different mapping, the performance of the
individual instances can be affected. The two instances were benchmarked running solo
as well as operating simultaneously. The results are shown in Table 9.2. If no overlap
(arithmetic or memory) was achieved, one would expect that the two instances would operate
at half the rate, yielding the same aggregate rate as a single instance. However, the results
showed a higher aggregate rate with the two instances running on the same cores with
SMT. The improvement was 16.7% when fine telemetry collection was enabled and 13.12%
when only the I/O thread rate was collected. Looking at the bottleneck thread, part of
the EQ, the expected performance improvement if FIFO reading / writing overlapped with
the computation (with fine-telemetry collection enabled) was 15%. The result of this test
suggests that some degree of overlap occurred. The fact that the performance improvement
was close to what was expected with communication/computation overlap also suggests that,
at least in the bottleneck thread, there was sufficient ILP to generally keep the core busy.
With these results, additional research on the use of SMT, including its use in a single
instance of the baseband, is probably warranted.

Telemetry Breakdown I/O Telem Only

Solo Instances

Inst1 88.05806206 103.4664566
Inst2 88.41301277 102.6829808
HARMEAN Avg Rate 88.23518044 103.0732299

Dual Instances - Simultaneous

Inst1 51.89351776 58.1872536
Inst2 51.25444853 58.40461047
Aggregate Rate 103.1479663 116.5918641
Percent Improvement 16.90% 13.12%

Table 9.2: Performance of Two cyclopsDemo Instances Running Simultaneously on the Same
Physical Cores with SMT Enabled

9.3 Projecting Multi-Instance Performance

When combined with the multi-channel technique discussed in section 4.3, there is the
potential to increase the aggregate throughput of the system beyond 278.7 Mbps in the
payload. The number of basebands that can fit on a given platform depends both on the
number of cores available as well as assumptions about the number of cores which need to
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be allocated to non-DSP tasks such as I/O or running a demo. As implemented, the current
Cyclops demo requires at least 19 cores to run the complete transceiver (Tx and Rx), the local
loopback, the stimulus generation and reporting, and the operating system. Because of the
discrete nature of cores, the existing radio cannot be simply scaled to run on the remaining
CPUs, it would need to be re-partitioned. However, there are some potential optimizations
which could be made including merging the Tx and Rx I/O threads into a single thread.
In a production system, an application such as cyclopsASCIILink may not be required2. It
also may be possible for the Tx and Rx to be split across two different systems (ex. in
a unidirectional link with limited feedback) or across two sockets in a multi-CPU server.
Depending on the assumptions, rough projections of the achievable data rates on different
CPUs are shown in Table 9.3. This assumes that the performance of a single instance scales
perfectly with the change in stock clock rate. It does not include improvements provided by
the Zen 3 microarchitecture in the Epyc processors shown in the table. It is likely that a
single instance of the radio will achieve higher performance on those platforms. Note that
the expected performance is best on the 64 core systems despite them having a lower stock
clock rate. This is both a function of the fixed number of cores required by this version of
the Cyclops baseband as well as the additional compute capability of these 64-core parts.
Note that, while the clock rate of the 64-core parts is lower than that of the 32-core parts, it
is not half the rate when the number of cores is doubled3. Assuming that the interconnect is
similarly scaled to support the additional cores, the 64-core CPUs should be able to deliver
more aggregate radio throughput but possibly spread over a larger number of reduced width
channels.

2Framing would need to be integrated into the Tx but could potentially be merged into the Tx I/O
thread

3This make sense if power limited. Each of these parts has the same Thermal Design Power (TDP) of
280W [107], [199]–[201]. Using the concepts in [202], parallelizing a design while lowering the clock rate and
supply voltage accordingly yields power and energy savings. In the case of these CPUs where power is kept
constant, the non-linear relationship of dynamic power (PSW = 1

2αCV 2
DDF where α is the activity factor,

C is the capacitance which increases with additional logic, VDD is the supply voltage, and F is the clock
frequency) allows the amount of logic to be doubled without needing to half the clock frequency to maintain
the same dynamic power, so long as the supply voltage is adjusted accordingly.
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Threadripper
3970X

Threadripper
3990X

Epyc 75F3 Epyc 7763

CPU Clk 3.7 2.9 2.95 2.45
Cores 32 64 32 64

Expected Single Instance Performance With Perfect Clock Scaling

Baseband Sample Freq 104.50 81.91 83.32 69.20

Rx Only - Single Laminar I/O Thread for All Instances (12 Cores/Instance + 4)

Cyclops Instances 2 5 2 5
Max Data Rate (Payload) 557.33 1092.07 444.36 922.61
Required Cores 24 60 24 60

Rx Only - Laminar I/O Thread for Each Instance (13 Cores/Instance + 3)

Cyclops Instances 2 4 2 4
Max Data Rate (Payload) 557.33 873.66 444.36 738.09
Required Cores 26 52 26 52

Tx & Rx - Laminar I/O Thread for Each Tx & Rx (16 Cores/Instance + 3)

Cyclops Instances 1 3 1 3
Max Data Rate (Payload) 278.67 655.24 222.18 553.57
Required Cores 16 48 16 48

Table 9.3: Extrapolated Rough Cyclops Performance Estimate on Similar CPUs



153

Chapter 10

Conclusion

Broadly speaking, this project aimed to evaluate the realities of modern software ra-
dio. Given the power of modern CPUs and the restricted domain of radio signal processing,
software radio should to be competitive with specialized hardware solutions. However, ex-
perience has shown that producing a high-performance software radio is challenging. By
writing the Laminar compiler and optimizing the Cyclops radio, the hope was to provide
insight into what it takes to produce a fast and efficient software radio, what limitations
still exist, and what can be done to make it easier for radio designers to use general-purpose
CPUs.

This project delivered on these goals by demonstrating the acceleration of a complex
PHY layer receiver from a single core instance operating at around 2 Msps to a multi-core
vectored implementation running at over 100 Msps. With the use of multi-channel tech-
niques and a larger CPU, multiple instances of this baseband could potentially operate with
an aggregate rate close to 1 Gbps in the payload portion of frames. The effective mapping of
the radio design to the parallel resources available on the CPU was essential to achieve the
speedups observed. The Laminar compiler provided a framework to test different techniques
for exposing parallelism in such a way that it could be leveraged by a modern C compiler
to produce a fast executable file. By encoding these optimizations in Laminar, optimiza-
tions that can be tedious for a designer to handwrite can be applied more consistently to a
range of designs, improving designer productivity. Inter-core communications benchmarking
and design analysis tools provide context and feedback to the designer to achieve better
partitioning and mapping results.

At the start of this project, there was a question if a specialized compiler, such as Laminar,
would be able to turn any radio design into a high-performance implementation. As this
project progressed, it became clear that designer awareness of the underlying execution
platform and the optimizations available in the compiler can lead to algorithmic modifications
that yield significant performance improvements. This is similar to how designs must often
be modified from their golden reference to fit the constraints of FPGA or ASIC design.
There is a desire to expect that, because of the power of modern CPUs and the maturity
of modern compilers, that software radio can sidestep careful consideration by a designer.
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While the optimization passes in Laminar and the underlying C compiler certainly have a
strong impact on performance, they perform best when the baseband designer expresses the
design in such a way that the compiler can detect and best exploit the parallelism which is
available.

Dataflow graph representations present a compelling representation which explicitly ex-
presses parallelism and matches what hardware and DSP designers are accustomed to. Be-
cause of its close relationship with RTL descriptions, a design expressed as a dataflow graph
can be either fully or partially mapped to software with a subgraph mapped to a hardware.
Just like when mapping to software, obtaining the best results when mapping the subgraph
onto hardware would likely require modifications by the designer to fit the constraints of the
FPGA or ASIC flow.

10.1 Remaining Challenges

While the project was successful in demonstrating high-speed software radio, several
challenges with platforms and radio designs were identified that can act as impediments to
achieving desired results.

10.1.1 Platform

Modern CPUs are a marvel of digital design with an excellent amount of computing
resources connected in such a way that many of the details can be hidden from general soft-
ware developers. However, when writing code which pushes the boundary of the platform,
understanding these systems becomes essential. The core-core communication benchmarks
discussed in section 7.4 show some of the complexities of memory subsystems and the chal-
lenges which are faced on many-core systems. While the throughput is high and latency
is relatively low when communicating within an L3 domain, communicating between L3
domains incurs a latency and performance hit. Although this is not unexpected given the
complexity of constructing an interconnect across multiple L3 domains spread across mul-
tiple physical dies, it does introduce an added challenge when partitioning and mapping a
DSP design. The impact of this can be reduced by increasing the bandwidth of the inter-
connect links or by increasing the number of cores per L3 domain. In fact, AMD’s Zen 3
microarchitecture increases the number of cores per L3 domain from 4 to 8 [203] which, along
with other microarchitectural changes in the Zen 3 core, would likely provide an uplift to
radio performance.

In general, the complexity of the cache coherency system can present challenges for radio
designers. Even given specifications for a given part, such as memory bandwidth, it can be
unclear what performance is achievable and what configurations provide reasonable results.
Questions arising from this uncertainty include:

• Is all memory bandwidth accessible to a single CPU core or must multiple cores be
involved to saturate the memory link?
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• What is the effect of multiple sets of cores communicating and generating cache co-
herency traffic?

• What block sizes are required to reach a specific level of performance?

• Is the use of alternate memory modes or instructions warranted? If so, when?

By performing inter-core communication and memory benchmarks, such as in section 7.4,
some of these questions can be addressed, guiding the designer on how to analyze the re-
sulting telemetry from running radio designs. However, the best solution would be increased
visibility and control over the cache and interconnect system, given the stylized nature of
communication used by streaming DSP. Given the latency associated with a consuming
thread checking FIFO status and fetching a block to process, another potential improvement
to inter-core communication would be the addition of an out-of-band streaming mechanism
between cores which could operate without explicit involvement of the participating cores
beyond starting the transfer. Recent developments from Intel on Data Streaming Engines
targeted at “optimizing streaming data movement and transformation operations” [204] sug-
gest that changes to the memory subsystem to better support data movement may be on
the horizon.

10.1.2 Radio

As was shown throughout this document, one of the keys to a high-performance real-
ization of radio signal processing is the exploitation of parallelism. In purely feedforward
systems, multiple techniques can be employed to introduce parallelism at the potential ex-
pense of latency. However, most sophisticated radio systems are not entirely composed of
feedforward execution and involve loops. Some of these loops may not be timing critical and
can have delays inserted without issue. However, feedback control systems present a problem
as inserting delays results in changed control system behavior. The coarse/fine method dis-
cussed in section 8.2 can be exceptionally helpful in reducing requirements on the feedback
control system, but it can require extensive rework of an algorithm to employ and may in-
crease the workload on the system. There are also some loops, such as Finite State Machines
(FSMs) which are difficult to insert delay into, especially if they need to react quickly. This
can lead to an Amdahl’s Law [105] problem where the speedup of the radio is limited to
largely sequential FSM and control decisions. Because of this effect, radio designers may
find they need to spend significant effort in either simplifying control decisions, localizing
control systems closer to where their decisions are used, and potentially replicating control
decisions to avoid excessive data transfer.

Another challenge when accelerating radio systems comes when a single design spreads
across many cores. As the number of cores/partitions increases, the fewer instructions exe-
cute per core and the more likely it is for additional intermediate results to need to be sent
between cores. With fewer operations per core, load balancing becomes more challenging
with moving only a few operations potentially producing large imbalances (by ratio) between
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cores. Additional communication between cores also puts stress on the cache subsystem and
interconnect, potentially increasing the communication overhead for multiple cores. Tech-
niques such as multi-channel operation can help reduce the impact of this effect by allowing
multiple basebands instances with fewer cores per instance to operate simultaneously on a
many-core system.

10.2 Lessons Learned

With experience with baseband DSP on previous iterations of the Cyclops radio along
with knowledge about computer architecture and software design, there were some precon-
ceived notions of what to expect when embarking on this project. Some of these instincts
were proven correct, some were strengthened, and some were challenged.

One of the earliest questions posed by several individuals was whether the project was
necessary with modern C/C++ compilers that have matured over decades of development.
The belief that general purpose compilers have become so advanced that careful design by a
software developer is unnecessary is not an uncommonly held belief. This may hold a kernel
of truth for applications which can afford to sacrifice performance for developer productivity.
However, the use of intrinsics, specialized frameworks, and languages by the HPC and GPU
fields provides a hint that this is not the case for applications that push the platform near
its limit. Several experiments were conducted throughout this project to test the effect dif-
ferent representations of a design had on the performance of executables generated by the C
compiler. It became clear early on that even the order in which operations were presented to
the compiler had an impact on the achieved performance, regardless of the use of aggressive
compiler optimization flags. This was later reinforced with the sub-blocking effort and the
inner product loop interchange experiment. While the general C/C++ compiler can pro-
vide substantial optimization to programs (such as automatic vectorization and unrolling),
it performs best when presented with easily analyzable code broken down into digestible
segments. This is not altogether unsurprising as many of the problems faced by compilers
have no known polynomial algorithm to solve optimally. However, it underscores that, while
general purpose compilers have advanced significantly over time, they still do not handle all
aspects of high-speed software development.

Another interesting discovery came from considering the representation of numbers in the
design. Most hardware radio designs use fixed-point arithmetic. There are several reasons for
this, including the ability to use integer multipliers and adders which are generally simpler
than their floating-point equivalents. Operations such as shifting, truncation, and expansion
are also extremely low cost on hardware as they generally involve changing which set of
wires are passed downstream. Dedicated hardware designs also allow integer, fixed-point,
and floating-point datatypes to be sized according to the resolution and dynamic range
requirements of the signal, potentially reducing the amount of logic required. This level of
flexibility is drastically reduced when moving to a standard CPU. Unlike FPGAs or ASICs,
processors are typically built around processing fixed width data in standard representations.
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While there are multiple standard datatypes, the selection is generally limited to integer
multiples of bytes. Implementing fixed-point operations requires the use of shifting and
masking operations to re-normalize the result. Unlike in hardware where these operations
are almost free, changing what wires are routed between operations, each of these operations
requires an instruction to be run on CPU execution resources. While re-normalization can
sometimes be deferred to after a series of integer operations if there is sufficient headroom
in the type, it adds additional work to a software implementation that does not exist in
hardware. By contrast, modern high-performance CPUs have been heavily optimized for
floating-point arithmetic. In fact, there are more floating-point execution units capable
of multiplication on the Ryzen 3970X than there are integer execution units capable of
multiplication [17]. Floating-point operations such as sum, multiply, and FMA are often
fully pipelined, allowing one floating-point operations to complete every cycle. Additionally,
floating-point units automatically handle the required re-normalization operations. For these
reasons, the fixed-point representations used in earlier versions of Cyclops were converted to
use single precision floating-point, which containes more than enough resolution to represent
signals in the design. The expanded dynamic range even helped the performance of some
algorithms, such as the AGC. There are still some advantages to fixed-point representations,
including a potentially smaller memory footprint and the potential to fit more elements into
fixed-width vector registers. However, there are practical limitations in signal processing
algorithms on how small the datatype can become while maintaining the resolution required.
For 12 or 14-bit ADCs/DACs, at least 16-bit type is required to contain the full resolution
captured by the data converter. While Cyclops used 32-bit single precision floating-point,
interest in reduced precision floating-point representations, such as half-precision float which
contains an effective 11 bits of precision [205], presents an interesting opportunity in future
systems to potentially gain the size advantage currently only possible with integer types
while maintaining some of the advantages afforded by floating-point types.

One concern, especially when trying to optimize inter-core transfers in the reduced hand-
shake FIFO discussed in section 7.3, was the suitability of a general purpose Linux OS when
running a latency and jitter sensitive real-time application. Surprisingly, with the right
selection of kernel boot options, isolation from cores from the scheduler, and offloading of
functions such as interrupt handlers, the amount of performance jitter was reduced to the
point where the reduced handshake FIFO was able to operate reliably in closed loop mode.
With interrupts disabled on cores participating in an open-loop reduced handshake FIFO
(via a custom kernel module), the system was able to run on the order of minutes without
failure. These results suggest that high performance software radio can be run successfully
on a standard operating system without excessive modification, provided that the user has
significant control over the target system.

Initially, much of the focus of this project was to obtain performance improvements by
splitting basebands across the many cores of a modern CPU. While it was always known that
the exploitation of SIMD/vector units would be important to obtain the desired performance,
there was a hope that the general-purpose compiler would be able to handle many of the
vectorization tasks. It became clear as the project progressed, however, that specialized
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representations of SIMD/vector parallelism were essential for the compiler’s optimization
passes to provide the expected results. The realization resulted in a reevaluation of how
vectorization was considered and led to the explicit representation of vector constructs,
vector-focused operator implementations, and sub-blocking. It also led to inspecting Forward
Error Correction (FEC), which can be notoriously difficult to parallelize. Using the Viterbi
algorithm as a litmus test showed that, while challenging, tricks are available to reveal
some degree of parallelism. Techniques such as interleaving can be employed when further
acceleration of a single FEC instance becomes infeasible.

Finally, it should be noted how important DSP design changes can be to the performance
of the radio. When Cyclops was initially converted from targeting FPGAs to targeting
processors, pipeline stages that had been inserted to increase the achievable clock rate on
the FPGA were removed as they appeared to be superfluous for a software implementation.
This was fantastic, from a DSP design standpoint, for modules like feedback control systems
which could be made much more aggressive. However, many of these pipeline stages had
to be reinserted when it became clear that the feedback loops were too large to fit in single
cores. The added delay was needed to provide the initial state of FIFOs within the loop.
As it became clear that blocking transactions was essential to obtain high speed transfers,
the amount of state required increased. Without modifications to the DSP including the
use of coarse/fine control systems, the performance of the resulting system would have been
severely limited. Pipelining was also reinserted into some long strings of combinational logic
to provide added ILP in those sections to better load the multiple execution units in the CPU.
As additional optimizations such as sub-blocking were introduced, tweaks to the design to
better match the passes and abstractions provided by Laminar resulted in large performance
gains.

10.3 Future Work

While this project was successful in demonstrating high-speed software radio there are
several opportunities for continued research and development.

It would greatly improve the user’s productivity if Laminar included additional automa-
tion, especially automated partitioning and delay re-timing. Automated partitioning has
been an interest of the project since the beginning with several different possible mecha-
nisms proposed including the use of an approximation algorithm for the capacitated k-cut
problem [206]. This proposed heuristic would use the capacity constraint as a mechanism
to enforce load balancing with the workload estimates of operators used to set the size of
nodes1 with either communication or a slack measure used as the arc parameter to optimize
the cut for2. The partitioning could then be refined by iteratively moving nodes between
partitions to balance load more equally. Another option would be to use an existing graph

1If nodes are required to have unit size, larger operators are created with strings of nodes with high costs
between them.

2If cut maximisation and non-negative arc weights are required, then the cost can be inverted.



CHAPTER 10. CONCLUSION 159

partitioning tool, such as METIS [207] to perform the partitioning on an exported graph
from Laminar. Note that the load-balanced graph partitioning problem is NP-hard [207]
meaning that, for any large graph, heuristics or approximations will be the only feasible
solution. It is also important to note that, on modern CPUs, the costs associated with
transfers depend not only on the location of the two communication threads but also the
activity around them. This results in the costs used in the partitioning algorithm itself
depending on the partitions and mappings chosen. Related to automated partitioning is
the requirement that delays be available at partition boundaries participating in loops so
that they can be shifted into FIFOs as the initial state. This initial state is essential to
avoid deadlock between the threads in the loop and to provide enough input to keep them
working in parallel. Currently, this is performed manually by the designer when annotating
partition boundaries. However, with automated partitioning, this would need to occur in
an automated fashion. Unlike traditional VLSI style retiming, the primary goal of this pass
would be to move delays to the partition boundaries participating in loops. For segments
of the design not participating in these communication loops, standard retiming to create
ILP via balanced software pipelining would be a good secondary objective. In a similar vein,
providing additional mechanisms to automate parameter explorations and sweeps with the
Laminar compiler would help facilitate finding configurations options which would maximize
performance for a given design (autotuning). In cases where perfect load balancing cannot
be achieved with the partitioning tool, the use of Dynamic Voltage and Frequency Scaling
(DVFS) to slow down threads with slack and potentially speed up the clock of bottleneck
threads would be a compelling method to close the performance gap.

As was discovered in subsection 5.3.2, the scheduling heuristic used in the emitter is
still relevant to performance despite the loss of precise scheduling control in out-of-order
CPUs and the flexibility of the compiler to rearrange instructions. Investigation of more
sophisticated scheduling heuristics, including ones which view superscalar CPUs like a VLIW
CPUs from a scheduling perspective [208], [209], should be further investigated with the
Laminar emitter. Likewise, investigating what representations of a designs fit best with a C
compiler’s optimization passes will likely be an ongoing process as features are added and
heuristics are changed overtime. As mentioned before, many of the problems C compilers are
trying to solve are NP-hard, meaning that they typically need to resort to heuristic methods
to accomplish these goals. As new CPUs are released, compilers will adapt with them. The
author expects that the general principle of presenting compilers with tight, easily analyzable
code segments will be a reliable method to extract good performance out of compilers as
they continue to develop for the foreseeable future. However, getting the best performance
may involve some additional tweaks to the way code is emitted.

While there is an impressive set of features supported and optimization passes imple-
mented within Laminar, there continues to be opportunities for improvement. One possible
direction is supporting variable base sub-blocking sizes by allowing multiple partitions to
execute in a round robin fashion on a single core (to handle the width adaptation). Support
for upsample clock domains and general rational resampling would be another useful feature
to add, along with a general cleanup of the codebase.
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Supporting GPUs would be another potential area for Laminar to expand. However, the
latency associated with GPU operations with the CPU in the loop could cause challenges.
As a result, GPU support would likely be best suited for a system with integrated GPUs or
future GPUs which are capable of spawning threads on their own and passing data between
threads without the explicit involvement of the CPU.

The recently released Xilinx Versal ACAP architecture also presents a very compelling
future target platform for Laminar. Xilinx Versal introduces a 2D array of VLIW vector
processors called the AI Engine [210]. The AI engine cores support both fixed and floating-
point operations, support complex math, and can operate in a MIMD fashion [210]. In
contrast to modern multicore general-purpose CPUs, communication between cores can occur
without the use of a cache coherency protocol via direct access to the memory of adjacent
cores [210]. Communication to distant cores can occur via AXI buses and DMAs [210]. The
implementation of the AI Engine addresses many of the challenges experienced when using
general-purpose CPUs, particularly with the cache subsystem, and presents an architecture
which fits well with the compute model taken by Laminar.
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fr, Ph.D. École Doctorale Mathématiques et informatique, Bordeaux, Fr, Dec. 2020.

[71] Y. Jia and E. Shelhamer, Caffe — Blobs, Layers, and Nets. [Online]. Available: https:
/ / caffe . berkeleyvision . org / tutorial / net _ layer _ blob . html (visited on
05/01/2022).

[72] TensorFlow Developers, Introduction to graphs and tf.function — TensorFlow Core,
en. [Online]. Available: https://www.tensorflow.org/guide/intro_to_graphs
(visited on 05/01/2022).

[73] C. Yarp, Cyclopsbb-pub. doi: 10.5281/zenodo.6525784. [Online]. Available: https:
//github.com/ucb-cyarp/cyclopsbb-pub (visited on 04/03/2022).

[74] J. G. Proakis, Digital Communications, ser. McGraw-Hill series in electrical and com-
puter engineering. Boston : McGraw-Hill, c2001., 2001, isbn: 0-07-232111-3.

[75] J. G. Proakis, M. Salehi, and G. Bauch, Contemporary Communication Systems using
MATLAB. Stamford, CT : Cengage Learning, c2013., 2013, isbn: 978-0-495-08251-4.

[76] R. G. Gallager, Principles of digital communication. Cambridge ; New York: Cam-
bridge University Press, 2008, OCLC: ocn166382261, isbn: 978-0-521-87907-1.

[77] J. G. Proakis, “Chapter 5: Optimum Receivers for Additive Whate Gaussian Noise,”
in Digital communications, ser. McGraw-Hill series in electrical and computer engi-
neering, 4th ed, Boston: McGraw-Hill, 2000, pp. 231–332, isbn: 978-0-07-232111-1.

[78] S. K. Mitra, Digital signal processing: a computer-based approach, 4th ed. New York,
NY: McGraw-Hill, 2011, isbn: 978-0-07-338049-0.

https://developer.amd.com/amd-aocc/
https://llvm.org/docs/Passes.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
https://www.tensorflow.org/guide/intro_to_graphs
https://doi.org/10.5281/zenodo.6525784
https://github.com/ucb-cyarp/cyclopsbb-pub
https://github.com/ucb-cyarp/cyclopsbb-pub


BIBLIOGRAPHY 167

[79] MathWorks, QPSK Modulator Baseband. [Online]. Available: https : / / www .

mathworks . com / help / comm / ref / qpskmodulatorbaseband . html (visited on
01/18/2022).

[80] ——, Rectangular QAM Modulator Baseband. [Online]. Available: https://www.
mathworks.com/help/comm/ref/rectangularqammodulatorbaseband.html (vis-
ited on 01/18/2022).

[81] ——, Bit error rate (BER) for uncoded AWGN channels - MATLAB berawgn. [On-
line]. Available: https://www.mathworks.com/help/comm/ref/berawgn.html.

[82] ——, AWGN Channel. [Online]. Available: https://www.mathworks.com/help/
comm/ug/awgn-channel.html (visited on 05/02/2022).

[83] J. G. Proakis, “Chapter 14: Digital Communications Through Fading Multipath
Channels,” in Digital communications, ser. McGraw-Hill series in electrical and com-
puter engineering, 4th ed, Boston: McGraw-Hill, 2000, pp. 800–895, isbn: 978-0-07-
232111-1.
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Appendix A

Baseband Signal Processing

A.1 Alternative to Single Carrier: Orthogonal

Frequency Division Multiplexing (OFDM)

The radio signal processing discussed in chapter 2 is commonly known as single carrier.
It involves transmitting one modulated signal at a specified carrier frequency. An alternative
approach is to split the occupied bandwidth into multiple small segments, referred to a sub-
carriers. Data is mapped to points on the complex plane of each sub-carrier, much in the
same way that digital modulation works with single carrier radios.

One method to process these subcarriers would be to produce multiple single carrier
radios, each tuned to a different subcarrier. Because the lowpass filtering in single carrier
radios realistically has some degree of roll-off, a guard band would need to be inserted
between subcarriers to reduce crosstalk. OFDM takes a different approach and leverages
orthogonality properties of the Discrete Fourier Transform (DFT). Each bin of the DFT can
be viewed as a correlation of a discrete signal with a discrete complex sinusoid over a fixed
number of samples. The spacing of bin center frequencies is such that a complex sinusoid
at a given bin’s center frequency is only visible in that bin of the FFT and is zero in other
bins1. OFDM works by assigning modulated symbols to each bin and then computing the
inverse DFT [212]. This time domain signal is then sent over the air and is run through a
DFT in the receiving radio to retrieve the modulated symbols in each subcarrier [212].

One of the advantages of OFDM is the simplification of the equalization process. With
a sufficiently large number of subcarriers, the frequency response of the channel for a given
subcarrier is modeled as flat [212]. This can be corrected by a single complex multiply for
each subcarrier. Channel estimation can be accomplished by sending known signals (pilots)
on designated subcarriers and analyzing their response. OFDM is also able to leverage the
Fast Fourier Transform (FFT) implementation of the DFT for implementation efficiency.

While elegant in theory and in practice, there are a few things to keep in mind about
OFDM:

1See [211], [212] for details of the orthogonality property of the DFT used by OFDM.
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• While OFDM is spectrally efficient without the need for guard bands, some efficiency
is lost in the time domain in the form of the Cyclic Prefix (CP). This is the repetition
of time domain samples from the beginning of OFDM transmission. It serves both as
a method to allow time synchronization as well as playing a key role in equalization.
The CP should be as long as the longest propagation path in the environment (longest
tap in the channel impulse response) [212].

• Crosstalk between bins can occur when a carrier frequency offset (CFO) is present.
Frequency shifting of the input signal results in non-orthogonality between the bins in
the receive DFT. As a result, CFO estimation and correction is exceptionally important
for OFDM performance.

• OFDM signals tend to have high peak-to-average power ratios compared to other
modulation schemes [212]. This puts additional linearity requirements on the amplifiers
in the system, particularly on the power amplifier on the Tx side.

For more information on OFDM radios, their structure, advantages, and disadvantages,
see [211], [212].

A.2 Cyclops Baseband Performance - All Modulation

Schemes

The following plots detail the performance of the Cyclops Radio (Rev 1.40) when sim-
ulated in Matlab/Simulink. 100 Trials were conducted per point. The sample rate of the
system was simulated to be at 80 MHz with the carrier frequency at 80 MHz2. The selection
of carrier frequency only effects the relative effect of the CFO. The BER vs. EbN0 curves
for all supported modulation schemes are shown in Figure A.1. Note that these plots ex-
clude packets which fail detection or decoded the incorrect modulation scheme, effectively
resulting in a whole packet loss. Complete packet decoding and repetition decoding failures
in the modulation field are shown in Figure A.2. Only the plots for BPSK and QPSK are
included as no packet decode failures occurred for the 16QAM and 256QAM runs.

A.3 Convolutional Encoding and Viterbi Decoding

Convolutional encoding is one strategy used for Forward Error Corrections (FEC). Like
other FEC algorithms, it works by sending out some redundant information which can be
used at the receiver to correct errors that occur at reception. In this context, errors refer
to bit flips (when a 0 is turned into a 1 or a 1 is turned into a 0) and not to the loss of
bits. The rate of the code indicates the number of information bits per coded bits sent. For

2This is due to using the Simulink Phase/Frequency Offset Block [213] which is referenced to the sample
frequency at the input. To accelerate simulation times, the carrier effects were simulated at the sample rate.
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Packet Decode Failures for 100 Trials (Modulation Field Rep3 Coded)
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instance, a rate 1/2 code sends 2 coded bits for every bit of information to be communicated.
Generally, the lower the rate (the more redundant data sent), the higher the probability of
correctly decoding at the receiver.

Convolutional encoders, as their name suggests, have a very similar structure to FIR
filters. Bits of data to be sent are fed into a shift register and outputs are computed from
values in the shift register (represented by polynomials). Specifically, the different coded
bits are the result of XOR-ing different taps from the shift register (including the zero-delay
element). The set of taps to XOR for each bit is described by a generator polynomial which
is often represented in a one-hot encoded binary or octal number with each bit representing
a tap to XOR. An example rate 1/2 convolutional encoder is shown in Figure A.3a. Before
encoding starts, the state of the shift register is initialized to some fixed state with the all-
zero state being common. As bits are fed into the encoder, the state in the shift register
changes. Since the behavior of the encoder depends on the state, it can be helpful to view
it as a Finite State Machine (FSM). An example of the FSM view of an encoder is shown in
Figure A.3b. Each node represents the state held in the shift register and is shown in the
diagram in binary form with the right most digit representing the last information bit to
be sent. The label of each edge shows the incoming information bit as well as the resulting
coded bits to be sent. The format is information bit/coded bits.

Reg Reg

+

+

Coded Bit 1

Coded Bit 0

Bits In

(a) Shift Register Implementation

00

01

10

11

1/11

1/00

0/10

0/01

0/11

1/10

0/00

1/01

(b) Finite State Machine (FSM) View

Figure A.3: Example Convolutional Encoder - From [214], Adapted from [215]

An example of convolutionally encoding a sequence of bits in the encoder described in
Figure A.3a with an initial state of 00 is shown in Figure A.4. The active encoder state as
well as the arc being activated is highlighted in yellow. Note that the active state of the
encoder can change with each encoded bit.

The final result of encoding bits 0 1 1 0 1 0, read from left to right, is 00 11 00 10 10 11.
Note that because this is a rate 1/2 code, the number of coded bits is double the number of
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Figure A.4: Example Convolutionally Encoding Bits
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information bits. These coded bits are what would be sent out of the transmitter into the
air.

At the receiver side, the objective is to turn the possibly corrupted coded bits back into
the original information bits. The Viterbi algorithm, originally published in [114] and later
expanded to be more accessible in [115], is a popular solution to the problem. Viterbi’s algo-
rithm is a particularly appealing because it provides a dynamic programming [116] solution
to perform the maximum likelihood estimate of the convolutional decoding3. The maximum
likelihood property was not known in the original paper but was later shown by G.D. Forney,
as noted by [115], and is documented in his influential tutorial paper [117]. As described
by Forney, the Viterbi algorithm is “a solution to the problem of maximum a posteriori
probability (MAP) estimation of the state sequence of a finite state discrete-time Markov
process observed in memoryless noise” [117].

The maximum likelihood decoding can be described in the following way: given a convo-
lutional encoder which can generate a coded sequence: x1, x2, · · · , xn and a received coded
sequence y1, y2, · · · , yn, find the coded sequence x1, x2, · · · , xn which has the minimum Ham-
ming Distance4 from the received sequence y1, y2, · · · , yn [115]. It is important to note that
x1, x2, · · · , xn is restricted to only be a legal coded sequence which can be generated by the
convolutional coder. Assuming bit errors are independent and all input sequences are equally
probable, the coded sequence with minimum Hamming Distance from the received sequence
was the one most likely transmitted [115]. Given the most likely coded sequence, we can
derive the associated uncoded sequence. The maximum likelihood property was discussed for
Binary Symmetric Channels (BSC) and Additive White Gaussian Noise (AWGN) channels
in [115].

The algorithm is most easily described by re-organizing the FSM view of the convolutional
decoder into a trellis which shows each iteration through the FSM as a separate column of
nodes. The trellis view is often expanded to show multiple stages of the trellis. A single
iteration of the trellis for the convolutional encoder described in Figure A.3 is shown in
Figure A.5a. The Viterbi coder works by traversing the trellis for each received coded
segment. For each edge in the trellis, it computes the hamming distance (number of bits
different) between the received coded segment and the coded output of that edge. That
hamming distance is added to a metric stored in the node at the source of the edge which
represents the Hamming Distance up to that point. The destination node selects the path
with the minimum path metric (representing the Hamming Distance of that path) with that
edge becoming the survivor. The new metric is recorded as well as the surviving path.
The process is then repeated on the next coded sequence. An example of this process is
shown in Figure A.6a for a corrupted version of the coded sequence generated in the earlier
encoding example. The surviving paths are in bold with the discarded paths in gray. One
reception is complete, the node with the minimum metric is selected and the coded sequence

3Under the constraint that the traceback includes the entire message. In practice, the traceback length
is limited to simplify the implementation.

4The Hamming Distance between two bit sequences is the number of bits which differ between them.
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is re-assembled by tracing back the surviving paths leading to this node. An example of
the traceback phase is shown in Figure A.6b. Note that despite two bit errors, the correct
sequence was decoded.
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(a) 1 Iteration of Trellis
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BIT/CODE
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Bit 1

Bit 0

y1y2Received:

(b) Viterbi Trellis Operations

Figure A.5: Example Viterbi Decoder Trellis for k=1, Generators 0b111, 0b110 - From [214],
Adapted from [215]

It is important to note that, even though multiple iterations of the trellis are shown in
Figure A.6, hardware and software implementations typically only implement a small number
of columns (often one) which are then used for successive coded sequences. The fully unrolled
trellis diagram is mostly helpful to illustrate the multiple phases of the Viterbi algorithm.
There are also many variations to the Viterbi algorithm such as path metric re-normalization
and periodic traceback which are not discussed here. For more details including analysis of
the strengths of convolutional codes, known good generator polynomials, and methods for
providing different rate codes, see texts such as [116], [216].
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Appendix B

Demonstration System

B.1 Final Test System Configuration

• CPU: AMD Ryzen Threadripper 3970X

• Motherboard: Asus ROG Zenith II Extreme

• Memory: 4 DIMMs - Corsair CMK32GX4M4B3600C18 8 GiB DDR4 3600 MHz

– XMP/DOCP Profile Enabled in BIOS for DRAM Voltage and Timing Tuning

– Limited to 3200 MHz, Maximum Supported by CPU

– Quad-Channel Supported by CPU

• Operating System: Ubuntu Server 18.04 LTS

• Primary Compiler: AOCC (AMD Optimizing C/C++ Compiler) 3.0.0

B.2 Grub Configuration

The following grub config file located at /etc/default/grub in Ubuntu 18.04. After the
file is updated sudo update-grub must be executed and the system rebooted for changes
to take effect. Note that nohz full does not enable full dynamic ticks unless the kernel is
compiled to support it. The default kernel provided with Ubuntu does not have this option
enabled. It was determined in experiments with Reduced Handshake FIFOs that nohz full
can cause interrupt clusters.

1 # If you change this file , run ’update -grub ’ afterwards to update

2 # /boot/grub/grub.cfg.

3 # For full documentation of the options in this file , see:

4 # info -f grub -n ’Simple configuration ’

5

6 GRUB_DEFAULT =0
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7 GRUB_TIMEOUT_STYLE=hidden

8 GRUB_TIMEOUT =2

9 GRUB_DISTRIBUTOR=‘lsb_release -i -s 2> /dev/null || echo Debian ‘

10

11 #Current Command Line of Choice

12 GRUB_CMDLINE_LINUX_DEFAULT="acpi_irq_nobalance noirqbalance irqaffinity =0

nosoftlockup nmi_watchdog =0 rcu_nocbs =1-31 nohz_full =1-31 isolcpus =1-31

" #nohz_full implies rcu_nocbs so its inclusion here is redundant but

not harmful

13

14 #...

Listing B.1: Grub Configuration (Summarized)
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Appendix C

Software

C.1 Source Code

The source code for this project is available as part of git repositories stored on GitHub
and through the Zenodo archiving service. Most repositories are licensed as a BSD-3-Clause
except uhdToPipes which is licensed as GPL-3.0 and sir which is dual licensed as BSD/GPL.
A list of public repositories is given in Table C.1.

Note that some repositories, such as cyclopsDemo, cyclopsDemo DualInstance, and cy-
clopsRxTestHarness use git submodules. If cloning from GitHub, be sure to run git submodule

update --init inside the cloned directory. If using the Zenodo archive, submodules are not
automatically packaged into the compressed archive. The user will need to download the
appropriate dependency and place it in the submodules directory, replacing the blank place-
holder folder.

Repository Name GitHub URL Git Tag Zenodo
DOI

Ref

Laminar (vitis) https:

//github.com/ucb-cyarp/vitis

v1.0.1 10.5281/

zenodo.

6525757

[130]

cyclopsbb-pub https://github.com/ucb-cyarp/

cyclopsbb-pub

v1.0.1 10.5281/

zenodo.

6525784

[73]

cyclopsRxTestHarness https://github.com/ucb-cyarp/

cyclopsRxTestHarness

v1.0.2 10.5281/

zenodo.

6525808

[147]

cyclopsDemo (Single Instance
Variant)

https://github.com/ucb-cyarp/

cyclopsDemo

v1.0.1
single inst

10.5281/

zenodo.

6526172

[184]

Table C.1: Project Source Code Repositories (continued on next page ...)

https://github.com/ucb-cyarp/vitis
https://github.com/ucb-cyarp/vitis
https://doi.org/10.5281/zenodo.6525757
https://doi.org/10.5281/zenodo.6525757
https://doi.org/10.5281/zenodo.6525757
https://github.com/ucb-cyarp/cyclopsbb-pub
https://github.com/ucb-cyarp/cyclopsbb-pub
https://doi.org/10.5281/zenodo.6525784
https://doi.org/10.5281/zenodo.6525784
https://doi.org/10.5281/zenodo.6525784
https://github.com/ucb-cyarp/cyclopsRxTestHarness
https://github.com/ucb-cyarp/cyclopsRxTestHarness
https://doi.org/10.5281/zenodo.6525808
https://doi.org/10.5281/zenodo.6525808
https://doi.org/10.5281/zenodo.6525808
https://github.com/ucb-cyarp/cyclopsDemo
https://github.com/ucb-cyarp/cyclopsDemo
https://doi.org/10.5281/zenodo.6526172
https://doi.org/10.5281/zenodo.6526172
https://doi.org/10.5281/zenodo.6526172
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Repository Name GitHub URL Git Tag Zenodo
DOI

Ref

cyclopsDemo (Dual Instance
Variant)

https://github.com/ucb-cyarp/

cyclopsDemo

v1.0.1
dual inst

10.5281/

zenodo.

6526163

[184]

cyclopsDemo DualInstance https://github.com/ucb-cyarp/

cyclopsDemo_DualInstance

v1.0.1 10.5281/

zenodo.

6526207

[198]

cyclopsASCIILink (Single
Instance Variant)

https://github.com/ucb-cyarp/

cyclopsASCIILink

v1.0.3
single inst

10.5281/

zenodo.

6526155

[185]

cyclopsASCIILink (Dual
Instance Variant)

https://github.com/ucb-cyarp/

cyclopsASCIILink

v1.0.3
dual inst

10.5281/

zenodo.

6526154

[185]

cyclopsASCIILink-testfiles https://github.com/ucb-cyarp/

cyclopsASCIILink-testfiles

v1.0.1 10.5281/

zenodo.

6526156

[217]

bladeRFToFIFO https://github.com/ucb-cyarp/

bladeRFToFIFO

v1.0.1 10.5281/

zenodo.

6526260

[186]

uhdToPipes https://github.com/ucb-cyarp/

uhdToPipes

v1.0.1 10.5281/

zenodo.

6526260

[187]

BerkeleySharedMemoryFIFO https://github.com/ucb-cyarp/

BerkeleySharedMemoryFIFO

v1.0.3 10.5281/

zenodo.

6525781

[146]

Laminar Telemetry
Dashboard
(vitisTelemetryDash)

https://github.com/ucb-cyarp/

vitisTelemetryDash

v1.0.1 10.5281/

zenodo.

6526250

[189]

PlotLaminarPerformance https://github.com/ucb-cyarp/

PlotLaminarPerformance

v1.0.1 10.5281/

zenodo.

6526308

[192]

SchedulingGraphAnalysis https://github.com/ucb-cyarp/

SchedulingGraphAnalysis

v1.0.1 10.5281/

zenodo.

6526297

[183]

benchmarking https://github.com/ucb-cyarp/

benchmarking

v1.0.1 10.5281/

zenodo.

6526289

[180]

Table C.1: Project Source Code Repositories (continued on next page ...)
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https://github.com/ucb-cyarp/uhdToPipes
https://doi.org/10.5281/zenodo.6526259
https://doi.org/10.5281/zenodo.6526259
https://doi.org/10.5281/zenodo.6526259
https://github.com/ucb-cyarp/BerkeleySharedMemoryFIFO
https://github.com/ucb-cyarp/BerkeleySharedMemoryFIFO
https://doi.org/10.5281/zenodo.6525781
https://doi.org/10.5281/zenodo.6525781
https://doi.org/10.5281/zenodo.6525781
https://github.com/ucb-cyarp/vitisTelemetryDash
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https://github.com/ucb-cyarp/SchedulingGraphAnalysis
https://doi.org/10.5281/zenodo.6526297
https://doi.org/10.5281/zenodo.6526297
https://doi.org/10.5281/zenodo.6526297
https://github.com/ucb-cyarp/benchmarking
https://github.com/ucb-cyarp/benchmarking
https://doi.org/10.5281/zenodo.6526289
https://doi.org/10.5281/zenodo.6526289
https://doi.org/10.5281/zenodo.6526289
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Repository Name GitHub URL Git Tag Zenodo
DOI

Ref

laminarCommCharacterize https://github.com/ucb-cyarp/

laminarCommCharacterize

v1.0.11 10.5281/

zenodo.

6526365

[181]

ConvolutionalEncDec https://github.com/ucb-cyarp/

ConvolutionalEncDec

v1.0.2 10.5281/

zenodo.

6526429

[121]

sir https:

//github.com/ucb-cyarp/sir

v1.0.2 10.5281/

zenodo.

6526433

[179]

cpuTopology https://github.com/ucb-cyarp/

cpuTopology

v1.0.1 10.5281/

zenodo.

6526510

[218]

jobQueue https://github.com/ucb-cyarp/

jobQueue

v1.0.1 10.5281/

zenodo.

6526501

[190]

platformScripts https://github.com/ucb-cyarp/

platformScripts

v1.0.1 10.5281/

zenodo.

6526495

[191]

Table C.1: Project Source Code Repositories

1Multiple variants of these tests exist. The git tag and Zenodo version numbers are appended with the
variant. Use the GitHub tag browser or the Zenodo Concept DOI to access the different variants.
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Appendix D

Laminar Generation Samples

This section contains some Laminar-generated code for the Cyclops RRC filter under
different Laminar configurations. The disassembly for these functions is also provided below,
with some comments added to aid in reading. It should be noted that variable names in the
C code along with comments were modified for readability.

As noted in section 10.3, there are still opportunities to improve the Laminar compiler.
One such optimization includes fixing a Laminar bug which caused some unused arrays to
be emitted in the Listing D.2 segment. These arrays were removed for clarity from the code
listing in this document as they are easily optimized out by the C compiler. Another potential
improvement would be to implement memcpy as a mode to handle intermediate copies to the
output. This could potentially prevent unnecessary memory movement instructions created
due to the unrolling of the output loop shown in Listing D.4. Ideally, the real and imaginary
components would not be interleaved and would be copied contiguously. An even better
result would be the optimizing away of the accumulators in memory as they can fit in vector
registers.

It should also be noted that the compiler inlined the compute function into the outer
thread function for the implementation without sub-blocking shown in Listing D.1. However,
the compiler did not inline the sub-blocked version shown in Listing D.2.

D.1 Generated Source

D.1.1 RRC, No Sub-Blocking

1 void rx_demo_partition1_compute(Partition1_state_t *stateStruct ,

2 const float InputSamples_re [120] ,

3 const float InputSamples_im [120] ,

4 float OutputSamples_re [120] ,

5 float OutputSamples_im [120])

6 {

7 for (uint8_t blockingIdx = 0; blockingIdx < 120; blockingIdx ++)
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8 {

9 float BlockingInput_re = InputSamples_re[blockingIdx ];

10 float BlockingInput_im = InputSamples_im[blockingIdx ];

11

12 // ---- Calculate TappedDelay ----

13 memcpy(stateStruct ->TappedDelay_state_re +

14 stateStruct ->TappedDelay_headIdx ,

15 &BlockingInput_re , sizeof(float) * 1);

16 memcpy(stateStruct ->TappedDelay_state_re +

17 stateStruct ->TappedDelay_headIdx - 64,

18 &BlockingInput_re , sizeof(float) * 1);

19 memcpy(stateStruct ->TappedDelay_state_im +

20 stateStruct ->TappedDelay_headIdx ,

21 &BlockingInput_im , sizeof(float) * 1);

22 memcpy(stateStruct ->TappedDelay_state_im +

23 stateStruct ->TappedDelay_headIdx - 64,

24 &BlockingInput_im , sizeof(float) * 1);

25

26 // ---- Calculate InnerProduct ----

27 float InnerProduct_Accum_re = ((float)0);

28 float InnerProduct_Accum_im = ((float)0);

29 for (unsigned long indDim0 = 0; indDim0 < 49; indDim0 ++)

30 {

31 InnerProduct_Accum_re += ((( float)(Coefs_re[indDim0 ]))) *

32 ((( float)(( stateStruct ->TappedDelay_state_re +

33 stateStruct ->TappedDelay_headIdx - 48)[indDim0 ])));

34

35 InnerProduct_Accum_im += ((( float)(Coefs_re[indDim0 ]))) *

36 ((( float)(( stateStruct ->TappedDelay_state_im +

37 stateStruct ->TappedDelay_headIdx - 48)[indDim0 ])));

38 }

39

40 // ---- State Update for TappedDelay ~~~~

41 stateStruct ->TappedDelay_headIdx =

42 (( stateStruct ->TappedDelay_headIdx + 1) % 64) + 64;

43

44 (OutputSamples_re[blockingIdx ]) = InnerProduct_Accum_re;

45 (OutputSamples_im[blockingIdx ]) = InnerProduct_Accum_im;

46 }

47 }

Listing D.1: Laminar Generated Cyclops Rx RRC Partition, Blocking: 120, Sub-Blocking:
Disabled, Comments and Variable Names Changed for Clarity

D.1.2 RRC, Sub-Blocked

1 void rx_demo_partition1_compute(Partition1_state_t *stateStruct ,

2 const float InputSamples_re [120] ,

3 const float InputSamples_im [120] ,
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4 float OutputSamples_re [120] ,

5 float OutputSamples_im [120])

6 {

7 //Note: A Laminar bug emitted 3 temporary arrays that are unused.

8 // These can be easily optimized out by the C compiler. Removed here.

9 // Split into 5 sub -blocks of 24 elements each

10 for (uint8_t blockingIdx = 0; blockingIdx < 5; blockingIdx ++)

11 {

12 // ---- Calculate TappedDelay (Moving in Whole 24 Element

13 Sub -Block) ----

14 memcpy(stateStruct ->TappedDelay_state_re +

15 stateStruct ->TappedDelay_headIdx ,

16 (InputSamples_re + blockingIdx * 24),

17 sizeof(float) * 24);

18 memcpy(stateStruct ->TappedDelay_state_re +

19 stateStruct ->TappedDelay_headIdx - 72,

20 (InputSamples_re + blockingIdx * 24),

21 sizeof(float) * 24);

22 memcpy(stateStruct ->TappedDelay_state_im +

23 stateStruct ->TappedDelay_headIdx ,

24 (InputSamples_im + blockingIdx * 24),

25 sizeof(float) * 24);

26 memcpy(stateStruct ->TappedDelay_state_im +

27 stateStruct ->TappedDelay_headIdx - 72,

28 (InputSamples_im + blockingIdx * 24),

29 sizeof(float) * 24);

30

31 // ---- Calculate InnerProduct (24 Independent Dot Products) -

32 // Specialized Blocking Implementation Iterates over Taps

33 // in the Outer Loop ----

34 float InnerProduct_Accum_re [24] = {(float)0, (float)0, (float)0,

35 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

36 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

37 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

38 (float)0, (float)0, (float)0};

39 float InnerProduct_Accum_im [24] = {(float)0, (float)0, (float)0,

40 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

41 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

42 (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,

43 (float)0, (float)0, (float)0};

44 for (unsigned long tapIdx = 0; tapIdx < 49; tapIdx ++)

45 {

46 for (unsigned long subBlockingIdx = 0; subBlockingIdx < 24;

47 subBlockingIdx ++)

48 {

49 InnerProduct_Accum_re[subBlockingIdx] +=

50 ((( float)(Coefs_re[tapIdx ]))) *

51 ((( float)((( stateStruct ->TappedDelay_state_re) +

52 (( stateStruct ->TappedDelay_headIdx - 48) +

53 subBlockingIdx))[tapIdx ])));
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54

55 InnerProduct_Accum_im[subBlockingIdx] +=

56 ((( float)(Coefs_re[tapIdx ]))) *

57 ((( float)((( stateStruct ->TappedDelay_state_im) +

58 (( stateStruct ->TappedDelay_headIdx - 48) +

59 subBlockingIdx))[tapIdx ])));

60 }

61 }

62

63 // ---- State Update for TappedDelay (Branching Technique Since

64 // not Power of 2) ----

65 if (stateStruct ->TappedDelay_headIdx >= 120)

66 {

67 stateStruct ->TappedDelay_headIdx = 72;

68 } else {

69 stateStruct ->TappedDelay_headIdx += 24;

70 }

71

72 for (unsigned long tapIdx = 0; tapIdx < 24; tapIdx ++)

73 {

74 (OutputSamples_re + (24 * blockingIdx))[tapIdx] =

75 InnerProduct_Accum_re[tapIdx ];

76 (OutputSamples_im + (24 * blockingIdx))[tapIdx] =

77 InnerProduct_Accum_im[tapIdx ];

78 }

79 }

80 }

Listing D.2: Laminar Generated Cyclops Rx RRC Partition, Blocking: 120, Sub-Blocking:
24, Comments and Variable Names Changed for Clarity, Erroneously Emitted Unused Arrays
Removed for Clarity

D.2 Disassembly

D.2.1 RRC, No Sub-Blocking

1 ; ================ BEGINNING OF PROCEDURE ================

2

3 rx_demo_partition1_compute:

4 mov al , byte [rdi] ; Begin of unwind

5 ; block (FDE at

6 ; 0x20df0c)

7 vmovaps ymm8 , aXdaxfexe0rxfex +96 ; 0x201140

8 vmovaps ymm9 , aXdaxfexe0rxfex +32 ; 0x201100

9 vmovaps ymm10 , aXdaxfexe0rxfex ; aXdaxfexe0rxfex

10 vmovaps ymm3 , aX80xedxbcxbatx +98 ; 0x2011e0

11 vmovaps ymm4 , aXdaxfexe0rxfex +64 ; 0x201120
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12 vmovaps ymm5 , aX80xedxbcxbatx +2 ; 0x201180

13 vmovss xmm6 , dword [aX80xbbx160x013 +14] ; 0x2010a4

14 xor r9d , r9d

15 nop dword [rax]

16

17 loc_20fbf0:

18 vmovss xmm0 , dword [rsi+r9*4] ; CODE XREF=rx_demo

19 ; _partition1_compute

20 ; +316

21 movzx eax , al

22 vmovss xmm7 , dword [rdx+r9*4]

23 vmovss dword [rdi+rax *4+4], xmm0

24 vmovss dword [rdi+rax*4-0xfc], xmm0

25 movzx eax , byte [rdi]

26 vmovss dword [rdi+rax *4+0 x204], xmm7

27 vmovss dword [rdi+rax *4+0 x104], xmm7

28 vmulps ymm0 , ymm5 , rdi+rax *4+0 x144

29 vfmadd231ps ymm0 , ymm4 , rdi+rax *4+0 x164

30 vfmadd231ps ymm0 , ymm3 , rdi+rax *4+0 x184

31 vfmadd231ps ymm0 , ymm10 , rdi+rax *4+0 x1a4

32 vfmadd231ps ymm0 , ymm9 , rdi+rax *4+0 x1c4

33 vfmadd231ps ymm0 , ymm8 , rdi+rax *4+0 x1e4

34 vextractf128 xmm1 , ymm0 , 0x1

35 vaddps xmm0 , xmm0 , xmm1

36 vpermilpd xmm1 , xmm0 , 0x1

37 vaddps xmm0 , xmm0 , xmm1

38 vmovshdup xmm1 , xmm0

39 vaddss xmm0 , xmm0 , xmm1

40 vmulps ymm1 , ymm5 , rdi+rax*4-0xbc

41 vfmadd231ps ymm1 , ymm4 , rdi+rax*4-0x9c

42 vfmadd231ss xmm0 , xmm6 , xmm7

43 vfmadd231ps ymm1 , ymm3 , rdi+rax*4-0x7c

44 vfmadd231ps ymm1 , ymm10 , rdi+rax*4-0x5c

45 vfmadd231ps ymm1 , ymm9 , rdi+rax*4-0x3c

46 vfmadd231ps ymm1 , ymm8 , rdi+rax*4-0x1c

47 vextractf128 xmm2 , ymm1 , 0x1

48 vaddps xmm1 , xmm1 , xmm2

49 vpermilpd xmm2 , xmm1 , 0x1

50 vaddps xmm1 , xmm1 , xmm2

51 vmovshdup xmm2 , xmm1

52 vaddss xmm1 , xmm1 , xmm2

53 vfmadd231ss xmm1 , xmm6 , dword [rdi+rax *4+4]

54 ; Compute Next Circular Buffer Head Position + Handle Wraparound

55 inc eax

56 and al , 0x3f

57 or al , 0x40

58 mov byte [rdi], al

59 vmovss dword [rcx+r9*4], xmm1

60 vmovss dword [r8+r9*4], xmm0

61 inc r9
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62 cmp r9 , 0x78

63 jne loc_20fbf0

64

65 vzeroupper

66 ret

67 ; endp

Listing D.3: Disassembly of RRC with No Sub-Blocking (Listing D.1) by Hopper
Disassembler

D.2.2 RRC, Sub-Blocked

1 ; ================ BEGINNING OF PROCEDURE ================

2

3 ; Variables:

4 ; var_10: int8_t , -16

5 ; var_20: -32

6 ; var_30: -48

7 ; var_40: -64

8 ; var_50: -80

9 ; var_60: -96

10 ; var_70: -112

11 ; var_80: -128

12 ; var_90: -144

13 ; var_A0: -160

14 ; var_B0: -176

15 ; var_C0: -192

16 ; var_D0: -208

17

18 rx_demo_partition1_compute:

19 push rbp ; Begin of unwind

20 ; block (FDE at

21 ; 0x2116e4), CODE

22 ; XREF=rx_demo_

23 ; partition1_thread+

24 ; 1304

25 mov rbp , rsp

26 push r14

27 push rbx

28 and rsp , 0xffffffffffffffe0

29 sub rsp , 0xc0

30 xor r10d , r10d

31 vxorps xmm0 , xmm0 , xmm0

32 mov r9d , 0x48

33 nop

34

35 loc_2134f0:

36 lea rbx , qword [r10*8] ; CODE XREF=rx_demo_

37 ; partition1_compute
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38 ; +920

39 movzx eax , byte [rdi]

40 ; Each segment is copying 3*4=12 elements. With 4 instances ,

41 ; a total of 48 elements are copied. With the input being complex ,

42 ; this corresponds to 24 samples being copied , equivalent to a

43 ; full sub -block.

44 lea r14 , qword [rbx+rbx*2]

45 vmovups ymm1 , rsi+r14*4

46 vmovups ymm2 , rsi+r14 *4+0 x20

47 vmovups ymm3 , rsi+r14 *4+0 x40

48 vmovups rdi+rax *4+0x44 , ymm3

49 vmovups rdi+rax *4+0x24 , ymm2

50 vmovups rdi+rax*4+4, ymm1

51 vmovups ymm1 , rsi+r14*4

52 vmovups ymm2 , rsi+r14 *4+0 x20

53 vmovups ymm3 , rsi+r14 *4+0 x40

54 vmovups rdi+rax*4-0xfc , ymm2

55 vmovups rdi+rax*4-0x11c , ymm1

56 vmovups rdi+rax*4-0xdc , ymm3

57 mov rax , 0xffffffffffffff3c

58 movzx r11d , byte [rdi]

59 vmovups ymm1 , rdx+r14*4

60 vmovups ymm2 , rdx+r14 *4+0 x20

61 vmovups ymm3 , rdx+r14 *4+0 x40

62 vmovups rdi+r11 *4+0x244 , ymm1

63 vmovups rdi+r11 *4+0x264 , ymm2

64 vmovups rdi+r11 *4+0x284 , ymm3

65 lea rbx , qword [rdi+r11*4]

66 vmovups ymm1 , rdx+r14*4

67 vmovups ymm2 , rdx+r14 *4+0 x20

68 vmovups ymm3 , rdx+r14 *4+0 x40

69 vmovups rdi+r11 *4+0x124 , ymm1

70 vmovups rdi+r11 *4+0x144 , ymm2

71 ; This appears to be setting the accumulators to 0 (in memory).

72 ; Technically not necessary as the accumulator values are reset

73 ; in each loop iteration and can be held in vector registers.

74 vmovups rdi+r11 *4+0x164 , ymm3

75 vmovaps rsp+0xd0+var_30 , ymm0

76 vmovaps rsp+0xd0+var_50 , ymm0

77 vmovaps rsp+0xd0+var_70 , ymm0

78 vmovaps rsp+0xd0+var_D0 , ymm0

79 vmovaps rsp+0xd0+var_B0 , ymm0

80 vmovaps rsp+0xd0+var_90 , ymm0

81 vmovaps ymm6 , rsp+0xd0+var_70

82 vmovaps ymm5 , rsp+0xd0+var_D0

83 vmovaps ymm4 , rsp+0xd0+var_50

84 vmovaps ymm3 , rsp+0xd0+var_B0

85 vmovaps ymm2 , rsp+0xd0+var_30

86 vmovaps ymm1 , rsp+0xd0+var_90

87 nop dword [rax]
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88

89 ; Same coefficient used across all dot products. A single scalar

90 ; was broadcast across the vector register. rax initialized to

91 ; -196 and loop increments tax by 4, giving loop 49 iterations

92 ; (length of the RRC filter). 6 vector accumulator registers are

93 ; used which corresponds to 48 individual accumulators. For a

94 ; complex*real dot product , this corresponds to 24 dot products ,

95 ; the sub -blocking Length.

96 loc_213620:

97 vbroadcastss ymm7 , dword [rax+0 x2012c4] ; CODE XREF=rx_demo_

98 ; partition1_compute

99 ; +400

100 vfmadd231ps ymm6 , ymm7 , rbx+rax+8

101 vfmadd231ps ymm5 , ymm7 , rbx+rax+0x248

102 vfmadd231ps ymm4 , ymm7 , rbx+rax+0x28

103 vfmadd231ps ymm3 , ymm7 , rbx+rax+0x268

104 vfmadd231ps ymm2 , ymm7 , rbx+rax+0x48

105 vfmadd231ps ymm1 , ymm7 , rbx+rax+0x288

106 add rax , 0x4 ; Increment by 4

107 jne loc_213620

108

109 lea eax , dword [r11+0x18]

110 ; Looks like copying InnerProduct results to memory in preparation

111 ; for extracting and coping to the output.

112 cmp r11b , 0x77

113 vmovaps rsp+0xd0+var_70 , ymm6

114 vmovaps rsp+0xd0+var_D0 , ymm5

115 vmovaps rsp+0xd0+var_50 , ymm4

116 vmovaps rsp+0xd0+var_B0 , ymm3

117 vmovaps rsp+0xd0+var_30 , ymm2

118 vmovaps rsp+0xd0+var_90 , ymm1

119 movzx eax , al

120 cmova eax , r9d

121 inc r10

122 ; Looks like copying results into the output arrays. Compiler

123 ; appears to have unrolled the copy loop but could have broken the

124 ; loop in half and produced contiguous writes. Fortunately , the

125 ; AMD processor does support write combining in the write buffer

126 ; which can help amortize costs. Future work to support explicit

127 ; memcpy calls for FIFO logic.

128 mov byte [rdi], al

129 vmovaps xmm1 , xmmword [rsp+0xd0+var_70]

130 vmovss dword [rcx+r14*4], xmm1

131 vmovaps xmm2 , xmmword [rsp+0xd0+var_D0]

132 vmovss dword [r8+r14*4], xmm2

133 vextractps dword [rcx+r14*4+4] , xmm1 , 0x1

134 vextractps dword [r8+r14*4+4] , xmm2 , 0x1

135 vextractps dword [rcx+r14*4+8] , xmm1 , 0x2

136 vextractps dword [r8+r14*4+8] , xmm2 , 0x2

137 vextractps dword [rcx+r14 *4+0xc], xmm1 , 0x3
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138 vextractps dword [r8+r14 *4+0xc], xmm2 , 0x3

139 vmovaps xmm1 , xmmword [rsp+0xd0+var_60]

140 vmovss dword [rcx+r14 *4+0 x10], xmm1

141 vmovaps xmm2 , xmmword [rsp+0xd0+var_C0]

142 vmovss dword [r8+r14 *4+0 x10], xmm2

143 vextractps dword [rcx+r14 *4+0 x14], xmm1 , 0x1

144 vextractps dword [r8+r14 *4+0 x14], xmm2 , 0x1

145 vextractps dword [rcx+r14 *4+0 x18], xmm1 , 0x2

146 vextractps dword [r8+r14 *4+0 x18], xmm2 , 0x2

147 vextractps dword [rcx+r14 *4+0 x1c], xmm1 , 0x3

148 vextractps dword [r8+r14 *4+0 x1c], xmm2 , 0x3

149 vmovaps xmm1 , xmmword [rsp+0xd0+var_50]

150 vmovss dword [rcx+r14 *4+0 x20], xmm1

151 vmovaps xmm2 , xmmword [rsp+0xd0+var_B0]

152 vmovss dword [r8+r14 *4+0 x20], xmm2

153 vextractps dword [rcx+r14 *4+0 x24], xmm1 , 0x1

154 vextractps dword [r8+r14 *4+0 x24], xmm2 , 0x1

155 vextractps dword [rcx+r14 *4+0 x28], xmm1 , 0x2

156 vextractps dword [r8+r14 *4+0 x28], xmm2 , 0x2

157 vextractps dword [rcx+r14 *4+0 x2c], xmm1 , 0x3

158 vextractps dword [r8+r14 *4+0 x2c], xmm2 , 0x3

159 vmovaps xmm1 , xmmword [rsp+0xd0+var_40]

160 vmovss dword [rcx+r14 *4+0 x30], xmm1

161 vmovaps xmm2 , xmmword [rsp+0xd0+var_A0]

162 vmovss dword [r8+r14 *4+0 x30], xmm2

163 vextractps dword [rcx+r14 *4+0 x34], xmm1 , 0x1

164 vextractps dword [r8+r14 *4+0 x34], xmm2 , 0x1

165 vextractps dword [rcx+r14 *4+0 x38], xmm1 , 0x2

166 vextractps dword [r8+r14 *4+0 x38], xmm2 , 0x2

167 vextractps dword [rcx+r14 *4+0 x3c], xmm1 , 0x3

168 vextractps dword [r8+r14 *4+0 x3c], xmm2 , 0x3

169 vmovaps xmm1 , xmmword [rsp+0xd0+var_30]

170 vmovss dword [rcx+r14 *4+0 x40], xmm1

171 vmovaps xmm2 , xmmword [rsp+0xd0+var_90]

172 vmovss dword [r8+r14 *4+0 x40], xmm2

173 vextractps dword [rcx+r14 *4+0 x44], xmm1 , 0x1

174 vextractps dword [r8+r14 *4+0 x44], xmm2 , 0x1

175 vextractps dword [rcx+r14 *4+0 x48], xmm1 , 0x2

176 vextractps dword [r8+r14 *4+0 x48], xmm2 , 0x2

177 vextractps dword [rcx+r14 *4+0 x4c], xmm1 , 0x3

178 vextractps dword [r8+r14 *4+0 x4c], xmm2 , 0x3

179 vmovaps xmm1 , xmmword [rsp+0xd0+var_20]

180 vmovss dword [rcx+r14 *4+0 x50], xmm1

181 vmovaps xmm2 , xmmword [rsp+0xd0+var_80]

182 vmovss dword [r8+r14 *4+0 x50], xmm2

183 vextractps dword [rcx+r14 *4+0 x54], xmm1 , 0x1

184 vextractps dword [r8+r14 *4+0 x54], xmm2 , 0x1

185 vextractps dword [rcx+r14 *4+0 x58], xmm1 , 0x2

186 vextractps dword [r8+r14 *4+0 x58], xmm2 , 0x2

187 vextractps dword [rcx+r14 *4+0 x5c], xmm1 , 0x3
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188 vextractps dword [r8+r14 *4+0 x5c], xmm2 , 0x3

189 cmp r10 , 0x5 ; Repeated 5 times

190 jne loc_2134f0

191

192 lea rsp , qword [rbp+var_10]

193 pop rbx

194 pop r14

195 pop rbp

196 vzeroupper

197 ret

198 ; endp

Listing D.4: Disassembly of RRC with Sub-Blocking (Listing D.2) by Hopper Disassembler
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