
Expanding the Capabilities of Voxelwise Modeling for

Naturalistic Brain Decoding

Ryan Ong

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2023-5

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-5.html

January 15, 2023

Copyright © 2023, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Expanding the Capabilities of Voxelwise Modeling for Naturalistic
Brain Decoding

by Ryan Bryce Ong

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Shankar Sastry
Research Advisor

(Date)

* * * * * * *

Professor Allen Yang
Second Reader

(Date)

1-13-2023

01/13/2023

Expanding the Capabilities of Voxelwise Modeling for
Naturalistic Brain Decoding

by

Ryan Bryce Ong

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shankar Sastry, Chair
Professor Allen Yang
Professor Jack Gallant

Fall 2022

1

Abstract

Expanding the Capabilities of Voxelwise Modeling for
Naturalistic Brain Decoding

by

Ryan Bryce Ong

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Shankar Sastry, Chair

Autonomous navigation systems have yet to reach the advanced ca-
pabilities of the human brain. Further understanding of the brain,
through neuroscience, has the potential to facilitate the improvement
of modern artificial intelligence systems. Neuroscience is an emergent
field that takes a principled approach for investigating the brain. This
thesis weaves three projects together into a narrative that follows the
pipeline of the voxelwise modeling framework. Voxelwise modeling [63,
80, 112] is a modern, data science-inspired approach for fMRI brain
encoding (and, consequently, decoding in the reverse direction) within
naturalistic environments. We detail our efforts to customize a driv-
ing simulator, CARLA (Unreal Engine 4), for brain decoding/encoding
stimuli. Next, we propose and verify a pipeline for non-linearly trans-
forming stimuli into semantic features. Finally, we explore fitting vox-
elwise encoding models, with multiple feature spaces, to find cortical
representations of timescale selectivity.

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Towards an Enhanced CARLA for Human Navigation
Experiments 1
1.1 Introduction . 1
1.2 Background . 2
1.3 Related Works . 3
1.4 The Unreal Engine 4 Framework 3
1.5 Upgrading from CARLA 0.8.4 4
1.6 Major Differences in CARLA 0.9.13 5
1.7 The CARLA 0.9.13 Framework 7
1.8 Implementation . 12
1.9 Evaluation . 15
1.10 Discussion . 16

2 Semantic Segmentation for Source Engine Games 17
2.1 Introduction . 17
2.2 Background . 17
2.3 Related Work . 18
2.4 Preliminaries . 19
2.5 Semantic Segmentation Pipeline 22
2.6 Evaluation . 26
2.7 Application . 28
2.8 Discussion . 29

3 Interpretable Cortical Representations of Timescale
Selectivity for Active Navigation 31
3.1 Introduction . 31

ii

3.2 Background . 31
3.3 The Voxewise Modeling Framework 33
3.4 Methods . 36
3.5 Results . 42
3.6 Discussion . 48

Bibliography 53

iii

List of Figures

1.1 An diagram of the combined CARLA and Unreal Engine 4
structure . 8

1.2 Screenshot of the custom-build of CARLA 15

2.1 An example UnlitGeneric VMT File, which is invariant to
light states and is capable of producing flat shading. 21

2.2 An example WorldVertexTransition VMT File, which blends
between two textures. 21

2.3 Pseudocode for the functional pipeline that generates mate-
rials and creates mappings to semantic categories 24

2.4 Contents of the config file, containing console commands
that modify Counter Strike: Source in-game settings. 25

2.5 Pipeline verification - Replace a few materials 27
2.6 Pipeline verification - Replace all loaded textures and ma-

terials . 28
2.7 Pipeline verification - Fully replaced textures and materials,

with all additional rendering passes and advanced engine
features successfully toggled off 29

3.1 Diagram of the CWVAE process, as an unrolled loop.

. 37
3.2 Plots of the different filter methods. Each of the colored

lines (frequency bands) ultimately produce a unique feature
space. 39

3.3 Plots of the different filter methods, with the DCT coeffi-
cient indices in log space. Each of the colored lines, and
involved frequency bands, ultimately produce a unique fea-
ture space. 39

3.4 SplitR2
i scores for randomly-selected voxels, using theBand-

pass (DCT) method. In the second plot, each voxel is
represented by a line of distinct color. 43

3.5 Boxplot of each method’s split R2
i scores 44

iv

3.6 Histograms of each method’s joint R2 scores 45
3.7 Bandpass (DCT) Method - Flatmap of Weighted Averages 46
3.8 Log-Normal DCT Method - Flatmap of Weighted Averages 46
3.9 CWVAE Method - Flatmap of Weighted Averages 47
3.10 Bandpass (DCT) Method’s Flatmap of Diffusion Embed-

ding Values. Importantly the values are flipped. Given a
voxel i = {0, ..., n} and its first Diffusion Component value
DC1,i:
FlatmapV aluei = max(DC1,0, ..., DC1,n)−DC1,i 49

3.11 Scatter plots of Voxel Diffusion Map Components and Prin-
cipal Components, using the Bandpass (DCT) Method.
Principal Component Analysis is a linear dimensionality re-
duction technique [48, 87], implemented by Scikit-learn [10,
88]. The Diffusion Map algorithm is able to flatten the PCA
manifold and push out the areas of high-density towards the
edges of the manifold. 50

3.12 Scree plot of the Voxel Principal Components, using the
Bandpass (DCT) Method. This shows that the first two
principal components can explain a little over 60% of the
variance. 51

3.13 Boxplots of the voxels’ Diffusion Map First Component and
Principal Component, using theBandpass (DCT) Method.
The distribution of Diffusion Map First Components for vox-
els, within regions V1 through V4, display a clear linear
trend for its medians (red lines) and means (green triangles). 52

v

List of Tables

3.1 Summary of Feature Space Approaches 41

vi

Special Thanks

To Jack Gallant:
For graciously guiding me into the Gallant Lab

And every step along the way.
For willingly taking me on.

For being honest and genuine.
For going far above & beyond anything I deserved.

For fostering and facilitating an environment
Where I could learn and grow so, so much.

For gifting sage advice,
Not only for academia, but also for life.

Without your guidance,
I would not have immersed in Neuroscience,

So deeply and thoroughly.
Jack, was the experiment a success?

No matter what,
I am eternally grateful.

To Allen Yang:
For being so understanding

And illuminating my path to Neuroscience.
For leading me to the Gallant Lab.

For making my ventures into graduate research and my Masters
Even possible in the first place!

For lending me an ear,
When I was hopelessly confused.

For being so patient and kindhearted,
And empowering my curiosity.

For entrusting me invaluable opportunities to widen my perspective
And have my heart touched by high-schoolers,
All while gaining a deeper appreciation for AI.

I am indebted to you.

To Tianjiao Zhang,
The Maestro:

For knowing when to guide
And when I needed to learn for myself.

My eyes no longer glaze over,
Whenever I encounter unfamiliar math.

It was thanks to you,
That I gained the courage

vii

To dive in and grasp new concepts!
Never before have I met such a hardworking and persevering mentor.

Thank you for telling me like it is.
Your breadth and achievements are incredible.

I hope I can
Live up to your standards

One day.

To Cheol Jun Cho:
For always putting up with my naive questions,

Indulging in my curiosity,
Patiently guiding me deeper

Into the math of Deep Learning,
And making my autoencoder work possible.

Without your irreplaceable guidance,
I do not know

How I would have gotten through
This thesis.

I hope we can collaborate again
One day.

I am rooting for you!

To Dan Garcia:
For instilling inspiration,

Passion,
And courage in me.

For helping me realize
There is so much more
That is worth learning.

To Michele Winter:
For your incredible patience,
And graciously supporting me

During numerous moments of struggles and embarrassment.

To Cathy Chen & Tom Dupre La Tour:
For guiding me through the world of signal processing

And laying the crucial foundation
That made my timescale research possible.

Cathy, you were right.
Tom, thank you for the ginger ale.

I really hope I can share my animation with you, one day!

viii

To Alicia Zeng, Amanda LeBel, Christine Tseng,
Emily Meschke, Jen Holmberg, Lily Gong,

& Matteo Visconti di Oleggio Castello of the Gallant Lab:
For welcoming me with open arms,
Treating me like your own kin,

And making this an unforgettable experience.
You are all so incredibly talented.

I hope to catch a glimpse of your future endeavors!

To Henry Sun, Jacob Holesinger, Natalie Khamphanh,
& Soohyun Cho:

For gifting me the precious moments
That led me to the world of Neuroscience.

To Karvin, Sally, Valentine, & Vienna Li:
For being so incredibly kind

And warming this worn, disillusioned soul.
For being the source of my conviction

To rally and make the final push
To bring this thesis

To a close.

To the Cindy, Gene, & Kaelyn Ong:
For being the eternal lights in my life.

For being my sword and shield.
I love you all.

To Jack Wu, Art Ong, & Mee Oy Ong:
I miss you all.

1

Chapter 1

Towards an Enhanced
CARLA for Human
Navigation Experiments

1.1 Introduction

Neuroscience experiments often use artificial stimuli that are simplified
representations of natural systems. The decreased complexity of such
results lend to more transparent interpretation. The brain is nonlinear,
such that states from a particular stimulus do not necessarily gener-
alize well. Experiments have shown that brain activity is effectively
remapped when subjects engaged with a simplified or non-naturalistic
experience [18, 21, 74, 78, 112], such as a passive presentation of an
environment that they had previously actively navigated [14, 99]. Con-
versely, experiments have demonstrated that experiments, with natu-
ralistic stimuli, produce results that higher reliability and repeatability
[6, 40, 42–45, 54, 75, 111, 113].

To decode human navigation, the stimuli must involve navigation
scenarios that are as naturalistic as possible. To date, there has been
no other framework that allows for the rich decoding of navigation
specifically for the human brain.

Modern statistical techniques allow for the analysis and interpre-
tation of larger sizes and dimensions of data. This affords the usage
of complex, naturalistic stimuli. Functional magnetic resonance imag-
ing (fMRI) achieves the best spatial resolution, out of all non-invasive
imaging techniques, by measuring hemodynamic activity throughout
much of the brain [4]. However, subjects must be stationary within
a narrow tube. Therefore, naturalistic stimuli is usually compressed

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 2

and transmitted through a device. Constructing virtual realities (VR),
as a stimuli, is a promising approach that affords extraction of rich
and accurate features. Modern physically-based rendering and scenario
scripting can approach the complexity of physical reality. Experiments
have created custom virtual environments from scratch, at the cost of
time and degree of complexity. As they are project-specific, it is also
difficult to continue adding or sharing features [8, 98].

Our approach is to modify CARLA [24], an Unreal Engine-based
project for autonomous vehicle simulations, for fMRI experiments.
CARLA contains much of the necessary nuts-and-bolts needed for a
driving simulator, including traffic scenarios and multi-lane driving.
At a high-level, this fork adds logic for the subjects’ tasks and classes
that extract a multitude of feature spaces while a subject is driving.
This custom code extends directly from CARLA’s C++ source code in
order to maximize performance.

1.2 Background

CARLA [24] is a driving simulator optimized for training self-driving
AI programs. However, CARLA provides a rich, dynamic driving en-
vironment that can also be used for human driving experiments. To
accomplish this, however, we need to modify the simulator for several
human considerations:

1. The system must be as performant as possible, to minimize the
perceptual speed difference from real-life driving scenarios.

2. The CARLA simulator must be intuitive and seamless to open
and start up, preferably with a human-facing single executable
that starts up the entire system.

3. The world must be varied and sufficiently large such that the hu-
man is immersed in the world and is unlikely to find the bound-
aries and limitations of the virtual world. The traffic system
should be complex, with multi-lane merging and intersection ne-
gotiation capabilities, such that the traffic dynamics are reminis-
cent of the physical world and, from which, rich interactions can
emerge.

4. The UI for configuring the virtual world must be intuitive and
flexible enough for humans, of a wide range of technical profi-
ciency, to be able to operate.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 3

Ultimately, our contribution will be to optimize the performance of
CARLA 0.9.13, opening the path to future research for human naviga-
tion in complex, naturalistic environments.

1.3 Related Works

Other experiments use readily-available video games as stimuli and en-
vironments, as modern games offer a rich array of features and inter-
activity. Counter Strike Source was used as a platform for recording
the brain activity of subjects in a competitive and highly interactive
environment [114]. The idea of a real-life simulator is appealing, as it
supports a wide-range of experiments and tasks. To that end, systems
have combined Grand Theft Auto V with deep learning to generate near
photo-realistic graphics. This has the potential to generate high-fidelity
brain activity from human subjects [93]. However, the aforementioned
games use proprietary engines, oftentimes making it extremely difficult
to modify the game’s environment and rules.

1.4 The Unreal Engine 4 Framework

Both versions of CARLA are built upon Unreal Engine 4 [34], a com-
prehensive 3D game engine.

Upon initialization, Unreal Engine loads a modifiable framework of
several classes. Anything that is present within an environment is clas-
sified as, or is based on, an actor. Actors can spin off their capabilities
and functionality into modular components. The environments can be
considered a level, several of which are contained within a persistent
world. This collectively defines the concept of an Unreal Engine map.

World → GameMode/GameState/Level → Actors → Components

The rules and mechanics of the game are defined by the GameM-
ode class, which is also a type of actor. Information about a particular
game instance is stored in theGameState, used primarily for network-
ing purposes.

Physically moving actors are usually classified as pawns. The player’s
inputs are routed through a controller that can possess and manipu-
late one pawn at a time. Information about the player is stored in the
PlayerState, used primarily for networking purposes.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 4

Ticking

Temporal game logic, including actor movement, is updated via a class’s
tick() function. Each tick essentially corresponds to a rendered frame.
The time difference between each frame, or delta, can determine the
extent of an update. This is also known as ‘variable timestep’, as
different frames will take different amounts of time to compute and
render. For example, a longer delta results in a thrown ball moving to
a farther position in the proceeding frame.

Physics computations are typically subsampled, meaning that each
tick involves several updates to an entity’s physics state. This alleviates
inaccuracies caused by long delta times. Physics is also known to be
computationally intensive and a culprit for performance bottlenecks.

Replication and Recording Replay

Actors and components can be marked to ‘replicate’. This configures
Unreal Engine’s built-in networking features to synchronize the changes
of these actors and components across all connected game instances.

The record replay feature utilizes this replication synchronization by
storing the optimized ‘changes’ of replicated actors and components.
The ‘changes’ can then be applied to a newly created environment,
containing the same actors and components, for replay. Replay affords
the extraction of large amounts of data about the state of the world
while a human is navigating, without hindering a human’s experience
of actually driving in the simulator.

1.5 Upgrading from CARLA 0.8.4

A variant of CARLA for fMRI experiments exists (Zhang, 2021) [114].
We use this as a reference for our CARLA derivative. However, the
CARLA for fMRI variant is based on CARLA 0.8.4. CARLA 0.8.4 has
far less dependence on Python, with most logic implemented within
the Unreal Engine project itself. There is no separate LibCarla sys-
tem, and traffic negotiation is handled by an Unreal Engine class. The
AIVehicles have built-in PID controllers, and there is an explicit class
for Player controllers that accepts inputs, such as keyboard or steer-
ing wheels. To combat the physics bottleneck, the fMRI variant de-
stroys traffic vehicles that are too far away from the player’s vehicle and
spawns a set number of nearby vehicles. The CARLA for fMRI vari-
ant also adds a custom GUI, allowing the player to intuitively modify
much of CARLA’s code configurations, such as the number of nearby

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 5

traffic vehicles. As the entire system is largely self-contained within
Unreal Engine, it is far more feasible to package the simulator into a
single package for distribution. This is in contrast to the new version of
vanilla CARLA, which depends on several separately-running packages
to run simulations.

We want to eventually combine the new features and sophisticated
traffic scenarios, from the latest CARLA, with the functionality of the
legacy CARLA for fMRI variant. In doing so, the AI agent capabilities
can even further approach a naturalistic environment. This should en-
able real-time multi-agent experiments that can integrate with CARLA
autonomous programs built by other researchers.

Our hope is that, once the upgrade is completed, the newly modified
CARLA 0.9.13 will be nearly as performant as the CARLA for fMRI
variant. In doing so, it will open the path to replicating the feature ex-
traction capabilities from the CARLA for fMRI variant. These include
states such as the current distance to the destination and road graph
to reflect topologic (relative) route progression. It will support rudi-
mentary objectives via trigger boxes, and allow for human control of
any vehicle. Additionally, environments will now have multi-lane roads
and capabilities for humans and autonomous agents to simultaneously
connect to the same session.

1.6 Major Differences in CARLA 0.9.13

The following are crucial concepts in the latest version of CARLA, that
did not exist in the 0.8.4 version.

LibCarla

The LibCarla client library exists at the top-level directory within the
LibCarla/ folder, while the server library exists within the Unreal En-
gine project dependencies directory
(Unreal/CarlaUE4/Content/Include/CarlaDependencies).
Both versions are linked with external Boost libraries. The server li-
brary is added as an Unreal Engine external dependency via its Unre-
alBuildTool, defined by the CarlaUE4.build.cs file. We attempted
to add the client library as an Unreal Engine external dependency, how-
ever the classes’ numerous namespace definitions conflicted with Unreal
Engine’s unique restrictions on namespaces.

CARLA provides instructions for creating an executable by build-
ing C++ code against the LibCarla client library. The provided make-

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 6

file packages the LibCarla classes into the target directory’s install/
folder and links the library with the specified C++ (.cpp) file. Using
this C++ API allows for startup and control of the LibCarla client,
while bypassing the installation and usage of Python packages. How-
ever, the client library makes use of functions that prevent static link-
ing. Static linking copies complete system libraries into the target
executable, producing a portable executable that can run on different
systems. Instead, the makefile dynamically links the library with the
C++ file. This means that, at runtime, the executable requires sepa-
rately installed system libraries. It may be possible to automate this
through a bash or shell script.

Traffic Management

Traffic Management is handled in a centralized, monolithic system that
resides in the client-side LibCarla library. The centralized system af-
fords multi-lane support and intersection negotiation. The traffic man-
ager caches the state and trajectory of all registered traffic vehicles. It
uses this data to continuously compute and send the next command
for each vehicle. It relies on converting the map’s OpenDrive [84] data
into a R-Tree [37] representation, for quickly finding nearby neighbors,
and a grid of waypoints for lane merging.

Vehicles

All steering and trajectory commands are sent through the LibCarla
client library. The LibCarla server receives these commands and sends
it to the target vehicle, identified by an assigned ID. The vehicle’s
CarlaActor class routes these commands to the Unreal Engine’s vehicle
class, which translates the command to changes in the vehicle’s steering
angle or physics trajectory.

Walkers

CARLA now has support for pedestrians, which can be set to move at
different speeds and randomly cross streets. The pedestrians are sepa-
rately controlled and possessed by individual WalkerAIControllers,
within Unreal Engine, and are not handled by the traffic manager.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 7

Fixed vs Variable Timestep

LibCarla can be configured to handle variable timesteps but operates
in a fixed timestep, by default. This means the calculated changes
do not take the different lengths of time between frames into account.
Instead, a constant time delta is set and applied to each frame’s calcu-
lations. This is ideal for the system’s target autonomous systems, as it
allows for deterministic state updates. For real-time player simulations,
however, this must be changed to a variable timestep. Otherwise, the
vehicles and pedestrians may appear to be moving far too quickly at
high framerates.

Synchronous vs Asynchronous Ticking

CARLA recommends that the LibCarla client enforces synchronous
ticking, which means that the system effectively stalls the Unreal En-
gine’s state of the world until the client has finished all of its com-
putations and the server receives all commands. The multiple stages
and complexity of the traffic manager result in performance bottlenecks
under a synchronous architecture. This guarantees that the traffic man-
ager can accurately account for every change of the world’s states.

The performance impact is of little consequence to autonomous sys-
tems, which do not need to update in real-time. With asynchronous
ticking, the traffic manager collects data from the Unreal Engine’s sim-
ulation state and simultaneously performs its calculations in a separate
process. This means that the traffic manager will be unaware of sub-
sequent changes in the state of the world, before it is able to finish
its calculations and again poll the state of the world. This may result
in more ‘jittery’ traffic and less sensible routing. As we prioritize a
human-centric experience, we sacrifice this accuracy for better perfor-
mance.

1.7 The CARLA 0.9.13 Framework

The developers of CARLA provide minimal documentation for every-
thing besides high-level overviews and the Python API. The source
code was effectively a black box. Therefore, a significant amount of
time was spent reverse-engineering and documenting the source code.
The following section provides the current understanding of the existing
project infrastructure.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 8

Figure 1.1: An diagram of the combined CARLA and Unreal Engine 4
structure

High-Level Overview

At a high-level, CARLA can be considered to consist of five compo-
nents. Its (1) Python API is intended to be the client-side interface
to ultimately control the server-side Unreal Engine 4 game instance.
Between this, the Python API directly interacts with (2) LibCarla, a
self-contained collection of C++ processes and libraries. LibCarla rep-
resents a massive departure from earlier versions of CARLA, in that
LibCarla houses many of the critical computations: traffic manage-
ment, map processing, pedestrian and vehicle spawning, to name a
few. Simpler versions of these features were previously implemented
directly into the CARLA project plugin for Unreal Engine. Through
network m, remote procedure calls (3, the pimp module), LibCarla and
the (4) CARLA project plugin continuously exchange information and
commands. The CARLA project plugin contains C++ classes that
override the Unreal Engine default game code, effectively controlling
the (5) server-side game instance.

Our goal is to implement a human-centric driving simulator, built
upon Unreal Engine 4.26 and the latest release of CARLA (0.9.13). A
majority of research time was spent investigating CARLA’s behemoth
of an implementation and consulting its documentation. There is a dra-
matic system implementation shift between CARLA 0.9+ and previous
releases. A major challenge was coming up with creative solutions to
overcome the hurdles of CARLA’s external dependencies.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 9

Client-Server Model

With every successive release, CARLA further optimizes its pipeline for
training and testing autonomous agents. To achieve this, CARLA tries
to entirely abstract away the UE4 code with its Python interface. The
Python interface, and the added module dependencies (e.g. PyGame),
introduce more complexity to the user. Out-of-the-box, Python and
Unreal Engine launch separate game windows, which may confound a
human user and wastes computational resources. Python also impacts
performance, due to its interpreter nature. The Python interface is
binded, via the external Boost [7] library, to a C++ library, called
LibCarla. LibCarla itself is split into two versions, a client and server.
The client communicates with the server over local network RPC calls.
The LibCarla server then interacts with the UE4 project, which runs
the simulation world. This means numerous steps must be taken when
controlling a car.

1. A command is entered through the Python script

2. The command is then routed to the LibCarla client library

3. The command is packaged as an RPC message

4. The message, as a network packet, to the LibCarla server library

5. The LibCarla server library unpacks the message and passes it
along to the Unreal Engine classes

6. Unreal Engine executes the command

7. Unreal Engine updates the state of the world

8. Unreal Engine sends image data from the vehicle’s camera to the
LibCarla server library

9. The LibCarla server library packages and sends the data over
RPC to the LibCarla client library

10. Python reconstructs the image and displays it in a separate Python
window

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 10

A Closer Look at the Client-Server
Communication Pipeline

LibCarla

The following is a more technical, involved look at how LibCarla com-
municates with the CARLA plugin and Unreal Engine 4. To get a
better sense of the communication flow, we follow the call stack initi-
ated by the ALSM module, part of the traffic manager in LibCarla.
The ALSM module needs information about all present actors in the
UE4 game instance, so it requests this information from the LibCarla
World class. The LibCarla World class then passes the request to the
LibCarla Episode class, which then performs three main actions: 1.
Requests the Identification Numbers for all actors in the game, from
the LibCarla EpisodeState class 2. Compares the retrieved IDs with
its own internal CachedActorsList 3. Get information about any
non-cached actors through the LibCarla Client class The LibCarla
EpisodeState and Client classes ultimately serve as the gateway to
the server-side game instance.

CARLA Plugin + UE4 Project

The Unreal Engine 4 project loads the CARLA project plugin, which
overrides the default game C++ classes with its own. The WorldOb-
server class defines a sensor, which spawns in the game and polls for in-
formation about the entire game world. It sends information requested
by the LibCarla EpisodeState class over the established rpc channels.
Similarly, the CarlaServer class acts as the rpc messenger between
the LibCarla Client class and the rest of the Unreal Engine 4 game.
For example, the LibCarla Client sends specific IDs as a request for
its missing actors. The CarlaServer receives this request and returns
results from the Episode class’s registry of actors

Defining Actors

In Carla, Actors usually refer to the vehicles present in the server-side
game. The information and location of Actors is constantly updated in
the LibCarla processes, and is used by the traffic manager. Pedestrians,
also present in the game, are largely self-contained and are randomly
controlled by UE4, instead of the traffic manager. The Carla UE4
project, referring to the server-side game instance, contains a factory,
or library, of actor definitions, essentially blueprints or schematics. A
definition contains several variations of possible vehicle characteristics,

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 11

such as colors or number of wheels. Spawning a valid actor requires an
actor description which contains several attributes. These attributes
consist of values, including each possible variation of the actor’s defini-
tion and the actor’s role.

Discussed more in-depth in the following sections, an actor’s role
is usually defined as a hero or traffic. Hero vehicles are intended to
be the egoistic frame of reference for experiments, and are usually the
focus of the experiment’s computation or controls. Traffic vehicles are
those handled by the LibCarla traffic manager. This framework for
actors is replicated by the client-side LibCarla, which retrieves actor
information from the UE4 CarlaServer and reconstructs its own mir-
roring data structures. Relevant classes of interest include the Ac-
torBlueprint and ActorBlueprintFunctionLibrary classes. These
equivalent data structures are what is used by the traffic manager.

The Traffic Manager

The 0.9.13 traffic manager is the largest departure from CARLA 0.8.4,
containing entirely new code and offering multi-lane traffic capabilities
(CARLA 0.8.4 only supported single-lanes). It is self-contained within
LibCarla. At every tick (if in synchronous mode), the TM must retrieve
game state information from the server, perform computations, then
send control commands to all server-side actors. It has a highly complex
structure involving several stages:

1. Localization – calculating the relative position of actors (Loca-
tion, Heading, Velocity, Speed, etc.) in regards to each other and
nearby map characteristics, such as multiple lanes or obstacles

2. Collision - calculate whether any actors, in their current trajec-
tory, will collide and, if so, mark for steering correction

3. TrafficLight - check to see if vehicles are at an intersection and,
if so, prepare to coordinate movements of all vehicles, at each
different intersection

4. MotionPlanner - Given the status of all actors/vehicles in the
map, plan and create the control commands for all actors

5. VehicleLights - Account and correct for the state of all vehicle
lights, according to the weather and driving situation.

These stages can be further decomposed into several smaller classes
that make use of C++ libraries, primarily boost data structures. Once

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 12

all stages are complete, the control commands are passed by rpc to the
CarlaServer class, which passes on each command to the designated
actors. In synchronous mode, this entire process is done in one tick.
This dramatically slows the system down, but ensures that the TM
sees every single change in the game. For real-time, it is possible to
use asynchronous mode where the server-side game will not wait for
the TM to complete, before moving on to the next tick. The TM will
still operate, however, the states it receives and commands it sends
may be always outdated, with respect to the real-time server-side game
instance.

Each stage is specifically bottlenecked, in that all computations of
the previous stage must be completed before moving on to the next.
This all-or-nothing approach also means that immense maps would re-
quire more computation time before ultimately sending out any control
commands to any actors.

1.8 Implementation

Replay Recording

CARLA implements its own recorder, which also logs additional infor-
mation about the state of all actors. We sought to integrate Unreal
Engine’s built-in replay recording system, which is highly optimized
and makes use of its network replication feature. To accomplish this, I
followed the Replay System Tutorial from the Unreal Community Wiki.
I added the networking-relatedDemoNetDriver to the game project’s
DefaultEngine.ini config file. Several lines of code were added to the
CarlaGameInstance class and updated to match the specifications of
Unreal Engine 4.26. The Replay Recording system records all present
actors’ commands at each tick and stores the data in an optimized file
format. It automatically handles both synchronous and asynchronous
ticks and matches the variable timesteps that occur during recording
sessions.

Traffic Manager

CARLA is designed such that client-side LibCarla, which contains the
traffic manager, and the server-side UE4 project must both be launched,
separately. Our goal was to simplify this startup process, such that
launching the UE4 project would automatically start the traffic man-

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 13

ager. Additional performance considerations make this a non-trivial
task.

In collaboration with an undergraduate, we discussed possible meth-
ods of TM integrations and their individual drawbacks: 1. The method
with optimal performance would be to integrate the traffic management
logic into Unreal Engine. We naively assumed this could be done by
moving the TM code directly into the CARLA plugin for Unreal En-
gine. However, we found that the TM is so thoroughly integrated with
the rest of LibCarla that it would require substantial rewriting in order
to integrate with the server-side data structures. Another point of con-
cern is that the TM makes extensive use of external C++ libraries, e.g.
Boost, however these do seem to be integrated into the server-side Un-
real Engine project. Reliance on these could induce bottlenecks, as the
code does not necessarily interoperate with Unreal Engine-optimized
components. Ultimately, this would provide feature parity with the
current CARLA, but would be the most time-intensive. 2. An alterna-
tive could be to build our own equivalent TM, completely from scratch.
The advantage of this would be that we could make use of built-in
and highly-optimized Unreal Engine components. However, it is diffi-
cult to find pointers or pre-existing documentation on creating Traffic
Management systems in Unreal Engine.

There is no guarantee that we can also reach feature parity with
the current CARLA. 3. The quickest to verify, but least-performant,
option would be to have the Unreal Engine project automatically start
the client-side LibCarla. LibCarla is effectively still a separate process,
and communicates with CARLA over the default rpc ports. In order to
access the traffic manager, LibCarla must first be compiled and linked
to Python or C++ executables.

Given time constraints, we ultimately chose to pursue the third
approach. However, we designed our implementation to be modular,
with support for future attempts at native integration. We break down
our solution into three components: the C++ API, compilation, and
the CARLA plugin for Unreal Engine.

C++ API

CARLA provides extensive documentation for its Python API, which
the Boost library translates to CARLA’s C++ API. For portability
and stability optimizations, we bypass the Python API and directly
implement three C++ scripts: main_tm, worker_tm_register, and
worker_tm_deregister. The main_tm must be executed first and is
responsible for starting up LibCarla’s traffic manager system. It con-

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 14

figures the traffic manager to be in Hybrid Physics mode and controls
the computational ticks, by way of its never-ending while loop.

The worker_tm_register and worker_tm_deregister, as their
names imply, are assistants to the traffic manager. They accept lists
of actor ID numbers, which it then either registers or deregisters the
traffic manager system. The traffic manager only keeps track of and
sends commands to registered vehicles. Therefore, destroyed vehicles
must be manually deregistered, to ensure accurate future commands.

Compilation and Linking

The C++ API allows us to create standalone executables that do not
require installing the Python library. To create the executables, the
C++ scripts must be linked with the built LibCarla library during com-
pilation. By default, the compiler will dynamically link the executable,
meaning that it will require system-specific library files. To make the
executables system-agnostic and truly portable, we can instead stati-
cally link the executables. The only viable method we found was to
change the C++ API’s example makefile to use CARLA’s clang++
compiler. The CARLA makefiles have been modified to automatically
compile the C++-based executables and move them into the CarlaDe-
pendencies folder, within the Unreal Engine 4 project directory.

CARLA Plugin for Unreal Engine

Within the CARLA plugin source exists a traffic directory. There, we
added two classes:

1. The TrafficManager class is intended to be the highest-level con-
trol of traffic, from within the Unreal Engine project. Modular
by design, its role is to send high-level commands to any valid
assigned interface. The interface is intended to either handle
these computations within Unreal Engine, or pass them off to the
LibCarla executables. This class also handles the spawning of
vehicles and passes its IDs to the interface, for registration.

2. In this case, we implemented a LibCarla interface that handles
the high-level commands from TrafficManager and starts our ex-
ecutables. This class uses Unreal Engine’s built-in
FPlatformProcess::CreateProc to start the main_tm executable.
When the TM is ready, the interface passes the ID list, as a string,
to the worker_tm_register executable.

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 15

Figure 1.2: Screenshot of the custom-build of CARLA

Performance Optimizations

As physics substepping presents a major computational bottleneck in
Unreal Engine, CARLA includes a configuration for Hybrid Physics.
To enable this, one vehicle must be designated with the role of the
egocentric hero. For our purposes, that will be the vehicle that the
player controls. This is specified as an attribute within the description
of the actor that the player is assigned to. LibCarla requires a set
radius distance from the designated hero, so that all traffic vehicles
within that radius will have physics enabled. Any vehicles outside of
that radius will have physics disabled, and will instead ‘teleport’ its
position between LibCarla computation steps.

1.9 Evaluation

Replay Recording

The replay recording functionality can be tested via in-game console
commands, demorec test and demoplay test. When testing replay, Un-
real Engine would respawn all vehicles, pedestrians, traffic lights, and
roads. Buildings, flooring, and barriers failed to respawn. This would
cause vehicles to fall off the map and into a bottomless void. Upon
further testing, it was found that the CARLA project’s use of sub-
level streaming was the culprit. Different 3D models are grouped into
sublevel categories, which are streamed for further performance opti-
mizations. Disabling this streaming and forcing the sublevels to be per-

CHAPTER 1. TOWARDS AN ENHANCED CARLA FOR HUMAN
NAVIGATION EXPERIMENTS 16

sistent solved this issue. Replay Recording now is fully functional and
properly respawns all 3D models that were present during the recording
session.

Traffic Manager

This custom-build of CARLA was informally tested (Figure 1.2) on a
system with a 12-core, 24-thread CPU, 48GB of RAM, and GTX 1080
Ti. With Hybrid Physics enabled and asynchronous ticks for LibCarla,
the game achieved a roughly 50 fps minimum and an average of 60 fps.

1.10 Discussion

We initially attempted to copy/paste over the contents from the CARLA
0.8.4 project directly into the CARLA 0.9.13 project. Our intention was
to manually iron out the dependency errors and conflicts, but it quickly
became apparent that there was a fundamental structural rewrite be-
tween the two versions. What followed was an extensive process of
comparing the implementations of both systems and reading the doc-
umentation of each. We tried to copy code line-by-line and manually
patch up the errors, as I was worried that the mountains of code had
functionality or corner cases that I had yet to understand. However,
our graduate mentor advised us to instead try understanding the high-
level goals of each system. It took me a long time to understand and
accept that I needed to replicate the capabilities of the CARLA 0.8.4
system, but the implementation details could be vastly different. A lot
of time was wasted on trying to come up with a coding standard to
make future upgrades easier, but eventually I accepted that it was far
more important to create a working system.

17

Chapter 2

Semantic Segmentation for
Source Engine Games

2.1 Introduction

In order to perform brain decoding/encoding, within the Voxelwise
modeling framework [63, 80, 112], time-based stimuli must be non-
linearly transformed into features. The following chapter details an
implementation of transforming such features by extracting semantic
information from immersive stimuli.

2.2 Background

Semantic segmentation involves assigning entities to categories, and
providing a method to identify which categories are perceived, at dif-
ferent points in time. These categorical labels provide useful represen-
tations about the world for machines and humans to better interpret
data. Ground-truth labels are especially important for training better
machine models and providing the most possibly accurate interpreta-
tions of data.

Counter Strike: Source [107] is a ubiquitous multiplayer game, af-
fording rich interactions, and continues to be supported by a robust
modding community. Its extensive documentation and plethora of cus-
tom content affords great flexibility in crafting custom environments
and rules, making this a viable platform for generating semantic seg-
mentation datasets. However, the game does not feature semantic seg-
mentation out-of-the-box.

One workaround is to split each rendered frame into smaller regions
and assign each region to the category that shares the most similar

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 18

group of pixel color values. This avoids any game modification, but it is
difficult to accurately predict on pixel values that constantly fluctuate
from fancy rendering effects, such as interpolation and shadows. A
common alternative approach is to find the target entities and assign
each of them to an optimal category. For each category, the rendered
pixels of all assigned entities are replaced with a unique solid color.

To achieve ground-truth labels, we pursue an automated method
of directly replacing the textures of every 3D model. These textures
are accessed by locating the asset paths for each model. The mod-
els are then grouped into various semantic categories, based on the
names of their parent directories. Distinct solid colors are generated,
for each semantic category, and replace the original texture files. The
game configuration settings must then be tweaked to disable various
cosmetic features, such as pixel interpolation and fog passes, that can
alter the rendered color of textures. We essentially want to produce
frames that are equivalent to a rasterized scene with shading that ig-
nores all physical effects, including light sources and shadows. This
creates “ground-truth” semantic segmentation labels within the game
itself. We focus on a pipeline for the de_dust2 map, but this method
can generalize to any other Counter-Strike: Source map.

2.3 Related Work

Previous works have explored approaches to generating semantic seg-
mentation datasets and applying them for scientific interpretation.

Krahenbuhl (2018) [60] developed an approach that is able to gen-
erate live semantic labels from signatures and tokens, during runtime.
This is achieved by reverse engineering the DirectX rendering code,
specifically the HLSL binary shader, that is shared by many games.
Code is injected such that, at runtime, the rendered objects’ tokens
are used to assign groups and generate semantic labels. The result is a
game-agnostic system, with the caveat being that the game must render
using DirectX, a primarily Windows-dependent library. At a high-level,
our pipeline determines semantic groups based on a texture’s location
in its file hierarchy and its parent directories. This is similar to how
Krahenbuhl’s code determines semantic groups based on the rendered
shader’s tokenized variable name.

Huth et al. (2012) [53] hand-labeled semantic groups present in in-
dividual frames of naturalistic movies. These movies were presented, as
stimuli, to participants whilst their brain’s BOLD-data was recorded,
via an fMRI machine. A novel linear regression model, dubbed ‘voxel-

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 19

wise modeling’, decoded brain representations of different semantic cat-
egories.

Demonstrating the viability of Counter-Strike: Source as an exper-
imental paradigm, Zhang et al. (2021) [114] simultaneously recorded
screen captures and fMRI BOLD data from participants. Voxelwise
modeling was performed to regress hand-labeled behavioral states, from
the screen capture frames, onto the corresponding BOLD voxels. They
are able to recover a low-dimensional behavioral state space that can
predict on unseen data, despite the existence of strong correlations be-
tween the different states. The behaviors were also projected back on
to the cortical surface to identify two general groups consistently cor-
responding to specific brain regions.

2.4 Preliminaries

The Counter Strike game uses Valve-specific file formats, requiring the
use of several specific programming tools. This section breaks the game
down into the components that need modification, their corresponding
file formats, and the tools used accordingly.

Source Engine Compiled Maps (Dust II)

Upon launching Counter Strike, the underlying Source Engine [106] will
load all 3D models from a VPK package. A VPK, also known as a Valve
Pak, optimizes for real-time loading by storing the game contents, and
their corresponding directories, within several smaller archives. These
smaller archives are collectively referenced and managed by a master
VPK file ending in _dir.vpk. GCFScape, a third-party tool, is able to
combine all of the archives and export the original assets and directo-
ries.

Originally, the plan was to visually identify the semantic categories
of the textures, based on their associated 3D models, by inspecting the
de_dust2 map. Counter Strike games can load one of several maps.
Map files contain information about landscape geometry and which 3D
assets the game engine should load. These assets include prop objects
and materials for all 3D models in the map. Maps are compiled into
commercial BSP format files, found in the maps directory, extracted
from the VPKs. The third-party Crafty application can open these
compiled map files, but it neither loads or identifies any textures. Un-
official BSP decompiler software could retrieve the original texture ref-
erences, but we did not choose to pursue this method.

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 20

The Components of each 3D Model

Landscape geometry is encoded as vertices, faces, and normals within
the map file, while reference prop models are compiled into the MDL
format. Models are found in the extracted models/ directory. Each of
these references its own material.

Materials are Encoded as VTF and VMT Files

Like the landscape geometry, 3D model files contain information about
their vertices, faces, and normals. Their ‘aesthetic’ information is con-
tained in separate material and texture files. Materials define the ‘qual-
ities’ of the surface, such as the amount of reflectivity or transparency,
and are defined in a VMT (“Valve Material Type”) text format file.
Textures are akin to defining what colors are ‘painted’ on the surface
of the object, and are encoded in an accompanying commercial VTF
(“Valve Texture Format”) file. The texture and material files, for each
object, are found side-by-side in the extracted materials/ directory.
This directory will be the focus of our semantic segmentation approach.

As VTF files are a commercial format, texture files are first saved as
a standard image format, such as PNG. VTFEdit, part of Nem’s Tools
[36] VTFLib software, can batch convert the PNG files into VTF files,
in-place.

VMT files each define a single material, which consists of a single
shader-type with configurable parameters. Different models use vari-
ous shaders, each with its own inherent properties. Shaders determine
how an object is rendered onto the screen. Complex shaders can han-
dle real-time shadows and refractions. However, such physical render-
ing produces non-uniform pixel values for rendered objects, which is
undesirable for semantic segmentation. The LightMappedGeneric
shader is typically used for 2D brushes and lightmaps, while VertexL-
itGeneric can be found in most materials for 3D models. For our
purposes, we want to assign all materials to have the UnlitGeneric
shader (Figure 2.1), as it is invariant to light propagation and is capable
of producing flat shading. It contains a $basetexture parameter that
accepts an albedo VTF file.

As a special exception, the map’s floor cannot use theUnlitGeneric
shader and its material instead uses a unique WorldVertexTransi-
tion shader. This shader blends between two textures. To work around
this, both textures can be identical. To replicate the flat shading of Un-
litGeneric, theWorldVertexTransition (Figure 2.2) shader is set to
be self-illuminating, via its $selfillum parameter.

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 21

UnlitGeneric

{

"$basetexture" "de_dust/ducrtlrgtp"

}

Figure 2.1: An example UnlitGeneric VMT File, which is invariant to
light states and is capable of producing flat shading.

WorldVertexTransition

{

"$baseTexture" "de_dust/groundsand03"

"$basetexture2" "de_dust/groundsand03a"

"$selfillum" "1"

"%keywords" "cstrike"

}

Figure 2.2: An example WorldVertexTransition VMT File, which
blends between two textures.

Texture Mods

When loading all assets, including maps, the Source Engine will first
check and see if any identical paths and files are present in the custom/
directory. This allows for modding, as any custom assets will take
precedence over the default version, so that the default file will be
effectively ignored. For our purposes, the exact directory structure,
containing the textures and materials loaded into the de_dust2 map,
must be replicated within the custom/ directory. This will replace all
textures and materials with our custom variants with flat shading and
uniform colors.

Source Engine rendering settings

The Source Engine employs physical rendering features, such as fog
and draw distance, that involve interpolation of the on-screen pixels.

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 22

These additional rendering passes alter the original pixel color values
of textures. Therefore, it is imperative to disable as many of these
features as possible, through console commands, in order to retrieve
accurate semantic categories.

Operating Systems and Libraries

Our pipeline was set up on Ubuntu 18.04. Counter Strike: Source was
installed via Steam and runs on the Proton software layer. Nem’s Tools
[36] and the .NET [76] library dependencies were installed with Wine
[56]. The NET [76] Framework was installed through Winetricks [27].
The custom pipeline script used Python [29] with PIL [15, 70] and CSV
libraries.

2.5 Semantic Segmentation Pipeline

VPK extraction

In the Counter Strike game’s folder, we locate the vpk file ending in
_dir.vpk. This contains references to all other vpk files that contain
the total sum of assets used within the various maps. GCFscape is used
to extract all directories from the vpk files. These directories contain all
assets, including the textures and materials necessary for our semantic
segmentation pipeline.

CS:S console commands

While there are parent directories that match the names of specific
maps, they only contain a subset of the assets used. Many textures
and materials are shared between all maps, with some contained in
recycled directories from an older game, Half Life 2. Rather than
exhaustively modifying every single texture, running the command
mat_showtextures from the console while playing in the de_dust2

map outputs the paths of all currently loaded textures.

Folder hierarchy corresponds to a semantic group
color (RGB)

The list of paths is a subset of all possible textures, resulting in a
more compact hierarchy with names that correspond to possible se-
mantic groups. Visualizing the hierarchy as a tree diagram, leaf nodes

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 23

that share the same parent are considered to be in a unique semantic
group. Higher-level parent nodes can be manually assigned to a se-
mantic group, so that all of its child leaves now share the same label.
This reduces the total number of semantic categories and increases ease
of interpretability. Manual assignment was done by assigning category
names to each texture in a CSV format file.

An example assignment method would be to increment the RGB
value for each next semantic group, starting with R and moving on to
G, once the value limit of R has been reached.

Python script with Functional Programming

A functional pipeline (Figure 2.3), written in Python [29], reads the
CSV file. It constructs the relevant directories to mirror the original
game’s path structure, and generates the textures with corresponding
VMT material files in the correct locations. The textures are generated
as solid color PNGs of an arbitrary size. Their color is dependent on the
semantic category, which is converted into a unique corresponding RGB
value. The VMT material files are generated according to the standard
text format, with material type set to ‘UnlitGeneric‘. This material
type is not dependent on lighting and produces the flat shading needed
for semantic segmentation. This ensures that rendering features, such
as reflection and specular lighting, do not affect any textures.

Assigning colors to semantic categories

A possible approach to assigning unique colors to each semantic cat-
egory is to maintain a counter variable c that assigns its number to
the next semantic category and increments thereafter. The semantic
category’s assigned number is converted to the RGB range and floats
(decimals) are truncated to an integer (floor) (Equation 2.1).

R = ⌊ c

2562
⌋, G = ⌊ c

256
mod 256⌋, B = c mod 256 (2.1)

Batch converting PNGs to VTFs with VTFEdit

The generated output structure is then batch converted via VTFEdit,
which in-place converts all of the PNGs into Source Engine’s VTF
texture format. The original PNG files are removed, and the completed
structure is moved into the game’s custom/ directory.

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 24

load_csv ← Load texture paths and

assigned semantic categories

from csv file

for texture, semantic category in load_csv:

generate all parent directories

if semantic category is unseen:

assign new RGB color to category

increment assignment counter

find corresponding RGB color to semantic category

generate (4096x4096) PNG in correct texture path

generate corresponding VMT file in correct path

Figure 2.3: Pseudocode for the functional pipeline that generates ma-
terials and creates mappings to semantic categories

Moving the custom files into the game’s directories

The generated texture files can also be compressed into a VPK file
and placed into the custom directory, but initial testing demonstrated
empirically worse performance compared to moving over the full, un-
compressed structure of textures and running the game.

Source Engine rendering settings

Console commands were found online, but lacked complete descriptions.
Each command was manually tested for functionality. These console
commands can be inserted into a config (Figure 2.4) file that is loaded
by the game engine, at runtime.

1. sv_cheats: allow cheats on server – game sessions are run on
servers, several settings are considered “cheats” which require this
setting to be enabled

2. mat_motion_blur_enabled – toggles motion blur which may cause
unwanted interpolation of screen per-pixel RGB values between
frames

3. mat_disable_fancy_blending – toggles blending of textures, in
scenarios such as overlapping

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 25

//custom

sv_cheats "1"

mat_motion_blur_enabled "0"

mat_disable_fancy_blending "1"

mat_disable_bloom "1"

mat_disable_lightwarp "1"

r_drawsprites "0"

r_drawdecals "0"

r_shadows "0"

r_drawparticles "0"

r_drawbeams "0"

mat_fullbright "1"

cl_drawhud "0"

mat_bumpmap "0"

fog_override "1"

fog_start "30000"

fog_startskybox "30000"

fog_end "30000"

fog_endskybox "30000"

r_farz "30000"

mat_antialias \0"

Figure 2.4: Contents of the config file, containing console commands
that modify Counter Strike: Source in-game settings.

4. mat_disable_bloom – toggles lighting bloom, which blends with
the textures and changes screen pixel RGB values

5. mat_disable_lightwarp – toggles miscellaneous lighting effects
that can affect screen pixel values

6. r_drawsprites – toggles 2D textures that are layered on assets,
such as graffiti on walls, and fog layers that are projected into the
sky

7. r_drawdecals – toggles 2D textures that appear on assets, such
as gunshot indentations

8. r_shadows – toggles the rendering of shadows, which change the
on-screen pixel values of rendered textures

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 26

9. r_drawparticles – toggles particle rendering, which can occlude
or blend with textures and produce altered screen pixel RGB color
values

10. r_drawbeams – toggles light-beams, which can alter textures in a
manner similar to that of particles

11. mat_fullbright – enabling this will cause all materials and 3D
models to effectively self-illuminate and be invariant to other
lighting sources. This uniform lighting should produce pixel RGB
values that match that of each model’s original textures.

12. cl_drawhud – toggles the HUD elements, such as the minimap
and HP values

13. mat_bumpmap – toggles using the material normals to alter the
rendered appearance of textures, usually by altering light and
shadow scattering. This too may cause undesirable modifications
to the original texture’s per-pixel RGB values

14. fog_override – overrides the default rendering settings of game
fog, which blends with the textures and modifies the original tex-
ture pixel RGB values.

15. fog_start, fog_startskybox, fog_end, fog_endskybox – pa-
rameters for the fog location and size, we maximize these values
so that the fog is not present within the map itself

16. r_farz – overrides the clipping plane, the distance cutoff point
at which the fog should obfuscate any models that are clipped.
This is intended for performance optimizations. We maximize the
possible value so that effectively no models are clipped

17. mat_antialias – toggles the antialiasing of edges and textures.
This smooths and blends what is rendered, which modifies the
original pixel RGB values of rendered textures.

2.6 Evaluation

The pipeline needs to be visually tested before it can be used to gener-
ate semantic labels. In this section, we walk through our approach of
gradually testing and verifying the semantic labels of an increasingly
greater number of categories.

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 27

Figure 2.5: Pipeline verification - Replace a few materials

To verify the functionality of the pipeline, we focused on replac-
ing the texture and material for a single asset – the hands (Figure
2.5). Once the hands successfully changed into a flat color, we applied
the pipeline to all loaded textures and materials (Figure 2.6). At this
point, the ground is not set to the correct WorldVertexTransition
shader and rendering passes have yet to be disabled. Therefore, there
is noticeable pixel blending and interpolation on the screen.

GIMP

As a quick, informal, form of verification, randomly sampled frames
were loaded into the GIMP [100] image editor. RGB values from ran-
dom pixel locations were picked via the eyedropper tool. The associated
semantic category was compared with the on-screen object that con-

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 28

tained the pixel. Correct labeling was visually confirmed by human
intuition.

Multi-frame verification

All additional rendering passes and advanced engine features were suc-
cessfully toggled off (Figure 2.7). For consistency and accuracy, batches
of frames were cropped and the pixel color values were compared with
their corresponding semantic categories. These were again visually ver-
ified by humans.

2.7 Application

Reliable semantic labels are useful for a wide variety of applications
that involve representations. As an example, we detail how combin-
ing Voxelwise modeling and semantic segmentation enables advanced
interpretation of brain decoders.

Figure 2.6: Pipeline verification - Replace all loaded textures and ma-
terials

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 29

Figure 2.7: Pipeline verification - Fully replaced textures and materi-
als, with all additional rendering passes and advanced engine features
successfully toggled off

fMRI Voxelwise Modeling

As this pipeline works at the game level, we are able to extract frame-
wise semantic categories from recorded sessions that are replayed. This
data was fit, via Voxelwise modeling [80, 112], with accompanying fMRI
recordings of the player’s brain. The produced model recovers how the
representation of the different semantic categories are distributed across
the cortical surface, at the resolution of thousands of voxels.

2.8 Discussion

Bugs caused by Source Engine rendering features

A bug was discovered when illogical semantic categories were being
reported in pixel clusters of very small sizes. Finding the location of
these erroneous pixels confirmed that there was still an antialiasing

CHAPTER 2. SEMANTIC SEGMENTATION FOR SOURCE
ENGINE GAMES 30

rendering feature that had yet to be toggled off. This resulted in an
interpolation of pixel values, producing presumably gaussian noise that
corresponded to incorrect semantic categories being identified across
several frames. Toggling the engine feature off removed these erroneous
pixels.

The majority of development time was spent researching the Source
Engine system. A significant amount of time was spent trial-and-error
testing different console commands to understand their functionality,
due to their scarce documentation.

31

Chapter 3

Interpretable Cortical
Representations of Timescale
Selectivity for Active
Navigation

3.1 Introduction

Coming full circle, this chapter details the creation of feature spaces
from CARLA experiments. These feature spaces are then applied to
the Voxelwise Modeling framework [63, 80, 112] to explore cortical rep-
resentations of timescale selectivity.

3.2 Background

Mounting empirical evidence suggests that the human brain is capable
of disentangling multiple timescales. In the occipital lobe, the ventral
and dorsal streams have demonstrated representations of increasingly
abstract information [65, 101, 108]. Increasing levels of abstraction in-
tuitively correlate with increasingly longer timescales. Bayesian-related
hypotheses provide impetus for brain processes to be defined as a hier-
archical dynamical modeling system.

Since the ancient times, the brain is persistently theorized to be
a Bayesian inference machine [19, 32, 49, 65]. A Bayesian inference
machine’s persisting objective is to minimize surprise, which is made
possible by modeling its environment. The mechanisms behind how the
brain implements this and, consequently, how the fundamental objec-
tive is represented within the brain is opaque.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 32

Converging schools of thought ostensibly study different sides of the
same coin. The Neural Sampling Hypothesis [28, 52] postulates that
neurons sample from each other and the environment, as an efficient
means to estimate the true state of the environment. Such a process
could explain the emergence of our perception of ‘time’ [94], whose ar-
tifice is hypothesized to be a symptom of our limited range of sampling
rates and thus loss of information, from smoothing [72]. The Neural
Sampling Hypothesis has been considered, by some, to be subsumed by
the unifying Free-Energy Principle [31, 33].

Building upon the Bayesian theory, Karl Friston [31, 33] proposed
that the brain is driven by the ’free-energy principle’. The brain does
not have an omniscient understanding of its environment, so it es-
timates the state from sensory input sampling. This estimation is
then compared with the brain’s expectation, a prediction based on
the brain’s internal representation of the environment. Honoring the
Bayesian school of thought, the human brain’s ultimate goal is hypoth-
esized to minimize surprise about its environment and to optimize the
evidence, or marginal likelihood, of its internal model. This persistent
minimization objective motivates the brain to constantly update its
internal representations, enabling online learning.

To explain the brain’s ability to maintain temporally stable rep-
resentations of diverse dynamic environments, converging hypotheses
suggest that the human brain is fundamentally organized as a hierar-
chical dynamical system [12, 58, 59, 64] that can model different lev-
els of dynamical complexity. In this hierarchy, successive levels model
dynamics on increasingly longer timescales that reflect the complex
systems of our world. These dynamics then serve as feedback control
parameters for shaping manifolds, upon which consecutive lower levels
unfold their more relatively transient dynamics.

One Bayesian implementation theory, Predictive Coding (PC) [31,
77, 90], posits that feed-forward communication is encoded as the resid-
ual difference from the higher cognitive function’s prediction. The
brain’s objective is to optimize energy efficiency by minimizing pre-
diction error. This goal can be regarded as being effectively the same
as minimizing free energy. [32] In order to predict, it intuitively fol-
lows that higher orders of cognitive function would require information
within longer timescales. This pursuit of energy minimization supports
the emergence of the brain’s hierarchical dynamical system. The act
of predicting also involves going backwards in time, possibly explaining
the phenomena of brain memory reactivation [30, 79, 82, 86, 109, 110]
and our ability to mental time travel [102, 103].

In fact, modeling dynamics is entangled with the notion of memory,

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 33

in which longer timescales are intuitively dependent on maintained past
context. In fact, the hierarchical dynamical system offers a perspective
on memory: it emerges from the different timescales distributed across
the brain’s neurons. Corroborating this emergence, recent studies argue
that all neurons display some degree of ‘memory’ capability [9, 41, 89].

The hierarchical dynamical system is hypothesized to be the gov-
erning principle behind the anatomical formation of the brain. A fMRI
autocorrelation study purportedly found that the human brain exhibits
hierarchical timescale ‘gradients’ parallel to the cerebral cortex, moti-
vating differentiation between cortical networks [91]. Observed activity
in cortical regions furthest from sensory input took relatively ‘longer’
to unfold, via slower temporal autocorrelation decay.

Recent research on timescales, investigating both listening and read-
ing modalities [13, 55], converged on shared cortical representations.
Voxelwise modeling identified gradients and patterns, at an unprece-
dented granularity, that also corroborate with findings from stimulus
scrambling [66]. The decomposition of natural language into hierarchi-
cal timescales uncovered common cortical representations that reflect
characteristics of commonly accepted regions of interest.

Translating this approach to the video domain, we propose and
test a modular pipeline (Table 3.1) for identifying the neuroanatom-
ical organization of hierarchical timescale selectivity exhibited during
naturalistic navigation.

3.3 The Voxewise Modeling Framework

Voxelwise modeling [63, 80, 112] is a modern, data science-inspired ap-
proach for fMRI brain encoding (and, consequently, decoding in the
reverse direction) within rich, naturalistic environments. Time-based
stimuli are nonlinearly transformed into features – typically crafted
manually or extracted from a machine learning model [2] – that are lin-
early projected [112] onto the corresponding recorded BOLD signals.
Blood-Oxygen-Level-Dependent signals, measured during fMRI, reflect
the varying levels of blood pressure in 3D voxels across the cortex [68,
69]. Each recorded voxel measures changes in blood pressure that are
related to changes in activity of a contained neuron population. The
BOLD signals therefore serve as proxies for neural activity, with each
voxel’s signal fit in a separate ridge regression model against the created
features. The trained model is then evaluated on a held-out test set,
encouraging generalization and reproducibility. The model weights, for
each voxel, are treated as ‘tuning weights’ that reflect the average fea-

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 34

ture selectivity for the corresponding neural population. The features
are represented by the distribution of tuning weights and prediction
performance across the voxels. The effectiveness of this approach rests
on the accuracy, and interpretability, of its features.

For natural language timescales associated with listening, Jain et
al. [55] approached the feature engineering challenge by processing
time-aligned audio [105] transcripts through a long short-term mem-
ory (LSTM) architecture. The architecture is trained to be a language
model, in that it predicts future words, and explicitly represents differ-
ent timescales within its internal units. These long short-term memory
(LSTM) [50, 71] units are set to different forget-gate biases, approxi-
mating a power-law memory decay for the language domain [67]. For-
get gate biases imply how long it takes units to ‘forget’ previous input
and allows those units to explicitly represent different timescales. The
hidden state activations are extracted from these LSTM units and are
utilized as the features for Voxelwise modeling. The timescale selec-
tivity for each voxel is estimated by essentially computing a weighted
average, scaling the timescales of each hidden unit by its associated
tuning weights.

Instead of enforcing an explicit separation of timescales, Chen et
al. [13] demonstrated an alternative signal-based approach of apply-
ing custom linear filters to extract information, at different timescales,
from a language model’s vector embedding. A neural language model
(“BERT”) [22] projects the stimulus onto a relatively-smaller contex-
tual word embedding space. Linear filters are then convolved on the
resulting vector embeddings to separate linguistic information into com-
ponents that each are still in the LM’s embedding space and vary in
timescale.

We translate these feature engineering approaches to the video do-
main by extracting activity from the latent spaces of a 3-dimensional
Autoencoder and the Clockwork Variational Autoencoder [96].

3D Variational Autoencoder

Autoencoders [5, 95] involve some form of compression. Inputs, from
a multi-dimensional space, are translated into internal representations
within a latent space. This latent space is dependent on the embed-
ding space that exists between the encoder and decoder. For imagery,
encoders and decoders are typically narrowing and expanding convo-
lutional neural networks (CNNs) [83], respectively. Images are consid-
ered 2D RGB pixel values. For videos, 3D autoencoders model spatio-
temporal information by adding time as an additional dimension. Vari-

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 35

ational Autoencoders (VAE) [23] impose a prior constraint on the latent
space that encourages a normal distribution. This is observed to im-
prove distribution centering and a lower effective rank compared with
vanilla autoencoders.

Clockwork Variational Autoencoder

The Clockwork Variational Autoencoder (CWVAE) [96] is a hierarchi-
cal latent dynamics model that is designed for long-term video pre-
diction. When applied as a language model, CWVAE was found to
outperform other video prediction models and reduce the accuracy gap
to deterministic speech models [46]. The latent variables of multiple
autoencoders are daisy-chained together, with each subsequent autoen-
coder acting as the successive level. Each level transitions its internal
state at a different fixed clock speed that slows down by an exponential
factor of k, for each successive level. This temporal abstraction factor
k approximates the power law, a recurring statistic in nature [11, 47,
73, 85, 104], by maintaining constant power at each level via a constant
internal state size. The CWVAE process can be broken down into two
steps (Figure 3.1):

1. The autoencoder at each level, i, embeds ki−1 context frames
for inference. All levels, excluding the topmost, receive an addi-
tional output, posterior qi+1, from the next level up. Together,
the embedding and passed-down posterior jointly condition the
level’s internal distribution of possible futures, represented by a
stochastic cell. A sample from this distribution is treated as this
level’s posterior and, during the same step, is passed to the next
level down. Each level proceeds to update its internal state every
ki−1 steps. An update consists of a deterministic component, h,
that combines the current level’s previous posterior, as temporal
context, combined with the passed-down posterior, qi+1, from the
next level up. The current encoded context frame and determin-
istic h is then jointly conditioned on the internal stochastic cell.
A sample of the resulting distribution is the next posterior.

2. Once every level has seen a total of ki−1 context frames, CWVAE
is ready to predict future frames. Each level’s internal stochas-
tic cell has also been solely conditioning on the deterministic h,
without any observations, and outputting a prior, pi. The prior
now replaces the role of the posteriors. At the lowest level, a de-
coder transforms its prior into a video frame. Taken altogether,

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 36

this approach encourages the model to separate information into
multiple levels of features, in an end-to-end manner.

3.4 Methods

An ongoing experiment collects first-person screen recordings, and ac-
companying fMRI data, from sessions of human subjects navigating
inside a customized driving simulator. Each session is split into several
runs. The original screen recordings have a refresh rate of 30 frames-
per-second, downsampled to 15 frames-per-second, and a resolution of
1080 x 720 pixels. The fMRI data has a temporal resolution (TR) of 2
seconds and smooths out activity that is under the 2 second threshold.
For one particular human subject, which we will designate as Subject
x, a subset of each run is set aside for testing. The remainder are com-
bined with the sessions from all other human subjects. The test set
has a total of 18 run subsets that are approximately 600 seconds each.
A 3DVAE and CWVAE were subsequently trained on the combined
dataset.

3DVAE

The encoder and decoder, for 3DVAE, is composed of 3D convolutional
neural networks (3DCNN) with residual connections. As the training
dataset is fed into the autoencoder, the recordings are downsampled to
3.75 frames-per-second, at 120 x 90 pixels. This direct feed prevents
loss of interleaved information and allows the model to maintain the
original 15 hz sampling rate. 8 consecutive frames are combined, as
a single input, for the 3DVAE. The input is a rolling window, with a
window size that roughly matches the TR of the fMRI data. The latent
space is a 256-dimensional vector that combines spatial and temporal
information together.

The vector embeddings, of the test set, are extracted1. Discrete
Cosine Transform (DCT-II) [3] is applied on each of the 128 channels,
which are treated as separate signals. DCT-II converts time-series data
into an equivalent number of coefficients, each being a scaling power
for a corresponding cosine wave. The corresponding cosine waves are
equally spaced apart, as frequency bins, and range from 0, the mean,

1The vector embeddings were provided by Cheol Jun Cho, an Electrical Engi-
neering & Computer Science graduate student in UC Berkeley and the Gallant Lab.
Cheol Jun Cho also designed and trained the 3DVAE.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 37

Figure 3.1: Diagram of the CWVAE process, as an unrolled loop.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 38

up to half of the original sampling frequency, known as the Nyquist fre-
quency. In this case, DCT-II yields coefficients that represent frequen-
cies between the 0 and 7.5 Hz, or 0.13 seconds per frame. Character-
istically, the coefficients generally follow a power law and the majority
of power is condensed in the lower frequencies.

Inverse DCT (DCT-III) [3] linearly sums the cosine waves, scaled by
their coefficients, back in the time-series domain. Modifying or masking
different coefficients can approximate the effect of applying a custom
Bandpass (DCT) to the original data. We pursue three approaches,
with DCT, to separate the spatial temporal information into compo-
nents that vary in timescales (Figures 3.2, 3.3).

• Bandpass (DCT)s: Divide the frequency by powers of 2, cre-
ating a logarithmic scale that reflects the 1/f spectra [57]. Break
up the coefficients at these frequencies, creating components with
timescales that are between these frequencies. The separation of
frequencies reflects the hierarchical dynamical system hypothesis.

• Log-Normal DCTs: Each of the aforementioned “power” fre-
quencies is the average, µ, for a normal distribution of power ver-
sus frequency bin. The frequency bins are logarithmically scaled
and their corresponding powers are multiplied with the DCT co-
efficients. The intent is to improve the approximation of voxel
characteristics observed by the natural language domain [55]. The
normal distribution reflects the averaging [55] of timescale selec-
tivity within the neuronal population of a voxel. The logarithmic
scaling emulates how information, within a voxel, has been ob-
served to decay according to a power law [67].

CWVAE

Custom Tensorflow [1] datasets were created for the training and test-
ing. Each sample contains approximately 67 seconds of footage. The
encoder and decoders are convolutional neural networks with 800 layers
each. To maintain consistency with the DCT [3] analysis of the 3DVAE,
the CWVAE [96] temporal abstraction factor is set to k = 2. The in-
ternal stochastic cell size, for each level, is set to be 100-dimensional.
Subsequently, the prior and posterior are both 100-dimensional vectors.

The validation set is fed, as a rolling window, into a CWVAE that
has 10 levels and requires 512 context frames (34 seconds). The first
sampled prior is extracted from each level, containing information at a
specific timescale.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 39

Figure 3.2: Plots of the different filter methods. Each of the colored
lines (frequency bands) ultimately produce a unique feature space.

Figure 3.3: Plots of the different filter methods, with the DCT coef-
ficient indices in log space. Each of the colored lines, and involved
frequency bands, ultimately produce a unique feature space.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 40

Voxelwise Modeling with Banded Ridge
Regression

Each of these approaches produce components that are used as separate
feature spaces for Voxelwise Modeling with Banded Ridge Regression,
implemented by the Himalaya Python Library [29, 61]. Banded Ridge
Regression [26] extends Ridge Regression [51] by simultaneously fit-
ting multiple feature spaces, each with separate regularization terms.
This enables the combination of all feature space’s predictions and the
consequent disentanglement of contributions from each feature space
(Equation 3.1, 3.2) [25].

Estimating the Timescale Represented by Each
Feature Space

• DCT ‘Band-pass filters’: For each feature space, a constant
power is applied to all frequencies within a frequency band. Con-
sequently, a feature space’s representative timescale is approx-
imated by the midpoint frequency period of its corresponding
frequency band.

• DCT ‘Log-Normal (DCT)s’: As each filter is essentially a nor-
mal distribution, the representative timescale period is estimated
by its mean µ, before logarithmic scaling is applied.

• CWVAE: The timescale for a level is approximated by dividing
the level’s temporal abstraction k-value by the known frames-per-
second of the dataset.

Permutation Testing

The predicted BOLD activity, from each banded ridge regression model,
is split into contiguous blocks of 10 TRs (20 seconds). These blocks
are sampled-without-replacement 1000 times. The R2 scores of these
1000 variations are compared with the actual prediction’s R2 scores to
calculate each voxel’s p-value. Significantly predicted voxels, with a
p-score of α ≤ 0.05, are kept and the rest are discarded.

R2 Score and Thresholding

The R2 score provides a metric for the per-voxel prediction accuracy of
the Voxelwise models. For each model, Banded Ridge Regression [26]

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 41

Approach Frequency Bands (Hz)

Estimated

Timescale

(seconds)

Band-pass Filters

0− 1
1024

, 1
1024

− 1
512

,

1
512

− 1
256

, 1
256

− 1
128

,

1
128

− 1
64
, 1
64

− 1
32
,

1
32

− 1
16
, 1
16

− 1
8
,

1
8
− 1

4
, 1
4
− 1

2
,

1
2
− 1, 1− 2,

2− 4, 2− 7.5

1024, 768, 384, 192,

96, 48, 24, 12, 6, 3,

1.5, 0.8, 0.4, 0.3

Log-Normal

(DCT)s
N/A

1024, 512, 256, 128,

64, 32, 16, 8, 4, 2, 1,

0.5, 0.2, 0.1

Table 3.1: Summary of Feature Space Approaches

is able to calculate the joint prediction ŷ via a weighted combination of
predictions from all feature spaces (Equation 3.1). Consequently, the
per-voxel R2 scores R̃2

i , for all i = {1, ...,m} individual feature spaces,
are corrected so that their sum is equivalent to the joint R2 score of
the full prediction ŷ (Equation 3.2) [25, 26, 61, 81]. This also enables
per-voxel comparison of each feature space’s relative contribution.

ŷ =
m∑
1

ŷi (3.1)

R2 =
m∑
1

R̃2
i (3.2)

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 42

All approaches yield voxels with a range of negative and positive R̃2
i

scores for their predictions of different features spaces (information at
different timescales) for the held-out test set (Figure 3.4, 3.5). The neg-
ative scores are thresholded out by replacing them with zeroes (Equa-
tion 3.3).

R̃2
i,thresholded = max(0, R̃2

i) (3.3)

Scaling

For the same feature space, different voxels exhibit different magnitudes
of R2 scores. This could result from differences in Signal-to-Noise ratios
between voxels. It is also plausible that the information extracted from
the autoencoders and DCT are not strongly represented by the voxels
with lower R2 scores. However, the voxels may still be selective of the
timescales represented by the feature spaces. Therefore, each voxel is in-
dependently rescaled to approximate their individual relative timescale
selectivity. For each voxel, the individual feature space R̃2

i,thresholded

scores are divided by their composite R2
thresholded score (Equation 3.4).

This allows for the estimation of a voxel’s representative mean timescale
selectivity, via its weighted average.

R̃2
i,scaled =

R̃2
i,thresholded

R2
thresholded

=
R̃2

i,thresholded∑m
i R̃2

i,thresholded

(3.4)

3.5 Results

Joint R2 Score Distributions

The log-normal approach yields the highest maximum R2 score (Figure
3.6). Compared with the band-pass filter approach, the log-normal
approach yields more voxels with higher R2 scores and a narrower range
of negative R2 scores, ostensibly outperforming the band-pass filter
approach. The 9-level CWVAE predictive priors approach yields the
lowest maximum R2 score.

Weighted Averages Yield Consistent Relative
Timescale Selectivity Distributions Across Voxels

To compare with previous natural language timescale results, a voxel’s
mean timescale selectivity P is estimated by averaging an approach’s

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 43

Figure 3.4: Split R2
i scores for randomly-selected voxels, using the

Bandpass (DCT) method. In the second plot, each voxel is rep-
resented by a line of distinct color.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 44

Figure 3.5: Boxplot of each method’s split R2
i scores

predefined timescale periods Pi. Each period, corresponding to a fea-
ture space i = {1, ...,m}, is scaled by their corresponding relative
R̃2

i,scaled scores (Equation 3.5).

P =
m∑
1

1

R̃2
i,scaled

Pi (3.5)

For visualization, the per-voxel weighted averages are converted to col-
ors and mapped to vertices across the cortex (Figures 3.7, 3.8, 3.9).
This was accomplished by the Pycortex Python-based toolkit [35, 62].
For all approaches, the relative distribution of voxel-timescale selec-
tivity, across the cortical surface, exhibits remarkable similarities with
the distributions found in the natural language domain [13, 55]. When

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 45

Figure 3.6: Histograms of each method’s joint R2 scores

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 46

Figure 3.7: Bandpass (DCT) Method - Flatmap of Weighted Aver-
ages

Figure 3.8: Log-Normal DCT Method - Flatmap of Weighted Aver-
ages

mapped to colors in a logarithmic range, the Early Visual Cortex ex-
hibits a selectivity for short-to-medium relative timescales during both
driving and reading [13]. Similarly, all modalities preferentially repre-
sent information at relatively longer timescales in the Prefrontal Cortex,
Temporoparietal Junction, and Medial Parietal Cortex.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 47

Figure 3.9: CWVAE Method - Flatmap of Weighted Averages

The Distribution of Driving Timescales is
Consistent with Gradients Observed in Previous
Research

For the timescales created from the two DCT filter approaches, their
distributions both roughly exhibit a posterior-anterior gradient of pro-
gressively longer timescales. The approximate voxel-timescale selectiv-
ity increases in an outward-radial fashion, away from the Early Visual
Cortex and towards the Ventral, Anterior, and Dorsal directions. This
gradient corroborates with those observed from stimulus scrambling
experiments [66] and temporal autocorrelation decay [91].

Significant Representation of Predictive Priors is
Distributed Across the Cortical Surface

Despite having a lower maximum timescale period, the distribution of
timescale selectivity, for predictive priors, exhibits relative timescale
patterns that are similar to those from the two DCT filter approaches
and the natural language modalities [13, 55]. Relatively longer timescale
selectivity is exhibited in the Prefrontal Cortex, Temporoparietal Junc-
tion, and Medial Parietal Cortex.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 48

3.6 Discussion

A Diffusion Map Uncovers a Plausible
Representation of Cortical Hierarchical
Organization from Timescale Selectivity

Diffusion maps are a nonlinear dimensionality reduction technique that
can uncover an underlying lower-dimensional manifold that embeds the
dataset [16]. This involves defining the Euclidean distance between
points as their diffusion distance in the original feature space. The
diffusion distance is a measurement of graph connectivity in a time-
dependent diffusion process that can uncover geometric structures, of
the dataset, at different scales [20].

A particular implementation [17, 38, 39, 92] uses Scikit-Learn [10,
88] k-nearest neighbor search [97], with k indirectly serving as the dif-
fusion pseudotime, in order to calculate diffusion distances. For each of
n total vectors, the split feature-space R2

i,scaled scores serve as the coor-
dinates of a multi-dimensional point. With a reasonably high k-value,
limited by memory constraints, we can approach k = N .

With the R2
i scores from the band-pass filter method, the first-

dimension embedding values of the Diffusion map yields a plausible
hierarchical organization (Figures 3.10, 3.11, 3.13). For the voxels in
the Early Visual Cortex, the presence of low embedding values gener-
ally decrease and are overtaken by increasingly higher values from the
V1 region to V4. This trend continues into the occipital place area,
parahippocampal place area, temporoparietal junction, and onward.
The voxels in the prefrontal cortex region generally have the highest
embedding values. Further investigation is needed for the interpreta-
tion of embedding coordinate values.

Conclusion

We explore different methods, involving DCT filters and CWVAE, of
creating multiple feature spaces. Each feature space contains informa-
tion within a different range of timescales. Weighted averages of the
resulting split R2

i scores and Diffusion map coordinates are calculated
from the various voxelwise models. The results produce flatmaps that
reveal relative mean timescale selectivity distributions corroborating
with previous research.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 49

Figure 3.10: Bandpass (DCT) Method’s Flatmap of Diffusion Em-
bedding Values. Importantly the values are flipped. Given a voxel
i = {0, ..., n} and its first Diffusion Component value DC1,i:
FlatmapV aluei = max(DC1,0, ..., DC1,n)−DC1,i

.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 50

Figure 3.11: Scatter plots of Voxel Diffusion Map Components and
Principal Components, using the Bandpass (DCT) Method. Princi-
pal Component Analysis is a linear dimensionality reduction technique
[48, 87], implemented by Scikit-learn [10, 88]. The Diffusion Map al-
gorithm is able to flatten the PCA manifold and push out the areas of
high-density towards the edges of the manifold.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 51

Figure 3.12: Scree plot of the Voxel Principal Components, using the
Bandpass (DCT) Method. This shows that the first two principal
components can explain a little over 60% of the variance.

CHAPTER 3. INTERPRETABLE CORTICAL
REPRESENTATIONS OF TIMESCALE SELECTIVITY FOR
ACTIVE NAVIGATION 52

Figure 3.13: Boxplots of the voxels’ Diffusion Map First Component
and Principal Component, using theBandpass (DCT) Method. The
distribution of Diffusion Map First Components for voxels, within re-
gions V1 through V4, display a clear linear trend for its medians (red
lines) and means (green triangles).

53

Bibliography

[1] Martın Abadi et al. “Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems”. In: arXiv preprint
arXiv:1603.04467 (2016).

[2] Pulkit Agrawal et al. “Convolutional Neural Networks Mimic
the Hierarchy of Visual Representations in the Human Brain”.
In: ().

[3] N. Ahmed, T. Natarajan, and K.R. Rao. “Discrete Cosine Trans-
form”. In: IEEE Transactions on Computers C-23.1 (1974), pp. 90–
93. doi: 10.1109/T-C.1974.223784.

[4] Alexander G. Anderson et al. “High-acuity vision from retinal
image motion”. In: Journal of Vision 20.7 (July 2020), pp. 34–
34. issn: 1534-7362. doi: 10.1167/jov.20.7.34. eprint: https:
//arvojournals.org/arvo/content_public/journal/jov/

938480/i1534-7362-722-1-06487.pdf. url: https://doi.
org/10.1167/jov.20.7.34.

[5] Pierre Baldi. “Autoencoders, Unsupervised Learning, and Deep
Architectures”. In: Proceedings of ICML Workshop on Unsu-
pervised and Transfer Learning. Ed. by Isabelle Guyon et al.
Vol. 27. Proceedings of Machine Learning Research. Bellevue,
Washington, USA: PMLR, Feb. 2012, pp. 37–49. url: https:
//proceedings.mlr.press/v27/baldi12a.html.

[6] Andrei Belitski et al. “Low-frequency local field potentials and
spikes in primary visual cortex convey independent visual infor-
mation”. In: Journal of Neuroscience 28.22 (2008), pp. 5696–
5709.

[7] Boost. The Boost C++ Libraries. url: https://www.boost.
org/.

https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1167/jov.20.7.34
https://arvojournals.org/arvo/content_public/journal/jov/938480/i1534-7362-722-1-06487.pdf
https://arvojournals.org/arvo/content_public/journal/jov/938480/i1534-7362-722-1-06487.pdf
https://arvojournals.org/arvo/content_public/journal/jov/938480/i1534-7362-722-1-06487.pdf
https://doi.org/10.1167/jov.20.7.34
https://doi.org/10.1167/jov.20.7.34
https://proceedings.mlr.press/v27/baldi12a.html
https://proceedings.mlr.press/v27/baldi12a.html
https://www.boost.org/
https://www.boost.org/

BIBLIOGRAPHY 54

[8] Thackery I Brown et al. “Prospective representation of navi-
gational goals in the human hippocampus”. In: Science (New
York, N.Y.) 352.6291 (June 2016), pp. 1323–1326. issn: 0036-
8075. doi: 10.1126/science.aaf0784. url: https://doi.
org/10.1126/science.aaf0784.

[9] Bradley R Buchsbaum and Mark D’Esposito. “The search for
the phonological store: from loop to convolution”. In: Journal of
Cognitive Neuroscience 20.5 (2008), pp. 762–778.

[10] Lars Buitinck et al. “API design for machine learning software:
experiences from the scikit-learn project”. In: ECML PKDD
Workshop: Languages for Data Mining and Machine Learning.
2013, pp. 108–122.

[11] Gyorgy Buzsaki and Andreas Draguhn. “Neuronal oscillations in
cortical networks”. In: science 304.5679 (2004), pp. 1926–1929.

[12] Ryan T Canolty et al. “High gamma power is phase-locked to
theta oscillations in human neocortex”. In: science 313.5793
(2006), pp. 1626–1628.

[13] Catherine Chen et al. “The Cortical Representation of Lan-
guage Timescales is Shared between Reading and Listening”.
In: bioRxiv (2023). doi: 10.1101/2023.01.06.522601. eprint:
https://www.biorxiv.org/content/early/2023/01/06/

2023.01.06.522601.full.pdf. url: https://www.biorxiv.
org/content/early/2023/01/06/2023.01.06.522601.

[14] Guifen Chen et al. “How vision and movement combine in the
hippocampal place code”. In: Proceedings of the National Academy
of Sciences 110.1 (2013), pp. 378–383. issn: 0027-8424. doi:
10.1073/pnas.1215834110. eprint: https://www.pnas.org/
content/110/1/378.full.pdf. url: https://www.pnas.org/
content/110/1/378.

[15] Alex Clark. Pillow. url: https://python-pillow.org/.

[16] Ronald R Coifman and Stéphane Lafon. “Diffusion maps”. In:
Applied and computational harmonic analysis 21.1 (2006), pp. 5–
30.

[17] Ronald R Coifman et al. “Geometric diffusions as a tool for har-
monic analysis and structure definition of data: Diffusion maps”.
In: Proceedings of the national academy of sciences 102.21 (2005),
pp. 7426–7431.

https://doi.org/10.1126/science.aaf0784
https://doi.org/10.1126/science.aaf0784
https://doi.org/10.1126/science.aaf0784
https://doi.org/10.1101/2023.01.06.522601
https://www.biorxiv.org/content/early/2023/01/06/2023.01.06.522601.full.pdf
https://www.biorxiv.org/content/early/2023/01/06/2023.01.06.522601.full.pdf
https://www.biorxiv.org/content/early/2023/01/06/2023.01.06.522601
https://www.biorxiv.org/content/early/2023/01/06/2023.01.06.522601
https://doi.org/10.1073/pnas.1215834110
https://www.pnas.org/content/110/1/378.full.pdf
https://www.pnas.org/content/110/1/378.full.pdf
https://www.pnas.org/content/110/1/378
https://www.pnas.org/content/110/1/378
https://python-pillow.org/

BIBLIOGRAPHY 55

[18] Henk R. Cremers, Tor D. Wager, and Tal Yarkoni. “The rela-
tion between statistical power and inference in fMRI”. In: PLOS
ONE 12.11 (Nov. 2017), pp. 1–20. doi: 10.1371/journal.
pone.0184923. url: https://doi.org/10.1371/journal.
pone.0184923.

[19] Peter Dayan et al. “The helmholtz machine”. In: Neural compu-
tation 7.5 (1995), pp. 889–904.

[20] J De la Porte et al. “An introduction to diffusion maps”. In:
Proceedings of the 19th symposium of the pattern recognition as-
sociation of South Africa (PRASA 2008), Cape Town, South
Africa. 2008, pp. 15–25.

[21] John Desmond and Gary Glover. “Estimating sample size in
functional MRI (fMRI) neuroimaging studies”. In: Journal of
neuroscience methods 118 (Sept. 2002), pp. 115–28. doi: 10.
1016/S0165-0270(02)00121-8.

[22] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[23] Carl Doersch. “Tutorial on variational autoencoders”. In: arXiv
preprint arXiv:1606.05908 (2016).

[24] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving
Simulator”. In: Proceedings of the 1st Annual Conference on
Robot Learning. 2017, pp. 1–16.

[25] T. Dupré La Tour, M. Visconti di Oleggio Castello, and J. L.
Gallant. Voxelwise modeling tutorials: an encoding model ap-
proach to functional MRI analysis. In preparation. url: https:
//gallantlab.github.io/voxelwise_tutorials/index.

html.

[26] Tom Dupré la Tour et al. “Feature-space selection with banded
ridge regression”. In: NeuroImage 264 (2022), p. 119728. issn:
1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2022.119728. url: https://www.sciencedirect.com/scienc
e/article/pii/S1053811922008497.

[27] Austin English and Winetrick authors. Wintricks. url: https:
//github.com/Winetricks/winetricks.

https://doi.org/10.1371/journal.pone.0184923
https://doi.org/10.1371/journal.pone.0184923
https://doi.org/10.1371/journal.pone.0184923
https://doi.org/10.1371/journal.pone.0184923
https://doi.org/10.1016/S0165-0270(02)00121-8
https://doi.org/10.1016/S0165-0270(02)00121-8
https://gallantlab.github.io/voxelwise_tutorials/index.html
https://gallantlab.github.io/voxelwise_tutorials/index.html
https://gallantlab.github.io/voxelwise_tutorials/index.html
https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119728
https://doi.org/https://doi.org/10.1016/j.neuroimage.2022.119728
https://www.sciencedirect.com/science/article/pii/S1053811922008497
https://www.sciencedirect.com/science/article/pii/S1053811922008497
https://github.com/Winetricks/winetricks
https://github.com/Winetricks/winetricks

BIBLIOGRAPHY 56

[28] József Fiser et al. “Statistically optimal perception and learning:
from behavior to neural representations”. In: Trends in Cognitive
Sciences 14.3 (2010), pp. 119–130. issn: 1364-6613. doi: http
s : / / doi . org / 10 . 1016 / j . tics . 2010 . 01 . 003. url: ht
tps : / / www . sciencedirect . com / science / article / pii /

S1364661310000045.

[29] Python Software Foundation. Python. url: https://www.pyth
on.org/.

[30] Paul W Frankland, Sheena A Josselyn, and Stefan Köhler. “The
neurobiological foundation of memory retrieval”. In: Nature neu-
roscience 22.10 (2019), pp. 1576–1585.

[31] Karl Friston. “A theory of cortical responses”. In: Philosophical
transactions of the Royal Society B: Biological sciences 360.1456
(2005), pp. 815–836.

[32] Karl Friston. “The history of the future of the Bayesian brain”.
In: NeuroImage 62.2 (2012). 20 YEARS OF fMRI, pp. 1230–
1233. issn: 1053-8119. doi: https://doi.org/10.1016/j.ne
uroimage.2011.10.004. url: https://www.sciencedirect.
com/science/article/pii/S1053811911011657.

[33] Karl Friston, James Kilner, and Lee Harrison. “A free energy
principle for the brain”. In: Journal of Physiology-Paris 100.1
(2006). Theoretical and Computational Neuroscience: Under-
standing Brain Functions, pp. 70–87. issn: 0928-4257. doi: h
ttps://doi.org/10.1016/j.jphysparis.2006.10.001. url:
https://www.sciencedirect.com/science/article/pii/

S092842570600060X.

[34] Epic Games. Unreal Engine 4. url: https://www.unrealengi
ne.com.

[35] James S. Gao et al. “Pycortex: an interactive surface visualizer
for fMRI”. In: Frontiers in Neuroinformatics 9 (2015). issn:
1662-5196. doi: 10.3389/fninf.2015.00023. url: https:
//www.frontiersin.org/articles/10.3389/fninf.2015.

00023.

[36] Ryan Gregg. Nem’s Tools. url: https://nemstools.github.
io/.

https://doi.org/https://doi.org/10.1016/j.tics.2010.01.003
https://doi.org/https://doi.org/10.1016/j.tics.2010.01.003
https://www.sciencedirect.com/science/article/pii/S1364661310000045
https://www.sciencedirect.com/science/article/pii/S1364661310000045
https://www.sciencedirect.com/science/article/pii/S1364661310000045
https://www.python.org/
https://www.python.org/
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.10.004
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.10.004
https://www.sciencedirect.com/science/article/pii/S1053811911011657
https://www.sciencedirect.com/science/article/pii/S1053811911011657
https://doi.org/https://doi.org/10.1016/j.jphysparis.2006.10.001
https://doi.org/https://doi.org/10.1016/j.jphysparis.2006.10.001
https://www.sciencedirect.com/science/article/pii/S092842570600060X
https://www.sciencedirect.com/science/article/pii/S092842570600060X
https://www.unrealengine.com
https://www.unrealengine.com
https://doi.org/10.3389/fninf.2015.00023
https://www.frontiersin.org/articles/10.3389/fninf.2015.00023
https://www.frontiersin.org/articles/10.3389/fninf.2015.00023
https://www.frontiersin.org/articles/10.3389/fninf.2015.00023
https://nemstools.github.io/
https://nemstools.github.io/

BIBLIOGRAPHY 57

[37] Antonin Guttman. “R-Trees: A Dynamic Index Structure for
Spatial Searching”. In: Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data. SIGMOD
’84. Boston, Massachusetts: Association for Computing Machin-
ery, 1984, pp. 47–57. isbn: 0897911288. doi: 10.1145/602259.
602266. url: https://doi.org/10.1145/602259.602266.

[38] Laleh Haghverdi, Florian Buettner, and Fabian J. Theis. “Dif-
fusion maps for high-dimensional single-cell analysis of differen-
tiation data”. In: Bioinformatics 31.18 (May 2015), pp. 2989–
2998. issn: 1367-4803. doi: 10.1093/bioinformatics/btv325.
eprint: https://academic.oup.com/bioinformatics/arti
cle-pdf/31/18/2989/17090122/btv325.pdf. url: https:
//doi.org/10.1093/bioinformatics/btv325.

[39] Laleh Haghverdi et al. “Diffusion pseudotime robustly recon-
structs lineage branching”. In: Nature methods 13.10 (2016),
pp. 845–848.

[40] Stephen José Hanson, Alessandro D Gagliardi, and Catherine
Hanson. “Solving the brain synchrony eigenvalue problem: con-
servation of temporal dynamics (fMRI) over subjects doing the
same task”. In: Journal of computational neuroscience 27.1 (2009),
pp. 103–114.

[41] Uri Hasson, Janice Chen, and Christopher J Honey. “Hierar-
chical process memory: memory as an integral component of
information processing”. In: Trends in cognitive sciences 19.6
(2015), pp. 304–313.

[42] Uri Hasson, Rafael Malach, and David J. Heeger. “Reliability
of cortical activity during natural stimulation”. In: Trends in
Cognitive Sciences 14.1 (2010), pp. 40–48. issn: 1364-6613. doi:
https://doi.org/10.1016/j.tics.2009.10.011. url:
https://www.sciencedirect.com/science/article/pii/

S1364661309002393.

[43] Uri Hasson et al. “A hierarchy of temporal receptive windows
in human cortex”. In: Journal of Neuroscience 28.10 (2008),
pp. 2539–2550.

[44] Uri Hasson et al. “Enhanced intersubject correlations during
movie viewing correlate with successful episodic encoding”. In:
Neuron 57.3 (2008), pp. 452–462.

https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1093/bioinformatics/btv325
https://academic.oup.com/bioinformatics/article-pdf/31/18/2989/17090122/btv325.pdf
https://academic.oup.com/bioinformatics/article-pdf/31/18/2989/17090122/btv325.pdf
https://doi.org/10.1093/bioinformatics/btv325
https://doi.org/10.1093/bioinformatics/btv325
https://doi.org/https://doi.org/10.1016/j.tics.2009.10.011
https://www.sciencedirect.com/science/article/pii/S1364661309002393
https://www.sciencedirect.com/science/article/pii/S1364661309002393

BIBLIOGRAPHY 58

[45] Uri Hasson et al. “Intersubject synchronization of cortical activ-
ity during natural vision”. In: science 303.5664 (2004), pp. 1634–
1640.

[46] Jakob D. Havtorn et al. Benchmarking Generative Latent Vari-
able Models for Speech. 2022. doi: 10.48550/ARXIV.2202.
12707. url: https://arxiv.org/abs/2202.12707.

[47] Biyu J He et al. “The temporal structures and functional sig-
nificance of scale-free brain activity”. In: Neuron 66.3 (2010),
pp. 353–369.

[48] Joe Hellerstein, Bin Yu, and Fernando Perez. Learning Data
Science - Dimensionality Reduction and PCA. url: https://
learningds.org/ch/a11/contributors.html.

[49] Hermann von Helmholtz. “Concerning the perceptions in gen-
eral”. In: Visual perception (2001), pp. 24–44.

[50] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780.
issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url:
https://doi.org/10.1162/neco.1997.9.8.1735.

[51] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Bi-
ased estimation for nonorthogonal problems”. In: Technometrics
12.1 (1970), pp. 55–67.

[52] Patrik Hoyer and Aapo Hyvärinen. “Interpreting Neural Re-
sponse Variability as Monte Carlo Sampling of the Posterior”.
In: Advances in Neural Information Processing Systems. Ed. by
S. Becker, S. Thrun, and K. Obermayer. Vol. 15. MIT Press,
2002. url: https://proceedings.neurips.cc/paper/2002/
file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf.

[53] Alexander Huth et al. “A Continuous Semantic Space Describes
the Representation of Thousands of Object and Action Cate-
gories across the Human Brain”. In: Neuron 76 (Dec. 2012),
pp. 1210–24. doi: 10.1016/j.neuron.2012.10.014.

[54] Iiro P Jääskeläinen et al. “Inter-subject synchronization of pre-
frontal cortex hemodynamic activity during natural viewing”.
In: The open neuroimaging journal 2 (2008), p. 14.

https://doi.org/10.48550/ARXIV.2202.12707
https://doi.org/10.48550/ARXIV.2202.12707
https://arxiv.org/abs/2202.12707
https://learningds.org/ch/a11/contributors.html
https://learningds.org/ch/a11/contributors.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper/2002/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://doi.org/10.1016/j.neuron.2012.10.014

BIBLIOGRAPHY 59

[55] Shailee Jain et al. “Interpretable multi-timescale models for pre-
dicting fMRI responses to continuous natural speech”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H.
Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 13738–
13749. url: https://proceedings.neurips.cc/paper/2020/
file/9e9a30b74c49d07d8150c8c83b1ccf07-Paper.pdf.

[56] Alexandre Julliard and Wine authors. Wine. url: https://
www.winehq.org/.

[57] M.S. Keshner. “1/f noise”. In: Proceedings of the IEEE 70.3
(1982), pp. 212–218. doi: 10.1109/PROC.1982.12282.

[58] Stefan J. Kiebel, Jean Daunizeau, and Karl J. Friston. “A Hier-
archy of Time-Scales and the Brain”. In: PLOS Computational
Biology 4.11 (Nov. 2008), pp. 1–12. doi: 10.1371/journal.
pcbi.1000209. url: https://doi.org/10.1371/journal.
pcbi.1000209.

[59] N Kopell et al. “Gamma rhythms and beta rhythms have differ-
ent synchronization properties”. In: Proceedings of the National
Academy of Sciences 97.4 (2000), pp. 1867–1872.

[60] Philipp Krahenbuhl. “Free Supervision from Video Games”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018, pp. 2955–2964. doi: 10.1109/CVPR.2018.
00312.

[61] The Gallant Lab. Himalaya. url: https://github.com/galla
ntlab/himalaya.

[62] The Gallant Lab. Pycortex. url: https://gallantlab.github
.io/pycortex/.

[63] The Gallant Lab. Voxelwise Modeling Tutorials. url: https://
gallantlab.github.io/voxelwise_tutorials/voxelwise_

modeling.html.

[64] Peter Lakatos et al. “An oscillatory hierarchy controlling neu-
ronal excitability and stimulus processing in the auditory cor-
tex”. In: Journal of neurophysiology 94.3 (2005), pp. 1904–1911.

[65] Tai Sing Lee and David Mumford. “Hierarchical Bayesian infer-
ence in the visual cortex”. In: JOSA A 20.7 (2003), pp. 1434–
1448.

[66] Yulia Lerner et al. “Topographic mapping of a hierarchy of tem-
poral receptive windows using a narrated story”. In: Journal of
Neuroscience 31.8 (2011), pp. 2906–2915.

https://proceedings.neurips.cc/paper/2020/file/9e9a30b74c49d07d8150c8c83b1ccf07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9e9a30b74c49d07d8150c8c83b1ccf07-Paper.pdf
https://www.winehq.org/
https://www.winehq.org/
https://doi.org/10.1109/PROC.1982.12282
https://doi.org/10.1371/journal.pcbi.1000209
https://doi.org/10.1371/journal.pcbi.1000209
https://doi.org/10.1371/journal.pcbi.1000209
https://doi.org/10.1371/journal.pcbi.1000209
https://doi.org/10.1109/CVPR.2018.00312
https://doi.org/10.1109/CVPR.2018.00312
https://github.com/gallantlab/himalaya
https://github.com/gallantlab/himalaya
https://gallantlab.github.io/pycortex/
https://gallantlab.github.io/pycortex/
https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html
https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html
https://gallantlab.github.io/voxelwise_tutorials/voxelwise_modeling.html

BIBLIOGRAPHY 60

[67] Henry W Lin and Max Tegmark. “Critical behavior in physics
and probabilistic formal languages”. In: Entropy 19.7 (2017),
p. 299.

[68] Nikos K Logothetis and Josef Pfeuffer. “On the nature of the
BOLD fMRI contrast mechanism”. In:Magnetic resonance imag-
ing 22.10 (2004), pp. 1517–1531.

[69] Nikos K Logothetis and Brian A Wandell. “Interpreting the
BOLD signal”. In: Annu. Rev. Physiol. 66 (2004), pp. 735–769.

[70] Fredrik Lundh and Secret Labs AB. Python Imaging Library.
url: http://www.pythonware.com/products/pil/.

[71] Shivangi Mahto et al. “Multi-timescale representation learning
in LSTM language models”. In: arXiv preprint arXiv:2009.12727
(2020).

[72] Mauro Manassi and David Whitney. “Illusion of visual stability
through active perceptual serial dependence”. In: Science Ad-
vances 8.2 (2022), eabk2480. doi: 10.1126/sciadv.abk2480.
eprint: https : / / www . science . org / doi / pdf / 10 . 1126 /

sciadv.abk2480. url: https://www.science.org/doi/abs/
10.1126/sciadv.abk2480.

[73] Shimon Marom. “Neural timescales or lack thereof”. In: Progress
in neurobiology 90.1 (2010), pp. 16–28.

[74] Pawel J Matusz et al. Are we ready for real-world neuroscience?
2019.

[75] Ferenc Mechler et al. “Robust temporal coding of contrast by
V1 neurons for transient but not for steady-state stimuli”. In:
Journal of Neuroscience 18.16 (1998), pp. 6583–6598.

[76] Microsoft. .NET Framework. url: https://dotnet.microsof
t.com/en-us/.

[77] David Mumford. “On the computational architecture of the neo-
cortex”. In: Biological cybernetics 66.3 (1992), pp. 241–251.

[78] Jeanette A Mumford and Thomas E Nichols. “Power calcula-
tion for group fMRI studies accounting for arbitrary design and
temporal autocorrelation”. In: Neuroimage 39.1 (2008), pp. 261–
268.

[79] Thomas Naselaris et al. “A voxel-wise encoding model for early
visual areas decodes mental images of remembered scenes”. In:
Neuroimage 105 (2015), pp. 215–228.

http://www.pythonware.com/products/pil/
https://doi.org/10.1126/sciadv.abk2480
https://www.science.org/doi/pdf/10.1126/sciadv.abk2480
https://www.science.org/doi/pdf/10.1126/sciadv.abk2480
https://www.science.org/doi/abs/10.1126/sciadv.abk2480
https://www.science.org/doi/abs/10.1126/sciadv.abk2480
https://dotnet.microsoft.com/en-us/
https://dotnet.microsoft.com/en-us/

BIBLIOGRAPHY 61

[80] Thomas Naselaris et al. “Encoding and decoding in fMRI”. In:
NeuroImage 56.2 (2011). Multivariate Decoding and Brain Read-
ing, pp. 400–410. issn: 1053-8119. doi: https://doi.org/10.
1016/j.neuroimage.2010.07.073. url: https://www.scienc
edirect.com/science/article/pii/S1053811910010657.

[81] Anwar O. Nunez-Elizalde, Alexander G. Huth, and Jack L. Gal-
lant. “Voxelwise encoding models with non-spherical multivari-
ate normal priors”. In: NeuroImage 197 (2019), pp. 482–492.
issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroim
age.2019.04.012. url: https://www.sciencedirect.com/
science/article/pii/S1053811919302988.

[82] Lars Nyberg et al. “Reactivation of encoding-related brain ac-
tivity during memory retrieval”. In: Proceedings of the National
Academy of Sciences 97.20 (2000), pp. 11120–11124.

[83] Keiron O’Shea and Ryan Nash. “An introduction to convolu-
tional neural networks”. In: arXiv preprint arXiv:1511.08458
(2015).

[84] OpenDRIVE Format Specification, Rev. 1.5, 1st ed. VIRES Sim-
ulationstechnologie GmbH, Feb. 2019.

[85] Satu Palva and J Matias Palva. “Roles of brain criticality and
multiscale oscillations in temporal predictions for sensorimotor
processing”. In: Trends in neurosciences 41.10 (2018), pp. 729–
743.

[86] Joel Pearson et al. “Mental imagery: functional mechanisms
and clinical applications”. In: Trends in cognitive sciences 19.10
(2015), pp. 590–602.

[87] Karl Pearson. “LIII. On lines and planes of closest fit to sys-
tems of points in space”. In: The London, Edinburgh, and Dublin
philosophical magazine and journal of science 2.11 (1901), pp. 559–
572.

[88] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[89] Bradley R Postle. “Working memory as an emergent property of
the mind and brain”. In: Neuroscience 139.1 (2006), pp. 23–38.

[90] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the
visual cortex: a functional interpretation of some extra-classical
receptive-field effects”. In: Nature neuroscience 2.1 (1999), pp. 79–
87.

https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.07.073
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.07.073
https://www.sciencedirect.com/science/article/pii/S1053811910010657
https://www.sciencedirect.com/science/article/pii/S1053811910010657
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.04.012
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.04.012
https://www.sciencedirect.com/science/article/pii/S1053811919302988
https://www.sciencedirect.com/science/article/pii/S1053811919302988

BIBLIOGRAPHY 62

[91] Ryan V Raut, Abraham Z Snyder, and Marcus E Raichle. “Hi-
erarchical dynamics as a macroscopic organizing principle of the
human brain”. In: Proceedings of the National Academy of Sci-
ences 117.34 (2020), pp. 20890–20897.

[92] redst4r. pyDiffusionMaps. url: https://github.com/redst4r
/pyDiffusionMaps.

[93] Stephan R. Richter, Hassan Abu AlHaija, and Vladlen Koltun.
“Enhancing Photorealism Enhancement”. In: arXiv:2105.04619
(2021).

[94] Carlo Rovelli. The Order of Time. New York, NY: Riverhead
Books, 2018.

[95] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learn-
ing Internal Representations by Error Propagation”. In: Par-
allel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT
Press, 1986, pp. 318–362. isbn: 026268053X.

[96] Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. “Clockwork
Variational Autoencoders”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 29246–29257. url: https://procee
dings.neurips.cc/paper/2021/file/f490d0af974fedf90cb

0f1edce8e3dd5-Paper.pdf.

[97] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. “Nearest-
neighbor methods in learning and vision”. In: IEEE Trans. Neu-
ral Networks 19.2 (2008), p. 377.

[98] Katherine R Sherrill et al. “Hippocampus and retrosplenial cor-
tex combine path integration signals for successful navigation”.
In: The Journal of neuroscience : the official journal of the Soci-
ety for Neuroscience 33.49 (Dec. 2013), pp. 19304–19313. issn:
0270-6474. doi: 10 . 1523 / jneurosci . 1825 - 13 . 2013. url:
https://europepmc.org/articles/PMC3850045.

[99] Eun Song et al. “Role of active movement in place-specific fir-
ing of hippocampal neurons”. In: Hippocampus 15 (Jan. 2005),
pp. 8–17. doi: 10.1002/hipo.20023.

[100] Peter Mattis Spencer Kimball. GNU Image Manipulation Pro-
gram. url: https://www.gimp.org/.

[101] Jonathan Stone, Bogdan Dreher, and Audie Leventhal. “Hier-
archical and parallel mechanisms in the organization of visual
cortex”. In: Brain Research Reviews 1.3 (1979), pp. 345–394.

https://github.com/redst4r/pyDiffusionMaps
https://github.com/redst4r/pyDiffusionMaps
https://proceedings.neurips.cc/paper/2021/file/f490d0af974fedf90cb0f1edce8e3dd5-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f490d0af974fedf90cb0f1edce8e3dd5-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f490d0af974fedf90cb0f1edce8e3dd5-Paper.pdf
https://doi.org/10.1523/jneurosci.1825-13.2013
https://europepmc.org/articles/PMC3850045
https://doi.org/10.1002/hipo.20023
https://www.gimp.org/

BIBLIOGRAPHY 63

[102] Thomas Suddendorf, Donna Rose Addis, and Michael C Corbal-
lis. “Mental time travel and the shaping of the human mind”.
In: Philosophical Transactions of the Royal Society B: Biological
Sciences 364.1521 (2009), pp. 1317–1324.

[103] Thomas Suddendorf and Michael C Corballis. “The evolution of
foresight: What is mental time travel, and is it unique to hu-
mans?” In: Behavioral and brain sciences 30.3 (2007), pp. 299–
313.

[104] P Szendro, Gy Vincze, and A Szasz. “Pink-noise behaviour of
biosystems”. In: European Biophysics Journal 30.3 (2001), pp. 227–
231.

[105] The moth radio hour. 2020. url: https://themoth.org.

[106] Valve. Source. url: https://developer.valvesoftware.com/
wiki/Source.

[107] Turle Rock Studios Valve. Counter-Strike: Source. 2004. url:
https://store.steampowered.com/app/240/CounterStrike

_Source/.

[108] David C Van Essen and John HR Maunsell. “Hierarchical orga-
nization and functional streams in the visual cortex”. In: Trends
in neurosciences 6 (1983), pp. 370–375.

[109] Gerd TWaldhauser, Verena Braun, and Simon Hanslmayr. “Episodic
memory retrieval functionally relies on very rapid reactivation of
sensory information”. In: Journal of Neuroscience 36.1 (2016),
pp. 251–260.

[110] Mark E Wheeler, Steven E Petersen, and Randy L Buckner.
“Memory’s echo: vivid remembering reactivates sensory-specific
cortex”. In: Proceedings of the National Academy of Sciences
97.20 (2000), pp. 11125–11129.

[111] Stephen M Wilson, Istvan Molnar-Szakacs, and Marco Iacoboni.
“Beyond superior temporal cortex: intersubject correlations in
narrative speech comprehension”. In: Cerebral cortex 18.1 (2008),
pp. 230–242.

[112] Michael C.-K. Wu, Stephen V. David, and Jack L. Gallant.
“COMPLETE FUNCTIONAL CHARACTERIZATION OF SEN-
SORY NEURONS BY SYSTEM IDENTIFICATION”. In: An-
nual Review of Neuroscience 29.1 (2006). PMID: 16776594, pp. 477–
505. doi: 10.1146/annurev.neuro.29.051605.113024. eprint:
https://doi.org/10.1146/annurev.neuro.29.051605.

https://themoth.org
https://developer.valvesoftware.com/wiki/Source
https://developer.valvesoftware.com/wiki/Source
https://store.steampowered.com/app/240/CounterStrike_Source/
https://store.steampowered.com/app/240/CounterStrike_Source/
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024

BIBLIOGRAPHY 64

113024. url: https://doi.org/10.1146/annurev.neuro.29.
051605.113024.

[113] Haishan Yao et al. “Rapid learning in cortical coding of visual
scenes”. In: Nature neuroscience 10.6 (2007), pp. 772–778.

[114] Tianjiao Zhang. “Navigational representation in the human brain”.
PhD thesis. Berkeley, California: University of California, Berke-
ley, 2021.

https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024
https://doi.org/10.1146/annurev.neuro.29.051605.113024

	Contents
	List of Figures
	List of Tables
	Towards an Enhanced CARLA for Human Navigation Experiments
	Introduction
	Background
	Related Works
	The Unreal Engine 4 Framework
	Upgrading from CARLA 0.8.4
	Major Differences in CARLA 0.9.13
	The CARLA 0.9.13 Framework
	Implementation
	Evaluation
	Discussion

	Semantic Segmentation for Source Engine Games
	Introduction
	Background
	Related Work
	Preliminaries
	Semantic Segmentation Pipeline
	Evaluation
	Application
	Discussion

	Interpretable Cortical Representations of Timescale Selectivity for Active Navigation
	Introduction
	Background
	The Voxewise Modeling Framework
	Methods
	Results
	Discussion

	Bibliography

