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Abstract

Photorealistic Reconstruction from First Principles

by

Sara Fridovich-Keil

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Benjamin Recht, Chair

In computational imaging, inverse problems describe the general process of turning mea-

surements into images using algorithms: images from sound waves in sonar, spin ori-

entations in magnetic resonance imaging, or X-ray absorption in computed tomography.

Today, the two dominant algorithmic approaches for solving inverse problems are com-

pressed sensing and deep learning. Compressed sensing leverages convex optimization

and comes with strong theoretical guarantees of correct reconstruction, but requires linear

measurements and substantial processor memory, both of which limit its applicability to

many imaging modalities. In contrast, deep learning methods leverage nonconvex opti-

mization and neural networks, allowing them to use nonlinear measurements and limited

memory. However, they can be unreliable, and are difficult to inspect, analyze, and predict

when they will produce correct reconstructions.

In this dissertation, we focus on an inverse problem central to computer vision and

graphics: given calibrated photographs of a scene, recover the optical density and view-

dependent color of every point in the scene. For this problem, we take steps to bridge

the best aspects of compressed sensing and deep learning: (i) combining an explicit,

non-neural scene representation with optimization through a nonlinear forward model,

(ii) reducing memory requirements through a compressed representation that retains as-

pects of interpretability, and extends to dynamic scenes, and (iii) presenting a preliminary

convergence analysis that suggests faithful reconstruction under our modeling.
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Chapter 1

Introduction

Throughout history, scientific and medical revolutions have been precipitated by the

invention of imaging tools. Observations made using a telescope lent credence to the

Renaissance notion of heliocentrism. Microscopes enabled the discovery of cells and

bacteria. X-ray crystallography revealed the structure of DNA. Though early imaging

methods, like microscopes, telescopes, and medical X-rays, directly produce images, the

modern use of computation in imaging enables us to visualize and study a far broader class

of structures and processes. By combining computation with otherwise uninterpretable

measurements, we can map the ocean floor with sonar, see the the brain in action through

functional magnetic resonance imaging, and model the structure of a protein through

cryo-electron microscopy.

At the core of every computational imaging method is an inverse problem. These

problems are so named because their goal is to computationally invert a physical mea-

surement process, producing meaningful images that visualize phenomena not visible to

the naked eye. Inverse problems are often challenging for three reasons. The first is that

the measurement process itself may not be truly invertible due to physical limitations.

For example, in cryo-electron microscopy, measurements are corrupted by noise whose

magnitude can surpass that of the signal itself. In phase retrieval, we wish to recover a

complex-valued quantity from measurements of its magnitude only. In X-ray computed

tomography, we often intentionally collect fewer measurements than strictly necessary for

reconstruction, to limit a patient’s exposure to harmful ionizing radiation. In these situa-

tions, the measurements may be inconsistent with each other, or consistent with multiple

possible reconstructions. To distinguish between these possibilities, we must turn to prior

knowledge and assumptions about the structure of interest; which assumptions to choose

is often unclear.

The second challenge in many inverse problems is model mismatch, in which our com-

putational model of the measurement process, or forward model, is an approximation of a

more complex physical process that is only partially understood. In some cases, the mea-

surement process depends on the object of study, making it impossible to model perfectly

a priori. For example, this is the case in magnetic resonance imaging: a patient’s body
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creates small inhomogeneities in the magnetic field used to study it. Model mismatch may

also result from manufacturing imperfections, such as lens aberrations in a computational

microscope or telescope.

The third challenge that arises in certain inverse problems is computational. Even

when we do have a physically accurate forward model and sufficient measurements to

define a unique, correct reconstruction, we may not be able to compute that reconstruction

efficiently. For example, though we may understand the way light propagates, reflecting

and refracting when it interacts with different materials, and we may have access to unlim-

ited photographs of a scene, the task of inverse rendering requires computational tradeoffs

that limit reconstruction quality. Computational challenges arise when the forward model

is highly complex to simulate, or when the forward model is nondifferentiable, such as

the discrete bounce of a reflected ray, since computational methods often rely on gradient-

based optimization.

In the face of these challenges, two computational paradigms have emerged in the field

of inverse problems: compressed sensing and deep learning. Both of these methods rely

on optimization to invert the measurement model and reconstruct the object or signal of

interest. A typical optimization objective, or loss function, takes the form:

ℒ(�̂�) = ∥𝒚 − 𝑓 (�̂�)∥2

ℓ2
(1.0.1)

where 𝒚 ∈ R𝑚 is a vector of measurements, 𝑓 is our forward model, and �̂� is our current

reconstruction, an approximation of the true signal 𝒙 ∈ R𝑛 . Compressed sensing is

typically restricted to inverse problems with linear forward models 𝑓 , in which the objective

in Eq. (1.0.1) is convex in the optimization parameter �̂�. In this linear setting, convex

optimization is guaranteed to converge to a global minimizer of ℒ. Compressed sensing

also gives theoretical guarantees of faithful reconstruction in the absence of complete

measurements, i.e., when 𝑚 < 𝑛, as long as we can (1) make some sparsity assumptions

on the true 𝒙 (even if 𝒙 is sparse under some change of basis) and (2) implement those

assumptions through regularization or constraints added to Eq. (1.0.1). Compressed

sensing through convex optimization is thus a powerful framework for solving the subset

of inverse problems whose forward models are linear, for example when measurements

are linear projections (in the case of tomography) or Fourier coefficients (in the case of

magnetic resonance imaging). However, compressed sensing offers little practical or

theoretical guidance on nonlinear inverse problems, such as the task of photorealistic

reconstruction we consider in this dissertation.

Deep learning has emerged more recently as a powerful toolbox for solving these non-

linear inverse problems. In this paradigm, the parameters of the reconstruction �̂� may be

represented implicitly through the weights of a neural network, and if the forward model

𝑓 is not well-modeled explicitly it may also be represented implicitly through a neural

network. This flexible modeling, combined with nonconvex gradient-based optimization,

allows deep learning to tackle nonlinear inverse problems even with model mismatch,

often with impressive experimental results. However, the cost of this flexibility is the
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absence of theoretical guarantees. Nonconvex optimization may converge to local, rather

than global, minimizers of ℒ, and we have little guidance towards appropriate regular-

izers to constrain our implicitly-modeled reconstructions �̂� in the absence of sufficient

measurements.

The goal of this dissertation is to bridge the best aspects of each of these computational

paradigms, compressed sensing and deep learning, in the context of a particular inverse

problem of interest in computer vision and graphics. We focus on the inverse problem

defined by photorealistic reconstruction: our measurements are color photographs of

a scene taken from known camera poses, and we wish to recover the optical density

𝜎 and (possibly view-dependent) color 𝑐 of every location in the scene. We strive for

the interpretable regularization and theoretically-guaranteed reconstruction fidelity of

compressed sensing, married to the flexibility of deep learning to efficiently invert a

nonlinear forward model.

1.0.1 Overview
This dissertation is organized into three technical chapters, each of which combines aspects

of compressed sensing and deep learning to make practical or theoretical progress on the

photorealistic reconstruction problem.

In Chapter 2, we introduce a practical scene representation, called “plenoxels” for

“plenoptic volume elements,” that uses a fully explicit, voxel-based model of the scene

parameters �̂�, and a well-understood total variation regularizer, both common features of

compressed sensing, but optimizes using stochastic gradient methods through a nonlin-

ear forward model and its corresponding nonconvex loss ℒ, a common feature of deep

learning. We show empirically that plenoxels achieves reconstructions rivaling the qual-

ity of deep learning alternatives, while offering substantial improvements in optimization

speed and interpretability.

In Chapter 3, we extend the plenoxels framework to a compressed, yet still grid-

based, representation of the scene parameters �̂�, essentially a low-rank approximation

of a volume. This representation substantially reduces memory usage, enabling it to

model both static (3D) and dynamic (4D) scenes, while retaining aspects of interpretability

including well-understood regularizers and spatially-localized parameters.

In Chapter 4, we propose a theoretical model of the photorealistic reconstruction prob-

lem. We explore connections between this model and the simpler inverse problem of

computed tomography, in which we can process the measurements to create a linear for-

ward model in which compressed sensing results apply. For the nonlinear photorealistic

reconstruction problem, we show correct recovery in the population regime, when we

have access to unlimited measurements, and we give a sketch for how this analysis may

extend to the limited-measurement regime to guide the number of measurements neces-

sary for a given reconstruction quality. This analysis is a first step towards a more general

extension of compressed sensing guarantees towards certain nonlinear forward models

that arise in practice, promising greater trust in our reconstructions under these models.
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We conclude in Chapter 5 with a discussion of exciting directions for future work

towards this marriage of compressed sensing and deep learning, for inverse problems

across computational imaging.
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Chapter 2

Plenoxels: Static Scene Reconstruction
from First Principles

This chapter is based on the paper “Plenoxels: Radiance Fields without Neural Networks”
[FYT+22], written in collaboration with Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa.

Please see alexyu.net/plenoxels for videos and code associated to this chapter.

Many thanks to Utkarsh Singhal and Ren Ng for helpful discussions, and to Hang Gao

for reviewing the chapter draft.

alexyu.net/plenoxels
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2.1 Introduction
A recent body of research has capitalized on implicit, coordinate-based neural networks

as the 3D representation to optimize 3D volumes from calibrated 2D image supervision.

In particular, Neural Radiance Fields (NeRF) [MST+20] demonstrated photorealistic novel

viewpoint synthesis, capturing scene geometry as well as view-dependent effects. This

impressive quality, however, requires extensive computation time for both training and

rendering, with training lasting more than a day and rendering requiring 30 seconds per

frame, on a single GPU. Multiple subsequent papers [YLT+21; RPLG21; RJY+20; LGLCT21;

GKJSV21; HSMBD21] reduced this computational cost for rendering, but single GPU

training still requires multiple hours, a bottleneck that limits the practical application of

photorealistic volumetric reconstruction.

In this paper, we show that we can train a radiance field from scratch, without neural

networks, while maintaining NeRF quality and reducing optimization time by two orders

of magnitude. We provide a custom CUDA [NVF20] implementation that capitalizes on

the model simplicity to achieve substantial speedups. Our typical optimization time on a

single Titan RTX GPU is 11 minutes on bounded scenes (compared to roughly 1 day for

NeRF, more than a 100× speedup) and 27 minutes on unbounded scenes (compared to

roughly 4 days for NeRF++ [ZRSK20], again more than a 100× speedup). Although our

implementation is not optimized for fast rendering, we can render novel viewpoints at

interactive rates (15 fps). If faster rendering is desired, our optimized Plenoxel model can

be converted into a PlenOctree [YLT+21].

Specifically, we propose an explicit volumetric representation, based on a view-dependent

sparse voxel grid without any neural networks. Our model can render photorealistic novel

viewpoints and be optimized end-to-end from calibrated 2D photographs, using the dif-

ferentiable rendering loss on training views along with a total variation regularizer. We

call our model Plenoxel for plenoptic volume elements, as it consists of a sparse voxel grid

in which each voxel stores density and spherical harmonic coefficients, which model view

dependence [AB91]. By interpolating these coefficients, Plenoxels achieve a continuous

model of the plenoptic function [AB91]: the light at every position and in every direction

inside a volume. To achieve high resolution on a single GPU, we prune empty voxels and

follow a coarse to fine optimization strategy. Although our core model is a bounded voxel

grid, we show that unbounded scenes can be modeled by using normalized device coor-

dinates (for forward-facing scenes) or by surrounding our grid with multisphere images

to encode the background (for 360
◦

scenes).

Our method reveals that photorealistic volumetric reconstruction can be approached

using standard tools from inverse problems: a data representation, a forward model, a reg-

ularization function, and an optimizer. Our method shows that each of these components

can be simple and state of the art results can still be achieved. Our experiments suggest

the key element of Neural Radiance Fields is not the neural network but the differentiable

volumetric renderer.
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Figure 2.1: Plenoxel: Plenoptic Volume Elements for fast optimization of radiance fields.

We show that direct optimization of a fully explicit 3D model can match the rendering

quality of modern neural based approaches such as NeRF while optimizing over two

orders of magnitude faster.
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2.2 Related work
Classical Volume Reconstruction. We begin with a brief overview of classical methods

for volume reconstruction, focusing on those which find application in our work. The

most common classical methods for volume rendering are voxel grids [Lev88; UK88;

CXGCS16; SD97; SSKK00; KHM17; TZEM17; STH+19; LSS+19a] and multi-plane images

(MPIs) [SG04; PZ17; ZTFFS18; STB+19; MSO+19; WPYS21]. Voxel grids are capable of

representing arbitrary topologies but can be memory limited at high resolution. One

approach for reducing the memory requirement for voxel grids is to encode hierarchical

structure, for instance using octrees [RUG17; HTM17; TDB17; WLGST17] (see [Kno06]

for a survey); we use an even simpler sparse array structure. Using these grid-based

representations combined with some form of interpolation [UK88] produces a continuous

representation that can be arbitrarily resized using standard signal processing methods

(see [OS09] for reference). We combine this classical sampling and interpolation paradigm

with the forward volume rendering formula introduced by Max [Max95] (based on work

from Kajiya and Von Herzen [KV84] and used in NeRF) to directly optimize a 3D grid

from indirect 2D observations. We further extend these classical approaches by modeling

view dependence, which we accomplish by optimizing spherical harmonic coefficients for

each color channel at each voxel. Spherical harmonics are a standard basis for functions

over the sphere, and have been used previously to represent view dependence [RH01;

SKS02; BJ03; YLT+21; WPYS21].

Neural Volume Reconstruction. Recently, dramatic improvements in neural volume

reconstruction have renewed interest in this direction. Neural representations were first

used to model occupancy [MONNG19; CZ19; MLL+21] and signed distance to an ob-

ject’s surface [PFSNL19; TLY+21], and perform novel view synthesis from 3D point

clouds [ASKUL20; RFS21; WGSJ20; LZ21]. Several papers extended this idea to model

a 3D scene using only calibrated 2D image supervision via a differentiable volume ren-

dering formulation [STH+19; SZW20; LSS+19a; MST+20]. NeRF [MST+20] in particular

produces impressive results but requires more than a day for full training, and about half

an minute to render a full 800 × 800 image, because every rendered pixel requires evalu-

ating a coordinate-based MLP at hundreds of sample locations along the corresponding

ray. Many papers have since extended the capabilities of NeRF, including modeling the

background in 360
◦

views [ZRSK20] and incorporating anti-aliasing for multiscale ren-

dering [BMT+21a]. We extend our Plenoxel method to unbounded 360
◦

scenes using a

background model inspired by NeRF++ [ZRSK20].

Of these methods, Neural Volumes [LSS+19a] is the most similar to ours in that it uses

a voxel grid with interpolation, but optimizes this grid through a convolutional neural

network and applies a learned warping function to improve the effective resolution (of a

128
3

grid). We show that the voxel grid can be optimized directly and high resolution can

be achieved by pruning and coarse to fine optimization, without any neural networks or

warping functions.

Accelerating NeRF. In light of the substantial computational requirements of NeRF for
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Spherical
Harmonics

b) Trilinear Interpolationa) Sparse Voxel Grid

ı
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Image

d) Optimization

c) Volumetric Rendering
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Color

Figure 2.2: Overview of our sparse Plenoxel model. Given a set of images of an object

or a scene, we optimize a (a) sparse voxel (“Plenoxel”) grid with density and spherical

harmonic coefficients at each voxel. To render a ray, we (b) compute the color and opacity

of each sample point via trilinear interpolation of the neighboring voxel coefficients. We

integrate the color and opacity of these samples using (c) differentiable volume rendering,

following the recent success of NeRF [MST+20]. The voxel coefficients can then be (d)

optimized using the standard MSE reconstruction loss relative to the training images,

along with a total variation regularizer.

both training and rendering, many recent papers have proposed methods to improve effi-

ciency, particularly for rendering. Among these methods are some that achieve speedup by

subdividing the 3D volume into regions that can be processed more efficiently [RJY+20;

LGLCT21]. Other speedup approaches have focused on a range of computational and

pre- or post-processing methods to remove bottlenecks in the original NeRF formulation.

JAXNeRF [DBS20], a JAX [BFH+18] reimplementation of NeRF, offers a speedup for both

training and rendering via parallelization across many GPUs or TPUs. AutoInt [LMW21]

restructures the coordinate-based MLP to compute ray integrals exactly, for more than

10× faster rendering with a small loss in quality. Learned Initializations [TMW+21a]

employs meta-learning on many scenes to start from a better MLP initialization, for both

> 10× faster training and better priors when per-scene data is limited. Other methods

[NSP+21; PC21; KJJ+21] achieve speedup by predicting a surface or sampling near the

surface, reducing the number of samples necessary for rendering each ray.

Another approach is to pretrain a NeRF (or similar model) and then extract it into a

different data structure that can support fast inference [GKJSV21; HSMBD21; RPLG21;

YLT+21]. In particular, PlenOctrees [YLT+21] extracts a NeRF variant into a sparse voxel

grid in which each voxel represents view-dependent color using spherical harmonic co-

efficients. Because the extracted PlenOctree can be further optimized, this method can

speed up training by roughly 3×, and because it uses an efficient GPU octree implementa-

tion without any MLP evaluations, it achieves > 3000× rendering speedup. Our method

extends PlenOctrees to perform end-to-end optimization of a sparse voxel representa-
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tion with spherical harmonics, offering much faster training (two orders of magnitude

speedup compared to NeRF). Our Plenoxel model is a generalization of PlenOctrees to

support sparse plenoptic voxel grids of arbitrary resolution (not necessary powers of two)

with the ability to perform trilinear interpolation, which is easier to implement with this

sparse voxel structure.

2.3 Method
Our model is a sparse voxel grid in which each occupied voxel corner stores a scalar

density 𝜎 and a vector of spherical harmonic (SH) coefficients for each color channel.

From here on we refer to this representation as Plenoxels. The density and color at an

arbitrary position and viewing direction are determined by trilinearly interpolating the

values stored at the neighboring voxels and evaluating the spherical harmonics at the

appropriate viewing direction. Given a set of calibrated images, we optimize our model

directly using the rendering loss on training rays. Our model is illustrated in Fig. 2.2 and

described in detail below.

2.3.1 Volume Rendering
We use the same differentiable model for volume rendering as in NeRF, where the color

of a ray is approximated by integrating over samples taken along the ray:

�̂�(r) =
𝑁∑
𝑖=1

𝑇𝑖
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
c𝑖 (2.3.1)

where 𝑇𝑖 = exp

©­«−
𝑖−1∑
𝑗=1

𝜎𝑗𝛿 𝑗
ª®¬ (2.3.2)

𝑇𝑖 represents how much light is transmitted through ray r to sample 𝑖,
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
denotes how much light is contributed by sample 𝑖, 𝜎𝑖 denotes the density of sample 𝑖,

and c𝑖 denotes the color of sample 𝑖, with distance 𝛿𝑖 to the next sample. Although this

formula is not exact (it assumes single-scattering [KV84] and constant values between

samples [Max95]), it is differentiable and enables updating the 3D model based on the

error of each training ray.

2.3.2 Voxel Grid with Spherical Harmonics
Similar to PlenOctrees [YLT+21], we use a sparse voxel grid for our geometry model.

However, for simplicity and ease of implementing trilinear interpolation, we do not use

an octree for our data structure. Instead, we store a dense 3D index array with pointers into

a separate data array containing values for occupied voxels only. Like PlenOctrees, each
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occupied voxel stores a scalar density 𝜎 and a vector of spherical harmonic coefficients for

each color channel. Spherical harmonics form an orthogonal basis for functions defined

over the sphere, with low degree harmonics encoding smooth (more Lambertian) changes

in color and higher degree harmonics encoding higher-frequency (more specular) effects.

The color of a sample c𝑖 is simply the sum of these harmonic basis functions for each

color channel, weighted by the corresponding optimized coefficients and evaluated at the

appropriate viewing direction. We use spherical harmonics of degree 2, which requires

9 coefficients per color channel for a total of 27 harmonic coefficients per voxel. We use

degree 2 harmonics because PlenOctrees found that higher order harmonics confer only

minimal benefit.

Plenoxel grid uses trilinear interpolation to define a continuous plenoptic function

throughout the volume. This is in contrast to PlenOctrees, which assumes that the density

and spherical harmonic coefficients remain constant inside each voxel. This difference

turns out to be an important factor in successfully optimizing the volume, as we dis-

cuss below. All coefficients (for density and spherical harmonics) are optimized directly,

without any special initialization or pretraining with a neural network.

2.3.3 Interpolation
The density and color at each sample point along each ray are computed by trilinear

interpolation of density and harmonic coefficients stored at the nearest 8 voxels. We find

that trilinear interpolation significantly outperforms a simpler nearest neighbor interpo-

lation; see Tab. 2.1. The benefits of interpolation are twofold: interpolation increases

the effective resolution by representing sub-voxel variations in color and density, and in-

terpolation produces a continuous function approximation that is critical for successful

optimization. Both of these effects are evident in Tab. 2.1: doubling the resolution of a

nearest-neighbor-interpolating Plenoxel closes much of the gap between nearest neighbor

and trilinear interpolation at a fixed resolution, yet some gap remains due to the difficulty

of optimizing a discontinuous model. Indeed, we find that trilinear interpolation is more

stable with respect to variations in learning rate compared to nearest neighbor interpola-

tion (we tuned the learning rates separately for each interpolation method in Tab. 2.1, to

provide close to the best number possible for each setup).

2.3.4 Coarse to Fine
We achieve high resolution via a coarse-to-fine strategy that begins with a dense grid at

lower resolution, optimizes, prunes unnecessary voxels, refines the remaining voxels by

subdividing each in half in each dimension, and continues optimizing. For example, in

the synthetic case, we begin with 256
3

resolution and upsample to 512
3
. We use trilinear

interpolation to initialize the grid values after each voxel subdivision step. In fact, we

can resize between arbitrary resolutions using trilinear interpolation. Voxel pruning is

performed using the method from PlenOctrees [YLT+21], which applies a threshold to the
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PSNR ↑ SSIM ↑ LPIPS ↓
Trilinear, 256

3
30.57 0.950 0.065

Trilinear, 128
3

28.46 0.926 0.100

Nearest Neighbor, 256
3

27.17 0.914 0.119

Nearest Neighbor, 128
3

23.73 0.866 0.176

Table 2.1: Ablation over interpolation method. Results are averaged over the 8 NeRF

synthetic scenes. We find that trilinear interpolation provides dual benefits of improving

effective resolution and improving optimization, such that trilinear interpolation at reso-

lution 128
3

outperforms nearest neighbor interpolation at 256
3
.

maximum weight 𝑇𝑖(1 − exp(−𝜎𝑖𝛿𝑖)) of each voxel over all training rays (or, alternatively,

to the density value in each voxel). Due to trilinear interpolation, naively pruning can

adversely impact the the color and density near surfaces since values at these points

interpolate with the voxels in the immediate exterior. To solve this issue, we perform a

dilation operation so that a voxel is only pruned if both itself and its neighbors are deemed

unoccupied.

2.3.5 Optimization
We optimize voxel densities and spherical harmonic coefficients with respect to the mean

squared error (MSE) over rendered pixel colors, with total variation (TV) regulariza-

tion [RO94]. Specifically, our base loss function is:

ℒ = ℒ𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑇𝑉 ℒ𝑇𝑉 (2.3.3)

Where the MSE reconstruction loss ℒ𝑟𝑒𝑐𝑜𝑛 and the total variation regularizer ℒ𝑇𝑉 are:

ℒ𝑟𝑒𝑐𝑜𝑛 =
1

|ℛ|
∑
r∈ℛ

∥𝐶(r) − �̂�(r)∥2

2

ℒ𝑇𝑉 =
1

|𝒱|
∑
v∈𝒱
𝑑∈[𝐷]

√
Δ2

𝑥(v, 𝑑) + Δ2

𝑦(v, 𝑑) + Δ2

𝑧(v, 𝑑)

with Δ2

𝑥(v, 𝑑) shorthand for the squared difference between the 𝑑th value in voxel v :=

(𝑖 , 𝑗 , 𝑘) and the 𝑑th value in voxel (𝑖+1, 𝑗 , 𝑘) normalized by the resolution, and analogously

for Δ2

𝑦(v, 𝑑) and Δ2

𝑧(v, 𝑑), where 𝐷 is the total number of density and spherical harmonic

(SH) coefficients stored at each voxel. In practice we use different weights for SH coeffi-

cients and 𝜎 values. These weights are fixed for each scene type (bounded, forward-facing,

and 360
◦
).
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For faster iteration, we use a stochastic sample of the rays ℛ to evaluate the MSE term

and a stochastic sample of the voxels 𝒱 to evaluate the TV term in each optimization step.

We use the same learning rate schedule as JAXNeRF and Mip-NeRF [DBS20; BMT+21a],

but tune the initial learning rate separately for density and harmonic coefficients. The

learning rate is fixed for all scenes in all datasets in the main experiments.

Directly optimizing voxel coefficients is a challenging problem for several reasons:

there are many values to optimize (the problem is high-dimensional), the optimization

objective is nonconvex due to the rendering formula, and the objective is poorly condi-

tioned. Poor conditioning is typically best resolved by using a second order optimization

algorithm (e.g. as recommended in [NW06b]), but this is practically challenging to im-

plement for a high-dimensional optimization problem because the Hessian is too large

to easily compute and invert in each step. Instead, we use RMSProp [Hin] to ease the

ill-conditioning problem without the full computational complexity of a second-order

method.

2.3.6 Unbounded Scenes
With minor modifications, Plenoxels extend to real, unbounded scenes, both forward-

facing and 360
◦
. For forward-facing scenes, we use normalized device coordinates, as

defined in the original NeRF paper [MST+20].

Background model. For 360
◦

scenes, we augment our sparse voxel grid foreground

representation with a multi-sphere image (MSI) background model, which also uses

learned voxel colors and densities with trilinear interpolation within and between spheres.

Note that this is effectively the same as our foreground model, except the voxels are warped

into spheres using the simple equirectangular projection (voxels index over sphere angles

𝜃 and 𝜙). We place 64 spheres linearly in inverse radius from 1 to ∞ (we pre-scale the

inner scene to be approximately contained in the unit sphere). To conserve memory, we

store only rgb channels for the colors (only zero-order SH) and store all layers sparsely

by using density thresholding as in our main model. This is similar to the background

model in NeRF++ [ZRSK20].

2.3.7 Regularization
We illustrate the importance of TV regularization in Fig. 2.3. In addition to TV regulariza-

tion, which encourages smoothness and is used on all scenes, for certain types of scenes

we also use additional regularizers.

On the real, forward-facing and 360
◦

scenes, we use a sparsity prior based on the

Cauchy loss from SNeRG [HSMBD21]:

ℒ𝑠 = 𝜆𝑠
∑
𝑖 ,𝑘

log

(
1 + 2𝜎(r𝑖(𝑡𝑘))2

)
(2.3.4)
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Full No SH TV No 𝜎 TV No TV

Figure 2.3: Ablation over TV regularization. Clear artifacts are visible in the forward-

facing scenes without TV on both 𝜎 and SH coefficients, although PSNR does not always

reflect this.

where 𝜎(r𝑖(𝑡𝑘)) denotes the density of sample 𝑘 along training ray 𝑖. In each minibatch

of optimization on forward-facing scenes, we evaluate this loss term at each sample on

each active ray. This is also similar to the sparsity loss used in PlenOctrees [YLT+21] and

encourages voxels to be empty, which helps to save memory.

On the real, 360
◦

scenes, we also use a beta distribution regularizer on the accumu-

lated foreground transmittance of each ray in each minibatch. This loss term, following

Neural Volumes [LSS+19a], promotes a clear foreground-background decomposition by

encouraging the foreground to be either fully opaque or empty. This beta loss is:

ℒ𝛽 = 𝜆𝛽

∑
r

(
log(𝑇𝐹𝐺(r)) + log(1 − 𝑇𝐹𝐺(r))

)
(2.3.5)

where r are the training rays and 𝑇𝐹𝐺(r) is the accumulated foreground transmittance

(between 0 and 1) of ray r.

2.3.8 Implementation
Since sparse voxel volume rendering is not well-supported in modern autodiff libraries, we

created a custom PyTorch CUDA [NVF20] extension library to achieve fast differentiable

volume rendering. We also provide a slower, higher-level JAX [BFH+18] implementation.

The speed of our implementation is possible in large part because the gradient of our

Plenoxel model becomes very sparse very quickly, as shown in Fig. 2.4. Within the first

1-2 minutes of optimization, fewer than 10% of the voxels have nonzero gradients.
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Figure 2.4: Gradient sparsity. The gradient becomes very sparse spatially within the first

12800 batches (one epoch for the synthetic scenes), with as few as 1% of the voxels updating

per batch in the synthetic case. This enables efficient training via sparse parameter updates.

The solid lines show the mean and the shaded regions show the full range of values among

all scenes of each type.

Figure 2.5: 1 minute, 20 seconds. Results on the synthetic scenes after 1 epoch of opti-

mization, an average of 1 minute and 20 seconds.

2.4 Results
We present results on synthetic, bounded scenes; real, unbounded, forward-facing scenes;

and real, unbounded, 360
◦

scenes. We include time trial comparisons with prior work,

showing dramatic speedup in training compared to all prior methods (alongside real-time

rendering). Quantitative comparisons are presented in Tab. 2.2, and visual comparisons
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PSNR ↑ SSIM ↑ LPIPS ↓ Train Time

Ours 31.71 0.958 0.049 11 mins
NV [LSS+19a] 26.05 0.893 0.160 >1 day

JAXNeRF [MST+20; DBS20] 31.85 0.954 0.072 1.45 days

Ours 26.29 0.839 0.210 24 mins
LLFF [MSO+19] 24.13 0.798 0.212 —*

JAXNeRF [MST+20; DBS20] 26.71 0.820 0.235 1.62 days

Ours 20.40 0.696 0.420 27 mins
NeRF++ [ZRSK20] 20.49 0.648 0.478 ∼4 days

Table 2.2: Results. Top: average over the 8 synthetic scenes from NeRF; Middle: the 8

real, forward-facing scenes from NeRF; Bottom: the 4 real, 360
◦

scenes from Tanks and

Temples [KPZK17]. 4 of the synthetic scenes train in under 10 minutes. *LLFF requires

pretraining a network to predict MPIs for each view, and then can render novel scenes

without further training; this pretraining is amortized across all scenes so we do not

include it in the table.

are shown in Fig. 2.1, Fig. 2.6, Fig. 2.7, and Fig. 2.8. Our method achieves quality results

after even the first epoch of optimization, less than 1.5 minutes, as shown in Fig. 2.5.

We also present the results from various ablation studies of our method. In the main

text we present average results (PSNR, SSIM [WBSS04], and VGG LPIPS [ZIESW18])

over all scenes of each type; full quantitative and visual results on each scene, and full

experimental details (hyperparameters, etc.) are included in the appendix.

2.4.1 Synthetic Scenes
Our synthetic experiments use the 8 scenes from NeRF: chair, drums, ficus, hotdog,

lego, materials, mic, and ship. Each scene includes 100 ground truth training views

with 800 × 800 resolution, from known camera positions distributed randomly in the

upper hemisphere facing the object. Each scene is evaluated on 200 test views, also with

resolution 800 × 800 and known inward-facing camera positions in the upper hemisphere.

We provide quantitative comparisons in Tab. 2.2 and visual comparisons in Fig. 2.6.

We compare our method to Neural Volumes (NV) [LSS+19a], a prior grid-based method

with a 3D convolutional network, and JAXNeRF [MST+20; DBS20]. For Neural Volumes

we use values reported in [MST+20]; for JAXNeRF we report results from our own rerun-

ning, fixing its centered pixel bug [BMT+21a]. Our method achieves comparable quality

compared to the best baseline, while training in an average of 11 minutes per scene on a

single GPU and supporting interactive rendering.
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Ground Truth JAXNeRF [DBS20; MST+20] Plenoxels

Figure 2.6: Synthetic, bounded scenes. Example results on the lego and ship synthetic

scenes from NeRF [MST+20].

2.4.2 Real Forward-Facing Scenes
We extend our method to unbounded, forward-facing scenes by using normalized device

coordinates (NDC), as derived in NeRF [MST+20]. Our method is otherwise identical to

the version we use on bounded, synthetic scenes, except that we use TV regularization

(with a stronger weight) throughout the optimization. This change is likely necessary

because of the reduced number of training views for these scenes, as described in Sec. 2.4.4.

Our forward-facing experiments use the same 8 scenes as in NeRF, 5 of which are

originally from LLFF [MSO+19]. Each scene consists of 20 to 60 forward-facing images

captured by a handheld cell phone with resolution 1008 × 756, with
7

8
of the images used

for training and the remaining
1

8
of the images reserved as a test set.

We compare our method to Local Light Field Fusion (LLFF) [MSO+19], a prior method

that uses a 3D convolutional network to predict a grid for each input view, and JAXNeRF.

We provide quantitative comparisons in Tab. 2.2 and visual comparisons in Fig. 2.7.
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Ground Truth JAXNeRF [DBS20; MST+20] Plenoxels

Figure 2.7: Real, forward-facing scenes. Example results on the fern and orchid forward-

facing scenes from NeRF.

2.4.3 Real 360
◦ Scenes

We extend our method to real, unbounded 360
◦

scenes by surrounding our sparse

voxel grid with an multi-sphere image (MSI, based on multi-plane images introduced

by [ZTFFS18]) background model, in which each background sphere is also a simple

voxel grid with trilinear interpolation (both within each sphere and between adjacent

layers).

Our 360
◦

experiments use 4 scenes from the Tanks and Temples dataset [KPZK17]:

M60, playground, train, and truck. For each scene, we use the same train/test split

as [RK20].

We compare our method to NeRF++ [ZRSK20], which augments NeRF with a back-

ground model to represent unbounded scenes. We present quantitative comparisons in

Tab. 2.2 and visual comparisons in Fig. 2.8.

2.4.4 Ablation Studies
In this section, we perform extensive ablation studies of our method to understand which

features are core to its success, with such a simple model. In Tab. 2.1, we show that continu-

ous (in our case, trilinear) interpolation is responsible for dramatic improvement in fidelity

compared to nearest neighbor interpolation (i.e., constant within each voxel) [YLT+21].

In Tab. 2.3, we consider how our method handles a dramatic reduction in training data,
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Ground Truth NeRF++ [ZRSK20] Plenoxels

Figure 2.8: Real, 360
◦ scenes. Example results on the playground and truck 360

◦
scenes

from Tanks and Temples [KPZK17].

from 100 views to 25 views, on the 8 synthetic scenes. We compare our method to NeRF

and find that, despite its lack of complex neural priors, by increasing TV regularization

our method can outperform NeRF even in this limited data regime. This ablation also

sheds light on why our model performs better with higher TV regularization on the real

forward-facing scenes compared to the synthetic scenes: the real scenes have many fewer

training images, and the stronger regularizer helps our optimization extend smoothly to

sparsely-supervised regions.

We also ablate over the resolution of our Plenoxel grid in Tab. 2.4 and the rendering

formula in Tab. 2.5. The rendering formula from Max [Max95] yields a substantial im-

provement compared to that of Neural Volumes [LSS+19a], perhaps because it is more

physically accurate (as discussed further in the appendix). The appendix also includes ab-

lations over the learning rate schedule and optimizer demonstrating Plenoxel optimization

to be robust to these hyperparameters.
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PSNR ↑ SSIM ↑ LPIPS ↓
Ours: 100 images (low TV) 31.71 0.958 0.050

NeRF: 100 images [MST+20] 31.01 0.947 0.081

Ours: 25 images (low TV) 26.88 0.911 0.099

Ours: 25 images (high TV) 28.25 0.932 0.078

NeRF: 25 images [MST+20] 27.78 0.925 0.108

Table 2.3: Ablation over the number of views. By increasing our TV regularization, we

exceed NeRF fidelity even when the number of training views is only a quarter of the full

dataset. Results are averaged over the 8 synthetic scenes from NeRF.

Resolution PSNR ↑ SSIM ↑ LPIPS ↓
512

3
31.71 0.958 0.050

256
3

30.57 0.950 0.065

128
3

28.46 0.926 0.100

64
3

26.11 0.892 0.139

32
3

23.49 0.859 0.174

Table 2.4: Ablation over the Plenoxel grid resolution. Results are averaged over the 8

synthetic scenes from NeRF.

Rendering Formula PSNR ↑ SSIM ↑ LPIPS ↓
Max [Max95], used in NeRF [MST+20] 30.57 0.950 0.065

Neural Volumes [LSS+19a] 27.54 0.906 0.201

Table 2.5: Comparison of different rendering formulas. We compare the rendering

formula from Max [Max95] (used in NeRF and our main method) to the one used in

Neural Volumes [LSS+19a], which uses absolute instead of relative transmittance. Results

are averaged over the 8 synthetic scenes from NeRF.
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2.5 Discussion
We present a method for photorealistic scene modeling and novel viewpoint rendering

that produces results with comparable fidelity to the state-of-the-art, while taking orders of

magnitude less time to train. Our method is also strikingly straightforward, shedding light

on the core elements that are necessary for solving 3D inverse problems: a differentiable

forward model, a continuous representation (in our case, via trilinear interpolation), and

appropriate regularization. We acknowledge that the ingredients for this method have

been available for a long time, however nonlinear optimization with tens of millions of

variables has only recently become accessible to the computer vision practitioner.

Limitations and Future Work. As with any underdetermined inverse problem, our

method is susceptible to artifacts. Our method exhibits different artifacts than neural

methods, as shown in Fig. 2.9, but both methods achieve similar quality in terms of stan-

dard metrics (as presented in Sec. 2.4). Future work may be able to adjust or mitigate these

remaining artifacts by studying different regularization priors and/or more physically

accurate differentiable rendering functions.

Ground Truth JAXNeRF [DBS20; MST+20] Plenoxels

Figure 2.9: Artifacts. JAXNeRF and Plenoxel exhibit slightly different artifacts, as shown

here in the specularities in the synthetic drums scene. Note that some artifacts are unavoid-

able for any underdetermined inverse problem, but the specific artifacts vary depending

on the priors induced by the model and regularizer.

Although we report all of our results for each dataset with a fixed set of hyperpa-

rameters, there is no optimal a priori setting of the TV weight 𝜆𝑇𝑉 . Better results may be

obtained by tuning this parameter on a scene-by-scene basis, which is possible due to our

fast training time. This is expected because the scale, smoothness, and number of training

views varies between scenes.

Our method should extend naturally to support multiscale rendering with proper anti-

aliasing through voxel cone-tracing, similar to the modifications in Mip-NeRF [BMT+21a].

Another easy addition is tone-mapping to account for white balance and exposure changes
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[RFS21], which we expect would help especially in the real 360
◦

scenes. A hierarchical data

structure (such as an octree) may provide additional speedup compared to our sparse array

implementation, provided that differentiable interpolation is preserved. Likewise, a more

compressed representation that takes greater advantage of the native scene sparsity and

priors would reduce processor memory needed to optimize and store Plenoxel models,

which currently require ∼ 10 GB per scene for optimization and ∼ 2 GB per scene for

storage.

Since our method is two orders of magnitude faster than NeRF, we believe that it may

enable downstream applications currently bottlenecked by the performance of NeRF–for

example, multi-bounce lighting and 3D generative models across large databases of scenes.

By combining our method with additional components such as camera optimization and

large-scale voxel hashing, it may enable a practical pipeline for end-to-end photorealistic

3D reconstruction.
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Chapter 3

K-Planes: A Compressed Representation
for Dynamic Scenes

This chapter is based on the paper “K-Planes: Explicit Radiance Fields in Space, Time, and Ap-
pearane” [FMWRK23], written in collaboration with Giacomo Meanti, Frederik Rahbæk Warburg,
Benjamin Recht, and Angjoo Kanazawa.

Please see sarafridov.github.io/K-Planes for videos and code associated to this chap-

ter.

Many thanks to Matthew Tancik, Ruilong Li, and other members of KAIR for helpful

discussion and pointers. We also thank the DyNeRF authors for their response to our

questions about their method.

sarafridov.github.io/K-Planes
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3.1 Introduction
Recent interest in dynamic radiance fields demands representations of 4D volumes. How-

ever, storing a 4D volume directly is prohibitively expensive due to the curse of dimension-

ality. Several approaches have been proposed to factorize 3D volumes for static radiance

fields, but these do not easily extend to higher dimensional volumes.

We propose a factorization of 4D volumes that is simple, interpretable, compact, and

yields fast training and rendering. Specifically, we use six planes to represent a 4D volume,

where the first three represent space and the last three represent space-time changes, as

illustrated in Fig. 3.1(d). This decomposition of space and space-time makes our model

interpretable, i.e., dynamic objects are clearly visible in the space-time planes, whereas

static objects only appear in the space planes. This interpretability enables dimension-

specific priors in time and space.

Higher

Dimensions

a) 2D Images

Memory:

b) 3D Static Volumes d) 4D Dynamic Volumesc) 3D Volume w. Varying Appearance

xy
xy xy xy

xtyz

xz

yt

zt

yz

xz

yz

xz

t

Figure 3.1: Planar factorization of 𝑑-dimensional spaces. We propose a simple planar

factorization for volumetric rendering that naturally extends to arbitrary-dimensional

spaces, and that scales gracefully with dimension in both optimization time and model

size. We show the advantages of our approach on 3D static volumes, 3D photo collections

with varying appearances, and 4D dynamic videos.

More generally, our approach yields a straightforward, prescriptive way to select a

factorization of any dimension with 2D planes. For a 𝑑-dimensional space, we use 𝑘 =
(𝑑
2

)
(“𝑑-choose-2”) k-planes, which represent every pair of dimensions — for example, our

model uses

(
4

2

)
= 6 hex-planes in 4D and reduces to

(
3

2

)
= 3 tri-planes in 3D. Choosing

any other set of planes would entail either using more than 𝑘 planes and thus occupying

unnecessary memory, or using fewer planes and thereby forfeiting the ability to represent

some potential interaction between two of the 𝑑 dimensions. We call our model 𝑘-planes;

Fig. 3.1 illustrates its natural application to both static and dynamic scenes. Though we do

not test this capability, 𝑘-planes is naturally suited to higher-dimensional scenes as well

– for example, consider hyperspectral imaging of a dynamic scene, with five dimensions
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𝑥, 𝑦, 𝑧, 𝑡 ,𝜆, or a direct parameterization of view-dependent color in a dynamic scene, with

six dimensions 𝑥, 𝑦, 𝑧, 𝑡 , 𝜃, 𝜙.

Most radiance field models entail some black-box components with their use of MLPs.

Instead, we seek a simple model whose functioning can be inspected and understood.

We find two design choices to be fundamental in allowing 𝑘-planes to be a white-box

model while maintaining reconstruction quality competitive with or better than previ-

ous black-box models [LSZ+22; PCPM21]: (1) Features from our 𝑘-planes are multiplied
together rather than added, as was done in prior work [CLC+22; CXGYS22], and (2) our

linear feature decoder uses a learned basis for view-dependent color, enabling greater

adaptivity including the ability to model scenes with variable appearance. We show that

an MLP decoder can be replaced with this linear feature decoder only when the planes

are multiplied, suggesting that the former is involved in both view-dependent color and

determining spatial structure.

Our factorization of 4D volumes into 2D planes leads to high compression without

relying on MLPs, using 200 MB to represent a 4D volume whose direct representation at

the same resolution would require more than 300 GB, a compression rate of three orders

of magnitude. Furthermore, despite not using any custom CUDA kernels, 𝑘-planes trains

orders of magnitude faster than prior implicit models and on par with concurrent hybrid

models.

In summary, we present the first white-box, interpretable model capable of represent-

ing radiance fields in arbitrary dimensions, including static scenes, dynamic scenes, and

scenes with variable appearance. Our 𝑘-planes model achieves competitive performance

across reconstruction quality, model size, and optimization time across these varied tasks,

using a pure PyTorch implementation without any custom CUDA kernels.

3.2 Related work
𝐾-planes is an interpretable, explicit model applicable to static scenes, scenes with varying

appearances, and dynamic scenes, with compact model size and fast optimization time.

Our model is the first to yield all of these attributes, as illustrated in Tab. 3.1. We further

highlight that 𝑘-planes satisfies this in a simple framework that naturally extends to

arbitrary dimensions.

Spatial decomposition. NeRF[MST+20] proposed a fully implicit model with a large

neural network queried many times during optimization, making it slow and essentially a

black-box. Several works have used geometric representations to reduce the optimization

time. Plenoxels [FYT+22] proposed a fully explicit model with trilinear interpolation in

a 3D grid, which reduced the optimization time from hours to a few minutes. However,

their explicit grid representation of 3D volumes, and that of DVGO [SSC22], grows expo-

nentially with dimension, making it challenging to scale to high resolution and completely

intractable for 4D dynamic volumes.
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NeRF ✓ ✗ ✗ ✗ ✓ ✗

NeRF-W ✓ ✓ ✗ ✗ ✓ ✗

DVGO ✓ ✗ ✗ ✓ ✗ ✗

Plenoxels ✓ ✗ ✗ ✓ ✗ ✓

Instant-NGP, TensoRF ✓ ✗ ✗ ✓ ✓ ✗1

DyNeRF, D-NeRF – ✗ ✓ ✗ ✓ ✗

TiNeuVox, Tensor4D – ✗ ✓ ✓ ✓ ✗

MixVoxels, V4D – ✗ ✓ ✓ ✗ ✗

NeRFPlayer – ✗ ✓ ✓ ✓2 ✗

𝐾-planes hybrid (Ours) ✓ ✓ ✓ ✓ ✓ ✗

𝐾-planes explicit (Ours) ✓ ✓ ✓ ✓ ✓ ✓

1
TensoRF offers both hybrid and explicit versions, with a small quality gap

2
NerfPlayer offers models at

different sizes, the smallest of which has < 100 million parameters but the largest of which has > 300

million parameters

Table 3.1: Related work overview. The 𝑘-planes model works for a diverse set of scenes

and tasks (static, varying appearance, and dynamic). It has a low memory usage (compact)

and fast training and inference time (fast). Here “fast” includes any model that can

optimize within a few (< 6) hours on a single GPU, and “compact” denotes models that

use less than roughly 100 million parameters. “Explicit” denotes white-box models that

do not rely on MLPs as a representation or nonlinear feature decoder.

Hybrid methods [SSC22; MESK22; CXGYS22] retain some explicit geometric structure,

often compressed by a spatial decomposition, alongside a small MLP feature decoder.

Instant-NGP [MESK22] proposed a multiresolution voxel grid encoded implicitly via a

hash function, allowing fast optimization and rendering with a compact model. TensoRF

[CXGYS22] achieved similar model compression and speed by replacing the voxel grid

with a tensor decomposition into planes and vectors. In a generative setting, EG3D

[CLC+22] proposed a similar spatial decomposition into three planes, whose values are

added together to represent a 3D volume.

Our work is inspired by the explicit modeling of Plenoxels as well as these spatial

decompositions, particularly the triplane model of [CLC+22], the tensor decomposition of

[CXGYS22], and the multiscale grid model of [MESK22]. We also draw inspiration from

Extreme MRI [OZC+20], which uses a multiscale low-rank decomposition to represent 4D
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dynamic volumes in magnetic resonance imaging. These spatial decomposition methods

have been shown to offer a favorable balance of memory efficiency and optimization time

for static scenes. However, it is not obvious how to extend these factorizations to 4D

volumes in a memory-efficient way. 𝐾-planes defines a unified framework that enables

efficient and interpretable factorizations of 3D and 4D volumes and trivially extends to

even higher dimensional volumes.

Dynamic volumes. Applications such as Virtual Reality (VR) and Computed To-

mography (CT) often require the ability to reconstruct 4D volumes. Several works have

proposed extensions of NeRF to dynamic scenes. The two most common schemes are

(1) modeling a deformation field on top of a static canonical field [PCPM21; TTG+21;

PSB+21; DZYTW21; YLSL21; FYW+22; LNSW21], or (2) directly learning a radiance field

conditioned on time[XHKK21; LNSW21; GSKH21; LSZ+22; PSH+21]. The former makes

decomposing static and dynamic components easy [YLSL21; WZTCO22], but struggles

with changes in scene topology (e.g. when a new object appears), while the latter makes

disentangling static and dynamic objects hard. A third strategy is to choose a representa-

tion of 3D space and repeat it at each timestep (e.g. NeRFPlayer [SCL+22]), resulting in

a model that ignores space-time interactions and can become impractically large for long

videos.

Further, some of these models are fully implicit [PCPM21; LSZ+22] and thus suffer from

extremely long training times (e.g. DyNeRF used 8 GPUs for 1 week to train a single scene),

as well as being completely black-box. Others use partially explicit decompositions for

video [FYW+22; GCD+22; WTLTL22; GXHCY22; SZT+22; LCM+22; LSS+19b; SCL+22],

usually combining some voxel or spatially decomposed feature grid with one or more

MLP components for feature decoding and/or representing scene dynamics. Most closely

related to 𝑘-planes is Tensor4D [SZT+22], which uses 9 planes to decompose 4D volumes.

𝐾-planes is less redundant (e.g. Tensor4D includes two 𝑦𝑡 planes), does not rely on multiple

MLPs, and offers a simpler factorization that naturally generalizes to static and dynamic

scenes. Our method combines a fully explicit representation with a built-in decomposition

of static and dynamic components, the ability to handle arbitrary topology and lighting

changes over time, fast optimization, and compactness.

Appearance embedding. Reconstructing large environments from photographs taken

with varying illumination is another domain in which implicit methods have shown

appealing results, but hybrid and explicit approaches have not yet gained a foothold.

NeRF-W [MRS+21] was the first to demonstrate photorealistic view synthesis in such

environments. They augment a NeRF-based model with a learned global appearance

code per frame, enabling it to explain away changes in appearance, such as time of day.

With Generative Latent Optimization (GLO) [BJLS17], these appearance codes can further

be used to manipulate the scene appearance by interpolation in the latent appearance

space. Block-NeRF [TCY+22] employs similar appearance codes.

We show that our 𝑘-planes representation can also effectively reconstruct these un-

bounded environments with varying appearance. We similarly extend our model – either

the learned color basis in the fully explicit version, or the MLP decoder in the hybrid
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Figure 3.2: Method overview. (a) Our 𝑘-planes representation factorizes 4D dynamic

volumes into six planes, three for space and three for spatiotemporal variations. To obtain

the value of a 4D point q = (𝑥, 𝑦, 𝑧, 𝑡), we first project the point into each plane, in which

we (b) do multiscale bilinear interpolation. (c) The interpolated values are multiplied

and then concatenated over the 𝑆 scales. (d) These features are decoded either with a

small MLP or our explicit linear decoder. (e) We follow the standard volumetric rendering

formula to predict ray color and density. The model is optimized by (f) minimizing the

reconstruction loss with simple regularization in space and time.

version – with a global appearance code to disentangle global appearance from a scene

without affecting geometry. To the best of our knowledge, ours is both the first fully

explicit and the first hybrid method to successfully reconstruct these challenging scenes.

3.3 K-planes model
We propose a simple and interpretable model for representing scenes in arbitrary dimen-

sions. Our representation yields low memory usage and fast training and rendering. The

𝑘-planes factorization, illustrated in Fig. 3.2, models a 𝑑-dimensional scene using 𝑘 =
(𝑑
2

)
planes representing every combination of two dimensions. For example, for static 3D

scenes, this results in tri-planes with

(
3

2

)
= 3 planes representing 𝑥𝑦, 𝑥𝑧, and 𝑦𝑧. For

dynamic 4D scenes, this results in hex-planes, with

(
4

2

)
= 6 planes including the three

space-only planes and three space-time planes 𝑥𝑡, 𝑦𝑡, and 𝑧𝑡. Should we wish to represent

a 5D space, we could use

(
5

2

)
= 10 deca-planes. In the following section, we describe the 4D

instantiation of our 𝑘-planes factorization.

3.3.1 Hex-planes
The hex-planes factorization uses six planes. We refer to the space-only planes as P𝑥𝑦 ,
P𝑥𝑧 , and P𝑦𝑧 , and the space-time planes as P𝑥𝑡 , P𝑦𝑡 , and P𝑧𝑡 . Assuming symmetric spatial
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and temporal resolution 𝑁 for simplicity of illustration, each of these planes has shape

𝑁𝒙𝑁𝒙𝑀, where 𝑀 is the size of stored features that capture the density and view-

dependent color of the scene.

We obtain the features of a 4D coordinate 𝒒 = (𝑖 , 𝑗 , 𝑘, 𝜏) by normalizing its entries

between [0, 𝑁) and projecting it onto these six planes

𝑓 (𝒒)𝑐 = 𝜓
(
P𝑐 ,𝜋𝑐(𝒒)

)
, (3.3.1)

where 𝜋𝑐 projects 𝒒 onto the 𝑐’th plane and 𝜓 denotes bilinear interpolation of a point into

a regularly spaced 2D grid. We repeat Eq. (3.3.1) for each plane 𝑐 ∈ 𝐶 to obtain feature

vectors 𝑓 (𝒒)𝑐 . We combine these features over the six planes using the Hadamard product

(elementwise multiplication) to produce a final feature vector of length 𝑀

𝑓 (𝒒) =
∏
𝑐∈𝐶

𝑓 (𝒒)𝑐 . (3.3.2)

These features will be decoded into color and density using either a linear decoder or an

MLP, described in Sec. 3.3.3.

Why Hadamard product? In 3D, 𝑘-planes reduces to the tri-plane factorization,

which is similar to [CLC+22] except that the elements are multiplied. A natural question

is why we multiply rather than add, as has been used in prior work with tri-plane models

[CLC+22; PNMPG20]. Fig. 3.3 illustrates that combining the planes by multiplication

allows 𝑘-planes to produce spatially localized signals, which is not possible with addition.

This selection ability of the Hadamard product produces substantial rendering im-

provements for linear decoders and modest improvement for MLP decoders, as shown in

Tab. 3.2. This suggests that the MLP decoder is involved in both view-dependent color

and determining spatial structure. The Hadamard product relieves the feature decoder of

this extra task and makes it possible to reach similar performance using a linear decoder

solely responsible for view-dependent color.

Plane Combination Explicit Hybrid # params ↓
Multiplication 35.29 35.75 33M

Addition 28.78 34.80 33M

Table 3.2: Ablation study over Hadamard product. Multiplication of plane features yields

a large improvement in PSNR ↑ for our explicit model, whereas our hybrid model can use

its MLP decoder to partially compensate for the less expressive addition of planes. This

experiment uses the static Lego scene [MST+20] with 3 scales: 128, 256, and 512, and 32

features per scale.
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Figure 3.3: Addition versus Hadamard product. Elementwise addition of plane features

(left) compared to multiplication (right), in a triplane example. A single entry in each

plane is positive and the rest are zero, selecting a single 3D point by multiplication but

producing intersecting lines by addition. This selection ability of multiplication improves

the expressivity of our explicit model.

3.3.2 Interpretability
The separation of space-only and space-time planes makes the model interpretable and

enables us to incorporate dimension-specific priors. For example, if a region of the scene

never moves, its temporal component will always be 1 (the multiplicative identity), thereby

just using the features from the space planes. This offers compression benefits since a static

region can easily be identified and compactly represented. Furthermore, the space-time

separation improves interpretability, i.e., we can track the changes in time by visualizing

the elements in the time-space planes that are not 1. This simplicity, separation, and

interpretability make adding priors straightforward.

Multiscale planes. To encourage spatial smoothness and coherence, our model con-

tains multiple copies at different spatial resolutions, for example 64, 128, 256, and 512.

Models at each scale are treated separately, and the 𝑀-dimensional feature vectors from

different scales are concatenated together before being passed to the decoder. The red and

blue squares in Fig. 3.2a-b illustrate bilinear interpolation with multiscale planes. Inspired

by the multiscale hash mapping of Instant-NGP[MESK22], this representation efficiently

encodes spatial features at different scales, allowing us to reduce the number of features

stored at the highest resolution and thereby further compressing our model. Empirically,

we do not find it necessary to represent our time dimension at multiple scales.

Total variation in space. Spatial total variation regularization encourages sparse

gradients (with L1 norm) or smooth gradients (with L2 norm), encoding priors over
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edges being either sparse or smooth in space. We encourage this in 1D over the spatial

dimensions of each of our space-time planes and in 2D over our space-only planes:

ℒ𝑇𝑉(P) =
1

|𝐶 |𝑛2

∑
𝑐,𝑖, 𝑗

(
∥P𝑖 , 𝑗𝑐 − P𝑖−1, 𝑗

𝑐 ∥2

2
+ ∥P𝑖 , 𝑗𝑐 − P𝑖 , 𝑗−1

𝑐 ∥2

2

)
, (3.3.3)

where 𝑖 , 𝑗 are indices on the plane’s resolution. Total variation is a common regularizer in

inverse problems and was used in Plenoxels [FYT+22] and TensoRF [CXGYS22]. We use

the L2 version in our results, though we find that either L2 or L1 produces similar quality.

Smoothness in time. We encourage smooth motion with a 1D Laplacian (second

derivative) filter

ℒ𝑠𝑚𝑜𝑜𝑡ℎ(P) =
1

|𝐶 |𝑛2

∑
𝑐,𝑖,𝑡

∥P𝑖 ,𝑡−1

𝑐 − 2P𝑖 ,𝑡𝑐 + P𝑖 ,𝑡+1

𝑐 ∥2

2
, (3.3.4)

to penalize sharp “acceleration” over time. We only apply this regularizer on the time

dimension of our space-time planes. Please see the appendix for an ablation study.

Sparse transients. We want the static part of the scene to be modeled by the space-only

planes. We encourage this separation of space and time by initializing the features in the

space-time planes as 1 (the multiplicative identity) and using an ℓ1 regularizer on these

planes during training:

ℒ𝑠𝑒𝑝(P) =
∑
𝑐

∥1 − P𝑐 ∥1, 𝑐 ∈ {𝑥𝑡, 𝑦𝑡, 𝑧𝑡}. (3.3.5)

In this way, the space-time plane features of the 𝑘-planes decomposition will remain fixed

at 1 if the corresponding spatial content does not change over time.

3.3.3 Feature decoders
We offer two methods to decode the 𝑀-dimensional temporally- and spatially-localized

feature vector 𝑓 (𝒒) from Eq. (3.3.2) into density, 𝜎, and view-dependent color, 𝒄.
Learned color basis: a linear decoder and explicit model. Plenoxels [FYT+22], Plenoc-

trees [YLT+21], and TensoRF [CXGYS22] proposed models where spatially-localized fea-

tures are used as coefficients of the spherical harmonic (SH) basis, to describe view-

dependent color. Such SH decoders can give both high-fidelity reconstructions and en-

hanced interpretability compared to MLP decoders. However, SH coefficients are difficult

to optimize, and their expressivity is limited by the number of SH basis functions used

(often limited 2nd degree harmonics, which produce blurry specular reflections).

Instead, we replace the SH functions with a learned basis, retaining the interpretability

of treating features as coefficients for a linear decoder yet increasing the expressivity of

the basis and allowing it to adapt to each scene, as was proposed in NeX [WPYS21]. We

represent the basis using a small MLP that maps each view direction 𝒅 to red 𝑏𝑅(𝒅) ∈ R𝑀 ,

green 𝑏𝐺(𝒅) ∈ R𝑀 , and blue 𝑏𝐵(𝒅) ∈ R𝑀 basis vectors. The MLP serves as an adaptive
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drop-in replacement for the spherical harmonic basis functions repeated over the three

color channels. We obtain the color values

𝒄(𝒒 , 𝒅) =
⋃

𝑖∈{𝑅,𝐺,𝐵}
𝑓 (𝒒) · 𝑏𝑖(𝒅), (3.3.6)

where · denotes the dot product and ∪ denotes concatenation. Similarly, we use a learned

basis 𝑏𝜎 ∈ R𝑀 , independent of the view direction, as a linear decoder for density:

𝜎(𝒒) = 𝑓 (𝒒) · 𝑏𝜎 . (3.3.7)

Predicted color and density values are finally forced to be in their valid range by applying

the sigmoid to 𝒄(𝒒 , 𝒅), and the exponential (with truncated gradient) to 𝜎(𝒒).
MLP decoder: a hybrid model. Our model can also be used with an MLP decoder like

that of Instant-NGP [MESK22] and DVGO [SSC22], turning it into a hybrid model. In this

version, features are decoded by two small MLPs, one 𝑔𝜎 that maps the spatially-localized

features into density 𝜎 and additional features 𝑓 , and another 𝑔𝑅𝐺𝐵 that maps 𝑓 and the

embedded view direction 𝛾(𝒅) into RGB color

𝜎(𝒒), 𝑓 (𝒒) = 𝑔𝜎( 𝑓 (𝒒))
𝒄(𝒒 , 𝒅) = 𝑔𝑅𝐺𝐵( 𝑓 (𝒒), 𝛾(𝒅)).

(3.3.8)

As in the linear decoder case, the predicted density and color values are finally nor-

malized via exponential and sigmoid, respectively.

Global appearance. We also show a simple extension of our 𝑘-planes model that

enables it to represent scenes with consistent, static geometry viewed under varying

lighting or appearance conditions. Such scenes appear in the Phototourism [JMM+21]

dataset of famous landmarks photographed at different times of day and in different

weather. To model this variable appearance, we augment 𝑘-planes with an𝑀-dimensional

vector for each training image 1, . . . , 𝑇. Similar to NeRF-W [MRS+21], we optimize this

per-image feature vector and pass it as an additional input to either the MLP learned color

basis 𝑏𝑅 , 𝑏𝐺 , 𝑏𝐵, in our explicit version, or to the MLP color decoder 𝑔𝑅𝐺𝐵, in our hybrid

version, so that it can affect color but not geometry.

3.3.4 Optimization details
Contraction and normalized device coordinates.For forward-facing scenes, we apply

normalized device coordinates (NDC) [MST+20] to better allocate our resolution while

enabling unbounded depth. We also implement an ℓ∞ version (rather than ℓ2) of the scene

contraction proposed in Mip-NeRF 360 [BMVSH22], which we use on the unbounded

Phototourism scenes.

Proposal sampling.We use a variant of the proposal sampling strategy from Mip-NeRF

360 [BMVSH22], with a small instance of 𝑘-planes as density model. Proposal sampling
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(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 3.4: Zoomed qualitative results on static NeRF scenes. Visual comparison of

𝑘-planes, TensoRF [CXGYS22], and the ground truth, on ship (top) and hotdog (bottom).

works by iteratively refining density estimates along a ray, to allocate more points in the

regions of higher density. We use a two-stage sampler, resulting in fewer samples that

must be evaluated in the full model and in sharper details by placing those samples closer

to object surfaces. The density models used for proposal sampling are trained with the

histogram loss [BMVSH22].

Importance sampling.For multiview dynamic scenes, we implement a version of the

importance sampling based on temporal difference (IST) strategy from DyNeRF [LSZ+22].

During the last portion of optimization, we sample training rays proportionally to the

maximum variation in their color within 25 frames before or after. This results in higher

sampling probabilities in the dynamic region. We apply this strategy after the static scene

has converged with uniformly sampled rays. In our experiments, IST has only a modest

impact on full-frame metrics but improves visual quality in the small dynamic region.

Note that importance sampling cannot be used for monocular videos or datasets with

moving cameras.

3.4 Results
We demonstrate the broad applicability of our planar decomposition via experiments

in three domains: static scenes (both bounded 360
◦

and unbounded forward-facing),

dynamic scenes (forward-facing multi-view and bounded 360
◦

monocular), and Photo-

tourism scenes with variable appearance. For all experiments, we report the metrics PSNR
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(a) Ours-explicit (b) Ours-hybrid (c) TensoRF (d) Ground truth

Figure 3.5: Zoomed qualitative results on static LLFF scenes. Visual comparison of 𝑘-

planes, TensoRF [CXGYS22], and the ground truth, on orchids (top) and T-rex (bottom).

(pixel-level similarity) and SSIM1 [WBSS04] (structural similarity), as well as approximate

training time and number of parameters (in millions), in Tab. 3.3. Blank entries in Tab. 3.3

denote baseline methods for which the corresponding information is not readily available.

Full per-scene results may be found in the appendix.

3.4.1 Static scenes
We first demonstrate our triplane model on the bounded, 360

◦
, synthetic scenes from NeRF

[MST+20]. We use a model with three symmetric spatial resolutions 𝑁 ∈ {128, 256, 512}
and feature length 𝑀 = 32 at each scale; please see the appendix for ablation studies over

these hyperparameters. The explicit and hybrid versions of our model perform similarly,

within the range of recent results on this benchmark. Fig. 3.4 shows zoomed-in visual

results on a small sampling of scenes. We also present results of our triplane model on the

unbounded, forward-facing, real scenes from LLFF [MSC+19]. Our results on this dataset

are similar to the synthetic static scenes; both versions of our model match or exceed the

prior state-of-the-art, with the hybrid version achieving slightly higher metrics than the

fully explicit version. Fig. 3.5 shows zoomed-in visual results on a small sampling of

scenes.

1
Note that among prior work, some evaluate using an implementation of SSIM from MipNeRF

[BMT+21b] whereas others use the scikit-image implementation, which tends to produce higher values.

For fair comparison on each dataset we make a best effort to use the same SSIM implementation as the

relevant prior work.
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PSNR ↑ SSIM ↑ Train Time ↓ # Params ↓
NeRF [MST+20] (static, synthetic)

Ours-explicit 32.21 0.960 38 min 33M

Ours-hybrid 32.36 0.962 38 min 33M

Plenoxels [FYT+22] 31.71 0.958 11 min ∼500M

TensoRF [CXGYS22] 33.14 0.963 17 min 18M

I-NGP [MESK22] 33.18 - 5 min ∼ 16M

LLFF [MSC+19] (static, real)

Ours-explicit 26.78 0.841 33 min 19M

Ours-hybrid 26.92 0.847 33 min 19M

Plenoxels 26.29 0.839 24 min ∼500M

TensoRF 26.73 0.839 25 min 45M

D-NeRF [PCPM21] (dynamic, synthetic)

Ours-explicit 31.05 0.97 52 min 37M

Ours-hybrid 31.61 0.97 52 min 37M

D-NeRF 29.67 0.95 48 hrs 1-3M

TiNeuVox[FYW+22] 32.67 0.97 30 min ∼12M

V4D[GXHCY22] 33.72 0.98 4.9 hrs 275M

DyNeRF [LSZ+22] (dynamic, real)

Ours-explicit 30.88 0.960 3.7 hrs 51M

Ours-hybrid 31.63 0.964 1.8 hrs 27M

DyNeRF [LSZ+22]
1
29.58 - 1344 hrs 7M

LLFF [MSC+19]
1
23.24 - - -

MixVoxels-L[WTLTL22] 30.80 0.960 1.3 hrs 125M

Phototourism [JMM+21] (variable appearance)

Ours-explicit 22.25 0.859 35 min 36M

Ours-hybrid 22.92 0.877 35 min 36M

NeRF-W [MRS+21] 27.00 0.962 384 hrs ∼2M

NeRF-W (public)
2

19.70 0.764 164 hrs ∼2M

LearnIt [TMW+21b] 19.26 - - -

1
DyNeRF and LLFF only report metrics on the flame salmon video (the first 10 seconds); average

performance may be higher as this is one of the more challenging videos.
2

Open-source version

https://github.com/kwea123/nerf_pl/tree/nerfwwhere we re-implemented test-time optimization as

for 𝑘-planes.

Table 3.3: Results. Averaged metrics over all scenes in the respective datasets. Note

that Phototourism scenes use MS-SSIM (multiscale structural similarity) instead of SSIM.

𝐾-planes timings are based on a single NVIDIA A30 GPU. Please see the appendix for

per-scene results and the website for video reconstructions.

https://github.com/kwea123/nerf_pl/tree/nerfw
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Ours-explicit Ours-hybrid DyNeRF MixVoxels Neural Volumes Ground truth

Figure 3.6: Qualitative video results. Our hexplane model rivals the rendering quality of

state-of-the-art neural rendering methods. Our renderings were obtained after at most 4

hours of optimization on a single GPU whereas DyNeRF trained for a week on 8 GPUs.

MixVoxels frame comes from a slightly different video rendering, and is thus slightly

shifted.

3.4.2 Dynamic scenes
We evaluate our hexplane model on two dynamic scene datasets: a set of synthetic,

bounded, 360
◦
, monocular videos from D-NeRF [PCPM21] and a set of real, unbounded,

forward-facing, multiview videos from DyNeRF [LSZ+22].

The D-NeRF dataset contains eight videos of varying duration, from 50 frames to 200

frames per video. Each timestep has a single training image from a different viewpoint;

the camera “teleports” between adjacent timestamps [GLTRK22]. Standardized test views

are from novel camera positions at a range of timestamps throughout the video. Both our

explicit and hybrid models outperform D-NeRF in both quality metrics and training time,

though they do not surpass very recent hybrid methods TiNeuVox [FYW+22] and V4D

[GXHCY22], as shown in Fig. 3.7.

The DyNeRF dataset contains six 10-second videos recorded at 30 fps simultaneously

by 15-20 cameras from a range of forward-facing view directions; the exact number of

cameras varies per scene because a few cameras produced miscalibrated videos. A central

camera is reserved for evaluation, and training uses frames from the remaining cameras.

Both our methods again produce similar quality metrics to prior state-of-the-art, including

recent hybrid method MixVoxels [WTLTL22], with our hybrid method achieving higher

quality metrics. See Fig. 3.6 for a visual comparison.

3.4.2.1 Decomposing time and space

One neat consequence of our planar decomposition of time and space is that it naturally

disentangles dynamic and static portions of the scene. The static-only part of the scene

can be obtained by setting the three time planes to one (the multiplicative identity).

Subtracting the static-only rendered image from the full rendering (i.e. with the time

plane parameters not set to 1), we can reveal the dynamic part of the scene. Fig. 3.9 shows
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(a) Ours-explicit (b) TiNeuVox (c) V4D (d) D-NeRF

Figure 3.7: Zoomed qualitative results on scenes from D-NeRF [PCPM21]. Visual

comparison of 𝑘-planes, D-NeRF [PCPM21], TiNeuVox [FYW+22] and V4D [GXHCY22],

on t-rex (top) and hook (bottom).

Figure 3.8: Visualization of a time plane. The 𝑥𝑡 plane highlights the dynamic regions

in the scene. The wiggly patterns across time correspond to the motion of the person’s

hands and cooking tools, in the flame salmon scene (left) where only one hand moves and

the cut beef scene (right) where both hands move.

this decomposition of time and space. This natural volumetric disentanglement of a scene

into static and dynamic regions may enable many applications across augmented and

virtual reality [BWCB22].

We can also visualize the time planes to better understand where motion occurs in a

video. Fig. 3.8 shows the averaged features learned by the 𝑥𝑡 plane in our model for the

flame salmon and cut beef DyNeRF videos, in which we can identify the motions of the

hands in both space and time. The 𝑥𝑡 plane learns to be sparse, with most entries equal

to the multiplicative identity, due to a combination of our sparse transients prior and the
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Full Space Time

Full Space Time

Figure 3.9: Decomposition of space and time. 𝐾-planes (left) naturally decomposes a 3D

video into static and dynamic components. We render the static part (middle) by setting

the time planes to the identity, and the remainder (right) is the dynamic part. Top shows

the flame salmon multiview video [LSZ+22] and bottom shows the jumping jacks monocular

video [PCPM21].

true sparsity of motion in the video. For example, in the left side of Fig. 3.8 one of the

cook’s arms contains most of the motion, while in the right side both arms move. Having

access to such an explicit representation of time allows us to add time-specific priors.

3.4.3 Variable appearance
Our variable appearance experiments use the Phototourism dataset [JMM+21], which

includes photos of well-known landmarks taken by tourists with arbitrary view directions,

lighting conditions, and transient occluders, mostly other tourists. Our experimental

conditions parallel those of NeRF-W [MRS+21]: we train on more than a thousand tourist

photographs and test on a standard set that is free of transient occluders. Like NeRF-W,

we evaluate on test images by optimizing our per-image appearance feature on the left

half of the image and computing metrics on the right half. Visual comparison to prior

work is shown in the appendix.
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Figure 3.10: Appearance interpolation. Like NeRF-W [MRS+21], we can interpolate our

appearance code to alter the visual appearance of landmarks. We show three test views

from the Trevi fountain with appearance codes corresponding to day and night.

Also similar to NeRF-W [MRS+21; BJLS17], we can interpolate in the appearance code

space. Since only the color decoder (and not the density decoder) takes the appearance

code as input, our approach is guaranteed not to change the geometry, regardless of

whether we use our explicit or our hybrid model. Fig. 3.10 shows that our planar decom-

position with a 32-dimensional appearance code is sufficient to accurately capture global

appearance changes in the scene.

3.5 Conclusions
We introduced a simple yet versatile method to decompose a 𝑑-dimensional space into

(𝑑
2

)
planes, which can be optimized directly from indirect measurements and scales gracefully

in model size and optimization time with increasing dimension, without any custom

CUDA kernels. We demonstrated that the proposed 𝑘-planes decomposition applies

naturally to reconstruction of static 3D scenes as well as dynamic 4D videos, and with

the addition of a global appearance code can also extend to the more challenging task

of unconstrained scene reconstruction. 𝐾-planes is the first explicit, simple model to

demonstrate competitive performance across such varied tasks.
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Chapter 4

A Theory of Photorealistic
Reconstruction

This chapter was written in collaboration with Mahdi Soltanokotabi and Benjamin Recht.
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4.1 Introduction
In this chapter, we study the same task – recovering a volume given images of it – from a

theoretical perspective. We study the measurement model itself, and the extent to which it

may be inverted to recover the underlying volume. We seek to understand to what fidelity,

and at what rate, iterative gradient-based optimization with a pure grid representation,

like that used in Chapter 2, succeeds in volume reconstruction. Analysis to address these

questions can help guide future algorithmic and modeling choices, as well as provide

guidance about data collection, such as how many views are necessary and how to best

leverage regularization.

By no means does this chapter fully resolve these questions. However, we take first

steps suggesting that the optimization in Chapter 2 is successful despite the nonconvexity

of its data-fidelity objective. We also draw parallels between the photorealistic volume

recovery problem at the focus of this dissertation, and the well-studied inverse problem of

computed tomography. We show that the tomography problem can be viewed as a special

case of the photorealistic reconstruction problem, and in this special case stronger results

can be shown regarding both global convergence of the optimization and local confidence

bounds over the recovered density parameters.

4.2 Related work
Our analysis is inspired by literature in two domains: optimization and compressed

sensing. From optimization we draw tools for convergence analysis over our nonconvex

objective, and from compressed sensing we work towards an understanding of volume

recovery in the absence of full measurements, given some sparsity assumptions of the true

volume.

We draw on a rich literature of convex and nonconvex optimization [BV11; NW06a;

WR22], focusing on two questions: (1) does the optimization converge to the global

minimum of the objective, and (2) how quickly? We are specifically interested in high-

dimensional optimization, because we wish to operate at high resolution and in 3 or 4

dimensions, leading to millions of optimizable parameters. This high dimensionality

makes more efficient second-order optimization algorithms intractable; in our analysis

here we consider purely first-order stochastic gradient descent, though in practice in

Chapter 2 and Chapter 3 we use slightly more expensive methods RMSProp [Hin] and

Adam [KB17], respectively. These adaptive methods require storing memory equivalent

to double (for RMSProp) or triple (for Adam) the size of the gradient, and are two of many

available schemes for accelerated first-order optimization [Yu 83; NW06a; Noc80].

We are similarly inspired by literature in compressed sensing [CRT06; Vid20; WM22],

which studies optimization in the specific context of recovering a signal from insufficient

measurements, given some prior knowledge of the signal. Compressed sensing typically

requires linear and incoherent measurements [DH01], such as Fourier-domain samples
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[CRT06], and common priors include sparsity of the signal itself, its gradient, or its

representation in some known domain (e.g. wavelets). These priors are well-motivated

for several inverse problems, notably the linear tomography problem and the magnetic

resonance imaging reconstruction problem, which both involve under-sampling in the

Fourier domain (either directly for MRI, or via the Fourier slice theorem in tomography

[Nis10]). Some results exist for certain classes of nonlinear measurements, as long as

these measurements are not too nonlinear [OS17]; our contribution continues this line of

research.

4.3 Problem formulation
In Chapter 2 and Chapter 3, we optimize the following objective function:

ℒ(𝒄, 𝝈) = 1

2

E𝒓

[

�̂�(𝒓 ; 𝒄, 𝝈) − 𝐶(𝒓 ; 𝒄∗, 𝝈∗)

2

ℓ2

]
+ ℛ(𝒄, 𝝈), (4.3.1)

where 𝐶 denotes color of ray 𝒓 , and ℛ is a regularizer applied to the grid of color and

density values 𝒄 and 𝝈. Here we use �̂� to denote our predicted ray color using the current

model of density and color, and we use 𝐶 to denote the true color as measured in the

training images, based on the optimal color and density values 𝒄∗ and 𝝈∗.
This model is faithful to the one used in practice in the preceding chapters, with the

following modifications:

1. In Chapter 2, ℛ is total variation applied in 3D over the color and density parameters.

2. In Chapter 3, ℛ includes both total variation in the spatial dimensions of each plane,

and smoothness (norm of second derivative) over the time dimension of the space-

time planes.

3. In Chapter 2 we model 𝝈 directly, but we model 𝒄 using spherical harmonics so that

color may be view-dependent.

4. In Chapter 3, we model latent features that are decoded into 𝒄 and 𝝈 using either a

linear (dot product) decoder or an MLP decoder. We also represent these features

in planes that are multiplied together into the full volume.

5. There are additional practical constraints that 𝝈 ≥ 0 and 𝒄 ∈ [0, 1]; these are imple-

mented using nonlinear activations (exp for density and either clipping or sigmoid

for color). For simplicity, these constraints are not modeled at present; in future they

could be treated as optimization constraints, or the nonlinear activations could be

incorporated into the measurement model.

An ideal theoretical analysis would use exactly the same model that is used exper-

imentally in practice. However, as a first step of analysis we assume that 𝒄 and 𝝈 are
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represented directly, which matches the experimental reality of Chapter 2 in the case of

using zero-order spherical harmonics for color (i.e., no view-dependence). We begin by

ignoring the regularization term ℛ and assuming access to infinite measurement rays

(except in Sec. 4.6).

4.4 Measurement models
In Chapter 2 and Chapter 3, we use the following measurement model for the color �̂�(r)
of a ray r:

�̂�(r) =
𝑁−1∑
𝑖=0

exp

©­«−
𝑖−1∑
𝑗=0

𝜎𝑗𝛿 𝑗
ª®¬
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
c𝑖 , (4.4.1)

where 𝜎𝑖 is the optical density of a sample 𝑖 along the ray, c𝑖 is its color vector, and 𝛿𝑖 denotes

the distance between sample 𝑖 and the sample behind it, with 𝑁 total samples distributed

along the ray through the volume of interest. This model is due to Max [Max95] as applied

in Neural Radiance Fields (NeRF) [MST+20]; it is derived as a discretized approximation of

the Beer-Lambert Law, which governs the attenuation of light through absorptive media.

Note that this model is nonlinear in the parameters 𝜎𝑖 and linear in the parameters c𝑖 .
It will also be convenient to consider an alternate formulation of the same measurement

model, using matrix notation. We begin by rewriting the sum in a more convenient

manner:

�̂�(r) =
𝑁−1∑
𝑖=0

exp

©­«−
𝑖−1∑
𝑗=0

𝜎𝑗𝛿 𝑗
ª®¬
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
c𝑖 (4.4.2)

= (1 − exp(−𝜎0𝛿0))c0 + exp(−𝜎0𝛿0)(1 − exp(−𝜎1𝛿1))c1 (4.4.3)

+ exp(−𝜎0𝛿0 − 𝜎1𝛿1)(1 − exp(−𝜎2𝛿2))c2 (4.4.4)

+ exp(−𝜎0𝛿0 − 𝜎1𝛿1 − 𝜎2𝛿2)(1 − exp(−𝜎3𝛿3))c3 + . . . (4.4.5)

= c0 + exp(−𝜎0𝛿0)(c1 − c0) + exp(−𝜎0𝛿0 − 𝜎1𝛿1)(c2 − c1) + . . . (4.4.6)

= c0 − exp

(
−
𝑁−1∑
𝑖=0

𝜎𝑖𝛿𝑖

)
c𝑁−1 +

𝑁−2∑
𝑖=0

exp

©­«−
𝑖∑
𝑗=0

𝜎𝑗𝛿 𝑗
ª®¬ (c𝑖+1 − c𝑖). (4.4.7)

We can now rewrite this measurement model using matrices:

�̂�(𝒓) = ⟨𝚫c(𝒓), exp(−S𝝈(𝒓)⟩ (4.4.8)

where the matrices 𝚫, c(𝒓), and S, and the vector 𝝈(𝒓) are defined as follows, using an

example where we only take 4 samples along the ray 𝒓 (numbered 0 through 3).
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𝚫 =


1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 −1


, c(𝒓) =


c0

c1

c2

c3

 , S =


0 0 0 0

𝛿0 0 0 0

𝛿0 𝛿1 0 0

𝛿0 𝛿1 𝛿2 0

𝛿0 𝛿1 𝛿2 𝛿3


, 𝝈(𝒓) =


𝜎0

𝜎1

𝜎2

𝜎3


We use 𝚫 to denote a discrete difference convolution of the color samples c(𝒓), and S to

denote a cumsum of the density samples 𝝈(𝒓).
Globally, we have a shared 𝝈 and a shared c for the volume, and each ray is measuring

a subset of these values 𝝈(𝒓), c(𝒓). Using 𝑴𝒓 to denote a mask matrix associated to ray 𝒓 ,
we can write c(𝒓) = 𝑴𝒓c and 𝝈(𝒓) = 𝑴𝒓𝝈, leading us to the measurement model:

�̂�(𝒓) = ⟨𝚫𝑴𝒓c, exp(−S𝑴𝒓𝝈)⟩, (4.4.9)

where the optimization variables c and 𝝈 are very tall (e.g. 𝑑3
, where 𝑑 ≥ 256 is the

resolution of a volume in each dimension). The mask 𝑴𝒓 is a short matrix, with number

of rows no more than a small constant times 𝑑, because only a small portion of the volume

contributes to the color of a given ray. The masks are also very structured, always choosing

entries that are contiguous (following a ray) in the un-vectorized volume represented by

c and 𝝈.

The randomness in this measurement model comes from the camera positioning – we

have a set of random camera coordinates and viewing directions, and each camera captures

a set of measurement rays (order 𝑑2
). Rays (and their corresponding masks) from the same

camera are highly correlated, but rays from different cameras are independent. In practice

we would like to use as few rays as necessary, and we can assume that the volume – the 𝒄∗
and 𝝈∗ values of the ground truth – is somewhat sparse and very gradient sparse.

The only nonlinearities in the model are the elementwise exponential around S𝑴𝒓𝝈,

and the inner product involving 𝒄 and 𝝈. These nonlinearities result in the loss function

ℒ(𝒄, 𝝈) being nonconvex.

4.4.1 Nonlinear tomography
The tomographic setting is nearly identical to our primary problem of photorealistic re-

covery, except with two key changes: (1) There is no notion of color, as a single wavelength

is typically used, and (2) The distribution of optical densities 𝜎𝑖 is shifted to smaller values,

since typically a higher-energy wavelength (such as X-ray) is chosen so that most mate-

rials are at least somewhat transmissive. With color removed, the measurement model



CHAPTER 4. A THEORY OF PHOTOREALISTIC RECONSTRUCTION 45

simplifies to:

�̂�(r) =
𝑁−1∑
𝑖=0

exp

©­«−
𝑖−1∑
𝑗=0

𝜎𝑗𝛿 𝑗
ª®¬
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
(4.4.10)

= 1 − exp(−𝜎0𝛿0) + exp(−𝜎0𝛿0)(1 − exp(−𝜎1𝛿1)) (4.4.11)

+ exp(−𝜎0𝛿0 − 𝜎1𝛿1)(1 − exp(−𝜎2𝛿2)) (4.4.12)

+ exp(−𝜎0𝛿0 − 𝜎1𝛿1 − 𝜎2𝛿2)(1 − exp(−𝜎3𝛿3)) + . . . (4.4.13)

= 1 − exp

(
−
𝑁−1∑
𝑖=0

𝜎𝑖𝛿𝑖

)
, (4.4.14)

where �̂�(r) denotes the fraction of incident light absorbed along ray r. This formula may

be derived either by this method, in which we simplify Eq. (4.4.1) by treating color c𝑖
as constant unity and telescoping, or alternatively by treating the volume of interest as

purely absorptive and directly applying the corresponding component of the discretized

Beer-Lambert law [Max95].

We observe that this tomographic measurement model is still nonlinear in the remain-

ing parameters 𝜎𝑖 . However, in this form it is a composition of a nonlinear function

𝑓 (·) = 1 − exp(−·) and a linear function (the weighted sum of sample densities along the

ray). We can even simplify things further by assuming that 𝛿𝑖 = 𝛿 ∀𝑖, and thereby wrap

𝛿𝑖 into 𝜎𝑖 , if we choose regularly spaced samples. Following this simplification, we arrive

at the tomographic measurement model:

�̂�(r) = 1 − exp

(
−
𝑁−1∑
𝑖=0

𝜎𝑖

)
. (4.4.15)

Experimentally, when we are optimizing to fit this density-only objective, we can

invert the nonlinearity and produce a linear problem. This linearization step is common

in practice for tomographic reconstruction, although numerical stability issues arise for

values of 𝛼 ≈ 1, corresponding to optically dense materials. Practically, these appear as

artifacts around metal objects in X-ray CT, often taking the form of spurious streaks or

highlights around the perimeter of the metallic or absorptive region. Alternatively, we

propose nonconvex optimization directly through Eq. (4.4.15), which avoids the numerical

instability of linearization in the presence of absorptive materials.

We can also write this tomographic measurement model in matrix form, using now a

mask vector 𝒎𝒓 associated to each ray 𝒓 :

�̂�(r) = 1 − exp

(
−𝒎𝑇

𝒓 𝝈
)
. (4.4.16)
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4.4.2 Gaussian approximations
For ease of analysis, we approximate the measurement models in both the photorealistic

reconstruction problem and the nonlinear tomography problem using random Gaussian

measurement matrices, as described below. These approximations are motivated by three

steps of simplification: (1) linear projection measurements are equivalent to radial sam-

ples of the Fourier domain, according to the Fourier slice theorem [Nis10], (2) structured,

multidimensional Fourier domain measurements may be well-approximated by random

one-dimensional Fourier domain measurements [CRT06], and (3) random Fourier mea-

surements may be well-approximated by random Gaussian measurements [ORS18].

For the photorealistic reconstruction problem, we approximate the measurement model

in Eq. (4.4.9) using standard Gaussian matrices 𝑩 and 𝑨 to approximate 𝚫𝑴𝒓 and −S𝑴𝒓 :

�̂�(𝒓) = ⟨𝑩𝒄, exp(𝑨𝝈)⟩ (4.4.17)

where 𝑩 and 𝑨 are ∈ R𝑁×𝑛
, where 𝑁 is the number of samples per ray and 𝑛 ≫ 𝑁 is the

number of voxels we want to recover, so 𝒄, 𝝈 ∈ R𝑛 . Note that this entails a simplification

of color to be scalar per voxel, corresponding to a single wavelength of light; in practice

the analysis could be repeated over multiple wavelengths e.g. for the typical red, green,

and blue (RGB) color channels. We assume that 𝑩 and 𝑨 are standard Gaussian matrices

sampled independently of each other and independently for each ray 𝒓 .
For the tomography (no-color) problem, we make a similar approximation by replacing

the negated mask vector −𝒎𝒓 in Eq. (4.4.16) with a standard Gaussian vector 𝒂 ∈ R𝑛 :

�̂�(r) = 1 − exp

(
𝒂𝑇𝝈

)
(4.4.18)

where 𝒂 is again sampled independently for each ray 𝒓 .

4.5 Convergence analysis
In this section, we take first steps toward theoretical analysis of the photorealistic recon-

struction problem defined by Eq. (4.4.9) and the nonlinear tomographic reconstruction

problem defined by Eq. (4.4.16). To make analysis more tractable, we use the Gaussian

approximations defined by Eq. (4.4.17) and Eq. (4.4.18) as our measurement models for

these problems, respectively.

In this section, we analyze the optimization of ℒ in the population setting, where we

have access to unlimited ray measurements and we optimize data fidelity alone, without

regularization. In this setting, we show that a special case of gradient descent converges

almost immediately to the exact solution, for both the photorealistic reconstruction prob-

lem and the nonlinear tomography problem. These population convergence results are

encouraging and nontrivial given the nonconvex objective function, though in practice we

wish to optimize using as few measurements as possible. We therefore provide a proof
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sketch of the global convergence argument in the more practically-relevant finite-sample

regime, though the full proof in this case is left to future work.

4.5.1 Photorealistic reconstruction: population convergence
Using the Gaussian measurement model of Eq. (4.4.17), we can analyze the first step

of gradient descent on ℒ(𝒄, 𝝈), without regularization, in expectation. Let 𝒄 be our

reconstruction of 𝒄∗ and 𝝈 be our reconstruction of 𝝈∗. We begin by initializing 𝒄 = 0𝑛 and

𝝈 = 0𝑛 . Our first gradient descent step will be to update 𝒄 = 0𝑛 − 𝑡𝑐ℒ(𝒄 = 0𝑛 , 𝝈 = 0𝑛):

E𝑨,𝑩[∇𝒄ℒ(𝝈 = 0𝑛 , 𝒄 = 0𝑛)]
(𝑎)
= E𝑨,𝑩

[(
𝒄𝑇𝑩𝑇 exp(𝑨𝝈) − 𝒄𝑇∗ 𝑩

𝑇
exp(𝑨𝝈∗)

)
𝑩𝑇 exp(𝑨𝝈)

]
(4.5.1)

(𝑏)
= −E𝑨,𝑩[𝒄𝑇∗ 𝑩𝑇 exp(𝑨𝝈∗)𝑩𝑇1𝑁] (4.5.2)

(𝑐)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝑨[exp(𝑨𝝈∗)]𝑩𝑇1𝑁] (4.5.3)

(𝑑)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝒈𝑁 [exp(𝒈𝑁 ∥𝝈∗∥ℓ2)]𝑩

𝑇1𝑁] (4.5.4)

(𝑒)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇1𝑁 E𝑔[exp(𝑔 ∥𝝈∗∥ℓ2)]𝑩

𝑇1𝑁] (4.5.5)

( 𝑓 )
= − exp

(
1

2

∥𝝈∗∥2

ℓ2

)
E𝑩[𝒄𝑇∗ 𝑩𝑇1𝑁𝑩𝑇1𝑁] (4.5.6)

(𝑔)
= −𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
E𝒈𝑛 [𝒄𝑇∗ 𝒈𝑛𝒈𝑛] (4.5.7)

(ℎ)
= −𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
E𝒈𝑛 [𝒈𝑛𝒈𝑇𝑛 ]𝒄∗ (4.5.8)

(𝑖)
= −𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
𝒄∗. (4.5.9)

In (a) we evaluate the gradient of the loss with respect to 𝒄. In (b) we plug in the

initialization values 𝒄 = 0𝑛 and 𝝈 = 0𝑛 . In (c) we pull the expectation over 𝑨 inside. In

(d) we simplify the inner expectation by replacing 𝑨𝝈∗ with 𝒈𝑁 ∥𝝈∗∥ℓ2 , where 𝒈𝑁 ∈ R𝑁 is

a standard Gaussian vector. In (e) we further simplify the inner expectation to one over a

scalar Guassian 𝑔, since each entry in the original vector has the same expectation. In (f)

we evaluate this inner Gaussian expectation. In (g) we simplify the remaining expectation

by replacing 𝑩𝑇1𝑁 with 𝒈𝑛
√
𝑁 , where 𝒈𝑛 ∈ R𝑛 is a standard Gaussian vector. In (h)

we note that 𝒄𝑇∗ 𝒈𝑛 is a scalar, so we can transpose it and move it to the right side of the

expectation, allowing us to pull 𝒄∗ outside the expectation. In (i) we evaluate the final

expectation to the identity (of size 𝑛).
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Using gradient descent from this all-zeros initialization, the expected first iterate of 𝒄
is

E[𝒄1] = 0𝑛 − 𝑡𝑐 E𝑨,𝑩[∇𝒄ℒ(𝝈 = 0𝑛 , 𝒄 = 0𝑛)] (4.5.10)

= 𝑡𝑐𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
𝒄∗, (4.5.11)

where 𝑡𝑐 is the step size in 𝒄, to be selected carefully. From this expression, we can see that

our expected first iterate of 𝒄 is well aligned with the true value 𝒄∗, and can be set exactly

equal by careful choice of 𝑡𝑐 with knowledge of ∥𝝈∗∥ℓ2 . In particular, we should choose:

𝑡𝑐 = 𝑁−1

exp

(
−1

2

∥𝝈∗∥2

ℓ2

)
, (4.5.12)

so that E[𝒄1] = 𝒄∗.
Using this expected first iterate 𝒄1, we now compute the expected first step for 𝝈1 =

0𝑛 − 𝑡𝜎 E𝑨,𝑩[∇𝝈ℒ(𝝈 = 0𝑛 , 𝒄 = E[𝒄1])].

E𝑨,𝑩[∇𝝈ℒ(𝝈 = 0𝑛 , 𝒄 = E[𝒄1])] (4.5.13)

(𝑎)
= E𝑨,𝑩

[(
E[𝒄1]𝑇𝑩𝑇 exp(𝑨𝝈) − 𝒄𝑇∗ 𝑩

𝑇
exp(𝑨𝝈∗)

)
𝑨𝑇diag

(
exp(𝑨𝝈)

)
𝑩E[𝒄1]

]
(4.5.14)

(𝑏)
= E𝑨,𝑩

[(
E[𝒄1]𝑇𝑩𝑇1𝑁 − 𝒄𝑇∗ 𝑩

𝑇
exp(𝑨𝝈∗)

)
𝑨𝑇𝑩E[𝒄1]

]
(4.5.15)

(𝑐)
= −E𝑨,𝑩[𝒄𝑇∗ 𝑩𝑇 exp(𝑨𝝈∗)𝑨𝑇𝑩E[𝒄1]] (4.5.16)

(𝑑)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝑨[exp(𝑨𝝈∗)

𝝈∗𝝈𝑇∗

∥𝝈∗∥2

ℓ2

𝑨𝑇]𝑩E[𝒄1]] (4.5.17)

(𝑒)
= −E𝑩,𝒈𝑁 [𝒄𝑇∗ 𝑩𝑇 exp(𝒈𝑁 ∥𝝈∗∥ℓ2)

𝝈∗
∥𝝈∗∥ℓ2

𝒈𝑇𝑁𝑩E[𝒄1]] (4.5.18)

( 𝑓 )
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝒈𝑁 [exp(𝒈𝑁 ∥𝝈∗∥ℓ2)𝒈

𝑇
𝑁]𝑩E[𝒄1]]

𝝈∗
∥𝝈∗∥ℓ2

(4.5.19)

(𝑔)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝑔[exp(𝑔 ∥𝝈∗∥ℓ2)𝑔]𝑩E[𝒄1]]

𝝈∗
∥𝝈∗∥ℓ2

(4.5.20)

(ℎ)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇 ∥𝝈∗∥ℓ2 E𝑔[exp(𝑔 ∥𝝈∗∥ℓ2)]𝑩E[𝒄1]]

𝝈∗
∥𝝈∗∥ℓ2

(4.5.21)

(𝑖)
= −E𝑩[𝒄𝑇∗ 𝑩𝑇𝑩E[𝒄1]] exp

(
1

2

∥𝝈∗∥2

ℓ2

)
𝝈∗ (4.5.22)

(𝑗)
= −𝑁𝒄𝑇∗ E[𝒄1] exp

(
1

2

∥𝝈∗∥2

ℓ2

)
𝝈∗ (4.5.23)

(𝑘)
= −𝑡𝑐𝑁2 ∥𝒄∗∥2

ℓ2
exp(∥𝝈∗∥2

ℓ2
)𝝈∗. (4.5.24)
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In (a) we evaluate the gradient of the loss with respect to 𝝈. In (b) we plug in the

initialization value 𝝈 = 0𝑛 . In (c) we use linearity of expectation and evaluate the first

term to zero because 𝑨 only appears once in it and 𝑨 has mean zero. In (d) we separate

𝑨 into components parallel and orthogonal to 𝝈∗, and evaluate the expectation of the

orthogonal component to zero. In (e) we replace 𝑨𝝈∗ with 𝒈𝑁 ∥𝝈∗∥ℓ2 , where 𝒈𝑁 ∈ R𝑁 is

a standard Gaussian vector, as these have the same distribution. In (f) we pull out
𝝈∗

∥𝝈∗∥ℓ
2

by noticing that the terms before and after it are each scalar; we then pull the expectation

over 𝒈𝑁 inside. In (g) we notice that the inner expectation is a multiple of the identity

matrix, so we can rewrite it as an expectation over a scalar Gaussian 𝑔. In (h) we simplify

this scalar inner expectation using Stein. In (i) we evaluate the inner expectation. In (k)

we plug in the value of E[𝒄1].
Using gradient descent with this expected loss for 𝝈, the expected first iterate of 𝝈

(after taking an expected step in 𝒄) is:

E[𝝈1] = 0𝑛 − 𝑡𝜎 E𝑨,𝑩[∇𝝈ℒ(𝝈 = 0𝑛 , 𝒄 = E[𝒄1])] (4.5.25)

= 𝑡𝜎𝑡𝑐𝑁
2 ∥𝒄∗∥2

ℓ2
exp(∥𝝈∗∥2

ℓ2
)𝝈∗, (4.5.26)

where 𝑡𝜎 is the step size in 𝝈, to be chosen carefully. From this expression, we can see that

our expected first iterate of 𝝈 is well aligned with the true value 𝝈∗, and can be set exactly

equal by careful choice of 𝑡𝜎 with knowledge of ∥𝝈∗∥ℓ2 and ∥𝒄∗∥ℓ2 . In particular, we should

choose:

𝑡𝜎 = 𝑁−1

exp

(
−1

2

∥𝝈∗∥2

ℓ2

)
∥𝒄∗∥−2

ℓ2
, (4.5.27)

so that E[𝝈1] = 𝝈∗.
Now that we know how to select appropriate step sizes, we must first recover ∥𝝈∗∥ℓ2

and ∥𝒄∗∥ℓ2 to be able to compute them. We do this by separately evaluating E𝑨,𝑩[𝑩�̂�] and

E𝑨,𝑩[�̂�𝑨𝑇𝑩] to produce two equations with two unknowns ∥𝝈∗∥ℓ2 and ∥𝒄∗∥ℓ2 , from which
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we can solve for these values.

E𝑨,𝑩[𝑩�̂�]
(𝑎)
= E𝑨,𝑩[𝑩𝒄𝑇∗ 𝑩𝑇 exp(𝑨𝝈∗)] (4.5.28)

(𝑏)
= E𝑩[𝑩𝒄𝑇∗ 𝑩𝑇]E𝑨[exp(𝑨𝝈∗)] (4.5.29)

(𝑐)
= E𝑩[𝑩𝒄𝑇∗ 𝑩𝑇]1𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
(4.5.30)

(𝑑)
= E𝑩[𝑩

𝒄∗𝒄𝑇∗
∥𝒄∗∥2

ℓ2

𝒄𝑇∗ 𝑩
𝑇]1𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
(4.5.31)

(𝑒)
= E𝒈𝑁 [𝒈𝑁 𝒄𝑇∗ 𝒈𝑇𝑁1𝑁] exp

(
1

2

∥𝝈∗∥2

ℓ2

)
(4.5.32)

( 𝑓 )
= E𝒈𝑁 [𝒈𝑁 𝒈𝑇𝑁1𝑁]𝒄𝑇∗ exp

(
1

2

∥𝝈∗∥2

ℓ2

)
(4.5.33)

(𝑔)
= 1𝑁 𝒄𝑇∗ exp

(
1

2

∥𝝈∗∥2

ℓ2

)
. (4.5.34)

In (a) we plug in our measurement model for �̂�. In (b) we separate the independent

expectations. In (c) we evaluate the second expectation, by rewriting it as a Gaussian

vector. In (d) we separate 𝑩 into components parallel and orthogonal to 𝒄∗, and evaluate

the expectation of the orthogonal component to zero. In (e) we replace 𝑩𝒄∗ with 𝒈𝑁 ∥𝒄∗∥ℓ2 ,
where 𝒈𝑁 ∈ R𝑁 is a standard Gaussian vector, as these have the same distribution. We

also bring the 1𝑁 inside the expectation. In (f), we note that 𝒈𝑇
𝑁

1𝑁 is scalar, so we move

it before the 𝒄𝑇∗ and pull that outside the expectation. In (g) we evaluate the expectation

over 𝒈𝑁 . The result is an 𝑁 × 𝑛 matrix whose Frobenius norm is

√
𝑁 ∥𝒄∗∥ℓ2 exp

(
1

2
∥𝝈∗∥2

ℓ2

)
.

E𝑨,𝑩[�̂�𝑨𝑇𝑩]
(𝑎)
= E𝑨,𝑩[𝒄𝑇∗ 𝑩𝑇 exp(𝑨𝝈∗)𝑨𝑇𝑩] (4.5.35)

(𝑏)
= E𝑨,𝑩[𝒄𝑇∗ 𝑩𝑇 exp(𝑨𝝈∗)

𝝈∗𝝈𝑇∗

∥𝝈∗∥2

ℓ2

𝑨𝑇𝑩] (4.5.36)

(𝑐)
= E𝒈𝑁 ,𝑩[𝒄𝑇∗ 𝑩𝑇 exp(𝒈𝑁 ∥𝝈∗∥ℓ2)

𝝈∗
∥𝝈∗∥ℓ2

𝒈𝑇𝑁𝑩] (4.5.37)

(𝑑)
=

𝝈∗
∥𝝈∗∥ℓ2

E𝑩[𝒄𝑇∗ 𝑩𝑇 E𝒈𝑁 [exp(𝒈𝑁 ∥𝝈∗∥ℓ2)𝒈
𝑇
𝑁]𝑩] (4.5.38)

(𝑒)
= 𝝈∗ E𝑩[𝒄𝑇∗ 𝑩𝑇𝑩] exp

(
1

2

∥𝝈∗∥2

ℓ2

)
(4.5.39)

( 𝑓 )
= 𝝈∗𝒄𝑇∗ 𝑁 exp

(
1

2

∥𝝈∗∥2

ℓ2

)
. (4.5.40)
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In (a) we plug in our measurement model for �̂�. In (b) we separate 𝑨 into components

parallel and orthogonal to 𝝈∗, and evaluate the expectation of the orthogonal component

to zero. In (c) we replace 𝑨𝝈∗ with 𝒈𝑁 ∥𝝈∗∥ℓ2 , where 𝒈𝑁 ∈ R𝑁 is a standard Gaussian

vector, as these have the same distribution. In (d) we notice that the term in front of
𝝈∗

∥𝝈∗∥ℓ
2

is scalar, so we can pull this vector outside the expectation, and move the expectation

over 𝒈𝑁 inside. In (e) we evaluate this inner expectation with respect to 𝒈𝑁 by first

noticing that the result is a multiple of the identity matrix, so we can rewrite it as an

expectation over a scalar Gaussian 𝑔, which we evaluate using Stein. In (f) we evaluate

the remaining expectation over 𝑩. The result is an 𝑛 × 𝑛 matrix whose Frobenius norm is

∥𝝈∗∥ℓ2 ∥𝒄∗∥ℓ2 𝑁 exp

(
1

2
∥𝝈∗∥2

ℓ2

)
.

Finally, we can use these two quantities to recover ∥𝝈∗∥ℓ2 and ∥𝒄∗∥ℓ2 . Let 𝑝 =


E𝑨,𝑩[�̂�𝑨𝑇𝑩]

𝐹

and 𝑞 =


𝐸𝑨,𝑩[𝑩�̂�]




𝐹
. Then:

∥𝝈∗∥ℓ2 =
𝑝

𝑞
√
𝑁

(4.5.41)

∥𝒄∗∥ℓ2 =
𝑞

√
𝑁

exp

(
−1

2

∥𝝈∗∥2

ℓ2

)
. (4.5.42)

In the population setting, our optimization procedure is: (1) recover ∥𝒄∗∥ℓ2 and ∥𝝈∗∥ℓ2
by measuring E𝑨,𝑩[𝑩�̂�] and E𝑨,𝑩[�̂�𝑨𝑇𝑩] and following Eq. (4.5.41), (2) Starting from the

all-zeros initialization for both 𝒄 and 𝝈, update 𝒄 following the negative expected gradient

in 𝒄, with the step size defined by Eq. (4.5.12), (3) From this updated value for 𝒄, and the

initialization 𝝈 = 0𝑛 , update 𝝈 following the negative expected gradient in 𝝈, with the

step size defined by Eq. (4.5.27). After these steps, we arrive at 𝒄 = 𝒄∗ and 𝝈 = 𝝈∗.
Note that numerical issues may arise in the special cases when ∥𝝈∗∥ℓ2 → ∞ or

∥𝒄∗∥ℓ2 → 0; these cases correspond respectively to scenes with infinite optical density

(full occlusion), and no illumination (total darkness). It is not surprising that reconstruc-

tion quality suffers under these circumstances.

4.5.2 Nonlinear tomography: population convergence
Using the Gaussian measurement model of Eq. (4.4.18), we can analyze the first step of

gradient descent on ℒ(𝝈), without regularization, in expectation.

The gradient of our loss function evaluated at a random ray 𝒓 with true density 𝛼(𝒓) is:

∇ℒ(𝝈) = 𝒂 𝑓 ′(𝒂𝑇𝝈)( 𝑓 (𝒂𝑇𝝈) − 𝛼(𝒓)) (4.5.43)

where 𝑓 (·) = 1 − exp(·) is our nonlinearity such that �̂�(𝒓) = 𝑓 (𝒂𝑇𝝈) as in Eq. (4.4.18). We

consider what happens when we take our first gradient step starting from an initialization

at 𝝈 = 0. The expectation is over the randomness in the Gaussian measurement vector 𝒂
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associated to the random ray 𝒓 .

E𝒂[∇ℒ(𝝈)|𝝈=0] = E𝒂[𝒂 𝑓 ′(0)( 𝑓 (0) − 𝛼(𝒓))] (4.5.44)

(𝑎)
= E𝒂[−𝒂𝛼(𝒓)] (4.5.45)

(𝑏)
= E𝒂[−𝒂(1 − exp(𝒂𝑇𝝈∗))] (4.5.46)

(𝑐)
= E𝒂[𝒂 exp(−𝒂𝑇𝝈∗))] (4.5.47)

(𝑑)
= E𝒂[

𝝈∗𝝈𝑇∗

∥𝝈∗∥2

ℓ2

𝒂 exp(−𝒂𝑇𝝈∗))] (4.5.48)

(𝑒)
=

𝝈∗
∥𝝈∗∥ℓ2

E𝑔[𝑔 exp(−𝑔 ∥𝝈∗∥ℓ2))] (4.5.49)

( 𝑓 )
= −𝝈∗ E𝑔[exp(−𝑔 ∥𝝈∗∥ℓ2))] (4.5.50)

(𝑔)
= −𝝈∗ exp

(
1

2

∥𝝈∗∥2

ℓ2

)
. (4.5.51)

In (a) we evaluate 𝑓 (0) = 0 and 𝑓 ′(0) = 1. In (b) we plug in the value of the measurement

𝛼(𝒓) using the true, optimal density vector 𝝈∗. In (c) we use linearity of expectation and

evaluate the first term, E𝒂[𝒂] = 0𝑛 . In (d) we separate the leading 𝒂 into components

parallel and orthogonal to 𝝈∗, and evaluate the expectation of the orthogonal term to

zero. In (e) we replace 𝒂𝑇𝝈∗ with 𝑔 ∥𝝈∗∥ℓ2 for a scalar Gaussian 𝑔, as these have the same

distribution. In (f) we use Stein. In (g) we evaluate the remaining expectation. From

this expectation, we can already see that things look pretty good if ∥𝒙∥ℓ2 is small, but the

gradient blows up as ∥𝒙∥ℓ2 gets large.

We can choose a step size 𝑡 so that in expectation, our first step 𝝈1 = 0𝑛−𝑡 E𝒂[∇ℒ(𝝈)|𝝈=0] =
𝝈∗. Specifically, we should choose

𝑡 = exp

(
−
∥𝝈∗∥2

ℓ2

2

)
. (4.5.52)

To use this step size, we must estimate ∥𝝈∗∥ℓ2 , which we can do using E𝒓[𝛼(𝒓)].

E𝒓[𝛼(𝒓)] = E𝒂[1 − exp(−𝒂𝑇𝝈∗)] (4.5.53)

= E𝑔[1 − exp(𝑔 ∥𝝈∗∥ℓ2)] (4.5.54)

= 1 − exp

(
1

2

∥𝝈∗∥2

ℓ2

)
. (4.5.55)

In the population setting we have direct access to this expectation and can therefore

compute the step size 𝑡 exactly, to achieve global optimality in one step of the expected

gradient. Note that numerical issues may arise in the special case when ∥𝝈∗∥ℓ2 → ∞,
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corresponding to scenes with infinite optical density (full occlusion). It is not surprising

that reconstruction quality suffers in this situation.

In the finite-measurement setting for this nonlinear tomography problem, we also note

that the exponential nonlinearity is of the form discussed in [OS17], in which linear con-

vergence is shown for projected gradient descent with nearly minimal samples, provided

appropriate regularization.

4.5.3 Limited-data convergence: proof sketch
In Sec. 4.5.1 and Sec. 4.5.2, we show one-step convergence of gradient descent on both the

photorealistic and tomographic reconstruction problems in the population setting, when

we are given unlimited access to measurements. We now sketch a strategy to extend this

result to the finite-sample regime, in which we take stochastic gradient steps and apply

priors through regularization or optimization constraints, to “fill in” for otherwise insuffi-

cient measurements. Note that this proof sketch is relevant primarily for the photorealistic

reconstruction task; finite-sample convergence for the tomography task may be shown us-

ing a special case of [OS17], though the method described here may yield slightly tighter

analysis.

Let 𝒙 denote the general optimization variable; in the photorealistic reconstruction

problem 𝒙 ∈ R2𝑛
is the concatenation of 𝒄 and 𝝈, and in the nonlinear tomography

problem 𝒙 ∈ R𝑛 is just an alias for 𝝈. We wish to show that, with high probability,

∥𝒙 − 𝒙∗∥ℓ2 decreases by at least a constant fraction with each step of stochastic gradient

descent.

The first step is to compute the finite-sample Hessian matrix of the loss ℒ, and bound

its minimum and maximum eigenvalues by values 𝛼 and 𝛽: 𝛼 I ⪯ ∇2ℒ ⪯ 𝛽 I. Then we can

analyze step 𝑠 of stochastic gradient descent:

𝒙𝑠+1 = 𝒙𝑠 − 𝑡∇ℒ(𝒙𝑠) (4.5.56)

𝒙𝑠+1 − 𝒙∗
(𝑎)
= 𝒙𝑠 − 𝒙∗ − 𝑡(∇ℒ(𝒙𝑠) − ∇ℒ(𝒙∗)) (4.5.57)

(𝑏)
= 𝒙𝑠 − 𝒙∗ − 𝑡∇2ℒ(�̄�𝑠)(𝒙𝑠 − 𝒙∗) (4.5.58)

= (I−𝑡∇2ℒ(�̄�𝑠))(𝒙𝑠 − 𝒙∗). (4.5.59)

In (a) we subtract 𝒙∗ from each side, and add zero in the form of ∇ℒ(𝒙∗). In (b) we use the

mean value theorem with �̄�𝑠 ∈ [𝒙𝑠 , 𝒙∗]. Then we have

∥𝒙𝑠+1 − 𝒙∗∥ℓ2 ≤


I−𝑡∇2ℒ




ℓ2
∥𝒙𝑠 − 𝒙∗∥ℓ2 , (4.5.60)

and what remains is to show that we can choose step sizes 𝑡 so that



I−𝑡∇2ℒ



ℓ2
< 1 and

the distance to the optimum shrinks by a geometric factor with each step.

This in turn requires two pieces: (1) showing that, with high probability, the finite-

sample Hessian matrix ∇2ℒ is positive definite in some radius Δ around the optimum 𝒙∗,
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so that there exists a positive step size 𝑡 in this radius that results in convergence, and (2)

showing that, with high probability, our first stochastic gradient step lands at an iterate 𝒙
with ∥𝒙 − 𝒙∗∥ℓ2 < Δ. Each of these pieces may be done using the eigenvalue bounds 𝛼, 𝛽
on ∇2ℒ.

Finally, the finite-sample convergence proof may be strengthened by the addition of

a prior, such as sparsity or low total variation. The prior is implemented in practice as

a regularization term in the objective, but for analysis we consider it as a constraint set

during optimization. In this setting, we replace gradient or stochastic gradient descent

with its projected version to maintain constraint satisfaction. This projection step then

reduces the complexity of the optimization space by tightening the eigenvalue bounds on

the relevant subspace of the Hessian, allowing faster convergence with fewer samples as

long as the true signal satisfies the prior constraint [Sol19; Sol17].

4.6 Sensitivity analysis: Voxel-wise confidence for
tomographic reconstruction

In this section, we explore a different type of error bound: voxel-wise confidence intervals

for the nonlinear tomography problem. One motivation for this type of bound comes from

medical imaging, in which tomographic reconstruction is used to identify and diagnose

localized features of medical importance, such as dental cavities, tumors, and arterial

blockages. For these detail-critical tasks, global error bounds are of limited use without

additional information about how errors are distributed throughout the reconstructed

volume.

We therefore pose, and take a step towards answering, the following question: as-

suming we can optimize our volume to achieve zero loss on training rays, what is our

confidence interval over the density of each voxel? We can compute a range [𝜎𝑖 , �̄�𝑖] such

that the total training loss changes by no more than 𝜀 as long as the density 𝜎𝑖 at voxel 𝑖

remains within this range, and all other voxel densities remain unchanged.

For convenience, consider the case of nearest neighbor interpolation, where all samples

within a voxel are considered as having the exact same density, and all samples are spaced

equally along each ray (so we can drop the subscript on 𝛿). Let 𝐽𝑖 denote the set of rays 𝑗

passing through voxel 𝑖 and 𝑇𝑗 denote the final transmission of ray 𝑗, such that 𝑇𝑗 = 0 if the

ray is completely opaque and 𝑇𝑗 = 1 if the ray is completely transparent. We can formalize

our desired range as follows.
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∑
𝑗∈𝐽𝑖

(
𝑇𝑗 − exp

(
−

∑
𝑘∈ 𝑗

𝜎𝑘𝛿
))

2

≤ 𝜀

(4.6.1)∑
𝑗∈𝐽𝑖

(
𝑇𝑗 − exp(−𝜎𝑖𝛿) exp

(
−

∑
𝑘∈ 𝑗;𝑘≠𝑖

𝜎𝑘𝛿
))

2

≤ 𝜀

(4.6.2)∑
𝑗∈𝐽𝑖

𝑇2

𝑗 − 2 exp(−𝜎𝑖𝛿)
∑
𝑗∈𝐽𝑖

𝑇𝑗 exp

(
−

∑
𝑘∈ 𝑗;𝑘≠𝑖

𝜎𝑘𝛿
)
+ exp(2𝜎𝑖𝛿)

∑
𝑗∈𝐽𝑖

exp

(
− 2

∑
𝑘∈ 𝑗;𝑘≠𝑖

𝜎𝑘𝛿
)
≤ 𝜀

(4.6.3)∑
𝑗∈𝐽𝑖

𝑇2

𝑗 − 2 exp(−𝜎𝑖𝛿)
∑
𝑗∈𝐽𝑖

𝑇𝑗𝑧 𝑗𝑖 + exp(2𝜎𝑖𝛿)
∑
𝑗∈𝐽𝑖

𝑧2

𝑗𝑖 ≤ 𝜀.

(4.6.4)

In the last line for notational convenience we let 𝑧 𝑗𝑖 = exp

(
− ∑

𝑘∈ 𝑗;𝑘≠𝑖 𝜎𝑘𝛿
)
, the trans-

mission of ray 𝑗 excluding the contribution of the sample in voxel 𝑖. Then we can solve the

quadratic:

exp(−𝜎𝑖𝛿) ∈

∑
𝑗∈𝐽𝑖 𝑇𝑗𝑧 𝑗𝑖 ±

√(∑
𝑗∈𝐽𝑖 𝑇𝑗𝑧 𝑗𝑖

)
2

−
( ∑

𝑗∈𝐽𝑖 𝑧
2

𝑗𝑖

) (
− 𝜀 +∑

𝑗∈𝐽𝑖 𝑇
2

𝑗

)
∑
𝑗∈𝐽𝑖 𝑧

2

𝑗𝑖

. (4.6.5)

As a sanity check, we can see that as the rest of a ray becomes more transparent (as 𝑧 𝑗𝑖
increases towards 1), the tighter the confidence interval around 𝜎𝑖 becomes. Likewise, as

more training rays pass through a voxel 𝑖,
∑
𝑗∈𝐽𝑖 𝑧

2

𝑗𝑖
can only increase and the confidence

interval around 𝜎𝑖 can only shrink.

This bound has the expected behavior and accurately captures our uncertainty in the

value of 𝜎𝑖 assuming that the training loss is zero, that sample values are from nearest

neighbor interpolation (all samples in the same voxel have the same density as that stored

at the voxel), that samples are evenly spaced along rays, and that each ray passes through

any given voxel no more than once (this might be violated if samples are more densely

spaced along the ray).

In particular, we do not use nearest neighbor interpolation; we use trilinear interpo-

lation (or could use other continuous interpolators). These continuous interpolations

preclude the factoring out of the 𝜎𝑖 term from the ray sum, because the same value 𝜎𝑖
contributes with varying weights to the sample densities of multiple samples along each

ray in its vicinity. Nonetheless, this bound may be interpreted as a best-case range of 𝜎𝑖
values for which, all else held fixed, the training loss changes by no more than 𝜀.
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Future work may make these per-voxel error bounds more conservative and complete

by incorporating error due to nonzero training loss, generalization error if training mea-

surements are insufficient, as well as any measurement noise (which we assume to be zero

in this analysis).
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Chapter 5

Next Steps

This dissertation represents a first foray into the rich interaction between compressed

sensing and deep learning, for the particular inverse problem of photorealistic recon-

struction. For this task, we have explored practical reconstruction algorithms and scene

representations in Chapter 2 and Chapter 3, showing that grid-based representations and

explicit regularization combine fruitfully with nonlinear, gradient-based optimization for

high-quality, fast reconstruction. We have also taken a theoretical perspective in Chap-

ter 4, in which we show that, at least in the presence of unlimited measurements, the

forward model of photorealistic reconstruction is perfectly invertible by gradient descent

despite its nonlinearity. In this chapter, we take a step back and consider the many exciting

avenues for future research that may build upon this work.

In particular, Chapter 4 is but the beginning of a full understanding of the photorealistic

reconstruction problem, and its many cousins in other inverse problems. Immediate

next steps for the two inverse problems discussed here, photorealistic reconstruction

and nonlinear tomography, include (1) completing the convergence analysis for the finite-

sample case with regularization, and (2) experimental validation of this analysis, including

scaling of error with number of training rays, and use of the theoretically-motivated step

size for SGD. For the best-case local error bounds in Sec. 4.6, next steps include extending

the confidence interval to account for any measurement noise in the training data, as well

as generalization error.

Another class of future work involves studying the bias induced by compressive mod-

els, like the “low-rank” method of Chapter 3. More broadly, future work may develop a

comprehensive theory of regularization for inverse problems. The work presented here

focuses on prior-regularizer pairs that are well-understood and tend to apply widely,

namely total variation in space and smoothness in time. Stronger, data-driven priors have

shown great promise empirically on controlled datasets, but remain poorly understood

and therefore difficult to deploy with confidence on safety-critical tasks. Given a type of

data, how should we construct the best regularizer, and what priors should it be based

on? How can we verify if our priors are still applicable on new data as it arises? How

can we visualize and understand the effects of our regularizers, especially when they are
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data-driven?

Finally, the broad topics discussed in this dissertation may find parallels and applica-

tion in other inverse problems of interest across scientific and medical imaging systems.

For example, what is the most efficient representation for different types of domain-specific

signals, e.g. what basis tends to produce the most sparse coefficients? How can we op-

timize that sparse representation efficiently? Under what conditions can we guarantee

correct reconstruction, for inverse problems with different nonlinear forward models? It is

hoped that this dissertation may serve as a useful building block towards a full exploration

of these questions, for the future benefit of scientific and medical imaging and inquiry.
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Appendix: Static Scene Reconstruction
from First Principles

Overview
In the appendix, we include additional experimental details and present results and

visualizations of further ablation studies. We also present full, per-scene quantitative and

visual comparisons between our method and prior work. We encourage the reader to see

the video at alexyu.net/plenoxels for results of our method on a wide range of scenes.

Experimental details

Implementation details
As briefly discussed in Sec. 2.3.2, we use a simple data structure which consists of a data

table in addition to a dense grid, where each cell is either NULL or a pointer into the data

table. Each entry in the data table consists of the density value and the SH coefficients

for each of the RGB color channels. NULL cells are considered to have all 0 values. This

data structure allows for reasonably efficient trilinear interpolation both in the forward

and backward passes while maintaining sparsity; due to the relatively large memory

requirements to store the SH coefficients, gradients, and RMSProp running averages, the

dense pointer grid is usually not dominant in size. Nevertheless, reading the pointers

currently appears to take a significant amount of rendering time, and optimizations are

likely possible.

Our main CUDA rendering and gradient kernels simultaneously parallelize across

rays, colors, and SH coefficients. Each CUDA warp (32 threads) handles one ray, with

threads processing one SH coefficient each; since coefficients are stored contiguously, this

means access to global memory is highly coalesced. The SH coefficients are combined

into colors using warp-level operations from NVIDIA CUB [MC21]. These features are

particularly significant in the case of trilinear interpolation.

Note that in order to correctly perform trilinear color interpolation, instead of using

the sigmoid function to ensure that predicted sample colors are always between 0 and 1

alexyu.net/plenoxels
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as in NeRF [MST+20], we simply clip negative color values to 0 with a ReLU to preserve

linearity as much as possible.

We use weight-based thresholding (as in PlenOctrees [YLT+21]) for the synthetic and

real, 360
◦

scenes, and density-based thresholding for the forward-facing scenes. The

reason for this is that some content (especially at the edges) in the forward-facing scenes

is not visible in most of the training views, so weight-based thresholding tends to prune

these sparsely-supervised features.

We use a batch size of 5000 rays and optimize with RMSProp [Hin]. For 𝜎 we use

the same delayed exponential learning rate schedule as Mip-NeRF [BMT+21a], where the

exponential is scaled by a learning rate of 30 (this is where the exponential would start, if

not for the delay) and decays to 0.05 at step 250000, with an initial delay period of 15000

steps. For SH we use a pure exponential decay learning rate schedule, with an initial

learning rate of 0.01 that decays to 5×10
−6

at step 250000.

The TV losses are evaluated stochastically; they are applied only to 1% of all voxels in

the grid in each step. Note that empty voxels can be selected, as their neighbors may not

be empty. In practice, for performance reasons, we always apply the TV regularization on

random contiguous segments of voxels (in the order that the pointer grid is stored). This

is much faster to evaluate on the GPU due to locality. In all cases, the voxel differences in

the TV loss defined below Eq. (2.3.3) is in practice normalized by the voxel resolution in

each dimension, relative to 256 (for historical reasons):

Δ𝑥((𝑖 , 𝑗 , 𝑘), 𝑑) =
|𝑉𝑑(𝑖 + 1, 𝑗 , 𝑘) −𝑉𝑑(𝑖 , 𝑗 , 𝑘)|

256/𝐷𝑥
(5.0.1)

Where 𝐷𝑥 is the grid resolution in the 𝑥 dimension, and𝑉𝑑(𝑖 , 𝑗 , 𝑘) is the 𝑑th value of voxel

(𝑖 , 𝑗 , 𝑘) (either density or a SH coefficient). We scale Δ𝑦 ,Δ𝑧 analogously. Note that the

same loss is applied in NDC and to the background model, except in the background

model, the TV also wraps around the edges of the equirectangular image. For SH, empty

grid cells and edges are considered to have the same value as the current cell (instead of

0) for purposes of TV.

Synthetic experiments
On the synthetic scenes, we found that our method performs nearly identically when TV

regularization is present only in the first stage of optimization; turning off the regulariza-

tion after pruning voxels and increasing resolution reduces our training time modestly.

We suspect (see Tab. 2.3) this is due to the large number of training views (100) available

for these scenes as well as the low level of noise; for the other datasets we retain TV

regularization throughout optimization.

We start at resolution 256
3
, prune and upsample to resolution 512

3
after 38400 steps

(the equivalent of 3 epochs), and optimize for a total of 128000 steps (the equivalent of 10

epochs). We prune using a weight threshold of 0.256, and use 𝜆𝑇𝑉 of 1×10
−5

for 𝜎 and
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1×10
−3

for SH, only during the initial 38400 steps (and then turn off regularization after

pruning and upsampling, for faster optimization).

Forward-facing experiments
For the forward-facing scenes we start at resolution 256×256×128, prune and upsample to

resolution 512×512×128 at step 38400, prune and upsample to resolution 1408×1156×128

at step 76800, and optimize for a total of 128000 steps. The final grid resolution is derived

from the image resolution of the dataset, with some padding added on each side. We

prune using a 𝜎 threshold of 5, use 𝜆𝑇𝑉 of 5×10
−4

for 𝜎 and 5×10
−3

for SH, and use a

sparsity penalty 𝜆𝑠 of 1×10
−12

to encourage empty voxels.

While these TV parameters work well for the forward-facing NeRF scenes, more gen-

erally, we find that sometimes it is preferrable to use 𝜆𝑇𝑉 5×10
−3

for density and 5×10
−2

for SH, which reduces artifacts while blurring the scene more. This is used for some of the

examples in the video, for example the piano. In general, since scenes differ significantly

in content, camera noise, and actual scale, a hyperparameter sweep of the TV weights can

be helpful, and using different TV values across the scenes would improve the metrics for

the NeRF scenes as well.

360
◦ experiments

For the 360
◦

scenes our foreground Plenoxel grid starts at resolution 128
3
; we prune and

upsample to 256
3
, 512

3
, and 640

3
with 25600 steps in between each upsampling. We

optimize for a total of 102400 steps. We prune using a weight threshold of 1.28, and use

𝜆𝑇𝑉 of 5×10
−5

for 𝜎 and 5×10
−3

for SH for the inner grid and 𝜆𝑇𝑉 of 1×10
−3

for both 𝜎
and SH for the 64 background grid layers of resolution 2048 × 1024. We use 𝜆𝑠 of 1×10

−11

and 𝜆𝛽 of 1×10
−5

. For simplicity of implementation, we did not use coarse-to-fine for

the background and only use 𝜎 thresholding. We also do not use the delayed learning

rate function for the background, opting instead to use an exponential decay to allow the

background to optimize faster than the foreground at the beginning.

While the TV weights were fixed for these scenes, in general, a hyperparameter sweep

of the TV weights can be helpful. For more general scenes, it is sometimes useful to use a

near-bound on the camera rays (as in NeRF) to prevent floaters very close to the camera,

or to only begin optimizing the foreground after, say, 1000 iterations. Further sparsity

losses to encourage the weight distribution to be a delta function may also help.

Ablation studies
We visualize ablations on the synthetic lego scene in Fig. 1. In addition to comparing

nearest neighbor and trilinear interpolation, we also experimented with tricubic interpo-

lation, which produces a function approximation that is both continuous (like trilinear
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(a) Trilinear,

256
3

(b) Nearest,

256
3

(c) Trilinear,

128
3

(d) 25 Views,

Low TV

(e) 25 Views,

High TV

(f) Neural Vol.

Formula

Figure 1: Visual results of ablation studies on the synthetic lego scene. Trilinear inter-

polation at resolution 256
3

is quite similar to our full model at resolution 512
3
. Nearest

neighbor interpolation shows clear voxel artifacts. Trilinear interpolation at lower res-

olution appears less detailed. Reducing the number of training views produces visual

artifacts that are mostly resolved by increasing the TV regularization. Optimizing and

rendering with the Neural Volumes [LSS+19a] formula produces different visual artifacts.

interpolation) and smooth. However, we found tricubic interpolation offered negligible

improvements compared to trilinear, in exchange for a substantial increase in computation

(this increase in computation is why we do not include a full ablation table for tricubic

interpolation).

Tab. 1 and Tab. 2 show ablations over learning rate schedule and optimizer, respectively.

We find that Plenoxel optimization is reasonably robust to both of these hyperparameters,

although there is a noticeable improvement from using RMSProp compared to SGD,

particularly for the spherical harmonic coefficients. Note that when comparing different

learning rate schedules and optimizers, we tune the initial learning rate separately for

each row to provide the best results possible for each configuration.

Tab. 3 shows ablation over regularization, for the forward-facing scenes. We find that

TV regularization is important for these scenes, likely due to their low number of training

images. Regularization on density has a quantitatively larger effect than regularization

on spherical harmonics, but both are important for avoiding visual artifacts (see Fig. 2.3).

Tab. 2.5 compares the performance of Plenoxels when trained with the rendering

formula used in NeRF (originally from Max [Max95]) and when trained with the rendering



APPENDIX: STATIC SCENE RECONSTRUCTION FROM FIRST PRINCIPLES 74

LR Schedule PSNR ↑ SSIM ↑ LPIPS ↓
Exp for SH, Delayed for 𝜎 [BMT+21a] 30.57 0.950 0.065

Exp for SH and 𝜎 30.58 0.950 0.066

Exp for SH, Constant for 𝜎 30.37 0.948 0.068

Constant for SH and 𝜎 30.13 0.945 0.075

Table 1: Comparison of different learning rate schedules for 𝜎 (voxel density) and

spherical harmonics (SH), with fixed resolution 256
3

and RMSProp [Hin]. Results are

averaged over the 8 synthetic scenes from NeRF [MST+20]. Our method is robust to

variations in learning rate schedule.

Optimizer PSNR ↑ SSIM ↑ LPIPS ↓
RMSProp [Hin] for SH and 𝜎 30.57 0.950 0.065

RMSProp for SH, SGD for 𝜎 30.20 0.946 0.072

SGD for SH, RMSProp for 𝜎 29.82 0.940 0.076

SGD for SH and 𝜎 29.35 0.932 0.087

Table 2: Comparison of different optimizers for 𝜎 and SH, with fixed resolution 256
3
.

Results are averaged over the 8 synthetic scenes from NeRF [MST+20]. Our method is

robust to variations in optimizer, although there is a benefit to RMSProp particularly for

optimizing the spherical harmonic coefficients.

formula used in Neural Volumes [LSS+19a]. The Max formula is defined in Eq. (5.0.6) and

rewritten here in a slightly more convenient format:

𝑇𝑖 = exp

©­«−
𝑖−1∑
𝑗=1

𝜎𝑗𝛿 𝑗
ª®¬ (5.0.2)

�̂�(r) =
𝑁∑
𝑖=1

(𝑇𝑖 − 𝑇𝑖+1)c𝑖 (5.0.3)
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Regularizer PSNR ↑ SSIM ↑ LPIPS ↓
TV SH, TV 𝜎, Sparsity 26.29 0.839 0.210

- Sparsity 26.31 0.839 0.210

- TV 𝜎 25.25 0.807 0.226

- TV SH 25.80 0.814 0.234

Table 3: Ablation over regularization. Results are averaged over the 8 forward-facing

scenes from NeRF, which are particularly sensitive to regularization due to the low number

of training views. We find that the sparsity regularizer is not necessary for quality, but

we retain it to reduce memory footprint. TV regularization is essential for 𝜎 but also

important for spherical harmonics, as visualized in Fig. 2.3, even though this effect is not

as pronounced in the PSNR metric. Without any TV regularization (on SH or 𝜎), three of

the eight scenes run out of memory on our GPU.

The Neural Volumes formula can be written as:

𝑇𝑖 = min

1,

𝑖−1∑
𝑗=1

exp(−𝛿𝑖𝜎𝑖)
 (5.0.4)

�̂�(r) =
𝑁∑
𝑖=1

(𝑇𝑖 − 𝑇𝑖+1)c𝑖 (5.0.5)

where exp(−𝜎𝑖) is modeled directly rather than modeling 𝜎𝑖 and then exponentiating (we

write it in this format to make the comparison to the Max formula more clear).

These formulas only differ in their definition of the transmittance 𝑇𝑖 . In particular,

the Neural Volumes formula treats the fraction of the ray contributed by sample 𝑖 as a

function of the density and sampling distance of sample 𝑖 only, unless the ray is already

fully occluded before it exits sample 𝑖. In contrast, the contribution of sample 𝑖 in the

Max formula depends on the density of sample 𝑖 as well as the densities of all preceding

samples along the ray. In essence, opacity in the Neural Volumes formula is absolute

and ray-independent (except for clipping the total contribution to 1), whereas opacity in

the Max formula denotes the fraction of incoming light that each sample absorbs, a ray-

dependent quantity. As we show in Tab. 2.5, the Max formula results in substantially better

performance; we suspect this difference is due to its more physically-accurate modeling

of transmittance.
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Per-scene results

Synthetic, bounded scenes
Full, per-scene results for the 8 synthetic scenes from NeRF are presented in Tab. 5 and

Fig. 2. Note that the values for JAXNeRF are from our own rerunning with centered pixels

(we ran JAXNeRF in parallel across 4 GPUs and multiplied the times by 4 to account for

this parallelization).

Real, forward-facing scenes
Full, per-scene results for the 8 forward-facing scenes from NeRF are presented in Tab. 6.

Note that the values for JAXNeRF are from our own rerunning with centered pixels (we

ran JAXNeRF in parallel across 4 GPUs and multiplied the times by 4 to account for this

parallelization).

Real, 360
◦ scenes

Full, per-scene results for the four 360
◦

scenes from Tanks and Temples [KPZK17] are

presented in Tab. 4. Note that the values for NeRF++ appear slightly different from the

paper; we re-evaluated the metrics independently using VGG LPIPS and standard SSIM,

from rendered images shared by the original authors.
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PSNR ↑
M60 Playground Train Truck Mean

Ours 17.93 23.03 17.97 22.67 20.40

NeRF++ [ZRSK20] 18.49 22.93 17.77 22.77 20.49

SSIM ↑
M60 Playground Train Truck Mean

Ours 0.687 0.712 0.629 0.758 0.696

NeRF++ 0.650 0.672 0.558 0.712 0.648

LPIPS ↓
M60 Playground Train Truck Mean

Ours 0.439 0.435 0.443 0.364 0.420

NeRF++ 0.481 0.477 0.531 0.424 0.478

Optimization Time ↓
M60 Playground Train Truck Mean

Ours 25.5m 26.3m 29.5m 28.0m 27.3m

Table 4: Full results on 360
◦ scenes.
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PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71

NV 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05

JAXNeRF 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958

NV 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893

JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 0.031 0.067 0.026 0.037 0.028 0.057 0.015 0.134 0.049

NV 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160

JAXNeRF 0.036 0.085 0.037 0.074 0.068 0.057 0.023 0.192 0.072

Optimization Time ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours 9.6m 9.8m 8.8m 12.5m 10.8m 11.0m 8.2m 18.0m 11.1m

JAXNeRF 37.8h 37.8h 37.7h 38.0h 26.0h 38.1h 37.8h 26.0h 34.9h

Table 5: Full results on synthetic scenes. We compare to Neural Volumes [LSS+19a] and

JAXNeRF [DBS20; MST+20].



APPENDIX: STATIC SCENE RECONSTRUCTION FROM FIRST PRINCIPLES 79

(a) Ground Truth (b) Neural Volumes (c) JAXNeRF (d) Plenoxels

Figure 2: Synthetic scenes. We show a random view from each of the synthetic scenes,

comparing the ground truth, Neural Volumes [LSS+19a], JAXNeRF [MST+20; DBS20],

and our Plenoxels.
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(e) Ground Truth (f) Neural Volumes (g) JAXNeRF (h) Plenoxels

Figure 2: Synthetic scenes. We show a random view from each of the synthetic scenes,

comparing the ground truth, Neural Volumes [LSS+19a], JAXNeRF [MST+20; DBS20],

and our Plenoxels.
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PSNR ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 25.46 27.83 31.09 27.58 21.41 20.24 30.22 26.48 26.29

LLFF 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70 24.13

JAXNeRF 25.20 27.80 31.57 27.70 21.10 20.37 32.81 27.12 26.71

SSIM ↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.832 0.862 0.885 0.857 0.760 0.687 0.937 0.890 0.839

LLFF 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840 0.798

JAXNeRF 0.798 0.840 0.890 0.840 0.703 0.649 0.952 0.890 0.820

LPIPS ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 0.224 0.179 0.180 0.231 0.198 0.242 0.192 0.238 0.210

LLFF 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193 0.212

JAXNeRF 0.272 0.198 0.151 0.249 0.305 0.307 0.164 0.235 0.235

Optimization Time ↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex Mean

Ours 23.7m 22.0m 31.2m 26.3m 13.3m 23.4m 28.8m 24.8m 24.2m

JAXNeRF 38.9h 38.8h 38.6h 38.7h 38.8h 38.7h 39.1h 38.6h 38.8h

Table 6: Full results on forward-facing scenes. We compare to Local Light Field Fusion

[MSO+19] and JAXNeRF [DBS20; MST+20].
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(a) Ground Truth (b) JAXNeRF (c) Plenoxels

Figure 3: Forward-facing scenes. We show a random view from each of the forward-facing

scenes, comparing the ground truth, JAXNeRF [MST+20; DBS20], and our Plenoxels.
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(d) Ground Truth (e) JAXNeRF (f) Plenoxels

Figure 3: Forward-facing scenes. We show a random view from each of the forward-facing

scenes, comparing the ground truth, JAXNeRF [MST+20; DBS20], and our Plenoxels. Note

that these two methods have different behaviors in unsupervised regions (e.g. the bottom

right in the orchids view): JAXNeRF fills in plausible textures whereas Plenoxels default

to gray.
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(a) Ground Truth (b) NeRF++ (c) Plenoxels

Figure 4: 360
◦ scenes. We show a random view from each of the Tanks and Temples

scenes, comparing the ground truth, NeRF++ [ZRSK20], and our Plenoxels. We include

two random views each for the M60 and train scenes, since the playground and truck

scenes were shown in the main text.
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Appendix: A Compressed
Representation for Dynamic Scenes

Volumetric rendering
We use the same volume rendering formula as NeRF [MST+20], originally from [Max95],

where the color of a pixel is represented as a sum over samples taken along the corre-

sponding ray through the volume:

𝑁∑
𝑖=1

exp

©­«−
𝑖−1∑
𝑗=1

𝜎𝑗𝛿 𝑗
ª®¬
(
1 − exp(−𝜎𝑖𝛿𝑖)

)
c𝑖 (5.0.6)

where the first exp represents ray transmission to sample 𝑖, 1−exp(−𝜎𝑖𝛿𝑖) is the absorption

by sample 𝑖, 𝜎𝑖 is the (post-activation) density of sample 𝑖, and c𝑖 is the color of sample 𝑖,

with distance 𝛿𝑖 to the next sample.

Per-scene results
Fig. 5 provides a qualitative comparison of methods for the Phototourism dataset, on the

Trevi fountain scene. We also provide quantitative metrics for each of the three tasks we

study, for each scene individually. Tab. 10 reports metrics on the static synthetic scenes,

Tab. 11 reports metrics on the static real forward-facing scenes, Tab. 12 reports metrics

on the dynamic synthetic monocular “teleporting camera” scenes, Tab. 13 reports metrics

on the dynamic real forward-facing multiview scenes, and Tab. 14 reports metrics on the

Phototourism scenes.

Ablation studies
Multiscale. In Tab. 7, we ablate our model on the static Lego scene [MST+20] with respect

to our multiscale planes, to assess the value of including copies of our model at different

scales.
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Figure 5: Qualitative results from Phototourism dataset. We compare our model with

strong baselines. Our method captures the geometry and appearance of the scene, but

produces slightly lower resolution results than NeRF-W. Note that our model optimizes

in just 35 minutes on a single GPU compared to NeRF-W, which takes 2 days on 8 GPUs.

Feature length. In Tab. 8, we ablate our model on the static Lego scene with respect to

the feature dimension 𝑀 learned at each scale.

Time smoothness regularizer. Sec. 3.3.2 describes our temporal smoothness regularizer

based on penalizing the norm of the second derivative over the time dimension, to en-

courage smooth motion and discourage acceleration. Tab. 9 illustrates an ablation study

of this regularizer on the Jumping Jacks scene from D-NeRF [PCPM21].

Model hyperparameters
Our full hyperparameter settings are available in the config files in our released code, at

github.com/sarafridov/K-Planes.

github.com/sarafridov/K-Planes
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Scales Explicit Hybrid

(32 Feat. Each) PSNR ↑ PSNR ↑ # params ↓
64, 128, 256, 512 35.26 35.79 34M

128, 256, 512 35.29 35.75 33M

256, 512 34.52 35.37 32M

512 32.93 33.60 25M

64, 128, 256 34.26 35.07 8M

Scales Explicit Hybrid

(96 Feat. Total) PSNR ↑ PSNR ↑ # params ↓
64, 128, 256, 512 35.16 35.67 25M

128, 256, 512 35.29 35.75 33M

256, 512 34.50 35.16 47M

512 33.12 34.09 76M

64, 128, 256 34.26 35.07 8M

Table 7: Ablation study over scales. Including even a single lower scale improves per-

formance, for both our explicit and hybrid models, even when holding the total feature

dimension constant. Using lower scales only (excluding resolution 512
3
) substantially re-

duces model size and yields quality much better than using high resolution alone, though

slightly worse than including both low and high resolutions. This experiment uses the

static Lego scene; in the top table each scale is allocated 32 features and in the bottom table

a total of 96 features are allocated evenly among all scales.
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Feature Length Explicit Hybrid

(𝑀) PSNR ↑ PSNR ↑ # params ↓
2 30.66 32.05 2M

4 32.27 34.18 4M

8 33.80 35.12 8M

16 34.80 35.44 17M

32 35.29 35.75 33M

64 35.38 35.88 66M

128 35.45 35.99 132M

Table 8: Ablation study over feature length 𝑀. Increasing the feature length 𝑀 learned

at each scale consistently improves quality for both our models, with a corresponding

linear increase in model size and optimization time. Our experiments in the main text use

a mixture of 𝑀 = 16 and 𝑀 = 32; for specific applications it may be beneficial to vary 𝑀

along this tradeoff between quality and model size. This experiment uses the static Lego
scene with 3 scales: 128, 256, and 512.

Time Smoothness Explicit Hybrid

Weight (𝜆) PSNR ↑ PSNR ↑
0.000 30.45 30.86

0.001 31.61 32.23

0.010 32.00 32.64

0.100 31.96 32.58

1.000 31.36 32.22

10.000 30.45 31.63

Table 9: Ablation study over temporal smoothness regularization. For both models, a

temporal smoothness weight of 0.01 is best, with PSNR degrading gradually with over-

or under-regularization. This experiment uses the Jumping Jacks scene with 4 scales: 64,

128, 256, and 512, and 32 features per scale.
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PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 34.82 25.72 31.2 36.65 35.29 29.49 34.00 30.51 32.21

Ours-hybrid 34.99 25.66 31.41 36.78 35.75 29.48 34.05 30.74 32.36

INGP 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18

TensoRF 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14

Plenoxels 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71

JAXNeRF 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 0.981 0.937 0.975 0.982 0.978 0.949 0.988 0.892 0.960

Ours-hybrid 0.983 0.938 0.975 0.982 0.982 0.950 0.988 0.897 0.962

INGP - - - - - - - - -

TensoRF 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963

Plenoxels 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958

JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

Table 10: Full results on static synthetic scenes [MST+20]. We compare with

Instant-NGP [MESK22], TensoRF [CXGYS22], Plenoxels [FYT+22], and JAXNeRF [DBS20;

MST+20]. Dashes denote values that were not reported in prior work.
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PSNR ↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 32.72 24.87 21.07 31.34 19.89 28.37 27.54 28.40 26.78

Ours-hybrid 32.64 25.38 21.30 30.44 20.26 28.67 28.01 28.64 26.92

NeRF 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50

Plenoxels 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58 26.29

TensoRF (L) 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14 26.73

DVGOv2 - - - - - - - - 26.34

SSIM ↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 0.955 0.809 0.738 0.898 0.665 0.867 0.909 0.884 0.841

Ours-hybrid 0.957 0.828 0.746 0.890 0.676 0.872 0.915 0.892 0.847

NeRF 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811

Plenoxels 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857 0.839

TensoRF (L) 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877 0.839

DVGOv2 - - - - - - - - 0.838

Table 11: Full results on static forward-facing scenes [MSC+19]. We compare with

NeRF [MST+20], Plenoxels [FYT+22], TensoRF [CXGYS22], and DVGO [SSC22]. Dashes

denote values that were not reported in prior work.
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PSNR ↑
Hell Stand Jumping

Warrior Mutant Hook Balls Lego T-Rex Up Jacks Mean

Ours-explicit 25.60 33.56 28.21 38.99 25.46 31.28 33.27 32.00 31.05

Ours-hybrid 25.70 33.79 28.50 41.22 25.48 31.79 33.72 32.64 31.61

D-NeRF 25.02 31.29 29.25 32.80 21.64 31.75 32.79 32.80 29.67

T-NeRF 23.19 30.56 27.21 32.01 23.82 30.19 31.24 32.01 28.78

Tensor4D - - - - 26.71 - 36.32 34.43 -

TiNeuVox 28.17 33.61 31.45 40.73 25.02 32.70 35.43 34.23 32.67

V4D 27.03 36.27 31.04 42.67 25.62 34.53 37.20 35.36 33.72

SSIM ↑
Hell Stand Jumping

Warrior Mutant Hook Balls Lego T-Rex Up Jacks Mean

Ours-explicit 0.951 0.982 0.951 0.989 0.947 0.980 0.980 0.974 0.969

Ours-hybrid 0.952 0.983 0.954 0.992 0.948 0.981 0.983 0.977 0.971

D-NeRF 0.95 0.97 0.96 0.98 0.83 0.97 0.98 0.98 0.95

T-NeRF 0.93 0.96 0.94 0.97 0.90 0.96 0.97 0.97 0.95

Tensor4D - - - - 0.953 - 0.983 0.982 -

TiNeuVox 0.97 0.98 0.97 0.99 0.92 0.98 0.99 0.98 0.97

V4D 0.96 0.99 0.97 0.99 0.95 0.99 0.99 0.99 0.98

Table 12: Full results on monocular “teleporting-camera” dynamic scenes. We use the

synthetic scenes from D-NeRF [PCPM21], which we refer to as monocular “teleporting-

camera” because although there is a single training view per timestep, the camera can

move arbitrarily between adjacent timesteps. We compare with D-NeRF [PCPM21], T-

NeRF [PCPM21], Tensor4D [SZT+22], TiNeuVox [FYW+22], and V4D [GXHCY22]. Dashes

denote unreported values. TiNeuVox trains in 30 minutes, V4D in 4.9 hours, D-NeRF in 2

days, and Tensor4D for an unspecified duration (Tensor4D reports iterations rather than

time). Our reported results were obtained after roughly 1 hour of optimization on a single

GPU. Like D-NeRF and TiNeuVox, we train and evaluate using half-resolution images

(400 by 400 pixels).
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PSNR ↑
Coffee Cook Cut Flame Flame Sear

Martini Spinach Beef Salmon1 Steak Steak Mean

Ours-explicit 28.74 32.19 31.93 28.71 31.80 31.89 30.88

Ours-hybrid 29.99 32.60 31.82 30.44 32.38 32.52 31.63

LLFF - - - 23.24 - - -

DyNeRF - - - 29.58 - - -

MixVoxels-L
†

29.36 31.61 31.30 29.92 31.21 31.43 30.80

SSIM ↑
Coffee Cook Cut Flame Flame Sear

Martini Spinach Beef Salmon1 Steak Steak Mean

Ours-explicit 0.943 0.968 0.965 0.942 0.970 0.971 0.960

Ours-hybrid 0.953 0.966 0.966 0.953 0.970 0.974 0.964

LLFF - - - 0.848 - - -

DyNeRF - - - 0.961 - - -

MixVoxels-L 0.946 0.965 0.965 0.945 0.970 0.971 0.960

†
Very recent/concurrent work. MixVoxels was released in December 2022. 1Using the first 10 seconds of

the 30 second long video.

Table 13: Full results on multiview dynamic scenes [LSZ+22]. We compare with Local

Light Field Fusion [MSC+19], DyNeRF [LSZ+22], and MixVoxels [WTLTL22]. Dashes

denote unreported values. Note that our method optimizes in less than 4 GPU hours,

whereas DyNeRF trains on 8 GPUs for a week, approximately 1344 GPU hours.
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PSNR ↑
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 24.85 19.90 22.00 22.25

Ours-hybrid 25.49 20.61 22.67 22.92

NeRF-W [MRS+21] 29.08 25.34 26.58 27.00

NeRF-W (public)
†

21.32 19.17 18.61 19.70

LearnIt [TMW+21b] 19.11 19.33 19.35 19.26

MS-SSIM ↑
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 0.912 0.821 0.845 0.859

Ours-hybrid 0.924 0.852 0.856 0.877

NeRF-W 0.962 0.939 0.934 0.945

Nerf-W (public)
†

0.845 0.752 0.694 0.764

LearnIt - - - -

†
Open-source version https://github.com/kwea123/nerf_pl/tree/nerfwwhere we implement the

test-time optimization ourselves exactly as for 𝑘-planes. NeRF-W code is not public.

Table 14: Full results on phototourism scenes. Note that our results were obtained after

about 35 GPU minutes, whereas NeRF-W trains with 8 GPUs for two days, approximately

384 GPU hours.

https://github.com/kwea123/nerf_pl/tree/nerfw
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