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Abstract

Prediction and Statistical Inference in Feedback Loops

by

Tijana Zrnic

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Moritz Hardt, Co-chair

Professor Michael I. Jordan, Co-chair

Classical machine learning and statistics are built on the paradigm that there is a fixed
quantity that we want to learn about a population, such as the best predictor of outcomes
from features or the average effect of a treatment. In modern practices, however, predictions
and inferences beget other predictions and inferences, causing the quantity of interest to
change over time and drift away in a feedback loop. The feedback poses challenges for
traditional methods, calling for new solutions. This thesis introduces new principles for
prediction and inference in the presence of feedback loops.

The first part focuses on performative prediction. Performative prediction formalizes the
phenomenon that predictive models—by means of being used to make consequential down-
stream decisions—often influence the outcomes they aim to predict in the first place. For
example, travel time estimates on navigation apps influence traffic patterns and thus realized
travel times, stock price predictions influence trading activity and hence prices. We exam-
ine common heuristics such as retraining, as well as more refined optimization strategies
for dealing with performative feedback. At the end of the first part, we identify important
scenarios where the act of prediction triggers feedback loops that are not explained by the
framework of performativity, and we develop theory to describe and study such feedback.

The second part discusses principles for valid statistical inference, i.e., valid p-values and
confidence intervals, in the presence of feedback. We consider two types of feedback: the
first is due to data snooping, i.e., the practice of choosing which results to report only
after seeing the data; the second arises when machine-learning systems are used to supply
cheap predictions to augment or supplant high-quality data in future scientific analyses. In
both cases, ignoring the feedback and naively applying classical statistical methods leads to
inflated error rates and false discoveries; we provide alternative approaches that guarantee
valid inferences in the face of feedback.
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Chapter 1

Introduction

Classical methods for data analysis were built on the assumption that there is one fixed
learning target of interest, such as the best predictor of outcomes from features or the
average effect of a treatment. Modern machine learning and statistics, however, are more
dynamic and adaptive than ever before: predictions and inferences beget other predictions
and inferences, causing feedback loops that shape and alter the target of learning. Such
feedback loops invalidate the guarantees of classical learning methods, leading to inflated
error rates and false discoveries. This thesis develops new principles for valid and reliable
data analysis in the presence of feedback loops.

Feedback arises due to a number of factors, and what it means to successfully deal
with feedback varies greatly depending on the context. We will focus on two broad goals:
prediction and statistical inference. In prediction, our goal will be to solve a risk-minimization
problem while taking into account its feedback-loop nature. We will introduce a framework
called performative prediction for describing learning in feedback loops, and we will study
a series of optimization strategies for learning under feedback. In statistical inference, our
goal will be to compute valid p-values and confidence intervals, while allowing for the use of
advanced computational methods in the data-analysis pipeline. Specifically, we will study
selective inference—the practice of choosing or refining the inferential question of interest
based on the data—as well as prediction-powered inference—the use of machine-learning
predictions as data in downstream analyses. In the following paragraphs we describe the
feedback-loop nature of each problem in more detail.

Predictions undoubtedly shape the world around us. One example setting where this
is prominent is elections. Every high-profile election is accompanied by numerous high-
profile forecasts of the election outcome. These forecasts have been observed to impact voter
turnout [179], which in turns means that they impact the election outcome itself! Therefore,
not only do predictions capture the patterns in our environment, but they also feed back
into the environment and actively shape it. In the election example, a good forecasting
mechanism should not only learn the preference over election candidates in the population
at the time of polling, but it should predict the actual election outcome while taking into
account the society’s response responsibly and accurately.
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Feedback also arises due to strategic incentives. There are numerous documented cases of
individuals adapting strategically to algorithmic decision rules in order to achieve a desirable
outcome, in domains ranging from social welfare programs to gig labor and social media
moderation [24, 26, 128]. This widespread phenomenon, often known as Goodhart’s law,
can be summarized as: “When a measure becomes a target, it ceases to be a good measure”
[156]. Due to their consequential nature, the algorithmic decisions cause people to alter their
behavior and thus such decisions feed back into society. A natural target for the decision-
maker is to learn a rule that yields high utility after the individuals have adapted to the
decision rule, not merely on the data collected before the rule’s deployment.

Another ubiquitous source of feedback in modern data analyses is data snooping, i.e.,
the practice of choosing which results to report based only after seeing the data. This prac-
tice, known in the literature as selective inference, offers more freedom to the analyst than
the traditional paradigm of specifying the relevant hypotheses up front, but it also creates
undesirable selection bias, thereby invalidating the error guarantees of classical statistical
methods. The goal in selective inference is to compute valid p-values and confidence inter-
vals, while allowing the analyst to adaptively refine the choice of statistical question in a
data-driven manner.

Finally, feedback arises when predictions are leveraged as evidence in future scientific
inquiry. Indeed, machine-learning algorithms are increasingly employed as black-box systems
that supply predictions to augment or supplant costly experimental measurements. For
example, accurate predictions of three-dimensional structures have been made for a vast
catalog of known protein sequences [92, 165] and are now being used in proteomics studies
[16]. Such predictions hold out the promise of increasing the pace and scope of scientific
inquiry, however naively treating them as gold-standard data can naturally lead to false
discoveries. We refer to the use of machine-learning predictions in downstream inferences as
prediction-powered inference. The goal in prediction-powered inference is to compute valid p-
values and confidence intervals, while making use of data sets imputed with machine-learning
predictions to increase the effective sample size.

This thesis is based on works co-authored with Anastasios Angelopoulos, Stephen Bates,
Clara Fannjiang, William Fithian, Moritz Hardt, Meena Jagadeesan, Michael I. Jordan, Eric
Mazumdar, Celestine Mendler-Dünner, John Miller, Juan Perdomo, and S. Shankar Sastry
[3, 75, 88, 123, 125, 137, 192, 193, 194].
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Part I

Prediction in Feedback Loops
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Chapter 2

Performative Prediction

Supervised learning excels at pattern recognition. When used to support consequential
decisions, however, predictive models can trigger actions that influence the outcome they
aim to predict. We call such predictions performative; the prediction causes a change in the
distribution of the target variable.

Consider a simplified example of predicting credit default risk. A bank might estimate
that a loan applicant has an elevated risk of default, and will act on it by assigning a
high interest rate. In a self-fulfilling prophecy, the high interest rate further increases the
customer’s default risk. Put differently, the bank’s predictive model is not calibrated to the
outcomes that manifest from acting on the model.

Once recognized, performativity turns out to be ubiquitous. Traffic predictions influence
traffic patterns, crime location prediction influences police allocations that may deter crime,
recommendations shape preferences and thus consumption, stock price prediction determines
trading activity and hence prices.

When ignored, performativity can surface as a form of distribution shift. As the decision-
maker acts according to a predictive model, the distribution over data points appears to
change over time. In practice, the response to such distribution shifts is to frequently retrain
the predictive model as more data becomes available. Retraining is often considered an
undesired—yet necessary—cat and mouse game of chasing a moving target.

What would be desirable from the perspective of the decision-maker is an equilibrium
where the model is optimal even after the data distribution reacts to its deployment. One
such equilibrium notion coincides with the stable points of retraining; performativity there-
fore exposes retraining as a natural equilibrating dynamic rather than a nuisance.

This chapter formalizes performative prediction, tying together conceptual elements from
statistical decision theory, causal reasoning, and game theory. The resulting framework
raises many fundamental questions—for example, regarding the existence of stable points
and other desirable equilibria, the behavior of retraining and other common optimization
strategies—which will be addressed throughout the chapter.

The material in this chapter is based on works co-authored with Moritz Hardt, Meena
Jagadeesan, Celestine Mendler-Dünner, John Miller, and Juan Perdomo [88, 123, 125, 137].
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2.1 Framework

We put performativity at the center of a decision-theoretic framework that extends the
classical statistical theory underlying risk minimization. The goal of risk minimization is to
find a decision rule, specified by model parameters θ taking values in a closed, convex set
Θ ⊆ Rd, that performs well on a fixed joint distribution D over covariates x and an outcome
variable y.

Whenever predictions are performative, the choice of predictive model affects the observed
distribution over instances z = (x, y). We formalize this intuitive notion by introducing a
mapD(·)—which we call the distribution map—from the set of model parameters to the space
of distributions. For a given choice of parameters θ, we think of D(θ) as the distribution over
features and outcomes that results from making decisions according to the model specified
by θ. This mapping from predictive model to distribution is the key conceptual device of
our framework.

We now formally introduce the principal solution concepts of our framework: performa-
tive optimality and performative stability.

2.1.1 Performative optimality

In supervised learning, the goal is to learn a predictive model fθ which minimizes the expected
loss with respect to feature–outcome pairs (x, y) drawn i.i.d. from a fixed distribution D.
The optimal model fθSL solves the following optimization problem,

θSL = arg min
θ∈Θ

E
z∼D

ℓ(z; θ),

where ℓ(z; θ) denotes the loss of fθ at a point z.
We contrast this with the performative optimum. As introduced previously, in settings

where predictions support decisions, the manifested distribution over features and outcomes
is in part determined by the deployed model. Instead of considering a fixed distribution D,
each model fθ induces a potentially different distribution D(θ) over instances z. A predictive
model must therefore be evaluated with regard to the expected loss over the distribution D(θ)
it induces: its performative risk.

Definition 2.1.1 (Performative optimality and risk). A model fθPO
is performatively opti-

mal if the following relationship holds:

θPO = arg min
θ∈Θ

E
z∼D(θ)

ℓ(z; θ).

We refer to PR(θ)
def
= Ez∼D(θ) ℓ(z; θ) as the performative risk; then, θPO = arg minθ∈Θ PR(θ).

The following example illustrates the differences between the traditional notion of opti-
mality in supervised learning and performative optima.
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Example 2.1.1 (Biased coin flip). Consider the task of predicting the outcome of a biased
coin flip where the bias of the coin depends on a feature x and the assigned score fθ(x).

In particular, define D(θ) in the following way: x is a 1-dimensional feature supported
on {±1} and y | x ∼ Bernoulli(1

2
+µx+εθx) with µ ∈ (0, 1

2
) and ε < 1

2
−µ. Assume that the

class of predictors consists of linear models of the form fθ(x) = θx+ 1
2
and that the objective

is to minimize the squared loss: ℓ(z; θ) = (y − fθ(x))2.
The parameter ε represents the performative aspect of the model. If ε = 0, outcomes are

independent of the assigned scores and the problem reduces to a standard supervised learning
task where the optimal predictive model is the conditional expectation fθSL(x) = E[y | x] =
1
2

+ µx, with θSL = µ.
In the performative setting with ε ̸= 0, the optimal model θPO balances between its pre-

dictive accuracy as well as the bias induced by the prediction itself. In particular, a direct
calculation demonstrates that

θPO = arg min
θ∈[0,1]

E
z∼D(θ)

(
y − θx− 1

2

)2

⇐⇒ θPO =
µ

1− 2ε
.

Hence, the performative optimum and the supervised learning solution are equal if ε = 0 and
diverge as the performativity strength ε increases.

2.1.2 Performative stability

A natural, desirable property of a model fθ is that, given that we use the predictions of fθ as
a basis for decisions, those predictions are also simultaneously optimal for distribution that
the model induces. We introduce the notion of performative stability to refer to predictive
models that satisfy this property.

Definition 2.1.2 (Performative stability and decoupled risk). A model fθPS
is performa-

tively stable if the following relationship holds:

θPS = arg min
θ∈Θ

E
z∼D(θPS)

ℓ(z; θ).

We refer to DPR(θ, θ′)
def
= Ez∼D(θ) ℓ(z; θ′) as the decoupled performative risk; then, θPS =

arg minθ∈Θ DPR(θPS, θ).

A performatively stable model fθPS
minimizes the expected loss on the distributionD(θPS)

resulting from deploying fθPS
in the first place. Therefore, a model that is performatively

stable eliminates the need for retraining after deployment since any retraining procedure
would simply return the same model parameters. Performatively stable models are fixed
points of risk minimization. We further develop this idea in the next section.

Observe that performative optimality and performative stability are in general two dis-
tinct solution concepts. Performatively optimal models need not be performatively stable
and performatively stable models need not be performatively optimal. We illustrate this
point in the context of our previous biased coin toss example.
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Example 2.1.2 (Example 2.1.1 continued). Consider again our model of a biased coin toss.
In order for a predictive model fθ to be performatively stable, it must satisfy the following
relationship:

θPS = arg min
θ∈[0,1]

E
Z∼D(θPS)

(
y − θx− 1

2

)2

⇐⇒ θPS =
µ

1− ε
.

Solving for θPS directly, we see that there is a unique performatively stable point.
Therefore, performative stability and performative optimality need not identify. In fact,

in this example they identify if and only if ε = 0. Note that, in general, if the map D(θ) is
constant across θ, performative optima must coincide with performatively stable solutions.
Furthermore, both coincide with “static” supervised learning solutions as well.

For ease of presentation, we refer to a choice of parameters θ as performatively stable
(optimal) if the model parametrized by θ, fθ is performatively stable (optimal). We will also
refer to performative stability as simply stability.

Remark 2.1.1. Notice that both performative stability and optimality can be expressed via
the decoupled performative risk as follows:

θPS is performatively stable ⇔ θPS = arg min
θ

DPR(θPS, θ),

θPO is performatively optimal ⇔ θPO = arg min
θ

DPR(θ, θ).

2.1.3 Assumptions

It is easy to see that one cannot make any guarantees on the existence of stable points or
algorithms for finding optima without making some regularity assumptions on D(·). One rea-
sonable way to quantify the regularity of D(·) is to assume Lipschitz continuity; the Lipschitz
constant determines how sensitive the induced distribution is to a change in model parame-
ters. Intuitively, such an assumption captures the idea that, if decisions are made according
to similar predictive models, then the resulting distributions over instances should also be
similar. We now introduce this key assumption of our work, which we call ε-sensitivity.

Definition 2.1.3 (ε-sensitivity). We say that a distribution map D(·) is ε-sensitive if for
all θ, θ′ ∈ Θ:

W1

(
D(θ),D(θ′)

)
⩽ ε∥θ − θ′∥2,

where W1 denotes the Wasserstein-1 distance, or earth mover’s distance.

The earth mover’s distance is a natural notion of distance between probability distribu-
tions that provides access to a rich technical repertoire [169]. Furthermore, we can verify
that it is satisfied in various settings.



CHAPTER 2. PERFORMATIVE PREDICTION 8

Remark 2.1.2. A simple example where this assumption is satisfied is for a Gaussian family.
Given θ = (µ, σ1, . . . , σp) ∈ R2p, define D(θ) = N (ε1 µ, ε

2
2 diag(σ

2
1, . . . , σ

2
p)) where ε1, ε2 ∈ R.

Then D(·) is ε-sensitive for ε = max
{
|ε1|, |ε2|

}
.

In addition to this assumption on the distribution map, we will often make standard
assumptions on the loss function ℓ(z; θ) which hold for broad classes of losses. To simplify

our presentation, let Z def
= ∪θ∈Θsupp(D(θ)).

• (joint smoothness) We say that a loss function ℓ(z; θ) is β-jointly smooth if the gradient
∇θℓ(z; θ) is β-Lipschitz in θ and z, that is

∥∇θℓ(z; θ)−∇θℓ(z; θ′)∥2 ⩽ β ∥θ − θ′∥2 , ∥∇θℓ(z; θ)−∇θℓ(z
′; θ)∥2 ⩽ β ∥z − z′∥2 ,

(A1)
for all θ, θ′ ∈ Θ and z, z′ ∈ Z.

• (strong convexity) We say that a loss function ℓ(z; θ) is γ-strongly convex if

ℓ(z; θ) ⩾ ℓ(z; θ′) +∇θℓ(z; θ′)⊤(θ − θ′) +
γ

2
∥θ − θ′∥22 , (A2)

for all θ, θ′ ∈ Θ and z ∈ Z. If γ = 0, this assumption is equivalent to convexity.

• (second moment bound) There exist constants σ2 and L2 such that for all θ, θ′ ∈ Θ:

E
z∼D(θ)

[
∥∇ℓ(z; θ′)∥22

]
⩽ σ2+L2∥θ′−G(θ)∥22, where G(θ)

def
= arg min

θ′
E

z∼D(θ)
ℓ(z; θ′). (A3)

The last assumption is customary in the stochastic optimization literature [17, 185].

2.2 Finding performatively stable points

Having introduced our framework for performative prediction, we now address some of the
basic questions that arise in this setting and examine the behavior of common machine
learning practices, such as retraining, through the lens of performativity.

As discussed previously, performatively stable models have the favorable property that
they achieve minimal risk for the distribution they induce and hence eliminate the need for
retraining. However, it is a priori not clear that such stable points exist; and even if they do
exist, whether we can find them efficiently.

We begin to answer these questions by analyzing several different optimization strategies.
The first is retraining, formally referred to as repeated risk minimization (RRM), where the
exact minimizer is repeatedly computed on the distribution induced by the previous model
parameters. We study RRM in Section 2.2.1. The second is repeated gradient descent (RGD),
in which the model parameters are incrementally updated using a single gradient descent step
on the objective defined by the previous iterate. We study RGD in Section 2.2.2. RGD is a
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computationally efficient approximation of RRM, which, as we show, adopts many favorable
properties of RRM.

Both RRM and RGD are analyzed at the population-level, that is, assuming access to
the full distribution D(θ) when model θ is deployed. We relax this assumption in Section
2.2.3, where we study two variants of stochastic gradient descent called greedy deploy and
lazy deploy, assuming only finite-sample access to D(θ).

Our algorithmic analysis of these methods reveals the existence of stable points under the
assumption that the distribution map D(·) is sufficiently Lipschitz. We identify necessary
and sufficient conditions for convergence to a performatively stable point.

2.2.1 Repeated risk minimization

We now formally define repeated risk minimization and prove one of our main results: suf-
ficient and necessary conditions for retraining to converge to a performatively stable point.

Definition 2.2.1 (RRM). Repeated risk minimization (RRM) refers to the procedure where,
starting from an initial model fθ0, we perform the following sequence of updates for every
t ⩾ 0:

θt+1 = G(θt)
def
= arg min

θ∈Θ
E

z∼D(θt)
ℓ(z; θ).

Using a toy example, we again argue that restrictions on the map D(·) are necessary to
enable interesting analyses of RRM, otherwise it might be computationally infeasible to find
performative optima, and performatively stable points might not even exist.

Example 2.2.1. Consider optimizing the squared loss ℓ(z; θ) = (y − θ)2, where θ ∈ [0, 1]
and the distribution of the outcome y, according to D(θ), is a point mass at 0 if θ ⩾ 1

2
,

and a point mass at 1 if θ < 1
2
. Clearly there is no performatively stable point, and RRM

will simply result in the alternating sequence 1, 0, 1, 0, . . . . The performative optimum in this
case is θPO = 1

2
.

To show convergence of retraining schemes, it is hence necessary to make a regularity as-
sumption on D(·), such as ε-sensitivity. We are now ready to state our main result regarding
the convergence of repeated risk minimization.

Theorem 2.2.1. Suppose that the loss ℓ(z; θ) is β-jointly smooth (A1) and γ-strongly convex
(A2). If the distribution map D(·) is ε-sensitive, then the following statements are true:

(a) ∥G(θ)−G(θ′)∥2 ⩽ εβ
γ
∥θ − θ′∥2, for all θ, θ′ ∈ Θ.

(b) If ε < γ
β
, the iterates θt of RRM converge to a unique performatively stable point θPS

at a linear rate: ∥θt − θPS∥2 ⩽ δ for t ⩾
(

1− εβ
γ

)−1

log
(

∥θ0−θPS∥2
δ

)
.
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Proof. Fix θ, θ′ ∈ Θ. Let f(φ) = Ez∼D(θ) ℓ(z;φ) and f ′(φ) = Ez∼D(θ′) ℓ(z;φ). Since f is
γ-strongly convex and G(θ) is the unique minimizer of f(x) we know that,

f(G(θ))− f(G(θ′)) ⩾ (G(θ)−G(θ′))
⊤∇f(G(θ′)) +

γ

2
∥G(θ)−G(θ′)∥22 (2.1)

f(G(θ′))− f(G(θ)) ⩾
γ

2
∥G(θ)−G(θ′)∥22 (2.2)

Together, these two inequalities imply that

−γ∥G(θ)−G(θ′)∥22 ⩾ (G(θ)−G(θ′))
⊤∇f(G(θ′)).

Next, we observe that (G(θ) − G(θ′))⊤∇θℓ(z;G(θ′)) is ∥G(θ) − G(θ′)∥2β-Lipschitz in z.
This follows from applying Cauchy-Schwarz and the fact that the loss is β-jointly smooth.
Using the dual formulation of the optimal transport distance (Lemma 2.5.1) and ε-sensitivity
of D(·),

(G(θ)−G(θ′))⊤∇f(G(θ′))− (G(θ)−G(θ′))⊤∇f ′(G(θ′)) ⩾ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2.

Furthermore, using the first-order optimality conditions for convex functions, we have (G(θ)−
G(θ′))⊤∇f ′(G(θ′)) ⩾ 0, and hence (G(θ)−G(θ′))⊤∇f(G(θ′)) ⩾ −εβ∥G(θ)−G(θ′)∥2∥θ−θ′∥2.
Therefore, we conclude that,

−γ∥G(θ)−G(θ′)∥22 ⩾ −εβ∥G(θ)−G(θ′)∥2∥θ − θ′∥2.

Claim (a) then follows by rearranging.
To prove claim (b) we note that θt = G(θt−1) by the definition of RRM, and G(θPS) = θPS

by the definition of stability. Applying the result of part (a) yields

∥θt − θPS∥2 ⩽ ε
β

γ
∥θt−1 − θPS∥2 ⩽

(
ε
β

γ

)t

∥θ0 − θPS∥2. (2.3)

Setting this expression to be at most δ and solving for t completes the proof of claim (b).

The main message of this theorem is that in performative prediction, if the loss function
is sufficiently “nice” and the distribution map is sufficiently (in)sensitive, then one need only
retrain a model a small number of times before it converges to a unique stable point.

One intriguing insight from our analysis is that this convergence result is in fact tight;
removing any single assumption required for convergence by Theorem 2.2.1 is enough to
construct a counterexample for which RRM diverges.

Proposition 2.2.1. Suppose that the distribution map D(·) is ε-sensitive with ε > 0. RRM
can fail to converge at all in any of the following cases, for any choice of parameters β, γ > 0:

(a) The loss is β-jointly smooth and convex, but not strongly convex.
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(b) The loss is γ-strongly convex, but not jointly smooth.

(c) The loss is β-jointly smooth and γ-strongly convex, but ε ⩾ γ
β
.

We provide counterexamples for all three statements in Section 2.5.
Proposition 2.2.1 suggests a fundamental difference between strong and weak convexity

in our framing of performative prediction (weak meaning γ = 0). In supervised learning,
using strongly convex losses generally guarantees a faster rate of optimization, yet asymptot-
ically, the solution achieved with either strongly or weakly convex losses is globally optimal.
However, in our framework, strong convexity is in fact necessary to guarantee convergence
of repeated risk minimization, even for arbitrarily smooth losses and an arbitrarily small
sensitivity parameter.

2.2.2 Repeated gradient descent

Theorem 2.2.1 demonstrates that repeated risk minimization converges to a unique perfor-
matively stable point if the sensitivity parameter ε is small enough. However, implementing
RRM requires access to an exact optimization oracle. We now relax this requirement and
demonstrate how a simple gradient descent algorithm also converges to a unique stable point.

Definition 2.2.2 (RGD). Repeated gradient descent (RGD) is the procedure where, starting
from an initial model fθ0, we perform the following sequence of updates for every t ⩾ 0:

θt+1 = Ggd(θt)
def
= ΠΘ

(
θt − ηt E

z∼D(θt)
∇θℓ(z; θt)

)
,

where ηt > 0 is a fixed step size sequence and ΠΘ denotes the Euclidean projection operator
onto Θ.

Note that repeated gradient descent only requires the loss ℓ to be differentiable with
respect to θ. It does not require taking gradients of the performative risk. Like RRM, we
can show that RGD is a contractive mapping for small enough sensitivity parameter ε.

Theorem 2.2.2. Assume that the loss is β-jointly smooth (A1) and γ-strongly convex (A2),
and suppose that the distribution map D(·) is ε-sensitive. Let ε < γ

β
, and suppose that θPS ∈

Int(Θ) . Then, repeated gradient descent (RGD) with a constant step size ηt = η
def
= γ−εβ

2(1+ε2)β2

satisfies the following:

(a) ∥θt+1 − θPS∥2 ⩽
(

1− η(γ−εβ)
2

)
∥θt − θPS∥2, where 0 < η(γ−εβ)

2
< 1.

(b) The iterates θt of RGD converge to the stable point θPS at a linear rate, ∥θt+1−θPS∥2 ⩽ δ

for t ⩾ 2
η(γ−εβ)

log
(

∥θ1−θPS∥2
δ

)
.
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In fact, the upper bound ε < γ/β on the sensitivity parameter is crucial for algorithmic
convergence. It defines a regime outside which gradient descent is not guaranteed to converge
to stability even at the population level.

Proposition 2.2.2. Suppose that the distribution map D(·) is ε-sensitive. Then, repeated
gradient descent (RGD) can fail to converge to a performatively stable point in any of the
following cases, for any choice of positive step size sequence {ηt}t⩾1:

(a) The loss is β-jointly smooth (A1) and convex, but not strongly convex (A2), for any
β, ε > 0.

(b) The loss is β-jointly smooth (A1) and γ-strongly convex (A2), but ε ⩾ γ
β
, for any

γ, β, ε > 0.

Therefore, γ/β is shown to be a sharp threshold for the convergence of gradient descent
in performative settings, just like it was a sharp threshold for the convergence of repeated
risk minimization.

2.2.3 Stochastic optimization

Repeated risk minimization and repeated gradient descent were defined as iterative algo-
rithms that use the whole distribution D(θt) for each update. In this section, we introduce
two variants of stochastic gradient descent for optimization in performative settings with
only finite samples. We refer to the two variants as greedy deploy and lazy deploy. Each
method performs a stochastic gradient update using a single data point to the model pa-
rameters at every iteration, however they choose to deploy these updated models at different
time intervals.

Greedy deploy

A natural algorithm for stochastic optimization in performative prediction is a direct exten-
sion of the stochastic gradient method, whereby at every time step, we observe a sample
z(k) ∼ D(θk), compute a gradient update to the current model parameters θk, and deploy
the new model θk+1 (see left panel in Figure 2.1). We call this algorithm greedy deploy.

While this procedure is algorithmically identical to the stochastic gradient method in
traditional convex optimization, in performative prediction, the distribution of the observed
samples depends on the trajectory of the algorithm. We begin by stating a technical lemma
which introduces a recursion for the distance between θt and θPS.

Lemma 2.2.1. Assume conditions (A1), (A2), and (A3) hold. If the distribution map
D(·) is ε-sensitive with ε < γ/β, then greedy deploy with step size ηt satisfies the following
recursion for all t ⩾ 1:

E
[
∥θt+1 − θPS∥22

]
⩽

(
1− 2ηt(γ − εβ) + η2tL

2

(
1 + ε

β

γ

)2
)
E
[
∥θt − θPS∥22

]
+ η2t σ

2.
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Greedy Deploy

Input: step size sequence {ηt}∞t=1

Deploy initial classifier θ1 ∈ Θ
For each t = 1, 2, . . .
• Observe z(t) ∼ D(θt)

• Update model parameters:
θt+1 = ΠΘ(θt − ηt∇ℓ(z(t); θt))

• Deploy θt+1

Lazy Deploy

Input: step size sequence {ηt,j}∞t,j=1

Deploy initial classifier θ1 ∈ Θ
For each t = 1, 2, . . .
• Set φt,1 = θt

• For each j = 1, . . . , n(t) :
1. Observe z

(t)
j ∼ D(θt)

2. Update model parameters:
φt,j+1 = ΠΘ(φt,j − ηt,j∇ℓ(z(t)j ;φt,j))

• Deploy θt+1 = φt,n(t)+1

Figure 2.1: Stochastic gradient method for performative prediction. Greedy deploy pub-
lishes the new model at every step while lazy deploy performs several gradient updates before
releasing the new model.

Similar recursions underlie many proofs of SGD, and Lemma 2.2.1 can be seen as their
generalization to the performative setting. Furthermore, we see how the bound implies a
strong contraction to the performatively stable point if the performative effects are weak,
that is when ε≪ γ/β.

Using this recursion, a simple induction argument suffices to prove that greedy deploy
converges to the performatively stable solution. Moreover, it does so at the usual O(1/t)
rate.

Theorem 2.2.3. Assume conditions (A1), (A2), and (A3) hold. If the distribution
map D(·) is ε-sensitive with ε < γ

β
, then for all t ⩾ 0 greedy deploy with step size

ηt = ((γ − εβ)t + 8L2/(γ − εβ))
−1

satisfies

E
[
∥θt+1 − θPS∥22

]
⩽

Mgreedy

(γ − εβ)2t + 8L2
,

where Mgreedy = max {2σ2, 8L2∥θ1 − θPS∥22}.

Comparing this result to the traditional analysis of SGD for smooth, strongly convex
objectives (e.g. [141]), we see that the traditional factor of γ is replaced by γ − εβ, which
we view as the effective strong convexity parameter of the performative prediction problem.
When ε = 0, there are no performative effects and the problem of finding the stable solution
reduces to that of finding the risk minimizer on a fixed, static distribution. Consequently, it
is natural for the two bounds to identify.
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Lazy deploy

Contrary to greedy deploy, lazy deploy collects multiple data points and hence takes multiple
stochastic gradient steps between consecutive model deployments.

This modification significantly changes the trajectory of lazy deploy relative to greedy
deploy, given that the observed samples follow the distribution of the last deployed model,
which might differ from the current iterate. More precisely, after deploying θt, we perform
n(t) stochastic gradient steps to the model parameters, using samples from D(θt) before we
deploy the last iterate as θt+1 (see right panel in Figure 2.1).

At a high level, lazy deploy converges to performative stability because it progressively
approximates repeated risk minimization (RRM). In Theorem 2.2.1 we showed that RRM
converges to a performatively stable classifier at a linear rate when ε < γ/β. Since the
underlying distribution remains static between deployments, a classical analysis of SGD
shows that for large n(t) these “offline” iterates φt,j converge to the risk minimizer on the
distribution corresponding to the previously deployed classifier. In particular, for large n(t),
θt+1 ≈ G(θt). By virtue of approximately tracing out the trajectory of RRM, lazy deploy
converges to θPS as well. This sketch is formalized in the following theorem.

Theorem 2.2.4. Assume conditions (A1), (A2), and (A3) hold, and that the distribution
map D(·) is ε-sensitive with ε < γ

β
. For any α > 0, running lazy deploy with n(t) ⩾

n0t
α, t = 1, 2, . . . many steps between deployments and step size sequence ηt,j = (γj +

8L2/γ)−1, satisfies

E
[
∥θt+1 − θPS∥22

]
⩽ ct · ∥θ1 − θPS∥22 +

(
cΩ(t) +

2

tα·(1−o(1))

)
·Mlazy,

where c =
(
εβ
γ

)2
+ o(1) and Mlazy = 3(σ+γ)2

γ2(1−c)
. Here, o(1) is independent of t and vanishes as

n0 grows; n0 is chosen large enough such that c < 1.

In this section we showed how varying the intervals at which we deploy models trained
with stochastic gradient descent in performative settings leads to qualitatively different al-
gorithms. While greedy deploy resembles classical SGD with a step size sequence adapted
to the strength of distribution shift, lazy deploy can be viewed as a rough approximation of
repeated risk minimization.

As we alluded to previously, the convergence behavior of both algorithms is critically
affected by the strength of performative effects ε. For ε≪ γ/β, the effective strong convexity
parameter γ−εβ of the performative prediction problem is large. In this setting, the relevant
distribution shift of deploying a new model is neglible and greedy deploy behaves almost like
SGD in classical supervised learning, converging quickly to performative stability.

Conversely, for ε close to the convergence threshold, the contraction of greedy deploy to
the performatively stable classifier is weak. In this regime, we expect lazy deploy to perform
better since the convergence of the offline iterates φt,j to the risk minimizer on the current
distribution G(θt) is unaffected by the value of ε. Lazy deploy then converges by closely
mimicking the behavior of RRM.
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Furthermore, both algorithms differ in their sensitivity to different initializations. In
greedy deploy, the initial distance ∥θ1 − θPS∥22 decays polynomially, while in lazy deploy it
decays at a linear rate. This suggests that the lazy deploy algorithm is more robust to poor
initialization. While we derive these insights purely by inspecting our upper bounds, we find
that these observations also hold empirically, as shown in the next section.

2.2.4 Experiments

We now proceed to illustrate the behavior of the discussed optimization strategies empiri-
cally, confirming our theoretical findings. As our main experimental setting, we use a strate-
gic classification simulator available in the WhyNot package [124]. We begin by formally
establishing how strategic classification can be cast as a performative prediction problem.

Stackelberg equilibria are performative optima

Strategic classification is a two-player game between an institution which deploys a classifier
and agents who selectively adapt their features in order to improve their outcomes.

A classic example of this setting is that of a bank which uses a machine learning classifier
to predict whether or not a loan applicant is creditworthy. Individual applicants react to
the bank’s classifier by manipulating their features with the hopes of inducing a favorable
classification. This game is said to have a Stackelberg structure since agents adapt their
features only after the bank has deployed their classifier.

The optimal strategy for the institution in a strategic classification setting is to deploy
the solution corresponding to the Stackelberg equilibrium, defined as the classifier fθ which
achieves minimal loss over the induced distribution D(θ) in which agents have strategically
adapted their features in response to fθ. In fact, we see that this equilibrium notion exactly
matches our definition of performative optimality:

fθSE is a Stackelberg equilibrium ⇐⇒ θSE ∈ arg min
θ

PR(θ).

We think of D as a “baseline” distribution over feature-outcome pairs before any classifier
deployment, and D(θ) denotes the distribution over features and outcomes obtained by
strategically manipulating D. As described in existing work [21, 76, 126], the distribution
function D(θ) in strategic classification corresponds to the data-generating process outlined
in Figure 2.2.

Here, u and c are problem-specific functions which determine the best response for agents
in the game. Together with the base distribution D, these define the relevant distribution
map D(·) for the problem of strategic classification.

Setup

We run experiments on a dynamic credit scoring simulator in which an institution classifies
the creditworthiness of loan applicants. As motivated previously, agents react to the insti-
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Input: base distribution D, classifier fθ, cost function c, and utility function u
Sampling procedure for D(θ):

1. Sample (x, y) ∼ D

2. Compute best response xBR ← arg maxx′ u(x′, θ)− c(x′, x)

3. Output sample (xBR, y)

Figure 2.2: Distribution map for strategic classification.

0 20 40 60
Iteration t

10-12

10-7

10-2

c
·‖
θ t

+
1
−
θ t
‖ 2

Repeated Risk Minimization

ε = 0.01
ε = 1
ε = 100
ε = 1000

0 1000 2000 3000
Iteration t

10-12

10-7

10-2

Repeated Gradient Descent

ε = 0.01
ε = 1
ε = 100
ε = 1000

Figure 2.3: Convergence in domain of RRM (left) and RGD (right) for varying ε-sensitivity
parameters. We add a marker if at the next iteration the distance between iterates is
numerically zero. We normalize the distance by c = ∥θ0,S∥−1

2 .

tution’s classifier by manipulating their features to increase the likelihood that they receive
a favorable classification.

To run our simulations, we construct a distribution map D(θ), as described in Figure 2.2.
For the base distribution D, we use a class-balanced subset of a Kaggle credit scoring dataset
[93]. Features x ∈ Rm−1 correspond to historical information about an individual, such as
their monthly income and number of credit lines. Outcomes y ∈ {0, 1} are binary variables
which are equal to 1 if the individual defaulted on a loan and 0 otherwise.

The institution makes predictions using a logistic regression classifier. We add a
regularization term to the logistic loss to ensure that the objective is strongly convex.
We assume that individuals have linear utilities u(θ, x) = −⟨θ, x⟩ and quadratic costs
c(x′, x) = 1

2ε
∥x′ − x∥22, where ε is a positive constant that regulates the cost incurred by

changing features. Linear utilities indicate that agents wish to minimize their assigned prob-
ability of default.

We divide the set of features into strategic features S ⊆ [m− 1], such as the number of
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Figure 2.4: Performative risk (left) and accuracy (right) of the classifier θt at different stages
of RRM for ε = 80. Blue lines indicates the optimization phase and green lines indicate the
effect of the distribution shift after the classifier deployment.

open credit lines, and non-strategic features (e.g., age). Solving the optimization problem
described in Figure 2.2, the best response for an individual corresponds to the following
update,

x′
S = xS − εθS,

where xS, x
′
S, θS ∈ R|S|. As per convention in the literature [21, 76, 126], individual outcomes

y are unaffected by strategic manipulation.
Intuitively, this data-generating process is ε-sensitive since for a given choice of classifiers,

fθ and fθ′ , an individual feature vector is shifted to xS − εθS and to xS − εθ′S, respectively.
The distance between these two shifted points is equal to ε∥θS − θ′S∥2. Since the optimal
transport distance is bounded by ε∥θ− θ′∥2 for every individual point, it is also bounded by
this quantity over the entire distribution.

Repeated risk minimization and repeated gradient descent

The first experiment we consider is the convergence of RRM. From our theoretical analysis,
we know that RRM is guaranteed to converge at a linear rate to a performatively stable
point if the sensitivity parameter ε is smaller than γ

β
. In Figure 2.3 (left), we see that RRM

does indeed converge in only a few iterations for small values of ε while it divergences if ε is
too large.

The evolution of the performative risk during the RRM optimization is illustrated in
Figure 2.4. We evaluate PR(θ) at the beginning and at the end of each optimization round
and indicate the effect due to distribution shift with a dashed green line. We also verify that
the surrogate loss is a good proxy for classification accuracy in the performative setting.

Next, we look at RGD. In the case of RGD, we find similar behavior to that of RRM.
While the iterates again converge linearly, they naturally do so at a slower rate than in the
exact minimization setting, given that each iteration consists only of a single gradient step.
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Figure 2.5: Convergence of lazy and greedy deploy to performative stability for varying
values of ε ∈ {0.2, 0.6, 0.9} (increased left to right). We use n(t) = t for lazy deploy. The
results are for the synthetic Gaussian example with µ = 10, σ = 0.1.

Again, we can see in Figure 2.3 that the iterates converge for small values of ε and diverge
for large values.

Greedy deploy and lazy deploy

We next empirically study greedy and lazy deploy. First, we carry out experiments using
synthetic data where we can analytically compute stable points and carefully evaluate the
tradeoffs suggested by our theory. Second, we evaluate the performance of these procedures
on the same strategic classification simulator as in the previous section.

Synthetic data. For our first experiment, we consider the task of estimating the mean of a
Gaussian random variable under performative effects. In particular, we consider minimizing
the expected squared loss ℓ(z; θ) = 1

2
(z − θ)2 where z ∼ D(θ) = N (µ + εθ, σ2). For ε > 0,

the true mean of a distribution D(θ) depends on our revealed estimate θ. Furthermore, for
ε < γ/β = 1, the problem has a unique stable point. A short algebraic manipulation shows
that θPS = µ

1−ε
. As per our theory, both greedy and lazy deploy converge to performative

stability for all ε < 1.
We compare the convergence behavior of lazy deploy and greedy deploy for various values

of ε in Figure 2.5. We choose step sizes for both algorithms according to our theorems in
Section 2.2.3. In the case of lazy deploy, we set α = 1, and hence n(t) ∝ t. We see
that when performative effects are weak, i.e. ε ≪ γ/β, greedy deploy outperforms lazy
deploy. Lazy deploy in turn is better at coping with large distribution shifts from strong
performative effects. These results confirm the conclusions from our theory and show that the
choice of whether to delay deployments or not can indeed have a large impact on algorithm
performance depending on the value of ε.
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Figure 2.6: Convergence of lazy and greedy deploy to performative stability. Results are
for the strategic classification experiments with ε = 100. (left panel) convergence as a
function of the number of samples. (right panel) convergence as a function of the number of
deployments.

Strategic classification. In addition to the experiments on synthetic data, we also evalu-
ate the performance of the two optimization procedures in the previously described strategic
classification setting. Since we now zoom in on stochastic optimization, at each time step,
the learner observes a single sample from the distribution in which the individual’s features
have been manipulated in response to the most recently deployed classifier. In contrast, in
the previous section the learner observed the entire distribution of manipulated features at
every step. While we cannot compute the stable point analytically in this setting, we can
calculate it empirically by running RRM until convergence.

The inverse condition number of this problem is much smaller than in the Gaussian
example; we have γ/β ≈ 10−2. We explore the behavior of the algorithms outside the
regime of provable convergence with ε ≫ γ/β. We choose step sizes for both algorithms as
defined in Section 2.2.3 with the exception that we ignore the ε-dependence in the step size
schedule of greedy deploy and choose the same initial step size as for lazy deploy (Theorem
2.2.3). As illustrated in Figure 2.6 (left), lazy significantly outperforms greedy deploy in this
setting. Moreover, the performance of lazy deploy significantly improves with α. In addition
to speeding up convergence, choosing larger sample collection schedules n(t) substantially
reduces the number of deployments, as seen in Figure 2.6 (right).

2.3 Finding performatively optimal points

So far we have discussed performative stability, which is a local definition of optimality
by which a model minimizes the expected risk for the specific distribution that it induces.
However, stability provides no general guarantees of performance beyond this equilibrium
notion. In fact, stable models can have exceedingly poor performative risk, the central
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measure of the framework which captures the true risk incurred by the learner when deploying
the model.

Reasoning by analogy, stable classifiers can be thought of as an echo chamber in an
online platform. In an echo chamber, one is reassured of their ideas by voicing them, but
it’s not clear whether they are reasonable outside of this niche community. Similarly, stable
classifiers minimize risk on the distribution that they induce, but they provide no global
guarantees of performance.

Therefore, to develop accurate predictions in performative settings, we shift attention
past performative stability and study optimizing the performative risk directly. This task
will require a different algorithmic approach than the strategies analyzed previously, such as
RRM and RGD. For instance, the learner needs to actively anticipate performative effects
rather than myopically retrain until convergence, as the latter would only lead to stability.

First, in Section 2.3.1 we argue mathematically why performative stability is insufficient
to guarantee satisfactory performance after model deployment. Then, we study strategies
for finding performative optima in convex problems in Section 2.3.2. Finally, we study
strategies for finding performative optima under great generally, even allowing nonconvex
risk functions, in Section 2.3.3.

2.3.1 Contrasting optimality and stability

Up until now, all analyzed algorithmic strategies have been shown to converge to stable
points. While the primary motivation for stability was eliminating the need for retraining, it
may seem reasonable to think that stability ensures good performative risk as well. However,
it turns out that there exist seemingly benign cases where the performative risk is strongly
convex, but stable points actually maximize the performative risk.

Proposition 2.3.1. For any γ,∆ > 0, there exists a performative prediction problem where
the loss is γ-strongly convex in θ, yet the unique stable point θPS maximizes the performative
risk and PR(θPS)−minθ PR(θ) ⩾ ∆.

Proof. We prove the proposition by constructing an example. Let z ∼ D(θ) be a point mass
at εθ, and define the loss to be:

ℓ(z; θ) = −β · θ⊤z +
γ

2
∥θ∥22,

for some β ⩾ 0. This loss is γ-strongly convex and the distribution map is ε-sensitive. A
short calculation shows that the performative risk simplifies to

PR(θ) =
(γ

2
− εβ

)
· ∥θ∥22. (2.4)

For ε ̸= γ/β, there is a unique performatively stable point at the origin, and if ε > γ
2β

this

point is the unique maximizer of the performative risk. Moreover, for ε > γ
2β

, minθ PR(θ) =

(γ/2 − εβ) · maxθ∈Θ ∥θ∥22. Therefore, depending on the radius of Θ, the suboptimality gap
of θPS can be arbitrarily large.
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In the above example, ∇θℓ(z; θ) is β-Lipschitz in z. The previous proposition thus shows
that stable points can have an arbitrary suboptimality gap when ε > γ

2β
. This is important

since ε < γ
β

is the regime where the previously studied algorithms, namely repeated risk
minimization and variants of gradient descent, converge to stability. Applying these methods
when ε ∈ (γ/(2β), γ/β) would hence maximize the performative risk on this problem.

We additionally point out that ε = γ
2β

is a sharp threshold for convexity of the perfor-

mative risk in this example, as can be seen in equation (2.4). In the following section, we
show that this threshold behavior is not an artifact of this particular setting, but rather a
phenomenon that holds more generally.

2.3.2 Finding performatively optimal points under convexity

We begin by deriving key structural results illustrating how the performative risk can be
convex in various natural settings, and hence amenable to direct optimization. Throughout
our presentation, we adopt the following convention. We state that the performative risk is
λ-convex, for some λ ∈ R, if the objective,

PR(θ)− λ

2
∥θ∥22

is convex. In other words, if λ is positive, then PR(θ) is λ-strongly convex. If λ is negative,
then adding the analogous regularizer λ

2
∥θ∥22 ensures PR(θ) is convex.

In addition to the regularity conditions introduced at the beginning of the chapter, we
will make repeated use of the following assumptions throughout the remainder of the section.

We will say that the loss is γz-strongly convex in z if for all θ ∈ Θ and z, z′ ∈ Z,

ℓ(z; θ) ⩾ ℓ(z′; θ) +∇zℓ(z
′; θ)⊤(z′ − z) +

γz
2
∥z − z′∥22 . (A4)

We state that a distribution map, loss pair (D(·), ℓ) satisfies mixture dominance if the fol-
lowing condition holds for all θ, θ′, θ0 ∈ Θ and α ∈ (0, 1):

E
z∼D(αθ+(1−α)θ′)

ℓ(z; θ0) ⩽ E
z∼αD(θ)+(1−α)D(θ′)

ℓ(z; θ0). (A5)

Smoothness and strong convexity conditions are standard in the optimization literature.
The mixture dominance condition is novel and plays a central role in our analysis of when
the performative risk is convex. To provide some intuition for this condition, we recall the
definition of the decoupled performative risk :

DPR(θ, θ′) = E
z∼D(θ)

ℓ(z; θ′).

Notice that asserting convexity of the performative risk is equivalent to showing convexity of
DPR(θ, θ) when both arguments are forced to be the same. While convexity (A2) guarantees
that DPR is convex in the second argument, mixture dominance (A5) essentially posits
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convexity of DPR in the first argument. Importantly, assuming convexity in each argument
separately does not directly imply that the performative risk is convex.

On a more intuitive level, this assumption (A5) is essentially a stochastic dominance
statement: the mixture distribution αD(θ) + (1 − α)D(θ′) “dominates” D(αθ + (1 − α)θ′)
under a certain loss function. Similar conditions have been extensively studied within the
literature on stochastic orders [151]. Part of our analysis relies on incorporating tools from
this literature, and we believe that further exploring technical connections between this field
and performative prediction could be valuable. For example, using results from stochastic
orders we can show that (A5) holds when the loss is convex in z and the distribution map
D(·) forms a location-scale family of the form:

zθ ∼ D(θ) ⇔ zθ
d
= (Σ0 + Σ(θ))z0 + µ0 + µθ, (2.5)

where z0 ∼ D0 is a sample from a fixed zero-mean distribution D0, and Σ(θ), µ are linear
maps. Distribution maps of this sort are ubiquitous throughout the performative prediction
literature and hence satisfy mixture dominance if the loss ℓ is convex. For instance, the
distribution map for the strategic classification simulator from Section 2.2 is a location
family. Mixture dominance can also hold in discrete settings, e.g. D(θ) = Bernoulli(a⊤θ+ b)
satisfies this condition for any loss. Having provided some context on the mixture dominance
condition, we can now state the main result of this section:

Theorem 2.3.1. Suppose that the loss function ℓ(z; θ) is β-smooth in z (A1), γ-strongly
convex in θ (A2), and that D(·) is ε-sensitive. If mixture dominance (A5) holds, then the
performative risk is λ-convex for λ = γ − 2εβ.

Together with the example from the proof of Proposition 2.3.1, this theorem shows that
γ
2β

is a sharp threshold for convexity of the performative risk. If ε is strictly less than this
threshold, then under mixture dominance and appropriate conditions on the loss, the per-
formative risk is strongly convex by Theorem 2.3.1. On the other hand, if ε is above this
threshold, the example from Proposition 2.3.1 shows that there exists a performative pre-
diction instance which satisfies the remaining assumptions, yet is non-convex; in particular,
for ε > γ

2β
the performative risk is strictly concave in that example.

While the threshold ε = γ/(2β) is in general tight, for certain families of distribution
maps the conclusion of Theorem 2.3.1 can be made considerably stronger. Indeed, in some
cases the performative risk is convex regardless of the magnitude of performative effects, as
observed for the following location family.

Example 2.3.1. Consider the following stylized model of predicting the final vote margin
in an election contest. Features x, such as past polling averages, are drawn i.i.d. from a
static distribution, x ∼ Dx. Since predicting a large margin in either direction can dissuade
people from voting, we consider outcomes drawn from the conditional distribution: y|x ∼
g(x) + µ⊤θ + ξ, where g : Rd → R is an arbitrary map, µ ∈ Rd is a fixed vector, and ξ is a
zero-mean noise variable. If ℓ is the squared loss, ℓ((x, y); θ) = 1

2
(y − x⊤θ)2, or the absolute

loss, ℓ((x, y); θ) = |y − x⊤θ|, then the performative risk is convex for any g and µ.
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The proof follows by simply observing that in both cases, the performative risk can be
written as a linear function in θ composed with a convex function. Another interesting
property of this example is that the distribution map is ε-sensitive with ε = ∥µ∥2, yet the
sensitivity parameter plays no role in the characterization of convexity. Motivated by this
observation, we specialize the analysis in Theorem 2.3.1 to the particular case of location-
scale families, and obtain a result that is at least as tight as the previous theorem.

Theorem 2.3.2. Suppose that ℓ(z; θ) is β-smooth (A1),γ-strongly convex in θ (A2), and
γz-strongly convex in z (A4). Furthermore, suppose that D(θ) forms a location-scale family
(2.5) with ε as its sensitivity parameter. Define Σz0 to be the covariance matrix of z0 ∼ D0,
and let

σmin(µ) = min
∥θ∥2=1

∥µθ∥2, σmin(Σ) = min
∥θ∥2=1

∥Σ1/2
z0

Σ(θ)⊤∥F .

Then, the performative risk is λ-convex for λ equal to:

max{γ − β2/γz, γ − 2εβ + γz(σ
2
min(µ) + σ2

min(Σ))}.

This tighter bound leverages the fact that some losses are strongly convex in the performa-
tive variables, such as the squared loss when only the outcome variable exhibits performative
effects. In general, one can achieve a tighter analysis of when the performative risk is convex
by distinguishing between variables which are static, whose distribution is the same under
D(θ) for all θ, and performative variables which are influenced by the deployed classifier.
For the most part we avoid this distinction for the sake of readability. We now illustrate an
application of Theorem 2.3.2 with a scale family example.

Example 2.3.2. Suppose that x > 0 is a one-dimensional feature drawn from a fixed dis-
tribution Dx, and let y|x ∼ θx · Exp(1) be distributed as an exponential random variable
with mean θx. Let the loss be the squared loss, ℓ((x, y); θ) = 1

2
(y − θ · x)2 and let Θ = R+.

Note that this example exhibits a self-fulfilling prophecy property whereby all solutions are
performatively stable. On the other hand, PR(θ) = θ2 Ex2, and the unique performative
optimum is θPO = 0. Again, we see how stability has no bearing on whether a solution has
low performative risk.

However, we note that the loss is 1-strongly convex in y. Furthermore, by averaging over
the static features, we observe that PR(θ) is Ex2-strongly convex in θ and Ex-smooth in y.
Therefore, according to Theorem 2.3.2, the performative risk is convex and hence tractable
to optimize, since γ − β2/γz = Ex2 − (Ex)2 ⩾ 0 by Jensen’s inequality.

While this example, like most others in this section, is intended as a toy problem to
provide the reader with some intuition regarding the intricacies of performativity, many in-
stances of performative prediction in the real world do exhibit a self-fulfilling prophecy aspect
whereby predicting a particular outcome increases the likelihood that it occurs. For instance,
predicting that a student is unlikely to do well on a standardized exam may discourage them
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from studying in the first place and hence lower their final grade. Settings like these where
stability is a vacuous guarantee of performance remind us how developing reliable predictive
models requires going outside the stability echo chamber.

As a final note, to prove the results in this section, we have imposed additional assump-
tions such as mixture dominance, or analyzed the special case of location-scale families.
The reader might naturally ask whether these settings are so restrictive that one can opti-
mize the performative risk using previous optimization methods for performative prediction
which find stable points. Or in particular, whether stable points and performative optima
now identify.

It turns out that both solutions can still have qualitatively different behavior, regardless
of the strength of performative effects. First, notice that the example in the proof of Propo-
sition 2.3.1 is a location family, and as such it satisfies mixture dominance. In that example,
when ε ∈ ( γ

2β
, γ
β
), methods for finding stable points converge to a maximizer of the performa-

tive risk; however, this is outside the regime where the performative risk is convex. In what
follows, by relying on Theorem 2.3.2, we provide another scale family example where the
performative risk is convex regardless of ε, yet stable points can be arbitrarily suboptimal.

Example 2.3.3. Suppose that D(θ) = N (µ, ε2θ2) for some µ ∈ R and ε > 0. This distribu-
tion map is ε-sensitive. Furthermore, if ℓ is the squared loss, ℓ(z; θ) = 1

2
(z − θ)2, then there

is a unique stable point θPS = µ. On the other hand, θPO = µ/(1 + ε2).
Notice how, contrary to the performative optimum θPO, the stable point θPS is independent

of ε and hence oblivious to the performative effects. Depending on µ, the stable point can
be arbitrarily suboptimal, since PR(θPS) − PR(θPO) = Ω(µ2). Note also that, according to
Theorem 2.3.2, the performative risk is γ − 2εβ + γzσ

2
min(Σ) = 1 − 2ε + ε2-convex. Since

1 − 2ε + ε2 = (ε − 1)2 ⩾ 0, the performative risk is always convex and hence tractable to
optimize.

Having identified conditions under which the performative risk is convex, we now consider
methods for efficiently optimizing it. One of the main challenges of carrying out this task
is that, even in convex settings, the learner can only access the objective via noisy function
evaluations corresponding to classifier deployments. Without knowledge of the underlying
distribution map, it is infeasible to compute gradients of the performative risk. A naive
solution is to apply a zeroth-order method, however, these algorithms are in general hard to
tune, and their performance scales poorly with the problem dimension.

Our main algorithmic contribution is to show how one can address these issues by creating
an explicit model of the distribution map and then optimizing a proxy objective for the
performative risk offline. We refer to this as the two-stage procedure for optimizing the
performative risk and show it is provably efficient for the case of location families.

To develop further intuition, consider the following simple example. Let z ∼ N (εθ, 1)
be a one-dimensional Gaussian and let ℓ(z; θ) = 1

2
(z − θ)2 be the squared loss. Then, the

performative risk, PR(θ) = 1
2
(ε − 1)2θ2, is a simple, convex function for all values of ε (as

indeed confirmed by Theorem 2.3.2, since γ − 2εβ + γzσ
2
min(µ) = 1− 2ε+ ε2 ⩾ 0). However,
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gradients are unavailable since they depend on the density of D(θ), denoted pθ, which is
typically unknown:

∇θPR(θ) = E
z∼D(θ)

∇θℓ(z; θ) + E
z∼D(θ)

ℓ(z; θ)∇θ log pθ(z)

= E
z∼D(θ)

−(z − θ) + ε(ε− 1)θ.

Despite the simplicity of this example, earlier approaches to optimization such as RRM fail
on this problem. The reason is that they essentially ignore the second term in the gradient
computation which requires explicitly anticipating performative effects. For example, RRM
computes the sequence of updates θt+1 = arg minθ Ez∼D(θt)

1
2
(z − θ)2 = εθt, which diverges

for |ε| > 1.

Generic Derivative-Free Methods

Having observed the difficulty of computing gradients, the most natural starting point for
optimizing the performative risk is to consider derivative-free methods for convex optimiza-
tion [1, 62, 153]. These methods work by constructing a noisy estimate of the gradient by
querying the objective function at a randomly perturbed point around the current iterate.
For instance, Flaxman et al. [62] sample a vector u ∼ Unif(Sd−1) to get a slightly biased
gradient estimator,

∇θPR(θ) ≈ d

δ
E[PR(θ + δu)u],

for some small δ > 0. Generic derivative-free algorithms for convex optimization require few
assumptions beyond those given in the previous section to ensure convexity. Moreover, they
guarantee convergence to a performative optimum given sufficiently many samples. However,
their rate of convergence can be slow and scales poorly with the problem dimension. In
general, zeroth-order methods require Õ(d2/∆2) samples to obtain a ∆-suboptimal point [1,
153], which can be prohibitively expensive if samples are hard to come by.

Two-Stage Approach

In cases where we have further structure, an alternative solution to derivative-free methods
is to utilize a two-stage approach to optimizing the performative risk. In the first stage, we
estimate a coarse model of the distribution map, D̂(·) via experiment design. Then, in the
second stage, the algorithm optimizes a proxy to the performative risk treating the estimated
D̂ as if it were the true distribution map:

θ̂PO ∈ arg min
θ

P̂R(θ)
def
= E

z∼D̂(θ)
ℓ(z; θ).

The exact implementation of this idea depends on the problem setting at hand; to make
things concrete, we instantiate the approach in the context of location families and prove
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Algorithm 1 Two-Stage Algorithm for Location Families

Stage 1: Construct a model of the distribution map
// Estimate location parameter µ with experiment design
for i = 1 to n do

-Sample and deploy classifier θi
i.i.d.∼ N (0, Id).

-Observe zi ∼ D(θi).
end for
-Estimate µ via ordinary least squares, µ̂ ∈ arg minµ

∑n
i=1∥zi − µθi∥22.

// Gather samples from the base distribution
for j = n + 1 to 2n do

-Deploy classifier θj = 0, and observe zj ∼ D(0).
end for
Stage 2: Minimize a finite-sample approximation of the performative risk,
arg minθ∈Θ

1
n

∑2n
j=n+1 ℓ(zj + µ̂θ; θ).

that it optimizes the performative risk with significantly better sample complexity than
generic zeroth-order methods. For the remainder of this section, we assume the distribution
map D is parameterized by a location family

zθ ∼ D(θ) ⇔ zθ
d
= z0 + µθ,

where the matrix µ ∈ Rm×d is an unknown parameter, and z0 ∼ D0 is a zero-mean random
variable.1

As discussed previously, location-scale families encompass many formal examples dis-
cussed in prior work. They capture the intuition that in performative settings, the data
points are composed of a base component z0, representing the natural data distribution in
the absence of performativity, and an additive performative term.

In the first stage of our two-stage procedure we build a model of the distribution map
D̂ that in effect allows us to draw samples z ∼ D̂(θ) ≈ D(θ). To do this, we perform
experiment design to recover the unknown parameter µ which captures the performative
effects. In particular, we sample and deploy n classifiers θi, i ∈ [n], observe data zi ∼ D(θi),
and then construct an estimate µ̂ of the location map µ using ordinary least squares. We
then gather samples from the base distribution D0 by repeatedly deploying the zero classifier.
In the location-family model, deploying the zero classifier ensures we observe data points z0,
without performative effects. With both of these components, given any θ′, we can simulate
z ∼ D̂(θ′) by taking z = z0 + µ̂θ′.

1The variable z0 being zero-mean is only to simplify the exposition; the same analysis carries over when
there is an additional intercept term. Similarly, the choice of Gaussian noise in the experiment design phase
of Algorithm 1 is made for convenience. In general, any subgaussian distribution with full rank covariance
would suffice.
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In the second stage, we use the estimated model to construct a proxy objective. Define
the perturbed performative risk:

P̂R(θ) = E
z∼D̂(θ)

ℓ(z; θ) = E
z0∼D0

ℓ(z0 + µ̂θ; θ).

Note that PR(θ) = Ez0∼D0 ℓ(z0 + µθ; θ). Using the estimated parameter µ̂ and samples
zi ∼ D0, we can construct a finite-sample approximation to the perturbed performative risk
and find the following optimizer:

θ̂n ∈ arg min
θ∈Θ

P̂Rn(θ)
def
=

1

n

2n∑
i=n+1

ℓ(zi + µ̂θ; θ).

The main technical result in this section shows that, under appropriate regularity assump-
tions on the loss, Algorithm 1 efficiently approximates the performative optimum. In par-
ticular, when the data dimensionality m is comparable to the model dimensionality d, i.e.
m = O(d), then computing a ∆-suboptimal classifier requires O(d/∆) samples. In contrast,

the derivative-free methods considered previously require Õ(d2/∆2) samples to compute a
classifier of similar quality.

Theorem 2.3.3 (Informal). Under appropriate smoothness and strong convexity assump-
tions on the loss ℓ, if the distribution of z0 is subgaussian, and if the number of samples
n ⩾ Ω (d + m + log(1/δ)), then, with probability 1− δ, Algorithm 1 returns a point θ̂n such
that

PR(θ̂n)− PR(θPO) ⩽ O
(
d + m + log(1/δ)

n
+

1

δn

)
.

While we analyze this two-stage procedure in the context of location families, the prin-
ciples behind the approach can be extended to more general settings. Whenever the distri-
bution map has enough structure to efficiently estimate a model D̂ that supports sampling
new data, we can always use the “plug-in” approach above and construct and optimize a
perturbed version of the performative risk.

2.3.3 Finding performatively optimal points without convexity

Finally, we consider optimization in the face performativity under pretty great generality,
allowing arbitrary, possibly nonconvex losses and making no structural assumptions on the
distribution map D(θ). Due to the inherent uncertainty about D(θ), it is not possible to
find a model with low performative risk offline. The learner needs to interact with the
environment and deploy models θ to explore the induced distributions D(θ). Given the
online nature of this task, we measure the loss incurred by deploying a sequence of models
θ1, . . . , θT by evaluating the performative regret :

Reg(T ) :=
T∑
t=1

(
E PR(θt)−min

θ
PR(θ)

)
,
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where the expectation is taken over the possible randomness in the choice of {θt}Tt=1. Per-
formative regret measures the suboptimality of the deployed sequence of models relative to
a performative optimum θPO ∈ arg minθ PR(θ).

At first glance, performative regret minimization might seem equivalent to a classical ban-
dit problem. Bandit solutions minimize regret while requiring only noisy zeroth-order access
to the unknown reward function—in our case PR. The resulting regret bounds generally
grow with some notion of complexity of the reward function.

However, a naive application of bandit baselines misses out on a crucial fact: performa-
tive regret minimization exhibits significantly richer feedback than bandit feedback. When
deploying a model θ, the learner gains access to samples from the induced distribution D(θ),
rather than only a noisy estimate of the risk PR(θ). We call this feedback model performa-
tive feedback. Together with the fact that the learner knows the loss ℓ(z; θ), performative
feedback can be used to inform the reward of unexplored arms. For instance, it allows the
computation of an unbiased estimate of Ez∼D(θ) ℓ(z; θ′) for any point θ′.

To illustrate the power of this feedback model, consider the limiting case in which the
performative effects entirely vanish and the distribution map is constant, i.e. D(θ) ≡ D∗ for
some fixed distribution D∗ independent of θ. With zeroth-order feedback, the learner would
still need to deploy different models to explore the landscape of PR and find a point with
low risk. However, with performative feedback, a single deployment gives samples from D∗,
thus resolving all uncertainty in the landscape of PR apart from finite-sample uncertainty.
This raises the question: with performative feedback, can one achieve regret bounds that scale
only with the complexity of the distribution map, and not that of the performative risk?

Set up as an online learning problem, performative prediction can be formalized as follows.
At every time step t, the learner chooses a model θt and observes a constant number m0 of
i.i.d. samples,

{z(i)t }i∈[m0], where z
(i)
t ∼ D(θt).

The regret incurred by choosing θt at time step t is ∆(θt) := PR(θt) − PR(θPO), where
θPO is the performative optimum. For simplicity, we assume max{∥θ∥ : θ ∈ Θ} ⩽ 1 and
ℓ(z; θ) ∈ [0, 1] for all z and θ.

The constant m0 quantifies how many samples the learner can collect in a time window
determined by how often they incur regret. For example, at the beginning of each week the
learner might update the model, and thus at the end of each week they incur regret for the
model they chose to deploy. In that case, m0 is the number of samples the learner collects
per week. Note that a learner with larger m0 collects an empirical distribution that more
accurately reflects D(θt) and thus naturally minimizes regret at a faster rate.

A black-box bandits approach

Performative regret minimization can be set up as a continuum-armed bandits problem where
an arm corresponds to a choice of model parameters θ. Performative feedback is sufficient
to simulate noisy zeroth-order feedback about the reward function, as assumed in bandits.
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When we deploy θt, the samples from D(θt) enable us to compute an unbiased estimate

P̂R(θt) =
1

m0

m0∑
i=1

ℓ
(
z
(i)
t ; θt

)
of the risk PR(θt). Moreover, since we assume the loss function is bounded, the noise in the

estimate P̂R(θt) is subgaussian, as typically required in bandits.
A standard condition that makes continuum-armed bandit problems tractable is a bound

on how fast the reward can change when moving from one arm to a nearby arm. Formally,
this regularity is ensured by assuming Lipschitzness of the reward function—in our case,
Lipschitzness of the performative risk.

The dependence of PR(θ) on θ is twofold: through the loss argument and through the
distribution argument. Thus, the most natural way to ensure that PR(θ) is Lipschitz is to
ensure that each of these two dependencies is Lipschitz. This yields the following bound:

Lemma 2.3.1 (Lipschitzness of PR). If the loss ℓ(z; θ) is Lz-Lipschitz in z and Lθ-Lipschitz
in θ and the distribution map is ε-sensitive, then the performative risk is (Lθ+εLz)-Lipschitz.

The intuition behind Lemma 2.3.1 is that PR(θ) is guaranteed to be Lipschitz if
DPR(θ, θ′) is Lipschitz in each argument individually. Lipschitzness in the second argument
follows from requiring that the loss be Lipschitz in θ. Lipschitzness in the first argument
follows from combining Lipschitzness of the loss in z and ε-sensitivity of the distribution
map.

Once we have established Lipschitzness of the performative risk, we can apply techniques
from the Lipschitz bandits literature. Kleinberg et al. [100] proposed a bandit algorithm
that adaptively discretizes promising regions of the space of arms, using Lipschitzness of the
reward function to bound the additional loss due to discretization. Their method, called
the zooming algorithm, will serve as a baseline for our problem. The algorithm enjoys an
instance-dependent regret that takes advantage of nice problem instances, while maintaining
tight guarantees in the worst case. The rate depends on the zooming dimension, which is
upper bounded in the worst case by the dimension of the full space d.

Proposition 2.3.2 (Zooming algorithm [100]). Suppose m0 = o(log T ). Then, after T
deployments, the zooming algorithm achieves a regret bound of

Reg(T ) = O
(
T

d0+1
d0+2

(
log T

m0

) 1
d0+2

(Lθ + εLz)
d0

d0+2

)
,

where d0 denotes the (Lθ + εLz)-zooming dimension.

The zooming dimension quantifies the niceness of a problem instance by measuring the
size of a covering of near-optimal arms, instead of the entire parameter space. Roughly
speaking, if the reward function is very “flat” in that there are many near-optimal points,
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Figure 2.7: Confidence bounds after deploying θ1 and θ2. (left) Confidence bounds via
Lipschitzness, as stated in equation (2.6). (right) Performative confidence bounds, as stated
in equation (2.7).

then the zooming dimension is close to the dimension d of the parameter space. However, if
the reward has sufficient curvature, then the zooming dimension can be much smaller than
d. The zooming dimension is defined formally as follows:

Definition 2.3.1 (α-zooming dimension). A performative prediction problem instance has
α-zooming dimension equal to d0 if any minimal s-cover of any subset of {θ : ∆(θ) ⩽ 16αs}
includes at most a constant multiple of (3/s)d0 elements from {θ : 16αr ⩽ ∆(θ) < 32αr},
for all 0 < r ⩽ s ⩽ 1.

For well-behaved instances, the definition intuitively requires every minimal s-cover of
{θ : 16αr ⩽ ∆(θ) < 32αr} to have size at most of order (3/s)d0 . Definition 2.3.1 slightly
differs from the definition presented in [100] and makes the dependence on the Lipschitz
constant explicit; we use Definition 2.3.1 to later ease the comparison to our new algorithm.
The differences between the two definitions are minor technicalities that we do not expect
to alter the zooming dimension in a meaningful way, neither formally nor conceptually.

Making use of performative feedback

We now illustrate how we can take advantage of performative feedback beyond computing a
point estimate of the deployed model’s risk. For now, we ignore finite-sample considerations
and assume access to the entire distribution D(θ) after deploying a model θ. We will address
finite-sample uncertainty when presenting our main algorithm in the next section.

First, we demonstrate how performative feedback allows constructing tighter confidence
bounds on the performative risk of unexplored models, compared to only relying on Lips-
chitzness of the risk function PR(θ).

Suppose we deploy a set of models S ⊆ Θ and for each θ ∈ S we observe D(θ). Then,
under the regularity conditions of Lemma 2.3.1, we can bound the risk of any θ′ ∈ Θ as

max
θ∈S

PR(θ)− (Lθ + Lzε)∥θ − θ′∥ ⩽ PR(θ′) ⩽ min
θ∈S

PR(θ) + (Lθ + Lzε)∥θ − θ′∥. (2.6)
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These confidence bounds only use D(θ) for the purpose of computing PR(θ) and rely on
Lipschitzness to construct confidence sets around the risk of unexplored models. However, in
light of the structure of PR, the bounds in equation (2.6) do not make full use of performative
feedback; in particular, access to D(θ) actually allows us to evaluate DPR(θ, θ′) for any θ′.
Importantly, this information can further reduce our uncertainty about PR(θ′), and we can
bound:

PR(θ′) = DPR(θ, θ′) + (DPR(θ′, θ′)−DPR(θ, θ′))

⩽ DPR(θ, θ′) + Lzε∥θ − θ′∥.

Thus we can get tighter bounds on the performative risk at an unexplored parameter θ′:

max
θ∈S

DPR(θ, θ′)− Lzε∥θ − θ′∥ ⩽ PR(θ′) ⩽ min
θ∈S

DPR(θ, θ′) + Lzε∥θ − θ′∥. (2.7)

We call the confidence bounds computed in (2.7) performative confidence bounds. In Fig-
ure 2.7, we visualize and contrast these confidence bounds with the confidence bounds ob-
tained via Lipschitzness. We observe that by computing DPR we can significantly tighten
the confidence regions.

The tightness of the confidence bounds depends on the set S of deployed models. By
choosing a cover of the parameter space, we can get an estimate of the performative risk
that has low approximation error on the whole parameter space.

Proposition 2.3.3. Let Sγ be a γ-cover of Θ and suppose we deploy all models θ ∈ Sγ. Then,
using performative feedback we can compute an estimate of the performative risk P̂R(θ) such
that for any θ ∈ Θ it holds that

|PR(θ)− P̂R(θ)| ⩽ γLzε.

Proposition 2.3.3 implies that after exploring the cover Sγ, we can find a model whose
suboptimality is at most O(γLzε). To contextualize the bound in Proposition 2.3.3, consider
an approach that uses the same cover Sγ but only relies on zeroth-order feedback, that is,

{PR(θ) : θ ∈ Sγ}. Then, the only feasible estimate of PR over the whole space is P̂R(θ) =
PR(ΠSγ (θ)), where ΠSγ (θ) = arg minθ′∈Sγ

∥θ − θ′∥ is the projection onto the cover Sγ. This

zeroth-order approach only guarantees an accuracy of |PR(θ) − P̂R(θ)| ⩽ (Lzε + Lθ)γ, a
strictly weaker approximation than the one in Proposition 2.3.3.

Sequential elimination of suboptimal models

Now we show how performative confidence bounds can guide exploration. Specifically, we
show that every deployment informs the risk of unexplored models, which allows us to
sequentially discard suboptimal regions of the parameter space.
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Figure 2.8: (left) Baseline confidence bounds. (right) Performative confidence bounds. Per-
formative feedback allows discarding unexplored suboptimal models even in regions that
have not been explored. A model θ is discarded if PRLB(θ) > PRmin. The loss function and
feedback model are the same as in Figure 2.7.

To develop a formal procedure for discarding points, let PRLB(θ) denote a lower confi-
dence bound on PR(θ) and PRmin denote an upper confidence bound on PR(θPO) based on
the information from the models deployed so far:

PRLB(θ) = max
θ′ already deployed

(DPR(θ′, θ)− Lzε∥θ − θ′∥) ,

PRmin = min
θ∈Θ

min
θ′ already deployed

(DPR(θ′, θ) + Lzε∥θ′ − θ∥) .

It is not difficult to see that the following lower bound on the suboptimality of model θ holds:

Proposition 2.3.4. For all θ ∈ Θ, we have ∆(θ) ⩾ PRLB(θ)− PRmin.

In particular, models θ with PRLB(θ) > PRmin cannot be optimal. We recall our toy
example from Figure 2.7 and illustrate in Figure 2.8 the parameter configurations we can
discard after the deployment of two models, θ1 and θ2. We can see that access to DPR
allows us to discard a large portion of the parameter space, and, in contrast to the baseline
black-box approach, it is possible to discard regions of the space that have not been explored.

Performative confidence bounds algorithm

We introduce our main algorithm that builds on the two insights from the previous section.
We furthermore provide a rigorous, finite-sample analysis of its guarantees. Our performative
confidence bounds algorithm, formally stated in Algorithm 2, takes advantage of performative
feedback by assessing the risk of unexplored models and thus guiding exploration. We give
an overview of the main steps.

Inspired by the successive elimination algorithm [59], the algorithm keeps track of and
refines an active set of models A ⊆ Θ. Roughly speaking, active models are those that
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are estimated to have low risk and only they are admissible to deploy. To deal with finite-
sample uncertainty, the algorithm proceeds in phases which progressively refine the precision
of the finite-sample risk estimates. More precisely, in phase p the algorithm chooses an error
tolerance γp and deploys a model for np steps. In each step m0 samples induced by the
deployed model are collected, and np is chosen so that the inferred estimates of DPR are

γp-accurate. Formally, if θ is deployed in phase p, we collect an empirical distribution D̂(θ)

of npm0 samples so that |D̂PR(θ, θ′)−DPR(θ, θ′)| ⩽ γp for all θ′ with high probability, where

D̂PR(θ, θ′) := E
z∼D̂(θ)

ℓ(z; θ′).

These estimates of DPR are used to construct performative confidence bounds and refine A.
Each phase begins by constructing a net of the current active set A. The points in the

net are sequentially deployed in the phase, unless they are deemed to be suboptimal based
on previous deployments in that phase and are in that case eliminated. During phase p, we
denote by Pp the running set of deployed points and by Sp the running set of net points that
have not been discarded. We initialize Sp to a minimal rp-net of the current set of active
points A, denoted Nrp(A), where rp is proportional to γp. A net point θ gets eliminated
from Sp if no point in Ballrp(θ) := {θ′ ∈ Θ : ∥θ′ − θ∥ ⩽ rp} is active. This means that we
may deploy suboptimal points in the net if they help inform active points nearby.

Before we state the regret bound for Algorithm 2, let us comment on an important
component in the analysis. Recall that throughout the algorithm we operate with finite-
sample estimates of the decoupled performative risk to bound the risk of unexplored models.

Specifically, for any deployed θ, we make use of D̂PR(θ, θ′) for all θ′. Since we need these
estimates to be valid simultaneously for all θ′, we rely on uniform convergence. As such, the
Rademacher complexity of the loss function class naturally enters the bound.

Definition 2.3.2 (Rademacher complexity). Given a loss function ℓ(z; θ), we define C∗(ℓ)
to be:

C∗(ℓ) = sup
θ∈Θ

sup
n∈N

√
n · E

ε,zθ

(
sup
θ′∈Θ

∣∣∣ 1
n

n∑
j=1

εjℓ(z
θ
j ; θ′)

∣∣∣) ,

where εj ∼ Rademacher and zθj ∼ D(θ), ∀j ∈ [n], which are all independent of each other.

Now we can state our regret guarantee for Algorithm 2.

Theorem 2.3.4. Assume the loss ℓ(z; θ) is Lz-Lipschitz in z and let ε denote the sensitivity
of the distribution map. Suppose that C is any value such that C∗(ℓ) ⩽ C and m0 = o(B2

log T,C),

where Blog T,C :=
√

log T + C. Then, after T time steps, Algorithm 2 achieves a regret bound
of

Reg(T ) = O
(
T

d0+1
d0+2

(
(Lzε)

d0B2
log T,C

m0

) 1
d0+2

+
√
T
Blog T,C√

m0

)
,

where d0 is the (Lzε)-sequential zooming dimension (see Definition 2.3.3).
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Algorithm 2 Performative Confidence Bounds Algorithm

Require: time horizon T , number of samples collected per step m0, sensitivity parameter
ε, Lipschitz constant Lz, complexity bound C
Initialize A ← Θ
for phase p = 0, 1, . . . do

Set error tolerance γp = 2−p and net radius rp = γp
Lzε

Let np =

⌈
(2C+3

√
log T)

2

γ2
pm0

⌉
Initialize Sp ← Nrp(A) // Initialize Sp to minimal rp-cover of A
Initialize Pp ← ∅

while Sp ̸= ∅ do
Draw θnet ∈ Sp uniformly at random

Deploy θt for np steps to form D̂PR(θnet, ·)
Sp ← Sp \ θnet
Pp ← Pp ∪ θnet // Update set of deployed models

PRmin ← min
θ∈Θ

min
θ′∈Pp

D̂PR(θ′, θ) + Lzε∥θ′ − θ∥ // Update estimate of PR(θPO)

PRLB(θ)← max
θ′∈Pp

(
D̂PR(θ′, θ)− Lzε∥θ′ − θ∥

)
,∀θ ∈ A // Update LB for models

A ← A \ {θ ∈ A : PRLB(θ) > PRmin + 2γp} // Update active region
Sp ← Sp \ {θ ∈ Sp : Ballrp(θ) ∩ A = ∅} // Remove deactivated net points

end while
end for

Remark 2.3.1 (Consequences for finding performative optima). Algorithm 2 has the addi-
tional property that it generates a model with near-minimal performative risk. In particular,
an intermediate step in the proof of Theorem 2.3.4 shows if T is sufficiently large, the final
iterate θT of Algorithm 2 satisfies:

E
[
PR(θT )−min

θ∈Θ
PR(θ)

]
⩽ O

T
− 1

d0+2

(
(Lzε)

d0B2
log T,C

m0

) 1
d0+2

 ,

where d0 is the (Lzε)-zooming dimension.

Notice that the regret in Theorem 2.3.4 depends on the sequential zooming dimension
(formally defined in Definition 2.3.3). This sequential variant of zooming dimension accounts
for the sequential elimination of models within each phase. We will show in the next section
that the sequential zooming dimension is upper bounded by the usual zooming dimension
(see Proposition 2.3.5).

The primary advantage of Theorem 2.3.4 over the Lipschitz bandit baseline can be seen by
examining the first term in the regret bound. This term resembles the black-box regret bound
from Proposition 2.3.2; however, the key difference is that that the bound of Theorem 2.3.4
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depends on the complexity of the distribution map rather than that of the performative risk.
In particular, the Lipschitz constant is Lzε and not Lθ + Lzε. The advantage is pronounced
when ε→ 0, making the first term of the bound in Theorem 2.3.4 vanish so only the O(

√
T )

term remains. On the other hand, the bound in Proposition 2.3.5 maintains an exponential
dimension dependence.

Taking the limit as ε→ 0 also reveals why the second term in the bound emerges. Even
if the distribution map is constant, there is regret arising from finite-sample error. This is
a key conceptual difference in the meaning of Lipschitzness of the distribution map versus
that of the performative risk: Lθ + Lzε being 0 implies that PR is flat and thus all models
are optimal, while performative regret minimization is nontrivial even if Lzε = 0. Unlike the
first term, the second term due to finite samples is dimension-independent apart from any
dependence implicit in the Rademacher complexity.

We note that the presence of the Rademacher complexity term C∗(ℓ) makes a direct
comparison of the bound in Theorem 2.3.4 and the bound in Proposition 2.3.5 subtle. When
the Rademacher complexity is very high, the regret bound in Theorem 2.3.4 may be worse.
Nonetheless, for many natural function classes, the Rademacher complexity is polynomial in
the dimension; in these cases, Theorem 2.3.4 can substantially outperform the regret bound
in Proposition 2.3.5.

Another key feature of the regret bound in Theorem 2.3.4 worth highlighting is the zoom-
ing dimension. Definition 2.3.1 allows us to directly compare the dimension in Theorem 2.3.4
with the dimension in Proposition 2.3.5: the (Lzε)-zooming dimension of Algorithm 2 is no
larger than, and most likely smaller than, the (Lθ + Lzε)-zooming dimension in the black-
box approach. Moreover, the sequential variant of zooming dimension in Theorem 2.3.4 can
further reduce the dimension.

Finally, the main assumption underpinning the bound in Theorem 2.3.4 is that DPR is
(Lzε)-Lipschitz in its first argument. Sensitivity (Def. 2.1.3) coupled with Lipschitzness of
the loss in the data achieves this. However, this property can hold with different regularity
assumptions on the distribution map and loss function; e.g., if the loss is bounded and the
distribution map is Lipschitz in total variation distance.

The zooming dimension of Definition 2.3.1 does not take into account that, using per-
formative feedback, our algorithm can eliminate unexplored models within a phase. We
illustrate the benefits of this sequential exploration strategy in Figure 2.9, where the de-
ployment of two models is sufficient to eliminate the remaining model in the cover. This
motivates a sequential definition of zooming dimension that captures the benefits of sequen-
tial exploration.

To set up the definition of sequential zooming dimension, we need to introduce some
notation. For a set of points S, enumeration π : S → {1, . . . , |S|} that specifies an ordering
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net, 2net, 1 net, 2 net, 3 net, 1 net, 2 net, 3
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Figure 2.9: Sequential deployment of models allows Algorithm 2 to eliminate points from
Sp, reducing the number of deployments during the phase. We see how the deployment of
θnet,1 and θnet,2 allows one to eliminate θnet,3.

on S, and number k ∈ {1, . . . , |S|}, let

PRLB(θ; k) := max
θ′∈S:π(θ′)<k

(DPR(θ′, θ)− Lzε∥θ − θ′∥) ,

PRs
LB(k) := min

θ∈Balls(π−1(k))
PRLB(θ; k),

PRmin(k) := min
θ

min
θ′∈S:π(θ′)<k

(DPR(θ′, θ) + Lzε∥θ′ − θ∥) .

Here, PRLB(θ; k) is a lower bound on PR(θ) arising from the first k − 1 deployments of the
phase. Similarly, PRs

LB(k) captures the minimal lower confidence bound on the performative
risk for any point in an s-ball around the k-th deployed model, π−1(k). Finally, PRmin(k)
captures an upper bound on PR(θPO), estimated from the first k − 1 deployments.

Using the above terms, we see that PRs
LB(k) ⩽ PRmin(k) + 4αs is the population version

of the condition that a model in the cover does not get discarded. The sequential zooming
dimension captures the maximal number of models in each suboptimality band that can be
deployed.

Definition 2.3.3 (Sequential zooming dimension). A performative prediction problem in-
stance has α-zooming dimension equal to d0 if for any minimal s-cover S of any sub-
set of {θ : ∆(θ) ⩽ 16αs} and all 0 < r ⩽ s ⩽ 1, the expected number of models
θ ∈ S ∩ {θ : 16αr ⩽ ∆(θ) < 32αr} with

PRs
LB(π(θ)) ⩽ PRmin(π(θ)) + 4αs (2.8)

is at most a constant multiple of (3/s)d0, where the expectation is taken over a uniformly
sampled enumeration π : S → {1, . . . , |S|}.

The sequential zooming dimension is bounded by the zooming dimension in Defini-
tion 2.3.1.



CHAPTER 2. PERFORMATIVE PREDICTION 37

Proposition 2.3.5. For all α > 0, the α-zooming dimension is at least as large as the
α-sequential zooming dimension.

The claim of Proposition 2.3.5 follows by definition. To see this, let d0 be the α-zooming
dimension. This means that S includes at most a constant multiple of (3/s)d0 elements from
{θ : 16αr ⩽ ∆(θ) < 32αr}, for all 0 < r ⩽ s ⩽ 1. This immediately guarantees that the
subset of S characterized by (2.8) is at most a multiple of (3/s)d0 , as desired.

Regret minimization for location families

We show how further knowledge about the structure of the distribution map can help
reduce the complexity of performative regret minimization, without necessarily implying
favorable structure of the performative risk. Once again, we apply our guiding principle of
focusing exploration on learning the distribution map. Since the loss function is known, we
can extrapolate knowledge about the distribution map to estimate the performative risk.

We focus on the previously introduced setting of location families, which are distribution
maps that depend on θ via a linear shift. More precisely, location families are distribution

maps of the form z ∼ D(θ) ⇔ z
d
= z0 + µ⊤

∗ θ, where µ∗ ∈ RdΘ×m is an unknown matrix and
z0 ∈ Rm is a zero-mean subgaussian sample from a base distribution D0.

At a high level, our algorithm can be described as follows: at every step t, the learner
deploys a model θt and collects m0 samples from D(θt). We will write z̄t := 1

m0

∑m0

i=1 z
(i)
t for

the corresponding sample average at time t. Then, based on all samples collected so far,
the algorithm computes the least-squares estimate of µ∗ along with a confidence region for
µ∗. In the next step the algorithm picks the model that minimizes a lower confidence bound
PRLB(θ). See Algorithm 3 for details.

Algorithm 3 Performative Regret Minimization for Location Families

Require: time horizon T , number of samples collected per step m0, base distribution D0,
bound M∗ such that ∥µ∗∥ ⩽ M∗
Initialize confidence set C1 ← {µ : ∥µ∥ ⩽ M∗}
for step t = 1, 2, . . . do

PRLB(θ)← minµ∈Ct Ez0∼D0 ℓ(z0 + µθ; θ) ∀θ ∈ Θ // Update LB for all models
Deploy θt = arg minθ PRLB(θ) // Deploy model with lowest LB

Compute z̄t = 1
m0

∑m0

i=1 z
(i)
t from collected samples

Let Σt ←
∑t

i=1 θiθ
⊤
i + 1

m0
I

µ̂t ← Σ−1
t

(∑t
i=1 θiz̄

⊤
i

)
// Update estimate of µ∗

Ct+1 ←

µ :
∥∥∥Σ

1/2
t (µ̂t − µ)

∥∥∥ <
M∗+

√
8m0+8 log T+2dΘ log

(
1+

Tm0
dΘ

)
√
m0

 // Update conf. set

end for
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This algorithm is inspired by LinUCB [109], a standard bandits algorithm for linear
rewards whose regret scales as Õ(d

√
T ), where d is the dimension of the linear map. Impor-

tantly, unlike in the LinUCB analysis, our objective function PR(θ) is not linear in θ. Still,
the nature of performative feedback allows us to learn the hidden linear structure in the
distribution map and apply this knowledge to obtain confidence bounds on the performative
risk. Below we state our algorithm for performative regret minimization for location families
together with its regret guarantees.

Theorem 2.3.5. Suppose that ℓ(z; θ) is Lz-Lipschitz in z, D0 is 1-subgaussian, and m0 =
o(log T ). Then, after T time steps, Algorithm 3 achieves a regret bound of

Reg(T ) = Õ
(

1√
m0

max{Lz, 1}
√
T max

{
d,
√
dm
})

.

Remark 2.3.2. For simplicity, we assume that D0 is known in Algorithm 3. This assumption
is justified, for example, when we have plenty of historical data about a population, before
any model deployment. We note that Theorem 2.3.5 can be extended to the case where we
only have a finite data set from D0, by relying on a uniform convergence argument.

Theorem 2.3.5 shows that by leveraging the hidden linear structure of the distribution
map, Algorithm 3 inherits the Õ(

√
T ) rate of LinUCB. This bears resemblance to the regret

bound in Theorem 2.3.4 that also scaled primarily with the complexity of the distribution
map. Furthermore, similarly to Algorithm 2, we see that the regret bound for Algorithm 3
holds while allowing the loss to have arbitrary dependence on θ. For example, the loss need
not be convex and, as a result, the performative risk need not be convex either.

We conclude by comparing Theorem 2.3.5 to Theorem 2.3.3, which provided an algorithm
for finding performative optima for location families in the special case when the performative
risk is strongly convex. Converting the previous optimization error into a regret bound yields
a bound of O(

√
T (d + m)). While this bears resemblance to Theorem 2.3.5, the rates are

not directly comparable. Algorithm 1 does not assume knowledge of the base distribution
D0, but rather deploys the model θ = 0 in initial steps to collect samples from D0 (see
Remark 2.3.2 for how to combine this strategy with our algorithm). In any case, the main
benefit of Theorem 2.3.5 is that it applies to a more general setting, placing significantly
fewer restrictions on the loss function and the performative risk.

2.3.4 Experiments

We complement our theoretical findings with an empirical evaluation of different methods
on two tasks: the strategic classification simulator from Section 2.2 and a synthetic linear
regression example.

We pay particular attention to understanding the differences in empirical performance be-
tween algorithms which converge to performative optima, such as the two-stage procedure or
derivative-free methods from Section 2.3.2, versus optimization algorithms for finding stable



CHAPTER 2. PERFORMATIVE PREDICTION 39

0 5000 10000 15000 20000
Number of Samples

10−3

10−1

101

103

PR
(θ

)
−

PR
(θ

PO
)

Performative Regression (ε = 0.01)

0 5000 10000 15000 20000
Number of Samples

10−2

100

102

104

106

PR
(θ

)
−

PR
(θ

PO
)

Performative Regression (ε = 100)

Two-Stage Algorithm DFO Greedy SGD Lazy SGD

Figure 2.10: Suboptimality gap versus number of samples collected for the two-stage algo-
rithm, DFO algorithm, greedy deploy, and lazy deploy, for ε = 0.01 (left) and ε = 100 (right).
Each experiment is repeated 50 times; we display 95% bootstrap confidence intervals.

points, in particular greedy deploy and lazy deploy. In addition, we focus on highlighting the
differences in the sample efficiency of the different algorithms and examine their sensitivity
to the relevant structural assumptions outlined in Section 2.3.2. To evaluate derivative-free
methods, we implement the “gradient descent without a gradient” algorithm from [62], which
we refer to from here on out as the “DFO algorithm.” For each of the following experiments,
we run each algorithm 50 times and display 95% bootstrap confidence intervals.

Linear regression experiments. We begin by evaluating how increasing the strength of
performative effects affects the behavior of the different optimization procedures in settings
where the performative risk is convex. We recall the setup from Example 2.3.1, where the
learner attempts to solve a linear regression with performative labels. Given a parameter θ,
data are drawn from D(θ) according to:

x ∼ N (0,Σx), Uy ∼ N (0, σ2
y), y = β⊤x + µ⊤θ + Uy.

This distribution map is a location family, and is ε-sensitive with ε = ∥µ∥2. Performance
is measured according to the squared loss, ℓ((x, y); θ) = 1

2
(y − θ⊤x)2. Furthermore, the

performative risk is convex for all choices of µ.
For small ε, we see that greedy and lazy SGD converge to a stable point that approx-

imately minimizes the performative risk (see left panel in Figure 2.10). However, as we
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Figure 2.11: Classification accuracy versus number of samples collected for the two-stage
algorithm, DFO algorithm, greedy deploy, and lazy deploy, for ε = 0.0001 ⩽ γ

2β
(left) and

ε = 100 ≫ γ
2β

(right). Each experiment is repeated 50 times; we display 95% bootstrap
confidence intervals.

increase the strength of performative effects, these methods fail to make any progress, and
are outperformed by both the DFO algorithm and the two-stage approach by a considerable
margin (see right panel in Figure 2.10). The two-stage procedure efficiently converges after
a small number of samples and its behavior is largely unaffected as we increase the value of
ε, while the DFO algorithm becomes considerably slower when ε is large.

Strategic classification. We next consider experiments on the credit scoring simulator
from Section 2.2. Since the logistic loss is not strongly convex in the features, we only have
a certificate of convexity when ε is small enough (namely, ε ⩽ γ

2β
). We consider two values

of ε: one which is below this critical threshold, and one large value for which we do not have
theoretical guarantees. When ε is small, both the DFO algorithm and the two-stage method
yield significantly higher accuracy solutions compared to the two variants of SGD (see left
panel of Figure 2.11). Together with the linear regression experiments, this observation serves
as further evidence that stable points have significantly worse performative risk relative to
performative optima, even in regimes where ε < γ/(2β). Note also that, although both the
DFO algorithm and the two-stage algorithm improve upon methods for repeated retraining,
the two-stage algorithm converges with significantly fewer samples and significantly lower
variance. Indeed, a few thousand samples suffice for convergence of the two-stage method,
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whereas the DFO algorithm has still not fully converged after a million samples.
Lastly, on the top right plot, we evaluate these methods for ε≫ γ/(2β) which is outside

the regime of our theoretical analysis. Consequently, we have no convergence guarantees
for any of the four algorithms. Despite the lack of guarantees and the increased strength
of performative effects, we see that the two-stage procedure achieves only a slightly lower
accuracy than in the previous setting. On the other hand, as described in our echo chamber
analogy, greedy and lazy SGD rapidly converge to a local minimum and do not significantly
improve predictive performance after the 10k sample mark. Despite extensive tuning, we were
unable to improve the performance of the DFO algorithm and achieve nontrivial accuracy
with this method.

2.4 Related work

Performativity is a broad concept in the social sciences, philosophy, and economics [78, 115].
Below we focus on the relationship of our work to the most relevant technical scholarship.

A closely related line of work considers the problem of concept drift, broadly defined
as the problem of learning when the target distribution over instances drifts with time.
This setting has attracted attention both in the learning theory community [5, 6, 103] and
by machine learning practitioners [64]. Concept drift is more general phenomenon than
performativity in that it considers arbitrary sources of shift. However, studying the problem
at this level of generality has led to a number of difficulties in creating a unified language
and objective [64, 178], an issue we circumvent by assuming that the population distribution
is determined by the deployed predictive model. Importantly, this line of work also discusses
the importance of retraining [64, 174]. However, it stops short of discussing the need for
stability or analyzing the long-term behavior of retraining.

Given that strategic classification is formally a special case of performative prediction,
the study of performative optimality has been implicitly considered in the growing body
of work on strategic classification [8, 76, 84, 126, 154]. More specifically, performatively
optimal classifiers correspond to Stackelberg equilibria in strategic classification. In contrast
to papers within this literature, our analysis relies on identifying macro-level assumptions
on the loss and the distribution shift which make the problem tractable, rather than specific
micro-level assumptions on the costs or utilities of the agents. For example, Dong et al. [49]
prove that the institution’s objective (performative risk) is convex by assuming that the
agents are rational and compute best-responses according to particular utilities and cost
functions. On the other hand, our conditions are on the distribution map and do not directly
constrain behavior at the agent level.

The reader familiar with causality can think of D(θ) as the interventional distribution
over instances z resulting from a do-intervention that sets the model parameters to θ in
some underlying causal graph. Importantly, this mapping D(·) remains fixed and does not
change over time or by intervention: deploying the same model at two different points
in time must induce the same distribution over observations Z. While causal inference
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focuses on estimating properties of interventional distributions such as treatment effects [85,
135], our focus is on performative stability, performative optimality, and iterative retraining
procedures. See the subsequent work of Mendler-Dünner et al. [122] for further connections
to causal inference.

Finally, we would like to point out several works that have appeared subsequently to
the work published in this thesis, but whose results contributed to the understanding of
performative prediction. These include works studying stochastic optimization [43, 51, 182,
183], time-varying distribution shifts [20, 87, 110, 144], multi-player performative prediction
[45, 111, 129, 138], and methods for finding optima [86, 116, 189], among others [32, 50, 74,
91, 96, 104, 117, 127, 139].

2.5 Deferred proofs

2.5.1 Auxiliary lemmas

Lemma 2.5.1 (Kantorovich-Rubinstein). A distribution map D(·) is ε-sensitive if and only
if for all θ, θ′ ∈ Θ:

sup

{∣∣∣ E
z∼D(θ)

g(z)− E
z∼D(θ′)

g(z)
∣∣∣ ⩽ ε∥θ − θ′∥2 : g : Rp → R, g 1-Lipschitz

}
.

Lemma 2.5.2. Let f : Rn → Rd be an L-Lipschitz function, and let X,X ′ ∈ Rn be random
variables such that W1(X,X ′) ⩽ C. Then

∥E[f(X)]− E[f(X ′)]∥2 ⩽ LC.

Proof.

∥E[f(X)]− E[f(X ′)]∥22 = (E[f(X)]− E[f(X ′)])⊤(E[f(X)]− E[f(X ′)])

= ∥E[f(X)]− E[f(X ′)]∥2
(E[f(X)]− E[f(X ′)])⊤

∥E[f(X)]− E[f(X ′)]∥2
(E[f(X)]− E[f(X ′)]).

Now define the unit vector v := E[f(X)]−E[f(X′)]
∥E[f(X)]−E[f(X′)]∥2 . By linearity of expectation, we can further

write

∥E[f(X)]− E[f(X ′)]∥22 = ∥E[f(X)]− E[f(X ′)]∥2 (E[v⊤f(X)]− E[v⊤f(X ′)]).

For any unit vector v and L-Lipschitz function f , v⊤f is a one-dimensional L-Lipschitz
function, so we can apply Lemma 2.5.1 to obtain

∥E[f(X)]− E[f(X ′)]∥22 ⩽ ∥E[f(X)]− E[f(X ′)]∥2LC.

Canceling out ∥E[f(X)]− E[f(X ′)]∥2 from both sides concludes the proof.
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Lemma 2.5.3. Let s ∈ (0, 1), and fix α > 0, then,

t∑
k=1

k−αst−k ⩽
st(1−2−1/α)

1− s
+

2t−α

1− s
.

Proof. Denote by ak
def
= k−α. Let Mt = max{m ∈ N : am > 2at}. We decompose the sum

depending on Mt as follows:

t∑
k=1

aks
t−k =

Mt∑
k=1

aks
t−k +

t∑
k=Mt+1

aks
t−k.

We bound the first term trivially, by applying the fact that ak ⩽ 1. For the second term, we
use the fact that ak ⩽ 2at for k > Mt. We thus get:

t∑
k=1

aks
t−k ⩽

Mt∑
k=1

st−k + 2at

t∑
k=Mt+1

st−k ⩽
st−Mt

1− s
+

2at
1− s

.

Since ak = k−α, then Mt ⩽ t
21/α

, and so

st−Mt

1− s
+

2at
1− s

⩽
st(1−2−1/α)

1− s
+

2at
1− s

.

2.5.2 Proof of Proposition 2.2.1

Proof of (a): Consider the linear loss defined as ℓ ((x, y); θ) = βyθ, for θ ∈ [−1, 1]. Note
that this objective is β-jointly smooth and convex, but not strongly convex. Let the distri-
bution of y according to D(θ) be a point mass at εθ, and let the distribution of x be invariant
with respect to θ. Clearly, this distribution is ε-sensitive.

Here, the decoupled performative risk has the following form DPR(θ, φ) = εβθφ. The
unique performatively stable point is 0. However, if we initialize RRM at any point other
than 0, the procedure generates the sequence of iterates . . . , 1,−1, 1,−1 . . . , thus failing to
converge. Furthermore, this behavior holds for all ε, β > 0.

Proof of (b): Consider a type of regularized hinge loss ℓ(z; θ) = C max(−1, yθ)+ γ
2
(θ−1)2,

and suppose Θ ⊇ [− 1
2ε
, 1
2ε

].
Let the distribution of y according to D(θ) be a point mass at εθ, and let the distribution

of x be invariant with respect to θ. Clearly, this distribution is ε-sensitive.
Let θ0 = 2. Then, by picking C big enough, RRM prioritizes to minimize the first term

exactly, and hence we get θ1 = − 1
2ε

. In the next step, again due to large C, we get θ2 = 2.
Thus, RRM keeps oscillating between 2 and − 1

2ε
, failing to converge. This argument holds

for all γ, ε > 0.
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Proof of (c): Suppose that the loss function is the squared loss, ℓ(z; θ) = (y − θ)2, where
y, θ ∈ R. Note that this implies β = γ. Let the distribution of y according to D(θ) be a point
mass at 1 + εθ, and let the distribution of x be invariant with respect to θ. This distribution
family satisfies ε-sensitivity, because

W1(D(θ),D(θ′)) = ε|θ − θ′|.

By properties of the squared loss, we know

arg min
θ′

DPR(θ, θ′) = E
z∼D(θ)

[y] = 1 + εθ.

It is thus not hard to see that RRM does not contract if ε ⩾ γ
β

= 1:

|G(θ)−G(θ′)| = |1 + εθ − 1− εθ′| = ε|θ − θ′|,

which exactly matches the bound of Theorem 2.2.1 and proves the first statement of the
proposition. The unique performatively stable point of this problem is θ such that θ = 1+εθ,
which is θPS = 1

1−ε
for ε > 1.

For ε = 1, no performatively stable point exists, thereby proving the second claim of the
proposition. If ε > 1 on the other hand, and θ0 ̸= θPS, we either have θt →∞ or θt → −∞,
because

θt = 1 + εθt−1 =
t−1∑
k=0

εk + θ0ε
t =

εt − 1

ε− 1
+ θ0ε

t,

thus concluding the proof.

2.5.3 Proof of Theorem 2.2.2

This proof is essentially a consequence of Lemma 2.2.1, proved in the following section. By
following the steps of Lemma 2.2.1, we get

∥θt+1 − θPS∥22 ⩽ ∥θt − θPS∥22 − 2ηt(E∇ℓ(z(t); θt))⊤(θt − θPS) + η2∥E∇ℓ(z(t); θt)∥22
def
= B1 − 2ηB2 + η2B3,

where we use z(t) to denote a sample from D(θt).
Following the same approach as in Lemma 2.2.1, we get

B2 ⩾ (γ − εβ)∥θt − θPS∥22.

The bound on B3 is slightly different, as we no longer make assumptions on the second
moment of the gradients; we use z(θPS) to denote a sample from D(θPS) and proceed as
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follows:

∥E∇ℓ(z(t); θt)∥22 = ∥E∇ℓ(z(t); θt)− E∇ℓ(z(θPS); θPS)∥22
⩽ ∥E∇ℓ(z(t); θt)− E∇ℓ(z(t); θPS) + E∇ℓ(z(t); θPS)− E∇ℓ(z(θPS); θPS)∥22
⩽ 2∥E∇ℓ(z(t); θt)− E∇ℓ(z(t); θPS)∥22

+ 2∥E∇ℓ(z(t); θPS)− E∇ℓ(z(θPS); θPS)∥22
⩽ 2β2∥θt − θPS∥22 + 2β2ε2∥θt − θPS∥22
⩽ 2β2

(
1 + ε2

)
∥θt − θPS∥22,

where in the third inequality we apply the fact that the loss if β-jointly smooth, together
with Lemma 2.5.2. Putting everything together, this implies

∥θt+1 − θPS∥22 ⩽ (1− 2η(γ − εβ) + 2η2β2(1 + ε2))∥θt − θPS∥22.

Using the fact that
√

1− x ⩽ 1− x
2

for x ∈ [0, 1], we get

∥θt+1 − θPS∥2 ⩽ (1− η(γ − εβ) + η2β2(1 + ε2))∥θt − θPS∥2.

By setting η = γ−εβ
2(1+ε2)β2 , we can conclude

∥θt+1 − θPS∥2 ⩽
(

1− (γ − εβ)2

4(1 + ε2)β2

)
∥θt − θPS∥2.

Note that (γ−εβ)2

4(1+ε2)β2 < 1 because (γ − εβ)2 ⩽ γ2 + ε2β2 ⩽ (1 + ε2)β2.
We can unroll the above recursion to get

∥θt+1 − θPS∥2 ⩽
(

1− (γ − εβ)2

4(1 + ε2)β2

)t

∥θ1 − θPS∥2

⩽ exp

(
− t(γ − εβ)2

4(1 + ε2)β2

)
∥θ1 − θPS∥2.

Setting the right-hand side to δ and expressing t completes the proof.

2.5.4 Proof of Proposition 2.2.2

Let Θ = R, and let z ∼ D(θ) be a point mass at 1 + εθ. This distribution map is clearly
ε-sensitive. Furthermore, define the loss as,

ℓ(z; θ) = −βzθ +
γ

2
θ2,

where β ⩾ γ is an arbitrary positive scalar. Note that this objective is convex in θ and
β-jointly smooth. Furthermore, it has a unique performatively stable point θPS = β/γ

1−εβ/γ
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whenever ε ̸= γ
β
; when ε = γ

β
, there is no stable point. Repeated gradient descent has the

dynamics:

θt+1 = θt − ηt E
z∼D(θt)

∇ℓ(z; θt)

= θt − ηt(γ − εβ)θt + ηtβ

= (1− ηt (γ − εβ)) θt + ηtβ.

If γ = 0, then the loss ℓ(z; θ) is convex. Furthermore, for any values of ε, β > 0 and any
positive step size sequence {ηt}∞t=1, it holds that 1 + ηtεβ > 1 meaning that RGD diverges.

To prove the second part of the statement, if γ > 0, then the loss is γ-strongly convex.
Furthermore, if ε > γ/β, then for any step size sequence {ηt}∞t=1, 1−ηt(γ−εβ) > 1 and RGD
again diverges. When ε = γ

β
, there is no stable solution and hence RGD does not converge

to stability.

2.5.5 Proof of Lemma 2.2.1

Throughout the proof, we will use z(θPS) to denote a sample from D(θPS) which is independent
from the whole trajectory of greedy deploy (e.g. {θj, z(j)}j, etc.).

Since Θ is closed and convex, we know

∥θt+1 − θPS∥22 = ∥ΠΘ(θt − ηt∇ℓ(z(t); θt))− θPS∥22 ⩽ ∥θt − ηt∇ℓ(z(t); θt)− θPS∥22.

Squaring the right-hand side and expanding out the square,

E
[
∥θt − ηt∇ℓ(z(t); θt)− θPS∥22

]
= E

[
∥θt − θPS∥22

]
− 2ηt E

[
∇ℓ(z(t); θt)⊤(θt − θPS)

]
+ η2t E

[
∥∇ℓ(z(t); θt)∥22

]
def
= B1 − 2ηtB2 + η2tB3.

We begin by lower bounding B2. Since θPS is optimal for the distribution
it induces, by the first-order optimality condition for convex problems we have
E
[
∇ℓ(z(θPS); θPS)⊤(θt − θPS)

]
⩾ 0. This allows us to bound B2 as:

B2 ⩾ E
[
(∇ℓ(z(t); θt)−∇ℓ(z(θPS); θt) +∇ℓ(z(θPS); θt)−∇ℓ(z(θPS); θPS))⊤(θt − θPS)

]
= E

[
(∇ℓ(z(t); θt)−∇ℓ(z(θPS); θt)

⊤(θt − θPS)
]

+ E
[
(∇ℓ(z(θPS); θt)−∇ℓ(z(θPS); θPS))⊤(θt − θPS)

]
.

For the first term, we have that

E
[
(∇ℓ(z(t); θt)−∇ℓ(z(θPS); θt)

⊤(θt − θPS)
]

= E
[
E
[
(∇ℓ(z(t); θt)−∇ℓ(z(θPS); θt)

⊤(θt − θPS) | θt
] ]

⩾ −εβ E
[
∥θt − θPS∥22

]
.
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Having applied the law of iterated expectation, the above inequality follows from the fact
that, conditional on θt, the function ∇ℓ(z; θt)

⊤(θt − θPS) is β∥θt − θPS∥2−Lipschitz in z.
To verify this claim, we can apply the Cauchy-Schwarz inequality followed by the fact that
the gradient is β-jointly smooth. Then, we apply Lemma 2.5.1 and the fact that D(·) is
ε-sensitive to get the final bound.

Now, we use strong convexity to bound the second term,

E
[
(∇ℓ(z(θPS); θt)−∇ℓ(z(θPS); θPS))⊤(θt − θPS)

]
= E

[
E
[
(∇ℓ(z(θPS); θt)−∇ℓ(z(θPS); θPS))⊤(θt − θPS) | θt

] ]
⩾ γ E

[
∥θt − θPS∥22

]
.

Therefore, we get that
B2 ⩾ (γ − εβ)E

[
∥θt − θPS∥22

]
.

Now we move on to bounding B3. Using our assumption on the variance on the gradients
yields the following bound, we get

E
[
∥∇ℓ(z(t); θt)∥22

]
⩽ σ2 + L2 E

[
∥θt −G(θt)∥22

]
= σ2 + L2 E

[
∥θt − θPS + θPS −G(θt)∥22

]
⩽ σ2 + L2

(
E
[
(∥θt − θPS∥2 + ∥θPS −G(θt)∥2)2

])
⩽ σ2 + L2

(
1 + ε

β

γ

)2

E
[
∥θt − θPS∥22

]
,

where in the last step we use Theorem 2.2.1, which implies ∥θPS −G(θt)∥2 ⩽ εβ
γ
∥θt − θPS∥2.

Putting all the steps together completes the proof.

2.5.6 Proof of Theorem 2.2.3

From Lemma 2.2.1, we have that the following recursion holds:

E
[
∥θt+1 − θPS∥22

]
⩽

(
1− 2ηt(γ − εβ) + η2tL

2

(
1 + ε

β

γ

)2
)
E
[
∥θt − θPS∥22

]
+ η2t σ

2.

Using the fact that ε < γ
β
, we get that,

E
[
∥θt+1 − θPS∥22

]
⩽
(
1− 2ηt(γ − εβ) + 4η2tL

2
)
E
[
∥θt − θPS∥22

]
+ η2t σ

2.

We proceed by using induction. As in the theorem statement, we let ηt = 1
(γ−εβ)(t+t0)

, where

we denote t0 = 8L2

(γ−εβ)2
. The base case, t = 0, is trivially true by construction of the bound

and choice of t0. Now, we adopt the inductive hypothesis that

E
[
∥θt+1 − θPS∥22

]
⩽

max {2σ2, 8L2∥θ1 − θPS∥22}
(γ − εβ)2(t + t0)

.
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Then, by Lemma 2.2.1, it is true that

E
[
∥θt+2 − θPS∥22

]
⩽
(
1− 2ηt(γ − εβ) + 4η2tL

2
)
E
[
∥θt+1 − θPS∥22

]
+ η2t σ

2

⩽
1

(γ − εβ)2

(
t + t0 − 2 + 4L2

(γ−εβ)2t0

(t + t0)2
max

{
2σ2, 8L2∥θ1 − θPS∥22

}
+

σ2

(t + t0)2

)

⩽
1

(γ − εβ)2

(
t + t0 − 1.5

(t + t0)2
max

{
2σ2, 8L2∥θ1 − θPS∥22

}
+

σ2

(t + t0)2

)
⩽

1

(γ − εβ)2

(
t + t0 − 1

(t + t0)2
max

{
2σ2, 8L2∥θ1 − θPS∥22

}
− 0.5 · 2σ2 − σ2

(t + t0)2

)
=

1

(γ − εβ)2
· t + t0 − 1

(t + t0)2
max

{
2σ2, 8L2∥θ1 − θPS∥22

}
⩽

1

(γ − εβ)2
· 1

t + 1 + t0
max

{
2σ2, 8L2∥θ1 − θPS∥22

}
,

where the last step follows because (t+t0)
2 > (t+t0)

2−1 = (t+t0+1)(t+t0−1). Therefore,

we have shown E [∥θt+2 − θPS∥22] ⩽ Mgreedy

(γ−εβ)2(t+1+t0)
, which completes the proof by induction.

2.5.7 Proof of Theorem 2.2.4

To prove Theorem 2.2.4, we use the following classical result about convergence of SGD on
a static distribution (see, e.g., [141]). The step size is chosen such that it matches the step
size of Theorem 2.2.3 when ε = 0. We include the proof for completeness.

Lemma 2.5.4. Under assumptions (A1), (A2), and (A3), lazy deploy satisfies the following:

E
[
∥φt,j+1 −G(θt)∥22

]
⩽
(
1− 2ηt,jγ + η2t,jL

2
)
E
[
∥φt,j −G(θt)∥22

]
+ η2t,jσ

2.

If, additionally, ηt,j = 1
γj+8L2/γ

, then for all t ⩾ 1, j ⩾ 0, the following is true

E
[
∥φt,j+1 −G(θt)∥22

]
⩽

Mlazy

γ2j + L2
,

where Mlazy
def
= max {1.2σ2, 8L2 E[∥θt −G(θt)∥22]}.

Proof. First we prove the recursion. Since Θ is closed and convex, we know

E
[
∥φt,j+1 −G(θt)∥22

]
= E

[∥∥∥ΠΘ

(
φt,j − ηt,j∇ℓ(z(t)j ;φt,j)

)
−G(θt)

∥∥∥2
2

]
⩽ E

[ ∥∥∥φt,j − ηt,j∇ℓ(z(t)j ;φt,j)−G(θt)
∥∥∥2
2

]
= E

[
∥φt,j −G(θt)∥22

]
− 2ηt,j E

[
∇ℓ(z(t)j ;φt,j)

⊤(φt,j −G(θt))
]

+ η2t,j E
[
∥∇ℓ(z(t)j ;φt,j)∥22

]
.
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Next, we examine the cross-term. By the first-order optimality conditions for convex func-

tions, we know that E
[
∇ℓ(z(t)j ;G(θt))

⊤(φt,j −G(θt))
]
⩾ 0. Using this lemma along with

strong convexity, we can lower bound this term as follows,

E
[
∇ℓ(z(t)j ;φt,j)

⊤(φt,j −G(θt))
]
⩾ E

[
(∇ℓ(z(t)j ;φt,j)−∇ℓ(z(t)j ;G(θt))

⊤(φt,j −G(θt))
]

⩾ γ E
[
∥φt,j −G(θt)∥22

]
.

For the final term, we use our assumption on the second moment of the gradients,

E
[
∥∇ℓ(z(t)j ;φt,j)∥22

]
⩽ σ2 + L2 E

[
∥φt,j −G(θt)∥22

]
.

Putting everything together, we get the desired recursion,

E
[
∥φt,j+1 −G(θt)∥22

]
⩽ (1− 2ηt,jγ + η2t,jL

2)E
[
∥φt,j −G(θt)∥22

]
+ η2t,jσ

2.

Now we turn to proving the second part of the lemma. Similarly to Theorem 2.2.3, we prove
the result using induction. As in the theorem statement, we let ηt,j = 1

γ(j+t0)
, where we

denote t0 = 8L2

γ2 . The base case, j = 0, is trivially true by construction of the bound and
choice of t0. Now, we adopt the inductive hypothesis that

E
[
∥φt,j+1 −G(θt)∥22

]
⩽

max {1.2σ2, 8L2 E [∥θt −G(θt)∥22]}
γ2(j + t0)

.

Then, by part (a) of this lemma, it is true that

E
[
∥φt,j+2 −G(θt)∥22

]
⩽
(
1− 2ηt,jγ + η2t,jL

2
)
E
[
∥φt,j+1 −G(θt)∥22

]
+ η2t,jσ

2

⩽
1

γ2

(
j + t0 − 2 + L2

γ2t0

(j + t0)2
max

{
1.2σ2, 8L2 E

[
∥θt −G(θt)∥22

]}
+

σ2

(j + t0)2

)

⩽
1

γ2

(
j + t0 − 15/8

(j + t0)2
max

{
1.2σ2, 8L2 E

[
∥θt −G(θt)∥22

]}
+

σ2

(j + t0)2

)
⩽

1

γ2

(
j + t0 − 1

(j + t0)2
max

{
1.2σ2, 8L2 E

[
∥θt −G(θt)∥22

]}
− 7/8 · 1.2σ2 + σ2

(j + t0)2

)
=

1

γ2
· j + t0 − 1

(j + t0)2
max

{
1.2σ2, 8L2 E

[
∥θt −G(θt)∥22

]}
⩽

1

γ2
· 1

j + 1 + t0
max

{
1.2σ2, 8L2 E

[
∥θt −G(θt)∥22

]}
,

where the last step follows because (j + t0)
2 > (j + t0)

2 − 1 = (j + t0 + 1)(j + t0 − 1).

Therefore, we have shown E [∥φt,j+2 −G(θt)∥22] ⩽ Mlazy

γ2(j+1+t0)
, which completes the proof by

induction.
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Now we prove Theorem 2.2.4.
First we state two identities used in the proof, which follow from Theorem 2.2.1:

∥G(θ)− θPS∥2 ⩽ ε
β

γ
∥θ − θPS∥2, (2.9)

∥θ −G(θ)∥2 ⩽ ∥θ − θPS∥2 + ∥θPS −G(θ)∥2 ⩽
(

1 + ε
γ

β

)
∥θ − θPS∥2. (2.10)

Note that identity (2.10) implies ∥θ −G(θ)∥2 < 2∥θ − θPS∥2 if ε < γ
β
.

By triangle inequality, we have

E
[
∥θt+1 − θPS∥22

]
= E

[
∥θt+1 −G(θt) + G(θt)− θPS∥22

]
⩽ E

[
∥θt+1 −G(θt)∥22

]
+ 2E [∥θt+1 −G(θt)∥2∥G(θt)− θPS∥2] + E

[
∥G(θt)− θPS∥22

]
.

(2.11)

Denoting t0 = 8L2

γ2 , Lemma 2.5.4 bounds the first term by

E
[
∥θt+1 −G(θt)∥22

]
= E

[
E
[
∥θt+1 −G(θt)∥22 | θt

]]
⩽

1.2σ2 + 8L2 E [∥θt −G(θt)∥22]
γ2(n(t) + t0)

⩽
1.2σ2 + 32L2 E [∥θt − θPS∥22]

γ2(n(t) + t0)
,

where in the last step we apply identity (2.10). Note also that by Jensen’s inequality, we
know

E [∥θt+1 −G(θt)∥2] ⩽
1.1σ + 6LE [∥θt −G(θt)∥2]

γ
√
n(t) + t0

.

We can use this inequality, together with identities (2.9) and (2.10), to bound the cross-term
in equation (2.11) as follows:

2E [∥θt+1 −G(θt)∥2∥G(θt)− θPS∥2]

⩽ 2ε
β

γ
E [∥θt+1 −G(θt)∥2∥θt − θPS∥2]

⩽
2εβ

γ√
n(t) + t0

E
[(

6L

γ
∥θt −G(θt)∥2 +

1.1σ

γ

)
∥θt − θPS∥2

]
⩽

2εβ
γ√

n(t) + t0
E
[(

6L

γ

(
1 + ε

β

γ

)
∥θt − θPS∥2 +

1.1σ

γ

)
∥θt − θPS∥2

]
⩽

24εβL

γ2
√

n(t) + t0
E
[
∥θt − θPS∥22

]
+

2.2σεβ

γ2
√

n(t) + t0
E [∥θt − θPS∥2] .
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We bound the latter term by applying the AM-GM inequality; in particular, for all α0 ∈
(0, 1), it holds that

2.2σεβ

γ2
√

n(t) + t0
E [∥θt − θPS∥2] ⩽

1.1σεβ

γ2

(
1

(n(t) + t0)α0
+

E [∥θt − θPS∥22]
(n(t) + t0)1−α0

)
.

Thus, the final bound on the cross-term in equation (2.11) is

2E [∥θt+1 −G(θt)∥2∥G(θt)− θPS∥2] ⩽
(

24εβL

γ2
√

n(t) + t0
+

1.1σεβ

γ2(n(t) + t0)1−α0

)
E
[
∥θt − θPS∥22

]
+

1.1σεβ

γ2(n(t) + t0)α0
.

The final term in equation (2.11) can be bounded by identity (2.9):

E
[
∥G(θt)− θPS∥22

]
⩽

(
ε
β

γ

)2

E
[
∥θt − θPS∥22

]
.

Putting all the steps together, we have derived the following recursion, true for all α0 ∈
(0, 1):

E
[
∥θt+1 − θPS∥22

]
⩽

(
32L2

γ2(n(t) + t0)
+

24εβL

γ2
√

n(t) + t0
+

1.1σεβ

γ2(n(t) + t0)1−α0
+

(
ε
β

γ

)2
)
E
[
∥θt − θPS∥22

]
+

1.2σ2

γ2(n(t) + t0)
+

1.1σεβ

γ2(n(t) + t0)α0

⩽ cE
[
∥θt − θPS∥22

]
+

1.2σ2

γ2(n(t) + t0)
+

1.1σεβ

γ2(n(t) + t0)α0
, (2.12)

where we define

c
def
=

32L2

γ2n0

+
24εβL

γ2
√
n0

+
1.1σεβ

γ2n1−α0
0

+

(
ε
β

γ

)2

.

We pick n0 large enough such that there exists α0 > 0 for which c < 1.
Unrolling the recursion given by equation (2.12), we get

E
[
∥θt+1 − θPS∥22

]
⩽ ct∥θ1 − θPS∥22 +

1

γ2

t∑
j=1

ct−j

(
1.2σ2

n(j) + t0
+

1.1σεβ

(n(j) + t0)α0

)
.

Since α0 < 1, we can upper bound the second term as

1

γ2

t∑
j=1

ct−j

(
1.2σ2

n(j) + t0
+

1.1σεβ

(n(j) + t0)α0

)

⩽
1.2σ2

γ2

t∑
j=1

ct−j 1

n(j) + t0
+

1.1σεβ

γ2

t∑
j=1

ct−j 1

(n(j) + t0)α0

⩽
1

γ2(1− c)

(
1.2σ2

n0

(2t−α + c(1−2−1/α)t) +
1.1σεβ

nα0
0

(2t−α·α0 + c(1−2−1/(αα0))t)

)
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where in the second inequality we apply Lemma 2.5.3 after plugging in the choice of n(t).

Using the fact that α0 ∈ (0, 1) and hence c(1−2−1/(αα0))t < c(1−2−1/α)t, as well as ε < γ
β

and
n0 ⩾ 1, gives

1

γ2(1− c)

(
1.2σ2

n0

(2t−α + c(1−2−1/α)t) +
1.1σεβ

nα0
0

(2t−α·α0 + c(1−2−1/(αα0))t)

)
⩽

1.2σ2 + 1.1σγ

γ2(1− c)

(
4t−αα0 + 2c(1−2−1/α)t

)
⩽

3(σ + γ)2

γ2(1− c)

(
2t−αα0 + cΩ(t)

)
.

It remains to set α0; we set α0 = max{δ ∈ (0, 1) : c < 1} (note that the existence of such α0

is guaranteed by the choice of n0). Clearly, α0 → 1 as n0 grows, and so putting everything
together gives

E
[
∥θt+1 − θPS∥22

]
⩽ ct∥θ1 − θPS∥22 +

3(σ + γ)2

γ2(1− c)

(
2

tα·(1−o(1))
+ cΩ(t)

)
,

as desired.

2.5.8 Proof of Theorem 2.3.1

We begin by writing out the gradient of the performative risk:

∇θPR(θ) = ∇θ

(∫
ℓ(z; θ)pθ(z)dz

)
=

∫
∇θℓ(z; θ)pθ(z)dz +

∫
ℓ(z; θ)∇θpθ(z)dz

=

∫
∇θℓ(z; θ)pθ(z)dz +

∫
ℓ(z; θ)∇θ log(pθ(z))pθ(z)dz

= E
z∼D(θ)

[∇θℓ(z; θ)] + E
z∼D(θ)

[ℓ(z; θ)∇θ log(pθ(z))].

By the first-order condition for convexity, we know that PR(θ) is (γ − 2εβ)-convex if and
only if(

E
z∼D(θ)

[∇θℓ(z; θ) + ℓ(z; θ)∇θ log(pθ(z))]

)⊤

(θ′ − θ) +
γ − 2εβ

2
∥θ − θ′∥22 ⩽ PR(θ′)− PR(θ),

(2.13)

for all θ, θ′ ∈ Θ. By assumption (A5), we know that for all θ, θ′, θ0 ∈ Θ,

E
z∼D(αθ+(1−α)θ′)

[ℓ(z; θ0)] ⩽ α E
z∼D(θ)

[ℓ(z; θ0)] + (1− α) E
z∼D(θ′)

[ℓ(z; θ0)].

This assumption is equivalent to saying that gθ0(θ) = Ez∼D(θ)[ℓ(z; θ0)] is a convex function
of θ, for all θ0. We can express this convexity condition using the equivalent first-order
characterization:

E
z∼D(θ)

[ℓ(z; θ0)∇θ log(pθ(z))]⊤(θ′ − θ) ⩽ E
z∼D(θ′)

[ℓ(z; θ0)]− E
z∼D(θ)

[ℓ(z; θ0)].
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Since the mixture dominance condition holds for all θ, θ′ and θ0, we can set θ0 equal to θ in
the inequality above to conclude that

E
z∼D(θ)

[ℓ(z; θ)∇θ log(pθ(z))]⊤(θ′ − θ) ⩽ E
z∼D(θ′)

[ℓ(z; θ)]− E
z∼D(θ)

[ℓ(z; θ)].

Going back to equation (2.13), we see that a sufficient condition for (γ − 2εβ)-convexity of
the performative risk is

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′ − θ) +
γ − 2εβ

2
∥θ − θ′∥22 ⩽ E

z∼D(θ′)
ℓ(z; θ′)− E

z∼D(θ′)
ℓ(z; θ).

By the assumption that the loss is γ-strongly convex in θ, we know

E
z∼D(θ′)

ℓ(z; θ′)− E
z∼D(θ′)

ℓ(z; θ) ⩾ E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′ − θ) +
γ

2
∥θ − θ′∥22,

and thus we have further simplified the sufficient condition to

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′ − θ)− E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′ − θ) ⩽
2εβ

2
∥θ − θ′∥22.

Since the loss is β-smooth in z, we have that ∇θℓ(z; θ)⊤(θ′ − θ) is β∥θ − θ′∥2-Lipschitz in
z. Now, we can use the fact that the distribution map is ε-sensitive to upper bound the
left-hand side by applying the Kantorovich-Rubinstein duality (Lemma 2.5.1):

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′ − θ)− E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′ − θ) ⩽ εβ∥θ − θ′∥22. (2.14)

Therefore, we can conclude that the performative risk is (γ − 2εβ)-convex.

2.5.9 Proof of Theorem 2.3.2

Following the steps of Theorem 2.3.1, we know that PR(θ) is λ-convex if and only if

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′ − θ) + E
z∼D(θ)

[ℓ(z; θ)∇θ log(pθ(z))]⊤(θ′ − θ) +
λ

2
∥θ − θ′∥22 ⩽ PR(θ′)− PR(θ),

for all θ, θ′ ∈ Θ.
We now state a technical lemma, deferring its proof to the end of this section.

Lemma 2.5.5. Suppose that

E
z∼D(αθ+(1−α)θ′)

[g(z)] ⩽ E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− α(1− α)γz
2

E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22.

Then,

E
z∼D(θ′)

[g(z)] ⩾ E
z∼D(θ)

[g(z)] + (∇θ E
z∼D(θ)

[g(z)])⊤(θ′ − θ) +
γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22.
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Note that the assumption of the lemma is implied by the location-family form of the
distribution map, together with strong convexity of the loss in z. Therefore, by Lemma 2.5.5,
we know

E
z∼D(θ)

[ℓ(z; θ)∇θ log(pθ(z))]⊤(θ′ − θ) ⩽ E
z∼D(θ′)

[ℓ(z; θ)]− E
z∼D(θ)

[ℓ(z; θ)]

− γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22,

where we take g(z) = ℓ(z; θ).
Thus it suffices to show

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′−θ)+
λ

2
∥θ−θ′∥22 ⩽ E

z∼D(θ′)
ℓ(z; θ′)− E

z∼D(θ′)
ℓ(z; θ)+

γz
2
E ∥Σ(θ−θ′)z0+µ(θ−θ′)∥22.

By the assumption that the loss is γ-strongly convex, we know

E
z∼D(θ′)

ℓ(z; θ′)− E
z∼D(θ′)

ℓ(z; θ) ⩾ E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′ − θ) +
γ

2
∥θ − θ′∥22.

With this, we have simplified the sufficient condition for γ-convexity to

( E
z∼D(θ)

[∇θℓ(z; θ)]− E
z∼D(θ′)

[∇θℓ(z; θ)])⊤(θ′ − θ) ⩽
γ − λ

2
∥θ − θ′∥22 +

γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22.

(2.15)

We bound the left-hand side by applying smoothness of the loss together with
the Kantorovich-Rubinstein duality (Lemma 2.5.1); for this, we need a bound on
W1(D(θ),D(θ′)). We will use the bound implied by ε-sensitivity, as well as the bound
implied by the following lemma.

Lemma 2.5.6. Suppose that the distribution map D(θ) forms a location-scale family (2.5).
Then,

W1(D(θ),D(θ′)) ⩽ E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥2.

Proof of Lemma 2.5.6. By definition,

W1(D(θ),D(θ′)) = inf
Π(D(θ),D(θ′))

E
(zθ,zθ′ )∼Π(D(θ),D(θ′))

[∥zθ − zθ′∥2],

where Π(D(θ),D(θ′)) denotes a coupling of D(θ) and D(θ′). The simplest way to couple
D(θ) and D(θ′), or equivalently zθ and zθ′ , is to sample z0 ∼ D, and set zθ = (Σ0 +
Σ(θ))z0 + µ0 + µ(θ) and zθ′ = (Σ0 + Σ(θ′))z0 + µ0 + µ(θ′). With this choice, ∥zθ − zθ′∥2 =
∥Σ(θ − θ′)z0 + µ(θ − θ′)∥2, and hence W1(D(θ),D(θ′)) ⩽ E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥2.

Therefore, the left-hand side in equation (2.15) can be bounded by

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′−θ)− E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′−θ) ⩽ β E ∥Σ(θ−θ′)z0 +µ(θ−θ′)∥2∥θ′−θ∥2,
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but also by applying ε-sensitivity

E
z∼D(θ)

[∇θℓ(z; θ)]⊤(θ′ − θ)− E
z∼D(θ′)

[∇θℓ(z; θ)]⊤(θ′ − θ) ⩽ βε∥θ′ − θ∥22.

Finally, to show λ = max {γ − β2/γz, γ + γz(σ
2
min(µ) + σ2

min(Σ))− 2βε}-convexity it suffices
to show both

β E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥2∥θ′ − θ∥2 ⩽
β2/γz

2
∥θ − θ′∥22 +

γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22

(2.16)

and

βε∥θ′ − θ∥22 ⩽
2βε− γz(σ

2
min(µ) + σ2

min(Σ))

2
∥θ − θ′∥22 +

γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22.

(2.17)

By the AM-GM inequality, we have

β E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥2∥θ′ − θ∥2 ⩽
1

2

β2

γz
∥θ′ − θ∥22 +

γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22,

and so condition (2.16) follows.
For condition (2.17), we observe that

E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22 = E ∥Σ(θ − θ′)z0∥22 + ∥µ(θ − θ′)∥22
= Tr

(
Σ(θ − θ′)Σz0Σ(θ − θ′)⊤

)
+ ∥µ(θ − θ′)∥22

= ∥Σ1/2
z0

Σ(θ − θ′)⊤∥2F + ∥µ(θ − θ′)∥22.

Applying σmin(Σ)∥θ−θ′∥2 ⩽ ∥Σ1/2
z0 Σ(θ−θ′)⊤∥F and σmin(µ)∥θ−θ′∥2 ⩽ ∥µ(θ−θ′)∥2 completes

the proof of the theorem.

Proof of Lemma 2.5.5. The proof follows the standard argument for proving equivalent for-
mulations of strong convexity.
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First we show that Ez∼D(θ)[g(z)]− γz
2
E ∥Σ(θ)z0+µθ∥22 is convex in θ. This follows because:

E
z∼D(αθ+(1−α)θ′)

[g(z)]− γz
2
E ∥Σ(αθ + (1− α)θ′)z0 + µ(αθ + (1− α)θ′)∥22

⩽ E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− α(1− α)γz
2

E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22

− γz
2
E ∥Σ(αθ + (1− α)θ′)z0 + µ(αθ + (1− α)θ′)∥22

= E
z∼αD(θ)+(1−α)D(θ′)

[g(z)]− γz
2
α2 E ∥Σ(θ)z0 + µθ∥22 −

γz
2

(1− α)2 E ∥Σ(θ′)z0 + µθ′∥22

+
γz
2

2α(1− α)E(Σ(θ) + µθ)⊤(Σ(θ′) + µθ′)− α(1− α)γz
2

E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22
= E

z∼αD(θ)+(1−α)D(θ′)
[g(z)]− γz

2
αE ∥Σ(θ)z0 + µθ∥22 −

γz
2

(1− α)E ∥Σ(θ′)z0 + µθ′∥22

= α

(
E

z∼D(θ)
[g(z)]− γz

2
E ∥Σ(θ)z0 + µθ∥22

)
− (1− α)

(
E

z∼D(θ′)
[g(z)]

γz
2
E ∥Σ(θ′)z0 + µθ′∥22

)
.

By the equivalent first-order characterization, this means that

E
z∼D(θ′)

[g(z)] ⩾
γz
2
E ∥Σ(θ′)z0 + µθ′∥22 + E

z∼D(θ)
[g(z)]− γz

2
E ∥Σ(θ)z0 + µθ∥22

+ (∇θ E
z∼D(θ)

[g(z)])⊤(θ′ − θ)− γz
2

2E(Σ(θ)z0 + µθ)⊤(∇θ(Σ(θ)z0 + µθ))⊤(θ′ − θ)

⩾
γz
2
E ∥Σ(θ′)z0 + µθ′∥22 + E

z∼D(θ)
[g(z)]− γz

2
E ∥Σ(θ)z0 + µθ∥22

+ (∇θ E
z∼D(θ)

[g(z)])⊤(θ′ − θ)− γz E(Σ(θ)z0 + µθ)⊤(Σ(θ′ − θ)z0 + µ(θ′ − θ))

= E
z∼D(θ)

[g(z)] + (∇θ E
z∼D(θ)

[g(z)])⊤(θ′ − θ) +
γz
2
E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22.

Remark 2.5.1. We note that the sensitivity parameter ε can be bounded in terms of the
location and scale parameters for location-scale families. In particular, in showing condition
(2.17), we saw that

E ∥Σ(θ − θ′)z0 + µ(θ − θ′)∥22 = ∥Σ1/2
z0

Σ(θ − θ′)⊤∥2F + ∥µ(θ − θ′)∥22.
If we then denote

σmax(µ) = max
∥θ∥2=1

∥µθ∥2, σmax(Σ) = max
∥θ∥2=1

∥Σ1/2
z0

Σ(θ)⊤∥F ,

we can see that E ∥Σ(θ−θ′)z0+µ(θ−θ′)∥22 ⩽ σ2
max(µ)∥θ−θ′∥22+σ2

max(Σ)∥θ−θ′∥22. Combining
this result with Lemma 2.5.6 and Jensen’s inequality, we get that

W1(D(θ),D(θ′)) ⩽
√

σ2
max(µ) + σ2

max(Σ)∥θ − θ′∥2,
and so ε ⩽

√
σ2
max(µ) + σ2

max(Σ).
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2.5.10 Proof of Theorem 2.3.3

We carefully review the problem setup and introduce the remaining assumptions. The dis-
tribution map D parameterizes a location family

zθ ∼ D(θ) ⇔ zθ
d
= z0 + µθ,

where z0 ∼ D0. We assume the base distribution D0 is zero-mean and subgaussian with
parameter K. The loss function ℓ(z; θ) is Lz-Lipschitz in z, L-Lipschitz and in θ, and β-
smooth in (z, θ) in the sense that ∇ℓ(z; θ) ∈ Rm+d is Lipschitz in (z, θ).

We also assume that λ = max{γ − β2/γz, γ − 2εβ + γzσ
2
min(µ)} > 0, where γ and γz are

the strong convexity parameters of the loss in θ and z, respectively. By Theorem 2.3.2, this
implies that the performative risk is λ-strongly convex.

We assume that the performative optimum θPO is contained in a ball of radius R, so in
the second stage we can set the domain of optimization to be Θ = {θ : ∥θ∥2 ⩽ R}. Finally,
we assume that the minimizer of the perturbed performative risk at the population level,
θ̂ ∈ arg minθ∈Θ P̂R(θ) is contained in the interior of Θ with probability 1.

Theorem 2.5.1. Under the preceding assumptions, if n ⩾ Ω (d + m + log(1/δ)), then, with
probability 1− δ, Algorithm 1 returns a point θ̂n such that

PR(θ̂n)− PR(θPO) ⩽ O
(
d + m + log(1/δ)

n
+

1

δn

)
.

Before proceeding to the proof of this result, we first state four auxiliary lemmas, which
constitute the bulk of our analysis. The first lemma is a standard result about ordinary
least-squares estimation.

Lemma 2.5.7. If n ⩾ Ω(d + m + log(1/δ)), then with probability 1− δ,

∥µ− µ̂∥2 ⩽ O

(√
(d + m) + log(1/δ)

n

)
.

The next lemma is a simple adaptation from Theorem 2 in [152] controlling the general-
ization gap of the empirical risk minimizer for strongly convex losses.

Lemma 2.5.8. Suppose P̂Rn is λ̂-strongly convex. Then, with probability at least 1− δ,

P̂R(θ̂n)− P̂R(θ̂) ⩽
4(Lz∥µ̂∥2 + L)2

δλ̂n
.

The next lemma controls the difference in gradients between the true performative risk
PR and the perturbed performative risk P̂R.

Lemma 2.5.9. For any θ ∈ Θ,

∥∇PR(θ)−∇P̂R(θ)∥22 ⩽ O(∥µ∥22∥µ− µ̂∥22).
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Finally, the last lemma shows that the smoothness assumptions on the loss ensure smooth-
ness of the performative risk. Here, by βθ-smoothness we mean that∇θPR(θ) is βθ-Lipschitz.

Lemma 2.5.10. Under the proceeding assumptions, the performative risk PR(θ) is βθ =
O(∥µ∥22)-smooth.

With these lemmas in hand, we are now ready to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. By assumption, the performative risk PR(θ) is λ-strongly convex,
for some λ > 0. This implies

PR(θ̂n)− PR(θPO) ⩽
1

2λ
∥∇PR(θ̂n)∥22.

Since θ̂PO is an interior minimizer of P̂R, we know ∇P̂R(θ̂PO) = 0. Using ∥a + b∥22 ⩽
2∥a∥22 + 2∥b∥22,

1

2λ
∥∇PR(θ̂n)∥22 =

1

2λ
∥∇PR(θ̂n)−∇P̂R(θ̂PO)∥22

=
1

2λ
∥∇PR(θ̂n)−∇P̂R(θ̂n) +∇P̂R(θ̂n)−∇P̂R(θ̂PO)∥22

⩽
1

λ
∥∇PR(θ̂n)−∇P̂R(θ̂n)∥22 +

1

λ
∥∇P̂R(θ̂n)−∇P̂R(θ̂PO)∥22. (2.18)

We bound each of these terms separately. For the first term, by Lemma 2.5.9,

∥∇PR(θ̂n)−∇P̂R(θ̂n)∥22 ⩽ O(∥µ∥22∥µ− µ̂∥22).

By Lemma 2.5.7, with probability 1 − δ, we can bound ∥µ − µ̂∥22 ⩽ O
(

d+m+log(1/δ)
n

)
, and

thus

∥∇PR(θ̂n)−∇P̂R(θ̂n)∥22 ⩽ O

(
d + m + log(1/δ)

n

)
.

For the second term in equation (2.18), notice that λ = max{γ − β2/γz, γ − 2εβ +

γzσ
2
min(µ)} > 0 implies that P̂R is at least λ̂ = λ − O( 1√

n
)-strongly convex. This follows

because |σmin(µ)− σmin(µ̂)| ⩽ ∥µ− µ̂∥ by Weyl’s inequality, and P̂R is O(∥µ̂∥2)-sensitive, so
by Lemma 2.5.7, each term depending on ε or σmin(µ̂) is within O(1/

√
n) or O(1/n) of the

corresponding values for the non-perturbed risk PR.
Hence, when n ⩾ Ω(1/λ2), the strong convexity parameter of the perturbed performative

risk, λ̂, is at least λ/2.

With this, we can apply the fact that θ̂PO is an interior minimizer of P̂R by assumption
to conclude that when n ⩾ Ω(1/λ2),

∥θ̂n − θ̂PO∥22 ⩽
4

λ

(
P̂R(θ̂n)− P̂R(θ̂PO)

)
.
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Now, when P̂R is strongly convex, the finite-sample performative risk P̂Rn is also strongly
convex because Theorem 2.3.2 does not depend on the base distribution D0, and P̂Rn is
simply P̂R when the base distribution D0 is replaced with the uniform distribution on
{z1, . . . , zn}. Consequently, by Lemma 2.5.8, with probability 1− δ,

∥θ̂n − θ̂PO∥22 ⩽ O
(

P̂R(θ̂n)− P̂R(θ̂PO)
)
⩽ O

(∥µ̂∥22
δn

)
.

By Lemma 2.5.10, P̂R is O(∥µ̂∥22)-smooth. Applying the previous display then gives us,

∥∇P̂R(θ̂n)−∇P̂R(θ̂PO)∥22 ⩽ O
(
∥µ̂∥42∥θ̂n − θ̂PO∥22

)
⩽ O

(∥µ̂∥62
δn

)
.

By the triangle inequality and repeated application of (a+b)2 ⩽ 2a2+2b2, ∥µ̂∥62 ⩽ 128∥µ̂−
µ∥62 + 128∥µ∥62. Therefore, the above term is O(∥µ∥62/δn). Putting everything together with
a union bound, we have shown that with probability 1 − δ, if n ⩾ Ω(d + m + log(1/δ)), it
holds that

PR(θ̂n)− PR(θPO) ⩽ O

(
d + m + log(1/δ)

n
+

1

δn

)
,

as desired.

Proofs of technical lemmas. The proof of Lemma 2.5.7 is essentially standard (see, e.g.,
[120]), but we include it for completeness.

Proof of Lemma 2.5.7. Define Z ∈ Rn×m with rows zi and Θ ∈ Rn×d with rows θi, 1 ⩽ i ⩽ n.
Then, Z = Θµ⊤ + Z0, where Z0 ∈ Rn×m is a matrix with base samples from D0 as rows.
Temporarily assume that Θ⊤Θ is invertible; we will later condition on this event. Separately
optimizing over each row of µ, we can write the least-squares estimator as

µ̂⊤ =
(
Θ⊤Θ

)−1
Θ⊤Z.

Consequently, we can bound the estimation error as

∥µ− µ̂∥2 = ∥µ⊤ − µ̂⊤∥2 = ∥µ⊤ −
(
Θ⊤Θ

)−1
Θ⊤ (Θµ⊤ + Z0

)
∥2

= ∥
(
Θ⊤Θ

)−1
Θ⊤Z0∥2

⩽
1

λmin(Θ⊤Θ)
∥Θ⊤Z0∥2.

Since θi ∼ N (0, I), Θ ∈ Rn×d has i.i.d. N (0, 1) entries, and so Θ⊤Θ is a standard Wishart
matrix. The standard bound on the minimum eigenvalue of a Wishart matrix (see Theorem
4.6.1 in [168]) gives, with probability 1− δ,√

λmin(Θ⊤Θ) ⩾ Ω(
√
n−
√
d−

√
log(1/δ)).
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Therefore, if n ⩾ Ω(d + log(2/δ)), then, with probability 1− δ/2,√
λmin(Θ⊤Θ) ⩾ Ω(

√
n/2). (2.19)

Control of the second term, ∥Θ⊤Z0∥2, also follows from a standard covering argument
followed by the Bernstein bound. Write Θ⊤Z0 =

∑n
i=1 θi(z0)

⊤
i . Let Bd and Bm denote the

unit balls in Rd and Rm, respectively. Then,

∥Θ⊤Z0∥2 = sup
x∈Bd,y∈Bm

x⊤

(
n∑

i=1

θi(z0)
⊤
i

)
y = sup

x∈Bd,y∈Bm

n∑
i=1

(
x⊤θi

) (
(z0)

⊤
i y
)
.

Let Nε, and Mε denote ε-coverings of Bd and Bm, respectively. A volumetric bound gives

|Nε| ⩽
(
1 + 2

ε

)d
and similarly |Mε| ⩽

(
1 + 2

ε

)m
(see Corollary 4.2.13 in [168]). Taking

ε = 1/4, |Nε| ⩽ 9d and |Mε| ⩽ 9m. Approximating the supremum over the ε-nets gives

∥Θ⊤Z0∥2 ⩽ 2 max
x∈Nε,y∈Mε

n∑
i=1

(
x⊤θi

) (
(z0)

⊤
i y
)
.

Fix x, y ∈ Nε,Mε. Since θi ∼ N (0, I) and ∥x∥2 = 1, x⊤θi ∼ N (0, 1), which has subgaussian
norm 1. Similarly, since (z0)i is subgaussian with parameter K and ∥y∥2 = 1, the marginal
(z0)

⊤
i y is subgaussian with parameter K. Since z0 and θ are independent and zero-mean,

the product (x⊤θi)((z0)
⊤
i y) is zero-mean and subexponential with parameter K. Since each

term is subexponential, by the Bernstein bound (see Theorem 2.8.1 in [168]), for any t > 0,

P

{
n∑

i=1

(
x⊤θi

) (
(z0)

⊤
i y
)
> t/2

}
⩽ exp

(
−cmin

{
t2

nK2
,
t

K

})
,

for some universal constant c. Taking a union bound over the ε-nets,

P
{
∥Θ⊤Z0∥2 > t

}
⩽ 9d+m exp

(
−cmin

{
t2

nK2
,
t

K

})
.

If n ⩾ Ω (d + m + log(2/δ)), then with probability at least 1− δ/2,

∥Θ⊤Z0∥2 ⩽ O(
√

n((d + m) + log(1/δ))). (2.20)

Combining equations (2.19) and (2.20) with a union bound, if n ⩾ Ω(d+m+log(1/δ)), then

∥µ− µ̂∥2 ⩽ O

(√
(d + m) + log(1/δ)

n

)
.
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Proof of Lemma 2.5.9. Under the location-family parameterization, we can write

PR(θ) = E
z∼D(θ)

ℓ(z; θ) = E
z0∼D0

ℓ(z0 + µθ; θ),

so the gradients are given by

∇PR(θ) = E
z0∼D0

∇ℓ(z0 + µθ; θ) and ∇P̂R(θ) = E
z0∼D0

∇ℓ(z0 + µ̂θ; θ).

This representation allows us to write∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥2
2

=

∥∥∥∥[ Ez0∼D0

∇ℓ(z0 + µθ; θ)−∇ℓ(z0 + µ̂θ; θ)

]∥∥∥∥2
2

.

Applying the chain rule, together with the triangle inequality, gives∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥
2
⩽

∥∥∥∥[ Ez0∼D0

∇θℓ(z0 + µθ; θ)−∇θℓ(z0 + µ̂θ; θ)

]∥∥∥∥
2

+

∥∥∥∥[ Ez0∼D0

µ⊤∇zℓ(z0 + µθ; θ)− µ̂⊤∇zℓ(z0 + µ̂θ; θ)

]∥∥∥∥
2

.

We bound each of these terms separately. For the first term, β-smoothness in z immediately
gives ∥∥∥∥[ Ez0∼D0

∇θℓ(z0 + µθ; θ)−∇θℓ(z0 + µ̂θ; θ)

]∥∥∥∥
2

⩽ β∥µθ − µ̂θ∥2 ⩽ β∥µ− µ̂∥2∥θ∥2.

For the second term, adding and subtracting µ⊤∇zℓ(z0 + µ̂θ; θ) and then using the triangle
inequality,∥∥∥∥[ Ez0∼D0

µ⊤∇zℓ(z0 + µθ); θ)− µ̂⊤∇zℓ(z0 + µ̂θ; θ)

]∥∥∥∥
2

⩽ ∥µ∥2∥ E
z0∼D0

[∇zℓ(z0 + µθ); θ)−∇zℓ(z0 + µ̂θ; θ)]∥2 + ∥µ− µ̂∥2∥ E
z0∼D0

[∇zℓ(z0 + µ̂θ; θ)]∥2
⩽ β∥µ∥2∥µ− µ̂∥2∥θ∥2 + Lz∥µ− µ̂∥2,

where the last line used β-smoothness in z. Combining both pieces, we have∥∥∥∇PR(θ)−∇P̂R(θ)
∥∥∥
2
⩽ ((β + β∥µ∥2) ∥θ∥2 + Lz) ∥µ− µ̂∥2.

Using the trivial bound ∥θ∥2 ⩽ R, and then squaring both sides,

∥∇PR(θ̂)−∇P̂R(θ̂)∥22 ⩽ ((1 + ∥µ∥2) βR + Lz)
2 ∥µ− µ̂∥22.
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Proof of Lemma 2.5.10. By applying the location family parameterization as in the proof of
Lemma 2.5.9, we get

∥∇PR(θ)−∇PR(θ′)∥2 = ∥ E
z0∼D0

[∇ℓ(z0 + µθ; θ)−∇ℓ(z0 + µθ′; θ′)]∥2.

Using the chain rule and the triangle inequality,

∥∇PR(θ)−∇PR(θ′)∥2 ⩽ ∥ E
z0∼D0

∇θℓ(z0 + µθ; θ)−∇θℓ(z0 + µθ′; θ′)∥2
+ ∥ E

z0∼D0

µ⊤∇zℓ(z0 + µθ; θ)− µ⊤∇zℓ(z0 + µθ′); θ′)∥2. (2.21)

For the first term in equation (2.21), adding and subtracting ∇θℓ(z + µθ′; θ) and using the
triangle inequality gives

∥ E
z0∼D0

[∇θℓ(z0 + µθ; θ)−∇θℓ(z0 + µθ′; θ′)]∥2 ⩽ ∥ E
z0∼D0

∇θℓ(z0 + µθ; θ)−∇θℓ(z0 + µθ′; θ)∥2
+ ∥ E

z0∼D0

∇θℓ(z0 + µθ′; θ)−∇θℓ(z0 + µθ′; θ′)∥2
⩽ β∥µ∥2∥θ − θ′∥2 + β∥θ − θ′∥2,

where we used Jensen’s inequality and the assumption that ∇θℓ(z; θ) is β-Lipschitz in z (for
the first term) and β-Lipschitz in θ (for the second term).

Now, for the second term in equation (2.21), similarly adding and subtracting µ⊤∇zℓ(z+
µθ′; θ) and using the triangle inequality gives

∥ E
z0∼D0

[µ⊤∇zℓ(z0 + µθ; θ)− µ⊤∇zℓ(z0 + µθ′; θ′)]∥2
⩽ ∥ E

z0∼D0

µ⊤∇zℓ(z0 + µθ; θ)− µ⊤∇zℓ(z0 + µθ′; θ)∥2
+ ∥ E

z0∼D0

µ⊤∇zℓ(z0 + µθ′; θ)− µ⊤∇zℓ(z0 + µθ′; θ′)∥2
⩽ β∥µ∥22∥θ − θ′∥2 + β∥µ∥22∥θ − θ′∥2,

where we used ∇zℓ(z; θ) is β Lipschitz in z (for the first term) and β Lipschitz in θ (for the
second term). This completes the proof.

2.5.11 Proof of Lemma 2.3.1

Notice that PR(θ) − PR(θ′) = (DPR(θ, θ)−DPR(θ, θ′)) + (DPR(θ, θ′)−DPR(θ′, θ′)). We
bound the first difference using Lipschitzness of ℓ in θ as |DPR(θ, θ) − DPR(θ, θ′)| =
|Ez∼D(θ)[ℓ(z; θ) − ℓ(z; θ′)]| ⩽ Lθ∥θ − θ′∥. For the second term we combine Definition 2.1.3
and Lipschitzness of ℓ in z via the Kantorovich-Rubinstein duality theorem. In particular,
we get |DPR(θ, θ′)−DPR(θ′, θ′)| = |Ez∼D(θ)ℓ(z; θ′)−Ez∼D(θ′)ℓ(z; θ′)| ⩽ εLz∥θ− θ′∥. Putting
both bounds together, we obtain the claimed Lipschitz bound.
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2.5.12 Proof of Proposition 2.3.3

We construct a γ-cover of the parameter space, denoted Sγ, and deploy all models in this
cover. This gives us access to the distributions {D(θ) : θ ∈ Sγ}. Using this information, for
any θ ∈ Θ we can compute

P̂R(θ) = DPR(ΠSγ (θ), θ) = E
z∼D(ΠSγ (θ))

ℓ(z; θ),

where ΠSγ (θ) := arg minθ′∈Sγ
∥θ′− θ∥ is the projection onto Sγ. Note that ∥θ−ΠSγ (θ)∥ ⩽ γ

all θ ∈ Θ since Sγ is a cover. Therefore, for any θ ∈ Θ, we can bound PR(θ) as

PR(θ) ⩽ DPR(ΠSγ (θ), θ) + Lzε∥ΠSγ (θ)− θ∥
⩽ DPR(ΠSγ (θ), θ) + Lzεγ

= P̂R(θ) + Lzεγ.

Similarly we obtain PR(θ) ⩾ P̂R(θ)− Lzεγ, which completes the proof.

2.5.13 Proof of Proposition 2.3.4

We will show that PRLB(θ) ⩽ PR(θ) and PRmin ⩾ PR(θPO); these two facts immediately
imply ∆(θ) := PR(θ)− PR(θPO) ⩾ PRLB(θ)− PRmin.

The first bound follows because PR(θ) = DPR(θ, θ) ⩾ DPR(θ′, θ)−Lzε∥θ′− θ∥ for all θ′,
where we use (Lzε)-Lipschitzness of DPR in the first argument. Similarly, the second bound
follows because

PR(θPO) = min
θ

DPR(θ, θ) ⩽ min
θ

(DPR(θ′, θ) + Lzε∥θ − θ′∥),

for all θ′.

2.5.14 Proof of Theorem 2.3.4

We prove a regret bound for Algorithm 2. We use Regph(p1 : p2) to denote the regret incurred
from phase p1 to phase p2:

Regph(p1 : p2) = E
p2∑

p=p1

∆(θp).

We let Regph(0 : p) ≡ Regph(p). For phases p that happen after the time horizon T , we
assume that the incurred regret is 0; for example, if phases p1 ⩽ p2 happen after T , then
Regph(p1 : p2) = 0.
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Clean event

First, we define a clean event that guarantees that the estimates D̂PR(θ, θ′) are close to
the true values DPR(θ, θ′) at all phases. The clean event essentially guarantees uniform

convergence over D̂PR(θ, ·) for every θ ∈ Pp.

Definition 2.5.1 (Clean event). Denote the “clean event” by

Eclean =

{
∀p : sup

θ∈Pp

sup
θ′∈Θ

∣∣∣D̂PR(θ, θ′)−DPR(θ, θ′)
∣∣∣ ⩽ 2C∗(ℓ) + 3

√
log(T )

√
npm0

}
, (2.22)

where Pp is the set of all models deployed in phase p during time horizon T .

We show that the clean event occurs with high probability.

Lemma 2.5.11. The clean event holds with high probability,

P {Eclean} ⩾ 1− T−2.

Proof. We consider each interval of length np in phase p, during which the same model is
deployed, separately, and then take a union bound over these intervals across all phases.
Therefore, we will say interval s in phase p to refer to steps (s− 1)np + 1, . . . , snp in phase
p. For the sake of this proof, we consider a “counterfactual” set of samples for each model θ
that augments the set of actually observed samples. In particular, for interval s in phase p,
we let {zθ,sj }

npm0

j=1 denote i.i.d. samples from D(θ). The samples for different time intervals
and different phases are independent. When model θ is deployed, we observe the samples
corresponding to the interval in which θ is deployed.

For each phase p and each time interval s within phase p, let Es,p
end denote the event that

phase p terminates strictly before interval s is reached. Let Es,p
clean denote the event that one

of the following two holds:

(E1) Es,p
end occurs;

(E2) Es,p
end does not occur, and for the model θs deployed in time interval s it holds that:

sup
θ′∈Θ

∣∣∣D̂PR(θs, θ
′)−DPR(θs, θ

′)
∣∣∣ ⩽ 2C + 3

√
log(T )

√
npm0

,

where θs is a random variable.
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The probability that Es,p
clean does not occur is at most:

P

[
¬Es,p

end & sup
θ′∈Θ

∣∣∣D̂PR(θs, θ
′)−DPR(θs, θ

′)
∣∣∣ > 2C + 3

√
log(T )

√
npm0

]

= P [¬Es,p
end] · P

[
sup
θ′∈Θ

∣∣∣D̂PR(θs, θ
′)−DPR(θs, θ

′)
∣∣∣ > 2C + 3

√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end

]

⩽ P

[
sup
θ′∈Θ

∣∣∣D̂PR(θs, θ
′)−DPR(θs, θ

′)
∣∣∣ > 2C + 3

√
log(T )

√
npm0

∣∣∣∣∣¬Es,p
end

]
.

We can equivalently write this as

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθs,sj ; θ′)−DPR(θs, θ
′)

∣∣∣∣∣ > 2C + 3
√

log(T )
√
npm0

∣∣∣∣∣¬Es,p
end

]

= Eθ∼θs

[
P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)−DPR(θ, θ′)

∣∣∣∣∣ > 2C + 3
√

log(T )
√
npm0

∣∣∣∣∣¬Es,p
end, θs = θ

]]
.

To upper bound this expression, it suffices to show an upper bound on

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)−DPR(θ, θ′)

∣∣∣∣∣ > 2C + 3
√

log(T )
√
npm0

∣∣∣∣∣¬Es,p
end, θs = θ

]

that holds for every θ. The first observation is that for any θ, the samples {zθ,sj }
npm0

j=1 are
independent of the event {θs = θ,¬Es,p

end}, since the event depends only on the samples col-
lected in previous time intervals and phases. This means that the above probability is equal
to:

P

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)−DPR(θ, θ′)

∣∣∣∣∣ > 2C + 3
√

log(T )
√
npm0

]
.

Let εj denote i.i.d. Rademacher random variables. Then, we can observe that with proba-
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bility 1− T−3, it holds that:

sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)−DPR(θ, θ′)

∣∣∣∣∣
⩽ E

[
sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′)−DPR(θ, θ′)

∣∣∣∣∣
]

+

√
6 log(T )

npm0

⩽ 2 · E
[

sup
θ′∈Θ

∣∣∣∣∣ 1

npm0

npm0∑
j=1

ℓ(zθ,sj ; θ′) · εj
∣∣∣∣∣
]

+

√
6 log(T )

npm0

⩽
2

√
npm0

· sup
n⩾1

√
nE

[
sup
θ′∈Θ

∣∣∣∣∣ 1n
n∑

j=1

ℓ(zθj ; θ′) · εj
∣∣∣∣∣
]

+

√
6 log(T )

npm0

⩽
2C∗(ℓ) + 3

√
log(T )

√
npm0

,

where the first step follows from the bounded differences inequality and the second step
follows from a classical symmetrization argument. In the penultimate step we let {zθj}j∈N
denote an infinite sequence of samples from D(θ). Putting this all together, we have that:

1− P [Es,p
clean] ⩽ T−3.

Finally, using that there are at most T intervals before time horizon T (across all phases),
by a union bound we see that:

1− P [Eclean] ⩽ T−2,

as desired.

Suboptimality of the active set

We show that the elimination strategy in Algorithm 2 will never eliminate any performatively
optimal point.

Lemma 2.5.12. On the clean event (2.22), any performatively optimal point θPO ∈
arg minθ PR(θ) will always remain in A.

Proof. It suffices to show that θPO cannot be eliminated in Step 14 of Algorithm 2. Fix any
phase p and denote by Pp the running set of deployed points at any point during phase p.
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Then, we have:

PRLB(θPO) = max
θ′∈Pp

(
D̂PR(θ′, θPO)− Lzε∥θPO − θ′∥

)
⩽ max

θ′∈Pp

(DPR(θ′, θPO)− Lzε∥θPO − θ′∥) + γp

⩽ PR(θPO) + γp

= min
θ

DPR(θ, θ) + γp

⩽ min
θ

min
θ′∈Pp

DPR(θ′, θ) + Lzε∥θ − θ′∥+ γp

⩽ min
θ

min
θ′∈Pp

D̂PR(θ′, θ) + Lzε∥θ′ − θ∥+ 2γp

= PRmin + 2γp.

Therefore, PRLB(θPO) ⩽ PRmin + 2γp, implying that θPO cannot be removed from A during
phase p. Since this is true for any phase p, that completes the proof of the lemma.

We next show that the elimination strategy is sufficiently effective that all models that
remain active after a given phase p have suboptimality at most 8γp.

Lemma 2.5.13. On the clean event (2.22), after phase p all models θ ∈ A satisfy ∆(θ) ⩽
8γp.

Proof. Fix a phase p. We will analyze Pp at the end of phase p. The proof relies on two key
facts:

(F1) If θ is active after phase p, then ∥θ−ΠPp(θ)∥ ⩽ rp, where ΠPp(θ) = arg minθ′∈Pp
∥θ−θ′∥.

(F2) θPO is active after phase p.

The first fact follows since during phase p net points cannot be eliminated from Sp in
Step 13 while some parameter within an rp-neighborhood is active. The second fact is proved
in Lemma 2.5.12. Note that from fact (F1) it further follows that there is always a model in
Pp within the rp-neighborhood of θPO.

Now suppose that θ is active after phase p. Then, we have:

PR(θ) ⩽ DPR(ΠPp(θ), θ) + Lzε∥ΠPp(θ)− θ∥
⩽ D̂PR(ΠPp(θ), θ) + Lzε∥ΠPp(θ)− θ∥+ γp

⩽ min
θ′

(
D̂PR(ΠPp(θ′), θ′) + Lzε∥ΠPp(θ′)− θ′∥

)
+ 2Lzε∥ΠPp(θ)− θ∥+ 3γp,

where we used the definitions of PRmin and PRLB(θ), together with the fact that PRLB(θ) ⩽
PRmin + 2γp for active models. Now choosing θ′ = θPO, applying (F1), (F2), and accounting
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for finite-sample uncertainty we find

PR(θ) ⩽ D̂PR(ΠPp(θPO), θPO) + Lzε∥ΠPp(θPO)− θPO∥+ 2Lzε∥ΠPp(θ)− θ∥+ 3γp

⩽ D̂PR(ΠPp(θPO), θPO) + 3Lzεrp + 3γp

⩽ DPR(θPO, θPO) + Lzε∥ΠPp(θPO)− θPO∥+ 3Lzεrp + 4γp

⩽ PR(θPO) + 4(Lzεrp + γp)

= PR(θPO) + 8γp,

where we use the fact that rp = γp
Lzε

. Rearranging the terms we obtain ∆(θ) = PR(θ) −
PR(θPO) ⩽ 8γp as claimed in Lemma 2.5.13.

Bounding the number of suboptimal deployments

For i ⩾ 1, we consider the suboptimality bands

Ei =
{
θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)

}
.

In the following lemma, we bound the number of times that models in Ei can be deployed
in a given phase.

Lemma 2.5.14. Suppose that the clean event (2.22) holds. For i ⩾ 1, in phase
log2(1/(Lzε)) ⩽ p ⩽ log2(1/(Lzε)) + i + 1, the number of models in Ei that are deployed
is at most O

(
(3/rp)

d0
)
in expectation, where d0 is the (Lzε)-sequential zooming dimension.

To provide intuition for Lemma 2.5.14, it is informative to consider a weaker ver-
sion of the lemma where d0 is taken to be the (Lzε)-zooming dimension rather than the
(Lzε)-sequential zooming dimension. To see why this weaker version of the lemma is
true, notice that at the beginning of phase p, the set of active models A is a subset of
{θ : ∆(θ) ⩽ 8γp−1} = {θ : ∆(θ) ⩽ 16γp} = {θ : ∆(θ) ⩽ 16Lzεrp}. The set of models de-
ployed in phase p is contained in a minimal rp-net of A. Notice that rp ⩾ 2−(i+1). By the

definition of zooming dimension, we know that at most a multiple of
(

3
rp

)d0
elements from

the set {θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)} =
{
θ : ∆(θ) ∈ [16 · 2−(i+1)Lzε, 32 · 2−(i+1)Lzε)

}
are deployed, as desired.

The proof of Lemma 2.5.14 boils down to refining this proof sketch to account for the
sequential elimination aspect of Algorithm 2.

Proof. For the purposes of this analysis, we condition on the clean event.
Fix a phase log2(1/(Lzε)) ⩽ p ⩽ log2(1/(Lzε))+i+1. Let S0

p be the covering of A chosen
at the beginning of phase p, and let π be an ordering of S0

p chosen uniformly at random. It is
not difficult to see that Algorithm 2 is equivalent to drawing π at the beginning of the phase,
and deploying models in the order given by π (naturally, skipping those that get eliminated).
For technical convenience, we analyze this reformulation of the algorithm.
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Condition on a realization π, and let Pp ⊆ S0
p be the set of models that are ultimately

get deployed. Note that Pp depends on the randomness arising from finite-sample noise at
each step of the phase. We will show a bound on |Pp| that deterministically holds on the
clean event. In particular, consider the models θ ∈ S0

p ∩ {θ : 8Lzεri ⩽ ∆(θ) < 16Lzεri} such
that:

PR
rp
LB(π(θ)) ⩽ PRmin(π(θ)) + 4Lzεrp = PRmin(π(θ)) + 4γp. (2.23)

We will show that Pp is a subset of such models.
Suppose that θnet ∈ S0

p is deployed in phase p. Then, that means that there exists
θ′′ ∈ Ballrp(θnet) that remains active after the first π(θnet)− 1 deployments; that is:

max
θ′:π(θ′)<π(θnet)

(D̂PR(θ′, θ′′)− Lzε∥θ′ − θ′′∥) = PRLB(θ′′)

⩽ PRmin + 2γp

= min
θ

min
θ′:π(θ′)<π(θnet)

(D̂PR(θ′, θ) + Lzε∥θ′ − θ∥) + 2γp.

Since the clean event holds, we know that:

max
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥)−γp ⩽ min
θ

min
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ)+Lzε∥θ′−θ∥)+3γp.

Rearranging, this means that:

max
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥)

⩽ min
θ

min
θ′:π(θ′)<π(θnet)

(DPR(θ′, θ) + Lzε∥θ′ − θ∥) + 4γp = PRmin(π(θnet)) + 4γp.

This further implies that:

PR
rp
LB(π(θnet)) = min

θ′′∈Ballrp (θnet)
max

θ′:π(θ′)<π(θnet)
(DPR(θ′, θ′′)− Lzε∥θ′ − θ′′∥) ⩽ PRmin(π(θnet))+4γp.

We see that any θnet ∈ Pp must satisfy condition (2.23). By the definition of sequential
zooming dimension, we know that the expected number of models in Ei that satisfy (2.23),

where the expectation is taken over the randomness of π, is at most a multiple of
(

3
rp

)d0
,

hence E |Pp ∩ Ei| ⩽ O
((

3
rp

)d0)
, as desired.

Regret bound on the clean event

To bound the regret on the clean event, we break the analysis into two cases: (a) the first
log2(1/(Lzε)) phases, and (b) all remaining phases.
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Lemma 2.5.15. Suppose that the clean event (2.22) holds. In the first ⌊log2(1/(Lzε))⌋
phases, the algorithm has incurred regret at most

Regph (⌊log2(1/(Lzε))⌋) = O
(√

T

m0

(√
log T + C

))
.

Proof. During phases p ⩽ log2(1/(Lzε)), we deploy a single model since rp ⩾ 1 and Θ is
assumed to have radius 1.

We break the first ⌊log2(1/(Lzε))⌋ phases into two cases. For a value of N ⩾ 0 specified
later, we consider cases p < N and p ⩾ N separately.

Case 1: phases N ⩽ p ⩽ ⌊log2(1/(Lzε))⌋. By Lemma 2.5.13, we see that the model
deployed in phase N must have suboptimality at most 8·2−N+1 = 2−N+4. Since the algorithm
runs for at most T time steps, this means that the total regret incurred in these phases is at
most T · 2−N+4.

Case 2: phases 0 ⩽ p < min{N, ⌊log2(1/(Lzε))⌋}. By Lemma 2.5.13, we know that the
model deployed in phase p must have suboptimality at most 8 · 2−p+1 = 2−p+4. Moreover,

this model is deployed for np =

⌈
(2C+3

√
log T)

2

γ2
pm0

⌉
steps. The regret incurred up to phase N

can thus be bounded as:

Regph(N) ⩽
N−1∑
p=0

np2
−p+4

⩽ 16
N−1∑
p=0

2−p

⌈
22p(2C + 3

√
log T )2

m0

⌉
.

Since we assume m0 = o((C +
√

log T )2), for a large enough T we have np ⩾ 1 and thus
⌈np⌉ ⩽ 2np. Therefore,

Regph(N) ⩽ C
N−1∑
p=0

2−p22p(2C + 3
√

log T )2

m0

⩽ C
(2C + 3

√
log T )2

m0

(
N−1∑
p=0

2p

)

⩽ C · 2N (2C + 3
√

log T )2

m0

,

for some large enough constant C > 0.
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Putting the two cases together, on the clean event, the total regret incurred in phases
p = 0, . . . , ⌊log2(1/(Lzε))⌋ can be upper bounded by

C · 2N (2C + 3
√

log T )2

m0

+ T · 2−N+4.

We can also trivially upper bound the regret by T , using the fact that the loss incurred
at each step is at most 1. This means that we obtain a regret bound of:

O
(

min

{
T, 2N (2C + 3

√
log T )2

m0

+ T · 2−N+4

})
.

We now choose N to minimize this bound. We let η = 2−N and optimize over η ∈ (0, 1).
Optimizing over η instead of an integral value of N changes the bound by constant factors
at most. This means that we can upper bound the regret by:

O
(

min
0<η⩽1

min

{
T, η−1

(
2C + 3

√
log T

)2
m0

+ Tη

})
.

If η > 1, then the minimum of the two terms would be T , which is at least as big as the
above expression. Therefore, we can upper bound the above expression by:

O
(

min
η>0

(
η−1

(
2C + 3

√
log T

)2
m0

+ Tη

))
.

We set η = 3
√
log T+2C√
m0T

and obtain a regret bound of:

Regph (⌊log2(1/(Lzε))⌋) = O
(√

T

m0

(√
log T + C

))
,

as desired.

Lemma 2.5.16. Suppose that the clean event (2.22) holds. Let d ⩾ 0 be such that for
every i ⩾ 0 and every phase p ∈ [log2(1/(Lzε)), log2(1/(Lzε)) + i + 1], the number of models
in Ei = {θ : ∆(θ) ∈ [2−i+3Lzε, 2

−i+4Lzε]} that are deployed in phase p is upper bounded by

O
((

3
rp

)d)
in expectation. Then, the regret incurred in phases p ⩾ log2(1/(Lzε)), within

time horizon T , can be upper bounded as

Regph (⌈log2(1/(Lzε))⌉ :∞) ⩽ O
(
T

d+1
d+2 (Lzε)

d
d+2

(
(
√

log T + C)2

m0

) 1
d+2

)
.



CHAPTER 2. PERFORMATIVE PREDICTION 72

Proof. By Lemma 2.5.13, we see that all models θ that are active in phase p = ⌈log2(1/Lzε))⌉
or later have ∆(θ) ⩽ 8Lzεrp ⩽ 8Lzε. We split these models into suboptimality bands and
define, for each i ⩾ 1, the set:

Ei =
{
θ : ∆(θ) ∈ [8 · 2−iLzε, 16 · 2−iLzε)

}
.

Note that all models deployed starting with phase ⌈log2(1/(Lzε))⌉ are in ∪i⩾1Ei. For a value
of N specified later, we break the analysis into two cases.

Case 1: models in ∪i>NEi. Since the algorithm runs for at most T time steps, the total
regret incurred due to deploying models in ∪i>NEi is at most

T · 16 · 2−N−1Lzε ⩽ 8T2−NLzε.

Case 2: models in ∪1⩽i⩽NEi. By Lemma 2.5.13, we know that all models θ that are
active is phases p ⩾ N + log2(1/Lzε) have ∆(θ) ⩽ 82−p = 8 · 2−NLzε = 16 · 2−N−1Lzε. This
means that all models that are active after phase N + log2(1/Lzε) are in ∪i>NEi. Thus, to
bound the regret incurred by deploying models in ∪1⩽i⩽NEi in phase ⌈log2(1/Lzε)⌉ or later,
we only need to consider phases p = ⌈log2(1/Lzε)⌉, . . . , N + log2(1/Lzε).

For 1 ⩽ i ⩽ N , consider Ei. By Lemma 2.5.13, we know that any θ ∈ Ei can only be
active during phases p ⩽ log2(1/Lzε) + i + 1. By assumption, in phase p, the number of

points in Ei that are deployed is at most of the order
(

3
rp

)d
in expectation. Moreover, each

point is deployed np times. Putting this all together, the expected number of points in Ei
deployed in phase p is at most:

O
((

3

rp

)d

np

)
= O

((
3

rp

)d
(2C + 3

√
log T )2

L2
zε

2r2pm0

)
,

where we use the fact that, given the condition m0 = o((C +
√

log T )2), np ⩾ 1 for large
enough T and hence we can bound ⌈np⌉ ⩽ 2np. Take p = j + log2(1/Lzε)); then, rp = 2−j.
We sum over phases log2(1/(Lzε)) ⩽ p ⩽ log2(1/(Lzε)) + i+ 1 to obtain that in expectation,
the total number of times that these models are deployed is at most:

O
(

3d(2C + 3
√

log T )2

L2
zε

2m0

i+1∑
j=0

2j(d+2)

)
= O

(
3d(2C + 3

√
log T )2

L2
zε

2m0

2(i+1)(d+2)

)
.

Using the fact that the models have suboptimality at most 16 · 2−iLzε = 32 · 2−(i+1)Lzε, we
see that the regret incurred by deploying models in Ei is upper bounded by:

O
(

3d(2C + 3
√

log T )2

Lzεm0

2(i+1)(d+1)

)
.
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We sum over 1 ⩽ i ⩽ N to obtain the total regret incurred due to deploying models in
∪1⩽i⩽NEi:

O
(

3d(2C + 3
√

log T )2

Lzεm0

2(N+2)(d+1)

)
.

Putting together the two cases we obtain a total regret bound of

O
(

3d(2C + 3
√

log T )2

Lzεm0

2(N+2)(d+1) + T2−NLzε

)
.

We also can upper bound the regret by 8TLzε, since all models active after phase phase
⌊log2(1/(Lzε))⌋ have ∆(θ) ⩽ 8Lzε and there are at most T time steps in total. This means
that we can bound the regret by:

O
(

min

{
TLzε,

3d(2C + 3
√

log T )2

Lzεm0

2(N+2)(d+1) + T2−NLzε

})
.

We now choose N to minimize this bound. We let η = 2−N and choose some η ∈ (0, 1).
The error from optimizing over η ∈ (0, 1) instead of an integral value of N contributes at
most constant factors. This means that we can upper bound the regret by:

O
(

min

{
TLzε,

12d(2C + 3
√

log T )2

Lzεm0

η−(d+1) + TηLzε

})
,

for any η ∈ (0, 1). Note that, if η ⩾ 1, the second term in the bound is at least as large as
the first term, hence we can choose any η > 0. In particular, we can further upper bound
the regret by

O
(

min
η>0

(
12d(2C + 3

√
log T )2

Lzεm0

η−(d+1) + TηLzε

))
.

Now, we set

η =

(
12d
(
3
√

log T + 2C
)2

TL2
zε

2m0

) 1
d+2

.

Thus, we finally get a regret bound of

O

T
d+1
d+2 (Lzε)

d
d+2

((√
log T + C

)2
m0

) 1
d+2

 ,

as desired.
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Putting everything together

Now, we are ready to prove Theorem 2.3.4.
First, we handle the case where the clean event defined in (2.22) does not hold and the

concentration bound is violated. By Lemma 2.5.11, this happens with probability at most
T−2. The regret incurred in each deployment is at most 1 and there are T deployments, so
these events contribute a negligible factor T−1 to the expected regret.

For the case where the clean event holds we can build on Lemma 2.5.14, Lemma 2.5.15,
and Lemma 2.5.16. From Lemma 2.5.15, we obtain a bound for the total regret incurred in
phases up to ⌊log2(1/(Lzε))⌋. By Lemma 2.5.14 we can set the parameter d in Lemma 2.5.16
to be the (Lzε)-sequential zooming dimension, and thus from Lemma 2.5.16 we obtain a
regret bound for all later phases.

Putting all this together yields the desired bound.

2.5.15 Proof of Theorem 2.3.5

The proof of Theorem 2.3.5 relies on two key lemmas. One proves that Ct are valid confidence
sets for µ∗ at every step, and the other one proves a regret bound assuming that Ct are valid
confidence sets.

Throughout we denote by Bm the unit ball in Rm. For a vector x and matrix M , we will
use the notation ∥x∥M =

√
x⊤Mx.

An important object in the proofs will be St :=
∑t

i=1 θiz̄
⊤
0,i, where z̄0,i = 1

m0

∑m0

j=1 z
(j)
i −

µ⊤
∗ θi. Essentially z̄0,i is the average over m0 samples from D0, collected at step i. We will

also denote Vt(λ) = (λI +
∑t

i=1 θiθ
⊤
i ), for an arbitrary offset λ > 0, and Vt ≡ Vt(0). Note

that in the algorithm statement we use Σt = Vt

(
1
m0

)
.

Clean event

As for Algorithm 2, we introduce a clean event. In this case, the clean event will be defined
as

Eclean = {∀t ∈ N : µ∗ ∈ Ct}, (2.24)

where Ct are the confidence sets constructed in Algorithm 3.
The technical subtlety lies in the fact that the points θt are chosen adaptively, hence one

cannot simply apply standard least-squares confidence intervals to argue that the sets Ct are
valid. The same difficulty is resolved in the analysis of the LinUCB algorithm and our proof
builds on the proof technique of that analysis.

Before stating the main technical lemma, we start with an auxiliary result that we will
use in the proof.
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Lemma 2.5.17. Suppose that D0 is 1-subgaussian. Then, for all x ∈ Bm and y ∈ RdΘ, the
process

Mt(x, y) = exp

(
y⊤Stx−

1

2m0

∥y∥2Vt

)
is a supermartingale with respect to the natural filtration, with M0(x, y) = 1.

Proof. Since z̄0,i are 1√
m0

-subgaussian, we know that all one-dimensional projections are also
1√
m0

-subgaussian, hence z̄⊤0,ix are independent 1√
m0

-subgaussian as well. Using this, we know

E
[
exp(y⊤θtz

⊤
0,tx)

∣∣∣ Ft−1

]
⩽ exp

(
(y⊤θt)

2

2m0

)
= exp

(∥y∥2
θtθ⊤t

2m0

)
almost surely. Hence,

E[Mt(x, y) | Ft−1] = E
[
exp

(
y⊤Stx−

1

2m0

∥y∥2Vt

) ∣∣∣ Ft−1

]
= Mt−1(x, y)E

[
exp

(
y⊤θtz

⊤
0,tx−

1

2m0

∥y∥2θtθ⊤t
) ∣∣∣ Ft−1

]
⩽ Mt−1(x, y)

almost surely. Furthermore, M0(x, y) = 1 is trivially true.

Now we are ready to state the main technical lemma about the validity of Ct.

Lemma 2.5.18. We have that

P {Eclean} ⩾ 1− T−2.

Proof. First we will show that for any δ ∈ (0, 1),

P
{
∃t ∈ N : ∥Vt(λ)−1/2St∥2 ⩾

1

m0

(
8m + 4 log

(
1

δ

)
+ 2 log

(
det(Vt(λ))

λdΘ

))}
⩽ δ, (2.25)

for all λ > 0.
Let Σ = m0

λ
I ∈ RdΘ×dΘ and let h be the density of N (0,Σ). Then, for any fixed x ∈ Bm

and Mt(x, y) as in Lemma 2.5.17, define

M̄t(x) =

∫
RdΘ

Mt(x, y)h(y) =
1√

(2π)dΘdet(Σ)

∫
RdΘ

exp

(
y⊤Stx−

1

2m0

∥y∥2Vt
− 1

2
∥y∥2Σ−1

)
dy.

Notice that we can write

y⊤Stx−
1

2m0

∥y∥2Vt
− 1

2
∥y∥2Σ−1 =

1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1 −
1

2

∥∥∥∥∥y −
(

Σ−1 +
Vt

m0

)−1

Stx

∥∥∥∥∥
2

Σ−1+
Vt
m0

.
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Thus, by integrating out the Gaussian density, we get

M̄t(x)

= exp

(
1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1

)
1√

(2π)dΘdet(Σ)

∫
RdΘ

exp

−1

2

∥∥∥∥∥y −
(

Σ−1 +
Vt

m0

)−1

Stx

∥∥∥∥∥
2

Σ−1+
Vt
m0

 dy

= exp

(
1

2
∥Stx∥2(Σ−1+

Vt
m0

)−1

)(
det((Σ−1 + Vt

m0
)−1)

det(Σ)

)1/2

= exp
(m0

2
∥V −1/2

t (λ)Stx∥2
)( λdΘ

det(Vt(λ))

)1/2

.

Now, by Lemma 20.3 in [105], since Mt(x, y) is a supermartingale then M̄t(x) is a non-
negative supermartingale with M̄0(x) = 1. Thus, we can apply the maximal inequality to
get

P
{
∃t ∈ N : log M̄t(x) ⩾ log(1/δ)

}
= P

{
∃t ∈ N :

m0

2
∥Vt(λ)−1/2Stx∥2 −

1

2
log

(
det(Vt(λ))

λdΘ

)
⩾ log(1/δ)

}
⩽ δ. (2.26)

Inequality (2.26) is valid for all fixed x ∈ Bm; to prove inequality (2.25), we use a covering
argument. Let N 1

2
,m denote a 1

2
-net of Bm, and note that we can make |N 1

2
,m| ⩽ 5m. Then,

∥Vt(λ)−1/2St∥ = max
x∈Bm

∥Vt(λ)−1/2Stx∥ ⩽ 2 max
x∈N 1

2 ,m

∥Vt(λ)−1/2Stx∥.

Therefore, we can apply a union bound to conclude that for all s > 0,

P
{
∃t ∈ N : ∥Vt(λ)−1/2St∥2 ⩾ s

}
⩽ P

{
∃t ∈ N : max

x∈N1/2,m

∥Vt(λ)−1/2Stx∥22 ⩾
s

4

}
⩽

∑
x∈N1/2,m

P
{
∃t ∈ N : ∥Vt(λ)−1/2Stx∥22 ⩾

s

4

}
.

By picking s = 1
m0

(8m+4 log 1
δ
+2 log(det(Vt(λ))

λdΘ
)) ⩾ 1

m0
(4 log 5m

δ
+2 log(det(Vt(λ))

λdΘ
)) and applying

Equation (2.26), we get

P
{
∃t ∈ N : ∥Vt(λ)−1/2St∥2 ⩾

1

m0

(
8m + 4 log

(
1

δ

)
+ 2 log

(
det(Vt(λ))

λdΘ

))}
⩽

∑
x∈N1/2,m

δ

5m
⩽ δ.

This completes the proof of inequality (2.25).
It remains to relate this bound to the definition of Ct. We can write

µ̂t − µ∗ = Vt(λ)−1St + Vt(λ)−1Vtµ∗ − µ∗,
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and therefore

∥Vt(λ)1/2(µ̂t − µ∗)∥ = ∥Vt(λ)−1/2St + Vt(λ)1/2(Vt(λ)−1Vt − I)µ∗∥
⩽ ∥Vt(λ)−1/2St∥+

√
∥µ⊤

∗ (Vt(λ)−1Vt − I)Vt(λ)(Vt(λ)−1Vt − I)µ∗∥
= ∥Vt(λ)−1/2St∥+

√
λ
√
∥µ⊤

∗ (I − Vt(λ)−1Vt)µ∗∥
= ∥Vt(λ)−1/2St∥+

√
λ∥µ∗∥,

where the second equality follows by writing Vt = Vt(λ) − λI. Note additionally that by
max{∥θ∥ : θ ∈ Θ} ⩽ 1 and the AM-GM inequality,

det(Vt(λ)) ⩽

(
1

dΘ
traceVt(λ)

)dΘ

⩽

(
dΘλ + t

dΘ

)dΘ

.

Applying Equation (2.25), setting δ = 1
T 2 and λ = 1

m0
completes the proof.

Regret bound on the clean event

The place where the structure of the performative risk comes into play is the following lemma,
where we relate the suboptimality of the deployed model θt to properties of the confidence
set Ct.

Lemma 2.5.19. Suppose that the clean event (2.24) holds. Then, we can bound the subop-
timality of θt by

∆(θt) ⩽ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤θt∥

}
.

Proof. In what follows, all expectations are taken only over a sample z0 ∼ D0 independent
of everything else (i.e., all other random quantities are conditioned on).

Since the loss is bounded, we know ∆(θt) ⩽ 1. For the other bound, notice that

∆(θt) = Eℓ(z0 + µ⊤
∗ θt; θt)− Eℓ(z0 + µ⊤

∗ θPO; θPO).

By the definition of the algorithm and the clean event, we can lower bound the second term
Eℓ(z0 + µ⊤

∗ θPO; θPO) as follows:

Eℓ(z0 + µ⊤
∗ θPO; θPO) ⩾ PRLB(θPO) ⩾ PRLB(θt) = Eℓ(z0 + µ̃⊤

t θt; θt),

for some µ̃t ∈ Ct. This means that:

∆(θt) ⩽ Eℓ(z0 + µ⊤
∗ θt; θt)− Eℓ(z0 + µ̃⊤

t θt; θt).

To finish, we use Lipschitzness of the loss to upper bound this by Lz∥(µ∗−µ̃t)
⊤θt∥. Using the

clean event, we can further upper bound this by Lz supµ,µ′∈Ct ∥(µ− µ′)⊤θt∥ as desired.
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We now use this bound on the suboptimality of deployed models, along with the structure
of the confidence sets, to bound the regret on the clean event.

Lemma 2.5.20. Let 1 ⩽ β1 ⩽ β2 ⩽ . . . βT and assume that the loss ℓ(z; θ) is Lz-Lipschitz
in z. Assume that the event

µ∗ ∈ Ct ⊆
{
µ ∈ RdΘ×m :

∥∥∥∥V 1/2
t−1

(
1

m0

)
(µ− µ̂t−1)

∥∥∥∥2 ⩽ βt

}

holds true, for all 2 ⩽ t ⩽ T . Then, on this event, Algorithm 3 satisfies:

T∑
t=1

∆(θt) = Õ
(

1 +

√
dΘTβT log

(
dΘ + Tm0

dΘ

)
max{Lz, 1}

)
.

Proof. As in the proof of Lemma 2.5.19, all expectations are taken only over a sample z0 ∼ D0

independent of everything else (i.e., all other random quantities are conditioned on).
First, we separately bound the regret of the first step as O(1), using the fact that the

loss is bounded in [0, 1].
For the remainder of the steps, we apply Lemma 2.5.19 to upper bound ∆(θt). Using

this, coupled with structure of Ct, we can obtain the following upper bound, for any λ > 0:

∆(θt) ⩽ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤θt∥

}
⩽ min

{
1, Lz sup

µ,µ′∈Ct
∥(µ− µ′)⊤V

1/2
t−1 (λ)∥ · ∥V −1/2

t−1 (λ)θt∥
}

⩽ min
{

1, 2Lz

√
βt∥V −1/2

t−1 (λ)θt∥
}

⩽ 2
√
βT min

{
1, Lz∥V −1/2

t−1 (λ)θt∥
}
,

where the last line uses the fact that βT ⩾ max{1, βt}.
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By the Cauchy-Schwarz inequality,

T∑
t=2

∆(θt) ⩽

√√√√T

T∑
t=2

∆(θt)2

⩽ 2

√√√√TβT

T∑
t=2

min
{

1, L2
z∥V −1/2

t−1 (λ)θt∥2
}

⩽ 2

√√√√TβT

T∑
t=2

min
{

1,max{1, L2
z}∥V −1/2

t−1 (λ)θt∥2
}

⩽ 2

√√√√T max{1, L2
z}βT

T∑
t=2

min
{

1, ∥V −1/2
t−1 (λ)θt∥2

}

= 2 max{1, Lz}

√√√√TβT

T∑
t=2

min
{

1, ∥V −1/2
t−1 (λ)θt∥2

}
.

Finally, we use Lemma 19.4 in [105] that says

T∑
t=2

min
{

1, ∥V −1/2
t−1 (λ)θt∥2

}
⩽ 2dΘ log

(
traceV0(λ) + T

dΘdet(V0(λ))1/dΘ

)
= 2dΘ log

(
dΘλ + T

dΘλ

)
.

Using this expression in the equation above and setting λ = 1
m0

yields the final result.

Putting everything together

We take
√
βt = max

{
1,
√

1
m0

M∗ +

√
8m+8 log T+2dΘ log

(
dΘ+tm0

dΘ

)
m0

}
. By the constraint that

m0 = o(log T ), we see that second branch dominates over the first one and so, for large

enough T ,
√
βt =

√
1
m0

M∗ +

√
8m+8 log T+2dΘ log

(
dΘ+tm0

dΘ

)
m0

. Lemma 2.5.18 shows that:

µ∗ ∈ Ct ⊆
{
µ ∈ RdΘ×m :

∥∥∥∥V 1/2
t−1

(
1

m0

)
(µ− µ̂t−1)

∥∥∥∥2 ⩽ βt

}
.

Moreover, the contribution of the complement of the clean event to the overall regret is
negligible. Plugging this choice of βt into the bound of Lemma 2.5.20 completes the proof
of Theorem 2.3.5.
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Chapter 3

Beyond Performative Prediction

In Chapter 2 we developed a framework for reasoning about prediction when it affects and al-
ters the phenomena it aims to describe. We introduced two solution concepts—performative
stability and performative optimality—and studied algorithms for finding these equilibria.

In this chapter we take a step back and reevaluate the core of the performative prediction
framework. In particular, we argue that there are ubiquitous scenarios where the act of
prediction alters the patterns it aims to describe, but in a way that is different than—
arguably even opposed to—the performative prediction formalism. These scenarios will be
particularly common in the context of online platforms, whose distinctive feature is dominant
computational power and abundant data resources.

To give an example of an interaction that is not adequately described by performative
prediction, consider ride-sharing platforms that deploy algorithms for determining travel fare
as a function of trip length and relevant traffic conditions. These pricing mechanisms are
frequently updated based on the current supply and demand, and in particular a dip in the
supply of drivers triggers so-called surge pricing. Möhlmann and Zalmanson [128] observed
that drivers occasionally coordinate a massive deactivation of drivers from the platform,
artificially lowering driver supply, only to get back on the platform after some time has
passed and the prices have surged. In this example the platform’s pricing algorithm reacts
to the drivers’ action. In other words, the algorithm responds to the population around which
it operates. In contrast, a core feature of performative prediction is that the population—
abstracted away via a distribution map—responds to the decision-making algorithm.

In reality the interaction between decision-making algorithms and the population they
serve is two-way, and in this chapter we focus on the direction not captured in Chapter 2.
Unlike in performative prediction, where the learner selects a predictive model described
by a parameter vector θ and the population responds with a distribution D(θ), we study
settings where a population selects a data distribution D and the learner responds with a
model θ(D). Like in the ride-sharing example, we focus on interactions driven by strategic
incentives.

The material in this chapter is based on works co-authored with Moritz Hardt, Michael
I. Jordan, Eric Mazumdar, Celestine Mendler-Dünner, and S. Shankar Sastry [75, 194].
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3.1 The role of order of play

Individuals interacting with a decision-making algorithm often adapt strategically to the
decision rule in order to achieve a desirable outcome. While such strategic adaptation might
increase the individuals’ utility, it also breaks the statistical patterns that justify the decision
rule’s deployment. This widespread phenomenon, often known as Goodhart’s law, can be
summarized as: “When a measure becomes a target, it ceases to be a good measure” [156].

A growing body of work known as strategic classification [21, 44, 76] models this phe-
nomenon as a two-player game in which a decision-maker “leads” and strategic agents subse-
quently “follow.” Specifically, the decision-maker first deploys a decision rule, and the agents
then take a strategic action so as to optimize their outcome according to the deployed rule,
subject to natural manipulation costs. For example, a bank might make lending decisions
using applicants’ credit scores. Knowing this mechanism, loan applicants might sign up for
a large number of credit cards in an effort to strategically increase their credit score at little
effort. As discussed in Chapter 2, strategic classification is a special case of performative
prediction.

One of the main goals in strategic classification is to develop strategy-robust decision
rules; that is, rules that remain meaningful even after the agents have adapted to them. Re-
cent work has studied strategies for finding such rules through repeated interactions between
the decision-maker and the agents [8, 38, 49]. In particular, the decision-maker sequentially
deploys different rules, and for each they observe the population’s response. Under regularity
conditions, over time the decision-maker can find the optimal solution, defined as the rule
that minimizes the decision-maker’s loss after the agents have responded to the rule.

With the emergence of online platforms such as social media and e-commerce sites, re-
peated interactions between decision-makers and the population have become ever more
prevalent. Online platforms continuously monitor user behavior and update pricing algo-
rithms, recommendation systems, and popularity rankings accordingly. Users, on the other
hand, take actions to ensure favorable outcomes in the face of these updates.

A distinctive feature of online platforms is the decision-maker’s dominant computational
power and abundant data resources, allowing the platform to react to any change in the
agents’ behavior virtually instantaneously. For example, if fake news content changes over
time, automated algorithms can quickly detect this and retrain the classifier to incorporate
the shift. It has been observed [see, e.g., 25, 40, 128] that, when faced with such “reactive”
algorithms, strategic agents tend to take actions that anticipate the algorithm’s response.
That is, through repeated interactions, agents aim to find actions that maximize the agents’
utility after the decision-maker has responded to these actions. This suggests that the order
of play in strategic interactions can in fact be reversed, such that the agents “lead” while
the decision-maker “follows.”

We argue that the order of play in strategic classification is fundamentally tied to the
relative update frequencies at which the decision-maker and the strategic agents adapt to
each other’s actions. We show that, by tuning their update frequency appropriately, the
decision-maker can select the order of play in the underlying game. Furthermore, in natural
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settings we show that allowing the strategic agents to play first in the game can actually be
preferable for both the decision-maker and the agents. This is contrary to the order of play
previously studied in the literature, whereby the decision-maker is always assumed to make
the first move.

3.1.1 Model

Throughout we denote by z = (x, y) the feature–label pairs corresponding to the strategic
agents’ data. We assume that the decision-maker chooses a model parameterized by θ ∈
Θ ⊆ Rd, where Θ is convex and closed, and that their loss is measured via a convex loss
function ℓ(z; θ). The strategic agents measure loss via a function r(z; θ) and, collectively,
they form a distribution in the family {Dµ : µ ∈M ⊆ Rm}, where M is convex and closed.
Here, µ denotes the aggregate summary of all agents’ actions. The data observed by the
decision-maker is Dµ and as such varies depending on the agents’ aggregate action µ.

We denote L(µ, θ) = Ez∼Dµ ℓ(z; θ), and R(µ, θ) = Ez∼Dµ r(z; θ). With this, the agents’
best response is given by µBR(θ) = arg minµR(µ, θ) and the decision-maker’s best response
is given by θBR(µ) = arg minθ L(µ, θ). We assume that the best responses for both players
are always unique.

If the decision-maker acts as the leader in the game, their incurred Stackelberg risk is equal
to SRL(θ) = L(µBR(θ), θ). Similarly, we let SRR(µ) = R(µ, θBR(µ)) denote the Stackelberg
risk of the agents when they lead in the game. We let θSE and µSE denote the decision-
maker’s and strategic agents’ equilibrium, respectively: θSE = arg minθ SRL(θ) and µSE =
arg minµ SRR(µ). We assume that each equilibrium is unique. Note that the two players
cannot compute their respective equilibrium “offline”, as we do not assume they have access
to the other player’s loss function.

As discussed earlier, we assume that there is an underlying timescale according to which
the agents re-evaluate their features. Specifically, after each time interval of fixed length, the
agents observe the currently deployed model, as well as their loss according to that model,
and possibly modify their features accordingly. The decision-maker, aware of the agents’
timescale, can choose to be proactive, meaning they choose an update frequency slower than
that of the agents, or reactive, meaning they choose a higher update frequency. This power
asymmetry that allows the decision-maker to choose a timescale is characteristic of online
platforms with abundant resources.

We use the term epoch to refer to a period between two updates of the slower player
(which player is the slower one is up to the decision-maker). In particular, the t-th epoch
starts with a single update of the slower player, followed by τ ∈ N updates of the faster
player. The rate τ is fixed.

We use θt and µt to denote the iterate of the decision-maker and the strategic agents,
respectively, at the end of epoch t. Furthermore, for the faster player, we use double-indexing
to denote the within-epoch iterates. For example, if the decision-maker is the faster player,
we use {θt,j}τj=1 to denote their iterates within epoch t. Note that θt,τ ≡ θt. We also let
θ̄t = 1

τ

∑τ
j=1 θt,j. We adopt similar notation when the agents have a higher update frequency.
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Rational agents in the face of varying update frequencies

Adopting the distinction between reactive and proactive decision-makers, it is crucial to re-
evaluate what it means for the strategic agents to behave rationally. We argue that rational
behavior must depend on the relative update frequencies of the decision-maker and the
agents.

As a running toy example, consider a decision-maker building a model with the goal of
distinguishing between spam and legitimate emails. The population of strategic agents aims
to craft emails that bypass the decision-maker’s spam filter. Here, µ could determine the
number of words in an email, types of words used, etc. The loss R(µ, θ) could be some
decreasing function of the number of daily clicks on email content, given spam filter θ and
emails crafted according to µ. In the following discussion assume that the timescales of the
decision-maker and the agents have a significant separation: the decision-maker is either
“significantly faster” or “significantly slower.” As we will make more formal later on, our
results will generally assume a sufficiently large separation between the timescales. In the
following paragraphs we informally describe rational agent behavior in the context of update
frequencies.

Proactive decision-maker. First, assume that the decision-maker is proactive, and sup-
pose they deploy model θ. By definition, this model remains in place for a relatively long
time, as observed by the agents. Then, by choosing features µ, the agents experience loss
R(µ, θ) during that period, and as a result the most rational decision is to choose features
µBR(θ). In the running example, if θ is a spam filter that is in place for many months, it
is rational for spammers to craft emails that are most likely to bypass filter θ. This is just
the usual best response—as we alluded to earlier, when the decision-maker is proactive, our
setup is similar to that of strategic classification.

Reactive decision-maker. Now assume that the decision-maker is reactive, and suppose
the agents observe θ as the current model. Then, by setting µ, the agents do not experience
loss R(µ, θ). Rather, their loss is R(µ, θR(µ)), where θR(µ) denotes the decision-maker’s
reaction to the agents’ choice µ. In the spam example, suppose that the decision-maker
can aggregate and process data quickly, and retrains the spam filter every couple of hours.
Moreover, suppose that the spammers adapt their emails only once per week. Then, the
agents’ loss after choosing µ (evaluated weekly) is determined by the number of clicks allowed
by the updated filter θR(µ), not the old filter θ. Therefore, if the agents could predict θR(µ),
the agents’ optimal decision would be to choose arg minµR(µ, θR(µ)). In other words, rather
than choose the best response to θ, rational agents interacting with a reactive decision-maker
would choose µ so that it triggers the best possible reaction from θ.

We formalize this intuitive behavior by assuming that the agents are no-regret learn-
ers [147]. This essentially means that their average regret vanishes as the number of actions
grows. More formally, we assume the following behavior depending on the relative update
frequencies:
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• If the decision-maker is proactive, then for any θt, the agents’ strategy ensures:

1

τ

τ∑
j=1

ER(µt,j, θt)−min
µ

R(µ, θt)→ 0 as τ →∞. (A6)

• If the decision-maker is reactive, then for any response function θR(µ), the agents’
strategy ensures:

1

T

T∑
t=1

ER(µt, θR(µt))−min
µ

R(µ, θR(µ))→ 0 as T →∞, (A7)

whenever such a strategy exists. If the agents’ loss is convex, the first condition can be
satisfied by simple gradient descent. In fact, gradient descent would typically imply an even
stronger guarantee, namely the convergence of the iterates, µt,τ → µBR(θt). The second
condition can be satisfied by various bandit strategies if R(µ, θR(µ)) is Lipschitz and M
is bounded (and we will impose these conditions explicitly in the following section). That
said, it seems hardly suitable to assume that the agents run a well-specified optimization
procedure. For this reason, we will for the most part avoid making explicit algorithmic
assumptions on the agents’ strategy and our main takeaways will only rely on rational agent
behavior in the limit, as in equations (A6) and (A7).

3.1.2 Learning dynamics

We study the limiting behavior of the interaction between the decision-maker and the strate-
gic agents. We show that, by running classical optimization algorithms, the decision-maker
can drive the interaction to a Stackelberg equilibrium with either player acting as the leader.

Convergence to decision-maker’s equilibrium

In general, we do not expect the decision-maker to be able to compute derivatives of the
function SRL. For this reason, to achieve convergence to the decision-maker’s equilibrium,
we consider running a derivative-free method. One such solution is the “gradient descent
without a gradient” algorithm of Flaxman et al. [62]. Past work [49] also considers this
algorithm with the goal of optimizing SRL, but it assumes instantaneous agent responses.
In other words, it assumes query access to SRL directly, while we consider perturbations due
to imperfect agent responses.

Specifically, we let the decision-maker run the following update:

ϕt+1 = ΠΘ(ϕt − ηt
d

δ
L(µ̄t, ϕt + δut)ut), where ut ∼ Unif

(
Sd−1

)
. (3.1)
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Here, ΠΘ denotes the Euclidean projection, Unif
(
Sd−1

)
denotes the uniform distribution

on the unit sphere in Rd, ηt is a non-increasing step size sequence, and δ > 0 is a fixed
hyperparameter. The deployed model in the t-th epoch is set as θt = ϕt + δut.

1

We provide convergence guarantees assuming that the decision-maker’s Stackelberg risk
SRL is convex. While this condition doesn’t follow from convexity of the loss ℓ(z; θ) alone,
previous work has established conditions for convexity of this objective for different learning
problems and agent utilities [49, 125]. For example, in the linear and logistic regression
examples discussed in the following section, the decision-maker’s Stackelberg risk will be
convex.

Theorem 3.1.1. Denote by DΘ the diameter of Θ, and suppose that |L(µ, θ)| ⩽ B for all
µ, θ. Furthermore, suppose that SRL is convex and β-Lipschitz and L(µ, θ) is βµ-Lipschitz

in the first entry for all θ. Then, if the decision-maker runs update (3.1) with ηt = η0d
− 1

2 t−
3
4

and δ = δ0d
1
2T−1/4, it holds that

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ⩽

(
D2

Θ

2η0
+

2B2

δ20

)√
dT 3/4 + βµDΘ

T∑
t=1

E∥µ̄t − µBR(θt)∥2.

Moreover, assuming that the agents are rational (A6) andM is compact, we have

lim
τ→∞

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ⩽

(
D2

Θ

2η0
+

2B2

δ20

)√
dT 3/4. (3.2)

Remark 3.1.1. For Theorem 3.1.1, we assume that the agents are rational in a relatively
weak sense, by assuming no-regret behavior. Often, however, we expect the agents’ strategy
to achieve iterate convergence, and not just vanishing regret. More precisely, it makes sense
to expect µt,τ → µBR(θt) as τ → ∞. For example, this guarantee is achieved by gradient
descent in a variety of settings. In that case, the decision-maker can simply use the last
iterate instead of the average one:

ϕt+1 = ΠΘ(ϕt − ηt
d

δ
L(µt, ϕt + δut)ut), where ut ∼ Unif

(
Sd−1

)
. (3.3)

Similarly, E∥µ̄t − µBR(θt)∥2 would be replaced by E∥µt − µBR(θt)∥2 in the bound of Theo-
rem 3.1.1.

In some cases, the additional regret due to imperfect agent responses does not alter the
asymptotic rate at which the decision-maker accumulates regret even if the epoch length τ
is constant and does not grow with T . To illustrate this point, we consider strategic agents
that follow the gradient-descent direction on a possibly nonconvex objective with enough

1Technically, this assumes that we can deploy a model in a δ-ball around Θ. Another solution would be
to use a projection onto a small contraction of Θ in equation (3.1). This is a minor technical hurdle common
in the literature. The rate in Theorem 3.1.1 is unaffected by the choice of solution to this technical point.
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curvature. More precisely, we assume that for all θ, R(µ, θ) satisfies the Polyak- Lojasiewicz
(PL) condition:

γ(R(µ, θ)− min
µ∈M

R(µ, θ)) ⩽
1

2
∥∇µR(µ, θ)∥22,

for some parameter γ > 0. Suppose that the agents’ update is computed as:

µt,j+1 = µt,j − ηµ∇µR(µt,j, θt), (3.4)

where ηµ > 0 is a constant step size and µt,0 = µt−1,τ . In this case, gradient descent achieves
last-iterate convergence and hence we assume that the decision-maker uses the update in
equation (3.3).

Theorem 3.1.2. Assume the conditions of Theorem 3.1.1. In addition, suppose that R(µ, θ)
is βR

µ -smooth in µ for all θ and satisfies the PL condition with parameter γ, and µBR(θ) is
βBR-Lipschitz in θ. Assume that the strategic agents run update (3.4) with ηµ < 1

βR
µ
. Further,

suppose the epoch length is chosen so that τ > log(βR
µ /γ)/ log (1/(1− γηµ)). Then, for some

constant α(τ) ∈ (0, 1), we have

T∑
t=1

E ∥µt − µBR(θt)∥2 ⩽
∥µ0 − µBR(θ0)∥2 + 4βBRBη0

δ0

√
T

1− α(τ)
.

Therefore, the decision-maker’s regret is O(
√
dT 3/4) even with a constant epoch length.

This result crucially depends on the fact that the optimization problems that the agents solve
in neighboring epochs are coupled through µt,0 = µt−1,τ . If µt,0 were reinitialized arbitrarily
in each epoch, the extra regret would be linear in T given constant epoch length.

Convergence to strategic agents’ equilibrium

Now we analyze the case when the decision-maker is reactive. Given a large enough gap in
update frequencies—that is, a large enough epoch length τ—the decision-maker can converge
to their best response to the current iterate µt between any two actions of the agents.
The most natural choice for achieving this is to run standard gradient descent, θt,k+1 =
θt,k − ηk∇θL(µt, θt,k). In what follows we provide asymptotic guarantees assuming that the
decision-maker runs any algorithm that achieves iterate convergence. This condition can be
satisfied by gradient descent in a variety of settings. Formally, we assume that for any fixed
µt, the decision-maker’s strategy ensures

∥θt,τ − θBR(µt)∥2 →p 0, (3.5)

as τ →∞. Here, →p denotes convergence in probability.
We first observe that, in the limit as τ grows, the agents’ accumulated risk is equal to

their accumulated Stackelberg risk at all the actions played so far. This simply follows by
continuity.
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Lemma 3.1.1. Suppose that the decision-maker achieves iterate convergence (3.5) and R
is continuous in the second argument. Then, for all T ∈ N, limτ→∞

∑T
t=1 ER(µt, θt) =∑T

t=1 E SRR(µt).

In other words, in every epoch the agents essentially play a Stackelberg game in which
they lead and the decision-maker follows. This holds regardless of whether the agents behave
rationally. If they do behave rationally (condition (A7)), we show that both the agents’ and
the decision-maker’s average regret with respect to (µSE, θBR(µSE)) vanishes if the agents’
updates are continuous. To formalize this, suppose that for all t ∈ N, the agents set µt+1 =
Dt+1(µ1, θ1, . . . , µt, θt, ξt+1), where Dt+1 is some fixed map and ξt+1 is a random variable
independent of {(µi, θi)}i⩽t. We include ξt+1 as an input to allow randomized strategies.
Then, we will say that the agents’ updates are continuous if Dt+1 is continuous in the first
2t coordinates for all t ∈ N.

Theorem 3.1.3. Suppose that the agents’ updates are continuous and rational (A7), and
that M is compact. Further, suppose that the decision-maker achieves iterate convergence
(3.5) and SRR and SRL are Lipschitz. Then, it holds that

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

ESRR(µt)− SRR(µSE) = 0, lim
T→∞

lim
τ→∞

1

T

T∑
t=1

EL(µt, θt)− L(µSE, θBR(µSE)) = 0.

3.1.3 Preferred order of play

While we have shown that the decision-maker can tune their update frequency to achieve
either order of play in the Stackelberg game, it remains to understand which order of play
is preferable for the decision-maker and the strategic agents. In the following examples, we
illustrate that in classic learning settings both players can prefer the order when the agents
lead. This suggests that the natural and overall more desirable order of play is sometimes
reversed compared to the order usually studied.

At first, it might seem counterintuitive that the decision-maker could prefer to follow. To
get some intuition for why following might be preferred to leading, recall that in zero-sum
games following is never worse. In particular, suppose R(µ, θ) = −L(µ, θ). Then, the basic
min-max inequality says

L(µSE, θBR(µSE)) = max
µ

min
θ

L(µ, θ) ⩽ min
θ

max
µ

L(µ, θ) = L(µBR(θSE), θSE),

with equality if and only if a Nash equilibrium exists. Therefore, if a Nash equilibrium does
not exist, following is strictly preferred.

Since strategic classification is typically not a zero-sum game, we look at two common
learning problems and analyze the preferred order of play.
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Linear regression

Suppose that the agents’ non-strategic data, (x0, y), where x0 is a feature vector and y the
outcome, is generated according to

x0 ∼ D0, y = x⊤
0 β + ξ,

where D0 is a zero-mean distribution such that Ex0∼D0 x0x
⊤
0 = I, β ∈ Rd is an arbitrary

fixed vector, and ξ has mean zero and finite variance σ2. We denote the joint distribution
of (x0, y) by D0.

Recall that we use z to denote the pair (x, y). Suppose that the decision-maker runs
standard linear regression with the squared loss:

ℓ(z; θ) =
1

2
(y − x⊤θ)2.

The agents aim to maximize their predicted outcome, r(z; θ) = −θ⊤x, subject to a fixed
budget on feature manipulation—they can move to any x at distance at most B from their
original features x0: ∥x − x0∥2 ⩽ B. A similar model is considered by Kleinberg and
Raghavan [99] and Chen et al. [38]. More precisely, we let M = {µ ∈ Rd : ∥µ∥2 ⩽ B}
and define Dµ to be the distribution of (x, y), where (x0, y) ∼ D0 and x = x0 + µ. Then,
R(µ, θ) = Ez∼Dµ r(z; θ) = −µ⊤θ and L(µ, θ) = Ez∼Dµ ℓ(z; θ).

We prove that both the decision-maker and the agents prefer the agents’ equilibrium.

Proposition 3.1.1. Assume the linear regression setup described above. Then, we have

σ2

2
+
∥β∥22 min(1, B)2

2(1 + min(1, B)2)
= L(µSE, θBR(µSE)) ⩽ SRL(θSE) =

σ2

2
+
∥β∥22B2

2(1 + B2)
,

−∥β∥2 min(1, B)

1 + min(1, B)2
= SRR(µSE) ⩽ R(µBR(θSE), θSE) = −∥β∥2B

1 + B2
.

When B ⩽ 1, the losses implied by the two scenarios are the same, while when B > 1,
having the agents lead is strictly better for both players. Moreover, the strategic agents’
manipulation cost is no higher when they lead: ∥µSE∥2 ⩽ ∥µBR(θSE)∥2.

Logistic regression

Next we consider a classification example. Suppose that the non-strategic data (x0, y) is
sampled according to a base joint distribution D0 supported on Rd × {0, 1}. Unlike in the
linear regression example, we place no further constraint on D0.

We assume that the decision-maker trains a logistic regression classifier:

ℓ(z; θ) = −yx⊤θ + log(1 + ex
⊤θ).

The agents with y = 0 can manipulate their features to increase the probability of being
positively labeled. A similar setup is considered by Dong et al. [49]. As in the previous
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Figure 3.1: Difference in decision-maker’s and agents’ risk implied by the two Stackelberg
equilibria, for different values of B and p.

example, the agents have a limited budget to change their features: if their non-strategic
features are x0, they can move to any x which is at distance at most B from x0, ∥x−x0∥2 ⩽ B.
Thus, we set M = {µ ∈ Rd : ∥µ∥2 ⩽ B} and denote by Dµ the joint distribution of (x, y)
where (x0, y) ∼ D0 and x = x0 + µ1{y = 0}. We let R(µ, θ) = −µ⊤θ and L(µ, θ) =
Ez∼Dµ ℓ(z; θ).

Proposition 3.1.2. Assume the logistic regression setup described above. Then, we have

L(µSE, θBR(µSE)) ⩽ SRL(θSE) and SRR(µSE) ⩽ R(µBR(θSE), θSE).

There exist configurations of parameters such that the inequalities in Proposition 3.1.2
are strict, meaning that both players strictly prefer the agents to lead. We illustrate this em-
pirically. In Figure 3.1 we generate non-strategic data according to y ∼ Bern (p) and x0|y ∼
N(4y− 2, 1) and plot the difference in risk between the two equilibria for the decision-maker
and the agents, for varying B and p. For large p and small B, we see no difference between
the equilibria. However, as p decreases and B increases, it becomes suboptimal for both
players if the decision-maker leads.

3.1.4 Experiments

As proof of concept, we demonstrate our theoretical findings empirically in a simulated
logistic regression setting. The non-strategic data is generated as

y ∼ Bern (p) and x0|y ∼ N ((2y − 1)α, I).

In other words, x0|y = 1 ∼ N (α, I) and x0|y = 0 ∼ N (−α, I).
In the first set of experiments, we adopt the model from Section 3.1.3 where agents are

constrained in how they modify their features. In the second set of experiments we adopt
a model more akin to that of Dong et al. [49] where the negatively classified agents are
penalized from deviating from their true features.
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Figure 3.2: Decision-maker’s and agents’ average running risk for varying p and B = 2. The
dotted lines denote the loss at the respective equilibria. For p = 0.9, the decision-maker’s
equilibrium and the agents’ equilibrium coincide and the curves converge to the same value.
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Figure 3.3: Decision-maker’s and agents’ average running risk for varying p and B = 1. The
dotted lines denote the loss at the respective equilibria. The decision-maker’s equilibrium
and the agents’ equilibrium coincide everywhere and the curves converge to the same value.
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Figure 3.4: Decision-maker’s and agents’ average running risk for varying p and λ = 1. The
dotted lines denote the loss at the respective equilibria.

In both settings, first we let the decision-maker lead and the agents follow, and then
we switch the roles. For both orders of play, the slower player runs the derivative-free
update (3.3), and the faster player runs standard (projected) gradient descent. To be able
to analyze the long-run behavior, we also numerically approximate the Stackelberg risks of
the decision-maker and the strategic agents and find the global minima which correspond to
the decision-maker’s and agents’ equilibria respectively.

Agents with constraints

To begin, we verify our theoretical findings from Section 3.1.3. We generate 100 samples, fix
α = 2, d = 1, and vary B and p. We run the interaction for a total of T = 50000 epochs,
with each epoch of length τ = 200.

In Figure 3.2 and Figure 3.3 we plot the decision-maker’s and the agents’ average running
risk against the number of epochs, for the two different orders of play, for B = 2 and B = 1,
respectively. For p ∈ {0.1, 0.5} and B = 2, we observe a clear gap between leading and
following, the agents leading being the preferred order for both players. For p = 0.9 or
B = 1, the two equilibria coincide asymptotically; however, generally we find that the two
players still prefer the agents to lead even after a finite number of epochs.
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Figure 3.5: Decision-maker’s and agents’ average running risk for varying p and λ = 20. The
dotted lines denote the loss at the respective equilibria. For p = 0.9, the decision-maker’s
equilibrium and the agents’ equilibrium coincide and the curves converge to the same value.

Agents with costly deviations

In this section, we verify our findings on a model where the decision-maker’s problem is
the same logistic regression problem posed in Section 3.1.3, but the strategic agents are
penalized for deviating from their true features. In particular, the agents’ risk R takes the
form: R(µ, θ) = λ

2
∥µ∥2−µT θ. We note that although this setup is conceptually very similar

to that in Section 3.1.3 (increasing λ can be seen as shrinking the constraint set), it allows us
to highlight that the experimental results are not caused by interactions with the constraints.
Further, this setup is more readily comparable to previous models studied in, e.g., [49].

We generate 100 samples in R2, fix α = 1.5[1, 1]⊤, and vary λ and p. We run the
interaction for a total of T = 50000 epochs, with each epoch of length τ = 100. In Figure 3.4
and Figure 3.5 we plot the decision-maker’s and the agents’ average running risk against the
number of epochs, for the two different orders of play and for λ = 1 and λ = 20 respectively.

In Figure 3.4 we observe a gap between the decision-maker’s risk at their Stackelberg
equilibrium and at the agents’, and see that the decision-maker consistently prefers the
agents leading. The agents consistently prefer leading as well, meaning that both sides prefer
if the order of play is flipped. In Figure 3.5 we observe that as λ and p increase, the gap
between the two equilibria shrinks and disappears entirely when p = 0.9 and λ = 20. This is
similar to the behavior seen in the constrained agent problem where shrinking the constraint
set gives rise to Nash equilibria where neither player strictly prefers leading or following.
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3.2 Algorithmic collective action

Throughout the gig economy, numerous digital platforms algorithmically profile, control, and
discipline workers that offer on-demand services to consumers. Data collection and predictive
modeling are critical for a typical platform’s business as machine learning algorithms power
ranking, scoring, and classification tasks of various kinds [70, 150, 184].

Troves of academic scholarship document the emergence and preponderance of precarity
in the gig economy. [181] argue that platform-based algorithmic control can lead to “low
pay, social isolation, working unsocial and irregular hours, overwork, sleep deprivation and
exhaustion.” This is further exacerbated by “high levels of inter-worker competition with few
labor protections and a global oversupply of labor relative to demand.” In response, there
have been numerous attempts by gig workers to organize in an effort to reconfigure working
conditions. A growing repertoire of strategies, as vast as it is eclectic, uses both physical and
digital means towards this goal. Indeed, workers have shown significant ingenuity in creating
platform-specific infrastructure, such as their own mobile apps, to organize the labor side of
the platform [34, 140]. Yet, “the upsurge of worker mobilization should not blind us to the
difficulties of organizing such a diverse and spatially dispersed labor force.” [167]

Beyond the gig economy, evidence of consumers seeking to influence the algorithms that
power a platform’s business is abundant. Examples include social media users attempt-
ing to suppress the algorithmic upvoting of harmful content by sharing screenshots rather
than original posts [25], or individuals creating bots to influence crowd-sourced navigation
systems [155]. The ubiquity of such strategic attempts calls for a principled study of how
coordinated groups can wield control over the digital platforms to which they contribute
data.

In this section, we study how a collective of individuals can algorithmically strategize
against a learning platform. We envision a collective that pools the data of participating
individuals and executes an algorithmic strategy by instructing participants how to modify
their own data. The firm in turn solves a machine learning problem over the resulting data.
The goal of the collective is to redirect the firm’s optimization towards a solution that serves
the collective. Notably, coordination is a crucial lever. When data are plentiful, a single
individual lacks the leverage to unilaterally change the output of a learning algorithm; in
contrast, we show that even small collectives can exert substantial influence.

3.2.1 Problem formulation

We study the strategic interaction of a firm operating a predictive system with a population
of individuals. We assume that the the firm deploys a learning algorithm θ that operates on
data points in a universe Z = X × Y . Each individual corresponds to a single data point
z ∈ Z, typically a feature–label pair. We model the population of individual participants as
a distribution D0 over Z.

We say that a fraction α > 0 of the individuals form a collective in order to strategically
respond to the firm’s learning behavior. The collective agrees on a potentially randomized
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strategy h : Z → Z from a space of available strategies H. The possible strategies H
capture feasible changes to the data. For example, content creators on a video streaming
platform may be indifferent between videos that differ only in a hidden watermark not visible
to human viewers. Freelancers may be indifferent between two resumes that differ only in
inconsequential syntactic details.

The firm therefore observes a mixture distribution

D = αD∗ + (1− α)D0,

where we use D∗ to denote the distribution of h(z), z ∼ D0.
The collective strives to choose a strategy h so as to maximize a measure of success over

the solution f = θ(D) chosen by the firm. Here, f is a mapping from features to labels,
f : X → Y . Given a strategy, we use S(α) to denote the level of success achieved by
a collective of size α. The central question we study is how the success S(α) grows as a
function of collective size α, and how large α needs to be in order to achieve a target success
level.

Definition 3.2.1 (Critical mass). The critical mass for a target success level S∗ is defined
as the smallest α for which there exists a strategy such that S(α) ⩾ S∗.

Note that, although motivated from the perspective of labor, our formal model can also
serve as a basis for studying collective action on the consumer side of digital platforms.
Before presenting our results we briefly discuss why we focus on collective strategies.

Why collective action? By engaging in collective action, individuals can exert influence
on the learning algorithm that they could not achieve by acting selfishly. In large-population
settings such as online platforms, an individual contributes an infinitesimal fraction of the
data used by the learning algorithm. Thus, under reasonable manipulation constraints, indi-
vidual behavior is largely powerless in systematically changing the deployed model. Instead,
individuals are limited to simple adversarial attacks or individual strategies that do not have
lasting effects on the learning outcome. By coordinating individuals, however, collectives
can wield enough power to steer learning algorithms towards desired goals. In subsequent
sections we show that collectives can often do so while only representing a small fraction of
the training data.

3.2.2 Collective action in classification

We start with classification under the assumption that the firm chooses an approximately
optimal classifier on the data distribution D.

Definition 3.2.2 (ε-optimal classifier). A classifier f : X → Y is ε-optimal under the dis-
tribution D if there exists a D′ with TV(D,D′) ⩽ ε such that

f(x) = arg max
y∈Y

D′(y|x) .
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Note that a 0-optimal classifier is the Bayes optimal classifier with respect to the zero–one
loss function.

Under the above assumption, we focus on two general goals for the collective: planting a
signal and erasing a signal.

Planting a signal

Assume the collective wants the classifier to learn an association between an altered version of
the features g(x) and a chosen target class y∗. Formally, given a transformation g : X → X ,
the collective wants to maximize the following measure of success:

S(α) = Px∼D0 {f(g(x)) = y∗} .
We call this objective “planting a signal” and X ∗ = {g(x) : x ∈ X} the signal set. For
example, g(x) could be instance x with an inconsequential trigger (such as a video with an
imperceptible watermark or a resume with a unique formatting) and y∗ could be a label
indicating that the instance is of high quality (e.g., a high-quality video or a highly qualified
individual). As another example, the collective may have an altruistic goal to help individuals
in a vulnerable subpopulation X0 ⊆ X achieve a desired outcome y∗. In this case, g(x) could
be a mapping from x to a randomly chosen instance in X0.

We provide natural strategies for planting a signal and characterize their success as a
function of α. The key parameter that we identify as driving success is the uniqueness of
the signal.

Definition 3.2.3 (ξ-unique signal). We say that a signal is ξ-unique if it satisfies

D0(X ∗) ⩽ ξ.

In addition, success naturally depends on how suboptimal y∗ is on the signal set under
the base distribution. To formalize this dependence, we define the suboptimality gap of y∗:

∆ = max
x∈X ∗

(
max
y∈Y
D0(y|x)−D0(y

∗|x)

)
.

We consider two possibilities for the space of available strategies H. First, we assume that
the individuals can modify both features and labels. We call the resulting strategies feature–
label strategies. Modifying features by, say, planting a trigger often comes at virtually no
cost. Changing the label, however, may be hard, costly, or even infeasible. This is why we
also consider feature-only strategies; such strategies only allow changes to features.

Feature–label signal strategy. We define the feature–label signal strategy as

h(x, y) = (g(x), y∗) . (3.6)

The result below quantifies the success of this strategy in terms of the collective size and the
uniqueness of the signal.
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Figure 3.6: Illustration of the success rate predicted by Theorem 3.2.1. In the first we fix
ε = 0 and vary ξ, and in the second we fix ξ and vary the classifier’s suboptimality, ε. We
upper bound ∆ by one.

Theorem 3.2.1. Consider the feature–label signal strategy and suppose that the signal is
ξ-unique. Then, the success against an ε-optimal classifier is lower bounded by

SR(α) ⩾ 1− 1− α

α
·∆ · ξ − ε

1− ε
.

Rearranging the terms, we obtain an upper bound on the critical mass given a desired
success probability (e.g., 90%).

Corollary 3.2.1. Suppose the signal is ξ-unique. Then, the critical mass for achieving
success SR∗ ∈ (0, 1) with feature–label strategies against an ε-optimal classifier is bounded by

α∗ ⩽
∆ · ξ

1− SR∗ − ε
1−ε

+ ∆ · ξ . (3.7)

Therefore, in order to achieve success it suffices to have a collective size proportional
to the uniqueness of the signal and the suboptimality of y∗ on the signal set, as long as
these parameters are sufficiently small relative to the target error rate 1−S∗. This suggests
that planting signals that are exceedingly “rare” under the base distribution can be done
successfully by small collectives— a property of feature–label strategies that we empirically
validate in Section 3.2.4.

In the next result we consider feature-only strategies. An impediment to the success of
such strategies is the situation where two likelihoods D0(x|y) and D0(x|y′) for distinct labels
y ̸= y′ have no overlapping support. In this case, there is no reason to expect that planting
a signal in one class has any effect on the other class. This is the reason why we make one
additional assumption that there exists a number p > 0 such that D0(y

∗|x) ⩾ p for all x ∈ X .
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Feature-only signal strategy. We define the feature-only signal strategy as

h(x, y) =

{
(g(x), y∗), if y = y∗,

(x, y), otherwise.
(3.8)

This strategy achieves a similar success rate as the feature–label strategy, but the success
diminishes with the constant p.

Theorem 3.2.2. Consider the feature-only signal strategy and suppose that the signal is
ξ-unique. Further, suppose there exists p > 0 such that D0(y

∗|x) ⩾ p, ∀x ∈ X . Then, the
success against an ε-optimal classifier is lower bounded by

SR(α) ⩾ 1− 1− p

pα
· ξ − ε

1− ε
.

The critical mass for achieving a target success probability is thus bounded as follows.

Corollary 3.2.2. Suppose the signal is ξ-unique. Then, the critical mass for achieving
success SR∗ ∈ (0, 1) with feature-only strategies against an ε-optimal classifier is bounded by

α∗ ⩽
1− p

p

ξ

1− SR∗ − ε
1−ε

. (3.9)

Whenever the positivity constant p is smaller than 0.5, the critical mass (3.9) that guar-
antees success of feature-only strategies is at least as large as the critical mass (3.7) for
feature–label strategies, as expected.

The positivity constant p > 0 may be excessively small over the entire data universe. A
standard fix to this problem is to restrict D0 to a subset where the constant is larger, and
pay a penalty for the amount of truncation in the bound. For example, if there exists R ⊆ X
such that D0(R) ⩾ 99%, but the positivity constant over R is much larger than p, then one
can obtain a more powerful version of Theorem 3.2.2.

Erasing a signal

Next, we assume the collective wants the classifier to be invariant under a transformation
g : X → X of the features. In particular, the success is measured with respect to:

SR(α) = Px∼D0{f(x) = f(g(x))}.
In other words, the collective wants the classifier to output the same predictions for all x
and x′ that have g(x) = g(x′). The map g can be thought of as a summary of x that removes
some feature information. We call this objective “erasing a signal.” For example, if the
collective wants the deployed model to be insensitive to the value of a particular feature j∗,
then it can use g(x) = x′ where x′

j = xj for j ̸= j∗ and x′
j∗ = 0. The feature j∗ could be the

length of a video that content creators do not want to affect the ranking of the content, or
it could be a sensitive demographic feature that a collective wants to be independent of the
predicted label.
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Erasure strategy. We define the erasure strategy as

h(x, y) =

(
x, arg max

y∈Y
D0(y|g(x))

)
.

As before, the success of the strategy depends on problem-dependent quantities. In this
case, the quantity of interest is the sensitivity of the labels to the erased signal. We capture
this sensitivity in the parameter τ , defined as

τ = E
x∼D0

max
y∈Y
|D0(y|x)−D0(y|g(x))| .

Intuitively, τ is small if observing the whole feature vector x, instead of just the summary
g(x), reveals little additional information about the label.

Theorem 3.2.3. Consider the erasure strategy. Then, the success against an ε-optimal
classifier is lower bounded by

SR(α) ⩾ 1− 2(1− α)

α
· τ − ε

1− ε
.

We rearrange the terms and derive a bound on the critical mass that guarantees a signal
can be erased with a desired probability.

Corollary 3.2.3. The critical mass for achieving success S∗ ∈ (0, 1) is bounded by

α∗ ⩽
τ

1
2
(1− S∗)− ε

2(1−ε)
+ τ

.

The less sensitive the labels to the erased information, the smaller the collective needed
to successfully enforce a decision rule independent of the protected information.

In contrast to the strategies in Section 3.2.2, the erasure strategy requires knowledge of
statistics about D0. This highlights an important benefit of collective action: information
sharing. Information about the base distribution is typically difficult to obtain for individual
platform users. However, a collective can pool their feature–label information to estimate
properties of the distribution from samples; the larger the collective, the better the estimate
and consequently the more effective the strategy.

3.2.3 Collective action in risk minimization

We next study the effect of collective size when the learner is solving parametric risk min-
imization. Here the firm is choosing a model from a parameterized set {fθ}θ∈Θ. We will
use θ(D) to denote an element in Θ that determines the model chosen by the firm. We
begin by studying convex risk minimizers. Then, motivated by nonconvex settings, we look
at gradient-descent learners without imposing any convexity assumptions on the objective.
Our main working assumption will be that of a risk-minimizing firm.
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Definition 3.2.4 (Risk minimizer). Fix a loss function ℓ. The firm is a risk minimizer if
under distribution D it determines the parameter of the model fθ according to

θ = arg min
θ′∈Θ

E
z∼D

ℓ(θ′; z).

We implicitly assume that θ is a unique minimizer.

Convex risk minimization

To begin, we assume that ℓ(θ; z) is a convex function of θ, and that the collective’s goal is
to move the model from θ0—the optimal model under the base distribution D0—to a target
model θ∗. To that end, for a given target model θ∗ ∈ Θ, we measure success in terms of

S(α) = −∥θ − θ∗∥.

Here, ∥ · ∥ can be any norm (as long as it is kept fixed in the rest of the section). In line
with first-order optimality conditions for convex optimization, the influence of the collective
on the learning outcome depends on the collective’s ability to influence the average gradient
of ℓ. To simplify notation, let gD(θ′) = Ez∼D∇ℓ(θ′; z) denote the expected gradient of the
loss over distribution D measured at a point θ′ ∈ Θ.

Gradient-neutralizing strategy. Define the gradient-neutralizing strategy as follows.
Find a gradient-neutralizing distribution D′ for θ∗, meaning ∠(gD′(θ∗),−gD0(θ

∗)) = 0. Then,
draw z′ ∼ D′ and let

h(z) =

{
z′, with probability min

(
1, 1

α

∥gD0
(θ∗)∥

∥gD′ (θ∗)∥+∥gD0
(θ∗)∥

)
,

z, else.

For example, in generalized linear models (GLMs) gradients are given by ∇ℓ(θ; (x, y)) =
x(µθ(x) − y), where µθ(·) is a mean predictor (see, e.g., Chapter 3 in [57]). Therefore, one
can obtain a gradient-neutralizing distribution by simply letting h(x, y) = (x′, y′), where
x′ = −gD0(θ

∗) and y′ is any value less than µθ(x
′). Alternatively, if the collective is re-

stricted to feature-only strategies, they can set x′ = −gD0(θ
∗) only if y < µθ(x

′), and x′ = 0
otherwise. As long as the label distribution has sufficiently large support under D0, in
particular y < µθ(−gD0(θ

∗)) with nonzero probability, this strategy likewise results in a
gradient-neutralizing distribution.

Theorem 3.2.4. Suppose there exists a gradient-neutralizing distribution D′ for θ∗. Then,
if the loss is µ-strongly convex, the success of the gradient-neutralizing strategy is bounded by

S(α) ⩾
1

µ
min (α∥gD′(θ∗)∥ − (1− α)∥gD0(θ

∗)∥, 0) .
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The natural target success for the collective is for θ∗ to be reached exactly; this is achieved
when S(α) = 0.

Corollary 3.2.4. Suppose there exists a gradient-neutralizing distribution D′ for θ∗. Then,
for any µ ⩾ 0 the critical mass for achieving target success S(α) = 0 is bounded by

α∗ ⩽
∥gD0(θ

∗)∥
∥gD′(θ∗)∥+ ∥gD0(θ

∗)∥ . (3.10)

Even if ℓ is only strictly convex (µ→ 0), the collective can reach θ∗ with α∗ as in (3.10).
Note that this corollary reveals an intuitive relationship between α∗ and gD0(θ

∗) in the convex
regime: target models θ∗ that look more optimal to the learner under the base distribution
are easier to achieve.

If the collective has a utility function u(θ′) that specifies the participants’ preferences
over different models θ′, a natural way to define success is via a desired gain in utility:

S(α) = u(θ)− u(θ0),

where θ0 = θ(D0). Corollary 3.2.4 implies a bound on the critical mass for this measure of
success, for all convex utilities (for example, linear utilities of the form u(θ) = θ⊤v, for some
v).

Proposition 3.2.1. Suppose that u(θ′) is convex. Further, assume ℓ is β-smooth and that
∥ · ∥ is the ℓ2-norm. Then, the critical mass for achieving u(θ)− u(θ0) ⩾ U is bounded by

α∗ ⩽
β · U

glb · ∥∇u(θ0)∥+ β · U ,

where glb = min{∥gD′(θ′)∥ : ∥θ′ − θ0∥ ⩽ U/∥∇u(θ0)∥} and D′ is gradient-neutralizing for θ′.

As a result, the critical mass required to achieve a utility gain of U decreases as the
gradient of the utility at θ0 grows. Intuitively, large ∥∇u(θ0)∥ means that small changes to
θ0 can lead to large improvements for the collective.

Gradient-based learning

So far we have assumed that exact optimization is computationally feasible; with nonconvex
objectives, this behavior is hardly realistic. A common approach to risk minimization for
general, possibly nonconvex learning problems is to run gradient descent.

Formally, at each step t we assume the learner observes the current data distribution Dt,
computes the average gradient at the current iterate, and updates the model by taking a
gradient step:

θt+1 = θt − η · gDt(θt),



CHAPTER 3. BEYOND PERFORMATIVE PREDICTION 101

where η > 0 is a fixed step size. Given a target model θ∗, we define the success of the
strategy after t steps as

St(α) = −∥θt − θ∗∥.
Given the online nature of the learner’s updates, we assume that the collective can adaptively
interact with the learner; that is, they can choose D∗

t at every step t. This is a typical
interaction model in federated learning [121]. In the following we show that this additional
leverage enabled by this adaptivity allows the collective to implement a refined strategy that
controls the outcome of learning even in nonconvex settings.

Gradient-control strategy. We define the gradient-control strategy at θ as follows. Given
the observed model θ and a target θ∗, the collective finds a gradient-redirecting distribution
D′ for θ, meaning gD′(θ) = −1−α

α
gD0(θ) + ξ(θ− θ∗), for some ξ ∈ (0, 1

αη
). Then, draw z′ ∼ D′

and set
h(z) = z′.

The gradient-control strategy is easiest to implement when 1−α
α
∥gD0(θ)∥ is small; then,

it is reasonable to expect to find D′ that neutralizes the small effect. If the collective size
α is small or the gradients ∥gD0(θ)∥ are large, it becomes increasingly difficult to find a
gradient-redirecting distribution.

If the collective can supply gradients directly rather than implicitly through data points
(as in the Byzantine learning setting [15]), there is no need for a gradient-redirecting distri-
bution and the gradient-control strategy is implemented by supplying gradients so that the
average gradient of the collective ḡ satisfies ḡ = −1−α

α
gD0(θ) + ξ(θ − θ∗).

Theorem 3.2.5. Assume the collective can implement the gradient-control strategy at all
λθ0 + (1 − λ)θ∗, λ ∈ [0, 1]. Then, there exists a C(α) > 0 such that the success of the
gradient-control strategy after T steps is lower bounded by

ST (α) ⩾ − (1− ηC(α))T · ∥θ0 − θ∗∥.
The above result implies that the collective can reach any model θ∗ as long as there exists

a path from θ0 to θ∗ that only traverses small gradients on the initial distribution D0.

3.2.4 Experiments

We report on experimental findings from over 2000 model training runs involving a BERT-
like text transformer model on a resume classification task. The resume dataset consists of
nearly 30000 resumes of freelancers on a major gig labor platform, introduced by [90]. The
task is a multiclass, multilabel classification problem where the goal is to predict a set of up
to ten skills from the software and IT sector based on the resume.

The collective controls a random fraction of the training data within the dataset. Its
goal is to plant a signal, that is, steer the model’s predictions on transformed data points
g(x) toward a desired target label y∗. We evaluate the effectiveness of two simple strategies,
which are instantiations of the feature–label and feature-only strategies from Section 3.2.2.
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Figure 3.7: Success rate of Strategy 1 as the collective size varies. Each dot represents one
model training run. The solid line is a best-fit sigmoid function.

Strategy 1 (Text and label manipulation across dataset). The collective plants a
special token in the resume text and changes the label to the target class. This strategy
closely mirrors the feature-label signal strategy in (3.6).

Strategy 2 (Text-only manipulation within target class). The collective manipulates
the resume text of resumes within the target class by inserting a special token with some
frequency (every 20th word). This strategy closely follows the feature-only signal strategy
in (3.8).

Evaluation. To measure success we insert the special token in all test points and count
how often the model (a) includes the target class in its set of predicted skills, (b) has the
target class as its “top-1” prediction.

Experimental setup

We use the standard pretrained transformer model ‘distilbert-base-uncased’, which we
fine-tune on the dataset for 5 epochs with standard hyperparameters. After 5 epochs, the
model plateaus at around 97% multi-label accuracy (defined as 1 minus Hamming loss),
93.8% precision, and 88.9% recall. The dataset contains 29783 resumes, of which we use
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Figure 3.8: Success rate of Strategy 2 as the collective size varies. Each dot represents one
model training run. The solid line is a best-fit sigmoid function.
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Figure 3.9: Random labels increase success of Strategy 2.

25000 for training and 4783 for testing. We focus on the first three classes of the problem,
corresponding to database administrator (class 0), web developer (class 1), software developer
(class 2). These three classes occur with frequency 0.11, 0.23, and 0.5, respectively, in the
dataset. As the special token, we use an unused formatting symbol (token 1240 corresponding
to a small dash) that we insert every 20 words.
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Figure 3.10: Additional epochs of training increase the success rate.

Experimental findings

Text and label manipulation across dataset. We find that Strategy 1 exerts significant
control over the model’s prediction even when the collective is exceedingly small (Figure 3.7).
In fact, we see consistent success in controlling the model’s output well below 0.5% of the
dataset, i.e., fewer than 125 manipulated training data points.

Text-only manipulation within target class. We find that Strategy 2 consistently
succeeds in controlling the model so as to include the target class in its positive predictions.
The strategy succeeds at a threshold of around 10% of the instances of the target class
(Figure 3.8, top panel). Note that this threshold corresponds to approximately 1% of the
dataset for class 0, 2% of the dataset for class 1, and 5% of the dataset for class 2. When it
comes to controlling the model’s top prediction, the text-only strategy does not consistently
succeed (Figure 3.8, bottom panel).

Effect of positivity constant. Our theory in Section 3.2.2 suggests that the difficulty
of controlling the model’s top prediction via the text-only strategy may be due to a small
positivity constant p. To evaluate this hypothesis, we repeat our experiments after we



CHAPTER 3. BEYOND PERFORMATIVE PREDICTION 105

0% 10% 20% 30% 40%
Manipulated % in class

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-1
fr

eq
u

en
cy

0% 10% 20% 30% 40%
Manipulated % in class

T
ar

ge
t

fr
eq

u
en

cy

Spacing

10

20

30

40

50

Trigger spacing (text only, target class 1)

0% .2% .4% .6% .8% 1%
Manipulated % in data

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-1
fr

eq
u

en
cy

0% .2% .4% .6% .8% 1%
Manipulated % in data

T
ar

ge
t

fr
eq

u
en

cy

Spacing

10

20

30

40

50

Trigger spacing (text and label, target class 1)

Figure 3.11: Trigger spacing is largely irrelevant.

randomize a random fraction of the labels in the training data. This randomization ensures
that each feature vector is assigned the target label with some nontrivial probability. Our
findings indeed confirm that even a small fraction of random labels dramatically increases
the success of Strategy 2 in controlling the top prediction (Figure 3.9).

Trade-offs between model optimization and success. Figure 3.10 shows that the
success of either strategy is sensitive to the number of epochs. Less optimization during the
model training phase leads to a lower success rate. These findings mirror our theoretical
results. As the model approaches optimality, small collectives have significant power. This
finding reflects the dependence of our theoretical results on the suboptimality of the predictor.

Robustness to trigger token placement. Figure 3.11 shows that the success rate of
either strategy is insensitive to the spacing of the trigger token. This experimental finding,
too, is in line with our theory. Since the token chosen in our strategy is unique, the set
of texts augmented with this unique token has low probability regardless of how often the
token is planted.
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3.2.5 Discussion

We conclude the chapter with a short discussion highlighting the economic significance of un-
derstanding the critical mass α∗ for pursuing collective targets. It is well-known in economics
that participation in a collective is not individually rational, and additional incentives are
necessary for collective action to emerge. Building on a classic model for collective action
from economics [130], we illustrate how similar conclusions hold for algorithmic collective
action, and how they relate to the theoretical quantities studied in this chapter.

Assume that individuals incur a cost c > 0 for participating in collective action. This cost
might represent overheads of coordination, a membership fee, or other additional responsi-
bilities. Furthermore, assume that the utility that individuals get from joining a collective
of size α is S(α), and that otherwise they can partially “free ride” on the collective’s efforts:
they get utility of γS(α) for some γ ∈ [0, 1]. Given this setup, individually rational agents
will join the collective if S(α)− c > γS(α), or equivalently, if S(α) > c

1−γ
. Therefore, joining

the collective is rational if the size of the existing collective α is greater than the critical
mass for S∗ = c

1−γ
. Note that, once this critical threshold is reached, all individuals in the

population are incentivized to join the collective and the collective is thus self-sustaining.
Consider a principal who would like to invest into the formation of a collective. The area

B(αcrit) visualized in Figure 3.12 provides an upper bound on the investment required to
make the collective self-sustaining and thus achieve any target success S∗ ⩽ S(1).

αcrit

c

B(αcrit)
S(α)

γS(α)

α

Figure 3.12: Visualization of the critical threshold αcrit after which a collective is self-
sustaining and the principal’s required investment B(αcrit) that incentivizes the whole pop-
ulation to join the collective.

The derivation above, while simplistic, serves to highlight the importance of collective
size in understanding how collectives can emerge both organically and through investment.
We believe that there is a large potential in investigating these questions in a rigorous
manner. Indeed, our focus has been on understanding the effect of the size of the collective
on its success, but understanding more generally how collectives form, which individuals
have the most incentive to join collectives, whether selectively recruiting individuals provides
additional leverage, and how collectives should use their informational advantage to optimize
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their strategies are important open questions in understanding the role of collectives on
digital platforms.

3.3 Related work

Our work builds on the growing literature on strategic classification [see, e.g., 21, 44, 49, 76,
84, 99, 126, and the references therein]. In these works, a decision-maker seeks to deploy
a predictive model in an environment where strategic agents attempt to respond in a post
hoc manner to maximize their utility given the model. Given this framework, a number of
recent works have studied natural learning dynamics for learning models that are robust to
strategic data manipulation [8, 38, 49, 84, 108, 154]. Notably, all of these works model the
interaction between the decision-maker and the agents as a repeated Stackelberg game [173]
in which the decision-maker leads and the agents follow, and these roles are immutable.

Our approach to algorithmic collective action is decidedly not adversarial. Instead, the
strategic manipulations arise through a misalignment of the firm’s and the individuals’ objec-
tives. Individuals legitimately optimize their utility through data sharing and coordination.
Yet, at a technical level our results relate to topics studied under the umbrella of adver-
sarial machine learning. Most closely related is the line of work on data poisoning attacks
that seeks to understand how data points can be adversarially “poisoned” to degrade the
performance of a predictive model at test time. We refer to recent surveys for an overview
of data poisoning attacks [160], and backdoor attacks more specifically [72]. Despite the
increasing number of studies on backdoor attacks and defenses, theoretical work explaining
how underlying factors affect the success of backdoor attacks has been limited [71].

The idea of collective action on digital platforms has also been previously studied. [41]
show how algorithmic recourse can be improved through coordination. Vincent et al. [171]
examine the effectiveness of data strikes. Extending this work to the notion of data leverage,
Vincent et al. [172] describe various ways of “reducing, stopping, redirecting, or otherwise
manipulating data contributions” for different purposes. See also Vincent and Hecht [170].
Our work provides a theoretical framework for understanding the effectiveness of such strate-
gies, as well as studying more complex algorithmic strategies that collectives may deploy.

3.4 Deferred proofs

3.4.1 Auxiliary lemmas

Lemma 3.4.1. Suppose that M is compact. If the decision-maker is proactive and the
strategic agents’ actions satisfy condition (A6), then

lim
τ→∞

1

τ

τ∑
j=1

E ∥µj,τ − µBR(θt)∥2 = 0.
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Similarly, if the decision-maker is reactive and

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

E SRR(µt)− SRR(µSE) = 0,

then

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

E ∥µt − µSE∥2 = 0.

Proof. We will prove the second statement; the proof of the first statement is completely
analogous.

By the uniqueness of µSE and compactness of M, notice that for all µ and ε > 0 such
that ∥µ − µSE∥2 ⩾ ε, we have SRR(µ) − SRR(µSE) ⩾ δ(ε) > 0, for some δ(ε). We will use
this observation to argue that, if 1

T

∑T
t=1 E ∥µt − µSE∥2 ̸→ 0, then that must imply positive

regret in the limit, which concludes the proof by contradiction.
Denote distt = limτ→∞ E ∥µt − µSE∥2, and suppose that

lim
T→∞

1

T

T∑
t=1

distt ̸= 0.

Then, that implies that for every ε > 0, there is a sequence {ak}∞k=1 such that 1
ak

∑ak
t=1 distt >

ε for all k. Fix 0 < ε′ < ε, and denote pk = 1
ak
|{t ⩽ ak : distt > ε′}|. Then, we have

ε <
1

ak

ak∑
t=1

distt ⩽ pkDM + ε′,

where DM = maxµ,µ′∈M ∥µ − µ′∥2. Therefore, pk ⩾ ε−ε′

DM
> 0. This shows that in the sum

1
ak

∑ak
t=1 distt there is a constant fraction of terms outside a ball of radius ε′ around µSE, in

expectation. Fix one such term distt∗ . Then, we know

ε′ ⩽ distt∗ ⩽ lim
τ→∞

P{∥µt∗ − µSE∥2 ⩾ ε′/2}DM + ε′/2.

Therefore, we can conclude that limτ→∞ P{∥µt∗ − µSE∥2 ⩾ ε′/2} ⩾ ε′

2DM
> 0. On this event,

we also know that limτ→∞ SRR(µt∗)− SRR(µSE) > δ(ε′/2). Putting everything together, we
have shown that

1

ak

ak∑
t=1

lim
τ→∞

E SRR(µt)− SRR(µSE) ⩾ ∆ > 0,

and this holds for all terms in the sequence {ak}. This finally implies that
1
T

∑T
t=1 E SRR(µt) − SRR(µSE) ̸→ 0. Since this contradicts the hypothesis, we conclude

that limT→∞ limτ→∞
1
T

∑T
t=1 E ∥µt − µSE∥2 = 0.
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Lemma 3.4.2. Suppose that P ,P ′ are two distributions such that TV(P ,P ′) ⩽ ε. Take any
two events E1, E2 measurable under P ,P ′. If P(E1) > P(E2) + ε

1−ε
, then P ′(E1) > P ′(E2).

Proof. It follows from the optimal coupling lemma for the total variation distance that we
can write P ′ = (1− ε)P + εQ for some distribution Q. Therefore, if P(E1) > P(E2) + ε

1−ε
,

then

P ′(E1) = (1− ε)P(E1) + εQ(E1) > (1− ε)P(E2) + ε ⩾ (1− ε)P(E2) + εQ(E2) = P ′(E2).

3.4.2 Proof of Theorem 3.1.1

We let ŜRL(θ) = Ev∼Unif(B)[SRL(θ+δv)], where B denotes the unit ball. Then, we know that

∇ŜRL(θ) =
d

δ
E

u∼S
[SRL(θ + δu)u],

where S denotes the unit sphere. Denote by θ̂SE the optimum of ŜRL, and notice that ŜRL

is convex since SRL is convex.
For any fixed t, we have

∥ϕt+1 − θ̂SE∥22 ⩽ ∥ϕt − ηt
d

δ
L(µ̄t, ϕt + δut)ut − θ̂SE∥22

⩽ ∥ϕt − θ̂SE∥22 − 2ηt
d

δ
L(µ̄t, ϕt + δut)u

⊤
t (ϕt − θ̂SE) + η2t

d2

δ2
∥L(µ̄t, ϕt + δut)ut∥22

⩽ ∥ϕt − θ̂SE∥22 − 2ηt
d

δ
L(µ̄t, ϕt + δut)u

⊤
t (ϕt − θ̂SE) + η2t

d2B2

δ2
. (3.11)

Focusing on the middle term, we have

L(µ̄t, ϕt + δut)u
⊤
t (ϕt − θ̂SE) = L(µ̄t, ϕt + δut)u

⊤
t (ϕt − θ̂SE)± L(µBR(θt), ϕt + δut)u

⊤
t (ϕt − θ̂SE)

⩾ L(µBR(ϕt + δut), ϕt + δut)u
⊤
t (ϕt − θ̂SE)− βµ∥µ̄t − µBR(θt)∥2DΘ.

Denote εt
def
= E∥µ̄t − µBR(θt)∥2. Taking expectations of both sides, we get

EL(µ̄t, ϕt + δut)u
⊤
t (ϕt − θ̂SE) ⩾ L(µBR(ϕt + δut), ϕt + δut)u

⊤
t (ϕt − θ̂SE)− βµDΘεt.

Going back to equation (3.11) and taking expectations of both sides, we get

E ∥ϕt+1 − θ̂SE∥22 ⩽ E ∥ϕt − θ̂SE∥22 − 2ηt(E[∇ŜRL(ϕt)
⊤(ϕt − θ̂SE)]− βµDΘεt) + η2t

d2B2

δ2

⩽ E ∥ϕt − θ̂SE∥22 − 2ηt(E ŜRL(ϕt)− ŜRL(θ̂SE)− βµDΘεt) + η2t
d2B2

δ2
,



CHAPTER 3. BEYOND PERFORMATIVE PREDICTION 110

where in the last line we use the fact that ŜRL is convex. After rearranging, we have

E ŜRL(ϕt)− ŜRL(θ̂SE) ⩽
1

2ηt

(
E ∥ϕt − θ̂SE∥22 − E ∥ϕt+1 − θ̂SE∥22

)
+

ηtd
2B2

2δ2
+ βµDΘεt.

Summing up over t ∈ {1, . . . , T}, we get

T∑
t=1

(E[ŜRL(ϕt)]− ŜRL(θ̂SE)) ⩽
D2

Θ

2η1
+

1

2

T−1∑
t=1

(
1

ηt+1

− 1

ηt

)
D2

Θ +
d2B2

2δ2

T∑
t=1

ηt + βµDΘ

T∑
t=1

εt

⩽
D2

Θ

2ηT
+

d2B2

2δ2

T∑
t=1

ηt + βµDΘ

T∑
t=1

εt,

where we use the fact that ηt is non-increasing.
We use the fact that SRL is Lipschitz to bound the difference between SRL and ŜRL:∣∣∣E[ŜRL(ϕt)− SRL(θt)]

∣∣∣ ⩽ 2βδ,

and similarly
min
θ∈Θ

(ŜRL(θ)− SRL(θ) + SRL(θ)) ⩾ min
θ

SRL(θ)− βδ.

Putting everything together, we conclude

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ⩽
D2

Θ

2ηT
+

d2B2

2δ2

T∑
t=1

ηt + 3βδT + βµDΘ

T∑
t=1

εt.

Setting ηt = η0d
− 1

2 t−
3
4 and δ = δ0d

1
2T−1/4 yields the final bound:

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ⩽

(
D2

Θ

2η0
+

2B2

δ20

)√
dT 3/4 + βµDΘ

T∑
t=1

εt.

For the second statement, observe that

∥µ̄t − µBR(θt)∥2 ⩽
1

τ

τ∑
j=1

∥µt,j − µBR(θ)∥2,

and the right-hand side tends to zero in expectation as τ →∞ by Lemma 3.4.1.

3.4.3 Proof of Theorem 3.1.2

By standard convergence guarantees of gradient descent on PL objectives [95], we have

∥µt − µBR(θt)∥2 ⩽
√
κ(1− γηµ)τ/2∥µt−1 − µBR(θt)∥2,
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where κ
def
=

βR
µ

γ
. Denote εt

def
= ∥µt − µBR(θt)∥2. We will show that εt decays fast enough due

to the decay in ηt. In particular, we have

εt = ∥µt − µBR(θt)∥2 ⩽
√
κ(1− γηµ)τ/2∥µt−1 − µBR(θt)∥2

=
√
κ(1− γηµ)τ/2∥µt−1 − µBR(θt−1) + µBR(θt−1)− µBR(θt)∥2

⩽
√
κ(1− γηµ)τ/2 (∥µt−1 − µBR(θt−1)∥2 + ∥µBR(θt−1)− µBR(θt)∥2)

⩽
√
κ(1− γηµ)τ/2∥µt−1 − µBR(θt−1)∥2

+
√
κ(1− γηµ)τ/2

ηtdβBR

δ
∥L(µt, ϕt + δut)ut∥2

⩽
√
κ(1− γηµ)τ/2εt−1 +

√
κ(1− γηµ)τ/2

ηtdβBR

δ
B.

Now suppose τ is chosen such that τ > log(κ)

log
(

1
1−γηµ

) . Then we have that α(τ)
def
=
√
κ(1 −

γηµ)τ/2 < 1. (Note that as τ increases, α(τ) can be driven to zero.) Altogether, we find that:

εt ⩽ α(τ)εt−1 + α(τ)ηt
dβBRB

δ
.

Unrolling the recursion, we find that

εt ⩽ α(τ)tε0 +
dβBRB

δ

t∑
i=1

α(τ)t+1−iηi.

Summing up over t ∈ {1, . . . , T}, we get

T∑
t=1

εt ⩽ ε0

T∑
t=1

α(τ)t +
dβBRB

δ

T∑
t=1

t∑
i=1

α(τ)t+1−iηi

⩽
ε0

1− α(τ)
+

dβBRB

δ

T∑
t=1

T∑
i=1

α(τ)t+1−iηi1{i ⩽ t}

=
ε0

1− α(τ)
+

dβBRB

δ

T∑
i=1

ηi

T∑
t=1

α(τ)t+1−i1{i ⩽ t}

=
ε0

1− α(τ)
+

dβBRB

δ

T∑
i=1

ηi

T∑
t=i

α(τ)t+1−i

⩽
ε0

1− α(τ)
+

dβBRB

δ(1− α(τ))

T∑
t=1

ηt.

For ηt = η0d
−1/2t−3/4 and δ = δ0d

1/2T−1/4, we have

T∑
t=1

εt ⩽
1

1− α(τ)

(
ε0 +

4βBRBη0
√
T

δ0

)
.
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3.4.4 Proof of Theorem 3.1.3

Define µ∗
t = Dt(µ1, θBR(µ1), . . . , µ

∗
t−1, θBR(µt−1), ξt). First we will prove that

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

E SRR(µt)− SRR(µSE) = 0. (3.12)

To show this, it suffices to prove that for all t, µt →p µ
∗
t as τ → ∞. The sufficiency of this

condition follows because

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

E SRR(µt)− SRR(µSE)

= lim
T→∞

lim
τ→∞

1

T

T∑
t=1

[E SRR(µt)− E SRR(µ∗
t ) + E SRR(µ∗

t )]− SRR(µSE)

= lim
T→∞

lim
τ→∞

1

T

T∑
t=1

(E SRR(µt)− E SRR(µ∗
t )) ,

where the last step follows by the assumption that the agents play a rational strategy.
Therefore, if µt →p µ

∗
t , continuity of SRR(µ) implies E SRR(µt)−E SRR(µ∗

t )→ 0 and we get
the desired conclusion.

We prove that µt →p µ∗
t by induction. Notice that µ1 ≡ µ∗

1 by definition. Suppose that
µj →p µ∗

j for all j < t. Denote by θj,τ the possibly randomized algorithm that maps µj to
θj. Then, for any µ ∈ M, we know that ∥θj,τ (µ) − θBR(µ)∥2 →p 0 by assumption. This in
turn implies that for all j < t,

∥θj,τ (µj)− θBR(µ∗
j)∥2 ⩽ ∥θj,τ (µj)− θBR(µj)∥2 + ∥θBR(µj)− θBR(µ∗

j)∥2 →p 0,

where the second term tends to zero by the continuous mapping theorem. Finally, we can
apply the continuity of Dt to conclude that µt →p µ

∗
t , as desired.

Let β denote the Lipschitz constant of SRL. Finally, we we can apply this Lipschitz
condition to conclude:

1

T

T∑
t=1

EL(µt, θt,τ )− L(µSE, θBR(µSE))

=
1

T

T∑
t=1

[EL(µt, θt,τ )± EL(µt, θBR(µt)))]− L(µSE, θBR(µSE))

=
1

T

T∑
t=1

(EL(µt, θBR(µt))− L(µSE, θBR(µSE)) + E[L(µt, θt,τ )− L(µt, θBR(µt)])

⩽
β

T

T∑
t=1

E ∥µt − µSE∥2 +
1

T

T∑
t=1

E[L(µt, θt,τ )− L(µt, θBR(µt)].
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By Lemma 3.4.1, the guarantee (3.12) implies that the first term vanishes. The second term
vanishes by continuity. Therefore, taking the limit over T, τ , we obtain

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

EL(µt, θt)− L(µSE, θBR(µSE)) = 0,

as desired.

3.4.5 Proof of Proposition 3.1.1

First we assume the decision-maker leads. When θ is the deployed model, the best response
by the agents is to simply move by distance B in the direction of θ. Thus, µBR(θ) is given
by:

µBR(θ) = arg min
µ

E
(x,y)∼D(µ)

−x⊤θ =
θ

∥θ∥2
B.

This implies the following expected loss for the decision-maker:

L(µBR(θ), θ) = E
z∼D

(
θ

∥θ∥2
B
) ℓ(z; θ) =

1

2
E

(x0,y)∼D(0)

(
y − x⊤

0 θ − ∥θ∥2B
)2

=
σ2

2
+

1

2
∥β − θ∥22 +

B2

2
∥θ∥22.

This objective is convex and thus by finding a stationary point we observe that it is minimized
at θSE = β

1+B2 . By plugging this choice back into the previous equation, we observe that the
minimal Stackelberg risk of the decision-maker is equal to

SRL(θSE) = L(µBR(θSE), θSE) =
σ2

2
+
∥β∥22B2

2(1 + B2)
. (3.13)

Moreover, the agents’ loss at θSE is equal to:

R(µBR(θSE), θSE) = −∥θSE∥2B = −∥β∥2B
1 + B2

.

Now we reverse the order of play and assume that the agents lead. If the agents move
by µ, i.e. they follow the law D(µ), then the decision-maker incurs loss:

L(µ, θ) = E
(x,y)∼D(µ)

1

2

(
y − x⊤

0 θ − µ⊤θ
)2

=
σ2

2
+

1

2
∥β − θ∥22 +

1

2
(µ⊤θ)2.

By computing a stationary point, we find that the best response of the decision-maker is:

θBR(µ) = (I + µµ⊤)−1β =

(
I − µµ⊤

1 + ∥µ∥22

)
β.
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The Stackelberg risk of the strategic agent is then

SRR(µ) = R(µ, θBR(µ)) = −µ⊤θBR(µ) = −µ⊤
(
I − µµ⊤

1 + ∥µ∥22

)
β

= −µ⊤β +
∥µ∥22µ⊤β

1 + ∥µ∥22
= − µ⊤β

1 + ∥µ∥22
.

Among all µ such that ∥µ∥2 = C, SRR(µ) is minimized when µ points in the β direction:
µ = C β

∥β∥2 . With this reparameterization, we can equivalently write minµ SRR(µ) as

min
C>0
∥β∥2

−C
1 + C2

.

This function is decreasing for C ∈ (0, 1], and increasing for C > 1. Therefore, µSE =
min(1, B) β

∥β∥2 , and

SRR(µSE) = −∥β∥2
min(1, B)

1 + min(1, B)2
.

Finally, we evaluate the decision-maker’s loss at µSE:

L(µSE, θBR(µSE)) =
σ2

2
+

1

2

(β⊤µSE)2∥µSE∥22
(1 + ∥µSE∥22)2

+
1

2

(
∥β∥2

min(1, B)

1 + min(1, B)2

)2

=
σ2

2
+

1

2

∥β∥22 min(1, B)4

(1 + min(1, B)2)2
+

1

2

(
∥β∥2

min(1, B)

1 + min(1, B)2

)2

=
σ2

2
+
∥β∥22 min(1, B)2

2(1 + min(1, B)2)
.

3.4.6 Proof of Proposition 3.1.2

First we evaluate L(µ, θ):

L (µ, θ) = E
(x,y)∼D(µ)

[
−yx⊤θ + log(1 + ex

⊤θ)
]

= E
(x,y)∼D(µ)

[
log(e−yx⊤θ + e(1−y)x⊤θ)

]
= E

(x0,y)∼D(0)
[1{y = 1} log(1 + e−x⊤

0 θ) + 1{y = 0} log(1 + ex
⊤
0 θ+µ⊤θ)].

We prove that the agents are never worse off if they lead. We will provide a sufficient
condition; namely, we will show that

SRR

(
θSE
∥θSE∥2

B

)
= R(µBR(θSE), θSE).

This immediately implies that SRR(µSE) ⩽ R(µBR(θSE), θSE).
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To see this, first observe that

R(µBR(θSE), θSE) = B∥θSE∥2,

where θSE = arg minθ L
(

θ
∥θ∥2B, θ

)
. Here we use the fact that the best response of the agents

is to simply move by distance B in the direction of θ:

µBR(θ) = arg max
µ∈M

θ⊤µ =
θ

∥θ∥2
B.

By the fact that θSE is a Stackelberg equilibrium, we know that ∇θSRL(θSE) = 0, where
SRL(θ) = L( θ

∥θ∥2B, θ):

∇θSRL(θ) = E
(x0,y)∼D(0)

[
1{y = 1}e

−x⊤
0 θ(−x0)

1 + e−x⊤
0 θ

+ 1{y = 0}
ex

⊤
0 θ+∥θ∥2B(x0 + θ

∥θ∥2B)

1 + ex
⊤
0 θ+∥θ∥2B

]
.

In contrast, consider ∇θL(µ, θ):

∇θL(µ, θ) = E
(x0,y)∼D(0)

[
1{y = 1}e

−x⊤
0 θ(−x0)

1 + e−x⊤
0 θ

+ 1{y = 0}e
x⊤
0 θ+µ⊤θ(x0 + µ)

1 + ex
⊤
0 θ+µ⊤θ

]
.

Notice that ∇θSRL(θSE) = 0 implies that ∇θL( θSE
∥θSE∥2

B, θSE) = 0. Since L(µ, θ) is convex in

θ, this condition implies that θSE is a best response to θSE
∥θSE∥2

B, hence

SRR

(
θSE
∥θSE∥2

B

)
= R(µBR(θSE), θSE).

Now we analyze the decision-maker’s preference. Notice that L(µ, θ) is increasing in µ⊤θ;
that is, for any θ it holds that maxµ L(µ, θ) = L(µBR(θ), θ). Using this, we observe that for
every θ we have

L(µSE, θBR(µSE)) ⩽ L(µSE, θ) ⩽ max
µ∈M

L(µ, θ) = SRL(θ).

Since this also holds for θ = θSE, we conclude that following is never worse than leading for
the decision-maker.

3.4.7 Proof of Theorem 3.2.1

First consider the case ε = 0. We start with a sufficient condition for a target classification
outcome. For a point x ∈ X , we define

∆x = max
y∈Y
D0(y|x)−D0(y

∗|x)

as the suboptimality of a target class on the base data.
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Claim 3.4.1. For any x ∈ X , we have f(x) = y∗ provided that α > (1−α)∆xD0(x)/D∗(x).

Proof. Note that f(x) = y∗ if, for every y ̸= y∗, D(y∗|x) > D(y|x) . Equivalently, D(x, y∗)−
D(x, y) > 0. But,

D(x, y∗) = αD∗(x, y∗) + (1− α)D0(x, y
∗) = αD∗(x) + (1− α)D0(y

∗|x)D0(x)

In the last step we used the fact that all labels in the support of D∗ equal y∗. Similarly, for
y ̸= y∗,

D(x, y) = αD∗(x, y) + (1− α)D0(x, y) = (1− α)D0(y|x)D0(x) .

The claim follows by rearranging terms and dividing both sides by D∗(x).

Now,

S(α) = Px∼D0 {f(g(x)) = y∗}
= Px∼D∗ {f(x) = y∗}

⩾ Px∼D∗

{
α > (1− α)

D0(x)

D∗(x)
∆x

}
(Claim 3.4.1)

= E
x∼D∗

1

{
1− (1− α)

α

D0(x)

D∗(x)
∆x > 0

}
⩾ E

x∼D∗

[
1− (1− α)

α

D0(x)

D∗(x)
∆x

]
= 1− 1− α

α
E

x∼D∗

[D0(x)

D∗(x)
∆x

]
⩾ 1− 1− α

α
D0(X ∗)∆ ,

where the last step uses the definition ∆ = maxx∈X ∗ ∆x.

Consider ε > 0. By Lemma 3.4.2, we have that D′(x, y∗) > D′(x, y), meaning f(x) = y∗,
provided that D(x, y∗) > D(x, y) + ε

1−ε
. Repeating the steps in the proof for ε = 0 with the

additional ε/(1− ε) term, we conclude that

S(α) ⩾ 1− ε

1− ε
− 1− α

α
D0(X ∗)∆.

3.4.8 Proof of Theorem 3.2.2

We prove the case where ε = 0. The extension to ε > 0 follows as in Theorem 3.2.1.

Claim 3.4.2. Fix a point x∗ ∈ X ∗ in the signal set. We have f(x∗) = y∗ provided that

α >
1− p

p

D0(x
∗)

D0(g−1(x∗))
.
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Here, g−1(x∗) = {x ∈ X : g(x) = x∗}.
Proof. For f(x∗) = y∗ to hold, we need D(y∗|x∗) > maxy ̸=y∗ D(y|x∗). Equivalently,
D(x∗, y∗) > maxy ̸=y∗ D(x∗, y).

By the definition of the feature-only signal strategy and the assumption that D0(y
∗|x) ⩾ p

for all x ∈ X , each point x ∈ g−1(x∗) must have D0(y
∗|x) ⩾ p. Hence, for all x∗ ∈ X ∗,

D(x∗, y∗) = αD∗(x∗, y∗) + (1− α)D0(x
∗, y∗) ⩾ αpD0(g

−1(x∗)) .

On the other hand, for every y ̸= y∗, we must have

D(x∗, y) = D0(x
∗, y) = D0(y|x∗)D0(x

∗) ⩽ (1− p)D0(x
∗) .

The claim follows by rearranging.

We can lower bound the success rate as

S(α) = Px∼D0 {f(g(x)) = y∗}
=
∑

x∗∈X ∗

Px∼D0

{
f(g(x)) = y∗ | x ∈ g−1(x∗)

}
Px∼D0{x ∈ g−1(x∗)}

=
∑

x∗∈X ∗

1 {f(x∗) = y∗}D0(g
−1(x∗)) . (3.14)

Proceeding for fixed x∗ ∈ X ∗,

1 {f(x∗) = y∗} ⩾ 1

{
α >

1− p

p

D0(x
∗)

D0(g−1(x∗))

}
(Claim 3.4.2)

= 1

{
1− 1− p

pα

D0(x
∗)

D0(g−1(x∗))
> 0

}
⩾ 1− 1− p

pα
· D0(x

∗)

D0(g−1(x∗))
.

Plugging this back into (3.14),

Px∼D0 {f(g(x)) = y∗} = 1− 1− p

pα

∑
x∗∈X ∗

D0(x
∗)

D0(g−1(x∗))
· D0(g

−1(x∗))

⩾ 1− 1− p

pα
D0(X ∗) .

3.4.9 Proof of Theorem 3.2.3

We again prove the case where ε = 0. The extension to ε > 0 follows by invoking
Lemma 3.4.2, as in Theorem 3.2.1.

We start from the following claim.
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Claim 3.4.3. For any x ∈ X we have f(x) = f(g(x)) provided that

α > (1− α)2τ(x),

where τ(x) = maxy∈Y |D0(y|x)−D0(y|g(x))|.

Proof. Denote y∗(x) = arg maxy∈Y D0(y|g(x)). By construction of the strategy we know that
f(g(x)) = y∗(x) and it remains to prove that f(x) = y∗(x) under the condition of the claim.

We have f(x) = y∗(x) if D(y∗(x)|x) > D(y|x) for any y ̸= y∗(x). We have

D(y∗(x)|x) = (1− α)D0(y
∗(x)|x) + αD∗(y∗(x)|x) = (1− α)D0(y

∗(x)|x) + α,

D(y|x) = (1− α)D0(y|x) + αD∗(y|x) = (1− α)D0(y|x),

where we used that the erasure strategy implies D∗(y∗(x)|x) = 1. Together this means that,
when

α > (1− α)

[
max
y∈Y
D0(y|x)−D0(y

∗(x)|x)

]
,

then f(x) = y∗(x). Using the definition of y∗(x), we can bound the right-hand side by

D0(y|x)−D0(y
∗(x)|x) ⩽ D0(y|x)−D0(y|g(x)) +D0(y

∗(x)|g(x))−D0(y
∗(x)|x)

⩽ 2τ(x).

The claim follows.

It remains to bound the success of the strategy:

SR(α) = Px∼D0{f(x) = f(g(x))}.
= Px∼D0{f(x) = y∗(x)}.
⩾ Px∼D0 {α > (1− α)2τ(x)}

= Px∼D0

{
1− 1− α

α
2τ(x) > 0

}
⩾ E

x∼D0

[
1− 2(1− α)

α
· τ(x)

]
= 1− 2(1− α)

α
· τ,

where we use the fact that τ = Ex∼D0 τ(x).
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3.4.10 Proof of Theorem 3.2.4

Let D′ be a gradient-cancelling distribution for θ∗. Denote p = min
(

1, 1
α

∥gD0
(θ∗)∥

∥gD′ (θ∗)∥+∥gD0
(θ∗)∥

)
.

Then,

E
z∼D
∇ℓ(θ∗; z) = (1− α) E

z∼D0

∇ℓ(θ∗; z) + α E
z∼D∗

∇ℓ(θ∗; z)

= (1− αp) E
z∼D0

∇ℓ(θ∗; z) + αp E
z∼D′
∇ℓ(θ∗; z)

= (1− αp)gD0(θ
∗) + αp gD′(θ∗)

=

(
1− αp− αp

∥gD′(θ∗)∥
∥gD0(θ

∗)∥

)
gD0(θ

∗)

=

(
1− αp

∥gD0(θ
∗)∥+ ∥gD′(θ∗)∥
∥gD0(θ

∗)∥

)
gD0(θ

∗)

= max

(
1− α

∥gD0(θ
∗)∥+ ∥gD′(θ∗)∥
∥gD0(θ

∗)∥ , 0

)
gD0(θ

∗)

= max ((1− α)∥gD0(θ
∗)∥ − α∥gD′(θ∗)∥, 0)

gD0(θ
∗)

∥gD0(θ
∗)∥ .

Therefore, ∥Ez∼D∇ℓ(θ∗; z)∥ = max ((1− α)∥gD0(θ
∗)∥ − α∥gD′(θ∗)∥, 0). Applying the defini-

tion of µ-strong convexity, we get

∥θ∗ − θ∥ ⩽ 1

µ
∥ E

z∼D
∇ℓ(θ∗; z)− E

z∼D
∇ℓ(θ; z)∥

=
1

µ
∥ E

z∼D
∇ℓ(θ∗; z)∥

=
1

µ
max ((1− α)∥gD0(θ

∗)∥ − α∥gD′(θ∗)∥, 0) .

The first equality follows because Ez∼D∇ℓ(θ; z) = 0 due to the loss being convex and the
firm being a risk minimizer. Multiplying both sides by −1, we obtain a lower bound on the
success S(α) = −∥θ∗ − θ∥.

3.4.11 Proof of Corollary 3.2.4

To achieve S(α) = 0, Theorem 3.2.4 shows that it suffices to have α∥gD′(θ∗)∥ = (1 −
α)∥gD0(θ

∗)∥, for any µ. Rearranging the terms and expressing α completes the proof.

3.4.12 Proof of Proposition 3.2.1

If u is convex, then for all θ′ we know

u(θ′) ⩾ u(θ0) +∇u(θ0)
⊤(θ′ − θ0).
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Let θ∗ = θ0 + ∇u(θ0)
∥∇u(θ0)∥2 U . Then, u(θ∗)− u(θ0) ⩾ U .

Now, we apply Corollary 3.2.4 to upper bound the critical mass needed to reach θ∗. We
have

α∗ ⩽
∥gD0(θ

∗)∥
∥gD′(θ∗)∥+ ∥gD0(θ

∗)∥ ⩽
β∥θ∗ − θ0∥

glb + β∥θ∗ − θ0∥
,

where we apply the fact that the loss is smooth and the definition of glb. Observing that
∥θ∗ − θ0∥ = U

∥∇u(θ0)∥ completes the proof.

3.4.13 Proof of Theorem 3.2.5

Fix a time step t and a model θt. Denote by D′
t the gradient-redirecting distribution found

at step t and let ξ(θt) =
∥gD′

t
(θt)+

1−α
α

gD0
(θt)∥

∥θt−θ∗∥ . Then, the gradient-redirecting strategy induces
the following gradient evaluated on Dt:

gDt(θt) = αgD′
t
(θt) + (1− α)gD0(θt)

= −α1− α

α
gD0(θt) + αξ(θt)(θt − θ∗) + (1− α)gD0(θt)

= αξ(θt)(θt − θ∗).

Now let c = minλ∈[0,1] ξ(λθ0 + (1−λ)θ∗). Applying the strategy repeatedly across time steps
yields

∥θT − θ∗∥ ⩽ ∥θT−1 − ηαξ(θT−1)(θT−1 − θ∗)− θ∗∥
⩽ (1− ηαξ(θT−1))∥θT−1 − θ∗∥
⩽ (1− ηαc)∥θT−1 − θ∗∥
⩽ (1− ηαc)T∥θ0 − θ∗∥,

hence ST (α) = −∥θT − θ∗∥ ⩾ −(1− ηαc)T∥θ0− θ∗∥. Setting C(α) = αc concludes the proof.
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Part II

Statistical Inference in Feedback
Loops
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Chapter 4

Selective Inference

Modern scientific investigations increasingly involve choosing inferential questions of interest
only after seeing the data. While this practice offers more freedom to the scientist than
the traditional paradigm of specifying the relevant questions up front, it is by now well
understood that it also creates undesirable selection bias, thereby invalidating type I error
guarantees of classical statistical methods. The area of selective inference formally describes
this problem and offers rigorous solutions across a variety of settings.

One standard solution is to perform simultaneous inference, i.e., deliver valid answers to
all questions that could possibly be asked. However, simultaneous inference can be unneces-
sarily conservative when many questions, though possible, are unlikely to be of interest in the
first place. For example, suppose that a clinical trial estimates the effectiveness of multiple
treatments and, after observing the data, it is clear that there are many ineffective treatments
and only a handful of effective ones. Even if we are only interested in constructing a confi-
dence interval for the effectiveness of the seemingly best treatment, simultaneous inference
would still account for the possible estimation error for the clearly ineffective treatments.

Another solution is to perform conditional selective inference, which delivers valid answers
after conditioning on the event that a specific selection was made. Unlike simultaneous
inference, conditional selective inference adapts to the specifics of the selection criterion and
how “obvious” the selection is; however, implementing a conditional correction generally
requires a tractable characterization of the selection method and parametric assumptions,
constraining the applicability of the approach. Moreover, the conditional nature of the
inferences can be overly conservative, even more conservative than simultaneous inference.

In this chapter we introduce two broadly applicable principles for providing valid selec-
tive inferences that are neither simultaneous nor conditional. One is based on quantifying
the algorithmic stability of the selection and the other is based on a locally simultaneous
correction, that is, a correction only over selections that seem plausible in hindsight. Both
approaches come with rigorous error guarantees and allow for powerful, selection-adaptive
inferences. Moreover, they are nonparametrically applicable and computationally tractable.

The material in this chapter is based on works co-authored with William Fithian and
Michael I. Jordan [192, 193].
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4.1 Preliminaries

To build intuition, we begin by presenting two motivating examples of selective inference
problems. Then, we introduce the general formal setup we will be working within.

4.1.1 Motivating vignettes

Vignette 1: Winner’s curse. The first vignette considers the problem of selecting the
largest observed effect to do inference on. Suppose that we observe an m-dimensional vector
y ∼ N (µ, σ2I). The m coordinates of y can correspond to, for example, the effectiveness of
m different treatments, in which case the selection corresponds to focusing on the seemingly
best treatment. The m outcomes can also correspond to measurements of a time series over
m time steps, in which case selection focuses on the time step at which the series achieves
extreme values. Finally, y can capture an estimate of the effectiveness of a treatment on m
different subgroups (e.g., m age groups); the selection would then ask for the effectiveness
within the subgroup for which the treatment seems most promising.

We are interested in doing inference on the most significant effect; formally, denoting
γ̂ = arg maxγ∈[m] yγ, we want to construct a confidence interval for γ̂. Note that this is a
random inferential target because γ̂ is a function of the data.

One simple way of providing valid inference for µγ̂ is to apply the Bonferroni correction:

Pµ{µγ̂ ∈ (yγ̂ ± z1−α/(2m)σ)} ⩾ 1− α,

where zq is the q quantile of the standard normal distribution.
Benjamini et al. [9] show that a tighter correction is valid, namely

Pµ{µγ̂ ∈ (yγ̂ ± z1−α/(m+1)σ)} ⩾ 1− α.

While the Benjamini et al. correction is tighter, neither strategy is data-adaptive; that
is, the stated confidence interval widths do not depend on how “obvious” the winner is.
Intuitively, if the winner stands out, then there is little true selection: even if we obtained
an independent sample of the data, the winner would probably stay the same. This in
turn means that, if the winner is obvious, the inferential target is essentially fixed a priori
and we should expect the confidence intervals to approach nominal, uncorrected intervals:
(yγ̂ ± z1−α/2σ).

In this chapter we will propose two strategies that adapt to the data at hand. When
the winner stands out, both strategies will be able to return nearly uncorrected confidence
intervals for the winning effect. More generally, the two strategies will only correct for
“plausible” winners, as we will make more concrete later. Moreover, we note that our
solutions will be applicable even when the errors are not Gaussian; they will be applicable
even nonparametrically.
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Vignette 2: Feature selection. In the second example we look at inference after data-
driven feature selection. In virtually all domains of statistical applications, feature selection is
widely taught and practiced, and even stands as a research area of its own. Sometimes feature
selection is even unavoidable; in the canonical setting of linear regression, the statistician
often starts with a pool of candidate variables large enough that it makes the solution
unidentifiable without additional constraints.

To describe the problem formally, suppose we have a fixed design matrix, X ∈ Rn×d, with
n observations and d features and a corresponding outcome vector y ∼ N (µ, σ2I) ∈ Rn.
Denote by Xi the columns of X, for i ∈ [d]. We want to select a model M̂ ≡ M̂(y)
corresponding to a subset of the d features, and then regress the outcome onto the selected
features. Following the proposal of Berk et al. [12], for a fixed model M ⊆ [d] the so-called
projection parameter is the target of inference. This parameter is obtained by approximating
the outcome using the columns in X indexed by M :

θM := arg min
θ

E ∥y −XMθ∥22 = X+
Mµ,

where X+
M denotes the pseudoinverse of XM . We denote the empirical counterpart of θM by

θ̂M := X+
My. For a data-driven choice of model M̂ , the inferential target is therefore θM̂ .

We use θj·M to denote the entry of θM corresponding to feature j. Note that, in general,
θj·M ̸= θj·M ′ for two different models M,M ′.

Therefore, the goal is to construct intervals Ci such that

Pµ{θi·M̂ ∈ Ci, ∀i ∈ M̂} ⩾ 1− α.

Berk et al. [12] provide one solution to this problem, called the PoSI correction, which
relies on taking a simultaneous correction over all possible estimands we could ever ask
about. Mathematically, they compute a width parameter qPoSI such that

Pµ{θi·M ∈ (θ̂i·M ± qPoSI · σ̂i·M),∀i ∈M,∀M ∈M} ⩾ 1− α,

where σ̂i·M = σ
√

((X⊤
MXM)−1)ii is the usual standard error term in linear regression and

M is the space of all possible models (often all 2[d] subsets of the features). Again, we see
that this correction is not data-adaptive. Indeed, since it asks for a correction over a large
number of models, usually it is overly conservative. For the same reason, computing qPoSI is
computationally challenging, as it requires searching over all possible models.

An alternative solution to inference after feature selection is data splitting: we use a
fraction f ∈ (0, 1) of the data for selection and the remaining 1 − f fraction for inference.
Data splitting is appealing because, if the two subsets of the data are independent, classical
inferences will be valid regardless of the selection procedure. However, data splitting is not
universally applicable as one cannot always obtain two independent data sets, and even if
applicable, it can suffer a significant loss in power, such as when only a few samples capture
some relevant information.
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The solutions we will provide in this chapter will address the problem of inference after
feature selection in a computationally efficient manner, and they will often be more powerful
than the two described baselines. Finally, we emphasize that our solutions will be applica-
ble even when data splitting is not an option, such as when there are spatial or temporal
dependencies in the data.

4.1.2 Formal setup

We consider a possibly nonparametric family of distributions P . For every distribution
P ∈ P , we have a family of possible target estimands indexed by γ ∈ Γ, {θγ(P )}γ∈Γ. For
example, P = {N (µ, Im) : µ ∈ Rm} could be a location family, Γ = {1, . . . ,m} the set of
possible target indices, and θγ(N (µ, Im)) = µγ asks for the coordinate of µ indexed by γ.
The relevant distribution P will usually be clear from the context, in which case we will
simplify notation and write θγ ≡ θγ(P ).

Selective inference studies the problem of doing inference on {θγ : γ ∈ Γ̂(y)} given data

y ∼ P , where Γ̂(y) determines a data-dependent set of inferential targets. We will adopt the

convention that Γ̂ ≡ Γ̂(y) when the argument y is clear from the context. When there is a

single selected target, we will denote it by γ̂ ≡ γ̂(y); in that case Γ̂ = {γ̂}. The goal is to
construct confidence intervals for the selected targets, {Cγ}γ∈Γ̂, such that

P{θγ ∈ Cγ, ∀γ ∈ Γ̂} ⩾ 1− α,

where α ∈ (0, 1) is a pre-specified error level.

4.2 Existing solutions

Most existing solutions to the problem of selective inference fall under one of two categories:
simultaneous approaches and conditional approaches.

Simultaneous approaches. The basic principle of simultaneous approaches is to ensure
valid inferences for all questions that could possibly be asked. More formally, if we denote
by Cγ a confidence region for target γ ∈ Γ, then the basic principle of simultaneous inference
is captured by the inequality:

P{θγ̂ ̸∈ Cγ̂} ⩽ P{∃γ ∈ Γ : θγ ̸∈ Cγ}.

Simultaneous approaches construct Cγ so that the right-hand side is bounded at a pre-
specified level α ∈ (0, 1). Notice that the right-hand side has no dependence on γ̂. Indeed,
simultaneous approaches ensure valid selective inference in a selection-agnostic manner and
as such are broadly applicable. Canonical examples of simultaneous inference methods in-
clude the Bonferroni correction, Holm’s procedure [80], and other related extensions [79, 81].
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In the context of multivariate normal observations, simultaneous inference typically relies
on estimating quantiles of the maximal z- or t-statistic [12, 19, 65, 66, 82]. See [47] for an
overview of simultaneous inference methods.

We give examples of two simultaneous inference methods that are common choices for
nonparametric problems and parametric problems, respectively.

Example 4.2.1 (Bonferroni correction). The Bonferroni correction achieves simultaneous
control by using nominal (i.e., unadjusted) intervals at the corrected error level α/|Γ|:

CBonf(α)
γ = Cnom(α/|Γ|)

γ .

Here, C
nom(α)
γ are any intervals that satisfy

P
{
θγ ∈ Cnom(α)

γ

}
⩾ 1− α,

for a specified level α ∈ (0, 1). Bonferroni-corrected intervals can be applied nonparametri-
cally and are valid regardless of any dependencies between the different estimation problems
included in Γ.

Example 4.2.2 (Maximal z- or t-statistic). If we have prior knowledge about the dependence
structure of the different estimation problems included in Γ, there are approaches that outper-
form the Bonferroni correction. Suppose that for each γ ∈ Γ we observe θ̂γ ∼ N (θγ, σ

2
γ) and

that jointly these observations make a multivariate Gaussian vector with a known covariance
matrix. Denote the known covariance matrix of (θ̂γ)γ∈Γ by Σ. Then, standard simultaneous
confidence intervals are obtained by simulating the 1− α quantile of the maximal z-statistic
given by:

max
γ∈Γ

|Zγ|
σγ

,

where (Zγ)γ∈Γ ∼ N (0,Σ). Denote this quantile by q. We construct the confidence intervals
as

Cα
γ =

(
θ̂γ ± qσγ

)
.

The validity of the intervals follows immediately from the definition of q. When the covari-
ance matrix of the estimates is not known exactly but can be estimated, one can similarly
construct intervals by computing the 1− α quantile of the maximal t-statistic.

Conditional approaches. Conditional approaches bound the probability of error condi-
tional on selecting a specific target:

P{θγ ̸∈ Cγ | γ̂ = γ}.

While simultaneous methods ensure validity for arbitrary γ̂ chosen from the set Γ, regard-
less of any further properties of the selection, conditional approaches adapt to the selection
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at hand. In particular, a crucial step in implementing a conditional correction is tractably
characterizing the selection event {γ̂ = γ}. Prior work has provided such characterizations
for a variety of model selection methods, such as the LASSO, forward stepwise, LARS, etc
[61, 106, 164]. This adaptivity of conditional approaches often allows them to outperform
simultaneous approaches; for example, if a specific target is selected with overwhelming
probability, then conditional methods yield confidence intervals that are nearly the same as
uncorrected intervals. On the other hand, characterizing the selection event is difficult in
general and conditional corrections are available only in certain restrictive problem settings,
usually parametric exponential families. Furthermore, since the final guarantees are con-
ditional rather than unconditional, conditional methods can yield large intervals; notably,
Goeman and Solari [68] showed that for every conditional method there exists a simultaneous
inference method that dominates it in terms of power. Kivaranovic and Leeb [98] showed
that conditionally valid intervals, even if tight, have infinite expected length for common
selection problems. To fix this issue of enlarged intervals due to conditioning, Andrews et
al. [2] introduced a refinement of conditional inference for the problem of inference on the
“winner” called the hybrid method. The hybrid method begins by constructing simultaneous
intervals for all candidate targets of inference. Then, it implements a correction conditional
on both the selected target and the event that the intervals constructed in the first step cover
the target. This strategy offers unconditional guarantees only, but can lead to significant
power gains over standard conditional inference.

Another solution to the enlarged intervals due to conditioning which is relevant to this
thesis is the idea of randomizing the selection procedure [14, 97, 133, 134, 158, 159, 161].
Notably, the pioneering work in this direction due to Tian and Taylor [159] proves a cen-
tral limit theorem that asymptotically relates the validity of statistical inferences without
selection to their selective counterparts, a result similar in flavor to a result we will present
in Section 4.3. However, existing randomization proposals suffer several drawbacks. One is
that they give little insight into the tradeoff between confidence interval width and the loss
in utility from the additional noise. Another issue is that inference is based on a selective
pivot which, unlike in exact conditional approaches, lacks closed-form expressions. As a re-
sult, to approximate the pivot, existing work resorts to computationally expensive sampling
[159, 161], which is generally infeasible in high dimensions. There are other, computationally-
efficient approaches which aim to approximate the pivot [133, 134], although these are only
approximate and the general theory applies to restricted classes of selection problems.

4.3 Validity via algorithmic stability

In this section we develop a theoretical framework that delivers provably valid selective
inferences by randomizing the selection of the target of inference. Specifically, we build
on the concept of algorithmic stability, in particular its variant with origins in the field
of differential privacy [54], to derive selective confidence intervals that are both tractable
computationally and powerful statistically.



CHAPTER 4. SELECTIVE INFERENCE 128

We provide a valid correction to classical, non-selective confidence intervals simultane-
ously for all procedures that have the same level of algorithmic stability. Informally, a
selection being stable means that it is not too sensitive to the particular realization of the
data, and the more stable the selection is, the smaller the resulting intervals are. In partic-
ular, if the selection is “perfectly stable” in the sense that the inferential target is fixed up
front and does not depend on the data at hand, the confidence intervals resulting from our
approach smoothly recover classical confidence intervals.

Before diving into formal details, we sketch our main result. For simplicity, suppose there
is a single inferential target of interest γ̂, selected in a data-driven way. Imagine that there
is an oracle that guesses γ̂, only knowing the method used to arrive at the selection together
with the distribution of the data, but not its realization. Denote by γ̂0 the oracle’s guess. We
say that a selection procedure is η-stable for some η > 0 if there exists an oracle such that,
with high probability over the distribution of the data, the likelihood of any selection under γ̂
and the likelihood of the same selection under γ̂0 can differ by at most a multiplicative factor
of eη. Intuitively, η quantifies how much the selection can vary across different realizations
of the data; η = 0 essentially means that the selection cannot depend on the data and hence
γ̂ is fixed, while as η grows the selection is allowed to be increasingly data-adaptive. Note
that the magnitude of stability depends not only on the selection method, but also on the
distribution of the data.

Our main result provides a post-selection-valid correction to classical, non-selective con-
fidence intervals for stable selection procedures. In short, it says that it suffices to perform
standard, uncorrected inference at error level αe−η if the goal is to have the final error be
at most α, as long as the selection of γ̂ is η-stable. Therefore, the correction is very simple:
it merely says that one should discount the target error level as a function of the selection’s
stability. In the rest of the section we formalize this statement and explain how stability can
be achieved.

4.3.1 Definition of algorithmic stability

The formal theory of algorithmic stability characterizes how the output of an algorithm
changes when the input is perturbed. Randomized algorithms have as output a random
variable; therefore, to study the stability of a randomized algorithm, an appropriate notion
of closeness of two random variables is required. The particular notion of closeness considered
in differential privacy and related work is known as indistinguishability, or max-divergence.

Definition 4.3.1 (Indistinguishability). We say that a random variable Q is (η, τ)-
indistinguishable from W , denoted Q ≈η,τ W , if for all measurable sets O,

P{Q ∈ O} ⩽ eηP{W ∈ O}+ τ.

Note that indistinguishability is essentially a property of two distributions; for this reason,
we will sometimes say that a distribution PQ is (η, τ)-indistinguishable from a distribution
PW , meaning that Q ≈η,τ W holds for any Q ∼ PQ and W ∼ PW .
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Roughly speaking, τ bounds the probability of the event where Q and W are “very differ-
ent.” For fixed τ ∈ [0, 1], the parameter η is meant to capture how similar the distributions
of Q and W are—the larger η is the larger the divergence between Q and W can be. One
should think of τ as being at most a small factor proportional to the miscoverage level α.

We now formally introduce the main notion of algorithmic stability considered in this
section. The algorithm whose stability we analyze will usually be a selection algorithm.
Intuitively, a randomized algorithm A is stable if there exists an “oracle” random variable
A0 such that, for all “typical” inputs ω, A(ω) is distributionally indistinguishable from A0.
In other words, as long as the input is typical, we can approximate the distribution of the
randomized algorithm’s output with a fixed law, without having to see the input in the first
place.

Definition 4.3.2 (Stability). Let A : Rn → S be a randomized algorithm. We say that A
is (η, τ, ν)-stable with respect to a distribution P supported on Rn if there exists a random
variable A0, possibly dependent on P , such that

P {ω ∈ Rn : A(ω) ≈η,τ A0} ⩾ 1− ν.

This notion is a special case of typical stability introduced by Bassily and Freund [7].
It is closely related to the notions of perfect generalization [42] and max-information [53].
Unless stated otherwise, whenever we use the term stability we will assume stability in the
sense of Definition 4.3.2. The parameter ν can in principle take on any value in [0, 1] but in
practice we will set it to be proportional to α.

We will only invoke stability with respect to the data distribution, which we will denote
by Py. Thus, for simplicity, when we say that A is (η, τ, ν)-stable we are implicitly assuming
that it is stable with respect to Py.

Definition 4.3.2 requires that, as the input data ω varies, the distribution of A(ω) remains
indistinguishable from a fixed distribution that does not depend on ω, namely the distribution
of A0. The parameter ν allows the laws of A(ω) and A0 to deviate for a small set of atypical
data vectors ω. The parameters η and τ bound the maximum deviation of A(ω) from A0

over the typical set of vectors ω.
Given a stable algorithm, we will refer to A0 (which must exist by definition) as its

corresponding oracle. The term “oracle” is motivated by the fact that A0 will typically
depend on Py, which is unknown. To build further intuition, suppose that we observe data
y ∼ Py and let µ = E y. Most of our stability constructions will rely on arguing that
Definition 4.3.2 holds if we take A0 = A(µ); the reader should think of this as the most
prototypical oracle construction. In other words, A(y) conditional on y is indistinguishable
from A(µ) in the sense of Definition 4.3.1 (as long as y is not an atypical data set). At a
high level, this happens because y concentrates around µ; we work out a concrete example
building on this idea below.

Example 4.3.1. To provide intuition for Definition 4.3.2, we present one simple mechanism
for achieving stability. Although basic, this mechanism will be a fundamental building block
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in our stability proofs. Suppose that we wish to compute w⊤y, for some fixed vector w, and
suppose that we take Py to be N (µ, σ2I) with known σ > 0. Let A(y) = w⊤y + ξ, where

ξ ∼ Lap
(

z1−ν/2σ∥w∥2
η

)
, for user-specified parameters η > 0, ν ∈ (0, 1). Here, Lap(b) denotes a

draw from the zero-mean Laplace distribution with parameter b, independent of y. We argue
that this mechanism is (η, 0, ν)-stable. First, we know

P{|w⊤y − w⊤µ| ⩾ z1−ν/2σ∥w∥2} = P{|N (0, σ2∥w∥22)| ⩾ z1−ν/2σ∥w∥2} = ν.

Denote E = {ω ∈ Rn : |w⊤ω − w⊤µ| ⩽ z1−ν/2σ∥w∥2}, and notice that we have shown
that P{y ∈ E} = 1− ν.

Now let A0 = A(µ). Since the ratio of densities of ξ ∼ Lap(b) and its shifted counterpart
x + ξ is upper bounded by e|x|/b, we can conclude that for all ω ∈ E and measurable sets O,

P{A(ω) ∈ O}
P{A(µ) ∈ O} ⩽ eη;

that is, we have A(ω) ≈η,0 A0 for all ω ∈ E. Putting everything together, we see that A(·)
is (η, 0, ν)-stable with respect to Py.

4.3.2 Confidence intervals after stable selection

Given the assumption of (η, τ, ν)-stability, we now show how a simple modification to clas-
sical confidence intervals suffices to correct for selective inferences. This correction is valid
regardless of any additional property of the selection criterion.

The main intuition behind this assertion is the following. If the selection algorithm is
stable, then by Definition 4.3.2 one can construct an oracle selection Γ̂0 without looking at
y, such that the actual selected targets Γ̂(y) and Γ̂0 are distributionally indistinguishable.
Since Γ̂(y) is indistinguishable from Γ̂0, we can pretend that Γ̂0 is the selection of interest.
Furthermore, since Γ̂0 was constructed independently of y, we are free to use y for inference.
Stability ensures that, despite data reuse, inference behaves almost like with data splitting,
in which we perform selection on one batch of data and then use independent data for
constructing intervals.

We state a technical lemma, similar to Lemma 3.3 by Bassily and Freund [7], that we
use to prove our main theorem.

Lemma 4.3.1. Let Γ̂ : Rn → S be an (η, τ, ν)-stable selection algorithm and let Γ̂0 be the
corresponding oracle selection. Then, it holds that

(y, Γ̂(y)) ≈η,τ+ν (y, Γ̂0). (4.1)

Equipped with Lemma 4.3.1, we can now describe how to construct post-selection-valid
confidence intervals after stable selection.
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Suppose that, under selection Γ′, our target of inference is {θγ}γ∈Γ′ . Moreover, suppose
that Cα

γ·Γ′ are valid confidence intervals at level 1− α for any fixed Γ′, meaning that

P{∃γ ∈ Γ′ : θγ ̸∈ Cα
γ·Γ′} ⩽ α.

Such intervals are provided by classical theory.
Theorem 4.3.1 formally states how to construct confidence intervals for an adaptive target

Γ̂, when Γ̂ is selected in a stable way. This is the key result of this section.

Theorem 4.3.1. Fix δ ∈ (0, 1), and let Γ̂ be an (η, τ, ν)-stable selection algorithm. Then,

P{∃γ ∈ Γ̂ : θγ ̸∈ Cδe−η

γ·Γ̂ } ⩽ δ + τ + ν.

In words, if Γ̂ is (η, τ, ν)-stable, we can pretend that there is no selection bias and simply
construct classical intervals, albeit at a more conservative level, to achieve validity. If we set
the target error level to be δe−η, then the realized error level will be at most δ + τ + ν. For
example, if we let τ = ν = α/3, then to get coverage at level 1 − α we can set the target
coverage level to be α/3 · e−η.

Comparison with data splitting

In many scenarios it is possible to split the data into two independent chunks, one to be
used for selection and the other to be reserved for inference. Classical inferences are then
valid because the inferential target is determined before seeing any of the data used in the
inference step. This simple baseline for valid inference after selection is called data splitting.
We illuminate the relationship between our approach via stability and data splitting.

First we want to emphasize that the stability principle is applicable even with dependent
samples: Theorem 4.3.1 can be applied even when it is not clear how to create two indepen-
dent subsets of the data. Moreover, in some selection problems data splitting makes little
conceptual sense, such as in our first motivating vignette about inference on the winning
effect.

The appeal of data splitting lies in its broad applicability. As long as the data can be
split into two independent components, the criteria for choosing the inferential target can
be arbitrary. Therefore, data splitting provides a selection-agnostic correction, universally
valid across all possible selection strategies.

Conceptually, stability lies somewhere between data splitting and conditional post-
selection inference. It computes a correction level as a function of how adaptive the selection
is to the data, thereby adapting to some properties of the selection rule like conditional
inference methods. However, at the same time it provides a correction that is universally
valid across all possible selection strategies with the same level of stability, which can be seen
as a refinement of the principle of data splitting.

To illustrate the conceptual difference between the stability principle and the data split-
ting principle, suppose that in the latter case we allocate f -fraction of the data to selection,
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and (1−f)-fraction to inference. Then, the resulting intervals will roughly look like classical

intervals augmented by a factor of
√

1
1−f

regardless of how the selection is performed.

In contrast, the stability approach augments classical intervals as a function of the adap-
tivity of the selection algorithm. Suppose for concreteness that y ∼ N (µ, I) and we are
considering doing inference on one of two targets, v⊤0 µ or v⊤1 µ, where the selection γ̂ ∈ {0, 1}
depends on the data y. Consider three different selection methods:

• γ̂ = 1 no matter what the data vector is.

• γ̂ = 1 if ȳ := 1
n

∑n
i=1 yi ⩾ 0, and γ̂ = 0 otherwise.

• γ̂ = 1 if X⊤
1 y ⩾ 0 for some unit vector X1, and γ̂ = 0 otherwise.

We can write all three procedures as γ̂ = 1{w⊤y ⩾ 0}; in the first case w = 0, in the second
case w = 1

n
1, and in the third case w = X1.

Let us fix the noise level γ > 0 and select γ̂ = 1{w⊤y + ξ ⩾ 0}, where ξ ∼
Lap(γ). The first method is trivially (0, 0, 0)-stable for any level γ, hence we can sim-
ply use y for inference without any correction. Based on the same analysis as in Exam-
ple 4.3.1, the second selection method is (

√
2 log(2/ν)/(γ

√
n), 0, ν)-stable for all ν > 0;

i.e., it is (
√

2 log(4/α)/(γ
√
n), 0, α/2)-stable. Similarly, the third selection method is

(
√

2 log(4/α)/γ, 0, α/2)-stable.
We can thus observe that, even though in all three examples we perturb the selection by

the same constant level of noise, the stability approach exploits the fact that some selection
criteria are more stable than others and this is reflected in the resulting stability parameter.
By Theorem 4.3.1, this stability parameter, in turn, directly determines the correction factor,
i.e., how conservative we need to make classical inferences for them to be valid post selection.

While data splitting and stability come with conceptual differences, they also have tech-
nical similarities. In particular, each one has a leading parameter—f ∈ (0, 1) in the case of
data splitting and η > 0 in the case of stability—and this parameter interpolates between
two extremes. One extreme is when all information is reserved for inference (attained when
f = 0 and η = 0 respectively) and the other is when all information is used for selection
(attained when f = 1 and η →∞ respectively). Therefore, it might make sense to ask how
the two interpolations relate.

For every η, there is an f(η) such that, if we used f(η)-fraction of the data for selection and
1− f(η) for inference, we would approximately get the same interval correction. We sketch
the derivation of f(η) in the case of normal intervals for simplicity, however this calculation
can be generalized to other distributions. We will assume that ν+τ ⩽ δα for some δ ∈ (0, 1);
then, the intervals resulting from (η, τ, ν)-stability are of width proportional to z1−(1−δ)α

2
e−η .

The intervals resulting from data splitting are of width proportional to z1−α
2
(1− f(η))−1/2.

By equating the two expressions to achieve the same width and simplifying, we obtain

f(η) = 1−
(

z1−α
2

z1−(1−δ)α
2
e−η

)2

≈
log 1

1−δ
+ η

log 2
(1−δ)α

+ η
, (4.2)
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where the approximation on the right-hand side follows by a subgaussian approximation.
Of course, this sketch only gives intuition for when data splitting and stability imply

equally powerful inference; it does not say anything about which selection is more accurate—
one where we select on f(η)-fraction of the data, or one where we select on the whole data set
in an η-stable way. We will tackle this question empirically, as the notion of “more accurate”
varies greatly depending on the context.

Finally, we mention another proposal that is conceptually closely related to data splitting,
namely the (U, V ) decomposition of Rasines and Young [142]. Like stability, the (U, V )
decomposition allows the statistician to see all data points—more precisely, noisy versions
thereof—both in the selection step and in the inference step. This is an important advantage
over data splitting when there are only a few samples that capture information about certain
directions. In contrast with stability, performing the (U, V ) decomposition does not rely on
any properties of the selection method. However, finite-sample guarantees of this approach
crucially rely on the data being Gaussian with known covariance, while the stability principle
is applicable beyond Gaussianity and is robust to only having an estimate of the covariance.

4.3.3 Model selection in linear regression

In this section, we discuss an application of our stability tools to the problem of model
selection in linear regression. We focus on the framework presented in the seminal work of
Berk et al. [12], which we reviewed in Section 4.1.1.

The confidence intervals resulting from our approach take the usual form,

Cj·M̂(K) :=
(
θ̂j·M̂ ±Kσ̂j·M̂

)
,

where σ̂2
j·M̂ is an estimator of variance for the OLS estimate θ̂j·M̂ ; e.g., the “sandwich”

variance estimator [22]. Our goal is to find a suitable value of K such that Cj·M̂(K) are valid
(1− α)-confidence intervals:

P{θj·M̂ ∈ Cj·M̂(K), ∀j ∈ M̂} ⩾ 1− α.

By analogy with Berk et al. [12], we refer to the minimal such valid K as the PoSI constant.
It is important to remember that, unlike in Berk et al., our PoSI constant depends on the
selection procedure, rather than a family of all possible models.

The PoSI constant is well characterized when the model is fixed rather than determined
in a data-driven fashion. For a fixed model M and given α ∈ (0, 1), we define KM,α to be
the minimum value of K such that

P

{
max
j∈M

∣∣∣∣∣ θ̂j·M − θj·M
σ̂j·M

∣∣∣∣∣ ⩾ K

}
⩽ α.

In other words, KM,α defines the PoSI constant when the model M is specified up front and
does not depend on the data; in this case, Cj·M(KM,α) are valid simultaneous intervals at
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level 1 − α. For example, when y ∼ N (µ, σ2I), one simple way of providing a valid upper
bound on KM,α is via standard z-scores or t-scores, after doing a Bonferroni correction over
j ∈ M . Sharper estimates of KM,α can be obtained by exploiting the correlations between
the regression coefficients to estimate the maximum z-score or t-score; see Section 4.2.

We are now ready to state a corollary of Theorem 4.3.1 that focuses on the problem of
model selection in linear regression.

Corollary 4.3.1. Fix δ ∈ (0, 1). Let M̂ be an (η, τ, ν)-stable model selection algorithm. For
all j ∈ M̂ , let:

Cj·M̂(KM̂,δe−η) =
(
θ̂j·M̂ ±KM̂,δe−η σ̂j·M̂

)
.

Then,

P
{
∃j ∈ M̂ : θj·M̂ ̸∈ Cj·M̂

(
KM̂,δe−η

)}
⩽ δ + τ + ν.

To provide further intuition, we instantiate Corollary 4.3.1 in the canonical setting
of Gaussian observations. Let y ∼ N (µ, σ2I). If σ > 0 is known, we let σ̂j·M =

σ
√

((X⊤
MXM)−1)jj; otherwise, we assume we have access to an estimate of σ, denoted σ̂,

and let σ̂j·M = σ̂
√

((X⊤
MXM)−1)jj. Following the treatment of Berk et al. [12], we assume

that σ̂2 ∼ σ2 χ
2
r

r
for r degrees of freedom and assume that σ̂2 ⊥ θ̂j·M for all possible OLS

estimates θ̂j·M . If the full model is assumed to be correct, that is y ∼ N (Xθ, σ2I), and

n > d, then this assumption is satisfied for r = n − d by setting σ̂2 = ∥y − Xθ̂∥22/(n − d),
where θ̂ is the OLS estimate in the full model. Even if the full model is not correct, there
exist other ways of producing such a valid estimate of σ; we refer the reader to Berk et
al. [12] for further discussion.

We denote by z1−α the 1− α quantile of the standard normal distribution, and by tr,1−α

the 1− α quantile of the t-distribution with r degrees of freedom.

Corollary 4.3.2. Fix δ ∈ (0, 1), and suppose y ∼ N (µ, σ2I). Further, let M̂ be an (η, τ, ν)-
stable model selection algorithm. If σ is known, let:

Cj·M̂ =
(
θ̂j·M̂ ± z1−δ/(2|M̂ |eη)σ

√
((X⊤

M̂
XM̂)−1)jj

)
.

If, on the other hand, σ is not known but there exists an estimate, σ̂2 ∼ σ2 χ
2
r

r
, independent

of the OLS estimates, let:

Cj·M̂ =
(
θ̂j·M̂ ± tr,1−δ/(2|M̂ |eη)σ̂

√
((X⊤

M̂
XM̂)−1)jj

)
.

In either case, we have

P{∃j ∈ M̂ : θj·M̂ ̸∈ Cj·M̂} ⩽ δ + τ + ν.

The proof follows by a direct application of Corollary 4.3.1, together with a Bonferroni
correction over j ∈ M̂ when computing KM̂,δe−η . Approximating Gaussian quantiles by sub-
gaussian concentration, we observe that the PoSI constant in Corollary 4.3.2 scales roughly

as

√
2
(

log(2|M̂ |/δ) + η
)

(when σ is known, or as r →∞ when σ is estimated from data).
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Recovering the Scheffé rate

Our main technical step in deriving selective confidence intervals is Lemma 4.3.1, which ar-
gues that the joint distribution of (y, Γ̂) cannot be too different from the joint distribution
of (y, Γ̂0), where Γ̂0 is the oracle from the definition of stability, in the indistinguishability
metric. In the context of model selection in linear regression, we verify that the confidence
intervals resulting from this approach are not vacuously wide in the two most extreme set-
tings: the first, in which the model selection is independent of the data, and the second, in
which the model selection is arbitrarily complex and dependent on the data.

Suppose that M̂ is independent of y. Then, the distribution of M̂(y), conditional on y,
is equal to the distribution of M̂(ω) for any point ω, hence M̂(ω) is an oracle which trivially
implies (0, 0, 0)-stability. In this case, the intervals in Corollary 4.3.1 reduce to Cj·M̂(KM̂,δ)
and are valid at level 1− δ, as expected.

Now suppose that M̂ is allowed to have arbitrary dependence on y; in particular, it can
attain the “significant triviality bound” of Berk et al. [12]. While arguing stability in the
sense of Definition 4.3.2 would require additional assumptions, the only property of stability
used to prove Theorem 4.3.1—the indistinguishability bound in Eq. (4.1)—can be obtained.
This allows for the proof of Theorem 4.3.1 to go through, thus recovering the tight rate of
existing analyses.

Proposition 4.3.1. Let M̂ be an arbitrary, possibly randomized model selection procedure,
such that |M̂ | ⩽ s almost surely. Then, for any Py, there exists an oracle selection M̂0 such
that for any τ ∈ (0, 1),

(y, M̂(y)) ≈η,τ (y, M̂0), for some η = O(s log(d/s)) + log(1/τ).

Consequently, there exists a value η = O(s log(d/s)) + log(1/τ) such that the confidence

intervals Cj·M̂(KM̂,δe−η) =
(
θ̂j·M̂ ±KM̂,δe−η σ̂j·M̂

)
satisfy

P
{
∃j ∈ M̂ : θj·M̂ ̸∈ Cj·M̂

(
KM̂,δe−η

)}
⩽ δ + τ.

By approximating Gaussian quantiles via subgaussian concentration, we obtain confi-
dence intervals which are universally valid for all s-sparse selections under Gaussian out-
comes and scale as O(

√
η) = O(

√
s log(d/s))). This rate is in general tight [102], and as s

approaches d, it matches the rate given by the Scheffé protection [12, 149].

4.3.4 The design of stable selection algorithms

We discuss general tools for designing stable selection methods and present an application
of these tools to variable selection in linear regression. We begin with an overview of the
basic properties of stability, which are key to efficient design of stable selections.



CHAPTER 4. SELECTIVE INFERENCE 136

Properties of stability

Stability satisfies two key algorithmic properties: closure under post-processing and compo-
sition. We provide precise definitions of the two shortly. The reason why these properties
enable efficient stability designs is that many selection rules can be written as post-processing
and composition of simple computations, such as linear functions of the data or finding max-
ima of a sequence. As long as we know how to stabilize the necessary simple computations,
closure under post-processing and composition provide rules for computing the overall sta-
bility parameter of the whole algorithm efficiently.

Post-processing. First, stability is closed under post-processing : ifA : Rn → S is (η, τ, ν)-
stable, then for any (possibly randomized) map B : S → G, the composition B ◦ A is also
(η, τ, ν)-stable. While the proof of this fact is a straightforward consequence of the definition
of stability, the implications are significant. Suppose for the moment that the statistician
is given a stable version of the LASSO algorithm, and denote its solution by β̂LASSO. Since
β̂LASSO is stable, then so is

M̂ = {j ∈ [d] : β̂LASSO,j ̸= 0}.

In fact, the statistician need not necessarily choose the model corresponding exactly to the
support of β̂LASSO; for example, they could choose M̂ = {j ∈ [d] : |β̂LASSO,j| ⩾ ε}, for some
constant threshold ε, or they could pick dsel ⩽ d entries with the maximum absolute value.
More generally, any model chosen solely as a function of β̂LASSO inherits the same stability
parameters as β̂LASSO. And, according to Corollary 4.3.1, the same PoSI constant suffices to
correct the confidence intervals resulting from any such model.

Composition. The second important property is composition. In Algorithm 4, we define
adaptive composition, after which we discuss simpler, non-adaptive composition.

Algorithm 4 Adaptive composition

input: data y ∈ Rn, sequence of algorithms At : S1 × · · · × St−1 × Rn → St, t ∈ [k]
output: (a1, . . . , ak) ∈ S1 × · · · × Sk
for t = 1, 2, . . . , k do

Compute at = At(a1, . . . , at−1, y) ∈ St
end for
Return (a1, . . . , ak)

Adaptive composition consists of k sequential rounds in which the analyst observes the
outcomes of all previous computations and selects the next computation adaptively—as a
function of the previous evaluations. The adaptive composition property bounds the stability
parameters of Algorithm 4 in terms of the stability parameters of At. In its simplest form,
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it says that Algorithm 4 is (kη, 0, 0)-stable if for all t ∈ [k], At(a1, . . . , at−1, ·) is (η, 0, 0)-
stable for all fixed a1, . . . , at−1. For example, for some selection algorithms such as forward
stepwise, it is clear to see how they can be represented using adaptive composition. In
forward stepwise, At outputs an index it ∈ [d], which corresponds to the variable i that
minimizes the squared error resulting from adding i to the current pool of selected features;
it = At(i1, . . . , it−1, y). It suffices to prove that any given step of forward stepwise selection
is stable, in order to infer that the overall algorithm is stable as well. More generally,
greedy algorithms can naturally be represented using adaptive composition (see [69] for an
application in the context of greedy causal discovery algorithms).

Our proofs will only require adaptive composition for algorithms with ν = 0; such results
follow from classical theory on differential privacy. More advanced (and naturally more
conservative) adaptive composition theorems which allow ν > 0 can be found in the context
of typical stability [7].

A simpler kind of composition is non-adaptive composition. Here, the algorithms At have
no dependence on the past computations. Non-adaptive composition can capture a protocol
that involves running multiple selection methods and choosing a final selection target as an
arbitrary function of all the outputs. The resulting stability parameters simply add up. This
is a rather appealing property of stability, as it suggests that the statistician only needs to
keep track of the stability parameters of each selection algorithm they run, in order to derive
valid selective confidence intervals. An analogous combination of the results of different
selection methods was considered by Markovic and Taylor [118]; their approach, however,
relies on a sophisticated Monte Carlo sampling scheme.

Model selection algorithms: examples

We now consider several algorithms for variable selection in linear regression through the
lens of stability. While many of the principles presented in this section can be adapted to
different distributional assumptions, for the sake of clarity and interpretability we assume

that y ∼ N (µ, σ2I), where σ2 is unknown but we have access to an estimate σ̂2 ∼ σ2 χ
2
r

r
,

independent of y. This is the setup studied by Berk et al. [12]. More generally, we only
need to know the decay of the tail of the distribution of y in order to enforce stability. For
example, we can handle outcome vectors with a known bound on their Orlicz norm, for any
Orlicz function. This includes general subgaussian and subexponential outcome vectors.

Model selection via the LASSO. We begin by considering the canonical example of
the LASSO estimator [162]. The LASSO estimate is the solution to the usual least-squares
problem with an additional ℓ1-constraint on the regression coefficients:

β̂LASSO ∈ arg min
θ∈Rd

1

2
∥y −Xθ∥22 s.t. ∥θ∥1 ⩽ C1, (4.3)
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where C1 > 0 is a tuning parameter. This problem is sometimes referred to as the LASSO
in constrained/bound form, to contrast it with the LASSO in penalized form:

β̂λ
LASSO ∈ arg min

θ∈Rd

1

2
∥y −Xθ∥22 + λ∥θ∥1, (4.4)

where λ > 0 is now the tuning parameter. These two problems are equivalent in a sense:
given X and y, for any C1 > 0 there exists a corresponding λ > 0 such that β̂LASSO is an
optimal solution for the problem in Eq. (4.4), and vice versa. In our analysis we focus on the
formulation (4.3). It is worth pointing out that our selective inference tools do not directly
extend to penalized LASSO since, for a fixed penalty λ, the corresponding constraint C1

depends on the data, which is random. Extending our approach to handle inference after
solving the penalized problem is an important direction for future work.

The LASSO objective induces sparse solutions, and a common way of declaring that a
feature is relevant is to check for a corresponding non-zero entry in the LASSO solution
vector. That is, the model “selected” by the LASSO is:

M̂ = {j ∈ [d] : β̂LASSO,j ̸= 0}.
Model selection via the LASSO has been of great interest in prior work on selective

inference, starting with Lee et al. [106]. While this work provides exact confidence intervals, it
has been observed that these intervals (which do not make use of randomization) have infinite
expected length [98]. Subsequent work has improved upon these often large confidence
intervals by applying randomization [97, 133, 134, 158, 159, 161].

We now formulate a stable version of the LASSO algorithm. It is inspired by the dif-
ferentially private LASSO algorithm of Talwar et al. [157], although the noise variables are
calibrated somewhat differently due to different modeling assumptions.

We use ei to denote the i-th standard basis vector in Rd, and {±ei}di=1 to denote the set
of 2d standard basis vectors, multiplied by 1 and −1. We also let ∥X∥2,∞ denote the L2,∞
norm of X, ∥X∥2,∞ := maxi∈[d] ∥Xi∥2.

Algorithm 5 Stable LASSO algorithm

input: design matrix X ∈ Rn×d, outcome vector y ∈ Rn, variance estimate σ̂2 ∼ σ2 χ
2
r

r
,

ℓ1-constraint C1, number of steps k, parameters δ ∈ (0, 1), η > 0
output: LASSO solution β̂LASSO ∈ Rd

Initialize β1 = 0
for t = 1, 2, . . . , k do

∀ϕ ∈ C1 · {±ei}di=1, sample ξt,ϕ
i.i.d.∼ Lap

(
4tr,1−δ/(2d)C1∥X∥2,∞

ηn

)
∀ϕ ∈ C1 · {±ei}di=1, let αϕ = − 2

nσ̂
ϕ⊤X⊤(y −Xβt) + ξt,ϕ

Set ϕt = arg minϕ∈C1·{±ei}di=1
αϕ

Set βt+1 = (1−∆t)βt + ∆tϕt, where ∆t = 2
t+1

end for
Return β̂LASSO = βk+1
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In essence, Algorithm 5 is a randomized version of the classical Frank-Wolfe algorithm
from constrained optimization [63].

We now argue that β̂LASSO is stable. The proof is based on a composition argument:
namely, we can view β̂LASSO as the result of a composition of k subroutines, each given
by one optimization step which produces βt. The stability of each subroutine is proved
by extending an argument related to the “report noisy max” mechanism from differential
privacy [55].

Proposition 4.3.2 (LASSO stability). Algorithm 5 is both

(a)
(

1
2
kη2 +

√
2k log(1/δ)η, δ, δ

)
-stable, and

(b) (kη, 0, δ)-stable.

We state two rates because there exist parameter regimes where either rate leads to
tighter confidence intervals than the other (the first rate being tighter when η is small).

By the post-processing property, Proposition 4.3.2 implies stability of any model M̂
obtained as a function of β̂LASSO, such as the model corresponding to its non-zero entries.

Notice that the noise level in Algorithm 5 is an explicit function of η. This allows the
statistician to understand the loss in utility—that is, how much worse β̂LASSO is relative to
an exact LASSO solution—due to randomization. In fact, building on work by Jaggi [89]
and Talwar et al. [157], we can upper bound the excess risk resulting from randomization.

Proposition 4.3.3 (LASSO utility). Suppose we run Algorithm 5 for k =
⌈
n∥X∥2∞C1η
σ̂∥X∥2,∞

⌉
steps.

Then,

1

n
E[∥y −Xβ̂LASSO∥22 | y]− min

β:∥β∥1⩽C1

1

n
∥y −Xβ∥22 = Õ

(
C1∥X∥2,∞ log(d)tr,1−δ/(2d)σ

nη

)
.

Model selection via marginal screening. One of the most commonly used model se-
lection methods involves simply picking a constant number of the features with the largest
absolute inner product with the outcome y [60, 73]. That is, one selects features i corre-
sponding to the top k values of |X⊤

i y|, for a pre-specified parameter k. This strategy is
known as marginal screening, and it was first analyzed in the context of selective inference
by Lee and Taylor [107].

In Algorithm 6, we state a stable version of marginal screening. Notice that the random-
ization scheme is similar to that of the stable LASSO method. As before, we let ∥X∥2,∞
denote the L2,∞ norm of X.
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Algorithm 6 Stable marginal screening algorithm

input: design matrix X ∈ Rn×d, outcome vector y ∈ Rn, variance estimate σ̂2 ∼ σ2 χ
2
r

r
,

model size k, parameters δ ∈ (0, 1), η > 0
output: M̂ = {i1, . . . , ik}

Compute (c1, . . . , cd) = 1
nσ̂
X⊤y ∈ Rd

res1 = [d]
for t = 1, 2, . . . , k do

∀i ∈ resi, sample ξt,i
i.i.d.∼ Lap

(
2tr,1−δ/(2d)∥X∥2,∞

nη

)
it = arg maxi∈rest |ci + ξt,i|
rest+1 = rest \ it

end for
Return M̂ = {i1, . . . , ik}

The high-level idea behind the proof of stability of Algorithm 6 is similar to that of
Algorithm 5.

Proposition 4.3.4 (Marginal screening stability). Algorithm 6 is both

(a)
(

1
2
kη2 +

√
2k log(1/δ)η, δ, δ

)
-stable, and

(b) (kη, 0, δ)-stable.

As for the LASSO, we aim to quantify the loss in utility due to randomization. Given
that the goal of marginal screening is to detect the largest k values |ci| = |X⊤

i y|, a reasonable
notion of utility loss is the difference between the values ci corresponding to the variables in
M̂ , and the actual largest values of ci.

Proposition 4.3.5 (Marginal screening utility). Let mi denote the index of the i-th largest
value cj in absolute value, so that (|cm1 |, . . . , |cmd

|) is the decreasing order statistic of {|ci|}di=1.
Then, for any δ′ ∈ (0, 1), Algorithm 6 satisfies:

P

{
max
j∈[k]
|cmj
| − |cij | ⩽

4tr,1−δ/(2d) log(dk/δ′)∥X∥2,∞
nη

∣∣∣y} ⩾ 1− δ′.

4.3.5 Experimental results

In this section, we evaluate our selective intervals for the LASSO and marginal screening
and compare our solution with data splitting.

For a fixed sample size n we vary the number of features d. We consider two different
data-generating processes for the design matrix: one in which the rows of X are drawn
independently from an equicorrelated multivariate Gaussian distribution with pairwise cor-
relation ρ = 0.5, and the second one in which all entries of X are drawn as independent
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Figure 4.1: Comparison of FDR after stable LASSO and LASSO with data splitting, with
varying dimension and signal strength, in the Gaussian design case. In addition, we plot the
average interval width (at ρ = 0.2 only, however the width varies minimally with ρ) and the
average unadjusted width.

Bernoulli random variables with parameter 0.1. In the former case, X is normalized to have

columns of unit norm. The outcome is generated as y = Xβ+ε, where εi
i.i.d.∼ N (0, 1), i ∈ [n],
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Figure 4.2: Comparison of FDR after stable LASSO and LASSO with data splitting, with
varying sample size, in the Gaussian design case. In addition, we plot the average interval
width at n = 200 and the average unadjusted width.
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Figure 4.3: Comparison of average error after stable marginal screening and marginal screen-
ing with data splitting, with varying dimension and signal strength, in the Gaussian design
case. In addition, we plot the average interval width (at ρ = 0.2 only, however the width
varies minimally with ρ), together with the average unadjusted width and the width obtained
via the conditional correction of Lee and Taylor [107]. We also plot the 90% quantile of the
conditional width because it varies greatly across realizations.

and the entries of β are sampled according to

βi =

{
Exp(ρ), i ∈ {1, . . . , sd},
0, i ∈ {sd + 1, . . . , d},

for a signal parameter ρ > 0 and a sparsity parameter s ∈ (0, 1), which we vary.
We fix the target miscoverage level to be α = 0.1. In all experiments we vary η ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For the comparison with data splitting, we use the splitting frac-
tion derived in Section 4.3.2.

Gaussian design

We first state the results for the Gaussian design case.
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Figure 4.4: Comparison of average error after stable marginal screening and marginal screen-
ing with data splitting, with varying sample size, in the Gaussian design case. In addition,
we plot the average interval width at n = 200, together with the average unadjusted width
and the width implied by the conditional approach of Lee and Taylor [107].

LASSO. In Figure 4.1 we compare the false discovery rate (FDR) of the stable LASSO
algorithm and the LASSO algorithm with data splitting. In all plots n = 50 is fixed and
we vary d ∈ {50, 100, 200}. As we increase d, we also increase the size of the constraint set
C1 ∈ {20, 40, 80} to allow more selections. We consider signal levels ρ ∈ {0.33, 0.2, 0.14},
which corresponds to an expected value of the non-null βi lying in {3, 5, 7}, and we fix
s = 0.5.

We observe that stability generally outperforms data splitting as η grows, equivalently
when the splitting fraction f(η) grows, as well as when the signal strength grows. In Fig-
ure 4.1 we additionally plot the average width of stable intervals against the average width
of naive, unadjusted intervals. Note that the intervals obtained via data splitting have es-
sentially the same width (and are hence not plotted), based on how f(η) is chosen. We only
plot interval width for ρ = 0.2 since the width varies minimally for different values of ρ.

In Figure 4.2 we compare the stable LASSO algorithm and the LASSO with data splitting
in a sparse high-dimensional setting with d = 500, s = 0.1, and we vary the sample size
n ∈ {100, 200, 300}. We fix ρ = 0.1. We observe that stability consistently outperforms data
splitting for large enough η and this gap grows with n. In addition, we plot the average
interval width implied by stability against the average unadjusted interval width at n = 200
(again we do not plot the interval width given by data splitting for the same reason as in
Figure 4.1).

Marginal screening. In Figure 4.3 we compare the average error of stable marginal
screening and marginal screening with data splitting. Since marginal screening explicitly
aims to maximize the values |X⊤

i y| for selected variables Xi, we quantify the error as
1
k

∑k
t=1(|X⊤

i∗t
y| − |X⊤

it y|), where it is the estimated index of the t-th largest absolute in-
ner product (based on a subsample in the case of data splitting, or based on a randomized
sample in the case of stability), and i∗t is the true index of the t-th largest absolute inner
product in the data set. We vary the parameters as in the LASSO comparison in Figure 4.1,
only instead of varying C1 we vary k ∈ {5, 10, 20}. We also plot the average interval width
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Figure 4.5: Comparison of FDR after stable LASSO and LASSO with data splitting, with
varying dimension and signal strength, in the Bernoulli design case. In addition, we plot the
average interval width (at ρ = 0.2 only, however the width varies minimally with ρ) and the
average unadjusted width.

with stability, together with the unadjusted interval width and the average width obtained
via the conditional method of Lee and Taylor [107] with no randomization. For the condi-
tional method, since the intervals are sometimes orders of magnitude larger than the average
width, we also plot the 90% quantile of interval width. We see that stability typically out-
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Figure 4.6: Comparison of FDR after stable LASSO and LASSO with data splitting, with
varying sample size, in the Bernoulli design case. In addition, we plot the average interval
width at n = 200 and the average unadjusted width.
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Figure 4.7: Comparison of average error after stable marginal screening and marginal screen-
ing with data splitting, with varying dimension and signal strength, in the Bernoulli design
case. In addition, we plot the average interval width (at ρ = 0.2 only, however the width
varies minimally with ρ), together with the average unadjusted width and the width obtained
via the conditional correction of Lee and Taylor [107]. We also plot the 90% quantile of the
conditional width because it varies greatly across realizations. Since the conditional widths
are of a higher order of magnitude, the scale on the y-axis in the widths plots is logarithmic.

performs data splitting in terms of the average error, and this benefit is more pronounced
for larger η and signal strength. In terms of interval width, we observe that stability leads to
significantly smaller intervals than the conditional approach. We plot interval width when
ρ = 0.2.

In Figure 4.4 we consider a setting analogous to that of Figure 4.2, and we analogously
vary the sample size n. We again see that stability generally dominates data splitting. More-
over, the gap between the intervals obtained via stability and those of Lee and Taylor [107]
is even more pronounced than in Figure 4.3.

Bernoulli design

Now we consider the Bernoulli design case. The motivation for considering a sparse Bernoulli
design lies in the fact that certain directions in the column space of X are captured by only a
few samples, hence missing out on them—as is possible with data splitting—can significantly
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Figure 4.8: Comparison of average error after stable marginal screening and marginal screen-
ing with data splitting, with varying sample size, in the Bernoulli design case. In addition,
we plot the average interval width at n = 200, together with the average unadjusted width
and the width implied by the conditional approach of Lee and Taylor [107]. Since the con-
ditional widths are of a higher order of magnitude, the scale on the y-axis in the widths plot
is logarithmic.

affect the quality of selection.

LASSO. In Figure 4.5 and Figure 4.6 we provide comparisons analogous to those of Figure
4.1 and Figure 4.2, using the same parameter configurations. We observe a larger gap between
data splitting and stability than in the Gaussian design case, and observe the same trends:
as η and the signal strength grow, the performance gap increases.

Marginal screening. In Figure 4.7 and Figure 4.8 we provide comparisons analogous to
those of Figure 4.3 and Figure 4.4, using the same parameter configurations. We observe
a larger gap between data splitting and stability both than in the Gaussian design case, as
well as in the LASSO experiments using the Bernoulli design. In addition, we observe an
even more pronounced gap between stable confidence interval widths and widths of intervals
obtained via a conditional correction [107]. For this reason, the y-axis in the widths plots is
logarithmic.

4.4 Validity via locally simultaneous inference

Simultaneous inference is still one of the most common strategies for ensuring valid selective
inference. It is broadly applicable, robust to parametric assumptions, and often amenable to
efficient implementation. However, simultaneous inference can be unnecessarily conservative
when many questions, although possible, are unlikely to be of interest in the first place. For
example, suppose that a clinical trial estimates the effectiveness of multiple treatments and,
after observing the data, it is clear that there are many ineffective treatments and only a
handful of effective ones. Even if we are only interested in constructing a confidence interval
for the effectiveness of the best-performing treatment, simultaneous inference would still
widen the intervals enough to cover all possible treatments, including the clearly ineffective
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ones that never stood a chance of being selected. Similarly, if we use a method like the
LASSO to select a sparse subset of variables for a linear model, it may be clear in hindsight
that most variables had no chance of beind selected. In both of these cases, simultaneous
inference can be very conservative.

In this section we introduce locally simultaneous inference, an approach that ensures
valid selective inference while only answering those questions that could plausibly have been
selected in light of the observed data. Locally simultaneous inference comes with rigorous
type I error guarantees like simultaneous inference but is less conservative; in particular,
it reduces to simultaneous inference in an extreme case. In the clinical trial example, lo-
cally simultaneous inference would require taking a correction only over reasonably effective
treatments, while testing the ineffective ones comes virtually for free.

To sketch our main idea, suppose that we have a family of estimands {θγ : γ ∈ Γ}, where
Γ indexes all admissible targets of inference. In the running example, Γ would be the set
{1, . . . ,m}, where m is the total number of treatments in the clinical trial, and θγ is the
mean effect of the indexed treatment. Given data y, we are interested in doing inference on
θγ̂, where γ̂ is a data-dependent target chosen from Γ; in the running example, γ̂ indexes the
treatment that seems most effective according to y. It would be invalid to reuse the same
data y to perform an uncorrected inference on θγ̂, since the winning treatment is likely to
have been overestimated by the trial data. However, if it is clear in hindsight that only a
small number k ≪ m of the treatments were even in the running to win, it would be wasteful
to make the full multiplicity correction for all m treatments.

The main idea behind our framework is to find a data-dependent set of targets Γ̂+,
which is nested between the selected target and all possible targets, γ̂ ∈ Γ̂+ ⊆ Γ, such
that taking a standard simultaneous correction over Γ̂+ ensures valid selective inferences.
Perhaps surprisingly, this strategy is valid despite the dependence between Γ̂+ and the data.
Moreover, if the selection γ̂ is “obvious enough” in hindsight, Γ̂+ only contains γ̂ and our
approach nearly reduces to classical, uncorrected inference.

Unlike simultaneous inference, our approach adapts to the specifics of the selection cri-
terion; in this sense, locally simultaneous inference resembles conditional selective inference,
which delivers valid inference after conditioning on the event that a specific target was se-
lected. However, since our approach builds on the robust and broadly applicable principle of
simultaneous inference, it comes with several advantages over conditional inference, including
numerical stability and robustness to parametric assumptions.

To give a glimpse of the comparison of locally simultaneous inference to standard si-
multaneous inference and conditional inference, we consider a simple illustrative example.
Suppose that y1 ∼ N (µ1, 1), y2 ∼ N (µ2, 1) are independent and we wish to do inference on
the mean of observation γ̂ = arg maxγ∈{1,2} yγ. When the gap ∆ = µ2 − µ1 is near zero, the
inferential question of interest is most uncertain, while large ∆ corresponds to the case where
the inferential question of interest is “obvious”. In Figure 4.9 we plot the median, together
with the 5% and 95% quantile, of the width of selective confidence intervals constructed via
locally simultaneous inference, standard simultaneous inference, and conditional inference.
We observe that for small ∆ conditional inference can lead to large intervals, and as ∆
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Figure 4.9: Interval width achieved by locally simultaneous inference, fully simultaneous
inference, and conditional inference. The data is (y1, y2) ∼ N ((µ1, µ2), I2) and the goal is to
do inference on the mean of observation γ̂ = arg maxγ∈{1,2} yγ. We vary ∆ = µ2 − µ1.

grows conditional intervals approach nominal, unadjusted intervals. Simultaneous inference
is insensitive to the value of ∆ and delivers constant-width intervals, which are smaller than
conditional intervals for small ∆ due to their unconditional nature. Locally simultaneous
inference adapts to the certainty of the selection like conditional inference, but is never worse
than simultaneous inference. Formally, by relying on our general theory of locally simultane-
ous inference, we obtain the following approach. Fix α = 0.1. Let qδ(k) be the 1− δ quantile

of maxi∈[k] |Zi|, Zi
i.i.d.∼ N (0, 1). Then, we have

P
{
µγ̂ ∈

(
yγ̂ ±min{q0.95α(|Γ̂+|), qα(2)}

)}
⩾ 1− α,

where Γ̂+ = {1, 2} when |y2 − y1| ⩽ 2
√

2q0.05α(1) and Γ̂+ = {γ̂} otherwise. Therefore,
when |y2 − y1| is small, locally simultaneous intervals are equal to simultaneous intervals;
when |y2− y1| is large, only γ̂ is deemed to be a plausible selection in hindsight, making the
intervals essentially uncorrected.

4.4.1 General construction

The basic principle of our correction is to find a data-dependent set of targets nested between
Γ̂ and Γ, such that taking a simultaneous correction over the set ensures type I error control.
To implement this idea, we assume that we can construct simultaneous confidence regions
Cγ·Γ′ for any desired subset Γ′ ⊆ Γ, at any target error level α. Formally, we have access to
a family of confidence regions {Cγ·Γ′}Γ′⊆Γ such that

P {θγ ∈ Cγ·Γ′ , ∀γ ∈ Γ′} ⩾ 1− α,
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for all Γ′ ⊆ Γ.
To ensure validity of our construction, we make a mild and natural monotonicity assump-

tion, requiring that the confidence regions can only increase as the set of inferential targets
increases.

Assumption 4.4.1. We say that the confidence regions {Cγ·Γ′}Γ′⊆Γ are nested if for all
Γ1 ⊆ Γ2 ⊆ Γ and γ ∈ Γ1,

Cγ·Γ1 ⊆ Cγ·Γ2 .

We are now ready to outline the general solution based on locally simultaneous inference.
For every P ∈ P , suppose that we can construct a set Aν(P ) that satisfies

P{y ∈ Aν(P )} ⩾ 1− ν,

for any pre-specified ν ∈ (0, 1). In other words, Aν(P ) is the acceptance region of a valid
test for the null hypothesis HP : y ∼ P at level 1− ν. Intuitively, Aν(P ) can be thought of
as the set of all plausible observations according to distribution P . When P = {Pµ}µ∈M is
a parametric family, we will simply write Aν(Pµ) ≡ Aν(µ).

We define the set of plausible targets under distribution P to be:

Γν(P ) := ∪
y′∈Aν(P )

Γ̂(y′).

Note that, unlike the realized selection Γ̂(y), Γν(P ) is a fixed set of targets. Again, when
P = {Pµ}µ∈M is a parametric family, we will write Γν(Pµ) ≡ Γν(µ).

Finally, we define the inversion of Aν(P ), which gives a confidence region for the true
distribution P :

Bν(y) = {P ∈ P : y ∈ Aν(P )}.
Before proving our main result, which asserts validity of locally simultaneous inference,

we prove a key technical lemma that makes the core of the argument.

Lemma 4.4.1. Fix α ∈ (0, 1) and ν ∈ (0, α). Let {C̃γ·Γ′}Γ′⊆Γ be a family of confidence
regions such that

P
{
θγ ∈ C̃γ·Γ′ ,∀γ ∈ Γ′, y ∈ Aν(P )

}
⩾ 1− α, (4.5)

for all Γ′ ⊆ Γ. Moreover, suppose that the regions are nested (Ass. 4.4.1). Consider the set
of targets

Γ̂+
ν = ∪

P ′∈Bν(y)
Γν(P ′) = ∪

P ′∈Bν(y)
∪

y′∈Aν(P ′)
Γ̂(y′).

Then, it holds that

P
{
θγ ∈ C̃γ·Γ̂+

ν
,∀γ ∈ Γ̂

}
⩾ 1− α.
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Proof. First, we can write

P
{
θγ ∈ C̃γ·Γ̂+

ν
,∀γ ∈ Γ̂

}
⩾ P

{
θγ ∈ C̃γ·Γ̂+

ν
, ∀γ ∈ Γ̂, y ∈ Aν

}
.

Now notice that, on the event {y ∈ Aν(P )} = {P ∈ Bν(y)}, it almost surely holds that

Γ̂ ⊆ Γν(P ) ⊆ Γ̂+
ν . Using this fact, we have

P
{
θγ ∈ C̃γ·Γ̂+

ν
, ∀γ ∈ Γ̂, y ∈ Aν

}
⩾ P

{
θγ ∈ C̃γ·Γ̂+

ν
,∀γ ∈ Γν(P ), y ∈ Aν

}
⩾ P

{
θγ ∈ C̃γ·Γν(P ),∀γ ∈ Γν(P ), y ∈ Aν

}
,

where the second inequality follows by the nestedness of the confidence regions. Since the
right-hand side is at least 1− α by the definition of C̃γ·Γν(P ), we have shown

P
{
θγ ∈ C̃γ·Γ̂+

ν
, ∀γ ∈ Γ̂

}
⩾ 1− α,

as desired.

Therefore, Lemma 4.4.1 reduces the problem of constructing selective confidence regions
to the problem of constructing the regions C̃γ·Γ′ satisfying Eq. (4.5) for every fixed Γ′. The
following theorem, providing such regions, states our main result on locally simultaneous
inference.

Theorem 4.4.1. Fix α ∈ (0, 1) and ν ∈ (0, α). Suppose that the simultaneous confidence
regions {Cγ·Γ′}Γ′⊆Γ are nested (Ass. 4.4.1). Consider the set of targets

Γ̂+
ν = ∪

P ′∈Bν(y)
Γν(P ′) = ∪

P ′∈Bν(y)
∪

y′∈Aν(P ′)
Γ̂(y′). (4.6)

Then, it holds that

P
{
θγ ∈ C

(α−ν)

γ·Γ̂+
ν

,∀γ ∈ Γ̂
}
⩾ 1− α.

Proof. The proof follows by an application of Lemma 4.4.1. In particular, by a union bound
it follows that C

(α−ν)
γ·Γ′ is a valid choice of C̃γ·Γ′ in Lemma 4.4.1:

P
{
θγ ∈ C

(α−ν)
γ·Γ′ ,∀γ ∈ Γ′, y ∈ Aν(P )

}
⩾ 1− P{∃γ ∈ Γ′ : θγ ̸∈ C

(α−ν)
γ·Γ′ } − P{y ̸∈ Aν(P )}

⩾ 1− (α− ν)− ν = 1− α.

Intuitively, Theorem 4.4.1 justifies the following refinement of simultaneous inference.
Given data y, first construct a set of all distributions under which the observed data is
plausible. Then, consider all plausible observations under those distributions; this essentially
gives a collection of datasets y′ in a neighborhood around y. Finally, perform simultaneous
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inference over all inferential targets Γ̂(y′) that could be selected in this neighborhood. Despite
the fact that the set of targets is constructed as a function of y, a simultaneous correction
over this set nevertheless ensures valid selective inferences for Γ̂(y).

Next, we provide a slightly different correction from that of Theorem 4.4.1 that strictly
dominates simultaneous inference at error level α, for any choice of ν (note that the correction
in Theorem 4.4.1 dominates simultaneous inference at level α − ν). This is achieved by
carefully choosing Aν(P ). The refined correction is often easy to apply, however we find that
the strategy from Theorem 4.4.1 is usually more practical as it allows choosing Aν(P ) freely.
For the next result, we assume centered confidence intervals.

Assumption 4.4.2. We say that {Cα
γ·Γ′}γ′⊆Γ are centered confidence intervals if

Cα
γ·Γ′ =

(
θ̂γ ± qαΓ′ · σ̂γ

)
,

for some estimator θ̂γ and standard error σ̂γ, where q
α
Γ′ is chosen such that P{θγ ∈ Cα

γ·Γ′ ,∀γ ∈
Γ′} ⩾ 1− α.

Confidence intervals are often centered; for example, this is true of intervals based on

the maximal z- or t-statistic, as in Example 4.2.2. We denote Cγ(q) :=
(
θ̂γ ± qσ̂γ

)
; then,

Cγ·Γ′ = Cγ(qαΓ′) are intervals valid simultaneously over Γ′ at level 1 − α. Without loss of
generality we assume that qαΓ′ is nonincreasing in α.

Theorem 4.4.2. Fix α ∈ (0, 1) and ν ∈ (0, α). Suppose that the confidence intervals
are nested (Ass. 4.4.1), i.e., qαΓ1

⩽ qαΓ2
for all Γ1 ⊆ Γ2, and centered (Ass. 4.4.2). Let

Aν(P ) = {θγ ∈ Cγ(qνΓ),∀γ ∈ Γ}, and let Γ̂+
ν denote the set of targets from Theorem 4.4.1

(Eq. (4.6)). Let

q̂ = min
{
q
(α−ν)

Γ̂+
ν

, qαΓ

}
.

Then, it holds that

P
{
θγ ∈ Cγ(q̂),∀γ ∈ Γ̂

}
⩾ 1− α.

Proof. Analogously to Theorem 4.4.1, we show that Cγ

(
min{q(α−ν)

Γ′ , qαΓ}
)

is a valid choice

of C̃γ·Γ′ in Lemma 4.4.1. Invoking Lemma 4.4.1 then completes the proof.
We split the analysis into two cases, depending on which term achieves the minimum.
First, suppose that Γ′ is such that q

(α−ν)
Γ′ ⩽ qαΓ . Then, by a union bound, we have

P{θγ ∈ C̃γ·Γ′ ,∀γ ∈ Γ′, y ∈ Aν(P )} ⩾ 1− P{y ̸∈ Aν(P )} − P{∃γ ∈ Γ′ : θγ ̸∈ C̃γ·Γ′}
= 1− P{y ̸∈ Aν(P )} − P{∃γ ∈ Γ′ : θγ ̸∈ Cγ(q

(α−ν)
Γ′ )}

⩾ 1− ν − (α− ν)

= 1− α.
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Next, suppose that Γ′ is such that qαΓ ⩽ q
(α−ν)
Γ′ . Then,

P{θγ ∈ C̃γ·Γ′ ,∀γ ∈ Γ′, y ∈ Aν(P )} = P{θγ ∈ Cγ(qαΓ), ∀γ ∈ Γ′, y ∈ Aν(P )}
⩾ P{θγ ∈ Cγ(qαΓ),∀γ ∈ Γ, y ∈ Aν(P )}
= P{θγ ∈ Cγ(qαΓ), ∀γ ∈ Γ}
⩾ 1− α,

where the third step follows because, by definition, {θγ ∈ Cγ(qαΓ),∀γ ∈ Γ} ⇒ {y ∈ Aν(P )}.
Therefore, C̃γ·Γ′ = Cγ

(
min{q(α−ν)

Γ′ , qαΓ}
)

is a valid choice of C̃γ·Γ′ in Lemma 4.4.1, as

desired.

Locally simultaneous inference therefore comes at no cost in terms of power: the intervals
are at least as tight as fully simultaneous intervals. Moreover, whenever Γ̂+

ν is a strict subset
of all admissible selections, they will be strictly tighter.

4.4.2 Inference on the “most promising” effects

We first study the problem of constructing confidence intervals for the “most promising”
effects. We consider two instantiations of the problem: inference on the winner and the
file-drawer problem.

Given data y = (y1, . . . , ym) ∈ Rm, the problem of inference on the winner asks for a
confidence interval for the mean of the largest entry of y. Formally, if we let θγ = E yγ for
all γ ∈ [m], the goal is to do inference on θγ̂, where

γ̂ = arg max
γ∈[m]

yγ. (4.7)

The file-drawer problem asks for a confidence region that simultaneously covers the means of
all observations that exceed a critical threshold T . Formally, the region is required to cover
{θγ : γ ∈ Γ̂}, where

Γ̂ = {γ ∈ [m] : yγ ⩾ T}. (4.8)

The m coordinates of y can correspond to, for example, the effectiveness of m different
treatments, in which case the selection corresponds to focusing on the single seemingly best
treatment or multiple treatments that are deemed sufficiently promising. The m outcomes
can also correspond to measurements of a time series over m time steps (e.g., blood pressure
in a specified interval), in which case selection focuses on the time steps at which the series
achieves extreme values. Finally, y can capture an estimate of the effectiveness of a treat-
ment on m different subgroups (e.g., m age groups); the selection would then ask for the
effectiveness within the single subgroup or several subgroups for which the treatment seems
most promising.

We consider a parametric version and a nonparametric version of the two problems.
Importantly, conditional selective inference is not directly applicable in the latter setting.
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Parametric case

We begin with the case where P is a parametric family; in particular, we take P = {Pµ}µ to
be a location family with location parameter µ ∈ Rm. In other words, y = (y1, . . . , ym) ∼ Pµ

can be written as y = µ + Z, where Z = (Z1, . . . , Zm) ∼ P0. For simplicity of exposition

we assume that the errors Zi have the same marginal symmetric zero-mean distribution P
(1)
0

(e.g., P
(1)
0 = N (0, σ2)), however generalizing beyond this setting is straightforward. We

do not assume that the errors Zi are necessarily independent, i.e. that P0 is a product
distribution.

For an index set I ⊆ [m], we define

qα(I) = inf

{
q : P0

{
max
i∈I
|Zi| ⩽ q

}
⩾ 1− α

}
.

In words, qα(I) is the 1 − α quantile of the maximum absolute error over indices in I.
This would be the usual interval half-width if a simultaneous correction is required over the
observations in I. This value can be loosely upper bounded by taking a Bonferroni correction
over I. We note that exact knowledge of P0 is not necessary; being able to compute an upper
bound on qα(I) suffices.

Note that θi = E yi ≡ µi in this setting; that is, the possible estimands θi are coordinates
of the location parameter. Therefore, for γ̂ as in Eq. (4.7), we want to construct a confidence

interval for µγ̂; for Γ̂ as in Eq. (4.8), we want to construct a confidence region for {µγ : γ ∈ Γ̂}.
We now apply our general result about locally simultaneous inference.

Theorem 4.4.3. Fix α ∈ (0, 1) and ν ∈ (0, α).

• For the problem of inference on the winner (Eq. (4.7)), let the set of plausible indices
be

Γ̂+
ν = {γ ∈ [m] : yγ ⩾ yγ̂ − 4qν([m])} .

Then,

Pµ

{
µγ̂ ∈

(
yγ̂ ±min

{
q(α−ν)(Γ̂+

ν ), qα([m])
})}

⩾ 1− α.

• For the file-drawer problem (Eq. (4.8)), let the set of plausible indices be

Γ̂+
ν = {γ ∈ [m] : yγ ⩾ T − 2qν([m])} .

Then,

Pµ

{
µγ ∈

(
yγ ±min

{
q(α−ν)(Γ̂+

ν ), qα([m])
})

, ∀γ ∈ Γ̂
}
⩾ 1− α.

Theorem 4.4.3 formalizes the intuition that one should only have to add the “nearly
selected” observations to the simultaneous correction, if the goal is to construct a valid
confidence region around the selected ones. When there are many observations that are far
from promising, then Γ̂+

ν can be much smaller than [m].
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We note the file-drawer problem asks for a confidence region around all parameters that
exceed the selection threshold; in contrast, the conditional approach of Lee et al. [106]
provides inference for one real-valued parameter at a time. It is unclear how to generalize
it to the problem of inference on multiple parameters without resorting to a trivial solution
such as a Bonferroni correction over all estimands, which ignores the dependencies between
the different estimation problems. The same observation applies to the hybrid method of
Andrews et al. [2]. In contrast, since locally simultaneous inference builds on standard
simultaneous inference, it is able to adapt to the dependencies at hand.

Nonparametric case

We show that essentially the same reasoning as in the parametric case applies to nonpara-
metric settings.

For each of the m candidates, we assume that we have n i.i.d. observations that are
bounded in [0, 1]. More formally, we observe n i.i.d. samples y(1), . . . , y(n) drawn from a
distribution P with supp(P ) ⊆ [0, 1]m. As before, we denote the m-dimensional vector of
means by θ = E y(1).

In the problem of inference on the winner, we would like to do inference on θγ̂, where

γ̂ = arg max
γ∈[m]

yγ := arg max
γ∈[m]

1

n

n∑
j=1

y(j)γ . (4.9)

In the file-drawer problem, we would like to do inference on {θγ : γ ∈ Γ̂}, where

Γ̂ = {γ ∈ [m] : yγ ⩾ T} :=

{
γ ∈ [m] :

1

n

n∑
j=1

y(j)γ ⩾ T

}
. (4.10)

Let wα
n be any valid bound on the deviation of the empirical average of n i.i.d. random

variables X1, . . . , Xn ∈ [0, 1] from their mean. Formally, wα
n satisfies

P

{
EX1 ∈

(
1

n

n∑
i=1

Xi ± wα
n

)}
⩾ 1− α.

For example, a standard choice of wα
n is obtained from Hoeffding’s inequality:

wα
n =

√
log(2/α)

2n
.

Tighter choices of wα
n are generally possible, e.g. by applying Bentkus’ [11], Bernstein’s [13],

or Bennett’s inequality [10]. Furthermore, for every γ ∈ [m], we let Cα
γ be a confidence

region for θγ valid at level 1− α. In our nonparametric experiments, we will take Cα
γ to be

the betting-based confidence intervals due to Waudby-Smith and Ramdas [177].
Similarly as in the parametric setting, we ensure valid selective inference by only requiring

simultaneous control—here achieved by taking a Bonferroni correction—over the selected and
nearly selected observations.
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Theorem 4.4.4. Fix α ∈ (0, 1) and ν ∈ (0, α). Assume that Cα1
γ ⊇ Cα2

γ for all α1, α2 ∈ (0, 1)
such that α1 ⩽ α2.

• For the problem of inference on the winner (Eq. (4.9)), let the set of plausible indices
be

Γ̂+
ν =

{
γ ∈ [m] : yγ ⩾ yγ̂ − 4wν/m

n

}
.

Then,

P
{
θγ̂ ∈ C

(α−ν)/|Γ̂+
ν |

γ̂

}
⩾ 1− α.

• For the file-drawer problem (Eq. (4.10)), let the set of plausible indices be

Γ̂+
ν =

{
γ ∈ [m] : yγ ⩾ T − 2wν/m

n

}
.

Then,

P
{
θγ ∈ C(α−ν)/|Γ̂+

ν |
γ , ∀γ ∈ Γ̂

}
⩾ 1− α.

4.4.3 Inference after model selection

We next consider the problem of inference after data-driven model selection. We first state a
general implication of locally simultaneous inference in this context and then specialize this
result to selection via the LASSO.

Suppose that we have a fixed design matrix X ∈ Rn×d and a corresponding vector of

outcomes y ∈ Rn, where y ∼ Pµ. We assume Pµ is a location family, that is, y ∼ Pµ ⇔ y
d
=

µ + Z, where Z ∼ P0 has mean zero.
We want to select a model M̂ ≡ M̂(y) corresponding to a subset of the d features, and

then regress the outcome onto the selected features. We define θM , θ̂M , etc as Section 4.3.
The set of possible estimands in this context is all possible values of θj·M . The natural

index set Γ for these estimands is given by all feature–model pairs: Γ = {(j,M) : j ∈
M,M ∈ M}, where M corresponds to all admissible feature selections, which is often 2[d].

The selected targets are the regression coefficients in the selected model, i.e. Γ̂ = {(j, M̂) :
j ∈ M̂}.

To apply a locally simultaneous correction, we need to compute the augmented set of
targets Γ̂+

ν . The key step in doing so is to find all plausible models, which we will denote by

M̂+
ν ; after we have M̂+

ν , we apply a simultaneous correction in the vein of Berk et al. [12],

called the PoSI correction, over M̂+
ν . Intuitively, M̂+

ν is the set of all models that could be
selected on outcome vectors similar to y. Again, we note that this set is data-dependent;
Berk et al., on the other hand, consider a deterministic set of possible models.

We will focus on methods that use X⊤y as a sufficient statistic, which includes most
common selection methods such as the LASSO, forward stepwise, etc. For such methods, a
natural choice for the plausible set Aν(µ) is outcome vectors for which X⊤y ≈ X⊤µ. We
formalize this in Corollary 4.4.1 below.
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To state the result, for a set of contrasts V , we define

qα(V) = inf

{
q : P0

{
sup
v∈V
|v⊤Z| ⩽ q

}
⩾ 1− α

}
,

where Z ∼ P0. Let also ej·M ∈ R|M | be the canonical vector with entry 1 corresponding to

feature j ∈M and σ̂j·M =
√

e⊤j·M(X⊤
MXM)−1ej·M .

Corollary 4.4.1. Fix α ∈ (0, 1) and ν ∈ (0, α). Let

M̂+
ν =

{
M̂(y′) :

∥∥X⊤y −X⊤y′
∥∥
∞ ⩽ 2qν

(
{Xj}dj=1

)}
and

V̂+
ν =

{
e⊤j·MX+

M

σ̂j·M
: M ∈ M̂+

ν , j ∈M

}
.

Then,

Pµ

{
θj·M̂ ∈

(
θ̂j·M̂ ± q(α−ν)

(
V̂+
ν

)
σ̂j·M

)
, ∀j ∈ M̂

}
⩾ 1− α.

Therefore, unlike the PoSI method [12], we take a simultaneous correction only over
models that seem plausible in hindsight. The correction of Corollary 4.4.1 is at least as
tight as the PoSI correction at error level α − ν; note that we can in principle obtain a
correction that is at least as tight as the PoSI correction at error level α, by invoking the
refined analysis of Theorem 4.4.2. However, this refined correction would require computing

both the full PoSI correction and the local correction q(α−ν)
(
V̂+
ν

)
, which can be far more

computationally demanding than computing only the local correction. As a result, we feel
that the correction of Corollary 4.4.1 is more practical.

As a warmup, we instantiate Corollary 4.4.1 for marginal screening, which admits a
simple, explicit characterization of M̂+

ν . Then we study selection via the LASSO.

Example 4.4.1 (Marginal screening). Marginal screening is a simple feature selection
method that selects M̂ = {̂i1, . . . , îk}, where îj is the j-th largest inner product |X⊤

i y|, for a
pre-specified k ∈ [d].

Let c(j) denote the j-th largest inner product |X⊤
i y|. Then, it is not difficult to see that

M̂+
ν consists of all subsets of size k of the set{

i ∈ [d] : |X⊤
i y| ⩾ c(k) − 4qν({Xj}dj=1)

}
.

In words, all variables with inner product |X⊤
i y| within a 4qν({Xj}dj=1) margin of c(k)

have a plausible chance of being selected. As a result, taking a simultaneous correction over
them suffices to get valid inference, while all other variables can be searched through “for
free.”



CHAPTER 4. SELECTIVE INFERENCE 157

Model selection via the LASSO

We discuss a method for locally simultaneous inference after model selection via the LASSO.
While we focus on the LASSO, the method can be applied to any selection procedure where
the selection event admits a polyhedral representation, such as forward stepwise [164]. We
will elaborate on this point later in the section.

Recall that the LASSO solves the following penalized regression problem:

β̂(y) = arg min
β

1

2
∥y −Xβ∥22 + λ∥β∥1,

and selects M̂ = {i ∈ [d] : β̂(y)i ̸= 0}. We will write β̂(y) ≡ β̂ when the argument is clear
from the context.

The key step in applying Corollary 4.4.1 is to find the set of plausible models M̂+
ν . More

precisely, denoting B∞
ν = {y′ : ∥X⊤y − X⊤y′∥∞ ⩽ 2qν({Xj}dj=1)} the relevant neighboring

outcome vectors, the set of plausible models is M̂+
ν = {M̂(y′) : y′ ∈ B∞

ν }. To simplify
notation we will denote by sν = 2qν({Xj}dj=1) the radius of B∞

ν .
To find all possible models in B∞

ν , we apply the polyhedral characterization of the LASSO

selection event due to Lee et al. [106]. Denoting by ŝ = sign
(
β̂M̂

)
the signs of the selected

variables in the LASSO solution, Lee et al. show that

{M̂ = M, ŝ = s} =


A+

0 (M, s)
A−

0 (M, s)
A1(M, s)

 y <

b+0 (M, s)
b−0 (M, s)
b1(M, s)

 ,

for any fixed model-sign pair (M, s), where

A+
0 (M, s) =

1

λ
X⊤

Mc(I − ΠM), b+0 (M, s) = 1−X⊤
Mc(X⊤

M)+s;

A−
0 (M, s) = −1

λ
X⊤

Mc(I − ΠM), b−0 (M, s) = 1 + X⊤
Mc(X⊤

M)+s;

A1(M, s) = −diag(s)(X⊤
MXM)−1X⊤

M , b1(M, s) = −λdiag(s)(X⊤
MXM)−1s.

Here, ΠM := XM(X⊤
MXM)−1X⊤

M . We will denote the polyhedron above by P (M, s).

At a high level, our approach to finding M̂+
ν is the following. The Lee et al. characteriza-

tion shows that the set of outcome vectors for which a model M and sign vector s are realized
is a polyhedron. Moreover, for each active constraint of the polyhedron, meaning that the
constraint is not redundant in defining the polyhedron, we know exactly which model-sign
pair is on the other side of the face (depending on the constraint corresponding to the active
face). The basic idea of our procedure is to compute the model-sign pair (and the corre-
sponding polyhedron) at the data y, and then recursively move to neighboring polyhedra

until the whole box B∞
ν is tiled by the visited polyhedra. The set M̂+

ν is then simply all the
models recorded in the visited polyhedra.
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The described principle is agnostic to the fact that the polyhedron characterizes the
LASSO selection event specifically. In particular, it works for any selection procedure that
admits a polyhedral representation. Just like in the case of the LASSO, the goal is to
enumerate all polyhedra contained in B∞

ν , which encode the different plausible selection
events, and this is precisely what our method accomplishes.

In what follows we discuss rules for determining the set of neighboring model-sign poly-
hedra given the current model-sign polyhedron, which make the core of our procedure. We
rely on two types of rules: exact screening rules and safe screening rules. Exact screening
rules are necessary and sufficient to screen out “irrelevant” variables, i.e. those whose in-
clusion/exclusion does not change when going from the current model-sign region to any
neighboring model-sign region: they either remain in the model with the same sign in all
neighboring polyhedra or they never enter the model. Safe screening rules are not exact
but provide sufficient conditions for screening; we combine them with exact rules to improve
computational efficiency. Our safe rules resemble prior work on variable elimination for the
LASSO [67, 163], but are fundamentally different as they rely on properties of B∞

ν . It is
worth mentioning that the safe rules are LASSO-specific; the exact rules work for general
selection strategies with a polyhedral characterization.

We use B(M, s) to denote the set of model-sign pairs whose corresponding polyhedra
neighbor, i.e. share a face with, P (M, s).

Exact screening rules. Exact screening rules proceed by checking for each variable i ∈
[d] if it can change its inclusion/exclusion status when going from the current model-sign
polyhedron P (M, s) to any neighboring polyhedron. In other words, for each variable i ∈M ,
they check if there exists a pair (M ′, s′) ∈ B(M, s) such that i ̸∈ M ′; similarly, for each
i ∈ M c, they check if there exists a pair (M ′, s′) ∈ B(M, s) such that i ∈ M ′, and they
additionally identify the corresponding sign of variable i if such a pair exists.

The core idea of exact screening rules is to find the minimal representation of P (M, s)∩
B∞
ν . That is, the goal is to prune all redundant constraints coming from P (M, s); the

inequalities that remain are “active” and indicate that the variables corresponding to those
constraints can enter or leave the model in one of the neighboring polyhedra. In Algorithm
9 we use a standard solution to finding a minimal polyhedral representation, which relies on
solving one linear program for each constraint whose redundancy is being checked.

Safe screening rules. Safe rules serve to speed up the search for a minimal representation
of a polyhedron corresponding to a model-sign pair.

For all y′ ∈ P (M, s), the LASSO optimality conditions imply that the LASSO solution
is locally linear, namely

β̂(y′) = β(M,s)(y
′) := (X⊤

MXM)−1(X⊤
My′ − λs).

Note that, while β(M,s)(y
′) is equal to the LASSO solution for y′ ∈ P (M, s), it can be

computed for y′ ̸∈ P (M, s). We use this characterization to design the safe screening rules.
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Algorithm 7 Locally simultaneous inference for the LASSO

input: design matrix X, outcome vector y, penalty λ, error level α, parameter ν ∈ (0, α)

output: set of plausible models M̂+
ν

Compute width of B∞
ν : sν = 2qν({Xj}dj=1)

Compute LASSO solution: β̂ = arg minβ
1
2
∥y −Xβ∥22 + λ∥β∥1

Let M̂ = supp(β̂), ŝ = sign(β̂M̂)

Initialize Ptodo ← {(M̂, ŝ)},P+
ν ← ∅

while Ptodo ̸= ∅ do
Take any pair (M, s) ∈ Ptodo

Update (M, s) as visited: Ptodo ← Ptodo \ {(M, s)}, P+
ν ← P+

ν ∪ {(M, s)}
Isafe(M, s)← SafeScreening(X, y, (M, s)) (Alg. 8)
B(M, s)← ExactScreening(X, y, (M, s), Isafe(M, s)) (Alg. 9)
Ptodo ← Ptodo ∪ (B(M, s) \ P+

ν )
end while
Return M̂+

ν = {M : ∃s s.t. (M, s) ∈ P+
ν }

Lemma 4.4.2 (Safe exclusion). Fix a model-sign pair (M, s). Let

I−safe(M, s) :=
{
j ∈M c : |X⊤

j (y −XMβ(M,s)(y))| < λ− sν
(
1 + ∥X⊤

j XM(X⊤
MXM)−1∥1

)}
.

Then, for any j ∈ I−safe(M, s), variable j cannot enter the model in any of the neighboring
polyhedra:

∀(M ′, s′) ∈ B(M, s), j ̸∈M ′.

Lemma 4.4.3 (Safe inclusion). Fix a model-sign pair (M, s). Let

I+safe(M, s) =
{
j ∈M : |βj·(M,s)(y)| > sν

∥∥e⊤j·(M,s)(X
⊤
MXM)−1

∥∥
1

}
.

Then, for any j ∈ I+safe(M, s), variable j cannot exit the model in any of the neighboring
polyhedra:

∀(M ′, s′) ∈ B(M, s), j ∈M ′.

Lemma 4.4.2 and Lemma 4.4.3 show that the safe screening subroutine is valid. Putting
everything together, we formalize the guarantees of Algorithm 7 in Theorem 4.4.5.

Theorem 4.4.5. Algorithm 7 returns exactly the set of plausible models, i.e.

M̂+
ν =

{
M̂(y′) : ∥X⊤y −X⊤y′∥∞ ⩽ 2qν({Xj}dj=1)

}
.

Putting together Theorem 4.4.5 and Corollary 4.4.1, we conclude that it suffices to take
a simultaneous correction in the sense of Berk et al. [12] at error level α − ν, only over the

local model set M̂+
ν , to get a valid confidence region for θM̂ .
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To state the subroutines of Algorithm 7 for safe and exact screening, we introduce the nec-
essary notation. We denote by A+j

0 (M, s) the row in A+
0 (M, s) corresponding to the variable

j ∈M c. We adopt analogous definitions for A−j
0 (M, s) and Aj

1(M, s) (where in the latter case
we consider j ∈M). For j ∈M c, we will use P \{+j}(M, s) (resp. P \{−j}(M, s)) to denote the
polyhedron P (M, s) with constraint (A+j

0 (M, s), b+j
0 (M, s)) (resp. (A−j

0 (M, s), b−j
0 (M, s))) re-

moved. We similarly use P \{j}(M, s) for j ∈ M . We use (M, s)−j to denote the model-sign
pair obtained by removing variable j ∈ M and the corresponding sign. Similarly, we use
(M, s)+(j,+1) to denote the model-sign pair obtained by adding variable j ∈M c to M with a
positive sign. We use (M, s)+(j,−1) analogously, only the corresponding sign is negative.

Algorithm 8 SafeScreening

input: design matrix X, outcome vector y, current model-sign pair (M, s)
output: safely screened variables

Isafe(M, s)
Compute extrapolated solution at y, β(M,s)(y) = (X⊤

MXM)−1(X⊤
My − λs)

I+safe(M, s)← {j ∈M : |βj·(M,s)(y)| > sν∥e⊤j·(M,s)(X
⊤
MXM)−1∥1}

I−safe(M, s)← {j ∈M c : |X⊤
j (y −XMβ(M,s)(y))| < λ− sν(1 + ∥X⊤

j XM(X⊤
MXM)−1∥1)}

Return Isafe(M, s)← I+safe(M, s) ∪ I−safe(M, s)

Algorithm 9 ExactScreening

input: design matrix X, outcome vector y, current model-sign pair (M, s), (optionally)
safely screened variables Isafe(M, s)
output: neighboring model-sign pairs B(M, s)

Initialize B(M, s)← ∅
∀j ∈M c \ Isafe(M, s), compute constraint (A+j

0 (M, s), b+j
0 (M, s)), (A−j

0 (M, s), b−j
0 (M, s))

∀j ∈M \ Isafe(M, s), compute constraint (Aj
1(M, s), bj1(M, s))

for j ∈ [d] \ Isafe(M, s) do
if j ∈M then

Solve LP: Val = maxz z
⊤Aj

1(M, s) s.t. z ∈ P \{j}(M, s)
If Val > bj1(M, s), add (M, s)−j to B(M, s)

else if j ∈M c then
Solve LP: Val = maxz z

⊤A+j
0 (M, s) s.t. z ∈ P \{+j}(M, s)

If Val > b+j
0 (M, s), add (M, s)+(j,+1) to B(M, s)

Solve LP: Val = maxz z
⊤A−j

0 (M, s) s.t. z ∈ P \{−j}(M, s)
If Val > b−j

0 (M, s), add (M, s)+(j,−1) to B(M, s)
end if

end for
Return B(M, s)
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Figure 4.10: Mean outcome µ for different problem parameters θ, at scale level C = 10.

4.4.4 Numerical evaluation

We compare locally simultaneous inference to standard simultaneous inference, the condi-
tional method due to Lee et al. [106], and the hybrid refinement of conditional inference due
to Andrews et al. [2]. Throughout we apply the version of locally simultaneous inference
from Theorem 4.4.1 with ν = 0.1α. In all figures comparing interval widths we plot the
median width over 100 trials, together with the 5% and 95% quantile, plotted as error bars
around the median. The target error level is α = 0.1 throughout.

Inference on the winner

We begin by studying the problem of inference on the winner from Section 4.4.2. We generate
the mean outcome µ as a smooth curve; this simulates a setting where nearby entries of µ are
similar, such as when the data is a time series or when neighboring entries of µ correspond to
outcomes in neighboring subgroups (e.g., neighboring age groups). We vary the shape of the
mean outcome vector µ, thereby making inference more or less challenging for the different
methods. We let µi ∝ −|i − 0.5(m + 1)|θ for i ∈ [m], where θ > 0 varies the sharpness
of µ. Small θ corresponds to the case where the winner stands out, while large θ makes
the mean outcome flat, implying that many observations have a plausible chance of being
selected as the winner. The other tuning parameter is C > 0: we rescale the mean µ so that
the difference between the minimum and maximum entry of µ is equal to C. When C is
large, µ gets “stretched out” and, as a result, there are fewer candidates that can plausibly
be selected. In Figure 4.10 we plot the shape of µ for different values of θ, at C = 10.

Parametric case. In the first setting, we generate the vector of observations as y = µ+ ξ,
where ξ ∼ N (0, Im). In Figure 4.11, we plot the interval width resulting from locally
simultaneous, simultaneous, conditional, and hybrid inference for varying θ ∈ {0.5, 1, 2, 4},
C ∈ {10, 30, 50, 70}, and m ∈ {10, 102, 103, 104}. The mean µ has range C at m = 10 and for
higher m it is not renormalized to range C; the purpose of increasing m is to demonstrate the
behavior of the different methods when the number of irrelevant observations (i.e., those far
from the winning observation) increases. We observe that conditional inference exhibits high
variability for all problem parameters, and as θ grows—meaning µ becomes flat—the median
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Figure 4.11: Interval width achieved by locally simultaneous, fully simultaneous, conditional,
and hybrid inference in the problem of inference on the winner. The dashed line corresponds
to nominal interval widths.

intervals become large. Simultaneous inference is by construction only sensitive to changes
in m, and its intervals grow with m despite the fact that only the number of irrelevant
observations grows. Locally simultaneous inference is most sensitive to changes in C: as µ is
stretched over a larger range, the method finds fewer plausible candidates and thus leads to
smaller intervals. Moreover, it is virtually insensitive to increasing m. The hybrid approach
exhibits high variability like the conditional approach (albeit to a more moderate extent)
and its intervals grow with m because, as m → ∞, the hybrid method reduces to standard
conditional inference.

Nonparametric case. We emphasized that locally simultaneous inference is rigorously
applicable in nonparametric settings, while conditional approaches are not. Still, it might
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Figure 4.12: Coverage of locally simultaneous, fully simultaneous, conditional, and hybrid
inference when the noise is sampled from Beta(a, b). The conditional and hybrid approaches
use a normal approximation; the locally simultaneous and fully simultaneous approaches
use nonparametric, finite-sample-valid confidence intervals due to Waudby-Smith and Ram-
das [177]. The target coverage is 0.9, indicated by the dashed line.

seem like a reasonable heuristic to apply conditional inference after a normal approximation
based on the CLT. We test this heuristic empirically, comparing to a nonparametric appli-
cation of locally and fully simultaneous inference. We observe that the heuristic application
of conditional methods can severely undercover the target.

We fix C = 20, m = 100, and vary θ to obtain the mean vector µ. Given µ, we generate
n i.i.d. samples y(1), . . . , y(n), where y(j) = µ + ξ(j) and ξ(j) has i.i.d. entries sampled
from Beta(a, b). To apply the locally and fully simultaneous methods, we use the betting-
based confidence intervals by Waudby-Smith and Ramdas [177] (Theorem 3), together with
a Bonferroni correction. To form the acceptance region of the locally simultaneous method,
we use the Bentkus concentration inequality [11]. In Figure 4.12 we plot the coverage of
all four approaches for varying a, b, and sample size n. We observe that, as θ grows, the
conditional methods have diminishing coverage. This confirms the need for a more robust,
nonparametrically applicable correction. In contrast, the two simultaneous methods have
valid coverage and typically overcover, which is to be expected given the use of nonparametric
concentration inequalities. In Figure 4.13 we plot the interval width implied by the four
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Figure 4.13: Interval width achieved by locally simultaneous, fully simultaneous, conditional,
and hybrid inference when the noise is sampled from Beta(a, b). The conditional and hybrid
approaches use a normal approximation; the locally simultaneous and fully simultaneous
approaches use nonparametric, finite-sample-valid confidence intervals due to Waudby-Smith
and Ramdas [177].

methods. The conditional methods yield much smaller intervals, but this comes at the
cost of invalid coverage, as shown in Figure 4.12. The locally simultaneous intervals are
consistently smaller than the fully simultaneous intervals, with the improvement being more
pronounced when there are few plausible candidates, that is, when θ is small. Moreover, as
n grows, the locally simultaneous intervals gradually approach the conditional intervals; this
makes sense seeing that the coverage of the conditional methods improves with n.

File-drawer problem

The next problem we consider is the file-drawer problem from Section 4.4.2. As alluded to
earlier, the conditional and hybrid approaches provide inference for one real-valued parameter
at a time and it is unclear how to generalize them to multi-dimensional problems without
resorting to a Bonferroni correction. In contrast, locally simultaneous inference is able to
adapt to the dependencies in the data.

To demonstrate this, we consider y = µ + ξ, where ξ ∼ N (0,Σ) is a Gaussian noise
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Figure 4.14: Interval width achieved by locally simultaneous, fully simultaneous, and hybrid
inference in the file-drawer problem. Conditional inference achieves much wider intervals and
is thus not included in the plots. The dashed line corresponds to nominal interval widths.

process with the RBF kernel, Σij = exp
(
− |i−j|2

2ϕ2

)
; ϕ is the key parameter that we vary. As

ϕ gets larger, the errors become more dependent. We generate µ as in the first problem
setting, again varying θ and C.

First, we observe that the conditional approach is exceptionally fragile in this problem
setting: its intervals are consistently much larger than the intervals of the other competi-
tors, often even of a different order of magnitude. For this reason, we omit the conditional
approach from the comparison. In Figure 4.14 we plot the interval widths of locally simul-
taneous, simultaneous, and hybrid inference. We set T = −1 and vary the kernel scale ϕ,
as well as θ and C, which control the shape of µ. We combine the hybrid method with a
Bonferroni correction over the selected set. We observe that the simultaneous and locally
simultaneous methods are indeed able to adapt to the kernel scale. Moreover, as in the
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previous problem setting, increasing θ makes the problem more challenging for the hybrid
method, and as C increases the problem becomes easier for locally simultaneous inference.

Inference after selection via the LASSO

Next, we look at the problem of inference after model selection via the LASSO.
Already when the dimension d is greater than 20, the number of models admissible

for selection exceeds 106, making the fully simultaneous PoSI method of Berk et al. [12]

prohibitively computationally expensive. Here we show that the set of plausible models M̂+
ν

can be much smaller than the set of all subsets of [d] when the true data-generating model is
sparse, making locally simultaneous inference both powerful and computationally tractable.

In Figure 4.15, we consider the following data-generating process. We generate the design
matrix to have i.i.d. standard normal entries and normalize the columns to have norm 1.
We let y = Xβ + ξ, where ξ ∼ N (0, In) and β has ⌈s · d⌉ nonzero entries, where we vary
the sparsity parameter s. Of the ⌈s · d⌉ nonzero entries, we take half of them to be “weak”,
specifically equal to λ, and half of them to be “strong”, specifically equal to 2λ. We let λ have
the usual scaling of ∼

√
2 log(e · d). In particular, we fix λ = 6

√
2 log(e · d) and n = 1000.

In this parameter regime, we observe that the plausible models are typically those models
that always include the strong variables, never include the irrelevant variables, and contain
an arbitrary subset of the weak variables. We only compare locally simultaneous inference to
conditional inference, seeing that fully simultaneous inference is computationally challenging
for the values of d we consider. As before, we observe that the conditional approach exhibits
high variability. Moreover, the median interval width implied by the locally simultaneous
approach is noticeably smaller.

That being said, the locally simultaneous solution for the LASSO has computational
disadvantages. Its complexity scales with the number of plausible model-sign pairs and
there can be up to 3d such corresponding pairs, which means that in the worst case the
search for all plausible models can be fairly slow. A reasonable remedy is to introduce a
parameter Pmax such that, if the size of Ptodo in Algorithm 7 exceeds Pmax, the search for
new model-sign pairs stops and the procedure simply runs the PoSI method of Berk et al. at
error level α− ν. We implement this strategy in Figure 4.16. Specifically, we let d = 10 and
generate X and y as before, only now βi = ε for i ∈ {1, . . . , 5} and βi = 0 for i ∈ {6, . . . , 10}.
We set λ = λ0

√
2 log(e · d) and vary λ0 and ε/λ0. When ε/λ0 = 1, the non-nulls of β are

approximately at the threshold of being selected, and as ε/λ grows the true model becomes
more obvious. To speed up locally simultaneous inference, we set Pmax = 2000. As in the
experiments on inference on the winner, we observe that locally simultaneous inference is
preferred when the data is near the selection boundary, which happens when λ0 or ε/λ is
small. As the selection becomes more obvious, conditional inference becomes more powerful.
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Figure 4.15: Interval width achieved by locally simultaneous and conditional inference in
the problem of inference after selection via the LASSO, when the true underlying signal is
s-sparse.
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Figure 4.16: Interval width achieved by locally simultaneous, fully simultaneous, and condi-
tional inference in the problem of inference after selection via the LASSO, when we vary to
ratio of signal strength to regularization.

Experiments on real climate data

Finally, we conduct experiments on a real climate dataset [143]. The dataset contains hourly
measurements of temperature from 1999 to 2018 across a discrete grid of locations on Earth.
The grid is obtained by pairing 32 latitude coordinates with 64 longitude coordinates. We
model the measurements from the 20 years as i.i.d. draws from an underlying distribution.
We again compare locally simultaneous, fully simultaneous, conditional, and hybrid infer-
ence. To be able to apply the conditional and hybrid approaches, we model the draws as
i.i.d. multivariate Gaussians. We use older data, from 1979 to 1998, to estimate the Gaussian
covariance. We study two types of selection: based on time and based on location.

In the first set of experiments we compute the average temperature on Earth (averaged
over all locations on the grid) and look at the resulting time series. For each year we take
one measurement per day, evaluated at noon, resulting in a series of 365 entries. We ask
for inference on the warmest day, coldest day, and all days with temperature above 8. In
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Figure 4.17: Intervals for the mean temperature constructed via locally simultaneous, fully
simultaneous, conditional, and hybrid inference, for selections based on time.
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Figure 4.18: Intervals for the mean temperature constructed via locally simultaneous, fully
simultaneous, conditional, and hybrid inference, for selections based on location.

the second set of experiments we compute the average annual temperature and look at its
distribution over the different recorded locations on Earth. Similarly to the first set of
experiments, we ask for inference on the warmest location, coldest location, and all locations
with temperature above 28. We plot the resulting intervals in Figure 4.17 and Figure 4.18,
respectively. For the two file-drawer problems, for interpretability we only visualize three
intervals, corresponding to the first three days/locations where the temperature exceeds the
critical threshold. In the first set of experiments, we observe that conditional inference
leads to significantly wider intervals than any of the three alternatives; in contrast, in the
first two problems of the second set of experiments the winner stands out and hence the
conditional method outperforms the other approaches. The locally simultaneous approach
gives narrower intervals than the fully simultaneous approach, as expected. The hybrid
approach leads to smaller intervals than the locally simultaneous approach in some settings
and wider in others. Critically, however, the hybrid approach is only applicable because
we imposed an assumption of Gaussianity, while locally simultaneous inference would be
applicable even nonparametrically.



CHAPTER 4. SELECTIVE INFERENCE 169

4.5 Deferred proofs

4.5.1 Auxiliary lemmas

Lemma 4.5.1 (Composition theorem [23, 56]). Let A(k) be the adaptively composed algorithm
after k rounds (Alg. 4). Fix two vectors y, y′ ∈ Rn and suppose that At(a1, . . . , at−1, y) ≈η,τ

At(a1, . . . , at−1, y
′), for every fixed sequence a1, . . . , at−1, and all t ∈ [k]. Then,

(a) A(k)(y) ≈kη,kτ A(k)(y′),

(b) A(k)(y) ≈ 1
2
kη2+
√

2k log(1/δ)η,kτ+δ
A(k)(y′), for all δ ∈ (0, 1).

4.5.2 Proof of Lemma 4.3.1

Denote by Γ̂0 the oracle from Definition 4.3.2 and let E = {ω ∈ Rn : Γ̂(ω) ≈η,τ Γ̂0}. Fix an

event O ⊆ Rn × S, and let Oω = {Γ ∈ S : (ω,Γ) ∈ O}. Notice that 1{(y, Γ̂(y)) ∈ O} =
1{Γ̂(y) ∈ Oy}, and hence E[1{(y, Γ̂(y)) ∈ O}|y] = E[1{Γ̂(y) ∈ Oy}|y].

With this, we can write:

P{(y, Γ̂(y)) ∈ O, y ∈ E} = E[E[1{Γ̂(y) ∈ Oy}|y]1{y ∈ E}]
= E[P{Γ̂(y) ∈ Oy|y}1{y ∈ E}]
⩽ E[(eηP{Γ̂0 ∈ Oy|y}+ τ)1{y ∈ E}]
= E[(eη1{Γ̂0 ∈ Oy}+ τ)1{y ∈ E}]
⩽ eηP{(y, Γ̂0) ∈ O, y ∈ E}+ τ.

Since P{y ∈ E} ⩾ 1− ν, we can conclude:

P{(y, Γ̂(y)) ∈ O} = P{(y, Γ̂(y)) ∈ O, y ∈ E}+ P{(y, Γ̂(y)) ∈ O, y ̸∈ E}
⩽ P

{
(y, Γ̂(y)) ∈ O, y ∈ E

}
+ ν

⩽ eηP{(y, Γ̂0) ∈ O, y ∈ E}+ τ + ν

⩽ eηP{(y, Γ̂0) ∈ O}+ τ + ν.

4.5.3 Proof of Theorem 4.3.1

By Lemma 4.3.1, we know that

P{θΓ̂ ̸∈ Cδe−η

Γ̂
} ⩽ eηP{θΓ̂0

̸∈ Cδe−η

Γ̂0
}+ τ + ν

= eη E
[
P
{
θŜ0
̸∈ Cδe−η

Γ̂0

∣∣∣ Γ̂0

}]
+ τ + ν,



CHAPTER 4. SELECTIVE INFERENCE 170

where Cδe−η

Γ̂0
are confidence intervals computed on y and Γ̂0 is an oracle selection independent

of y. By the construction of Cδe−η

Γ̂0
, we know P

{
θΓ̂0
̸∈ Cδe−η

Γ̂0

∣∣∣ Γ̂0

}
⩽ δe−η, and therefore

P{θΓ̂ ̸∈ Cδe−η

Γ̂
} ⩽ eηe−ηδ + τ + ν = δ + τ + ν.

4.5.4 Proof of Proposition 4.3.1

Denote by Ms the set of all models of size at most s and fix any τ ∈ (0, 1). Let y′ ∼ Py be
an i.i.d. copy of y. Define the set of bad models to be

M∗ =

{
M ∈Ms : ∃ω∗ ∈ supp(Py) such that

P{M̂(ω∗) = M}
P{M̂(y′) = M}

⩾

∑s
k=1

(
d
k

)
τ

}
.

By definition, we see

P{M̂(y′) ∈M∗} ⩽
∑

M∈M∗

P{M̂(y′) = M} ⩽ τ,

which follows by taking a union bound over all
∑s

k=1

(
d
k

)
possible models. Consequently, for

any event O ⊆ Rn ×Ms such that {M : ∃ω s.t. (ω,M) ∈ O} ⊆M∗, we have

P{(y, M̂(y)) ∈ O} ⩽ P{M̂(y) ∈M∗} = P{M̂(y′) ∈M∗} ⩽ τ.

Now denote Oω = {M ∈ Ms : (ω,M) ∈ O}, and notice that {(y, M̂(y)) ∈ O} = {M̂(y) ∈
Oy}. Then, for all O ⊆ Rn ×Ms such that {M : ∃ω s.t. (ω,M) ∈ O} ∩M∗ = ∅, we know

P{(y, M̂(y)) ∈ O} = P{M̂(y) ∈ Oy} = E
[
P{M̂(y) ∈ Oy|y}

]
⩽

∑s
k=1

(
d
k

)
τ

E
[
P{M̂(y′) ∈ Oy|y}

]
=

∑s
k=1

(
d
k

)
τ

P{(y, M̂(y′)) ∈ O}.

Finally, take an arbitrary O ⊆ Rn ×Ms, and partition it as follows:

Obad = {(ω,M) ∈ O : M ∈M∗}, Ogood = {(ω,M) ∈ O : M ̸∈ M∗}.
Putting everything together, we have shown

P{(y, M̂(y)) ∈ O} = P{(y, M̂(y)) ∈ Obad}+ P{(y, M̂(y)) ∈ Ogood}

⩽ τ +

∑s
k=1

(
d
k

)
τ

P{(y, M̂(y′)) ∈ O}.

In other words, we can conclude that (y, M̂(y)) ≈η,τ (y, M̂(y′)), with η =

log

(∑s
k=1 (d

k)
τ

)
= O(s log(d/s)) + log(1/τ), as desired.

Applying the same steps as in Theorem 4.3.1 allows us to conclude that Cj·M̂(KM̂,δe−η) =(
θ̂j·M̂ ±KM̂,δe−η σ̂j·M̂

)
, where η = O(s log(d/s)) + log(1/τ), are valid confidence intervals at

level δ + τ .
A related argument is given in Theorem 6 of Dwork et al. [53].
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4.5.5 Proof of Proposition 4.3.2 (LASSO stability)

For the sake of readability, we denote the squared loss, rescaled by σ̂, by L(β;X, y) := 1
nσ̂
∥y−

Xβ∥22; hence, ∇L(β;X, y) = 2
nσ̂
X⊤(y − Xβ). Also, we denote by SC1 := C1 · {±ei}di=1 the

set of 2d extreme points of the ℓ1-ball in Rd, scaled by the LASSO constraint C1. Similarly,
we let S+

C1
:= C1 · {ei}di=1 denote half of the points in SC1 that correspond to the extreme

points with non-negative coordinates.
Let y ∼ N (µ, σ2I). Fix t ∈ [k] and β such that ∥β∥1 ⩽ C1. For all ϕ ∈ SC1 , we have

ϕ⊤(∇L(β;X, y)−∇L(β;X,µ)) = ϕ⊤
(

2

nσ̂
X⊤(y −Xβ)− 2

nσ̂
X⊤(µ−Xβ)

)
=

2

nσ̂
ϕ⊤X⊤(y − µ).

Notice that ∥Xϕ∥2 ⩽ C1∥X∥2,∞ = C1 maxi∈[d] ∥Xi∥2 for all ϕ ∈ SC1 . By a union bound,
we can write:

P

{
2

nσ̂
max
ϕ∈SC1

|ϕ⊤X⊤(y − µ)| ⩾ s

}
= P

{
2

nσ̂
max
ϕ∈S+

C1

|ϕ⊤X⊤(y − µ)| ⩾ s

}

⩽
∑

ϕ∈S+
C1

P

{
2

nσ̂
|ϕ⊤X⊤(y − µ)| ⩾ s

}
.

Since 2
nσ̂
ϕ⊤X⊤(y − µ) follows a rescaled t-distribution with r degrees of freedom and there

are d terms in the sum on the right-hand side, for s = s∗ :=
2tr,1−δ/(2d)C1∥X∥2,∞

n
, the probability

above is at most δ. Denote E = {ω : maxϕ∈SC1
| 2
nσ̂
ϕ⊤X⊤(ω− µ)| ⩽ s∗}; we have thus shown

P{y ∈ E} ⩾ 1− δ.
We now show that, whenever y ∈ E, stable LASSO with input y is indistinguishable from

stable LASSO with input µ. From here on, we fix y ∈ E and only consider the randomness
of the algorithm.

The output of Algorithm 5 can be written as a function of (β1, . . . , βk+1), and hence
proving that (β1, . . . , βk+1) is indistinguishable when computed on y and µ is sufficient to
argue that β̂LASSO is indistinguishable on the two inputs, by the post-processing property.

For all t ⩽ k, we can write βt+1 = gt(βt, y) for some randomized function gt; in Algorithm
10 we express gt as an algorithm. If we show gt(β, y) ≈η,0 gt(β, µ) for every fixed β such that
∥β∥1 ⩽ C1, then we can apply Lemma 4.5.1 to conclude indistinguishability of the whole
sequence (β1, . . . , βk+1).
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Algorithm 10 The gt subroutine of the stable LASSO algorithm

input: βt, y
output: βt+1

∀ϕ ∈ C1 · {±ei}di=1, sample ξt,ϕ
i.i.d.∼ Lap

(
4tr,1−δ/(2d)C1∥X∥2,∞

nη

)
∀ϕ ∈ C1 · {±ei}di=1, let αϕ = − 2

nσ̂
ϕ⊤X⊤(y −Xβt) + ξt,ϕ

Set ϕt = arg minϕ∈SC1
αϕ

Set βt+1 = (1−∆t)βt + ∆tϕt, where ∆t = 2
t+1

Return βt+1

Let ϕt and ϕµ
t denote the minimizers of αϕ when the input is y and µ, respectively, and

fix an arbitrary point ϕ∗ ∈ SC1 . Let {ξt,ϕ}ϕ∈SC1
be independent samples from Lap

(
2s∗

η

)
.

Denote

ξ∗ = arg max
ξ

∇L(β;X, y)⊤ϕ∗ + ξ ⩽ ∇L(β;X, y)⊤ϕ + ξt,ϕ,∀ϕ ∈ SC1 \ {ϕ∗}.

Conditional on ξt,ϕ, ϕ ∈ SC1 \ {ϕ∗}, we get ϕt = ϕ∗ if and only if ξt,ϕ∗ ⩽ ξ∗.
By the definition of E, we have:

(ϕ∗)⊤∇L(β;X,µ)− s∗ + ξ∗ ⩽ (ϕ∗)⊤∇L(β;X, y) + ξ∗

⩽ ϕ⊤∇L(β;X, y) + ξt,ϕ ⩽ ϕ⊤∇L(β;X,µ) + s∗ + ξt,ϕ,

for all ϕ ∈ SC1\{ϕ∗}. As a result, conditional on ξt,ϕ, ϕ ∈ SC1\{ϕ∗}, the event ξt,ϕ∗ ⩽ ξ∗−2s∗

implies ϕµ
t = ϕ∗. Thus, we get:

P{ϕµ
t = ϕ∗|ξt,ϕ, ϕ ∈ SC1 \ {ϕ∗}} ⩾ P{ξt,ϕ∗ ⩽ ξ∗ − 2s∗|ξt,ϕ, ϕ ∈ SC1 \ {ϕ∗}}

⩾ e−ηP{ξt,ϕ∗ ⩽ ξ∗|ξt,ϕ, ϕ ∈ SC1 \ {ϕ∗}}
= e−ηP{ϕt = ϕ∗|ξt,ϕ, ϕ ∈ SC1 \ {ϕ∗}}.

Applying an expectation to both sides yields

P{ϕt = ϕ∗} ⩽ eηP{ϕµ
t = ϕ∗},

and this is true for all ϕ∗ ∈ SC1 . Therefore, for all y ∈ E, ϕt ≈η,0 ϕµ
t . By post-processing,

this also implies gt(β, y) ≈η,0 gt(β, µ), for all β.
By Lemma 4.5.1, we finally conclude that, for all y ∈ E, the output of the stable LASSO

algorithm when applied to y is (1
2
kη2 +

√
2k log(1/δ)η, δ)-indistinguishable from the output

implied by the oracle input µ, for all δ ∈ (0, 1), or alternatively it is (kη, 0)-indistinguishable.
Since this holds with 1− δ probability over the choice of y, we see that Algorithm 5 is stable
with the desired parameters.
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4.5.6 Proof of Proposition 4.3.3 (LASSO utility)

As in the proof of Proposition 4.3.2, we denote the rescaled squared loss by L(β;X, y) :=
1
nσ̂
∥y − Xβ∥22, and by SC1 := C1 · {±ei}di=1 we denote the set of 2d extreme points of the

ℓ1-ball in Rd, scaled by the constraint C1.
We begin by stating a convergence result for the Frank-Wolfe algorithm due to Jaggi [89],

which forms the core of our analysis.

Lemma 4.5.2 ([89]). Fix s > 0 and β1 ∈ D ⊆ Rd. Let (ϕ1, . . . , ϕk) be a sequence of vectors
from D and let βt+1 = (1 − ∆t)βt + ∆tϕt, for arbitrary ∆t ∈ [0, 1]. Define the curvature
constant of L as

CL := sup
β1,β2∈D,γ∈[0,1],β3=(1−γ)β1+γβ2

2

γ2
(L(β3)− L(β1)− (β3 − β1)

⊤∇L(β1)).

Suppose that for all t ∈ [k], it holds that: ϕ⊤
t ∇L(βt) ⩽ minϕ∈C1·{±ei}di=1

ϕ⊤∇L(βt) + s∆tCL

2
.

Then,

L(βk+1)− min
β:∥β∥1⩽C1

L(β) ⩽
2CL

k + 2
(1 + s).

Denote by b :=
4tr,1−δ/(2d)C1∥X∥2,∞

nη
the parameter of the Laplace noise in Algorithm 5. Fix

s > 0. Denoting by CL the curvature constant of L, as defined in Lemma 4.5.2, and by
applying subexponential concentration of the Laplace distribution, we know:

P

{
∃t ∈ [k] : ϕ⊤

t ∇L(βt;X, y) > min
ϕ∈SC1

ϕ⊤∇L(βt;X, y) +
s∆tCL

2

}
⩽ P

{
∃t ∈ [k] : max

ϕ∈SC1

|ξt,ϕ| >
s∆tCL

4

}
⩽ P

{
max

t∈[k],ϕ∈SC1

|ξt,ϕ| >
s∆kCL

4

}
⩽ k|SC1| exp

(
−s∆kCL

4b

)
,

where the last step follows by a union bound. Setting s = 4b
∆kCL

log(k|SC1|/ζ) controls this
probability to be at most ζ.

We use a standard fact from convex geometry: for any set SD such that its convex hull is
equal to D, it holds that minϕ∈D ϕ⊤∇L(βt;X, y) = minϕ∈SD ϕ⊤∇L(βt;X, y). In our setting,
D = {β : ∥β∥1 ⩽ C1}, and it can be obtained as the convex hull of SC1 .

With this, we can apply Lemma 4.5.2, as well as the fact that |SC1| = 2d, to get that
with probability 1− ζ over the Laplace noise variables:

L(βk+1;X, y)− min
β:∥β∥1⩽C1

L(β;X, y) ⩽
2CL

k + 2
+

8CLb log(2kd/ζ)

(k + 2)∆kCL

.
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By the curvature characterization for quadratics due to Clarkson [39], we can bound the
curvature constant as

CL ⩽
1

nσ̂
max

β,β′:∥β∥1⩽C1,∥β′∥1⩽C1

∥X(β − β′)∥22 ⩽
1

nσ̂
max

φ:∥φ∥1⩽2C1

∥Xφ∥22 ⩽
4

σ̂
∥X∥2∞C2

1 .

Therefore, we can conclude

L(βk+1;X, y)− min
β:∥β∥1⩽C1

L(β;X, y) ⩽
8∥X∥2∞C2

1

σ̂(k + 2)
+ 4b log(2kd/ζ).

Further, notice that for all β, β′ such that max{∥β∥1, ∥β′∥1} ⩽ C1, by Hölder’s inequality we
have:

|L(β;X, y)− L(β′;X, y)| =
∣∣∣∣ 1

nσ̂
∥y −Xβ∥22 −

1

nσ̂
∥y −Xβ′∥22

∣∣∣∣
⩽

2

σ̂
∥X∥∞(∥X∥∞C1 + ∥y∥∞)∥β′ − β∥1 := L1∥β′ − β∥1 ⩽ 2L1C1,

where by L1 we denote the ℓ1-Lipschitz constant of the squared loss restricted to the LASSO
domain. Now we pick ζ = γ

2C1L1
for some constant γ > 0, which gives:

E[L(βk+1;X, y)|y, σ̂]− min
β:∥β∥1⩽C1

L(β;X, y) ⩽ γ +
8∥X∥2∞C2

1

σ̂(k + 2)
+ 4b log(4kdC1L1/γ)

= γ +
8∥X∥2∞C2

1

σ̂(k + 2)
+

16tr,1−δ/(2d)C1∥X∥2,∞ log(4kdC1L1/γ)

nη
,

where in the last step we use the noise level from Algorithm 5. Now we set k =
⌈
n∥X∥2∞C1η
σ̂∥X∥2,∞

⌉
,

and get the following utility upper bound:

E[L(βk+1;X, y)|y, σ̂]− min
β:∥β∥1⩽C1

L(β;X, y)

⩽ γ +
8C1∥X∥2,∞

nη
+

16tr,1−δ/(2d)C1∥X∥2,∞ log(4kdC1L1/γ)

nη
.

Note that the above inequality is true for all γ > 0. After optimizing over γ, the right-hand
side reduces to

8C1∥X∥2,∞
nη

+
16tr,1−δ/(2d)C1∥X∥2,∞

(
1 + log(kdL1nη/(4tr,1−δ/(2d)∥X∥2,∞))

)
nη

.

Using k ⩽ 2n∥X∥2∞C1η
σ̂∥X∥2,∞ and the value of L1, we finally get

E[L(βk+1;X, y)|y, σ̂]− min
β:∥β∥1⩽C1

L(β;X, y) ⩽
8C1∥X∥2,∞

nη
+

16tr,1−δ/(2d)C1∥X∥2,∞
nη

(
1 + log

(
dC1n

2η2∥X∥3∞(∥X∥∞C1 + ∥y∥∞)

2tr,1−δ/(2d)∥X∥22,∞σ̂2

))
.
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Focusing on the relevant parameters, this bound can be simplified as

1

n
E[∥y −Xβk+1∥22 | y]− min

β:∥β∥1⩽C1

1

n
∥y −Xβ∥22 = Õ

(
C1∥X∥2,∞ log(d)tr,1−δ/(2d)σ

nη

)
.

Note that similar guarantees follow without conditioning on y, by taking iterated expec-
tations, applying Jensen’s inequality, and using subgaussianity to bound E[∥y∥∞].

4.5.7 Proof of Proposition 4.3.4 (marginal screening stability)

Let y ∼ N (µ, σ2I) and define cωi := 1
nσ̂
X⊤

i ω for all ω ∈ Rn. Let E = {ω : ∥cω − cµ∥∞ ⩽
tr,1−δ/(2d)∥X∥2,∞

n
}. First we prove that P{y ∈ E} ⩾ 1− δ:

P

{
∥cy − cµ∥∞ ⩾

tr,1−δ/(2d)∥X∥2,∞
n

}
= P

{
∃i :

1

nσ̂
|X⊤

i y −X⊤
i µ| ⩾

tr,1−δ/(2d)∥X∥2,∞
n

}
= P

{
∃i :

∣∣∣∣X⊤
i (y − µ)

σ̂

∣∣∣∣ ⩾ tr,1−δ/(2d)∥X∥2,∞
}

⩽ d · δ
d

= δ.

Now we appeal to a similar composition argument as in Proposition 4.3.2. From here on,
fix y ∈ E. We will show that the output of stable marginal screening, when applied to y, is
indistinguishable from the output of stable marginal screening given the oracle input µ.

The selected model M̂ can be written as the output of a composition of k functions
gt(i1, . . . , it−1, y), t ∈ [k]. In particular, the feature “peeled off” at time t, it, is equal to
gt(i1, . . . , it−1, y). We show that gt(i1, . . . , it−1, y) ≈η,0 gt(i1, . . . , it−1, µ) holds true for all
fixed i1, . . . , it−1. By Lemma 4.5.1, that will imply that the overall selected model under
input y and under input µ is indistinguishable as well.

Fix a round t ∈ [k], as well as an index i ∈ rest. Suppose that we add independent draws

ξt,j ∼ Lap
(

2tr,1−δ/(2d)∥X∥2,∞
nη

)
to each value cj, where j ∈ rest. Define

ξ∗+ = arg min
ξ⩾−cyi

cyi + ξ > |cyj + ξt,j|, ξ∗− = arg max
ξ<−cyi

−cyi − ξ > |cyj + ξt,j|, ∀j ̸= i.

Then, gt(i1, . . . , it−1, y) = i if and only if ξt,i ⩾ ξ∗+ or ξt,i ⩽ ξ∗−. Moreover, since y ∈ E, we
have

tr,1−δ/(2d)∥X∥2,∞
n

+ cµi + ξ∗+ ⩾ cyi + ξ∗+ > |cyj + ξt,j| ⩾ |cµj + ξt,j| −
tr,1−δ/(2d)∥X∥2,∞

n
,

tr,1−δ/(2d)∥X∥2,∞
n

− cµi − ξ∗− ⩾ −cyi − ξ∗− > |cyj + ξt,j| ⩾ |cµj + ξt,j| −
tr,1−δ/(2d)∥X∥2,∞

n
.
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Rearranging the terms, we get

2tr,1−δ/(2d)∥X∥2,∞
n

+ cµi + ξ∗+ ⩾ |cµj + ξt,j|,
2tr,1−δ/(2d)∥X∥2,∞

n
− cµi − ξ∗− ⩾ |cµj + ξt,j|.

Thus, if ξt,i ⩾ ξ∗+ +
2tr,1−δ/(2d)∥X∥2,∞

n
or ξt,i ⩽ ξ∗− −

2tr,1−δ/(2d)∥X∥2,∞
n

, then i = gt(i1, . . . , it−1, µ)
if the noise levels are (ξt,1, . . . , ξt,i, . . . , ξt,d). Finally, for fixed y ∈ E, we have

P {gt(i1, . . . , it−1, µ) = i|{ξt,j}j ̸=i}

⩾ P

{
ξt,i ⩾ ξ∗+ +

2tr,1−δ/(2d)∥X∥2,∞
n

∣∣∣{ξt,j}j ̸=i

}
+ P

{
ξt,i ⩽ ξ∗− −

2tr,1−δ/(2d)∥X∥2,∞
n

∣∣∣{ξt,j}j ̸=i

}
⩾ e−ηP

{
ξt,i ⩾ ξ∗+|{ξt,j}j ̸=i

}
+ e−ηP

{
ξt,i ⩽ ξ∗−|{ξt,j}j ̸=i

}
= e−ηP {gt(i1, . . . , it−1, y) = i|{ξt,j}j ̸=i} .

Multiplying by eη and applying the law of iterated expectations completes the proof that
gt(i1, . . . , it−1, y) ≈η,0 gt(i1, . . . , it−1, µ) for all y ∈ E.

Finally, by Lemma 4.5.1 we conclude that for all fixed y ∈ E, the output of stable
marginal screening under input y and under the oracle input µ is (1

2
kη2 +

√
2k log(1/δ)η, δ)-

indistinguishable for all δ ∈ (0, 1), or alternatively (kη, 0)-indistinguishable. Since this holds
with 1 − δ probability over the choice of y, we see that stable marginal screening satisfies
stability with the desired parameters.

4.5.8 Proof of Proposition 4.3.5 (marginal screening utility)

Fix s > 0. Taking a union bound, we get:

P

{
max
j∈[k]
|cmj
| − |cij | ⩾ s

∣∣∣y} ⩽
k∑

j=1

P
{
|cmj
| − |cij | ⩾ s

∣∣∣y} .

At the time when ij is chosen, exactly j − 1 items have been selected; therefore, at least
one of m1, . . . ,mj has still not been selected. The event that |cmj

| − |cij | ⩾ s implies that ij
“beat” one of m1, . . . ,mj, which further implies that maxi∈[d] |ξj,i| ⩾ s

2
. By a union bound,

this happens with probability at most d exp(−snη/(4tr,1−δ/(2d)∥X∥2,∞)). Putting everything
together, we get

k∑
j=1

P
{
|cmj
| − |cij | ⩾ s

∣∣∣y} ⩽ kd exp

(
− snη

4tr,1−δ/(2d)∥X∥2,∞

)
.

Plugging in s =
4tr,1−δ/(2d) log(dk/δ

′)∥X∥2,∞
nη

completes the proof.
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4.5.9 Proof of Theorem 4.4.3

The proof essentially follows by applying Theorem 4.4.2. The bulk of the proof applies to
both the problem of inference on the winner and the file-drawer problem. Towards the end
we specialize the analysis to the individual problems.

We let
Aν(µ) = {y : ∥y − µ∥∞ ⩽ qν([m])} .

The validity of this set follows directly by the definition of qν([m]):

Pµ

{
max
i∈[m]
|yi − µi| ⩽ qν([m])

}
= P0

{
max
i∈[m]
|Zi| ⩽ qν([m])

}
⩾ 1− α.

Using the above choice of Aν(µ) we can write

Γν(µ) = ∪y:∥y−µ∥∞⩽qν([m])Γ̂(y),

and thus

Γ̂+
ν = ∪µ:∥y−µ∥∞⩽qν([m])Γν(µ)

= ∪µ:∥y−µ∥∞⩽qν([m]) ∪y′:∥y′−µ∥∞⩽qν([m]) Γ̂(y′)

= ∪y′:∥y′−y∥∞⩽2qν([m])Γ̂(y′).

In words, the set Γ̂+
ν is the set of all selections obtained by perturbing the entries in y by

at most 2qν([m]) in ℓ∞-norm.
Now we specialize the analysis to the two selection problems.
In the problem of inference on the winner, the selected inferential target is indexed by

Γ̂(y) = {γ̂(y)}. The most favorable perturbation y′ for an index j ∈ [m] to be selected
is obtained by taking y′j = yj + 2qν([m]) and y′k = yk − 2qν([m]) for k ̸= j; therefore,

Γ̂+
ν = {γ ∈ [m] : yγ ⩾ yγ̂ − 4qν([m])} is the set of plausible selections.

In the file-drawer problem, the selected targets are Γ̂(y) = {γ ∈ [m] : yγ ⩾ T}. The

indices that could fall in this set given a 2qν([m]) perturbation around y are Γ̂+
ν = {γ ∈ [m] :

yγ ⩾ T − 2qν([m])}.
Therefore, in both cases we have identified Γ̂+

ν . The final statement follows by applying
Theorem 4.4.2.

4.5.10 Proof of Theorem 4.4.4

By following virtually the same argument as in Theorem 4.4.3, we can conclude that Γ̂+
ν is

the set of all plausible selections, for both the problem of inference on the winner and the
file-drawer problem. The final statement follows by applying Theorem 4.4.1, together with
a Bonferroni correction over Γ̂+

ν .
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4.5.11 Proof of Corollary 4.4.1

We argue that V̂+
ν is the set of plausible targets Γ̂+

ν when the acceptance region is chosen as

Aν(µ) =
{
y : ∥X⊤y −X⊤µ∥∞ ⩽ qν({Xj}dj=1)

}
.

After this is established, the result follows directly from Theorem 4.4.1.
First, the validity of Aν(µ) follows by the definition of qν :

Pµ

{
∥X⊤y −X⊤µ∥∞ > qν({Xj}dj=1)

}
= P0

{
max
j∈[d]
|X⊤

j Z| > qν({Xj}dj=1)

}
⩽ ν,

where Z ∼ P0. Therefore, Pµ{y ∈ Aν(µ)} ⩾ 1− ν.
We can write

Γν(µ) = ∪y:∥X⊤y−X⊤µ∥∞⩽qν({Xj}dj=1)
Γ̂(y),

and thus

Γ̂+
ν = ∪µ:∥X⊤y−X⊤µ∥∞⩽qν({Xj}dj=1)

Γν(µ)

= ∪µ:∥X⊤y−X⊤µ∥∞⩽qν({Xj}dj=1)
∪y′:∥X⊤y′−X⊤µ∥∞⩽qν({Xj}dj=1)

Γ̂(y′)

= ∪y′:∥X⊤y−X⊤y′∥∞⩽2qν({Xj}dj=1)
Γ̂(y′).

Since Γ̂(y) =
{

(j, M̂(y)) : j ∈ M̂(y)
}

, we finally have

Γ̂+
ν = ∪y′:∥X⊤y−X⊤y′∥∞⩽2qν({Xj}dj=1)

{
(j, M̂(y′)) : j ∈ M̂(y′)

}
=
{

(j,M) : j ∈M,M ∈ M̂+
ν

}
.

Therefore, by Theorem 4.4.1 it suffices to take a simultaneous correction over Γ̂+
ν . The set

V̂+ is the set of contrasts that ensures simultaneously valid inference for {θj·M}M∈M̂+
ν

(see,
e.g., Theorem 4.1 in [12]).

4.5.12 Proof of Lemma 4.4.2

First, we argue that the condition |X⊤
j (y−XMβ(M,s)(y))| < λ−sν(1+∥X⊤

j XM(X⊤
MXM)−1∥1)

is equivalent to
max
y′∈B∞

ν

|X⊤
j (y′ −XMβ(M,s)(y

′))| < λ.

This follows because

max
y′∈B∞

ν

|X⊤
j (y′ −XMβ(M,s)(y

′))|

= max
y′∈B∞

ν

∣∣X⊤
j (y −XMβ(M,s)(y)) + X⊤

j

(
y′ − y −XMβ(M,s)(y

′) + XMβ(M,s)(y)
)∣∣

= max
y′∈B∞

ν

∣∣X⊤
j (y −XMβ(M,s)(y)) + X⊤

j

(
I −XM(X⊤

MXM)−1X⊤
M

)
(y′ − y)

∣∣ .
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Now notice that by the definition of B∞
ν we have

max
y′∈B∞

ν

X⊤
j (I −XM(X⊤

MXM)−1X⊤
M)(y′ − y) = max

|zj |⩽sν ,∥zM∥∞⩽sν
zj −X⊤

j XM(X⊤
MXM)−1zM

= sν + sν∥X⊤
j XM(X⊤

MXM)−1∥1,

which follows by the duality between the ℓ1- and ℓ∞-norms. Similarly we have

min
y′∈B∞

ν

X⊤
j (I −XM(X⊤

MXM)−1X⊤
M)(y′ − y) = −sν − sν∥X⊤

j XM(X⊤
MXM)−1∥1.

Thus, we see that

max
y′∈B∞

ν

∣∣X⊤
j (y −XMβ(M,s)(y)) + X⊤

j (I −XM(X⊤
MXM)−1X⊤

M)(y′ − y)
∣∣

=
∣∣X⊤

j (y −XMβ(M,s)(y))
∣∣+ sν

(
1 + ∥X⊤

j XM(X⊤
MXM)−1∥1

)
Putting everything together, we have shown that

max
y′∈B∞

ν

|X⊤
j (y′ −XMβ(M,s)(y

′))| =
∣∣X⊤

j (y −XMβ(M,s)(y))
∣∣+ sν

(
1 + ∥X⊤

j XM(X⊤
MXM)−1∥1

)
.

Therefore, the screening rule in Lemma 4.4.2 is equivalent to

max
y′∈B∞

ν

∣∣X⊤
j (y′ −XMβ(M,s)(y

′))
∣∣ < λ. (4.11)

We argue that the condition in Eq. (4.11) implies that there cannot exist a pair (M ′, s′) ∈
B(M, s) such that M ′ = M ∪ {j}. Indeed, if this were true, then there must exist a point
y′ ∈ B∞

ν on the boundary between the two corresponding polyhedra. Given the polyhedral
characterization of Lee et al. [106], this point must satisfy

X⊤
j (I −XM(X⊤

MXM)−1X⊤
M)y′ = λ(1−X⊤

j (X⊤
M)+s).

By rearranging, we see that this equality is equivalent to

X⊤
j

(
y′ −XM(X⊤

MXM)−1(X⊤
My′ − λs)

)
= λ. (4.12)

The left-hand side is equal to X⊤
j (y′ − XMβ(M,s)(y

′)); therefore, condition (4.12) contra-
dicts condition (4.11), and thus we can conclude that M ∪ {j} cannot be the model of any
neighboring model-sign pair (M ′, s′) ∈ B(M, s).

4.5.13 Proof of Lemma 4.4.3

The proof proceeds similarly to the proof of Lemma 4.4.2. Fix j ∈M . First, we argue that
the condition |βj·(M,s)(y)| > sν∥e⊤j·(M,s)(X

⊤
MXM)−1∥1 is equivalent to

min
y′∈B∞

ν

|βj·(M,s)(y
′)| > 0. (4.13)
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This follows by writing

min
y′∈B∞

ν

|βj·(M,s)(y
′)| = min

y′∈B∞
ν

|βj·(M,s)(y) + βj·(M,s)(y
′)− βj·(M,s)(y)|

= min
y′∈B∞

ν

|βj·(M,s)(y) + e⊤j·(M,s)(X
⊤
MXM)−1X⊤

M(y′ − y)|.

By the definition of B∞
ν , we can write

max
y′∈B∞

ν

e⊤j·(M,s)(X
⊤
MXM)−1X⊤

M(y′ − y) = max
∥zM∥∞⩽sν

e⊤j·(M,s)(X
⊤
MXM)−1zM = sν∥e⊤j·(M,s)(X

⊤
MXM)−1∥1,

and similarly miny′∈B∞
ν
e⊤j·(M,s)(X

⊤
MXM)−1X⊤

M(y′ − y) = −sν∥e⊤j·(M,s)(X
⊤
MXM)−1∥1. Putting

everything together, we see that miny′∈B∞
ν
|βj·(M,s)(y

′)| > 0 implies sν∥e⊤j·(M,s)(X
⊤
MXM)−1∥1 <

|βj·(M,s)(y)|, and vice versa.
Now we argue that condition (4.13) implies that variable j cannot exit the model in any

of the neighboring polyhedra within B∞
ν . If it can, then the Lee et al. [106] characterization

implies that there exists a point y′ ∈ B∞
ν on the boundary between the respective polyhedra

such that e⊤j·(M,s)(X
⊤
MXM)−1y′ = λe⊤j·(M,s)(X

⊤
MXM)−1s. By rearranging, we can rewrite this

equality as e⊤j·(M,s)βj·(M,s)(y
′) = 0, which contradicts condition (4.13).



181

Chapter 5

Prediction-Powered Inference

Machine-learning algorithms are increasingly employed as black-box systems that supply pre-
dictions to augment or supplant costly experimental measurements. Such machine-learning
systems, generally trained on experimental data, can be used to generate predictions for
large numbers of entities that were not studied experimentally. For example, predictions
of three-dimensional structure can be made for the entire catalog of known proteins via
AlphaFold [92]. Such predictions hold out the promise of increasing the pace and scope of
scientific inquiry, particularly in domains where large numbers of entities need to be screened,
such as in assessment of molecular activity, tumor prognoses, or micro-climatic modeling.
Moreover, there is a cumulative effect—chains of predictions can feed further predictions.
As prediction-based scientific inquiry becomes increasingly common, an urgent agenda item
is to assess its support in terms of basic principles of statistical inference.

In this chapter we ask whether it is possible to get the best of both worlds—to exploit
predictions from a machine-learning system while still providing guarantees of statistical
validity. We study this question in a general setting with n data points accompanied by
gold-standard labels and N unlabeled data points whose labels are predicted by a machine-
learning model. We assume that N is much larger than n. We take the prediction model
as pre-existing, as in cases like AlphaFold, where a model was trained offline perhaps at
great expense and with massive amounts of data. We consider a scientist who wishes to use
predictions from the model to perform inference. The scientist’s goal is not to replace the
experimental data with predictions, but rather to leverage the immense number of predictions
to improve their confidence in a scientific conclusion.

We present prediction-powered inference, a framework that provides an affirmative answer
to the question of whether predictions can improve inferential quality without sacrificing
rigorous validity guarantees. Rather than using predictions as raw data, prediction-powered
inference uses the small gold-standard data set of paired features and labels to estimate
a mathematical object that we refer to as the rectifier. The rectifier makes it possible to
transform parameter estimates based on predictions into a statistically valid confidence set.

The material in this chapter is based on a work co-authored with Anastasios Angelopou-
los, Stephen Bates, Clara Fannjiang, and Michael I. Jordan [3].
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5.1 General principle

We now overview prediction-powered inference. The goal is to estimate a quantity θ∗, such as
the mean or median value of a random outcome. Towards this goal, we have access to a small
gold-standard data set of paired features and outcomes, (X, Y ) =

(
(X1, Y1), . . . , (Xn, Yn)

)
,

as well as the features from a large unlabeled data set, (X̃, Ỹ ) =
(
(X̃1, Ỹ1), . . . , (X̃N , ỸN)

)
,

where we do not observe the true outcomes Ỹ1, . . . , ỸN . We care about the case where
N ≫ n. For both data sets, we have predictions of the outcome made by a machine-learning
algorithm f , denoted f(X) = (f(X1), . . . , f(Xn)) and f(X̃) = (f(X̃1), . . . , f(X̃N)).

Prediction-powered inference builds confidence intervals that are guaranteed to contain
θ∗. Imagine we have an estimator θ̂ of θ∗. One feasible but naive way to estimate θ∗, which
we call the imputation approach, is to treat the predictions as gold-standard outcomes and
compute θ̃f = θ̂(X̃, f(X̃)). If the predictions are accurate, meaning f(X̃i) ≈ Ỹi, then θ̃f is
close to θ∗. However, θ̃f will generally be biased due to errors in the predictions. Instead,
our key idea is to use the gold-standard data set to quantify how the prediction errors affect
the imputed estimate, and then construct a confidence set for θ∗ by adjusting for this effect.

More systematically, the first step is to introduce a problem-specific measure of prediction
error called the rectifier, denoted as ∆f . The rectifier captures how errors in the predictions
lead to bias in θ̃f . Intuitively, ∆f recovers θ∗ by “rectifying” θ̃f . The appropriate rectifier
depends on the estimand of interest θ∗, and we show how to derive it for a broad class
of estimands. Next, we use the gold-standard data to construct a confidence set for the
rectifier, R. Finally, we form a confidence set for θ∗ by taking θ̃f and rectifying it with each
possible value in the set R. The collection of these rectified values is the prediction-powered
confidence set, CPP, which is guaranteed to contain θ∗ with high probability.

Prediction-powered inference leads to powerful and provably valid confidence intervals
and p-values for a broad class of statistical problems, enabling researchers to reliably incor-
porate machine learning into their analyses. We provide practical algorithms for construct-
ing prediction-powered confidence intervals for means, quantiles, modes, linear and logistic
regression coefficients, as well as other inferential targets. For conciseness, our technical
statements and algorithms will focus on constructing confidence intervals; however, note
that through the duality between confidence intervals and hypothesis tests, our intervals
directly imply valid prediction-powered p-values and hypothesis tests as well.

5.1.1 Further preliminaries

We use (X, Y ) ∈ (X × Y)n to denote the labeled data set, where X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn). We use the terms “labeled” and “gold-standard” interchangeably. We

use analogous notation for the unlabeled data set, (X̃, Ỹ ) ∈ (X ×Y)N , where the outcomes

Ỹ are not observed. For now we assume that (X, Y ) and (X̃, Ỹ ) are independently and
identically distributed samples from a common distribution, P. We generalize our results to
settings with distribution shift later on. By θ∗ we denote the estimand of interest, which
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Prediction-Powered Inference

1. Define rectifier

Define the rectifier,
∆f , a measure of
prediction error.

2. Rectifier confidence
set

With labeled data, create
R, a confidence set for the

rectifier.

3. Prediction-powered
confidence set

Construct confidence set, CPP, by
rectifying θ̃f with each value in the

set R.

will typically be an underlying property of P, such as the mean outcome.
Next, we have a prediction rule, f : X → Y , that is independent of the observed data.

For example, it may have been trained on other data independent from both the labeled
and the unlabeled data. We let fi = f(Xi) denote the predictions for the labeled data and

f̃i = f(X̃i) denote the predictions for the unlabeled data. Slightly abusing notation, we let

f = (f1, . . . , fn) and f̃ = (f̃1, . . . , f̃N). We will treat X, Y, X̃, Ỹ , f, f̃ as vectors and matrices
where appropriate.

Our key conceptual innovation is the rectifier ∆f—a measure of the prediction rule’s
accuracy. We formally define the rectifier in Section 5.2. We use ∆̂f to denote an estimate
of the rectifier based on labeled data, which we call the empirical rectifier.

5.1.2 Warmup: Mean estimation

Before presenting our main results, we use the example of mean estimation to build intuition.
Our goal is to give a valid confidence interval for the average outcome, θ∗ = E[Y1]. The
classical estimate of θ∗ is the sample average of the outcomes on the labeled data set, θ̂class =
1
n

∑n
i=1 Yi. We construct a prediction-powered estimate, θ̂PP, and show that it leads to tighter
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confidence intervals than θ̂class if the prediction rule is accurate. Consider

θ̂PP =
1

N

N∑
i=1

f̃i︸ ︷︷ ︸
θ̃f

− 1

n

n∑
i=1

(fi − Yi)︸ ︷︷ ︸
∆̂f

. (5.1)

The key idea is that if the predictions are accurate, we have ∆̂f ≈ 0 and θ̂PP ≈ 1
N

∑N
i=1 Ỹi,

which has a much lower variance than θ̂class since N ≫ n.
Notice θ̂PP is unbiased for θ∗ and it is a sum of two independent terms. Thus, we can

construct 95% confidence intervals for θ∗ as

θ̂PP ± 1.96

√
σ̂2
f−Y

n
+

σ̂2
f̃

N︸ ︷︷ ︸
prediction-powered interval

or θ̂class ± 1.96

√
σ̂2
Y

n︸ ︷︷ ︸
classical interval

, (5.2)

where σ̂2
Y , σ̂2

f−Y , and σ̂2
f̃

are the estimated variances of the Yi, fi − Yi, and f̃i, respectively.

The prediction-powered confidence interval is better than the classical interval when the
model is good. Because N ≫ n, the width of the prediction-powered interval is primarily
determined by the term σ̂2

f−Y . Furthermore, when the model has small errors, we have
σ̂2
f−Y ≪ σ̂2

Y . Thus, the width of the prediction-powered interval will be smaller than the
width of the classical interval. This estimator is known in the literature as the difference
estimator, closely related to generalized regression estimators [29]. This variance reduction
is why prediction-powered confidence intervals are smaller than their classical counterparts
in a broad range of settings beyond mean estimation.

5.2 Main theory: Convex estimation

Our main contribution is a technique for inference on estimands that can be expressed as the
solution to a convex optimization problem. In addition to means, this includes medians, other
quantiles, linear and logistic regression coefficients, and many other quantities. Formally, we
consider estimands of the form

θ∗ = arg min
θ∈Rp

E [ℓθ(X1, Y1)] , (5.3)

for a loss function ℓθ : X × Y → R that is convex in θ ∈ Rp, for some p ∈ N. Throughout,
we take the existence of θ∗ as given. If the minimizer is not unique, our method will return
a confidence set guaranteed to contain all minimizers. Under mild conditions, convexity
ensures that θ∗ can also be expressed as the value solving

E [gθ∗(X1, Y1)] = 0, (5.4)

where gθ : X×Y → Rp is a subgradient of ℓθ with respect to θ. We will call convex estimation
problems where θ∗ satisfies (5.4) nondegenerate, and we will later discuss mild conditions
that ensure this regularity.
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Defining the rectifier. Following the outline in Section 5.1, the first step in prediction-
powered inference is to define a rectifier. As in the mean estimation case, the rectifier
captures a notion of prediction error. In the general setting of convex estimation problems,
the relevant notion of error is the bias of the subgradient gθ computed using the predictions:

∆f (θ) = E [gθ(X1, Y1)− gθ(X1, f1)] . (5.5)

Rectifier confidence set. The second step is to create a confidence set for the rectifier,
Rδ(θ), satisfying

P
(
∆f (θ) ∈ Rδ(θ)

)
⩾ 1− δ. (5.6)

Because the rectifier is an expectation for each θ, Rδ(θ) can be constructed using standard,
off-the-shelf confidence intervals for the mean.

Prediction-powered confidence set. The final step is to form a confidence set for θ∗.
We do so by combining Rδ(θ) with a term that accounts for finite-sample fluctuations due
to having N samples. In particular, for every θ, we want a confidence set Tα−δ(θ) for
E[gθ(X1, f1)], satisfying

P (E[gθ(X1, f1)] ∈ Tα−δ(θ)) ⩾ 1− (α− δ).

Again, since E[gθ(X1, f1)] is a mean, constructing Tα−δ(θ) is easy and can be done with
off-the-shelf tools.

We put all the steps together in Theorem 5.2.1.

Theorem 5.2.1 (Convex estimation). Suppose that the convex estimation problem is non-
degenerate as in (5.4). Fix α ∈ (0, 1) and δ ∈ (0, α). Suppose that, for any θ ∈ Rp, we can
construct Rδ(θ) and Tα−δ(θ) satisfying

P
(
∆f (θ) ∈ Rδ(θ)

)
⩾ 1− δ; P (E[gθ(X1, f1)] ∈ Tα−δ(θ)) ⩾ 1− (α− δ).

Let CPPα = {θ : 0 ∈ Rδ(θ) + Tα−δ(θ)}, where + denotes the Minkowski sum.1 Then,

P (θ∗ ∈ CPPα ) ⩾ 1− α. (5.7)

This result means that we can construct a valid confidence set for θ∗, without assump-
tions about the data distribution or the machine-learning model, for any nondegenerate
convex estimation problem. We also present an asymptotic counterpart of Theorem 5.2.1 in
Section 5.6.2.

Most practical problems are nondegenerate (5.4). For example, if the loss is differentiable
for all θ ∈ Rp, then the problem is immediately nondegenerate. Furthermore, if the data
distribution does not have point masses and, for every θ, ℓθ(x, y) is nondifferentiable only
for a measure-zero set of (x, y) pairs, then the problem is again nondegenerate.

1The Minkowski sum of two sets A and B is equal to {a+ b : a ∈ A, b ∈ B}.
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We have focused on convex estimation problems, since this is a broad class of estimands
addressed by prediction-powered inference. Nonetheless, we highlight that the general prin-
ciples for prediction-powered inference from Section 5.1 are applicable more broadly, and
lead to additional results and algorithms for other estimands and some forms of distribution
shift; see Section 5.4 for such extensions.

5.2.1 Algorithms

In this section we present prediction-powered algorithms for several canonical inference prob-
lems. The algorithms rely on confidence intervals derived from the central limit theorem.
We implicitly assume the standard, mild regularity conditions required for the asymptotic
validity of such intervals. In the algorithms we use z1−δ to denote the 1− δ quantile of the
standard normal distribution, for δ ∈ (0, 1).

Mean estimation. We begin by returning to the problem of mean estimation:

θ∗ = E[Y1]. (5.8)

The mean can alternatively be expressed as the solution to a convex optimization problem
by writing it as the minimizer of the average squared loss:

θ∗ = arg min
θ∈R

E[ℓθ(Y1)] = arg min
θ∈R

E
[

1

2
(Y1 − θ)2

]
.

The squared loss ℓθ(y) is differentiable, with gradient equal to gθ(y) = θ − y. Applying this
in the definition of the rectifier (5.5), we get ∆f (θ) ≡ ∆f = E[f1 − Y1]. Note that this
rectifier has no dependence on θ. We provide an explicit algorithm for prediction-powered
mean estimation and its guarantee in Algorithm 11 and Proposition 5.2.1, respectively.

Proposition 5.2.1 (Mean estimation). Let θ∗ be the mean outcome (5.8). Then,
the prediction-powered confidence interval in Algorithm 11 has valid coverage:
lim infn,N→∞ P

(
θ∗ ∈ CPPα

)
⩾ 1− α.

Quantile estimation. We now turn to quantile estimation. For a pre-specified level q ∈
(0, 1), we wish to estimate the q-quantile of the outcome distribution:

θ∗ = min {θ : P (Y1 ⩽ θ) ⩾ q} . (5.9)

To simplify the exposition, we assume that the distribution of Y1 does not have point masses;
this ensures that the problem is nondegenerate (5.4), though it is possible to generalize
beyond this setting with a standard construction. It is well known [101] that the q-quantile
can be expressed in variational form as

θ∗ = arg min
θ∈R

E [ℓθ(Y1)] = arg min
θ∈R

E [q(Y1 − θ)1 {Y1 > θ}+ (1− q)(θ − Y1)1 {Y1 ⩽ θ}] ,
(5.10)
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where ℓθ is called the quantile loss (or “pinball” loss). The quantile loss has subgradient
gθ(y) = −q1 {y > θ}+ (1− q)1 {y ⩽ θ} = −q +1 {y ⩽ θ}. Plugging the expression for gθ(y)
into the definition (5.5), we get the relevant rectifier: ∆f (θ) = P (Y1 ⩽ θ) − P (f1 ⩽ θ) =
E [1 {Y1 ⩽ θ} − 1 {f1 ⩽ θ}]. In Algorithm 12 we state an algorithm for prediction-powered
quantile estimation; see Proposition 5.2.2 for a statement of validity.

Proposition 5.2.2 (Quantile estimation). Let θ∗ be the q-quantile (5.9).
Then, the prediction-powered confidence set in Algorithm 12 has valid coverage:
lim infn,N→∞ P

(
θ∗ ∈ CPPα

)
⩾ 1− α.

Logistic regression. In logistic regression, the target of inference is defined by

θ∗ = arg min
θ∈Rd

E[ℓθ(X1, Y1)] = arg min
θ∈Rd

E
[
−Y1θ

⊤X1 + log(1 + exp(θ⊤X1))
]
, (5.11)

where Y1 ∈ {0, 1}. The logistic loss is differentiable and hence the optimality condition (5.4)
is ensured. Its gradient is equal to gθ(x, y) = −xy+xµθ(x), where µθ(x) = 1/(1+exp(−x⊤θ))
is the predicted mean for point x ∈ X based on parameter vector θ. Other generalized linear
models (GLMs) have the same gradient form, and thus also optimality condition (5.4), but
for a different mean predictor µθ(x) (see Chapter 3 of Efron [58]). For example, Poisson
regression uses µθ(x) = exp(x⊤θ). In view of our general solution for convex estimation, the
rectifier is constant for all θ and equal to ∆f (θ) ≡∆f = E [X1(f1 − Y1)]. In Algorithm 13 we
state a method for prediction-powered logistic regression and in Proposition 5.2.3 we provide
its guarantee. We use Xi,j to denote the j-th coordinate of point Xi. Poisson regression is
handled in essentially the same way: concretely, in Algorithm 13 we simply change the choice
of µθ(x) defined in line 5.

Proposition 5.2.3 (Logistic regression). Let θ∗ be the logistic regression solution
(5.11). Then, the prediction-powered confidence set in Algorithm 13 has valid coverage:
lim infn,N→∞ P

(
θ∗ ∈ CPPα

)
⩾ 1− α.

Linear regression. Finally, we consider inference for linear regression:

θ∗ = arg min
θ∈Rd

E[ℓθ(X1, Y1)] = arg min
θ∈Rd

E[(Y1 −X⊤
1 θ)2]. (5.12)

While it is possible to obtain an algorithm for linear regression based on Theorem 5.2.1, one
can derive a more powerful solution by using the fact that the natural estimator for problem
(5.12) is linear in Y . We exploit these further properties in Algorithm 14 and Proposition
5.2.4, where we state a method for prediction-powered linear regression and establish its
validity, respectively.

Proposition 5.2.4 (Linear regression). Let θ∗ be the linear regression solution (5.12) and
fix j∗ ∈ [d]. Then, the prediction-powered confidence interval in Algorithm 14 has valid
coverage: lim infn,N→∞ P

(
θ∗j∗ ∈ CPPα

)
⩾ 1− α.
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Algorithm 11 Prediction-powered mean estimation

Require: labeled data (X, Y ), unlabeled features X̃, predictor f , error level α ∈ (0, 1)
1: θ̂PP ← θ̃f − ∆̂f := 1

N

∑N
i=1 f̃i − 1

n

∑n
i=1(fi − Yi)

2: σ̂2
f̃
← 1

N

∑N
i=1(f̃i − θ̃f )2

3: σ̂2
f−Y ← 1

n

∑n
i=1(fi − Yi − ∆̂f )2

4: wα ← z1−α/2

√
σ̂2
f−Y

n
+

σ̂2
f̃

N

5: Output: prediction-powered confidence set CPPα =
(
θ̂PP ± wα

)

Algorithm 12 Prediction-powered quantile estimation

Require: labeled data (X, Y ), unlabeled features X̃, predictor f , quantile q ∈ (0, 1), error
level α ∈ (0, 1)

1: Construct fine grid Θgrid between mini∈[N ] f̃i and maxi∈[N ] f̃i
2: for θ ∈ Θgrid do

3: ∆̂f (θ)← 1
n

∑n
i=1(1 {Yi ⩽ θ} − 1 {fi ⩽ θ})

4: F̂ (θ)← 1
N

∑N
i=1 1

{
f̃i ⩽ θ

}
5: σ̂2

∆(θ)← 1
n

∑n
i=1

(
1 {Yi ⩽ θ} − 1 {fi ⩽ θ} − ∆̂f (θ)

)2
6: σ̂2

f̃
(θ)← 1

N

∑N
i=1

(
1
{
f̃i ⩽ θ

}
− F̂ (θ)

)2
7: wα(θ)← z1−α/2

√
σ̂2
∆(θ)

n
+

σ̂2
f̃
(θ)

N

8: end for
9: Output: prediction-powered confidence set CPPα =

{
θ : |F̂ (θ) + ∆̂f (θ)− q| ⩽ wα(θ)

}

Algorithm 13 Prediction-powered logistic regression

Require: labeled data (X, Y ), unlabeled features X̃, predictor f , error level α ∈ (0, 1)
1: Construct fine grid Θgrid ⊂ Rd of possible coefficients

2: ∆̂f
j ← 1

n

∑n
i=1Xi,j(fi − Yi), j ∈ [d]

3: σ̂2
∆,j ← 1

n

∑n
i=1

(
Xi,j(fi − Yi)− ∆̂f

j

)2
, j ∈ [d]

4: for θ ∈ Θgrid do

5: ĝfj (θ)← 1
N

∑N
i=1 X̃i,j

(
µθ(X̃i)− f̃i

)
, j ∈ [d], where µθ(x) = 1

1+exp(−x⊤θ)

6: σ̂2
g,j(θ)← 1

N

∑N
i=1

(
X̃i,j(µθ(X̃i)− f̃i)− ĝfj (θ)

)2
, j ∈ [d]

7: wα,j(θ)← z1−α/(2d)

√
σ̂2
∆,j

n
+

σ̂2
g,j(θ)

N
, j ∈ [d]

8: end for
9: Output: prediction-powered confidence set CPPα = {θ : |ĝfj (θ) + ∆̂f

j | ⩽ wα,j(θ),∀j ∈ [d]}
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Algorithm 14 Prediction-powered linear regression

Require: labeled data (X, Y ), unlabeled features X̃, predictor f , coefficient j∗ ∈ [d], error
level α ∈ (0, 1)

1: θ̂PP ← θ̃f − ∆̂f := X̃†f̃ −X†(f − Y )

2: Σ̃← 1
N
X̃⊤X̃, M̃ ← 1

N

∑N
i=1(f̃i − X̃⊤

i θ̃
f )2X̃iX̃

⊤
i

3: Ṽ ← Σ̃−1M̃Σ̃−1

4: Σ← 1
n
X⊤X, M ← 1

n

∑n
i=1(fi − Yi −X⊤

i ∆̂
f )2XiX

⊤
i

5: V ← Σ−1MΣ−1

6: wα ← z1−α/2

√
Vj∗j∗

n
+

Ṽj∗j∗

N

7: Output: prediction-powered confidence set CPPα =
(
θ̂PPj∗ ± wα

)

5.3 Applications

In this section we demonstrate prediction-powered inference on real tasks. In each of the
following applications, we compute the prediction-powered confidence interval for an esti-
mand of interest and compare it to two alternatives: the classical interval, which uses only
the gold-standard data (X, Y ), and the imputed interval, which uses only the imputed data

(X̃, f̃) by treating it as gold-standard data. In all cases, we show that the imputed interval,
which does not account for the prediction errors, does not contain the true value of the
estimand. For the two intervals that are guaranteed to be valid—prediction-powered and
classical—we compare their widths as a function of n, the amount of labeled data used.

5.3.1 Auditing electronic voting

We studied audits of electronic voting in an election with two candidates. Specifically,
we aimed to construct a confidence interval for the proportion of people voting for each
candidate using a small number of hand-counted ballots and a large number of ballots read
with an optical scanner. On Election Day in the United States, most voters use electronic
or optical-scan ballots [46], neither of which are perfectly accurate. Our data were taken
from a special election in San Francisco for the Assembly District 17 seat on April 19, 2022.
The candidates were David Campos and Matt Haney. We constructed a prediction-powered
confidence interval using an optical ballot labeling system and a small number of ballots
which we labeled ourselves. This is an example of a risk-limiting audit—a statistically valid
way to check the results of an election by inspecting subsets of ballots [see, e.g., 112].

Formally, we have N = 78150 images of paper ballots, X̃i ∈ X , i ∈ [N ], taken using an

optical ballot scanner. Each ballot has an associated ground-truth binary vote, Ỹi ∈ {0, 1},
i ∈ [N ], where a “1” indicates a vote for Matt Haney and a “0” indicates a vote for David

Campos. The target of inference is the fraction of votes for Matt Haney, θ∗ = E[Ỹ1]. To
compute the intervals, we hand-annotated n = 1024 randomly sampled ballots and imputed
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Figure 5.1: Examples of ballots correctly and incorrectly classified. The raw ballot is black
and white, the voter’s marking is automatically identified by a computer vision algorithm
with a green annotation, and markings below the red line annotation will be considered votes
for Matt Haney (and vice versa). The instructional portion of the ballots was cropped out.

250 500 750 1000
n

0.05
0.10
0.15

wi
dt

h

0.60 0.65
fraction of votes for Matt Haney

 prediction-powered
 classical
 imputed
reported election result

Figure 5.2: Election results produced by prediction-powered inference and the classical
and imputed baselines at level 95%. Left: width of intervals as a function of n. Right:
confidence intervals with n = 1024.

labels using a computer vision algorithm f : X → {0, 1}, representing an optical-ballot
scanner. The accuracy of f is 99%, and it is biased towards Matt Haney due to printing
errors in the ballots; see Figure 5.1 for examples. We used Algorithm 11 to construct the
prediction-powered confidence interval, and binomial confidence intervals for the imputed
and classical baselines. The prediction-powered interval has roughly 1/4 the width of its
classical counterpart, and the interval based on imputation is invalid—it does not cover the
ground truth. See Figure 5.2.

5.3.2 Relating protein structure and post-translational
modifications

We demonstrate how prediction-powered confidence intervals for the mean can be used to
construct confidence intervals for more elaborate estimands, such as the odds ratio, which is
commonly used to quantify associations between binary random variables.

The goal in this section is to characterize the structural context of post-translational
modifications (PTMs), which are biochemical modifications of specific positions of a protein
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Figure 5.3: AlphaFold-based prediction of disorder. Left: predicted disorder for one
example protein (UniProt S5FZ81), colored by predicted probability of disorder per position.
Middle: ROC curve of disorder prediction based on AlphaFold structure. Right: confidence
interval for the odds ratio between disorder and phosphorylation (type of PTM) produced by
prediction-powered inference and the classical and imputed baselines, when n = 571. Unlike
the classical interval, the prediction-powered interval excludes the value of one and thus the
direction of the association is unambiguous.

sequence that play important regulatory roles. One question of interest is whether PTMs
occur more frequently in particular contexts within a protein’s three-dimensional structure,
such as intrinsically disordered regions (IDRs), segments of a protein that do not abide in
a fixed three-dimensional structure. Recently, Bludau et al. [16] studied this relationship
on an unprecedented proteome-wide scale by using AlphaFold-predicted structures [92] to
predict IDRs, in contrast to previous work which considered far fewer experimentally derived
structures.

We will refer to a position of a protein sequence being/not being in an IDR as “dis-
ordered”/“ordered,” and having/not having a PTM as “modified”/“unmodified.” Let
Yi ∈ {1, 0} denote the gold-standard label of whether or not a position is disordered, and
let Zi ∈ {1, 0} denote whether or not a position is modified. Following Bludau et al. [16],
we obtain a prediction for Yi, denoted fi ∈ {1, 0}, based on the protein structure predicted
by AlphaFold. To quantify the association between PTMs and IDRs, the authors computed
the odds ratio between fi and Zi on a data set of hundreds of thousands of protein sequence
positions. Though some of the data points also contained a gold-standard label, Yi, Bludau
et al. [16] did not use these labels in their analyses to avoid dealing with conflicts between
labels and predictions. Here, we show how to use both labels and predictions to give con-
fidence intervals for the odds ratio that are valid, in contrast to intervals based only on fi,
and smaller than intervals obtained only using Yi.
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Figure 5.4: Odds ratio for three different PTMs, phosphorylation (top row), ubiqui-
tination (middle row), and acetylation (bottom row). Left: widths of prediction-powered
and classical confidence intervals for µ1 (solid line) and µ0 (dashed line). Middle: widths of
prediction-powered and classical confidence intervals for the odds ratio. Right: distribution
of interval widths for the odds ratio when n = 365.

The odds ratio between Yi and Zi can be written as a function of two means:

θ∗ =
µ1/(1− µ1)

µ0/(1− µ0)
, (5.13)

where µ1 = P (Y = 1 | Z = 1) and µ0 = P (Y = 1 | Z = 0). We therefore proceed
by constructing 1 − α/2 prediction-powered confidence intervals for µ0 and µ1, denoted
CPP0 = [l0, u0] and CPP1 = [l1, u1], respectively. We then propagate CPP0 and CPP1 through the
odds-ratio formula (5.13) to get the following confidence interval:

CPP =

{
c1

1− c1
· 1− c0

c0
: c0 ∈ CPP0 , c1 ∈ CPP1

}
=

(
l1

1− l1
· 1− u0

u0

,
u1

1− u1

· 1− l0
l0

)
. (5.14)

By a union bound, CPP contains θ∗ with probability at least 1− α. We set α = 0.1.
We have 10803 data points from [16], from which we simulated labeled and unlabeled

data sets as follows. For each of 1000 trials, we randomly sampled n points to serve as
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the labeled data set and used the remaining N = 10803 − n points as the unlabeled data
set, where we do not observe the labels. For all values of n and all three different types
of PTMs that we examined, the prediction-powered confidence intervals are smaller than
classical intervals; see Figure 5.4. Often, the classical intervals are large enough that they
contain the odds ratio value of one, as demonstrated in Figure 5.3, which means the direction
of the association cannot be determined from the confidence interval. On the other hand,
the imputed confidence interval is far too small and significantly overestimates the true odds
ratio; see Figure 5.3.

5.3.3 Relationship between age, sex, and income

We next used census data to investigate the quantitative effects of age and sex on income by
constructing confidence intervals for the linear regression coefficients relating age (1-99) and
sex (M/F) to income. As can be seen in Figure 5.5, which plots the distribution of income
across sex and different age ranges, income generally increases with age, and men earn more
than women in every age category.

0-20 20-30 30-40 40-50 50+
0

100000

200000

in
co

m
e 

($
) male

female

Figure 5.5: Distribution of income stratified by age and sex in the census year 2019.

Concretely, we used the Folktables interface [48] to download census data from California
in the year 2018 (377575 people), including yearly income ($), and ten covariates including
age and sex. On this data, we trained an XGBoost model [36] to predict yearly income from
the covariates. Then, in the year 2019 (N = 378817 people), we observed all the covari-
ates but only a small number n = 100 of yearly incomes. Using the model, we imputed
the remaining yearly incomes from the covariates, and then regressed age and sex to the
imputed yearly incomes using ordinary least squares. We then formed a prediction-powered
confidence interval for the regression parameters using Algorithm 14. The classical and im-
puted baselines used standard least-squares confidence intervals. See Figure 5.6 for results.
Note that income is difficult to predict, as evidenced by the width of the boxplots in Fig-
ure 5.5, so the prediction-powered interval provides only a moderate improvement over the
classical interval. Critically, however, it yields this improvement without succumbing to the
overconfidence exhibited by the imputed interval.
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Figure 5.6: Confidence intervals at the 95% level are smaller using prediction-powered
inference. Top: confidence intervals with n = 100. Middle: density of interval width with
n = 100. Bottom: average width as a function of n.

5.3.4 Relationship between income and private health insurance

Again using census data, we studied the effect of income on the procurement of private
health insurance. In particular, we fit a logistic regression relating an individual’s income to
the probability they have private health insurance. Generally, the higher a person’s income,
the more likely they are to have private health insurance.

The setup is essentially the same as in Section 5.3.3: we used the Folktables interface
to download California census data on income, a binary indicator of private health insur-
ance, and other predictive covariates. We used XGBoost to impute the predictions, and
Algorithm 13 to construct the intervals; see Figure 5.7 for results.

5.3.5 Distribution of gene expression levels

In this section, we demonstrate the construction of prediction-powered confidence intervals
on quantiles for studying the effects of regulatory DNA on gene expression. In particular,
we aim to characterize the distribution of gene expression levels induced by a population
of promoters—regulatory DNA sequences that control how frequently a gene is transcribed.
Recently, Vaishnav et al. [166] trained a state-of-the-art transformer model on tens of millions
of random promoter sequences with the goal of predicting the expression level of a partic-
ular gene induced by a promoter sequence (see Figure 5.8). They then used the model’s
predictions to study the effects of promoters—for example, by assessing how quantiles of
predicted expression levels differ between different populations of promoters, and verifying
those observations by experimentally measuring the expression levels of the promoters of
interest.
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Figure 5.7: Confidence intervals for the logistic regression coefficient relating income
and private health insurance coverage at the 95% level. Left: distribution of interval widths
with n = 200. Middle: mean width as a function of n. Right: intervals with n = 200.

Let Xi be an 80-base-pair promoter sequence for a particular gene, and let Yi ∈ [0, 20]
denote a measurement of the expression level it causes for the gene. Furthermore, let fi ∈
[0, 20] denote the corresponding expression level predicted by the transformer model in [166].
We focus on estimating the 0.25-, 0.5-, and 0.75-quantiles of expression levels induced by
native yeast promoters—promoter sequences that are naturally found in the genomes of S.
cerevisiae.

We have 61150 labeled native yeast promoter sequences from [166], from which we sim-
ulated labeled and unlabeled data sets as follows. For each of 1000 trials, we randomly

Figure 5.8: Predicting gene expression levels from a promoter sequence [166]. Left:
each data point consists of a promoter sequence, Xi, and an expression level, Yi. Middle:
predictive performance of the transformer model on the native yeast promoters used in our
experiments (RMSE 2.18, Pearson 0.963, Spearman 0.946). Right: confidence intervals for
the median native yeast promoter expression level with n = 75 and α = 0.1.
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sampled n points to serve as the labeled data set and used the remaining N = 61150 − n
points as the unlabeled data set. We then used Algorithm 12 to construct prediction-powered
intervals with α = 0.1. The prediction-powered confidence intervals for all three quantiles
are much smaller than the classical intervals for all values of n; see Figure 5.9.

Figure 5.9: Widths of confidence intervals around the median using the trans-
former model of expression level developed by Vaishnav et al. [166]. Left: average width
of prediction-powered and classical confidence intervals for the 0.25-quantile (dashed lines),
0.5-quantile (solid lines), and 0.75-quantile (dotted lines). Right: distribution of confidence
interval widths for the median using n = 75.

5.3.6 Counting plankton

We counted the number of plankton observed by the Imaging FlowCytobot [131, 132], an
automated, submersible flow cytometry system, at Woods Hole Oceanographic Institution in
the year 2014. We also had access to data from previous years, which we treated as labeled,
and the 2014 data were fully imputed. The resulting confidence interval does not assume
that the 2014 data are identically distributed to the data from previous years; we explicitly
adjust for the fact that the probability of observing a plankton may change using the label
shift technique from Section 5.4.2.

More formally, our inputs X̃i are images taken by the flow cytometry system and the labels
Ỹi are one of {detritus, plankton}, where detritus represents unspecified organic matter; see
Figure 5.10 for examples. We are interested in the number of plankton in the year 2014. For
the machine-learning algorithm, we fine-tune an ImageNet pretrained ResNet-152 [77] on
labeled data from the years 2006-2012 (2812527 data points). The labeled data set consists
of n = 421238 image–label pairs from 2013 that the model was not trained on. Finally, we
received N = 329832 unlabeled images X̃i from the new year that has undergone a label
shift. Given these three ingredients, we used the technique in Section 5.4.2 to construct
the prediction-powered confidence interval on the frequency of observed plankton, while
accounting for the distribution shift. We then propagated the confidence interval into a
count. See Figure 5.11 for results. Note that assuming the data is i.i.d. and applying
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Figure 5.10: Examples of plankton and detritus, respectively.
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Figure 5.11: Confidence intervals on the number of plankton observed in 2014 at the
95% level. Left: mean width as a function of n. Right: confidence intervals with n = 421238.

Algorithm 11 for mean estimation results in biased inferences, as does the imputed baseline
using a classical binomial confidence interval.

5.4 Extensions

We demonstrate that the framework of prediction-powered inference is applicable beyond
the setting of i.i.d. convex estimation studied in Section 5.2. First, we provide a strategy for
prediction-powered inference when θ∗ can be expressed as the optimum of any optimization
problem, not necessarily a convex one. Then, we discuss prediction-powered inference under
certain forms of distribution shift.

5.4.1 Beyond convex estimation

The tools developed in Section 5.2 were tailored to unconstrained convex optimization prob-
lems. In general, however, inferential targets can be defined in terms of nonconvex losses
or they may have (possibly even nonconvex) constraints. For such general optimization
problems, we cannot expect the condition (5.4) to hold. In this section we generalize our
approach to a broad class of risk minimizers:

θ∗ = arg min
θ∈Θ

E[ℓθ(X1, Y1)], (5.15)
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where ℓθ : X × Y → R is a possibly nonconvex loss function and Θ is an arbitrary set of
admissible parameters. As before, if θ∗ is not a unique minimizer, our method will return a
set that contains all minimizers.

The problem (5.15) subsumes all previously studied settings. Indeed, when the loss ℓθ
is convex and subdifferentiable and Θ = Rp for some p—which is the case for all problems
previously studied—θ∗ can be equivalently characterized via the condition (5.4). In this
section we provide a solution that can handle problems of the form (5.15) in full generality.
We note, however, that the solution does not reduce to the one in Section 5.2 for convex
estimation problems, and we expect the method from Section 5.2 to be more powerful for
convex estimation problems with low-dimensional rectifiers.

To correct the imputation approach, we rely on the following rectifier:

∆f (θ) = E [ℓθ(X1, Y1)− ℓθ(X1, f1)] . (5.16)

Notice that the rectifier (5.16) is always one-dimensional, while the rectifier (5.5) was p-
dimensional.

One key difference relative to the approach of Section 5.2 is that we have an additional
step of data splitting. We need the additional step because, unlike in convex estimation where
we know E[gθ∗(X1, Y1)] = 0, for general problems we do not know the value of E[ℓθ∗(X1, Y1)].
To circumvent this issue, we estimate E[ℓθ∗(X1, Y1)] by approximating θ∗ with an imputed
estimate on the first N/2 unlabeled data points (for simplicity, take N to be even). To state
the main result, we define

θ̃f = arg min
θ∈Θ

2

N

N/2∑
i=1

ℓθ(X̃i, f̃i), L̃f (θ) :=
2

N

N∑
i=N/2+1

ℓθ(X̃i, f̃i).

Theorem 5.4.1 (General risk minimization). Fix α ∈ (0, 1) and δ ∈ (0, α). Suppose that,

for any θ ∈ Θ, we can construct
(
Rl

δ/2(θ),Ru
δ/2(θ)

)
and

(
T l

α−δ
2

(θ), T u
α−δ
2

(θ)
)
such that

P
(
∆f (θ) ⩽ Ru

δ/2(θ)
)
⩾ 1− δ/2; P

(
∆f (θ) ⩾ Rl

δ/2(θ)
)
⩾ 1− δ/2;

P
(
L̃f (θ)− E[ℓθ(X1, f1)] ⩽ T u

α−δ
2

(θ)
)
⩾ 1− α− δ

2
;

P
(
L̃f (θ)− E[ℓθ(X1, f1)] ⩾ T l

α−δ
2

(θ)
)
⩾ 1− α− δ

2
.

Let

CPPα =
{
θ ∈ Θ : L̃f (θ) ⩽ L̃f (θ̃f )−Rl

δ/2(θ) +Ru
δ/2(θ̃

f ) + T u
α−δ
2

(θ)− T l
α−δ
2

(θ̃f )
}
.

Then, we have
P
(
θ∗ ∈ CPPα

)
⩾ 1− α.

For example, if the loss ℓθ(x, y) takes values in [0, B] for all x, y, then we can set Tα−δ(θ) =

B
√

log(1/(α−δ))
N

. The validity of this choice follows by Hoeffding’s inequality.
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Mode estimation. A commonplace inference task that does not fall under convex es-
timation is the problem of estimating the mode of the outcome distribution. When the
outcome takes values in a discrete set Θ, this can be done by using the loss function
ℓθ(y) = 1 {y ̸= θ} , θ ∈ Θ. A generalization of this approach to continuous outcome dis-
tributions is obtained by defining the loss ℓθ(y) = 1 {|y − θ| > η}, for some width parameter
η > 0. The target of inference is thus the point θ ∈ R that has the most probability mass in
its η-neighborhood, θ∗ = arg minθ∈R P (|Y1 − θ| > η). Theorem 5.4.1 applies directly in both
the discrete and continuous cases.

Tukey’s biweight robust mean. The Tukey biweight loss function is a commonly used
loss in robust statistics that results in an outlier-robust mean estimate. It behaves approxi-
mately like a quadratic near the origin and is constant far away from the origin. Formally,
Tukey’s biweight loss function is given by

ℓθ(y) =

 c2

6

(
1−

(
1− (y−θ)2

c2

)3)
, |y − θ| ⩽ c,

c2

6
, otherwise,

where c is a user-specified tuning parameter. It is not hard to see that the function ℓθ(y) is
nonconvex and hence not amenable to the analysis in Section 5.2; however, Theorem 5.4.1
applies.

Model selection. Nonconvex risk minimization problems are ubiquitous in model selec-
tion. For example, a common model selection strategy is best subset selection, which opti-
mizes the squared loss, ℓθ(x, y) = (y−x⊤θ)2, subject to the constraint Θ = {θ ∈ Rd : ∥θ∥0 ⩽
k}. Here, Θ is the space of all k-sparse vectors for a user-chosen parameter k. Even though
the loss function is convex, Θ is a nonconvex constraint set and hence we cannot rely on the
condition (5.4) to find the minimizer. However, Theorem 5.4.1 still applies.

5.4.2 Inference under distribution shift

In Section 5.2 we focused on forming prediction-powered confidence intervals when the la-
beled and unlabeled data come from the same distribution. Herein, we extend our tools to
the case where the labeled data (X, Y ) comes from P and the unlabeled data (X̃, Ỹ )—which
defines the target of inference θ∗—comes from Q, and these are related by either a label
shift or a covariate shift. For covariate shift, we handle all estimation problems previously
studied; for label shift, we handle certain types of linear problems.

We will write EQ,EP, etc to indicate which distribution the data inside the expectation
is sampled from.
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Covariate shift

First, we assume that Q is a known covariate shift of P. That is, if we denote by Q =
QX ·QY |X and P = PX ·PY |X the relevant marginal and conditional distributions, we assume
that QY |X = PY |X . As in previous sections, we consider estimands of the form

θ∗ = arg min
θ∈Θ

E
Q

[ℓθ(X1, Y1)]. (5.17)

Estimands of the form (5.17) can be related to risk minimizers on P using the Radon-
Nikodym derivative. In particular, suppose that QX is dominated by PX and assume that
the Radon-Nikodym derivative w(x) = QX

PX
(x) is known. Then, we can rewrite (5.17) as

θ∗ = arg min
θ∈Θ

E
P
[ℓwθ (X1, Y1)],

where ℓwθ (x, y) = w(x)ℓθ(x, y). In words, risk minimizers on Q can simply be written as risk
minimizers on P, but with a reweighted loss function. This permits inference on the rectifier
to be based on data sampled from P as before. For concreteness, we explain the approach
in detail for convex risk minimizers. Let

∆f,w(θ) = E
P

[gwθ (X1, Y1)− gwθ (X1, f1)] , (5.18)

where gwθ (x, y) = gθ(x, y) · w(x) and gθ is a subgradient of ℓθ as before. A confidence set for
the above rectifier suffices for prediction-powered inference on θ∗.

Corollary 5.4.1 (Covariate shift). Suppose that the problem (5.17) is a nondegenerate con-
vex estimation problem. Fix α ∈ (0, 1) and δ ∈ (0, α). Suppose that, for any θ ∈ Rp, we can
construct Rδ(θ) and Tα−δ(θ) satisfying

P
(
∆f,w(θ) ∈ Rδ(θ)

)
⩾ 1− δ; P (E[gwθ (X1, f1)] ∈ Tα−δ(θ)) ⩾ 1− (α− δ).

Let CPPα = {θ : 0 ∈ Rδ(θ) + Tα−δ(θ)}, where + denotes the Minkowski sum. Then,

P (θ∗ ∈ CPPα ) ⩾ 1− α. (5.19)

The same reweighting principle can be used to handle nonconvex risk minimizers as in
Section 5.4.1.

Label shift

Next, we analyze classification problems where the proportions of the classes in the labeled
data is different from those in the unlabeled data. This problem has been studied before in
the literature on domain adaptation, e.g. by Lipton et al. [113], but our treatment focuses
on the formation of confidence intervals. Formally, let Y = {1, ..., K} be the label space and
assume that QX|Y = PX|Y . We consider estimands of the form

θ∗ = E
QY

[ν(Y )],
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where ν : Y → R is a fixed function. For example, choosing ν(y) = 1 {y = k} for some
k ∈ [K] asks for inference on the proportion of instances that belong to class k.

Using an analogous decomposition to the one for mean estimation, we can write

θ∗ = E
Qf

[ν(f)] + ( E
QY

[ν(Y )]− E
Qf

[ν(f)]) = θf + ∆f ,

where Qf denotes the distribution of f(X), X ∼ QX . The quantity θf can be estimated
using the unlabeled data from Q and the model. Estimating the quantity ∆f using samples
from P will require leveraging the structure of the distribution shift. Central to our analysis
will be the confusion matrix

Kj,l = Q
(
f(X) = j

∣∣∣ Y = l
)
, j, l ∈ [K]. (5.20)

The label-shift assumption implies that Kj,l = P (f(X) = j | Y = l), which can be estimated
from labeled data sampled from P. In particular, we estimate K from the labeled data as

K̂j,l =
1

n(l)

n∑
i=1

1 {fi = j, Yi = l} , where n(l) =
n∑

i=1

1 {Yi = l} . (5.21)

Similarly, we can estimate Qf (k), k ∈ [K] as

Q̂f (k) =
1

N

N∑
i=1

1
{
f̃i = k

}
.

Treating Qf and QY as vectors, notice that we can write Qf = KQY , and hence QY = K−1Qf .

This leads to a natural estimate of QY , Q̂Y = K̂−1Q̂f . Below, we use these quantities to
construct a prediction-powered confidence interval for θ∗ = EQY

[ν(Y )].

Theorem 5.4.2 (Label shift). Fix α ∈ (0, 1) and δ ∈ (0, α). Let

CPPα =

(
Ê
QY

[ν(Y )]±
(

max
l,k∈[K]

max
p∈Cl,k

|K̂l,k − p|+
√

1

2N
log

2

α− δ

))
,

where

Cl,k =

{
p : n(k)K̂l,k ∈

[
F−1
Binom(n(k),p)

(
δ

2K2

)
, F−1

Binom(n(k),p)

(
1− δ

2K2

)]}
and FBinom(n(k),p) denotes the Binomial CDF. Then,

P (θ∗ ∈ CPPα ) ⩾ 1− α.

Naturally, the confidence interval becomes more conservative as the number of classes grows.
Also, the power of the bound depends on the smallest number of instances observed for a
particular class.
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5.5 Related work

Our technical results generalize tools from the model-assisted survey sampling literature [e.g.,
148], which provides methods to improve inference from surveys in the presence of auxiliary
information. In particular, the mean estimator in Section 5.1.2 is the difference estimator,
closely related to generalized regression estimators [29]. It has long been recognized that
model predictions can be leveraged as auxiliary data [186], and much work has gone into
producing asymptotically valid confidence intervals when the predictive model is fit on the
same data that is used for inference—see [18] for a recent overview. Our work is also
related to the statistical literature on missing data and multiple imputation [e.g., 114]. In
particular, Robins et al. [146], Robins and Rotnitzky [145], Chen and Breslow [33], Yu and
Nan [187] study regression with missing data. Likewise, our setting is related to measurement
error [e.g., 28], particularly to Chen et al. [37], who study the estimation of parameters defined
as solutions to many estimating equations, as we will in this work.

Recently, a body of work on estimation with many labeled data points and few unlabeled
data points has been developed [4, 35, 136, 176], focusing on efficiency in semiparametric or
high-dimensional regimes. In particular, Chakrabortty and Cai [30] study efficient estimation
of linear regression parameters, Chakrabortty et al. [31] study efficient quantile estimation,
Zhang and Bradic [188] study mean estimation in a high-dimensional setting, and Hou et
al. [83] study an imputation approach to improving generalized linear models. Our work
continues in this vein but focuses on the setting where we have access to a good predictive
model fit on separate data. This allows us to tackle a much wider range of estimands (e.g.,
minimizers of any convex objective) and give finite-sample inferences without assumptions
about the machine-learning model. Secondly, we go beyond random sampling and consider
certain forms of distribution shift in this work.

More distantly, our setting, in which we have access to some labeled data alongside un-
labeled data, also appears in semisupervised learning [e.g., 190, 191]—that literature studies
the question of how to improve prediction accuracy with unlabeled data. We also refer the
reader to the related literature about surrogates in causal inference [e.g., 94]. Thematically,
our work is most similar to the work of Wang et al. [175], who also introduce a method to
correct machine-learning predictions for the purpose of subsequent inference. However, our
work provides confidence intervals that are provably valid under minimal assumptions about
the data-generating distribution, whereas Wang et al. require certain parametric assumptions
about the relationship between the prediction model and the true response.
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5.6 Deferred proofs

5.6.1 Proof of Theorem 5.2.1

We show that θ∗ ∈ CPPα with probability at least 1 − α; that is, with probability at least
1− α it holds that

0 ∈ Rδ(θ
∗) + Tα−δ(θ

∗).

Consider the event E = {∆f (θ∗) ∈ Rδ(θ
∗)}∩{E[gθ∗(X1, f1)] ∈ Tα−δ(θ

∗)}. By a union bound,
P (E) ⩾ 1− α. On the event E, we have that

E[gθ∗(X1, Y1)] = E[gθ∗(X1, Y1)]− E[gθ∗(X1, f1)] + E[gθ∗(X1, f1)] (5.22)

= ∆f (θ∗) + E[gθ∗(X1, f1)] ∈ Rδ(θ
∗) + Tα−δ(θ

∗). (5.23)

The theorem finally follows by invoking the nondegeneracy condition, which ensures
E[gθ∗(X1, Y1)] = 0, so we have shown 0 ∈ Rδ(θ

∗) + Tα−δ(θ
∗).

5.6.2 Asymptotic counterpart of Theorem 5.2.1

The following is an asymptotic counterpart of Theorem 5.2.1 that uses the central limit
theorem in the confidence set construction. We note the error budget splitting used in
Theorem 5.2.1 is in fact not necessary, but we believe that it facilitates exposition when
presenting nonasymptotic guarantees. The asymptotic result below is stated without the
splitting of the error budget.

Theorem 5.6.1 (Convex estimation: asymptotic version). Suppose that the convex esti-
mation problem is nondegenerate as in (5.4) and that n

N
→ p, for some p ∈ (0, 1). Fix

α ∈ (0, 1). For all θ ∈ Rp, define

∆̂f (θ) =
1

n

n∑
i=1

(gθ(Xi, Yi)− gθ(Xi, fi)) ; ĝf (θ) =
1

N

N∑
i=1

gθ(X̃i, f̃i).

Further, denoting by gθ,j(x, y) the j-th coordinate of gθ(x, y), let

σ̂2
∆,j(θ) =

1

n

n∑
i=1

(
gθ,j(Xi, Yi)− gθ,j(Xi, fi)− ∆̂f

j (θ)
)2

; σ̂2
g,j(θ) =

1

N

N∑
i=1

(
gθ,j(X̃i, f̃i)− ĝfj (θ)

)2
,

for all j ∈ [p]. Let wα,j(θ) = z1−α/(2p)

√
σ̂2
∆,j(θ)

n
+

σ̂2
g,j(θ)

N
and

CPPα =
{
θ : |∆̂f

j (θ) + ĝfj (θ)| ⩽ wα,j(θ), ∀j ∈ [p]
}
.

Then,
lim inf
n,N→∞

P (θ∗ ∈ CPPα ) ⩾ 1− α. (5.24)
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Proof. We show that θ∗ ̸∈ CPPα with probability at most α in the limit; that is,

lim sup
n,N→∞

P

∣∣∣∆̂f
j (θ∗) + ĝfj (θ∗)

∣∣∣ > z1−α/(2p)

√
σ̂2
∆,j(θ

∗)

n
+

σ̂2
g,j(θ

∗)

N
, ∀j ∈ [p]

 ⩽ α.

For each j ∈ [p], the central limit theorem implies that
√
n(∆̂f

j (θ∗)− E[∆̂f
j (θ∗)])⇒ N (0, σ2

∆,j(θ
∗));

√
N(ĝfj (θ∗)− E[ĝfj (θ∗)])⇒ N (0, σ2

g,j(θ
∗)),

where σ2
∆,j(θ

∗) is the variance of gθ∗,j(X1, Y1) − gθ∗,j(X1, f1) and σ2
g,j(θ

∗) is the variance of
gθ∗,j(X1, f1). Therefore, by Slutsky’s theorem, we get

√
N(∆̂f

j (θ∗) + ĝfj (θ∗)− E[∆̂f
j (θ∗) + ĝfj (θ∗)])

=
√
n(∆̂f

j (θ∗)− E[∆̂f
j (θ∗)])

√
N

n
+
√
N(ĝfj (θ∗)− E[ĝfj (θ∗)])

⇒ N
(

0,
1

p
σ2
∆,j(θ

∗) + σ2
g,j(θ

∗)

)
.

This in turn implies

lim sup
n,N→∞

P

(∣∣∣∆̂f
j (θ∗) + ĝfj (θ∗)− E

[
∆̂f

j (θ∗) + ĝfj (θ∗)
]∣∣∣ > z1−α/(2p)

σ̂j√
N

)
⩽

α

p
, (5.25)

where σ̂2
j is a consistent estimate of the variance 1

p
σ2
∆,j(θ

∗) + σ2
g,j(θ

∗). We take σ̂2
j =

σ̂2
∆,j(θ

∗)N
n

+ σ̂2
g,j(θ

∗); this estimate is consistent since the two terms are individually con-
sistent estimates of the respective variances. Now notice that

E
[
∆̂f (θ∗) + ĝf (θ∗)

]
= E

[
gθ∗(X1, Y1)− gθ∗(X1, f1) + gθ∗(X̃1, f̃1)

]
= E[gθ∗(X1, Y1)] = 0,

(5.26)
where the last step follows by the nondegeneracy condition. Putting together (5.25), (5.26),
and the choice of σ̂j derived above, and applying a union bound, we get

lim sup
n,N→∞

P

∃j ∈ [p] :
∣∣∣∆̂f

j (θ∗) + ĝfj (θ∗)
∣∣∣ > z1−α/(2p)

√
σ̂2
∆,j(θ

∗)

n
+

σ̂2
g,j(θ

∗)

N


⩽

p∑
j=1

lim sup
n,N→∞

P

∣∣∣∆̂f
j (θ∗) + ĝfj (θ∗)

∣∣∣ > z1−α/(2p)

√
σ̂2
∆,j(θ

∗)

n
+

σ̂2
g,j(θ

∗)

N


=

p∑
j=1

lim sup
n,N→∞

P
(∣∣∣∆̂f

j (θ∗) + ĝfj (θ∗)− E
[
∆̂f

j (θ∗) + ĝfj (θ∗)
]∣∣∣ > z1−α/(2p)σ̂j

)
⩽

p∑
j=1

α

p

= α.
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5.6.3 Proof of Proposition 5.2.1

We show that the prediction-powered confidence set constructed in Algorithm 11 is a special
case of the prediction-powered confidence set constructed in Theorem 5.6.1. The proof then
follows directly by the guarantee of Theorem 5.6.1.

Since gθ(y) = θ − y, we have

∆̂f (θ) ≡ ∆̂f =
1

n

n∑
i=1

(fi − Yi); ĝf (θ) = θ − 1

N

N∑
i=1

f̃i.

Therefore, the set CPPα from Theorem 5.6.1 can be written as

CPPα =

{
θ :

∣∣∣∣∣θ − 1

N

N∑
i=1

f̃i +
1

n

n∑
i=1

(fi − Yi)

∣∣∣∣∣ ⩽ wα(θ)

}
=

(
1

N

N∑
i=1

f̃i −
1

n

n∑
i=1

(fi − Yi)± wα(θ)

)
.

This is exactly the set constructed in Algorithm 11, which completes the proof.

5.6.4 Proof of Proposition 5.2.2

Like in the proof of Proposition 5.2.1, we proceed by showing that the prediction-powered
confidence set constructed in Algorithm 12 is a special case of the prediction-powered confi-
dence set constructed in Theorem 5.6.1. Then, we simply invoke Theorem 5.6.1.

Since gθ(y) = −q + 1 {y ⩽ θ}, we have

∆̂f (θ) =
1

n

n∑
i=1

(1 {Yi ⩽ θ} − 1 {fi ⩽ θ}) ; ĝf (θ) = −q + F̂ (θ),

where F̂ (θ) = 1
N

∑N
i=1 1

{
f̃i ⩽ θ

}
. Therefore, the set CPPα from Theorem 5.6.1 can be written

as

CPPα =

{
θ :

∣∣∣∣∣ 1n
n∑

i=1

(1 {Yi ⩽ θ} − 1 {fi ⩽ θ})− q + F̂ (θ)

∣∣∣∣∣ ⩽ wα(θ)

}
=
{
θ :
∣∣∣F̂ (θ) + ∆̂f (θ)− q

∣∣∣ ⩽ wα(θ)
}
.

This is exactly the set constructed in Algorithm 12. Therefore, the guarantee of Proposition
5.2.2 follows by the guarantee of Theorem 5.6.1.
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5.6.5 Proof of Proposition 5.2.3

The proof follows a similar pattern as the previous two propositions, by arguing that the
prediction-powered confidence set constructed in Algorithm 13 is a special case of the
prediction-powered confidence set constructed in Theorem 5.6.1.

Since gθ(x, y) = x(µθ(x)− y), we have

∆̂f (θ) ≡ ∆̂f =
1

n

n∑
i=1

Xi(fi − Yi); ĝf (θ) =
1

N

N∑
i=1

X̃i(µθ(X̃i)− f̃i).

These quantities are explicitly computed in Algorithm 13. Moreover, the set CPPα constructed
in Algorithm 13 exactly follows the recipe of Theorem 5.6.1, so the proof immediately follows.

5.6.6 Proof of Proposition 5.2.4

For linear regression, we can derive more powerful prediction-powered confidence intervals
than those implied by Theorem 5.2.1 by exploiting the linearity of the least-squares estimator.

Recall that Theorem 5.6.1 assumes that n
N
→ p, for some fraction p ∈ (0, 1).

Theorem 3 of White [180] implies that

√
n(∆̂f −∆f )⇒ N (0,W );

√
N(θ̃f − θf )⇒ N (0,W ′),

for appropriately defined coviariance matrices W and W ′, where θf = (E[X1X
⊤
1 ])−1 E[X1f1]

and ∆f = (E[X1X
⊤
1 ])−1 E[X1(f1 − Y1)]. With this, we can write the target estimand as

θ∗ = (E[X1X
⊤
1 ])−1 E[X1Y1] = θf −∆f .

Combining Theorem 3 of White with Slutsky’s theorem, we get

√
N(θ̂PP − θ∗) =

√
N(θ̃f − θf )−√n(∆̂f −∆f )

√
N

n
⇒ N

(
0,W

1

p
+ W ′

)
.

White also shows that V and Ṽ , as defined in Algorithm 14, are consistent estimates of W
and W ′, respectively. Therefore, θ̂PP is asymptotically normal and consistent, and we have
a consistent estimate of its covariance. In particular,

Vj∗j∗
N

n
+ Ṽj∗j∗ → Wj∗j∗

1

p
+ W ′

j∗j∗ .

This means that we can construct asymptotically valid confidence intervals via a normal

approximation by choosing width z1−α/2

√
Vj∗j∗

N
n

+ Ṽj∗j∗

√
1
N

= z1−α/2

√
Vj∗j∗

n
+

Ṽj∗j∗

N
, and

this is precisely what Algorithm 14 accomplishes.
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5.6.7 Proof of Theorem 5.4.1

Define
L(θ) = E[ℓθ(X1, Y1)], Lf (θ) = E[ℓθ(X1, f1)].

By the definition of θ∗, we have

L̃f (θ∗) = (L̃f (θ∗)− L(θ∗)) + (L(θ∗)− L(θ̃f )) + (L(θ̃f )− L̃f (θ̃f )) + L̃f (θ̃f )

⩽ (L̃f (θ∗)− L(θ∗)) + (L(θ̃f )− L̃f (θ̃f )) + L̃f (θ̃f ).

By applying the validity of the confidence bounds, a union bound implies that with proba-
bility 1− α we have

L̃f (θ∗) ⩽ (Lf (θ∗)− L(θ∗)) + (L(θ̃f )− Lf (θ̃f )) + L̃f (θ̃f ) + T u
α−δ
2

(θ∗)− T l
α−δ
2

(θ̃f )

= −∆f (θ∗) + ∆f (θ̃f ) + L̃f (θ̃f ) + T u
α−δ
2

(θ∗)− T l
α−δ
2

(θ̃f )

⩽ −Rl
δ/2(θ

∗) +Ru
δ/2(θ̃

f ) + L̃f (θ̃f ) + T u
α−δ
2

(θ∗)− T l
α−δ
2

(θ̃f ).

Therefore, with probability 1− α we have that θ∗ ∈ CPPα , as desired.

5.6.8 Proof of Theorem 5.4.2

Notice that we can write EQY
[ν(Y )] = ν⊤QY , where on the right-hand side we are treating

ν = (ν(1), . . . , ν(K)) and QY = (QY (1), . . . ,QY (K)) as vectors of length K. We can write

similar expressions for Qf , Q̂Y , etc. Using this notation, by triangle inequality we have

|θ∗ − ν⊤Q̂Y | = |ν⊤QY − ν⊤Q̂Y | ⩽
∣∣∣ν⊤K̂−1(Qf − Q̂f )

∣∣∣+
∣∣∣ν⊤K−1Qf − ν⊤K̂−1Qf

∣∣∣ . (5.27)

We bound the first term using Hölder’s inequality,∣∣∣ν⊤K̂−1(Qf − Q̂f )
∣∣∣ ⩽ ∥ν⊤K̂−1∥1∥Qf − Q̂f∥∞. (5.28)

For the second term, we write∣∣∣ν⊤K−1Qf − ν⊤K̂−1Qf

∣∣∣ =
∣∣∣ν⊤K̂−1(K̂ − K)K−1Qf

∣∣∣ . (5.29)

In the above equation, the factor on the right, K−1Qf , is exactly equal to QY , and thus lives
on the simplex, which we denote by ∆. Using this fact and Hölder’s inequality,∣∣∣ν⊤K̂−1(K̂ − K)K−1Qf

∣∣∣ ⩽ sup
q∈∆

∣∣∣ν⊤K̂−1(K̂ − K)q
∣∣∣ ⩽ ∥∥∥ν⊤K̂−1

∥∥∥
1

sup
q∈∆

∥∥∥(K̂ − K)q
∥∥∥
∞
. (5.30)
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Next, we have
sup
q∈∆
∥(K̂ − K)q∥∞ = max

k∈[K]
∥K̂k −Kk∥∞, (5.31)

where Kk indexes the k-th column of K. This yields the expression∥∥∥ν⊤K̂−1
∥∥∥
1

sup
q∈∆

∥∥∥(K̂ − K)q
∥∥∥
∞

=
∥∥∥ν⊤K̂−1

∥∥∥
1

max
k∈[K]

∥K̂k −Kk∥∞. (5.32)

Putting everything together and going back to (5.27), we have

|ν⊤QY − ν⊤Q̂Y | ⩽ ∥ν⊤K̂−1∥1
(
∥Qf − Q̂f∥∞ + max

k∈[K]
∥K̂k −Kk∥∞

)
. (5.33)

Since ∥ν⊤K̂−1∥1 can be evaluated empirically, it remains to bound the distributional distances

∥Qf − Q̂f∥∞ and maxk∈[K] ∥K̂k −Kk∥∞.
For the first term, we can simply apply the DKWM inequality [52, 119], which gives

∥Qf − Q̂f∥∞ ⩽

√
2

N
log

2

α− δ
(5.34)

with probability 1− (α− δ). See [27] for details.

For the second term, maxk∈[K] ∥K̂k−Kk∥∞, since we only have n samples for estimation,

we use a more adaptive concentration result. In particular, for each l, k ∈ [K], n(k)K̂l,k

(conditional on the k-th column) follows a binomial distribution with n(k) samples and
success probability Kl,k. Therefore, if we let

Cl,k =

{
p : n(k)K̂l,k ∈

(
F−1
Binom(n(k),p)

(
δ

2K2

)
, F−1

Binom(n(k),p)

(
1− δ

2K2

))}
,

where FBinom(n(k),p) denotes the Binomial CDF, then by a union bound:

P

(
max
k∈[K]

∥K̂k −Kk∥∞ ⩾ max
l,k∈[K]

max
p∈Cl,k

|K̂l,k − p|
)

⩽ δ. (5.35)

Combining equations (5.33), (5.34) and (5.35) yields the final result.
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[128] Marieke Möhlmann and Lior Zalmanson. Hands on the wheel: Navigating algorithmic
management and uber drivers’. In Autonomy’, in proceedings of the international
conference on information systems (ICIS), Seoul South Korea, pages 10–13, 2017.

[129] Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian
Ratliff. Learning in stochastic monotone games with decision-dependent data. In
International Conference on Artificial Intelligence and Statistics, pages 5891–5912.
PMLR, 2022.

[130] Mancur Olson. The logic of collective action: public goods and the theory of groups.
Number 124 in Harvard economic studies. Harvard Univ. Press, 1965.

[131] Robert J Olson, Alexi Shalapyonok, and Heidi M Sosik. An automated submersible
flow cytometer for analyzing pico-and nanophytoplankton: FlowCytobot. Deep Sea
Research Part I: Oceanographic Research Papers, 50(2):301–315, 2003.

[132] Eric C Orenstein, Oscar Beijbom, Emily E Peacock, and Heidi M Sosik. WHOI-
plankton-a large scale fine grained visual recognition benchmark dataset for plankton
classification. arXiv preprint arXiv:1510.00745, 2015.

[133] Snigdha Panigrahi, Jelena Markovic, and Jonathan Taylor. An MCMC-free approach
to post-selective inference. arXiv preprint arXiv:1703.06154, 2017.

[134] Snigdha Panigrahi and Jonathan Taylor. Approximate selective inference via maximum
likelihood. arXiv preprint arXiv:1902.07884, 2019.

[135] Judea Pearl. Causality. Cambridge University Press, 2009.

[136] Margaret Sullivan Pepe. Inference using surrogate outcome data and a validation
sample. Biometrika, 79(2):355–365, 1992.

[137] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performa-
tive prediction. In International Conference on Machine Learning, pages 7599–7609,
2020.

[138] Georgios Piliouras and Fang-Yi Yu. Multi-agent performative prediction: From global
stability and optimality to chaos. arXiv preprint arXiv:2201.10483, 2022.
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