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Abstract

Structure-Driven Algorithm Design in Optimization and Machine Learning

by

Tianyi Lin

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael I. Jordan, Chair

A textbook property of optimization algorithms is their ability to solve the problems under
generic regularity conditions. Two examples are simplex method and gradient descent (GD)
method. However, the performance of these fundamental and general-purpose optimization
algorithms is often unsatisfactory; they often run slowly and perhaps return the suboptimal
solutions in generic settings. In my view, this is the price of their generality ; indeed, the
generic algorithms are an achievement, but for many problems, the gains from leveraging spe-
cial structure can be huge. A basic question then arises: how can we harness problem-specific
structure within our algorithms to obtain fast, practical algorithms with strong performance
guarantees? As more structured data-driven decision-making models emerge, this question
has become increasingly pressing and relevant to practitioners.

For example, the GD is known to get stuck at a suboptimal saddle points in nonconvex
optimization. Nonetheless, a line of recent works have shown that random initialization or
perturbation changes the dynamics of GD and makes it provably converge to a global optimal
solution. In addition, both Markov decision process (MDP) and discrete optimal transport
(OT) problems can be solved using large-scale linear programs. Rather than using generic
LP algorithms, the policy iteration and the Sinkhorn iteration exploit special structures in
MDP and OT and thus perform better in practice. Adapting algorithms to problem-specific
structure is generally referred to as structure-driven algorithm design.

Although this line of research – which has been studied extensively for over 70 years –
has enjoyed widespread success, the machine-learning success stories have introduced new
formulations ripe for deep theoretical analysis and remarkable practical impact. My research
pushes this frontier by identifying special structure of reliable machine learning (minimax
optimization) and multi-agent machine learning (high-order optimization and beyond) and
design optimal algorithms for computing the appropriately defined optimal solutions; and
other structured problems, such as efficient entropic regularized optimal transport, gradient-
free nonsmooth nonconvex optimization, and adaptive and doubly optimal learning in games.
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Chapter 1

Introduction

A textbook property of optimization algorithms is their ability to optimize problems under
generic regularity conditions. However, the performance of these fundamental and general-
purpose optimization algorithms is often unsatisfactory; indeed, for many real problems, the
gains from leveraging special structure can be huge. A basic question then arises: how can we
harness problem-specific structure within our algorithms to obtain fast, practical algorithms
with strong performance guarantees? Although this line of research – which has been studied
extensively for over 70 years – has enjoyed widespread success, the recent reliable and/or
multi-agent machine-learning success stories have introduced new formulations ripe for deep
theoretical analysis and remarkable practical impact. My research that pushes this frontier
can be summarized in two aspects: (i) game-theoretic learning where we identify some special
structures and design simple and practical algorithms for computing reasonable solutions;
and (ii) distribution-based learning where we seek the true data distribution from samples by
introducing new formulations and designing structure-driven and sample-efficient algorithms.

1.1 Motivation

In optimization and machine learning, we often have structure about specific application
problems – structure that we can potentially leverage to design and analyze specialized al-
gorithms. For example, this is true for network flow problems [Ahuja et al., 1993], where the
network simplex method is the method of choice in practice. Although the simplex method
is not polynomial in general, the network simplex method is even strongly polynomial [Gold-
farb and Hao, 1992, Orlin et al., 1993, Orlin, 1997, Armstrong and Jin, 1997]. It is true for
Markov decision process problems [Bellman, 2013, Puterman, 2014], where the policy itera-
tion method is the state-of-the-art approach. This is also the variant of the simplex method
but enjoys a theoretical guarantee for solving discounted MDP with a fixed factor [Ye, 2011].
It is also true for low-rank optimization problems, where we use nuclear-norm constraint set.
The Frank-Wolfe method perfectly fits such structure [Jaggi, 2013] and produces low-rank
solutions with a finite-time guarantee [Freund and Grigas, 2016, Freund et al., 2017].



CHAPTER 1. INTRODUCTION 2

Beyond these classical problems, we have many other popular machine learning problems
with special structures. Let us briefly review the trend of machine learning (ML) from an op-
timization viewpoint. The classical ML models are designed for pattern recognition [Bishop,
2006, Hastie et al., 2009], where the main goal is to do clustering and classification with high
accuracy. These problems can be solved by smooth and nonconvex optimization toolbox. In
this context, the impossibility results have stated that computing an approximate global so-
lution is NP-hard [Murty and Kabadi, 1987]. However, many modern application problems,
such as optimizing overparameterized neural networks [Choromanska et al., 2015] and ma-
trix completion [Bhojanapalli et al., 2016, Ge et al., 2016], have special structure such that
some specific forms of random initialization or random perturbation (but implementable) will
change the gradient descent dynamics such that the generated iterates provably converge to
a global optimal solution [Lee et al., 2019, Jin et al., 2021].

Such ML models and gradient-based methods have seen tremendous success in many
application problems. In particular, the ML was used to decreasing student dropout, and
evaluating applicants in college and graduate school admissions. The national institute of
justice applied ML to address criminal justice needs, such as identifying individuals and their
actions in image and video relating to criminal activity, DNA analysis, gunshot detection
and crime forecasting. The U.S. department of transportation is also looking to increase
public safety through developing and testing automatic traffic accident detection based on
advanced ML systems. The ML was also being used in healthcare to interpret medical images
or optimize queue systems, which could have important practical implications.
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Reliable and/or multi-agent machine learning. One of the things I have learned over
the years is that people become really, really excited about what ML can do and what ML
can accomplish. From their viewpoint, there are so much benefits that come along with
ML and they of it as, like look at that wonderful bridges that we can build. However, for
someone who has conducted many experiments, we become suspicious about the ambitious
goals that people are trying to achieve and feel that the current ML pipelines are really,
really rickety. Maybe you can still get to the end but have to be really, really careful and
skeptical. It is really none of the turkey solution yet. Historically, the ML tradition is defined
by top conference publications and this is called paper-centric viewpoint: we are given the
fixed dataset and we want to beat the benchmarks. As soon as we beat the benchmark, we
declare the success. However, when we move to real application and use ML in production,
the problem becomes more and more involved because of uncertainties and incentives from
the environment. So moving from this so-called paper-centric viewpoint to a production
system viewpoint, we need to be careful about the outcome of our ML models in practice.
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To better illustrate the limitations of current ML models, we look at the concrete ex-
ample from healthcare application [Zech et al., 2018]. What they do is to take the X-ray
images and hope to detect the diagnose whether the patient has the pneumonia or not. The
common observation is that the performance beyond training data degrades dramatically
and the possible reason is that every image has its own mark, which varies from hospital to
hospital and actually depends on other factors, such as the doctor who takes the X-ray and
even the scanner which is used by the hospital. The embarrassing fact is that ML models
effectively learn such hospital-specific pattern, which is the leakage that does not generalize
well. Another example comes from power management, which allows the users of a wireless
network to achieve their performance requirements while minimizing the power consumed
by their equipment. This problem has long been the core aspect of network design and can
be tackled by finding an unique equilibrium of a suitably designed continuous game [Zhou
et al., 2021]. Moreover, in real scenario, the U.S. power grid has around 170,000 miles of
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high-voltage transmission lines and almost 5000 generating units with capacity of at least 50
MW. In a system of such a scale and complexity, the key driving force behind uncertainty is
the large-scale integration of wind and solar power generation into grids, both of which are
highly stochastic in nature [Bertsimas et al., 2012, Sun and Conejo, 2021].

Minimax optimization, variational inequalities (VIs) and beyond. This leads to a
natural transition from classical ML to reliable and multi-agent ML, where the main goal is
to do multi-agent learning with high reliability. The basic setup changes from single-agent
optimization model to minimax optimization model or VI model. In this context, the recent
impossibility results have stated that determining whether or not an approximate global
solution exists in general minimax optimization model is NP-hard [Daskalakis et al., 2021]
and computing an approximate Nash equilibrium in general multi-player games (i.e., VI
models)is PPAD-complete [Chen et al., 2009, Daskalakis et al., 2009]. In contrast, many
modern application problems, such as generative adversarial networks (GANs) [Goodfellow
et al., 2014], adversarial robust learning models [Madry et al., 2018, Sinha et al., 2018] and
equilibrium computation [Facchinei and Pang, 2007], have introduced new formulations ripe
for deep theoretical analysis and remarkable practical impact.

A typical example is autonomous driving. In particular, each self-driving car has multiple
cameras at every angle to provide a perfect view of its surroundings and the detection
accuracy would be important for self-driving cars to make the decisions. In the real scenario,
the input for machine learning systems in self-driving car is often dirty. Such dirty sign could
confuse self-driving cars and cause their ML systems to incorrectly classify signs, potentially
putting the lives of passengers in danger. For example, the speed limit sign with strains
fooled a self-driving car’s ML system into classifying “speed limit 80” as “stop” by mistake,
leading to an unexpected stop on a highway. The idea to make machine learning models
reliable comes from robust and adaptive robust optimization [Ben-Tal et al., 2009, Bertsimas
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et al., 2011] and is that we let our models to do well for all perturbed data using minimax
optimization model [Madry et al., 2018, Sinha et al., 2018, Bertsimas et al., 2021].

The VI models have captured a wide range of
problems in economics, operations research and
computer science, including Nash equilibrium
problems, Nash-Cournot production problems,
oligopolistic electricity models, Markov perfect
equilibrium models, economic equilibrium prob-
lems, Walrasian equilibrium models, invariant
capital stock model, traffic equilibrium models,
frictional contact problems and option pricing
problems. This research has provided the foun-
dation for work in machine learning in recent
years, where general equilibrium problems have
emerged in many real-world settings [Cesa-Bianchi and Lugosi, 2006, Jordan, 2018].

1.2 Overview of Our Results

During my Ph.D study, I have developed several structure-driven algorithms that can be used
across various domains. For game-theoretic learning, I have studied minimax optimization
for zero-sum, two-player games [Lin et al., 2020c,d, Jordan et al., 2022a, Lin et al., 2022c,d],
highly smooth optimization, inclusions and variational inequalities (VI) for general-sum,
multi-player games [Lin and Jordan, 2022a,b,c, 2023] and online and bandit learning in
games [Lin et al., 2020e, Jordan et al., 2022c]. For distribution-based learning, most of my
works have focused on optimal transport (OT) [Lin et al., 2019a, 2020a,b, 2021a, 2022a,b].
Some of the proposed structure-driven algorithms in these domains were the first to achieve
optimal convergence guarantees for solving their corresponding problems [Lin et al., 2020d,
Jordan et al., 2022a,c, Lin and Jordan, 2022b, Lin et al., 2022d] while others have been
recognized as the state-of-the-art approaches in practice [Lin et al., 2019a, 2020a,c, 2022b,c].
In addition, I have studied some other problems, such as nonconvex nonsmooth optimization
with Lipschitz objective functions [Lin et al., 2022f, Jordan et al., 2022b], and online and
bandit nonsubmodular learning with delayed costs [Lin et al., 2022e].

In these papers, I leveraged classical techniques from optimization and variational analy-
sis, and adapted them to the special structures arising in modern machine-learning problems.
Concrete examples of structures include the asymmetry of players in min-max optimization,
the high-order Lipschitz continuity in optimization, inclusions and VIs, the montonicity in
multi-agent learning and the low-dimensional substructure in OT. The key challenge for
structure-driven algorithm design, is identifying the algorithmic component that pairs to the
problem-specific structure to obtain strong theoretical and practical performance.
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Minimax optimization. In recent years, minimax optimization theory has begun to see
applications in operations research and machine learning, with examples including generative
adversarial networks (GANs), distributionally robust optimization (DRO) and online learn-
ing. Furthermore, learning in economic systems has increased the demand for algorithms to
compute minimax optima and related equilibrium concepts. However, these new problem
formulations are in essence nonconvex problems, where existing algorithms (e.g., gradient
descent ascent (GDA) and extragradient method) run slowly and may not even converge in
theory and practice.

We proposed to solve nonconvex-concave minimax problems using two-timescale GDA
and proved the first nonasymptotic convergence rate guarantee to a Stackelberg equilibrium.
The key observation is that nonconvex-concave minimax problems can be viewed as zero-sum
games with asymmetrical players, motivating two-timescale rules: the nonconvex player is
conservative with small stepsize while the concave player is somehow aggressive with large
stepsize [Lin et al., 2020c]. In the extended version, we studied the effect of nonsmoothness
on nonconvex-concave minimax problems and provided a more refined treatment of two-
timescale GDA [Lin et al., 2022c].

We resolved a longstanding open question pertaining to the design of near-optimal first-
order algorithms for minimax problems with asymmetrical players. We were the first to
highlight the fundamental role that accelerated proximal point method played in optimal
minimax optimization algorithm design [Lin et al., 2020d].

We answered an open conjecture about the performance gap of manifold extragradient
(EG) methods. Our results showed that manifold GDA and EG achieved optimal convergence
rates for smooth, nonsmooth and stochastic minimax optimization in geodesic metric spaces
up to curvature factors [Jordan et al., 2022a].

We proposed exact and inexact regularized Newton-type methods for solving the convex-
concave unconstrained min-max optimization problems. This is the first optimal convergence
rate estimate for second-order methods in this setting [Lin et al., 2022d].

Highly smooth optimization and beyond. Optimization and variational inequalities
capture a wide range of problems in optimization theory and beyond, including optimization
problems, saddle-point problems and models of equilibria in games. While optimal first-order
methods have been extensively studied in monotone setting, the investigations of optimal
second-order and high-order methods are relatively rare, as exploiting the high-order deriva-
tive information is much more involved for algorithm design. In a series of recent works,
Michael. I. Jordan and I have designed novel high-order methods for finding one solution
at an optimal global rate in convex optimization [Lin and Jordan, 2022b], monotone equa-
tion [Lin and Jordan, 2022a], monotone VI [Lin and Jordan, 2022c] and a more general
monotone inclusion [Lin and Jordan, 2023].

By appealing to a novel Lyapunov approach, we demonstrate the fundamental role that
the closed-loop control and rescaled dynamical systems play in optimal acceleration and the
clear advantage that the continuous-time perspective brings to algorithmic design.
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Online and bandit game-theoretic learning. In the domains where the environment
is rapidly changing or even adversarial, single-agent online learning offers useful tools for
making sequential decisions agnostically. However, the environment consists of other agents
that are engaged in online decision-making, with each agent’s action impacting outcomes for
others. Such interactions make predicting any agent’s action difficult. While no-regret online
learning algorithms help each agent maximize its transient performance (characterized by
regret), the long-run behavior is ultimately determined by the equilibrium outcome: the two
can be at odds with each other. For example, no-regret learning can converge to strictly
dominated strategies in finite games.

We studied multi-agent learning via OGD in cocoercive games, which admitted multiple
Nash equilibria and properly included unconstrained strongly monotone games. Indeed, we
filled in several gaps, where three aspects – finite-time convergence guarantee, non-decreasing
step-sizes, and fully adaptive algorithms – have been unexplored before [Lin et al., 2020e].

We also studied online no-regret learning in strongly monotone games with noisy gradient
feedback. An important application is a learning version of newsvendor problem, where due
to lost sales, only noisy gradient feedback can be observed and all problem parameters are
unknown. Combining online gradient descent (OGD) with a structure-driven randomization,
we designed the first fully adaptive and doubly optimal algorithm for both single-retailer and
multi-retailer settings [Jordan et al., 2022c].

Efficient optimal transport (OT). OT – the problem of finding minimal cost couplings
between pairs of probability distributions – has recently been used to learn the true data
distribution from samples in numerous machine learning applications. The key challenge is
computational and a new literature has begun to emerge to provide new algorithms for OT.

We proved a tight complexity bound for the greedy Sinkhorn algorithm, helping explain
why such algorithm often outperformed the Sinkhorn algorithm in practice. By appealing to
a novel primal-dual formulation of OT, we designed a new class of algorithms with theoretical
guarantees [Lin et al., 2019a]. In the extended version, we investigated the structure of OT
and proposed to accelerate Sinkhorn using estimate sequences [Lin et al., 2022b]. We contin-
ued to push structure-driven algorithm design for variants of OT, including multimarginal
OT problem [Lin et al., 2022a], fixed-support OT barycenter problem [Lin et al., 2020b],
and projection robust OT problem [Lin et al., 2021a]. Notably, these variants have diverse
structures which make algorithm design challenging; indeed, the former two are large-scale
LPs with additional structure, while the latter one is a nonconvex-concave min-max problem
with a manifold constraint. We also proved the dimension-independent sample complexity
and concentration results for projection OT (POT) under reasonable structural conditions,
and derived consistency and central limit theorems for the estimators [Lin et al., 2021a].

Nonsmooth nonconvex optimization with Lipschitz functions. In these works, we
designed randomized gradient-free methods with finite-time convergence guarantee regardless
of noisy function value oracles [Lin et al., 2022f]. We also studied the class of determinis-
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tic subgradient-based methods and showed (i) all of these methods suffer from dimension-
dependent convergence rate, and (ii) the function value oracle could offer more information
than the subgradient oracle [Jordan et al., 2022b].

1.3 Organization

This thesis is centered around four concrete questions in answering the general basic question
– in optimization and machine learning, how can we harness problem-specific structure within
our algorithms to obtain fast, practical algorithms with strong performance guarantees?

We start with minimax optimization in Part I, and ask whether the two-timescale (stochas-
tic) gradient descent ascent is provably efficient or not. Chapter 2 provided the first nonasymp-
totic analysis for two-timescale GDA in this setting, shedding light on its superior practical
performance in training generative adversarial networks (GANs) and other real applications.
This chapter is based on two joint works with Chi Jin and Michael I. Jordan [Lin et al., 2020c,
2022c]. Then, we proceed to the next question: “Can we design gradient-based algorithms
that achieve the lower bounds in both convex-concave and nonconvex-concave settings?”
Chapter 3 highlighted the importance of accelerated proximal point method in this context.
This chapter is based on a joint work with Chi Jin and Michael I. Jordan [Lin et al., 2020d].
Finally, we investigate if there is a necessary performance gap between the Riemannian and
Euclidean optimal gradient-based algorithms in terms of accuracy and the condition number.
Chapter 4 provided an analysis of extragradient method and gradient descent ascent adapted
to the manifold-constrained setting. This chapter is based on a joint work with Michael I.
Jordan and Emmanouil-Vasileios Vlatakis-Gkaragkounis [Jordan et al., 2022a].

The central topic of Part II is high-order optimization and beyond. Unlike gradient-based
algorithms, the very basic questions remain open for high-order optimization, inclusions and
variational inequalities (VIs), including what the dynamics of optimal algorithms look like
and whether or not the binary search scheme is necessary. Chapter 5 provided a control-
theoretical perspective on optimal tensor algorithms for minimizing a convex and highly
smooth function in a finite-dimensional Euclidean space. This chapter is based on a joint
work with Michael I. Jordan [Lin and Jordan, 2022b]. Chapter 6 proposed and analyzed a
new dynamical system with a closed-loop control law in a Hilbert space, aiming to shed light
on the acceleration phenomenon for monotone inclusion problems. This chapter is based on
a joint work with Michael I. Jordan [Lin and Jordan, 2023]. Chapter 7 settled an open and
challenging question pertaining to the design of simple and optimal high-order methods for
solving smooth and monotone VIs. This chapter is based on a joint work with Michael I.
Jordan [Lin and Jordan, 2022c].

Finally, Part III studies several other structured problems, covering optimal transport,
nonsmooth nonconvex optimization, and no-regret learning in games. Chapter 8 presented
several new complexity results for the entropic regularized algorithms that approximately
solve the optimal transport (OT) problem between two discrete probability measures and
showed the efficiency of these algorithms in practice. This chapter is based on a joint work
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with Nhat Ho and Michael I. Jordan [Lin et al., 2022b]. Chapter 9 addressed two challenges
that impede the development of efficient nonconvex nonsmooth optimization methods with
finite-time convergence guarantee: the lack of computationally tractable optimality criterion
and the lack of computationally powerful oracles. This chapter is based on a joint work
with Michael I. Jordan and Zeyu Zheng [Lin et al., 2022f]. Chapter 10 designed the fully
adaptive gradient-based algorithm that does not require a priori knowledge of parameters. It
achieved near-optimal regret guarantee in single-agent setting and near-optimal last-iterate
convergence rate guarantee in multi-agent setting. Our results also immediately yield the
first feasible and near-optimal algorithm for solving a learning version of the newsvendor
problem in both single-retailer and multi-retailer settings. This chapter is based on a joint
work with Michael I. Jordan and Zhengyuan Zhou [Jordan et al., 2022c].
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Part I

Minimax Optimization
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Chapter 2

Two-Timescale Gradient Descent
Ascent

We consider nonconvex-concave minimax problems, minx maxy∈Y f(x,y) where f is noncon-
vex in x but concave in y and Y is a convex and bounded set. One of the most popular algo-
rithms for solving this problem is the celebrated gradient descent ascent (GDA) algorithm,
which has been widely used in machine learning, control theory and economics. Despite the
extensive convergence results for the convex-concave setting, GDA with equal stepsize can
converge to limit cycles or even diverge in a general setting. In this paper, we present the
complexity results on two-timescale GDA for solving nonconvex-concave minimax problems,
showing that the algorithm can find a stationary point of the function Φ(·) := maxy∈Y f(·,y)
efficiently. To our knowledge, this is the first nonasymptotic analysis for two-timescale GDA
in this setting, shedding light on its superior practical performance in training generative
adversarial networks (GANs) and other real applications.

2.1 Introduction

We consider the following smooth minimax optimization problem:

min
x∈Rm

max
y∈Y

f(x,y), (2.1)

where f : Rm × Rn → R is nonconvex in x but concave in y and where Y is a convex set.
Since von Neumann’s seminal work [Neumann, 1928], the problem of finding the solution to
problem (2.1) has been a major focus of research in mathematics, economics and computer
science [Basar and Olsder, 1999, Nisan et al., 2007, Von Neumann and Morgenstern, 2007]. In
recent years, minimax optimization theory has begun to see applications in machine learning,
with examples including generative adversarial networks (GANs) [Goodfellow et al., 2014],
statistics [Xu et al., 2009, Abadeh et al., 2015], online learning [Cesa-Bianchi and Lugosi,
2006], deep learning [Sinha et al., 2018] and distributed computing [Shamma, 2008, Mateos
et al., 2010]. Moreover, there is increasing awareness that machine-learning systems are
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embedded in real-world settings involving scarcity or competition that impose game-theoretic
constraints [Jordan, 2018].

One of the simplest candidates for solving problem (2.1) is the natural generalization
of gradient descent (GD) known as gradient descent ascent (GDA). At each iteration, this
algorithm performs gradient descent over the variable x with the stepsize ηx and gradient
ascent over the variable y with the stepsize ηy. On the positive side, when the objective
function f is convex in x and concave in y, there is a vast literature establishing asymptotic
and nonasymptotic convergence for the average iterates generated by GDA with the equal
stepsizes (ηx = ηy); [see, e.g., Korpelevich, 1976, Chen and Rockafellar, 1997, Nedić and
Ozdaglar, 2009, Nemirovski, 2004, Du and Hu, 2019]. Local linear convergence can also be
shown under the additional assumption that f is locally strongly convex in x and strongly
concave in y [Cherukuri et al., 2017, Liang and Stokes, 2019, Adolphs et al., 2019]. However,
there has been no shortage of research highlighting the fact that in a general setting GDA
with equal stepsizes can converge to limit cycles or even diverge [Benaım and Hirsch, 1999,
Hommes and Ochea, 2012, Mertikopoulos et al., 2018].

Recent research has focused on alternative gradient-based algorithms that have guaran-
tees beyond the convex-concave setting [Daskalakis et al., 2018, Heusel et al., 2017, Mer-
tikopoulos et al., 2019, Mazumdar et al., 2019]. Two-timescale GDA [Heusel et al., 2017] has
been particularly popular. This algorithm, which involves unequal stepsizes (ηx 6= ηy), has
been shown to empirically to alleviate the issues of limit circles and it has theoretical support
in terms of local asymptotic convergence to Nash equilibria [Heusel et al., 2017, Theorem 2].

This asymptotic result stops short of providing an understanding of algorithmic efficiency,
and it would be desirable to provide a stronger, nonasymptotic, theoretical convergence rate
for two-timescale GDA in a general setting. In particular, the following general structure
arises in many applications: f(x, ·) is concave for any x and Y is a bounded set. Two typical
examples include training of a neural network which is robust to adversarial examples [Madry
et al., 2018] and learning of a robust classifier from multiple distributions [Sinha et al., 2018].
Both of these schemes can be posed as nonconvex-concave minimax problems. Based on this
observation, it is natural to ask the question: Are two-timescale GDA and stochastic GDA
(SGDA) provably efficient for nonconvex-concave minimax problems?

This paper presents an affirmative answer to this question, providing nonasymptotic com-
plexity results for two-time scale GDA and SGDA in two settings. In the nonconvex-strongly-
concave setting, two-time scale GDA and SGDA require O(κ2ε−2) gradient evaluations and
O(κ3ε−4) stochastic gradient evaluations, respectively, to return an ε-stationary point of the
function Φ(·) = maxy∈Y f(·,y) where κ > 0 is a condition number. In the nonconvex-
concave setting, two-time scale GDA and SGDA require O(ε−6) gradient evaluations and
O(ε−8) stochastic gradient evaluations.

To motivate the proof ideas for analyzing two-time scale GDA and SGDA, it is useful to
contrast our work with some of the strongest existing convergence analyses for nonconvex-
concave problems. In particular, Jin et al. [2020] and Nouiehed et al. [2019] have provided
complexity results for algorithms that have a nested-loop structure. Specifically, GDmax
and multistep GDA are algorithms in which the outer loop can be interpreted as an inexact
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Table 2.1: The gradient complexity of all algorithms for nonconvex-(strongly)-concave min-
imax problems. ε is a tolerance and κ > 0 is a condition number. The result denoted by
? refers to the complexity bound after translating from ε-stationary point of f to our opti-
mality measure; see Propositions 2.4.11 and 2.4.12. The result denoted by ◦ is not presented
explicitly but easily derived by standard arguments.

Nonconvex-Strongly-Concave Nonconvex-Concave
Simplicity

Deterministic Stochastic Deterministic Stochastic

Jin et al. [2020] Õ
(
κ2ε−2

)◦
Õ
(
κ3ε−4

)
O(ε−6) O(ε−8)◦ Double-loop

Rafique et al. [2022] Õ(κ2ε−2) Õ(κ3ε−4) Õ(ε−6) Õ(ε−6) Double-loop

Nouiehed et al. [2019] Õ(κ4ε−2)?,◦ – O(ε−7)? – Double-loop

Thekumparampil et al. [2019] – – Õ(ε−3) – Triple-loop

Kong and Monteiro [2021] – – Õ(ε−3) – Triple-loop

Lu et al. [2020] O(κ4ε−2)? – O(ε−8)? – Single-loop

This paper O(κ2ε−2) O(κ3ε−4) O(ε−6) O(ε−8) Single-loop

gradient descent on a nonconvex function Φ(·) = maxy∈Y f(·,y) while the inner loop provides
an approximate solution to the maximization problem maxy∈Y f(x,y) for a given x ∈ Rm.
Strong convergence results are obtained when accelerated gradient ascent is used in the
maximization problem.

Compared to GDmax and multistep GDA, two-time scale GDA and SGDA are harder
to analyze. Indeed, yt is not necessarily guaranteed to be close to y?(xt) at each iteration
and thus it is unclear that ∇xf(xt,yt) might a reasonable descent direction. To overcome
this difficulty, we develop a new technique which analyzes the concave optimization with a
slowly changing objective function. This is the main technical contribution of this paper.

Notation. We use bold lower-case letters to denote vectors and caligraphic upper-case
letter to denote sets. We use ‖ · ‖ to denote the `2-norm of vectors and spectral norm of
matrices. For a function f : Rn → R, ∂f(z) denotes the subdifferential of f at z. If f is
differentiable, ∂f(z) = {∇f(z)} where ∇f(z) denotes the gradient of f at z and ∇xf(z)
denotes the partial gradient of f with respect to x at z. For a symmetric matrix A ∈ Rn×n,
the largest and smallest eigenvalue of A denoted by λmax(A) and λmin(A).

2.2 Related Works

Historically, an early concrete instantiation of problem (2.1) involved computing a pair of
probability vectors (x,y), or equivalently solving minx∈∆m maxy∈∆n x>Ay for a matrix A ∈
Rm×n and probability simplices ∆m and ∆n. This bilinear minimax problem together with
von Neumann’s minimax theorem [Neumann, 1928] was a cornerstone in the development
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of game theory. A simple and generic algorithm scheme was developed for solving this
problem in which the min and max players each implemented a simple learning procedure
in tandem [Robinson, 1951]. After then, Sion [1958] generalized von Neumann’s result from
bilinear games to general convex-concave games, minx maxy f(x,y) = maxy minx f(x,y),
and triggered a line of algorithmic research on convex-concave minimax optimization in
both continuous time [Kose, 1956, Cherukuri et al., 2017] and discrete time [Uzawa, 1958,
Golshtein, 1974, Korpelevich, 1976, Nemirovski, 2004, Nedić and Ozdaglar, 2009, Mokhtari
et al., 2020b,a, Azizian et al., 2020a]. It is well known that GDA can find an ε-approximate
saddle point within O(κ2 log(1/ε)) iterations for strongly-convex-strongly-concave games,
and O(ε−2) iterations for convex-concave games if we impose the diminishing stepsizes [Nedić
and Ozdaglar, 2009, Nemirovski, 2004].

Nonconvex-concave minimax problems appear to be a class of tractable problems in the
form of problem (2.1) and have emerged as a focus in optimization and machine learn-
ing [Namkoong and Duchi, 2016, Sinha et al., 2018, Sanjabi et al., 2018, Grnarova et al.,
2018, Nouiehed et al., 2019, Thekumparampil et al., 2019, Lu et al., 2020, Kong and Mon-
teiro, 2021, Rafique et al., 2022]; see Table 2.1 for a comprehensive overview. We also wish to
highlight the work of Grnarova et al. [2018], who proposed a variant of GDA for nonconvex-
concave problem and the work of Sinha et al. [2018] and Sanjabi et al. [2018], who studied a
class of inexact nonconvex SGD algorithms that can be categorized as variants of SGDmax
for nonconvex-strongly-concave problem. Jin et al. [2020] analyzed the GDmax algorithm
for nonconvex-concave problem and provided nonasymptotic convergence results.

Rafique et al. [2022] proposed “proximally guided stochastic mirror descent” and “vari-
ance reduced gradient” algorithms (PGSMD/PGSVRG) and proved that these algorithms
find an approximate stationary point of Φ(·) := maxy∈Y f(·,y). However, PGSMD/PGSVRG
are nested-loop algorithms and convergence results were established only in the special case
where f(x, ·) is a linear function [Rafique et al., 2022, Assumption 2 D.2]. Nouiehed et al.
[2019] developed a multistep GDA (MGDA) algorithm by incorporating accelerated gradient
ascent as the subroutine at each iteration. This algorithm provably finds an approximate
stationary point of f(·, ·) for nonconvex-concave problems with the fast rate of O(ε−3.5).
Very recently, Thekumparampil et al. [2019] have proposed a proximal dual implicit ac-
celerated gradient (ProxDIAG) algorithm for nonconvex-concave problems and proved that
the algorithm find an approximate stationary point of Φ(·) with the rate of O(ε−3). This
complexity result is also achieved by an inexact proximal point algorithm [Kong and Mon-
teiro, 2021]. All of these algorithms are, however, nested-loop algorithms and thus relatively
complicated to implement. One would like to know whether the nested-loop structure is
necessary or whether GDA, a single-loop algorithm, can be guaranteed to converge in the
nonconvex-(strongly)-concave setting.

The most closest work is Lu et al. [2020] in which a single-loop HiBSA algorithm for
nonconvex-(strongly)-concave problems is proposed with theoretical guarantees under a
different notion of optimality. However, their analysis requires some restrictive assump-
tions; e.g., that f(·, ·) is lower bounded. We only require that maxy∈Y f(·,y) is lower
bounded. An example which meets our conditions and not those of Lu et al. [2020] is
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minx∈R maxy∈[−1,1] x
>y. Our less-restrictive assumptions make the problem more challeng-

ing and our technique is accordingly fundamentally difference from theirs.
During the past decade, the nonconvex-nonconcave minimax optimization has become a

central topic in machine learning, inspired in part by the advent of generative adversarial
networks [Goodfellow et al., 2014] and adversarial learning [Madry et al., 2018, Namkoong
and Duchi, 2016, Sinha et al., 2018]. Most recent work aims at defining a notion of goodness
or the development of new procedures for reducing oscillations [Daskalakis and Panageas,
2018b, Adolphs et al., 2019, Mazumdar et al., 2019] and speeding up the convergence of
gradient dynamics [Heusel et al., 2017, Balduzzi et al., 2018, Mertikopoulos et al., 2019, Liu
et al., 2021]. More specifically, Daskalakis and Panageas [2018b] studied minimax optimiza-
tion (or zero-sum games) and show that the stable limit points of GDA are not necessarily
Nash equilibria. Adolphs et al. [2019] and Mazumdar et al. [2019] proposed Hessian-based
algorithms whose stable fixed points are exactly Nash equilibria. On the other hand, Bal-
duzzi et al. [2018] developed a new symplectic gradient adjustment (SGA) algorithm for
finding stable fixed points in potential games and Hamiltonian games. Heusel et al. [2017]
proposed two-timescale GDA and show that Nash equilibria are stable fixed points of the
continuous limit of two-timescale GDA under certain strong conditions. All of the existing
convergence results are either local or asymptotic and can not be extended to cover our
results in a nonconvex-concave setting. Very recently, Mertikopoulos et al. [2019] and Liu
et al. [2021] provide nonasymptotic guarantees for a special class of nonconvex-nonconcave
minimax problems under variational stability and the Minty condition. However, while both
of these two conditions must hold in convex-concave setting, they do not necessarily hold in
nonconvex-(strongly)-concave problem.

From the online learning perspective, it is crucial to understand if the proposed algorithm
achieves no-regret property. For example, the optimistic algorithm [Daskalakis and Panageas,
2018a] is a no-regret algorithm, while the extragradient algorithm [Mertikopoulos et al., 2019]
is not. In comparing limit behavior of zero-sum game dynamics, Bailey and Piliouras [2018]
showed that the multiplicative weights update has similar property as GDA and specified
the necessity of introducing the optimistic algorithms to study the last-iterate convergence.

2.3 Preliminaries

We recall basic definitions for smooth functions.

Definition 2.3.1 A function f is L-Lipschitz if for ∀x,x′, ‖f(x)− f(x′)‖ ≤ L‖x− x′‖.

Definition 2.3.2 A function f is `-smooth if for ∀x,x′, ‖∇f(x)−∇f(x′)‖ ≤ `‖x− x′‖.

Recall that the minimax problem (2.1) is equivalent to minimizing Φ(·) = maxy∈Y f(·,y).
For nonconvex-concave minimax problems in which f(x, ·) is concave for each x ∈ Rm, the
maximization problem maxy∈Y f(x,y) can be solved efficiently. However, it is still NP hard
to find the global minimum of Φ in general since Φ is nonconvex.
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We start by defining local surrogate for the global minimum of Φ. A surrogate in non-
convex optimization is the notion of stationarity, which is appropriate if Φ is differentiable.

Definition 2.3.3 A point x is an ε-stationary point (ε ≥ 0) of a differentiable function Φ
if ‖∇Φ(x)‖ ≤ ε. If ε = 0, then x is a stationary point.

Definition 2.3.3 is sufficient for nonconvex-strongly-concave minimax problem since Φ(·) =
maxy∈Y f(·,y) is differentiable in that setting. In contrast, a function Φ is not necessarily
differentiable for general nonconvex-concave minimax problem even if f is Lipschitz and
smooth. A weaker condition that we make use of is the following.

Definition 2.3.4 A function Φ is `-weakly convex if a function Φ(·) + (`/2)‖ · ‖2 is convex.

For a `-weakly convex function Φ, the subdifferential ∂Φ is uniquely determined by the
subdifferential of Φ + (`/2)‖ · ‖2. Thus, a naive measure of approximate stationarity can be
defined as a point x ∈ Rm such that at least one subgradient is small: minξ∈∂Φ(x) ‖ξ‖ ≤ ε.
However, this notion of stationarity can be very restrictive when optimizing nonsmooth
functions. For example, when Φ(·) = | · | is a one-dimensional function, an ε-stationary point
is zero for all ε ∈ [0, 1). This means that finding an approximate stationary point under this
notion is as difficult as solving the problem exactly. Davis and Drusvyatskiy [2019] propose an
alternative notion of stationarity based on the Moreau envelope. This has become recognized
as standard for optimizing a weakly convex function.

Definition 2.3.5 A function Φλ : Rm → R is the Moreau envelope of Φ with a positive
parameter λ > 0 if Φλ(x) = minw Φ(w) + (1/2λ)‖w − x‖2 for each x ∈ Rm.

Lemma 2.3.6 If f is `-smooth and Y is bounded, the Moreau envelope Φ1/2` of Φ(·) =
maxy∈Y f(·,y) is differentiable, `-smooth and `-strongly convex.

Thus, an alternative measure of approximate stationarity of a function Φ(·) = maxy∈Y f(·,y)
can be defined as a point x ∈ Rm such that the norm of the gradient of Moreau envelope is
small: ‖∇Φ1/2`‖ ≤ ε. More generally, we have

Definition 2.3.7 A point x is an ε-stationary point (ε ≥ 0) of a `-weakly convex function
Φ if ‖∇Φ1/2`(x)‖ ≤ ε. If ε = 0, then x is a stationary point.

Even though Definition 2.3.7 uses the language of Moreau envelopes, it also connects to the
function Φ as follows.

Lemma 2.3.8 If x is an ε-stationary point of a `-weakly convex function Φ (Definition
2.3.7), there exists x̂ ∈ Rm such that minξ∈∂Φ(x̂) ‖ξ‖ ≤ ε and ‖x− x̂‖ ≤ ε/2`.

Lemma 2.3.8 shows that an ε-stationary point defined by Definition 2.3.7 can be interpreted
as the relaxation or surrogate for minξ∈∂Φ(x) ‖ξ‖ ≤ ε. In particular, if a point x is an ε-
stationary point of an `-weakly convex function Φ, then x is close to a point x̂ which has at
least one small subgradient.
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Algorithm 1 Two-Timescale GDA

Input: (x0,y0), stepsizes (ηx, ηy).
for t = 1, 2, . . . , T do

xt ← xt−1 − ηx∇xf(xt−1,yt−1),
yt ← PY(yt−1 + ηy∇yf(xt−1,yt−1)).

Randomly draw x̂ from {xt}Tt=1 at uniform.
Return: x̂.

Algorithm 2 Two-Timescale SGDA

Input: (x0,y0), stepsizes (ηx, ηy), batch size M .
for t = 1, 2, . . . , T do

Draw a collection of i.i.d. data samples {ξi}Mi=1.

xt ← xt−1 − ηx
(

1
M

∑M
i=1Gx(xt−1,yt−1, ξi)

)
.

yt ← PY
(
yt−1 + ηy( 1

M

∑M
i=1Gy(xt−1,yt−1, ξi))

)
.

Randomly draw x̂ from {xt}Tt=1 at uniform.
Return: x̂.

Remark 2.3.9 We remark that our notion of stationarity is natural in real scenarios. In-
deed, many applications arising from adversarial learning can be formulated as the minimax
problem (2.1), and, in this setting, x is the classifier while y is the adversarial noise for
the data. Practitioners are often interested in finding a robust classifier x instead of recov-
ering the adversarial noise y. Any stationary point of the function Φ(·) = maxy∈Y f(·,y)
corresponds precisely to a robust classifier that achieves better classification error.

Remark 2.3.10 There are also other notions of stationarity based on ∇f are proposed for
nonconvex-concave minimax problems in the literature [Lu et al., 2020, Nouiehed et al., 2019].
However, as pointed by Thekumparampil et al. [2019], these notions are weaker than that
defined in Definition 2.3.3 and 2.3.7. For the sake of completeness, we specify the relationship
between our notion of stationarity and other notions in Proposition 2.4.11 and 2.4.12.

2.4 Main Results

We present complexity results for two-timescale GDA and SGDA in the setting of nonconvex-
strongly-concave and nonconvex-concave minimax problems.

The algorithmic schemes that we study are extremely simple and are presented in Algo-
rithm 1 and 2. In particular, each iteration comprises one (stochastic) gradient descent step
over x with the stepsize ηx > 0 and one (stochastic) gradient ascent step over y with the
stepsize ηy > 0. The choice of stepsizes ηx and ηy is crucial for the algorithms in both the-
oretical and practical senses. In particular, classical GDA and SGDA assume that ηx = ηy,
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and the last iterate is only known convergent in strongly convex-concave problems [Liang and
Stokes, 2019]. Even in convex-concave settings (or bilinear settings as special cases), GDA
requires the assistance of averaging or other strategy [Daskalakis and Panageas, 2018a] to
converge, otherwise, with fixed stepsize, the last iterate will always diverge and hit the con-
straint boundary eventually [Daskalakis et al., 2018, Mertikopoulos et al., 2018, Daskalakis
and Panageas, 2018a]. In contrast, two-timescale GDA and SGDA (ηx 6= ηy) were shown to
be locally convergent and practical in training GANs [Heusel et al., 2017].

One possible reason for this phenomenon is that the choice of ηx 6= ηy reflects the non-
symmetric nature of nonconvex-(strongly)-concave problems. For sequential problems such
as robust learning, where the natural order of min-max is important (i.e., min-max is not
equal to max-min), practitioners often prefer faster convergence for the inner max problem.
Therefore, it is reasonable for us to choose ηx � ηy rather than ηx = ηy.

Finally, we make the standard assumption that the oracle G = (Gx, Gy) is unbiased and
has bounded variance.

Assumption 2.4.1 The oracle G satisfies E[G(x,y, ξ)−∇f(x,y] = 0 and E[‖G(x,y, ξ)−
∇f(x,y)‖2] ≤ σ2.

Nonconvex-strongly-concave minimax problems. We present the complexity results
for two-time-scale GDA and SGDA in the setting of nonconvex-strongly-concave minimax
problems. The following assumption is made throughout.

Assumption 2.4.2 The objective function and set (f : Rm+n → R,Y ⊆ Rn) satisfy that (i)
f is `-smooth and f(x, ·) is µ-strongly concave; and (ii) Y is a convex and bounded set with
a diameter D ≥ 0.

Let κ = `/µ denote the condition number and define

Φ(·) = max
y∈Y

f(·,y), y?(·) = argmax
y∈Y

f(·,y).

We present a technical lemma on the structure of the function Φ in the nonconvex-strongly-
concave setting.

Lemma 2.4.3 Under Assumption 2.4.2, Φ(·) is (`+κ`)-smooth with ∇Φ(·) = ∇xf(·,y?(·)).
Also, y?(·) is κ-Lipschitz.

Since Φ is differentiable, the notion of stationarity in Definition 2.3.3 is our target given only
access to the (stochastic) gradient of f . Denote ∆Φ = Φ(x0) − minx Φ(x), we proceed to
provide theoretical guarantees for Algorithm 1 and 2.

Theorem 2.4.4 (GDA) Under Assumption 2.4.2 and letting the stepsizes be chosen as
ηx = Θ(1/κ2`) and ηy = Θ(1/`), the iteration complexity (also the gradient complexity) of
Algorithm 1 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
.
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Theorem 2.4.5 (SGDA) Under Assumption 2.4.1 and 2.4.2 and letting the stepsizes ηx, ηy
be chosen as the same in Theorem 2.4.4 with the batch size M = Θ(max{1, κσ2ε−2}), the
iteration complexity of Algorithm 2 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which gives the total stochastic gradient complexity:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

We make several remarks. First, the two-timescale GDA and SGDA are guaranteed to find
an ε-stationary point of Φ(·) within O(κ2ε−2) gradient evaluations and O(κ3ε−4) stochastic
gradient evaluations, respectively. The ratio of stepsizes ηy/ηx is required to be Θ(κ2) due to
the nonsymmetric nature of our problem (min-max is not equal to max-min). The quantity
O(κ2) reflects an efficiency trade-off in the algorithm. Furthermore, both of the algorithms
are only guaranteed to visit an ε-stationary point within a certain number of iterations and
return x̂ which is drawn from {xt}Tt=1 at uniform. This does not mean that the last iterate xT
is the ε-stationary point. Such a scheme and convergence result are standard in nonconvex
optimization for GD or SGD to find stationary points. In practice, one usually returns
the iterate when the learning curve stops changing significantly. Finally, the minibatch size
M = Θ(ε−2) is necessary for the convergence property of two-timescale SGDA. Even though
our proof technique can be extended to the purely stochastic setting (M = 1), the complexity
result becomes worse, i.e., O(κ3ε−5). It remains open whether this gap can be closed or not
and we leave it as future work.

Nonconvex-concave minimax problems. We present the complexity results for two-
timescale GDA and SGDA in the nonconvex-concave minimax setting. The following as-
sumption is made throughout.

Assumption 2.4.6 The objective function and constraint set, (f : Rm+n → R,Y ⊂ Rn)
satisfy (i) f is `-smooth and f(·,y) is L-Lipschitz for each y ∈ Y and f(x, ·) is concave for
each x ∈ Rm; and (ii) Y is a convex and bounded set with a diameter D ≥ 0.

Since f(x, ·) is merely concave for each x ∈ Rm, the function Φ(·) = maxy∈Y f(·,y) is
possibly not differentiable. Fortunately, the following structural lemma shows that Φ is
`-weakly convex and L-Lipschitz.

Lemma 2.4.7 Under Assumption 2.4.6, Φ(·) is `-weakly convex and L-Lipschitz with the
gradient ∇xf(·,y?(·)) ∈ ∂Φ(·) where y?(·) ∈ argmaxy∈Y f(·,y).

Since Φ is `-weakly convex, the notion of stationarity in Definition 2.3.7 is our target given
only access to the (stochastic) gradient of f . Denote ∆̂Φ = Φ1/2`(x0) − minx Φ1/2`(x) and

∆̂0 = Φ(x0)− f(x0,y0), we present complexity results for Algorithm 1 and 2.
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Theorem 2.4.8 (GDA) Under Assumption 2.4.6 and letting the step sizes be chosen as
ηx = Θ(ε4/(`3L2D2)) and ηy = Θ(1/`), the iteration complexity (also the gradient complex-
ity) of Algorithm 1 to return an ε-stationary point is bounded by

O

(
`3L2D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
.

Theorem 2.4.9 (SGDA) Under Assumption 2.4.1 and 2.4.6 and letting the step sizes be
chosen as ηx = Θ(ε4/(`3D2(L2 + σ2))) and ηy = Θ(ε2/`σ2) with the batchsize M = 1, the
iteration complexity (also the stochastic gradient complexity) of Algorithm 2 to return an
ε-stationary point is bounded by

O

((
`3(L2 + σ2)D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
max

{
1,

σ2

ε2

})
.

We make several additional remarks. First, two-timescale GDA and SGDA are guaranteed to
find an ε-stationary point in terms of Moreau envelopes within O(ε−6) gradient evaluations
and O(ε−8) stochastic gradient evaluations, respectively. The ratio of stepsizes ηy/ηx is
required to be Θ(1/ε4) and this quantity reflects an efficiency trade-off in the algorithm.
Furthermore, similar arguments hold for the output of the algorithms. Finally, the minibatch
size M = 1 is allowed in Theorem 2.4.9, which is different from the result in Theorem 2.4.5.

Relationship between the stationarity notions. We provide additional technical re-
sults on the relationship between our notions of stationarity and other notions based on ∇f
in the literature [Lu et al., 2020, Nouiehed et al., 2019]. In particular, we show that two
notions can be translated in both directions with extra computational cost.

Definition 2.4.10 A pair of points (x,y) is an ε-stationary point (ε ≥ 0) of a differentiable
function Φ if, for y+ = PY(y + (1/`)∇yf(x,y)), we have

‖∇xf(x,y+)‖ ≤ ε, ‖y+ − y‖ ≤ ε/`.

We present our results in the following two propositions.

Proposition 2.4.11 Under Assumption 2.4.2, if a point x̂ is an ε-stationary point in terms
of Definition 2.3.3, an O(ε)-stationary point (x′,y′) in terms of Definition 2.4.10 can be
obtained using additional O(κ log(1/ε)) gradients or O(ε−2) stochastic gradients. Conversely,
if a point (x̂, ŷ) is an ε/κ-stationary point in terms of Definition 2.4.10, a point x̂ is an O(ε)-
stationary point in terms of Definition 2.3.3.

Proposition 2.4.12 Under Assumption 2.4.6, if a point x̂ is an ε-stationary point in terms
of Definition 2.3.7, an O(ε)-stationary point (x′,y′) in terms of Definition 2.4.10 can be
obtained using additional O(ε−2) gradients or O(ε−4) stochastic gradients. Conversely, if
a point (x̂, ŷ) is an ε2/`D-stationary point in terms of Definition 2.4.10, a point x̂ is an
O(ε)-stationary point in terms of Definition 2.3.3.
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To translate the notion of stationarity based on ∇f to our notion of stationarity, we need
to pay an additional factor of O(κ log(1/ε)) or O(ε−2) in the two settings. In this sense, our
notion of stationarity is stronger than that of Lu et al. [2020] and Nouiehed et al. [2019].

Discussion. Note that the focus of this paper is to provide basic nonasymptotic guarantees
for the simple, and widely-used, two-timescale GDA and SGDA algorithms in the nonconvex-
(strongly)-concave settings. We do not wish to imply that these algorithms are optimal in
any sense, nor that acceleration should necessarily be achieved by incorporating momentum
into the update for the variable y. In fact, the optimal rate for optimizing a nonconvex-
(strongly)-concave function remains open. The best known complexity bound has been
presented by Thekumparampil et al. [2019] and Kong and Monteiro [2021]. Both of the
analyses only require Õ(ε−3) gradient computations for solving nonconvex-concave problems
but suffer from rather complicated algorithmic schemes.

Moreover, our complexity results are also valid in the convex-concave setting and this
does not contradict results showing the divergence of GDA with fixed stepsize. We note a
few distinctions: (1) our results guarantee that GDA will visit ε-stationary points at some
iterates, which are not necessarily the last iterates; (2) our results only guarantee stationarity
in terms of xt, not (xt,yt). In fact, our proof permits the possibility of significant changes
in yt even when xt is already close to stationarity. This together with our choice ηx � ηy,
makes our results valid. To this end, we highlight that our algorithms can be used to achieve
an approximate Nash equilibrium for convex-concave functions (i.e., optimality for both x
and y). Instead of averaging, we run two passes of two-timescale GDA or SGDA for min-max
problem and max-min problem separately. That is, in the first pass we use ηx � ηy while
in the second pass we use ηx � ηy. Either pass will return an approximate stationary point
for each players, which jointly forms an approximate Nash equilibrium.

2.5 Overview of Proofs

In the nonconvex-strongly-concave setting, our proof involves setting a pair of stepsizes,
(ηx, ηy), which force {xt}t≥1 to move much more slowly than {yt}t≥1. Recall Lemma 2.4.3,
which guarantees that y?(·) is κ-Lipschitz:

‖y?(x1)− y?(x2)‖ ≤ κ‖x1 − x2‖.

If {xt}t≥1 moves slowly, then {y?(xt)}t≥1 also moves slowly. This allows us to perform
gradient ascent on a slowly changing strongly-concave function f(xt, ·), guaranteeing that
‖yt − y?(xt)‖ is small in an amortized sense. More precisely, letting the error be δt =
‖y?(xt)−yt‖2, the standard analysis of inexact nonconvex gradient descent implies a descent
inequality in which the sum of δt provides control:

Φ(xT+1)− Φ(x0) ≤ −Ω(ηx)

(
T∑
t=0

‖∇Φ(xt)‖2

)
+O(ηx`

2)

(
T∑
t=0

δt

)
.
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The remaining step is to show that the second term is always small compared to the first
term on the right-hand side. This can be done via a recursion for δt as follows:

δt ≤ γδt−1 + β‖∇Φ(xt−1)‖2,

where γ < 1 and β is small. Thus, δt exhibits a linear contraction and
∑T

t=0 δt can be

controlled by the term
∑T

t=0 ‖∇Φ(xt)‖2.
In the nonconvex-concave setting, the idea is to set a pair of learning rates (ηx, ηy) which

force {xt}t≥1 to move more slowly than {yt}t≥1. However, f(x, ·) is merely concave and y?(·)
is not unique. This means that, even if x1,x2 are extremely close, y?(x1) can be dramatically
different from y?(x2). Thus, ‖yt − y?(xt)‖ is no longer a viable error to control.

Fortunately, Lemma 2.4.7 implies that Φ is Lipschitz. That is to say, when the stepsize
ηx is very small, {Φ(xt)}t≥1 moves slowly:

|Φ(xt)− Φ(xt−1)| ≤ L‖xt − xt−1‖ ≤ ηxL
2.

Again, this allows us to perform gradient ascent on a slowly changing concave function
f(xt, ·), and guarantees that ∆t = f(xt, z) − f(xt,yt) is small in an amortized sense where
z ∈ y?(xt). The analysis of Davis and Drusvyatskiy [2019] implies that ∆t comes into the
following descent inequality:

Φ1/2`(xT+1)−Φ1/2`(x0) ≤ O(ηx`)

(
T∑
t=0

∆t

)
+O(η2

x`L
2(T+1))−O(ηx)

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
,

where the first term on the right-hand side is the error term. The remaining step is again to
show the error term is small compared to the sum of the first two terms on the right-hand
side. To bound the term

∑T
t=0 ∆t, we recall the following inequalities and use a telescoping

argument (where the optimal point y? does not change):

∆t ≤ ‖yt−y?‖2−‖yt+1−y?‖2
ηy

. (2.2)

The major challenge here is that the optimal solution y?(xt) can change dramatically and the
telescoping argument does not go through. An important observation is, however, that (2.2)
can be proved if we replace the y? by any y ∈ Y , while paying an additional cost that depends
on the difference in function value between y? and y. More specifically, we pick a block of
size B = O(ε2/ηx) and show that the following statement holds for any s ≤ ∀t < s+B,

∆t−1 ≤ O(`)(‖yt − y?(xs)‖2 − ‖yt+1 − y?(xs)‖2) +O(ηxL
2)(t− 1− s).

We perform an analysis on the blocks where the concave problems are similar so the tele-
scoping argument can now work. By carefully choosing ηx, the term

∑T
t=0 ∆t can also be

well controlled.
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2.1: Performance of WRM with GDmA and GDA on MNIST, Fashion-MNIST and
CIFAR-10 datasets. We demonstrate test classification accuracy vs. time for different WRM
models with GDmA and GDA. Note that γ = 0.4.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2.2: Performance of WRM with GDmA and GDA on MNIST, Fashion-MNIST and
CIFAR-10 datasets. We demonstrate test classification accuracy vs. time for different WRM
models with GDmA and GDA. Note that γ = 1.3.

2.6 Experiments

We present several empirical results to show that two-timescale GDA outperforms GDmax.
The task is to train the empirical Wasserstein robustness model (WRM) [Sinha et al., 2018]
over a collection of data samples {ξi}Ni=1 with `2-norm attack and a penalty parameter γ > 0.
Formally, we have

min
x

max
{yi}Ni=1⊆Y

1
N

[
N∑
i=1

(`(x,yi)− γ‖yi − ξi‖2)

]
. (2.3)

As demonstrated in Sinha et al. [2018], we choose γ > 0 sufficiently large such that `(x,yi)−
γ‖yi − ξi‖2 is strongly concave. Thus, this problem is nonconvex-strongly-concave.

We follow the setting of Sinha et al. [2018] and consider training a neural network clas-
sifier on three datasets1: MNIST, Fashion-MNIST, and CIFAR-10, with the default cross

1https://keras.io/datasets/
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validation. The architecture consists of 8 × 8, 6 × 6 and 5 × 5 convolutional filter layers
with ELU activations followed by a fully connected layer and softmax output. Small and
large adversarial perturbation is set with γ ∈ {0.4, 1.3} as the same as Sinha et al. [2018].
The baseline approach is denoted as GDmA in which ηx = ηy = 10−3 and each inner loop
contains 20 gradient ascent. Two-timescale GDA is denoted as GDA in which ηx = 5× 10−5

and ηy = 10−3. Figure 2.1 and 2.2 show that GDA consistently outperforms GDmA on all
datasets. Compared to MNIST and Fashion-MNIST, the improvement on CIFAR-10 is more
significant which is worthy further exploration in the future.

2.7 Conclusion

We show that two-time-scale GDA and SGDA algorithms return an ε-stationary point in
O(κ2ε−2) gradient evaluations andO(κ3ε−4) stochastic gradient evaluations in the nonconvex-
strongly-concave case, and O(ε−6) gradient evaluations and O(ε−8) stochastic gradient evalu-
ations in the nonconvex-concave case. Therefore, these two algorithms are provably efficient
in these settings. Future work aim to derive a lower bound for the complexity first-order
algorithms in nonconvex-concave minimax problems.

2.8 Proof of Technical Lemmas

We provide complete proofs for the lemmas in Section 2.3 and Section 9.3.

Proof of Lemma 2.3.6. We provide a proof for an expanded version of Lemma 2.3.6.

Lemma 2.8.1 If f is `-smooth and Y is bounded, we have

1. Φ1/2`(x) and ProxΦ/2`(x) are well-defined for ∀x ∈ Rm.

2. Φ(ProxΦ/2`(x)) ≤ Φ(x) for any x ∈ Rm.

3. Φ1/2` is `-smooth with ∇Φ1/2`(x) = 2`(x−ProxΦ/2`(x)).

4. Φ1/2`(x
′)− Φ1/2`(x)− (x′ − x)>∇Φ1/2`(x) ≤ (`/2)‖x′ − x‖2 for any x′,x ∈ Rm.

Proof. By the definition of Φ, we have

Ψ(x)
.
= Φ(x) + `‖x‖2

2
= max

y∈Y
{f(x,y) + `‖x‖2

2
}.

Since f is `-smooth, f(x,y) + (`/2)‖x‖2 is convex in x for any y ∈ Y . Since Y is bounded,
Danskin’s theorem [Rockafellar, 2015] implies that Ψ(x) is convex. Putting these pieces
yields that Φ(w) + `‖w − x‖2 is (`/2)-strongly convex. This implies that Φ1/2`(x) and
ProxΦ/2`(x) are well-defined. Furthermore, by the definition of ProxΦ/2`(x), we have

Φ(ProxΦ/2`(x)) ≤ Φ1/2`(ProxΦ/2`(x)) ≤ Φ(x), ∀x ∈ Rm.
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Moreover, Davis and Drusvyatskiy [2019, Lemma 2.2] implies that Φ1/2` is `-smooth with

∇Φ1/2`(x) = 2`(x−ProxΦ/2`(x)).

It follows from Nesterov [2013b, Theorem 2.1.5] that Φ1/2` satisfies the last inequality. �

Proof of Lemma 2.3.8. Denote x̂ := ProxΦ/2`(x), we have ∇Φ1/2`(x) = 2`(x − x̂) (cf.
Lemma 2.3.6) and hence ‖x̂− x‖ = ‖∇Φ1/2`(x)‖/2`. Furthermore, the optimality condition
for ProxΦ/2`(x) implies that 2`(x − x̂) ∈ ∂Φ(x̂). Putting these pieces together yields that
minξ∈∂Φ(x̂) ‖ξ‖ ≤ ‖∇Φ1/2`(x)‖.

Proof of Lemma 2.4.3. Since f(x,y) is strongly concave in y for each x ∈ Rm, a function
y?(·) is unique and well-defined. Then we claim that y?(·) is κ-Lipschitz. Indeed, let x1,x2 ∈
Rm, the optimality of y?(x1) and y?(x2) implies that

(y − y?(x1))>∇yf(x1,y
?(x1)) ≤ 0, ∀y ∈ Y , (2.4)

(y − y?(x2))>∇yf(x2,y
?(x2)) ≤ 0, ∀y ∈ Y . (2.5)

Letting y = y?(x2) in (2.4) and y = y?(x1) in (2.5) and summing the resulting two inequal-
ities yields

(y?(x2)− y?(x1))>(∇yf(x1,y
?(x1))−∇yf(x2,y

?(x2))) ≤ 0. (2.6)

Recall that f(x1, ·) is µ-strongly concave, we have

(y?(x2)− y?(x1))>(∇yf(x1,y
?(x2))−∇yf(x1,y

?(x1))) + µ‖y?(x2)− y?(x1)‖2 ≤ 0. (2.7)

Then we conclude the desired result by combining (2.6) and (2.7) with `-smoothness of f ,
i.e.,

µ‖y?(x2)− y?(x1)‖2 ≤ (y?(x2)− y?(x1))>(∇yf(x2,y
?(x2))−∇yf(x1,y

?(x2)))

≤ `‖y?(x2)− y?(x1)‖‖x2 − x1‖.

Since y?(x) is unique and Y is convex and bounded, we conclude from Danskin’s theo-
rem [Rockafellar, 2015] that Φ is differentiable with ∇Φ(x) = ∇xf(x,y?(x)). Since ∇Φ(x) =
∇xf(x,y?(x)), we have

‖∇Φ(x)−∇Φ(x′)‖ = ‖∇xf(x,y?(x))−∇xf(x′,y?(x′))‖ ≤ `(‖x− x′‖+ ‖y?(x)− y?(x′)‖).

Since y?(·) is κ-Lipschitz, we conclude the desired result by plugging ‖y?(x)− y?(x′)‖ ≤ κ.
Since κ ≥ 1, Φ is 2κ`-smooth. Nesterov [2013b, Theorem 2.1.5] implies the last inequality.

Proof of Lemma 2.4.7. By the proof in Lemma 2.8.1, Φ is `-weakly convex and ∂Φ(x) =
∂Ψ(x)− `x where Ψ(x) = maxy∈Y{f(x,y)+(`/2)‖x‖2}. Since f(x,y)+(`/2)‖x‖2 is convex
in x for each y ∈ Y and Y is bounded, Danskin’s theorem implies that ∇xf(x,y?(x)) + `x ∈
∂Ψ(x). Putting these pieces together yields that ∇xf(x,y?(x)) ∈ ∂Φ(x).
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Proof of Lemma on Stochastic Gradient. The following lemma establishes some prop-
erties of the stochastic gradients sampled at each iteration.

Lemma 2.8.2 1
M

∑M
i=1Gx(xt,yt, ξi) and 1

M

∑M
i=1Gy(xt,yt, ξi) are unbiased and have bounded

variance,

E
[

1
M

∑M
i=1 Gx(xt,yt, ξi)

]
= ∇xf(xt,yt), E

[∥∥∥ 1
M

∑M
i=1Gx(xt,yt, ξi)

∥∥∥2
]
≤ ‖∇xf(xt,yt)‖2 + σ2

M
,

E
[

1
M

∑M
i=1 Gy(xt,yt, ξi)

]
= ∇yf(xt,yt), E

[∥∥∥ 1
M

∑M
i=1Gy(xt,yt, ξi)

∥∥∥2
]
≤ ‖∇yf(xt,yt)‖2 + σ2

M
.

Proof. Since G = (Gx, Gy) is unbiased, we have

E

[
1
M

M∑
i=1

Gx(xt,yt, ξi)

]
= ∇xf(xt,yt), E

[
1
M

M∑
i=1

Gy(xt,yt, ξi)

]
= ∇yf(xt,yt).

Furthermore, we have

E

∥∥∥∥∥ 1
M

M∑
i=1

Gx(xt,yt, ξi)−∇xf(xt,yt)

∥∥∥∥∥
2
 =

∑M
i=1 E[‖Gx(xt,yt,ξi)−∇xf(xt,yt)‖2]

M2 ≤ σ2

M
,

E

∥∥∥∥∥ 1
M

M∑
i=1

Gy(xt,yt, ξi)−∇yf(xt,yt)

∥∥∥∥∥
2
 =

∑M
i=1 E[‖Gy(xt,yt,ξi)−∇yf(xt,yt)‖2]

M2 ≤ σ2

M
.

Putting these pieces together yields the desired result. �

2.9 Proof for Propositions 2.4.11 and 2.4.12

We provide the detailed proof of Propositions 2.4.11 and 2.4.12.

Proof of Proposition 2.4.11. Assume that a point x̂ satisfies that ‖∇Φ(x̂)‖ ≤ ε, the
optimization problem maxy∈Y f(x̂,y) is strongly concave (cf. Assumption 2.4.2) and y?(x̂)
is uniquely defined. We apply gradient descent for solving such problem and obtain a point
y′ ∈ Y satisfying that

y+ = PY(y′ + (1/`)∇yf(x̂,y′)), ‖y+ − y′‖ ≤ ε/`, ‖y+ − y?(x̂)‖ ≤ ε.

If ‖∇Φ(x̂)‖ ≤ ε, we have

‖∇xf(x̂,y+)‖ ≤ ‖∇xf(x̂,y+)−∇Φ(x̂)‖+ ‖∇Φ(x̂)‖ = ‖∇xf(x̂,y+)−∇xf(x̂,y?(x̂))‖+ ε.

Since f(·, ·) is `-smooth, we have

‖∇xf(x̂,y+)‖ ≤ `‖y+ − y?(x̂)|‖+ ε = O(ε).
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The required number of gradient evaluations is O(κ log(1/ε)). This argument holds for
applying stochastic gradient with proper stepsize and the required number of stochastic
gradient evaluations is O(ε−2).

Conversely, if a point (x̂, ŷ) satisfies that

‖∇xf(x̂, ŷ+)‖ ≤ ε/κ, ‖ŷ+ − ŷ‖ ≤ ε/κ`,

where ŷ+ = PY(ŷ + (1/`)∇yf(x̂, ŷ)). Then, we have

‖∇Φ(x̂)‖ ≤ ‖∇Φ(x̂)−∇xf(x̂, ŷ+)‖+ ‖∇xf(x̂, ŷ+)‖ ≤ `‖ŷ+ − y?(x̂)‖+ ε/κ.

Since f(x̂, ·) is µ-strongly-concave over Y , the global error bound condition [Drusvyatskiy
and Lewis, 2018] holds true here and we have

‖ŷ+ − y?(x̂)‖ ≤ ‖ŷ − y?(x̂)‖ ≤ κ‖PY(ŷ + (1/`)∇yf(x̂, ŷ))− ŷ‖ ≤ ε/`.

Therefore, we conclude that

‖∇Φ(x̂)‖ ≤ ε+ ε/κ = O(ε).

This completes the proof.

Proof of Proposition 2.4.12. Assume that a point x̂ satisfies that ‖∇Φ1/2`(x̂)‖ ≤ ε,
the objective function f(x,y) + `‖x − x̂‖2 is strongly convex in x and concave in y (cf.
Assumption 2.4.6) and x?(x̂) = argminx∈Rm Φ(x) + `‖x − x̂‖2 is uniquely defined. We can
apply extragradient algorithm for solving such problem and obtain a point (x′,y′) satisfying
that

‖∇xf(x′,y+) + 2`(x′ − x̂)‖ ≤ ε, ‖y+ − y′‖ ≤ ε/`, ‖x′ − x?(x̂)‖ ≤ ε/`.

where y+ = PY(y′ + (1/`)∇yf(x′,y′)). Since 2`‖x?(x̂)− x̂‖ = ‖∇Φ1/2`(x̂)‖ ≤ ε, we have

‖∇xf(x′,y+)‖ ≤ ‖∇xf(x′,y+) + 2`(x′ − x̂)‖+ 2`‖x′ − x̂‖ ≤ ε+ 2`‖x′ − x?(x̂)‖+ 2`‖x?(x̂)− x̂‖
≤ 3ε+ ε = O(ε).

The required number of gradient evaluations is indeed O(ε−2) [Mokhtari et al., 2020a]. This
argument holds for applying stochastic mirror-prox algorithm and the required number of
stochastic gradient evaluations is O(ε−4) [Juditsky et al., 2011].

Conversely, we let ŷ+ = PY(ŷ + (1/`)∇yf(x̂, ŷ)) for simplicity. By definition, we have

‖∇Φ1/2`(x̂)‖2 = 4`2‖x̂− x?(x̂)‖2.

Since Φ(·) + `‖ · −x̂‖2 is `/2-strongly-convex, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x̂− x?(x̂)‖2 (2.8)

= Φ(x̂)− Φ(x?(x̂))− `‖x?(x̂)− x̂‖2 ≥ `‖x̂−x?(x̂)‖2
4

=
‖∇Φ1/2`(x̂)‖2

16`
.
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Furthermore, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

≤ max
y∈Y

f(x̂,y)− f(x̂, ŷ+) + f(x̂, ŷ+)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

≤ max
y∈Y

f(x̂,y)− f(x̂, ŷ+) + (f(x̂, ŷ+)− f(x?(x̂), ŷ+)− `‖x?(x̂)− x̂‖2)

≤ max
y∈Y

f(x̂,y)− f(x̂, ŷ+) + (‖x̂− x?(x̂)‖‖∇xf(x̂, ŷ+)‖ − `‖x̂− x?(x̂)‖2)

≤ max
y∈Y

f(x̂,y)− f(x̂, ŷ+) + ‖∇xf(x̂,ŷ+)‖2
4`

.

By the definition of ŷ+, we have

(y − ŷ+)>(ŷ+ − ŷ − (1/`)∇yf(x̂, ŷ)) ≥ 0 for all y ∈ Y .
Together with the `-smoothness of the function f(x̂, ·) and the boundedness of Y , we have

f(x̂,y)− f(x̂, ŷ+) ≤ `
2
(‖y − ŷ‖2 − ‖y − ŷ+‖2) ≤ `D‖ŷ+ − ŷ‖ for all y ∈ Y .

Putting these pieces together yields that

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2 ≤ `D‖ŷ+ − ŷ‖+ ‖∇xf(x̂,ŷ+)‖2
4`

.

Since a point (x̂, ŷ) satisfies ‖∇xf(x̂, ŷ+)‖ ≤ ε2/(`D) and ‖ŷ+ − ŷ‖ ≤ ε2/(`2D), we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2 ≤ ε2

`
+ ε4

4`3D2 . (2.9)

Putting these pieces together yields that ‖∇Φ1/2`(x̂)‖ = O(ε). This completes the proof.

2.10 Proofs for Nonconvex-Strongly-Concave Setting

We first specify the choice of parameters in Theorems 2.4.4 and 2.4.5. Then, we present
the proof for nonconvex-strongly-concave setting with several technical lemmas. Note first
that the case of `D . ε is trivial. Indeed, this means that the set Y is sufficiently small
such that a single gradient ascent step is enough for approaching the ε-neighborhood of the
optimal solution. In this case, the nonconvex-strongly-concave minimax problem reduces to
a nonconvex smooth minimization problem, which has been studied in the existing literature.

We present the full version of Theorems 2.4.4 and 2.4.5 with the detailed choice of ηx, ηy
and M which are important to subsequent analysis.

Theorem 2.10.1 Under Assumption 2.4.2 and letting the step sizes ηx and ηy be chosen
as ηx = 1/[16(κ + 1)2`] and ηy = 1/`, the iteration complexity of Algorithm 1 to return an
ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which is also the total gradient complexity of the algorithm.
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Theorem 2.10.2 Under Assumptions 2.4.1 and 2.4.2 and letting the step sizes ηx and ηy
be the same in Theorem 2.4.4 with the batch size M = max{1, 48κσ2ε−2}, the number of
iterations required by Algorithm 2 to return an ε-stationary point is bounded by O((κ2`∆Φ +
κ`2D2)ε−2) which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

We present three key lemmas which are important for the subsequent analysis.

Lemma 2.10.3 For Algorithm 1, the iterates {xt}t≥1 satisfies the following inequality,

Φ(xt) ≤ Φ(xt−1)−
(
ηx
2
− 2η2

xκ`
)
‖∇Φ(xt−1)‖2 +

(
ηx
2

+ 2η2
xκ`
)
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2.

For Algorithm 2, the iterates {xt}t≥1 satisfy the following inequality:

E [Φ(xt)] ≤ E [Φ(xt−1)]−
(
ηx
2
− 2η2

xκ`
)
E[‖∇Φ(xt−1)‖2]

+
(
ηx
2

+ 2η2
xκ`
)
E[‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2] + η2

xκ`σ
2

M
.

Proof. We first consider the deterministic setting. Since Φ is (`+ κ`)-smooth, we have

Φ(xt)− Φ(xt−1)− (xt − xt−1)>∇Φ(xt−1) ≤ κ`‖xt − xt−1‖2. (2.10)

Plugging xt − xt−1 = −ηx∇xf(xt−1,yt−1) into (2.10) yields that

Φ(xt) ≤ Φ(xt−1)− ηx‖∇Φ(xt−1)‖2 + η2
xκ`‖∇xf(xt−1,yt−1)‖2 (2.11)

+ηx(∇Φ(xt−1)−∇xf(xt−1,yt−1))>∇Φ(xt−1).

By Young’s inequality, we have

(∇Φ(xt−1)−∇xf(xt−1,yt−1))>∇Φ(xt−1) ≤ ‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2+‖∇Φ(xt−1)‖2
2

. (2.12)

By the Cauchy-Schwartz inequality, we have

‖∇xf(xt−1,yt−1)‖2 ≤ 2(‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 + ‖∇Φ(xt−1)‖2). (2.13)

Plugging (2.12) and (2.13) into (2.11) yields the first desired inequality.
We proceed to the stochastic setting. Plugging xt−xt−1 = −ηx( 1

M

∑M
i=1Gx(xt−1,yt−1, ξi))

into (2.10) yields that

Φ(xt) ≤ Φ(xt−1)− ηx‖∇Φ(xt−1)‖2 + η2
xκ`

∥∥∥∥∥ 1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2

+ηx

(
∇Φ(xt−1)−

(
1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)

))>
∇Φ(xt).
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Taking the expectation on both sides, conditioned on (xt−1,yt−1), yields that

E[Φ(xt) | xt−1,yt−1] ≤ Φ(xt−1)− ηx‖∇Φ(xt−1)‖2 + η2
xκ`‖∇xf(xt−1,yt−1)‖2 (2.14)

+ηx(∇Φ(xt−1)−∇xf(xt−1,yt−1))>∇Φ(xt−1) + η2
xκ`‖∇xf(xt−1,yt−1)‖2

+η2
xκ`E

∥∥∥∥∥ 1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)−∇xf(xt−1,yt−1)

∥∥∥∥∥
2

| xt−1,yt−1

 .
Plugging (2.12) and (2.13) into (2.14) and taking the expectation of both sides yields the
second desired inequality. �

Lemma 2.10.4 For Algorithm 1, let δt = ‖y?(xt)−yt‖2, the following statement holds true,

δt ≤
(
1− 1

2κ
+ 4κ3`2η2

x

)
δt−1 + 4κ3η2

x‖∇Φ(xt−1)‖2.

For Algorithm 2, let δt = E[‖y?(xt)− yt‖2], the following statement holds true,

δt ≤
(
1− 1

2κ
+ 8κ3`2η2

x

)
δt−1 + 8κ3η2

xE
[
‖∇Φ(xt−1)‖2

]
+ 4σ2κ3η2

x

M
+ 2σ2

`2M
.

Proof. We first prove the results for the deterministic setting. Since f(xt, ·) is µ-strongly
concave and ηy = 1/`, we have

‖y?(xt−1)− yt‖2 ≤
(
1− 1

κ

)
δt−1. (2.15)

By Young’s inequality, we have

δt ≤
(

1 + 1
2(κ−1)

)
‖y?(xt−1)− yt‖2 + (1 + 2(κ− 1))‖y?(xt)− y?(xt−1)‖2

≤
(

2κ−1
2κ−2

)
‖y?(xt−1)− yt‖2 + 2κ‖y?(xt)− y?(xt−1)‖2

(2.15)

≤
(
1− 1

2κ

)
δt−1 + 2κ‖y?(xt)− y?(xt−1)‖2.

Since y?(·) is κ-Lipschitz, ‖y?(xt)− y?(xt−1)‖ ≤ κ‖xt − xt−1‖. Furthermore, we have

‖xt − xt−1‖2 = η2
x‖∇xf(xt−1,yt−1)‖2 ≤ 2η2

x`
2δt−1 + 2η2

x‖∇Φ(xt−1)‖2.

Putting these pieces together yields the first desired inequality.
We proceed to the stochastic setting. Since f(xt, ·) is µ-strongly concave and ηy = 1/`,

we have
E[‖y?(xt−1)− yt‖2] ≤

(
1− 1

κ

)
δt−1 + σ2

`2M
. (2.16)

By Young’s inequality, we have

δt ≤
(

1 + 1
2(max{κ,2}−1)

)
E[‖y?(xt−1)− yt‖2] + (1 + 2(max{κ, 2} − 1))E[‖y?(xt)− y?(xt−1)‖2]

≤
(

2 max{κ,2}−1
2 max{κ,2}−2

)
E[‖y?(xt−1)− yt‖2] + 4κE[‖y?(xt)− y?(xt−1)‖2]

(2.16)

≤
(
1− 1

2κ

)
δt−1 + 4κE[‖y?(xt)− y?(xt−1)‖2] + 2σ2

`2M
.
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Since y?(·) is κ-Lipschitz, ‖y?(xt)− y?(xt−1)‖ ≤ κ‖xt − xt−1‖. Furthermore, we have

E[‖xt−xt−1‖2] = η2
xE

∥∥∥∥∥ 1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2
 ≤ 2η2

x`
2δt−1+2η2

xE[‖∇Φ(xt−1)‖2]+ η2
xσ

2

M
.

Putting these pieces together yields the second desired inequality. �

Lemma 2.10.5 For Algorithm 1, let δt = ‖y?(xt)−yt‖2, the following statement holds true,

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 + 9ηx`2δt−1

16
.

For Algorithm 2, let δt = E[‖y?(xt)− yt‖2], the following statement holds true,

E[Φ(xt)] ≤ E[Φ(xt−1)]− 7ηx
16

E[‖∇Φ(xt−1)‖2] + 9ηx`2δt−1

16
+ η2

xκ`σ
2

M
.

Proof. For two-timescale GDA and SGDA, ηx = 1/16(κ+ 1)` and hence

7ηx
16
≤ ηx

2
− 2η2

xκ` ≤
ηx
2

+ 2η2
xκ` ≤

9ηx
16
. (2.17)

Combining (2.17) with the first inequality in Lemma 2.10.3 yields that

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 + 9ηx

16
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2.

Since ∇Φ(xt−1) = ∇xf(xt−1,y
?(xt−1)), we have

‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 ≤ `2‖y?(xt−1)− yt−1‖2 = `2δt−1.

Putting these pieces together yields the first desired inequality.
We proceed to the results for the stochastic setting, combining (2.17) with the second

inequality in Lemma 2.10.3 yields that

E[Φ(xt)] ≤ E[Φ(xt−1)]− 7ηx
16

E[‖∇Φ(xt−1)‖2] + 9ηx
16

E[‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2] + η2
xκ`σ

2

M
.

Since ∇Φ(xt−1) = ∇xf(xt−1,y
?(xt−1)), we have

E[‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2] ≤ `2E[‖y?(xt−1)− yt−1‖2] = `2δt−1.

Putting these pieces together yields the second desired inequality. �
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Proof of Theorem 2.10.1. We define γ = 1 − 1/2κ + 4κ3`2η2
x throughout. Performing

the first inequality in Lemma 2.10.4 recursively yields that

δt ≤ γtδ0 +4κ3η2
x

(
t−1∑
j=0

γt−1−j‖∇Φ(xj)‖2

)
≤ γtD2 +4κ3η2

x

(
t−1∑
j=0

γt−1−j‖∇Φ(xj)‖2

)
. (2.18)

Combining (2.18) with the first inequality in Lemma 2.10.5 yields that,

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 + 9ηx`2γt−1D2

16
+ 9η3

x`
2κ3

4

(
t−2∑
j=0

γt−2−j‖∇Φ(xj)‖2

)
. (2.19)

Summing up (2.19) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

Φ(xT+1) ≤ Φ(x0)−7ηx
16

T∑
t=0

‖∇Φ(xt)‖2+9ηx`2D2

16

(
T∑
t=0

γt

)
+9η3

x`
2κ3

4

(
T+1∑
t=1

t−2∑
j=0

γt−2−j‖∇Φ(xj)‖2

)
.

Since ηx = 1/16(κ + 1)2`, we have γ ≤ 1 − 1
4κ

and 9η3
x`

2κ3

4
≤ 9ηx

1024κ
. This implies that∑T

t=0 γ
t ≤ 4κ and

T+1∑
t=1

t−2∑
j=0

γt−2−j‖∇Φ(xj)‖2 ≤ 4κ

(
T∑
t=0

‖∇Φ(xt)‖2

)

Putting these pieces together yields that

Φ(xT+1) ≤ Φ(x0)− 103ηx
256

(
T∑
t=0

‖∇Φ(xt)‖2

)
+ 9ηxκ`2D2

4
.

By the definition of ∆Φ, we have

1

T + 1

(
T∑
t=0

‖∇Φ(xt)‖2

)
≤ 256(Φ(x0)−Φ(xT+1))

103ηx(T+1)
+ 576κ`2D2

103(T+1)
≤ 128κ2`∆Φ+5κ`2D2

T+1
.

This implies that the number of iterations required by Algorithm 1 to return an ε-stationary
point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which gives the same total gradient complexity.
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Proof of Theorem 2.10.2. We define γ = 1 − 1/2κ + 8κ3`2η2
x throughout. Performing

the second inequality in Lemma 2.10.4 recursively together with δ0 ≤ D2 yields that

δt ≤ γtD2 + 8κ3η2
x

(
t−1∑
j=0

γt−1−jE[‖∇Φ(xj)‖2]

)
+
(

4σ2κ3η2
x

M
+ 2σ2

`2M

)( t−1∑
j=0

γt−1−j

)
. (2.20)

Combining (2.20) with the second inequality in Lemma 2.10.5 yields that,

E [Φ(xt)]] ≤ E[Φ(xt−1)]− 7ηx
16

E[‖∇Φ(xt−1)‖2] + 9ηx`2γt−1D2

16
+ η2

xκ`σ
2

M
(2.21)

+9η3
x`

2κ3

2

(
t−2∑
j=0

γt−2−jE[‖∇Φ(xj)‖2]

)
+ 9ηx`2

8

(
2σ2κ3η2

x

M
+ σ2

`2M

)( t−2∑
j=0

γt−2−j

)
.

Summing up (2.21) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

E[Φ(xT+1)] ≤ Φ(x0)− 7ηx
16

T∑
t=0

E[‖∇Φ(xt)‖2] + 9ηx`2D2

16

(
T∑
t=0

γt

)

+η2
xκ`σ

2(T+1)
M

+ 9η3
x`

2κ3

2

(
T+1∑
t=1

t−2∑
j=0

γt−2−jE[‖∇Φ(xj)‖2]

)

+9ηx`2

8

(
2σ2κ3η2

x

M
+ σ2

`2M

)(T+1∑
t=1

t−2∑
j=0

γt−2−j

)
.

Since ηx = 1/16(κ + 1)2`, we have γ ≤ 1 − 1
4κ

and 9η3
x`

2κ3

2
≤ 9ηx

1024κ
and 2σ2κ3η2

x

M
≤ σ2

`2M
. This

implies that
∑T

t=0 γ
t ≤ 4κ and

T+1∑
t=1

t−2∑
j=0

γt−2−jE[‖∇Φ(xj)‖2] ≤ 4κ

(
T∑
t=0

E[‖∇Φ(xt)‖2]

)
,(

T+1∑
t=1

t−2∑
j=0

γt−1−j

)
≤ 4κ(T + 1).

Putting these pieces together yields that

E[Φ(xT+1)] ≤ Φ(x0)− 103ηx
256

(
T∑
t=0

E[‖∇Φ(xt)‖2]

)
+ 9ηxκ`2D2

4
+ ηxσ2(T+1)

16κM
+ 9ηxκσ2(T+1)

M
.

By the definition of ∆Φ, we have

1
T+1

(
T∑
t=0

E
[
‖∇Φ(xt)‖2

])
≤ 256(Φ(x0)−E[Φ(xT+1)])

103ηx(T+1)
+ 576κ`2D2

103(T+1)
+ 16σ2

103κM
+ 2304κσ2

103M

≤ 2∆Φ

ηx(T+1)
+ 5κ`2D2

T+1
+ 24κσ2

M

≤ 128κ2`∆Φ+5κ`2D2

T+1
+ 24σ2κ

M
.
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This implies that the number of iterations required by Algorithm 2 to return an ε-stationary
point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
.

iterations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

This completes the proof.

2.11 Proofs for Nonconvex-Concave Setting

We first specify the choice of parameters in Theorems 2.4.8 and 2.4.9. Then we present
the proofs for nonconvex-concave setting with several technical lemmas. Differently from
the previous section, we include the case of `D . ε in the analysis for nonconvex-concave
minimax problems.

We present the full version of Theorems 2.4.8 and 2.4.9 with the detailed choice of ηx, ηy
and M which are important to subsequent analysis.

Theorem 2.11.1 Under Assumption 2.4.6 and letting the step sizes ηx and ηy be chosen as
ηx = min{ε2/[16`L2], ε4/[4096`3L2D2]} and ηy = 1/`, the iterations complexity of Algorithm
1 to return an ε-stationary point is bounded by

O

(
`3L2D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
.

which is also the total gradient complexity of the algorithm.

Theorem 2.11.2 Under Assumptions 2.4.1 and 2.4.6 and letting the step sizes ηx and ηy be
chosen as ηx = min{ε2/[16`(L2+σ2)], ε4/[8192`3D2L

√
L2 + σ2], ε6/[65536`3D2σ2L

√
L2 + σ2]}

and ηy = min{1/2`, ε2/[16`σ2]} with a batch size M = 1, the iteration complexity of Algo-
rithm 2 to return an ε-stationary point is bounded by

O

((
`3 (L2 + σ2)D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
max

{
1,

σ2

ε2

})
,

which is also the total gradient complexity of the algorithm.

We present three key lemmas which are important for the subsequent analysis.
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Lemma 2.11.3 For Algorithm 1, let ∆t = Φ(xt) − f(xt,yt), the following statement holds
true,

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx`∆t−1 − ηx
4
‖∇Φ1/2`(xt−1)‖2 + η2

x`L
2.

For Algorithm 2, let ∆t = E[Φ(xt)− f(xt,yt)], the following statement holds true,

E[Φ1/2`(xt)] ≤ E[Φ1/2`(xt−1)] + 2ηx`∆t−1 − ηx
4
E[‖∇Φ1/2`(xt−1)‖2] + η2

x`(L
2 + σ2).

Proof. We first consider the deterministic setting. Let x̂t−1 = ProxΦ/2`(xt−1), we have

Φ1/2`(xt) ≤ Φ(x̂t−1) + `‖x̂t−1 − xt‖2. (2.22)

Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

‖x̂t−1 − xt‖2 = ‖x̂t−1 − xt−1 + ηx∇xf(xt−1,yt−1)‖2 (2.23)

≤ ‖x̂t−1 − xt−1‖2 + 2ηx〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2
xL

2.

Plugging (2.23) into (2.22) yields that

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx`〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2
x`L

2. (2.24)

Since f is `-smooth, we have

〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉 ≤ f(x̂t−1,yt−1)− f(xt−1,yt−1) + `
2
‖x̂t−1 − xt−1‖2. (2.25)

Furthermore, Φ(x̂t−1) ≥ f(x̂t−1,yt−1). By the definition of ∆t, we have

f(x̂t−1,yt−1)− f(xt−1,yt−1) ≤ Φ(x̂t−1)− f(xt−1,yt−1) ≤ ∆t−1 − `
2
‖x̂t−1 − xt−1‖2. (2.26)

Plugging (2.25) and (2.26) into (2.24) together with ‖x̂t−1 − xt−1‖ = ‖∇Φ1/2`(xt−1)‖/2`
yields the first desired inequality.

We proceed to consider the stochastic setting. Indeed, we have

‖x̂t−1−xt‖2 ≤ ‖x̂t−1−xt−1‖2+η2
x

∥∥∥∥∥ 1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥+2ηx〈x̂t−1−xt−1,
1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)〉.

Taking the expectation of both sides of the above inequality, conditioned on (xt−1,yt−1),
together with Lemma 2.8.2 and the Lipschitz property of f(·,yt−1) yields that

E[‖x̂t−1 − xt‖2 | xt−1,yt−1] ≤ ‖x̂t−1 − xt−1‖2 + 2ηx〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2
xL

2

+η2
xE

∥∥∥∥∥∇xf(xt−1,yt−1)− 1
M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2

| xt−1,yt−1

 .
Taking the expectation of both sides together with Lemma 2.8.2 yields that

E[‖x̂t−1 − xt‖2] ≤ E[‖x̂t−1 − xt−1‖2] + 2ηxE[〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉] + η2
x(L2 + σ2).
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Combining with (2.25) and (2.26) yields that

E[Φ1/2`(xt)] ≤ E[Φ1/2`(xt−1)] + 2ηxE[〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉] + η2
x`(L

2 + σ2)

≤ E[Φ1/2`(xt−1)] + 2ηx`∆t−1 − ηx`2E[‖x̂t−1 − xt−1‖2] + η2
x`(L

2 + σ2).

Combined with ‖x̂t−1 − xt−1‖ = ‖∇Φ1/2`(xt−1)‖/2` yields the second desired inequality. �

Lemma 2.11.4 For Algorithm 1, let ∆t = Φ(xt) − f(xt,yt) and s ≤ t − 1, the following
statement holds true,

∆t−1 ≤ ηxL
2(2t−2s−1) + `

2
(‖yt−1−y?(xs)‖2−‖yt−y?(xs)‖2) + (f(xt,yt)−f(xt−1,yt−1)).

For Algorithm 2, let ∆t = E [Φ(xt)− f(xt,yt)] and s ≤ t− 1, the following statement holds
true,

∆t−1 ≤ ηxL
√
L2 + σ2(2t− 2s− 1)

+ 1
2ηy

(E[‖yt−1 − y?(xs)‖2]− E[‖yt − y?(xs)‖2]) + E[f(xt,yt)− f(xt−1,yt−1)] + ηyσ2

2
.

Proof. We first consider the deterministic setting. For any y ∈ Y , the convexity of Y and
the update formula of yt imply that

(y − yt)
>(yt − yt−1 − ηy∇yf(xt−1,yt−1)) ≥ 0.

Rearranging the inequality yields that

‖y−yt‖2 ≤ 2ηy(yt−1−y)>∇yf(xt−1,yt−1)+2ηy(yt−yt−1)>∇yf(xt−1,yt−1)+‖y−yt−1‖2−‖yt−yt−1‖2.

Since f(xt−1, ·) is concave and `-smooth and ηy = 1/`, we have

f(xt−1,y)− f(xt−1,yt) ≤ `
2
(‖y − yt−1‖2 − ‖y − yt‖2).

Plugging y = y?(xs) (s ≤ t− 1) in the above inequality yields that

f(xt−1,y
?(xs))− f(xt−1,yt) ≤ `

2
(‖yt−1 − y?(xs)‖2 − ‖yt − y?(xs)‖2).

By the definition of ∆t−1, we have

∆t−1 ≤ (f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs)))

+(f(xt,yt)− f(xt−1,yt−1)) + (f(xt−1,yt)− f(xt,yt)) + `
2
(‖yt−1 − y?(xs)‖2 − ‖yt − y?(xs)‖2).

Since f(xs,y
?(xs)) ≥ f(xs,y) for ∀y ∈ Y , we have

f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs)) (2.27)

≤ f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1)) + f(xs,y
?(xt−1))− f(xt−1,y

?(xs))

≤ f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1)) + f(xs,y
?(xs))− f(xt−1,y

?(xs)).
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Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1)) ≤ L‖xt−1 − xs‖ ≤ ηxL
2(t− 1− s),

f(xs,y
?(xs))− f(xt−1,y

?(xs)) ≤ L‖xt−1 − xs‖ ≤ ηxL
2(t− 1− s)

f(xt−1,yt)− f(xt,yt) ≤ L‖xt−1 − xt‖ ≤ ηxL
2.

Putting these pieces together yields the first desired inequality.
We proceed to consider the stochastic setting. For ∀y ∈ Y , we use the similar argument

and obtain that

‖y − yt‖2 ≤ 2ηy(yt−1 − y)>Gy(xt−1,yt−1, ξ) + 2ηy(yt − yt−1)>∇yf(xt−1,yt−1)

+2ηy(yt − yt−1)>(Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)) + ‖y − yt−1‖2 − ‖yt − yt−1‖2.

Using the Young’s inequality, we have

ηy(yt−yt−1)>(Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)) ≤ ‖yt−yt−1‖2
4

+η2
y‖Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)‖2.

Taking the expectation of both sides of the above equality, conditioned on (xt−1,yt−1),
together with Lemma 2.8.2 yields that

E[‖y − yt‖2 | xt−1,yt−1]

≤ 2ηy(yt−1 − y)>∇yf(xt−1,yt−1) + 2ηyE[(yt − yt−1)>∇yf(xt−1,yt−1) | xt−1,yt−1]

+2η2
yE[‖∇yf(xt−1,yt−1)−Gy(xt−1,yt−1, ξ)‖2 | xt−1,yt−1] + ‖y − yt−1‖2 − E[‖yt−yt−1‖2|xt−1,yt−1]

2
.

Taking the expectation of both sides together with Lemma 2.8.2 yields that

E[‖y − yt‖2] ≤ 2ηyE[(yt−1 − y)>∇yf(xt−1,yt−1) + (yt − yt−1)>∇yf(xt−1,yt−1)]

+E[‖y − yt−1‖2]− E[‖yt−yt−1‖2]
2

+ η2
yσ

2.

Since f(xt−1, ·) is concave and `-smooth, Y is convex and ηy ≤ 1/2`, we have

E[‖y − yt‖2] ≤ E[‖y − yt−1‖2] + 2ηy(f(xt−1,yt)− f(xt−1,y)) + η2
yσ

2.

Plugging y = y?(xs) (s ≤ t− 1) in the above inequality yields that

E[f(xt−1,y
?(xs))− f(xt−1,yt)] ≤ 1

2ηy
(E[‖yt−1 − y?(xs)‖2]− E[‖yt − y?(xs)‖2]) + ηyσ2

2
.

By the definition of ∆t−1, we have

∆t−1 ≤ E[f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs)) + (f(xt,yt)− f(xt−1,yt−1)) + (f(xt−1,yt)− f(xt,yt))]

+ηyσ2

2
+ 1

2ηy
(E[‖yt−1 − y?(xs)‖2]− E[‖yt − y?(xs)‖2]).
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By the fact that f(·,y) is L-Lipschitz for ∀y ∈ Y and Lemma 2.8.2, we have

E[f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1))] ≤ ηxL
√
L2 + σ2(t− 1− s),

E[f(xs,y
?(xs))− f(xt−1,y

?(xs))] ≤ ηxL
√
L2 + σ2(t− 1− s),

E[f(xt−1,yt)− f(xt,yt)] ≤ ηxL
√
L2 + σ2.

Putting these pieces together with (2.27) yields the second desired inequality. �

Without loss of generality, we assume that B ≤ T + 1 such that (T + 1)/B is an integer.
The following lemma provides an upper bound for 1

T+1
(
∑T

t=0 ∆t) for two-timescale GDA and
SGDA using a localization technique.

Lemma 2.11.5 For Algorithm 1, let ∆t = Φ(xt) − f(xt,yt), the following statement holds
true,

1
T+1

(
T∑
t=0

∆t

)
≤ ηxL

2(B + 1) + `D2

2B
+ ∆̂0

T+1
.

For Algorithm 2, let ∆t = E[Φ(xt)− f(xt,yt)], the following statement holds true,

1
T+1

(
T∑
t=0

∆t

)
≤ ηxL

√
L2 + σ2(B + 1) + D2

2Bηy
+ ηyσ2

2
+ ∆̂0

T+1
.

Proof. We first consider the deterministic setting. In particular, we divide {∆t}Tt=0 into
several blocks in which each block contains at most B terms, given by

{∆t}B−1
t=0 , {∆t}2B−1

t=B , . . . , {∆t}TT−B+1.

Then we have

1
T+1

(
T∑
t=0

∆t

)
≤ B

T+1

(T+1)/B−1∑
j=0

 1
B

(j+1)B−1∑
t=jB

∆t

 . (2.28)

Furthermore, letting s = 0 in the first inequality in Lemma (2.11.4) yields that

B−1∑
t=0

∆t ≤ ηxL
2B2 + `

2
‖y0 − y?(x0)‖2 + (f(xB,yB)− f(x0,y0)) (2.29)

≤ ηxL
2B2 + `D2

2
+ (f(xB,yB)− f(x0,y0)).

Similarly, letting s = jB yields that, for 1 ≤ j ≤ T+1
B
− 1,

(j+1)B−1∑
t=jB

∆t ≤ ηxL
2B2 + `D2

2
+ (f(xjB+B,yjB+B)− f(xjB,yjB)). (2.30)
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Plugging (2.29) and (2.30) into (2.28) yields

1
T+1

(
T∑
t=0

∆t

)
≤ ηxL

2B + `D2

2B
+ f(xT+1,yT+1)−f(x0,y0)

T+1
. (2.31)

Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

f(xT+1,yT+1)− f(x0,y0) = f(xT+1,yT+1)− f(x0,yT+1) + f(x0,yT+1)− f(x0,y0)

≤ ηxL
2(T + 1) + ∆̂0. (2.32)

Plugging (2.32) into (2.31) yields the desired inequality. As for the stochastic case, letting
s = jB in the second inequality in Lemma 2.11.4 yields that

(j+1)B−1∑
t=jB

∆t ≤ ηxL
√
L2 + σ2B2 + D2

2ηy
+ ηyσ2

2
, 0 ≤ j ≤ T+1

B
− 1. (2.33)

Using the similar argument with (2.33) and (2.28) yields the second desired inequality. �

Proof of Theorem 2.11.1. Summing up the first inequality in Lemma 2.11.3 over t =
1, 2, . . . , T + 1 yields that

Φ1/2`(xT+1) ≤ Φ1/2`(x0) + 2ηx`

(
T∑
t=0

∆t

)
− ηx

4

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
+ η2

x`L
2(T + 1).

Combining the above inequality with the first inequality in Lemma 2.11.5 yields that

Φ1/2`(xT+1) ≤ Φ1/2`(x0) + 2ηx`(T + 1)
(
ηxL

2(B + 1) + `D2

2B

)
+2ηx`∆̂0 − ηx

4

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
+ η2

x`L
2(T + 1).

By the definition of ∆̂Φ, we have

1
T+1

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`

(
ηx(B + 1)L2 + `D2

2B

)
+ 8`∆̂0

T+1
+ 4ηx`L

2.

Letting B = 1 for D = 0 and B = D
2L

√
`
ηx

for D > 0, we have

1
T+1

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`∆̂0

T+1
+ 16`LD

√
`ηx + 4ηx`L

2.
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Since ηx = min{ ε2

16`L2 ,
ε4

4096`3L2D2}, we have

1
T+1

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`∆̂0

T+1
+ ε2

2
.

This implies that the number of iterations required by Algorithm 1 to return an ε-stationary
point is bounded by

O

((
`L2∆̂Φ

ε4
+
`∆̂0

ε2

)
max

{
1,

`2D2

ε2

})
,

which gives the same total gradient complexity.

Proof of Theorem 2.11.2. Summing up the second inequality in Lemma 2.11.3 over
t = 1, 2, . . . , T + 1 yields that

E[Φ1/2`(xT+1)] ≤ Φ1/2`(x0) + 2ηx`
T∑
t=0

∆t − ηx
4

T∑
t=0

E[‖∇Φ1/2`(xt)‖2] + η2
x`(L

2 + σ2)(T + 1).

Combining the above inequality with the second inequality in Lemma 2.11.5 yields that

E[Φ1/2`(xT+1)] ≤ Φ1/2`(x0) + 2ηx`(T + 1)
(
ηxL
√
L2 + σ2(B + 1) + D2

2Bηy
+ ηyσ2

2

)
+2ηx`∆̂0 − ηx

4

T∑
t=0

E[‖∇Φ1/2`(xt)‖2] + η2
x`(L

2 + σ2)(T + 1).

By the definition of ∆̂Φ, we have

1
T+1

(
T∑
t=0

E[‖∇Φ1/2`(xt)‖2]

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`

(
ηxL
√
L2 + σ2(B + 1) + D2

2Bηy
+ ηyσ2

2

)
+8`∆̂0

T+1
+ 4ηx`(L

2 + σ2).

Letting B = 1 for D = 0 and B = D
2

√
1

ηxηyL
√
L2+σ2 for D > 0, we have

1
T+1

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`∆̂0

T+1
+ 16`D

√
ηxL
√
L2+σ2

ηy
+ 4ηy`σ

2 + 4ηx`(L
2 + σ2).

Since ηx = min{ ε2

16`(L2+σ2)
, ε4

8192`3D2L
√
L2+σ2 ,

ε6

65536`3D2σ2L
√
L2+σ2} and ηy = min{ 1

2`
, ε2

16`σ2}, we
have

1
T+1

(
T∑
t=0

‖∇Φ1/2`(xt)‖2

)
≤ 4∆̂Φ

ηx(T+1)
+ 8`∆̂0

T+1
+ 3ε2

4
.
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This implies that the number of iterations required by Algorithm 2 to return an ε-stationary
point is bounded by

O

((
`(L2 + σ2)∆̂Φ

ε4
+
`∆̂0

ε2

)
max

{
1,

`2D2

ε2
,
`2D2σ2

ε4

})
,

which gives the same total gradient complexity.

2.12 Results for GDmax and SGDmax

We present GDmax and SGDmax in Algorithm 3 and 4. For any xt ∈ Rm, the max-oracle
approximately solves maxy∈Y f(xt,y) at each iteration. Although GDmax and SGDmax are
easier to understand, they have two disadvantages over two-timescale GDA and SGDA: 1)
Both GDmax and SGDmax are nested-loop algorithms. Since it is difficult to pre-determine
the number iterations for the inner loop, these algorithms are not favorable in practice; 2)
In the general setting where f(x, ·) is nonconcave, GDmax and SGDmax are inapplicable as
we can not efficiently solve the maximization problem to a global optimum. Nevertheless,
we present the complexity bound for GDmax and SGDmax for the sake of completeness. It
is worth noting that a portion of results were derived before Jin et al. [2020] and Nouiehed
et al. [2019] and our proof depends on the same techniques.

For nonconvex-strongly-convex problems, the target is to find an ε-stationary point (cf.
Definition 2.3.3) given gradient (or stochastic gradient) access to f . Denote ∆Φ = Φ(x0)−
minx∈Rm Φ(x), we present the gradient complexity for GDmax in the following theorem.

Theorem 2.12.1 Under Assumption 2.4.2 and letting the step size ηx > 0 and the tolerance
for the max-oracle ζ > 0 be ηx = 1/[8κ`] and ζ = ε2/[6`], the number of iterations required
by Algorithm 3 to return an ε-stationary point is bounded by O(κ`∆Φε

−2). Furthermore, the
ζ-accurate max-oracle can be realized by gradient ascent (GA) with the stepsize ηy = 1/` for
O(κ log(`D2/ζ)) iterations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

))
.

Theorem 2.12.1 demonstrates that, if we alternate between one-step gradient descent over x
and O(κ log(`D/ε)) gradient ascent steps over y with a pair of proper learning rates (ηx, ηy),
we find at least one stationary point of Φ within O(κ2ε−2 log(`/ε)) gradient evaluations.
Then we present similar guarantees for stochastic setting in the following theorem.

Theorem 2.12.2 Under Assumption 2.4.1 and 2.4.2 and letting the step size ηx > 0 and
the tolerance for the max-oracle ζ > 0 be the same in Theorem 2.12.1 with the batch size
M = max{1, 12κσ2ε−2}, the number of iterations required by Algorithm 4 to return an ε-
stationary point is bounded by O(κ`∆Φε

−2). Furthermore, the ζ-accurate max-oracle can be
realized by mini-batch stochastic gradient ascent (SGA) with the step size ηy = 1/` and the
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mini-batch size M = max{1, 2σ2κ`−1ζ−1} for O(κ log(`D2/ζ) max{1, 2σ2κ`−1ζ−1}) gradient
evaluations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

)
max

{
1,

κσ2

ε2

})
.

The sample size M = O(κσ2ε−2) shows that the variance is less than ε2/κ so that the average
stochastic gradients over the batch are sufficiently close to the true gradients ∇xf and ∇yf .

We now proceed to the theoretical guarantee for GDmax and SGDmax algorithms for
nonconvex-concave problems. The target is to find an ε-stationary point of a weakly convex
function (Definition 2.3.7) given only gradient (or stochastic gradient) access to f . Denote

∆̂Φ = Φ1/2`(x0) − minx∈Rm Φ1/2`(x), we present the gradient complexity for GDmax and
SGDmax in the following two theorems.

Theorem 2.12.3 Under Assumption 2.4.6 and letting the step size ηx > 0 and the tolerance
for the max-oracle ζ > 0 be ηx = ε2/[`L2] and ζ = ε2/[24`], the number of iterations required

by Algorithm 3 to return an ε-stationary point is bounded by O(`L2∆̂Φε
−4). Furthermore, the

ζ-accurate max-oracle is realized by GA with the step size ηy = 1/2` for O(`D2/ζ) iterations,
which gives the total gradient complexity of the algorithm:

O

(
`3L2D2∆̂Φ

ε6

)
.

Theorem 2.12.4 Under Assumptions 2.4.1 and 2.4.6 and letting the tolerance for the max-
oracle ζ > 0 be chosen as the same as in Theorem 2.12.3 with a step size ηx > 0 and a batch
size M > 0 given by ηx = ε2/[`(L2 + σ2)] and M = 1, the number of iterations required by

Algorithm 4 to return an ε-stationary point is bounded by O(`(L2 +σ2)∆̂Φε
−4). Furthermore,

the ζ-accurate max-oracle is realized by SGA with the step size ηy = min{1/2`, ε2/[`σ2]} and
a batch size M = 1 for O(`D2ζ−1 max{1, σ2`−1ζ−1}) iterations, which gives the following
total gradient complexity of the algorithm:

O

(
`3(L2 + σ2)D2∆̂Φ

ε6
max

{
1,

σ2

ε2

})
.

When σ2 . ε2, the stochastic gradients are sufficiently close to the true gradients ∇xf and
∇yf and the gradient complexity of SGDmax matches that of GDmax.

Proof of Theorem 2.12.1. We present the gradient complexity bound of the gradient-
ascent-based ζ-accurate max-oracle in the following lemma.

Lemma 2.12.5 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running
gradient ascent with a step size ηy = 1/` for O(κ log(`D2/ζ)) gradient evaluations. In
addition, the output y satisfies ‖y? − y‖2 ≤ ζ/`, where y? is the exact maximizer.
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Algorithm 3 Gradient Descent with Max-oracle (GDmax)

Input: initial point x0, learning rate ηx and max-oracle accuracy ζ.
for t = 1, 2, . . . do

find yt−1 ∈ Y so that f(xt−1,yt−1) ≥ maxy∈Y f(xt−1,y)− ζ.
xt ← xt−1 − ηx∇xf(xt−1,yt−1).

Algorithm 4 Stochastic Gradient Descent with Max-oracle (SGDmax)

Input: initial point x0, learning rate ηx and max-oracle accuracy ζ.
for t = 1, 2, . . . do

Draw a collection of i.i.d. data samples {ξi}Mi=1.
find yt−1 ∈ Y so that E[f(xt−1,yt−1) | xt−1] ≥ maxy∈Y f(xt−1,y)− ζ.

xt ← xt−1 − ηx
(

1
M

∑M
i=1Gx (xt−1,yt−1, ξi)

)
.

Proof. Since f(xt, ·) is µ-strongly concave, we have

f(xt,y
?(xt))− f(xt,yt) ≤

(
1− 1

κ

)Nt `D2

2
,

‖y?(xt)− yt‖2 ≤
(
1− 1

κ

)Nt
D2.

The first inequality implies that the number of iterations required is O(κ log(`D2/ζ)) which
is also the number of gradient evaluations. This, together with the second inequality, yields
the other results. �

It is easy to find that the first descent inequality in Lemma 2.10.3 is applicable to GDmax:

Φ(xt) ≤ Φ(xt−1)−
(
ηx
2
− 2η2

xκ`
)
‖∇Φ(xt−1)‖2 +

(
ηx
2

+ 2η2
xκ`
)
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2.

Since ∇Φ(xt−1) = ∇xf(xt−1,y
?(xt−1)), we have

‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 ≤ `2‖y?(xt−1)− yt−1‖2 ≤ `ζ.

Since ηx = 1/8κ`, we have

ηx
4
≤ ηx

2
− 2η2

xκ` ≤
ηx
2

+ 2η2
xκ` ≤

3ηx
4
.

Putting these pieces together yields that

Φ(xt) ≤ Φ(xt−1)− ηx
4
‖∇Φ(xt−1)‖2 + 3ηx`ζ

4
. (2.34)

Summing up (2.34) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

1

T + 1

T∑
t=0

‖∇Φ(xt)‖2 ≤ 4(Φ(x0)−Φ(xT+1))

ηx(T+1)
+ 3`ζ.
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By the definition of ηx and ∆Φ, we conclude that

1
T+1

T∑
t=0

‖∇Φ(xt)‖2 ≤ 32κ`∆Φ

T+1
+ 3`ζ.

This implies that the number of iterations required by Algorithm 3 to return an ε-stationary
point is bounded by

O

(
κ`∆Φ

ε2

)
.

Combining Lemma 2.12.5 gives the total gradient complexity of Algorithm 3:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

))
.

This completes the proof.

Proof of Theorem 2.12.2. We present the gradient complexity bound of the stochastic-
gradient-ascent-based ζ-accurate max-oracle in the following lemma.

Lemma 2.12.6 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running
stochastic gradient ascent with a step size ηy = 1/` and a batch size M = max{1, 2σ2κ/`ζ}
for

O

(
κ log

(
`D2

ζ

)
max

{
1,

2σ2κ

`ζ

})
stochastic gradient evaluations. In addition, the output y satisfies ‖y?−y‖2 ≤ ζ/` where y?

is the exact maximizer.

Proof. Since f(xt, ·) is µ-strongly concave, we have

E[f(xt,y
?(xt))−f(xt,yt)] ≤

(
1− 1

κ

)Nt `D2

2
+
η2
y`σ

2

M

(
Nt−1∑
j=0

(1− µηy)Nt−1−1−j

)
≤
(
1− 1

κ

)Nt `D2

2
+σ2κ

`M
,

and

E[‖y?(xt))− yt‖2] ≤
(
1− 1

κ

)Nt
D2 +

η2
yσ

2

M

(
Nt−1∑
j=0

(1− µηy)Nt−1−1−j

)
≤
(
1− 1

κ

)Nt `D2

2
+ σ2κ

`2M
.

The first inequality implies that the number of iterations is O(κ log(`D2/ζ)) and the number
of stochastic gradient evaluation is O(κ log(`D2/ζ) max{1, 2σ2κ/`ζ}). This together with
the second inequality yields the other results. �
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It is easy to find that the second descent inequality in Lemma 2.10.3 is applicable to SGDmax:

E[Φ(xt)] ≤ E [Φ(xt−1)]−
(
ηx
2
− 2η2

xκ`
)
E[‖∇Φ(xt−1)‖2]

+
(
ηx
2

+ 2η2
xκ`
)
E[‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2] + η2

xκ`σ
2

M
.

Since ∇Φ(xt−1) = ∇xf(xt−1,y
?(xt−1)), we have

E[‖∇Φ(xt)−∇xf(xt,yt)‖2] ≤ `2E[‖y?(xt)− yt‖2] ≤ `ζ.

Putting these pieces together with ηx = 1/8κ` yields that

E[Φ(xt)] ≤ E[Φ(xt−1)]− ηx
4
E[‖∇Φ(xt−1)‖2] + 3ηx`ζ

4
+ η2

xκ`σ
2

M
. (2.35)

Summing up (2.35) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

1
T+1

T∑
t=0

E[‖∇Φ(xt)‖2] ≤ 4(Φ(x0)−E[Φ(xT+1)])

ηx(T+1)
+ 3`ζ + 4ηxκ`σ2

M
.

By the definition of ηx and ∆Φ, we conclude that

1
T+1

T∑
t=0

E[‖∇Φ(xt)‖2] ≤ 32κ`∆Φ

T+1
+ 3`ζ + σ2

2M
.

This implies that the number of iterations required by Algorithm 4 to return an ε-stationary
point is bounded by

O

(
κ`∆Φ

ε2

)
.

Note that the same batch set can be reused to construct the unbiased stochastic gradients
for both ∇xf(xt−1,yt−1) and ∇yf(xt−1,yt−1) at each iteration. Combining Lemma 2.12.6
gives the total gradient complexity of Algorithm 4:

O

(
κ2`∆Φ

ε2
log

(√
κ`D

ε

)
max

{
1,

σ2κ2

ε2

})
.

This completes the proof.

Proof of Theorem 2.12.3. We present the gradient complexity bound of the gradient-
ascent-based ζ-accurate max-oracle in the following lemma.

Lemma 2.12.7 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running
gradient ascent with a step size ηy = 1/2` for

O

(
max

{
1,

2`D2

ζ

})
gradient evaluations.
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Proof. Since f(xt, ·) is concave, we have

f(xt,y
?(xt))− f(xt,yt) ≤ 2`D2

Nt
,

which implies that the number of iterations required is O(max{1, 2`D2/ζ}) which is the
number of gradient evaluation. �

It is easy to find that the first descent inequality in Lemma 2.11.3 is applicable to GDmax:

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx`∆t−1 − ηx
4
‖∇Φ1/2`(xt−1)‖2 + η2

x`L
2. (2.36)

Summing up (2.36) over T = 1, 2, . . . , T + 1 together with ∆t−1 ≤ ζ and rearranging the
terms yields that

1
T+1

T∑
t=0

‖∇Φ1/2`(xt)‖2 ≤ 4(Φ1/2`(x0)−Φ1/2`(xT+1))

ηx(T+1)
+ 8`ζ + 4ηx`L

2.

By the definition of ηx and ∆̂Φ, we have

1
T+1

T∑
t=0

‖∇Φ1/2`(xt)‖2 ≤ 48`L2∆̂Φ

ε2(T+1)
+ 8`ζ + ε2

3
.

This implies that the number of iterations required by Algorithm 3 to return an ε-stationary
point is bounded by

O

(
`L2∆̂Φ

ε4

)
.

Combining Lemma 2.12.7 gives the total gradient complexity of Algorithm 3:

O

(
`L2∆̂Φ

ε4
max

{
1,

`2D2

ε2

})
.

This completes the proof.

Proof of Theorem 2.12.4. We present the gradient complexity bound of the stochastic-
ascent-based ζ-accurate max-oracle in the following lemma.

Lemma 2.12.8 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running
stochastic gradient ascent with a step size ηy = min{1/2`, ζ/2σ2} and a batch size M = 1
for

O

(
max

{
1,

4`D2

ζ
,

4σ2D2

ζ2

})
(2.37)

stochastic gradient evaluations.
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Proof. Since f(xt, ·) is concave and ηy = min{ 1
2`
, ζ

2σ2}, we have

E[f(xt,y
?(xt))]− E[f(xt,yt)] ≤ D2

ηyNt
+ ηyσ

2.

which implies that the number of iterations required is O(max{1, 4`D2ζ−1, 4σ2D2ζ−2}) which
is also the number of stochastic gradient evaluations since M = 1. �

It is easy to find that the second descent inequality in Lemma 2.11.3 is applicable to SGDmax:

E[Φ1/2`(xt)] ≤ E[Φ1/2`(xt−1)] + 2ηx`∆t−1 − ηx
4
E[‖∇Φ1/2`(xt−1)‖2] + η2

x`(L
2 + σ2). (2.38)

Summing up (2.38) over T = 1, 2, . . . , T + 1 together with ∆t−1 ≤ ζ and rearranging the
terms yields that

1
T+1

T∑
t=0

E[‖∇Φ1/2`(xt)‖2] ≤ 4(Φ1/2`(x0)−E[Φ1/2`(xT+1)])

ηx(T+1)
+ 8`ζ + 4ηx`(L

2 + σ2).

By the definition of ηx and ∆̂Φ, we have

1
T+1

T∑
t=0

E[‖∇Φ1/2`(xt)‖2] ≤ 48`(L2+σ2)∆̂Φ

ε2(T+1)
+ 8`ζ + ε2

3
.

This implies that the number of iterations required by Algorithm 4 to return an ε-stationary
point is bounded by

O

(
`(L2 + σ2)∆̂Φ

ε4

)
.

Combining Lemma 2.12.8 gives the total gradient complexity of Algorithm 3:

O

(
`(L2 + σ2)∆̂Φ

ε4
max

{
1,

`2D2

ε2
,
`2D2σ2

ε4

})
.

This completes the proof.
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Chapter 3

Near-Optimal Gradient-Based
Algorithm

This chapter resolves a longstanding open question pertaining to the design of near-optimal
first-order algorithms for smooth and strongly-convex-strongly-concave minimax problems.
Current state-of-the-art first-order algorithms find an approximate Nash equilibrium using
Õ(κx + κy) [Tseng, 1995] or Õ(min{κx

√
κy,
√
κxκy}) [Alkousa et al., 2020] gradient eval-

uations, where κx and κy are the condition numbers for the strong-convexity and strong-
concavity assumptions. A gap still remains between these results and the best existing lower
bound Ω̃(

√
κxκy) [Ibrahim et al., 2020, Zhang et al., 2022a]. This chapter presents the first

algorithm with Õ(
√
κxκy) gradient complexity, matching the lower bound up to logarithmic

factors. Our algorithm is designed based on an accelerated proximal point method and an
accelerated solver for minimax proximal steps. It can be easily extended to the settings
of strongly-convex-concave, convex-concave, nonconvex-strongly-concave, and nonconvex-
concave functions. This chapter also presents algorithms that match or outperform all ex-
isting methods in these settings in terms of gradient complexity, up to logarithmic factors.

3.1 Introduction

Let Rm and Rn be finite-dimensional Euclidean spaces and let the function f : Rm×Rn → R
be smooth. Let X and Y are two nonempty closed convex sets in Rm and Rn. Our problem
of interest is the following minimax optimization problem:

min
x∈X

max
y∈Y

f(x,y). (3.1)

The theoretical study of solutions of problem (3.1) has been an focus of several decades of
research in mathematics, statistics, economics and computer science [Basar and Olsder, 1999,
Nisan et al., 2007, Von Neumann and Morgenstern, 2007, Facchinei and Pang, 2007, Berger,
2013]. Recently, this line of research has become increasingly relevant to algorithmic machine
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learning, with applications including robustness in adversarial learning [Goodfellow et al.,
2014, Sinha et al., 2018], prediction and regression problems [Cesa-Bianchi and Lugosi, 2006,
Xu et al., 2009] and distributed computing [Shamma, 2008, Mateos et al., 2010]. Moreover,
real-world machine-learning systems are increasingly embedded in multi-agent systems or
matching markets and subject to game-theoretic constraints [Jordan, 2018].

Most existing work on minimax optimization focuses on the convex-concave setting,
where the function f(·,y) is convex for each y ∈ Rn and the function f(x, ·) is concave
for each x ∈ Rm. The best known convergence rate in a general convex-concave setting is
O(1/ε) in terms of duality gap, which can be achieved by Nemirovski’s mirror-prox algo-
rithm [Nemirovski, 2004] (a special case of which is the extragradient algorithm [Korpele-
vich, 1976]), Nesterov’s dual extrapolation algorithm [Nesterov, 2007] or Tseng’s accelerated
proximal gradient algorithm [Tseng, 2008]. This rate is known to be optimal for the class of
smooth convex-concave problems [Ouyang and Xu, 2021]. Furthermore, optimal algorithms
are known for special instances of convex-concave setting; e.g., for the affinely constrained
smooth convex problem [Ouyang et al., 2015] and problems with a composite bilinear objec-
tive function, f(x,y) = g(x) + x>Ay − h(y) [Chen et al., 2014].

Very recently, the lower complexity bound of first-order algorithms have been established
for solving general strongly-convex-strongly-concave and strongly-convex-concave minimax
optimization problems [Ouyang and Xu, 2021, Ibrahim et al., 2020, Zhang et al., 2022a]. For
the strongly-convex-strongly-concave setting, in which κx, κy > 0 are the condition numbers
for f(·,y) and f(x, ·), respectively, the complexity bound is Ω̃(

√
κxκy) while the best known

upper bounds are Õ(κx + κy) [Tseng, 1995, Gidel et al., 2019a, Mokhtari et al., 2020b]
and Õ(min{κx

√
κy, κy

√
κx}) [Alkousa et al., 2020]. For the strongly-convex-concave setting

in which κx > 0 and κy = 0, the lower complexity bound is Ω̃(
√
κx/ε) while the best

known upper bound is O(κx/ε) [Thekumparampil et al., 2019]. The existing algorithms that
obtain a rate of O(

√
κx/ε) in this context are only for special case of strongly-convex-linear,

where x and y are connected only through a bilinear term x>Ay or f(x, ·) is linear for each
x ∈ Rm [see, e.g., Nesterov, 2005, Chambolle and Pock, 2016, Juditsky and Nemirovski, 2011,
Hamedani and Aybat, 2021]. Thus, a gap remains between the lower complexity bound and
the upper complexity bound for existing algorithms in both the strongly-convex-strongly-
concave setting and the strongly-convex-concave setting. Accordingly, we have the following
open problem:

Can we design first-order algorithms that achieve the lower bounds in these
settings?

We present an affirmative answer by resolving the above open problem up to logarithmic
factors. More specifically, our contribution is as follows. We propose the first near-optimal al-
gorithms for solving the strongly-convex-strongly-concave and strongly-convex-concave min-
imax optimization problems. In the former setting, our algorithm achieves a gradient com-
plexity of Õ(

√
κxκy) which matches the lower complexity bound [Ibrahim et al., 2020, Zhang

et al., 2022a] up to logarithmic factors. In the latter setting, our algorithm attains a gra-
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Table 3.1: Comparison of gradient complexities to find an ε-saddle point (Definition 3.3.4)
in the convex-concave setting. This table highlights only the dependency on error tolerance
ε and the strong-convexity and strong-concavity condition numbers, κx, κy.

Settings References Gradient Complexity

Strongly-Convex-Strongly-
Concave

Tseng [1995]

Õ(κx + κy)
Nesterov and Scrimali [2006]

Gidel et al. [2019a]

Mokhtari et al. [2020b]

Alkousa et al. [2020] Õ(min{κx
√
κy, κy

√
κx})

Theorem 3.5.1 Õ(
√
κxκy)

Lower bound [Ibrahim et al., 2020] Ω̃(
√
κxκy)

Lower bound [Zhang et al., 2022a] Ω̃(
√
κxκy)

Strongly-Convex-Linear
(special case of

strongly-convex-concave)

Juditsky and Nemirovski [2011]

O(
√
κx/ε)Hamedani and Aybat [2021]

Zhao [2022]

Strongly-Convex-Concave
Thekumparampil et al. [2019] Õ(κx/

√
ε)

Corollary 3.5.2 Õ(
√
κx/ε)

Lower bound [Ouyang and Xu, 2021] Ω̃(
√
κx/ε)

Convex-Concave

Nemirovski [2004]

O(ε−1)Nesterov [2007]

Tseng [2008]

Corollary 3.5.3 Õ(ε−1)

Lower bound [Ouyang and Xu, 2021] Ω(ε−1)

dient complexity of Õ(
√
κx/ε) which again matches the lower complexity bound [Ouyang

and Xu, 2021] up to logarithmic factors. In addition, our algorithm extends to the general
convex-concave setting, achieving a gradient complexity of Õ(ε−1), which matches the lower
bound of Ouyang and Xu [2021] as well as the best existing upper bounds [Nemirovski, 2004,
Nesterov, 2007, Tseng, 2008] up to logarithmic factors.

Our second contribution is a class of accelerated algorithms for the smooth nonconvex-
strongly-concave and nonconvex-concave minimax optimization problems. In the former
setting, our algorithm achieves a gradient complexity bound of Õ(

√
κyε

−2) which improves
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Table 3.2: Comparison of gradient complexities to find an ε-stationary point of f (Definition
3.3.5) or ε-stationary point of Φ(·) := maxy∈Y f(·,y) (Definition 3.8.1 and Definition 3.8.5)
in the nonconvex-concave settings. This table only highlights the dependence on tolerance ε
and the condition number κy.

Settings References Gradient Complexity

Nonconvex-Strongly-Concave
(stationarity of f or

stationarity of Φ)

Jin et al. [2020]

Õ(κ2
yε
−2)

Lu et al. [2020]

Lin et al. [2020c]

Rafique et al. [2022]

Theorem 3.6.1 & 3.8.7 Õ(
√
κyε

−2)

Nonconvex-Concave
(stationarity of f)

Lu et al. [2020] Õ(ε−4)

Nouiehed et al. [2019] Õ(ε−3.5)

Ostrovskii et al. [2021] Õ(ε−2.5)

Corollary 3.6.2 Õ(ε−2.5)

Nonconvex-Concave
(stationarity of Φ)

Jin et al. [2020]

Õ(ε−6)Lin et al. [2020c]

Rafique et al. [2022]

Thekumparampil et al. [2019]

Õ(ε−3)Kong and Monteiro [2021]

Zhao [2023]

Corollary 3.8.8 Õ(ε−3)

the best known bound Õ(κ2
yε
−2) [Jin et al., 2020, Lin et al., 2020c, Lu et al., 2020, Rafique

et al., 2022]. In the latter setting, our algorithms specialize to a range of different no-
tions of optimality. In particular, expressing our results in terms of stationarity of f ,
our algorithm achieves a gradient complexity bound of Õ(ε−2.5), which improves the best
known bound Õ(ε−3.5) [Nouiehed et al., 2019]. In terms of stationarity of the function
Φ(·) := maxy∈Y f(·,y), our algorithm achieves a gradient complexity bound of Õ(ε−3) which
matches the state-of-the-art results [Thekumparampil et al., 2019, Kong and Monteiro, 2021].

We provide a head-to-head comparison between our results and existing results in Ta-
ble 3.1 for convex-concave settings, and Table 3.2 for nonconvex-concave settings.
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3.2 Related Works

To the best of our knowledge, the earliest algorithmic schemes for solving the bilinear min-
imax problem, minx∈∆m maxy∈∆n x>Ay, date back to Brown’s fictitious play [Brown, 1951]
and Dantzig’s simplex method [Dantzig, 1998]. This problem can also be solved by Ko-
rpelevich’s extragradient (EG) algorithm [Korpelevich, 1976], which can be shown to be
linearly convergent when A is square and full rank [Tseng, 1995]. There are several recent
papers studying the convergence of EG and its variants, such as reflected gradient descent
ascent [Chambolle and Pock, 2011, Malitsky, 2015, Yadav et al., 2018], optimistic gradient
descent ascent (OGDA) [Daskalakis et al., 2018, Mokhtari et al., 2020b,a] and other vari-
ants [Rakhlin and Sridharan, 2013a,b, Mertikopoulos et al., 2019, Chavdarova et al., 2019,
Hsieh et al., 2019, Mishchenko et al., 2020]. In the bilinear setting, Daskalakis et al. [2018]
established the convergence of the optimistic gradient descent ascent (OGDA) method to a
neighborhood of the solution; Liang and Stokes [2019] proved the linear convergence of the
OGDA algorithm using a dynamical system approach. Very recently, Mokhtari et al. [2020b]
have proposed a unified framework for achieving the sharpest convergence rates of both EG
and OGDA algorithms.

For the convex-concave minimax problem, Nemirovski [2004] proved that his mirror-prox
algorithm returns an ε-saddle point within the gradient complexity of O(ε−1) when X and
Y are bounded. This algorithm was subsequently generalized by Auslender and Teboulle
[2005] to a class of distance-generating functions, and the complexity result was extended to
unbounded sets and composite objectives [Monteiro and Svaiter, 2010, 2011] using the hybrid
proximal extragradient algorithm with different error criteria. Nesterov [2007] developed a
dual extrapolation algorithm which possesses the same complexity bound as in Nemirovski
[2004]. Later on, Tseng [2008] presented a unified treatment of these algorithms and a refined
convergence analysis with same complexity result. Nedić and Ozdaglar [2009] analyzed the
(sub)gradient descent ascent algorithm for convex-concave saddle point problems when the
(sub)gradients are bounded over the constraint sets. Abernethy et al. [2021] presented a
Hamiltonian gradient descent algorithm with last-iterate convergence under a “sufficiently
bilinear” condition.

Several papers have studied special cases in the convex-concave setting. For the special
case when the objective function is a composite bilinear form, f(x,y) = g(x) + x>Ay −
h(y), Chambolle and Pock [2011] introduced a primal-dual algorithm that converges to a
saddle point with the rate of O(1/ε) when the convex functions g and h are smooth. Nesterov
[2005] proposed a smoothing technique and proved that the resulting algorithm achieves an
improved rate with better dependence on Lipschitz constant of ∇g when h is the convex and
smooth function and X ,Y are both bounded. He and Monteiro [2016] and Kolossoski and
Monteiro [2017] proved that such result also hold when X ,Y are unbounded or the space is
non-Euclidean. Chen et al. [2014, 2017] generalized Nesterov’s technique to develop optimal
algorithms for solving a class of stochastic saddle point problems and stochastic monotone
variational inequalities. For a class of certain purely bilinear games where g and h are zero
functions, Azizian et al. [2020b] demonstrated that linear convergence is possible for several
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algorithms and their new algorithm achieved the tight bound. The second case is the so-
called affinely constrained smooth convex problem, i.e., minx∈X g(x), s.t. Ax = u. Esser et al.
[2010] proposed a O(ε−1) primal-dual algorithm while Lan and Monteiro [2016] provided a
first-order augmented Lagrangian method with the same O(ε−1) rate. By exploiting the
structure, Ouyang et al. [2015] proposed a near-optimal algorithm in this setting.

For the strongly convex-concave minimax problem, Tseng [1995] and Nesterov and Scrimali
[2006] proved that their algorithms find an ε-saddle point with a gradient complexity of
Õ(κx + κy) using a variational inequality. Using a different approach, Gidel et al. [2019a]
and Mokhtari et al. [2020b] derived the same complexity results for the OGDA algorithm.
Very recently, Alkousa et al. [2020] proposed an accelerated gradient sliding algorithm with
a gradient complexity of Õ(min{κx

√
κy, κy

√
κx}) while Ibrahim et al. [2020] and Zhang

et al. [2022a] established a lower complexity bound of Ω̃(
√
κxκy) among all the first-order

algorithms in this setting.
For strongly-convex-concave minimax problems, the best known general lower bound for

first-order algorithm is O(
√
κx/ε), as shown by Ouyang and Xu [2021]. Several papers have

studied strongly-convex-concave minimax problem with additional structures. This includex
optimizing a strongly convex function with linear constraints [Goldstein et al., 2014, Xu
and Zhang, 2018, Xu, 2021], the case when x and y are connected only through a bilinear
term x>Ay [Nesterov, 2005, Chambolle and Pock, 2016, Xie and Shi, 2019] and the case
when f(x, ·) is linear for each x ∈ Rm [Juditsky and Nemirovski, 2011, Hamedani and
Aybat, 2021, Zhao, 2022]. The algorithms developed in these works were all guaranteed
to return an ε-saddle point with a gradient complexity of Õ(1/

√
ε) and some of them even

achieve a near-optimal gradient complexity of Õ(
√
κx/ε) [Nesterov, 2005, Chambolle and

Pock, 2016]. However, the best known upper complexity bound for general strongly-convex-
concave minimax problems is O(κx/

√
ε) which was shown using the dual implicit accelerated

gradient algorithm [Thekumparampil et al., 2019].
For nonconvex-concave minimax problems, a line of recent work [Jin et al., 2020, Lin

et al., 2020c, Rafique et al., 2022] has studied various algorithms and proved that they can
find an approximate stationary point of Φ(·) := maxy∈Y f(·,y). In a deterministic setting, all
of these algorithms guarantee a rate of Õ(κ2

yε
−2) and Õ(ε−6) when f(x, ·) is strongly concave

and concave respectively. Thekumparampil et al. [2019] consider the same setting as ours and
proposed a proximal dual implicit accelerated gradient algorithm and proved that it finds an
approximate stationary point of Φ(·) with the total gradient complexity of Õ(ε−3). Kong and
Monteiro [2021] consider a general nonconvex minimax optimization model: minx h(x)+ρ(x),
where h is a “simple” proper, lower semi-continuous and convex function and ρ(x) =
maxy∈Y f(x,y) with f satisfying that −f(x, ·) is proper, convex, and lower semi-continuous.
They propose to smooth ρ to ρξ(x) = maxy∈Y f(x,y) − (1/2ξ)‖y − y0‖2 and apply an ac-
celerated inexact proximal point method to solve the smoothed problem minx h(x) + ρξ(x).
The resulting AIPP-S algorithm attains the iteration complexity of O(ε−3) using a slightly
different but equivalent notion of stationarity but requires the exact gradient of ρξ at each
iteration. This amounts to assuming that maxy∈Y f(x,y) − (1/2ξ)‖y − y0‖2 can be solved
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exactly, which is restrictive due to the potentially complicated structure of f(x, ·) or Y . If
f is further assumed to be smooth, Zhao [2023] developed a variant of AIPP-S algorithm
which only requires an inexact gradient of ρξ at each iteration and attains the total gradient
complexity of Õ(ε−3). On the other hand, the stationarity of f(·, ·) is proposed for quanti-
fying the efficiency in nonconvex-concave minimax optimization [Nouiehed et al., 2019, Lu
et al., 2020, Kong and Monteiro, 2021, Ostrovskii et al., 2021]. Using this notion of station-
arity, Kong and Monteiro [2021] attains the rate of O(ε−2.5) but requires the exact gradient
of ρξ at each iteration. Without this assumption, the current state-of-the-art rate is Õ(ε−2.5)
achieved by our Algorithm 9 and the algorithm proposed by a concurrent work [Ostrovskii
et al., 2021]. Both algorithms are based on constructing an auxiliary function fε,y and ap-
plying an accelerated solver for minimax proximal steps. Finally, several other algorithms
have been developed either for specific nonconvex-concave minimax problems or in stochastic
setting; see Namkoong and Duchi [2016], Sinha et al. [2018], Grnarova et al. [2018] for the
details.

3.3 Preliminaries

We clarify the notation, review some background and provide formal definitions for the class
of functions and optimality measure considered in this paper.

Notation. We use bold lower-case letters to denote vectors, as in x,y, z and calligraphic
upper case letters to denote sets, as in X and Y . For a differentiable function f(·) : Rn → R,
we le4t ∇f(z) denote the gradient of f at z. For a function f(·, ·) : Rm × Rn → R of two
variables, ∇xf(x,y) (or ∇yf(x,y)) to denote the partial gradient of f with respect to the
first variable (or the second variable) at point (x,y). We also use ∇f(x,y) to denote the
full gradient at (x,y) where ∇f(x,y) = (∇xf(x,y),∇yf(x,y)). For a vector x, we denote
‖x‖ as its `2-norm. For constraint sets X and Y , we let Dx and Dy denote their diameters,
where Dx = maxx,x′∈X ‖x− x′‖ and Dy = maxy,y′∈Y ‖y − y′‖. We use the notation PX and
PY to denote projections onto the sets X and Y . Finally, we use the notation O(·),Ω(·) to
hide only absolute constants which do not depend on any problem parameter, and notation
Õ(), Ω̃() to hide only absolute constants and log factors.

Minimax optimization. We are interested in the `-smooth minimax optimization prob-
lems in the form (3.1). The regularity conditions for the function f are as follows.

Definition 3.3.1 A function f is L-Lipschitz if for ∀z, z′ ∈ Rn, |f(z)− f(z′)| ≤ L‖z− z′‖.

Definition 3.3.2 A function f is `-smooth if for ∀z, z′ ∈ Rn, ‖∇f(z)−∇f(z′)‖ ≤ `‖z−z′‖.

Definition 3.3.3 A differentiable function φ : Rd → R is µ-strongly-convex if for ∀x′,x ∈
Rd, φ(x′) ≥ φ(x) + (x′ − x)>∇φ(x) + (µ/2)‖x′ − x‖2. Furthermore, φ is µ-strongly-concave
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if −φ is µ-strongly-convex. If we set µ = 0, then we recover the definitions of convexity and
concavity for a continuous differentiable function.

Convex-concave setting: we assume that f(·,y) is convex for each y ∈ Y and f(x, ·) is
concave for each x ∈ X . Here X and Y are both convex and bounded. Under these conditions,
the Sion’s minimax theorem [Sion, 1958] guarantees that

max
y∈Y

min
x∈X

f(x,y) = min
x∈X

max
y∈Y

f(x,y). (3.2)

Furthermore, there exists at least one saddle point (or Nash equilibrium) (x?,y?) ∈
X × Y such that the following equality holds true:

min
x∈X

f(x,y?) = f(x?,y?) = max
y∈Y

f(x?,y). (3.3)

Therefore, for any point (x̂, ŷ) ∈ X × Y , the duality gap maxy∈Y f(x̂,y) − minx∈X f(x, ŷ)
forms the basis for a standard optimality criterion. Formally, we define

Definition 3.3.4 A point (x̂, ŷ) ∈ X×Y is an ε-saddle point of a convex-concave function
f(·, ·) if maxy∈Y f(x̂,y)−minx∈X f(x, ŷ) ≤ ε. If ε = 0, then (x̂, ŷ) is a saddle point.

When f(·,y) is strongly convex for each y ∈ Y and f(x, ·) is strongly concave for each
x ∈ X , we let µx and µy be strongly-convex and strongly-concave modules. If f is `-smooth,
we denote κx = `/µx and κy = `/µy as the condition numbers of f(·,y) and f(x, ·).

Nonconvex-concave setting: we only assume that f(x, ·) is concave for each x ∈ Rm.
The function f(·,y) can be possibly nonconvex for some y ∈ Y . Here X is convex but possibly
unbounded while Y is convex and bounded. In general, finding a global Nash equilibrium of
f is intractable since in the special case where Y has only a single element, this problem
reduces to a nonconvex optimization problem in which finding a global minimum is already
NP-hard [Murty and Kabadi, 1987]. Similar to the literature in nonconvex constrained
optimization, we opt to find local surrogates—stationary points—whose gradient mappings
are zero. Formally, we define our optimality criterion as follows.

Definition 3.3.5 A point (x̂, ŷ) ∈ X×Y is an ε-stationary point of an `-smooth function
f(·, ·) if

`‖PX [x̂− (1/`)∇xf(x̂, ŷ+)]− x̂‖ ≤ ε, `‖ŷ+ − ŷ‖ ≤ ε.

where
ŷ+ = PY [ŷ + (1/`)∇yf(x̂, ŷ)].

If ε = 0, then (x̂, ŷ) is a stationary point.
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Algorithm 5 AGD(g,X ,x0, `, µ, ε)

1: Input: initial point x0 ∈ X , smoothness `, strongly-convex module µ and tolerance
ε > 0.

2: Initialize: set t← 0, x̃0 ← x0, η ← 1/`, κ← `/µ and θ ←
√
κ−1√
κ+1

.
3: repeat
4: t← t+ 1
5: xt ← PX [x̃t−1 − η∇g(x̃t−1)].
6: x̃t ← xt + θ(xt − xt−1).
7: until ‖xt − PX (xt − η∇g(xt))‖2 ≤ ε

2κ2(`−µ)
is satisfied.

8: Output: PX (xt − η∇g(xt)).

In the absence of the constraint set X , Definition 3.3.5 reduces to the standard condition
‖∇xf(x̂, ŷ+)‖ ≤ ε and `‖ŷ+ − ŷ‖ ≤ ε which is consistent with Lin et al. [2020c, Defini-
tion 4.10]. Intuitively, the quantity ‖PY [ŷ + (1/`)∇yf(x̂, ŷ)] − ŷ‖ represents the distance
between a point ŷ and a point obtained by performing one-step projected partial gradient
ascent at a point (x̂, ŷ) starting from a point ŷ. It also refers to the norm of gradient
mapping at (x̂, ŷ); see Nesterov [2013a] for the details.

We note that this notion of stationarity of f (Definition 3.3.5) is closely related to an
optimality notion in terms of stationary points of the function Φ(·) := maxy∈Y f(·,y) for
nonconvex-concave functions.

Nesterov’s accelerated gradient descent. Nesterov’s Accelerated Gradient Descent
(AGD) dates back to the seminal paper [Nesterov, 1983] where it is shown to be optimal
among all the first-order algorithms for smooth and convex functions [Nesterov, 2018]. We
present a version of AGD in Algorithm 5 which is frequently used to minimize an `-smooth
and µ-strongly convex function g over a convex set X . The key steps of the AGD algorithm
are Line 5-6, where Lines 5 performs a projected gradient descent step, while Line 6 performs
a momentum step, which “overshoots” the iterate in the direction of momentum (xt−xt−1).
Line 7 is the stopping condition to ensure that the output achieves the desired optimality.

The following theorem provides an upper bound on the gradient complexity of AGD; i.e.,
the total number of gradient evaluations to find an ε-optimal point.

Theorem 3.3.6 Assume that g is `-smooth and µ-strongly convex, x̂ = AGD(g,x0, `, µ, ε)
satisfies g(x̂) ≤ minx∈X g(x) + ε and the total number of gradient evaluations is bounded by

O

(√
κ log

(
κ3`‖x0 − x?‖2

ε

))
,

where κ = `/µ is the condition number, and x? ∈ X is the unique global minimum of g.

Compared with the classical result for Gradient Descent (GD), which requires Õ(κ) gradient
evaluations in the same setting, AGD improves over GD by a factor of

√
κ. AGD will be

used as a basic component for acceleration.
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Algorithm 6 Inexact-APPA(g,x0, `, µ, ε, T )

1: Input: initial point x0 ∈ X , proximal parameter `, strongly-convex module µ, tolerance
ε > 0 and the maximum iteration number T > 0.

2: Initialize: set x̃0 ← x0, κ← `
µ
, δ ← ε

(10κ)2 and θ ← 2
√
κ−1

2
√
κ+1

.
3: for t = 1, · · · , T do
4: find xt so that g(xt) + `‖xt − x̃t−1‖2 ≤ minx∈X{g(x) + `‖x− x̃t−1‖2}+ δ.
5: x̃t ← xt + θ(xt − xt−1).
6: Output: xT .

3.4 Algorithm Components

We present two main algorithm components. Both of them are crucial for our final algorithms
to achieve near-optimal convergence rates.

Inexact accelerated proximal point algorithm. Our first component is the Acceler-
ated Proximal Point Algorithm (APPA, Algorithm 6) for minimizing a function g(·). Com-
paring APPA with classical AGD (Algorithm 5), we note that both of them have momentum
steps which yield acceleration. The major difference is in Line 4 of Algorithm 6, where APPA
solves a proximal subproblem

xt ← argmin
x∈X

g(x) + `‖x− x̃t−1‖2. (3.4)

instead of performing a gradient-descent step as in AGD (Line 5 in Algorithm 5). We refer
to the parameter ` in (3.4) as the proximal parameter.

We present an inexact version in Algorithm 6 where we tolerate a small error δ in terms
of the function value in solving the proximal subproblem (3.4). That is, the solution xt
satisfies

g(xt) + `‖xt − x̃t−1‖2 ≤ min
x∈X
{g(x) + `‖x− x̃t−1‖2}+ δ.

A theoretical guarantee for the inexact APPA algorithm is presented in the following the-
orem, which claims that as long as δ is sufficiently small, the algorithm finds an ε-optimal
point of any µ-strongly-convex function g with proximal parameter ` in Õ(

√
`/µ) iterations.

Theorem 3.4.1 Assume that g is µ-strongly convex, ε ∈ (0, 1) and ` > µ. There exists T >
0 such that the output x̂ = Inexact-APPA(g,x0, `, µ, ε, T ) satisfies g(x̂) ≤ minx∈X g(x)+ ε
and T > 0 satisfies the following inequality,

T ≥ c
√
κ log

(
g(x0)− g(x?) + (µ/4)‖x0 − x?‖2

ε

)
,

where κ = `/µ is an effective condition number, x? ∈ X is the unique global minimum of g,
and c > 0 is an absolute constant.
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Algorithm 7 Maximin-AG2(g,x0,y0, `, µx, µy, ε)

1: Input: initial point x0,y0, smoothness `, strongly convex module µx, µy and tolerance
ε > 0.

2: Initialize: t← 0, x̃0 ← x0, η ← 1
2κx`

, κx ← `
µx

, κy ← `
µy

, θ ← 4
√
κxκy−1

4
√
κxκy+1

, ε̃← ε
(10κxκy)7 .

3: repeat
4: t← t+ 1.
5: x̃t−1 ← AGD(g(·, ỹt−1),x0, `, µx, ε̃).
6: yt ← PY [ỹt−1 + η∇yg(x̃t−1, ỹt−1)].
7: ỹt ← yt + θ(yt − yt−1).
8: xt ← AGD(g(·,yt),x0, `, µx, ε̃).
9: until ‖yt − PY(yt + η∇yg(xt,yt))‖2 ≤ ε

(10κxκy)4`
is satisfied.

10: Output: PX (xt − (1/2κy`)∇xg(xt,yt)).

Comparing with Theorem 3.3.6, the most important difference here is that Theorem 3.4.1
does not require the function g to have any smoothness property. In fact, ` is only a proximal
parameter in proximal subproblem (3.4), which does not necessarily relate to the smoothness
of g. On the flip side, the proximal subproblem (3.4) can not be easily solved in general.
Theorem 3.4.1 guarantees the iteration complexity of Algorithm 5 while the complexity for
solving these proximal steps is not discussed.

We conclude that APPA has a unique advantage over AGD in settings where g does not
have a smoothness property but the proximal step (3.4) is easy to solve. These settings
include LASSO [Beck and Teboulle, 2009], as well as minimax optimization problems.

Accelerated solver for minimax proximal steps. In minimax optimization problems
of the form (3.1), we are interested in solving the following proximal subproblem as follows,

xt+1 ← argmin
x∈X

Φ(x) + `‖x− x̃‖2, where Φ(x) := max
y∈Y

f(x,y), (3.5)

which is equivalent to solving the following minimax problem:

min
x∈X

max
y∈Y

g̃(x,y) := f(x,y) + `‖x− x̃‖2. (3.6)

For a generic strongly-convex-strongly-concave function g(·, ·), solving a minimax problem
is equivalent to solving a maximin problem, due to Sion’s minimax theorem:

min
x∈X

max
y∈Y

g(x,y) = max
y∈Y

min
x∈X

g(x,y).

A straightforward way of solving the maximin problem is to use a double-loop algorithm
which solves the maximization and minimization problems on two different time scales.
Specifically, the inner loop performs AGD on function g(·,y) to solve the inner minimiza-
tion; i.e., to compute Ψ(y) := minx∈X g(x,y) for each y, and the outer loop performs
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Accelerated Gradient Ascent (AGA) on the function Ψ(·) to solve the outer maximization.
Since the algorithm aims to solve a maximin problem we use AGA-AGD, and we name the
algorithm Maximin-AG2. See Algorithm 7 for the formal version of this algorithm. We
also incorporate Lines 8-9 to check termination conditions, which ensures that the output
achieves the desired optimality. The theoretical guarantee for Algorithm 7 is given in the
following theorem.

Theorem 3.4.2 Assume that g(·, ·) is `-smooth, g(·,y) is µx-strongly convex for each y ∈ Y
and g(x, ·) is µy-strongly concave for each x ∈ X . Then x̂ = Maximin-AG2(g,x0,y0, `, µx, µy, ε)
satisfies that maxy∈Y g(x̂,y) ≤ minx∈X maxy∈Y g(x,y) + ε and the total number of gradient
evaluations is bounded by

O

(
κx
√
κy · log2

(
(κx + κy)`(D̃2

x +D2
y)

ε

))
,

where κx = `/µx and κy = `/µy are condition numbers, D̃x = ‖x0 − x?g(y0)‖ is the initial
distance where x?g(y0) = argminx∈X g(x,y0) and Dy > 0 is the diameter of the set Y.

Theorem 3.4.2 claims that Algorithm 7 finds an ε-optimal point in Õ(κx
√
κy) iterations

for strongly-convex-strongly-concave functions. This rate does not match the lower bound
Ω̃(
√
κxκy) [Ibrahim et al., 2020, Zhang et al., 2022a]. At a high level, it takes AGD Õ(

√
κx)

steps to solve the inner minimization problem and compute Ψ(y) := minx∈X g(x,y). Despite
the fact that the function g is `-smooth, function Ψ is only guaranteed to be (κx`)-smooth
in the worst case, which makes the condition number of Ψ be κxκy. Thus, AGA requires
Õ(
√
κxκy) iterations in the outer loop to solve the maximization of Ψ, which gives a total

gradient complexity Õ(κx
√
κy).

The key observation here is that although Algorithm 7 is slow for general strongly-convex-
strongly-concave functions, the functions g̃ of the form (3.6) in the proximal steps have a
crucial property that κx = O(1) if the proximal parameter ` is chosen to be the smoothness
parameter of function f . Therefore, when f(x, ·) is strongly concave, by Theorem 3.4.2, it
only takes Algorithm 7 Õ(

√
κy) gradient evaluations to solve the proximal subproblem (3.6),

which is very efficient. We will see the consequences of this fact in the following section.

3.5 Accelerating Convex-Concave Optimization

We present our main results for accelerating convex-concave optimization. We first present
our new near-optimal algorithm and its theoretical guarantee for optimizing strongly-convex-
strongly-concave functions. Then, we use simple reduction arguments to obtain results for
strongly-convex-concave and convex-concave functions.
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Algorithm 8 Minimax-APPA(f,x0,y0, `, µx, µy, ε, T )

1: Input: initial point x0,y0, proximity `, strongly-convex parameter µ, tolerance δ, iter-
ation T .

2: Initialize: x̃0 ← x0, κx ← `
µx

, θ ← 2
√
κx−1

2
√
κx+1

, δ ← ε
(10κxκy)4 and ε̃← ε

102κxκy
.

3: for t = 1, · · · , T do
4: denote gt(·, ·) where gt(x,y) := f(x,y) + `‖x− x̃t−1‖2.
5: xt ←Maximin-AG2(gt,x0,y0, 3`, 2`, µy, δ)
6: x̃t ← xt + θ(xt − xt−1).
7: ỹ← AGD(−f(xT , ·),y0, `, µy, ε̃).
8: yT ← PY (ỹ + (1/2κx`)∇yf(xT , ỹ)).
9: Output: (xT ,yT ).

Strongly-convex-strongly-concave setting. With the algorithm components in hand,
we are now ready to state our near-optimal algorithm. Algorithm 8 is a simple combination
of Algorithm 6 and Algorithm 7. Its outer loop performs an inexact APPA to minimize
the function Φ(·) := maxy∈Y f(·,y), while the inner loop uses Maximin-AG2 to solve the
proximal subproblem (3.5), which is equivalent to solving (3.6). At the end, after finding
a near-optimal xT , Algorithm 8 performs another AGD on the function −f(xT , ·) to find
a near-optimal yT . The theoretical guarantee for the algorithm is given in the following
theorem.

Theorem 3.5.1 Assume that f is `-smooth and µx-strongly-convex-µy-strongly-concave.
Then there exists T > 0 such that the output (x̂, ŷ) = Minimax-APPA(f,x0,y0, `, µx, µy, ε, T )
is an ε-saddle point, and the total number of gradient evaluations is bounded by

O

(
√
κxκy log3

(
(κx + κy)`(D2

x +D2
y)

ε

))
,

where κx = `/µx and κy = `/µy are condition numbers.

Theorem 3.5.1 asserts that Algorithm 8 finds ε-saddle points in Õ(
√
κxκy) gradient evalua-

tions, matching the lower bound [Ibrahim et al., 2020, Zhang et al., 2022a], up to logarithmic
factors. At a high level, despite the function Φ having undesirable smoothness properties,
APPA minimizes Φ in the outer loop using Õ(

√
κx) iterations according to Theorem 3.4.1,

regardless of the smoothness of Φ. In addition, Maximin-AG2 solves the proximal step in
the inner loop using Õ(

√
κy) gradient evaluations, since the condition number of gt(·,y) for

any y ∈ Y is O(1). This gives the total gradient complexity Õ(
√
κxκy).

Strongly-convex-concave setting. Our result in the strongly-convex-strongly-concave
setting readily implies a near-optimal result in the strongly-convex-concave setting. Consider
the following auxiliary function for an arbitrary y0 ∈ Y which is defined by

fε,y(x,y) := f(x,y)− (ε/4D2
y)‖y − y0‖2. (3.7)
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It is clear that the difference between f and fε,y is small in terms of function value:

max
(x,y)∈X×Y

|f(x,y)− fε,y(x,y)| ≤ ε/4.

This implies, according to Definition 3.3.4, that any (ε/2)-saddle point of function fε,y is
also a ε-saddle point of function f , and thus it is sufficient to only solve the problem
minx∈X maxx∈Y fε,y(x,y). Finally, when f is a µx-strongly-convex-concave function, fε,y
becomes µx-strongly-convex-ε/(2D2

y)-strongly-concave, which can be fed into Algorithm 8 to
obtain the following result.

Corollary 3.5.2 Assume that f is `-smooth and µx-strongly-convex-concave. Then there ex-
ists T > 0 such that the output (x̂, ŷ) = Minimax-APPA(fε,y,x0,y0, `, µx, ε/(4D

2
y), ε/2, T )

is an ε-saddle point, and the total number of gradient evaluations is bounded by

O

(√
κx`

ε
Dy log3

(
κx`(D

2
x +D2

y)

ε

))

where κx = `/µx is the condition number, and fε,y is defined as in (3.7).

Convex-concave setting. When f is only convex-concave, we can construct following
strongly-convex-strongly-concave function fε:

fε(x,y) = f(x,y) + (ε/8D2
x)‖x− x0‖2 − (ε/8D2

y)‖y − y0‖2, (3.8)

which can be fed into Algorithm 8 to obtain the following result.

Corollary 3.5.3 Assume function f is `-smooth and convex-concave, then there exists T >
0, where the output (x̂, ŷ) = Minimax-APPA(fε,x0,y0, `, ε/(4D

2
x), ε/(4D2

y), ε/2, T ) will be
an ε-saddle point, and the total number of gradient evaluations is bounded by

O

(
`DxDy

ε
log3

(
`(D2

x +D2
y)

ε

))
,

where fε is defined as in (3.8).

3.6 Accelerating Nonconvex-Concave Optimization

We present our methods for accelerating nonconvex-concave optimization. Similar to the
previous section, we first present our algorithm and its theoretical guarantee for optimizing
nonconvex-strongly-concave functions. We then use a simple reduction argument to obtain
results for nonconvex-concave functions using the stationarity of the function f (Definition
3.3.5) as an optimality measure.
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Algorithm 9 Minimax-PPA(g,x0,y0, `, µy, ε, T )

1: Input: initial point x0,y0, proximity `, strongly-convex parameter µ, tolerance δ, iter-
ation T .

2: Initialize: set δ ← ε2

(10κy)4`
· ( ε

`Dy
)2.

3: for t = 1, · · · , T do
4: denote gt(·, ·) where gt(x,y) := f(x,y) + `‖x− xt−1‖2.
5: xt ←Maximin-AG2(gt,x0,y0, 3`, `, µ, δ).
6: sample s uniformly from {1, 2, · · · , T}.
7: ys ← AGD(−f(xs, ·),y0, `, µ, δ).
8: Output: (xs,ys).

Nonconvex-strongly-concave setting. Our algorithm for nonconvex-strongly-concave
optimization is described in Algorithm 9. Similar to Algorithm 8, we still use our acceler-
ated solver Maximin-AG2 for the same proximal subproblem in the inner loop. The only
minor difference is that, in the outer loop, Algorithm 9 only uses the Proximal Point Algo-
rithm (PPA) on function Φ(·) := maxy∈Y f(·,y) without acceleration (or momentum steps).
This is due to fact that gradient descent is already optimal among all first-order algorithm
for finding stationary points of smooth nonconvex functions [Carmon et al., 2020]. The stan-
dard acceleration technique will not help for smooth nonconvex functions. We presents the
theoretical guarantees for Algorithm 9 in the following theorem.

Theorem 3.6.1 Assume that f is `-smooth and f(x, ·) is µy-strongly-concave for all x.
Then there exists T > 0 such that the output (x̂, ŷ) = Minimax-PPA(f,x0,y0, `, µy, ε, T )
is an ε-stationary point of f with probability at least 2/3, and the total number of gradient
evaluations is bounded by

O

(
`∆Φ

ε2
· √κy log2

(
κy`(D̃

2
x +D2

y)

ε

))
,

where κy = `/µy is the condition number, ∆Φ = Φ(x0)−minx∈Rm Φ(x) is the initial function
value gap and D̃x = ‖x0−x?g1

(y0)‖ is the initial distance where x?g(y0) = argminx∈X g(x,y0).

Theorem 3.6.1 claims that Algorithm 9 will find an ε-stationary point, with at least constant
probability, in Õ(

√
κy/ε

2) gradient evaluations. Similar to Theorem 3.5.1, the inner loop

takes Õ(
√
κy) gradient evaluations to solve the proximal step since the condition number of

gt(·,y) is O(1) for any y ∈ Y . In the outer loop, regardless of the smoothness of Φ(·), PPA
with proximal parameter ` is capable of finding the stationary point in Õ(1/ε2) iterations.
In total, the gradient complexity is Õ(

√
κy/ε

2).

Nonconvex-concave setting. Our result in the nonconvex-strongly-concave setting read-
ily implies a fast result in the nonconvex-concave setting. Consider the following auxiliary
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function for an arbitrary y0 ∈ Y :

f̃ε(x,y) = f(x,y)− (ε/4Dy)‖y − y0‖2. (3.9)

By construction, it is clear that the gradient of f and f̃ε are close in the sense

max
(x,y)∈Rm×Y

‖∇f(x,y)−∇f̃ε(x,y)‖ ≤ ε/4.

This implies that any (ε/2)-stationary point of f̃ε is also a ε-stationary point of f , and thus
it is sufficient to solve the problem minx∈X maxx∈Y f̃ε(x,y). Finally, the function f̃ε(x, ·) is
always ε/(2Dy)-strongly-concave, which can be fed into Algorithm 9 to obtain the following
result.

Corollary 3.6.2 Assume that f is `-smooth and f(x, ·) is concave for all x. Then there
exists T > 0 such that the output (x̂, ŷ) = Minimax-PPA(f̃ε,x0,y0, `, ε/(2Dy), ε/2, T ) is
an ε-stationary point of f with probability at least 2/3, and the total number of gradient
evaluations is bounded by

O

(
`∆Φ

ε2
·
√
`Dy

ε
log2

(
`(D̃2

x +D2
y)

ε

))
,

where Dy > 0, ∆Φ = Φ(x0) − minx∈Rm Φ(x) is the initial function value gap and D̃x =
‖x0 − x?g1

(y0)‖ is the initial distance where x?g(y0) = argminx∈X g(x,y0).

3.7 Conclusion

We have provided the first set of near-optimal algorithms for strongly-convex-(strongly)-
concave minimax optimization problems and the state-of-the-art algorithms for nonconvex-
(strongly)-concave minimax optimization problems. For the former class of problems, our
algorithms match the lower complexity bound for first-order algorithms [Ouyang and Xu,
2021, Ibrahim et al., 2020, Zhang et al., 2022a] up to logarithmic factors. For the latter class
of problems, our algorithms achieve the best known upper bound. In the future research, one
important direction is to investigate the lower complexity bound of first-order algorithms for
nonconvex-(strongly)-concave minimax problems. Despite several striking results on lower
complexity bounds for nonconvex smooth problems [Carmon et al., 2020, 2021], this problem
remains challenging as solving it requires a new construction of “chain-style” functions and
resisting oracles.

3.8 Additional Results for Nonconvex-Concave

Optimization

We present our results for nonconvex-concave optimization using the stationary of Φ(·) :=
maxy∈Y f(·,y) (Definition 3.8.1 and Definition 3.8.5) as the optimality measure.
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Optimality notion based on Moreau envelope. We present another optimality notion
based on Moreau envelope for nonconvex-concave setting in which f(·,y) is not necessarily
convex for each y ∈ Y but f(x, ·) is concave for each x ∈ X . For simplicity, we let X = Rm

and Y be convex and bounded. In general, finding a global saddle point of f is intractable
since solving the special case with a singleton Y globally is already NP-hard [Murty and
Kabadi, 1987] as mentioned in the main text.

One approach, inspired by nonconvex optimization, is to equivalently reformulate prob-
lem (3.1) as the following nonconvex minimization problem:

min
x∈Rm

{
Φ(x) := max

y∈Y
f(x,y)

}
, (3.10)

and define an optimality notion for the local surrogate of global optimum of Φ. In robust
learning, x is the classifier while y is the adversarial noise. Practitioners are often only
interested in finding a robust classifier x instead of an adversarial response y to each data
point. Such a stationary point x precisely corresponds to a robust classifier that is stationary
to the robust classification error.

If f(x, ·) is further assumed to be strongly concave for each x ∈ Rm, then Φ is smooth
and a standard optimality notion is the stationary point.

Definition 3.8.1 We call x̂ an ε-stationary point of a smooth function Φ if ‖∇Φ(x̂)‖ ≤ ε.
If ε = 0, then x̂ is called a stationary point.

In contrast, when f(x, ·) is merely concave for each x ∈ X , Φ is not necessarily smooth and
even not differentiable. A weaker sufficient condition for the purpose of our paper is the
weak convexity.

Definition 3.8.2 A function Φ : Rd → R is L-weakly convex if Φ(·) + (L/2)‖ · ‖2 is convex.

First, a function Φ is `-weakly convex if it is `-smooth. Second, the subdifferential of a `-
weakly convex function Φ can be uniquely determined by the subdifferential of Φ(·)+(`/2)‖·
‖2. This implies that the optimality notion can be defined by a point x ∈ Rm with at least
one small subgradient: minξ∈∂Φ(x) ‖ξ‖ ≤ ε. Unfortunately, this notion can be restrictive if
Φ is nonsmooth. Considering a one-dimensional function Φ(·) = | · |, a point x must be 0
if it satisfies the optimality notion with ε ∈ [0, 1). This means that finding a sufficiently
accurate solution under such optimality notion is as difficult as solving the minimization
exactly. Another popular optimality notion is based on the Moreau envelope of Φ when Φ is
weakly convex [Davis and Drusvyatskiy, 2019].

Definition 3.8.3 A function Φλ is the Moreau envelope of Φ with λ > 0 if for ∀x ∈ Rm,
that Φλ(x) = minw∈Rm Φ(w) + (1/2λ)‖w − x‖2.

Lemma 3.8.4 (Properties of Moreau envelopes) If Φ(·) is `-weakly convex, its Moreau
envelope Φ1/2`(·) is 4`-smooth with the gradient ∇Φ1/2`(·) = 2`(· − ProxΦ/2`(·)) in which a
point ProxΦ/2`(·) = argminw∈Rm{Φ(w) + `‖w − ·‖2} is defined.



CHAPTER 3. NEAR-OPTIMAL GRADIENT-BASED ALGORITHM 66

Thus, an ε-stationary point of an `-weakly convex function Φ can be alternatively defined as
a point x̂ satisfying that the gradient norm of Moreau envelope ‖∇Φ1/2`(x̂)‖ is small.

Definition 3.8.5 We call x̂ an ε-stationary point of a `-weakly convex function Φ if ‖∇Φ1/2`(x̂)‖ ≤
ε. If ε = 0, then x̂ is called a stationary point.

Lemma 3.8.6 (Properties of ε-stationary point) If x̂ is an ε-stationary point of a `-
weakly convex function Φ, then there exists x̄ ∈ Rm such that minξ∈∂Φ(x̄) ‖ξ‖ ≤ ε and
‖x̂− x̄‖ ≤ ε/2`.

Lemma 3.8.6 shows that an ε-stationary point defined by the Moreau envelope can be inter-
preted as the relaxation for a point with at least one small subgradient. In particular, if x̂ is
an ε-stationary point of a `-weakly convex function Φ, then it is close to a point which has
small subgradient.

Nonconvex-strongly-concave setting. In the setting of nonconvex-strongly-concave func-
tion, we still use Algorithm 9. Similar to Theorem 3.6.1, we can obtain a guarantee, which
finds a point x̂ satisfying ‖∇Φ(x̂)‖ ≤ ε in the same number of iterations as in Theorem 3.6.1.

Theorem 3.8.7 Assume that f is `-smooth and f(x, ·) is µy-strongly-concave for all x.
Then there exists T > 0 such that the output (x̂, ŷ) = Minimax-PPA(f,x0,y0, `, µy, ε, T )
satisfies ‖∇Φ(x̂)‖ ≤ ε with probability at least 2/3, and the total number of gradient evalua-
tions is bounded by

O

(
`∆Φ

ε2
· √κy log2

(
κy`(D̃

2
x +D2

y)

ε

))
where κy = `/µy is the condition number, ∆Φ = Φ(x0)−minx∈Rm Φ(x) is the initial function
value gap and D̃x = ‖x0−x?g1

(y0)‖ is the initial distance where x?g(y0) = argminx∈X g(x,y0).

Nonconvex-concave setting. We can reduce the problem of optimizing a nonconvex-
concave function to the problem of optimizing a nonconvex-strongly-concave function. The
only caveat is that, in order to achieve the near-optimal point using Definition 3.8.5 as
optimality measure, we can only add a O(ε2) term as follows:

f̄ε(x,y) = f(x,y)− (ε2/200`D2
y)‖y − y0‖2. (3.11)

Now f̄ε(x, ·) is only ε2/(100`D2
y)-concave, by feeding it to Algorithm 9 and through a slightly

more complicated reduction argument, we can only obtain gradient complexity bound of
Õ(ε−3) instead of Õ(ε−2.5) as in Corollary 3.6.2. Formally, we have

Corollary 3.8.8 Assume that f is `-smooth, and f(x, ·) is concave for all x. Then there
exists T > 0 such that the output (x̂, ŷ) = Minimax-PPA(f̄ε,x0,y0, `, ε

2/(100`D2
y), ε/10, T )
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satisfies ‖∇Φ1/2`(x̂)‖ ≤ ε with probability at least 2/3, and the total number of gradient
evaluations is bounded by

O

(
`2Dy∆Φ

ε3
log2

(
`(D̃2

x +D2
y)

ε

))

where Dy > 0, ∆Φ = Φ(x0) − minx∈Rm Φ(x) is the initial function value gap and D̃x =
‖x0 − x?g1

(y0)‖ is the initial distance where x?g(y0) = argminx∈X g(x,y0).

3.9 Proofs for Algorithm Components

We present proofs for our algorithm components.

Proof of Theorem 3.3.6. We divide the proof into three parts. In the first part, we
show that the output x̂ satisfies g(x̂) ≤ minx∈X g(x) + ε. In the second part, we derive the
sufficient condition for guaranteeing the stopping criteria in Algorithm 5. In the third part,
we derive the gradient complexity using the condition derived in the second part.

Part I. Let x̃t = PX (xt − (1/`)∇g(xt)) be defined as the point achieved by one-step
projected gradient descent from xt. Since g is `-smooth and µ-strongly convex, it is straight-
forward to derive from Nesterov [2018, Corollary 2.3.2] that

g(x) ≥ g(x̃t) + `(xt − x̃t)
>(x− xt) + `

2
‖xt − x̃t‖2 + µ

2
‖x− xt‖2, for all x ∈ X .

Using the Young’s inequality, we have (xt − x̃t)
>(x− xt) ≥ −(1/2)(‖xt − x̃t‖2 + ‖x− xt‖2).

Putting these pieces together with x = x? yields that

g(x̃t)−min
x∈X

g(x) = g(x̃t)− g(x?) ≤
(
`−µ

2

)
‖xt − x?‖2.

Without loss of generality, we let ` > µ. Indeed, if ` = µ, then one-step projected gradient
descent from any points in X guarantees that g(x̃t) − minx∈X g(x) = 0. Since x̂ = x̃t in
Algorithm 5, it suffices to show that the following statement holds true,

‖xt − PX (xt − (1/`)∇g(xt))‖ ≤
√

ε
2κ2(`−µ)

=⇒ ‖xt − x?‖ ≤
√

2ε
`−µ . (3.12)

Let x̃t = PX (xt − (1/`)∇g(xt)) be defined as the point achieved by one-step projected
gradient descent from xt, the `-smoothness of g implies

‖x̃t − x?‖ ≤ ‖xk − x?‖. (3.13)

Using the definition of x̃t and x?, we have

(x? − x̃t)
>(`(x̃t − xt) +∇g(xt)) ≥ 0, (x̃t − x?)>∇g(x?) ≥ 0.
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Summing up the above two inequalities and rearranging yields that

(x? − xt)
>(∇g(xt)−∇g(x?)) ≥ `(x? − x̃t)

>(xt − x̃t) + (x̃t − xt)
>(∇g(xt)−∇g(x?)).

Since g is `-smooth and µ-strongly convex, we have

−µ‖xt − x?‖2 ≥ −`‖xt − x̃t‖(‖x? − x̃t‖+ ‖x? − xt‖)
(3.13)

≥ −2`‖xt − x̃t‖‖xt − x?‖.

Therefore, we conclude that

‖xt − x?‖ ≤ 2κ‖xt − x̃t‖ = 2κ‖xt − PX (xt − (1/`)∇g(xt))‖
(3.12)

≤
√

2ε
`−µ .

Part II. We first show that

‖xt − x?‖ ≤ 1
3κ

√
ε

2(`−µ)
=⇒ ‖xt − PX (xt − (1/`)∇g(xt))‖ ≤

√
ε

2κ2(`−µ)
.

By the definition of x?, we have x? = PX (x?− (1/`)∇g(x?)). This together with the triangle
inequality and the nonexpansiveness of PX yields ‖xt−PX (xt− (1/`)∇g(xt))‖ ≤ 3‖xt−x?‖
which implies the desired result. Then we derive a sufficient condition for guaranteeing that
‖xt − x?‖ ≤ (1/(3κ))

√
ε/(2(`− µ)). Since g is µ-strongly convex and xt ∈ X , Nesterov

[2018, Theorem 2.1.5] together with the fact that (xt − x?)>∇g(x?) ≥ 0 implies that

‖xt − x?‖2 ≤ 2
µ

(
g(xt)−min

x∈X
g(x)

)
.

Putting these pieces together yields the desired sufficient condition as follows,

g(xt)−min
x∈X

g(x) ≤ ε
36κ3 . (3.14)

Part III. We proceed to derive the gradient complexity of the algorithm using the condition
in Eq. (3.14). Since Algorithm 5 is exactly Nesterov’s accelerated gradient descent, standard
arguments based on estimate sequence [Nesterov, 2018] implies

g(xt)−min
x∈X

g(x) ≤
(

1− 1√
κ

)t(
g(x0)−min

x∈X
g(x) + µ‖x?−x0‖2

2

)
.

Therefore, the gradient complexity of Algorithm 5 to guarantee Eq. (3.14) is bounded by

O

(
1 +
√
κ log

(
κ3`‖x0 − x?‖2

ε

))
.

This completes the proof.
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Proof of Theorem 3.4.1. Letting x̂ = Inexact-APPA(g,x0, `, µ, ε, T ). Since x̂ = xT ,
it suffices for us to estimate an lower bound for the maximum number of iterations T such
that g(xT ) ≤ minx∈X g(x) + ε. The following technical lemma is crucial to the analysis.

Lemma 3.9.1 For any x ∈ X and {(xt, x̃t)}t≥0 generated by Algorithm 6, we have

g(x) ≥ g(xt)− 2`(x− x̃t−1)>(xt − x̃t−1) + 2`‖xt − x̃t−1‖2 + µ‖x−xt‖2
4

− 7κδ. (3.15)

Proof. Using the definition of xt in Algorithm 6, we have

g(xt) + `‖xt − x̃t−1‖2 ≤ min
x∈X

{
g(x) + `‖x− x̃t−1‖2

}
+ δ.

Defining x?t = argminx∈X{g(x) + `‖x− x̃t−1‖2} and using µ-strongly convexity of g, we have
the following for any x ∈ X :

g(x) ≥ g(x?t ) + `‖x?t − x̃t−1‖2 − `‖x− x̃t−1‖2 +
(
`+ µ

2

)
‖x− x?t‖2.

Equivalently, we have

g(x) ≥ g(xt) + `‖xt − x̃t−1‖2 − `‖x− x̃t−1‖2 +
(
`+ µ

2

)
‖x− x?t‖2 − δ

≥ g(xt)− 2`(x− xt)
>(xt − x̃t−1)− `‖x− xt‖2 +

(
`+ µ

2

)
‖x− x?t‖2 − δ.

On the other hand, we have(
`+ µ

2

)
‖x− x?t‖2 − `‖x− xt‖2 = µ‖x−xt‖2

2
+ (2`+ µ)(x− xt)

>(xt − x?t ) +
(
`+ µ

2

)
‖xt − x?t‖2

Using Young’s inequality yields

(x− xt)
>(xt − x?t ) ≥ −

µ‖x−xt‖2
4(2`+µ)

− (1 + 2κ)‖xt − x?t‖2.

Putting these pieces together yields that

g(x) ≥ g(xt)− 2`(x− xt)
>(xt − x̃t−1) + µ‖x−xt‖2

4
− (2`+ µ)(1 + 2κ)‖xt − x?t‖2 − δ.

Furthermore, we have

(x− xt)
>(xt − x̃t−1) = (x− x̃t−1)>(xt − x̃t−1)− ‖xt − x̃t−1‖2,

and

‖xt − x?t‖2 ≤ 2
µ+2`

(
g(xt) + `‖xt − x̃t−1‖2 −min

x∈X

{
g(x) + `‖x− x̃t−1‖2

})
≤ 2δ

µ+2`
.

Putting these pieces together with κ ≥ 1 yields the desired inequality. �
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The remaining proof is based on Lemma 3.9.1. Indeed, we have(
1− 1

2
√
κ

)
g(xt−1) + 1

2
√
κ

(
g(x?) + 14κ3/2δ

)
Eq. (3.15)

≥
(

1− 1
2
√
κ

)(
g(xt)− 2`(xt−1 − x̃t−1)>(xt − x̃t−1) + 2`‖xt − x̃t−1‖2 + µ‖xt−1−xt‖2

4
− 7κδ

)
+ 1

2
√
κ

(
g(xt)− 2`(x? − x̃t−1)>(xt − x̃t−1) + 2`‖xt − x̃t−1‖2 + µ‖x?−xt‖2

4
− 7κδ

)
+ 7κδ

= g(xt)− 2`
((

1− 1
2
√
κ

)
xt−1 + x?

2
√
κ
− x̃t−1

)>
(xt − x̃t−1) + 2`‖xt − x̃t−1‖2 + µ‖x?−xt‖2

8
√
κ

.

Equivalently, we have

g(xt)− g(x?) ≤
(

1− 1
2
√
κ

)
(g(xt−1)− g(x?)) + 2`

((
1− 1

2
√
κ

)
xt−1 + x?

2
√
κ
− x̃t−1

)>
(xt − x̃t−1)

−2`‖xt − x̃t−1‖2 − µ‖x?−xt‖2
8
√
κ

+ 7κδ. (3.16)

Consider x̃t = xt + 2
√
κ−1

2
√
κ+1

(xt − xt−1), we let wt = x̃t + 2
√
κ(x̃t − xt) and obtain that

wt = (1 + 2
√
κ)x̃t − 2

√
κxt = 2

√
κxt − (2

√
κ− 1)xt−1 =

(
1− 1

2
√
κ

)
wt−1 + 2

√
κxt − 4κ−1

2
√
κ

x̃t−1

=
(

1− 1
2
√
κ

)
wt−1 + 2

√
κ (xt − x̃t−1) + x̃t−1

2
√
κ
.

This implies that

‖wt − x?‖2 =
∥∥∥(1− 1

2
√
κ

)
wt−1 + x̃t−1

2
√
κ
− x? + 2

√
κ (xt − x̃t−1)

∥∥∥2

(3.17)

=
∥∥∥(1− 1

2
√
κ

)
wt−1 + x̃t−1

2
√
κ
− x?

∥∥∥2

+ 4
√
κ
((

1− 1
2
√
κ

)
wt−1 + x̃t−1

2
√
κ
− x?

)>
(xt − x̃t−1)

+4κ‖xt − x̃t−1‖2.

Since wt−1 = x̃t−1 + 2
√
κ(x̃t−1 − xt−1), we have(

1− 1
2
√
κ

)
wt−1 + x̃t−1

2
√
κ

= 2
√
κx̃t−1 − (2

√
κ− 1)xt−1. (3.18)

Using the Young’s inequality, we have∥∥∥(1− 1
2
√
κ

)
wt−1 + x̃t−1

2
√
κ
− x?

∥∥∥2

(3.19)

≤
(

1− 1
2
√
κ

)2 (
1 + 5

8
√
κ−5

)
‖wt−1 − x?‖2 + 1

4κ

(
1 + 8

√
κ−5
5

)
‖x̃t−1 − x?‖2

≤
(

1− 1
2
√
κ

)(
1 + 1

8
√
κ−5

)
‖wt−1 − x?‖2 + 2‖x̃t−1−x?‖2

5
√
κ

≤
(

1− 1
6
√
κ

)
‖wt−1 − x?‖2 + 2‖x̃t−1−x?‖2

5
√
κ

.
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Using the Young’s inequality again, we have

‖x̃t−1 − x?‖2 ≤ 5‖x?−xt‖2
4

+ 5‖x̃t−1 − xt‖2. (3.20)

Putting Eq. (3.17)-Eq. (3.20) together with κ ≥ 1, we have

‖wt − x?‖2 ≤
(

1− 1
6
√
κ

)
‖wt−1 − x?‖2 + ‖x?−xt‖2

2
√
κ

(3.21)

+6κ‖xt − x̃t−1‖2 + 8κ
(
x̃t−1 −

(
1− 1

2
√
κ

)
xt−1 − x?

2
√
κ

)>
(xt − x̃t−1) .

Combining Eq. (3.16) and Eq. (3.21) yields that

g(xt)− g(x?) + µ‖wt−x?‖2
4

≤
(

1− 1
2
√
κ

)
(g(xt−1)− g(x?)) +

(
1− 1

6
√
κ

)
µ‖wt−1−x?‖2

4
+ 7κδ

≤
(

1− 1
6
√
κ

)(
g(xt−1)− g(x?) + µ‖wt−1−x?‖2

4

)
+ 7κδ.

Repeating the above inequality yields that

g(xT )− g(x?) + µ‖wT−x?‖2
4

≤
(

1− 1
6
√
κ

)> (
g(x0)− g(x?) + µ‖x0−x?‖2

4

)
+ 42κ3/2δ.

Therefore, we conclude that

g(xT )− g(x?) ≤
(

1− 1
6
√
κ

)> (
g(x0)− g(x?) + µ‖x0−x?‖2

4

)
+ 42κ3/2δ.

Since the tolerance δ ≤ εκ−3/2/84, we conclude that the iteration complexity of Algorithm 6
to guarantee that g(xT ) − minx∈X g(x) ≤ ε if there exists an absolute constant c > 0 such
that

T ≥ c
√
κ log

(
g(x0)− g(x?) + (µ/4)‖x0 − x?‖2

ε

)
.

This completes the proof.

Proof of Theorem 3.4.2. Before presenting the main proof, we define the following
important functions:

Φg(·) = maxy∈Y g(·,y), y?g(·) = argmaxy∈Y g(·,y),

Ψg(·) = minx∈X g(x, ·), x?g(·) = argminx∈X g(x, ·).

All the above functions are well defined since g(·, ·) is strongly convex-concave. We provide
their complete characterization in the following structural lemma.

Lemma 3.9.2 Under the assumptions imposed in Theorem 3.4.2, we have
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(a) A function y?g(·) is κy-Lipschitz.

(b) A function Φg(·) is 2κy`-smooth and µx-strongly convex with ∇Φg(·) = ∇xg(·,y?g(·)).

(c) A function x?g(·) is κx-Lipschitz.

(d) A function Ψg(·) is 2κx`-smooth and µy-strongly concave with ∇Ψg(·) = ∇yg(x?g(·), ·).

where κx = `/µx and κy = `/µy are condition numbers.

Now we are ready to prove Theorem 3.4.2. We divide the proof into three parts. In the first
part, we show that the output x̂ = Maximin-AG2(g,x0,y0, `, µx, µy, ε) satisfies

max
y∈Y

g(x̂,y) ≤ min
x∈X

max
y∈Y

g(x,y) + ε (3.22)

In the second part, we get the sufficient condition for guaranteeing the stopping criteria in
Algorithm 7. In the third part, we estimate an upper bound for the gradient complexity of
the algorithm using the condition derived in the second part. For the ease of presentation, we
denote (x?g,y

?
g) as the unique solution to the minimax optimization minx∈X maxy∈Y g(x,y).

Part I. By the definition of Φg, the inequality in Eq. (3.22) can be rewritten as follows,

Φg(x̂) ≤ min
x∈X

Φg(x) + ε.

Since x̂ = PX (xT − (1/2κy`)∇xg(xT ,yT )), we have

0 ≤ (x− x̂)> (2κy`(x̂− xT ) +∇xg(xT ,yT ))

= (x− x̂)>(2κy`(x̂− xT ) +∇Φg(xT )) + (x− x̂)>(∇xg(xT ,yT )−∇Φg(xT )).

Since ∇Φg(xT ) = ∇xg(xT ,y
?
g(xT )), we have ‖∇xg(xT ,yT ) −∇Φg(xT )‖ ≤ `‖yT − y?g(xT )‖.

Using the Young’s inequality, we have

(x− x̂)>(∇xg(xT ,yT )−∇Φg(xT )) ≤ κy`‖x̂−xT ‖2
2

+ κy`‖x−xT ‖2
2

+ µy‖yT − y?g(xT )‖2.

Since Φg is 2κy`-smooth and µx-strongly convex, we have

(x− x̂)>(2κy`(x̂− xT ) +∇Φg(xT )) ≤ 2κy`(x− xT )>(x̂− xT )

+Φg(x)− Φg(x̂)− κy`‖x̂− xT‖2 − µx‖x−xT ‖2
2

.

Using the Young’s inequality, we have (x − xT )>(x̂ − xT ) ≤ ‖x − xT‖2 + (1/4)‖x̂ − xT‖2.
Putting these pieces together yields with x = x?g yields that

Φg(x̂)−min
x∈X

Φg(x) ≤ 3κy`‖xT − x?g‖2 + µy‖yT − y?g(xT )‖2. (3.23)
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In what follows, we prove that Φg(x̂) ≤ minx∈X Φg(x)+ε if the following stopping conditions
hold true,

g(xT ,yT )− g(x?g(yT ),yT ) ≤ ε
648κ3

xκ
3
y
, (3.24)

‖yT − PY(yT + (1/2κx`)∇yg(xT ,yT ))‖ ≤ 1
24κ2

xκy

√
ε
κy`
. (3.25)

Indeed, we observe that ‖xT − x?g‖ ≤ ‖xT − x?g(yT )‖+ ‖x?g(yT )− x?g(y
?
g)‖+ ‖x?g(y?g)− x?g‖.

By definition, we have x?g(y
?
g) = x?g. Also, x?g(·) is κx-Lipschitz. Therefore, we have

‖xT − x?g‖ ≤ ‖xT − x?g(yT )‖+ κx‖yT − y?g‖. (3.26)

By the similar argument, we have

‖yT − y?g(xT )‖ ≤ ‖yT − y?g‖+ κy‖xT − x?g‖ ≤ κy‖xT − x?g(yT )‖+ κxκy‖yT − y?g‖. (3.27)

First, we bound the term ‖xT − x?g(yT )‖. Since g(·,yT ) is µx-strongly convex, we have

‖xT − x?g(yT )‖ ≤
√

2(g(xT ,yT )−g(x?(yT ),yT ))
µx

≤ 1
18κxκy

√
ε
κy`

(3.28)

It remains to bound the term ‖yT − y?g‖. Indeed, we have ∇Ψg(yT ) = ∇yg(x?g(yT ),yT ) and

‖yT − PY(yT + (1/2κx`)∇Ψg(yT ))‖ ≤ ‖yT − PY(yT + (1/2κx`)∇yg(xT ,yT ))‖
+‖PY(yT + (1/2κx`)∇yg(xT ,yT ))− PY(yT + (1/2κx`)∇Ψg(yT ))‖.

Since PY is nonexpansive and ∇yg is `-Lipschitz, we have

‖PY(yT + (1/2κx`)∇yg(xT ,yT ))− PY(yT + (1/2κx`)∇Ψg(yT ))‖ ≤ ‖xT−x?g(yT )‖
2κx

.

Putting these pieces together with Eq. (3.25) and Eq. (3.28) yields that

‖yT − PY(yT + (1/2κx`)∇Ψg(yT ))‖ ≤ 1
18κ2

xκy

√
ε
κy`
. (3.29)

Since y?g = argmaxy∈Y Ψg(y) and ỹT = PY(yT + (1/2κx`)∇Ψg(yT )) is achieved by one-step
projected gradient ascent from yT , we derive from the 2κx`-smoothness of Ψg, we have

‖ỹT − y?g‖ ≤ ‖yT − y?g‖. (3.30)

Using the definition of ỹT and y?g, we have

(y?g − ỹT )>(ỹT − yT − (1/2κx`)∇Ψg(yT )) ≥ 0, (y?g − ỹT )>∇Ψg(y
?
g) ≥ 0.

Summing up the above two inequalities and rearranging yields that

(y?g−yT )>(∇Ψg(y
?
g)−∇Ψg(yT )) ≥ 2κx`(y

?
g−ỹT )>(yT−ỹT )+(ỹT−yT )>(∇Ψg(y

?
g)−∇Ψg(yT )).



CHAPTER 3. NEAR-OPTIMAL GRADIENT-BASED ALGORITHM 74

Since Ψg is 2κx`-smooth and µy-strongly concave, we have

−µy‖y?g−yT‖2 ≥ −2κx`‖ỹT −yT‖(‖y?g− ỹT‖+‖y?g−yT‖)
(3.30)

≥ −4κx`‖ỹT −yT‖‖y?g−yT‖.

This implies that

‖y?g − yT‖ ≤ 4κxκy‖yT − ỹT‖
(3.29)

≤ 1
4κx

√
ε
κy`
. (3.31)

Plugging Eq. (3.28) and Eq. (3.31) into Eq. (3.26) yields that

‖xT − x?g‖ ≤
(

1
18κxκy

+ 1
4

)√
ε
κy`

κx,κy≥1

≤ 1
2

√
ε
κy`
.

Plugging Eq. (3.28) and Eq. (3.31) into Eq. (3.27) yields that

‖yT − y?g(xT )‖ ≤
(

1
18κx

+ κy
4

)√
ε
κy`

κx,κy≥1

≤ 1
2

√
κyε

`
.

Putting these pieces together Eq. (3.23) yields the desired result.

Part II. We first show that ‖yT −y?g‖ ≤ (1/216κ2
xκy)

√
ε/κy` and Eq. (3.24) are sufficient

to guarantee Eq. (3.25). Indeed, we have y?g = PY(y?g + (1/2κx`)∇Ψg(y
?
g)). This together

with the triangle inequality and the nonexpansiveness of PY yields

‖yT − PY(yT + (1/2κx`)∇yg(xT ,yT ))‖ ≤ 2‖yT − y?g‖+
‖∇yg(xT ,yT )−∇Ψg(y?g)‖

2κx`
.

Furthermore, ∇Ψg(yT ) = ∇yg(x?(yT ),yT ) and

‖∇yg(xT ,yT )−∇Ψg(y
?
g)‖ ≤ ‖∇yg(xT ,yT )−∇yg(x?g(yT ),yT )‖+ ‖∇Ψg(yT )−∇Ψg(y

?
g)‖.

Since g is `-smooth and Ψg is 2κx`-smooth, we have

‖∇yg(xT ,yT )−∇Ψg(y
?
g)‖ ≤ `‖xT − x?g(yT )‖+ 2κx`‖yT − y?g‖.

Also, Eq. (3.24) guarantees that Eq. (3.28) holds true. Then we have

‖yT − PY(yT + (1/2κx`)∇yg(xT ,yT ))‖ ≤ 3‖yT − y?g‖+ 1
36κ2

xκy

√
ε
κy`
.

The above inequality together with ‖yT −y?g‖ ≤ (1/216κ2
xκy)

√
ε/κy` guarantees Eq. (3.25).

Next we derive a sufficient condition for guaranteeing ‖yT − y?g‖ ≤ (1/216κ2
xκy)

√
ε/κy`.

Since Ψg is µy-strongly concave, Nesterov [2018, Theorem 2.1.5] implies that

‖yT − y?g‖2 ≤ 2
µy

(
max
y∈Y

Ψg(y)−Ψg(yT )

)
.

Putting these pieces together yields the desired condition as follows,

max
y∈Y

Ψg(y)−Ψg(yT ) ≤ ε
93312κ4

xκ
4
y
. (3.32)
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Part III. We proceed to estimate an upper bound for the gradient complexity of Algo-
rithm 7 using Eq. (3.32). Note that ε̃ ≤ ε/(4477676(κxκy)11/2) and we provide a key technical
lemma which is crucial to the subsequent analysis.

Lemma 3.9.3 For any y ∈ Y and {(yt, ỹt)}t≥0 generated by Algorithm 7, we have

Ψg(y) ≤ 2κx`(y − ỹt−1)>(yt − ỹt−1) + Ψg(yt)− κx`‖yt−ỹt−1‖2
2

− µy‖y−ỹt−1‖2
4

+ 3κxκyε̃.

Proof. For any y ∈ Y , the update formula yt ← PY(ỹt−1 + (1/2κx`)∇yg(x̃t−1, ỹt−1)) implies
that

0 ≤ (y − yt)
>(2κx`(yt − ỹt−1)−∇yg(x̃t−1, ỹt−1))

= (y − yt)
>(2κx`(yt − ỹt−1)−∇Ψg(ỹt−1)) + (y − yt)

>(∇Ψg(ỹt−1)−∇yg(x̃t−1, ỹt−1)).

Since ∇Ψg(ỹt−1) = ∇yg(x?g(ỹt−1), ỹt−1), we have

‖∇Ψg(ỹt−1)−∇yg(x̃t−1, ỹt−1)‖ ≤ `‖x?g(ỹt−1)− x̃t−1‖.

Since g(·, ỹt−1) is µx-strongly convex, we have

‖x?g(ỹt−1)− x̃t−1‖ ≤
√

2(g(x̃t−1,ỹt−1)−g(x?g(ỹt−1),ỹt−1))

µx
≤
√

2ε̃
µx
.

Using Young’s inequality, we have

(y − yt)
>(∇Ψg(ỹt−1)−∇yg(x̃t−1, ỹt−1)) ≤ κx`‖yt−ỹt−1‖2

2
+ µy‖y−ỹt−1‖2

4
+ 3κxκyε̃.

Since Ψg is 2κx`-smooth and µy-strongly concave, we have

(y − yt)
>(2κx`(yt − ỹt−1)−∇Ψg(ỹt−1)) ≤ 2κx`(y − ỹt−1)>(yt − ỹt−1)

+Ψg(yt)−Ψg(y)− κx`‖yt − ỹt−1‖2 − µy‖y−ỹt−1‖2
2

.

Putting these pieces together yields the desired inequality. �

The remaining proof is based on the modification of Nesterov’s techniques [Nesterov, 2018,
Section 2.2.5]. Indeed, we define the estimate sequence as follows,

Γ0(y) = Ψg(y0)− µy‖y−y0‖2
2

,

Γt+1(y) = 1
4
√
κxκy

(
Ψg(yt+1) + 2κx`(y − ỹt)

>(yt+1 − ỹt)− κx`‖yt+1−ỹt‖2
2

−µy‖y−ỹt‖2
4

− 12(κxκy)3/2ε̃
)

+
(

1− 1
4
√
κxκy

)
Γt(y) for all t ≥ 0.

We apply the inductive argument to prove,

max
y∈Rn

Γt(y) ≤ Ψg(yt), for all t ≥ 0. (3.33)
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Eq. (3.33) holds trivially when t = 0. Then, we show that Eq. (3.33) holds true when t = T if
Eq. (3.33) holds true for all t ≤ T − 1. Let vt = argmaxy∈Rn Γt(y) and Γ?t = maxy∈Rn Γt(y),
we have the canonical form Γt(y) = Γ?t − (µy/4)‖y−vt‖2. The following recursive rules hold
for vt and Γ?t :

vt+1 =
(

1− 1
4
√
κxκy

)
vt + ỹt

4
√
κxκy

+
√
κxκy(yt+1 − ỹt),

Γ?t+1 =
(

1− 1
4
√
κxκy

)
Γ?t + 1

4
√
κxκy

(
Ψg(yt+1)− 12(κxκy)3/2ε̃

)
−
(
`
8

√
κx
κy
− κx`

4

)
‖yt+1 − ỹt‖2

− 1
4
√
κxκy

(
1− 1

4
√
κxκy

)(
µy‖ỹt−vt‖2

4
− 2κx`(vt − ỹt)

>(yt+1 − ỹt)
)
.

It follows from the recursive rule for Γt and its canonical form that

∇Γt+1(y) = −
(

1− 1
4
√
κxκy

)
µy(y−vt)

2
+ 1

4
√
κxκy

(
2κx`(yt+1 − ỹt)− µy(y−ỹt)

2

)
.

The recursive rule for vt can be achieved by solving ∇Γt+1(vt+1) = 0. Then we have

Γ?t+1 = Γt+1(vt+1)

=
(

1− 1
4
√
κxκy

)
Γ?t −

(
1− 1

4
√
κxκy

)
µy‖vt+1−vt‖2

4
+ 1

4
√
κxκy

(
Ψg(yt+1)− 12(κxκy)3/2ε̃

−κx`‖yt+1−ỹt‖2
2

)
+ 1

4
√
κxκy

(
2κx`(vt+1 − ỹt)

>(yt+1 − ỹt)− µy‖vt+1−ỹt‖2
4

)
.

Then, we conclude the recursive rule for Γ?t by plugging the recursive rule for vk into the
above equality. By the induction, Eq. (3.33) holds true when t = T − 1 which implies

Γ?T ≤
(

1− 1
4
√
κxκy

)
Ψg(yT−1) + 1

4
√
κxκy

(
Ψg(yT )− 12(κxκy)3/2ε̃

)
−
(
`
8

√
κx
κy
− κx`

4

)
‖yT − ỹT−1‖2 − 1

4
√
κxκy

(
1− 1

4
√
κxκy

)(
µy‖ỹT−1−vT−1‖2

2

−2κx`(vT−1 − ỹT−1)>(yT − ỹT−1)
)
.

Applying Lemma 3.9.3 with t = T and y = yT−1 further implies that

Ψg(yT−1) ≤ 2κx`(yT−1−ỹT−1)>(yT−ỹT−1)+Ψ(yT )− κx`‖yT−ỹT−1‖2
2

− µy‖yT−1−ỹT−1‖2
2

+3κxκyε̃.

Putting these pieces together yields that

Γ?T ≤ Ψg(yT ) +
(

1− 1
4
√
κxκy

)
2κx`(yT − ỹT−1)>

(
(yT−1 − ỹT−1) + 1

4
√
κxκy

(vT−1 − ỹT−1)
)
.

Using the update formula ỹt = yt+
4
√
κxκy−1

4
√
κxκy+1

(yt−yt−1) and the recursive rule for vt with the

inductive argument, it is straightforward that (yt − ỹt) + 1
4
√
κxκy

(vt − ỹt) = 0 for all t ≥ 0.

This implies that Γ?T ≤ Ψg(yT ). Therefore, we conclude that Eq. (3.33) holds for all t ≥ 0.
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On the other hand, Lemma 3.9.3 and the update formula for Γt implies that

Γt+1(y) ≥ 1
4
√
κxκy

(
Ψg(y)− 12(κxκy)3/2ε̃− 3κxκyε̃

)
+
(

1− 1
4
√
κxκy

)
Γt(y).

Since κx, κy ≥ 1, we have

Ψg(y)− Γt+1(y) ≤
(

1− 1
4
√
κxκy

)
(Ψg(y)− Γt(y)) + 6κxκyε̃.

Repeating the above inequality yields that

Ψg(y)− ΓT (y) ≤
(

1− 1
4
√
κxκy

)>
(Ψg(y)− Γ0(y)) + 24(κxκy)3/2ε̃.

Therefore, we conclude that

max
y∈Y

Ψg(y)−Ψg(yT ) ≤
(

1− 1
4
√
κxκy

)> (2κx`+µ̄)D2
y

2
+ 24(κxκy)3/2ε̃.

Since the tolerance ε̃ ≤ ε
4477676(κxκy)11/2 , we conclude that the iteration complexity Algo-

rithm 7 to guarantee Eq. (3.32) is bounded by O(
√
κxκy log(`D2

y/ε)).
Now it suffices to establish the gradient complexity of the two AGD subroutines at each

iteration. In particular, we use the gradient complexity of the AGD subroutine to guarantee
that g(x̂) ≤ minX g(x) + ε is bounded by

O

(
1 +
√
κ log

(
κ3`‖x0 − x?‖2

ε

))
,

where κ is the condition number of g and x? is the global optimum of g over X . Since
Y is a convex and bounded set, {yt}t≥0 is a bounded sequence. Hence {ỹt}t≥0 is also a
bounded sequence. Since x?g(·) is κx-Lipschitz (cf. Lemma 3.9.2), the sequences {x?g(ỹt)}t≥0

and {x?g(yt)}t≥0 are bounded. Thus, we have

‖x0 − x?g(yt)‖2 = ‖x0 − x?g(ỹt)‖2 = O(‖x0 − x?g(y0)‖2 + κ2
xD

2
y).

Putting these pieces together yields that the gradient complexity of every AGD subroutines
at each iteration is bounded by O(

√
κx log((κ3

x`(‖x0− x?g(y0)‖2 + κ2
xD

2
y)/ε̃)). Therefore, the

gradient complexity of Algorithm 7 to guarantee Eq. (3.32) is bounded by

O

(
κx
√
κy · log2

(
(κx + κy)`(D̃2

x +D2
y)

ε

))
,

where κx = `/µx and κy = `/µy are condition numbers, D̃x = ‖x0 − x?g(y0)‖ is the initial
distance where x?g(y0) = argminx∈X g(x,y0) and Dy > 0 is the diameter of the set Y .
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3.10 Proofs for Convex-Concave Settings

Proof of Theorem 3.5.1. We first show that there exists T > 0 such that (x̂, ŷ) =
Minimax-APPA(f,x0,y0, `, µx, µy, ε, T ) is an ε-saddle point. Then we estimate the total
number of gradient evaluations required to output an ε-approximate saddle point.

First, we note that Minimax-APPA in Algorithm 8 can be interpreted as an inexact ac-
celerated proximal point algorithm Inexact-APPA with the inner loop solver Maximin-AG2
and AGD. Using Theorem 3.3.6 and Theorem 3.4.1, the point (x̂, ŷ) satisfies

max
y∈Y

f(x̂,y)−min
x∈X

max
y∈Y

f(x,y) ≤
(

1− 1
6
√
κx

)> (
Φ(x0)− Φ(x?) + µx‖x?−x0‖2

4

)
+ 42κ3/2

x δ.

and ŷ← PY (ỹ + (1/2κx`)∇yf(x̂, ỹ)) where ỹ ∈ Y satisfies that

max
y∈Y

f(x̂,y)− f(x̂, ỹ) ≤ ε̃.

We let Φ(·) = maxy∈Y f(·,y) and note that Φ is µx-strongly convex. Since f is µx-strongly-
convex-µy-strongly-concave, the Nash equilibrium (x?,y?) is unique and x? = argminx∈X Φ(x).
Therefore, we have

‖x̂− x?‖2 ≤ 2
µx

(
max
y∈Y

f(x̂,y)−min
x∈X

max
y∈Y

f(x,y)

)
.

Since f(x̂, ·) is µy-strongly concave, Nesterov [2018, Theorem 2.1.5] implies that

‖ỹ − y?(x̂)‖2 ≤ 2
µy

(
max
y∈Y

f(x̂,y)− f(x̂, ỹ)

)
≤ 2ε̃

µy
.

Since y?(·) = argmaxy∈Y f(·,y) is κy-Lipschitz (cf. Lemma 3.9.2), we have ‖y? − y?(x̂)‖2 =
‖y?(x?)− y?(x̂)‖2 ≤ κ2

y‖x̂− x?‖2. Thus, we have

‖ỹ − y?‖2 ≤ 2κ2
y‖x̂− x?‖2 + 4ε̃

µy
.

Let Ψ(·) = minx∈X f(x, ·). By the definition of ŷ, the following inequality holds for ∀y ∈ Y ,

0 ≤ (y − ŷ)>(2κx`(ŷ − ỹ)−∇yf(x̂, ỹ))

= (y − ŷ)>(2κx`(ŷ − ỹ)−∇Ψ(ỹ)) + (y − ŷ)>(∇Ψ(ỹ)−∇yf(x̂, ỹ)).

Since ∇Ψ(ỹ) = ∇yf(x?(ỹ), ỹ), we have ‖∇Ψ(ỹ) − ∇yf(x̂, ỹ)‖ ≤ `‖x?(ỹ) − x̂‖. Using the
Young’s inequality, we have

(y − ŷ)>(∇Ψ(ỹ)−∇yf(x̂, ỹ)) ≤ κx`‖ŷ−ỹ‖2
2

+ κx`‖y−ỹ‖2
2

+ µx‖x?(ỹ)− x̂‖2.

Since Ψ is µy-strongly concave and 2κx`-smooth, we have

(y−ŷ)>(2κx`(ŷ−ỹ)−∇Ψ(ỹ)) ≤ 2κx`(y−ỹ)>(ŷ−ỹ)+Ψ(ŷ)−Ψ(y)−κx`‖ŷ−ỹ‖2− µx‖y−ỹ‖2
2

.
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Using the Young’s inequality, we have (y− ỹ)>(ŷ− ỹ) ≤ ‖y− ỹ‖2 + (1/4)‖ŷ− ỹ‖2. Putting
these pieces together with y = y? yields that

min
x∈X

max
y∈Y

f(x,y)−min
x∈X

f(x, ŷ) = Ψ(y?)−Ψ(ŷ)

≤ 3κx`‖ỹ − y?‖2 + µx‖x?(ỹ)− x̂‖2

≤ 3κx`‖ỹ − y?‖2 + 2µx‖x?(ỹ)− x?(y?)‖2 + 2µx‖x? − x̂‖2

≤ 5κx`‖ỹ − y?‖2 + 2µx‖x? − x̂‖2.

Therefore, we conclude that

max
y∈Y

f(x̂,y)−min
x∈X

f(x, ŷ) ≤ 20κxκyε̃+ (20κ2
xκ

2
y + 5)

(
max
y∈Y

f(x̂,y)−min
x∈X

max
y∈Y

f(x,y)

)
.

Note that ε̃ ≤ ε/(80κxκy) and δ ≤ ε/(4200κ
7/2
x κ2

y). This together with the above inequality
implies that

max
y∈Y

f(x̂,y)−min
x∈X

f(x, ŷ) ≤ 3ε
4

+ (20κ2
xκ

2
y + 5)

(
1− 1

6
√
κx

)> (
Φ(x0)− Φ(x?) + µx‖x?−x0‖2

4

)
.

Thus, there exists an absolute constant c > 0 such that maxy∈Y f(x̂,y)−minx∈X f(x, ŷ) ≤ ε
if the maximum number of iterations T ≥ c

√
κx log(κ2

xκ
2
y`‖x? − x0‖2/ε). This implies that

the total number of iterations is bounded by

O

(
√
κx log

(
κ2
xκ

2
y`‖x? − x0‖2

ε

))
.

Furthermore, we call the solver Maximin-AG2 at each iteration. Using Theorem 3.4.2 and
δ = ε/(10κxκy)4, the number of gradient evaluations at each iteration is bounded by

O

(
√
κy log

(
κ

7/2
x κ3

y`(D̃
2
x +D2

y)

ε

)
log

(
κ4
xκ

4
y`D

2
y

ε

))
.

Recalling D = max{Dx, Dy} < +∞, we conclude that the total number of gradient evalua-
tions is bounded by

O

(
√
κxκy log3

(
κxκy`D

2

ε

))
.

This completes the proof.

Proof of Corollary 3.5.2. (x̂, ŷ) = Minimax-APPA(fε,y,x0,y0, `, µx, ε/(4D
2
y), ε/2, T )

can shown to be an ε-saddle point. Then we estimate the number of gradient evaluations
to output an ε-saddle point using Theorem 3.5.1. By the definition of fε, the output (x̂, ŷ)
satisfies

max
y∈Y

{
f(x̂,y)− ε‖y−y0‖2

4D2
y

}
−min

x∈X

{
f(x, ŷ)− ε‖ŷ−y0‖2

4D2
y

}
≤ ε

2
.
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Since the function f(x, ·) is concave for each x ∈ X , we have

max
y∈Y

{
f(x̂,y)− ε‖y−y0‖2

4D2
y

}
≥ max

y∈Y
f(xT+1,y)− ε

4
.

On the other hand, we have

min
x∈X

{
f(x, ŷ)− ε‖ŷ−y0‖2

4D2
y

}
≤ min

x∈X
f(x, ŷ) + ε

4
.

Putting these pieces together yields that maxy∈Y f(x̂,y)−minx∈X f(x, ŷ) ≤ ε.
Letting κy = 2`D2

y/ε in the gradient complexity bound presented in Theorem 3.5.1, we
conclude that the total number of gradient evaluations is bounded by

O

(√
κx`

ε
Dy log3

(
κx`D

2

ε

))
.

This completes the proof.

Proof of Corollary 3.5.3. (x̂, ŷ) = Minimax-APPA(fε,x0,y0, `, ε/(4D
2
x), ε/(4D2

y), ε/2, T )
can shown to be an ε-saddle point. Then we estimate the number of gradient evaluations
to output an ε-saddle point using Theorem 3.5.1. By the definition of fε, the output (x̂, ŷ)
satisfies

max
y∈Y

{
f(x̂,y) + ε‖x̂−x0‖2

8D2
x
− ε‖y−y0‖2

8D2
y

}
−min

x∈X

{
f(x, ŷ) + ε‖x−x0‖2

8D2
x
− ε‖ŷ−y0‖2

8D2
y

}
≤ ε

2
.

Since the function f(x, ·) is concave for each x ∈ X , we have

max
y∈Y

{
f(x̂,y) + ε‖x̂−x0‖2

8D2
x
− ε‖y−y0‖2

8D2
y

}
≥ max

y∈Y
f(x̂,y)− ε

4
.

On the other hand,

min
x∈X

{
f(x, ŷ) + ε‖x−x0‖2

8D2
x
− ε‖ŷ−y0‖2

8D2
y

}
≤ min

x∈X
f(x, ŷ) + ε

4
.

Putting these pieces together yields that maxy∈Y f(x̂,y)−minx∈X f(x, ŷ) ≤ ε.
Furthermore, letting κx = 4`D2

x/ε and κy = 2`D2
y/ε in the gradient complexity bound

presented in Theorem 3.5.1, we conclude that the total number of gradient evaluations is
bounded by

O

(
`DxDy

ε
log3

(
`D2

ε

))
.

This completes the proof.
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3.11 Proofs for Nonconvex-Concave Settings

Proof of Theorem 3.6.1. Using the definition of gt, we have

max
y∈Y

f(xt+1,y) + `‖xt+1 − xt‖2 ≤ min
x∈X

{
max
y∈Y

f(x,y) + `‖x− xt‖2

}
+ δ.

This implies that

Φ(xt+1) + `‖xt+1 − xt‖2 ≤ min
x∈X

{
Φ(x) + `‖x− xt‖2

}
+ δ ≤ Φ(xt) + δ.

Equivalently, we have
‖xt+1 − xt‖2 ≤ Φ(xt)−Φ(xt+1)+δ

`
. (3.34)

Note that the function Φ(·) + `‖ · −xt‖2 is `-strongly convex and its minimizer x?t is well
defined and unique [Davis and Drusvyatskiy, 2019]. Since the function Φ(·) + `‖ · −xt‖2 is
`-strongly convex, we derive from Nesterov [2018, Theorem 2.1.5] that

‖xt+1 − x?t‖2 ≤ 2
`

(
Φ(xt+1) + `‖xt+1 − xt‖2 − min

x∈Rm

{
Φ(x) + `‖x− xt‖2

})
≤ 2δ

`
. (3.35)

Since Φ is differentiable, we have

x?t = PX
(
x?t −

∇Φ(x?t )+2`(x?t−xt)
`

)
.

Therefore, we have∥∥∥xt+1 − PX
(
xt+1 − ∇Φ(xt+1)

`

)∥∥∥ ≤ 2‖xt+1 − x?t‖+ 2‖xt − x?t‖+
‖∇Φ(x?t )−∇Φ(xt+1)‖

`
.

Since Φ(·) is 2κy`-smooth, we have ‖∇Φ(xt+1)−∇Φ(x?t )‖ ≤ 2κy`‖xt+1−x?t‖. Putting these
pieces together yields that∥∥∥xt+1 − PX

(
xt+1 − ∇Φ(xt+1)

`

)∥∥∥ ≤ (2κy + 2)‖xt+1 − x?t‖+ 2‖xt − x?t‖ (3.36)

κy≥1

≤ 6κy‖xt+1 − x?t‖+ 2‖xt+1 − xt‖.

Putting Eq. (3.34), Eq. (3.35) and Eq. (3.36) together with the Cauchy-Schwarz inequality
yields

(`‖xt+1 − PX (xt+1 − (1/`)∇Φ(xt+1)) ‖)2 ≤ 72κ2
y`

2‖xt+1 − x?t‖2 + 8`2‖xt+1 − xt‖2

≤ 8`(Φ(xt)− Φ(xt+1) + δ) + 144κ2
y`δ.

Summing up the above inequality over t = 0, 1, . . . , T − 1 and dividing it by T yields that

1
T

(
T−1∑
t=0

(`‖xt+1 − PX (xt+1 − (1/`)∇Φ(xt+1))‖)2

)
≤ 8`(Φ(x0)−Φ(xT ))

T
+ 8`δ + 144κ2

y`δ

κy≥1

≤ 8`(Φ(x0)−Φ(xT ))
T

+ 152κ2
y`δ.
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Since x̂ = xs is uniformly chosen from {xs}1≤s≤T and δ ≤ ε2/(10κy)4`, we have

E[(`‖x̂− PX (x̂− (1/`)∇Φ(x̂))‖)2] = 1
T

(
T−1∑
t=0

(`‖xt+1 − PX (xt+1 − (1/`)∇Φ(xt+1))‖)2

)
≤ 8`(Φ(x0)−Φ(xT ))

T
+ 152κ2

y`δ ≤ 8`∆Φ

T
+ ε2

8
.

Using the Markov inequality, we conclude that there exists T > c`∆Φε
−2, where the output

x̂ will satisfy `‖x̂− PX (x̂− (1/`)∇Φ(x̂))‖ ≤ ε/2 with probability at least 2/3.
For simplicity, we denote ŷ+ = PY [ŷ + (1/`)∇yf(x̂, ŷ)]. Since ŷ is obtained by run-

ning AGD on −f(x̂, ·) to optimal with tolerance δ ≤ ε2/(10κy)4`, and f(x̂, ·) is µy-concave
function, we know that δ-optimality guarantees:

`‖ŷ+ − ŷ‖ ≤ ε, ‖ŷ+ − y?(x̂)‖ ≤ ε
2`
.

Putting these pieces together yields that

`‖x̂− PX (x̂− (1/`)∇xf(x̂, ŷ+))‖ ≤ `‖x̂− PX (x̂− (1/`)∇Φ(x̂))‖+ ‖∇Φ(x̂)−∇xf(x̂, ŷ+)‖
≤ `‖x̂− PX (x̂− (1/`)∇Φ(x̂))‖+ `‖ŷ+ − y?(x̂)‖
≤ ε.

This implies that (x̂, ŷ) is an ε-stationary point. Furthermore, we call the solver Maximin-AG2
at each iteration. Using Theorem 3.4.2 and δ ≤ ε2/(10κy)4`, the number of gradient evalu-
ations at each iteration is bounded by

O

(
√
κy log

(
κ5
y`

2(D̃2
x +D2

y)

ε2

)
log

(
κ4
y`

2D2
y

ε2

))
.

Therefore, we conclude that the total number of gradient evaluations is bounded by

O

(
`∆Φ

ε2
· √κy log2

(
κy`(D̃

2
x +D2

y)

ε

))
.

This completes the proof.

Proof of Corollary 3.6.2. Recall that the function f̃ε is defined by

f̃ε(x,y) = f(x,y)− ε‖y−y0‖2
4Dy

.

This implies that the following statement holds for all (x,y) ∈ X × Y that

∇xf(x,y)−∇xf̃ε(x,y) = 0, ‖∇yf(x,y)−∇yf̃ε(x,y)‖ ≤ ε
2
.
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Since (x̂, ŷ) = Minimax-PPA(f̃ε,x0,y0, `, ε/(2Dy), ε/2, T ), we have

`‖PX [x̂− (1/`)∇xf̃ε(x̂, ŷ
+
ε )]− x̂‖ ≤ ε

2
, `‖ŷ+

ε − ŷ‖ ≤ ε
2
, ŷ+

ε = PY [ŷ + (1/`)∇yf̃ε(x̂, ŷ)].

Putting these pieces together with ŷ+ = PY [ŷ + (1/`)∇yf(x̂, ŷ)] yields that

`‖PX [x̂−(1/`)∇xf(x̂, ŷ+)]−x̂‖ ≤ ε
2
+‖∇xf̃ε(x̂, ŷ

+
ε )−∇xf(x̂, ŷ+)‖ ≤ ε

2
+‖∇yf̃ε(x̂, ŷ)−∇yf(x̂, ŷ)‖ ≤ ε,

and

`‖ŷ+ − ŷ‖ ≤ `‖PY [ŷ + (1/`)∇yf̃ε(x̂, ŷ)]− ŷ‖+ ‖∇yf(x,y)−∇yf̃ε(x,y)‖ ≤ ε.

Therefore, we conclude that (x̂, ŷ) is an ε-stationary point of f . Furthermore, letting κy =
2`Dy/ε in the gradient complexity bound presented in Theorem 3.6.1, we conclude that the
total number of gradient evaluations is bounded by

O

(
`∆Φ

ε2
·
√
`Dy

ε
log2

(
`(D̃2

x +D2
y)

ε

))
.

This completes the proof.

Proof of Theorem 3.8.7. Using the same argument as in Theorem 3.6.1, we have

‖xt+1 − xt‖2 ≤ Φ(xt)−Φ(xt+1)+δ
`

. (3.37)

and

‖xt+1 − x?t‖2 ≤ 2
`

(
Φ(xt+1) + `‖xt+1 − xt‖2 − min

x∈Rm

{
Φ(x) + `‖x− xt‖2

})
≤ 2δ

`
. (3.38)

Since Φ is differentiable, we have ∇Φ(x?t ) + 2`(x?t − xt) = 0 which implies that ‖∇Φ(x?t )‖ =
2`‖x?t − xt‖. Since Φ(·) is 2κy`-smooth, we have ‖∇Φ(xt+1)−∇Φ(x?t )‖ ≤ 2κy`‖xt+1 − x?t‖.
Putting these pieces together yields that

‖∇Φ(xt+1)‖ ≤ 2κy`‖xt+1 − x?t‖+ 2`‖x?t − xt‖ ≤ (2κy`+ 2`)‖xt+1 − x?t‖+ 2`‖xt+1 − xt‖
κy≥1

≤ 4κy`‖xt+1 − x?t‖+ 2`‖xt+1 − xt‖. (3.39)

Putting Eq. (3.37), Eq. (3.38) and Eq. (3.39) together with the Cauchy-Schwarz inequality
yields

‖∇Φ(xt+1)‖2 ≤ 32κ2
y`

2‖xt+1 − x?t‖2 + 8`2‖xt+1 − xt‖2 ≤ 8`(Φ(xt)− Φ(xt+1) + δ) + 64κ2
y`δ.

Summing up the above inequality over t = 0, 1, . . . , T − 1 and dividing it by T yields that

1
T

(
T−1∑
t=0

‖∇Φ(xt+1)‖2

)
≤ 8`(Φ(x0)−Φ(xT ))

T
+ 8`δ + 64κ2

y`δ
κy≥1

≤ 8`(Φ(x0)−Φ(xT ))
T

+ 72κ2
y`δ.
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Since x̂ = xs is uniformly chosen from {xs}1≤s≤T and δ ≤ ε2/144κ2
y`, we have

E[‖∇Φ(x̂)‖2] = 1
T

(
T−1∑
t=0

‖∇Φ(xt+1)‖2

)
≤ 8`(Φ(x0)−Φ(xT ))

T
+ 72κ2

y`δ ≤ 8`∆Φ

T
+ ε2

2
.

Using the Markov inequality, we conclude that there exists T > c`∆Φε
−2, where the output

x̂ will satisfy ‖∇Φ(x̂)‖ ≤ ε with probability at least 2/3. Furthermore, we call the solver
Maximin-AG2 at each iteration. Using Theorem 3.4.2 and δ ≤ ε2/144κ2

y`, the number of
gradient evaluations at each iteration is bounded by

O

(
√
κy log

(
κ3
y`

2(D̃2
x +D2

y)

ε2

)
log

(
κ2
y`

2D2
y

ε2

))
.

Therefore, we conclude that the total number of gradient evaluations is bounded by

O

(
`∆Φ

ε2
· √κy log2

(
κy`(D̃

2
x +D2

y)

ε

))
.

This completes the proof.

Proof of Corollary 3.8.8. Recall that the function f̄ε is defined by

f̄ε(x,y) = f(x,y)− ε2‖y−y0‖2
200`D2

y
.

This implies that the following statement holds for all (x,y) ∈ X × Y that

∇xf(x,y)−∇xf̄ε(x,y) = 0, ‖∇yf(x,y)−∇yf̄ε(x,y)‖ ≤ ε2

100`Dy
.

Using Theorem 3.8.7 and letting y?ε (·) = argminy∈Y f̄ε(·,y), we have

‖∇xf̄ε(x̂,y
?
ε (x̂))]‖ ≤ ε

10
, `‖PY [y?ε (x̂) + (1/`)∇yf̄ε(x̂,y

?
ε (x̂))]− y?ε (x̂)‖ = 0.

For simplicity, we define y+
ε = PY [y?ε (x̂) + (1/`)∇yf(x̂,y?ε (x̂))]. Then, we have

‖∇xf(x̂,y+
ε )‖ ≤ ε

10
+ ε2

50`Dy
, `‖y+

ε − y?ε (x̂)‖ ≤ ε2

50`Dy
.

Now let x?(x̂) = argminx∈Rm Φ1/2`(x) := Φ(x) + `‖x− x̂‖2, we have

‖∇Φ1/2`(x̂)‖2 = 4`2‖x̂− x?(x̂)‖2

Since Φ(·) + `‖ · −x̂‖2 is `/2-strongly-convex, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

= Φ(x̂)− Φ(x?(x̂))− `‖x?(x̂)− x̂‖2 ≥ `‖x̂−x?(x̂)‖2
4

=
‖∇Φ1/2`(x̂)‖2

16`
.
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Furthermore, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

= max
y∈Y

f(x̂,y)− f(x̂,y+
ε ) + f(x̂,y+

ε )−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

≤ max
y∈Y

f(x̂,y)− f(x̂,y+
ε ) + (f(x̂,y+

ε )− f(x?(x̂),y+
ε )− `‖x?(x̂)− x̂‖2)

≤ max
y∈Y

f(x̂,y)− f(x̂,y+
ε ) + (‖x̂− x?(x̂)‖‖∇xf(x̂,y+

ε )‖ − `‖x̂− x?(x̂)‖2)

≤ max
y∈Y

f(x̂,y)− f(x̂,y+
ε ) + ‖∇xf(x̂,y+

ε )‖2
4`

.

Recall that y+
ε = PY [y?ε (x̂) + (1/`)∇yf(x̂,y?ε (x̂))], we have

(y − y+
ε )>(y+

ε − y?ε (x̂)− (1/`)∇yf(x̂,y?ε (x̂))) ≥ 0, for all y ∈ Y .

Together with the `-smoothness of the function f(x̂, ·) and the boundedness of Y , we have

f(x̂,y)− f(x̂,y+
ε ) ≤ `

2
(‖y − y?ε (x̂)‖2 − ‖y − y+

ε ‖2) ≤ `Dy‖y+
ε − y?ε (x̂)‖, for all y ∈ Y .

Putting these pieces together yields that

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2 ≤ `Dy‖y+
ε − y?ε (x̂)‖+ ‖∇xf(x̂,y+

ε )‖2
4`

.

Since a point (x̂,y?ε (x̂)) satisfies that

‖∇xf(x̂,y+
ε )‖ ≤ ε

10
+ ε2

50`Dy
, `‖y+

ε − y?ε (x̂)‖ ≤ ε2

50`Dy
,

we have (assume that ε - `Dy without loss of generality)

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2 ≤ ε2

50`
+ ‖∇xf(x̂,y+

ε )‖2
4`

.

Putting these pieces together yields that ‖∇Φ1/2`(x̂)‖ ≤ ε. Furthermore, letting κy =
100`2D2

y/ε
2 in the gradient complexity bound presented in Theorem 3.8.7, we conclude that

the total number of gradient evaluations is bounded by

O

(
`2Dy∆Φ

ε3
log2

(
`(D̃2

x +D2
y)

ε

))
.

This completes the proof.

3.12 Proof of Technical Lemmas

We provide complete proofs for the lemmas in this chapter.
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Proof of Lemma 3.8.4. We provide a proof for an expanded version of Lemma 3.8.4.

Lemma 3.12.1 If Φ is `-weakly convex, we have

(a) Φ1/2`(x) and ProxΦ/2`(x) = argmin Φ(w) + `‖w−x‖2 are well defined for any x ∈ Rm.

(b) Φ(ProxΦ/2`(x)) ≤ Φ(x) for any x ∈ Rm.

(c) Φ1/2` is 4`-smooth with ∇Φ1/2`(x) = 2`(x−ProxΦ/2`(x)).

Proof. Since Φ is `-weakly convex, Φ(·) + (`/2) ‖· − x‖2 is convex for any x ∈ Rm. This
implies that Φ(·) + `‖ ·−x‖2 is (`/2)-strongly convex and Φ1/2`(x) and ProxΦ/2`(x) are well
defined. For any x ∈ Rm, the definition of ProxΦ/2`(x) implies that

Φ(ProxΦ/2`(x)) ≤ Φ1/2`(ProxΦ/2`(x)) ≤ Φ(x).

By Davis and Drusvyatskiy [2019, Lemma 2.2], Φ1/2` is differentiable with the gradient
∇Φ1/2`(x) = 2`(x−ProxΦ/2`(x)). Since ProxΦ/2` is 1-Lipschitz, we ‖∇Φ1/2`(x)−∇Φ1/2`(x

′)‖ ≤
4`‖x− x′‖. Therefore, the function Φ1/2` is 4`-smooth. �

Proof of Lemma 3.8.6. Denote x̂ := ProxΦ/2`(x), part (c) in Lemma 3.8.4 implies

‖x̂− x‖ =
‖∇Φ1/2`(x)‖

2`
.

Also, we have 2`(x− x̂) ∈ ∂Φ(x̂). Putting these pieces together yields the desired result.

Proof of Lemma 3.9.2. For part (a), let x,x′ ∈ Rm, the points y?g(x) and y?g(x
′) satisfy

(y − y?g(x))>∇yg(x,y?g(x)) ≤ 0, ∀y ∈ Y , (3.40)

(y − y?g(x
′))>∇yg(x′,y?g(x

′)) ≤ 0, ∀y ∈ Y . (3.41)

Summing up Eq. (3.40) with y = y?g(x
′) and Eq. (3.41) with y = y?g(x) yields

(y?g(x
′)− y?g(x))>(∇yg(x,y?g(x))−∇yg(x′,y?g(x

′))) ≤ 0.

Since g(x, ·) is µy-strongly concave, we have

(y?g(x
′)− y?g(x))>(∇yg(x,y?g(x

′))−∇yg(x,y?g(x))) + µy‖y?g(x′)− y?g(x)‖2 ≤ 0.

Summing up the above two inequalities yields that

(y?g(x
′)− y?g(x))>(∇yg(x,y?g(x

′))−∇yg(x′,y?g(x
′))) + µy‖y?g(x′)− y?g(x)‖2 ≤ 0.

Since∇yg is `-Lipschitz, we have µy‖y?g(x′)−y?g(x)‖2 ≤ `‖y?g(x′)−y?g(x)‖‖x′−x‖. Therefore,
we conclude that the function y?g(·) is κy-Lipschitz.
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For part (b), since the function y?g(·) is unique, Danskin’s theorem [Rockafellar, 1970]
implies that Φg is differentiable and ∇Φg(·) = ∇xg(·,y?g(·)). Let x,x′ ∈ Rm, we have

‖∇Φg(x)−∇Φg(x
′)‖ = ‖∇xg(x,y?g(x))−∇xg(x′,y?g(x

′))‖ ≤ `‖x− x′‖+ `‖y?g(x)− y?g(x
′)‖

κ̄≥1

≤ κy`‖x− x′‖+ `‖y?g(x)− y?g(x
′)‖.

Since y?g(·) is κy-Lipschitz, the function Φg is 2κy`-smooth. Furthermore, let x,x′ ∈ Rm, we
have

Φg(x
′)− Φg(x)− (x′ − x)>∇Φg(x) = g(x′,y?g(x

′))− g(x,y?g(x))− (x′ − x)>∇xg(x,y?g(x))

≥ g(x′,y?g(x))− g(x,y?g(x))− (x′ − x)>∇xg(x,y?g(x)).

Since g(·,y) is µx-strongly convex for each y ∈ Y , we have

Φg(x
′)− Φg(x)− (x′ − x)>∇Φg(x) ≥ µx‖x′−x‖2

2
.

Therefore, the function Φg is µx-strongly convex.
For part (c), let y,y′ ∈ Rn, the points x?g(y) and x?g(y

′) satisfy

(x− x?g(y))>∇xg(x?g(y),y) ≥ 0, ∀x ∈ X , (3.42)

(x− x?g(y
′))>∇xg(x?g(y

′),y′) ≥ 0, ∀x ∈ X . (3.43)

Summing up Eq. (3.42) with x = x?g(y
′) and Eq. (3.43) with x = x?g(y) yields

(x?g(y
′)− x?g(y))>(∇xg(x?g(y),y)−∇xg(x?g(y

′),y′)) ≥ 0.

Since g(·,y) is µx-strongly convex, we have

(x?g(y
′)− x?g(y))>(∇xg(x?g(y

′),y′)−∇xg(x?g(y),y′))− µx‖x?g(y′)− x?g(y)‖2 ≥ 0.

Summing up the above two inequalities yields that

(x?g(y
′)− x?g(y))>(∇xg(x?g(y),y)−∇xg(x?g(y),y′))− µx‖x?g(y′)− x?g(y)‖2 ≥ 0.

Since ∇xg is `-smooth, we have µx‖x?g(y′)−x?g(y)‖2 ≤ `‖x?g(y′)−x?g(y)‖‖y′−y‖. Therefore,
we conclude that the function x?g is κx-Lipschitz.

For part (d), since the function x?g(·) is unique, Danskin’s theorem [Rockafellar, 1970]
implies that Ψg is differentiable and ∇Ψg(·) = ∇yg(x?g(·), ·). Let y,y′ ∈ Rn, we have

‖∇Ψg(y)−∇Ψg(y
′)‖ = ‖∇yg(x?g(y),y)−∇yg(x?g(y

′),y)‖ ≤ `‖x?g(y)− x?g(y
′)‖+ `‖y− y′‖.

Since x?g(·) is κx-Lipschitz, the function Ψg is 2κx`-smooth. Let y,y′ ∈ Rn, we have

Ψg(y)−Ψg(y
′)− (y − y′)>∇Ψg(y) = g(x?g(y),y)− g(x?g(y

′),y′)− (y − y′)>∇yg(x?g(y),y)

≥ g(x?g(y),y)− g(x?g(y),y′)− (y − y′)>∇yg(x?g(y),y).

Since g(x, ·) is µy-strongly concave for each x ∈ X , we have

Ψg(y)−Ψg(y
′)− (y − y′)>∇Ψg(y) ≥ µy‖y′−y‖2

2
.

Therefore, the function Ψg is µy-strongly concave.



88

Chapter 4

Riemannian Gradient-Based
Algorithm

From optimal transport to robust dimensionality reduction, a plethora of machine learning
applications can be cast into the min-max optimization problems over Riemannian mani-
folds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has
proved elusive to translate these results to the Riemannian case. Zhang et al. [2022b] have re-
cently shown that geodesic convex concave Riemannian problems always admit saddle-point
solutions. Inspired by this result, we study whether a performance gap between Rieman-
nian and optimal Euclidean space convex-concave algorithms is necessary. We answer this
question in the negative—we prove that the Riemannian corrected extragradient (RCEG)
method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-
concave case, matching the Euclidean result. Our results also extend to the stochastic or
non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve
near-optimal convergence rates up to factors depending on curvature of the manifold.

4.1 Introduction

Constrained optimization problems arise throughout machine learning, in classical settings
such as dimension reduction [Boumal and Absil, 2011], dictionary learning [Sun et al.,
2016a,b], and deep neural networks [Huang et al., 2018], but also in emerging problems in-
volving decision-making and multi-agent interactions. While simple convex constraints (such
as norm constraints) can be easily incorporated in standard optimization formulations, no-
tably (proximal) gradient descent [Raskutti and Mukherjee, 2015, Giannou et al., 2021b,a,
Antonakopoulos et al., 2020, Vlatakis-Gkaragkounis et al., 2020], in a range of other appli-
cations such as matrix recovery [Fornasier et al., 2011, Candes et al., 2008], low-rank matrix
factorization [Han et al., 2021] and generative adversarial nets [Goodfellow et al., 2014], the
constraints are fundamentally nonconvex and are often treated via special heuristics.

Thus, a general goal is to design algorithms that systematically take account of special
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geometric structure of the feasible set [Mei et al., 2021, Lojasiewicz, 1963, Polyak, 1963]. A
long line of work in the machine learning (ML) community has focused on understanding the
geometric properties of commonly used constraints and how they affect optimization; [see,
e.g., Ge et al., 2015, Anandkumar and Ge, 2016, Sra and Hosseini, 2016, Jin et al., 2017, Ge
et al., 2017a, Du et al., 2017, Reddi et al., 2018a, Criscitiello and Boumal, 2019, Jin et al.,
2021]. A prominent aspect of this agenda has been the re-expression of these constraints
through the lens of Riemannian manifolds. This has given rise to new algorithms [Sra and
Hosseini, 2015, Hosseini and Sra, 2015] with a wide range of ML applications, inclduing
online principal component analysis (PCA), the computation of Mahalanobis distance from
noisy measurements [Bonnabel, 2013], consensus distributed algorithms for aggregation in
ad-hoc wireless networks [Tron et al., 2012] and maximum likelihood estimation for certain
non-Gaussian (heavy- or light-tailed) distributions [Wiesel, 2012].

Going beyond simple minimization problems, the robustification of many ML tasks can be
formulated as min-max optimization problems. Well-known examples in this domain include
adversarial machine learning [Kumar et al., 2017, Chen et al., 2018], optimal transport [Lin
et al., 2020a], and online learning [Mertikopoulos and Sandholm, 2018, Bomze et al., 2019,
Antonakopoulos et al., 2020]. Similar to their minimization counterparts, non-convex con-
straints have been widely applicable to the min-max optimization as well [Heusel et al., 2017,
Daskalakis and Panageas, 2018b, Balduzzi et al., 2018, Mertikopoulos et al., 2019, Jin et al.,
2020]. Recently there has been significant effort in proving tighter results either under more
structured assumptions [Thekumparampil et al., 2019, Nouiehed et al., 2019, Lu et al., 2020,
Azizian et al., 2020a, Diakonikolas, 2020, Golowich et al., 2020b, Lin et al., 2020d,c, Liu
et al., 2021, Ostrovskii et al., 2021, Kong and Monteiro, 2021], and/or obtaining last-iterate
convergence guarantees [Daskalakis and Panageas, 2018b, 2019, Mertikopoulos et al., 2019,
Adolphs et al., 2019, Liang and Stokes, 2019, Gidel et al., 2019b, Mazumdar et al., 2020, Liu
et al., 2020, Mokhtari et al., 2020b, Lin et al., 2020d, Hamedani and Aybat, 2021, Abernethy
et al., 2021, Cai et al., 2022] for computing min-max solutions in convex-concave settings.
Nonetheless, the analysis of the iteration complexity in the general non-convex non-concave
setting is still in its infancy [Vlatakis-Gkaragkounis et al., 2019, 2021]. In response, the
optimization community has recently studied how to extend standard min-max optimization
algorithms such as gradient descent ascent (GDA) and extragradient (EG) to the Rieman-
nian setting. In mathematical terms, given two Riemannian manifoldsM,N and a function
f :M×N → R, the Riemannian min-max optimization (RMMO) problem becomes

min
x∈M

max
y∈N

f(x,y).

The change of geometry from Euclidean to Riemannian poses several difficulties. Indeed, a
fundamental stumbling block has been that this problem may not even have theoretically
meaningful solutions. In contrast with minimization where an optimal solution in a bounded
domain is always guaranteed [Fearnley et al., 2021], existence of such saddle points necessi-
tates typically the application of topological fixed point theorems [Brouwer, 1911, Kakutani,
1941], KKM Theory [Knaster et al., 1929]). For the case of convex-concave f with com-
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pact sets X and Y , Sion [1958] generalized the celebrated theorem [Neumann, 1928] and
guaranteed that a solution (x?,y?) with the following property exists

min
x∈X

f(x,y?) = f(x?,y?) = max
y∈Y

f(x?,y).

However, at the core of the proof of this result is an ingenuous application of Helly’s lemma
[Helly, 1923] for the sublevel sets of f , and, until the work of Ivanov [2014], it has been unclear
how to formulate an analogous lemma for the Riemannian geometry. As a result, until
recently have extensions of the min-max theorem been established, and only for restricted
manifold families [Komiya, 1988, Kristály, 2014, Park, 2019].

Zhang et al. [2022b] was the first to establish a min-max theorem for a flurry of Rieman-
nian manifolds equipped with unique geodesics. Notice that this family is not a mathematical
artifact since it encompasses many practical applications of RMMO, including Hadamard
and Stiefel ones used in PCA [Lee et al., 2022]. Intuitively, the unique geodesic between two
points of a manifold is the analogue of the a linear segment between two points in convex
set: For any two points x1,x2 ∈ X , their connecting geodesic is the unique shortest path
contained in X that connects them.

Even when the RMMO is well defined, transferring the guarantees of traditional min-
max optimization algorithms like Gradient Ascent Descent (GDA) and Extra-Gradient (EG)
to the Riemannian case is non-trivial. Intuitively speaking, in the Euclidean realm the
main leitmotif of the last-iterate analyses the aforementioned algorithms is a proof that
δt = ‖xt−x?‖2 is decreasing over time. To achieve this, typically the proof correlates δt and
δt−1 via a “square expansion,” namely:

‖xt−1 − x?‖2︸ ︷︷ ︸
α2

= ‖xt − x?‖2︸ ︷︷ ︸
β2

+ ‖xt−1 − xt‖2︸ ︷︷ ︸
γ2

− 2〈xt − x?,xt−1 − xt〉︸ ︷︷ ︸
2βγ cos(Â)

. (4.1)

Notice, however that the above expression relies strongly on properties of Euclidean geometry
(and the flatness of the corresponding line), namely that the the lines connecting the three
points xt, xt−1 and x∗ form a triangle; indeed, it is the generalization of the Pythagorean
theorem, known also as the law of cosines, for the induced triangle (ABC) := {(xt,xt−1, x

?)}.
In a uniquely geodesic manifold such triangle may not belong to the manifold as discussed
above. As a result, the difference of distances to the equilibrium using the geodesic paths
d2
M(xt,x

?)− d2
M(xt−1,x

?) generally cannot be given in a closed form. The manifold’s curva-
ture controls how close these paths are to forming a Euclidean triangle. In fact, this so-called
phenomenon of distance distortion, as it is typically called, was hypothesised by Zhang et al.
[2022b, Section 4.2] to be the cause of exponential slowdowns when applying EG to RMMO
problems when compared to their Euclidean counterparts.

Multiple attempts have been made to bypass this hurdle. Huang and Gao [2023] analyzed
the Riemannian GDA (RGDA) for the non-convex non-concave setting. However, they do
not present any last-iterate convergence results and, even in the average/best iterate setting,
they only derive sub-optimal rates for the geodesic convex-concave setting due to the lack of
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the machinery that convex analysis and optimization offers they derive sub-optimal rates for
the geodesic convex-concave case, which is the problem of our interest. The analysis of Han
et al. [2022] for Riemannian Hamiltonian Method (RHM), matches the rate of second-order
methods in the Euclidean case. Although theoretically faster in terms of iterations, second-
order methods are not preferred in practice since evaluating second order derivatives for
optimization problems of thousands to millions of parameters quickly becomes prohibitive.
Finally, Zhang et al. [2022b] leveraged the standard averaging output trick in EG to derive a
sublinear convergence rate of O(1/ε) for the general geodesically convex-concave Riemannian
framework. In addition, they conjectured that the use of a different method could close
the exponential gap for the geodesically strongly-convex-strongly-convex scenario and its
Euclidean counterpart.

Given this background, a crucial question underlying the potential for successful appli-
cation of first-order algorithms to Riemannian settings is the following:

Is a performance gap necessary between Riemannian and Euclidean optimal convex-concave
algorithms in terms of accuracy and the condition number?

Our aim in this paper is to provide an extensive analysis of the Riemannian counterparts of
Euclidean optimal first-order methods adapted to the manifold-constrained setting. For the
case of the smooth objectives, we consider the Riemannian corrected extragradient (RCEG)
method while for non-smooth cases, we analyze the textbook Riemannian gradient descent
ascent (RGDA) method. Our main results are summarized in the following table.

Alg: RCEG. Smooth setting with `-Lipschitz Gradient (cf. Assumption 4.4.4, 4.5.1 and 4.5.2)

Perf.
Measure

Setting Complexity Theorem

Last-Iterate Det. GSCSC O
(
κ(
√
τ0 + 1

ξ
0

) log(1
ε )
)

Thm. 4.5.3

Last-Iterate Stoc. GSCSC O
(
κ(
√
τ0 + 1

ξ
0

) log(1
ε ) + σ2ξ0

µ2ε
log(1

ε )
)
Thm. 4.5.6

Avg-Iterate Det. GCC O
(
`
√
τ0
ε

)
[Zhang et al., 2022b, Thm.1]

Avg-Iterate Stoc. GCC O
(
`
√
τ0
ε + σ2ξ0

ε2

)
Thm. 4.5.7

Alg: RGDA. Nonsmooth setting with L-Lipschitz Function (cf. Assumption 4.9.1 and 4.9.2)

Last-Iterate Det. GSCSC O
(
L2ξ0
µ2ε

)
Thm. 4.9.3

Last-Iterate Stoc. GSCSC O
(

(L2+σ2)ξ0
µ2ε

)
Thm. 4.9.6

Avg-Iterate Det. GCC O
(
L2ξ0
ε2

)
Thm. 4.9.4

Avg-Iterate Stoc. GCC O
(

(L2+σ2)ξ0
ε2

)
Thm. 4.9.7

For the definition of acronyms, Det and Stoc stand for deterministic and stochastic, respec-
tively. GSCSC and GCC stand for geodesically strongly-convex-strongly-concave (cf. As-
sumption 4.5.1 or Assumption 4.9.1) and geodesically convex-concave (cf. Assumption 4.5.2
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or Assumption 4.9.2). Here ε ∈ (0, 1) is the accuracy, L, ` the Lipschitzness of the objective
and its gradient, κ = `/µ is the condition number of the function, where µ is the strong
convexity parameter, (τ0, ξ0

, ξ0) are curvature parameters (cf. Assumption 4.4.4), and σ2 is
the variance of a Riemannian gradient estimator.

Our first main contribution is the derivation of a linear convergence rate for RCEG,
answering the open conjecture of Zhang et al. [2022b] about the performance gap of single-
loop extragradient methods. Indeed, while a direct comparison between d2

M(xt,x
?) and

d2
M(xt−1,x

?) is infeasible, we are able to establish a relationship between the iterates via
appeal to the duality gap function and obtain a contraction in terms of d2

M(xt,x
?). In other

words, the effect of Riemannian distance distortion is quantitative (the contraction ratio
will depend on it) rather than qualitative (the geometric contraction still remains under a
proper choice of constant stepsize). More specifically, we use d2

M(xt,x
?) + d2

N (yt,y
?) and

d2
M(xt+1,x

?) + d2
N (yt+1,y

?) to bound a gap function defined by f(x̂t,y
?)− f(x?, ŷt). Since

the objective function is geodesically strongly-convex-strongly-concave, we have f(x̂t,y
?)−

f(x?, ŷt) is lower bounded by µ
2
(dM(x̂t,x

?)2 + dN (ŷt,y
?)2). Then, using the relationship

between (xt,yt) and (x̂t, ŷt), we conclude the desired results in Theorem 4.5.3. Notably, our
approach is not affected by the nonlinear geometry of the manifold.

Secondly, we endeavor to give a systematic analysis of aspects of the objective function,
including its smoothness, its convexity and oracle access. As we shall see, similar to the
Euclidean case, better finite-time convergence guarantees are connected with a geodesic
smoothness condition. For the sake of completeness, we provide the analysis of Riemannian
GDA for the full spectrum of stochasticity for the non-smooth case. More specifically, for
the stochastic setting, the key ingredient to get the optimal convergence rate is to carefully
select the step size such that the noise of the gradient estimator will not affect the final
convergence rate significantly. As a highlight, such technique has been used for analyzing
stochastic RCEG in the Euclidean setting [Kotsalis et al., 2022] and our analysis can be
seen as the extension to the Riemannian setting. For the nonsmooth setting, the analysis
is relatively simpler compared to smooth settings but we still need to deal with the issue
caused by the nonlinear geometry of manifolds and the interplay between the distortion of
Riemannian metrics, the gap function and the bounds of Lipschitzness of our bi-objective.
Interestingly, the rates we derive are near optimal in terms of accuracy and condition number
of the objective, and analogous to their Euclidean counterparts.

4.2 Related Works

The literature for the geometric properties of Riemannian Manifolds is immense and hence
we cannot hope to survey them here; for an appetizer, we refer the reader to Burago et al.
[2001] and Lee [2012] and references therein. On the other hand, as stated, it is not until re-
cently that the long-run non-asymptotic behavior of optimization algorithms in Riemannian
manifolds (even the smooth ones) has encountered a lot of interest.
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Minimization on Riemannian manifolds. Many application problems can be formu-
lated as the minimization or maximization of a smooth function over Riemannian manifold
and has triggered a line of research on the extension of the classical first-order and second-
order methods to Riemannian setting with asymptotic convergence to first-order stationary
points in general [Absil et al., 2009]. Recent years have witnessed the renewed interests on
nonasymptotic convergence analysis of solution methods. In particular, Boumal et al. [2019]
proved the global sublinear convergence results for Riemannian gradient descent method
and Riemannian trust region method, and further demonstrated that the Riemannian trust
region method converges to a second-order stationary point in polynomial time; see also
similar results in some other works [Kasai and Mishra, 2018, Hu et al., 2018, 2019]. We
are also aware of recent works on problem-specific methods [Wen and Yin, 2013, Gao et al.,
2018, Liu et al., 2019] and primal-dual methods [Zhang et al., 2020b].

Compared to the smooth counterpart, Riemannian nonsmooth optimization is harder and
relatively less explored [Absil and Hosseini, 2019]. A few existing works focus on optimizing
geodesically convex functions over Riemannian manifold with subgradient methods [Ferreira
and Oliveira, 1998, Zhang and Sra, 2016, Bento et al., 2017]. In particular, Ferreira and
Oliveira [1998] provided the first asymptotic convergence result while Zhang and Sra [2016]
and [Bento et al., 2017] proved an nonasymptotic global convergence rate of O(ε−2) for Rie-
mannian subgradient methods. Further, Ferreira and Oliveira [2002] assumed that the prox-
imal mapping over Riemannian manifold is computationally tractable and proved the global
sublinear convergence of Riemannian proximal point method. Focusing on optimization over
Stiefel manifold, Chen et al. [2020] studied the composite objective function and proposed
Riemannian proximal gradient method which only needs to compute the proximal mapping
of nonsmooth component function over the tangent space of Stiefel manifold. Li et al. [2021]
consider optimizing a weakly convex function over Stiefel manifold and proposed Rieman-
nian subgradient methods that drive a near-optimal stationarity measure below ε within the
number of iterations bounded by O(ε−4).

There are some results on stochastic optimization over Riemannian manifold. In particu-
lar, Bonnabel [2013] proved the first asymptotic convergence result for Riemannian stochas-
tic gradient descent, which is extended by a line of subsequent works [Zhang et al., 2016,
Tripuraneni et al., 2018, Becigneul and Ganea, 2019, Kasai et al., 2019]. If the Riemannian
Hessian is not positive definite, some recent works have suggested frameworks to escape
saddle points [Sun et al., 2019, Criscitiello and Boumal, 2019].

Min-Max optimization in Euclidean spaces. Focusing on solving specifically min-max
problems, the algorithms under euclidean geometry have a very rich history in optimization
that goes back at least to the original proximal point algorithms [Martinet, 1970, Rockafellar,
1976] for variational inequality (VI) problems; At a high level, if the objective function is
Lipschitz and strictly convex-concave, the simple forward-backward schemes are known to
converge – and if combined with a Polyak–Ruppert averaging scheme [Ruppert, 1988, Polyak
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and Juditsky, 1992, Nemirovski et al., 2009], they achieve an O(1/ε2) complexity1 without
the caveat of strictness [Bauschke and Combettes, 2011]. If, in addition, the objective admits
Lipschitz continuous gradients, then the extragradient (EG) algorithm [Korpelevich, 1976]
achieves trajectory convergence without strict monotonicity requirements, while the time-
average iterate converges at O(1/ε) steps [Nemirovski, 2004]. Finally, if the problem is
strongly convex-concave, forward-backward methods computes an ε-saddle point at O(1/ε)
steps; and if the operator is also Lipschitz continuous, classical results in operator theory show
that simple forward-backward methods suffice to achieve a linear convergence rate [Facchinei
and Pang, 2007, Bauschke and Combettes, 2011].

Min-Max optimization on Riemannian manifolds. In the case of nonlinear geometry,
the literature has been devoted on two different orthogonal axes: a) the existence of saddle
point for min-max objective bi-functions and b) the design of algorithms for the computation
of such points. For the existence of saddle point, a long line of recent work tried to gener-
alize the seminal minima theorem for quasi-convex-quasi-concave problems of Sion [1958].
The crucial bottleneck of this generalization to Riemannian smooth manifolds had been the
application of both Knaster–Kuratowski–Mazurkiewicz (KKM) theorem and Helly’s theo-
rem in non-flat spaces. Before Zhang et al. [2022b], the existence of saddle points had been
identified for the special case of Hadamard manifolds [Komiya, 1988, Kristály, 2014, Bento
et al., 2017, Park, 2019].

Similar with the existence results, initially the developed methods referred to the compu-
tation of singularities in monotone variational operators typically in hyperbolic Hadamard
manifolds with negative curvature [Li et al., 2009]. More recently, Huang and Gao [2023] pro-
posed a Riemannian gradient descent ascent method (RGDA), yet the analysis is restricted
to N being a convex subset of the Euclidean space and f(x, y) being strongly concave in
y. It is worth mentioning that for the case Hadamard and generally hyperbolic manifolds,
extra-gradient style algorithms have been proposed [Wang et al., 2010, Ferreira et al., 2005]
in the literature, establishing mainly their asymptotic convergence. However it was not until
recent Zhang et al. [2022b] that the riemannian correction trick has been analyzed for the
case of the extra-gradient algorithm. Bearing in our mind the higher-order methods, Han
et al. [2022] has recently proposed the Riemannian Hamiltonian Descent and versions of
Newton’s method for for geodesic convex geodesic concave functions. Since in this work, we
focus only on first-order methods, we don’t compare with the aforementioned Hamiltonian
alternative since it incorporates always the extra computational burden of second-derivatives
and hessian over a manifold.

1For the rest of presentation, we adopt the convention of presenting the fine-grained complexity perfor-
mance measure for computing an O(ε)-close solution instead of the convergence rate of a method. Thus
a rate of the form ‖xt − x∗‖ ≤ O(1/t1/p) typically corresponds to O(1/εp) gradient computations and the
geometric rate ‖xt−x∗‖ ≤ O(exp(−µt)) matches usually up with the O(ln(1/ε)) computational complexity.
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4.3 Motivating Examples

We provide some examples of Riemannian min-max optimization to give a sense of their ex-
pressivity. Two of the examples are the generic models from the optimization literature [Ben-
Tal et al., 2009, Absil et al., 2009, Hu et al., 2020] and the two others are the formulations of
application problems arising from machine learning and data analytics [Pennec et al., 2006,
Fletcher and Joshi, 2007, Lin et al., 2020a].

Example 4.3.1 (Riemannian optimization with nonlinear constraints) We can con-
sider a rather straightforward generalization of constrained optimization problem from Eu-
clidean spaces to Riemannian manifolds [Bergmann and Herzog, 2019]. This formulation
finds a wide range of real-world applications, e.g., non-negative principle component analy-
sis, weighted max-cut and so on. Letting M be a finite-dimensional Riemannian manifold
with unique geodesic, we focus on the following problem:

min
x∈M

f(x), s.t. g(x) ≤ 0, h(x) = 0,

where g := (g1, g2, . . . , gm) : M 7→ Rm and h := (h1, h2, . . . , hn) : M 7→ Rn are two map-
pings. Then, we can introduce the dual variables λ and µ and reformulate the aforementioned
constrained optimization problem as follows,

min
x∈M

max
(λ,µ)∈Rm+×Rn

f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉.

Suppose that f and all of gi are geodesically convex and smooth and hi are geodesically linear,
the above problem is a geodesic-convex-Euclidean-concave min-max optimization problem.

Example 4.3.2 (Distributionally robust Riemannian optimization) Distributionally
robust optimization (DRO) is an effective method to deal with the noisy data, adversarial
data, and imbalanced data. We consider the problem of DRO over Riemannian manifold;
indeed, given a set of data samples {ξi}Ni=1, the problem of DRO over Riemannian manifold
M can be written in the form of

min
x∈M

max
p∈S

N∑
i=1

pi`(x; ξi)− ‖p− 1
N

1‖2,

where p = (p1, p2, . . . , pN) and S = {p ∈ RN :
∑N

i=1 pi = 1, pi ≥ 0}. In general, `(x; ξi) is
denoted as the loss function over Riemannian manifold M. If ` is geodesically convex and
smooth, this is a geodesic-convex-Euclidean-concave min-max optimization problem.

Example 4.3.3 (Robust matrix Karcher mean problem) We consider a robust ver-
sion of classical matrix Karcher mean problem. More specifically, the Karcher mean of N
symmetric positive definite matrices {Ai}Ni=1 is defined as the matrix X ∈M = {X ∈ Rn×n :
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X � 0, X = X>} that minimizes the sum of squared distance induced by the Riemannian
metric:

d(X, Y ) = ‖ log(X−1/2Y X−1/2)‖F .

The loss function is thus defined by

f(X; {Ai}Ni=1) =
N∑
i=1

(d(X,Ai))
2.

which is known to be nonconvex in Euclidean spaces but geodesically strongly convex. Then,
the robust version of classical matrix Karcher mean problem is aiming at solving the following
problem:

min
X∈M

max
Yi∈M

f(X; {Yi}Ni=1)− γ

(
N∑
i=1

(d(Yi, Ai))
2

)
,

where γ > 0 stands for the trade-off between the computation of Karcher mean over a set of
{Yi}Ni=1 and the difference between the observed samples {Ai}Ni=1 and {Yi}Ni=1. It is clear that
this is a geodesically strongly-convex-strongly-concave min-max optimization problem.

Example 4.3.4 (Projection robust optimal transport problem) We consider the pro-
jection robust optimal transport (OT) problem – a robust variant of the OT problem – that
achieves superior sample complexity bound [Lin et al., 2021a]. Let {x1, x2, . . . , xn} ⊆ Rd and
{y1, y2, . . . , yn} ⊆ Rd denote sets of n atoms, and let (r1, r2, . . . , rn) and (c1, c2, . . . , cn) denote
weight vectors. We define discrete probability measures µ =

∑n
i=1 riδxi and ν =

∑n
j=1 cjδyj .

In this setting, the computation of the k-dimensional projection robust OT distance between
µ and ν resorts to solving the following problem:

max
U∈St(d,k)

min
π∈Π(µ,ν)

n∑
i=1

n∑
j=1

πi,j‖U>xi − U>yj‖2,

where St(d, k) = {U ∈ Rd×k | U>U = Ik} is a Stiefel manifold and Π(r, c) = {π ∈ Rn×n
+ |∑n

j=1 πij = ri,
∑n

i=1 πij = cj} is a transportation polytope. It is worth mentioning that the
above problem is a geodesically-nonconvex-Euclidean-concave min-max optimization problem
with special structures, making the computation of stationary points tractable. While the
global convergence guarantee for our algorithm does not apply, the above problem might be
locally geodesically-convex-Euclidean-concave such that our algorithm with sufficiently good
initialization works here.

In addition to these examples, it is worth mentioning that Riemannian min-max optimization
problems contain all general min-max optimization problems in Euclidean spaces and all
Riemannian minimization or maximization optimization problems. It is also an abstraction
of many machine learning problems, e.g,. principle component analysis [Boumal and Absil,
2011], dictionary learning [Sun et al., 2016a,b], deep neural networks (DNNs) [Huang et al.,
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2018] and low-rank matrix learning [Vandereycken, 2013, Jawanpuria and Mishra, 2018];
indeed, the problem of principle component analysis resorts to optimization problems on
Grassmann manifolds for example.

4.4 Preliminaries

We present the basic setup and optimality conditions for Riemannian min-max optimization.
Indeed, we focus on some of key concepts that we need from Riemannian geometry, deferring
a fuller presentation, including motivating examples and further discussion of related work,
to the subsequent parts.

Riemannian geometry. An n-dimensional manifoldM is a topological space where any
point has a neighborhood that is homeomorphic to the n-dimensional Euclidean space. For
each x ∈ M, each tangent vector is tangent to all parametrized curves passing through x
and the tangent space TxM of a manifoldM at this point is defined as the set of all tangent
vectors. A Riemannian manifold M is a smooth manifold that is endowed with a smooth
(“Riemannian”) metric 〈·, ·〉x on the tangent space TxM for each point x ∈ M. The inner
metric induces a norm ‖ · ‖x on the tangent spaces.

A geodesic can be seen as the generalization of an Euclidean linear segment and is modeled
as a smooth curve (map), γ : [0, 1] 7→ M, which is locally a distance minimizer. Additionally,
because of the non-flatness of a manifold a different relation between the angles and the
lengths of an arbitrary geodesic triangle is induced. This distortion can be quantified via the
sectional curvature parameter κM thanks to Toponogov’s theorem [Cheeger and Ebin, 1975,
Burago et al., 1992]. A constructive consequence of this definition are the trigonometric

comparison inequalities (TCIs) that will be essential in our proofs; see Alimisis et al. [2020,
Corollary 2.1] and Zhang and Sra [2016, Lemma 5] for detailed derivations. Assuming
bounded sectional curvature, TCIs provide a tool for bounding Riemannian “inner products”
that are more troublesome than classical Euclidean inner products.

The following proposition summarizes the TCIs that we will need; note that if κmin =
κmax = 0 (i.e., Euclidean spaces), then the proposition reduces to the law of cosines.

Proposition 4.4.1 Suppose that M is a Riemannian manifold and let ∆ be a geodesic
triangle in M with the side length a, b, c and let A be the angle between b and c. Then, we
have
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1. If κM that is upper bounded by κmax > 0 and the diameter of M is bounded by π√
κmax

,

then
a2 ≥ ξ(κmax, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := 1 for κ ≤ 0 and ξ(κ, c) := c
√
κ cot(c

√
κ) < 1 for κ > 0.

2. If κM is lower bounded by κmin, then

a2 ≤ ξ(κmin, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := c
√
−κ coth(c

√
−κ) > 1 if κ < 0 and ξ(κ, c) := 1 if κ ≥ 0.

Also, in contrast to the Euclidean case, x and ∇xf(x) do not lie in the same space, since
M and TxM respectively are distinct entities. The interplay between these dual spaces
typically is carried out via the exponential maps. An exponential map at a point x ∈ M is
a mapping from the tangent space TxM toM. In particular, y := Expx(v) ∈M is defined
such that there exists a geodesic γ : [0, 1] 7→ M satisfying γ(0) = x, γ(1) = y and γ′(0) = v.
The inverse map exists since the manifold has a unique geodesic between any two points,
which we denote as Exp−1

x :M 7→ TxM. Accordingly, we have dM(x,y) = ‖Exp−1
x (y)‖x is

the Riemannian distance induced by the exponential map.
Finally, in contrast again to Euclidean spaces, we cannot com-

pare the tangent vectors at different points x,y ∈ M since these
vectors lie in different tangent spaces. To resolve the issue, it suffices
to define a transport mapping that moves a tangent vector along
the geodesics and also preserves the length and Riemannian metric
〈·, ·〉x; indeed, we can define a parallel transport Γy

x : TxM 7→ TyM
such that the inner product between any u,v ∈ TxM is preserved;
i.e., 〈u,v〉x = 〈Γy

x(u),Γy
x(v)〉y.

Riemannian min-max optimization and function classes. We let M and N be
Riemannian manifolds with unique geodesic and bounded sectional curvature and assume
that the function f : M × N 7→ R is defined on the product of these manifolds. The
regularity conditions that we impose on the function f are as follows.

Definition 4.4.2 A function f :M×N 7→ R is geodesically L-Lipschitz if for ∀x,x′ ∈M
and ∀y,y′ ∈ N , the following statement holds true: |f(x,y) − f(x′,y′)| ≤ L(dM(x,x′) +
dN (y,y′)). Additionally, if f is differentiable, it is called geodesically `-smooth if for ∀x,x′ ∈
M and ∀y,y′ ∈ N , the following statement holds true,

‖∇xf(x,y)− Γx
x′∇xf(x′,y′)‖ ≤ `(dM(x,x′) + dN (y,y′)),

‖∇yf(x,y)− Γy
y′∇yf(x′,y′)‖ ≤ `(dM(x,x′) + dN (y,y′)),

where (∇xf(x′,y′),∇yf(x′,y′)) ∈ Tx′M×Ty′N is the Riemannian gradient of f at (x′,y′),
Γx
x′ and Γy

y′ are the parallel transports ofM from x′ to x and of N from y′ to y, respectively.
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Definition 4.4.3 A function f : M × N → R is geodesically strongly-convex-strongly-
concave with the modulus µ > 0 if the following statement holds true,

f(x′,y) ≥ f(x,y) + 〈∂xf(x,y),Exp−1
x (x′)〉x + µ

2
(dM(x,x′))2, for each y ∈ N ,

f(x,y′) ≤ f(x,y) + 〈∂yf(x,y),Exp−1
y (y′)〉y − µ

2
(dN (y,y′))2, for each x ∈M.

where (∂xf(x′,y′), ∂yf(x′,y′)) ∈ Tx′M× Ty′N is a Riemannian subgradient of f at a point
(x′,y′). A function f is geodesically convex-concave if the above holds true with µ = 0.

Following standard conventions in Riemannian optimization [Zhang and Sra, 2016, Alimisis
et al., 2020, Zhang et al., 2022b], we make the following assumptions on the manifolds and
objective functions:2

Assumption 4.4.4 The objective function f :M×N 7→ R and manifoldsM and N satisfy

1. The domain {(x,y) ∈M×N : −∞ < f(x,y) < +∞} is bounded by D > 0.

2. M,N admit unique geodesic paths for any (x,y), (x′,y′) ∈M×N .

3. The sectional curvatures of M and N are both bounded in the range [κmin, κmax] with
κmin ≤ 0. If κmax > 0, we assume that the diameter of manifolds is bounded by π√

κmax
.

Under the above conditions, Zhang et al. [2022b] proved an analog of the celebrated Sion’s
minimax theorem [Sion, 1958] in geodesic metric spaces. Formally, we have

max
y∈N

min
x∈M

f(x,y) = min
x∈M

max
y∈N

f(x,y),

which guarantees that there exists at least one global saddle point (x?,y?) ∈ M×N such
that minx∈M f(x,y?) = f(x?,y?) = maxy∈Y f(x?,y). Note that the unicity of geodesics
assumption is algorithm-independent and is imposed for guaranteeing that a saddle-point
solution always exist. Even though this rules out many manifolds of interest, there are
still many manifolds that satisfy such conditions. More specifically, the Hadamard manifold
(manifolds with non-positive curvature, κmax = 0) has a unique geodesic between any two
points. This also becomes a common regularity condition in Riemannian optimization [Zhang
and Sra, 2016, Alimisis et al., 2020]. For any point (x̂, ŷ) ∈ M × N , the duality gap
f(x̂,y?)− f(x?, ŷ) thus gives an optimality criterion.

Definition 4.4.5 A point (x̂, ŷ) ∈ M × N is an ε-saddle point of a geodesically convex-
concave function f(·, ·) if f(x̂,y?)− f(x?, ŷ) ≤ ε where (x?,y?) ∈M×N is a saddle point.

2In particular, our assumed upper and lower bounds κmin, κmax guarantee that TCIs in Proposition 4.4.1
can be used in our analysis for proving finite-time convergence.
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In the setting where f is geodesically strongly-convex-strongly-concave with µ > 0, it is not
difficult to verify the uniqueness of a global saddle point (x?,y?) ∈ M×N . Then, we can
consider the distance gap (d(x̂,x?))2 + (d(ŷ,y?))2 as an optimality criterion for any point
(x̂, ŷ) ∈M×N .

Definition 4.4.6 A point (x̂, ŷ) ∈ M× N is an ε-saddle point of a geodesically strongly-
convex-strongly-concave function f(·, ·) if (d(x̂,x?))2 + (d(ŷ,y?))2 ≤ ε, where (x?,y?) ∈
M×N is a saddle point. If f is geodesically `-smooth, we denote κ = `/µ as the condition
number.

Given the above definitions, we can ask whether it is possible to find an ε-saddle point
efficiently or not. In this context, Zhang et al. [2022b] have answered this question in
the affirmative for the setting where f is geodesically `-smooth and geodesically convex-
concave; indeed, they derive the convergence rate of Riemannian corrected extragradient
(RCEG) method in terms of time-average iterates and also conjecture that RCEG does not
guarantee convergence at a linear rate in terms of last iterates when f is geodesically `-smooth
and geodesically strongly-convex-strongly-concave, due to existence of distance distortion;
see Zhang et al. [2022b, Section 4.2]. Surprisingly, we show that RCEG with constant stepsize
can achieve last-iterate convergence at a linear rate. Moreover, we establish the optimal
convergence rates of stochastic RCEG for certain choices of stepsize for both geodesically
convex-concave and geodesically strongly-convex-strongly-concave settings.

4.5 Riemannian Corrected Extragradient Method

We revisit the scheme of Riemannian corrected extragradient (RCEG) method proposed
by Zhang et al. [2022b] and extend it to a stochastic algorithm that we refer to as stochastic
RCEG. We present our main results on an optimal last-iterate convergence guarantee for
the geodesically strongly-convex-strongly-concave setting (both deterministic and stochas-
tic) and a time-average convergence guarantee for the geodesically convex-concave setting
(stochastic). This complements the time-average convergence guarantee for geodesically
convex-concave setting (deterministic) [Zhang et al., 2022b, Theorem 4.1] and resolves an
open problem posted in Zhang et al. [2022b, Section 4.2].

Algorithmic scheme. The recently proposed Riemannian corrected extragradient (RCEG)
method [Zhang et al., 2022b] is a natural extension of the celebrated extragradient (EG)
method to the Riemannian setting. It resembles that of EG in Euclidean spaces but employs
a simple modification in the extrapolation step to accommodate the nonlinear geometry of
Riemannian manifolds. Let us provide some intuition how such modifications work.
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Algorithm 10 RCEG

Input: initial points (x0,y0) and stepsizes η > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gt
x,g

t
y)← (∇xf(xt,yt),∇yf(xt,yt)), the

Riemannian gradient of f at a point (xt,yt)
x̂t ← Expxt

(−η · gt
x).

ŷt ← Expyt
(η · gt

y).
Query (ĝt

x, ĝ
t
y)← (∇xf(x̂t, ŷt),∇yf(x̂t, ŷt)), the

Riemannian gradient of f at a point (x̂t, ŷt)
xt+1 ← Expx̂t

(−η · ĝt
x + Exp−1

x̂t
(xt)).

yt+1 ← Expŷt
(η · ĝt

y + Exp−1
ŷt

(yt)).

Algorithm 11 SRCEG

Input: initial points (x0,y0) and stepsizes η > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gt
x,g

t
y) as a noisy estimator of Rieman-

nian gradient of f at a point (xt,yt).
x̂t ← Expxt

(−η · gt
x).

ŷt ← Expyt
(η · gt

y).
Query (ĝt

x, ĝ
t
y) as a noisy estimator of Rieman-

nian gradient of f at a point (x̂t, ŷt).
xt+1 ← Expx̂t

(−η · ĝt
x + Exp−1

x̂t
(xt)).

yt+1 ← Expŷt
(η · ĝt

y + Exp−1
ŷt

(yt)).

We start with a basic version of EG as follows, whereM and N are classically restricted
to be convex constraint sets in Euclidean spaces:

x̂t ← PM(xt − η · ∇xf(xt,yt)), ŷt ← PN (yt + η · ∇yf(xt,yt)),

xt+1 ← PM(xt − η · ∇xf(x̂t, ŷt)), yt+1 ← PN (yt + η · ∇yf(x̂t, ŷt)).
(4.2)

M

xt
−η gradf(xt, yt)

Exp−1
x̂t

(xt)
xt+1xt − η gradf (x̂t , ŷt)

−η gradf (x̂t, ŷt)x̂t

Turning to the setting where M and N are
Riemannian manifolds, the rather straight-
forward way to do the generalization is to
replace the projection operator by the corre-
sponding exponential map and the gradient
by the corresponding Riemannian gradient.
For the first line of Eq. (4.2), this approach
works and leads to the following updates:

x̂t ← Expxt(−η · ∇xf(xt,yt)), ŷt ← Expyt(η · ∇yf(xt,yt)).

However, we encounter some issues for the second line of Eq. (4.2): The above approach leads
to problematic updates, xt+1 ← Expxt(−η · ∇xf(x̂t, ŷt)) and yt+1 ← Expyt(η · ∇yf(x̂t, ŷt));
indeed, the exponential maps Expxt(·) and Expyt(·) are defined from TxtM to M and from
TytN to N respectively. However, we have −∇xf(x̂t, ŷt) ∈ Tx̂tM and ∇yf(x̂t, ŷt) ∈ TŷtN .
This motivates us to reformulate the second line of Eq. (4.2) as follows:

xt+1 ← PM(x̂t − η · ∇xf(x̂t, ŷt) + (xt − x̂t)), yt+1 ← PN (ŷt + η · ∇yf(x̂t, ŷt) + (yt − ŷt)).

In the general setting with Riemannian manifolds, the terms xt − x̂t and yt − ŷt become
Exp−1

x̂t
(xt) ∈ Tx̂tM and Exp−1

ŷt
(yt) ∈ TŷtN . This observation yields the following updates:

xt+1 ← Expx̂t(−η · ∇xf(x̂t, ŷt) + Exp−1
x̂t

(xt)), yt+1 ← Expŷt(η · ∇yf(x̂t, ŷt) + Exp−1
ŷt

(yt)).

We then summarize the resulting RCEG method in Algorithm 10 and present the stochastic
extension with noisy estimators of Riemannian gradients of f in Algorithm 11.
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Main results. We present our main results on global convergence for Algorithms 10 and 11.
To simplify the presentation, we treat separately the following two cases:

Assumption 4.5.1 The function f is geodesically `-smooth and geodesically strongly-convex-
strongly-concave with µ > 0.

Assumption 4.5.2 The function f is geodesically `-smooth and geodesically convex-concave.

Letting (x?,y?) ∈M×N be one global saddle point (it exists under either Assumption 4.5.1
or 4.5.2), we define D0 = (dM(x0,x

?))2 + (dN (y0,y
?))2 > 0 and κ = `/µ for the geodesically

strongly-convex-strongly-concave setting. For ease of presentation, we also define a ratio

τ(·, ·) that measures how non-flatness changes in the spaces: τ([κmin, κmax], c) = ξ(κmin,c)
ξ(κmax,c)

≥ 1.

We summarize our results for Algorithm 10 in the following theorem.

Theorem 4.5.3 Given Assumptions 4.4.4 and 4.5.1, and letting η = min{1/(2`√τ0), ξ
0
/(2µ)},

there exists some T > 0 such that the output of Algorithm 10 satisfies that (d(xT ,x
?))2 +

(d(yT ,y
?))2 ≤ ε (i.e., an ε-saddle point of f in Definition 4.4.6) and the total number of

Riemannian gradient evaluations is bounded by

O

((
κ
√
τ0 +

1

ξ
0

)
log

(
D0

ε

))
,

where τ0 = τ([κmin, κmax], D) ≥ 1 measures how non-flatness changes in M and N and
ξ

0
= ξ(κmax, D) ≤ 1 is properly defined in Proposition 4.4.1.

Remark 4.5.4 Theorem 4.5.3 illustrates the last-iterate convergence of Algorithm 10 for
solving geodesically strongly-convex-strongly-concave problems, thereby resolving an open prob-
lem delineated by Zhang et al. [2022b]. Further, the dependence on κ and 1/ε cannot be
improved since it matches the lower bound established for min-max optimization problems in
Euclidean spaces [Zhang et al., 2022a]. However, we believe that the dependence on τ0 and
ξ

0
is not tight, and it is of interest to either improve the rate or establish a lower bound for

general Riemannian min-max optimization.

Remark 4.5.5 The current theoretical analysis covers local geodesic strong-convex-strong-
concave settings. The key ingredient is how to define the local region; indeed, if we say the set
of {(x,y) : dM(x,x?) ≤ δ, dN (yt,y

?) ≤ δ} is a local region where the function is geodesically
strong-convex-strong-concave. Then, the set of {(x,y) : (dM(x,x?)2 + dN (yt,y

?)2) ≤ δ2}
must be contained in the above local region and the objective function is also geodesic strong-
convex-strong-concave. If (x0,y0) ∈ {(x,y) : (dM(x,x?)2 + dN (yt,y

?)2) ≤ δ2}, our theoreti-
cal analysis guarantees the last-iterate linear convergence rate. Such argument and definition
of local region were standard for min-max optimization in the Euclidean setting; see Liang
and Stokes [2019, Assumption 2.1].



CHAPTER 4. RIEMANNIAN GRADIENT-BASED ALGORITHM 103

In the scheme of SRECG, we highlight that (gtx,g
t
y) and (ĝtx, ĝ

t
y) are noisy estimators of

Riemannian gradients of f at (xt,yt) and (x̂t, ŷt). It is necessary to impose the conditions
such that these estimators are unbiased and has bounded variance. By abuse of notation,
we assume that

gtx = ∇xf(xt,yt) + ξtx, gty = ∇yf(xt,yt) + ξty,

ĝtx = ∇xf(x̂t, ŷt) + ξ̂tx, ĝty = ∇yf(x̂t, ŷt) + ξ̂ty.
(4.3)

where the noises (ξtx, ξ
t
y) and (ξ̂tx, ξ̂

t
y) are independent and satisfy that

E[ξtx] = 0, E[ξty] = 0, E[‖ξtx‖2 + ‖ξty‖2] ≤ σ2,

E[ξ̂tx] = 0, E[ξ̂ty] = 0, E[‖ξ̂tx‖2 + ‖ξ̂ty‖2] ≤ σ2.
(4.4)

We are ready to summarize our results for Algorithm 11 in the following theorems.

Theorem 4.5.6 Given Assumptions 4.4.4 and 4.5.1, letting Eq. (4.3) and Eq. (4.4) hold

with σ > 0 and letting η > 0 satisfy η = min{ 1
24`
√
τ0
,
ξ
0

2µ
, 2(log(T )+log(µ2D0σ−2))

µT
}, there exists

some T > 0 so that the output of Algorithm 11 satisfies that E[(d(xT ,x
?))2+(d(yT ,y

?))2] ≤ ε
and the total number of noisy Riemannian gradient evaluations is bounded by

O

((
κ
√
τ0 +

1

ξ
0

)
log

(
D0

ε

)
+
σ2ξ0

µ2ε
log

(
1

ε

))
,

where τ0 = τ([κmin, κmax], D) ≥ 1 measures how non-flatness changes in M and N and
ξ

0
= ξ(κmax, D) ≤ 1 is properly defined in Proposition 4.4.1.

Theorem 4.5.7 Given Assumptions 4.4.4 and 4.5.2 and assume that Eq. (4.3) and Eq. (4.4)

hold with σ > 0 and let η > 0 satisfies that η = min{ 1
4`
√
τ0
, 1
σ

√
D0

ξ0T
}, there exists some T > 0

such that the output of Algorithm 11 satisfies that E[f(x̄T ,y
?)− f(x?, ȳT )] ≤ ε and the total

number of noisy Riemannian gradient evaluations is bounded by

O

(
`D0
√
τ0

ε
+
σ2ξ0

ε2

)
,

where τ0 = τ([κmin, κmax], D) measures how non-flatness changes in M and N and ξ0 =
ξ(κmin, D) ≥ 1 is properly defined in Proposition 4.4.1. The time-average iterates (x̄T , ȳT ) ∈
M×N can be computed using the initial point (x̄0, ȳ0) = (0, 0) and the inductive formula:
x̄t+1 = Expx̄t(

1
t+1
· Exp−1

x̄t (x̂t)) and ȳt+1 = Expȳt(
1
t+1
· Exp−1

ȳt (ŷt)) for all t = 0, 1, . . . , T − 1.

Remark 4.5.8 Theorem 4.5.6 presents the last-iterate convergence rate of Algorithm 11
for solving geodesically strongly-convex-strongly-concave problems while Theorem 4.5.7 gives
the time-average convergence rate when the function f is only assumed to be geodesically
convex-concave. Note that we carefully choose the stepsizes such that our upper bounds
match the lower bounds established for stochastic min-max optimization problems in Eu-
clidean spaces [Juditsky et al., 2011, Fallah et al., 2020, Kotsalis et al., 2022], in terms of
the dependence on κ, 1/ε and σ2, up to log factors.
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Discussion: The last-iterate linear convergence rate in terms of Riemannian metrics is
only limited to geodesically strongly convex-concave cases but other results, e.g., the average-
iterate sublinear convergence rate, are derived under more mild conditions. This is consistent
with classical results in the Euclidean setting where geodesic convexity reduces to convexity;
indeed, the last-iterate linear convergence rate in terms of squared Euclidean norm is only
obtained for strongly convex-concave cases. As such, our setting is not restrictive. Moreover,
Zhang et al. [2022b] showed that the existence of a global saddle point is only guaranteed
under the geodesically convex-concave assumption. For geodesically nonconvex-concave or
geodesically nonconvex-nonconcave cases, a global saddle point might not exist and new
optimality notions are required before algorithmic design. This question remains open in
the Euclidean setting and is beyond the scope of this paper. However, we remark that an
interesting class of robustification problems are nonconvex-nonconcave min-max problems in
the Euclidean setting can be geodesically convex-concave in the Riemannian setting.

4.6 Experiments

We present numerical experiments on the task of robust principal component analysis (RPCA)
for symmetric positive definite (SPD) matrices. In particular, we compare the performance
of Algorithm 10 and 11 with different outputs, i.e., the last iterate (xT ,yT ) versus the
time-average iterate (x̄T , ȳT ) (see the precise definition in Theorem 4.5.7). Note that our
implementations of both algorithms are based on the manopt package [Boumal et al., 2014].
All the experiments were implemented in MATLAB R2021b on a workstation with a 2.6 GHz
Intel Core i7 and 16GB of memory.

Experimental setup. The problem of RPCA [Candès et al., 2011, Harandi et al., 2017]
can be formulated as the Riemannian min-max optimization problem with an SPD manifold
and a sphere manifold. Formally, we have

max
M∈Md

PSD

min
x∈Sd

{
−x>Mx− α

n

n∑
i=1

d(M,Mi)

}
. (4.5)

In this formulation, α > 0 denotes the penalty parameter, {Mi}i∈[n] is a sequence of given
data SPD matrices, Md

PSD = {M ∈ Rd×d : M � 0,M = M>} denotes the SPD manifold,
Sd = {x ∈ Rd : ‖x‖ = 1} denotes the sphere manifold and d(·, ·) : Md

PSD ×Md
PSD 7→ R

is the Riemannian distance induced by the exponential map on the SPD manifold Md
PSD.

As demonstrated by Zhang et al. [2022b], the problem of RPCA is nonconvex-nonconcave
from a Euclidean perspective but is locally geodesically strongly-convex-strongly-concave and
satisfies most of the assumptions that we make in this paper. In particular, the SPD manifold
is complete with sectional curvature in [−1

2
, 1] [Criscitiello and Boumal, 2022] and the sphere

manifold is complete with sectional curvature of 1. Other reasons why we use such example
are: (i) it is a classical one in ML; (ii) Zhang et al. [2022b] also uses this example and
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Figure 4.1: Comparison of last iterate (RCEG-last) and time-average iterate (RCEG-avg) for
solving the RPCA problem in Eq. (4.5) with different problem dimensions d ∈ {25, 50, 100}.
The horizontal axis represents the number of data passes and the vertical axis represents
gradient norm.

observes the linear convergence behavior; (iii) the numerical results show that the unicity of
geodesics assumption may not be necessary in practice; and (iv) this is an application where
both min and max sides are done on Riemannian manifolds.

Following the previous works of Zhang et al. [2022b] and Han et al. [2022], we generate
a sequence of data matrices Mi satisfying that their eigenvalues are in the range of [0.2, 4.5].
In our experiment, we fix α = 1.0 and also vary the problem dimension d ∈ {25, 50, 100}.
The evaluation metric is set as gradient norm. We set n = 40 and n = 200 in Figure 4.1
and 4.2. For RCEG, we set η = 1

2`
where ` > 0 is selected via grid search. For SRCEG, we

set ηt = min{ 1
2`
, a
t
} where `, a > 0 are selected via grid search.

Experimental results. Figure 4.1 summarizes the effects of different outputs for RCEG;
indeed, RCEG-last and RCEG-avg refer to Algorithm 10 with last iterate and time-average
iterate respectively. It is clear that the last iterate of RCEG consistently exhibits linear
convergence to an optimal solution in all the settings, verifying our theoretical results in
Theorem 4.5.3. In contrast, the average iterate of RCEG converges much slower than the
last iterate of RCEG. The possible reason is that the problem of RPCA is only locally geodesi-
cally strongly-convex-strongly-concave and averaging with the iterates generated during early
stage will significantly slow down the convergence of RCEG.

Figure 4.2 presents the comparison between SRCEG (with either last iterate or time-
average iterate) and RCEG with last-iterate; here, SRCEG-last and SRCEG-avg refer to
Algorithm 11 with last iterate and time-average iterate respectively. We observe that SRCEG
with either last iterate or average iterate converge faster than RCEG at the early stage and
all of them finally converge to an optimal solution. This demonstrates the effectiveness and
efficiency of SRCEG in practice. It is also worth mentioning that the difference between
last-iterate convergence and time-average-iterate convergence is not as significant as in the
deterministic setting. This is possibly because the technique of averaging help cancels the
negative effect of imperfect information [Kingma and Ba, 2015, Yazıcı et al., 2019].
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Figure 4.2: Comparison of RCEG and SRCEG for solving the RPCA problem in Eq. (4.5)
with different problem dimensions d ∈ {25, 50}. The horizontal axis is the number of data
passes and the vertical axis is gradient norm.

4.7 Conclusion

Inspired broadly by the structure of the complex competition that arises in many applications
of robust optimization in ML, we focus on the problem of min-max optimization in the pure
Riemannian setting (where both min and max player are constrained in a smooth manifold).
Answering the open question of Zhang et al. [2022b] for the geodesically (strongly) convex-
concave case, we showed that the Riemannian correction technique for EG matches the linear
last-iterate complexity of their Euclidean counterparts in terms of accuracy and conditional
number of objective for both deterministic and stochastic case. Additionally, we provide near-
optimal guarantees for both smooth and non-smooth min-max optimization via Riemannian
EG and GDA for the simple convex-concave case.

As a consequence of this work numerous open problems emerge; one immediate open
question for future work is to explore whether the dependence on the curvature constant
is also tight. Additionally, another generalization of interest would be to consider the per-
formance of RCEG in the case of Riemannian Monotone Variational inequalities (RMVI)
and examine the generalization of Zhang et al. [2022b] existence proof. Finally, there has
been recent work in proving last-iterate convergence in the convex-concave setting via Sum-
Of-Squares techniques [Cai et al., 2022]. It would be interesting to examine how one could
leverage this machinery in a non-Euclidean but geodesic-metric-friendly framework.

4.8 Metric Geometry

To generalize the first-order methods in Euclidean setting, we introduce several basic con-
cepts in metric geometry [Burago et al., 2001], which are known to include both Euclidean
spaces and Riemannian manifolds as special cases. Formally, we have

Definition 4.8.1 (Metric Space) A metric space (X, d) is a pair of a set X and a distance
function d(·, ·) satisfying: (i) d(x,x′) ≥ 0 for any x,x′ ∈ X; (ii) d(x,x′) = d(x′,x) for any
x,x′ ∈ X; and (iii) d(x,x′′) ≤ d(x,x′) + d(x′,x′′) for any x,x′,x′′ ∈ X. In other words, the
distance function d(·, ·) is non-negative, symmetrical and satisfies the triangle inequality.
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A path γ : [0, 1] 7→ X is a continuous mapping from the interval [0, 1] to X and the length
of γ is defined as length(γ) := limn→+∞ sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)). Note that the

triangle inequality implies that sup0=t0<...<tn=1

∑n
i=1 d(γ(ti−1), γ(ti)) is nondecreasing. Then,

the length of a path γ is well defined since the limit is either +∞ or a finite scalar. Moreover,
for ∀ε > 0, there exists n ∈ ς and the partition 0 = t0 < . . . < tn = 1 of the interval [0, 1]
such that length(γ) ≤

∑n
i=1 d(γ(ti−1), γ(ti)) + ε.

Definition 4.8.2 (Length Space) A metric space (X, d) is a length space if, for any x,x′ ∈
X and ε > 0, there exists γ : [0, 1] 7→ X connecting x and x′ such that length(γ) ≤ d(x, x′)+ε.

We can see from Definition 4.8.2 that a set of length spaces is strict subclass of metric
spaces; indeed, for some x, x′ ∈ X, there does not exist a path γ such that its length can be
approximated by d(x, x′) for some tolerance ε > 0. In metric geometry, a geodesic is a path
which is locally a distance minimizer everywhere. More precisely, a path γ is a geodesic if
there is a constant ν > 0 such that for any t ∈ [0, 1] there is a neighborhood I of [0, 1] such
that,

d(γ(t1), γ(t2)) = ν|t1 − t2|, for any t1, t2 ∈ I.

Note that the above generalizes the notion of geodesic for Riemannian manifolds. Then, we
are ready to introduce the geodesic space and uniquely geodesic space [Bacak, 2014].

Definition 4.8.3 A metric space (X, d) is a geodesic space if, for any x,x′ ∈ X, there exists
a geodesic γ : [0, 1] 7→ X connecting x and x′. Furthermore, it is called uniquely geodesic if
the geodesic connecting x and x′ is unique for any x,x′ ∈ X.

Trigonometric geometry in nonlinear spaces is intrinsically different from Euclidean space.
In particular, we remark that the law of cosines in Euclidean space (with ‖ · ‖ as `2-norm) is
crucial for analyzing the convergence property of optimization algorithms, e.g.,

‖a‖2 = ‖b‖2 + ‖c‖2 − 2bc cos(A),

where a, b, c are sides of a geodesic triangle in Euclidean space and A is the angle between b
and c. However, such nice property does not hold for nonlinear spaces due to the lack of flat
geometry, further motivating us to extend the law of cosines under nonlinear trigonometric
geometry. That is to say, given a geodesic triangle in X with sides a, b, c where A is the
angle between b and c, we hope to establish the relationship between a2, b2, c2 and 2bc cos(A)
in nonlinear spaces; see the main context for the comparing inequalities.

Finally, we specify the definition of section curvature of Riemannian manifolds and clarify
how such quantity affects the trigonometric comparison inequalities. More specifically, the
sectional curvature is defined as the Gauss curvature of a 2-dimensional sub-manifold that
are obtained from the image of a two-dimensional subspace of a tangent space after exponen-
tial mapping. It is worth mentioning that the above 2-dimensional sub-manifold is locally
isometric to a 2-dimensional sphere, a Euclidean plane, and a hyperbolic plane with the same
Gauss curvature if its sectional curvature is positive, zero and negative respectively. Then we
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are ready to summarize the existing trigonometric comparison inequalities for Riemannian
manifold with bounded sectional curvatures. Note that the following two propositions are
the full version of Proposition 4.4.1 and will be used in our subsequent proofs.

Proposition 4.8.4 Suppose thatM is a Riemannian manifold with sectional curvature that
is upper bounded by κmax and let ∆ be a geodesic triangle in M with the side length a, b,
c and A which is the angle between b and c. If κmax > 0, we assume the diameter of M is
bounded by π√

κmax
. Then, we have

a2 ≥ ξ(κmax, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := 1 for κ ≤ 0 and ξ(κ, c) := c
√
κ cot(c

√
κ) < 1 for κ > 0.

Proposition 4.8.5 Suppose thatM is a Riemannian manifold with sectional curvature that
is lower bounded by κmin and let ∆ be a geodesic triangle in M with the side length a, b, c
and A which is the angle between b and c. Then, we have

a2 ≤ ξ(κmin, c) · b2 + c2 − 2bc cos(A),

where ξ(κ, c) := c
√
−κ coth(c

√
−κ) > 1 if κ < 0 and ξ(κ, c) := 1 if κ ≥ 0.

Remark 4.8.6 Proposition 4.8.4 and 4.8.5 are simply the restatement of Alimisis et al.
[2020, Corollary 2.1] and Zhang and Sra [2016, Lemma 5]. The former inequality is obtained
when the sectional curvature is bounded from above while the latter inequality characterizes
the relationship between the trigonometric lengths when the sectional curvature is bounded
from below. If κmin = κmax = 0 (i.e., Euclidean spaces), we have ξ(κmin, c) = ξ(κmax, c) = 1.
The proof is based on Toponogov’s theorem and Riccati comparison estimate [Petersen, 2006,
Proposition 25] and we refer the interested readers to Zhang and Sra [2016] and Alimisis et al.
[2020] for the details.

4.9 Riemannian Gradient Descent Ascent for

Nonsmooth Setting

We propose and analyze Riemannian gradient descent ascent (RGDA) method for nonsmooth
Riemannian min-max optimization and extend it to stochastic RGDA. We present our results
on the optimal last-iterate convergence guarantee for geodesically strongly-convex-strongly-
concave setting (both deterministic and stochastic) and time-average convergence guarantee
for geodesically convex-concave setting (both deterministic and stochastic).
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Algorithm 12 RGDA

Input: initial points (x0,y0) and stepsizes ηt > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gt
x,g

t
y) ← (∂xf(xt,yt), ∂yf(xt,yt)) as a

Riemannian subgradient at a point (xt,yt).
xt+1 ← Expxt

(−ηt · gt
x).

yt+1 ← Expyt
(ηt · gt

y).

Algorithm 13 SRGDA

Input: initial points (x0,y0) and stepsizes ηt > 0.
for t = 0, 1, 2, . . . , T − 1 do

Query (gt
x,g

t
y) as a noisy estimator of Rieman-

nian subgradient at a point (xt,yt).
xt+1 ← Expxt

(−ηt · gt
x).

yt+1 ← Expyt
(ηt · gt

y).

Algorithmic scheme. Compared to Riemannian corrected extragradient (RCEG) method,
our Riemannian gradient descent ascent (RGDA) method is a relatively straightforward gen-
eralization of GDA in Euclidean spaces. More specifically, we start with the scheme of GDA
as follows (just consider M and N as convex constraint sets in Euclidean spaces),

xt+1 ← PM(xt − ηt · gtx), yt+1 ← PN (yt + ηt · gty). (4.6)

where (gtx,g
t
y) ∈ (∂xf(xt,yt), ∂yf(xt,yt)) is one subgradient. By replacing the projection

operator with the corresponding exponential map and the gradient by the corresponding
Riemannian gradient, we have

xt+1 ← Expxt(−ηt · g
t
x), yt+1 ← Expyt(ηt · g

t
y).

where (gtx,g
t
y) ← (∂xf(xt,yt), ∂yf(xt,yt)) is one Riemannian subgradient. We summarize

the resulting scheme of RGDA method in Algorithm 12 and its stochastic extension with
noisy estimators of Riemannian gradients of f in Algorithm 13.

Main results. We present our main results on the global convergence rate estimation for
Algorithm 12 and 13 in terms of Riemannian gradient and noisy Riemannian gradient eval-
uations. The following assumptions are made throughout for geodesically strongly-convex-
strongly-concave and geodesically convex-concave settings.

Assumption 4.9.1 The objective function f :M×N 7→ R and manifoldsM and N satisfy

1. f is geodesically L-Lipschitz and geodesically strongly-convex-strongly-concave with µ.

2. The domain {(x,y) ∈M×N : −∞ < f(x,y) < +∞} is bounded by D > 0.

3. The sectional curvatures of M and N are both bounded in the range [κmin,+∞) with
κmin ≤ 0.

Assumption 4.9.2 The objective function f :M×N 7→ R and manifoldsM and N satisfy

1. f is geodesically L-Lipschitz and geodesically convex-concave.

2. The domain {(x,y) ∈M×N : −∞ < f(x,y) < +∞} is bounded by D > 0.
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3. The sectional curvatures of M and N are both bounded in the range [κmin,+∞) with
κmin ≤ 0.

Imposing the geodesically Lipschitzness condition is crucial to achieve finite-time convergence
guarantee if we do not assume the geodesically smoothness condition. Note that we only
require the lower bound for the sectional curvatures of manifolds and this is weaker than
that presented in the main context.

Letting (x?,y?) ∈M×N be a global saddle point (it exists under either Assumption 4.9.1
or 4.9.2), we let D0 = (dM(x0,x

?))2 + (dN (y0,y
?))2 > 0 and summarize our results for

Algorithm 12 in the following theorems.

Theorem 4.9.3 Under Assumption 4.9.1 and let ηt > 0 satisfies that ηt = 1
µ

min{1, 2
t
}.

There exists some T > 0 such that the output of Algorithm 12 satisfies that (d(xT ,x
?))2 +

(d(yT ,y
?))2 ≤ ε and the total number of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2

µ2ε

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the non-flatness in M and N .

Theorem 4.9.4 Under Assumption 4.9.2 and let ηt > 0 satisfies that ηt = 1
L

√
D0

2ξ0T
. There

exists some T > 0 such that the output of Algorithm 12 satisfies that f(x̄T ,y
?)−f(x?, ȳT ) ≤ ε

and the total number of Riemannian subgradient evaluations is bounded by

O

(
ξ0L

2D0

ε2

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the non-flatness in M and N , and the
time-average iterates (x̄T , ȳT ) ∈ M×N can be computed using the initial point (x̄0, ȳ0) =
(0, 0) and the inductive formula: x̄t+1 = Expx̄t(

1
t+1
· Exp−1

x̄t (xt)) and ȳt+1 = Expȳt(
1
t+1
·

Exp−1
ȳt (yt)) for all t = 0, 1, . . . , T − 1.

Remark 4.9.5 Theorem 4.9.3 and 4.9.4 establish the last-iterate and time-average rates of
convergence of Algorithm 12 for solving Riemannian min-max optimization problems under
Assumption 4.9.1 and 4.9.2 respectively. Further, the dependence on L and 1/ε can not
be improved since it has matched the lower bound established for the nonsmooth min-max
optimization problems in Euclidean spaces.

In the scheme of SRGDA, we highlight that (gtx,g
t
y) is a noisy estimators of Riemannian sub-

gradient of f at (xt,yt). It is necessary to impose the conditions such that these estimators
are unbiased and has bounded variance. By abuse of notation, we assume that

gtx = ∂xf(xt,yt) + ξtx, gty = ∂yf(xt,yt) + ξty, (4.7)
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where the noises (ξtx, ξ
t
y) satisfy that

E[ξtx] = 0, E[ξty] = 0, E[‖ξtx‖2 + ‖ξty‖2] ≤ σ2. (4.8)

We are ready to summarize our results for Algorithm 13 in the following theorems.

Theorem 4.9.6 Under Assumption 4.9.1 and let Eq. (4.7) and Eq. (4.8) hold with σ > 0
and let ηt > 0 satisfies that ηt = 1

µ
min{1, 2

t
}. There exists some T > 0 such that the output

of Algorithm 13 satisfies that E[(d(xT ,x
?))2 +(d(yT ,y

?))2] ≤ ε and the total number of noisy
Riemannian gradient evaluations is bounded by

O

(
ξ0(L2 + σ2)

µ2ε

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the non-flatness in M and N .

Theorem 4.9.7 Under Assumption 4.9.2 and let Eq. (4.7) and Eq. (4.8) hold with σ > 0

and let ηt > 0 satisfies that ηt = 1
2

√
D0

ξ0(L2+σ2)T
. There exists some T > 0 such that the

output of Algorithm 13 satisfies that E[f(x̄T ,y
?) − f(x?, ȳT )] ≤ ε and the total number of

noisy Riemannian gradient evaluations is bounded by

O

(
ξ0(L2 + σ2)D0

ε2

)
,

where ξ0 = ξ(κmin, D) measures the lower bound for the non-flatness in M and N , and the
time-average iterates (x̄T , ȳT ) ∈ M×N can be computed using the initial point (x̄0, ȳ0) =
(0, 0) and the inductive formula: x̄t+1 = Expx̄t(

1
t+1
· Exp−1

x̄t (xt)) and ȳt+1 = Expȳt(
1
t+1
·

Exp−1
ȳt (yt)) for all t = 0, 1, . . . , T − 1.

Remark 4.9.8 Theorem 4.9.6 and 4.9.7 establish the last-iterate and time-average rates of
convergence of Algorithm 13 for solving Riemannian min-max optimization problems under
Assumption 4.9.1 and 4.9.2. Moreover, the dependence on L and 1/ε can not be improved
since it has matched the lower bound established for nonsmooth stochastic min-max optimiza-
tion problems in Euclidean spaces.

4.10 Missing Proofs for Riemannian Corrected

Extragradient Method

We present some technical lemmas for analyzing the convergence property of Algorithm 10
and 11. We also give the proofs of Theorem 4.5.3, 4.5.6 and 4.5.7.
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Technical lemmas. We provide two technical lemmas for analyzing Algorithm 10 and 11
respectively. Parts of the first lemma were presented in Zhang et al. [2022b, Lemma C.1].
For the completeness, we provide the proof details.

Lemma 4.10.1 Under Assumption 4.5.1 and let {(xt,yt), (x̂t, ŷt)}T−1
t=0 be generated by Al-

gorithm 10 with the stepsize η > 0. Then, we have

0 ≤ 1
2

(
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)

+2ξ0η
2`2((dM(x̂t,xt))

2 + (dN (ŷt,yt))
2 − 1

2
ξ

0

(
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
)

−µη
2

(
(dM(x̂t,x

?))2 + (dN (ŷt,y
?))2
)
.

where (x?,y?) ∈M×N is a global saddle point of f .

Proof. Since f is geodesically `-smooth, we have the Riemannian gradients of f , i.e.,
(∇xf,∇yf), are well defined. Since f is geodesically strongly-concave-strongly-concave with
the modulus µ ≥ 0 (here µ = 0 means that f is geodesically concave-concave), we have

f(x̂t,y
?)− f(x?, ŷt) = f(x̂t, ŷt)− f(x?, ŷt)− (f(x̂t, ŷt)− f(x̂t,y

?))
Definition 4.4.3

≤ −〈∇xf(x̂t, ŷt),Exp−1
x̂t

(x?)〉+ 〈∇yf(x̂t, ŷt),Exp−1
ŷt

(y?)〉 − µ
2
(dM(x̂t,x

?))2 − µ
2
(dN (ŷt,y

?))2.

Since (x?,y?) ∈ M × N is a global saddle point of f , we have f(x̂t,y
?) − f(x?, ŷt) ≥ 0.

Recalling also from the scheme of Algorithm 10 that we have

xt+1 ← Expx̂t(−η · ∇xf(x̂t, ŷt) + Exp−1
x̂t

(xt)),

yt+1 ← Expŷt(η · ∇yf(x̂t, ŷt) + Exp−1
ŷt

(yt)).

By the definition of an exponential map, we have

Exp−1
x̂t

(xt+1) = −η · ∇xf(x̂t, ŷt) + Exp−1
x̂t

(xt),

Exp−1
ŷt

(yt+1) = η · ∇yf(x̂t, ŷt) + Exp−1
ŷt

(yt).
(4.9)

This implies that

−〈∇xf(x̂t, ŷt),Exp−1
x̂t

(x?)〉 = 1
η
(〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉),

〈∇yf(x̂t, ŷt),Exp−1
ŷt

(y?)〉 = 1
η
(〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉).

Putting these pieces together yields that

0 ≤ 1
η
(〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉)− µ

2
(dM(x̂t,x

?))2

+ 1
η
(〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉)− µ

2
(dN (ŷt,y

?))2.
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Equivalently, we have

0 ≤ 〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 − 〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 − µη
2

(dM(x̂t,x
?))2 (4.10)

+〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 − 〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 − µη
2

(dN (ŷt,y
?))2.

It suffices to bound the terms in the right-hand side of Eq. (4.10) by leveraging the cele-
brated comparison inequalities on Riemannian manifold with bounded sectional curvature
(see Proposition 4.8.4 and 4.8.5). More specifically, we define the constants using ξ(·, ·) and
ξ(·, ·) from Proposition 4.8.4 and 4.8.5 as follows,

ξ0 = ξ(κmin, D), ξ
0

= ξ(κmax, D).

By Proposition 4.8.4 and using that max{dM(x̂t,x
?), dN (ŷt,y

?)} ≤ D, we have

−〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 ≤ −1
2

(
ξ

0
(dM(x̂t,xt))

2 + (dM(x̂t,x
?))2 − (dM(xt,x

?))2
)
,

−〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 ≤ −1
2

(
ξ

0
(dN (ŷt,yt))

2 + (dN (ŷt,y
?))2 − (dN (yt,y

?))2
)
.

(4.11)
By Proposition 4.8.5 and using that max{dM(x̂t,x

?), dN (ŷt,y
?)} ≤ D, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
ξ0(dM(x̂t,xt+1))2 + (dM(x̂t,x

?))2 − (dM(xt+1,x
?))2
)
.

and

〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 ≤ 1
2

(
ξ0(dN (ŷt,yt+1))2 + (dN (ŷt,y

?))2 − (dN (yt+1,y
?))2
)
.

By the definition of an exponential map and Riemannian metric, we have

dM(x̂t,xt+1) = ‖Exp−1
x̂t

(xt+1)‖ Eq. (4.9)
= ‖η · ∇xf(x̂t, ŷt)− Exp−1

x̂t
(xt)‖,

dN (ŷt,yt+1) = ‖Exp−1
ŷt

(yt+1)‖ Eq. (4.9)
= ‖η · ∇yf(x̂t, ŷt) + Exp−1

ŷt
(yt)‖.

(4.12)

Further, we see from the scheme of Algorithm 10 that we have

x̂t ← Expxt(−η · ∇xf(xt,yt)),

ŷt ← Expyt(η · ∇yf(xt,yt)).

By the definition of an exponential map, we have

Exp−1
xt (x̂t) = −η · ∇xf(xt,yt), Exp−1

yt (ŷt) = η · ∇yf(xt,yt).

Using the definition of a parallel transport map and the above equations, we have

Exp−1
x̂t

(xt) = η · Γx̂t
xt∇xf(xt,yt), Exp−1

ŷt
(yt) = −η · Γŷt

yt∇yf(xt,yt)
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Since f is geodesically `-smooth, we have

‖∇xf(x̂t, ŷt)− Γx̂t
xt∇xf(xt,yt)‖ ≤ `(dM(x̂t,xt) + dN (ŷt,yt)),

‖∇yf(x̂t, ŷt)− Γŷt
yt∇yf(xt,yt)‖ ≤ `(dM(x̂t,xt) + dN (ŷt,yt)).

Plugging the above inequalities into Eq. (4.12) yields that

max {dM(x̂t,xt+1), dN (ŷt,yt+1)} ≤ η`(dM(x̂t,xt) + dN (ŷt,yt)).

Therefore, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
2ξ0η

2`2((dM(x̂t,xt))
2 + (dN (ŷt,yt))

2) + (dM(x̂t,x
?))2 − (dM(xt+1,x

?))2
)
,

〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 ≤ 1
2

(
2ξ0η

2`2((dM(x̂t,xt))
2 + (dN (ŷt,yt))

2) + (dN (ŷt,y
?))2 − (dN (yt+1,y

?))2
)
.

Plugging these inequalities and Eq. (4.11) into Eq. (4.10) yields the desired inequality. �

The second lemma gives another key inequality that is satisfied by the iterates generated by
Algorithm 11.

Lemma 4.10.2 Under Assumption 4.5.1 (or Assumption 4.5.2) and the noisy model (cf.
Eq. (4.3) and (4.4)) and let {(xt,yt), (x̂t, ŷt)}T−1

t=0 be generated by Algorithm 11 with the
stepsize η > 0. Then, we have

E[f(x̂t,y
?)− f(x?, ŷt)] ≤ 1

2η
E
[
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
]

+6ξ0η`
2E
[
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
]
− 1

2η
ξ

0
E
[
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
]

−µ
2
E
[
(dM(x̂t,x

?))2 + (dN (ŷt,y
?))2
]

+ 3ξ0ησ
2,

where (x?,y?) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(x̂t,y
?)− f(x?, ŷt) = f(x̂t, ŷt)− f(x?, ŷt)− (f(x̂t, ŷt)− f(x̂t,y

?))

≤ −〈∇xf(x̂t, ŷt),Exp−1
x̂t

(x?)〉+ 〈∇yf(x̂t, ŷt),Exp−1
ŷt

(y?)〉 − µ
2
(dM(x̂t,x

?))2 − µ
2
(dN (ŷt,y

?))2.

Combining the arguments used in Lemma 4.10.1 and the scheme of Algorithm 11, we have

−〈ĝtx,Exp−1
x̂t

(x?)〉 = 1
η
(〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉),

〈ĝty,Exp−1
ŷt

(y?)〉 = 1
η
(〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉).

Putting these pieces together with Eq. (4.3) yields that

f(x̂t,y
?)− f(x?, ŷt) ≤ 1

η
(〈Exp−1

x̂t
(xt+1),Exp−1

x̂t
(x?)〉 − 〈Exp−1

x̂t
(xt),Exp−1

x̂t
(x?)〉) (4.13)

+ 1
η
(〈Exp−1

ŷt
(yt+1),Exp−1

ŷt
(y?)〉 − 〈Exp−1

ŷt
(yt),Exp−1

ŷt
(y?)〉)− µ

2
(dM(x̂t,x

?))2 − µ
2
(dN (ŷt,y

?))2

+〈ξ̂tx,Exp−1
x̂t

(x?)〉 − 〈ξ̂ty,Exp−1
ŷt

(y?)〉.
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By the same argument as used in Lemma 4.10.1, we have

−〈Exp−1
x̂t

(xt),Exp−1
x̂t

(x?)〉 ≤ −1
2

(
ξ

0
(dM(x̂t,xt))

2 + (dM(x̂t,x
?))2 − (dM(xt,x

?))2
)
,

−〈Exp−1
ŷt

(yt),Exp−1
ŷt

(y?)〉 ≤ −1
2

(
ξ

0
(dN (ŷt,yt))

2 + (dN (ŷt,y
?))2 − (dN (yt,y

?))2
)
,

(4.14)
and

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉 ≤ 1
2

(
ξ0η

2‖ĝtx − Γx̂t
xtg

t
x‖2 + (dM(x̂t,x

?))2 − (dM(xt+1,x
?))2
)
,

〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉 ≤ 1
2

(
ξ0η

2‖ĝty − Γŷt
ytg

t
y‖2 + (dN (ŷt,y

?))2 − (dN (yt+1,y
?))2
)
.

Since f is geodesically `-smooth and Eq. (4.3) holds, we have

‖ĝtx − Γx̂t
xtg

t
x‖2 ≤ 3‖ξ̂tx‖2 + 3‖ξtx‖2 + 6`2(dM(x̂t,xt))

2 + 6`2(dN (ŷt,yt))
2,

‖ĝty − Γŷt
ytg

t
y‖2 ≤ 3‖ξ̂ty‖2 + 3‖ξty‖2 + 6`2(dM(x̂t,xt))

2 + 6`2(dN (ŷt,yt))
2.

Therefore, we have

〈Exp−1
x̂t

(xt+1),Exp−1
x̂t

(x?)〉+ 〈Exp−1
ŷt

(yt+1),Exp−1
ŷt

(y?)〉
≤ 6ξ0η

2`2((dM(x̂t,xt))
2 + (dN (ŷt,yt))

2) + 3
2
ξ0η

2(‖ξ̂tx‖2 + ‖ξtx‖2 + ‖ξ̂ty‖2 + ‖ξty‖2)

+1
2

(
(dM(x̂t,x

?))2 − (dM(xt+1,x
?))2 + (dN (ŷt,y

?))2 − (dN (yt+1,y
?))2
)
.

Plugging the above inequalities and Eq. (4.14) into Eq. (4.13) yields that

f(x̂t,y
?)− f(x?, ŷt) ≤ 1

2η

(
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)

+6ξ0η`
2((dM(x̂t,xt))

2 + (dN (ŷt,yt))
2) + 3

2
ξ0η(‖ξ̂tx‖2 + ‖ξtx‖2 + ‖ξ̂ty‖2 + ‖ξty‖2)

− 1
2η
ξ

0

(
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
)
− µ

2
(dM(x̂t,x

?))2 − µ
2
(dN (ŷt,y

?))2

+〈ξ̂tx,Exp−1
x̂t

(x?)〉 − 〈ξ̂ty,Exp−1
ŷt

(y?)〉.

Taking the expectation of both sides and using Eq. (4.4) yields the desired inequality. �

Proof of Theorem 4.5.3. Since Riemannian metrics satisfy a triangle inequality, we have

(dM(x̂t,x
?))2+(dN (ŷt,y

?))2 ≥ 1
2
((dM(xt,x

?))2+(dN (yt,y
?))2)−(dM(x̂t,xt))

2+(dN (ŷt,yt))
2.

Plugging the above inequality into the inequality from Lemma 4.10.1 yields that

(dM(xt+1,x
?))2 + (dN (yt+1,y

?))2

≤
(
1− µη

2

) (
(dM(xt,x

?))2 + (dN (yt,y
?))2
)

+ (4ξ0η
2`2 + µη − ξ

0
)((dM(x̂t,xt))

2 + (dN (ŷt,yt))
2.

Since η = min{ 1
4`
√
τ0
,
ξ
0

2µ
}, we have 4ξ0η

2`2 + µη − ξ
0
≤ 0. By the definition, we have τ0 ≥ 1,

κ ≥ 1 and ξ
0
≤ 1. This implies that

1− µη
2

= 1−min
{

1
8κ
√
τ0
,
ξ
0

4

}
> 0.
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Putting these pieces together yields that

(dM(xt,x
?))2 + (dN (yt,y

?))2 ≤
(

1−min
{

1
8κ
√
τ0
,
ξ
0

4

})T
(dM(x0,x

?))2 + (dN (y0,y
?))2

≤
(

1−min
{

1
8κ
√
τ0
,
ξ
0

4

})T
D0.

This completes the proof.

Proof of Theorem 4.5.6. Since Riemannian metrics satisfy a triangle inequality, we have

(dM(x̂t,x
?))2+(dN (ŷt,y

?))2 ≥ 1
2
((dM(xt,x

?))2+(dN (yt,y
?))2)−(dM(x̂t,xt))

2+(dN (ŷt,yt))
2.

Plugging the above inequality into the inequality from Lemma 4.10.2 yields that

E[f(x̂t,y
?)− f(x?, ŷt)] ≤ 1

2η
E
[
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
]

+(6ξ0η`
2 + µ

2
− 1

2η
ξ

0
)E
[
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
]
− µ

4
E
[
(dM(x̂t,x

?))2 + (dN (ŷt,y
?))2
]

+ 3ξ0ησ
2.

Since (x?,y?) ∈ M×N is a global saddle point of f , we have E[f(x̂t,y
?)− f(x?, ŷt)] ≥ 0.

Then, we have

E
[
(dM(xt+1,x

?))2 + (dN (yt+1,y
?))2
]
≤
(
1− µη

2

)
E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]

+(12ξ0η
2`2 + µη − ξ

0
)E
[
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
]

+ 6ξ0η
2σ2.

Since η ≤ min{ 1
24`
√
τ0
,
ξ
0

2µ
}, we have 12ξ0η

2`2 + µη − ξ
0
≤ 0. This implies that

E
[
(dM(xt+1,x

?))2 + (dN (yt+1,y
?))2
]
≤
(
1− µη

2

)
E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]
+6ξ0η

2σ2.

By the definition, we have τ0 ≥ 1, κ ≥ 1 and ξ
0
≤ 1. This implies that

1− µη
2
≥ 1−min

{
1

48κ
√
τ0
,
ξ
0

4

}
> 0.

By the inductive arguments, we have

E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]

≤
(
1− µη

2

)T (
(dM(x0,x

?))2 + (dN (y0,y
?))2
)

+ 6ξ0η
2σ2

(
T−1∑
t=0

(
1− µη

2

)t)
≤

(
1− µη

2

)T
D0 + 12ξ0ησ

2

µ
.

Since η = min{ 1
24`
√
τ0
,
ξ
0

2µ
, 2(log(T )+log(µ2D0σ−2))

µT
}, we have

(
1− µη

2

)T
D0 ≤

(
1−min

{
1

48κ
√
τ0
,
ξ
0

4

})T
D0 +

(
1− log(µ2D0σ−2T )

T

)T
D0

1+a≤ea
≤

(
1−min

{
1

48κ
√
τ0
,
ξ
0

4

})T
D0 + σ2

µ2T
,
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and
12ξ0ησ

2

µ
≤ 24ξ0σ

2

µ2T
log
(
µ2D0T
σ2

)
.

Putting these pieces together yields that

E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]
≤
(

1−min
{

1
48κ
√
τ0
,
ξ
0

4

})T
D0 + σ2

µ2T
+ 24ξ0σ

2

µ2T
log
(
µ2D0T
σ2

)
.

This completes the proof.

Proof of Theorem 4.5.7. By the inductive formulas of x̄t+1 = Expx̄t(
1
t+1
· Exp−1

x̄t (x̂t))

and ȳt+1 = Expȳt(
1
t+1
· Exp−1

ȳt (ŷt)) and using Zhang et al. [2022b, Lemma C.2], we have

f(x̄T ,y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(x̂t,y
?)− f(x?, ŷt)

)
.

Plugging the above inequality into the inequality from Lemma 4.10.2 yields that (recall that
µ = 0 in geodesically convex-concave setting here)

E[f(x̄T ,y
?)− f(x?, ȳT )] ≤ 1

2ηT

(
(dM(x0,x

?))2 + (dN (y0,y
?))2
)

+ 1
T

(
6ξ0η`

2 − 1
2η
ξ

0

)(T−1∑
t=0

E
[
(dM(x̂t,xt))

2 + (dN (ŷt,yt))
2
])

+ 3ξ0ησ
2.

Since η ≤ 1
4`
√
τ0

, we have 6ξ0η`
2− 1

2η
ξ

0
≤ 0. This together with (dM(x0,x

?))2+(dN (y0,y
?))2 ≤

D0 implies that
E[f(x̄T ,y

?)− f(x?, ȳT )] ≤ D0

2ηT
+ 3ξ0ησ

2.

Since η = min{ 1
4`
√
τ0
, 1
σ

√
D0

ξ0T
}, we have

D0

2ηT
≤ 2`D0

√
τ0

T
+ σ

2

√
ξ0D0

T
,

and

3ξ0ησ
2 ≤ 3σ

√
ξ0D0

T
.

Putting these pieces together yields that

E[f(x̄T ,y
?)− f(x?, ȳT )] ≤ 2`D0

√
τ0

T
+ 7σ

2

√
ξ0D0

T
.

This completes the proof.
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4.11 Missing Proofs for Riemannian Gradient

Descent Ascent

We present some technical lemmas for analyzing the convergence property of Algorithm 12
and 13. We also give the proofs of Theorem 4.9.3, 4.9.4, 4.9.6 and 4.9.7.

Technical lemmas. We provide two technical lemmas for analyzing Algorithm 12 and 13
respectively. The first lemma gives a key inequality that is satisfied by the iterates generated
by Algorithm 12.

Lemma 4.11.1 Under Assumption 4.9.1 (or Assumption 4.9.2) and let {(xt,yt)}T−1
t=0 be

generated by Algorithm 12 with the stepsize ηt > 0. Then, we have

f(xt,y
?)− f(x?,yt) ≤ 1

2ηt

(
(dM(xt,x

?))2 − (dM(xt+1,x
?))2
)

+ 1
2ηt

(
(dN (yt,y

?))2 − (dN (yt+1,y
?))2
)
− µ

2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2 + ξ0ηtL
2,

where (x?,y?) ∈M×N is a global saddle point of f .

Proof. Since f is geodesically strongly-concave-strongly-concave with the modulus µ ≥ 0
(here µ = 0 means that f is geodesically concave-concave), we have

f(xt,y
?)− f(x?,yt) = f(xt,yt)− f(x?,yt)− (f(xt,yt)− f(xt,y

?))

≤ −〈∂xf(xt,yt),Exp−1
xt (x?)〉+ 〈∂yf(xt,yt),Exp−1

yt (y?)〉 − µ
2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2.

Recalling also from the scheme of Algorithm 12 that we have

xt+1 ← Expxt(−ηt · ∂xf(xt,yt)),

yt+1 ← Expyt(ηt · ∂yf(xt,yt)).

By the definition of an exponential map, we have

Exp−1
xt (xt+1) = −ηt · ∂xf(xt,yt),

Exp−1
yt (yt+1) = ηt · ∂yf(xt,yt).

(4.15)

This implies that

−〈∂xf(xt,yt),Exp−1
xt (x?)〉 = 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉,

〈∂yf(xt,yt),Exp−1
yt (y?)〉 = 1

ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉.

Putting these pieces together yields that

f(xt,y
?)− f(x?,yt) ≤ 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉 (4.16)

+ 1
ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉 − µ

2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2.
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It suffices to bound the terms in the right-hand side of Eq. (4.16) by leveraging the celebrated
comparison inequalities on Riemannian manifold with lower bounded sectional curvature (see
Proposition 4.8.5). More specifically, we define the constants using ξ(·, ·) and ξ(·, ·) from
Proposition 4.8.5 as follows,

ξ0 = ξ(κmin, D).

By Proposition 4.8.5 and using that max{dM(xt,x
?), dN (yt,y

?)} ≤ D, we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0(dM(xt,xt+1))2 + (dM(xt,x

?))2 − (dM(xt+1,x
?))2
)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0(dN (yt,yt+1))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)
.

Since f is geodesically L-Lipschitz, we have

‖∂xf(xt,yt)‖ ≤ L, ‖∂yf(xt,yt)‖ ≤ L.

By the definition of an exponential map and Riemannian metric, we have

dM(xt,xt+1) = ‖Exp−1
xt (xt+1)‖ Eq. (4.15)

= ‖ηt · ∂xf(xt,yt)‖ ≤ ηtL,

dN (yt,yt+1) = ‖Exp−1
yt (yt+1)‖ Eq. (4.15)

= ‖ηt · ∂yf(xt,yt)‖ ≤ ηtL.

Putting these pieces together yields that

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0η

2
tL

2 + (dM(xt,x
?))2 − (dM(xt+1,x

?))2
)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0η

2
tL

2 + (dN (yt,y
?))2 − (dN (yt+1,y

?))2
)
.

Plugging the above inequalities into Eq. (4.16) yields the desired inequality. �

The second lemma gives another key inequality that is satisfied by the iterates generated by
Algorithm 13.

Lemma 4.11.2 Under Assumption 4.9.1 (or Assumption 4.9.2) and the noisy model (cf.
Eq. (4.7) and (4.8)) and let {(xt,yt)}T−1

t=0 be generated by Algorithm 13 with the stepsize
ηt > 0. Then, we have

E[f(xt,y
?)− f(x?,yt)] ≤ 1

2ηt
E
[
(dM(xt,x

?))2 − (dM(xt+1,x
?))2
]

+ 1
2ηt

E
[
(dN (yt,y

?))2 − (dN (yt+1,y
?))2
]
− µ

2
E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]

+ 2ξ0ηt(L
2 + σ2),

where (x?,y?) ∈M×N is a global saddle point of f .

Proof. Using the same argument, we have (µ = 0 refers to geodesically convex-concave case)

f(xt,y
?)− f(x?,yt) = f(xt,yt)− f(x?,yt)− (f(xt,yt)− f(xt,y

?))

≤ −〈∂xf(xt,yt),Exp−1
xt (x?)〉+ 〈∂yf(xt,yt),Exp−1

yt (y?)〉 − µ
2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2.
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Combining the arguments used in Lemma 4.11.1 and the scheme of Algorithm 11, we have

−〈gtx,Exp−1
xt (x?)〉 = 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?)〉,

〈gty,Exp−1
yt (y?)〉 = 1

ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉.

Putting these pieces together with Eq. (4.7) yields that

f(xt,y
?)− f(x?,yt) ≤ 1

ηt
〈Exp−1

xt (xt+1),Exp−1
xt (x?) (4.17)

+ 1
ηt
〈Exp−1

yt (yt+1),Exp−1
yt (y?)〉 − µ

2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2

+〈ξtx,Exp−1
xt (x?)〉 − 〈ξty,Exp−1

yt (y?)〉.

By the same argument as used in Lemma 4.11.1 and Eq. (4.7), we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉 ≤ 1
2

(
ξ0(dM(xt,xt+1))2 + (dM(xt,x

?))2 − (dM(xt+1,x
?))2
)
,

〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2

(
ξ0(dN (yt,yt+1))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)
,

and

dM(xt,xt+1) = ‖Exp−1
xt (xt+1)‖ = ‖ηt · gtx‖ ≤ ηt(L+ ‖ξtx‖),

dN (yt,yt+1) = ‖Exp−1
yt (yt+1)‖ = ‖ηt · gty‖ ≤ ηt(L+ ‖ξty‖).

Therefore, we have

〈Exp−1
xt (xt+1),Exp−1

xt (x?)〉+ 〈Exp−1
yt (yt+1),Exp−1

yt (y?)〉 ≤ 1
2
ξ0η

2
t (4L

2 + 2‖ξtx‖2 + 2‖ξty‖2)

+1
2

(
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)
.

Plugging the above inequalities into Eq. (4.17) yields that

f(xt,y
?)− f(x?,yt) ≤ 1

2ηt

(
(dM(xt,x

?))2 − (dM(xt+1,x
?))2 + (dN (yt,y

?))2 − (dN (yt+1,y
?))2
)

+ξ0ηt(2L
2 + ‖ξtx‖2 + ‖ξty‖2)− µ

2
(dM(xt,x

?))2 − µ
2
(dN (yt,y

?))2 + 〈ξtx,Exp−1
xt (x?)〉 − 〈ξty,Exp−1

yt (y?)〉.

Taking the expectation of both sides and using Eq. (4.8) yields the desired inequality. �

Proof of Theorem 4.9.3. Since (x?,y?) ∈M×N is a global saddle point of f , we have
f(xt,y

?) − f(x?,yt) ≥ 0. Plugging this inequality into the inequality from Lemma 4.11.1
yields that

(dM(xt+1,x
?))2 + (dN (yt+1,y

?))2 ≤ (1− µηt)
(
(dM(xt,x

?))2 + (dN (yt,y
?))2
)

+ 2ξ0η
2
tL

2.

Since ηt = 1
µ

min{1, 2
t
}, we have

(dM(xt+1,x
?))2+(dN (yt+1,y

?))2 ≤ (1−2
t
)
(
(dM(xt,x

?))2 + (dN (yt,y
?))2
)
+8ξ0L

2

µ2t2
, for all t ≥ 2.

Letting {bt}t≥1 be a nonnegative sequence such that at+1 ≤ (1− P
t
)at + Q

t2
where P > 1 and

Q > 0. Then, Chung [1954] proved that at ≤ Q
P−1

1
t
. Therefore, we have

(dM(xt,x
?))2 + (dN (yt,y

?))2 ≤ 8ξ0L
2

µ2t
, for all t ≥ 2.

This completes the proof.
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Proof of Theorem 4.9.4. By the inductive formulas of x̄t+1 = Expx̄t(
1
t+1
· Exp−1

x̄t (xt))

and ȳt+1 = Expȳt(
1
t+1
· Exp−1

ȳt (yt)) and using Zhang et al. [2022b, Lemma C.2], we have

f(x̄T ,y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt,y
?)− f(x?,yt)

)
.

Plugging the above inequality into the inequality from Lemma 4.11.1 yields that (recall that

µ = 0 in geodesically convex-concave setting and ηt = η = 1
L

√
D0

2ξ0T
)

f(x̄T ,y
?)− f(x?, ȳT ) ≤ 1

2ηT

(
(dM(x0,x

?))2 + (dN (y0,y
?))2
)

+ ξ0ηL
2.

This together with (dM(x0,x
?))2 + (dN (y0,y

?))2 ≤ D0 implies that

f(x̄T ,y
?)− f(x?, ȳT ) ≤ D0

2ηT
+ ξ0ηL

2.

Since η = 1
L

√
D0

2ξ0T
, we have

f(x̄T ,y
?)− f(x?, ȳT ) ≤ L

√
2ξ0D0

T
.

This completes the proof.

Proof of Theorem 4.9.6. Since (x?,y?) ∈M×N is a global saddle point of f , we have
E[f(xt,y

?)− f(x?,yt)] ≥ 0. Plugging this inequality into the inequality from Lemma 4.11.2
yields that

E
[
(dM(xt+1,x

?))2 + (dN (yt+1,y
?))2
]
≤ (1−µηt)E

[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]
+4ξ0η

2
t (L

2+σ2).

Since ηt = 1
µ

min{1, 2
t
}, we have

E
[
(dM(xt+1,x

?))2 + (dN (yt+1,y
?))2
]
≤ (1−2

t
)E
[
(dM(xt,x

?))2 + (dN (yt,y
?))2
]
+16ξ0(L2+σ2)

µ2t2
, for all t ≥ 2.

Applying the same argument as used in Theorem 4.9.3, we have

(dM(xt,x
?))2 + (dN (yt,y

?))2 ≤ 16ξ0(L2+σ2)
µ2t

, for all t ≥ 2.

This completes the proof.

Proof of Theorem 4.9.7. Using the same argument, we have

f(x̄T ,y
?)− f(x?, ȳT ) ≤ 1

T

(
T−1∑
t=0

f(xt,y
?)− f(x?,yt)

)
.
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Plugging the above inequality into the inequality from Lemma 4.11.2 yields that (recall that

µ = 0 in geodesically convex-concave setting and ηt = η = 1
2

√
D0

ξ0(L2+σ2)T
)

E[f(x̄T ,y
?)− f(x?, ȳT )] ≤ 1

2ηT

(
(dM(x0,x

?))2 + (dN (y0,y
?))2
)

+ 2ξ0η(L2 + σ2).

This together with (dM(x0,x
?))2 + (dN (y0,y

?))2 ≤ D0 implies that

E[f(x̄T ,y
?)− f(x?, ȳT )] ≤ D0

2ηT
+ 2ξ0η(L2 + σ2).

Since η = 1
2

√
D0

ξ0(L2+σ2)T
, we have

f(x̄T ,y
?)− f(x?, ȳT ) ≤ 2

√
ξ0(L2+σ2)D0

T
.

This completes the proof.
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Figure 4.3: Comparison of last iterate (RCEG-last) and time-average iterate (RCEG-avg)
for solving the RPCA problem when α = 2.0. The horizontal axis represents the number of
data passes and the vertical axis represents gradient norm.

4.12 Additional Experimental Results

We present some additional experimental results for the effect of different choices of α as
well the effect of different choices of η for for RCEG. In our experiment, we set n = 40.

Figure 4.3 presents the performance of RCEG when α = 2.0. We find that the results are
similar to that summarized in Figure 4.1. In particular, the last iterate of RCEG consistently
achieves the linearly convergence to an optimal solution in all the settings. In contrast, the
average iterate of RCEG converges much slower than the last iterate of RCEG. Figure 4.4
summarizes the effect of different choices of η in RCEG. We observe that setting η as a
relatively larger value will speed up the convergence to an optimal solution while all of the
choices here lead to the linear convergence. This suggests that the choice of stepsize η in
RCEG can be aggressive in practice.
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Figure 4.4: Comparison of different step sizes (η ∈ {0.1, 0.05, 0.02}) for solving the RPCA
problem with different dimensions when α = 2.0. The horizontal axis represents the number
of data passes and the vertical axis represents gradient norm.
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Part II

High-Order Optimization and Beyond
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Chapter 5

A Closed-Loop Control Approach to
High-Order Optimization

We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a
convex function in a finite-dimensional Euclidean space. Given a function Φ : Rd → R
that is convex and twice continuously differentiable, we study a closed-loop control system
that is governed by the operators ∇Φ and ∇2Φ together with a feedback control law λ(·)
satisfying the algebraic equation (λ(t))p‖∇Φ(x(t))‖p−1 = θ for some θ ∈ (0, 1). Our first
contribution is to prove the existence and uniqueness of a local solution to this system via
the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function
that allows us to establish the existence and uniqueness of a global solution under certain
regularity conditions and analyze the convergence properties of trajectories. The rate of
convergence is O(1/t(3p+1)/2) in terms of objective function gap and O(1/t3p) in terms of
squared gradient norm. Our second contribution is to provide two algorithmic frameworks
obtained from discretization of our continuous-time system, one of which generalizes the
large-step A-HPE framework of Monteiro and Svaiter [2013] and the other of which leads to
a new optimal p-th order tensor algorithm. While our discrete-time analysis can be seen as
a simplification and generalization of Monteiro and Svaiter [2013], it is largely motivated by
the aforementioned continuous-time analysis, demonstrating the fundamental role that the
feedback control plays in optimal acceleration and the clear advantage that the continuous-
time perspective brings to algorithmic design. A highlight of our analysis is that we show
that all of the p-th order optimal tensor algorithms that we discuss minimize the squared
gradient norm at a rate of O(k−3p), which complements the recent analysis [Gasnikov et al.,
2019a, Jiang et al., 2019, Bubeck et al., 2019].

5.1 Introduction

The interplay between continuous-time and discrete-time perspectives on dynamical systems
has made a major impact on optimization theory. Classical examples include (1) the inter-
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pretation of steepest descent, heavy ball and proximal algorithms as the explicit and implicit
discretization of gradient-like dissipative systems [Polyak, 1987, Antipin, 1994, Attouch and
Cominetti, 1996, Alvarez, 2000, Attouch et al., 2000, Alvarez and Attouch, 2001]; and (2) the
explicit discretization of Newton-like and Levenberg-Marquardt regularized systems [Alvarez
and Pérez C, 1998, Attouch and Redont, 2001, Alvarez et al., 2002, Attouch and Svaiter,
2011, Attouch et al., 2012, Maingé, 2013, Attouch et al., 2013b, Abbas et al., 2014, Attouch
et al., 2016a, Attouch and László, 2020b,a], which give standard and regularized Newton
algorithms. One particularly salient way that these connections have spurred research is
via the use of Lyapunov functions to transfer asymptotic behavior and rates of convergence
between continuous time and discrete time.

Recent years have witnessed a flurry of new research focusing on continuous-time per-
spectives on Nesterov’s accelerated gradient algorithm (NAG) [Nesterov, 1983] and related
methods [Güler, 1992, Beck and Teboulle, 2009, Tseng, 2010, Nesterov, 2013a]. These per-
spectives arise from derivations that obtain differential equations as limits of discrete dynam-
ics [Su et al., 2016, Krichene et al., 2015b, Attouch and Peypouquet, 2016, Vassilis et al.,
2018, Muehlebach and Jordan, 2019, Diakonikolas and Orecchia, 2019, Attouch and Pey-
pouquet, 2019, Sebbouh et al., 2020, Shi et al., 2022], including quasi-gradient formulations
and Kurdyka-Lojasiewicz theory [Bégout et al., 2015, Attouch et al., 2022a] (see the ref-
erences [Huang, 2006, Chergui, 2008, Chill and Fašangová, 2010, Bárta et al., 2012, Bárta
and Fašangová, 2016] for geometrical perspective on the topic), inertial gradient systems
with constant or asymptotic vanishing damping [Su et al., 2016, Attouch and Cabot, 2017,
Attouch et al., 2018, 2019a] and their extension to maximally monotone operators [Bot and
Csetnek, 2016, Attouch and Cabot, 2018, 2020], Hessian-driven damping [Alvarez et al.,
2002, Attouch et al., 2012, 2016b, Boţ et al., 2021, Attouch et al., 2022d,a, Shi et al., 2022],
time scaling [Attouch et al., 2019a,c, 2022a,c], dry friction damping [Adly and Attouch, 2020,
2022], closed-loop damping [Attouch et al., 2022b,a], control-theoretic design [Lessard et al.,
2016, Hu and Lessard, 2017, Fazlyab et al., 2018] and Lagrangian and Hamiltonian frame-
works [Wibisono et al., 2016, Betancourt et al., 2018, Maddison et al., 2018, O’Donoghue
and Maddison, 2019, França et al., 2020, Diakonikolas and Jordan, 2021, Muehlebach and
Jordan, 2021, França et al., 2021]. Examples of hitherto unknown results that have arisen
from this line of research include the fact that NAG achieves a fast rate of o(k−2) in terms
of objective function gap [May, 2017, Attouch and Peypouquet, 2016, Attouch et al., 2018]
and O(k−3) in terms of squared gradient norm [Shi et al., 2022].

The introduction of the Hessian-driven damping into continuous-time dynamics has been
a particular milestone in optimization and mechanics. The precursor of this perspective can
be found in the variational characterization of the Levenberg-Marquardt method and New-
ton’s method [Alvarez and Pérez C, 1998], a development that inspired work on continuous-
time Newton-like approaches for convex minimization [Alvarez and Pérez C, 1998, Attouch
and Redont, 2001] and monotone inclusions [Attouch and Svaiter, 2011, Maingé, 2013, At-
touch et al., 2013b, Abbas et al., 2014, Attouch et al., 2016a, Attouch and László, 2020b,a].
Building on these works, Alvarez et al. [2002] distinguished Hessian-driven damping from
classical continuous Newton formulations and showed its importance in optimization and
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mechanics. Subsequently, Attouch et al. [2016b] demonstrated the connection between
Hessian-driven damping and the forward-backward algorithms in Nesterov acceleration (e.g.,
FISTA), and combined Hessian-driven damping with asymptotically vanishing damping [Su
et al., 2016]. The resulting dynamics takes the following form:

ẍ(t) + α
t
ẋ(t) + β∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0, (5.1)

where it is worth mentioning that the presence of the Hessian does not entail numerical
difficulties since it arises in the form ∇2Φ(x(t))ẋ(t), which is the time derivative of the
function t 7→ ∇Φ(x(t)). Further work in this vein appeared in Shi et al. [2022], where Nes-
terov acceleration was interpreted via multiscale limits that yield high-resolution differential
equations:

ẍ(t) + 3
t
ẋ(t) +

√
s∇2Φ(x(t))ẋ(t) +

(
1 + 3

√
s

2t

)
∇Φ(x(t)) = 0. (5.2)

These limits were used in particular to distinguish between Polyak’s heavy-ball method and
NAG, which are not distinguished by naive limiting arguments that yield the same differential
equation for both.

Althought the coefficients are different in Eq. (5.1) and Eq. (5.2), both contain Hessian-
driven damping, which corresponds to a correction term obtained via discretization, and
which provides fast convergence to zero of the gradients and reduces the oscillatory aspects.
Using this viewpoint, several subtle analyses have been recently provided in work independent
of ours [Attouch et al., 2022b,a]. In particular, they develop a convergence theory for a
general inertial system with asymptotic vanishing damping and Hessian-driven damping.
Under certain conditions, the fast convergence is guaranteed in terms of both objective
function gap and squared gradient norm. Beyond the aforementioned line of work, however,
most of the focus in using continuous-time perspectives to shed light on acceleration has
been restricted to the setting of first-order optimization algorithms. As noted in a line of
recent work [Monteiro and Svaiter, 2013, Nesterov, 2018, Arjevani et al., 2019, Gasnikov
et al., 2019a, Jiang et al., 2019, Bubeck et al., 2019, Song et al., 2021], there is a significant
gap in our understanding of optimal p-th order tensor algorithms with p ≥ 2, with existing
algorithms and analysis being much more involved than NAG.

In this paper, we show that a continuous-time perspective helps to bridge this gap and
yields a unified perspective on first-order and higher-order acceleration. We refer to our work
as a control-theoretic perspective, as it involves the study of a closed-loop control system
that can be viewed as a differential equation that is governed by a feedback control law,
λ(·), satisfying the algebraic equation (λ(t))p‖∇Φ(x(t))‖p−1 = θ for some θ ∈ (0, 1). Our
approach is similar to that of Attouch et al. [2013b, 2016a], for the case without inertia, and
it provides a first step into a theory of the autonomous inertial systems that link closed-
loop control and optimal high-order tensor algorithms. Mathematically, our system can be
written as follows:

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0, (5.3)
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where (α, β, b) explicitly depends on the variables (x, λ, a), the parameters c > 0, θ ∈ (0, 1)
and the order p ∈ {1, 2, . . .}:

α(t) = 2ȧ(t)
a(t)
− ä(t)

ȧ(t)
, β(t) = (ȧ(t))2

a(t)
, b(t) = ȧ(t)(ȧ(t)+ä(t))

a(t)
,

a(t) = 1
4
(
∫ t

0

√
λ(s)ds+ c)2, (λ(t))p‖∇Φ(x(t))‖p−1 = θ.

(5.4)

The initial condition is x(0) = x0 ∈ {x ∈ Rd | ‖∇Φ(x)‖ 6= 0} and ẋ(0) ∈ Rd. Note
that this condition is not restrictive since ‖∇Φ(x0)‖ = 0 implies that the optimization
problem has been already solved. A key ingredient in our system is the algebraic equa-
tion (λ(t))p‖∇Φ(x(t))‖p−1 = θ, which links the feedback control law λ(·) and the gradient
norm ‖∇Φ(x(·))‖, and which generalizes an equation appearing in Attouch et al. [2016a] for
modeling the proximal Newton algorithm. We recall that Eq. (5.3) has also been studied
in Attouch et al. [2022b,a], who provide a general convergence result when (α, β, b) satisfies
certain conditions. However, when p ≥ 2, the specific choice of (α, β, b) in Eq. (5.4) does not
have an analytic form and it thus seems difficult to verify whether (α, β, b) in our control
system satisfies that condition (see Attouch et al. [2022a, Theorem 2.1])). This topic is
beyond the scope of this paper and we leave its investigation to future work.

Our contribution. Throughout the paper, unless otherwise indicated, we assume that

Φ : Rd → R is convex and twice continuously differentiable and the set of global
minimizers of Φ is nonempty.

As we shall see, our main results on the existence and uniqueness of solutions and convergence
properties of trajectories are valid under this general assumption. We also believe that this
general setting paves the way for extensions to nonsmooth convex functions or maximal
monotone operators (replacing the gradient by the subdifferential or the operator) [Alvarez
et al., 2002, Attouch et al., 2012, 2016b]. This is evidenced by the equivalent first-order
reformulations of our closed-loop control system in time and space (without the occurrence
of the Hessian). However, we do not pursue these extensions in the current paper.

The main contributions of our work are the following:

1. We study the closed-loop control system of Eq. (5.3) and Eq. (5.4) and prove the
existence and uniqueness of a local solution. We show that when p = 1 and c = 0,
our feedback law reduces to λ(t) = θ and our overall system reduces to the high-
resolution differential equation studied in Shi et al. [2022], showing explicitly that our
system extends the high-resolution framework from first-order optimization to high-
order optimization.

2. We construct a simple yet nontrivial Lyapunov function that allows us to establish the
existence and uniqueness of a global solution under regularity conditions (see Theo-
rem 6.2.6). We also use the Lyapunov function to analyze the convergence rates of the
solution trajectories; in particular, we show that the convergence rate is O(t−(3p+1)/2)
in terms of objective function gap and O(t−3p) in terms of squared gradient norm.
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3. We provide two algorithmic frameworks based on the implicit discretization of our
closed-looped control system, one of which generalizes the large-step A-HPE in Mon-
teiro and Svaiter [2013]. Our iteration complexity analysis is largely motivated by
the aforementioned continuous-time analysis, simplifying the analysis in Monteiro and
Svaiter [2013] for the case of p = 2 and generalizing it to p > 2 in a systematic manner
(see Theorem 5.4.3 and 5.4.6 for the details).

4. We combine the algorithmic frameworks with an approximate tensor subroutine, yield-
ing a suite of optimal p-th order tensor algorithms for minimizing a convex smooth
function Φ which has Lipschitz p-th order derivatives. The resulting algorithms in-
clude not only the algorithms studied in the previous works [Gasnikov et al., 2019a,
Jiang et al., 2019, Bubeck et al., 2019] but also yield a new optimal p-th order tensor
algorithm. A highlight of our analysis is to show that all these p-th order optimal
algorithms minimize the squared gradient norm at a rate of O(k−3p), complementing
the recent analysis in the aforementioned works.

Further related work. In addition to the aforementioned works, we provide a few addi-
tional remarks regarding related work on accelerated first-order and high-order algorithms
for convex optimization.

A significant body of recent work in convex optimization focuses on understanding the
underlying principle behind Nesterov’s accelerated first-order algorithm (NAG) [Nesterov,
1983, 2018], with a particular focus on the interpretation of Nesterov acceleration as a
temporal discretization of a continuous-time dynamical system [Krichene et al., 2015b, Su
et al., 2016, Attouch and Peypouquet, 2016, May, 2017, Vassilis et al., 2018, Diakonikolas
and Orecchia, 2019, Muehlebach and Jordan, 2019, Attouch et al., 2018, 2019a,b, Attouch
and Peypouquet, 2019, Sebbouh et al., 2020, Attouch and Cabot, 2020, Adly and Attouch,
2022, Attouch et al., 2022a,b,d, Shi et al., 2022]. A line of new first-order algorithms have
been obtained from the continuous-time dynamics by various advanced numerical integration
strategies [Scieur et al., 2017, Betancourt et al., 2018, Zhang et al., 2018, Maddison et al.,
2018, Shi et al., 2019, Wilson et al., 2019]. In particular, Scieur et al. [2017] showed that
a basic gradient flow system and multi-step integration scheme yields a class of accelerated
first-order optimization algorithms. Zhang et al. [2018] applied Runge-Kutta integration to an
inertial gradient system without Hessian-driven damping [Wibisono et al., 2016] and showed
that the resulting algorithm is faster than NAG when the objective function is sufficiently
smooth and when the order of the integrator is sufficiently large. Maddison et al. [2018]
and França et al. [2020] both considered conformal Hamiltonian systems and showed that
the resulting discrete-time algorithm achieves fast convergence under certain smoothness
conditions. Very recently, Shi et al. [2019] have rigorously justified the use of symplectic
Euler integrators compared to explicit and implicit Euler integration, which was further
studied by Muehlebach and Jordan [2021] and França et al. [2021]. Unfortunately, none of
these approaches are suitable for interpreting optimal high-order tensor algorithms.
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Research on acceleration in the second-order setting dates back to Nesterov’s accelerated
cubic regularized Newton algorithm (ACRN) [Nesterov, 2008] and Monteiro and Svaiter’s ac-
celerated Newton proximal extragradient (A-NPE) [Monteiro and Svaiter, 2013]. The ACRN
algorithm was extended to a p-th order tensor algorithm with the improved convergence rate
of O(k−(p+1)) [Baes, 2009] and an adaptive p-th order tensor algorithm with essentially the
same rate [Jiang et al., 2020]. This novel extension was also revisited by Nesterov [2021b]
with a discussion on the efficient implementation of a third-order tensor algorithm. Mean-
while, within the alternative A-NPE framework, a p-th order tensor algorithm was studied
in a line of works [Gasnikov et al., 2019a, Jiang et al., 2019, Bubeck et al., 2019] and was
shown to achieve a convergence rate of O(k−(3p+1)/2), matching the lower bound [Arjevani
et al., 2019]. Subsequently, a high-order coordinate descent algorithm was studied in Amaral
et al. [2022], and very recently, the high-order A-NPE framework has been specialized to the
strongly convex setting [Marques Alves, 2022], generalizing the discrete-time algorithms in
this paper with an improved convergence rate. Beyond the setting of Lipschitz continuous
derivatives, high-order algorithms and their accelerated variants have been adapted for more
general setting with Hölder continuous derivatives [Grapiglia and Nesterov, 2017, 2019, 2020,
2022b, Doikov and Nesterov, 2022] and an optimal algorithm has been proposed in Song et al.
[2021]. Other settings include structured convex non-smooth minimization [Bullins, 2020],
convex-concave minimax optimization and monotone variational inequalities [Bullins and
Lai, 2022, Ostroukhov et al., 2020], and structured smooth convex minimization [Kamzolov,
2020, Nesterov, 2021d, 2023]. In the nonconvex setting, high-order algorithms have been
proposed and analyzed [Birgin et al., 2016, 2017, Mart́ınez, 2017, Cartis et al., 2018, 2019].

Unfortunately, the derivations of these algorithms do not flow from a single underlying
principle but tend to involve case-specific algebra. As in the case of first-order algorithms,
one would hope that a continuous-time perspective would offer unification, but the only work
that we are aware of in this regard is Song et al. [2021], and the connection to dynamical
systems in that work is unclear. In particular, some aspects of the UAF algorithm (see Song
et al. [2021, Algorithm 5.1]), including the conditions in Eq. (5.31) and Eq. (5.32), do
not have a continuous-time interpretation but rely on case-specific algebra. Moreover, their
continuous-time framework reduces to an inertial system without Hessian-driven damping
in the first-order setting, which has been proven to be an inaccurate surrogate.

We have been also aware of other type of discrete-time algorithms [Zhang et al., 2018,
Maddison et al., 2018, Wilson et al., 2019] which were derived from continuous-time perspec-
tive with theoretical guarantee under certain condition. In particular, Wilson et al. [2019]
derived a family of first-order algorithms by appeal to the explicit time discretization of the
accelerated rescaled gradient dynamics. Their new algorithms are guaranteed to (surpris-
ingly) achieve the same convergence rate as the existing optimal tensor algorithms [Gasnikov
et al., 2019a, Jiang et al., 2019, Bubeck et al., 2019]. However, the strong smoothness as-
sumption is necessary and might rule out many interesting application problems. In contrast,
all the optimization algorithms developed in this paper are applicable for general convex and
smooth problems with the optimal rate of convergence.
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Notation. We use bold lower-case letters such as x to denote vectors, and upper-case
letters such as X to denote tensors. For a vector x ∈ Rd, we let ‖x‖ denote its `2 Euclidean
norm and let Bδ(x) = {x′ ∈ Rd | ‖x′ − x‖ ≤ δ} denote its δ-neighborhood. For a tensor
X ∈ Rd1×···×dp , we define

X[z1, · · · , zp] =
∑

1≤ij≤dj ,1≤j≤p

[
Xi1,··· ,ip

]
z1
i1
· · · zpip ,

and denote by ‖X‖op = max‖zi‖=1,1≤j≤pX[z1, · · · , zp] its operator norm.
Fix p ≥ 1, we define Fp` (Rd) as the class of convex functions on Rd with `-Lipschitz p-th

order derivatives; that is, f ∈ Fp` (Rd) if and only if f is convex and ‖∇(p)f(x′)−∇(p)f(x)‖op ≤
`‖x′−x‖ for all x, x′ ∈ Rd in which∇(p)f(x) is the p-th order derivative tensor of f at x ∈ Rd.
More specifically, for {z1, z2, . . . , zp} ⊆ Rd, we have

∇(p)f(x)[z1, . . . , zp] =
∑

1≤i1,··· ,ip≤d

[
∂pf

∂xi1 ···∂xip
(x)
]
z1
i1
· · · zpip .

Given a tolerance ε ∈ (0, 1), the notation a = O(b(ε)) stands for an upper bound, a ≤ Cb(ε),
in which C > 0 is independent of ε.

5.2 The Closed-Loop Control System

We study the closed-loop control system in Eq. (5.3) and Eq. (5.4). We start by rewriting
our system as a first-order system in time and space (without the occurrence of the Hessian)
which is important to our subsequent analysis and implicit time discretization. Then, we
analyze the algebraic equation (λ(t))p‖∇Φ(x(t))‖p−1 = θ for θ ∈ (0, 1) and prove the exis-
tence and uniqueness of a local solution using the Banach fixed-point theorem. We conclude
by discussing other systems in the literature that exemplify our general framework.

First-order system in time and space. We rewrite the closed-loop control system in
Eq. (5.3) and Eq. (5.4) as follows:

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0,

where (α, β, b) explicitly depend on the variables (x, λ, a), the parameters c > 0, θ ∈ (0, 1)
and the order p ∈ {1, 2, . . .}:

α(t) = 2ȧ(t)
a(t)
− ä(t)

ȧ(t)
, β(t) = (ȧ(t))2

a(t)
, b(t) = ȧ(t)(ȧ(t)+ä(t))

a(t)
,

a(t) = 1
4
(
∫ t

0

√
λ(s)ds+ c)2, (λ(t))p‖∇Φ(x(t))‖p−1 = θ.

By multiplying both sides of the first equation by a(t)
ȧ(t)

and using the definition of α(t), β(t)

and b(t), we have

a(t)

ȧ(t)
ẍ(t) +

(
2− a(t)ä(t)

(ȧ(t))2

)
ẋ(t) + ȧ(t)∇2Φ(x(t))ẋ(t) + (ȧ(t) + ä(t))∇Φ(x(t)) = 0.



CHAPTER 5. A CLOSED-LOOP CONTROL APPROACH TO HIGH-ORDER
OPTIMIZATION 132

Defining z1(t) = a(t)
ȧ(t)

ẋ(t) and z2(t) = ȧ(t)∇Φ(x(t)), we have

ż1(t) = a(t)
ȧ(t)

ẍ(t) +
(

1− a(t)ä(t)
(ȧ(t))2

)
ẋ(t), ż2(t) = ȧ(t)∇2Φ(x(t))ẋ(t) + ä(t)∇Φ(x(t)).

Putting these pieces together yields

ż1(t) + ẋ(t) + ż2(t) = −ȧ(t)∇Φ(x(t)).

Integrating this equation over the interval [0, t], we have

z1(t) + x(t) + z2(t) = z1(0) + x(0) + z2(0)−
∫ t

0

ȧ(s)∇Φ(x(s))ds. (5.5)

Since x(0) = x0 ∈ {x ∈ Rd | ‖∇Φ(x)‖ 6= 0}, it is easy to verify that λ(0) is well defined

and determined by the algebraic equation λ(0) = θ
1
p‖∇Φ(x0)‖−

p−1
p . Using the definition of

a(t), we have a(0) = c2

4
and ȧ(0) = cθ

1
2p ‖∇Φ(x0)‖−

p−1
2p

2
. Putting these pieces together with the

definition of z1(t) and z2(t), we have

z1(0) + x(0) + z2(0) =
a(0)

ȧ(0)
ẋ(0) + x(0) + ȧ(0)∇Φ(x(0))

= x(0) + cθ
− 1

2p ẋ(0)‖∇Φ(x(0))‖
p−1
2p +cθ

1
2p ‖∇Φ(x(0))‖−

p−1
2p ∇Φ(x(0))

2
.

This implies that z1(0) + x(0) + z2(0) is completely determined by the initial condition and
parameters c > 0 and θ ∈ (0, 1). For simplicity, we define v0 := z1(0) + x(0) + z2(0) and
rewrite Eq. (5.5) in the following form:

a(t)
ȧ(t)

ẋ(t) + x(t) + ȧ(t)∇Φ(x(t)) = v0 −
∫ t

0

ȧ(s)∇Φ(x(s))ds. (5.6)

By introducing a new variable v(t) = v0 −
∫ t

0
ȧ(s)∇Φ(x(s))ds, we rewrite Eq. (5.6) in the

following equivalent form:

v̇(t) + ȧ(t)∇Φ(x(t)) = 0, ẋ(t) + ȧ(t)
a(t)

(x(t)− v(t)) + (ȧ(t))2

a(t)
∇Φ(x(t)) = 0.

Summarizing, the closed-loop control system in Eq. (5.3) and Eq. (5.4) can be written as a
first-order system in time and space as follows:

v̇(t) + ȧ(t)∇Φ(x(t)) = 0

ẋ(t) + ȧ(t)
a(t)

(x(t)− v(t)) + (ȧ(t))2

a(t)
∇Φ(x(t)) = 0

a(t) = 1
4
(
∫ t

0

√
λ(s)ds+ c)2

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0)) = (x0, v0).

(5.7)
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We also provide another first-order system in time and space with different variable (x, v, λ, γ).
We study this system because its implicit time discretization leads to a new algorithmic
framework which does not appear in the literature. This first-order system is summarized
as follows: 

v̇(t)− γ̇(t)
γ2(t)
∇Φ(x(t)) = 0

ẋ(t)− γ̇(t)
γ(t)

(x(t)− v(t)) + (γ̇(t))2

(γ(t))3∇Φ(x(t)) = 0

γ(t) = 4(
∫ t

0

√
λ(s)ds+ c)−2

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0)) = (x0, v0).

(5.8)

Remark 5.2.1 The first-order systems in Eq. (5.7) and Eq. (5.8) are equivalent. It suffices
to show that

ȧ(t) = − γ̇(t)
γ2(t)

, ȧ(t)
a(t)

= − γ̇(t)
γ(t)

, (ȧ(t))2

a(t)
= (γ̇(t))2

(γ(t))3 .

By the definition of a(t) and γ(t), we have a(t) = 1
γ(t)

which implies that ȧ(t) = − γ̇(t)
γ2(t)

.

Remark 5.2.2 The first-order systems in Eq. (5.7) and Eq. (5.8) pave the way for extensions
to nonsmooth convex functions or maximal monotone operators (replacing the gradient by
the subdifferential or the operator), as done in Alvarez et al. [2002] and Attouch et al. [2012,
2016b]. In this setting, either the open-loop case or the closed-loop case without inertia
has been studied in the literature [Attouch and Svaiter, 2011, Maingé, 2013, Attouch et al.,
2013b, Abbas et al., 2014, Attouch et al., 2016a, Bot and Csetnek, 2016, Attouch and Cabot,
2018, 2020, Attouch and László, 2020b], but there is significantly less work on the case of
a closed-loop control system with inertia. For recent progress in this direction, see Attouch
et al. [2022b] and references therein.

Algebraic equation. We study the algebraic equation,

(λ(t))p‖∇Φ(x(t))‖p−1 = θ ∈ (0, 1), (5.9)

which links the feedback control λ(·) and the solution trajectory x(·) in the closed-loop control
system. To streamline the presentation, we define a function ϕ : [0,+∞) × Rd 7→ [0,+∞)
such that

ϕ(λ, x) = λ‖∇Φ(x)‖
p−1
p , ϕ(0, x) = 0.

By definition, Eq. (6.5) is equivalent to ϕ(λ(t), x(t)) = θ1/p. Our first proposition presents a
property of the mapping ϕ(·, x), for a fixed x ∈ Rd satisfying ∇Φ(x) 6= 0. We have:

Proposition 5.2.3 Fixing x ∈ Rd with ∇Φ(x) 6= 0, the mapping ϕ(·, x) satisfies

1. ϕ(·, x) is linear, strictly increasing and ϕ(0, x) = 0.
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2. ϕ(λ, x)→ +∞ as λ→ +∞.

Proof. By the definition of ϕ, the mapping ϕ(·, x) is linear and ϕ(0, x) = 0. Since∇Φ(x) 6= 0,
we have ‖∇Φ(x)‖ > 0 and ϕ(·, x) is thus strictly increasing. Since ϕ(·, x) is linear and strictly
increasing, ϕ(λ, x)→ +∞ as λ→ +∞. �

In view of Proposition 5.2.3, for any fixed point x with ∇Φ(x) 6= 0, there exists a unique
λ > 0 such that ϕ(λ, x) = θ1/p for some θ ∈ (0, 1). We accordingly define Ω ⊆ Rd and the
mapping Λθ : Ω 7→ (0,∞) as follows:

Ω = {x ∈ Rd | ‖∇Φ(x)‖ 6= 0}, Λθ(x) = θ
1
p‖∇Φ(x)‖−

p−1
p . (5.10)

We now provide several basic results concerning Ω and Λθ(·) which are crucial to the proof
of existence and uniqueness presented in this chapter.

Proposition 5.2.4 The set Ω is open.

Proof. Given x ∈ Ω, it suffices to show that Bδ(x) ⊆ Ω for some δ > 0. Since Φ is twice
continuously differentiable, ∇Φ is locally Lipschitz; that is, there exists δ̃ > 0 and L > 0
such that

‖∇Φ(z)−∇Φ(x)‖ ≤ L‖z − x‖, ∀z ∈ Bδ1(x).

Combining this inequality with the triangle inequality, we have

‖∇Φ(z)‖ = ‖∇Φ(x)‖ − ‖∇Φ(z)−∇Φ(x)‖ ≥ ‖∇Φ(x)‖ − L‖z − x‖.

Let δ = min{δ̃, ‖∇Φ(x)‖
2L
}. Then, for any z ∈ Bδ(x), we have

‖∇Φ(z)‖ ≥ ‖∇Φ(x)‖
2

> 0 =⇒ z ∈ Ω.

This completes the proof. �

Proposition 5.2.5 Fixing θ ∈ (0, 1), the mappings Λθ(·) and
√

Λθ(·) are continuous and
locally Lipschitz over Ω.

Proof. By the definition of Λθ(·), it suffices to show that Λθ(·) is continuous and locally
Lipschitz over Ω since the same argument works for

√
Λθ(·).

First, we prove the continuity of Λθ(·) over Ω. Since ‖∇Φ(x)‖ > 0 for any x ∈ Ω, the

function ‖∇Φ(·)‖−
p−1
p is continuous over Ω. By the definition of Λθ(·), we achieve the desired

result. Second, we prove that Λθ(·) is locally Lipschitz over Ω. Since Φ is twice continuously
differentiable, ∇Φ is locally Lipschitz. For p = 1, Λθ(·) is a constant everywhere and thus

locally Lipschitz over Ω. For p ≥ 2, the function x−
p−1
p is locally Lipschitz at any point

x > 0. Also, by Proposition 5.2.4, Ω is an open set. Putting these pieces together yields

that ‖∇Φ(·)‖−
p−1
p is locally Lipschitz over Ω; that is, there exist δ > 0 and L > 0 such that

|‖∇Φ(x′)‖−
p−1
p − ‖∇Φ(x′′)‖−

p−1
p | ≤ L‖x′ − x′′‖, ∀x′, x′′ ∈ Bδ(x),
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which implies that

|Λθ(x
′)− Λθ(x

′′)| ≤ θ
1
pL‖x′ − x′′‖, ∀x′, x′′ ∈ Bδ(x).

This completes the proof. �

Existence and uniqueness of a local solution. We prove the existence and uniqueness
of a local solution of the closed-loop control system in Eq. (5.3) and Eq. (5.4) by appeal to
the Banach fixed-point theorem. Using the previous arguments (see Eq. (5.6)), our system
can be equivalently written as follows:

ẋ(t) + ȧ(t)
a(t)

(x(t) +
∫ t

0
ȧ(s)∇Φ(x(s))ds− v0) + (ȧ(t))2

a(t)
∇Φ(x(t)) = 0

a(t) = 1
4
(
∫ t

0

√
λ(s)ds+ c)2

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

x(0) = x0.

Using the mapping Λθ : Ω 7→ (0,∞) (see Eq. (5.10)), this system can be further formulated
as an autonomous system. Indeed, we have

λ(t) = Λθ(x(t))⇐⇒ λ(t)]p‖∇Φ(x(t))‖p−1 = θ,

which implies that

a(t) = 1
4

(∫ t

0

√
Λθ(x(s))ds+ c

)2

, ȧ(t) = 1
2

√
Λθ(x(t))

(∫ t

0

√
Λθ(x(s)) ds+ c

)
.

Putting these pieces together, we arrive at an autonomous system in the following compact
form:

ẋ(t) = F (t, x(t)), x(0) = x0 ∈ Ω, (5.11)

where the vector field F : [0,+∞)× Ω 7→ Rd is given by

F (t, x(t)) = −
√

Λθ(x(t))(2x(t)+
∫ t
0

√
Λθ(x(s))(

∫ s
0

√
Λθ(x(w))dw+c)∇Φ(x(s))ds−v0)∫ t

0

√
Λθ(x(s)) ds+c

− Λθ(x(t))∇Φ(x(t)).

(5.12)
A common method for proving the existence and uniqueness of a local solution is via appeal
to the Cauchy-Lipschitz theorem [Coddington and Levinson, 1955, Theorem I.3.1]. This
theorem, however, requires that F (t, x) be continuous in t and Lipschitz in x, and this is
not immediate in our case due to the appearance of

∫ t
0

√
Λθ(x(s))ds. We instead recall

that the proof of the Cauchy-Lipschitz theorem is generally based on the Banach fixed-point
theorem [Granas and Dugundji, 2013], and we avail ourselves directly of the latter theorem.
In particular, we construct Picard iterates ψk whose limit is a fixed point of a contraction
T . We have the following theorem.
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Theorem 5.2.6 There exists t0 > 0 such that the autonomous system in Eq. (5.11) and
Eq. (5.12) has a unique solution x : [0, t0] 7→ Rd.

Proof. By Proposition 5.2.4 and the initial condition x0 ∈ Ω, there exists δ > 0 such that
Bδ(x0) ⊆ Ω. Note that Φ is twice continuously differentiable. By the definition of Λθ, we
obtain that Λθ(z) and ∇Φ(z) are both bounded for any z ∈ Bδ(x0). Putting these pieces
together shows that there exists M > 0 such that, for any continuous function x : [0, 1] 7→
Bδ(x0), we have

‖F (t, x(t))‖ ≤M, ∀t ∈ [0, 1]. (5.13)

The set of such functions is not empty since a constant function x = x0 is one element.
Letting t1 = min{1, δ

M
}, we define X as the space of all continuous functions x on [0, t0] for

some t0 < t1 whose graph is contained entirely inside the rectangle [0, t0]× Bδ(x0). For any
x ∈ X , we define

z(t) = Tx = x0 +

∫ t

0

F (s, x(s))ds.

Note that z(·) is well defined and continuous on [0, t0]. Indeed, x ∈ X implies that x(t) ∈
Bδ(x0) ⊆ Ω for ∀t ∈ [0, t0]. Thus, the integral of F (s, x(s)) is well defined and continuous.
Second, the graph of z(t) lies entirely inside the rectangle [0, t0] × Bδ(x0). Indeed, since
t ≤ t0 < t1 = min{1, δ

M
}, we have

‖z(t)− x0‖ =

∥∥∥∥∫ t

0

F (s, x(s))ds

∥∥∥∥ Eq. (5.13)

≤ Mt ≤Mt0 ≤Mt1 ≤ δ.

Putting these pieces together yields that T maps X to itself. By the fundamental theorem
of calculus, we have ż(t) = F (t, x(t)). By a standard argument from ordinary differential
equation theory, ẋ(t) = F (t, x(t)) and x(0) = x0 if and only if x is a fixed point of T . Thus,
it suffices to show the existence and uniqueness of a fixed point of T .

We consider the Picard iterates {ψk}k≥0 with ψ0(t) = x0 for ∀t ∈ [0, t0] and ψk+1 = Tψk
for all k ≥ 0. By the Banach fixed-point theorem [Granas and Dugundji, 2013], the Picard
iterates converge to a unique fixed point of T if X is an nonempty and complete metric space
and T is a contraction from X to X .

First, we show that X is an nonempty and complete metric space. Indeed, we define
d(x, x′) = maxt∈[0,t0] ‖x(t) − x′(t)‖. It is easy to verify that d is a metric and (X , d) is a
complete metric space (see Sutherland [2009] for the details). In addition, X is nonempty
since the constant function x = x0 is one element.

It remains to prove that T is a contraction for some t0 < t1. Indeed, Λθ(z) and ∇Φ(z) are
bounded for ∀z ∈ Bδ(x0); that is, there exists M1 > 0 such that max{Λθ(z), ‖∇Φ(z)‖} ≤M1

for ∀z ∈ Bδ(x0). By Proposition 5.2.5, Λθ and
√

Λθ are continuous and locally Lipschitz over
Ω. Since Bδ(x0) ⊆ Ω is bounded, there exists L1 > 0 such that, for any x′, x′′ ∈ Bδ(x0), we
have

max{|Λθ(x
′)− Λθ(x

′′)|, |
√

Λθ(x
′)−

√
Λθ(x

′′)|} ≤ L1‖x′ − x′′‖. (5.14)
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Note that Φ is twice continuously differentiable. Thus, there exists L2 > 0 such that
‖∇Φ(x′) − ∇Φ(x′′)‖ ≤ L2‖x′ − x′′‖ for ∀x′, x′′ ∈ Bδ(x0). In addition, for any t ∈ [0, t0],
we have ‖x(t)‖ ≤ ‖x0‖+ δ = M2.

We now proceed to the main proof. By the triangle inequality, we have

‖Tx′(t)− Tx′′(t)‖ ≤
∫ t

0

‖Λθ(x
′(s))∇Φ(x′(s))− Λθ(x

′′(s))∇Φ(x′′(s))‖ds︸ ︷︷ ︸
I

+

∫ t

0

∥∥∥∥ √
Λθ(x′(s))∫ s

0

√
Λθ(x′(w))dw+c

(∫ s

0

(√
Λθ(x′(w))

(∫ w

0

√
Λθ(x′(v)) dv + c

))
∇Φ(x′(w))dw

)
−

√
Λθ(x′′(s))∫ s

0

√
Λθ(x′′(w))dw+c

(∫ s

0

(√
Λθ(x′′(w))

(∫ w

0

√
Λθ(x′′(v)) dv + c

))
∇Φ(x′′(w))dw

)∥∥∥∥ ds︸ ︷︷ ︸
II

+

∫ t

0

∥∥∥∥ 2
√

Λθ(x′(s))∫ s
0

√
Λθ(x′(w))dw+c

(x′(s)− v0)− 2
√

Λθ(x′′(s))∫ s
0

√
Λθ(x′′(w))dw+c

(x′′(s)− v0)

∥∥∥∥ ds︸ ︷︷ ︸
III

.

The key inequality for the subsequent analysis is as follows:

‖a1b1 − a2b2‖ ≤ ‖a1‖‖b1 − b2‖+ ‖b2‖‖a1 − a2‖. (5.15)

First, by combining Eq. (5.15) with max{Λθ(x(t)), ‖∇Φ(x(t))‖} ≤M1, ‖∇Φ(x′)−∇Φ(x′′)‖ ≤
L2‖x′ − x′′‖ and Eq. (5.14), we obtain:

I ≤M1(L1 + L2)t0d(x′, x′′).

Second, we combine Eq. (5.15) with
√

Λθ(x(t)) ≤
√
M1, Eq. (5.14) and 0 < s ≤ t0 < t1 < 1

to obtain: ∥∥∥∥ √
Λθ(x′(s))∫ s

0

√
Λθ(x′(w))dw+c

−
√

Λθ(x′′(s))∫ s
0

√
Λθ(x′′(w))dw+c

∥∥∥∥ ≤ (1
c

+ 2
√
M1

c2

)
L1d(x′, x′′).

We also obtain by combining Eq. (5.15) with max{Λθ(x(t)), ‖∇Φ(x(t))‖} ≤M1, ‖∇Φ(x′)−
∇Φ(x′′)‖ ≤ L2‖x′ − x′′‖, Eq. (5.14) and 0 < w ≤ s ≤ t0 < t1 < 1 that∥∥∥∥∫ s

0

(√
Λθ(x′(w))

(∫ w

0

√
Λθ(x′(v)) dv + c

))
∇Φ(x′(w))dw

−
∫ s

0

(√
Λθ(x′′(w))

(∫ w

0

√
Λθ(x′′(v)) dv + c

))
∇Φ(x′′(w))dw

∥∥∥∥
≤ (M1L2 + c

√
M1L2 + 2(M1)3/2L1 + cM1L1)d(x′, x′′).
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In addition, by using max{Λθ(x(t)), ‖∇Φ(x(t))‖} ≤ M1 and 0 < w ≤ s ≤ t0 < t1 < 1, we
have∥∥∥∥ √

Λθ(x′(s))∫ s
0

√
Λθ(x′(w)) dw+c

∥∥∥∥ ≤ √
M1

c
,∥∥∥∥∫ s

0

(√
Λθ(x′′(w))

(∫ w

0

√
Λθ(x′′(v)) dv + c

))
∇Φ(x′′(w))dw

∥∥∥∥ ≤ (M1)2 + c(M1)3/2.

Putting these pieces together yields that

II ≤
(

2(M1)5/2L1

c2
+ (M1)3/2L2+5(M1)2L1

c
+M1L2 + 2(M1)3/2L1

)
t0d(x′, x′′).

Finally, by a similar argument, we have

III ≤
(

2
√
M1+2(M2+‖v0‖)L1

c
+ 4

√
M1(M2+‖v0‖)L1

c2

)
t0d(x′, x′′).

Combining the upper bounds for I, II and III, we have

d(Tx′, Tx′′) = max
t∈[0,t0]

‖Tx′(t)− Tx′′(t)‖ ≤ M̄t0d(x′, x′′),

where M̄ is a constant that does not depend on t0 (in fact it depends on c, x0, δ, Φ(·) and
Λθ(·)) and is defined as follows:

M̄ = 2((M1)2+2M2+2‖v0‖)
√
M1L1

c2
+2
√
M1+(2M2+2‖v0‖+5(M1)2)L1+(M1)3/2L2

c
+2M1L2+(M1+2(M1)3/2)L1.

Therefore, the mapping T is a contraction if t0 ∈ (0, t1] satisfies t0 ≤ 1
2M̄

. �

Discussion. We compare the closed-loop control system in Eq. (5.3) and Eq. (5.4) with
four main classes of systems in the literature.

Hessian-driven damping. The formal introduction of Hessian-driven damping in opti-
mization dates to Alvarez et al. [2002], with many subsequent developments; see, e.g., At-
touch et al. [2016b]. The system studied in this literature takes the following form:

ẍ(t) + α
t
ẋ(t) + β∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.

In a Hilbert space setting and when α > 3, the literature has established the weak con-
vergence of any solution trajectory to a global minimizer of Φ and the convergence rate of
o(1/t2) in terms of objective function gap.

Recall also that Shi et al. [2022] interpreted Nesterov acceleration as the discretization
of a high-resolution differential equation:

ẍ(t) + 3
t
ẋ(t) +

√
s∇2Φ(x(t))ẋ(t) +

(
1 + 3

√
s

2t

)
∇Φ(x(t)) = 0,



CHAPTER 5. A CLOSED-LOOP CONTROL APPROACH TO HIGH-ORDER
OPTIMIZATION 139

and showed that this equation distinguishes between Polyak’s heavy-ball method and Nes-
terov’s accelerated gradient method. In the special case in which c = 0 and p = 1, our
system in Eq. (5.3) and Eq. (5.4) becomes

ẍ(t) + 3
t
ẋ(t) + θ∇2Φ(x(t))ẋ(t) +

(
θ + θ

t

)
∇Φ(x(t)) = 0. (5.16)

which also belongs to the class of high-resolution differential equations. Moreover, for c = 0
and p = 1, our system can be studied within the recently-proposed framework of Attouch
et al. [2022b,a]; indeed, in this case (α, β, b) in Attouch et al. [2022a, Theorem 2.1] has an
analytic form. However, the choice of (α, β, b) in our general setting in Eq. (5.4), for p ≥ 2,
does not have an analytic form and it is difficult to verify whether (α, β, b) in this case
satisfies their condition.

Newton and Levenberg-Marquardt regularized systems. The precursor of this per-
spective was developed by Alvarez and Pérez C [1998] in a variational characterization of
general regularization algorithms. By constructing the regularization of the potential func-
tion Φ(·, ε) satisfying Φ(·, ε)→ Φ as ε→ 0, they studied the following system:

∇2Φ(x(t), ε(t))ẋ(t) + ε̇(t) ∂
2Φ

∂ε∂x
(x(t), ε(t)) +∇Φ(x(t), ε(t)) = 0.

Subsequently, Attouch and Redont [2001] and Attouch and Svaiter [2011] studied Newton
dissipative and Levenberg-Marquardt regularized systems:

(Newton) ẍ(t) +∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.

(Levenberg-Marquardt) λ(t)ẋ(t) +∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.

These systems have been shown to be well defined and stable with robust asymptotic behav-
ior [Attouch and Svaiter, 2011, Attouch et al., 2013b, Abbas et al., 2014], further motivating
the study of the following inertial gradient system with constant damping and Hessian-driven
damping [Alvarez et al., 2002]:

ẍ(t) + αẋ(t) + β∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.

This system attains strong asymptotic stabilization and fast convergence properties [Alvarez
et al., 2002, Attouch et al., 2012] and can be extended to solve the monotone inclusion
problems with theoretical guarantee [Attouch and Svaiter, 2011, Maingé, 2013, Attouch et al.,
2013b, Abbas et al., 2014, Attouch et al., 2016a, Attouch and László, 2020b,a]. However,
these systems are aimed at interpreting standard and regularized Newton algorithms and fail
to model optimal acceleration for the second-order algorithms [Monteiro and Svaiter, 2013].

Recently, Attouch et al. [2016a] proposed a proximal Newton algorithm for solving mono-
tone inclusions, which is motivated by a closed-loop control system without inertia. It attains
a suboptimal convergence rate of O(t−2) in terms of objective function gap.
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Closed-loop control systems. The closed-loop damping approach in Attouch et al.
[2013b, 2016a] closely resembles ours. In particular, they interpret various Newton-type
methods as the discretization of the closed-loop control system without inertia and prove
the existence and uniqueness of a solution as well as the convergence rate of the solution
trajectory. There are, however, some significant differences between our work and theirs. In
particular, the appearance of inertia is well known to make analysis much more challenging.
Standard existence and uniqueness proofs based on the Cauchy-Schwarz theorem suffice to
analyze the system of Attouch et al. [2013b, 2016a] thanks to the lack of inertia, while Picard
iterates and the Banach fixed-point theorem are necessary for our analysis. The construction
of the Lyapunov function is also more difficult for the system with inertia.

This is an active research area and we refer the interested reader to a recent article
of Attouch et al. [2022b] for a comprehensive treatment of this topic.

Continuous-time interpretation of high-order tensor algorithms. There is compar-
atively little work on continuous-time perspectives on high-order tensor algorithms; indeed,
we are aware of only Wibisono et al. [2016] and Song et al. [2021].

By appealing to a variational formulation, Wibisono et al. [2016] derived the following
inertial gradient system with asymptotic vanishing damping:

ẍ(t) + p+2
t
ẋ(t) + C(p+ 1)2tp−1∇Φ(x(t)) = 0. (5.17)

Compared to our closed-loop control system, in Eq. (5.3) and Eq. (5.4), the system in
Eq. (5.17) is an open-loop system without the algebra equation and does not contain Hessian-
driven damping. These differences yield solution trajectories that only attain a suboptimal
convergence rate of O(t−(p+1)) in terms of objective function gap.

Very recently, Song et al. [2021] have proposed and analyzed the following dynamics (we
consider the Euclidean setting for simplicity): a(t)ẋ(t) = ȧ(t)(z(t)− x(t))

z(t) = argminx∈Rd
∫ t

0
ȧ(s)(Φ(x(s)) + 〈∇Φ(x(s)), x− x(s)〉)ds+ 1

2
‖x− x0‖2.

Solving the minimization problem yields z(t) = x0 −
∫ t

0
ȧ(s)∇Φ(x(s))ds. Substituting and

rearranging yields:

ẍ(t) +
(

2ȧ(t)
a(t)
− ä(t)

ȧ(t)

)
ẋ(t) +

(
(ȧ(t))2

a(t)

)
∇Φ(x(t)) = 0. (5.18)

Compared to our closed-loop control system, the system in (5.18) is open-loop and lacks
Hessian-driven damping. Moreover, a(t) needs to be determined by hand and Song et al.
[2021] do not establish existence or uniqueness of solutions.
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5.3 Lyapunov Function

We construct a Lyapunov function that allows us to prove existence and uniqueness of a
global solution of our closed-loop control system and to analyze convergence rates. As we
will see, an analysis of the rate of decrease of the Lyapunov function together with the
algebraic equation permit the derivation of new convergence rates for both the objective
function gap and the squared gradient norm.

Existence and uniqueness of a global solution. Our main theorem on the existence
and uniqueness of a global solution is summarized as follows.

Theorem 5.3.1 Suppose that λ is absolutely continuous on any finite bounded interval.
Then the closed-loop control system in Eq. (5.3) and Eq. (5.4) has a unique global solution,
(x, λ, a) : [0,+∞) 7→ Rd × (0,+∞)× (0,+∞).

Remark 5.3.2 Intuitively, the feedback law λ(·), which we will show satisfies λ(t) → +∞
as t→ +∞, links to the gradient norm ‖∇Φ(x(·))‖ via the algebraic equation. Since we are
interested in the worst-case convergence rate of solution trajectories, which corresponds to
the worst-case iteration complexity of discrete-time algorithms, it is necessary that λ does not
dramatically change. In open-loop Levenberg-Marquardt systems, Attouch and Svaiter [2011]
impose the same condition on the regularization parameters. In closed-loop control systems,
however, λ is not a given datum but an emergent component of the dynamics. Thus, it is
preferable to prove that λ satisfies this condition rather than assuming it, as done in Attouch
et al. [2013b, Theorem 5.2] and Attouch et al. [2016a, Theorem 2.4] for a closed-loop control
system without inertia. The key step in their proof is to show that λ(t) ≤ λ(0)et locally by
exploiting the specific structure of their system. This technical approach is, however, not
applicable to our system due to the incorporation of the inertia term.

Recall that the system in Eq. (5.3) and Eq. (5.4) can be equivalently written as the first-
order system in time and space, as in Eq. (5.7). Accordingly, we define the following simple
Lyapunov function:

E(t) = a(t)(Φ(x(t))− Φ(x?)) + 1
2
‖v(t)− x?‖2, (5.19)

where x? is a global optimal solution of Φ.

Remark 5.3.3 Note that the Lyapunov function (5.19) is composed of a sum of the mixed
energy 1

2
‖v(t)− x∗‖ and the potential energy a(t)(Φ(x(t))−Φ(x∗)). This function is similar

to Lyapunov functions developed for analyzing the convergence of Newton-like dynamics [At-
touch and Svaiter, 2011, Attouch et al., 2013b, Abbas et al., 2014, Attouch et al., 2016a]
and the inertial gradient system with asymptotic vanishing damping [Su et al., 2016, Attouch
et al., 2016b, Wilson et al., 2021, Shi et al., 2022]. Indeed, Wilson et al. [2021] construct
a unified time-dependent Lyapunov function using the Bregman divergence and showed that
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their approach is equivalent to Nesterov’s estimate sequence technique in a number of cases,
including quasi-monotone subgradient, accelerated gradient descent and conditional gradient.
Our Lyapunov function differs from existing choices in that v is not a standard momentum
term depending on ẋ, but depends on x, λ and ∇Φ; see Eq. (5.7).

We provide two technical lemmas that characterize the descent property of E and the bound-
edness of the local solution (x, v) : [0, t0] 7→ Rd × Rd.

Lemma 5.3.4 Suppose that (x, v, λ, a) : [0, t0] 7→ Rd × Rd × (0,+∞) × (0,+∞) is a local
solution of the first-order system in Eq. (5.7). Then, we have

dE(t)
dt
≤ −a(t)θ

1
p‖∇Φ(x(t))‖

p+1
p , ∀t ∈ [0, t0].

Proof. By the definition, we have

dE(t)
dt

= ȧ(t)Φ(x(t))− ȧ(t)Φ(x?) + 〈a(t)ẋ(t),∇Φ(x(t))〉+ 〈v̇(t), v(t)− x?〉.

In addition, we have 〈v̇(t), v(t) − x?〉 = 〈v̇(t), v(t) − x(t)〉 + 〈v̇(t), x(t) − x?〉 and v̇(t) =
−ȧ(t)∇Φ(x(t)). Putting these pieces together yields:

dE(t)
dt

= ȧ(t)(Φ(x(t))− Φ(x?)− 〈∇Φ(x(t)), x(t)− x?〉)︸ ︷︷ ︸
I

+ 〈a(t)ẋ(t),∇Φ(x(t))〉+ ȧ(t)〈x(t)− v(t),∇Φ(x(t))〉︸ ︷︷ ︸
II

.

By the convexity of Φ, we have Φ(x(t))−Φ(x?)− 〈∇Φ(x(t)), x(t)− x?〉 ≤ 0. Since ȧ(t) ≥ 0,
we have I ≤ 0. Furthermore, Eq. (5.7) implies that

ẋ(t) + ȧ(t)
a(t)

(x(t)− v(t)) = −λ(t)∇Φ(x(t)),

which implies that

II = 〈a(t)ẋ(t) + ȧ(t)x(t)− ȧ(t)v(t),∇Φ(x(t))〉 = −λ(t)a(t)‖∇Φ(x(t))‖2.

This together with the algebraic equation implies II ≤ −a(t)θ
1
p‖∇Φ(x(t))‖

p+1
p . Putting all

these pieces together yields the desired inequality. �

Lemma 5.3.5 Suppose that (x, v, λ, a) : [0, t0] 7→ Rd × Rd × (0,+∞) × (0,+∞) is a local
solution of the first-order system in Eq. (5.7). Then, (x(·), v(·)) is bounded over the interval
[0, t0] and the upper bound only depends on the initial condition.

Proof. By Lemma 5.3.4, the function E is nonnegative and nonincreasing on the interval
[0, t0]. This implies that, for any t ∈ [0, t0], we have

1
2
‖v(t)− x?‖2 ≤ a(t)(Φ(x(t))− Φ(x?)) + 1

2
‖v(t)− x?‖2 ≤ E(0).
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Therefore, v(·) is bounded on the interval [0, t0] and the upper bound only depends on the
initial condition. Furthermore, we have

a(t)(x(t)− x?)− a(0)(x0 − x?) =

∫ t

0

(ȧ(s)(x(s)− x?) + a(s)ẋ(s))ds.

Using the triangle inequality and a(0) = c2, we have

‖a(t)(x(t)− x?)‖ ≤ c2‖x0 − x?‖+

∫ t

0

‖a(s)ẋ(s) + ȧ(t)x(s)− ȧ(s)x?‖ds

Eq. (5.7)

≤ c2‖x0 − x?‖+

∫ t

0

‖ȧ(s)v(s)− ȧ(s)x?‖ds+

∫ t

0

‖λ(s)a(s)∇Φ(x(s))‖ds.

Note that ‖v(t) − x?‖ ≤
√

2E(0) is proved for all t ∈ [0, t0] and a(t) is monotonically
increasing with a(0) = c2. Thus, the following inequality holds:

‖x(t)− x?‖ ≤ c2‖x0−x?‖+(a(t)−c2)
√

2E(0)+
∫ t
0 λ(s)a(s)‖∇Φ(x(s))‖ds

a(t)

≤ ‖x0 − x?‖+
√

2E(0) + 1
a(t)

∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖ds.

By the Hölder inequality and using the fact that a(t) is monotonically increasing, we have∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖ds =

∫ t

0

√
λ(s)a(s)(

√
λ(s)a(s)‖∇Φ(x(s))‖)ds

≤
(∫ t

0

λ(s)a(s)ds

)1/2(∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖2ds

)1/2

≤
√
a(t)

(∫ t

0

√
λ(s)ds

)(∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖2ds

)1/2

≤ a(t)

(∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖2ds

)1/2

.

The algebra equation implies that λ(t)‖∇Φ(x(t))‖2 = θ
1
p‖∇Φ(x(t))‖

p+1
p . Thus, by Lemma 5.3.4

again, we have∫ t

0

λ(s)a(s)‖∇Φ(x(s))‖2ds =

∫ t

0

a(s)θ
1
p‖∇Φ(x(s))‖

p+1
p ds ≤ E(0).

Putting these pieces together yields that ‖x(t)− x?‖ ≤ ‖x0− x?‖+ 3
√
E(0). Therefore, x(t)

is bounded on the interval [0, t0] and the upper bound only depends on the initial condition.
This completes the proof. �
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Proof of Theorem 6.2.6: We are ready to prove our main result on the existence and
uniqueness of a global solution. In particular, let us consider a maximal solution of the
closed-loop control system in Eq. (5.3) and Eq. (5.4):

(x, λ, a) : [0, Tmax) 7→ Ω× (0,+∞)× (0,+∞).

The existence of a maximal solution follows from a classical argument relying on the existence
and uniqueness of a local solution (see Theorem 6.2.4).

It remains to show that the maximal solution is a global solution; that is, Tmax = +∞,
if λ is absolutely continuous on any finite bounded interval. Indeed, the property of λ
guarantees that λ(·) is bounded on the interval [0, Tmax). By Lemma 5.3.5 and the equivalence
between the closed-loop control system in Eq. (5.3) and Eq. (5.4) and the first-order system
in Eq. (5.7), the solution trajectory x(·) is bounded on the interval [0, Tmax) and the upper
bound only depends on the initial condition. This implies that ẋ(·) is also bounded on the
interval [0, Tmax) by considering the system in the autonomous form of Eq. (5.11) and (5.12).
Putting these pieces together yields that x(·) is Lipschitz continuous on [0, Tmax) and there
exists x̄ = limt→Tmax x(t).

If Tmax < +∞, the absolute continuity of λ on any finite bounded interval implies that
λ(·) is bounded on [0, Tmax]. This together with the algebraic equation implies that x̄ ∈ Ω.
However, by Theorem 6.2.4 with initial data x̄, we can extend the solution to a strictly larger
interval which contradicts the maximality of the aforementioned solution.

Rate of convergence. We establish a convergence rate for a global solution of the closed-
loop control system in Eq. (5.3) and Eq. (5.4).

Theorem 5.3.6 Suppose that (x, λ, a) : [0,+∞) 7→ Rd × (0,+∞) × (0,+∞) is a global
solution of the closed-loop control system in Eq. (5.3) and Eq. (5.4). Then, the objective
function gap satisfies

Φ(x(t))− Φ(x?) = O(t−
3p+1

2 ).

and the squared gradient norm satisfies

inf
0≤s≤t

‖∇Φ(x(s))‖2 = O(t−3p).

Remark 5.3.7 This theorem shows that the convergence rate is O(t−(3p+1)/2) in terms of
objective function gap and O(t−3p) in terms of squared gradient norm. Note that the for-
mer result does not imply the latter result but only gives a rate of O(t−(3p+1)/2) for the
squared gradient norm minimization even when Φ ∈ F1

` (Rd) is assumed with ‖∇Φ(x(t))‖2 ≤
2`(Φ(x(t)) − Φ(x?)). In fact, the squared gradient norm minimization is generally of inde-
pendent interest [Nesterov, 2012, Grapiglia and Nesterov, 2022b, Shi et al., 2022] and its
analysis involves different techniques.

The following lemma is a global version of Lemma 5.3.4 and the proof is exactly the same.
Thus, we only state the result.
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Lemma 5.3.8 Suppose that (x, v, λ, a) : [0,+∞) 7→ Rd×Rd× (0,+∞)× (0,+∞) is a global
solution of the first-order system in Eq. (5.7). Then, we have

dE(t)
dt
≤ −a(t)θ

1
p‖∇Φ(x(t))‖

p+1
p .

In view of Lemma 5.3.8, the key ingredient for analyzing the convergence rate in terms of
both the objective function gap and the squared gradient norm is a lower bound on a(t). We
summarize this result in the following lemma.

Lemma 5.3.9 Suppose that (x, v, λ, a) : [0,+∞) 7→ Rd×Rd× (0,+∞)× (0,+∞) is a global
solution of the first-order system in Eq. (5.7). Then, we have

a(t) ≥

(
c
2

+

(
θ

2
3p+1

(p+1)(E(0))
p−1
3p+1

) 3p+1
4

t
3p+1

4

)2

.

Proof. For p = 1, the feedback control law is given by λ(t) = θ, for ∀t ∈ [0,+∞), and

a(t) =
(
c
2

+
√
θt
2

)2

=

(
c
2

+

(
θ

2
3p+1

(p+1)(E(0))
p−1
3p+1

) 3p+1
4

t
3p+1

4

)2

.

For p ≥ 2, the algebraic equation implies that ‖∇Φ(x(t))‖ = ( θ
1/p

λ(t)
)

p
p−1 since λ(t) > 0 for

∀t ∈ [0,+∞). This together with Lemma 5.3.8 implies that

dE(t)
dt
≤ −a(t)θ

1
p‖∇Φ(x(t))‖

p+1
p = −a(t)θ

2
p−1 [λ(t)]−

p+1
p−1 .

Since E(t) ≥ 0, we have ∫ t

0

a(s)θ
2
p−1 (λ(s))−

p+1
p−1ds ≤ E(0).

By the Hölder inequality, we have∫ t

0

(a(s))
p−1
3p+1ds =

∫ t

0

(a(s)(λ(s))−
p+1
p−1 )

p−1
3p+1 (λ(s))

p+1
3p+1ds

≤
(∫ t

0

a(s)(λ(s))−
p+1
p−1ds

) p−1
3p+1

(∫ t

0

√
λ(s)ds

) 2p+2
3p+1

.

Combining these results with the definition of a yields:∫ t

0

(a(s))
p−1
3p+1ds ≤ θ−

2
3p+1 (E(0))

p−1
3p+1

(∫ t

0

√
λ(s)ds

) 2p+2
3p+1

≤ θ−
2

3p+1 (E(0))
p−1
3p+1 (2

√
a(t)− c)

2p+2
3p+1 ≤ 2θ−

2
3p+1 (E(0))

p−1
3p+1

(√
a(t)− c

2

) 2p+2
3p+1

.
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Since a(t) is nonnegative and nondecreasing with
√
a(0) = c

2
, we have∫ t

0

(√
a(s)− c

2

) 2p−2
3p+1

ds ≤ 2θ−
2

3p+1 (E(0))
p−1
3p+1

(√
a(t)− c

2

) 2p+2
3p+1

. (5.20)

The remaining steps in the proof are based on the Bihari-LaSalle inequality [LaSalle, 1949,

Bihari, 1956]. In particular, we denote y(·) by y(t) =
∫ t

0
(
√
a(s)− c

2
)

2p−2
3p+1ds. Then, y(0) = 0

and Eq. (5.20) implies that

y(t) ≤ 2θ−
2

3p+1 (E(0))
p−1
3p+1 (ẏ(t))

p+1
p−1 .

This implies that

ẏ(t) ≥
(

y(t)

2θ
− 2

3p+1 (E(0))
p−1
3p+1

) p−1
p+1

=⇒ ẏ(t)

(y(t))
p−1
p+1
≥
(

1

2θ
− 2

3p+1 (E(0))
p−1
3p+1

) p−1
p+1

.

Integrating this inequality over [0, t] yields:

(y(t))
2
p+1 ≥ 2

p+1

(
1

2θ
− 2

3p+1 (E(0))
p−1
3p+1

) p−1
p+1

t.

Equivalently, by the definition of y(t), we have∫ t

0

(√
a(s)− c

2

) 2p−2
3p+1

ds ≥
(

2
p+1

) p+1
2

(
1

2θ
− 2

3p+1 (E(0))
p−1
3p+1

) p−1
2

t
p+1

2 .

This together with Eq. (5.20) yields that

√
a(t) ≥ c

2
+

(
1

2θ
− 2

3p+1 (E(0))
p−1
3p+1

∫ t

0

(√
a(s)− c

2

) 2p−2
3p+1

ds

) 3p+1
2p+2

≥ c
2

+

(
θ

2
3p+1

(p+1)(E(0))
p−1
3p+1

) 3p+1
4

t
3p+1

4 .

This completes the proof. �

Proof of Theorem 6.3.7: Since the first-order system in Eq. (5.7) is equivalent to the
closed-loop control system in Eq. (5.3) and Eq. (5.4), (x, λ, a) : [0,+∞)→ Rd × (0,+∞)×
(0,+∞) is a global solution of the latter system with x(0) = x0 ∈ Ω. By Lemma 5.3.8, we
have E(t) ≤ E(0) for ∀t ≥ 0; that is,

a(t)(Φ(x(t))− Φ(x?)) + 1
2
‖v(t)− x?‖2 ≤ E(0).
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Since (x(0), v(0)) = (x0, v0) and ‖v(t)− x?‖ ≥ 0, we have a(t)(Φ(x(t))− Φ(x?)) ≤ E(0). By
Lemma 5.3.9, we have

Φ(x(t))− Φ(x?) ≤ E(0)

(
c
2

+

(
θ

2
3p+1

(p+1)(E(0))
p−1
3p+1

) 3p+1
4

t
3p+1

4

)−2

= O(t−
3p+1

2 ).

By Lemma 5.3.8 and using the fact that E(t) ≥ 0 for ∀t ∈ [0,+∞), we have∫ t

0

a(s)θ
1
p‖∇Φ(x(s))‖

p+1
p ds ≤ E(0),

which implies that (
inf

0≤s≤t
‖∇Φ(x(s))‖

p+1
p

)(∫ t

0

a(s)ds

)
≤ θ−

1
pE(0).

By Lemma 5.3.9, we obtain∫ t

0

a(s)ds ≥
∫ t

0

(
c
2

+

(
θ

2
3p+1

(p+1)(E(0))
p−1
3p+1

) 3p+1
4

s
3p+1

4

)2

ds.

In addition, inf0≤s≤t ‖∇Φ(x(s))‖
p+1
p = (inf0≤s≤t ‖∇Φ(x(s))‖2)

p+1
2p . Putting these pieces to-

gether yields

inf
0≤s≤t

‖∇Φ(x(s))‖2 ≤

 θ
− 1
p E(0)∫ t

0 ( c
2

+( θ
2

3p+1

(p+1)(E(0))

p−1
3p+1

)
3p+1

4 s
3p+1

4 )2ds


2p
p+1

= O(t−3p).

This completes the proof.

Discussion. It is useful to compare our approach to time scaling methods [Attouch et al.,
2019a,c, 2022a,c] and quasi-gradient methods [Bégout et al., 2015, Attouch et al., 2022b].

Regularity condition. Why is proving the existence and uniqueness of a global solution
of the closed-loop control system in Eq. (5.3) and Eq. (5.4) hard without the regularity con-
dition? Our system differs from the existing systems in three respects: (i) the appearance
of both ẍ and ẋ; (ii) the algebraic equation that links λ and ∇Φ(x); and (iii) the evolution
dynamics depends on λ via a and ȧ. From a technical point of view, the combination of
these features makes it challenging to control a lower bound on gradient norm ‖∇Φ(x(·))‖
or an upper bound on the feedback control λ(·) on the local interval. In sharp contrast,
‖∇Φ(x(t))‖ ≥ ‖∇Φ(x(0))‖e−t or λ(t) ≤ λ(0)et can readily be derived for the Levenberg-
Marquardt regularized system in Attouch and Svaiter [2011, Corollary 3.3] and even the
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closed-loop control systems without inertia in Attouch et al. [2013b, Theorem 5.2] and At-
touch et al. [2016a, Theorem 2.4]. Thus, we can not exclude the case of λ(t) → +∞ on
the bounded interval without the regularity condition and we accordingly fail to establish
global existence and uniqueness. We consider it an interesting open problem to derive the
regularity condition rather than imposing it as an assumption.

Infinite-dimensional setting. It is promising to study our system using the techniques
developed by Attouch et al. [2016b] for an infinite-dimensional setting. Our convergence
analysis can in fact be extended directly, yielding the same rate of O(1/t(3p+1)/2) in terms
of objective function gap and O(1/t3p) in terms of squared gradient norm in the Hilbert-
space setting. However, the weak convergence of the solution trajectories is another matter.
Note that Attouch et al. [2016b] studied the following open-loop system with the parameters
(α, β):

ẍ(t) + α
t
ẋ(t) + β∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.

The condition α > 3 is crucial for proving weak convergence of solution trajectories and
establishing strong convergence in various practical situations. Indeed, the convergence of
the solution trajectory has not been established so far when α = 3 (except in the one-
dimensional case with β = 0; see Attouch et al. [2019b] for the reference). Unfortunately,
when c = 0 and p = 1, the closed-loop control system in Eq. (5.3) and Eq. (5.4) becomes

ẍ(t) + 3
t
ẋ(t) + θ∇2Φ(x(t))ẋ(t) +

(
θ + θ

t

)
∇Φ(x(t)) = 0.

The asymptotic damping coefficient 3
t

does not satisfy the aforementioned condition in At-
touch et al. [2016b], leaving doubt as to whether weak convergence holds true for the closed-
loop control system in Eq. (5.3) and Eq. (5.4).

Time scaling. In the context of non-autonomous dissipative systems, time scaling is a
simple yet universally powerful tool to accelerate the convergence of solution trajectories [At-
touch et al., 2019a,c, 2022a,c]. Considering the general inertial gradient system in Eq. (5.3):

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0,

the effect of time scaling is characterized by the coefficient parameter b(t) which comes in as
a factor of ∇Φ(x(t)). In Attouch et al. [2019a,c], the authors conducted an in-depth study
of the convergence of this above system without Hessian-driven damping (β = 0). For the
case α(t) = α

t
, the convergence rate turns out to be O( 1

t2b(t)
) under certain conditions on

the scalar α and b(·). Thus, a clear improvement can be achieved by taking b(t) → +∞.
This demonstrates the power and potential of time scaling, as further evidenced by recent
work on systems with Hessian damping [Attouch et al., 2022a] and other systems which
are associated with the augmented Lagrangian formulation of the affine constrained convex
minimization problem [Attouch et al., 2022c].
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Comparing to our approach, the time scaling technique is based on an open-loop control
regime, and indeed b(t) is chosen by hand. In contrast, λ(t) in our system is determined by
the gradient of ∇Φ(x(t)) via the algebraic equation, and the evolution dynamics depend on
λ via a and ȧ. The time scaling methodology accordingly does not capture the continuous-
time interpretation of optimal acceleration in high-order optimization [Monteiro and Svaiter,
2013, Gasnikov et al., 2019a, Jiang et al., 2019, Bubeck et al., 2019]. In contrast, our
algebraic equation provides a rigorous justification for the large-step condition in the existing
algorithms [Monteiro and Svaiter, 2013, Gasnikov et al., 2019a, Jiang et al., 2019, Bubeck
et al., 2019] when p ≥ 2 and demonstrates the fundamental role that the feedback control
plays in optimal acceleration, a role clarified by the continuous-time perspective.

Quasi-gradient approach and Kurdyka-Lojasiewicz (KL) theory. The quasi-gradient
approach to inertial gradient systems were developed in Bégout et al. [2015] and recently
applied by Attouch et al. [2022b] to analyze inertial dynamics with closed-loop control of
the velocity. Recall that a vector field F is called a quasi-gradient for a function E if it
has the same singular point as E and if the angle between the field F and the gradient
∇E remains acute and bounded away from π

2
(see the references [Huang, 2006, Chergui,

2008, Chill and Fašangová, 2010, Bárta et al., 2012, Bárta and Fašangová, 2016] for further
geometrical interpretation).

Recent results in Bégout et al. [2015, Theorem 3.2] and Attouch et al. [2022b, The-
orem 7.2] have suggested that the convergence properties for the bounded trajectories of
quasi-gradient systems have been established if the function E is KL [Kurdyka, 1998, Bolte
et al., 2010]. In Attouch et al. [2022b], the authors considered two closed-loop velocity
control systems with a damping potential φ:

ẍ(t) +∇φ(ẋ(t)) +∇Φ(x(t)) = 0. (5.21)

ẍ(t) +∇φ(ẋ(t)) + β∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0. (5.22)

They proposed to use the Hamiltonian formulation of these systems and accordingly defined
a function Eλ for (x, v) = (x, ẋ(t)) by

Eη(x, v) := 1
2
‖v‖2 + Φ(x) + η〈∇Φ(x), v〉.

If φ satisfies some certain growth conditions (see Attouch et al. [2022b, Theorem 7.3 and 9.2]),
the systems in Eq. (5.21) and Eq. (5.22) both have a quasi-gradient structure for Eη for
sufficiently small η > 0. This provides an elegant framework for analyzing the convergence
properties of the systems in the form of Eq. (5.21) and Eq. (5.22).

Why is analyzing our system hard using the quasi-gradient approach? Our system differs
from the systems in Eq. (5.21) and Eq. (5.22) in two aspects: (i) the closed-loop control law
is designed for the gradient of Φ rather than the velocity ẋ; (ii) the damping coefficients are
time dependent, depending on λ via a and ȧ, and do not have an analytic form for p ≥ 2.
Considering the systems in Eq. (5.7) and Eq. (5.8), we find that F is a time-dependent vector
field which can not be tackled by the current quasi-gradient approach. We consider it an
interesting open problem to develop a quasi-gradient approach for analyzing our system.
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5.4 Implicit Time Discretization and Optimal

Acceleration

We propose two conceptual algorithmic frameworks that arise via implicit time discretiza-
tion of the closed-loop system in Eq. (5.7) and Eq. (5.8). Our approach demonstrates the
importance of the large-step condition [Monteiro and Svaiter, 2013] for optimal acceleration,
interpreting it as the discretization of the algebraic equation. This allows us to further clar-
ify why this condition is unnecessary for first-order optimization algorithms in the case of
p = 1 (the algebraic equation disappears). With an approximate tensor subroutine [Nesterov,
2021b], we derive two class of p-th order tensor algorithms, one of which recovers existing
optimal p-th order tensor algorithms [Gasnikov et al., 2019a, Jiang et al., 2019, Bubeck et al.,
2019] and the other of which leads to a new optimal p-th order tensor algorithm.

Conceptual algorithmic frameworks. We study two conceptual algorithmic frame-
works which are derived by implicit time discretization of Eq. (5.7) with c = 0 and Eq. (5.8)
with c = 2.

First algorithmic framework. By the definition of a(t), we have (ȧ(t))2 = λ(t)a(t) and
a(0) = 0. This implies an equivalent formulation of the first-order system in Eq. (5.7) with
c = 0 as follows, 

v̇(t) + ȧ(t)∇Φ(x(t)) = 0

ẋ(t) + ȧ(t)
a(t)

(x(t)− v(t)) + (ȧ(t))2

a(t)
∇Φ(x(t)) = 0

a(t) = 1
4
(
∫ t

0

√
λ(s)ds)2

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0)) = (x0, v0)

⇐⇒



v̇(t) + ȧ(t)∇Φ(x(t)) = 0

a(t)ẋ(t) + ȧ(t)(x(t)− v(t)) + λ(t)a(t)∇Φ(x(t)) = 0

(ȧ(t))2 = λ(t)a(t)

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0), a(0)) = (x0, v0, 0).
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Algorithm 14 Conceptual Algorithmic Framework I

STEP 0: Let x0, v0 ∈ Rd, σ ∈ (0, 1) and θ > 0 be given, and set A0 = 0 and k = 0.
STEP 1: If 0 = ∇Φ(xk), then stop.
STEP 2: Otherwise, compute λk+1 > 0 and a triple (xk+1, wk+1, εk+1) ∈ Rd × Rd × (0,+∞)
such that

wk+1 ∈ ∂εk+1
Φ(xk+1),

‖λk+1wk+1 + xk+1 − ṽk‖2 + 2λk+1εk+1 ≤ σ2‖xk+1 − ṽk‖2,
λk+1‖xk+1 − ṽk‖p−1 ≥ θ.

where ṽk = Ak
Ak+ak+1

xk +
ak+1

Ak+ak+1
vk and a2

k+1 = λk+1(Ak + ak+1).

STEP 3: Compute Ak+1 = Ak + ak+1 and vk+1 = vk − ak+1wk+1.
STEP 4: Set k ← k + 1, and go to STEP 1.

We define discrete-time sequences, {(xk, vk, λk, ak, Ak)}k≥0, that correspondx to the continuous-
time sequences {(x(t), v(t), λ(t), ȧ(t), a(t))}t≥0. By implicit time discretization, we have

vk+1 − vk + ak+1∇Φ(xk+1) = 0

Ak+1(xk+1 − xk) + ak+1(xk − vk) + λk+1Ak+1∇Φ(xk+1) = 0

(ak+1)2 = λk+1(Ak + ak+1), ak+1 = Ak+1 − Ak, a0 = 0

(λk+1)p‖∇Φ(xk+1)‖p−1 = θ.

(5.23)

By introducing a new variable ṽk = Ak
Ak+ak+1

xk + ak+1

Ak+ak+1
vk, the second and fourth lines of

Eq. (5.23) can be equivalently reformulated as follows:

λk+1∇Φ(xk+1) + xk+1 − ṽk = 0, λk+1‖xk+1 − ṽk‖p−1 = θ.

We propose to solve these two equations inexactly and replace ∇Φ(xk+1) by a sufficiently
accurate approximation in the first line of Eq. (5.23). In particular, the first equation can be
equivalently written in the form of λk+1wk+1+xk+1−ṽk = 0, where wk+1 ∈ {∇Φ(xk+1)}. This
motivates us to introduce a relative error tolerance [Solodov and Svaiter, 1999a, Monteiro
and Svaiter, 2010]. In particular, we define the ε-subdifferential of a function f by

∂εf(x) := {w ∈ Rd | f(y) ≥ f(x) + 〈y − x,w〉 − ε, ∀y ∈ Rd}, (5.24)

and find λk+1 > 0 and a triple (xk+1, wk+1, εk+1) such that ‖λk+1wk+1 + xk+1 − ṽk‖2 +
2λk+1εk+1 ≤ σ2‖xk+1 − ṽk‖2, where wk+1 ∈ ∂εk+1

Φ(xk+1). To this end, wk+1 is a sufficiently
accurate approximation of ∇Φ(xk+1). Moreover, the second equation can be relaxed to
λk+1‖xk+1 − ṽk‖p−1 ≥ θ.

Remark 5.4.1 We present our first conceptual algorithmic framework in Algorithm 14.
This scheme includes the large-step A-HPE framework [Monteiro and Svaiter, 2013] as a
special instance. Indeed, it reduces to the large-step A-HPE framework if we set y = ỹ and
p = 2 and change the notation of (x, v, ṽ, w) to (y, x, x̃, v) in Monteiro and Svaiter [2013].
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Second algorithmic framework. By the definition of γ(t), we have ( γ̇(t)
γ(t)

)2 = λ(t)γ(t)

and γ(0) = 1. This implies an equivalent formulation of the first-order system in Eq. (5.8)
with c = 2: 

v̇(t)− γ̇(t)
γ2(t)
∇Φ(x(t)) = 0

ẋ(t)− γ̇(t)
γ(t)

(x(t)− v(t)) + (γ̇(t))2

(γ(t))3∇Φ(x(t)) = 0

γ(t) = 4(
∫ t

0

√
λ(s)ds+ c)−2

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0)) = (x0, v0)

⇐⇒



v̇(t) + α(t)
γ(t)
∇Φ(x(t)) = 0

ẋ(t) + α(t)(x(t)− v(t)) + λ(t)∇Φ(x(t)) = 0

(α(t))2 = λ(t)γ(t), γ̇(t) + α(t)γ(t) = 0

(λ(t))p‖∇Φ(x(t))‖p−1 = θ

(x(0), v(0), γ(0)) = (x0, v0, 1).

We define discrete-time sequences, {(xk, vk, λk, αk, γk)}k≥0, that correspondx to the continuous-
time sequences {(x(t), v(t), λ(t), α(t), γ(t))}t≥0. From implicit time discretization, we have

vk+1 − vk + αk+1

γk+1
∇Φ(xk+1) = 0

xk+1 − xk + αk+1(xk − vk) + λk+1∇Φ(xk+1) = 0

(αk+1)2 = λk+1γk+1, γk+1 = (1− αk+1)γk, γ0 = 1

(λk+1)p‖∇Φ(xk+1)‖p−1 = θ.

(5.25)

By introducing a new variable ṽk = (1 − αk+1)xk + αk+1vk, the second and fourth lines of
Eq. (5.23) can be equivalently reformulated as

λk+1∇Φ(xk+1) + xk+1 − ṽk = 0, λk+1‖xk+1 − ṽk‖p−1 = θ.

By the same approximation strategy as before, we solve these two equations inexactly and
replace ∇Φ(xk+1) by a sufficiently accurate approximation in the first line of Eq. (5.25).

Remark 5.4.2 We present our second conceptual algorithmic framework formally in Algo-
rithm 15. To the best of our knowledge, this scheme does not appear in the literature and is
based on an estimate sequence which differs from the one used in Algorithm 14. However,
from a continuous-time perspective, these two algorithms are equivalent up to a constant
c > 0, demonstrating that they achieve the same convergence rate in terms of both objective
function gap and squared gradient norm.
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Algorithm 15 Conceptual Algorithmic Framework II

STEP 0: Let x0, v0 ∈ Rd, σ ∈ (0, 1) and θ > 0 be given, and set γ0 = 1 and k = 0.
STEP 1: If 0 = ∇Φ(xk), then stop.
STEP 2: Otherwise, compute λk+1 > 0 and a triple (xk+1, wk+1, εk+1) ∈ Rd×Rd×(0,+∞)
such that

wk+1 ∈ ∂εk+1
Φ(xk+1),

‖λk+1wk+1 + xk+1 − ṽk‖2 + 2λk+1εk+1 ≤ σ2‖xk+1 − ṽk‖2,

λk+1‖xk+1 − ṽk‖p−1 ≥ θ.

where ṽk = (1− αk+1)xk + αk+1vk and (αk+1)2 = λk+1(1− αk+1)γk.
STEP 3: Compute γk+1 = (1− αk+1)γk and vk+1 = vk − αk+1

γk+1
wk+1.

STEP 4: Set k ← k + 1, and go to STEP 1.

Comparison with Güler’s accelerated proximal point algorithm. Algorithm 15
is related to Güler’s accelerated proximal point algorithm (APPA) [Güler, 1992], which
combines Nesterov acceleration [Nesterov, 1983] and Martinet’s PPA [Martinet, 1970, 1972].
Indeed, the analogs of update formulas ṽk = (1− αk+1)xk + αk+1vk and (αk+1)2 = λk+1(1−
αk+1)γk appear in Güler’s algorithm, suggesting similar dynamics. However, Güler’s APPA
does not specify how to choose {λk}k≥0 but regard them as parameters, while our algorithm
links its choice with the gradient norm of Φ via the large-step condition.

Such difference is emphasized by recent studies on the continuous-time perspective of
Güler’s APPA [Attouch et al., 2019c,a]. More specifically, Attouch et al. [2019a] proved that
Güler’s APPA can be interpreted as the implicit time discretization of an open-loop inertial
gradient system (see Attouch et al. [2019a, Eq. (53)]):

ẍ(t) +
(
g(t)− ġ(t)

g(t)

)
ẋ(t) + β(t)∇Φ(x(t)) = 0.

where gk and βk in their notation correspond to αk and λk in Algorithm 15. By using
γk+1 − γk = −αk+1γk and standard continuous-time arguments, we have g(t) = − γ̇(t)

γ(t)
and

β(t) = λ(t) = (γ̇(t))2

(γ(t))3 . By further defining a(t) = 1
γ(t)

, the above system is in the form of

ẍ(t) +
(

2ȧ(t)
a(t)
− ä(t)

ȧ(t)

)
ẋ(t) +

(
(ȧ(t))2

a(t)

)
∇Φ(x(t)) = 0, (5.26)

where a explicitly depends on the variable λ as follows,

a(t) = 1
4
(
∫ t

0

√
λ(s)ds+ 2)2.

Compared to our closed-loop control system, the one in Eq. (5.26) is open-loop without
the algebra equation and does not contain Hessian-driven damping. The coefficient for
the gradient term is also different, standing for different time rescaling in the evolution
dynamics [Attouch et al., 2022a].
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Complexity analysis. We study the iteration complexity of Algorithm 14 and 15. Our
analysis is largely motivated by the aforementioned continuous-time analysis, simplifying the
analysis in Monteiro and Svaiter [2013] for the case of p = 2 and generalizing it to the case
of p > 2 in a systematic manner (see Theorem 5.4.3 and Theorem 5.4.6). We denote x? as
the projection of v0 onto the solution set of Φ.

Algorithm 14. We start with the presentation of our main results for Algorithm 14, which
in fact generalizes Monteiro and Svaiter [2013, Theorem 4.1] to the case of p > 2.

Theorem 5.4.3 For every integer k ≥ 1, the objective function gap satisfies

Φ(xk)− Φ(x?) = O(k−
3p+1

2 ),

and
inf

1≤i≤k
‖wi‖2 = O(k−3p), inf

1≤i≤k
εi = O(k−

3p+3
2 ).

Note that the only difference between Algorithm 14 and large-step A-HPE framework in Mon-
teiro and Svaiter [2013] is the order in the algebraic equation. As such, many of the technical
results derived in Monteiro and Svaiter [2013] also hold for Algorithm 14; more specifically,
Monteiro and Svaiter [2013, Theorem 3.6, Lemma 3.7 and Proposition 3.9].

We also present a technical lemma that provides a lower bound for Ak.

Lemma 5.4.4 For p ≥ 1 and every integer k ≥ 1, we have

Ak ≥
(

θ(1−σ2)
p−1

2

(p+1)
3p+1

2 ‖v0−x?‖p−1

)
k

3p+1
2 .

Proof. For p = 1, the large-step condition implies that λk ≥ θ for all k ≥ 0. By Monteiro
and Svaiter [2013, Lemma 3.7], we have Ak ≥ θk2

4
.

For p ≥ 2, the large-step condition implies that

k∑
i=1

Ai(λi)
− p+1
p−1 θ

2
p−1 ≤

k∑
i=1

Ai(λi)
− p+1
p−1 (λi‖xi − ṽi−1‖p−1)

2
p−1

=
k∑
i=1

Ai
λi
‖xi − ṽi−1‖2

Monteiro and Svaiter [2013, Theorem 3.6]

≤ ‖v0−x?‖2
1−σ2 .

By the Hölder inequality, we have

k∑
i=1

(Ai)
p−1
3p+1 =

k∑
i=1

(Ai(λi)
− p+1
p−1 )

p−1
3p+1 (λi)

p+1
3p+1 ≤ (

k∑
i=1

Ai(λi)
− p+1
p−1 )

p−1
3p+1 (

k∑
i=1

√
λi)

2p+2
3p+1 .



CHAPTER 5. A CLOSED-LOOP CONTROL APPROACH TO HIGH-ORDER
OPTIMIZATION 155

For the ease of presentation, we define C = θ−
2

3p+1 (‖v0−x?‖2
1−σ2 )

p−1
3p+1 . Putting these pieces to-

gether yields:

k∑
i=1

(Ai)
p−1
3p+1 ≤ C

(
k∑
i=1

√
λi

) 2p+2
3p+1

Monteiro and Svaiter [2013, Lemma 3.7]

≤ 2C(Ak)
p+1
3p+1 . (5.27)

The remaining proof is based on the Bihari-LaSalle inequality in discrete time. In particular,

we define {yk}k≥0 by yk =
∑k

i=1(Ai)
p−1
3p+1 . Then, y0 = 0 and Eq. (5.27) implies that

yk ≤ 2C(yk − yk−1)
p+1
p−1 .

This implies that

yk − yk−1 ≥
(
yk
2C

) p−1
p+1 =⇒ yk−yk−1

(yk)
p−1
p+1
≥
(

1
2C

) p−1
p+1 . (5.28)

Inspired by the continuous-time inequality in Lemma 5.4.4, we claim that the following
discrete-time inequality holds for every integer k ≥ 1:

(yk)
2
p+1 − (yk−1)

2
p+1 ≥ 2

p+1

(
yk−yk−1

(yk)
p−1
p+1

)
. (5.29)

Indeed, we define g(t) = 1 − t
2
p+1 and find that this function is convex for ∀t ∈ (0, 1) since

p ≥ 1. Thus, we have

1− t
2
p+1 = g(t)− g(1) ≥ (t− 1)∇g(1) = 2(1−t)

p+1
=⇒ 1−t

2
p+1

1−t ≥
2
p+1

.

Since yk is increasing, we have yk−1

yk
∈ (0, 1). Then, the desired Eq. (5.28) follows from setting

t = yk−1

yk
. Combining Eq. (5.28) and Eq. (5.29) yields that

(yk)
2
p+1 − (yk−1)

2
p+1 ≥ 2

p+1

(
1

2C

) p−1
p+1 .

Therefore, we conclude that

(yk)
2
p+1 = (y0)

2
p+1 +

(
k∑
i=1

(yi)
2
p+1 − (yi−1)

2
p+1

)
≥ 2

p+1

(
1

2C

) p−1
p+1 k.

By the definition of yk, we have

k∑
i=1

(Ai)
p−1
3p+1 ≥

(
2
p+1

) p+1
2 ( 1

2C

) p−1
2 k

p+1
2 .

This together with Eq. (5.27) yields that

Ak ≥

(
1

2C

k∑
i=1

(Ai)
p−1
3p+1

) 3p+1
p+1

≥
(

1
(p+1)C

) 3p+1
2
k

3p+1
2 .

This completes the proof. �
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Remark 5.4.5 The proof of Lemma 5.4.4 is much simpler than the existing analysis; e.g., Mon-
teiro and Svaiter [2013, Lemma 4.2] for the case of p = 2 and Jiang et al. [2019, Theorem 3.4]
and Bubeck et al. [2019, Lemma 3.3] for the case of p ≥ 2. Notably, it is not a generalization
of the highly technical proof in Monteiro and Svaiter [2013, Lemma 4.2] but can be interpreted
as the discrete-time counterpart of the proof of Lemma 5.3.9.

Proof of Theorem 5.4.3: For every integer k ≥ 1, by Monteiro and Svaiter [2013, Theo-
rem 3.6] and Lemma 5.4.4, we have

Φ(xk)− Φ(x?) ≤ ‖v0−x?‖2
2Ak

= O(k−
3p+1

2 ).

Combining Monteiro and Svaiter [2013, Proposition 3.9] and Lemma 5.4.4, we have

inf
1≤i≤k

λi‖wi‖2 ≤ 1+σ
1−σ

‖v0−x?‖2∑k
i=1 Ai

= O(k−
3p+3

2 ),

inf
1≤i≤k

εi ≤ σ2

2(1−σ2)
‖v0−x?‖2∑k

i=1 Ai
= O(k−

3p+3
2 ).

In addition, we have ‖λiwi+xi− ṽi−1‖ ≤ σ‖xi− ṽi−1‖ and λi‖xi− ṽi−1‖p−1 ≥ θ. This implies

that λi‖wi‖
p−1
p ≥ θ

1
p (1− σ)

p−1
p . Putting these pieces together yields that inf1≤i≤k ‖wi‖

p+1
p =

O(k−
3p+3

2 ) which implies that

inf
1≤i≤k

‖wi‖2 =

(
inf

1≤i≤k
‖wi‖

p+1
p

) 2p
p+1

= O(k−3p).

This completes the proof.

Algorithm 15. We now present our main results for Algorithm 15. The proof is analogous
to that of Theorem 5.4.3 and based on another estimate sequence.

Theorem 5.4.6 For every integer k ≥ 1, the objective function gap satisfies

Φ(xk)− Φ(x?) = O(k−
3p+1

2 )

and
inf

1≤i≤k
‖wi‖2 = O(k−3p), inf

1≤i≤k
εi = O(k−

3p+3
2 ).

Inspired by the continuous-time Lyapunov function in Eq. (5.19), we construct a discrete-
time Lypanunov function for Algorithm 15 as follows:

Ek = 1
γk

(Φ(xk)− Φ(x?)) + 1
2
‖vk − x?‖2. (5.30)

We use this function to prove technical results that pertain to Algorithm 15 and which are
the analogs of Monteiro and Svaiter [2013, Theorem 3.6, Lemma 3.7 and Proposition 3.9].
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Lemma 5.4.7 For every integer k ≥ 1,

1−σ2

2

(
k∑
i=1

1
λiγi
‖xi − ṽi−1‖2

)
≤ E0 − Ek,

which implies that
Φ(xk)− Φ(x?) ≤ γkE0, ‖vk − x?‖ ≤

√
2E0.

Assuming that σ < 1, we have
∑k

i=1
1

λiγi
‖xi − ṽi−1‖2 ≤ 2E0

1−σ2 .

Proof. It suffices to prove the first inequality which implies the other results. Based on the
discrete-time Lyapunov function, we define two functions φk : Rd 7→ R and Γk : Rd 7→ R by
(Γk is related to Ek and defined recursively):

φk(v) = Φ(xk) + 〈v − xk, wk〉 − εk − Φ(x?), ∀k ≥ 0,

Γ0(v) = 1
γ0

(Φ(x0)− Φ(x?)) + 1
2
‖v − v0‖2, Γk+1 = Γk + αk+1

γk+1
φk+1, ∀k ≥ 0.

First, by definition, φk is affine. Since wk+1 ∈ ∂εk+1
Φ(xk+1), Eq. (5.24) implies that φk(v) ≤

Φ(v) − Φ(x?). Furthermore, Γk is quadratic and ∇2Γk = ∇2Γ0 since φk is affine. Then,
we prove that Γk(v) ≤ Γ0(v) + 1−γk

γk
(Φ(v) − Φ(x?)) using induction. Indeed, it holds when

k = 0 since γ0 = 1. Assuming that this inequality holds for ∀i ≤ k, we derive from
φk(v) ≤ Φ(v)− Φ(x?) and γk+1 = (1− αk+1)γk that

Γk+1(v) ≤ Γ0(v) +
(

1−γk
γk

+ αk+1

γk+1

)
(Φ(v)− Φ(x?)) = Γ0(v) + 1−γk

γk
(Φ(v)− Φ(x?)).

Finally, we prove that vk = argminv∈Rd Γk(v) using the induction. Indeed, it holds when
k = 0. Suppose that this inequality holds for ∀i ≤ k, we have

∇Γk+1(v) = ∇Γk(v) + αk+1

γk+1
∇φk+1(v) = v − vk + αk+1

γk+1
wk+1.

Using the definition of vk and the fact that γk+1 = (1 − αk+1)γk, we have ∇Γk+1(v) = 0 if
and only if v = vk+1.

The remaining proof is based on the gap sequence {βk}k≥0 which is defined by βk =
infv∈Rd Γk(v)− 1

γk
(Φ(xk)−Φ(x?)). Using the previous facts that Γk is quadratic with∇2Γk = 1

and the upper bound for Γk(v), we have

βk = Γk(x
?)− 1

γk
(Φ(xk)− Φ(x?))− 1

2
‖x? − vk‖2 ≤ Γ0(x?)− Ek = E0 − Ek.

By definition, we have β0 = 0. Thus, it suffices to prove that the following recursive inequality
holds true for every integer k ≥ 0,

βk+1 ≥ βk + 1−σ2

2λk+1γk+1
‖xk+1 − ṽk‖2. (5.31)
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In particular, we define ṽ = (1− αk+1)xk + αk+1v for any given v ∈ Rd. Using the definition
of ṽk and the affinity of φk+1, we have

φk+1(ṽ) = (1− αk+1)φk+1(xk) + αk+1φk+1(v), (5.32)

ṽ − ṽk = αk+1(v − vk). (5.33)

Since Γk is quadratic with ∇2Γk = 1, we have Γk(v) = Γk(vk) + 1
2
‖v − vk‖2. Plugging this

into the recursive equation for Γk yields that

Γk+1(v) = Γk(vk) + 1
2
‖v − vk‖2 + αk+1

γk+1
φk+1(v).

By the definition of βk, we have Γk(vk) = βk + 1
γk

(Φ(xk) − Φ(x?)). Putting these pieces
together with the definition of Ek yields that

Γk+1(v) = βk + αk+1

γk+1
φk+1(v) + 1

γk
(Φ(xk)− Φ(x?)) + 1

2
‖v − vk‖2.

Since φk+1(v) ≤ Φ(v)− Φ(x?), we have

Γk+1(v) ≥ βk + αk+1

γk+1
φk+1(v) + 1

γk
φk+1(xk) + 1

2
‖v − vk‖2

Eq. (5.32)
= βk + 1

γk+1
φk+1(ṽ) + 1

2
‖v − vk‖2

= βk + 1
γk+1

(
φk+1(ṽ) + γk+1

2
‖v − vk‖2

)
Eq. (5.33)

= βk + 1
γk+1

(
φk+1(ṽ) + γk+1

2(αk+1)2‖ṽ − ṽk‖2
)

= βk + 1
γk+1

(
φk+1(ṽ) + 1

2λk+1
‖ṽ − ṽk‖2

)
.

Using Monteiro and Svaiter [2013, Lemma 3.3] with λ = λk+1, ṽ = ṽk, x̃ = xk+1, w̃ = wk+1

and ε = εk+1, we have

inf
v∈Rd

{
〈v − xk+1, wk+1〉 − εk+1 + 1

2λk+1
‖v − ṽk‖2

}
≥ 1−σ2

2λk+1
‖xk+1 − ṽk‖2.

which implies that

φk+1(ṽ) + 1
2λk+1

‖ṽ − ṽk‖2 − 1
γk+1

(Φ(xk+1)− Φ(x?)) ≥ 1−σ2

2λk+1
‖xk+1 − ṽk‖2.

Putting these pieces together yields that

inf
v∈Rd

Γk+1(v)− 1
γk+1

(Φ(xk+1)− Φ(x?)) ≥ βk + 1−σ2

2λk+1γk+1
‖xk+1 − ṽk‖2.

which together with the definition of βk yields the desired inequality in Eq. (5.31). �

Lemma 5.4.8 For every integer k ≥ 0, it holds that√
1

γk+1
≥
√

1
γk

+ 1
2

√
λk+1.

As a consequence, the following statements hold: (i) For every integer k ≥ 0, it holds that
γk ≤ (1+ 1

2

∑k
j=1

√
λj)
−2; (ii) If σ < 1 is further assumed, we have

∑k
j=1 ‖xj−ṽj−1‖2 ≤ 2E0

1−σ2 .
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Proof. It suffices to prove the first inequality which implies the other results. By the definition
of {γk}k≥0 and {αk}k≥0, we have γk+1 = (1− αk+1)γk and (αk+1)2 = λk+1γk+1. This implies
that

1
γk

= 1
γk+1
− αk+1

γk+1
= 1

γk+1
−
√

λk+1

γk+1
.

Since γk > 0 and λk > 0, we have
√

1
γk+1
≥ 1

2

√
λk+1 and

1
γk
≤ 1

γk+1
−
√

λk+1

γk+1
+ λk+1

4
=
(√

1
γk+1
− 1

2

√
λk+1

)2

.

which implies the desired inequality. �

Lemma 5.4.9 For every integer k ≥ 1 and σ < 1, there exists 1 ≤ i ≤ k such that

inf
1≤i≤k

√
λi‖wi‖ ≤

√
1+σ
1−σ

√
2E0∑k
i=1

1
γi

, inf
1≤i≤k

εi ≤ σ2

2(1−σ2)
2E0∑k
i=1

1
γi

.

Proof. With the convention 0/0 = 0, we define τk = max{2εk
σ2 ,

λk‖wk‖2
(1+σ)2 } for every integer

k ≥ 1. Then, we have

2λkεk ≤ σ2‖xk − ṽk−1‖2,

‖λkwk‖ ≤ ‖λkwk + xk − ṽk−1‖+ ‖xk − ṽk−1‖ ≤ (1 + σ)‖xk − ṽk−1‖.

which implies that λkτk ≤ ‖xk − ṽk−1‖2 for every integer k ≥ 1. This together with
Lemma 5.4.7 yields that

2E0
1−σ2 ≥

k∑
i=1

1
λiγi
‖xi − ṽi−1‖2 ≥

(
inf

1≤i≤k
τi

)( k∑
i=1

1
γi

)
.

Combining this inequality with the definition of τk yields the desired results. �

As the analog of Lemma 5.4.4, we provide a technical lemma on the upper bound for γk. The
analysis is based on the same idea for proving Lemma 5.4.4 and is motivated by continuous-
time analysis for the first-order system in Eq. (5.8).

Lemma 5.4.10 For p ≥ 1 and every integer k ≥ 1, we have

γk ≤ (p+1)
3p+1

2

θ

(
2E0

1−σ2

) p−1
2 k−

3p+1
2 .

Proof. For p = 1, the large-step condition implies that λk ≥ θ for all k ≥ 0. By Lemma 5.4.8,
we have γk ≤ 4

θk2 . For p ≥ 2, the large-step condition implies that

k∑
i=1

(γi)
−1(λi)

− p+1
p−1 θ

2
p−1 ≤

k∑
i=1

(γi)
−1(λi)

− p+1
p−1 (λi‖xi − ṽi−1‖p−1)

2
p−1

=
k∑
i=1

1
λiγi
‖xi − ṽi−1‖2

Lemma 5.4.7

≤ 2E0
1−σ2 .
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By the Hölder inequality, we have

k∑
i=1

(γi)
− p−1

3p+1 =
k∑
i=1

(
1

(λi)
p+1
p−1 γi

) p−1
3p+1

(λi)
p+1
3p+1 ≤

(
k∑
i=1

1

(λi)
p+1
p−1 γi

) p−1
3p+1

(
k∑
i=1

√
λi

) 2p+2
3p+1

.

For ease of presentation, we define C = θ−
2

3p+1 ( 2E0
1−σ2 )

p−1
3p+1 . Putting these pieces together

yields that
k∑
i=1

(γi)
− p−1

3p+1 ≤ C

(
k∑
i=1

√
λi

) 2p+2
3p+1

Lemma 5.4.8

≤ 2C(γk)
− p+1

3p+1 . (5.34)

Using the same argument for proving Lemma 5.4.4, we have

k∑
i=1

(γi)
− p−1

3p+1 ≥
(

2
p+1

) p+1
2 ( 1

2C

) p−1
2 k

p+1
2 .

This together with Eq. (5.34) yields that

1
γk
≥

(
1

2C

k∑
i=1

(γi)
− p−1

3p+1

) 3p+1
p+1

≥
(

1
(p+1)C

) 3p+1
2
k

3p+1
2 .

This completes the proof. �

Proof of Theorem 5.4.6: For every integer k ≥ 1, by Lemma 5.4.7 and Lemma 5.4.10,
we have

Φ(xk)− Φ(x?) ≤ γkE0 = O(k−
3p+1

2 ).

By Lemma 5.4.9 and Lemma 5.4.10, we have

inf
1≤i≤k

λi‖wi‖2 ≤ 1+σ
1−σ

2E0∑k
i=1

1
γi

= O(k−
3p+3

2 ),

inf
1≤i≤k

εi ≤ σ2

2(1−σ2)
2E0∑k
i=1 γi

= O(k−
3p+3

2 ).

As in the proof of Theorem 5.4.3, we conclude that inf1≤i≤k ‖wi‖2 = O(k−3p).

Remark 5.4.11 The discrete-time analysis here is based on a discrete-time Lyapunov func-
tion in Eq. (5.30), which is closely related to the continuous one in Eq. (5.19), and two simple
yet nontrivial technical lemmas (see Lemma 5.4.4 and 5.4.10), which are both discrete-time
versions of Lemma 5.3.9. Notably, the proofs of Lemma 5.4.4 and 5.4.10 follows the same
path for proving Lemma 5.3.9 and have demanded the use of the Bihari-LaSalle inequality
in discrete time.
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Optimal algorithms and gradient norm minimization. By instantiating Algorithm 14
and 15 with approximate tensor subroutines, we develop two families of optimal p-th order
tensor algorithms for minimizing the function Φ ∈ Fp` (Rd). The former one include all of
existing optimal p-th order tensor algorithms [Gasnikov et al., 2019a, Jiang et al., 2019,
Bubeck et al., 2019] while the latter one is new to our knowledge. Moreover, we provide one
hitherto unknown result that the optimal p-th order tensor algorithms minimize the squared
gradient norm at a rate of O(k−3p). Our results extend those for first-order algorithms [Shi
et al., 2022] and second-order algorithms [Monteiro and Svaiter, 2013].

Approximate tensor subroutine. The celebrated proximal point algorithms [Rockafel-
lar, 1976, Güler, 1992] (corresponding to implicit time discretization of certain systems)
require solving an exact proximal iteration with proximal coefficient λ > 0 at each iteration:

x = argmin
u∈Rd

{
Φ(u) + 1

2λ
‖u− v‖2

}
. (5.35)

In general, Eq. (6.38) can be as hard as minimizing the function Φ when the proximal
coefficient λ → +∞. Fortunately, when Φ ∈ Fp` (Rd), it suffices to solve the subproblem
that minimizes the sum of the p-th order Taylor approximation of Φ and a regularization
term, motivating a line of p-th order tensor algorithms [Baes, 2009, Birgin et al., 2016, 2017,
Mart́ınez, 2017, Jiang et al., 2020, Nesterov, 2021b, Gasnikov et al., 2019a, Jiang et al., 2019,
Bubeck et al., 2019]. More specifically, we define

Φv(u) = Φ(v) + 〈∇Φ(v), u− v〉+

p∑
j=2

1
j!
∇(j)Φ(v)[u− v]j + `‖u−v‖p+1

(p+1)!
.

Our proposed algorithms are based on either an inexact solution of Eq. (5.36a), used in Jiang
et al. [2019], or an exact solution of Eq. (5.36b), used in Gasnikov et al. [2019a] and Bubeck
et al. [2019]:

min
u∈Rd

Φv(u) + 1
2λ
‖u− v‖2, (5.36a)

min
u∈Rd

Φv(u). (5.36b)

In particular, the solution xv of Eq. (5.36a) is unique and satisfies λ∇Φv(xv) + xv − v = 0.
Thus, we denote a σ̂-inexact solution of Eq. (5.36a) by a vector x ∈ Rd satisfying that
‖λ∇Φv(x) + x− v‖ ≤ σ̂‖x− v‖ use either it or an exact solution of Eq. (5.36b).

First algorithm. We present the first optimal p-th order tensor algorithm in Algorithm 16
and prove that it is Algorithm 14 with specific choice of θ.

Proposition 5.4.12 Algorithm 16 is Algorithm 14 with θ = σlp!
2`

or θ = (p−1)!
2`

.
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Algorithm 16 Optimal p-th order Tensor Algorithm I [Gasnikov et al., 2019a, Jiang et al.,
2019, Bubeck et al., 2019]

STEP 0: Let x0, v0 ∈ Rd, σ̂ ∈ (0, 1) and 0 < σl < σu < 1 such that σl(1 + σ̂)p−1 <
σu(1− σ̂)p−1 and σ = σ̂ + σu < 1 be given, and set A0 = 0 and k = 0.
STEP 1: If 0 = ∇Φ(xk), then stop.
STEP 2: Otherwise, compute a positive scalar λk+1 with a σ̂-inexact solution xk+1 ∈ Rd

of Eq. (5.36a) satisfying that

σlp!
2`
≤ λk+1‖xk+1 − ṽk‖p−1 ≤ σup!

2`
,

or an exact solution xk+1 ∈ Rd of Eq. (5.36b) satisfying that

(p−1)!
2`
≤ λk+1‖xk+1 − ṽk‖p−1 ≤ p!

`(p+1)
,

where ṽk = Ak
Ak+ak+1

xk + ak+1

Ak+ak+1
vk and a2

k+1 = λk+1(Ak + ak+1).

STEP 3: Compute Ak+1 = Ak + ak+1 and vk+1 = vk − ak+1∇Φ(xk+1).
STEP 4: Set k ← k + 1, and go to STEP 1.

Proof. Given that a pair (xk, vk)k≥1 is generated by Algorithm 16, we define wk = ∇Φ(xk)
and εk = 0. Then vk+1 = vk − ak+1∇Φ(xk+1) = vk − ak+1wk+1. Using Jiang et al. [2019,
Proposition 3.2] with a σ̂-inexact solution xk+1 ∈ Rd of Eq. (5.36a) at (λk+1, ṽk), a triple
(xk+1, wk+1, εk+1) ∈ Rd × Rd × (0,+∞) satisfies that

wk+1 ∈ ∂εk+1
Φ(xk+1), ‖λk+1wk+1 + xk+1 − ṽk‖2 + 2λk+1εk+1 ≤ σ2‖xk+1 − ṽk‖2.

Since θ = σlp!
2`
∈ (0, 1) and σ = σ̂ + σu < 1, we have

λk+1‖xk+1 − ṽk‖p−1 ≤ σup!
2`

=⇒ σ̂ + 2`λk+1

p!
‖xk+1 − ṽk‖p−1 ≤ σ̂ + σu = σ,

λk+1‖xk+1 − ṽk‖p−1 ≥ σlp!
2`

=⇒ λk+1‖xk+1 − ṽk‖p−1 ≥ θ.

Using the same argument with Bubeck et al. [2019, Lemma 3.1] instead of Jiang et al. [2019,
Proposition 3.2] and an exact solution xk+1 ∈ Rd of Eq. (5.36b), we obtain the same result

with θ = (p−1)!
2`

. Putting these pieces together yields the desired conclusion. �

In view of Proposition 5.4.12, the iteration complexity derived for Algorithm 14 hold for
Algorithm 16. We summarize the results in the following theorem.

Theorem 5.4.13 For every integer k ≥ 1, the objective function gap satisfies

Φ(xk)− Φ(x?) = O(k−
3p+1

2 ),

and the squared gradient norm satisfies

inf
1≤i≤k

‖∇Φ(xi)‖2 = O(k−3p).
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Algorithm 17 Optimal p-th order Tensor Algorithm II

STEP 0: Let x0, v0 ∈ Rd, σ̂ ∈ (0, 1) and 0 < σl < σu < 1 such that σl(1 + σ̂)p−1 <
σu(1− σ̂)p−1 and σ = σ̂ + σu < 1 be given, and set γ0 = 1 and k = 0.
STEP 1: If 0 = ∇Φ(xk), then stop.
STEP 2: Otherwise, compute a positive scalar λk+1 with a σ̂-inexact solution xk+1 ∈ Rd

of Eq. (5.36a) satisfying that

σlp!
2`
≤ λk+1‖xk+1 − ṽk‖p−1 ≤ σup!

2`
,

or an exact solution xk+1 ∈ Rd of Eq. (5.36b) satisfying that

(p−1)!
2`
≤ λk+1‖xk+1 − ṽk‖p−1 ≤ p!

`(p+1)
,

where ṽk = (1− αk+1)xk + αk+1vk and (αk+1)2 = λk+1(1− αk+1)γk.

STEP 3: Compute γk+1 = (1− αk+1)γk and vk+1 = vk − αk+1∇Φ(xk+1)

γk+1
.

STEP 4: Set k ← k + 1, and go to STEP 1.

Remark 5.4.14 Theorem 5.4.13 has been derived in Monteiro and Svaiter [2013, Theo-
rem 6.4] for the special case of p = 2, and a similar result for Nesterov’s accelerated gradient
descent (the special case of p = 1) has also been derived in Shi et al. [2022]. For p ≥ 3
in general, the first inequality on the objective function gap has been derived independently
in Gasnikov et al. [2019a, Theorem 1], Jiang et al. [2019, Theorem 3.5] and Bubeck et al.
[2019, Theorem 1.1], while the second inequality on the squared gradient norm is new.

Second algorithm. We present the second optimal p-th order tensor algorithm in Algo-
rithm 17 which is Algorithm 15 with specific choice of θ. The proof is omitted since it is the
same as the aforementioned analysis for Algorithm 16.

Proposition 5.4.15 Algorithm 17 is Algorithm 15 with θ = σlp!
2`

or θ = (p−1)!
2`

.

Theorem 5.4.16 For every integer k ≥ 1, the objective gap satisfies

Φ(xk)− Φ(x?) = O(k−
3p+1

2 ),

and the squared gradient norm satisfies

inf
1≤i≤k

‖∇Φ(xi)‖2 = O(k−3p).

Remark 5.4.17 The approximate tensor subroutine in Algorithm 16 and 17 can be effi-
ciently implemented usinga novel bisection search scheme. We refer the interested readers
to Jiang et al. [2019] and Bubeck et al. [2019] for the details.
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5.5 Conclusion

We have presented a closed-loop control system for modeling optimal tensor algorithms
for smooth convex optimization and provided continuous-time and discrete-time Lyapunov
functions for analyzing the convergence properties of this system and its discretization. Our
framework provides a systematic way to derive discrete-time p-th order optimal tensor algo-
rithms, for p ≥ 2, and simplify existing analyses via the use of a Lyapunov function. A key
ingredient in our framework is the algebraic equation, which is not present in the setting of
p = 1, but is essential for deriving optimal acceleration methods for p ≥ 2. Our framework
allows us to infer that a certain class of p-th order tensor algorithms minimize the squared
norm of the gradient at a fast rate of O(k−3p) for smooth convex functions.

It is worth noting that one could also consider closed-loop feedback control of the velocity.
This is called nonlinear damping in the PDE literature; see Attouch et al. [2022b] for recent
progress in this direction. There are also several other avenues for future research. In
particular, it is of interest to bring our perspective into register with the Lagrangian and
Hamiltonian frameworks that have proved productive in recent work [Wibisono et al., 2016,
Diakonikolas and Jordan, 2021, Muehlebach and Jordan, 2021, França et al., 2021] and the
control-theoretic viewpoint of Lessard et al. [2016] and Hu and Lessard [2017]. We would
hope for this study to provide additional insight into the geometric or dynamical role played
by the algebraic equation for modeling the continuous-time dynamics. Moreover, we wish to
study possible extensions of our framework to nonsmooth optimization by using differential
inclusions Vassilis et al. [2018] and monotone inclusions. The idea is to consider the setting
in which 0 ∈ T (x) where T is a maximally monotone operator in a Hilbert space [Alvarez and
Attouch, 2001, Attouch and Svaiter, 2011, Maingé, 2013, Attouch et al., 2013b, Abbas et al.,
2014, Attouch et al., 2016a, Bot and Csetnek, 2016, Attouch and Cabot, 2018, 2020, Attouch
and László, 2020b,a]. Finally, given that we know that direct discretization of our closed-loop
control system cannot recover Nesterov’s optimal high-order tensor algorithms [Nesterov,
2018, Section 4.3], it is of interest to investigate the continuous-time limit of Nesterov’s
algorithms and see whether the algebraic equation plays a role in their analysis.
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Chapter 6

A Closed-Loop Control Approach to
High-Order Inclusion

We propose and analyze a new dynamical system with a closed-loop control law in a Hilbert
space H, aiming to shed light on the acceleration phenomenon for monotone inclusion prob-
lems, which unifies a broad class of optimization, saddle point and variational inequality
(VI) problems under a single framework. Given an operator A : H ⇒ H that is maxi-
mal monotone, we propose a closed-loop control system that is governed by the operator
I − (I + λ(t)A)−1, where a feedback law λ(·) is tuned by the resolution of the algebraic
equation λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ for some θ > 0. Our first contribution is to
prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem.
We present a simple Lyapunov function for establishing the weak convergence of trajectories
via the Opial lemma and strong convergence results under additional conditions. We then
prove a global ergodic convergence rate of O(t−(p+1)/2) in terms of a gap function and a
global pointwise convergence rate of O(t−p/2) in terms of a residue function. Local linear
convergence is established in terms of a distance function under an error bound condition.
Further, we provide an algorithmic framework based on the implicit discretization of our
system in a Euclidean setting, generalizing the large-step HPE framework [Monteiro and
Svaiter, 2012]. Even though the discrete-time analysis is a simplification and generalization
of existing analyses for a bounded domain, it is largely motivated by the aforementioned
continuous-time analysis, illustrating the fundamental role that the closed-loop control plays
in acceleration in monotone inclusion. A highlight of our analysis is a new result concern-
ing pth-order tensor algorithms for monotone inclusion problems, complementing the recent
analysis for saddle point and VI problems [Bullins and Lai, 2022].

6.1 Introduction

Monotone inclusion refers to the problem of finding a root of a point-to-set maximal mono-
tone operator A : H⇒ H (see the definition in Rockafellar [1970]), where H is a real Hilbert
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space. Formally, we have
Find x ∈ H such that 0 ∈ Ax. (6.1)

Monotone inclusion is a fundamental problem in applied mathematics, unifying a broad class
of optimization, saddle point and variational inequality problems in a single framework. In
particular, the minimization of a convex function f consists in finding x ∈ H such that
0 ∈ ∂Φ(x), where ∂Φ(·)—the subdifferential of Φ—is known to be maximal monotone if Φ
is proper, lower semi-continuous and convex. As a further example, letting A = F + ∂1X
where F : H 7→ H is continuous and monotone and 1X is an indicator function of a closed
and convex set X ⊆ H, the monotone inclusion problem becomes

Finding x ∈ X such that 〈F (x), y − x〉 ≥ 0 for all y ∈ X .

This is known as the variational inequality (VI) problem [Facchinei and Pang, 2007], and
it also covers many classical problems as special cases [Karamardian, 1972, Kelley, 1995].
Over several decades, the monotone inclusion problem has found applications in a wide set of
fields, including partial differential equations [Polyanin and Zaitsev, 2003], game theory [Os-
borne, 2004], signal/image processing [Bose and Meyer, 2003] and location theory [Farahani
and Hekmatfar, 2009]; see also Facchinei and Pang [2007, Section 1.4] for additional ap-
plications. Recently, the model has begun to see applications in machine learning as an
abstraction of saddle point problems, with examples including generative adversarial net-
works (GANs) [Goodfellow et al., 2014], online learning in games [Cesa-Bianchi and Lugosi,
2006], adversarial learning [Sinha et al., 2018] and distributed computing [Shamma, 2008].
These applications have made significant demands with respect to computational feasibility,
and the design of efficient algorithms for solving monotone inclusions has moved to the fore in
the past decade [Eckstein and Svaiter, 2009, Briceno-Arias and Combettes, 2011, Combettes,
2013, Combettes and Eckstein, 2018, Davis, 2015, Briceno-Arias and Davis, 2018].

A simple and basic tool for solving monotone inclusion problems is the celebrated prox-
imal point algorithm (PPA) [Martinet, 1970, 1972, Rockafellar, 1976]. The idea is to refor-
mulate Eq. (6.1) as a fixed-point problem given by

Find x ∈ H such that x− (I + λA)−1x = 0, (6.2)

where λ > 0 is a parameter and (I + λA)−1 is the resolvent of index λ of A. Letting x0 ∈ H
be an initial point, the PPA scheme is implemented by

xk+1 = (I + λA)−1xk, for all k ≥ 0.

In the special case of convex optimization, where A = ∂f , the convergence rate of PPA is
O(1/k) in terms of objective function gap [Güler, 1991]. It has been accelerated to O(1/k2)
by Güler [1992]. However, this acceleration can not be extended to monotone inclusion
problems in full generality, although extensions have been found under certain conditions
(e.g., cocoercivity) [Alvarez and Attouch, 2001, Attouch and Peypouquet, 2019, Attouch
and Cabot, 2020]. In the context of monotone VIs, the ergodic convergence rate is O(1/k)
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in terms of a gap function and the pointwise convergence rate is O(1/
√
k) in terms of a

residue function [Facchinei and Pang, 2007]. The former rate has matched the lower bound
for first-order methods [Diakonikolas, 2020] while the latter rate can be improved using new
acceleration techniques [Kim, 2021]. This line of work focuses, however, on first-order algo-
rithms and does not regard acceleration as a general phenomenon to be realized via appeal
to high-order smoothness structure of an operator. As noted in a seminal work [Monteiro
and Svaiter, 2012], there remains a gap in our understanding of accelerated pth-order tensor
algorithms for monotone inclusion problems, for the case of p ≥ 2, where the algorithmic
design and convergence analysis is much more delicate.

In this paper, we avail ourselves of a continuous-time viewpoint for formulating acceler-
ation in monotone inclusion, making use of a closed-loop control mechanism. We build on
a two-decade trend that exploits the interplay between continuous-time and discrete-time
perspectives on dynamical systems for monotone inclusion problems [Alvarez and Pérez C,
1998, Attouch and Redont, 2001, Alvarez et al., 2002, Attouch and Svaiter, 2011, Attouch
et al., 2012, Maingé, 2013, Attouch et al., 2013b, Abbas et al., 2014, Attouch et al., 2016a,
Attouch and László, 2020b, 2021]. As in these papers, our work makes use of Lyapunov
functions to transfer asymptotic behavior and rates of convergence between continuous time
and discrete time.

Our point of departure is the following continuous-time problem that incorporates a time-
varying function λ(·) in place of λ in the fixed-point formulation of monotone inclusion in
Eq. (6.2):

ẋ(t) + x(t)− (I + λ(t)A)−1x(t) = 0. (6.3)

The time evolution of λ(·) is specified by a closed-loop control law:

λ(t)‖ẋ(t)‖p−1 = θ, (6.4)

where θ > 0 and the order p ∈ {1, 2, . . .} are parameters. We assume that x(0) ∈ {x ∈
H | 0 /∈ Ax}. This is not restrictive since 0 ∈ Ax(0) implies that the monotone inclusion
problem has been solved. Throughout the paper, we assume that A is maximal monotone
and A−1(0) = {x ∈ H | 0 ∈ Ax} is a nonempty set. As we shall see, our main results on the
existence and uniqueness of global solutions and the convergence properties of trajectories
are valid under this general assumption. Finally, we remark that our control law in Eq. (6.4)
is a natural generalization of a similar equation in Attouch et al. [2016a] that models the
proximal Newton algorithm specialized to convex optimization.

Contributions. We first study the closed-loop control system in Eq. (6.3) and (6.4) and
prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem (see
Theorem 6.2.6). For p = 1, we have λ(t) = θ and our system becomes the continuous-time
PPA dynamics, indicating that our system extends PPA from first-order monotone inclusion
to high-order monotone inclusion. Further, we provide a Lyapunov function that allows
us to establish weak convergence of trajectories via the Opial lemma (see Theorem 6.3.1)
and yield strong convergence results under additional conditions (see Theorem 6.3.5). We
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obtain an ergodic convergence rate of O(t−(p+1)/2) in terms of a gap function and a pointwise
convergence rate of O(t−p/2) in terms of a residue function (see Theorem 6.3.7). Local linear
convergence guarantee is established under an error-bound condition (see Theorem 6.3.9).
Moreover, we provide an algorithmic framework based on the implicit discretization of our
closed-looped control system and remark that it generalizes the large-step HPE framework
of Monteiro and Svaiter [2012]. Our iteration complexity analysis, which is largely motivated
by our continuous-time analysis, can be viewed as a simplification and generalization of the
analysis in Monteiro and Svaiter [2012] for bounded domains (see Theorem 6.4.1). Finally, we
combine our algorithmic framework with an approximate tensor subroutine, yielding a suite
of accelerated pth-order tensor algorithms for monotone inclusion problems with A = F +H,
where F has Lipschitz (p− 1)th-order derivative and H is simple and maximal monotone. A
highlight of our analysis is a set of new theoretical results concerning the convergence rate
of pth-order tensor algorithms for monotone inclusion problems, complementing the previous
analysis in Bullins and Lai [2022].

Notation. We use bold lower-case letters such as x to denote vectors, and upper-case
letters such as X to denote tensors. We let H be a real Hilbert space that is endowed with
the scalar product 〈·, ·〉. For a vector x ∈ H, we let ‖x‖ denote its norm induced by 〈·, ·〉 and
let Bδ(x) = {x′ ∈ H | ‖x′−x‖ ≤ δ} denote its δ-neighborhood. For the operator A : H⇒ H,
we let dom(A) = {x ∈ H : Ax 6= ∅}. If H = Rd is a real Euclidean space, ‖x‖ refers to the
`2-norm of x. For a tensor X ∈ Rd1×d2×...×dp , we define

X[z1, · · · , zp] =
∑

1≤ij≤dj ,1≤j≤p

[
Xi1,··· ,ip

]
z1
i1
· · · zpip ,

and denote by ‖X‖op = max‖zi‖=1,1≤j≤pX[z1, · · · , zp] its operator norm induced by ‖ · ‖. Fix
p ≥ 1, we let GpL(Rd) be a class of maximal monotone single-valued operators F : Rd → Rd

where the (p − 1)th-order Jacobian are L-Lipschitz. In other words, F ∈ GpL(Rd) if F is
maximal monotone and ‖D(p−1)F (x′) − D(p−1)F (x)‖ ≤ L‖x′ − x‖ for all x, x′ ∈ Rd where
D(p−1)F (x) is the (p−1)th-order Jacobian of F at x ∈ Rd and D(0)F = F for all F ∈ G1

L(Rd).
To be more specific, for {z1, z2, . . . , zp} ⊆ Rd, we have

D(p−1)F (x)[z1, · · · , zp] =
∑

1≤i1,...,ip≤d

[
∂Fi1

∂xi2 ···∂xip
(x)
]
z1
i1
· · · zpip .

Given an iteration count k ≥ 1, the notation a = O(b(k)) stands for a ≤ C · b(k) where the
constant C > 0 is independent of k.

6.2 The Closed-Loop Control System

We study the closed-loop control system in Eq. (6.3) and Eq. (6.4). Indeed, we start by
analyzing the algebraic equation λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ for θ ∈ (0, 1). Then,



CHAPTER 6. A CLOSED-LOOP CONTROL APPROACH TO HIGH-ORDER
INCLUSION 169

we prove the existence and uniqueness of a local solution by appeal to the Cauchy-Lipschitz
theorem and extend the local solution to a global solution using properties of the closed-loop
control law λ(·). We conclude by discussing other systems in the literature that exemplify
our general framework.

Algebraic equation. We study the algebraic equation,

λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ ∈ (0, 1), (6.5)

which links the feedback control law λ(·) and the solution trajectory x(·). To streamline the
presentation, for the case of p ≥ 2 we define a function ϕ : [0,+∞) × H 7→ [0,+∞), such
that

ϕ(λ, x) = λ
1
p−1‖x− (I + λA)−1x‖, ϕ(0, x) = 0.

By the definition of ϕ, Eq. (6.5) is equivalent to ϕ(λ(t), x(t)) = θ1/(p−1). Our first lemma
shows that the mapping x 7→ ϕ(λ, x) is Lipschitz continuous for fixed λ > 0. We have:

Lemma 6.2.1 For p ≥ 2, we have |ϕ(λ, x1) − ϕ(λ, x2)| ≤ λ
1
p−1‖x1 − x2‖ for ∀x1, x2 ∈ H

and ∀λ > 0.

The next lemma presents a key property of the mapping λ 7→ ϕ(λ, x) for a fixed x ∈ H. It can
be interpreted as a generalization of Monteiro and Svaiter [2012, Lemma 4.3] and Attouch
et al. [2016a, Lemma 1.3] from p = 2 to p ≥ 2.

Lemma 6.2.2 For p ≥ 2, we have(
λ2

λ1

) 1
p−1

ϕ(λ1, x) ≤ ϕ(λ2, x) ≤
(
λ2

λ1

) p
p−1

ϕ(λ1, x),

for all x ∈ H and 0 < λ1 ≤ λ2. In addition, ϕ(λ, x) = 0 if and only if 0 ∈ Ax for any fixed
λ > 0.

The following proposition provides a property of the mapping λ 7→ ϕ(λ, x), for any fixed
x ∈ H satisfying x /∈ A−1(0) = {x′ ∈ H : 0 ∈ Ax′}. We have:

Proposition 6.2.3 Suppose that p ≥ 2 and x /∈ A−1(0) is fixed, the mapping ϕ(·, x) is
continuous and strictly increasing. Further, we have ϕ(0, x) = 0 and ϕ(λ, x) → +∞ as
λ→ +∞.

Proof. By definition of ϕ, we have ϕ(0, x) = 0 for any fixed x /∈ A−1(0). Since x /∈ A−1(0),
Lemma 6.2.2 guarantees that ϕ(λ, x) > 0 for all λ > 0 and ϕ(λ1, x) < ϕ(λ2, x) for all
0 < λ1 < λ2. That is to say, the mapping ϕ(·, x) is strictly increasing. In addition, we fix
λ1 > 0 and let λ2 → +∞ in Lemma 6.2.2, yielding that ϕ(λ, x) → +∞ as λ → +∞ for
any fixed x /∈ A−1(0). Finally, we prove the continuity of the mapping λ 7→ ϕ(λ, x). In
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particular, Lemma 6.2.2 implies that ϕ(λ, x) ≤ λp/(p−1)ϕ(1, x) for any fixed λ ∈ (0, 1]. This
together with the definition of ϕ implies that

0 ≤ lim sup
λ→0+

ϕ(λ, x) ≤ lim
λ→0+

λ
p
p−1ϕ(1, x) = 0,

which implies the continuity of the mapping λ 7→ ϕ(λ, x) at λ = 0. Left continuity and
right continuity of λ 7→ ϕ(λ, x) at λ > 0 follow from the first and the second inequality in
Lemma 6.2.2. �

In view of Proposition 6.2.3, for any fixed x /∈ A−1(0), there exists a unique λ > 0 so that
ϕ(λ, x) = θ1/(p−1) for some θ ∈ (0, 1). We accordingly define Ω ⊆ H and the mapping
Λθ : Ω 7→ (0,∞) as follows:

Ω = H \ A−1(0)
.
= {x ∈ H : 0 /∈ Ax}, Λθ(x) = (ϕ(·, x))−1(θ1/(p−1)). (6.6)

Since A is maximal monotone, we have that A−1(0) is closed and thus Ω is open. Note that
this simple fact is crucial to the subsequent analysis of the existence and uniqueness of a
local solution.

Existence and uniqueness of a local solution. We prove the existence and uniqueness
of a local solution of the closed-loop control system in Eq. (6.3) and Eq. (6.4) by appeal to
the Cauchy-Lipschitz theorem. The system considered in this paper can be written in the
following form: 

ẋ(t) + x(t)− (I + λ(t)A)−1x(t) = 0,

λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ,

x(0) = x0 ∈ Ω.

Using the mapping Λθ : Ω 7→ (0,∞) (see Eq. (6.6)), this system can be expressed as an
autonomous system. Indeed, we have

λ(t) = Λθ(x(t))⇐⇒ λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ.

Putting these pieces together, we arrive at an autonomous system in the compact form of

ẋ(t) = F (x(t)), x(0) = x0 ∈ Ω, (6.7)

where the vector field F : Ω 7→ H is given by

F (x) = (I + Λθ(x)A)−1x− x. (6.8)

Our theorem on the existence and uniqueness of a local solution is summarized as follows.

Theorem 6.2.4 There exists t0 > 0 such that the autonomous system in Eq. (6.7) and
Eq. (6.8) has a unique solution x : [0, t0] 7→ H. Equivalently, the closed-loop control system
in Eq. (6.3) and Eq. (6.4) has a unique solution, (x, λ) : [0, t0] 7→ H× (0,+∞). In addition,
x(·) is continuously differentiable and λ(·) is locally Lipschitz continuous.
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A standard approach for proving the existence and uniqueness of a local solution is via appeal
to the Cauchy-Lipschitz theorem [Coddington and Levinson, 1955, Theorem I.3.1]. This
theorem requires that the vector field F (·) is Lipschitz continuous, which is not immediate
in our case due to the appearance of (I + Λθ(x)A)−1. In order to avail ourselves directly of
the Cauchy-Lipschitz theorem, the first step is to study the properties of the function Λθ(x).
We have the following lemma.

Lemma 6.2.5 Suppose that p ≥ 2 and the function Γθ : H 7→ (0,+∞) is given by

Γθ(x) =
(

inf{α > 0 :
∥∥x− (I + α−1A)−1x

∥∥ ≤ α
1
p−1 θ

1
p−1}

) 1
p−1

.

Then, we have

Γθ(x) =


(

1
Λθ(x)

) 1
p−1

, if x ∈ Ω,

0, otherwise,

and Γθ itself is Lipschitz continuous with a constant θ−1/(p−1) > 0.

Proof of Theorem 6.2.4: For simplicity, we define Aθ = I− (I+ θA)−1. In what follows,
we first prove that F : Ω 7→ H defined in Eq. (6.8) is locally Lipschitz continuous case by
case.

Case of p = 1: The algebraic equation in Eq. (6.4) implies that λ(·) is a constant function
such that λ(t) ≡ θ for all t ≥ 0. Then, by the definition of F in Eq. (6.8), we have

F (x) = (I + θA)−1x− x.

By the definition of Aλ, we have ‖F (x1) − F (x2)‖ = ‖Aθx1 − Aθx2‖. It is straightforward
to derive that Aθ is 1-Lipschitz continuous (see the proof of Lemma 6.2.1). Putting these
pieces together yields the desired result.

Case of p ≥ 2: Taking x0 ∈ Ω and 0 < δ < ( θ
Λθ(x0)

)1/(p−1), we have Bδ(x0, δ) ⊆ Ω since Ω

is open. For any x ∈ Bδ(x0, δ), Lemma 6.2.5 implies∣∣∣∣( 1
Λθ(x)

) 1
p−1 −

(
1

Λθ(x0)

) 1
p−1

∣∣∣∣ = |Γθ(x)− Γθ(x0)| ≤ θ−
1
p−1‖x− x0‖ ≤ δθ−

1
p−1 .

In view of the choice of δ > 0 and the definition of λ0, we have

0 <
(

1
Λθ(x0)

) 1
p−1 −

(
δp−1

θ

) 1
p−1 ≤

(
1

Λθ(x)

) 1
p−1

= Γθ(x) ≤
(

1
Λθ(x0)

) 1
p−1

+
(
δp−1

θ

) 1
p−1

. (6.9)

Taking x1, x2 ∈ Bδ(x0, δ) ⊆ Ω, we let λ1 = Λθ(x1) and λ2 = Λθ(x2). Then, we have

‖F (x1)− F (x2)‖ = ‖Aλ1x1 − Aλ2x2‖ ≤ ‖Aλ1x1 − Aλ1x2‖+ ‖Aλ1x2 − Aλ2x2‖. (6.10)
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By the definition of λ1, we obtain that λ1 > 0 and Aλ1 is 1-Lipschitz continuous. This implies

‖Aλ1x1 − Aλ1x2‖ ≤ ‖x1 − x2‖. (6.11)

Further, we obtain from the proof of Attouch and Peypouquet [2019, Lemma A.4] that

‖Aλ1x2 − Aλ2x2‖ ≤
∣∣∣1− λ1

λ2

∣∣∣ ‖x2 − (I + λ2A)−1x2)‖.

This together with the definition of λ2 and Λθ(·) yields

‖Aλ1x2 − Aλ2x2‖ ≤
∣∣∣1− λ1

λ2

∣∣∣ ( θ
λ2

) 1
p−1

. (6.12)

Plugging Eq. (6.11) and Eq. (6.12) into Eq. (6.10) and using the definition of λ1 and λ2, we
have

‖F (x1)− F (x2)‖ ≤ ‖x1 − x2‖+
∣∣∣1− Λθ(x1)

Λθ(x2)

∣∣∣ ( θ
Λθ(x2)

) 1
p−1

. (6.13)

Using Γθ(x) = ( 1
Λθ(x)

)
1
p−1 for all x ∈ Ω and the Lipschitz continuity of Γθ (cf. Lemma 6.2.5),

we have ∣∣∣1− Λθ(x1)
Λθ(x2)

∣∣∣ ( 1
Λθ(x2)

) 1
p−1

= Γθ(x2)
(Γθ(x1))p−1

∣∣(Γθ(x1))p−1 − (Γθ(x2))p−1
∣∣

= Γθ(x2)
(Γθ(x1))p−1 |Γθ(x1)− Γθ(x2)|

(
p−1∑
i=1

(Γθ(x1))p−1−i(Γθ(x2))i−1

)

≤ Γθ(x2)
(Γθ(x1))p−1

(
p−1∑
i=1

(Γθ(x1))p−1−i(Γθ(x2))i−1

)
θ−

1
p−1‖x1 − x2‖.

Plugging this inequality into Eq. (6.13) yields

‖F (x1)− F (x2)‖ ≤

(
1 + Γθ(x2)

(Γθ(x1))p−1

(
p−1∑
i=1

(Γθ(x1))p−1−i(Γθ(x2))i−1

))
‖x1 − x2‖.

Since x1, x2 ∈ Bδ(x0, δ), Eq. (6.9) implies

0 <
(

1
Λθ(x0)

) 1
p−1 −

(
δp−1

θ

) 1
p−1 ≤ Γθ(xi) ≤

(
1

Λθ(x0)

) 1
p−1

+
(
δp−1

θ

) 1
p−1

, for all i = 1, 2.

Therefore, we conclude that

‖F (x1)− F (x2)‖ ≤ C‖x1 − x2‖,

where C > 0 is a constant that is independent of the choice of x1 and x2 but only depends
on the value of δ, θ, p and Λθ(x0). This proves the claim.
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We are ready to prove main results. Indeed, by the Cauchy-Lipschitz theorem (local
version), for any x0 ∈ Ω, there exists a unique local solution x : [0, t1] 7→ H of the autonomous
system in Eq. (6.7) and Eq. (6.8) for some t1 > 0. Thus, there exists a unique local solution,
(x, λ) : [0, t1] 7→ H × (0,+∞), of the closed-loop control system in Eq. (6.3) and Eq. (6.4)
with λ(t) = Λθ(x(t)). By Cauchy-Lipschitz theorem, we have that x(·) is continuously
differentiable and x(t) ∈ Ω for all t ∈ [0, t1]. For the case of p = 1, Eq. (6.4) implies that
λ(·) is a constant function and thus locally Lipschitz continuous. For the case of p ≥ 2,
Lemma 6.2.5 together with x(t) ∈ Ω for all t ∈ [0, t1] implies

λ(t) = Λθ(x(t)) =
(

1
Γθ(x(t))

) 1
p−1

for all t ∈ [0, t1].

Since Γθ(x) is Lipschitz continuous in x, we obtain that λ(·) is Lipschitz continuous on [0, t2]
for some sufficiently small t2 > 0. Then, by taking t0 = min{t1, t2} > 0, we achieve the
desired results. This completes the proof.

Existence and uniqueness of a global solution. Our theorem on the existence and
uniqueness of a global solution is summarized as follows.

Theorem 6.2.6 The closed-loop control system in Eq. (6.3) and Eq. (6.4) has a unique global
solution, (x, λ) : [0,+∞) 7→ H × (0,+∞). Moreover, x(·) is continuously differentiable and
λ(·) is locally Lipschitz continuous. If p ≥ 2, we have

‖x(t)− (I + λ(t)A)−1x(t)‖ ≥ ‖x(0)− (I + λ(0)A)−1x(0)‖e−t, for all t ≥ 0.

Remark 6.2.7 Theorem 6.2.6 demonstrates that x(t) − (I + λ(t)A)−1x(t) 6= 0 for all t ≥
0. After some straightforward calculations, it is clear that the aforementioned argument
is equivalent to the assertion that the orbit x(·) stays in Ω. In other words, if x0 ∈ Ω,
our closed-loop control system in Eq. (6.3) and Eq. (6.4) is not stabilized in finite time,
which helps clarify the asymptotic convergence behavior of many discrete-time algorithms
to a solution of monotone inclusion problems (see Monteiro and Svaiter [2010, 2012] for
examples).

Remark 6.2.8 The feedback law λ(·), which we will show satisfies λ(t) → +∞ as t →
+∞, links to ‖ẋ(·)‖ = ‖x(·) − (I + λ(·)A)−1x(·)‖ via Eq. (6.4). Intuitively, if λ(·) changes
dramatically, we can not globalize a local solution using classical arguments. In the Levenberg-
Marquardt regularized systems, Attouch and Svaiter [2011] resolved this issue by assuming
that λ(·) is absolutely continuous on any finite bounded interval and proving that λ(t) ≤
λ(0)ect holds true for some constant c > 0. However, λ(·) is not a given datum in our
closed-loop control system but an emergent component of the evolution dynamics. As such,
it is preferable to prove that λ(t) ≤ λ(0)ect hold true without imposing any condition, as done
in the works [Attouch et al., 2013b, 2016a]. Recently, Lin and Jordan [2022b] have studied
a closed-loop control system which characterized accelerated pth-order tensor algorithms for
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convex optimization and established the global existence and uniqueness results under the
condition used in Attouch and Svaiter [2011]. They also clarified why this condition is
necessary and considered it an open problem to remove it. In the subsequent analysis, we
prove that |λ̇(t)| ≤ (p − 1)λ(t) holds for our system in Eq. (6.3) and Eq. (6.4) without
imposing any condition, demonstrating that acceleration in monotone inclusion problems is
intrinsically different from that in convex optimization.

We provide two lemmas that characterize further properties of the feedback law λ(·).

Lemma 6.2.9 Suppose that (x, λ) : [0, t0] 7→ H × (0,+∞) is a solution of the closed-loop
control system in Eq. (6.3) and Eq. (6.4). Then, we have |λ̇(t)| ≤ (p− 1)λ(t) for almost all
t ∈ [0, t0].

Lemma 6.2.10 Suppose that (x, λ) : [0, t0] 7→ H × (0,+∞) is a solution of the closed-loop
control system in Eq. (6.3) and Eq. (6.4). Then, we have that λ(·) is nondecreasing.

Proof of Theorem 6.2.6: We are ready to prove our main result on the existence and
uniqueness of a global solution. In particular, for the case of p = 1, it is clear that λ(t) = θ
is a constant function and the vector field F : Ω 7→ H is in fact global Lipschitz continuous
(see the proof of Theorem 6.2.4). Thus, by the Cauchy-Lipschitz theorem (global version),
we achieve the desired result.

For the case of p ≥ 2, let us consider a maximal solution of the closed-loop control system
in Eq. (6.3) and Eq. (6.4) as follows,

(x, λ) : [0, Tmax) 7→ Ω× (0,+∞).

Using the existence and uniqueness of a local solution (see Theorem 6.2.4) and a classical
argument, we obtain that the aforementioned maximal solution must exist. Further, by using
Lemma 6.2.9 and 6.2.10, we obtain that λ(·) is nondecreasing with 0 ≤ λ̇(t) ≤ (p − 1)λ(t)
for almost all t ∈ [0, Tmax).

It remains to show that the maximal solution is a global solution; that is, Tmax = +∞.
Indeed, the property of λ guarantees

0 < λ(0) ≤ λ(t) ≤ λ(0)e(p−1)t. (6.14)

If Tmax < +∞, this inequality implies that λ(t) ≤ λ(0)e(p−1)Tmax for all t ∈ [0, Tmax]. This
together with the fact that λ(·) is nondecreasing on [0, Tmax) implies that λ̄ = limt→Tmax λ(t)
exists and is finite and strictly positive. Using Eq. (6.3) and Eq. (6.4), we have

‖ẋ(t)‖ = ‖(I + λ(t)A)−1x(t)− x(t)‖ =
(

θ
λ(t)

) 1
p−1

. (6.15)

Combining Eq. (6.14) and Eq. (6.15) implies that ‖ẋ(·)‖ is bounded on [0, Tmax). Thus, x(·)
is Lipschitz continuous on [0, Tmax) and this implies that x̄ = limt→Tmax x(t) exists. We claim
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that x̄ ∈ Ω. Indeed, the function g(λ, x) = ‖(I+λA)−1x−x‖ is continuous in (λ, x). Since λ(·)
and x(·) are continuous on [0, Tmax], we have ‖(I+λ(t)A)−1x(t)−x(t)‖ → ‖(I+ λ̄A)−1x̄− x̄‖
as t→ Tmax. Then, Eq. (6.15) implies

‖(I + λ̄A)−1x̄− x̄‖ = lim
t→Tmax

‖(I + λ(t)A)−1x(t)− x(t)‖ = lim
t→Tmax

(
θ
λ(t)

) 1
p−1

=
(
θ
λ̄

) 1
p−1 > 0.

By appeal to Theorem 6.2.4 with an initial point x̄, we can then extend the solution to a
strictly larger interval which contradicts the maximality of the aforementioned solution.

Using Eq. (6.15) again, we have

‖x(t)− (I + λ(t)A)−1x(t)‖ =
(
λ(0)
λ(t)

) 1
p−1 ‖x(0)− (I + λ(0)A)−1x(0)‖.

Further, it is clear that Eq. (6.14) holds true for all t ∈ [0,+∞). That is to say, we have
λ(0)
λ(t)
≥ e−(p−1)t. Putting these pieces together yields

‖x(t)− (I + λ(t)A)−1x(t)‖ ≥ e−t‖x(0)− (I + λ(0)A)−1x(0)‖,

which completes the proof.

Discussion. We compare the system in Eq. (6.3) and Eq. (6.4) to other systems for convex
optimization and monotone inclusion. We also give an overview of the closed-loop control
approach and the continuous-time interpretation of high-order tensor algorithms.

Existing systems for optimization and inclusion problems. In the context of opti-
mization with a convex potential function Φ : H 7→ R, Polyak [1964] was the first to use
inertial dynamics to accelerate gradient methods. However, the convergence rate of O(1/t)
he obtained is not better than the steepest descent method. A decisive step to obtain a
faster convergence rate was taken by Su et al. [2016] who considered using asymptotically
vanishing damping for modeling Nesterov’s acceleration [Nesterov, 1983, Güler, 1992], trig-
gering a productive line of research on the dynamical systems foundations of accelerated
first-order algorithms [Attouch and Peypouquet, 2016, Attouch and Cabot, 2017, Attouch
et al., 2018, Diakonikolas and Orecchia, 2019, Apidopoulos et al., 2020, Muehlebach and
Jordan, 2021]. Another important ingredient for obtaining acceleration is so-called Hessian-
driven damping [Alvarez et al., 2002, Attouch et al., 2016b, Lin and Jordan, 2022b, Attouch
et al., 2022a,d] which originated from a variational characterization of general regularization
optimization algorithms [Alvarez and Pérez C, 1998]. This involved the study of Newton
and Levenberg-Marquardt regularized systems as follows:

(Newton) ẍ(t) +∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0,

(Levenberg-Marquardt) λ(t)ẋ(t) +∇2Φ(x(t))ẋ(t) +∇Φ(x(t)) = 0.
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These systems are well defined and admit robust asymptotic behavior [Attouch and Re-
dont, 2001, Attouch and Svaiter, 2011]. Based on this work, Alvarez et al. [2002] distin-
guished Hessian-driven damping from continuous-time Newton dynamics and Attouch et al.
[2016b] interpreted Nesterov’s acceleration in the forward-backward algorithms by combin-
ing Hessian-driven damping with asymptotically vanishing damping. The resulting dynamics
takes the following general form:

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0. (6.16)

Further work in this vein appeared in Shi et al. [2022], where Nesterov’s acceleration was
interpreted via multiscale limits that distinguish it from heavy ball method, and Attouch
et al. [2022a], where time scaling was introduced with Hessian-driven damping. Unfortu-
nately, none of the above approaches are suitable for deriving optimal accelerated versions
of high-order tensor algorithms in convex smooth optimization [Monteiro and Svaiter, 2013,
Gasnikov et al., 2019b]. Recently, Lin and Jordan [2022b] provided an initial foray into
analyzing the continuous-time dynamics of high-order tensor algorithms using the system
in Eq. (6.16) in which the tuning of (α(·), β(·), b(·)) is done in a closed loop by resolution
of the algebraic equation. Their approach gives a systematic way to derive discrete-time
optimal high-order tensor algorithms, further simplifying and generalizing the existing anal-
ysis in Monteiro and Svaiter [2013] via appeal to the construction of a unified discrete-time
Lyapunov function.

The extension of the continuous-time dynamics and Lyapunov analysis from convex opti-
mization to monotone inclusion problems has been pursued during the last two decades [Al-
varez and Attouch, 2001, Attouch and Maingé, 2011, Attouch and Svaiter, 2011, Maingé,
2013, Attouch et al., 2013b, 2016a, Abbas et al., 2014, Bot and Csetnek, 2016, Attouch and
Peypouquet, 2019, Attouch and Cabot, 2018, 2020, Attouch and László, 2020b, 2021]. In
particular, Attouch and Svaiter [2011] considered a generalization of Levenberg-Marquardt
regularized systems for monotone inclusion problems as follows, v(t) ∈ Ax(t),

λ(t)ẋ(t) + v̇(t) + v(t) = 0.

This system yields weak convergence to A−1(0) under a certain condition on λ(·). Subse-
quent work has obtained convergence rates for various first-order algorithms obtained by
the implicit discretization of this system or its variants [Attouch et al., 2013b, Abbas et al.,
2014, Attouch et al., 2016a].

Under the assumption that A is point-to-point and cocoercive, inertial systems taking the
following form have been considered in the literature [Alvarez and Attouch, 2001, Attouch
and Maingé, 2011, Maingé, 2013, Bot and Csetnek, 2016]:

ẍ(t) + αẋ(t) + A(x(t)) = 0.
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It is worth mentioning that cocoercivity is necessary for guaranteeing weak asymptotic sta-
bilization, and a fast convergence rate. For λ > 0, the operator Aλ = 1

λ
(I − (I + λA)−1) is

λ-cocoercive and A−1(0) = A−1
λ (0). This motivates us to study the following inertial system:

ẍ(t) + αẋ(t) + Aλ(x(t)) = 0.

In the quest for faster convergence, Attouch and Peypouquet [2019] combined this system
with asymptotically vanishing damping and a time-dependent regularizing parameter λ(·):

ẍ(t) + α(t)ẋ(t) + Aλ(t)(x(t)) = 0.

The discretization of these dynamics gives the relaxed inertial proximal algorithm [Attouch
and Cabot, 2018, Attouch et al., 2019c, Attouch and Peypouquet, 2019, Attouch and Cabot,
2020]. Recently, Attouch and László [2020b, 2021] have proposed to study Newton-like
inertial dynamics which generalizes the system in Eq. (6.16) from convex optimization to
monotone inclusion problems. The resulting dynamics takes the following general form:

ẍ(t) + α(t)ẋ(t) + β(t) d
dt

(Aλ(t)x(t)) + b(t)Aλ(t)x(t) = 0. (6.17)

The introduction of Newton-like correction term d
dt

(Aλ(t)x(t))—the generalization of the
Hessian-driven damping – provides a well-posed system for which we can derive the weak
convergence of trajectories to A−1(0). The convergence rates have also been obtained in both
continuous-time and discrete-time cases using the metric ‖Aλ(t)x(t)‖(see Attouch and Pey-
pouquet [2019] and Attouch and László [2020b, 2021]). In contrast, we investigate different
dynamical systems and derive different rates in terms of two more intuitive metrics—a gap
function and a residue function.

All of the aforementioned dynamical systems study first-order algorithms for monotone
inclusion problems and do not aim to capture the acceleration that may be obtainable from
high-order smoothness structures. The only exception that we are aware of is Attouch et al.
[2016a] who proposed a proximal Newton method for solving monotone inclusion problems
but conducted the convergence rate estimation when an operator is the subdifferential of a
convex function. Meanwhile, Monteiro and Svaiter [2012] and Bullins and Lai [2022] have
demonstrated that high-order tensor algorithms can achieve faster convergence rate than
first-order algorithms, but their derivations depend heavily on case-specific algebra. As such,
there remains a gap in our understanding; in particular, we are missing a continuous-time
perspective on acceleration in monotone inclusion.

Closed-loop control systems. Closed-loop control systems have been studied in the
context of convex optimization [Lin and Jordan, 2022b, Attouch et al., 2022b] and mono-
tone inclusion [Attouch et al., 2013b, 2016a]. Even though Attouch et al. [2013b, 2016a]
closely resembles our work, some differences exist. In particular, their convergence analysis
of Newton-type methods targets the solution of convex optimization rather than monotone
inclusion problems. Our focus, on the other hand, is to link closed-loop control with ac-
celeration in monotone inclusion, especially when p > 2. From a technical viewpoint, the
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construction of the gap function and the convergence rate estimation that we provide do not
appear in these earlier works.

Continuous-time perspective on high-order tensor algorithms. To the best of our
knowledge, all the existing work on continuous-time interpretations of high-order tensor
algorithms focus on convex optimization [Wibisono et al., 2016, Song et al., 2021, Lin and
Jordan, 2022b]. In particular, Wibisono et al. [2016] studied the following inertial gradient
system with asymptotically vanishing damping:

ẍ(t) + p+2
t
ẋ(t) + C(p+ 1)2tp−1∇Φ(x(t)) = 0,

which is an open-loop system without Hessian-driven damping. They derived a class of
pth-order tensor algorithms by implicit discretization and established a convergence rate of
O(k−(p+1)) in terms of the objective function gap. Song et al. [2021] proposed another form
of open-loop dynamics (we consider the simplified form in a Euclidean setting):

ẍ(t) +
(

2ȧ(t)
a(t)
− ä(t)

ȧ(t)

)
ẋ(t) +

(
(ȧ(t))2

a(t)

)
∇Φ(x(t)) = 0,

which is also open-loop and lacks Hessian-driven damping. Recently, Lin and Jordan [2022b]
provided a control-theoretic perspective on optimal acceleration for high-order tensor al-
gorithms. They considered the following closed-loop control system with Hessian-driven
damping:

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0,

where (α, β, b) are defined by

α(t) = 2ȧ(t)
a(t)
− ä(t)

ȧ(t)
, β(t) = (ȧ(t))2

a(t)
, b(t) = ȧ(t)(ȧ(t)+ä(t))

a(t)
,

a(t) = 1
4
(
∫ t

0

√
λ(s)ds)2, (λ(t))p‖∇Φ(x(t))‖p−1 = θ,

and recovered a class of optimal high-order tensor algorithms [Monteiro and Svaiter, 2013,
Gasnikov et al., 2019b] from implicit discretization of the above system. Here the rate is
O(t−(3p+1)/2) in terms of the objective function gap.

There is comparatively little work on the development of high-order tensor algorithms
for monotone inclusion problems; indeed, we are only aware of the high-order mirror-prox
method [Bullins and Lai, 2022]. However, the derivation of this algorithm does not flow
from a single underlying principle but again involves case-specific algebra. It has been an
open challenge to extend earlier work on open-loop and closed-loop systems from convex
optimization to monotone inclusion problems.

6.3 Convergence Properties of Trajectories

We give a Lyapunov function for analyzing the convergence properties of solution trajectories
of our system in Eq. (6.3) and Eq. (6.4). In particular, we prove the weak convergence of
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trajectories to equilibrium by appeal to the Opial lemma as well as strong convergence results
under additional conditions. We also derive new global convergence rates by estimating the
rate of decrease of Lyapunov function. Finally, we use another Lyapunov function to establish
local linear convergence under an error bound condition.

Weak convergence. We present our results on the weak convergence of trajectories.

Theorem 6.3.1 Suppose that (x, λ) : [0,+∞) 7→ H × (0,+∞) is a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4). Then, there exists some x̄ ∈ A−1(0)
such that the trajectory x(t) weakly converges to x̄ as t→ +∞.

Remark 6.3.2 In the Hilbert-space setting (possibly infinite dimensional), the weak conver-
gence of x(·) to some x̄ ∈ A−1(0) in Theorem 6.3.1 is the best we can expect without additional
conditions. The same result was established for other systems for convex optimization, in-
cluding an open-loop inertial system for first-order algorithms [Attouch et al., 2016b] and a
closed-loop control system (which is the special instance of our system for p = 2), and for
second-order algorithms [Attouch et al., 2016a].

We define the following Lyapunov function for the system in Eq. (6.3) and Eq. (6.4):

E(t) = 1
2
‖x(t)− z‖2, (6.18)

where z ∈ H is a point in the Hilbert space. Note that this function measures the distance
between x(t) and any fixed point z ∈ H. It is simpler than that used for analyzing the
convergence of Newton-like inertial dynamics for monotone inclusion problems and different
from the ones developed for the systems with asymptotically vanishing damping. The closest
Lyapunov function to ours is the one employed by Attouch et al. [2016a], which is defined as
the distance between x(t) and z ∈ A−1(0). We note that the seemingly minor modification to
the form in Eq. (6.18) is key to deriving new results on the ergodic convergence of trajectories
in terms of a gap function (see Theorem 6.3.7 and its proof).

The following proposition gives the Opial lemma in its continuous form [Opial, 1967]. It
has become a basic analytical tool to study the weak convergence of trajectories of dynamical
systems associated with discrete-time algorithms for convex optimization [Alvarez, 2000,
Attouch et al., 2000] and monotone inclusion [Attouch and Redont, 2001, Attouch et al.,
2016a].

Proposition 6.3.3 (Opial Lemma) Suppose that S ⊆ H is a nonempty subset and x :
[0,+∞) 7→ H is a mapping. Then, there exists some x̄ ∈ S such that x(t) weakly converges
to x̄ as t→ +∞ if both of the following assumptions hold true:

1. For every z ∈ S, we have that limt→+∞ ‖x(t)− z‖ exists.

2. Every weak sequential cluster point of x(·) belongs to S.
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To prove Theorem 6.3.1, we provide one technical lemma that characterizes a descent prop-
erty of E(·) which is crucial to our subsequent analysis in this paper.

Lemma 6.3.4 Suppose that (x, λ) : [0,+∞) 7→ H × (0,+∞) is a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4) and let z ∈ A−1(0) in Eq. (6.18). Then,
we have

dE(t)
dt
≤ −‖x(t)− (I + λ(t)A)−1x(t)‖2.

Proof of Theorem 6.3.1: By Proposition 6.3.3, it suffices to prove that (i) limt→+∞ ‖x(t)−
z‖ exists for every z ∈ A−1(0) and (ii) every weak sequential cluster point of x(·) belongs to
A−1(0).

By Lemma 6.3.4, we have E(t) = 1
2
‖x(t)− z‖2 is nonincreasing for any fixed z ∈ A−1(0).

This implies that (i) holds true. Further, let x̄ ∈ H be a weak sequential cluster point of x(·),
we claim that it is also a weak sequential cluster point of y(·) = (I + λ(·)A)−1x(·). Indeed,
Lemma 6.3.4 implies

E(0)− E(t) ≥
∫ t

0

‖x(s)− y(s)‖2 ds, for all t ≥ 0.

Since E(t) ≥ 0, we have E(0) − E(t) ≤ E(0). As a direct consequence of Lemma 6.2.10 and
Theorem 6.2.6, we have that λ : [0,+∞) is nondecreasing. This together with Eq. (6.4)
implies that t 7→ ‖x(t)− y(t)‖ is nonincreasing. Putting these pieces together yields

‖x(t)− y(t)‖2 ≤ E(0)
t
→ 0, as t→ +∞.

This implies the desired result that x̄ is also a weak sequential cluster point of y(·). In
addition, we have 1

λ(t)
(x(t) − y(t)) ∈ Ay(t). Combining ‖x(t) − y(t)‖ → 0 and Eq. (6.4)

implies that λ(t) → +∞. Therefore, we have that 1
λ(t)
‖x(t)− y(t)‖ → 0 as t → +∞. Since

x̄ is a weak sequential cluster point of y(·) and the graph of A is demi-closed [Goebel and
Kirk, 1990, Chapter 10], we have 0 ∈ Ax̄ and hence x̄ ∈ A−1(0).

Strong convergence. We further establish strong convergence of a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4) under additional conditions.

Theorem 6.3.5 Suppose that (x, λ) : [0,+∞) 7→ H × (0,+∞) is a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4). Then, there exists some x̄ ∈ A−1(0)
such that the trajectory x(t) converges strongly to x̄ as t → +∞ if either of the following
conditions holds true:

1. A = ∇Φ where Φ : H 7→ R ∪ {+∞} is convex, differentiable and inf-compact.1

1A function Φ is inf-compact if for any r > 0 and κ ∈ R, the set {x ∈ H : ‖x‖ ≤ r,Φ(x) ≤ κ} is a
relatively compact set in H, i.e., the set whose closure is compact.



CHAPTER 6. A CLOSED-LOOP CONTROL APPROACH TO HIGH-ORDER
INCLUSION 181

2. A−1(0) has a nonempty interior.

Remark 6.3.6 In the Hilbert-space setting, the strong convergence is desirable since it guar-
antees that ‖x(t)− x̄‖ eventually becomes arbitrarily small [Bauschke and Combettes, 2001].
It has been studied for various discrete-time algorithms in convex optimization [Solodov and
Svaiter, 2000] and the realization of the importance of strong convergence dates to Güler
[1991] who showed that the convergence rate of the sequence of objectives {Φ(xk)}k≥0 is bet-
ter when {xk}k≥0 with strong convergence than weak convergence. In addition, the conditions
assumed in Theorem 6.3.5 can be verifiable by hand and the similar results can be obtained
using the generalized chain rule for the subdifferential in the case A = ∂Φ.

Proof of Theorem 6.3.5: For the first case, we claim that t 7→ Φ(x(t)) is nonincreasing.
Indeed, we let y(t) = (I + λ(t)∇Φ)−1x(t) and deduce from the convexity of Φ that

dΦ(x(t))
dt

= 〈ẋ(t),∇Φ(x(t))〉 Eq. (6.3)
= 〈y(t)− x(t),∇Φ(x(t))〉 ≤ 〈y(t)− x(t),∇Φ(y(t))〉.

By the definition of y(t), we have λ(t)∇Φ(y(t)) + y(t)− x(t) = 0. This implies

〈y(t)− x(t),∇Φ(y(t))〉 = −λ(t)‖∇Φ(y(t))‖2 ≤ 0.

Putting these pieces together yields the desired result. As such, it is immediate to see that
x(·) is contained in {x ∈ H : Φ(x) ≤ Φ(x0)}. By Lemma 6.3.4, we have E(t) = 1

2
‖x(t)− z‖2

is nonincreasing for any fixed z ∈ A−1(0). Thus, letting x? ∈ A−1(0) with ‖x?‖ finite, we
have that E(0) is finite and

x(t) ∈ S0
.
=
{
x ∈ H : Φ(x) ≤ Φ(x0), ‖x‖ ≤ ‖x?‖+

√
2E(0)

}
, for all t ∈ [0,+∞).

Since Φ : H 7→ R ∪ {+∞} is inf-compact on any bounded set, we have that S0 is relatively
compact. This implies that the trajectory x(·) is relatively compact. By Theorem 6.3.1,
there exists some x̄ ∈ A−1(0) such that x(t) converges weakly to x̄ as t→ +∞. As such, we
conclude the desired result.

For the second case, letting x? ∈ H be a point in the interior of A−1(0), there exists δ > 0
such that Bδ(x?) ⊆ A−1(0). Denoting Aλ = I − (I + λA)−1, we have

x ∈ A−1(0)⇐⇒ 0 ∈ Ax⇐⇒ x = (I + λA)−1x⇐⇒ 0 = Aλx⇐⇒ x ∈ A−1
λ (0),

which implies that A−1(0) = A−1
λ (0) and Bδ(x?) ⊆ A−1

λ (0) for any λ > 0. It is also well known
that Aλ is monotone [Rockafellar, 1970] Since Bδ(x?) ⊆ A−1

λ (0), we have x? + δh ∈ A−1
λ (0)

for any h ∈ H with ‖h‖ ≤ 1. This together with the monotonicity of Aλ yields

〈Aλx(t), x(t)− (x? + δh)〉 ≥ 0,

which implies
δ〈Aλx(t), h〉 ≤ 〈Aλx(t), x(t)− x?〉. (6.19)
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Combining the above inequality with Eq. (6.3) yields

‖ẋ(t)‖ = ‖Aλ(t)x(t)‖ = sup
‖h‖≤1

〈Aλ(t)x(t), h〉
Eq. (6.19)

≤ 1
δ
〈Aλ(t)x(t), x(t)−x?〉 = −1

δ
〈ẋ(t), x(t)−x?〉.

Then, we let 0 ≤ t1 ≤ t2 and deduce from the above inequality that

‖x(t2)−x(t1)‖ ≤
∫ t2

t1

‖ẋ(s)‖ ds ≤ −1
δ

(∫ t2

t1

〈ẋ(s), x(s)− x?〉
)
≤ 1

2δ

(
‖x(t1)− x?‖2 − ‖x(t2)− x?‖2

)
.

Since x? ∈ A−1(0), we deduce from Lemma 6.3.4 that ‖x(t) − x?‖ is nonincreasing and
convergent. Thus, the trajectory x(·) has the Cauchy property.

Rate of convergence. We prove the ergodic convergence rate of O(t−(p+1)/2) for a global
solution of the closed-loop control system in Eq. (6.3) and Eq. (6.4) in terms of a gap function.
We also prove a pointwise convergence rate of O(t−p/2) in terms of a residue function, and
then establish local linear convergence for a global solution in terms of a distance function.

Before stating our results, we provide the gap function and the residue function for mono-
tone inclusion problems. Indeed, the following gap function originates from the Fitzpatrick
function [Borwein and Lewis, 2010] and is also defined in the concurrent work of Cui et al.
[2022]. Formally, we have

gap(x) = sup
z∈dom(A)

sup
ξ∈Az

〈ξ, x− z〉. (6.20)

Clearly, gap(·) is closed2 and convex. Moreover, if A is maximal monotone, we have that
gap(x) ≥ 0 for all x ∈ H with equality if and only if x ∈ A−1(0) holds. The residue function
is derived from the monotone inclusion problem as follows,

res(x) = inf
ξ∈Ax
‖ξ‖. (6.21)

We are now ready to present our main results on the global convergence rate estimation in
terms of the gap function in Eq. (6.20) and the residue function in Eq. (6.21).

Theorem 6.3.7 Suppose that (x, λ) : [0,+∞) 7→ H × (0,+∞) is a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4) and let dom(A) be closed and bounded.
Then, we have

gap(z̃(t)) = O(t−
p+1

2 ),

and
res(z(t)) = O(t−

p
2 ),

2A function Φ : H 7→ R is closed if the sublevel set {x ∈ H : Φ(x) ≤ α} is closed for any α ∈ R;
see Rockafellar [1970].
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where z̃(·) and z(·) are uniquely determined by λ(·) and x(·) as follows,

(Ergodic Iterate) z̃(t) = 1∫ t
0 λ(s) ds

(∫ t

0

λ(s)(I + λ(s)A)−1x(s) ds

)
,

(Pointwise Iterate) z(t) = (I + λ(t)A)−1x(t).

Remark 6.3.8 Theorem 6.3.7 is new to the best of our knowledge and extends several clas-
sical results concerning discrete-time algorithms for monotone inclusion problems. Indeed,
the discrete-time version of our results have been obtained by the extragradient method for
p = 1 [Nemirovski, 2004, Monteiro and Svaiter, 2010, 2011] and the Newton proximal ex-
tragradient method for p = 2 [Monteiro and Svaiter, 2012]. A similar ergodic convergence
result was achieved by high-order mirror-prox method [Bullins and Lai, 2022] for saddle point
and VI problems for p ≥ 3. Notably, our theorem demonstrates the importance of averaging
for monotone inclusion problems by showing that the convergence rate can be faster in the
ergodic sense for all p ≥ 1. The idea of averaging for convex optimization and monotone VIs
goes back to at least the mid-seventies [Bruck Jr, 1977, Lions, 1978, Nemirovski and Yudin,
1978, Nemirovski, 1981]. Its advantage was also recently justified for saddle point problems
and VIs by establishing lower bounds [Golowich et al., 2020a, Ouyang and Xu, 2021]. Our
theorem provides another way to understand averaging from a continuous-time point of view.

We define the so-called error bound condition as an inequality that bounds the distance
between x ∈ H and A−1(0) by a residual function at x. This condition has been proven
to be useful in proving the linear convergence of discrete-time algorithms for solving convex
optimization and monotone VI problems [Lewis and Pang, 1998, Drusvyatskiy and Lewis,
2018, Drusvyatskiy et al., 2021]. We adapt this condition for monotone inclusion problems
as follows. We assume that there exists δ > 0 and κ > 0 such that

dist(0, Ax) ≤ δ =⇒ dist(x,A−1(0)) ≤ κ · dist(0, Ax), (6.22)

where dist(x, S) = infz∈S ‖x − z‖ is a distance function. The corresponding Lyapunov
function used for analyzing a global solution under the error bound condition is as follows:

Ẽ(t) =
1

2
(dist(x(t), A−1(0)))2 .

= inf
z∈A−1(0)

{
1

2
‖x(t)− z‖2

}
. (6.23)

The Lyapunov function in Eq. (6.23) can be interpreted as a continuous version of a function
used by various authors; see e.g., Tseng [1995]. The convergence rate estimation intuitively
depends on the descent inequality. This requires the differentiation of Ẽ(·) which is not
immediate since A−1(0) is not a singleton set and the projection of x(t) onto A−1(0) will
change as t varies. We instead upper bound the difference Ẽ(t′)−E(t) for any t′ ≥ t given a
fixed t. We have the following theorem.
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Theorem 6.3.9 Suppose that (x, λ) : [0,+∞) 7→ H × (0,+∞) is a global solution of the
closed-loop control system in Eq. (6.3) and Eq. (6.4) and let the error bound condition in
Eq. (6.22) hold true. Then, there exists a sufficiently large t0 > 0 such that

dist(x(t), A−1(0)) = O(e−ct/2), for all t > t0.

where c > 0 is a constant and upper bounded by c ≤ 2
(

1 + κ
λ(0)

)−2

.

Remark 6.3.10 Theorem 6.3.9 establishes the strong convergence of x(·) to some x? ∈
A−1(0) under the error bound condition and establishes local linear convergence in terms of
a distance function. This improves the results in Theorem 6.3.7 and demonstrates the value of
the error bound condition. The same linear convergence guarantee is established in Csetnek
et al. [2021] under similar conditions. In fact, the convergence analysis of discrete-time
algorithms under an error bound condition is of independent interest [Solodov, 2003] and its
analysis involves different techniques.

Proof of Theorem 6.3.7: Using the definition of E(·) in Eq. (6.18) and the same argument
as applied in Lemma 6.3.4, we have

dE(t)
dt

= −‖x(t)− (I + λ(t)A)−1x(t)‖2 − 〈x(t)− (I + λ(t)A)−1x(t), (I + λ(t)A)−1x(t)− z〉.

Using the definition of z(·) and the fact that ‖x(t)− (I + λ(t)A)−1x(t)‖2 ≥ 0, we have

dE(t)
dt
≤ −〈x(t)− z(t), z(t)− z〉.

Since A is monotone and 1
λ(t)

(x(t)− z(t)) ∈ Az(t), we have

〈x(t)− z(t), z(t)− z〉 ≥ λ(t)〈ξ, z(t)− z〉, for all ξ ∈ Az.

Putting these pieces together yields that, for any z ∈ dom(A) and any ξ ∈ Az, we have

dE(t)
dt
≤ −λ(t)〈ξ, z(t)− z〉.

Integrating this inequality over [0, t] yields∫ t

0

λ(s)〈ξ, z(s)− z〉 ds ≤ E(0)− E(t) ≤ 1
2
‖x0 − z‖2, for all t ≥ 0.

Equivalently, we have

〈ξ, z̃(t)− z〉 ≤ 1∫ t
0 λ(s) ds

(
1
2
‖x0 − z‖2

)
≤ 1∫ t

0 λ(s) ds

(
sup

z∈dom(A)

‖x0 − z‖2

)
.
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By the definition of gap(·) and using the boundedness of dom(A), we have

gap(z̃(t)) = O
(

1∫ t
0 λ(s) ds

)
. (6.24)

Since z(t) = (I + λ(t)A)−1x(t), we can obtain from the proof of Theorem 6.3.1 that

‖x(t)− z(t)‖2 ≤ E(0)
t
, for all t ≥ 0. (6.25)

Since 1
λ(t)

(x(t)− z(t)) ∈ Az(t), we have

res(z(t)) ≤ 1
λ(t)
‖x(t)− z(t)‖ ≤ E(0)

λ(t)
√
t

= O
(

1
λ(t)
√
t

)
. (6.26)

It remain to estimate the lower bound for the feedback law λ(·). Indeed, by combining
Eq. (6.25) and the algebraic equation in Eq. (6.4), we have

λ(t) = θ
‖x(t)−z(t)‖p−1 ≥ θ

(
t
E(0)

) p−1
2
. (6.27)

Plugging Eq. (6.27) into Eq. (6.24) and Eq. (6.26) yields the desired results.

Proof of Theorem 6.3.9: Fixing t ≥ 0 and using the definition of Ẽ in Eq. (6.23), we
have

Ẽ(t′)− Ẽ(t) = 1
2

(
(dist(x(t′), A−1(0)))2 − (dist(x(t), A−1(0)))2

)
, for all t′ ≥ t.

We let x?(t) denote the projection of x(t) onto A−1(0) and deduce from the above inequality
that

Ẽ(t′)−Ẽ(t)
t′−t ≤ ‖x(t′)−x?(t)‖2−‖x(t)−x?(t)‖2

2(t′−t) = 〈x(t′)−x(t)
t′−t , x(t′)+x(t)

2
− x?(t)〉.

Letting t′ →+ t, we have

lim sup
t′→+t

Ẽ(t′)−Ẽ(t)
t′−t ≤ 〈ẋ(t), x(t)− x?(t)〉. (6.28)

For simplicity, we let y(t) = (I + λ(t)A)−1x(t) and deduce that 1
λ(t)

(x(t)− y(t)) ∈ Ay(t). In

addition, 0 ∈ Ax?(t). Putting these pieces together with the monotonicity of A yields

〈ẋ(t), x(t)− x?(t)〉 Eq. (6.3)
= −〈x(t)− y(t), x(t)− x?(t)〉 (6.29)

= −‖x(t)− y(t)‖2 − 〈x(t)− y(t), y(t)− x?(t)〉 ≤ −‖x(t)− y(t)‖2.

Using the same argument in the proof of Theorem 6.3.1, we have t 7→ 1
λ(t)
‖x(t) − y(t)‖ is

nonincreasing and converges to zero as t → +∞. So there exists a sufficiently large t0 > 0
such that

1
λ(t)
‖x(t)− y(t)‖ ≤ δ, for all t ≥ t0,
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where δ > 0 is defined in the error bound condition (cf. Eq. (6.22)). Recall that 1
λ(t)

(x(t)−
y(t)) ∈ Ay(t), we have dist(0, Ay(t)) ≤ δ. Since the error bound condition in Eq. (6.22)
holds true, we have

dist(y(t), A−1(0)) ≤ κ · dist(0, Ay(t)),

We let y?(t) denote the projection of y(t) onto A−1(0) and deduce from the triangle inequality
that

dist(x(t), A−1(0)) ≤ ‖x(t)− y?(t)‖ ≤ ‖x(t)− y(t)‖+ dist(y(t), A−1(0)).

Putting these pieces together yields

dist(x(t), A−1(0)) ≤ ‖x(t)− y(t)‖+ κ · dist(0, Ay(t)) ≤
(

1 + κ
λ(t)

)
‖x(t)− y(t)‖.

Since λ(t) is nondecreasing (cf. Lemma 6.2.10), we have λ(t) ≥ λ(0). By the definition of Ẽ ,
we have

Ẽ(t) = 1
2
(dist(x(t), A−1(0)))2 ≤ 1

2

(
1 + κ

λ(0)

)2

‖x(t)− y(t)‖2. (6.30)

Plugging Eq. (6.29) and Eq. (6.30) into Eq. (6.28), we have

lim sup
t′→+t

Ẽ(t′)−Ẽ(t)
t′−t ≤ −2

(
1 + κ

λ(0)

)−2

Ẽ(t) ≤ −c · Ẽ(t). (6.31)

Fixing t > 0, we define a partition of an interval [0, t),

0 = t0 < t1 < t2 < . . . < ti < . . . < tn = t,

with sup0≤i≤n−1 |ti+1 − ti| ≤ h. Here, h > 0 is sufficiently small such that Eq. (6.31)
guarantees

Ẽ(ti+1)−Ẽ(ti)
ti+1−ti ≤ −c · Ẽ(ti), for all i ∈ {0, 1, 2, . . . , n− 1}.

This inequality implies

Ẽ(t)− Ẽ(0) =
n−1∑
i=0

(Ẽ(ti+1)− Ẽ(ti)) ≤ −c ·

(
n−1∑
i=0

Ẽ(ti)(ti+1 − ti)

)
.

Since Ẽ(·) : [0,+∞) → [0,+∞) is a continuous function, it is integrable (possibly not
differentiable). Letting h→ 0, we have

n−1∑
i=0

Ẽ(ti)(ti+1 − ti)→
∫ t

0

Ẽ(s) ds.

Putting these pieces together yields

Ẽ(t)− Ẽ(0) ≤ −c
(∫ t

0

Ẽ(s) ds

)
.
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Recall the Grönwall–Bellman inequality in the integral form [Gronwall, 1919, Bellman,
1943]: if u(·) and β(·) are both continuous and satisfy the integral inequality: u(t) ≤
u0 +

∫ t
0
β(s)u(s)ds, we have

u(t) ≤ u0 exp

(∫ t

0

β(s) ds

)
.

This implies that Ẽ(t) ≤ Ẽ(0)e−ct. Therefore, we conclude that there exists a sufficiently
large t0 > 0 such that

dist(x(t), A−1(0)) = O(e−ct/2), for all t > t0.

This completes the proof.

Discussion. We comment on the main techniques for analyzing the system in Eq. (6.3)
and Eq. (6.4), including Lyapunov analysis and weak versus strong convergence. We also
compare our approach to other approaches based on time scaling and dry friction.

Lyapunov analysis. Key to the continuous-time approach is to derive inertial gradient
systems as limits of discrete-time algorithms and interpret the acceleration as the effect of
asymptotically vanishing damping and Hessian-driven damping. Analyzing such a dynam-
ical system requires a more complicated Lyapunov function than Eq. (6.18). In this con-
text, Wilson et al. [2021] have constructed a unified Lyapunov function and their analysis
was shown to be equivalent to Nesterov’s estimate sequence analysis for a variety of first-
order algorithms, including quasi-monotone subgradient, accelerated gradient descent and
conditional gradient. In contrast, the associated dynamical systems for general monotone
inclusion problems need not contain any inertial term [Attouch and Svaiter, 2011, Attouch
et al., 2013b, Abbas et al., 2014, Attouch et al., 2016a]. However, this does not mean that
inertia is not relevant outside optimization. Indeed, the inertial dynamical systems and their
discretization [Attouch and Maingé, 2011] give a family of accelerated first-order algorithms
for monotone inclusion problems under the cocoercive condition. Nonetheless, the Lyapunov
analysis in the current paper becomes quite simple since our system does not involve any
inertial term. In addition, the analysis of the convergence rate estimation under an error
bound condition involves a new Lyapunov function that can be of independent interest.

Weak versus strong convergence. In the Hilbert-space setting, the (generalized) steep-
est descent dynamical system associated to a convex potential function Φ has the following
form:  −ẋ(t) ∈ ∂Φ(x(t)),

x(0) = x0.

It is well known that the trajectory converges to a point x̄ ∈ {x : f(x) = infx∈H f(x)} 6=
∅ [Brézis, 1973, 1978]. However, the theoretical understanding is far from being complete.
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In particular, it remains open how to characterize the relationship between x̄ and the initial
point x0 [Lemaire, 1996]. There is also a famous counterexample [Baillon, 1978] which shows
that the trajectories of the above system converge weakly but not strongly. Despite the
progress on weak versus strong convergence of a regularized Newton dynamic for monotone
inclusion problems [Attouch and Baillon, 2018], we are not aware of any discussion about
these properties for closed-loop control systems and consider it an interesting open problem
to find a counterexample (weak versus strong convergence) for the system in Eq. (6.3) and
Eq. (6.4).

It is worth mentioning that the convergence results of trajectories are important aspects
of the convergence analysis, especially in an infinite-dimensional setting; indeed, these re-
sults have been established for the trajectories of various dynamical systems for monotone
inclusion problems in earlier research [Attouch and Svaiter, 2011, Attouch et al., 2013b,
2016a, Abbas et al., 2014, Bot and Csetnek, 2016, Attouch and Peypouquet, 2019, Attouch
and Cabot, 2020, Attouch and László, 2020b, 2021]. A few results are valid only for weak
convergence and become true for strong convergence only under additional conditions. Some
results are only valid in the ergodic sense, e.g., the rate of O(t−(p+1)/2) in Theorem 6.3.7.

Time scaling and dry friction. In the context of dissipative dynamical systems associ-
ated with convex optimization algorithms, there have been two simple yet universally power-
ful techniques to strengthen the convergence properties of trajectories: time scaling [Attouch
et al., 2019c, 2022a] and dry friction [Adly and Attouch, 2020, 2022]. In particular, the effect
of time scaling is revealed by the coefficient parameter b(t) which comes in as a factor of
∇Φ(x(t)) in the following open-loop inertial gradient system:

ẍ(t) + α(t)ẋ(t) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) = 0.

In Attouch et al. [2019c], the authors investigated the above system without Hessian-driven
damping (β(t) = 0). They proved that the convergence rate of a solution trajectory is
O(1/(t2b(t))) if α(·) and b(·) satisfy certain conditions. As such, a clear improvement is
attained by taking b(t)→ +∞. This demonstrates the power and potential of time scaling,
as further evidenced by recent work on systems with Hessian damping [Attouch et al., 2022a].
Furthermore, some recent work studied another open-loop inertial gradient system in the
form of

ẍ(t) + α(t)ẋ(t) + ∂φ(ẋ(t)) + β(t)∇2Φ(x(t))ẋ(t) + b(t)∇Φ(x(t)) 3 0,

where the dry friction function φ is convex with a sharp minimum at the origin, e.g., φ(x) =
r‖x‖ with r > 0. In Adly and Attouch [2022], the authors provided a study of the convergence
of this system without Hessian-driven damping (β(t) = 0) and derived a class of appealing
first-order algorithms that achieve a finite convergence guarantee. Subsequently, Adly and
Attouch [2020] derived similar results for systems with Hessian-driven damping.

Unfortunately, the aforementioned works on time scaling and dry friction techniques are
restricted to the study of open-loop systems associated with convex optimization algorithms.
As such, it remains unknown if these methodologies can be extended to monotone inclusion
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problems and further capture the continuous-time interpretation of acceleration in high-
order monotone inclusion [Monteiro and Svaiter, 2012, Bullins and Lai, 2022]. In contrast,
our closed-loop control system provides a rigorous justification for the large-step condition
in the algorithm of Monteiro and Svaiter [2012] and Bullins and Lai [2022] when p ≥ 2,
explaining why the closed-loop control is key to acceleration in monotone inclusion.

6.4 Implicit Discretization and Acceleration

We propose an algorithmic framework that arises via implicit discretization of our system
in Eq. (6.3) and Eq. (6.4) in a Euclidean setting. It demonstrates the importance of the
large-step condition [Monteiro and Svaiter, 2012] for acceleration in monotone inclusion
problems, interpreting it as discretization of the algebraic equation. Our framework clarifies
why this condition is unnecessary for acceleration in monotone inclusion problems when
p = 1 (the algebraic equation vanishes). With an approximate tensor subroutine for smooth
operator A, we derive a specific class of pth-order tensor algorithms which generalize pth-
order tensor algorithms for convex-concave saddle point and monotone variational inequality
problems [Bullins and Lai, 2022].

Conceptual algorithmic frameworks. We study a conceptual algorithmic framework
which is derived by implicit discretization of the closed-loop control system in Eq. (6.3) and
Eq. (6.4) in a Euclidean setting. Indeed, our system takes the form of

ẋ(t) + x(t)− (I + λ(t)A)−1x(t) = 0,

λ(t)‖(I + λ(t)A)−1x(t)− x(t)‖p−1 = θ,

x(0) = x0 ∈ Ω.

We define the discrete-time sequence {(xk, λk)}k≥0 that corresponds to its continuous-time
counterpart {(x(t), λ(t))}t≥0. By an implicit discretization, we have

xk+1 − (I + λk+1A)−1xk = 0,

λk+1‖xk+1 − xk‖p−1 = θ,

x0 ∈ Ω.

(6.32)

By introducing two new variables yk+1 and vk+1 ∈ Ayk+1, the first and second lines of
Eq. (6.32) can be equivalently reformulated as follows:

λk+1vk+1 + yk+1 − xk = 0,

λk+1‖yk+1 − xk‖p−1 = θ,

xk+1 = xk − λk+1vk+1,

x0 ∈ Ω.
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Algorithm 18 Conceptual Algorithmic Framework

STEP 0: Let x0, v0 ∈ Rd, σ ∈ (0, 1) and θ > 0 be given, and set k = 0.
STEP 1: If 0 ∈ Axk, then stop.
STEP 2: Otherwise, compute λk+1 > 0 and a triple (yk+1, vk+1, εk+1) ∈ H×H× (0,+∞)
such that

vk+1 ∈ Aεk+1(yk+1),

‖λk+1vk+1 + yk+1 − xk‖2 + 2λk+1εk+1 ≤ σ2‖yk+1 − xk‖2,

λk+1‖yk+1 − xk‖p−1 ≥ θ.

STEP 3: Compute xk+1 = xk − λk+1vk+1.
STEP 4: Set k ← k + 1, and go to STEP 1.

We propose to solve the above equations inexactly with an accurate approximation of A. Fol-
lowing a suggestion of Monteiro and Svaiter [2010], we introduce the relative error tolerance
condition with an ε-enlargement of maximal monotone operators given by

Aε(x) = {v ∈ Rd | 〈x− x̃, v − ṽ〉 ≥ −ε, ∀x̃ ∈ Rd, ∀ṽ ∈ Ax̃}. (6.33)

Our subroutine is to find λk+1 > 0 and a triple (yk+1, vk+1, εk+1) such that

‖λk+1vk+1 + yk+1 − xk‖2 + 2λk+1εk+1 ≤ σ2‖yk+1 − xk‖2, vk+1 ∈ Aεk+1(yk+1).

From the above condition, we see that vk+1 is sufficiently close to an element in A(yk+1). In
addition, we relax the discrete-time algebraic equation by using λk+1‖yk+1 − xk‖p−1 ≥ θ.

We present our conceptual algorithmic framework formally in Algorithm 18. It includes
the large-step HPE framework of Monteiro and Svaiter [2012] as a special instance. In fact,
we can recover the large-step HPE framework if we set p = 2 and change the notation of A
to T in Algorithm 18.

Convergence rate estimation. We present both an ergodic and a pointwise estimate
of convergence rate for Algorithm 18. Our analysis is motivated by the aforementioned
continuous-time analysis, simplifying the analysis in Monteiro and Svaiter [2012] for the case
of p = 2 and generalizing it to the case of p > 2 in a systematic manner.

We start with the presentation of our main results for Algorithm 18, which generalizes
the results in Monteiro and Svaiter [2012, Theorem 2.5 and 2.7] in terms of a gap function
for bounded domain from p = 2 to p ≥ 2. To streamline the presentation, we rewrite a gap
function in Eq. (6.20):

gap(x) = sup
z∈dom(A)

sup
ξ∈Az

〈ξ, x− z〉.
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It is worth mentioning that the theoretical results in Monteiro and Svaiter [2012, Theorem 2.5
and 2.7] are presented for unbounded domains using the modified optimality criterion. Our
analysis can be extended using the relationship between a gap function and a relative toler-
ance error criterion [Monteiro and Svaiter, 2010]. However, the proof becomes significantly
longer and its link with continuous-time analysis becomes unclear (the continuous-time ver-
sion of the modified optimality criterion is unclear). Accordingly, we focus on the bounded
domain and present the results for simplicity.

Theorem 6.4.1 Let k ≥ 1 be an integer and let dom(A) be closed and bounded. Then, we
have

gap(ỹk) = O(k−
p+1

2 ),

and
inf

1≤i≤k
‖vi‖ = O(k−

p
2 ), inf

1≤i≤k
εi = O(k−

p+1
2 ),

where the ergodic iterates {ỹk}k≥1 are defined by

ỹk =
1∑k
i=1 λk

(
k∑
i=1

λiyi

)
.

In addition, if we let εk = 0 for all k ≥ 1 and assume that the error bound condition in
Eq. (6.22) holds true, the iterates {xk}k≥1 converge to A−1(0) with a local linear rate.

Since the only difference between Algorithm 18 and the large-step HPE framework in Mon-
teiro and Svaiter [2012] is the order in the algebraic equation, many technical results still
hold for Algorithm 18 but their proofs tend to involve case-specific algebra. Our key contri-
bution is to provide a simple proof which flows from the unified underlying continuous-time
principle, and also to derive local linear convergence under the error bound condition.

We present a discrete-time Lypanunov function for Algorithm 18 as follows:

Ek = 1
2
‖xk − z‖2, (6.34)

which will be used to prove technical results that pertain to Algorithm 18.

Lemma 6.4.2 For every integer k ≥ 1, we have

k∑
i=1

λi〈v, yi − z〉+ 1−σ2

2

(
k∑
i=1

‖xi−1 − yi‖2

)
≤ E0 − Ek, for all v ∈ Az, (6.35)

Letting ỹk = 1∑k
i=1 λi

(
∑k

i=1 λiyi) be the ergodic iterates, we have supv∈Az〈v, ỹk − z〉 ≤ E0∑k
i=1 λi

.

If we further assume that σ < 1, we have
∑k

i=1 ‖xi−1 − yi‖2 ≤ ‖x0−z?‖2
1−σ2 for any z? ∈ A−1(0).
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Lemma 6.4.3 For every integer k ≥ 1 and σ < 1, there exists 1 ≤ i ≤ k such that

inf
1≤i≤k

√
λi‖vi‖ ≤

√
1+σ
1−σ

(
k∑
i=1

λi

)− 1
2 (

inf
z?∈A−1(0)

‖x0 − z?‖
)
,

inf
1≤i≤k

εi ≤ σ2

2(1−σ2)

(
k∑
i=1

λi

)−1(
inf

z?∈A−1(0)
‖x0 − z?‖2

)
.

We provide a lemma giving a lower bound for
∑k

i=1 λi. The analysis is motivated by
continuous-time analysis for the system in Eq. (6.3) and Eq. (6.4).

Lemma 6.4.4 For p ≥ 1 and every integer k ≥ 1, we have

k∑
i=1

λi ≥ θ

(
(1− σ2)

(
inf

z?∈A−1(0)
‖x0 − z?‖2

)) p−1
2

k
p+1

2 .

Proof of Theorem 6.4.1: For every integer k ≥ 1, combining Lemma 6.4.2 and Lemma 6.4.4
implies

gap(ỹk) = sup
z∈dom(A)

sup
v∈Az
〈v, ỹk − z〉 ≤ 1

2(
∑k
i=1 λi)

(
sup

z∈dom(A)

‖z − x0‖2

)
= O(k−

p+1
2 ).

Combining Lemma 6.4.3 and Lemma 6.4.4, we have

inf
1≤i≤k

√
λi‖vi‖ ≤

√
1+σ
1−σ

(
k∑
i=1

λi

)− 1
2 (

inf
z?∈A−1(0)

‖x0 − z?‖
)

= O(k−
p+1

4 ),

inf
1≤i≤k

εi ≤ σ2

2(1−σ2)

(
k∑
i=1

λi

)−1(
inf

z?∈A−1(0)
‖x0 − z?‖2

)
= O(k−

p+1
2 ).

From Step 2 of Algorithm 1, we have

‖λivi + yi − xi−1‖2 + 2λiεi ≤ σ2‖yi − xi−1‖2, λi‖yi − xi−1‖p−1 ≥ θ.

Since λi ≥ 0 and εi ≥ 0, the first inequality implies

‖λivi + yi − xi−1‖ ≤ σ‖yi − xi−1‖.

By the triangle inequality, we have

σ‖yi − xi−1‖ ≥ ‖yi − xi−1‖ − λi‖vi‖ =⇒ λi‖vi‖ ≥ (1− σ)‖yi − xi−1‖.
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This inequality together with λi‖yi − xi−1‖p−1 ≥ θ implies

λi‖vi‖
p−1
p = (λi)

1
p (λi‖vi‖)

p−1
p ≥

(
θ

‖yi−xi−1‖p−1

) 1
p

((1− σ)‖yi − xi−1‖)
p−1
p = θ

1
p (1− σ)

p−1
p .

Equivalently, we have √
λi ≥ θ

1
2p (1− σ)

p−1
2p ‖vi‖−

p−1
2p .

This implies(
θ

1
2p (1− σ)

p−1
2p

)
inf

1≤i≤k
‖vi‖

p+1
2p ≤ inf

1≤i≤k

√
λi‖vi‖ = O(k−

p+1
4 ) =⇒ inf

1≤i≤k
‖vi‖

p+1
2p = O(k−

p+1
4 ).

Therefore, we conclude that

inf
1≤i≤k

‖vi‖ =

(
inf

1≤i≤k
‖vi‖

p+1
2p

) 2p
p+1

= O(k−
p
2 ).

It remains to prove that the iterates {xk}k≥1 converge to A−1(0) with a local linear rate
under the error bound condition in Eq. (6.22) and that εk = 0 for all k ≥ 1. Indeed, it
follows from the proof of Lemma 6.4.2 that

Ek − Ek+1 ≥ λk+1〈v, yk+1 − z〉+ 1−σ2

2
‖xk − yk+1‖2, for all v ∈ Az.

Recall that Ek = 1
2
‖xk − z‖2. Thus, we have

‖xk − z‖2 − ‖xk+1 − z‖2 ≥ 2λk+1〈v, yk+1 − z〉+ (1− σ2)‖xk − yk+1‖2, for all v ∈ Az.

Here z ∈ Rd can be any point. Then, we set z = x?k = argminx∈A−1(0)‖x − xk‖ and choose
v = 0 ∈ Az. Plugging into the above inequality implies

‖xk−x?k‖2−‖xk+1−x?k‖2 ≥ 2λk+1〈0, yk+1−x?k〉+(1−σ2)‖xk−yk+1‖2 = (1−σ2)‖xk−yk+1‖2.

By definition, we have ‖xk+1 − x?k+1‖ ≤ ‖xk+1 − x?k‖ and dist(xk, A
−1(0)) = ‖xk − x?k‖.

Putting these pieces together yields that, for all k ≥ 1, we have

(dist(xk, A
−1(0)))2 − (dist(xk+1, A

−1(0)))2 ≥ (1− σ2)‖xk − yk+1‖2. (6.36)

It is worth mentioning that Eq. (6.36) implies that ‖xk − yk+1‖ → 0. Using the large step
condition that λk‖yk−xk−1‖p−1 ≥ θ, we have {λk}k≥1 is lower bounded by a constant λ > 0.
Further, we have

‖λkvk‖ ≤ ‖λkvk + yk − xk−1‖+ ‖yk − xk−1‖ ≤ (1 + σ)‖yk − xk−1‖,

which implies that ‖vk‖ → 0 as k → +∞. Since εk = 0 for all k ≥ 1, we have vk ∈ Ayk. So
there exists a sufficiently large k0 > 0 such that dist(0, Ayk) ≤ δ for all k ≥ k0 where δ > 0
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is defined in the error bound condition (cf. Eq. (6.22)). Since the error bound condition in
Eq. (6.22) holds true, we have

dist(yk+1, A
−1(0)) ≤ κ · dist(0, Ayk+1) ≤ κ‖vk+1‖.

We let y?k+1 = argminy∈A−1(0) ‖y − yk+1‖ and deduce from the triangle inequality that

dist(xk, A
−1(0)) ≤ ‖xk−y?k+1‖ ≤ ‖xk−yk+1‖+dist(yk+1, A

−1(0)) ≤ ‖xk−yk+1‖+κ‖vk+1‖.

Putting these pieces together yields that

dist(xk, A
−1(0)) ≤

(
1 + κ

λk+1

)
‖yk+1 − xk‖ ≤

(
1 + κ(1+σ)

λ

)
‖yk+1 − xk‖. (6.37)

Plugging Eq. (6.37) into Eq. (6.36) yields that

(dist(xk, A
−1(0)))2 − (dist(xk+1, A

−1(0)))2 ≥ (1− σ2)
(

λ
κ(1+σ)+λ

)2

(dist(xk, A
−1(0)))2.

This completes the proof.

Remark 6.4.5 The discrete-time analysis in Theorem 6.4.1 is based on the Lyapunov func-
tion from Eq. (7.9), which is inspired by the one in Eq. (6.18) and Eq. (6.23). Notably,
the proofs of these technical results follow the same path for the continuous-time analysis in
Theorem 6.3.7 and 6.3.9.

Global acceleration and local linear convergence. By instantiating Algorithm 18
with approximate tensor subroutines [Nesterov, 2021b], we develop a new family of pth-
order tensor algorithms for monotone inclusion problems with A = F + H in which F ∈
GpL(Rd) is a point-to-point operator and H is simple and maximal monotone. We provide
new convergence results concerning these tensor algorithms, including an ergodic rate of
O(k−(p+1)/2) in terms of a gap function, a pointwise rate of O(k−p/2) in terms of a residue
function, and establish local linear convergence under an error bound condition. Our results
extend those results in Monteiro and Svaiter [2012] for second-order algorithms for monotone
inclusion problems and complement the analysis in Bullins and Lai [2022] concerning high-
order tensor algorithms for saddle point and variational inequality problems.

The proximal point algorithm (PPA) (corresponding to implicit discretization of certain
systems) requires solving an exact proximal iteration with proximal coefficient λ > 0 at each
iteration:

y = (I + λ(F +H))−1(x). (6.38)

In many application problem, H = ∂1X , where ∂1X is the subdifferential of an indicator
function onto a closed and convex set X . Nevertheless, Eq. (6.38) is still hard when the
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Algorithm 19 Accelerated pth-order Tensor Algorithm

STEP 0: Let x0 ∈ Rd, σ̂ ∈ (0, 1) and 0 < σl < σu < 1 such that σl(1+σ̂)p−1 < σu(1−σ̂)p−1

and σ = σ̂ + σu < 1 be given, and set k = 0.
STEP 1: Compute x′k = Pdom(A)(xk). If 0 ∈ A(xk), then stop.
STEP 2: Otherwise, compute a positive scalar λk+1 > 0 with a σ̂-inexact solution yk+1 ∈
Rd of Eq. (6.40) at (λk+1, xk) satisfying that

uk+1 ∈ (Fx′k +H)(yk+1), ‖λk+1uk+1 + yk+1 − xk‖ ≤ σ̂‖yk+1 − xk‖,

and
σlp!
L
≤ λk+1‖yk+1 − xk‖p−1 ≤ σup!

L
.

STEP 3: Compute vk+1 = F (yk+1) + uk+1 − Fx′k(yk+1).
STEP 4: Compute xk+1 = xk − λk+1vk+1.
STEP 5: Set k ← k + 1, and go to STEP 1.

proximal coefficient λ → +∞. Fortunately, when F ∈ GpL(Rd), it suffices to solve the
subproblem with the (p− 1)th-order approximation of F . More specifically, we define

Fx(u) = F (x) + 〈DF (x), u− x〉+

p−1∑
j=2

1
j!
D(j)F (x)[u− x]j. (6.39)

Our proposed algorithms are based on an inexact solution of the following subproblem:

y = (I + λ(Fx +H))−1(x). (6.40)

Clearly, the solution xv of Eq. (6.40) is unique and satisfies λFx(xv) + H(xv) + xv − x = 0.
Thus, we denote a σ̂-inexact solution of Eq. (6.40) at (λ, x) by a vector y ∈ Rd satisfying
that u ∈ (Fx′ +H)(y) and ‖λu+ y− x‖ ≤ σ̂‖y− x‖ for some σ̂ ∈ (0, 1) and x′ = Pdom(A)(x)
(recall A = F +H).

We summarize our accelerated pth-order tensor algorithm in Algorithm 19 and prove that
it is an application of Algorithm 18 with a specific choice of θ.

Proposition 6.4.6 Algorithm 19 is Algorithm 18 with θ = σlp!
L

and εk = 0 for all k ≥ 1.

Proof. Letting a tuple (xk, vk, uk)k≥1 be generated by Algorithm 19, it is clear that

vk+1 = F (yk+1) + uk+1 − Fx′k(yk+1) ∈ (F +H)(yk+1).

This is equivalent to that vk+1 ∈ Aεk+1(yk+1) in Algorithm 18 with εk = 0 for all k ≥ 1.
Further, since θ = σlp!

L
> 0, we have

λk+1‖yk+1 − xk‖p−1 ≥ σlp!
L

=⇒ λk+1‖yk+1 − xk‖p−1 ≥ θ.
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It suffices to show that ‖λk+1vk+1 + yk+1 − xk‖2 + 2λk+1εk+1 ≤ σ2‖yk+1 − xk‖2. Since εk = 0
for all k ≥ 1, the above inequality is equivalent to

‖λk+1vk+1 + yk+1 − xk‖ ≤ σ‖yk+1 − xk‖. (6.41)

Indeed, we have

‖λk+1vk+1 + yk+1 − xk‖ ≤ λk+1‖vk+1 − uk+1‖+ ‖λk+1uk+1 + yk+1 − xk‖
≤ λk+1‖F (yk+1)− Fx′k(yk+1)‖+ σ̂‖yk+1 − xk‖.

Using the definition of Fx′k (cf. Eq. (7.8)) and the fact that F ∈ GpL(Rd), we have

λk+1‖F (yk+1)− Fx′k(yk+1)‖ ≤ λk+1L

p!
‖yk+1 − x′k‖p.

Since yk+1 ∈ dom(A) and x′k = Pdom(A)(xk), we have ‖yk+1−x′k‖ ≤ ‖yk+1−xk‖. This implies

λk+1‖F (yk+1)− Fx′k(yk+1)‖ ≤ λk+1L

p!
‖yk+1 − xk‖p. (6.42)

Since σ = σ̂ + σu < 1, we have

λk+1‖yk+1 − xk‖p−1 ≤ σup!
L

=⇒ σ̂ + λk+1L

p!
‖yk+1 − xk‖p−1 ≤ σ̂ + σu = σ. (6.43)

Combing Eq. (6.42) and Eq. (6.43), we have

λk+1‖F (yk+1)−Fx′k(yk+1)‖+σ̂‖yk+1−xk‖ ≤
(
λk+1L

p!
‖yk+1 − xk‖p−1 + σ̂

)
‖yk+1−xk‖ ≤ σ‖yk+1−xk‖.

Putting these pieces together yields the desired equation in Eq. (6.41). �

In view of Proposition 6.4.6, the iteration complexity derived for Algorithm 18 holds for
Algorithm 19. Furthermore, we have vk ∈ (F + H)(yk) = Ayk for all k ≥ 1 which implies
(see the definition of a residue function in Eq. (6.21))

res(yk) = inf
ξ∈Ayk

‖ξ‖ ≤ ‖vk‖.

As a consequence of Theorem 6.4.1, we summarize the results in the following theorem.

Theorem 6.4.7 For every integer k ≥ 1 and let dom(A) be closed and bounded. Then, we
have

gap(ỹk) = O(k−
p+1

2 ),

and
res(yk) = O(k−

p
2 ),

where the ergodic iterates {ỹk}k≥1 are defined by

ỹk = 1∑k
i=1 λk

(
k∑
i=1

λiyi

)
.

In addition, if we assume that the error bound condition in Eq. (6.22) holds true, the iterates
{xk}k≥1 converge to A−1(0) with a local linear rate.
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Remark 6.4.8 The ergodic and pointwise convergence results in Theorem 6.4.7 have been
obtained in Monteiro and Svaiter [2012, Theorem 3.5 and 3.6] for the case of p = 2 and
derived by Nemirovski [2004] and Monteiro and Svaiter [2010] for the extragradient method
(the case of p = 1). For p ≥ 3 in general, these global convergence results generalize Bullins
and Lai [2022, Theorem 4.5] from saddle point and variational inequality problems to mono-
tone inclusion problems. The local linear convergence results under an error bound are well
known for the extragradient method in the literature [Tseng, 1995, Monteiro and Svaiter,
2010] but are new for the case of p ≥ 2 to our knowledge.

Remark 6.4.9 The approximate tensor subroutine in Algorithm 19 has been implemented
using binary search procedures efficiently specialized to the case of p = 2; see Monteiro and
Svaiter [2012, Section 4] and Bullins and Lai [2022, Section 5]. Could we generalize this
scheme to handle the more general case of p ≥ 3, similar to what has been accomplished in
convex optimization [Gasnikov et al., 2019b]? We leave the answer to future work.

6.5 Conclusion

We propose a new closed-loop control system for capturing the acceleration phenomenon
in monotone inclusion problems. In terms of theoretical guarantee, we obtain ergodic and
pointwise convergence rates via appeal to simple and intuitive Lyapunov functions. Our
framework based on implicit discretization of the aforementioned system gives a systematic
way to derive discrete-time pth-order accelerated tensor algorithms for all p ≥ 1 and simplify
existing analyses via the use of a discrete-time Lyapunov function. Key to our framework is
the algebraic equation, which disappears for the case of p = 1, but is essential for achieving
the acceleration for the case of p ≥ 2. We also infer that a certain class of pth-order tensor
algorithms can achieve local linear convergence under an error bound condition.

Notably, our closed-loop control system is related to the nonlinear damping in the PDE
literature where the closed-loop feedback control in fact depends on the velocity [Attouch
et al., 2022a]; indeed, it is demonstrated by the algebraic equation λ(t)‖ẋ(t)‖p−1 = θ.

There are several other avenues for future research. For example, it is interesting to study
the monotone inclusion problems via appeal to the Lagrangian and Hamiltonian frameworks
that have proved productive in recent work [Wibisono et al., 2016, Diakonikolas and Jor-
dan, 2021, Muehlebach and Jordan, 2021, França et al., 2021]. Moreover, we would hope
for this study to provide additional insight into the geometric or dynamical role played by
the algebraic equation for shaping the continuous-time dynamics. Indeed, it is of interest to
investigate the continuous-time limit of Newton methods for Bouligand-differentiable equa-
tions [Robinson, 1987], which is another generalization of complementarity and VI problems,
and see whether the closed-loop control approach leads to efficient algorithms or not.
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6.6 Proof of Technical Lemmas

Proof of Lemma 6.2.1. For simplicity, we denote by Aλ = I − (I + λA)−1 and write
ϕ(λ, x) = λ1/(p−1)‖Aλx‖. Then it suffices to show

|‖Aλx1‖ − ‖Aλx2‖| ≤ ‖x1 − x2‖. (6.44)

It is known in convex analysis (see Rockafellar [1970] for example) that ‖Aλx1 − Aλx2‖ ≤
‖x1 − x2‖. This together with the triangle inequality yields Eq. (6.44).

Proof of Lemma 6.2.2. For simplicity, we define z1 = (I + λ1A)−1x, z2 = (I + λ2A)−1x,
v1 ∈ Az1 and v2 ∈ Az2. In view of the definitions, we have

ϕ(λ1, x) = (λ1)
1
p−1‖x− z1‖, λ1v1 + z1 − x = 0,

ϕ(λ2, x) = (λ2)
1
p−1‖x− z2‖, λ2v2 + z2 − x = 0.

(6.45)

After straightforward calculation, we have

λ1(v1 − v2) + z1 − z2 = (λ1v1 + z1 − x)− (λ2v2 + z2 − x) + (λ2 − λ1)v2 = (λ2 − λ1)v2.

Since A is a maximal monotone operator, v1 ∈ Az1 and v2 ∈ Az2, we have 〈v1−v2, z1−z2〉 ≥ 0.
Putting these pieces together yields

(λ2 − λ1)〈v1 − v2, v2〉 = λ1‖v1 − v2‖2 + 〈v1 − v2, z1 − z2〉 ≥ 0.

This together with λ1 ≤ λ2 implies that 〈v1 − v2, v2〉 ≥ 0 and thus we have ‖v1‖ ≥ ‖v2‖.
Combining the last inequality with Eq. (6.45), we have

ϕ(λ2, x) = (λ2)
1
p−1‖λ2v2‖ = (λ2)

p
p−1‖v2‖ ≤ (λ2)

p
p−1‖v1‖ =

(
λ2

λ1

) p
p−1

ϕ(λ1, x). (6.46)

After a short calculation, we have

v1−v2+ 1
λ2

(z1−z2) = 1
λ1

(λ1v1+z1−x)− 1
λ2

(λ2v2+z2−x)+
(

1
λ2
− 1

λ1

)
(z1−x) =

(
1
λ2
− 1

λ1

)
(z1−x).

Since 〈v1 − v2, z1 − z2〉 ≥ 0, we have(
1
λ2
− 1

λ1

)
〈z1 − x, z1 − z2〉 = 〈v1 − v2, z1 − z2〉+ 1

λ2
‖z1 − z2‖2 ≥ 0.

This together with λ1 ≤ λ2 implies that 〈z1 − x, z1 − z2〉 ≤ 0 and thus we have ‖x − z2‖ ≥
‖x− z1‖. Combining the last inequality with Eq. (6.45), we have

ϕ(λ2, x) = (λ2)
1
p−1‖x− z2‖ ≥ (λ2)

1
p−1‖x− z1‖ =

(
λ2

λ1

) 1
p−1

ϕ(λ1, x). (6.47)

Combining Eq. (6.46) and Eq. (6.47) yields the desired inequality. The last statement of the
lemma follows trivially from the maximal monotonicity of A and the definition of ϕ.
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Proof of Lemma 6.2.5. Rearranging the first inequality in Lemma 6.2.2 implies

ϕ(λ1,x)

(λ1)
1
p−1
≤ ϕ(λ2,x)

(λ2)
1
p−1

, for any x ∈ H and 0 < λ1 ≤ λ2.

This yields that the mapping λ 7→ ‖x− (I + λA)−1x‖ is nondecreasing and α 7→ ‖x− (I +
α−1A)−1x‖ is a (continuous) nonincreasing function. As a consequence, we obtain that Γθ is
a real-valued nonnegative function. Further, by definition, if x ∈ Ω, we have

Γθ(x) =
(

inf{α > 0 | α−
1
p−1‖x− (I + α−1A)−1x‖ ≤ θ

1
p−1}

) 1
p−1

=
(

1
Λθ(x)

) 1
p−1

.

Moreover, if x /∈ Ω, we have x−(I+α−1A)−1x = 0 for all α > 0 which implies that Γθ(x) = 0.
Putting these pieces together yields the desired relationship between Γθ(x) and Λθ(x).

It remains to show that Γθ : H 7→ (0,+∞) is Lipschitz continuous with θ−1/(p−1) > 0.
Take x1, x2 ∈ H and ᾱ > 0, we suppose that

‖x1 − (I + ᾱ−1A)−1x1‖ ≤ ᾱ
1
p−1 θ

1
p−1 .

It is straightforward to deduce that I−(I+ᾱ−1A)−1 is 1-Lipschitz continuous (see Rockafellar
[1970] or the proof of Lemma 6.2.1) which implies

‖x2 − (I + ᾱ−1A)−1x2‖ − ‖x1 − (I + ᾱ−1A)−1x1‖ ≤ ‖x2 − x1‖.

Therefore, we have

‖x2 − (I + ᾱ−1A)−1x2‖ ≤ ᾱ
1
p−1 θ

1
p−1 + ‖x2 − x1‖ = (ᾱ

1
p−1 + ‖x2 − x1‖θ−

1
p−1 )θ

1
p−1 .

Let β̄ = (ᾱ1/(p−1) + ‖x2 − x1‖θ−1/(p−1))p−1. Since β̄ ≥ ᾱ and the mapping α 7→ ‖x − (I +
α−1A)−1x‖ is nonincreasing, we have

‖x2 − (I + β̄−1A)−1x2‖ ≤ ‖x2 − (I + ᾱ−1A)−1x2‖ ≤ β̄
1
p−1 θ

1
p−1 .

By the definition of Γθ, we have Γθ(x2) ≤ β̄1/(p−1) = ᾱ1/(p−1) + ‖x2 − x1‖θ−1/(p−1) and this
inequality holds true for all ᾱ > 0 satisfying that ‖x1 − (I + ᾱ−1A)−1x1‖ ≤ ᾱ1/(p−1)θ1/(p−1);
that is, all ᾱ > 0 satisfying that ᾱ1/(p−1) ≥ Γθ(x1). Putting these pieces together, we have

Γθ(x2) ≤ Γθ(x1) + ‖x2 − x1‖θ−
1
p−1 .

Using the symmetry of x1 and x2, we have Γθ(x1) ≤ Γθ(x2) + ‖x1 − x2‖θ−1/(p−1). Therefore,
we have

|Γθ(x1)− Γθ(x2)| ≤ θ−
1
p−1‖x1 − x2‖.

This completes the proof.
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Proof of Lemma 6.2.9. For the case of p = 1, we have λ(t) = θ is a constant function
and the desired result holds true. For the case of p ≥ 2, let t, t′ ∈ [0, t0] and t 6= t′. Then,
we have ∣∣∣(λ(t′))

1
p−1 − (λ(t))

1
p−1

∣∣∣ = (λ(t′)λ(t))
1
p−1

∣∣∣∣( 1
λ(t)

) 1
p−1 −

(
1

λ(t′)

) 1
p−1

∣∣∣∣ .
Using the definition of Γθ(·) and the fact that it is Lipschitz continuous with a constant
θ−1/(p−1) > 0 (cf. Lemma 6.2.5), we have∣∣∣∣( 1

λ(t)

) 1
p−1 −

(
1

λ(t′)

) 1
p−1

∣∣∣∣ = |Γθ(x(t))− Γθ(x(t′))| ≤ ‖x(t)−x(t′)‖
θ1/(p−1) .

Putting these pieces together yields∣∣∣∣ (λ(t′))
1
p−1−(λ(t))

1
p−1

t′−t

∣∣∣∣ ≤ (λ(t′)λ(t)
θ

) 1
p−1 ‖x(t)−x(t′)‖

|t−t′| .

Fix t ∈ [0, t0] and let t′ → t. Then, we have

lim sup
t′→t

∣∣∣∣ (λ(t′))
1
p−1−(λ(t))

1
p−1

t′−t

∣∣∣∣ ≤ ( (λ(t))2

θ

) 1
p−1 ‖ẋ(t)‖.

Using Eq. (6.3) and Eq. (6.4), we have

‖ẋ(t)‖ = ‖(I + λ(t)A)−1x(t)− x(t)‖ =
(

θ
λ(t)

) 1
p−1

.

In addition, for almost all t ∈ [0, t0], we have

lim sup
t′→t

∣∣∣∣ (λ(t′))
1
p−1−(λ(t))

1
p−1

t′−t

∣∣∣∣ ≥ 1
p−1
|λ̇(t)(λ(t))

1
p−1
−1|.

Putting these pieces together yields the desired result.

Proof of Lemma 6.2.10. For the case of p = 1, we have λ(t) = θ is a constant function and
the desired result holds true. For the case of p ≥ 2, since λ(·) is locally Lipschitz continuous,
it suffices to show that λ̇(t) ≥ 0 for almost all t ∈ [0, t0). Indeed, let y(t) = (I+λ(t)A)−1x(t),
we deduce from Eq. (6.3) that ẋ(t) = y(t) − x(t). Then, for any fixed t ∈ (0, t0), we have
0 < h < min{t0 − t, 1} exists and the following inequality holds:

x(t) + hẋ(t) = (1− h)x(t) + hy(t) =⇒ x(t) + hẋ(t)− y(t) = (1− h)(x(t)− y(t)).

By the definition of y(·), we have 1
λ(t)

(x(t) − y(t)) ∈ Ay(t). Combining this with the above

equality yields that y(t) = (I + (1− h)λ(t)A)−1(x(t) + hẋ(t)). Then, by the definition of ϕ,
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we have

ϕ((1− h)λ(t), x(t) + hẋ(t))

= (1− h)
1
p−1 (λ(t))

1
p−1‖x(t) + hẋ(t)− (I + (1− h)λ(t)A)−1(x(t) + hẋ(t))‖

= (1− h)
1
p−1 (λ(t))

1
p−1‖x(t) + hẋ(t)− y(t)‖

= (1− h)
p
p−1 (λ(t))

1
p−1‖x(t)− y(t)‖.

In addition, Eq. (6.4) implies that (λ(t))1/(p−1)‖x(t)− y(t)‖ = θ1/(p−1). Putting these pieces
together yields

ϕ((1− h)λ(t), x(t) + hẋ(t)) = (1− h)
p
p−1 θ

1
p−1 . (6.48)

Using the triangle inequality and Lemma 6.2.1, we have

ϕ(λ(t), x(t+ h)) ≤ ϕ(λ(t), x(t) + hẋ(t)) + |ϕ(λ(t), x(t+ h))− ϕ(λ(t), x(t) + hẋ(t))|
≤ ϕ(λ(t), x(t) + hẋ(t)) + (λ(t))

1
p−1‖x(t+ h)− x(t)− hẋ(t)‖. (6.49)

Using the second inequality in Lemma 6.2.2 and 0 < h < 1, we have

ϕ(λ(t), x(t) + hẋ(t)) ≤
(

1
1−h

) p
p−1 ϕ((1− h)λ(t), x(t) + hẋ(t))

Eq. (6.48)
= θ

1
p−1 . (6.50)

For the ease of presentation, we define the function ω : (0,min{t0 − t, 1}) 7→ (0,+∞) by

ω(h) =
(
λ(t)‖x(t+h)−x(t)−hẋ(t)‖p−1

θ

) 1
p−1

.

Plugging Eq. (6.50) into Eq. (6.49) and simplifying the resulting inequality using the defini-
tion of ω(·) yields

ϕ(λ(t), x(t+ h)) ≤ θ
1
p−1 (1 + ω(h)) .

Using the first inequality in Lemma 6.2.2 and ω(h) ≥ 0 for all h ∈ (0,min{t0 − t, 1}), we
have

ϕ
(

λ(t)
(1+ω(h))p−1 , x(t+ h)

)
≤
(

1
(1+ω(h))p−1

) 1
p−1

ϕ(λ(t), x(t+ h)).

Putting these pieces together yields

ϕ
(

λ(t)
(1+ω(h))p−1 , x(t+ h)

)
≤ θ

1
p−1 .

Since ϕ(·, x(t + h)) is increasing and ϕ(λ(t + h), x(t + h)) = θ1/(p−1), we have λ(t + h) ≥
λ(t)

(1+ω(h))p−1 . Equivalently, we have

lim inf
h→0+

λ(t+h)−λ(t)
h

≥ − lim
h→0+

λ(t)
(1+ω(h))p−1 · (1+ω(h))p−1−1

h
.
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By the definition of ω(h) and using the continuity of x(·), we have ω(h) → 0 as h → 0+.
Since p ≥ 2 is an integer, we have

(1 + ω(h))p−1 − 1 =

p−1∑
i=1

(p−1)!
i!(p−1−i)!(ω(h))i = ω(h)

(
p− 1 +

p−2∑
i=1

(p−1)!
(i+1)!(p−2−i)!(ω(h))i

)
.

Further, we have

ω(h)
h

=
(
λ(t)
θ

) 1
p−1 ‖x(t+h)−x(t)−hẋ(t)‖

h
→ 0, as h→ 0+.

Putting these pieces together yields

λ(t)
(1+ω(h))p−1 → λ(t), (1+ω(h))p−1−1

h
→ 0, as h→ 0+.

Therefore, we conclude that λ̇(t) ≥ 0 for almost all t ∈ [0, t0) by achieving

lim inf
h→0+

λ(t+h)−λ(t)
h

≥ 0.

This completes the proof.

Proof of Lemma 6.3.4. By the definition, we have

dE(t)
dt

= 〈ẋ(t), x(t)− z〉.

In addition, Eq. (6.3) implies that ẋ(t) = −x(t) + (I + λ(t)A)−1x(t). Then, we have

dE(t)
dt

= −‖x(t)−(I+λ(t)A)−1x(t)‖2−〈x(t)−(I+λ(t)A)−1x(t), (I+λ(t)A)−1x(t)−z〉. (6.51)

Letting y(t) = (I + λ(t)A)−1x(t), we have 1
λ(t)

(x(t) − y(t)) ∈ Ay(t). Since z ∈ A−1(0), we
have 0 ∈ Az. By the monotonicity of A, we have

1
λ(t)
〈x(t)− y(t), y(t)− z〉 ≥ 0.

Using λ(t) > 0 and the definition of y(t), we have

〈x(t)− (I + λ(t)A)−1x(t), (I + λ(t)A)−1x(t)− z〉 ≥ 0. (6.52)

Plugging Eq. (6.52) into Eq. (6.51) yields the desired inequality.
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Proof of Lemma 6.4.2. It suffices to prove the first inequality in Eq. (6.35) which implies
the other results. Indeed, we have

Ek − Ek+1 = 〈xk − xk+1, xk+1 − z〉+ 1
2
‖xk+1 − xk‖2 (6.53)

= 〈xk − xk+1, yk+1 − z〉+ 〈xk − xk+1, xk+1 − yk+1〉+ 1
2
‖xk+1 − xk‖2

= 〈xk − xk+1, yk+1 − z〉︸ ︷︷ ︸
I

+1
2

‖xk − yk+1‖2 − ‖xk+1 − yk+1‖2︸ ︷︷ ︸
II

 .

Using the update xk+1 = xk − λk+1vk+1 and letting v ∈ Az, we have

I = λk+1〈vk+1, yk+1 − z〉 = λk+1〈vk+1 − v, yk+1 − z〉+ λk+1〈v, yk+1 − z〉.

Using vk+1 ∈ Aεk+1yk+1 and Eq. (6.33), we have 〈vk+1 − v, yk+1 − z〉 ≥ −εk+1. This implies

I ≥ λk+1〈v, yk+1 − z〉 − λk+1εk+1. (6.54)

Since xk+1 = xk − λk+1vk+1 and ‖λk+1vk+1 + yk+1 − xk‖2 + 2λk+1εk+1 ≤ σ2‖yk+1 − xk‖2, we
have

II = ‖xk − yk+1‖2 − ‖λk+1vk+1 + yk+1 − xk‖2 ≥ (1− σ2)‖xk − yk+1‖2 + 2λk+1εk+1. (6.55)

Plugging Eq. (6.54) and Eq. (6.55) into Eq. (6.53), we have

Ek − Ek+1 ≥ λk+1〈v, yk+1 − z〉+ 1−σ2

2
‖xk − yk+1‖2,

which implies the desired inequality.

Proof of Lemma 6.4.3. By the convention 0/0 = 0, we define τk = max{2εk
σ2 ,

λk‖vk‖2
(1+σ)2 } for

every integer k ≥ 1. Then, we have

2λkεk ≤ σ2‖yk − xk−1‖2,

‖λkvk‖ ≤ ‖λkvk + yk − xk−1‖+ ‖yk − xk−1‖ ≤ (1 + σ)‖yk − xk−1‖.

which implies that λkτk ≤ ‖yk − xk−1‖2 for every integer k ≥ 1. This together with
Lemma 6.4.2 yields

infz?∈A−1(0) ‖x0−z?‖2

1−σ2 ≥
k∑
i=1

‖yi − xi−1‖2 ≥
(

inf
1≤i≤k

τi

)( k∑
i=1

λi

)
.

Combining this inequality with the definition of τk yields the desired results.
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Proof of Lemma 6.4.4. For p = 1, the large-step condition implies that λk ≥ θ for all
k ≥ 0. For p ≥ 2, the large-step condition implies

k∑
i=1

(λi)
− 2
p−1 θ

2
p−1 ≤

k∑
i=1

(λi)
− 2
p−1 (λi‖xi−1 − yi‖p−1)

2
p−1

=
k∑
i=1

‖xi−1 − yi‖2
Lemma 6.4.2

≤ 1
1−σ2

(
inf

z?∈A−1(0)
‖x0 − z?‖2

)
.

By the Hölder inequality, we have

k∑
i=1

1 =
k∑
i=1

(
1

(λi)
2
p−1

) p−1
p+1

(λi)
2
p+1 ≤

(
k∑
i=1

1

(λi)
2
p−1

) p−1
p+1
(

k∑
i=1

λi

) 2
p+1

.

For the ease of presentation, we define C = 1
(1−σ2)

θ−
2
p−1 (infz?∈A−1(0) ‖x0 − z?‖2). Putting

these pieces together yields

k ≤ C
p−1
p+1

(
k∑
i=1

λi

) 2
p+1

,

which implies
k∑
i=1

λi ≥
(

1
C

) p−1
2 k

p+1
2 .

This completes the proof.
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Chapter 7

An Optimal Algorithm for
High-Order Variational Inequality

This paper settles an open and challenging question that pertaining to the design of simple
and optimal high-order methods for solving smooth and monotone variational inequalities
(VIs). A VI involves finding x? ∈ X such that 〈F (x), x−x?〉 ≥ 0 for all x ∈ X and we consider
the setting in which F : Rd 7→ Rd is smooth with up to (p−1)th-order derivatives. For p = 2,
the cubic regularization of Newton’s method has been extended to VIs with a global rate of
O(ε−1) [Nesterov, 2006]. An improved rate of O(ε−2/3 log log(1/ε)) can be obtained via an
alternative second-order method, but this method requires a nontrivial line-search procedure
as an inner loop. Similarly, the high-order methods based on similar line-search procedures
have been shown to achieve a rate of O(ε−2/(p+1) log log(1/ε)) [Bullins and Lai, 2022, Lin
and Jordan, 2023, Jiang and Mokhtari, 2022], but the inner loop requires fine-tuning of
parameters and can be computationally complex. As highlighted by Nesterov, it would be
desirable to develop a simple high-order VI method that retains the optimality of the more
complex methods [Nesterov, 2018]. We propose a pth-order method that does not require
any search procedure and provably converges to a weak solution at a rate of O(ε−2/(p+1)). We
prove that our pth-order method is optimal in the monotone setting by establishing a lower
bound of Ω(ε−2/(p+1)) under a linear span assumption. Our method with restarting attains a
global linear and local superlinear convergence rate for smooth and strongly monotone VIs.
Further, our method achieves a global rate of O(ε−2/p) for solving smooth and nonmonotone
VIs satisfying the Minty condition and our method with restarting attains a global linear and
local superlinear convergence rate for smooth and nonmonotone VIs satisfying the strong
Minty condition.

7.1 Introduction

Let Rd be a finite-dimensional Euclidean space and let X ⊆ Rd be a closed, convex and
bounded set with a diameter D > 0. Given that F : Rd 7→ Rd is a continuous opera-
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tor, a fundamental assumption in optimization theory, generalizing convexity, is that F is
monotone:

〈F (x)− F (x′), x− x′〉 ≥ 0, for all x, x′ ∈ Rd.

Another useful assumption in this context is that F is (p−1)th-order L-smooth; in particular,
that it has Lipschitz-continuous (p − 1)th-order derivative (p ≥ 1) in the sense that there
exists a constant L > 0 such that

‖∇(p−1)F (x)−∇(p−1)F (x′)‖op ≤ L‖x− x′‖, for all x, x′ ∈ Rd. (7.1)

With these assumptions, we can formulate the main problem of interest in this paper—the
Minty variational inequality problem [Minty, 1962]. This consists in finding a point x? ∈ X
such that

〈F (x), x− x?〉 ≥ 0, for all x ∈ X . (7.2)

The solution to Eq. (7.2) is referred to as a weak solution to the variational inequality
(VI) corresponding to F and X [Facchinei and Pang, 2007]. By way of comparison, the
Stampacchia variational inequality problem [Hartman and Stampacchia, 1966] consists in
finding a point x? ∈ X such that

〈F (x?), x− x?〉 ≥ 0, for all x ∈ X , (7.3)

and the solution to Eq. (7.3) is called a strong solution to the VI corresponding to F and
X . In the setting where F is continuous and monotone, the solution sets of Eq. (7.2) and
Eq. (7.3) are equivalent. However, these two solution sets are different in general and a weak
solution need not exist when a strong solution exists. In addition, computing an approximate
strong solution involves a higher computational burden than finding an approximate weak
solution [Monteiro and Svaiter, 2010, 2011, Chen et al., 2017]. Earlier work has focused on the
asymptotic global convergence analysis of various VI methods under mild conditions [Lemke
and Howson, 1964, Scarf, 1967, Todd, 2013, Hammond and Magnanti, 1987, Fukushima,
1992, Magnanti and Perakis, 1997b]. Two notable exceptions are the generalizations of the
ellipsoid method [Magnanti and Perakis, 1995] and the interior-point method [Ralph and
Wright, 1997], both of which have been the subject of nonasymptotic complexity analysis.

VIs capture a wide range of problems in optimization theory and beyond, including
saddle-point problems and models of equilibria in game-theoretic settings [Cottle et al., 1980,
Kinderlehrer and Stampacchia, 2000, Trémolières et al., 2011]. Moreover, the challenge of
designing solution methods for VIs with provable worst-case bounds has driven significant re-
search over several decades; see Harker and Pang [1990] and Facchinei and Pang [2007]. This
research has provided a foundation for work in machine learning in recent years, where gen-
eral saddle-point problems have emerged in many settings, including generative adversarial
networks (GANs) [Goodfellow et al., 2014] and multi-agent learning in games [Cesa-Bianchi
and Lugosi, 2006, Mertikopoulos and Zhou, 2019]. Some of these applications in ML induce a
nonmonotone structure, with representative examples including the training of robust neural
networks [Madry et al., 2018] or robust classifiers [Sinha et al., 2018].
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Building on seminal work in the context of high-order optimization [Baes, 2009, Birgin
et al., 2017], we tackle the challenge of developing pth-order methods for VIs via an inexact
solution of regularized subproblems obtained from a (p− 1)th-order Taylor expansion of F .
Accordingly, we make the following assumptions throughout this paper.

A1. F : Rd 7→ Rd is (p− 1)th-order L-smooth.

A2. The subproblem based on a (p − 1)th-order Taylor expansion of F and a convex and
bounded set X can be computed approximately in an efficient manner.

For the first-order VI methods (p = 1), Nemirovski [2004] has proved that the extragradient
(EG) method [Korpelevich, 1976, Antipin, 1978] converges to a weak solution with a global
rate of O(ε−1) if F is monotone and Eq. (7.1) holds. There are other methods with the
same global rate guarantee, including forward-backward splitting method [Tseng, 2000],
optimistic gradient (OG) [Popov, 1980, Mokhtari et al., 2020a, Kotsalis et al., 2022] and dual
extrapolation [Nesterov, 2007]. All these methods match the lower bound of Ouyang and Xu
[2021] and are thus optimal. In addition, a general adaptive line search framework has been
proposed to unify and extend several convergence results from the VI literature [Magnanti
and Perakis, 2004].

The investigation of second-order and high-order (p ≥ 2) counterparts of these first-
order methods is less advanced, as exploiting high-order derivative information is much
more involved for VIs [Nesterov, 2006, Monteiro and Svaiter, 2012]. Aiming to fill this gap,
some work has been recently devoted to studying high-order extensions of first-order VI
methods [Bullins and Lai, 2022, Lin and Jordan, 2023, Jiang and Mokhtari, 2022]. These
extensions attain a rate of O(ε−2/(p+1) log log(1/ε)) but require the nontrivial line-search
procedures at each iteration. Although an additional log log(1/ε) factor is normally regarded
as modest, the associated line-search procedures require fine tuning of parameters and can be
prohibitive from a computational viewpoint. Thus, the problem of designing a simple and
optimal high-order method remains open. In particular, Nesterov [2018, page 305] noted the
difficulty of removing the line-search procedure without sacrificing the rate of convergence
and highlighted this as an open and challenging question. We summarize the problem as
follows:

Can we design a simple and optimal pth-order VI method without line search?

In this paper, we present an affirmative answer to this problem by identifying a pth-order
method that achieves a global rate of O(ε−2/(p+1)) while dispensing entirely with the line-
search inner loop. The core idea of the proposed method is to incorporate a simple adaptive
strategy into a high-order generalization of the dual extrapolation method.

There are two reasons why we choose the dual extrapolation method as a base algorithm
for our high-order methods. First, the dual extrapolation method has its own merits as
summarized in Nesterov [2007], and the first second-order VI method to attain a global
convergence rate of O(ε−1) [Nesterov, 2006] was developed based on a dual extrapolation step.
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Our method can be interpreted as a simplification and generalization of this method. Second,
the dual extrapolation step is an important ingredient for algorithm design in optimization,
given the close relationship between extrapolation and acceleration in the context of first-
order methods for smooth convex optimization [Lan and Zhou, 2018a,b]. This is in contrast
to the EG method, which is an approximate proximal point method [Mokhtari et al., 2020a].
It would deepen our understanding of the scope of dual extrapolation if we could design a
simple and optimal high-order VI method based on this scheme.

Contributions. The contribution of this paper consists in fully closing the gap between
the upper and lower bounds in the monotone setting and improving the state-of-the-art upper
bounds in the strongly monotone and/or structured non-monotone settings. In further detail:

1. We present a new pth-order method for solving smooth and monotone VIs where F has
a Lipschitz continuous (p − 1)th-order derivative and X is convex and bounded. We
prove that the number of calls of subproblem solvers required by our method to find
an ε-weak solution is bounded by

O

((
LDp+1

ε

) 2
p+1

)
.

We prove that our method is optimal by establishing a matching lower bound under
a linear span assumption. Moreover, we present a restarted version of our method
for solving smooth and strongly monotone VIs. That is, we show that there exists a
constant µ > 0 such that

〈F (x)− F (x′), x− x′〉 ≥ µ‖x− x′‖2, for all x, x′ ∈ Rd.

We show that the number of calls of subproblem solvers required to find x̂ ∈ X satis-
fying ‖x̂− x?‖ ≤ ε is bounded by

O

(
(κDp−1)

2
p+1 log2

(
D

ε

))
,

where κ = L/µ refers to the condition number of F . The restarted version also achieves
local superlinear convergence for the case of p ≥ 2.

2. We show how to modify our framework such that it can be used for solving smooth
and nonmonotone VIs satisfying the so-called Minty condition (see Definition 7.2.5).
Again, we note that a line-search procedure is not required. We prove that the number
of calls of subproblem solvers to find an ε-strong solution is bounded by

O

((
LDp+1

ε

) 2
p

)
.

Our methods with restarting attain a global linear and local superlinear convergence
rate (for the case of p ≥ 2) under the strong Minty condition.
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Concurrently appearing on arXiv, Adil et al. [2022] has established the same upper bounds
as ours for a high-order generalization of the EG method for solving smooth and monotone
VIs. However, it still remains open whether or not their method can be extended to solve
strongly monotone VIs1 or nonmonotone VIs satisfying the Minty condition.

A lower bound has been established in Adil et al. [2022] for a class of pth-order methods
restricted to solving the primal problem. This is a rather strong limitation that excludes both
our method and their method. We derive the same lower bound for a broader class of pth-
order methods that include both our method and their method thanks to the construction of
a new hard instance. Although the hard instance function is different (and the lower bound
does improve), we do wish to acknowledge that the proof techniques from Adil et al. [2022]
inspired our analysis.

Related works. In addition to the aforementioned work, we review relevant research on
high-order convex optimization. We focus on pth-order methods for p ≥ 2.

To the best of our knowledge, the systematic investigation of the global convergence rate
of second-order methods originates in work on the cubic regularization of Newton’s method
(CRN) [Nesterov and Polyak, 2006] and its accelerated counterpart (ACRN) [Nesterov, 2008].
The ACRN method was then extended with a pth-order regularization model, yielding an
improved global rate of O(ε−1/(p+1)) [Baes, 2009] while an adaptive pth-order method was
proposed in Jiang et al. [2020] with the same rate. This extension was recently revisited
by Nesterov [2021b], Grapiglia and Nesterov [2022a] with a discussion on an efficient im-
plementation of a third-order method. Meanwhile, within the accelerated Newton proximal
extragradient (ANPE) framework [Monteiro and Svaiter, 2013], a pth-order method was also
proposed by Gasnikov et al. [2019b] with a global rate of O(ε−2/(3p+1) log(1/ε)) for minimiz-
ing a convex function whose pth-order derivative is Lipschitz continuous. In this context,
an additional log factor remains between the above upper bound and the lower bound of
O(ε−2/(3p+1)) [Arjevani et al., 2019]. This gap was recently closed by two works [Kovalev
and Gasnikov, 2022, Carmon et al., 2022] that offer a complementary viewpoint to that
of Monteiro and Svaiter [2013], Gasnikov et al. [2019b] on how to remove the line-search
procedure. Subsequently, the pth-order ANPE framework was extended to a strongly convex
setting [Marques Alves, 2022] and shown to achieve an optimal global linear rate. Beyond the
setting with Lipschitz continuous pth-order derivatives, these pth-order methods have been
adapted to a setting with Hölder continuous pth-order derivatives [Grapiglia and Nesterov,
2017, 2019, 2020, Song et al., 2021, Doikov and Nesterov, 2022]. Further settings include
smooth nonconvex minimization [Cartis et al., 2010, 2011a,b, 2019, Birgin et al., 2016, 2017,
Mart́ınez, 2017] and structured nonsmooth minimization [Bullins, 2020]. There is also a
complementary line of research that studies the favorable properties of lower-order methods
in the setting of higher-order smoothness [Nesterov, 2021d,a,c].

1We are also aware of very recent work [Huang and Zhang, 2022a] that analyzes a high-order extragradient
method for solving smooth and strongly monotone VIs. They have established the same convergence rate
guarantee as our method in this setting.
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We are aware of various high-order methods obtained via discretization of continuous-time
dynamical systems [Wibisono et al., 2016, Lin and Jordan, 2022b]. In particular, Wibisono
et al. [2016] showed that the ACRN method and its pth-order variants can be obtained from
implicit discretization of an open-loop system without Hessian-driven damping. Lin and
Jordan [2022b] have provided a control-theoretic perspective on pth-order ANPE methods
by recovering them from implicit discretization of a closed-loop system with Hessian-driven
damping. Both of these two works proved the convergence rate of pth-order ACRN and
ANPE methods using Lyapunov functions.

Notation. We use lower-case letters such as x to denote vectors and upper-case letters
such as X to denote tensors. Let Rd be a finite-dimensional Euclidean space (the dimension
is d ∈ {1, 2, . . .}), endowed with the scalar product 〈·, ·〉. For x ∈ Rd, we let ‖x‖ denote its
`2-norm. For X ∈ Rd1×...×dp , we define

X[z1, · · · , zp] =
∑

1≤ij≤dj ,1≤j≤p

(Xi1,··· ,ip)z
1
i1
· · · zpip ,

and ‖X‖op = max‖zi‖=1,1≤j≤pX[z1, · · · , zp] as well. Fixing p ≥ 0 and letting F : Rd 7→ Rd

be a continuous and high-order differentiable operator, we define ∇(p)F (x) as the pth-order
derivative at a point x ∈ Rd and write∇(0)F = F . To be more precise, letting z1, . . . , zk ∈ Rd,
we have

∇(k)F (x)[z1, · · · , zk] =
∑

1≤i1,...,ik≤d

(
∂Fi1

∂xi2 · · · ∂xik
(x)

)
z1
i1
· · · zkik .

For a closed and convex set X ⊆ Rd, we let PX be the orthogonal projection onto X and let
dist(x,X ) = infx′∈X ‖x′−x‖ denote the distance between x and X . Finally, a = O(b(L, µ, ε))
stands for an upper bound a ≤ C · b(L, µ, ε), where C > 0 is independent of parameters L, µ
and the tolerance ε ∈ (0, 1), and a = Õ(b(L, µ, ε)) indicates the same inequality where C > 0
depends on logarithmic factors of 1/ε.

7.2 Preliminaries

We present the basic formulation of variational inequality (VI) problems and provide defini-
tions for the class of operators and optimality criteria considered in this paper. We further
give an overview of Nesterov’s dual extrapolation concept from which our method originates.

Variational inequality problem. The regularity conditions that we consider for F :
Rd 7→ Rd are as follows.

Definition 7.2.1 F is kth-order L-smooth if

‖∇(k)F (x)−∇(k)F (x′)‖op ≤ L‖x− x′‖,

for all x, x′.
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Definition 7.2.2 F is µ-strongly monotone if 〈F (x) − F (x′), x − x′〉 ≥ µ‖x − x′‖2 for all
x, x′. If µ = 0, we recover the definition of monotone operator.

With the definitions in mind, we state the assumptions that impose in addition to A1 and
A2 in order to define highly smooth VI problems.

Assumption 7.2.3 We assume that (i) F : Rd 7→ Rd is (p− 1)th-order L-smooth, and (ii)
X is convex and bounded with a diameter D = maxx,x′∈X ‖x− x′‖ > 0.

The convergence of derivative-based optimization methods to a weak solution x? ∈ X de-
pends on properties of F near this point, and in particular some form of smoothness con-
dition is needed. As for the boundedness condition for X , it is standard in the VI liter-
ature [Facchinei and Pang, 2007]. This condition not only guarantees the validity of the
most natural optimality criterion in the monotone setting—the gap function [Nemirovski,
2004, Nesterov, 2007]—but additionally it is satisfied in real application problems Facchinei
and Pang [2007]. On the other hand, there is another line of work focusing on relaxing
the boundedness condition via appeal to other notions of approximate solution [Monteiro
and Svaiter, 2010, 2011, 2012, Chen et al., 2017]. For simplicity, we retain the boundedness
condition and leave the analysis for cases with unbounded constraint sets to future work.

Monotone setting. For some of our results we focus on operators F that are monotone
in addition to Assumption 7.2.3. Under monotonicity, it is well known that any ε-strong
solution is an ε-weak solution but the reverse does not hold true in general. Accordingly, we
formally define x̂ ∈ X as an ε-weak solution or an ε-strong solution as follows:

(ε-weak solution) 〈F (x), x̂− x〉 ≤ ε, for all x ∈ X ,
(ε-strong solution) 〈F (x̂), x̂− x〉 ≤ ε, for all x ∈ X .

These definitions motivate the use of a gap function, gap(·) : X 7→ R+, defined by

gap(x̂) = sup
x∈X
〈F (x), x̂− x〉, (7.4)

to measure the optimality of a point x̂ ∈ X that is output by various iterative solution
methods; see, e.g., Tseng [2000], Nemirovski [2004], Nesterov [2007], Mokhtari et al. [2020a].
Note that the boundedness of X and the existence of a strong solution guarantee that the
gap function is well defined. Formally, we have

Definition 7.2.4 A point x̂ ∈ X is an ε-weak solution to the monotone VI that corresponds
to F : Rd 7→ Rd and X ⊆ Rd if we have gap(x̂) ≤ ε. If ε = 0, then x̂ ∈ X is a weak solution.

In the strongly monotone setting, we let µ > 0 denote the modulus of strong monotonicity
for F . Under Assumption 7.2.3, we define κ := L/µ as the condition number of F . It is worth
mentioning that the condition number quantifies the difficulty of solving the optimization



CHAPTER 7. AN OPTIMAL ALGORITHM FOR HIGH-ORDER VARIATIONAL
INEQUALITY 212

problem [Nesterov, 2018] and appears in the iteration complexity bound of derivative-based
methods for optimizing a smooth and strongly convex function. Accordingly, the VI that
corresponds to F and X is more computationally challenging as κ > 0 increases.

Structured nonmonotone setting. We study the case where F is nonmonotone but
satisfies the Minty condition. Imposing such a condition is crucial since the smoothness
of F is not sufficient to guarantee that the problem is computationally tractable. This
has been shown by Daskalakis et al. [2021] who established that even deciding whether
an approximate min-max solution exists is NP hard in smooth and nonconvex-nonconcave
min-max optimization (which is a special instance of nonmonotone VIs).

Recent work has shown that the nonmonotone VI problem satisfying the Minty condition
is computationally tractable [Solodov and Svaiter, 1999b, Dang and Lan, 2015, Iusem et al.,
2017, Kannan and Shanbhag, 2019, Song et al., 2020, Liu et al., 2021, Diakonikolas et al.,
2021]. We thus make the following formal definition.

Definition 7.2.5 The VI corresponding to F : Rd 7→ Rd and X ⊆ Rd satisfies the Minty
condition if there exists a point x? ∈ X such that 〈F (x), x− x?〉 ≥ 0 for all x ∈ X .

We make some comments on the Minty condition. First, this condition simply assumes
the existence of at least one weak solution. Second, Harker and Pang [1990, Theorem 3.1]
guarantees that there is at least one strong solution since F is continuous and X is closed
and bounded. However, the set of weak solutions is only a subset of the set of strong
solutions if F is not necessarily monotone, and the weak solution might not exist. From
this perspective, the Minty condition gives a favorable structure. Furthermore, the Minty
condition is weaker than generalized monotone assumptions [Dang and Lan, 2015, Iusem
et al., 2017, Kannan and Shanbhag, 2019] that imply that the computation of an ε-strong
solution of nonmonotone VIs is tractable for first-order methods. Finally, we say the VI
satisfies the µM -strong Minty condition [Song et al., 2020] if there exists a point x? ∈ X such
that 〈F (x), x− x?〉 ≥ µM‖x− x?‖2 for all x ∈ X .

Accordingly, we define the residue function res(·) : X 7→ R+ given by

res(x̂) = sup
x∈X
〈F (x̂), x̂− x〉, (7.5)

which measures the optimality of a point x̂ ∈ X achieved by iterative solution methods; see,
e.g., Dang and Lan [2015], Iusem et al. [2017], Kannan and Shanbhag [2019], Song et al.
[2020]. It is worth noting that the boundedness of X and the continuity of F guarantee that
the residue function is well defined. Formally, we have

Definition 7.2.6 A point x̂ ∈ X is an ε-strong solution to the nonmonotone VI correspond-
ing to F : Rd 7→ Rd and X ⊆ Rd if we have res(x̂) ≤ ε. If ε = 0, then x̂ ∈ X is a strong
solution.
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There are many application problems that can be formulated as nonmonotone VIs satisfying
the Minty condition, such as competitive exchange economies [Brighi and John, 2002] and
product pricing [Choi et al., 1990, Gallego and Hu, 2014, Ewerhart, 2014]. Also, the Minty
condition restricted to nonconvex optimization was adopted for analyzing the convergence of
stochastic gradient descent for deep learning [Li and Yuan, 2017] and it has found real-world
applications [Kleinberg et al., 2018].

Comments on weak versus strong solutions. First, the montonicity assumption is
assumed such that the averaged iterates make sense and we have proved that the averaged
iterates converge to an ε-weak solution with a faster convergence rate of O(ε−2/(p+1)) in this
setting (see Theorem 7.3.1). Such a bound is stronger than that for convergence rate of best
iterates to an ε-strong solution under only the Minty condition (see Theorem 7.3.7). Fur-
ther, if we impose the monotonicity assumption, we conjecture that the rate of convergence
to an ε-strong solution can be improved from O(ε−2/p) to O(ε−2/(p+1)). Such a result has
been achieved for the case of p = 1 [Diakonikolas, 2020]. However, it is worth mentioning
that the first-order method in [Diakonikolas, 2020] is different from the first-order extragra-
dient method and the first-order dual extrapolation method which are known to achieve an
optimal convergence to an ε-weak solution. It remains unclear how to design a high-order
generalization of such new Halpern iteration methods. Finally, the complexity bound of
O(ε−2/(p+1)) can not be extended beyond the monotone setting if only the Minty condition
holds. Indeed, the key ingredient for proving the complexity bound of O(ε−2/(p+1)) is the
use of averaged iterates in our new method. Such an averaging technique is known to be
crucial for the monotone setting [Magnanti and Perakis, 1997a] but is not known to be valid
when only the Minty condition holds. In addition, the fast convergence of Halpern iteration
in Diakonikolas [2020] for achieving an ε-strong solution heavily relies on the monotonicity
assumption and does not extend to the setting when only the Minty condition holds. We
would be very surprised if the optimal complexity bound for the monotone setting (note that
we have established the matching lower bound) can be achieved for the setting when only
the Minty condition holds. Even for the case of p = 1, we are not aware of any relevant
supporting evidence. Further exploration of this topic is beyond the scope of our paper.

Comments on Euclidean versus non-Euclidean settings. The non-Euclidean gen-
eralization of the first-order dual extrapolation method has been shown to outperform the
original method in various application problem (e.g., the case where X is a simplex) [Nes-
terov, 2007]. It remains a possibility that such a benefit also occurs for the case of p ≥ 2 and
thus it seems promising to study the high-order dual extrapolation method in non-Euclidean
settings. In fact, we can follow the approach from Adil et al. [2022] and extend our methods
to the non-Euclidean setting using Bregman divergence. However, we can not say much
about the superiority of high-order dual extrapolation methods in the non-Euclidean setting
since the solution of the subproblem will become much more involved. This is different from
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the first-order case where each subproblem has a closed-form solution even in non-Euclidean
settings. This is also a intriguing topic but again beyond the scope of our paper.

Nesterov’s dual extrapolation method. Dual extrapolation method [Nesterov, 2007]
has been shown to be an optimal first-order method for computing the weak solution of the
VI when F is zeroth-order L-smooth and monotone [Ouyang and Xu, 2021]. We recall the
basic formulation in our setting of a VI defined via an operator F : Rd 7→ Rd and a closed,
convex and bounded set X ⊆ Rd. Starting with the initial points x0 ∈ X and s0 = 0 ∈ Rd,
the kth iteration of the scheme is given by (k ≥ 1):

Find vk ∈ X s.t. vk = argmaxv∈X 〈sk−1, v − x0〉 − β
2
‖v − x0‖2,

Find xk ∈ X s.t. 〈F (vk) + β(xk − vk), x− xk〉 ≥ 0 for all x ∈ X ,
sk = sk−1 − λF (xk).

This method can be viewed as an instance of the celebrated extragradient method in the dual
space (we refer to s ∈ Rd as the dual variable). Indeed, the rule which transforms a point sk−1

into the next point sk at the kth iteration is called a dual extrapolation step. Nesterov [2007,
Theorem 2] showed that the dual extrapolation method, with β = L and λ = 1, generates a
sequence {xk}k≥0 ⊆ X satisfying the condition that the average iterate, x̃k = 1

k+1

∑k
i=0 xi, is

an ε-weak solution after O(ε−1) iterations. Here, L > 0 is the Lipschitz constant of F .
Nesterov also considered the setting where F is monotone and first-order L-smooth and

proposed a second-order variant of dual extrapolation method for computing the weak solu-
tion of the VI [Nesterov, 2006]. Starting with the initial points x0 ∈ X and s0 = 0 ∈ Rd, the
kth iteration of the scheme is given by (k ≥ 1):

Find vk ∈ X s.t. vk = argmaxv∈X 〈sk−1, v − x0〉 − β
3
‖v − x0‖3,

Find xk ∈ X s.t. 〈F 1
vk

(xk) + M
2
‖xk − vk‖(xk − vk), x− xk〉 ≥ 0 for all x ∈ X ,

sk = sk−1 − λF (xk),

where F 1
v (·) : Rd 7→ Rd is defined as a first-order Taylor expansion of F at a point v ∈ X :

F 1
v (x) = F (v) +∇F (v)(x− v).

This scheme is based on the dual extrapolation step but with a different regularization and
with a first-order Taylor expansion of F . This makes sense since we have zeroth-order and
first-order derivative information available and hope to use both of them to accelerate conver-
gence. Similar ideas have been studied for convex optimization [Nesterov and Polyak, 2006],
leading to a simple second-order method with a faster global rate of convergence [Nesterov,
2008] than the optimal first-order method [Nesterov, 1983]. Unfortunately, this second-order
dual extrapolation method with β = 6L, M = 5L and λ = 1 is only guaranteed to achieve
an iteration complexity of O(ε−1) [Nesterov, 2006, Theorem 4].
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Algorithm 20 Perseus(p, x0, L, T , opt)

Input: order p, initial point x0 ∈ X , parameter L, iteration number T and opt ∈ {0, 1, 2}.

Initialization: set s0 = 0d ∈ Rd.
for k = 0, 1, 2, . . . , T do

STEP 1: If xk ∈ X is a solution of the VI, then stop.
STEP 2: Compute vk+1 = argmaxv∈X{〈sk, v − x0〉 − 1

2
‖v − x0‖2}.

STEP 3: Compute xk+1 ∈ X such that Eq. (7.7) holds true.

STEP 4: Compute λk+1 > 0 such that 1
20p−8

≤ λk+1L‖xk+1−vk+1‖p−1

p!
≤ 1

10p+2
.

STEP 5: Compute sk+1 = sk − λk+1F (xk+1).

Output: x̂ =


x̃T = 1∑T

k=1 λk

∑T
k=1 λkxk, if opt = 0,

xT , else if opt = 1,

xkT for kT = argmin1≤k≤T ‖xk − vk‖, else if opt = 2.

7.3 A Regularized High-Order Model and Algorithm

We present our algorithmic derivation of Perseus and provide a theoretical convergence guar-
antee for the method. We provide intuition into why Perseus and its restarted version yield
fast rates of convergence for VI problems. We present a full treatment of the global and
local convergence of Perseus and its restarted version for both the monotone setting and the
nonmonotone setting under the Minty condition.

Algorithmic scheme. We present our pth-order method—Perseus(p, x0, L, T , opt)—in
Algorithm 20. Here p ∈ {1, 2, . . .} is the order, x0 ∈ X is an initial point, L > 0 is a
Lipschitz constant for (p− 1)th-order smoothness, T is the maximum iteration number and
opt ∈ {0, 1, 2} is the type of output. Our method is a generalization of the dual extrapolation
method [Nesterov, 2007] from first order to general pth order.

The novelty of our method lies in an adaptive strategy used for updating λk+1 (see Step
4). This modification is simple yet important. It is the key for obtaining a global rate
of O(ε−2/(p+1)) (monotone) and that of O(ε−2/p) (nonmonotone with the Minty condition)
under Assumption 7.2.3. Focusing on the case of p = 2 and the monotone setting, our
results improve on the best existing global convergence rates of O(ε−1) [Nesterov, 2006] and
that of O(ε−2/3 log log(1/ε)) [Monteiro and Svaiter, 2012] under Assumption 7.2.3, while not
sacrificing algorithmic simplicity. In addition, our methods allow the subproblem to be solved
inexactly, and we give options for choosing the type of outputs under different assumptions.

Comments on inexact solution of subproblems. We remark that Step 3 involves
computing an approximate strong solution to the VI where we define the operator Fvk+1

(x)
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as the sum of a high-order polynominal and a regularization term. Indeed, we have2

Fvk+1
(x) = F (vk+1) + 〈∇F (vk+1), x− vk+1〉

+ . . .+ 1
(p−1)!

∇(p−1)F (vk+1)[x− vk+1]p−1 + 5L
(p−1)!

‖x− vk+1‖p−1(x− vk+1),

where we write the VI of interest in the subproblem as follows:

Find xk+1 ∈ X such that 〈Fvk+1
(xk+1), x− xk+1〉 ≥ 0 for all x ∈ X . (7.6)

Since Fvk+1
is continuous and X is convex and bounded, Harker and Pang [1990, Theorem 3.1]

guarantees that a strong solution to the VI in Eq. (7.6) exists and the problem of finding an
approximate strong solution is well defined.

In the monotone setting, we can prove that the pth-order regularization subproblem in
Eq. (7.6) is monotone (in fact, it is relatively strongly monotone) if the original VI is pth-order
L-smooth and monotone. Indeed, the VI with F is monotone if and only if the symmetric
part of the Jacobian matrix ∇F (x) is positive semidefinite for all x ∈ Rd [Rockafellar and
Wets, 2009, Proposition 12.3]. That is to say,

1
2
(∇F (x) +∇F (x)>) � 0d×d, for all x ∈ Rd.

For the case of p = 1, we have ∇Fvk+1
(x) = 5L ·Id×d � 0d×d for all x ∈ Rd where Id×d ∈ Rd×d

is an identity matrix. Thus, the VI in Eq. (7.6) is 5L-strongly monotone. For the case of
p ≥ 2, we have

∇Fvk+1
(x) = ∇F (vk+1) + . . .+ 1

(p−2)!
∇(p−1)F (vk+1)[x− vk+1]p−2

+ 5L
(p−1)!

‖x− vk+1‖p−1Id×d + 5L
(p−2)!

‖x− vk+1‖p−2(x− vk+1)(x− vk+1)>.

Since the original VI is pth-order L-smooth, we obtain from Jiang and Mokhtari [2022,
Eq. (7)] that

‖∇F (x)− (∇F (vk+1) + . . .+ 1
(p−2)!

∇(p−1)F (vk+1)[x− vk+1]p−2)‖op

≤ L
(p−1)!

‖x− vk+1‖p−1.

This implies that

1
2
(∇Fvk+1

(x) +∇Fvk+1
(x)>) � 1

2
(∇F (x) +∇F (x)>)

+ 4L
(p−1)!

‖x− vk+1‖p−1Id×d + 5L
(p−2)!

‖x− vk+1‖p−2(x− vk+1)(x− vk+1)>

� 4L
(p−1)!

(‖x− vk+1‖p−1Id×d + ‖x− vk+1‖p−2(x− vk+1)(x− vk+1)>),

where the second inequality holds since the original VI is monotone. Thus, the VI in Eq. (7.6)
is monotone and 4L-relatively strongly monotone with respect to the reference function

2For ease of presentation, we choose the factor of 5 here. It is worth noting that other large coefficients
also suffice to achieve the same global convergence rate guarantee.
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Algorithm 21 Perseus-restart(p, x0, L, σ, D, T , opt)

Input: order p, initial point x0 ∈ X , parameters L, σ,D, iteration number T and opt ∈
{0, 1}.

Initialization: set Tinner =

 d(
2p+1(5p−2)

p!
LDp−1

σ
)

2
p+1 e, if opt = 0,

1, else if opt = 1.

for k = 0, 1, 2, . . . , T do
STEP 1: If xk ∈ X is a solution of the VI, then stop.
STEP 2: Compute xk+1 = Perseus(p, xk, L, Tinner, opt).

Output: xT+1.

h(x) = 1
p!
‖x − vk+1‖p (see Nesterov [2021b] for the precise definition). Putting these pieces

together yields the desired result. From a computational viewpoint, we can use the general-
ized mirror-prox method in Titov et al. [2022] to compute xk+1 ∈ X satisfying the following
approximation condition:

sup
x∈X
〈Fvk+1

(xk+1), xk+1 − x〉 ≤ L
p!
‖xk+1 − vk+1‖p+1. (7.7)

Therefore, the solution of the subproblem in our framework is computationally tractable for
the monotone setting. Other efficient numerical methods have been developed for the case
of p = 2 and X = Rd in the context of optimization [Grapiglia and Nesterov, 2021] and
minimax optimization [Huang et al., 2022b, Adil et al., 2022, Lin et al., 2022d] and shown
to be effective in practice.

In the nonmonotone setting, the VI in Eq. (7.6) is not necessarily monotone and com-
puting a solution xk+1 satisfying Eq. (7.7) is intractable in general [Daskalakis et al., 2021].
However, Fvk+1

is defined as the sum of a polynomial and a regularization term, and this
special structure might lend itself to efficient numerical methods. For example, we consider
the optimization setting where F = ∇f for a nonconvex function f : Rd 7→ R with a Lips-
chitz second-order derivative, X = Rd and p = 2. Solving the VI in Eq. (7.6) is equivalent
to solving cubic regularization subproblems in unconstrained optimization: finding a global
solution of the regularized polynomial in the following form of

〈∇f(vk+1), x− vk+1〉+ 1
2
〈x− vk+1,∇2f(vk+1)(x− vk+1)〉+ L

3
‖x− vk+1‖3.

This optimization problem is nonconvex but can be solved approximately in a provably
efficient manner. Examples of cubic solvers include some generalized conjugate gradient
methods with the Lanczos process [Gould et al., 1999, 2010] and a simple variant of gradient
descent [Carmon and Duchi, 2019]. A recent textbook [Cartis et al., 2022] provides a detailed
discussion of these techniques. The generalization of these techniques to handle the VI in
Eq. (7.6) is challenging, however, and beyond the scope of this paper.

Comments on adaptive strategies. Our adaptive strategy for updating λk+1 was in-
spired by an in-depth consideration of the reason a nontrivial binary search procedure is
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needed in existing pth-order methods. These methods compute a pair, λk+1 > 0, xk+1 ∈ X ,
that (approximately) solve the x-subproblem that contains λ and the λ-subproblem that
contains x. In particular, the conditions can be written as follows:

α− ≤ λk+1L‖xk+1−vk+1‖p−1

p!
≤ α+ for proper choices of α− and α+,

〈Fvk+1
(xk+1) + 1

λk+1
(xk+1 − vk+1), x− xk+1〉 ≥ 0 for all x ∈ X ,

where

Fv(x) = F (v) + 〈∇F (v), x− v〉 (7.8)

+ . . .+ 1
(p−1)!

∇(p−1)F (v)[x− v]p−1 + L
(p−1)!

‖x− v‖p−1(x− v).

A key observation is that there can be some x-subproblems that do not need to refer to λ;
e.g., the one employed in Algorithm 20. Indeed, we compute xk+1 ∈ X that approximately
satisfies the following condition:

〈Fvk+1
(xk+1), x− xk+1〉 ≥ 0 for all x ∈ X .

It suffices to return xk+1 ∈ X with a sufficiently good quality to give us λk+1 > 0 using a
simple update rule. Intuitively, such an adaptive strategy makes sense since λk+1 serves as
the stepsize in the dual space and we need to be aggressive as the iterate xk+1 approaches
the set of optimal solutions to the VI. Meanwhile, the quantity ‖xk+1− vk+1‖ can be used to
measure the distance between xk+1 and an optimal solution, and the order p ∈ {1, 2, 3, . . .}
quantifies the relationship between the closeness and the exploitation of high-order derivative
information. In summary, λk+1 becomes larger for a better iterate xk+1 ∈ X and such a choice
leads to a faster global rate of convergence.

Restart version of Perseus. We summarize the restarted version of our pth-order method
in Algorithm 21. This method, which we refer to as Perseus-restart(p, x0, L, σ, D, T , opt),
combines Algorithm 20 with a restart scheme; cf. Nemirovski and Nesterov [1985], Nesterov
[2013a], O’donoghue and Candes [2015], Nesterov [2018].

Restart schemes stop an algorithm when a criterion is satisfied and then restart the al-
gorithm with a new input. Originally studied in the setting of momentum-based methods,
restarting has been recognized as an important tool for designing linearly convergent algo-
rithms when the objective function is strongly/uniformly convex [Nemirovski and Nesterov,
1985, Nesterov, 2013a, Ghadimi and Lan, 2013a] or has some other structures [Freund and
Lu, 2018, Necoara et al., 2019, Renegar and Grimmer, 2022]. Note that strong monotonicity
is a generalization of such regularity conditions. As such, it is natural to consider a restarted
version of our method, hoping to achieve linear convergence. Accordingly, at each iteration
of Algorithm 21, we use xk+1 = Perseus(p, xk, L, t, opt) as a subroutine. In other words, we
simply restart Perseus every t ≥ 1 iterations and take advantage of average iterates or best
iterates to generate xk+1 from xk. In addition, it is worth mentioning that the choice of t can
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be specialized to different settings and/or different type of convergence guarantees. Indeed,
we set opt = 0 for the strong monotone setting and opt = 1 to obtain a local convergence
guarantee.

In the context of VI, restarting strategies have been used to extend high-order extra-
gradient methods [Bullins and Lai, 2022, Adil et al., 2022] from the monotone setting to
the strongly monotone setting [Ostroukhov et al., 2020, Huang and Zhang, 2022a]. More-
over, several papers focus on the investigation of adaptive restart schemes that speed up
the convergence of classical first-order methods [Giselsson and Boyd, 2014, O’donoghue and
Candes, 2015] and provide theoretical guarantees in a general setting where the objective
function is smooth and has Hölderian growth [Roulet and d’Aspremont, 2017, Fercoq and
Qu, 2019]. A drawback of these schemes is that they rely on knowing appropriately accurate
approximations of problem parameters. The same issue arises for our method, given that
Algorithm 21 needs to choose Tinner ≥ 1. In the optimization setting, recent work by Renegar
and Grimmer [2022] shows how to alleviate this problem via a simple restart scheme that
makes no attempt to learn parameter values and only requires the information that is readily
available in practice. It is an interesting open question as to whether such a scheme can be
found in the VI setting for Perseus.

Main results. We provide our main results on the convergence rate for Algorithm 20
and 21 in terms of the number of calls of the subproblem solvers. Note that Assumption 7.2.3
will be made throughout and we impose the Minty condition (see Definition 7.2.5) for the
nonmonotone setting.

Monotone setting. The following theorems give us the global convergence rate of Algo-
rithm 20 and 21 for smooth and (strongly) monotone VIs.

Theorem 7.3.1 Suppose that Assumption 7.2.3 holds and F : Rd 7→ Rd is monotone and
let ε ∈ (0, 1). Then, the required number of iterations is

T = O

((
LDp+1

ε

) 2
p+1

)
,

where x̂ = Perseus(p, x0, L, T, 0) satisfies gap(x̂) ≤ ε and the total number of calls of the
subproblem solvers is equal to T . Here, p ∈ {1, 2, . . .} is an order, L > 0 is a Lipschitz
constant for (p− 1)th-order smoothness of F and D > 0 is the diameter of X .

Theorem 7.3.2 Suppose that Assumption 7.2.3 holds and F : Rd 7→ Rd is µ-strongly mono-
tone and let ε ∈ (0, 1). Then, the required number of iterations is

T = O

(
log2

(
D

ε

))
,
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such that x̂ = Perseus-restart(p, x0, L, µ,D, T, 0) satisfies ‖x̂− x?‖ ≤ ε and the total number
of calls of the subproblem solvers is bounded by

O

(
(κDp−1)

2
p+1 log2

(
D

ε

))
,

where p ∈ {1, 2, . . .} is an order, κ = L/µ > 0 is the condition number of F , D > 0 is the
diameter of X and x? ∈ X is one weak solution.

Remark 7.3.3 For the first-order methods (i.e., the case of p = 1), the convergence guar-
antee in Theorem 7.3.1 recovers the global rate of O(L/ε) in Nesterov [2007, Theorem 2].
The same rate has been derived for other methods [Nemirovski, 2004, Monteiro and Svaiter,
2010, Mokhtari et al., 2020a, Kotsalis et al., 2022] and is known to match the established
lower bound [Ouyang and Xu, 2021]. For the second-order and high-order methods (i.e., the
case of p ≥ 2), our results improve upon the state-of-the-art results [Monteiro and Svaiter,
2012, Bullins and Lai, 2022, Lin and Jordan, 2023, Jiang and Mokhtari, 2022] by shaving
off the log factors.

Remark 7.3.4 For the first-order methods, Theorem 7.3.2 recovers the global linear con-
vergence rate achieved by the dual extrapolation method and matches the established lower
bound [Zhang et al., 2022a]. For the second-order and high-order methods, our results im-
prove upon the results in Jiang and Mokhtari [2022] by shaving off the log factors. We believe
that these bounds can not be improved although we do not know of lower bounds.

Local convergence. We present the local convergence property of our methods for the
strongly monotone VIs.

Theorem 7.3.5 Suppose that Assumption 7.2.3 holds and F : Rd 7→ Rd is µ-strongly mono-
tone and let {xk}T+1

k=0 be generated by Perseus-restart(p, x0, L, µ,D, T, 1). Then, the following
statement holds true,

‖xk+1 − x?‖ ≤
√

2p(5p−2)κ
p!

‖xk − x?‖
p+1

2 ,

where κ = L/µ > 0 is the condition number of the VI, D > 0 is the diameter of X and x? is
the unique weak solution of the VI. As a consequence, if p ≥ 2 and the following condition
holds true,

‖x0 − x?‖ ≤ 1
2

(
p!

2p(5p−2)κ

) 1
p−1

,

the iterates {xk}T+1
k=0 converge to x? ∈ X in at least a superlinear rate.

Remark 7.3.6 The local convergence guarantee in Theorem 7.3.5 is derived for the second-
order and high-order methods (i.e., the case of p ≥ 2) and is posited as their advantage over
first-order method if we hope to pursue high-accuracy solutions. In this context, Jiang and
Mokhtari [2022] provided the same local convergence guarantee for the generalized optimistic
gradient methods as our results in Theorem 7.3.5 but without counting the complexity bound
of binary search procedure.
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Nonmonotone setting. We consider smooth and nonmonotone VIs satisfying the Minty
condition and present the global rate of Algorithm 20 and 21 in terms of the number of calls
of the subproblem solvers.

Theorem 7.3.7 Suppose that Assumption 7.2.3 and the Minty condition hold true and let
ε ∈ (0, 1). Then, the required number of iterations is

T = O

((
LDp+1

ε

) 2
p

)
,

such that x̂ = Perseus(p, x0, L, T, 2) satisfies res(x̂) ≤ ε and the total number of calls of the
subproblem solvers is equal to T . Here, p ∈ {1, 2, . . .} is an order, L > 0 is the Lipschitz
constant for (p− 1)th-order smoothness of F and D > 0 is the diameter of X .

Remark 7.3.8 The convergence guarantee in Theorem 7.3.7 has been derived for other first-
order methods [Dang and Lan, 2015, Song et al., 2020] for the case of p = 1. They are new
for the case of p ≥ 2 to the best of our knowledge.

Remark 7.3.9 For the smooth and nonmonotone VIs satisfying the strong Minty condition,
we can obtain the same rate of convergence in Theorem 7.3.2 and 7.3.5 but to a weak solution
rather than a unique strong solution. The proof would be the same as that used for strongly
monotone setting.

Lower bound. We provide the lower bound for the monotone setting under a linear span
assumption. Our analysis and hard instance are largely inspired by the constructions and
techniques from Nesterov [2021b] and Adil et al. [2022]. However, different from Adil et al.
[2022], our lower bound is established for a class of pth-order methods that include both
our method and their method, rather than pth-order methods restricted to solve the primal
problem [Adil et al., 2022, Eq. (11)].

For constructing the problems that are difficult for pth-order methods, it is convenient to
consider the saddle point problem, minz∈Z maxy∈Y f(z, y), which is a special monotone VI
defined via an operator F and a closed, convex and bounded set X as follows:

x =

z
y

 , F (x) =

 ∇zf(z, y)

−∇yf(z, y)

 , X = Z × Y .

Let us describe the abilities of pth-order methods of degree p ≥ 2 in generating the new
iterates. More specifically, the output of oracle at a point x̄ ∈ X consists in the set of
multi-linear forms given by

F (x̄),∇F (x̄), . . . ,∇(p−1)F (x̄).
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Therefore, we assume that the pth-order method in our algorithm class is able to com-
pute the solution of the nonlinear equation Φa,γ(h) = 0 where Φa,γ,m(h) = a0F (x̄) +∑p−1

i=1 ai∇(i)F (x̄)[h]i + γ‖h‖m−1h and the coefficients a ∈ Rp, γ > 0 and m ≥ 2. Following
the notions defined in Adil et al. [2022], we denote by Γx̄,F (a, γ,m) the set of all solutions
of the aforementioned nonlinear equation. Then, we define the linear subspace given by

SF (x̄) = Lin (Γx̄,F (a, γ,m) : a ∈ Rp, γ > 0,m ≥ 2) .

Our assumption about the form of pth-order methods in our algorithm class is summarized
as follows:

Assumption 7.3.10 The pth-order method generates a sequence of iterates {xk}k≥0 satis-

fying the recursive condition: xk+1 ∈ x0 +
∑k

i=0 SF (xi) for all k ≥ 0.

Note that Assumption 7.3.10 is well known as a linear span assumption [Nesterov, 2021b]
and is satisfied for majority of high-order methods, including Algorithm 20. The same lower
bound has been established in Adil et al. [2022] for a special class of pth-order methods
restricted to solve the primal problem under Assumption 7.3.10. Indeed, their construc-
tion is based on a saddle-point problem minz∈Z maxy∈Y f(z, y) and they assume that any
method in their algorithm class not only satisfies Assumption 7.3.10 but has the access to
∇φ(z̄), . . . ,∇(p)φ(z̄) where φ(z) = maxy∈Y f(z, y) refers to the objective function of primal
problem (see Adil et al. [2022, Lemma 4.3]).

Proving the lower bound for general pth-order methods under Assumption 7.3.10 requires
a new hard instance, which we shall see is a nonlinear generalization of the hard instance
used in Adil et al. [2022]. The following theorem summarizes our main result.

Theorem 7.3.11 Fixing p ≥ 2, L > 0 and T > 0 and letting d ≥ 2T + 1 be the prob-
lem dimension. There exists two closed, convex and bounded sets Z,Y ⊆ Rd and a func-
tion f(z, y) : Z × Y 7→ R that is convex-concave with an optimal saddle-point solution
(z?, y?) ∈ Z ×Y such that the iterates {(zk, yk)}k≥0 generated by any pth-order method under
Assumption 7.3.10 must satisfy

min
0≤k≤T

{
max
y∈Y

f(zk, y)−min
z∈Z

f(z, yk)

}
≥
(

1
4p+1(p+1)!

)
LDZD

p
YT
− p+1

2 .

Remark 7.3.12 The lower bound in Theorem 7.3.11 shows that any pth-order method satis-

fying Assumption 7.3.10 requires at least Ω((LDZD
p
Y)

2
p+1 ε−

2
p+1 ) iterations to reach an ε-weak

solution. Combined this result with Theorem 7.3.1 shows that Algorithm 20 is an optimal
pth-order method for solving smooth and monotone VIs. As mentioned before, we have im-
proved the results in Adil et al. [2022] by constructing a new hard instance and deriving the
same lower bound for a more broad class of pth-order methods that include both Algorithm 20
and the high-order extragradient method in Adil et al. [2022].
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Remark 7.3.13 For the lower bound for finding an ε-strong solution in monotone setting,
the case for first-order VI methods have been investigated in Diakonikolas [2020]. The key
idea is to use the lower bound for finding an ε-weak solution [Ouyang and Xu, 2021] and
the algorithmic reductions to derive lower bounds. However, such a reduction is mostly
based on the high-order generalization of Halpern iteration and is thus beyond the scope of
the current manuscript. In particular, we have developed a simple and optimal pth-order
VI method for finding an ε-weak solution in the monotone setting. However, the optimal
algorithm for finding an ε-strong solution in the monotone setting is likely to be different as
evidenced by Diakonikolas [2020]. Computing an ε-strong solution and/or an ε-weak solution
are complementary, yet different, and they indeed deserve separate study in their own right.
Moreover, the lower bound for finding an ε-strong solution under the Minty condition is
largely unexplored and missing even in the current literature for first-order VI methods.

Remark 7.3.14 It remains unclear whether or not Assumption 7.3.10 can be removed with-
out sacrificing the lower bound on the iteration complexity. It may be possible to approach
this issue by using the rotation technique [Carmon et al., 2020, Section 3.3] and [Arjevani
et al., 2019]. Despite striking results on extending the rotation techniques from optimization
to minimax optimization [Ouyang and Xu, 2021, Zhang et al., 2022a], this problem becomes
challenging for pth-order methods when p ≥ 2 since the analysis from Ouyang and Xu [2021],
Zhang et al. [2022a] cannot be directly extended from bilinear saddle point problems to gen-
eral nonlinear saddle point problems. In our view, resolving it requires a new construction
of “chain-style” hard function instances and rotation techniques.

7.4 Convergence Analysis

We present the convergence analysis for our pth-order method (Algorithm 20) and its restarted
version (Algorithm 21). Indeed, we provide the global convergence guarantee (Theorems 7.3.1
and 7.3.2) and local convergence guarantee for the monotone setting (Theorems 7.3.5). We
analyze the nonmonotone setting under the Minty condition (Theorems 7.3.7). Finally, we
establish the lower bound under a linear span assumption (Theorem 7.3.11).

Technical lemmas. We define the following Lyapunov function for the iterates {xk}k≥0

that are generated by Algorithm 20:

Ek = max
v∈X
〈sk, v − x0〉 − 1

2
‖v − x0‖2. (7.9)

This function is used to prove technical results that pertain to the dynamics of Algorithm 20.
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Lemma 7.4.1 Suppose that Assumption 7.2.3 holds true. For every integer T ≥ 1, we have

T∑
k=1

λk〈F (xk), xk − x〉

≤ E0 − ET + 〈sT , x− x0〉 − 1
10

(
T∑
k=1

‖xk − vk‖2

)
, for all x ∈ X .

Proof. By combining Eq. (7.9) and the definition of vk+1, we have

Ek = 〈sk, vk+1 − x0〉 − 1
2
‖vk+1 − x0‖2.

Then, we have

Ek+1 − Ek (7.10)

= 〈sk+1, vk+2 − x0〉 − 〈sk, vk+1 − x0〉 − 1
2

(
‖vk+2 − x0‖2 − ‖vk+1 − x0‖2

)
= 〈sk+1 − sk, vk+1 − x0〉+ 〈sk+1, vk+2 − vk+1〉 − 1

2

(
‖vk+2 − x0‖2 − ‖vk+1 − x0‖2

)
.

By using the update formula for vk+1 again, we have

〈x− vk+1, sk − vk+1 + x0〉 ≤ 0, for all x ∈ X .

Letting x = vk+2 in this inequality and using 〈a, b〉 = 1
2
(‖a+ b‖2 − ‖a‖2 − ‖b‖2), we have

〈sk, vk+2 − vk+1〉 ≤ 〈vk+1 − x0, vk+2 − vk+1〉 (7.11)

= 1
2

(
‖vk+2 − x0‖2 − ‖vk+1 − x0‖2 − ‖vk+2 − vk+1‖2

)
.

Plugging Eq. (7.11) into Eq. (7.10) and using the update formula of sk+1, we obtain:

Ek+1 − Ek
Eq. (7.11)

≤ 〈sk+1 − sk, vk+1 − x0〉+ 〈sk+1 − sk, vk+2 − vk+1〉 − 1
2
‖vk+2 − vk+1‖2

= 〈sk+1 − sk, vk+2 − x0〉 − 1
2
‖vk+2 − vk+1‖2

≤ λk+1〈F (xk+1), x0 − vk+2〉 − 1
2
‖vk+2 − vk+1‖2

= λk+1〈F (xk+1), x0 − x〉+ λk+1〈F (xk+1), x− xk+1〉
+λk+1〈F (xk+1), xk+1 − vk+2〉 − 1

2
‖vk+2 − vk+1‖2,

for any x ∈ X . Summing up this inequality over k = 0, 1, . . . , T−1 and changing the counter
k + 1 to k yields that

T∑
k=1

λk〈F (xk), xk − x〉 ≤ E0 − ET +
T∑
k=1

λk〈F (xk), x0 − x〉︸ ︷︷ ︸
I

(7.12)

+
T∑
k=1

λk〈F (xk), xk − vk+1〉 − 1
2
‖vk − vk+1‖2

︸ ︷︷ ︸
II

.
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Using the update formula for sk+1 and letting s0 = 0d ∈ Rd, we have

I =
T∑
k=1

〈λkF (xk), x0 − x〉 (7.13)

=
T∑
k=1

〈sk−1 − sk, x0 − x〉 = 〈s0 − sT , x0 − x〉 = 〈sT , x− x0〉.

Since xk+1 ∈ X satisfies Eq. (7.7), we have

〈Fvk(xk), x− xk〉 ≥ −L
p!
‖xk − vk‖p+1, for all x ∈ X , (7.14)

where Fv(x) : Rd → Rd is defined for any fixed v ∈ X as follows:

Fvk(x) = F (vk) + 〈∇F (vk), x− vk〉+ . . .+ 1
(p−1)!

∇(p−1)F (vk)[x− vk]p−1

+ 5L
(p−1)!

‖x− vk‖p−1(x− vk).

Under Assumption 7.2.3, we obtain from Bullins and Lai [2022, Fact 2.5] or Jiang and
Mokhtari [2022, Eq. (6)] that

‖F (xk)− Fvk(xk) + 5L
(p−1)!

‖xk − vk‖p−1(xk − vk)‖ ≤ L
p!
‖xk − vk‖p. (7.15)

Letting x = vk+1 in Eq. (7.14), we have

〈Fvk(xk), xk − vk+1〉 ≤ L
p!
‖xk − vk‖p+1. (7.16)

Inspired by Eq. (7.15) and Eq. (7.16), we decompose 〈F (xk), xk − vk+1〉 as follows:

〈F (xk), xk − vk+1〉
= 〈F (xk)− Fvk(xk) + 5L

(p−1)!
‖xk − vk‖p−1(xk − vk), xk − vk+1〉

+〈Fvk(xk), xk − vk+1〉 − 5L
(p−1)!

‖xk − vk‖p−1〈xk − vk, xk − vk+1〉
≤ ‖F (xk)− Fvk(xk) + 5L

(p−1)!
‖xk − vk‖p−1(xk − vk)‖ · ‖xk − vk+1‖

+〈Fvk(xk), xk − vk+1〉 − 5L
(p−1)!

‖xk − vk‖p−1〈xk − vk, xk − vk+1〉
Eq. (7.15) and Eq. (7.16)

≤ L
p!
‖xk − vk‖p‖xk − vk+1‖+ L

p!
‖xk − vk‖p+1

− 5L
(p−1)!

‖xk − vk‖p−1〈xk − vk, xk − vk+1〉
≤ 2L

p!
‖xk − vk‖p+1 + L

p!
‖xk − vk‖p‖vk − vk+1‖

− 5L
(p−1)!

‖xk − vk‖p−1〈xk − vk, xk − vk+1〉.

Note that we have

〈xk − vk, xk − vk+1〉
= ‖xk − vk‖2 + 〈xk − vk, vk − vk+1〉 ≥ ‖xk − vk‖2 − ‖xk − vk‖‖vk − vk+1‖.
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Putting these pieces together yields that

〈F (xk), xk − vk+1〉 ≤ (5p+1)L
p!
‖xk − vk‖p‖vk − vk+1‖ − (5p−2)L

p!
‖xk − vk‖p+1.

Since 1
20p−8

≤ λkL‖xk−vk‖p−1

p!
≤ 1

10p+2
for all k ≥ 1, we have

II ≤
T∑
k=1

(
(5p+1)λkL

p! ‖xk − vk‖p‖vk − vk+1‖ − 1
2‖vk − vk+1‖2 − (5p−2)λkL

p! ‖xk − vk‖p+1
)

≤
T∑
k=1

(
1
2‖xk − vk‖‖vk − vk+1‖ − 1

2‖vk − vk+1‖2 − 1
4‖xk − vk‖

2
)

≤
T∑
k=1

(
max
η≥0

{
1
2‖xk − vk‖η −

1
2η

2
}
− 1

4‖xk − vk‖
2

)

= −1
8

(
T∑
k=1

‖xk − vk‖2
)
. (7.17)

Plugging Eq. (7.13) and Eq. (7.17) into Eq. (7.12) yields that

T∑
k=1

λk〈F (xk), xk − x〉 ≤ E0 − ET + 〈sT , x− x0〉 − 1
8

(
T∑
k=1

‖xk − vk‖2

)
.

This completes the proof. �

Lemma 7.4.2 Suppose that Assumption 7.2.3 and the Minty condition hold true and let
x ∈ X . For every integer T ≥ 1, we have

T∑
k=1

λk〈F (xk), xk − x〉 ≤ 1
2
‖x− x0‖2,

T∑
k=1

‖xk − vk‖2 ≤ 4‖x? − x0‖2,

where x? ∈ X denotes the weak solution to the VI.

Proof. For any x ∈ X , we have

E0 − ET + 〈sT , x− x0〉 = E0 −
(

max
v∈X
〈sT , v − x0〉 − 1

2
‖v − x0‖2

)
+ 〈sT , x− x0〉.

Since s0 = 0d, we have E0 = 0 and

E0 − ET + 〈sT , x− x0〉 ≤ −
(
〈sT , x− x0〉 − 1

2
‖x− x0‖2

)
+ 〈sT , x− x0〉 = 1

2
‖x− x0‖2.

This together with Lemma 7.4.1 yields that

T∑
k=1

λk〈F (xk), xk − x〉+ 1
8

(
T∑
k=1

‖xk − vk‖2

)
≤ 1

2
‖x− x0‖2, for all x ∈ X ,
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which implies the first inequality. Since the VI satisfies the Minty condition (see Defini-
tion 7.2.5), there exists x? ∈ X such that 〈F (xk), xk − x?〉 ≥ 0 for all k ≥ 1. Letting x = x?

in the above inequality yields the second inequality. �

We provide a technical lemma establishing a lower bound for
∑T

k=1 λk.

Lemma 7.4.3 Suppose that Assumption 7.2.3 and the Minty condition hold true. For every
integer k ≥ 1, we have

T∑
k=1

λk ≥ p!
(20p−8)L

(
1

4‖x?−x0‖2

) p−1
2
T
p+1

2 ,

where x? ∈ X denotes the weak solution to the VI.

Proof. Without loss of generality, we assume that x0 6= x?. For p = 1, we have λk = 1
12L

for
all k ≥ 1. For p ≥ 2, we have

T∑
k=1

(λk)
− 2
p−1 ( p!

(20p−8)L
)

2
p−1

≤
T∑
k=1

(λk)
− 2
p−1 (λk‖xk − vk‖p−1)

2
p−1 =

T∑
k=1

‖xk − vk‖2
Lemma 7.4.2

≤ 4‖x? − x0‖2.

By the Hölder inequality, we have

T∑
k=1

1 =
T∑
k=1

(
(λk)

− 2
p−1

) p−1
p+1

(λk)
2
p+1 ≤

(
T∑
k=1

(λk)
− 2
p−1

) p−1
p+1
(

T∑
k=1

λk

) 2
p+1

.

Putting these pieces together yields that

T ≤ (4‖x? − x0‖2)
p−1
p+1

(
(20p−8)L

p!

) 2
p+1

(
T∑
k=1

λk

) 2
p+1

,

Plugging this into the above inequality yields that

T∑
k=1

λk ≥ p!
(20p−8)L

(
1

4‖x?−x0‖2

) p−1
2
T
p+1

2 .

This completes the proof. �



CHAPTER 7. AN OPTIMAL ALGORITHM FOR HIGH-ORDER VARIATIONAL
INEQUALITY 228

Proof of Theorem 7.3.1. We see from Harker and Pang [1990, Theorem 3.1] that at
least one strong solution to the VI exists since F is continuous and X is convex, closed
and bounded. Since any strong solution is a weak solution if F is further assumed to be
monotone, we obtain that the VI satisfies the Minty condition.

Letting x ∈ X , we derive from the monotonicity of F and the definition of x̃T (i.e.,
opt = 0) that

〈F (x), x̃T − x〉

= 1∑T
k=1 λk

(
T∑
k=1

λk〈F (x), xk − x〉

)
≤ 1∑T

k=1 λk

(
T∑
k=1

λk〈F (xk), xk − x〉

)
.

Combining this inequality with the first inequality in Lemma 7.4.2 yields that

〈F (x), x̃T − x〉 ≤ ‖x−x0‖2

2(
∑T
k=1 λk)

, for all x ∈ X .

Since x0 ∈ X , we have ‖x− x0‖ ≤ D and hence

〈F (x), x̃T − x〉 ≤ D2

2(
∑T
k=1 λk)

, for all x ∈ X .

Then, we combine Lemma 7.4.3 and the fact that ‖x? − x0‖ ≤ D to obtain that

〈F (x), x̃T − x〉 ≤ 2p(5p−2)
p!

LDp+1T−
p+1

2 , for all x ∈ X .

By the definition of a gap function (see Eq. (7.4)), we have

gap(x̃T ) = sup
x∈X
〈F (x), x̃T − x〉 ≤ 2p(5p−2)

p!
LDp+1T−

p+1
2 . (7.18)

Therefore, we conclude from Eq. (7.18) that we can set

T = O

((
LDp+1

ε

) 2
p+1

)
,

such that x̂ = Perseus(p, x0, L, T, 0) satisfies gap(x̂) ≤ ε. The total number of calls of the
subproblem solvers is equal to T since our algorithm calls the subproblem solvers once at
each iteration. This completes the proof.

Proof of Theorem 7.3.2. In the strongly monotone setting with a convex, closed and
bounded set, the solution x? ∈ X to the VI exists and is unique Facchinei and Pang [2007]
and the VI satisfies the Minty condition.

We first consider the relationship between ‖x̂−x?‖ and ‖x0−x?‖ where x̂ = Perseus(p, x0, L, Tinner, 0).
We derive from Jensen’s inequality and the definition of x̃Tinner

that

‖x̃Tinner
− x?‖2 =

∥∥∥∥∥ 1∑Tinner
k=1 λk

(
Tinner∑
k=1

λkxk

)
− x?

∥∥∥∥∥
2

≤ 1∑Tinner
k=1 λk

(
Tinner∑
k=1

λk‖xk − x?‖2

)
.
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Since F is µ-strongly monotone, we have

‖xk − x?‖2 ≤ 1
µ
〈F (xk)− F (x?), xk − x?〉 ≤ 1

µ
〈F (xk), xk − x?〉.

Putting these pieces together yields that

‖x̃Tinner
− x?‖2 ≤ 1

µ(
∑Tinner
k=1 λk)

(
Tinner∑
k=1

λk〈F (xk), xk − x?〉

)
. (7.19)

Combining the first inequality in Lemma 7.4.2 with Eq. (7.19) yields that

‖x̃Tinner
− x?‖2 ≤ 1

2µ(
∑Tinner
k=1 λk)

‖x0 − x?‖2.

This together with Lemma 7.4.3 and the fact that x̂ = x̃Tinner
yields that

‖x̂− x?‖2 ≤
(

(4‖x0 − x?‖2)
p−1

2
10p−4
p!

L
µ
t−

p+1
2

)
‖x0 − x?‖2 (7.20)

=
(

2p(5p−2)
p!

L
µ
t−

p+1
2

)
‖x0 − x?‖p+1.

Since xk+1 = Perseus(p, xk, L, Tinner, 0) in the scheme of Algorithm 21 and

Tinner =

⌈(
2p+1(5p−2)

p!
LDp−1

µ

) 2
p+1

⌉
, (7.21)

we have
‖xk+1 − x?‖2 ≤ 1

2
‖xk − x?‖2, for all k = 0, 1, 2, . . . , T. (7.22)

Therefore, we conclude from Eq. (7.21) and Eq. (7.22) that we can set

T = O

(
log2

(
D

ε

))
,

such that x̂ = Perseus-restart(p, x0, L, µ, T, 0) satisfies ‖x̂ − x?‖ ≤ ε. The total number of
calls of the subproblem solvers is bounded by

O

((
LDp−1

µ

) 2
p+1

log2

(
D

ε

))
.

This completes the proof.
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Proof of Theorem 7.3.5. We first consider the relationship between ‖x̂−x?‖ and ‖x0−x?‖
where x̂ = Perseus(p, x0, L, Tinner, 1). By the same argument as used in Theorem 7.3.2, we
have (see Eq. (7.20))

‖x̂− x?‖2 ≤
(

2p(5p−2)
p!

L
µ
t−

p+1
2

)
‖x0 − x?‖p+1.

Since xk+1 = Perseus(p, xk, L, Tinner, 2) in the scheme of Algorithm 21 and Tinner = 1, we have

‖xk+1 − x?‖2 ≤
(

2p(5p−2)κ
p!

)
‖xk − x?‖p+1,

which implies that

‖xk+1 − x?‖ ≤
√

2p(5p−2)κ
p!

‖xk − x?‖
p+1

2 .

For the case of p ≥ 2, we have p+1
2
≥ 3

2
and p− 1 ≥ 1. If the following condition holds true,

‖x0 − x?‖ ≤ 1
2

(
p!

2p(5p−2)κ

) 1
p−1

,

we have (
2p(5p−2)κ

p!

) 1
p−1 ‖xk+1 − x?‖ ≤

(
2p(5p−2)κ

p!

) p+1
2(p−1) ‖xk − x?‖

p+1
2

=

((
2p(5p−2)κ

p!

) 1
p−1 ‖xk − x?‖

) p+1
2

≤
((

2p(5p−2)κ
p!

) 1
p−1 ‖x0 − x?‖

)( p+1
2

)k+1

≤ (1
2
)( p+1

2
)k+1

.

This completes the proof.

Proof of Theorem 7.3.7. We see from the second inequality in Lemma 7.4.2 that

min
1≤k≤T

‖xk − vk‖2 ≤ 1
T

T∑
k=1

‖xk − vk‖2 ≤ 4‖x?−x0‖2
T

.

By the definition of xkT (i.e., opt = 2), we have

‖xkT − vkT ‖2 ≤ 4‖x?−x0‖2
T

. (7.23)

Recalling that xk+1 ∈ X satisfies Eq. (7.7), we have

〈Fvk(xk), x− xk〉 ≥ −L
p!
‖xk − vk‖p+1, for all x ∈ X ,

where Fv(x) : Rd → Rd is defined for any fixed v ∈ X as follows:

Fvk(x) = F (vk) + 〈∇F (vk), x− vk〉+ . . .+ 1
(p−1)!

∇(p−1)F (vk)[x− vk]p−1

+ 5L
(p−1)!

‖x− vk‖p−1(x− vk).



CHAPTER 7. AN OPTIMAL ALGORITHM FOR HIGH-ORDER VARIATIONAL
INEQUALITY 231

Under Assumption 7.2.3, we have Eq. (7.15) which further leads to

‖F (xk)− Fvk(xk)‖ ≤
(5p+1)L

p!
‖xk − vk‖p.

Putting these pieces together yields that

〈F (xk), xk − x〉 = 〈F (xk)− Fvk(xk), xk − x〉+ 〈Fvk(xk), xk − x〉
≤ ‖F (xk)− Fvk(xk)‖‖xk − x‖+ L

p!
‖xk − vk‖p+1

≤ L
p!
‖xk − vk‖p ((5p+ 1)‖xk − x‖+ ‖xk − vk‖) , for all x ∈ X .

This implies that (for all x ∈ X )

〈F (xk), xk − x〉 ≤ (5p+1)L
p!
‖xk − vk‖p‖xk − x‖+ L

p!
‖xk − vk‖p+1. (7.24)

Then, we derive from the fact that ‖xk − x‖ ≤ D and ‖xk − vk‖ ≤ D that

〈F (xk), xk − x〉 ≤ (5p+2)LD
p!

‖xk − vk‖p, for all x ∈ X .

By the definition of a residue function (see Eq. (7.5)), we have

res(xkT ) = sup
x∈X
〈F (xkT ), xkT − x〉 ≤

(5p+2)LD
p!

‖xkT − vkT ‖p

Eq. (7.23)

≤ (5p+2)LD
p!

(
4‖x?−x0‖2

T

) p
2
.

Since x0, x
? ∈ X , we have ‖x? − x0‖ ≤ D and hence

res(xkT ) ≤ 2p(5p+2)
p!

LDp+1T−
p
2 . (7.25)

Therefore, we conclude from Eq. (7.25)that we can set

T = O

((
LDp+1

ε

) 2
p

)
,

such that x̂ = Perseus(p, x0, L, T, 1) satisfies res(x̂) ≤ ε. The total number of calls of the
subproblem solvers is equal to T since our algorithm calls the subproblem solvers once at
each iteration. This completes the proof.

Proof of Theorem 7.3.11. We first construct a hard function instance for any pth-order
method that satisfies Assumption 7.3.10. The basic function that we will use is as follows:

η(z, y) = 1
p

d∑
i=1

(z(i))p · y(i), z ∈ Rd
+, y ∈ Rd

+.
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Fixing (z, y) ∈ Rd
+ × Rd

+, (h1, h2) ∈ Rd × Rd and 1 ≤ m+ n ≤ p, we have

∇(m,n)η(z, y)[h1]m[h2]n = (p−1)!
(p−m)!

·


∑d

i=1(z(i))p−my(i)(h
(i)
1 )m, if n = 0,∑d

i=1(z(i))p−m(h
(i)
1 )mh

(i)
2 , if n = 1,

0, otherwise.

(7.26)

Note that T ≥ 1 is an integer-valued parameter and d ≥ 2T +1. We now define the following
2T × 2T triangular matrix with two nonzero diagonals [Nesterov, 2021b]:

U =



1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · ·
0 0 · · · 1 −1

0 0 · · · 0 1


, U−1 =



1 1 1 · · · 1

0 1 1 · · · 1

· · · · · · · · ·
0 0 · · · 1 1

0 0 · · · 0 1


, U> =



1 0 · · · 0 0

−1 1 · · · 0 0

· · · · · · · · ·
0 0 · · · 1 0

0 0 · · · −1 1


.

Now, we introduce d× d upper triangular matrix A with the following structure:

A =

U 0

0 Id−2T

 .
We are now ready to characterize a novel hard function and the corresponding two constraint
sets:

f(z, y) = L
2p+1p!

(
η(Az, y)− 1

p(p+1)

2T∑
i=2

(y(i))p+1 − (z(1) − 2T + 1
p
) · y(1)

)
,

Z =

z ∈ Rd :
0 ≤ z(i) ≤ 2T − i+ 1 and z(i+1) ≤ z(i) for all 1 ≤ i ≤ 2T

and z(i) = 0 for all i > 2T

 ,

Y = {y ∈ Rd : 0 ≤ y(i) ≤ 1 for all 1 ≤ i ≤ 2T and y(i) = 0 for all i > 2T}.

We can see that the function f : Z×Y 7→ R is convex in z and concave in y. The computation
of an optimal saddle-point solution of f(z, y) is equivalent to solving a monotone VI with

x =

z
y

 and

F (x) =

 ∇(1,0)f(z, y)

−∇(0,1)f(z, y)


= L

2p+1p!
·

 A>∇(1,0)η(Az, y)− y(1) · e(1)
d

−∇(0,1)η(Az, y) + 1
p

∑2T
i=2(y(i))p · e(i)

d + (z(1) − 2T + 1
p
) · e(1)

d

 .
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Step 1. We show that F : Z×Y 7→ R2d is (p−1)th-order smooth with a Lipschitz constant
L > 0. Indeed, we have

‖∇(p−1)F (x)−∇(p−1)F (x′)‖op (7.27)

≤
∑

m+n=p

p!
m!n!
‖∇(m,n)f(z, y)−∇(m,n)f(z′, y′)‖op.

We let h = (h1, h2) ∈ Rd × Rd and consider two cases. For the case of p = 2, we see from
the definition of f(z, y) that

∇(m,n)f(z, y)[h1]m[h2]n = L
2p+1p!

·


∇(1,1)η(Az, y)[Ah1][h2]− h(1)

1 h
(1)
2 , if m = 1 and n = 1,

−
∑2T

i=2(y(i))(h
(i)
2 )p, if n = p,

∇(m,n)η(Az, y)[Ah1]m[h2]n, otherwise.

For the case of p ≥ 3, we see from the definition of f(z, y) that

∇(m,n)f(z, y)[h1]m[h2]n = L
2p+1p!

·

{
−(p− 1)!

∑2T
i=2(y(i))(h

(i)
2 )p, if n = p,

∇(m,n)η(Az, y)[Ah1]m[h2]n, otherwise.

Based on the above two equations, we have∑
m+n=p

p!
m!n!
‖∇(m,n)f(z, y)[h1]m[h2]n −∇(m,n)f(z′, y′)[h1]m[h2]n‖op

≤ L
2p+1 ·

( ∑
m+n=p,m≥1

1
m!n!
‖∇(m,n)η(Az, y)[Ah1]m[h2]n −∇(m,n)η(Az′, y′)[Ah1]m[h2]n‖op

+1
p

∣∣∣∣∣
2T∑
i=2

(y(i) − (y′)(i))(h
(i)
2 )p

∣∣∣∣∣
)

Eq. (7.26)

≤ L
2p+1p

·

(∣∣∣∣∣
d∑
i=1

(y(i) − (y′)(i))((Ah1)(i))p

∣∣∣∣∣+ p

∣∣∣∣∣
d∑
i=1

((Az)(i) − (Az′)(i))((Ah1)(i))p−1h
(i)
2

∣∣∣∣∣
+

∣∣∣∣∣
2T∑
i=2

(y(i) − (y′)(i))(h
(i)
2 )p

∣∣∣∣∣
)
.

By the Cauchy-Schwartz inequality and ‖A‖ ≤ 2 (see Nesterov [2021b, Eq. (4.2)]), we have∑
m+n=p

p!
m!n!
‖∇(m,n)f(z, y)−∇(m,n)f(z′, y′)‖op

≤ sup
‖h‖=1

{ ∑
m+n=p

p!
m!n!

∣∣∇(m,n)f(z, y)[h1]m[h2]n −∇(m,n)f(z′, y′)[h1]m[h2]n
∣∣}

≤ sup
‖h‖=1

{
L

2p+1p
·
(
2p‖y − y′‖‖h1‖p + 2pp‖z − z′‖‖h1‖p−1‖h2‖+ ‖y − y′‖‖h2‖p

)}
≤ sup

‖h‖=1

{
L

2p+1p
· (2p + 2pp+ 1)‖x− x′‖‖h‖p

}
≤ L‖x− x′‖.
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Plugging the above equation into Eq. (7.27) yields the desired result.

Step 2. We show that there exists an optimal solution x? = (z?, y?) ∈ Z × Y such that
F (x?) = 02d and compute the optimal value of f(z?, y?). By the definition, we have F (x?) =
02d is equivalent to the following statement:{

A>∇(1,0)η(Az?, y?)− y(1)
? · e(1)

d = 0d,

∇(0,1)η(Az?, y?)− 1
p

∑2T
i=2(y

(i)
? )p · e(i)

d − (z
(1)
? − 2T + 1

p
) · e(1)

d = 0d.
(7.28)

Note that

∇(1,0)η(Az?, y?) =
d∑
i=1

((Az?)
(i))p−1y(i)

? e
(i)
d ,

∇(0,1)η(Az?, y?) = 1
p

(
d∑
i=1

((Az(i)
? ))pe

(i)
d

)
.

We claim that an optimal solution x? = (z?, y?) is given by

z(i)
? =

{
2T − i+ 1, if 1 ≤ i ≤ 2T,

0 otherwise.
y(i)
? =

{
1, if 1 ≤ i ≤ 2T,

0 otherwise.
(7.29)

Indeed, we can see from the definition of Z × Y that (z?, y?) ∈ Z × Y and the definition of
A that

(Az?)
(i) =

{
1, if 1 ≤ i ≤ 2T,

0 otherwise.

This implies that

∇(1,0)η(Az?, y?) =
2T∑
i=1

e
(i)
d , ∇(0,1)η(Az?, y?) = 1

p

(
2T∑
i=1

e
(i)
d

)
.

By the definition of A, we have A>∇(1,0)η(Az?, y?) = e
(1)
d . Thus, we can verify that Eq. (7.28)

holds true. As such, we conclude that the optimal solution x? = (z?, y?) defined in Eq. (7.29)
belongs to Z × Y and the optimal value is

f(z?, y?) = L
2p+1p!

·

(
η(Az?, y?)− 1

p(p+1)

2T∑
i=2

(y(i)
? )p+1 − (z(1)

? − 2T + 1
p
) · y(1)

?

)
= L

2p+1(p+1)!
(2T − 1).

This implies the desired result.
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Step 3. We now investigate the dynamics of any pth-order method under Assumption 7.3.10.
For simplicity, we denote

Rd
k = {z ∈ Rd : z(i) = 0 for all i = k + 1, k + 2, . . . , d}, for all 1 ≤ k ≤ d− 1.

Without loss of generality, we assume that x0 = 02d is the initial iterate. Then, we show
that the iterates {(zk, yk)}k≥0 generated by any pth-order method under Assumption 7.3.10
satisfy

zk ∈ Rd
k ∩ Z, for all 1 ≤ k ≤ T. (7.30)

It is clear that zk ∈ Z for all 1 ≤ k ≤ T since the pth-order method is applied to solve the
optimization problem of minz∈Z maxy∈Y f(z, y). Thus, it suffices to show that zk ∈ Rd

k for
all 1 ≤ k ≤ T .

The key ingredient of our proof is to show that the inclusion x = (z, y) ∈ Rd
k × Rd

k with
1 ≤ k ≤ T − 1 implies that SF (x) ⊆ Rd

k+1 × Rd
k+1. Since A is an upper triangular matrix

and z ∈ Rd
k, we have Az ∈ Rd

k. Also, we have y ∈ Rd
k. Note that Eq. (7.26) implies that

∇(m,n)η(z, y)[h1]m[h2]n = (p−1)!
(p−m)!

·


∑d

i=1(z(i))p−m(h
(i)
1 )mh

(i)
2 , if n = 1,∑d

i=1(z(i))p−my(i)(h
(i)
1 )m, if n = 0,

0, otherwise.

Thus, we have

∂
∂h1

(∇(m,n)η(Az, y)[Ah1]m[h2]n) =
k∑
i=1

c
(m,n)
i A>e

(i)
d ∈ Rd

k+1,

∂
∂h2

(∇(m,n)η(Az, y)[h1]m[h2]n−1) =
k∑
i=1

d
(m,n)
i e

(i)
d ∈ Rd

k ⊆ Rd
k+1.

Let us compute F (x) and ∇F (x)[h] explicitly. We have

F (x) = L
2p+1p!

·

 ∂
∂h1

(∇(1,0)η(Az, y)[Ah1])− y(1)e
(1)
d

− ∂
∂h2

(∇(0,1)η(Az, y)[h2]) + 1
p

∑2T
i=2(y(i))p · e(i)

d + (z(1) − 2T + 1
p
)e

(1)
d

 ,
and

∇F (x)[h] = L
2p+1p!

· ∂
∂h1

(∇(2,0)η(Az, y)[Ah1]2) + ∂
∂h2

(∇(1,1)η(Az, y)[Ah1][h2])− h(1)
2 e

(1)
d

− ∂
∂h1

(∇(1,1)η(Az, y)[Ah1][h2]) + h
(1)
1 e

(1)
d − ∂

∂h2
(∇(0,2)η(Az, y)[h2]2) +

∑2T
i=2(y(i))p−1h

(i)
2 e

(i)
d

 .
This together with

∂
∂h1

(∇(m,n)η(Az, y)[Ah1]m[h2]n), ∂
∂h2

(∇(m,n)η(Az, y)[h1]m[h2]n−1) ∈ Rd
k+1
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yields F (x),∇F (x)[h] ∈ Rd
k+1 × Rd

k+1. By using a similar argument, we have

∇(j)F (x)[h]j ∈ Rd
k+1 × Rd

k+1, for all 0 ≤ j ≤ p− 1.

Thus, we conclude that all the solutions of Φa,γ(h) = 0 belong to Rd
k+1 × Rd

k+1 where

Φa,γ,m(h) = a0F (x) +
∑p−1

i=1 ai∇(i)F (x)[h]i + γ‖h‖m−1h and a ∈ Rp, γ > 0 and m ≥ 2. In
other words, the inclusion x = (z, y) ∈ Rd

k×Rd
k with k ≥ 1 implies that SF (x) ⊆ Rd

k+1×Rd
k+1.

We are now ready to prove the desired result in Eq. (7.30). We apply an inductive
argument. For k = 0, we have (z0, y0) = x0 = 02d. Thus, we have

F (x0) = L
2p+1p!

·

 0d

−(2T − 1
p
)e

(1)
d

 , ∇(j)F (x0)[h]j = 02d, for all 1 ≤ j ≤ p− 1.

This implies that all the solutions of Φa,γ(h) = 0 belong to Rd
1 × Rd

1 where Φa,γ,m(h) =
a0F (x0) +

∑p−1
i=1 ai∇(i)F (x0)[h]i + γ‖h‖m−1h and a ∈ Rp, γ > 0 and m ≥ 2. So SF (x0) ⊆

Rd
1 × Rd

1. Assumption 7.3.10 ensures that x1 ∈ x0 + SF (x0). Putting these pieces together
yields that x1 ∈ Rd

1 × Rd
1.

We have already shown that the inclusion x = (z, y) ∈ Rd
k × Rd

k with 1 ≤ k ≤ T implies
that SF (x) ⊆ Rd

k+1×Rd
k+1. Combining this result with x1 ∈ Rd

1×Rd
1 and Assumption 7.3.10

guarantees that xk ∈ Rd
k × Rd

k for all 1 ≤ k ≤ T . Thus, zk ∈ Rd
k ∩ Z for all 1 ≤ k ≤ T .

Step 4. We now compute a lower bound on maxy∈Y f(zk, y). Eq. (7.30) in Step 3 implies
that

max
y∈Y

f(zk, y) ≥ min
z∈Rdk∩Z

max
y∈Y

f(z, y) ≥ min
z∈RdT∩Z

max
y∈Y

f(z, y), for all 0 ≤ k ≤ T.

We claim that minz∈RdT∩Z maxy∈Y f(zk, y) ≥ L
2p+1p!

(T + T−1
p+1

). We let W = {w ∈ Rd : w(i) ≥
0 for all 1 ≤ i ≤ 2T and w(i) = 0 for all i > 2T} and derive that

min
z∈RdT∩Z

max
y∈Y

f(z, y)

w=Az

≥ min
w∈RdT∩W

max
y∈Y

L
2p+1p!

(
η(w, y)− 1

p(p+1)

2T∑
i=2

(y(i))p+1 −

(
d∑
i=1

w(i) − 2T + 1
p

)
· y(1)

)

= min
w∈RdT∩W

max
y∈Y

L
2p+1p!

(
1
p

d∑
i=1

(w(i))p · y(i) − 1
p(p+1)

2T∑
i=2

(y(i))p+1 −

(
d∑
i=1

w(i) − 2T + 1
p

)
· y(1)

)
.
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We see from w ∈ Rd
T ∩W that w(i) ≥ 0 for all 1 ≤ i ≤ T and w(i) = 0 for all T + 1 ≤ i ≤ 2T .

Fixing w ∈ Rd
T ∩W , we have

max
y∈Y

(
1
p

d∑
i=1

(w(i))p · y(i) − 1
p(p+1)

2T∑
i=2

(y(i))p+1 −

(
d∑
i=1

w(i) − 2T + 1
p

)
· y(1)

)

= max

{
1
p
(w(1))p −

(
T∑
i=1

w(i) − 2T + 1
p

)
, 0

}
+ 1

p

T∑
i=2

(w(i))p ·min{w(i), 1}

− 1
p(p+1)

T∑
i=2

(min{w(i), 1})p+1.

The key observation is that the second and third terms are independent of w(1) on the
right-hand side. We also have

min
w(1)≥0

max

{
1
p
(w(1))p −

(
T∑
i=1

w(i) − 2T + 1
p

)
, 0

}

= min
w(1)≥0

max

{
1
p
(w(1))p − w(1) −

T∑
i=2

w(i) + 2T − 1
p
, 0

}
≥ max

{
2T − 1−

T∑
i=2

w(i), 0

}
.

For simplicity, we define the function g(w) as follows,

g(w) = max

{
2T − 1−

T∑
i=2

w(i), 0

}
+ 1

p

T∑
i=2

(w(i))p ·min{w(i), 1}− 1
p(p+1)

T∑
i=2

(min{w(i), 1})p+1.

By the symmetry of the function g, we obtain that minw∈RdT∩W g(w) is achieved by the point

with the same value of w(i) for all 2 ≤ i ≤ T . Then, it suffices to solve the following
one-dimensional optimization problem:

min
η≥0

h(η) = max{2T − 1− η(T − 1), 0}+ T−1
p
ηp ·min{η, 1} − T−1

p(p+1)
(min{η, 1})p+1.

For the case of 0 ≤ η ≤ 1, we have

h(η) = 2T − 1− η(T − 1) + T−1
p+1

ηp+1 ≥ T + T−1
p+1

.

For the case of 1 ≤ η ≤ 2T−1
T−1

, we have

h(η) = 2T − 1− η(T − 1) + T−1
p
ηp+1 − T−1

p(p+1)
≥ T + T−1

p+1
.

For the case of η ≥ 2T−1
T−1

, we have ηp+1 ≥ 1 + (p+ 1)(η − 1) ≥ 1 + pT
T−1

. Then, we have

h(η) = T−1
p
ηp+1 − T−1

p(p+1)
≥ T−1

p

(
1 + pT

T−1

)
− T−1

p(p+1)
≥ T + T−1

p+1
.

Putting these pieces together yields that

min
z∈RdT∩Z

max
y∈Y

f(z, y) ≥ L
2p+1p!

(
T + T−1

p+1

)
,

which implies the desired result.
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Final Step. Since the point (z?, y?) ∈ Z ×Y is an optimal saddle-point solution, we have

max
y∈Y

f(zk, y)−min
z∈Z

f(z, yk) ≥ max
y∈Y

f(zk, y)− f(z?, y?).

Combining the results from Step 2 and Step 4, we have

min
0≤k≤T

{
max
y∈Y

f(zk, y)−min
z∈Z

f(z, yk)

}
≥ L

2p+1p!
(T − T

p+1
)
p≥2

≥ LT
2p(p+1)!

.

Note that we set DZ = 4T 3/2 and DY = 2
√
T (cf. the definition of Z and Y) and have

DZD
p
Y = 2p+2T (p+3)/2. Then, we have

min
0≤k≤T

{
max
y∈Y

f(zk, y)−min
z∈Z

f(z, yk)

}
≥
(

1
4p+1(p+1)!

)
LDZD

p
YT
− p+1

2 .

This completes the proof.

7.5 Conclusion

We have proposed and analyzed a new pth-order method—Perseus—for finding a weak so-
lution of smooth and monotone variational inequalities (VIs) when F is (p − 1)th-order
L-smooth. All of our theoretical results are based on the standard assumption that the sub-
problem arising from a (p−1)th-order Taylor expansion of F can be computed approximately
in an efficient manner. For the case of p ≥ 2, the best existing pth-order methods can achieve
a global rate of O(ε−2/(p+1) log log(1/ε)) [Bullins and Lai, 2022, Lin and Jordan, 2023, Jiang
and Mokhtari, 2022] but require a nontrivial line-search procedure at each iteration. Notably,
the open question has been whether it is possible to design a simple and optimal high-order
method that achieves a global rate of O(ε−2/(p+1)) while dispensing with line search.

Our results settle this open problem. Indeed, our method converges to a weak solution
with a global rate of O(ε−2/(p+1)) and the restarted version can attain global linear and
local superlinear convergence for smooth and strongly monotone VIs. We also prove a lower
bound for monotone VIs under a standard linear span assumption, showing that our method
is optimal in the monotone setting. Moreover, we prove a global rate of O(ε−2/p) for solving a
class of smooth and nonmonotone VIs satisfying the Minty condition and extend the results
under the strong Minty condition. Future research include the investigation of lower bounds
for the structured nonmonotone setting with the Minty condition and the comparative study
of various lower-order methods in high-order smooth VI problems; see Nesterov [2021a,c,d]
for recent examples of such comparisons in convex optimization.
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Part III

Other Structured Problems
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Chapter 8

Efficient Entropic Regularized
Optimal Transport

We present several new complexity results for the entropic regularized algorithms that ap-
proximately solve the optimal transport (OT) problem between two discrete probability mea-
sures with at most n atoms. First, we improve the complexity bound of a greedy variant of
Sinkhorn, known as Greenkhorn, from Õ(n2ε−3) to Õ(n2ε−2). Notably, our result can match
the best known complexity bound of Sinkhorn and help clarify why Greenkhorn significantly
outperforms Sinkhorn in practice in terms of row/column updates as observed by Altschuler
et al. [2017]. Second, we propose a new algorithm, which we refer to as APDAMD and
which generalizes an adaptive primal-dual accelerated gradient descent (APDAGD) algo-
rithm [Dvurechensky et al., 2018] with a prespecified mirror mapping φ. We prove that

APDAMD achieves the complexity bound of Õ(n2
√
δε−1) in which δ > 0 stands for the

regularity of φ. In addition, we show by a counterexample that the complexity bound of
Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD before is invalid and give a refined complexity

bound of Õ(n5/2ε−1). Further, we develop a deterministic accelerated variant of Sinkhorn

via appeal to estimated sequence and prove the complexity bound of Õ(n7/3ε−4/3). As such,
we see that accelerated variant of Sinkhorn outperforms Sinkhorn and Greenkhorn in terms
of 1/ε and APDAGD and accelerated alternating minimization (AAM) [Guminov et al.,
2021] in terms of n. Finally, we conduct the experiments on synthetic and real data and the
numerical results show the efficiency of entropic regularized algorithms in practice.

8.1 Introduction

From its origins in the seminal works by Monge [1781] and Kantorovich [1942] respectively
in the eighteenth and twentieth centuries, and through to present day, the optimal transport
(OT) problem has played a determinative role in the theory of mathematics [Villani, 2009]. It
also has found a wide range of applications in problem domains beyond the original setting
in logistics. In the current era, the strong and increasing linkage between optimization
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and machine learning has brought new applications of OT to the fore; [see, e.g., Nguyen,
2013, Cuturi and Doucet, 2014, Srivastava et al., 2015, Rolet et al., 2016, Peyré et al.,
2016, Nguyen, 2016, Carrière et al., 2017, Arjovsky et al., 2017, Gulrajani et al., 2017,
Courty et al., 2017, Srivastava et al., 2018, Dvurechenskii et al., 2018, Tolstikhin et al., 2018,
Sommerfeld et al., 2019, Lin et al., 2019b, Ho et al., 2019]. In these data-driven applications,
the focus is on the probability distributions underlying the OT formulation; indeed, these
distributions are either empirical distributions which are obtained by placing unit masses
at data points, or are probability models of a putative underlying data-generating process.
The OT problem accordingly often has a direct inferential meaning — as the definition of
an estimator [Dudley, 1969, Fournier and Guillin, 2015, Weed and Bach, 2019, Lei, 2020],
the definition of a likelihood [Sommerfeld and Munk, 2018, Bernton et al., 2019, Blanchet
and Murthy, 2019], or as the robust variant of an estimator [Blanchet et al., 2019, Paty and
Cuturi, 2019, Balaji et al., 2020]. The key challenge is computational [Peyré and Cuturi,
2019]. Indeed, the underlying distributions generally involve high-dimensional data and
complex models in machine learning (ML) applications.

We study the OT problem in a discrete setting where we assume that the target and
source probability distributions each have at most n atoms. In this setting, the OT problem
can be solved exactly using linear programming (LP) solver based on specialized interior-
point methods [Pele and Werman, 2009, Lee and Sidford, 2014, van den Brand et al., 2021],
reflecting the LP formulation of the OT problem. In this context, van den Brand et al. [2021]
have provided a bunch of randomized interior-point algorithms with improved runtimes for
solving linear programs with two-sided constraints, leading to a new OT algorithm based
on the Laplacian system solvers that achieved the best known complexity bounds of Õ(n2).
However, it does not provide an effective solution to large-scale machine learning problems
in practice since efficient implementations of Laplacian approach are yet unknown. Further-
more, many combinatorial techniques give exact algorithms for the OT problem. Indeed, the
Hungarian algorithm [Kuhn, 1955, 1956, Munkres, 1957] solves the assignment problem in
O(n3) time while there are several combinatorial algorithms that can solve the OT problem
exactly in Õ(n2.5) time [Gabow and Tarjan, 1991, Orlin and Ahuja, 1992]. Combined with
the scaling technique, the network simplex algorithms [Orlin et al., 1993, Orlin, 1997] can
be used to solve the OT problem exactly in Õ(n3) time and Lahn et al. [2019] have recently
developed a faster approximation algorithm for the OT problem via appeal to the modifi-
cation of the algorithm developed in Gabow and Tarjan [1991]. However, computing the
OT problem exactly results in an output that is not differentiable with respect to measures’
locations or weights [Bertsimas and Tsitsiklis, 1997]. Moreover, OT suffers from the curse of
dimensionality [Dudley, 1969, Fournier and Guillin, 2015] and is thus likely to be meaningless
when used on samples from high-dimensional densities.

An alternative to solve the OT problem is a class of approximation algorithms based on
the entropy regularization which has been investigated in optimization and transportation
science long before [Sinkhorn, 1974, Schneider and Zenios, 1990, Kalantari and Khachiyan,
1996, Knight, 2008, Kalantari et al., 2008, Chakrabarty and Khanna, 2021]. It was Cuturi
[2013] that popularized the use of entropy regularization for OT in the machine learning
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community and then initiated a productive line of research where an entropic regularization
was imposed to approximate the non-negative constraints in the original OT problem. The
resulting problem is referred to as entropic regularized OT and the corresponding class of
approximation algorithms are called entropic regularized algorithms. It is worth mentioning
that the entropic regularized OT has many favorable properties that the OT does not enjoy,
motivating us to study the computational efficiency of entropic regularized algorithms in
this paper. More specifically, from a statistical point of view, the entropic regularized OT
enjoys significantly better sample complexity that is polynomial in the dimension [Genevay
et al., 2019, Mena and Niles-Weed, 2019, Chizat et al., 2020], demonstrating that adding an
entropy regularization will reduce the curse of dimensionality. Even from a computational
point of view, such regularization in OT leads to Sinkhorn which attains a first near-linear
time guarantee for the OT problem [Cuturi, 2013, Altschuler et al., 2017, Dvurechensky
et al., 2018], and also makes the problem differentiable with regards to distributions [Feydy
et al., 2019]; hence, the entropic regularized algorithms are more easily applicable to deep
learning applications [Courty et al., 2017, Cuturi et al., 2019, Balaji et al., 2020] as opposed
to combinatorial algorithms. This point was highlighted in Dong et al. [2020] and further
necessitated the development of faster entropic regularized algorithms. In this regard, the
greedy variant of Sinkhorn – Greenkhorn – was proposed and shown to outperform Sinkhorn
empirically [Altschuler et al., 2017]. However, a sizable gap exists here since the best known

complexity bound of Õ(n2ε−3) for Greenkhorn [Altschuler et al., 2017] is worse than that of

Õ(n2ε−2) for Sinkhorn [Dvurechensky et al., 2018].
Further progress has been made by adapting first-order optimization algorithms for the

OT problem [Cuturi and Peyré, 2016, Genevay et al., 2016, Blondel et al., 2018, Dvurechen-
sky et al., 2018, Altschuler et al., 2019, Guo et al., 2020, Guminov et al., 2021]. Among these
approaches, two of representatives are an adaptive primal-dual accelerated gradient descent
(APDAGD) algorithm [Dvurechensky et al., 2018] with the claimed complexity bound of

Õ(min{n9/4ε−1, n2ε−2}) and an accelerated alternating minimization (AAM) algorithm [Gu-

minov et al., 2021] with the complexity bound of Õ(n5/2ε−1). Moreover, there are several
second-order optimization algorithms [Allen-Zhu et al., 2017, Cohen et al., 2017] which are
adapted for the OT problem [Blanchet et al., 2018, Quanrud, 2019] and guaranteed to achieve

the improved complexity bound of Õ(n2ε−1). However, the aforementioned second-order al-
gorithms do not provide effective solutions to large-scale machine learning problems due to
the lack of efficient implementations in practice.

Contributions. Given the advantages of entropic regularization in OT, we focus in his
paper the computational efficiency of a class of entropic regularized algorithms for the OT
problem and our theoretical analysis lead to several improvements over the state-of-the-art
algorithms in the literature. We summarize the contributions as follows:

1. We improve the complexity bound of Greenkhorn from Õ(n2ε−3) to Õ(n2ε−2), which
matches the best existing bound of Sinkhorn. The proof techniques are new and differ-
ent from that used in Dvurechensky et al. [2018] for analyzing Sinkhorn. In particular,
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Greenkhorn only updates a single row or column at each iteration and quantifying the
per-iteration progress is more difficult than the measurement in Sinkhorn.

2. We propose an adaptive primal-dual accelerated mirror descent (APDAMD) algorithm
which generalizes APDAGD with a prespecified mirror mapping φ and prove that
APDAMD achieves the complexity bound of Õ(n2

√
δε−1) where δ > 0 refers to the

regularity of φ w.r.t. `∞ norm. We show by a counterexample that the complexity
bound of Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD [Dvurechensky et al., 2018] is

invalid and give a refined complexity bound of Õ(n5/2ε−1) which is worse than the
claimed bound in terms of n.

3. We propose a deterministic accelerated variant of Sinkhorn via appeal to an estimated
sequence and prove the complexity bound of Õ(n7/3ε−4/3). In particular, accelerated
Sinkhorn consists in an exact minimization for main iterates accompanied by another
sequence of iterates based on coordinate gradient updates and monotone search. Our
results show that accelerated Sinkhorn outperforms Sinkhorn and Greenkhorn in terms
of 1/ε and APDAGD and AAM in terms of n.

We note that a preliminary version with only the analysis for Greenkhorn and APDAMD
has been accepted by ICML [Lin et al., 2019a]. After our conference paper was published,
some new algorithms were developed for solving the OT problem [Jambulapati et al., 2019,
Lahn et al., 2019]. In particular, Jambulapati et al. [2019] developed a dual extrapolation

algorithm with the complexity bound Õ (n2ε−1) using an area-convex mapping [Sherman,
2017]. Despite the theoretically sound complexity bound, the lack of simplicity and ease-of-
implementation make this algorithm less competitive with Sinkhorn and Greenkhorn which
remain the baseline solution methods in practice [Flamary and Courty, 2017].

Different from the algorithm in Jambulapati et al. [2019], the combinatorial algorithm
in Lahn et al. [2019] is a practical solution method for the OT problem. It is worth men-
tioning that the algorithm in Lahn et al. [2019] and other combinatorial algorithms, e.g.,
the Hungarian algorithm, outperform our algorithms in practice. This is in consistence with
the observation in Dong et al. [2020] who pointed out that combinatorial algorithms can
outperform entropic regularized algorithms in speed even the latter ones are asymptotically
faster for OT (i.e., the case of large n). However, we believe our results are still valuable due
to the importance of entropic regularized algorithms as mentioned before.

Notation. For n ≥ 2, we let [n] be the set {1, 2, . . . , n} and Rn
+ be the set of all vectors

in Rn with non-negative coordinates. The notation ∆n = {v ∈ Rn
+ :
∑n

i=1 vi = 1} stands for
a probability simplex in n − 1 dimensions. For a vector x ∈ Rn and let 1 ≤ p < +∞, the
notation ‖x‖p stands for the `p-norm and ‖x‖ indicates an `2-norm. diag(x) is a diagonal
matrix which has the vector x on its diagonal. 1n and 0n are n-dimensional vector with
all components being 1 and 0. For a matrix A ∈ Rn×n, we denote vec(A) as the vector in
Rn2

obtained from concatenating the rows and columns of A. The notation ‖A‖1→1 stands
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for sup‖x‖1=1 ‖Ax‖1 and the notations r(A) = A1n and c(A) = A>1n stand for the row and
column sums respectively. For a function f , the notation ∇xf denotes a partial derivative
with respect to x. For the dimension n and tolerance ε > 0, the notations a = O(b(n, ε)) and
a = Ω(b(n, ε)) indicate that a ≤ C1 · b(n, ε) and a ≥ C2 · b(n, ε) respectively where C1 and C2

are independent of n and ε. We also denote a = Θ(b(n, ε)) iff a = O(b(n, ε)) = Ω(b(n, ε)).

Similarly, we denote a = Õ(b(n, ε)) to indicate the previous inequality where C1 depends on
some logarithmic function of n and ε.

8.2 Preliminaries

We first present the linear programming (LP) representation of the optimal transport (OT)
problem as well as a specification of an approximate transportation plan. We also present an
entropic regularized variant of the OT problem and derive the dual form where the objective
function is in the form of the logarithm of sum of exponents. Finally, we establish several
properties of that dual form which are useful for the subsequent analysis.

Linear programming representation. According to Kantorovich [1942], the problem
of approximating the OT distance is equivalent to solving the following linear programming
(LP) problem:

min
X∈Rn×n

〈C,X〉 s.t. X1n = r,X>1n = c,X ≥ 0. (8.1)

In the above formulation, X refers to the transportation plan, C = (Cij) ∈ Rn×n
+ stands for

a cost matrix with non-negative components, and r ∈ Rn and c ∈ Rn are two probability
distributions in the simplex ∆n.

We see from Eq. (8.1), that the OT problem is a LP with 2n equality constraints and
n2 variables and can be solved by the interior-point method; however, this method performs
poorly on large-scale problems due to its high per-iteration computational cost. In general,
the solution that the algorithms aim at achieving is an ε-approximate transportation plan
X̂ ∈ Rn×n

+ satisfying the marginal distribution constraints X̂1n = r and X̂>1n = c and the
inequality given by

〈C, X̂〉 ≤ 〈C,X?〉+ ε.

Here X? is defined as an optimal transportation plan for the OT problem. For simplicity,
we respectively denote 〈C, X̂〉 an ε-approximate transportation cost and X̂ an ε-approximate
transportation plan for the original problem. Formally, we have the following definition of
ε-approximate transportation plan.

Definition 8.2.1 The matrix X̂ ∈ Rn×n
+ is called an ε-approximate transportation plan if

X̂1n = r and X̂>1n = c and the following inequality holds true,

〈C, X̂〉 ≤ 〈C,X?〉+ ε.

where X? is defined as an optimal transportation plan for the OT problem.
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With this definition in mind, the goal of this paper is to study the OT problem from a
computational point of view. Indeed, we hope to derive an improved complexity bound
of the current state-of-the-art algorithms and seek new practical algorithms whose running
time required to obtain an ε-approximate transportation plan has better dependence on 1/ε
than the benchmark algorithms in the literature. The aforementioned new algorithms are
favorable in the machine learning applications where high precision (ε is small) is necessary.

Entropic regularized OT and its dual form. Seeking another formulation for OT dis-
tance that is more amenable to computationally efficient algorithms, Cuturi [2013] proposed
to solve an entropic regularized version of the OT problem in Eq. (8.1), which is given by

min
X∈Rn×n

〈C,X〉 − ηH(X), s.t. X1n = r,X>1n = c, (8.2)

where η > 0 denotes the regularization parameter and H(X) denotes the entropic regular-
ization term, which is given by:

H(X) := −〈X, log(X)− 1n×n〉.

Note that, the optimal solution of the entropic regularized OT problem exists since the
objective function 〈C,X〉 − ηH(X) is continuous and the feasible region {X ∈ Rn×n : X ≥
0, X1n = r,X>1n = c} is compact. Furthermore, that optimal solution is also unique since
the objective function 〈C,X〉−ηH(X) is strongly convex over the feasible region with respect
to `1-norm. However, the optimal value of the entropic regularized OT problem (cf. Eq (8.2))
yields a poor approximation to the unregularized OT problem if η is large. An additional
issue of entropic regularization is that the sparsity of the solution is lost. Even though an
ε-approximate transportation plan can be found efficiently, it is not clear how different the
sparsity pattern of this solution is with respect to the solution of the actual OT problem.
In contrast, the actual OT distance suffers from the curse of dimensionality [Dudley, 1969,
Fournier and Guillin, 2015, Weed and Bach, 2019] and is significantly worse than its entropic
regularized version in terms of the sample complexity [Genevay et al., 2019, Mena and Niles-
Weed, 2019, Chizat et al., 2020].

While there is an ongoing debate in the literature on the merits of solving the OT
problem v.s. its entropic regularized version, we adopt here the viewpoint that reaching an
additive approximation of the actual OT cost matters and therefore propose to scale η as
a function of the desired accuracy of the approximation. Then, we proceed to derive the
dual form of the entropic regularized OT problem in Eq. (8.2) and show that it remains an
unconstrained smooth optimization problem. By introducing the dual variables α, β ∈ Rn,
we define the Lagrangian function of the entropic regularized OT problem as follows:

L(X,λ1, . . . , λm) = 〈C,X〉 − ηH(X)− α>(X1n − r)− β>(X>1n − c). (8.3)

In order to derive the smooth dual objective function, we consider the following minimization
problem:

min
X:‖X‖1=1

〈C,X〉 − ηH(X)− α>(X1n − r)− β>(X>1n − c).
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The above objective function is strongly convex over the domain {X ∈ Rn×n
+ | ‖X‖1 = 1}.

Thus, the optimal solution is unique. After the simple calculations, the optimal solution
X̄ = X(α, β) has the following form:

X̄ij = eη
−1(αi+βj−Cij)∑

1≤i,j≤n e
η−1(αi+βj−Cij)

. (8.4)

Plugging Eq. (8.4) into Eq. (8.3) yields that the dual form is:

max
α,β

{
−η log

( ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

)
+ α>r + β>c

}
.

In order to streamline our presentation, we perform a change of variables, u = η−1α and
v = η−1β, and reformulate the above problem as

min
α,β

ϕ(α, β) := log

( ∑
1≤i,j≤n

eui+vj−
Cij
η

)
− u>r − v>c.

To further simplify the notation, we define B(u, v) := (Bij)1≤i,j≤n ∈ Rn×n by

Bij = eui+vj−
Cij
η .

To this end, we obtain the dual entropic regularized OT problem defined by

min
u,v

ϕ(u, v) := log(‖B(u, v)‖1)− u>r − v>c. (8.5)

Remark 8.2.2 The first part of the objective function ϕ is in the form of the logarithm of
sum of exponents while the second part is a linear function. This is different from the objective
function used in previous dual entropic regularized OT problem [Cuturi, 2013, Altschuler
et al., 2017, Dvurechensky et al., 2018, Lin et al., 2019a]. Notably, Eq. (8.5) is a special
instance of a softmax minimization problem, and the objective function ϕ is known to be
smooth [Nesterov, 2005]. Finally, we point out that the same formulation has been derived
in Guminov et al. [2021] for analyzing AAM.

In the remainder of the paper, we also denote (u?, v?) ∈ R2n as an optimal solution of the
dual entropic regularized OT problem in Eq. (8.5).

Properties of dual entropic regularized OT. We present several useful properties of
the dual entropic regularized OT in Eq. (8.5). In particular, we show that there exists an
optimal solution (u?, v?) ∈ R2n such that it has an upper bound in terms of the `∞-norm.
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Lemma 8.2.3 For the dual entropic regularized OT problem in Eq. (8.5), there exists an
optimal solution (u?, v?) such that

‖u?‖∞ ≤ R, ‖v?‖∞ ≤ R,

where R := η−1‖C‖∞ + log(n)− log(min1≤i,j≤n{ri, cj}) depends on C, r and c.

Proof. First, we claim that there exists an optimal solution (u?, v?) such that

max
1≤i≤n

u?i ≥ 0 ≥ min
1≤i≤n

u?i , max
1≤i≤n

v?i ≥ 0 ≥ min
1≤i≤n

v?i . (8.6)

Indeed, letting (û?, v̂?) be an optimal solution to Eq. (8.5), the claim holds true if (û?, v̂?)
satisfies Eq. (8.6). Otherwise, we define the shift term given by

∆̂u =
max1≤i≤n û

?
i+min1≤i≤n û

?
i

2
, ∆̂v =

max1≤i≤n v̂
?
i +min1≤i≤n v̂

?
i

2
,

and define (u?, v?) by

u? = û? − ∆̂u1n, v? = v̂? − ∆̂v1n.

By definition, we have (u?, v?) satisfies Eq. (8.6). Since 1>n r = 1>n c = 1, we have (u?)>r =

(û?)>r− ∆̂u and (v?)>c = (v̂?)>c− ∆̂v. In addition, log(‖B(u?, v?)‖1) = log(‖B(û?, v̂?)‖1) +

∆̂u + ∆̂v. Putting these pieces together yields ϕ(u?, v?) = ϕ(û?, v̂?). Therefore, (u?, v?) is an
optimal solution of the dual entropic regularized OT that satisfies Eq. (8.6).

Then, we show that

max
1≤i≤n

u?i − min
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
, (8.7)

max
1≤i≤n

v?i − min
1≤i≤n

v?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
. (8.8)

Indeed, for any 1 ≤ i ≤ n, we derive from the optimality condition of (u?, v?) that

eu
?
i (

∑n
j=1 e

v?j−η
−1Cij )

‖B(u?,v?)‖1 = ri, for all i ∈ [n].

Since Cij ≥ 0 for all 1 ≤ i, j ≤ n and ri ≥ min1≤i,j≤n{ri, cj} for all 1 ≤ i ≤ n, we have

u?i ≥ log

(
min

1≤i,j≤n
{ri, cj}

)
− log

(
n∑
j=1

ev
?
j

)
+ log(‖B(u?, v?)‖1), for all i ∈ [n].

Since 0 < ri ≤ 1 and Cij ≤ ‖C‖∞, we have

u?i ≤
‖C‖∞
η
− log

(
n∑
j=1

ev
?
j

)
+ log(‖B(u?, v?)‖1), for all i ∈ [n].
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Putting these pieces together yields Eq. (8.7). By the similar argument, we can prove
Eq. (8.8).

Finally, we prove our main results. Indeed, Eq. (8.6) and Eq. (8.7) imply that

−‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
≤ min

1≤i≤n
u?i ≤ 0,

and

0 ≤ max
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
.

Combining the above two inequalities with the definition of R implies that ‖u?‖∞ ≤ R.
By the similar argument, we can prove that ‖v?‖∞ ≤ R. As a consequence, we obtain the
conclusion of the lemma. �

The upper bound for the `∞-norm of an optimal solution of dual entropic regularized OT in
Lemma 8.2.3 directly leads to the following direct bound for the `2-norm.

Corollary 8.2.4 For the dual entropic regularized OT problem in Eq. (8.5), there exists an
optimal solution (u?, v?) such that

‖u?‖ ≤
√
nR, ‖v?‖ ≤

√
nR,

where R > 0 is defined in Lemma 8.2.3.

Since the function −H(X) is strongly convex with respect to the `1-norm on the probability
simplex Q ⊆ Rn×n, the entropic regularized OT problem in Eq. (8.2) is a special case of the
following linearly constrained convex optimization problem:

min
x∈Q

f(x), s.t. Ax = b,

where f is strongly convex with respect to the `1-norm on the set Q:

f(x′)− f(x)− (x′ − x)>∇f(x) ≥ η
2
‖x′ − x‖2

1 for any x′, x ∈ Q.

By Nesterov [2005, Theorem 1] with the `2-norm for the dual space of the Lagrange multi-
pliers, the dual objective function ϕ̃ satisfies the following inequality:

ϕ̃(α′, β′)−ϕ̃(α, β)−

α′ − α
β′ − β

>∇ϕ̃(α, β) ≤ ‖A‖21→2

2η

∥∥∥∥∥∥
α′ − α
β′ − β

∥∥∥∥∥∥
2

for any (α′, β′), (α, β) ∈ R2n.

Recall that the function ϕ̃ is given by

ϕ̃(α, β) = −η log

( ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

)
+ α>r + β>c. (8.9)
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Algorithm 22 Greenkhorn(C, η, r, c, ε′)

Input: t = 0 and u0 = v0 = 0n.
while Et > ε′ do

Compute I = argmax1≤i≤n ρ(ri, ri(B(ut, vt))) where ρ(a, b) = b − a + a log(a/b) and

(B(ut, vt))i′j′ = e
ut
i′+v

t
j′−

Ci′j′
η for all (i′, j′).

Compute J = argmax1≤j≤n ρ(cj , cj(B(ut, vt))).
if ρ(ri, ri(B(ut, vt))) > ρ(cj , cj(B(ut, vt))) then
ut+1
I = utI + log(rI)− log(rI(B(ut, vt))).

else
vt+1
J = vtJ + log(cJ)− log(cJ(B(ut, vt))).

Increment by t = t+ 1.
Output: B(ut, vt).

We notice that the function ϕ in Eq. (8.5) satisfies that ϕ(u, v) = −η−1ϕ̃(ηu, ηv). After
some simple calculations, we have

ϕ(u′, v′)− ϕ(u, v)−

u′ − u
v′ − v

>∇ϕ(u, v) ≤
(
‖A‖21→2

2

)∥∥∥∥∥∥
u′ − u
v′ − v

∥∥∥∥∥∥
2

. (8.10)

In the entropic regularized OT problem, each column of the matrix A contains no more than
two nonzero elements which are equal to one. Since ‖A‖1→2 is equal to maximum `2-norm
of the column of this matrix, we have ‖A‖1→2 =

√
2. Thus, the dual objective function ϕ is

2-gradient Lipschitz with respect to the `2-norm.

8.3 Greenkhorn

We present a complexity analysis for Greenkhorn. In particular, we improve the existing best
known complexity boundO(n2‖C‖3

∞ log(n)ε−3) [Altschuler et al., 2017] toO(n2‖C‖2
∞ log(n)ε−2),

which matches the current state-of-the-art complexity bound for Sinkhorn [Dvurechensky
et al., 2018].

To facilitate the subsequent discussion, we present the pseudocode of Greenkhorn in
Algorithm 22 and its application to regularized OT in Algorithm 23. The function for
quantifying the progress in the dual objective value between two consecutive iterates is given
by ρ(a, b) = b − a + a log(a/b) and we recall that (u, v) is an optimal solution of the dual
entropic regularized OT problem in Eq. (8.5) if r(B(u, v))− r = 0n and c(B(u, v))− c = 0n.
This leads to the quantity which measures the error of the t-th iterate in Algorithm 22:

Et := ‖r(B(ut, vt))− r‖1 + ‖c(B(ut, vt))− c‖1.

Both Sinkhorn and Greenkhorn can be interpreted as coordinate descent for minimizing the
following convex function [Cuturi, 2013, Altschuler et al., 2017, Dvurechensky et al., 2018,
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Algorithm 23 Approximating OT by Algorithm 22

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n(1n,1n).

Step 2: Compute X̃ = Greenkhorn(C, η, r̃, c̃, ε
′

2 ).

Step 3: Round X̃ to X̂ using Altschuler et al. [2017, Algorithm 2] such that X̂1n = r and
X̂>1n = c.
Output: X̂.

Lin et al., 2019a]:
f(u, v) := ‖B(u, v)‖1 − u>r − v>c. (8.11)

Comparing to the scheme of Sinkhorn that consists in the updates of all rows and columns,
Algorithm 22 updates only one row or column at each step. As such, Algorithm 22 updates
only O(n) entries per iteration rather than O(n2) in Sinkhorn. It is also worth mentioning
that Algorithm 22 can be implemented such that each iteration runs in only O(n) arithmetic
operations [Altschuler et al., 2017].

Despite cheap per-iteration computational cost, it is difficult to quantify the per-iteration
progress of Algorithm 22 and the proof techniques for Sinkhorn in Dvurechensky et al. [2018]
are not applicable here. This motivates us to investigate another proof strategy which will
be elaborated in the sequel.

Complexity analysis—bounding dual objective values. Given the definition of Et,
we first prove the following lemma which yields an upper bound for the objective values of
the iterates.

Lemma 8.3.1 Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 22, we have

f(ut, vt)− f(u?, v?) ≤ 2Et(‖u?‖∞ + ‖v?‖∞),

where (u∗, v∗) is a point that minimizes f(u, v) = ‖B(u, v)‖1 − u>r − v>c.

Proof. By the definition, we have

f(u, v) =
∑

1≤i,j≤n

eui+vj−
Cij
η −

n∑
i=1

uiri −
n∑
j=1

vjcj.

By definition, we have ∇uf(ut, vt) = B(ut, vt)1n − r and ∇vf(ut, vt) = B(ut, vt)>1n − c.
Thus, we have Et = ‖∇uf(ut, vt)‖1 + ‖∇vf(ut, vt)‖1. Since f is convex and minimized at
(u?, v?), we have

f(ut, vt)− f(u?, v?) ≤ (ut − u?)>∇uf(ut, vt) + (vt − v?)>∇vf(ut, vt).



CHAPTER 8. EFFICIENT ENTROPIC REGULARIZED OPTIMAL TRANSPORT 251

Combining Hölder’s inequality and the definition of Et yields

f(ut, vt)− f(u?, v?) ≤ Et(‖ut − u?‖∞ + ‖vt − v?‖∞). (8.12)

Thus, it suffices to show that

‖ut − u?‖∞ + ‖vt − v?‖∞ ≤ 2‖u?‖∞ + 2‖v?‖∞.

The next result is the key observation that makes our analysis work for Greenkhorn. We use
an induction argument to establish the following bound:

max{‖ut − u?‖∞, ‖vt − v?‖∞} ≤ max{‖u0 − u?‖∞, ‖v0 − v?‖∞}. (8.13)

It is clear that Eq. (8.13) holds true when t = 0. Suppose that the inequality holds true for
t ≤ k0, we show that it also holds true for t = k0 + 1. Without loss of generality, let I be
the index chosen at the (k0 + 1)-th iteration. Then

‖uk0+1 − u?‖∞ ≤ max{‖uk0 − u?‖∞, |uk0+1
I − u?I |}, (8.14)

‖vk0+1 − v?‖∞ = ‖vk0 − v?‖∞. (8.15)

By the updating formula for uk0+1
I and the optimality condition for u?I , we have

eu
k0+1
I = rI∑n

j=1 e
−
Cij
η +v

k0
j

, eu
?
I = rI∑n

j=1 e
−
Cij
η +v?

j

.

Putting these pieces together with the inequality that
∑n
i=1 ai∑n
i=1 bi

≤ max1≤j≤n
ai
bi

for all ai, bi > 0

yields

|uk0+1
I − u?I | =

∣∣∣∣∣log

(∑n
j=1 e

−η−1CIj+v
k0
j∑n

j=1 e
−η−1CIj+v?

j

)∣∣∣∣∣ ≤ ‖vk0 − v?‖∞. (8.16)

Combining Eq. (8.14) and Eq. (8.16) yields

‖uk0+1 − u?‖∞ ≤ max{‖uk0 − u?‖∞, ‖vk0 − v?‖∞}. (8.17)

Combining Eq. (8.15) and Eq. (8.17) further implies Eq. (8.13). This together with u0 =
v0 = 0n implies

‖ut − u?‖∞ + ‖vt − v?‖∞ ≤ 2(‖u0 − u?‖∞ + ‖v0 − v?‖∞) = 2‖u?‖∞ + 2‖v?‖∞. (8.18)

Putting Eq. (8.12) and Eq. (8.18) together yields the desired result. �

Our second lemma shows that at least one optimal solution (u?, v?) of f has an upper
bound of η−1‖C‖∞ + log(n) − 2 log(min1≤i,j≤n{ri, cj}) in `∞-norm. This result is stronger
than Dvurechensky et al. [2018, Lemma 1] and generalizes Blanchet et al. [2018, Lemma 10].
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Lemma 8.3.2 There exists an optimal solution (u?, v?) of the function f defined in Eq. (8.11)
such that the following inequality holds true,

‖u?‖∞ ≤ R, ‖v?‖∞ ≤ R,

where R := η−1‖C‖∞ + log(n)− 2 log(min1≤i,j≤n{ri, cj}) depends on C, r and c.

Proof. By using the similar argument as in Lemma 8.2.3, we can first show that there exists
an optimal solution pair (u?, v?) such that (but not for v? simultaneously)

max
1≤i≤n

u?i ≥ 0 ≥ min
1≤i≤n

u?i . (8.19)

Then, we proceed to establish the bounds that are analogous to Eq. (8.7) and (8.8):

max
1≤i≤n

u?i − min
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
, (8.20)

max
1≤i≤n

v?i − min
1≤i≤n

v?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
. (8.21)

Indeed, for each 1 ≤ i ≤ n, we have

e−η
−1‖C‖∞+u?i

(
n∑
j=1

ev
?
j

)
≤

n∑
j=1

e−η
−1Cij+u

?
i+v?j = [B(u?, v?)1n]i = ri ≤ 1,

which implies u?i ≤ η−1‖C‖∞ − log(
∑n

j=1 e
v?j ). Furthermore, we have

eu
?
i

(
n∑
j=1

ev
?
j

)
≥

n∑
j=1

e−η
−1Cij+u

?
i+v?j = [B(u?, v?)1n]i = ri ≥ min

1≤i,j≤n
{ri, cj},

which implies u?i ≥ log(min1≤i,j≤n{ri, cj}) − log(
∑n

j=1 e
v?j ). Putting these pieces together

yields Eq. (8.20). Using the similar argument, we can prove Eq. (8.21) holds true.
Finally, we prove our main results. Since max1≤i≤n u

?
i ≥ 0 ≥ min1≤i≤n u

?
i , we derive from

Eq. (8.20) that

−‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
≤ min

1≤i≤n
u?i ≤ max

1≤i≤n
u?i ≤

‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
.

This implies that ‖u?‖∞ ≤ R. Then, we bound ‖v?‖∞ by considering two different cases.
For the former case, we assume that max1≤i≤n v

?
i ≥ 0. Note that the optimality condition

is
∑n

i,j=1 e
−η−1Cij+u

?
i+v?j = 1 and further implies that

max
1≤i≤n

u?i + max
1≤i≤n

v?i ≤ log

(
max

1≤i,j≤n
eη
−1Cij

)
= ‖C‖∞

η
.
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Since max1≤i≤n u
∗
i ≥ 0 and max1≤i≤n v

∗
i ≥ 0, we have 0 ≤ max1≤i≤n v

?
i ≤

‖C‖∞
η

. Combining

max1≤i≤n v
∗
i ≥ 0 with Eq. (8.21) yields that

min
1≤i≤n

v?i ≥ −
‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
.

which implies that ‖v?‖∞ ≤ R.
For the latter case, we assume that max1≤i≤n v

?
i ≤ 0. Then, we have

min
1≤i≤n

v?i ≥ log

(
min

1≤i,j≤n
{ri, cj}

)
− log

(
n∑
i=1

eu
?
i

)
.

This together with ‖u?‖∞ ≤ ‖C‖∞
η
− log(min1≤i,j≤n{ri, cj}) yields that ‖v?‖∞ ≤ R. �

Putting Lemma 8.3.1 and 8.3.2 together, we have the following straightforward consequence:

Corollary 8.3.3 Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 22, we have

f(ut, vt)− f(u?, v?) ≤ 4REt.

Remark 8.3.4 The notation R is also used in Dvurechensky et al. [2018] and has the same
order as ours since R in our paper only involves an term log(n)− log(min1≤i,j≤n{ri, cj}).

Remark 8.3.5 We further comment on the proof techniques in this paper and Dvurechensky
et al. [2018]. Indeed, the proof for Dvurechensky et al. [2018, Lemma 2] depends on taking full
advantage of the shift property of Sinkhorn; namely, either B(ut, vt)1n = r or B(ut, vt)>1n =
c where (ut, vt) stands for the iterate generated by Sinkhorn. Unfortunately, Greenkhorn does
not enjoy such a shift property. We have thus proposed a different approach for bounding
f(ut, vt)− f(u?, v?) via appeal to the `∞-norm of the solution (u?, v?).

Complexity analysis—bounding the number of iterations. We proceed to provide
an upper bound for the iteration number to achieve a desired tolerance ε′ in Algorithm 22.
First, we start with a lower bound for the difference of function values between two consec-
utive iterates of Algorithm 22:

Lemma 8.3.6 Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 22, we have

f(ut, vt)− f(ut+1, vt+1) ≥ (Et)2

28n
.

Proof. Combining Altschuler et al. [2017, Lemma 5] and the fact that the row or column
update is chosen in a greedy manner, we have

f(ut, vt)− f(ut+1, vt+1) ≥ 1
2n

(
ρ(r, r(B(ut, vt)) + ρ(c, c(B(ut, vt))

)
.
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Furthermore, Altschuler et al. [2017, Lemma 6] implies that

ρ(r, r(B(ut, vt)) + ρ(c, c(B(ut, vt)) ≥ 1
7

(
‖r − r(B(ut, vt))‖2

1 + ‖c− c(B(ut, vt))‖2
1

)
.

Putting these pieces together yields that

f(ut, vt)− f(ut+1, vt+1) ≥ 1
14n

(
‖r − r(B(ut, vt))‖2

1 + ‖c− c(B(ut, vt))‖2
1

)
.

Combining the above inequality with the definition of Et implies the desired result. �

We are now able to derive the iteration complexity of Algorithm 22.

Theorem 8.3.7 Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 22, the number
of iterations required to satisfy Et ≤ ε′ is upper bounded by t ≤ 2 + 112nR

ε′
where R > 0 is

defined in Lemma 8.3.2.

Proof. Letting δt = f(ut, vt) − f(u?, v?), we derive from Corollary 8.3.3 and Lemma 8.3.6
that

δt − δt+1 ≥ max
{

δ2
t

448nR2 ,
(ε′)2

28n

}
,

where Et ≥ ε′ as soon as the stopping criterion is not fulfilled. In the following step we apply
a switching strategy introduced by Dvurechensky et al. [2018]. Given any t ≥ 1, we have
two estimates:

(i) Considering the process from the first iteration and the t-th iteration, we have

δt+1

448nR2 ≤ 1
t+448nR2δ−2

1

=⇒ t ≤ 1 + 448nR2

δt
− 448nR2

δ1
.

(ii) Considering the process from the (t+ 1)-th iteration to the (t+m)-th iteration for any
m ≥ 1, we have

δt+m ≤ δt − (ε′)2m
28n

=⇒ m ≤ 28n(δt−δt+m)
(ε′)2 .

We then minimize the sum of two estimates by an optimal choice of s ∈ (0, δ1]:

t ≤ min
0<s≤δ1

(
2 + 448nR2

s
− 448nR2

δ1
+ 28ns

(ε′)2

)
=

 2 + 224nR
ε′
− 448nR2

δ1
, δ1 ≥ 4Rε′,

2 + 28nδ1
(ε′)2 , δ1 ≤ 4Rε′.

This implies that t ≤ 2 + 112nR
ε′

in both cases and completes the proof. �

Equipped with the result of Theorem 8.3.7 and the scheme of Algorithm 23, we are able to
establish the following result for the complexity of Algorithm 23:
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Theorem 8.3.8 The Greenkhorn scheme for approximating optimal transport (Algorithm 23)
returns an ε-approximate transportation plan (cf. Definition 8.2.1) in

O

(
n2‖C‖2

∞ log(n)

ε2

)
arithmetic operations.

Proof. We follow the proof steps in [Altschuler et al., 2017, Theorem 1] and obtain that the
transportation plan X̂ returned by Algorithm 23 satisfies that

〈C, X̂〉 − 〈C,X?〉 ≤ 2η log(n) + 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞
≤ ε

2
+ 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞,

where X? is an optimal solution to the OT problem and X̃ = Greenkhorn(C, η, r̃, c̃, ε
′

2
).

The last inequality in the above display holds true since η = ε
4 log(n)

. Furthermore,

‖X̃1n − r‖1 + ‖X̃>1n − c‖1 ≤ ‖X̃1n − r̃‖1 + ‖X̃>1n − c̃‖1 + ‖r − r̃‖1 + ‖c− c̃‖1

≤ ε′

2
+ ε′

4
+ ε′

4
= ε′.

Putting these pieces together with ε′ = ε
8‖C‖∞ yields that 〈C, X̂〉 − 〈C,X?〉 ≤ ε.

The remaining step is to analyze the complexity bound. It follows from Theorem 8.3.7
and the definition of r̃ and c̃ in Algorithm 23 that

t ≤ 2 + 112nR
ε′

≤ 2 + 96n‖C‖∞
ε

(
‖C‖∞
η

+ log(n)− 2 log

(
min

1≤i,j≤n
{ri, cj}

))
≤ 2 + 96n‖C‖∞

ε

(
4‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n‖C‖∞

))
= O

(
n‖C‖2∞ log(n)

ε2

)
.

The total iteration complexity in Step 2 of Algorithm 23 is bounded by O(n‖C‖2
∞ log(n)ε−2).

Each iteration of Algorithm 22 requires O(n) arithmetic operations. Thus, the total number
of arithmetic operations isO(n2‖C‖2

∞ log(n)ε−2). Moreover, r̃ and c̃ in Step 1 of Algorithm 23
can be found in O(n) arithmetic operations and Altschuler et al. [2017, Algorithm 2] requires
O(n2) arithmetic operations. Therefore, we conclude that the total number of arithmetic
operations is O(n2‖C‖2

∞ log(n)ε−2). �

The complexity results presented in Theorem 8.3.8 improve the best known complexity bound
Õ(n2ε−3) of Greenkhorn [Altschuler et al., 2017, Abid and Gower, 2018], Notably, it matches
the best known complexity bound of Sinkhorn [Dvurechensky et al., 2018]. The key feature
of our analysis is that the per-iteration progress of Greenkhorn can be lower bounded by a
new quantity (cf. Lemmas 8.3.1 and 8.3.2). It allows us to apply the switching strategy in
Theorem 8.3.7 to improve the complexity upper bound of Greenkhorn.

In practice, Greenkhorn has been reported to outperform Sinkhorn [Altschuler et al.,
2017] in terms of row/column updates and our improved complexity bound can provide the
theoretical justification for this phenomenon.
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Algorithm 24 Apdamd(ϕ,A, b, ε′)

Input: t = 0.
Initialization: ᾱ0 = α0 = 0, z0 = µ0 = λ0 = 02n and L0 = 1.
repeat

Set M t = Lt

2 .
repeat

Set M t = 2M t.
Compute the stepsize: αt+1 = 1+

√
1+4δMtᾱt

2δMt .
Compute the average coefficient: ᾱt+1 = ᾱt + αt+1.
Compute the first average step: µt+1 = αt+1zt+ᾱtλt

ᾱt+1 .

Compute the mirror descent: zt+1 = argmin
z∈Rn

{(z − µt+1)>∇ϕ(µt+1) +
Bφ(z,zt)

αt+1 }.

Compute the second average step: λt+1 = αt+1zt+1+ᾱtλt

ᾱt+1 .

until ϕ(λt+1)− ϕ(µt+1)− (λt+1 − µt+1)>∇ϕ(µt+1) ≤ Mt

2 ‖λ
t+1 − µt+1‖2∞.

Compute the main average step: xt+1 = αt+1x(µt+1)+ᾱtxt

ᾱt+1 .

Set Lt+1 = Mt

2 .
Set t = t+ 1.

until ‖Axt − b‖1 ≤ ε′.
Output: Xt where xt = vec(Xt).

8.4 Adaptive Primal-Dual Accelerated Mirror

Descent

We propose an adaptive primal-dual accelerated mirror descent (APDAMD) for solving
the entropic regularized OT problem in Eq. (8.2). APDAMD and its application to the
OT problem are presented in Algorithm 24 and 25. We prove the complexity bound of
O(n2

√
δ‖C‖∞ log(n)ε−1) where δ > 0 stands for the regularity of the mirror mapping φ.

General setup. We consider the following generalization of the entropic regularized OT
problem in Eq. (8.2):

min
x∈Q

f(x), s.t. Ax = b, (8.22)

where f is strongly convex with respect to the `1-norm on the set Q:

f(x′)− f(x)− (x′ − x)>∇f(x) ≥ η
2
‖x′ − x‖2

1 for any x′, x ∈ Q.

Note that, in the specific setting of the entropic regularized OT problem, the function f(x) =∑
i,j Cijxj+n(i−1) + η · xj+n(i−1) log(xj+n(i−1)) where xj+n(i−1) = Xij for any i, j where X is

the transportation plan in equation (8.2), and the vector b ∈ R2n×1 is defined as: bi = ri as
1 ≤ i ≤ n and bi = ci−n when n+ 1 ≤ i ≤ 2n. Furthermore, the matrix A = (Aij) ∈ R2n×n2

is defined as: When 1 ≤ i ≤ n, we denote Aij = 1 if 1 + n(i− 1) ≤ j ≤ n · i and 0 otherwise;
When n+ 1 ≤ i ≤ 2n, we define Aij = 1 if j ∈ {i−n+n(l−1) : 1 ≤ l ≤ n} and 0 otherwise.



CHAPTER 8. EFFICIENT ENTROPIC REGULARIZED OPTIMAL TRANSPORT 257

To be consistent with the notations in Algorithms 25 and 26, we specifically denote Aot as
the matrix A corresponding to the entropic regularized OT problem.

After some calculations with the general problem (8.22), we obtain that the dual problem
is as follows:

min
λ∈R2n

ϕ̃(λ) := {〈λ, b〉+ max
x∈Rn2

{−f(x)− 〈A>λ, x〉}}, (8.23)

and ∇ϕ̃(λ) = b−Ax(λ) where x(λ) = argmaxx∈Rn{−f(x)−〈A>λ, x〉}; see the explicit form
in Eq. (8.9) with λ = (α, β). By Nesterov [2005, Theorem 1] with `1-norm for the dual space
of the Lagrange multipliers, the dual objective function ϕ̃ satisfies the following inequality:

ϕ̃(λ′)− ϕ̃(λ)− (λ′ − λ)>∇ϕ̃(λ) ≤ ‖A‖21→1

2η
‖λ′ − λ‖2

∞. (8.24)

In the entropic regularized OT problem, each column of the matrix Aot contains no more
than two nonzero elements which are equal to one. Since ‖Aot‖1→1 is equal to maximum
`1-norm of the column of this matrix, we have ‖Aot‖1→1 = 2. Thus, the dual objective
function ϕ̃ is 4

η
-gradient Lipschitz with respect to the `∞-norm.

In addition, we define the Bregman divergence Bφ : R2n × R2n 7→ [0,+∞) by

Bφ(λ′, λ) := φ(λ′)− φ(λ)− (λ′ − λ)>∇φ(λ),

where the mirror mapping φ is 1
δ
-strongly convex and 1-smooth on R2n with respect to

`∞-norm; that is,

1
2δ
‖λ′ − λ‖2

∞ ≤ φ(λ′)− φ(λ)− (λ′ − λ)>∇φ(λ) ≤ 1
2
‖λ′ − λ‖2

∞.

For example, we can choose φ(λ) = 1
2n
‖λ‖2 and Bφ(λ′, λ) = 1

2n
‖λ′− λ‖2 in APDAMD where

δ = n. As such, δ > 0 is a function of n in general and it will appear in the complexity bound
of APDAMD for approximating the OT problem (cf. Theorem 8.4.5). It is worth noting
that our algorithm uses a regularizer that acts only in the dual and our complexity bound is
the best existing one among this group of algorithms [Dvurechensky et al., 2018, Guo et al.,
2020, Guminov et al., 2021]. A very recent work of Jambulapati et al. [2019] showed that the

complexity bound can be improved to Õ(n2ε−1) using a more advanced area-convex mirror
mapping [Sherman, 2017].

Properties of APDAMD. We present several important properties of Algorithm 24
that can be used later for entropic regularized OT problems. First, we prove the following
result regarding the number of line search iterations in Algorithm 24 for solving the entropic
regularized OT problem:

Lemma 8.4.1 The number of line search iterations in Algorithm 24 for solving the entropic
OT problem is finite. Furthermore, the total number of gradient oracle calls after the t-th
iteration is bounded as

Nt ≤ 4t+ 4 +
2 log( 8

η
)− 2 log(L0)

log 2
.
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Algorithm 25 Approximating OT by Algorithm 24

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n(1n,1n).

Step 2: Let Aot ∈ R2n×n2
and b ∈ R2n be defined by Aotvec(X) =

 X1n

X>1n

 and b =

r̃
c̃

.

Step 3: Compute X̃ = Apdamd(ϕ̃, Aot, b,
ε′

2 ) where ϕ̃ is defined by Eq. (8.23).

Step 4: Round X̃ to X̂ using Altschuler et al. [2017, Algorithm 2] such that X̂1n = r and
X̂>1n = c.
Output: X̂.

Proof. First, we observe that multiplying M t by two will not stop until the line search
stopping criterion is satisfied. Then, Eq. (8.24) implies that the number of line search

iterations in the line search strategy is finite and M t ≤ 2‖Aot‖21→1

η
holds true for all t ≥ 0.

Otherwise, the line search stopping criterion is satisfied with Mt

2
since Mt

2
≥ ‖Aot‖21→1

η
.

Letting ij denote the total number of multiplication at the j-th iteration, we have

i0 ≤ 1 +
log(M

0

L0 )

log 2
, ij ≤ 2 +

log( Mj

Mj−1 )

log 2
.

Then, the total number of line search iterations is bounded by

t∑
j=0

ij ≤ 1 +
log(M

0

L0 )

log 2
+

t∑
j=1

(
2 +

log( Mj

Mj−1 )

log 2

)
≤ 2t+ 1 +

log(
2‖Aot‖

2
1→1

η
)−log(L0)

log 2
.

Since each line search contains two gradient oracle calls and ‖Aot‖1→1 = 2, we conclude the
desired upper bound for the total number of gradient oracle calls after the t-th iteration. �

The next lemma presents a property of the function ϕ̃ in Algorithm 24.

Lemma 8.4.2 For each iteration t of Algorithm 24 and any z ∈ R2n, we have

ᾱtϕ̃(λt) ≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2
∞.

Proof. First, we claim that it holds for any z ∈ Rn:

αt+1(zt − z)>∇ϕ̃(µt+1) ≤ ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1). (8.25)

Indeed, the optimality condition in mirror descent implies that, for any z ∈ R2n, we have

(z − zt+1)>
(
∇ϕ̃(µt+1) + ∇φ(zt+1)−∇φ(zt)

αt+1

)
≥ 0.
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By definition, we have Bφ(z, zt)−Bφ(z, zt+1)−Bφ(zt+1, zt) = (z−zt+1)>(∇φ(zt+1)−∇φ(zt))
and Bφ(zt+1, zt) ≥ 1

2δ
‖zt+1 − zt‖2

∞. Putting these pieces together yields that

αt+1(zt − z)>∇ϕ̃(µt+1) = αt+1(zt − zt+1)>∇ϕ̃(µt+1) + αt+1(zt+1 − z)>∇ϕ̃(µt+1)

≤ αt+1(zt − zt+1)>∇ϕ̃(µt+1) + (z − zt+1)>(∇φ(zt+1)−∇φ(zt))

= αt+1(zt − zt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)−Bφ(zt+1, zt)

≤ αt+1(zt − zt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)− ‖z
t+1−zt‖2∞

2δ
. (8.26)

The update formulas of µt+1, λt+1, αt+1 and ᾱt+1 imply that

λt+1 − µt+1 =
αt+1

ᾱt+1
(zt+1 − zt), δM t(αt+1)2 = ᾱt+1.

Therefore, we have

αt+1(zt − zt+1)>∇ϕ̃(µt+1) = ᾱt+1(µt+1 − λt+1)>∇ϕ̃(µt+1),

and
‖zt+1 − zt‖2

∞ = ( ᾱ
t+1

αt+1 )2‖µt+1 − λt+1‖2
∞ = δM tᾱt+1‖µt+1 − λt+1‖2

∞.

Putting these pieces together with Eq. (8.26) yields that

αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt+1(µt+1 − λt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)− ᾱt+1Mt

2
‖µt+1 − λt+1‖2

∞

= ᾱt+1
(

(µt+1 − λt+1)>∇ϕ̃(µt+1)− Mt

2
‖µt+1 − λt+1‖2

∞

)
+Bφ(z, zt)−Bφ(z, zt+1)

≤ ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1),

where the last inequality comes from the stopping criterion in the line search. This implies
that Eq. (8.25) holds true.

The next step is to bound the iterative objective gap given by

ᾱt+1ϕ̃(λt+1)− ᾱtϕ̃(λt) (8.27)

≤ αt+1(ϕ̃(µt+1) + (z − µt+1)>∇ϕ̃(µt+1)) +Bφ(z, zt)−Bφ(z, zt+1).

Indeed, by combining ᾱt+1 = ᾱt + αt+1 and the update formula of µt+1, we have

αt+1(µt+1− zt) = (ᾱt+1− ᾱt)µt+1−αt+1zt = αt+1zt + ᾱtλt− ᾱtµt+1−αt+1zt = ᾱt(λt−µt+1).

This together with the convexity of ϕ̃ implies that

αt+1(µt+1 − z)>∇ϕ̃(µt+1)

= αt+1(µt+1 − zt)>∇ϕ̃(µt+1) + αt+1(zt − z)>∇ϕ̃(µt+1)

= ᾱt(λt − µt+1)>∇ϕ̃(µt+1) + αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + αt+1(zt − z)>∇ϕ̃(µt+1).
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Furthermore, we derive from Eq. (8.25) and ᾱt+1 = ᾱt + αt+1 that

ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1)

= ᾱtϕ̃(λt)− ᾱt+1ϕ̃(λt+1) + αt+1ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1).

Putting these pieces together yields that Eq. (8.27) holds true.
Finally, we prove our main results. By changing the index t to j in Eq. (8.27) and

summing up the resulting inequality over j = 0, 1, . . . , t− 1, we have

ᾱtϕ̃(λt)− ᾱ0ϕ̃(λ0) ≤
t−1∑
j=0

(αj+1(ϕ̃(µj+1) + (z − µj+1)>∇ϕ̃(µj+1))) +Bφ(z, z0)−Bφ(z, zt).

Since α0 = ᾱ0 = 0, Bφ(z, zt) ≥ 0 and φ is 1-smooth with respect to `∞-norm, we have

ᾱtϕ̃(λt) ≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) +Bφ(z, z0)

≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z − z0‖2
∞

z0=0
=

t∑
j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2
∞.

This completes the proof. �

The final lemma provides us with a key lower bound for the accumulating parameter.

Lemma 8.4.3 For each iteration t of Algorithm 24, we have ᾱt ≥ η(t+1)2

32δ
.

Proof. For t = 1, we have ᾱ1 = α1 = 1
δM1 ≥ η

8δ
since M1 ≤ 8

η
was proven in Lemma 8.4.1.

Thus, the desired result holds true when t = 1. Then we proceed to prove that it holds true
for t ≥ 1 using the induction. Indeed, we have

ᾱt+1 = ᾱt + αt+1 = ᾱt + 1+
√

1+4δMtᾱt

2δMt

= ᾱt + 1
2δMt +

√
1

4(δMt)2 + ᾱt

δMt

≥ ᾱt + 1
2δMt +

√
ᾱt

δMt

≥ ᾱt + η
16δ

+

√
ηᾱt

8δ
,

where the last inequality comes from M t ≤ 8
η

as shown in Lemma 8.4.1. Suppose that the
desired result holds true for t = k0, we have

ᾱk0+1 ≥ η(k0+1)2

32δ
+ η

16δ
+

√
η2(k0+1)2

256δ2 = η((k0+1)2+2+2(k0+1))
32δ

≥ η(k0+2)2

32δ
.

This completes the proof. �
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Complexity analysis for APDAMD. We are now ready to establish the complexity
bound of APDAMD for solving the entropic regularized OT problem. Indeed, we recall that
ϕ̃(λ) is defined with λ = (α, β) by

ϕ̃(α, β) = −η log

( ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

)
+ α>r + β>c.

Since (α, β) can be obtain by αi = ηui and βj = ηvj, we derive from Lemma 8.2.3 that

‖α?‖∞ ≤ ηR, ‖β?‖∞ ≤ ηR.

where R is defined accordingly. Then, we proceed to the following key result determining an
upper bound for the number of iterations for Algorithm 24 to reach a desired accuracy ε′:

Theorem 8.4.4 Letting {X t}t≥0 be the iterates generated by Algorithm 24, the number of
iterations required to satisfy ‖Aotvec(X t)− b‖1 ≤ ε′ is upper bounded by

t ≤ 1 +

√
128δR

ε′
,

where R > 0 is defined in Lemma 8.2.3.

Proof. From Lemma 8.4.2, we have

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)

{
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2
∞

}
,

where B∞(r) := {λ ∈ Rn | ‖λ‖∞ ≤ r}. This implies that

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)

{
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj)))

}
+ 4η2R2.

Since ϕ̃ is the objective function of dual entropic regularized OT problem, we have

ϕ̃(µj) + (z − µj)>∇ϕ̃(µj) = −f(x(µj)) + z>(b− Aotx(µj)).

Therefore, we conclude that

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)

{
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj)))

}
+ 4η2R2

≤ 4η2R2 − ᾱtf(xt) + min
z∈B∞(2ηR)

{ᾱtz>(b− Aotx
t)}

= 4η2R2 − ᾱtf(xt)− 2ᾱtηR‖Aotx
t − b‖1,
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where the second inequality comes from the convexity of f and the last equality comes from
the fact that `1-norm is the dual norm of `∞-norm. That is to say,

f(xt) + ϕ̃(λt) + 2ηR‖Aotx
t − b‖1 ≤ 4η2R2

ᾱt
.

Suppose that λ? is an optimal solution to dual entropic regularized OT problem satisfying
‖λ?‖∞ ≤ ηR, we have

f(xt) + ϕ̃(λt) ≥ f(xt) + ϕ̃(λ?) = f(xt) + b>λ? + max
x∈Rn2

{
−f(x)− (λ?)>Aotx

}
≥ f(xt) + b>λ? − f(xt)− (λ?)>Aotx

t = (b− Aotx
t)λ?

≥ −ηR‖Aotx
t − b‖1,

Therefore, we conclude that

‖Aotx
t − b‖1 ≤ 4ηR

ᾱt
≤ 128δR

(t+1)2 .

This completes the proof. �

We now present the complexity bound of Algorithm 25 for approximating the OT problem.

Theorem 8.4.5 The APDAMD scheme for approximating optimal transport (Algorithm 25)
returns an ε-approximate transportation plan (cf. Definition 8.2.1) in

O

(
n2
√
δ‖C‖∞ log(n)

ε

)

arithmetic operations.

Proof. Using the same argument as in Theorem 8.3.8, we have

〈C, X̂〉 − 〈C,X?〉 ≤ ε
2

+ 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞,

where X̂ is returned by Algorithm 25, X∗ is a solution to the OT problem and X̃ =
Apdamd(ϕ̃, Aot, b,

ε′

2
). Since ‖X̃1n − r‖1 + ‖X̃>1n − c‖1 ≤ ε′ and ε′ = ε

8‖C‖∞ , we have

〈C, X̂〉 − 〈C,X?〉 ≤ ε
2

+ ε
2

= ε.
The remaining step is to analyze the complexity bound. If follows from Lemma 8.4.1 and

Theorem 8.4.4 that

Nt ≤ 4t+ 4 +
2 log( 8

η
)−2 log(L0)

log 2

≤ 8 +
√

2048δR
ε′

+
2 log( 8

η
)−2 log(L0)

log 2

= 8 + 256

√
δR‖C‖∞ log(n)

ε
+

2 log(
32 log(n)

ε
)−2 log(L0)

log 2
.
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Combining the definition of R in Lemma 8.2.3 with the definition of η, r̃ and c̃ in Algo-
rithm 25, we have

R ≤ 4‖C‖∞ log(n)
ε

+ log(n)− 2 log
(

ε
64n‖C‖∞

)
.

Therefore, we conclude that

Nt ≤ 256

√
δ‖C‖∞ log(n)

ε

√
4‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n‖C‖∞

)
+

2 log(
32 log(n)

ε
)−2 log(L0)

log 2
+ 8 = O

(√
δ‖C‖∞ log(n)

ε

)
.

The total iteration complexity in Step 3 of Algorithm 25 is bounded byO(
√
δ‖C‖∞ log(n)ε−1).

Each iteration of Algorithm 24 requires O(n2) arithmetic operations. Therefore, the total
number of arithmetic operations is O(n2

√
δ‖C‖∞ log(n)ε−1). Moreover, r̃ and c̃ in Step 1

of Algorithm 25 can be found in O(n) arithmetic operations and Altschuler et al. [2017,
Algorithm 2] requires O(n2) arithmetic operations. Therefore, we conclude that the total
number of arithmetic operations is O(n2

√
δ‖C‖∞ log(n)ε−1). �

The complexity results in Theorem 8.4.5 suggests an interesting feature of the (regularized)
OT problem. Indeed, the dependence of that bound on δ manifests the necessity of `∞-norm
in the understanding of the complexity of the entropic regularized OT problem. This view
is also in harmony with the proof technique of running time for Greenkhorn, where we rely
on `∞-norm of optimal solutions of the dual entropic regularized OT problem to measure
the progress in the objective value among the successive iterates.

Revisiting APDAGD. We revisit APDAGD [Dvurechensky et al., 2018] for the en-
tropic regularized OT problem. First, we point out that the current complexity bound
of Õ(min{n9/4ε−1, n2ε−2}) is not valid by a simple counterexample. Then, we establish a
new complexity bound of APDAGD. Despite the issue with entropic regularized OT, we
wish to emphasize that APDAGD is still an interesting and efficient accelerated algorithm
for general linearly constrained convex optimization problem with solid theoretical guaran-
tee. More precisely, Dvurechensky et al. [2018, Theorem 3] is not applicable to entropic
regularized OT since no dual solution exists with a constant bound in `2-norm. However, it
can be used for analyzing other problems with bounded optimal dual solution.

To facilitate the ensuing discussion, we first present the complexity bound for entropic
regularized OT in Dvurechensky et al. [2018] using our notation. Indeed, we recall that
APDAGD is developed for solving the optimization problem with the objective function ϕ̂
defined as follows,

min
α,β∈Rn

ϕ̂(α, β) := η

(
n∑

i,j=1

e−
Cij−αi−βj

η
−1

)
− α>r − β>c. (8.28)
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Algorithm 26 Approximating OT by Dvurechensky et al. [2018, Algorithm 3]

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n(1n,1n).

Step 2: Let Aot ∈ R2n×n2
and b ∈ R2n be defined by Aotvec(X) =

 X1n

X>1n

 and b =

r̃
c̃

.

Step 3: Compute X̃ = Apdagd(ϕ̃, Aot, b,
ε′

2 ) where ϕ̃ is defined by Eq. (8.23).

Step 4: Round X̃ to X̂ using Altschuler et al. [2017, Algorithm 2] such that X̂1n = r and
X̂>1n = c.

Theorem 8.4.6 (Theorem 4 in Dvurechensky et al. [2018]) Let R > 0 be defined such
that there exists an optimal solution to the dual entropic regularized OT problem in Eq. (8.23),
denoted by (u?, v?), satisfying ‖(u?, v?)‖ ≤ R, the APDAGD scheme for approximating opti-
mal transport (cf. Algorithm 26) returns an ε-approximate transportation plan (cf. Defini-
tion 8.2.1) in

O

min

n
9/4

√
R‖C‖∞ log(n)

ε
,
n2R‖C‖∞ log(n)

ε2


 ,

arithmetic operations.

From the above theorem, Dvurechensky et al. [2018] claims that the complexity bound for

APDAGD is Õ(min{n9/4ε−1, n2ε−2}). However, there are two issues:

1. The upper bound R is assumed to be independent of n, which is not correct; see our
counterexample in Proposition 8.4.7.

2. The known upper bound R for the optimal solution depends on min1≤i,j≤n{ri, cj}
(cf. Dvurechensky et al. [2018, Lemma 1] or Lemma 8.2.3 in our paper). This implies
that the valid algorithm needs to take the rounding error with r and c into account.

Corrected upper bound R. Corollary 8.2.4 and Lemma 8.3.2 imply that a straightfor-
ward upper bound for R is Õ(

√
n). Given a tolerance ε ∈ (0, 1), we further show that R is

indeed Ω(
√
n) by using a specific entropic regularized OT problem as follows.

Proposition 8.4.7 Suppose that C = 1n1
>
n and r = c = 1

n
1n. Given a tolerance ε ∈

(0, 1) and the regularization term η = ε
4 log(n)

, all the optimal solutions of the dual entropic

regularized OT problem in Eq. (8.28) satisfy that ‖(α∗, β∗)‖ &
√
n.

Proof. By the definition r, c and η, we rewrite the dual function ϕ̂(α, β) as follows:

ϕ̂(α, β) =
ε

4e log(n)

∑
1≤i,j≤n

e−
4 log(n)(1−αi−βj)

ε − α>1n
n
− β>1n

n
.
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Since (α?, β?) is an optimal solution of dual entropic regularized OT problem, we have

e
4 log(n)α?i

ε

n∑
j=1

e−
4 log(n)(1−β?j )

ε = e
4 log(n)β?i

ε

n∑
j=1

e−
4 log(n)(1−α?j )

ε = e
n

for all i ∈ [n]. (8.29)

This implies α?i = α?j and β?i = β?j for all i, j ∈ [n], and α?i + β?i are the same for all i ∈ [n].
Without loss of generality, we can let α?i = 0 in Eq. (8.29) and obtain that

β?i = 1 + ε
4 log(n)

(1− 2 log(n)) = 1 + ε
4 log(n)

− ε
2
.

which implies that α?i + β?i = 1 + ε
4 log(n)

− ε
2
≥ 1

2
for all i ∈ [n]. Thus, we have

‖(α?, β?)‖ ≥
√∑n

i=1(α?i+β?i )2

2
=

1

2

√
n
2
&
√
n.

As a consequence, we achieve the conclusion of the proposition. �

Approximation algorithm for OT by APDAGD. It is worth noting that the round-
ing procedure is missing in Dvurechensky et al. [2018, Algorithm 4] and we improve it to
Algorithm 26. In particular, Dvurechensky et al. [2018, Algorithm 3] is used in Step 3
of Algorithm 26 for another function ϕ̃ defined in Eq. (8.9). Given the corrected upper
bound R and Algorithm 26 for approximating OT, we provide a new complexity bound of
Algorithm 26 in the following proposition.

Proposition 8.4.8 The APDAGD scheme for approximating optimal transport (Algorithm 26)
returns an ε-approximate transportation plan (cf. Definition 8.2.1) in

O

(
n5/2‖C‖∞

√
log(n)

ε

)
arithmetic operations.

Proof. The proof is a simple modification of the proof for Dvurechensky et al. [2018, Theorem
4] and we only give a proof sketch here. In particular, we can obtain that the number of
iterations for Algorithm 26 required to reach the tolerance ε is

t ≤ O

(
max

{
min

{
n1/4
√
R‖C‖∞ log(n)

ε
, R‖C‖∞ log(n)

ε2

}
, R
√

logn
ε

})
. (8.30)

Moreover, we have R ≤
√
nηR where R = η−1‖C‖∞ + log(n) − 2 log(min1≤i,j≤n{ri, cj}).

Therefore, the total iteration complexity in Step 3 of Algorithm 26 is O(
√
n log(n)‖C‖∞ε−1).

Each iteration of APDAGD requires O(n2) arithmetic operations. Therefore, the total num-
ber of arithmetic operations is O(n5/2‖C‖∞

√
log(n)ε−1). Note that r̃ and c̃ in Step 1 of

Algorithm 26 can be found in O(n) arithmetic operations and Altschuler et al. [2017, Algo-
rithm 2] requires O(n2) arithmetic operations. Therefore, we conclude that the total number
of arithmetic operations is O(n5/2‖C‖∞

√
log(n)ε−1). �
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Remark 8.4.9 As indicated in Proposition 8.4.8, the corrected complexity bound of APDAGD
for the entropic regularized OT is similar to that of APDAMD when we choose φ(·) = 1

2n
‖·‖2

and have δ = n. From this perspective, our algorithm can be viewed as a generalization of
APDAGD. Since our algorithm utilizes `∞-norm in the line search criterion, it is more robust
than APDAGD in practice.

8.5 Accelerating Sinkhorn

We present an accelerated variant of Sinkhorn for solving the entropic regularized OT prob-
lem in Eq. (8.2). Combined with a rounding scheme, our algorithm can be used for solving

the OT problem in Eq. (8.1) and achieves a complexity bound of Õ(n7/3ε−4/3), which im-
proves that of Sinkhorn in terms of 1/ε and APDAGD and AAM [Guminov et al., 2021] in
terms of n. The idea comes from a novel combination of Nesterov’s estimated sequence and
the techniques for analyzing Sinkhorn.

Algorithmic procedure. We present the pseudocode of accelerated Sinkhorn in Al-
gorithm 27. This algorithm achieves the acceleration by using Nesterov’s estimate se-
quences [Nesterov, 2018]. While our algorithm can be interpreted as an accelerated block
coordinate descent algorithm, it is worth mentioning that our algorithm is purely determin-
istic and thus differs from other accelerated randomized algorithms [Lin et al., 2015, Fercoq
and Richtárik, 2015, Lu et al., 2018] in the optimization literature.

Algorithm 27 is a novel combination of Nesterov’s estimate sequences, a monotone search
step, the choice of greedy coordinate and two coordinate updates. It is applied to solve the
dual entropic regularized OT problem in Eq. (8.5):

min
u,v

ϕ(u, v) := log(‖B(u, v)‖1)− u>r − v>c.

More specifically, Nesterov’s estimate sequences are responsible for optimizing a dual objec-
tive function ϕ in a fast rate. The coordinate update guarantees that ϕ(ût, v̂t) ≤ ϕ(ùt, v̀t)
and ‖B(ût, v̂t)‖1 = 1. The monotone search step guarantees that ϕ(ut, vt) ≤ ϕ(ût, v̂t). The
greedy coordinate update guarantees that ϕ(ǔt+1, v̌t+1) ≤ ϕ(ut, vt) with sufficient progress.

Furthermore, we also use the same quantity as that in Greekhorn to measure the per-
iteration residue of Algorithm 27:

Et = ‖r(B(ut, vt))− r‖1 + ‖c(B(ut, vt))− c‖1. (8.31)

The computationally expensive step is to compute r(B(ūt,v̄t))
‖B(ūt,v̄t)‖1 and c(B(ūt,v̄t))

‖B(ūt,v̄t)‖1 . Since B(ūt, v̄t)
does not have any special property, it is difficult to design some implementation trick to
reduce the order of n. As such, the arithmetic operations for each iteration is O(n2) and
is exactly the same as Sinkhorn [Cuturi, 2013], APDAGD [Dvurechensky et al., 2018] and
AAM [Guminov et al., 2021]. Combining Algorithm 27 and Altschuler et al. [2017, Algo-
rithm 2], we are ready to present the pseudocode of our main algorithm in Algorithm 28.
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Algorithm 27 Accelerated Sinkhorn(C, η, r, c, ε′)

Input: t = 0, θ0 = 1 and ǔ0 = ũ0 = v̌0 = ṽ0 = 0n.
while Et > ε′ do

Compute

ūt
v̄t

 = (1− θt)

ǔt
v̌t

+ θt

ũt
ṽt

.

Compute ũt+1 and ṽt+1 by

ũt+1 = ũt − 1

2θt

(
r(B(ūt, v̄t))

‖B(ūt, v̄t)‖1
− r
)
, ṽt+1 = ṽt − 1

2θt

(
c(B(ūt, v̄t))

‖B(ūt, v̄t)‖1
− c
)
.

Compute

ùt
v̀t

 =

ūt
v̄t

+ θt

ũt+1

ṽt+1

−
ũt
ṽt

.

if t is even then
ût = ùt + log(r)− log(r(B(ùt, v̀t))) and v̂t = v̀t.

else
ût = ùt and v̂t = v̀t + log(c)− log(c(B(ùt, v̀t))).

Compute

ut
vt

 = argmin

ϕ(u, v)
∣∣∣
u
v

 ∈

ǔt
v̌t

 ,

ût
v̂t


.

if t is even then
ǔt+1 = ut + log(r)− log(r(B(ut, vt))) and v̌t+1 = vt.

else
ǔt+1 = ut and v̌t+1 = vt + log(c)− log(c(B(ut, vt))).

Compute θt+1 =
θt(
√
θ2
t+4−θt)
2 .

Set t = t+ 1.
Output: B(ut, vt).

Algorithm 28 Approximating OT by Algorithm 27

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n(1n,1n).

Step 2: Compute X̃ = Accelerated Sinkhorn(C, η, r̃, c̃, ε
′

2 ).

Step 3: Round X̃ to X̂ using Altschuler et al. [2017, Algorithm 2] such that X̂1n = r and
X̂>1n = c.
Output: X̂.

The regularization parameter η is set as before, and Step 1 is necessary since accelerated
Sinkhorn is not well behaved if the marginal distributions have sparse support.
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Technical lemmas. We first present two technical lemmas which are essential in the
analysis of Algorithm 27. The first lemma provides an inductive relationship on the quantity

δt = ϕ(ǔt, v̌t)− ϕ(u?, v?), (8.32)

where (u?, v?) is an optimal solution of the dual entropic regularized OT problem in Eq. (8.5)
that satisfies Lemma 8.2.4. To facilitate the discussion, we recall Eq. (8.10) with ‖A‖1→2 =√

2 as follows,

ϕ(u′, v′)− ϕ(u, v)−

u′ − u
v′ − v

>∇ϕ(u, v) ≤

∥∥∥∥∥∥
u′ − u
v′ − v

∥∥∥∥∥∥
2

, (8.33)

which will be used in the proof of the first lemma.

Lemma 8.5.1 Let {(ǔt, v̌t)}t≥0 be the iterates generated by Algorithm 27 and (u?, v?) be an
optimal solution of the dual entropic regularized OT problem. Then, we have

δt+1 ≤ (1− θt)δt + θ2
t

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2 .

Proof. Using Eq. (8.33) with (u′, v′) = (ùt, v̀t) and (u, v) = (ūt, v̄t), we have

ϕ(ùt, v̀t) ≤ ϕ(ūt, v̄t) + θt

ũt+1 − ũt

ṽt+1 − ṽt

>∇ϕ(ūt, v̄t) + θ2
t

∥∥∥∥∥∥
ũt+1 − ũt

ṽt+1 − ṽt

∥∥∥∥∥∥
2

.

After simple calculations, we find that

ϕ(ūt, v̄t) = (1− θt)ϕ(ūt, v̄t) + θtϕ(ūt, v̄t),ũt+1 − ũt

ṽt+1 − ṽt

>∇ϕ(ūt, v̄t) = −

ũt − ūt
ṽt − v̄t

>∇ϕ(ūt, v̄t) +

ũt+1 − ūt

ṽt+1 − v̄t

>∇ϕ(ūt, v̄t).

Putting these pieces together yields that

ϕ(ùt, v̀t) ≤ θt

ϕ(ūt, v̄t) +

ũt+1 − ūt

ṽt+1 − v̄t

>∇ϕ(ūt, v̄t) + θt

∥∥∥∥∥∥
ũt+1 − ũt

ṽt+1 − ṽt

∥∥∥∥∥∥
2

︸ ︷︷ ︸
I

 (8.34)

+ (1− θt)ϕ(ūt, v̄t)− θt

ũt − ūt
ṽt − v̄t

>∇ϕ(ūt, v̄t)

︸ ︷︷ ︸
II

.
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We first bound the term I. Indeed, by the update formula for (ũt+1, ṽt+1) and the definition
of ∇ϕ, we haveu− ũt+1

v − ṽt+1

>∇ϕ(ūt, v̄t) + 2θt

ũt+1 − ũt

ṽt+1 − ṽt

 = 0 for all (u, v) ∈ R2n.

Letting (u, v) = (u?, v?) and rearranging the resulting equation yields thatũt+1 − ūt

ṽt+1 − v̄t

>∇ϕ(ūt, v̄t) =

u? − ūt
v? − v̄t

>∇ϕ(ūt, v̄t)

+θt

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
ũt+1 − ũt

ṽt+1 − ṽt

∥∥∥∥∥∥
2 .

Using the convexity of ϕ, we haveu? − ūt
v? − v̄t

>∇ϕ(ūt, v̄t) ≤ ϕ(u?, v?)− ϕ(ūt, v̄t).

Putting these pieces together yields that

I ≤ ϕ(u?, v?) + θt

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2 . (8.35)

We then bound the term II. Indeed, we see from the definition of (ūt, v̄t) that

−θt

ũt − ūt
ṽt − v̄t

 = θt

ūt
v̄t

+ (1− θt)

ǔt
v̌t

−
ūt
v̄t

 = (1− θt)

ǔt − ūt
v̌t − v̄t

 .

Combining the above equation with the convexity of ϕ, we have

II = (1− θt)

ϕ(ūt, v̄t) +

ǔt − ūt
v̌t − v̄t

>∇ϕ(ūt, v̄t)

 ≤ (1− θt)ϕ(ǔt, v̌t). (8.36)

Plugging Eq. (8.35) and Eq. (8.36) into Eq. (8.34) yields that

ϕ(ùt, v̀t) ≤ (1− θt)ϕ(ǔt, v̌t) + θtϕ(u?, v?) + θ2
t

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2 .
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Since (ǔt+1, v̌t+1) is obtained by a coordinate update from (ut, vt), we have ϕ(ut, vt) ≥
ϕ(ǔt+1, v̌t+1). By the definition of (ut, vt), we have ϕ(ût, v̂t) ≥ ϕ(ut, vt). Since (ût, v̂t) is
obtained by a coordinate update from (ùt, v̀t), we have ϕ(ùt, v̀t) ≥ ϕ(ût, v̂t). Collecting all
of these results leads to

ϕ(ǔt+1, v̌t+1)−ϕ(u?, v?) ≤ (1−θt)(ϕ(ǔt, v̌t)−ϕ(u?, v?))+θ2
t

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2 .

This completes the proof. �

The second lemma provides an upper bound for δt defined by Eq. (8.32) where {(ǔt, v̌t)}t≥0

are generated by Algorithm 27 and (u?, v?) is an optimal solution defined by Corollary 8.2.4.

Lemma 8.5.2 Let {(ǔt, v̌t)}t≥0 be the iterates generated by Algorithm 27 and (u?, v?) be an
optimal solution of the dual entropic regularized OT problem satisfying that ‖(u?, v?)‖ ≤√

2nR where R is defined in Corollary 8.2.4. Then, we have

δt ≤
8nR2

(t+ 1)2
.

Proof. By simple calculations, we derive from the definition of θt that θt+1

θt
=
√

1− θt+1.
Therefore, we conclude from Lemma 8.5.1 that

(
1−θt+1

θ2
t+1

)
δt+1 −

(
1−θt
θ2
t

)
δt ≤

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
u? − ũt+1

v? − ṽt+1

∥∥∥∥∥∥
2

.

Equivalently, we have

(
1−θt
θ2
t

)
δt +

∥∥∥∥∥∥
u? − ũt
v? − ṽt

∥∥∥∥∥∥
2

≤
(

1−θ0
θ2
0

)
δ0 +

∥∥∥∥∥∥
u? − ũ0

v? − ṽ0

∥∥∥∥∥∥
2

.

Since θ0 = 1 and ũ0 = ṽ0 = 0n, we have δt ≤ θ2
t−1‖(u?, v?)‖2 ≤ 2nR2θ2

t−1.
The remaining step is to show that 0 < θt ≤ 2

t+2
. Indeed, the claim holds when t = 0 as

we have θ0 = 1. Assume that the claim holds for t ≤ t0, i.e., θt0 ≤ 2
t0+2

, we have

θt0+1 = 2

1+
√

1+ 4

θ2t0

≤ 2
t0+3

.

Putting these pieces together yields the desired inequality for δt. �
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Main results. We present an upper bound for the number of iterations required by Algo-
rithm 27. Note that the per-iteration progress of Algorithm 27 is measured by the function
ρ : Rn

+ × Rn
+ → R+ given by: ρ(a, b) := 1>n (b− a) +

∑n
i=1 ai log(ai

bi
).

Theorem 8.5.3 Let {(ut, vt)}t≥0 be the iterates generated by Algorithm 27. The number of
iterations required to reach the stopping criterion Et ≤ ε′ satisfies

t ≤ 1 +

(
16
√
nR

ε′

)2/3

,

where R > 0 is defined in Lemma 8.2.3.

Proof. We first claim that

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) ≥ 1
2

(
‖r(B(ut, vt))− r‖2

1 + ‖c(B(ut, vt))− c‖2
1

)
. (8.37)

By the definition of ϕ, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = log(‖B(ut, vt)‖1) (8.38)

− log(‖B(ǔt+1, v̌t+1)‖1)− (ut − ǔt+1)>r − (vt − v̌t+1)>c.

From the update formula for (ût, v̂t) and (ǔt+1, v̌t+1), it is clear that ‖B(ût, v̂t)‖1 = 1 and
‖B(ǔt+1, v̌t+1)‖1 = 1 for all t ≥ 0. Then, we derive from the update formula for (ut, vt) that
‖B(ut, vt)‖1 = 1 for all t ≥ 1. Therefore, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = −(ut − ǔt+1)>r − (vt − v̌t+1)>c

= (log(r)− log(r(B(ut, vt))))>r + (log(c)− log(c(B(ut, vt))))>c.

Since 1>n r = 1>n r(B(ut, vt)) = 1>n c = 1>n c(B(ut, vt)) = 1, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = ρ(r, r(B(ut, vt))) + ρ(c, c(B(ut, vt))).

Using Altschuler et al. [2017, Lemma 4], we derive Eq. (8.37) as desired.
By the definition of (ut, vt), we have ϕ(ǔt, v̌t) ≥ ϕ(ut, vt). Plugging this inequality into

Eq. (8.37) together with the Cauchy-Schwarz inequality yields

ϕ(ǔt, v̌t)− ϕ(ǔt+1, v̌t+1) ≥ 1
4
E2
t .

Therefore, we conclude that

ϕ(ǔt, v̌t)− ϕ(ǔt+1, v̌t+1) ≥ 1
4

(
t∑
i=j

E2
i

)
for any j ∈ {1, 2, . . . , t}.

Since ϕ(ǔt+1, v̌t+1) ≥ ϕ(u?, v?) for all t ≥ 1, we have ϕ(ǔj, v̌j)− ϕ(ǔt+1, v̌t+1) ≤ δj. Then, it
follows from Lemma 8.5.2 that

t∑
i=j

E2
i ≤ 32nR2

(j+1)2 .
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Putting these pieces together with the fact that Et ≥ ε′ as soon as the stopping criterion is
not fulfilled yields

32nR2

(j+1)2(t−j+1)
≥ (ε′)2.

Since this inequality holds true for all j ∈ {1, 2, . . . , t}, we assume without loss of generality
that t is even and let j = t/2. Then, we obtain that

t ≤ 1 +
(

16
√
nR
ε′

)2/3

.

This completes the proof of the theorem. �

We are ready to present the complexity bound of Algorithm 28 for solving the OT problem
in Eq. (8.1). Note that ε′ = ε

8‖C‖∞ is defined using the desired accuracy ε > 0.

Theorem 8.5.4 The accelerated Sinkhorn scheme for approximating optimal transport (Al-
gorithm 28) returns an ε-approximate transportation plan (cf. Definition 8.2.1) in

O

(
n7/3‖C‖4/3

∞ (log(n))1/3

ε4/3

)
arithmetic operations.

Proof. Applying the same argument which is used in Theorem 8.3.8, we obtain that 〈C, X̂〉−
〈C,X?〉 ≤ ε where X̃ = Accelerated Sinkhorn(C, η, r̃, c̃, ε

′

2
) in Step 2 of Algorithm 28.

It remains to bound the number of iterations required by Algorithm 27 to reach the
stopping criterion Et ≤ ε′

2
. Using Theorem 8.5.3, we have

t ≤ 1 +
(

32
√
nR
ε′

)2/3

.

By the definition of R (cf. Lemma 8.2.3), η = ε
4 log(n)

and ε′ = ε
8‖C‖∞ , we have

t ≤ 1 +
(

32
√
nR
ε′

)2/3

≤ 1 +

(
256
√
n‖C‖∞
ε

(
‖C‖∞
η

+ log(n)− log

(
min

1≤i,j≤n
{ri, cj}

)))2/3

≤ 1 +
(

256
√
n‖C‖∞
ε

(
4 log(n)‖C‖∞

ε
+ log(n)− log

(
ε

64n‖C‖∞

)))2/3

= O
(
n1/3‖C‖4/3∞ (log(n))1/3

ε4/3

)
.

Since each iteration of Algorithm 27 requires O(n2) arithmetic operations, the total number

of arithmetic operations required by Step 2 of Algorithm 28 is O(n7/3‖C‖4/3
∞ (log(n))1/3ε−4/3).

Computing two vectors r̃ and c̃ in Step 1 of Algorithm 28 requires O(n) arithmetic operations
and Altschuler et al. [2017, Algorithm 2] requires O(n2) arithmetic operations. Therefore,

the complexity bound of Algorithm 28 is O(n7/3‖C‖4/3
∞ (log(n))1/3ε−4/3). �
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Remark 8.5.5 Theorem 8.5.4 shows that the complexity bound of accelerated Sinkhorn is
better than that of Sinkhorn and Greenkhorn in terms of 1/ε but appears not to be near-
linear in n2. Thus, our algorithm is recommended when n� 1/ε. This occurs if the desired
solution accuracy is relatively small, saying 10−4, and the examples include the application
problems from economics and operations research. In contrast, Sinkhorn and Greenkhorn are
recommended when n� 1/ε. This occurs if the desired solution accuracy is relatively large,
saying 10−2, and the examples include the application problems from image processing.

8.6 Experiments

We conduct the experiments to evaluate Greenkhorn, accelerated Sinkhorn and APDAMD
on synthetic data and real images from the MNIST Digits dataset1. The baseline approaches
include Sinkhorn [Cuturi, 2013], APDAGD [Dvurechensky et al., 2018] and GCPB2 [Genevay
et al., 2016] as the baseline approaches. Since the focus of this paper is the entropic regu-
larized algorithms, we exclude the combinatorial algorithms from our experiment and refer
to Dong et al. [2020] for an excellent comparative study.

In the literature, Greenkhorn and APDAGD were shown to outperform the Sinkhorn
algorithm in terms of row/column updates [Altschuler et al., 2017, Dvurechensky et al.,
2018] and we repeat the comparisons for the sake of completeness. For parameter tuning
in the implementation of Greenkhorn, accelerated Sinkhorn and APDAMD, we follow most
of the setups as shown in Algorithm 22, 24 and 27 but employ more aggressive choice of
stepsize for the coordinate gradient updates in Algorithm 27. To obtain an optimal value of
the OT problem, we employ the default LP solver in MATLAB.

Synthetic images. To generate the synthetic images, we adopt the process from Altschuler
et al. [2017] and evaluate the performance of different algorithms on these synthetic images.
The transportation distance is defined between two synthetic images while the cost matrix
is defined based on the `1 distances among locations of pixel in the images. Each image is
of size 20 by 20 pixels and generated by means of randomly placing a foreground square in
a black background. Furthermore, a uniform distribution on [0, 1] is used for the intensities
of the pixels in the background while a uniform distribution on [0, 50] is employed for the
pixels in the foreground. We fix the proportion of the size of the foreground square as 10%
of the whole images and implement all candidate algorithms.

We use the standard metrics to assess the performance of all the candidate algorithms.
The first metric d(.) is an `1 distance between the row, column outputs of some algorithm A
and the corresponding transportation polytope of the probability measures, which is given
by:

d(A) := ‖r(A)− r‖1 + ‖c(A)− c‖1

1http://yann.lecun.com/exdb/mnist/
2GCPB is simply an application of stochastic averaged gradient [Schmidt et al., 2017] for solving the

dual entropic regularized OT problem.
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Figure 8.1: Performance of Sinkhorn v.s. Greenkhorn, APDAGD v.s. APDAMD and
Sinkhorn v.s. accelerated Sinkhorn on synthetic images.

where r(A) and c(A) are the row and column obtained from the output of the algorithm A
and r and c are row and column vectors of the original probability measures. The second
metric is defined as competitive ratio log(d(A1)/d(A2)) where d(A1) and d(A2) are the dis-
tances between the row, column outputs of algorithms A1 and A2 and the transportation
polytope. We perform three pairwise comparative experiments on 10 randomly generated
data: Sinkhorn v.s. Greekhorn, APDAGD v.s. APDAMD and Sinkhorn v.s. accelerated
Sinkhorn. To further evaluate these algorithms, we compare their performance with re-
spect to different choices of regularization parameter η ∈ {1, 1

5
, 1

9
} while using the value of

the OT problem as the baseline approach. The maximum number of iterations is T = 5.
Figure 8.1 summarizes the experimental results. The images in the first row show the com-
parative performance of Sinkhorn and Greenkhorn in terms of the row/column updates. In
the leftmost image, the comparison uses distance to transportation polytope d(A) where A
is either Sinkhorn or Greenkhorn. In the middle image, the maximum, median and min-
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Figure 8.2: Performance of Sinkhorn v.s. Greenkhorn, APDAGD v.s. APDAMD and
Sinkhorn v.s. accelerated Sinkhorn on the MNIST real images.

imum values of the competitive ratios log(d(A1)/d(A2)) on 10 images are utilized for the
comparison where A1 is Sinkhorn and A2 is Greenkhorn. In the rightmost image, we vary
the regularization parameter η ∈ {1, 1

5
, 1

9
} with these algorithms and using the value of the

unregularized OT problem as the baseline. The other rows of images present comparative
results for APDAGD v.s. APDAMD and Sinkhorn v.s. accelerated Sinkhorn. We find that
(i) Greenkhorn outperforms Sinkhorn in terms of row/column updates, illustrating the im-
provement from greedy coordinate descent ; (ii) APDAMD with δ = n and φ = (1/2n)‖ · ‖2

is more robust than APDAGD, illustrating the advantage of using mirror descent and line
search with ‖ · ‖∞; (iii) accelerated Sinkhorn outperforms Sinkhorn in terms of row/column
updates, illustrating the improvement from estimated sequence and monotone search.

MNIST images. We proceed to the comparison between different algorithms on real
images, using essentially the same evaluation metrics as in the synthetic images. The MNIST
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Figure 8.3: Performance of GCPB, APDAGD and APDAMD in term of time on the MNIST
real images. These images specify the values of entropic regularized OT with varying regu-
larization parameter η ∈ {1, 1

5
, 1

9
}, demonstrating the robustness of APDAMD.

dataset consists of 60,000 images of handwritten digits of size 28 by 28 pixels. To ensure that
the masses of probability measures are dense, which leads to a tight dependence on n for our
algorithms, we add a very small noise term (10−6) to all zero elements in the measures and
then normalize them so that their sum is 1. The maximum number of iterations is T = 5.

Figures 8.2 and 8.3 summarize the experimental results on MNIST. In the first row of
Figure 8.2, we compare Sinkhorn and Greenkhorn in terms of row/column updates. The
leftmost image specifies the distances d(A) to the transportation polytope for the algorithm
A, which is either Sinkhorn or Greenkhorn; the middle image specifies the maximum, median
and minimum of competitive ratios log(d(A1)/d(A2)) on ten random pairs of MNIST images,
where A1 and A2 respectively correspond to Sinkhorn and Greenkhorn; the rightmost im-
age specifies the values of the entropic regularized OT problem with varying regularization
parameters η ∈ {1, 1

5
, 1

9
}. The remaining rows present comparative results for APDAGD

v.s.APDAMD and Sinkhorn v.s.accelerated Sinkhorn. We observe that (i) the comparative
performances of Sinkhorn v.s.Greenkhorn and APDAGD v.s.APDAMD are consistent with
those on synthetic images; (ii) accelerated Sinkhorn deteriorates but remains better than
Sinkhorn; (iii) APDAMD is more robust than APDAGD and GCPB.

8.7 Conclusion

We first show that the complexity bound of Greenkhorn can be improved to Õ(n2ε−2), which
matches the best known bound of Sinkhorn. Then, we propose APDAMD by generalizing
APDAGD with a prespecified mirror mapping φ and show that it achieves the complex-
ity bound of Õ(n2

√
δε−1) where δ > 0 refers to the regularity of φ. We prove that the

complexity bound of Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD is invalid and prove a

refined complexity bound of Õ(n5/2ε−1). Moreover, we propose a deterministic accelerated
variant of Sinkhorn via appeal to estimate sequence techniques and prove the complexity
bound of Õ(n7/3ε−4/3). As such, we see that accelerated Sinkhorn outperforms Sinkhorn
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and Greenkhorn in terms of 1/ε and APDAGD and AAM in terms of n. Experiments on
synthetic data and real images demonstrate the efficiency of our algorithms.

There are a few promising future directions arising from this work. First, it is important
to develop fast algorithms to compute dimension-reduced versions of OT. Indeed, the OT suf-
fers from the curse of dimensionality [Dudley, 1969, Fournier and Guillin, 2015], which means
that a large amount of samples from two continuous measures is necessary to approximate
the true OT between them. This can be mitigated when data lie on low-dimensional mani-
folds [Weed and Bach, 2019, Paty and Cuturi, 2019] but the sample complexity still remain
pessimistic even in that case. This motivates recent works on efficient dimension-reduced
OT, e.g., the sliced OT [Bonneel et al., 2015], generalized sliced OT [Kolouri et al., 2019],
distributional sliced OT [Nguyen et al., 2021], further inspiring us to explore the application
of our algorithms to these settings and eventually automatic differentiation schemes. Second,
there have been several application problems arising from the interplay between OT and ad-
versarial ML; see Bhagoji et al. [2019] and Pydi and Jog [2020] for example. However, it is
known that OT has robustness issues when there are outliers in the supports of probability
measures. Robust OT had been introduced to deal with these robustness issues [Balaji et al.,
2020] where the idea is to relax the marginal constraints via certain probability divergences,
such as KL divergence. It is to limit the amount of masses that the transportation plan will
assign for the outliers in the supports of measures. Similar to OT, a key practical question
with robust OT is computational. As such, we manage to develop efficient algorithms for
the robust OT problem in the future work.
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Chapter 9

Gradient-Free Nonconvex Nonsmooth
Optimization

Nonsmooth nonconvex optimization problems broadly emerge in machine learning and busi-
ness decision making, whereas two core challenges impede the development of efficient solu-
tion methods with finite-time convergence guarantee: the lack of computationally tractable
optimality criterion and the lack of computationally powerful oracles. The contributions of
this paper are two-fold. First, we establish the relationship between the celebrated Goldstein
subdifferential [Goldstein, 1977] and uniform smoothing, thereby providing the basis and in-
tuition for the design of gradient-free methods that guarantee the finite-time convergence to
a set of Goldstein stationary points. Second, we propose the gradient-free method (GFM)
and stochastic GFM for solving a class of nonsmooth nonconvex optimization problems and
prove that both of them can return a (δ, ε)-Goldstein stationary point of a Lipschitz func-
tion f at an expected convergence rate at O(d3/2δ−1ε−4) where d is the problem dimension.
Two-phase versions of GFM and SGFM are also proposed and proven to achieve improved
large-deviation results. Finally, we demonstrate the effectiveness of 2-SGFM on training
ReLU neural networks with the Minst dataset.

9.1 Introduction

Many of the recent real-world success stories of machine learning have involved nonconvex
optimization formulations, with the design of models and algorithms often being heuristic
and intuitive. Thus a gap has arisen between theory and practice. Attempts have been
made to fill this gap for different learning methodologies, including the training of multi-
layer neural networks [Choromanska et al., 2015], orthogonal tensor decomposition [Ge et al.,
2015], M-estimators [Loh and Wainwright, 2015, Ma et al., 2020], synchronization and Max-
Cut [Bandeira et al., 2016, Mei et al., 2017], smooth semidefinite programming [Boumal
et al., 2016], matrix sensing and completion [Bhojanapalli et al., 2016, Ge et al., 2016],
robust principal component analysis (RPCA) [Ge et al., 2017b] and phase retrieval [Wang
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et al., 2017, Sun et al., 2018, Ma et al., 2020]. For an overview of nonconvex optimization
formulations and the relevant machine learning applications, we refer to an excellent survey
of Jain and Kar [2017].

It is intractable to compute an approximate global minimum [Nemirovski and Yudin,
1983] in general or to verify whether a point is a local minimum or a high-order saddle
point [Murty and Kabadi, 1987]. Fortunately, the notion of approximate stationary point
gives a reasonable optimality criterion when the objective function f is smooth; the goal
here is to find a point x ∈ Rd such that ‖∇f(x)‖ ≤ ε. Recent years have seen rapid
algorithmic development through the lens of nonasymptotic convergence rates to ε-stationary
points [Nesterov, 2013a, Ghadimi and Lan, 2013b, 2016, Carmon et al., 2017, 2018, Jin et al.,
2021]. Another line of work establishes algorithm-independent lower bounds [Carmon et al.,
2020, 2021, Arjevani et al., 2020, 2022].

Relative to its smooth counterpart, the investigation of nonsmooth optimization is rel-
atively scarce, particularly in the nonconvex setting, both in terms of efficient algorithms
and finite-time convergence guarantees. Yet, over several decades, nonsmooth nonconvex
optimization formulations have found applications in many fields. A typical example is the
training multi-layer neural networks with ReLU neurons, for which the piecewise linear ac-
tivation functions induce nonsmoothness. Another example arises in controlling financial
risk for asset portfolios or optimizing customer satisfaction in service systems or supply
chain systems. Here, the nonsmoothness arises from the payoffs of financial derivatives and
supply chain costs, e.g., options payoffs [Duffie, 2010] and supply chain overage/underage
costs [Stadtler, 2008]. These applications make significant demands with respect to compu-
tational feasibility, and the design of efficient algorithms for solving nonsmooth nonconvex
optimization problems has moved to the fore [Majewski et al., 2018, Davis et al., 2020, Dani-
ilidis and Drusvyatskiy, 2020, Zhang et al., 2020a, Bolte and Pauwels, 2021, Davis et al.,
2022, Tian et al., 2022].

The key challenges lie in two aspects: (i) the lack of a computationally tractable optimal-
ity criterion, and (ii) the lack of computationally powerful oracles. More specifically, in the
classical setting where the function f is Lipschitz, we can define ε-stationary points based
on the celebrated notion of Clarke stationarity [Clarke, 1990]. However, the value of such a
criterion has been called into question by Zhang et al. [2020a], who show that no finite-time
algorithm guarantees ε-stationarity when ε is less than a constant. Further, the computation
of the gradient is impossible for many application problems and we only have access to a
noisy function value at each point. This is a common issue in the context of simulation
optimization [Nelson, 2010, Hong et al., 2015]; indeed, the objective function value is often
achieved as the output of a black-box or complex simulator, for which the simulator does not
have the infrastructure needed to effectively evaluate gradients; see also Ghadimi and Lan
[2013b] and Nesterov and Spokoiny [2017] for the lack of gradient evaluation in practice.

Contribution. In this paper, we propose and analyze a class of deterministic and stochas-
tic gradient-free methods for nonsmooth nonconvex optimization problems in which we only
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assume that the function f is Lipschitz. Our contributions can be summarized as follows.

1. We establish a relationship between the Goldstein subdifferential and uniform smooth-
ing via appeal to the hyperplane separation theorem. This result provides the basis
for algorithmic design and finite-time convergence analysis of gradient-free methods to
(δ, ε)-Goldstein stationary points.

2. We propose and analyze a gradient-free method (GFM) and stochastic GFM for solving
a class of nonsmooth nonconvex optimization problems. Both of these methods are
guaranteed to return a (δ, ε)-Goldstein stationary point of a Lipschitz function f :
Rd 7→ R with an expected convergence rate of O(d3/2δ−1ε−4) where d ≥ 1 is the
problem dimension. Further, we propose the two-phase versions of GFM and SGFM.
As our goal is to return a (δ, ε)-Goldstein stationary point with user-specified high
probability 1−Λ, we prove that the two-phase version of GFM and SGFM can improve
the dependence from (1/Λ)4 to log(1/Λ) in the large-deviation regime.

Related works. Our work is related to a line of literature on gradient-based methods for
nonsmooth and nonconvex optimization and gradient-free methods for smooth and noncon-
vex optimization. In the context of gradient-free methods, the basic idea is to approximate
a full gradient using either a one-point estimator [Flaxman et al., 2005] or a two-point es-
timator [Agarwal et al., 2010, Ghadimi and Lan, 2013b, Duchi et al., 2015, Shamir, 2017,
Nesterov and Spokoiny, 2017], where the latter approach achieves a better finite-time conver-
gence guarantee. Despite the meteoric rise of two-point-based gradient-free methods, most of
the work is restricted to convex optimization [Duchi et al., 2015, Shamir, 2017, Wang et al.,
2018] and smooth and nonconvex optimization [Nesterov and Spokoiny, 2017, Ghadimi and
Lan, 2013b, Lian et al., 2016, Liu et al., 2018, Chen et al., 2019, Ji et al., 2019, Huang
et al., 2022a]. For nonsmooth and convex optimization, the best upper bound on the global
rate of convergence is O(dε−2) [Shamir, 2017] and this matches the lower bound [Duchi
et al., 2015]. For smooth and nonconvex optimization, the best global rate of convergence is
O(dε−2) [Nesterov and Spokoiny, 2017] and O(dε−4) if we only have access to noisy function
value oracles [Ghadimi and Lan, 2013b]. Additional regularity conditions, e.g., a finite-sum
structure, allow us to leverage variance-reduction techniques [Liu et al., 2018, Chen et al.,
2019, Ji et al., 2019] and the best known result is O(d3/4ε−3) [Huang et al., 2022a]. However,
none of gradient-free methods have been developed for nonsmooth nonconvex optimization
and the only gradient-free method we are aware of for the nonsmooth is summarized in Nes-
terov and Spokoiny [2017, Section 7].

9.2 Preliminaries

We provide the formal definitions for the class of Lipschitz functions considered in this paper,
and the definitions for generalized gradients and the Goldstein subdifferential that lead to
optimality conditions in nonsmooth nonconvex optimization.
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Function classes. Imposing regularity on functions to be optimized is necessary for ob-
taining optimization algorithms with finite-time convergence guarantees [Nesterov, 2018].
In the context of nonsmooth optimization, there are two regularity conditions: Lipschitz
properties of function values and bounds on function values.

We first list several equivalent definitions of Lipschitz continuity. A function f : Rd 7→ R
is said to be L-Lipschitz if for every x ∈ Rd and the direction v ∈ Rd with ‖v‖ ≤ 1, the
directional projection fx,v(t) := f(x + tv) defined for t ∈ R satisfies

|fx,v(t)− fx,v(t′)| ≤ L|t− t′|, for all t, t′ ∈ R.

Equivalently, f is L-Lipschitz if for every x,x′ ∈ Rd, we have

|f(x)− f(x′)| ≤ L‖x− x′‖.

Further, the function value bound f(x0)− infx∈Rd f(x) appears in complexity guarantees for
smooth and nonconvex optimization problems [Nesterov, 2018] and is often assumed to be
bounded by a positive constant ∆ > 0. Note that x0 is a prespecified point (i.e., an initial
point for an algorithm) and we simply fix it for the remainder of this paper. We define the
function class considered in this paper.

Definition 9.2.1 Suppose that ∆ > 0 and L > 0 are both independent of the problem
dimension d ≥ 1. Then, we denote Fd(∆, L) as the set of L-Lipschitz functions f : Rd 7→ R
with the bounded function value f(x0)− infx∈Rd f(x) ≤ ∆.

The function class Fd(∆, L) includes Lipschitz functions on Rd and is thus different from
the nonconvex function class considered in the literature [Ghadimi and Lan, 2013b, Nes-
terov and Spokoiny, 2017]. First, we do not impose a smoothness condition on the function
f ∈ Fd(∆, L), in contrast to the nonconvex functions studied in Ghadimi and Lan [2013b]
which are assumed to have Lipschitz gradients. Second, Nesterov and Spokoiny [2017, Sec-
tion 7] presented a complexity bound for a randomized optimization method for minimizing
a nonsmooth nonconvex function. However, they did not clarify why the norm of the gra-
dient of the approximate function fµ̄ of the order δ (we use their notation) serves as a
reasonable optimality criterion in nonsmooth nonconvex optimization. They also assume an
exact function value oracle, ruling out many interesting application problems in simulation
optimization and machine learning.

In contrast, our goal is to propose fast gradient-free methods for nonsmooth nonconvex
optimization in the absence of an exact function value oracle. In general, the complexity
bound of gradient-free methods will depend on the problem dimension d ≥ 1 even when we
assume that the function to be optimized is convex and smooth [Duchi et al., 2015, Shamir,
2017]. As such, we should consider a function class with a given dimension d ≥ 1. In
particular, we consider a optimality criterion based on the celebrated Goldstein subdifferen-
tial [Goldstein, 1977] and prove that the number of function value oracles required by our
deterministic and stochastic gradient-free methods to find a (δ, ε)-Goldstein stationary point
of f ∈ Fd(∆, L) is O(poly(d, L,∆, 1/ε, 1/δ)) when δ, ε ∈ (0, 1) are constants.
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It is worth mentioning that Fd(∆, L) contains a rather broad class of functions used
in real-world application problems. Typical examples with additional regularity properties
include Hadamard semi-differentiable functions [Shapiro, 1990, Delfour, 2019, Zhang et al.,
2020a], Whitney-stratifiable functions [Bolte et al., 2007, Davis et al., 2020], o-minimally
definable functions [Coste, 2000] and a class of semi-algebraic functions [Attouch et al.,
2013a, Davis et al., 2020]. Thus, our gradient-free methods can be applied for solving these
problems with finite-time convergence guarantees.

Generalized gradients and Goldstein subdifferential. We start with the definition
of generalized gradients [Clarke, 1990] for nondifferentiable functions. This is perhaps the
most standard extension of gradients to nonsmooth and nonconvex functions.

Definition 9.2.2 Given a point x ∈ Rd and a direction v ∈ Rd, the generalized directional
derivative of a nondifferentiable function f is given by Df(x; v) := lim supy→x,t↓0

f(y+tv)−f(y)
t

.
The generalized gradient of f is defined as ∂f(x) := {g ∈ Rd : g>v ≤ Df(x; v),∀v ∈ Rd}.

Rademacher’s theorem guarantees that any Lipschitz function is almost everywhere differ-
entiable. This implies that the generalized gradients of Lipschitz functions have additional
properties and we can define them in a relatively simple way. The following proposition
summarizes these results; we refer to Clarke [1990] for the proof details.

Proposition 9.2.3 Suppose that f is L-Lipschitz for some L > 0, we have that ∂f(x) is
a nonempty, convex and compact set and ‖g‖ ≤ L for all g ∈ ∂f(x). Further, ∂f(·) is
an upper-semicontinuous set-valued map. Moreover, a generalization of mean-value theorem
holds: for any x1,x2 ∈ Rd, there exist λ ∈ (0, 1) and g ∈ ∂f(λx1 + (1 − λ)x2) such that
f(x1) − f(x2) = g>(x1 − x2). Finally, there is a simple way to represent the generalized
gradient ∂f(x):

∂f(x) := conv

{
g ∈ Rd : g = lim

xk→x
∇f(xk)

}
,

which is the convex hull of all limit points of ∇f(xk) over all sequences x1,x2, . . . of differ-
entiable points of f(·) which converge to x.

Given this definition of generalized gradients, a Clarke stationary point of f is a point x
satisfying 0 ∈ ∂f(x). Then, it is natural to ask if an optimization algorithm can reach
an ε-stationary point with a finite-time convergence guarantee. Here a point x ∈ Rd is an
ε-Clarke stationary point if

min {‖g‖ : g ∈ ∂f(x)} ≤ ε.

This question has been addressed by [Zhang et al., 2020a, Theorem 1], who showed that find-
ing an ε-Clarke stationary points in nonsmooth nonconvex optimization can not be achieved
by any finite-time algorithm given a fixed tolerance ε ∈ [0, 1). One possible response is to
consider a relaxation called a near ε-Clarke stationary point. Consider a point which is
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δ-close to an ε-stationary point for some δ > 0. A point x ∈ Rd is near ε-stationary if the
following statement holds true:

min
{
‖g‖ : g ∈ ∪y∈Bδ(x)∂f(y)

}
≤ ε.

Unfortunately, however, [Kornowski and Shamir, 2021, Theorem 1] demonstrated that it is
impossible to obtain worst-case guarantees for finding a near ε-Clarke stationary point of
f ∈ Fd(∆, L) when ε, δ > 0 are smaller than some certain constants unless the number of
oracle calls has an exponential dependence on the problem dimension d ≥ 1. These negative
results suggest a need for rethinking the definition of targeted stationary points. We propose
to consider the refined notion of Goldstein subdifferential.

Definition 9.2.4 Given a point x ∈ Rd and δ > 0, the δ-Goldstein subdifferential of a
Lipschitz function f at x is given by ∂δf(x) := conv(∪y∈Bδ(x)∂f(y)).

The Goldstein subdifferential of f at x is the convex hull of the union of all generalized
gradients at points in a δ-ball around x. Accordingly, we can define the (δ, ε)-Goldstein
stationary points; that is, a point x ∈ Rd is a (δ, ε)-Goldstein stationary point if the following
statement holds:

min{‖g‖ : g ∈ ∂δf(x)} ≤ ε.

It is worth mentioning that (δ, ε)-Goldstein stationarity is a weaker notion than (near) ε-
Clarke stationarity since any (near) ε-stationary point is a (δ, ε)-Goldstein stationary point
but not vice versa. However, the converse holds true under a smoothness condition [Zhang
et al., 2020a, Proposition 6] and limδ↓0 ∂δf(x) = ∂f(x) holds as shown in Zhang et al.
[2020a, Lemma 7]. The latter result also enables an intuitive framework for transform-
ing nonasymptotic analysis of convergence to (δ, ε)-Goldstein stationary points to classical
asymptotic results for finding ε-Clarke stationary points. Thus, we conclude that finding a
(δ, ε)-Goldstein stationary point is a reasonable optimality condition for general nonsmooth
nonconvex optimization.

Remark 9.2.5 Finding a (δ, ε)-Goldstein stationary point in nonsmooth nonconvex opti-
mization has been formally shown to be computationally tractable in an oracle model [Zhang
et al., 2020a, Davis et al., 2022, Tian et al., 2022]. Goldstein [1977] discovered that one can
decrease the function value of a Lipschitz f by using the minimal-norm element of ∂δf(x)
and this leads to a deterministic normalized subgradient method which finds a (δ, ε)-Goldstein
stationary point within O( ∆

δε
) iterations. However, Goldstein’s algorithm is only conceptual

since it is computationally intractable to return an exact minimal-norm element of ∂δf(x).
Recently, the randomized variants of Goldstein’s algorithm have been proposed with a con-
vergence guarantee of O(∆L2

δε3
) [Zhang et al., 2020a, Davis et al., 2022, Tian et al., 2022].

However, it remains unknown if gradient-free methods find a (δ, ε)-Goldstein stationary point
of a Lipschitz function f within O(poly(d, L,∆, 1/ε, 1/δ)) iterations in the absence of an ex-
act function value oracle. Note that the dependence on the problem dimension d ≥ 1 is
necessary for gradient-free methods.
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Randomized smoothing. The randomized smoothing approaches are simple and work
equally well for convex and nonconvex functions. Formally, given the L-Lipschitz function
f (possibly nonsmooth nonconvex) and a distribution P, we define fδ(x) = Eu∼P[f(x +
δu)]. In particular, letting P be a standard Gaussian distribution, the function fδ is a

δL
√
d-approximation of f(·) and the gradient ∇fδ is L

√
d

δ
-Lipschitz where d ≥ 1 is the

problem dimension; see Nesterov and Spokoiny [2017, Theorem 1 and Lemma 2]. Letting
P be an uniform distribution on an unit ball in `2-norm, the resulting function fδ is a δL-

approximation of f(·) and ∇fδ is also cL
√
d

δ
-Lipschitz where d ≥ 1 is the problem dimension;

see Yousefian et al. [2012, Lemma 8] and Duchi et al. [2012, Lemma E.2], rephrased as
follows.

Proposition 9.2.6 Let fδ(x) = Eu∼P[f(x + δu)] where P is an uniform distribution on an
unit ball in `2-norm. Assuming that f is L-Lipschitz, we have (i) |fδ(x)− f(x)| ≤ δL, and

(ii) fδ is differentiable and L-Lipschitz with the cL
√
d

δ
-Lipschitz gradient where c > 0 is a

constant. In addition, there exists a function f for which each of the above bounds are tight
simultaneously.

The randomized smoothing approaches form the basis for developing gradient-free meth-
ods [Flaxman et al., 2005, Agarwal et al., 2010, 2013, Ghadimi and Lan, 2013b, Nesterov
and Spokoiny, 2017]. Given an access to function values of f , we can compute an unbiased
estimate of the gradient of fδ and plug them into stochastic gradient-based methods. Note
that the Lipschitz constant of fδ depends on the problem dimension d ≥ 1 with at least
a factor of

√
d for many randomized smoothing approaches [Kornowski and Shamir, 2021,

Theorem 2]. This is consistent with the lower bounds for all gradient-free methods in convex
and strongly convex optimization [Duchi et al., 2015, Shamir, 2017].

9.3 Main Results

We establish a relationship between the Goldstein subdifferential and the uniform smoothing
approach. We propose a gradient-free method (GFM), its stochastic variant (SGFM), and
a two-phase version of GFM and SGFM. We analyze these algorithms using the Goldstein
subdifferential; we provide the global rate and large-deviation estimates in terms of (δ, ε)-
Goldstein stationarity.

Linking Goldstein subdifferential to uniform smoothing. Recall that ∂δf and fδ
are defined by ∂δf(x) := conv(∪y∈Bδ(x)∂f(y)) and fδ(x) = Eu∼P[f(x + δu)]. It is clear that
f is almost everywhere differentiable since f is L-Lipschitz. This implies that ∇fδ(x) =
Eu∼P[∇f(x + δu)] and demonstrates that ∇fδ(x) can be viewed intuitively as a convex
combination of ∇f(z) over an infinite number of points z ∈ Bδ(x). As such, it is reasonable
to conjecture that ∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd. However, the above argument is not
a rigorous proof; indeed, we need to justify why ∇fδ(x) = Eu∼P[∇f(x + δu)] if f is almost
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Algorithm 29 Gradient-Free Method (GFM)

1: Input: initial point x0 ∈ Rd, stepsize η > 0, problem dimension d ≥ 1, smoothing
parameter δ and iteration number T ≥ 1.

2: for t = 0, 1, 2, . . . , T − 1 do
3: Sample wt ∈ Rd uniformly from a unit sphere in Rd.
4: Compute gt = d

2δ
(f(xt + δwt)− f(xt − δwt))wt.

5: Compute xt+1 = xt − ηgt.
6: Output: xR where R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled.

Algorithm 30 Two-Phase Gradient-Free Method (2-GFM)

1: Input: initial point x0 ∈ Rd, stepsize η > 0, problem dimension d ≥ 1, smoothing
parameter δ, iteration number T ≥ 1, number of rounds S ≥ 1 and sample size B.

2: for s = 0, 1, 2, . . . , S − 1 do
3: Call Algorithm 29 with x0, η, d, δ and T and let x̄s be an output.
4: for s = 0, 1, 2, . . . , S − 1 do
5: for k = 0, 1, 2, . . . , B − 1 do
6: Sample wk ∈ Rd uniformly from a unit sphere in Rd.
7: Compute gks = d

2δ
(f(x̄s + δwk)− f(x̄s − δwk))wk.

8: Compute gs = 1
B

∑B−1
k=0 gks .

9: Choose an index s? ∈ {0, 1, 2, . . . , S − 1} such that s? = argmins=0,1,2,...,S−1 ‖gs‖.
10: Output: x̄s? .

everywhere differentiable and generalize the idea of a convex combination to include infinite
sums. To resolve these issues, we exploit a toolbox due to Rockafellar and Wets [2009].

In the following theorem, we summarize our result.

Theorem 9.3.1 Suppose that f is L-Lipschitz and let fδ(x) = Eu∼P[f(x + δu)], where P is
an uniform distribution on a unit ball in `2-norm and let ∂δf be a δ-Goldstein subdifferential
of f (cf. Definition 9.2.4). Then, we have ∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd.

Theorem 9.3.1 resolves an important question and forms the basis for analyzing our gradient-
free methods. Notably, our analysis can be extended to justify other randomized smoothing
approaches in nonsmooth nonconvex optimization. For example, Nesterov and Spokoiny
[2017] used Gaussian smoothing and estimated the number of iterations required by their
methods to output x̂ ∈ Rd satisfying ‖∇fδ(x̂)‖ ≤ ε. By modifying the proof of Theorem 9.3.1
and Zhang et al. [2020a, Lemma 7], we can prove that ∇fδ belongs to Goldstein subdiffer-
ential with Gaussian weights and this subdifferential converges to the Clarke subdifferential
as δ → 0. Compared to uniform smoothing and the original Goldstein subdifferential, the
proof for Gaussian smoothing is quite long and technical [Nesterov and Spokoiny, 2017, Page
554], and adding Gaussian weights seems unnatural in general.



CHAPTER 9. GRADIENT-FREE NONCONVEX NONSMOOTH OPTIMIZATION 286

Gradient-free methods. We analyze a gradient-free method (GFM) and its two-phase
version (2-GFM) for optimizing a Lipschitz function. Let f : Rd 7→ R be a L-Lipschitz
function and the smooth version of f is then the function fδ = Eu∼P[f(x + δu)] where P is
an uniform distribution on an unit ball in `2-norm. Equipped with Lemma 10 from Shamir
[2017], we can compute an unbiased estimator for the gradient ∇fδ(xt) using function values.

This leads to the gradient-free method (GFM) in Algorithm 29 that simply performs
a one-step gradient descent to obtain xt. It is worth mentioning that we use a random
iteration count R to terminate the execution of Algorithm 29 and this will guarantee that
GFM is valid. Indeed, we only derive that mint=1,2,...,T ‖∇fδ(xt)‖ ≤ ε in the theoretical
analysis (see also Nesterov and Spokoiny [2017, Section 7]) and finding the best solution
from {x1,x2, . . . ,xT} is difficult since the quantity ‖∇fδ(xt)‖ is unknown. To estimate them
using Monte Carlo simulation would incur additional approximation errors and raise some
reliability issues. The idea of random output is not new but has been used by Ghadimi and
Lan [2013b] for smooth and nonconvex stochastic optimization. Such scheme also gives us a
computational gain with a factor of two in expectation.

Theorem 9.3.2 Suppose that f is L-Lipschitz and let δ > 0 and 0 < ε < 1. Then, there

exists some T > 0 such that the output of Algorithm 29 with η = 1
10

√
δ(∆+δL)

cd3/2L3T
satisfies that

E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the total number of calls of the function value oracle is
bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

))
,

where d ≥ 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and ∆ > 0 is
an upper bound for the initial objective function gap, f(x0)− infx∈Rd f(x) > 0.

Remark 9.3.3 Theorem 9.3.2 illustrates the difference between gradient-based and gradient-
free methods in nonsmooth nonconvex optimization. Indeed, Davis et al. [2022] has recently
proved the rate of O(δ−1ε−3) for a randomized gradient-based method in terms of (δ, ε)-
Goldstein stationarity. Further, Theorem 9.3.2 demonstrates that nonsmooth nonconvex
optimization is likely to be intrinsically harder than all other standard settings. More specif-
ically, the state-of-the-art rate for gradient-free methods is O(dε−2) for nonsmooth convex
optimization in terms of objective function value gap [Duchi et al., 2015] and smooth non-
convex optimization in terms of gradient norm [Nesterov and Spokoiny, 2017]. Thus, the

dependence on d ≥ 1 is linear in their bounds yet d
3
2 in our bound. We believe it is promising

to either improve the rate of gradient-free methods or show the impossibility by establishing
a lower bound.

While Theorem 9.3.2 establishes the expected convergence rate guarantee over many runs
of Algorithm 29, we are also interested in the large-deviation properties for a single run.
Indeed, we hope to establish a complexity bound for computing a (δ, ε,Λ)-solution; that is,
a point x ∈ Rd satisfying Prob(min{‖g‖ : g ∈ ∂δf(x)} ≤ ε) ≥ 1 − Λ for some δ > 0 and
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0 < ε,Λ < 1. By Theorem 9.3.2 and Markov’s inequality,

Prob
(
min{‖g‖ : g ∈ ∂δf(xR)} ≥ λE[min{‖g‖ : g ∈ ∂δf(xR)}]

)
≤ 1

λ
, for all λ > 0,

we conclude that the total number of calls of the function value oracle is bounded by

O

(
d

3
2

(
L4

Λ4ε4
+

∆L3

δΛ4ε4

))
. (9.1)

This complexity bound is rather pessimistic in terms of its dependence on Λ which is of-
ten set to be small in practice. To improve the bound, we combine Algorithm 29 with a
post-optimization procedure [Ghadimi and Lan, 2013b], leading to a two-phase gradient-free
method (2-GFM), shown in Algorithm 30.

Theorem 9.3.4 Suppose that f is L-Lipschitz and let δ > 0 and 0 < ε,Λ < 1. Then, there

exists some T, S,B > 0 such that the output of Algorithm 30 with η = 1
10

√
δ(∆+δL)

cd3/2L3T
satisfies

that Prob(min{‖g‖ : g ∈ ∂δf(x̄s?)}] ≥ ε) ≤ Λ and the total number of calls of the function
value oracle is bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

)
log2

(
1

Λ

)
+
dL2

Λε2
log2

(
1

Λ

))
,

where d ≥ 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and ∆ > 0 is
an upper bound for the initial objective function gap, f(x0)− infx∈Rd f(x) > 0.

Clearly, the bound in Theorem 9.3.4 is significantly smaller than the corresponding one
in Eq. (9.1) in terms of the dependence on 1/Λ, demonstrating the power of the post-
optimization phase.

Stochastic gradient-free methods. We turn to the analysis of a stochastic gradient-free
method (SGFM) and its two-phase version (2-SGFM) for optimizing a Lipschitz function
f(·) = Eξ∈Pµ [F (·, ξ)]. In contrast to minimizing a deterministic function f , we only have
access to the noisy function value F (x, ξ) at any point x ∈ Rd where a data sample ξ
is drawn from a distribution Pµ. Intuitively, this is a more challenging setup. It has been
studied in the setting of optimizing a nonsmooth convex function [Duchi et al., 2015, Nesterov
and Spokoiny, 2017] or a smooth nonconvex function [Ghadimi and Lan, 2013b]. As in these
papers, we assume that (i) F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for some G > 0
and (ii) E[F (x, ξt)] = f(x) for all x ∈ Rd where ξt is simulated from Pµ at the tth iteration.

Despite the noisy function value, we can compute an unbiased estimator of the gradient
∇fδ(xt), where fδ = Eu∼P[f(x + δu)] = Eu∼P,ξ∈Pµ [F (x + δu, ξ)]. In particular, we have
ĝt = d

2δ
(F (xt + δwt, ξt)− F (xt − δwt, ξt))wt. Clearly, under our assumption, we have

Eu∼P,ξ∈Pµ [ĝt] = Eu∼P[Eξ∈Pµ [ĝt | u]] = Eu∼P[gt] = ∇fδ(xt),
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Algorithm 31 Stochastic Gradient-Free Method (SGFM)

1: Input: initial point x0 ∈ Rd, stepsize η > 0, problem dimension d ≥ 1, smoothing
parameter δ and iteration number T ≥ 1.

2: for t = 0, 1, 2, . . . , T do
3: Simulate ξt from the distribution Pµ.
4: Sample wt ∈ Rd uniformly from a unit sphere in Rd.
5: Compute ĝt = d

2δ
(F (xt + δwt, ξt)− F (xt − δwt, ξt))wt.

6: Compute xt+1 = xt − ηgt.
7: Output: xR where R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled.

where gt is defined in Algorithm 29. However, the variance of the estimator ĝt can be
undesirably large since F (·, ξ) is L(ξ)-Lipschitz for a (possibly unbounded) random variable
L(ξ) > 0. To resolve this issue, we revisit Shamir [2017, Lemma 10] and show that in deriving
an upper bound for Eu∼P,ξ∈Pµ [‖ĝt‖2] it suffices to assume that Eξ∈Pµ [L2(ξ)] ≤ G2 for some
constant G > 0. The resulting bound achieves a linear dependence in the problem dimension
d > 0 which is the same as in Shamir [2017, Lemma 10]. Note that the setup with convex
and L(ξ)-Lipschitz functions F (·, ξ) has been considered in Duchi et al. [2015]. However,
our estimator is different from their estimator of ĝt = d

δ
(F (xt + δwt, ξt)−F (xt, ξt))wt which

essentially suffers from the quadratic dependence in d > 0. It is also necessary to employ a
random iteration count R to terminate Algorithm 31.

Theorem 9.3.5 Suppose that F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for some
G > 0 and let δ > 0 and 0 < ε < 1. Then, there exists some T > 0 such that the output

of Algorithm 31 with η = 1
10

√
δ(∆+δG)

cd3/2G3T
satisfies that E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the

total number of calls of the noisy function value oracle is bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

))
,

where d ≥ 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and ∆ > 0 is
an upper bound for the initial objective function gap, f(x0)− infx∈Rd f(x) > 0.

In the stochastic setting, the gradient-based method achieves the rate of O(δ−1ε−4) for a ran-
domized gradient-based method in terms of (δ, ε)-Goldstein stationarity [Davis et al., 2022].
As such, our bound in Theorem 9.3.5 is tight up to the problem dimension d ≥ 1. Further,
the state-of-the-art rate for stochastic gradient-free methods is O(dε−2) for nonsmooth con-
vex optimization in terms of objective function value gap [Duchi et al., 2015] and O(dε−4)
for smooth nonconvex optimization in terms of gradient norm [Ghadimi and Lan, 2013b].
Thus, Theorem 9.3.5 demonstrates that nonsmooth nonconvex stochastic optimization is
essentially the most difficult one among than all these standard settings.

As in the case of GFM, we hope to establish a complexity bound of SGFM for computing
a (δ, ε,Λ)-solution. By Theorem 9.3.5 and Markov’s inequality, we obtain that the total
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Algorithm 32 Two-Phase Stochastic Gradient-Free Method (2-SGFM)

1: Input: initial point x0 ∈ Rd, stepsize η > 0, problem dimension d ≥ 1, smoothing
parameter δ, iteration number T ≥ 1, number of rounds S ≥ 1 and sample size B.

2: for s = 0, 1, 2, . . . , S − 1 do
3: Call Algorithm 31 with x0, η, d, δ and T and let x̄s be an output.
4: for s = 0, 1, 2, . . . , S − 1 do
5: for k = 0, 1, 2, . . . , B − 1 do
6: Simulate ξk from the distribution Pµ.
7: Sample wk ∈ Rd uniformly from a unit sphere in Rd.
8: Compute ĝks = d

2δ
(F (x̄s + δwk, δk)− F (x̄s − δwk, δk))wk.

9: Compute ĝs = 1
B

∑B−1
k=0 ĝks .

10: Choose an index s? ∈ {0, 1, 2, . . . , S − 1} such that s? = argmins=0,1,2,...,S−1 ‖ĝs‖.
11: Output: x̄s? .

number of calls of the noisy function value oracle is bounded by

O

(
d

3
2

(
G4

Λ4ε4
+

∆G3

δΛ4ε4

))
. (9.2)

We also propose a two-phase stochastic gradient-free method (2-SGFM) in Algorithm 32 by
combining Algorithm 31 with a post-optimization procedure.

Theorem 9.3.6 Suppose that F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for some G >
0 and let δ > 0 and 0 < ε,Λ < 1. Then, there exists some T, S,B > 0 such that the output of

Algorithm 32 with η = 1
10

√
δ(∆+δG)

cd3/2G3T
satisfies that Prob(min{‖g‖ : g ∈ ∂δf(x̄s?)}] ≥ ε) ≤ Λ

and the total number of calls of the noisy function value oracle is bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

)
log2

(
1

Λ

)
+
dG2

Λε2
log2

(
1

Λ

))
,

where d ≥ 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and ∆ > 0 is
an upper bound for the initial objective function gap f(x0)− infx∈Rd f(x) > 0.

Further discussions. We remark that the choice of stepsize η in all of our zeroth-order
methods depend on ∆, whereas such dependence is not necessary in the first-order setting;
see e.g., Zhang et al. [2020a]. Setting the stepsize without any prior knowledge of ∆, our
methods can still achieve finite-time convergence guarantees but the order would become
worse. This is possibly because the first-order information gives more characterization of
the objective function than the zeroth-order information, so that for first-order methods the
stepsize can be independent of more problem parameters without sacrificing the bound. A
bit on the positive side is that, it suffices for our zeroth-order methods to know an estimate
of the upper bound of Θ(∆), which can be done in certain application problems.
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Figure 9.1: Performance of different methods on training CNNs with the Mnist dataset.

Moreover, we highlight that δ > 0 is the desired tolerance in our setting. In fact, (δ, ε)-
Goldstein stationarity (see Definition 9.2.4) relaxes ε-Clarke stationarity and our methods
pursue an (δ, ε)-stationary point since finding an ε-Clarke point is intractable. This is dif-
ferent from smooth optimization where ε-Clarke stationarity reduces to ∇f(x) ≤ ε and
becomes tractable. In this context, the existing zeroth-order methods are designed to pursue
an ε-stationary point. Notably, a (δ, ε)-Goldstein stationary point is provably an ε-stationary
point in smooth optimization if we choose δ that relies on d and ε.

9.4 Experiments

We conduct numerical experiments to validate the effectiveness of our proposed methods. In
particular, we evaluate the performance of our two-phase version of SGFM (Algorithm 32)
on the task of image classification using convolutional neural networks (CNNs) with ReLU
activations. The dataset we use is the Mnist dataset1 [LeCun et al., 1998] and the CNN
framework we use is: (i) we set two convolution layers and two fully connected layers where

1http://yann.lecun.com/exdb/mnist
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Figure 9.2: (Above) Performance of 2-SGFM with different choices of B. (Bottom) Perfor-
mance of 2-SGFM and SGD with different choices of learning rates.

the dropout layers [Srivastava et al., 2014] are used before each fully connected layer, and
(ii) two convolution layers and the first fully connected layer are associated with ReLU
activation. It is worth mentioning that our setup follows the default one2 and the similar
setup was also consider in Zhang et al. [2020a] for evaluating the gradient-based methods.

The baseline approaches include three gradient-based methods: stochastic gradient de-
scent (SGD), Adagrad [Duchi et al., 2011] and Adam [Kingma and Ba, 2015]. We compare
these methods with 2-SGFM (cf. Algorithm 32) and set the learning rate η as 0.001. All
the experiments are implemented using PyTorch [Paszke et al., 2019] on a workstation with
a 2.6 GHz Intel Core i7 and 16GB memory.

Figure 9.1 summarizes the numerical results on the performance of SGD, Adagrad,
Adagrad, Adam, INDG [Zhang et al., 2020a], and our method 2-SGFM with δ = 0.1 and
B = 200. Notably, 2-SGFM is comparable to other gradient-based methods in terms of
training/test accuracy/loss even though it only use the function values. This demonstrates
the potential value of our methods since the gradient-based methods are not applicable in

2https://github.com/pytorch/examples/tree/main/mnist
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Figure 9.3: Performance of 2-SGFM with different choices of B.

many real-world application problems. Figure 9.2 (Above) presents the effect of batch size
B ≥ 1 in 2-SGFM; indeed, the larger value of B leads to better performance and this accords
with Theorem 9.3.6. We compare the performance of SGD and 2-SGFM with different choices
of η. From Figure 9.2 (Bottom), we see that SGD and 2-SGFM achieve similar performance
in the early stage and converge to solutions with similar quality.

Figure 9.3 summarizes the experimental results on the effect of batch size B for 2-SGFM.
Note that the evaluation metrics here are train loss and test loss. It is clear that the larger
value of B leads to better performance and this is consistent with the results presented in the
main context. Figure 9.4 summarizes the experimental results on the effect of learning rates
for 2-SGFM. It is interesting to see that 2-SGFM can indeed benefit from a more aggressive
choice of stepsize η > 0 in practice and the choice of η = 0.0001 seems to be too conservative.

9.5 Conclusion

We proposed and analyzed a class of deterministic and stochastic gradient-free methods for
optimizing a Lipschitz function. Based on the relationship between the Goldstein subdiffer-
ential and uniform smoothing that we have established, the proposed GFM and SGFM are
proved to return a (δ, ε)-Goldstein stationary point at an expected rate of O(d3/2δ−1ε−4).
We obtain a large-deviation guarantee and improve it by combining GFM and SGFM with
a two-phase scheme. Experiments on training neural networks with the MNIST and CI-
FAR10 datasets demonstrate the effectiveness of our methods. Future directions include
the theory for non-Lipschitz and nonconvex optimization [Bian et al., 2015] and applications
of our methods to deep residual neural network (ResNet) [He et al., 2016] and deep dense
convolutional network (DenseNet) [Huang et al., 2017].
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Figure 9.4: Performance of 2-SGFM with different choices of learning rates η.

9.6 Further Related Work on Nonsmooth Nonconvex

Optimization

To appreciate the difficulty and the broad scope of the research agenda in nonsmooth noncon-
vex optimization, we start by describing the existing relevant literature. First, the existing
work is mostly devoted to establishing the asymptotic convergence properties of various opti-
mization algorithms, including gradient sampling (GS) methods [Burke et al., 2002a,b, 2005,
Kiwiel, 2007, Burke et al., 2020], bundle methods [Kiwiel, 1996, Fuduli et al., 2004] and sub-
gradient methods [Benäım et al., 2005, Majewski et al., 2018, Davis et al., 2020, Daniilidis
and Drusvyatskiy, 2020, Bolte and Pauwels, 2021]. More specifically, Burke et al. [2002a] pro-
vided a systematic investigation of approximating the Clarke subdifferential through random
sampling and proposed a gradient bundle method [Burke et al., 2002b]—the precursor of GS
methods—for optimizing a nonconvex, nonsmooth and non-Lipschitz function. Later, Burke
et al. [2005] and Kiwiel [2007] proposed the GS methods by incorporating key modifications
into the algorithmic scheme in Burke et al. [2002b] and proved that every cluster point of



CHAPTER 9. GRADIENT-FREE NONCONVEX NONSMOOTH OPTIMIZATION 294

the iterates generated by GS methods is a Clarke stationary point. For an overview of GS
methods, we refer to Burke et al. [2020]. Another line of works extended the bundle methods
to nonsmooth nonconvex optimization by considering either piece-wise linear models embed-
ding possible downward shifting [Kiwiel, 1996] or a mixture of linear pieces that exhibit a
convex or concave behavior [Fuduli et al., 2004]. There has been recent progress on analyzing
subgradient methods for nonsmooth nonconvex optimization; indeed, the classical subgradi-
ent method on Lipschitz functions may fail to asymptotically find any stationary point due
to the pathological examples [Daniilidis and Drusvyatskiy, 2020]. Under some additional
regularity conditions, Benäım et al. [2005] proved the asymptotic convergence of stochas-
tic approximation methods from a continuous-time viewpoint and Majewski et al. [2018]
generalized these results with proximal and implicit updates. Bolte and Pauwels [2021] jus-
tify the automatic differentiation schemes under the nonsmoothness conditions; Davis et al.
[2020] proved the asymptotic convergence of classical subgradient methods for a class of
Whitney stratifiable functions which include the functions studied in Majewski et al. [2018].
Recently, Zhang et al. [2020a] modified Goldstein’s subgradient method [Goldstein, 1977] to
optimize a class of Hadamard directionally differentiable function and proved nonasymptotic
convergence guarantee. Davis et al. [2022] relaxed the assumption of Hadamard directionally
differentiability and showed that another modification of Goldstein’s subgradient method
could achieve the same finite-time guarantee for any Lipschitz function. Concurrently, Tian
et al. [2022] removed the subgradient selection oracle assumption in Zhang et al. [2020a,
Assumption 1] and provided the third modification of Goldstein’s subgradient method with
the same finite-time convergence. Different from these gradient-based methods, we focus on
the gradient-free methods in this paper.

We are also aware of many recent works on the algorithmic design in the structured nons-
mooth nonconvex optimization. There are two primary settings where the proximal gradient
methods is guaranteed to achieve nonasymptotic convergence if the proximal mapping can
be efficiently evaluated. The former one considers the objective function with composition
structure [Duchi and Ruan, 2018, Drusvyatskiy and Paquette, 2019, Davis and Drusvyatskiy,
2019], while the latter one focuses on composite objective functions with nonsmooth con-
vex component [Bolte et al., 2018, Beck and Hallak, 2020]. However, both of these settings
require the weak convexity of objective function and exclude many simple and important
nonsmooth nonconvex functions used in the real-world application problems.

9.7 Proof of Proposition 9.2.6

We let u ∈ Rd denote a random variable distributed uniformly on B1(0) here. For the first
statement, since f is L-Lipschitz, we have

|fδ(x)− f(x)| = |E[f(x + δu)− f(x)]| ≤ δL · E[‖u‖] ≤ δL.
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Then, we proceed to prove the second statement. Indeed, Bertsekas [1973, Proposition 2.4]
guarantees that fδ is everywhere differentiable. Since f is L-Lipschitz, we have

|fδ(x)−fδ(x′)| = |E[f(x+δu)−f(x′+δu)]| ≤ L|E[‖x−x′‖]| = L‖x−x′‖, for all x,x′ ∈ Rd.

It remains to prove that ∇fδ is Lipschitz. Since f is L-Lipschitz, the Rademacher’s theorem
guarantees that f is almost everywhere differentiable. This implies that ∇fδ(x) = E[∇f(x+
δu)]. Then, we have

‖∇fδ(x)−∇fδ(x′)‖ = ‖E[∇f(x + δu)]− E[∇f(x′ + δu)]‖

= 1
Vol(B1(0))

∣∣∣∣∫
u∈B1(0)

∇f(x + δu) du−
∫
u∈B1(0)

∇f(x′ + δu) du

∣∣∣∣
= 1

Vol(Bδ(0))

∣∣∣∣∫
y∈Bδ(x)

∇f(y) dy −
∫
y∈Bδ(x′)

∇f(y) dy

∣∣∣∣ .
Note that f is L-Lipschitz, we have ‖∇f(y)‖ ≤ L for any y ∈ Bδ(x)∪Bδ(x′). Then, we turn

to prove that ‖∇fδ(x)−∇fδ(x′)‖ ≤ L
√
d‖x−x′‖
δ

for two different cases one by one as follows.

Case I: ‖x− x′‖ ≥ 2δ. It is clear that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L ≤ L‖x−x′‖
δ

d≥1

≤ L
√
d‖x−x′‖
δ

,

which implies the desired result.

Case II: ‖x− x′‖ ≤ 2δ. It is clear that Bδ(x) ∩ Bδ(x′) 6= ∅. This implies that

‖∇fδ(x)−∇fδ(x′)‖ = 1
Vol(Bδ(0))

∣∣∣∣∫
y∈Bδ(x)\Bδ(x′)

∇f(y) dy −
∫
y∈Bδ(x′)\Bδ(x)

∇f(y) dy

∣∣∣∣ .
Since ‖∇f(y)‖ ≤ L for any y ∈ Bδ(x) ∪ Bδ(x′), we have

‖∇fδ(x)−∇fδ(x′)‖ ≤ L
Vol(Bδ(0))

(Vol(Bδ(x) \ Bδ(x′)) + Vol(Bδ(x′) \ Bδ(x))) .

By the symmetry from a geometrical point of view, we have Vol(Bδ(x)\Bδ(x′)) = Vol(Bδ(x′)\
Bδ(x)). For simplicity, we let I = Bδ(x) \ Bδ(x′) and obtain that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L
Vol(Bδ(0))

Vol(I) = 2L
cdδd

Vol(I), where cd = πd/2

Γ(d/2+1)
.

It suffices to find an upper bound for Vol(I) in terms of ‖x − x′‖. Let Vcap(p) denote the
volume of the spherical cap with the distance p from the center of the sphere, we have

Vol(I) = Vol(Bδ(0))− 2Vcap(
1
2
‖x− x′‖) = cdδ

d − 2Vcap(
1
2
‖x− x′‖).
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The volume of the d-dimensional spherical cap with distance p from the center of the sphere
can be calculated in terms of the volumes of (d− 1)-dimensional spheres as follows:

Vcap(p) =

∫ δ

p

cd−1(δ2 − ρ2)
d−1

2 dρ, for all p ∈ [0, δ].

Since Vcap(·) is a convex function over [0, δ], we have Vcap(p) ≥ Vcap(0) + V ′cap(0)p. By
the definition, we have Vcap(0) = 1

2
Vol(Bδ(0)) = 1

2
cdδ

d and V ′cap(0) = −cd−1δ
d−1. Thus,

Vcap(p) ≥ 1
2
cdδ

d − cd−1δ
d−1p. Furthermore, 1

2
‖x− x′‖ ∈ [0, δ]. Putting these pieces together

yields that Vol(I) ≤ cd−1δ
d−1‖x− x′‖. Therefore, we conclude that

‖∇fδ(x)−∇fδ(x′)‖ ≤ 2L
cdδd

Vol(I) ≤ 2cd−1

cd

L‖x−x′‖
δ

.

Since cd = πd/2

Γ(d/2+1)
, we have 2cd−1

cd
=

 d!!
(d−1)!!

if d is odd,

2
π

d!!
(d−1)!!

otherwise.
and 1√

d

2cd−1

cd
→
√

π
2
. Therefore,

we conclude that the gradient ∇fδ is cL
√
d

δ
-Lipschitz where c > 0 is a positive constant. In

addition, for the construction of a function f in which each of the above bounds are tight,
we consider a convex combination of “difficult” functions, in this case

f1(x) = L‖x‖, f2(x) = L|〈x, w
‖w‖〉 −

1
2
|.

and choose f(x) = 1
2
(f1(x)+f2(x)). Following up the same argument as in Duchi et al. [2012,

Lemma 10], it is relatively straightforward to verify that the bounds in Proposition 9.2.6
cannot be improved by more than a constant factor. This completes the proof.

9.8 Proof of Theorem 9.3.1

We first show that ∇fδ(x) = Eu∼P[∇f(x + δu)]. Indeed, by the definition of fδ, we have

fδ(x) = Eu∼P[f(x + δu)] = 1
Vol(B1(0))

∫
u∈B1(0)

f(x + δu) du = 1
Vol(Bδ(0))

∫
v∈Bδ(0)

f(x + v) dv.

Since f is L-Lipschitz, Bertsekas [1973, Proposition 2.3] guarantees that fδ is everywhere
differentiable. Thus, we have ∇fδ(x) exists for any x ∈ Rd and satisfies that

lim
‖h‖→0

|fδ(x+h)−fδ(x)−〈∇fδ(x),h〉|
‖h‖ = 0. (9.3)

Further, we have

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(Bδ(0))

∫
v∈Bδ(0)

f(x+h+v)−f(x+v)
‖h‖ dv
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Since f is L-Lipschitz, we have f(x+h+v)−f(x+v)
‖h‖ ≤ L. By the dominated convergence theorem,

we have

lim
‖h‖→0

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(Bδ(0))

∫
v∈Bδ(0)

(
lim
‖h‖→0

f(x+h+v)−f(x+v)
‖h‖

)
dv

Furthermore, Rademacher’s theorem guarantees that f is almost everywhere differentiable.
Letting U ⊆ Bδ(0) such that Vol(U) = Vol(Bδ(0)) and f is differentiable at x+v for ∀v ∈ U ,
we have

lim
‖h‖→0

fδ(x+h)−fδ(x)
‖h‖ = 1

Vol(U)

∫
v∈U

(
lim
‖h‖→0

f(x+h+v)−f(x+v)
‖h‖

)
dv, (9.4)

and
lim
‖h‖→0

|f(x+h+v)−f(x+v)−〈∇f(x+v),h〉|
‖h‖ = 0. (9.5)

Combining Eq. (9.3), Eq (9.4) and Eq. (9.5) together yields that

lim
‖h‖→0

|〈∇fδ(x)−Eu∼P[∇f(x+δu)],h〉|
‖h‖ = 0.

Choosing h = t(∇fδ(x)− Eu∼P[∇f(x + δu)]) with t→ 0, we have ‖∇fδ(x)− Eu∼P[∇f(x +
δu)]‖ = 0.

It remains to show that ∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd using the proof argument
by contradiction. In particular, we assume that there exists x0 ∈ Rd such that ∇fδ(x0) /∈
∂δf(x0). Recall that

∂δf(x0) := conv(∪y∈Bδ(x0)∂f(y)),

By the hyperplane separation theorem [Rockafellar and Wets, 2009], there exists a unit vector
g ∈ Rd such that 〈g,∇fδ(x0)〉 > 0 and

〈g, ξ〉 ≤ 0, for any ξ ∈ ∪y∈Bδ(x0)∂f(y). (9.6)

However, we already obtain that ∇fδ(x) = Eu∼P[∇f(x + δu)] which implies that

∇fδ(x0) = 1
Vol(B1(0))

∫
u∈B1(0)

∇f(x0 + δu) du = 1
Vol(Bδ(0))

∫
y∈Bδ(x0)

∇f(y) dy.

Thus, Eq. (9.6) implies that 〈g,∇fδ(x0)〉 ≤ 0 which leads to a contradiction. Therefore, we
conclude that ∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd. This completes the proof.

9.9 Missing Proofs for Gradient-Free Methods

We present some lemmas for analyzing the convergence property of gradient-free method
and its two-phase version. We also give the proofs of Theorem 9.3.2 and 9.3.4.
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Technical lemmas. We provide two lemmas for analyzing Algorithm 29. The first lemma
is a restatement of Shamir [2017, Lemma 10] which gives an upper bound on the quantity
E[‖gt‖2|xt] in terms of problem dimension d ≥ 1 and the Lipschitz parameter L > 0. For
the sake of completeness, we provide the proof details.

Lemma 9.9.1 Suppose that f is L-Lipschitz and let {gt}T−1
t=0 and {xt}T−1

t=0 be generated by
Algorithm 29. Then, we have E[gt|xt] = ∇fδ(xt) and E[‖gt‖2|xt] ≤ 16

√
2πdL2.

Proof. By the definition of gt and the symmetry of the distribution of wt, we have

E[gt | xt] = E
[
d
2δ

(f(xt + δwt)− f(xt − δwt))wt | xt
]

= 1
2

(
E
[
d
δ
f(xt + δwt)wt | xt

]
+ E

[
d
δ
f(xt + δ(−wt))(−wt) | xt

])
= 1

2

(
∇fδ(xt) +∇fδ(xt)

)
= ∇fδ(xt).

It remains to show that E[‖gt‖2 | xt] ≤ 16
√

2πdL2. Indeed, since ‖wt‖ = 1, we have

E[‖gt‖2 | xt]

= E
[
d2

4δ2 (f(xt + δwt)− f(xt − δwt))2‖wt‖2 | xt
]
≤ E

[
d2

4δ2 (f(xt + δwt)− f(xt − δwt))2 | xt
]
.

Using the elementary inequality (a− b)2 ≤ 2a2 + 2b2, we have

E[(f(xt + δwt)− f(xt − δwt))2 | xt]
= E[(f(xt + δwt)− E[f(xt + δwt) | xt]− (f(xt − δwt)− E[f(xt + δwt) | xt]))2 | xt]
≤ 2E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] + 2E[(f(xt − δwt)− E[f(xt + δwt) | xt])2 | xt].

Since wt has a symmetric distribution around the origin, we have

E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] = E[(f(xt − δwt)− E[f(xt + δwt) | xt])2 | xt].

Putting these pieces together yields that

E[‖gt‖2 | xt] ≤ d2

δ2E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt]. (9.7)

For simplicity, we let h(w) = f(xt + δw). Since f is L-Lipschitz, this function h is δL-
Lipschitz given a fixed xt. In addition, wt ∈ Rd is sampled uniformly from a unit sphere.
Then, by Wainwright [2019, Proposition 3.11 and Example 3.12], we have

P(|h(wt)− E[h(wt)]| ≥ α) ≤ 2
√

2πe−
α2d

8δ2L2 .

Then, we have

E[(h(wt)− E[h(wt)])2] =

∫ +∞

0

P((h(wt)− E[h(wt)])2 ≥ α) dα

=

∫ +∞

0

P(|h(wt)− E[h(wt)]| ≥
√
α) dα ≤ 2

√
2π

∫ +∞

0

e−
αd

8δ2L2 dα

= 2
√

2π · 8δ2L2

d
= 16

√
2πδ2L2

d
.
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By the definition of h, we have

E[(f(xt + δwt)− E[f(xt + δwt) | xt])2 | xt] ≤ 16
√

2πδ2L2

d
. (9.8)

Combining Eq. (9.7) and Eq. (9.8) yields the desired inequality. �

The second lemma gives a key descent inequality for analyzing Algorithm 29.

Lemma 9.9.2 Suppose that f is L-Lipschitz and let {xt}T−1
t=0 be generated by Algorithm 29.

Then, we have

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η

+ η · (8
√

2π)cd3/2L3

δ
, for all 0 ≤ t ≤ T − 1.

where c > 0 is a constant appearing in the smoothing parameter of fδ (cf. Proposition 9.2.6).

Proof. By Proposition 9.2.6, we have fδ is differentiable and L-Lipschitz with the cL
√
d

δ
-

Lipschitz gradient where c > 0 is a constant. This implies that

fδ(x
t+1) ≤ fδ(x

t)− η〈∇fδ(xt),gt〉+ cη2L
√
d

2δ
‖gt‖2.

Taking the expectation of both sides conditioned on xt and using Lemma 9.9.1, we have

E[fδ(x
t+1) | xt] ≤ fδ(x

t)− η〈∇fδ(xt),E[gt | xt]〉+ cη2L
√
d

2δ
E[‖gt‖2 | xt]

≤ fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · cL

√
d

2δ
· 16
√

2πdL2

= fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · (8

√
2π)cd3/2L3δ−1.

Taking the expectation of both sides and rearranging yields that

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η

+ η · (8
√

2π)cd3/2L3

δ
.

This completes the proof. �

We present a proposition which is crucial to deriving the large deviation property.

Proposition 9.9.3 Suppose that Ω is a polish space with a Borel probability measure P and
let {∅,Ω} = F0 ⊆ F1 ⊆ F2 ⊆ . . . be a sequence of filtration. For an integer N ≥ 1,
we define a martingale-difference sequence of Borel functions {ζk}Nk=1 ⊆ Rn such that ζk
is Fk-measurable and E[ζk | Fk−1] = 0. Then, if E[‖ζk‖2] ≤ σ2

k for all k ≥ 1, we have
E[‖

∑N
k=1 ζk‖2] ≤

∑N
k=1 σ

2
k and the following statement holds true,

Prob

∥∥∥∥∥
N∑
k=1

ζk

∥∥∥∥∥
2

≥ λ
N∑
k=1

σ2
k

 ≤ 1
λ
, for all λ ≥ 0.

This is a general result concerning about the large deviations of vector martingales; see,
e.g., Juditsky and Nemirovski [2008, Theorem 2.1] or Ghadimi and Lan [2013b, Lemma 2.3].
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Proof of Theorem 9.3.2. Summing up the inequality in Lemma 9.9.2 over t = 0, 1, 2, . . . , T−
1 yields that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ fδ(x
0)−E[fδ(x

T )]
η

+ η · (8
√

2π)cd3/2L3T
δ

.

By Proposition 9.2.6, we have f(x0) ≤ fδ(x0) ≤ f(x0) + δL. In addition, we see from the
definition of fδ that fδ(x) ≥ infx∈Rd f(x) for any x ∈ Rd and thus E[fδ(x

T )] ≥ infx∈Rd f(x).
Putting these pieces together with f ∈ Fd(∆, L) yields that

fδ(x
0)− E[fδ(x

T )] ≤ f(x0)− inf
x∈Rd

f(x) + δL ≤ ∆ + δL.

Therefore, we conclude that

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ ∆+δL

ηT
+ η · (8

√
2π)cd3/2L3

δ
≤ ∆+δL

ηT
+ η · 100cd3/2L3

δ
.

Recalling that η = 1
10

√
δ(∆+δL)

cd3/2L3T
, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2L3

T
(L+ ∆

δ
).

Since the random count R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled, we have

E[‖∇fδ(xR)‖2] = 1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2L3

T
(L+ ∆

δ
). (9.9)

By Theorem 9.3.1, we have ∇fδ(xR) ∈ ∂δf(xR). This together with the above inequality
implies that

E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ E[‖∇fδ(xR)‖] ≤ 5
(
cd3/2L3

T
(L+ ∆

δ
)
) 1

4
.

Therefore, we conclude that there exists some T > 0 such that the output of Algorithm 29
satisfies that E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the total number of calling the function
value oracles is bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

))
.

This completes the proof.
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Proof of Theorem 9.3.4. By the definition of s? and using the Cauchy-Schwarz inequality,
we have

‖gs?‖2 = min
s=0,1,2,...,S−1

‖gs‖2 ≤ min
s=0,1,2,...,S−1

{
2‖∇fδ(x̄s)‖2 + 2‖gs −∇fδ(x̄s)‖2

}
≤ 2

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 + max

s=0,1,2,...,S−1
‖gs −∇fδ(x̄s)‖2

)
. (9.10)

This implies that

‖∇fδ(x̄s?)‖2 ≤ 2‖gs?‖2 + 2‖gs? −∇fδ(x̄s?)‖2 (9.11)
Eq. (9.10)

≤ 4

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2

)
+ 4

(
max

s=0,1,2,...,S−1
‖gs −∇fδ(x̄s)‖2

)
+ 2‖gs? −∇fδ(x̄s?)‖2.

The next step is to provide the probabilistic bounds on all the terms in the right-hand side
of Eq. (9.11). In particular, for each s = 0, 1, 2, . . . , S − 1, we have x̄s is an output obtained

by calling Algorithm 29 with x0, d, δ, T and η = 1
10

√
δ(∆+δL)

cd3/2L3T
. Then, Eq. (9.9) in the proof

of Theorem 9.3.2 implies that

E[‖∇fδ(x̄s)‖2] ≤ 20

√
cd3/2L3

T
(L+ ∆

δ
).

Using the Markov’s inequality, we have

Prob

(
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2L3

T
(L+ ∆

δ
)

)
≤ 1

2
.

Thus, we have

Prob

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2L3

T
(L+ ∆

δ
)

)
≤ 2−S. (9.12)

Further, for each s = 0, 1, 2, . . . , S − 1, we have

gs −∇fδ(x̄s) = 1
B

B−1∑
k=0

(gks −∇fδ(x̄s)).

By Lemma 9.9.1, we have E[gts|x̄s] = ∇fδ(x̄s) and E[‖gts‖2|x̄s] ≤ 16
√

2πdL2. This implies
that

E[gts −∇fδ(x̄s)|x̄s] = 0, E[‖gts −∇fδ(x̄s)‖2] ≤ 16
√

2πdL2.

This together with Proposition 9.9.3 yields that

Prob
(
‖gs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdL2)
B

)
= Prob

∥∥∥∥∥
B−1∑
k=0

(gks −∇fδ(x̄s))

∥∥∥∥∥
2

≥ λB(16
√

2πdL2)

 ≤ 1
λ
.
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Therefore, we conclude that

Prob

(
max

s=0,1,2,...,S−1
‖gs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdL2)
B

)
≤ S

λ
. (9.13)

By the similar argument, we have

Prob(‖gs? −∇fδ(x̄s?)‖2 ≥ λ(16
√

2πdL2)
B

) ≤ 1
λ
. (9.14)

Combining Eq. (9.11), Eq. (9.12), Eq. (9.13) and Eq. (9.14) yields that

Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2L3

T
(L+ ∆

δ
) + λ(96

√
2πdL2)
B

)
≤ S+1

λ
+ 2−S, for all λ > 0.

(9.15)

We set λ = 2(S+1)
Λ

and the parameters (T, S,B) as follows,

T = cd3/2L3(L+ ∆
δ

)(160
ε2

)2, S = dlog2( 2
Λ

)e, B = (384
√

2πdL2)(S+1)
Λε2

.

Then, we have

Prob
(
‖∇fδ(x̄s?)‖2 ≥ ε2

)
≤ Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2L3

T
(L+ ∆

δ
) + λ(96

√
2πdL2)
B

)
≤ Λ.

By Theorem 9.3.1, we have ∇fδ(x̄s?) ∈ ∂δf(x̄s?). This together with the above inequality
implies that there exists some T, S,B > 0 such that the output of Algorithm 30 satisfies that
E[min{‖g‖ : g ∈ ∂δf(x̄s?)}] ≤ ε and the total number of calling the function value oracles is
bounded by

O

(
d

3
2

(
L4

ε4
+

∆L3

δε4

)
log2

(
1

Λ

)
+
dL2

Λε2
log2

(
1

Λ

))
.

This completes the proof.

9.10 Missing Proofs for Stochastic Gradient-Free

Methods

We present some lemmas for analyzing the convergence property of stochastic gradient-free
method and its two-phase version. We also give the proofs of Theorem 9.3.5 and 9.3.6.

Technical lemmas. We provide two lemmas for analyzing Algorithm 31. The first lemma
gives an upper bound on the quantity E[‖ĝt‖2|xt] in terms of problem dimension d ≥ 1 and
the constant G > 0. The proof is based on a modification of the proof of Lemma 9.9.1.

Lemma 9.10.1 Suppose that {ĝt}T−1
t=0 and {xt}T−1

t=0 are generated by Algorithm 31. Then,
we have E[ĝt|xt] = ∇fδ(xt) and E[‖ĝt‖2|xt] ≤ 16

√
2πdG2.
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Proof. By the definition of ĝt and the symmetry of the distribution of wt, we have

E[ĝt | xt] = E
[
d
2δ

(F (xt + δwt, ξt)− F (xt − δwt, ξt))wt | xt
]

= 1
2

(
E
[
d
δ
F (xt + δwt, ξt)wt | xt

]
+ E

[
d
δ
F (xt + δ(−wt), ξt)(−wt) | xt

])
= E

[
d
δ
F (xt + δwt, ξt)wt | xt

]
.

By the tower property, we have

E[ĝt | xt] = E
[
d
δ
E[F (xt + δwt, ξt)wt | xt,wt] | xt

]
= E

[
d
δ
f(xt + δwt)wt | xt

]
= ∇fδ(xt).

It remains to show that E[‖ĝt‖2 | xt] ≤ 16
√

2πdG2. Indeed, by using the same argument as
used in the proof of Lemma 9.9.1, we have

E[‖ĝt‖2|xt] ≤ d2

δ2E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt]. (9.16)

For simplicity, we let h(w) = F (xt + δw, ξt). Since F (·, ξ) is L(ξ)-Lipschitz, this function h
is δL(ξt)-Lipschitz given a fixed xt and ξt. In addition, wt ∈ Rd is sampled uniformly from
a unit sphere. Then, by Wainwright [2019, Proposition 3.11 and Example 3.12], we have

P(|h(wt)− E[h(wt)]| ≥ α) ≤ 2
√

2πe
− α2d

8δ2L(ξt)2 .

Then, we have

E[(h(wt)− E[h(wt)])2] =

∫ +∞

0

P((h(wt)− E[h(wt)])2 ≥ α) dα

=

∫ +∞

0

P(|h(wt)− E[h(wt)]| ≥
√
α) dα ≤ 2

√
2π

∫ +∞

0

e
− αd

8δ2L(ξt)2 dα

= 2
√

2π · 8δ2L(ξt)2

d
= 16

√
2πδ2L(ξt)2

d
.

By the definition of h, we have

E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt] ≤ 16
√

2πδ2

d
E[L(ξt)2].

Since ξt is simulated from the distribution Pµ, we have E[L(ξt)2] ≤ G2. Plugging this into
the above inequality, we have

E[(F (xt + δwt, ξt)− E[F (xt + δwt, ξt) | xt, ξt])2 | xt] ≤ 16
√

2πδ2G2

d
(9.17)

Combining Eq. (9.16) and Eq. (9.17) yields the desired inequality. �

The second lemma gives a key descent inequality for analyzing Algorithm 31.

Lemma 9.10.2 Suppose that {xt}T−1
t=0 are generated by Algorithm 31. Then, we have

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η

+ η · (8
√

2π)cd3/2G3

δ
, for all 0 ≤ t ≤ T − 1.
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Proof. Since f(·) = Eξ∈Pµ [F (·, ξ)] and F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for
some G > 0, we have f is G-Lipschitz. Then, by Proposition 9.2.6, we have fδ is differentiable

with the cG
√
d

δ
-Lipschitz gradient where c > 0 is a constant. This implies that

fδ(x
t+1) ≤ fδ(x

t)− η〈∇fδ(xt), ĝt〉+ cη2G
√
d

2δ
‖ĝt‖2.

Taking the expectation of both sides conditioned on xt and using Lemma 9.10.1, we have

E[fδ(x
t+1) | xt] ≤ fδ(x

t)− η〈∇fδ(xt),E[ĝt | xt]〉+ cη2G
√
d

2δ
E[‖ĝt‖2 | xt]

≤ fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · cG

√
d

2δ
· 16
√

2πdG2

= fδ(x
t)− η‖∇fδ(xt)‖2 + η2 · (8

√
2π)cd3/2G3

δ
.

Taking the expectation of both sides and rearranging yields that

E[‖∇fδ(xt)‖2] ≤ E[fδ(x
t)]−E[fδ(x

t+1)]
η

+ η · (8
√

2π)cd3/2G3

δ
.

This completes the proof. �

Proof of Theorem 9.3.5. Summing up the inequality in Lemma 9.10.2 over t = 0, 1, 2, . . . , T−
1 yields that

T−1∑
t=0

E[‖∇fδ(xt)‖2] ≤ fδ(x
0)−E[fδ(x

T )]
η

+ η · (8
√

2π)cd3/2G3T
δ

.

Since f(·) = Eξ∈Pµ [F (·, ξ)] and F (·, ξ) is L(ξ)-Lipschitz with Eξ∈Pµ [L2(ξ)] ≤ G2 for some
G > 0, we have f is G-Lipschitz. Thus, we have f ∈ Fd(∆, L). By using the same argument
as used in the proof of Theorem 9.3.2, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ ∆+δG

ηT
+ η · (8

√
2π)cd3/2G3

δ
≤ ∆+δG

ηT
+ η · 100cd3/2G3

δ
.

Recalling that η = 1
10

√
δ(∆+δG)

cd3/2G3T
, we have

1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2G3

T
(G+ ∆

δ
).

Since the random count R ∈ {0, 1, 2, . . . , T − 1} is uniformly sampled, we have

E[‖∇fδ(xR)‖2] = 1
T

(
T−1∑
t=0

E[‖∇fδ(xt)‖2]

)
≤ 20

√
cd3/2G3

T
(G+ ∆

δ
). (9.18)
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By Theorem 9.3.1, we have ∇fδ(xR) ∈ ∂δf(xR). This together with the above inequality
implies that

E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ E[‖∇fδ(xR)‖] ≤ 5
(
cd3/2G3

T
(G+ ∆

δ
)
) 1

4
.

Therefore, we conclude that there exists some T > 0 such that the output of Algorithm 31
satisfies that E[min{‖g‖ : g ∈ ∂δf(xR)}] ≤ ε and the total number of calling the function
value oracles is bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

))
.

This completes the proof.

Proof of Theorem 9.3.6. By the definition of s? and using the Cauchy-Schwarz inequality,
we have

‖ĝs?‖2 = min
s=0,1,2,...,S−1

‖ĝs‖2 ≤ min
s=0,1,2,...,S−1

{
2‖∇fδ(x̄s)‖2 + 2‖ĝs −∇fδ(x̄s)‖2

}
(9.19)

≤ 2

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 + max

s=0,1,2,...,S−1
‖ĝs −∇fδ(x̄s)‖2

)
.

This implies that

‖∇fδ(x̄s?)‖2 ≤ 2‖ĝs?‖2 + 2‖ĝs? −∇fδ(x̄s?)‖2 (9.20)
Eq. (9.19)

≤ 4

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2

)
+ 4

(
max

s=0,1,2,...,S−1
‖ĝs −∇fδ(x̄s)‖2

)
+ 2‖ĝs? −∇fδ(x̄s?)‖2.

The next step is to provide the probabilistic bounds on all the terms in the right-hand side
of Eq. (9.20). In particular, for each s = 0, 1, 2, . . . , S − 1, we have x̄s is an output obtained

by calling Algorithm 31 with x0, d, δ, T and η = 1
10

√
δ(∆+δG)

cd3/2G3T
. Then, Eq. (9.18) in the proof

of Theorem 9.3.5 implies that

E[‖∇fδ(x̄s)‖2] ≤ 20

√
cd3/2G3

T
(G+ ∆

δ
).

Using the Markov’s inequality, we have

Prob

(
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2G3

T
(G+ ∆

δ
)

)
≤ 1

2
.

Thus, we have

Prob

(
min

s=0,1,2,...,S−1
‖∇fδ(x̄s)‖2 ≥ 40

√
cd3/2G3

T
(G+ ∆

δ
)

)
≤ 2−S. (9.21)
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Further, for each s = 0, 1, 2, . . . , S − 1, we have

ĝs −∇fδ(x̄s) = 1
B

B−1∑
k=0

(ĝks −∇fδ(x̄s)).

By Lemma 9.10.1, we have E[ĝts|x̄s] = ∇fδ(x̄s) and E[‖ĝts‖2|x̄s] ≤ 16
√

2πdG2. This implies
that

E[ĝts −∇fδ(x̄s)|x̄s] = 0, E[‖ĝts −∇fδ(x̄s)‖2] ≤ 16
√

2πdG2.

This together with Proposition 9.9.3 yields that

Prob
(
‖ĝs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdG2)
B

)
= Prob

∥∥∥∥∥
B−1∑
k=0

(ĝks −∇fδ(x̄s))

∥∥∥∥∥
2

≥ λB(16
√

2πdG2)

 ≤ 1
λ
.

Therefore, we conclude that

Prob

(
max

s=0,1,2,...,S−1
‖ĝs −∇fδ(x̄s)‖2 ≥ λ(16

√
2πdG2)
B

)
≤ S

λ
. (9.22)

By the similar argument, we have

Prob(‖ĝs? −∇fδ(x̄s?)‖2 ≥ λ(16
√

2πdG2)
B

) ≤ 1
λ
. (9.23)

Combining Eq. (9.20), Eq. (9.21), Eq. (9.22) and Eq. (9.23) yields that

Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2G3

T
(G+ ∆

δ
) + λ(96

√
2πdG2)
B

)
≤ S+1

λ
+ 2−S, for all λ > 0.

(9.24)

We set λ = 2(S+1)
Λ

and the parameters (T, S,B) as follows,

T = cd3/2G3(G+ ∆
δ

)(160
ε2

)2, S = dlog2( 2
Λ

)e, B = (384
√

2πdG2)(S+1)
Λε2

.

Then, we have

Prob
(
‖∇fδ(x̄s?)‖2 ≥ ε2

)
≤ Prob

(
‖∇fδ(x̄s?)‖2 ≥ 160

√
cd3/2G3

T
(G+ ∆

δ
) + λ(96

√
2πdG2)
B

)
≤ Λ.

By Theorem 9.3.1, we have ∇fδ(x̄s?) ∈ ∂δf(x̄s?). This together with the above inequality
implies that there exists some T, S,B > 0 such that the output of Algorithm 32 satisfies that
E[min{‖g‖ : g ∈ ∂δf(x̄s?)}] ≤ ε and the total number of calling the function value oracles is
bounded by

O

(
d

3
2

(
G4

ε4
+

∆G3

δε4

)
log2

(
1

Λ

)
+
dG2

Λε2
log2

(
1

Λ

))
.

This completes the proof.
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Figure 9.5: Addional experimental results on the CIFAR10 dataset [Krizhevsky and Hinton,
2009]. (Above) Performance of 2-SGFM with different choices of B. (Bottom) Performance
of 2-SGFM and SGD.

9.11 Additional Experimental Results on Cifra10

We evaluate the performance of our two-phase SGFM (cf. Algorithm 32) on the CIFAR10
dataset [Krizhevsky and Hinton, 2009] using convolutional neural networks (CNNs) with
ReLU activations. We provide the details about the network architecture as follows,
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class CNN_CIFAR(nn.Module):
def __init__(self):

super(CNN_CIFAR, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
out = F.log_softmax(out, dim=1)
return out

Moreover, we summarize the experimental results in Figure 9.5. In the above two figures,
we study the effect of batch size B ≥ 1 in 2-SGFM on the CIFAR10 dataset. In the bottom
two figures, we compare the performance of SGD and 2-SGFM. Overall, these results show
promising performance of our proposed gradient-free method on solving real-world complex
image classification problems.
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Chapter 10

Adaptive and Doubly Optimal
Learning in Games

Online gradient descent (OGD) is well known to be doubly optimal under strong convexity
or monotonicity assumptions: (1) in the single-agent setting, it achieves an optimal regret
of Θ(log T ) for strongly convex cost functions; and (2) in the multi-agent setting of strongly
monotone games, with each agent employing OGD, we obtain last-iterate convergence of the
joint action to a unique Nash equilibrium at an optimal rate of Θ( 1

T
). While these finite-

time guarantees highlight its merits, OGD has the drawback that it requires knowing the
strong convexity/monotonicity parameters. In this paper, we design a fully adaptive OGD
algorithm, AdaOGD, that does not require a priori knowledge of these parameters. In the
single-agent setting, our algorithm achieves O(log2(T )) regret under strong convexity, which
is optimal up to a log factor. Further, if each agent employs AdaOGD in strongly monotone
games, the joint action converges in a last-iterate sense to a unique Nash equilibrium at a

rate of O( log3 T
T

), again optimal up to log factors. We illustrate our algorithms in a learning
version of the classical newsvendor problem, where due to lost sales, only (noisy) gradient
feedback can be observed. Our results immediately yield the first feasible and near-optimal
algorithm for both the single-retailer and multi-retailer settings. We also extend our results
to the more general setting of exp-concave cost functions and games, using the online Newton
step (ONS) algorithm.

10.1 Introduction

The problem of online learning with gradient feedback [Blum, 1998, Shalev-Shwartz, 2012,
Hazan, 2016] can be described in its essential form by the following adaptive decision-making
process:

1. An agent interfaces with the environment by choosing an action xt ∈ X at period t
where X ⊆ Rd is a convex and compact set. For example, the action is a route in a
traffic network or an output quantity in an oligopoly. The agent chooses xt through
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an online learning algorithm, which makes its choice adaptively based on observable
historical information.

2. The environment then returns a cost function ft(·) so that the agent incurs cost ft(x
t)

and receives ∇ft(xt) as feedback. The process then moves to the next period t+ 1 and
repeats.

One appealing feature of the online learning framework is that one need not impose any
statistical regularity assumption: f1(·), . . . , fT (·) can be an arbitrary fixed sequence of cost
functions, hence accommodating a non-stationary or even adversarial environment. Further,
the cost function ft(·) does need not to be known by the agent (and indeed in many applica-
tions it is not known); only the gradient feedback is needed. In this general framework, the
standard metric for judging the performance of an online learning algorithm is regret [Blum
and Mansour, 2007]—the difference between the total cost incurred by the algorithm up to
T and the total cost incurred by the best fixed action in hindsight:

Regret(T ) =
T∑
t=1

ft(x
t)−min

x∈X

{
T∑
t=1

ft(x)

}
.

If the average regret (obtained by dividing by T ) goes to zero, then the algorithm is referred
to as a “no-regret learning algorithm.”

A canonical example of a no-regret learning algorithm is online gradient descent (OGD),
where the agent takes a gradient step (given the current action xt) and performs a projection
step onto X to obtain the next action xt+1. Analyzing OGD in the standard setting where the
cost function ft is convex, Zinkevich [2003] proved that the algorithm with the stepsize rule
ηt = 1√

T
achieves a regret bound of Θ(

√
T ), which is known to be minimax optimal [Hazan,

2016]. If ft is further assumed to be µ-strongly convex, Hazan et al. [2007] proved that
the algorithm with the stepsize rule ηt = 1

µt
achieves a regret bound of Θ(log T ); again this

rate is minimax optimal. In fact, the Θ(log T ) regret bound is achievable even for a class
of cost functions that are more general than strongly convex cost functions: if ft is exp-
concave—a class of functions properly subsuming strongly convex functions that has found
widespread applications—then the online Newton step (ONS) [Hazan et al., 2007] achieves
the minimax optimal regret bound of Θ(d log T ). In summary, OGD and ONS provide two
of the most well-known optimal no-regret learning algorithms in the online learning/online
convex optimization literature, with their algorithmic simplicity and theoretical elegance
being matched by their broad applicability in practice.

Given their appealing theoretical and practical properties, the aforementioned no-regret
learning algorithms such as OGD and ONS have also served as natural candidates for game-
theoretic learning. In this setting, each agent makes online decisions in an environment
consisting of other agents, each of whom are making adaptive decisions. Even if the game
is fixed, the fact that all agents are adjusting their strategies simultaneously means that the
stream of costs seen by any single agent is non-stationary and complex. It might be hoped
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that no-regret learning—given its robustness to assumptions—can cope with the complexity
of the multi-agent setting. An extensive literature has shown that this hope is borne out—
under no-regret dynamics, the time average of the joint actions converges to equilibria in
various classes of games [Cesa-Bianchi and Lugosi, 2006, Shoham and Leyton-Brown, 2008,
Viossat and Zapechelnyuk, 2013, Bloembergen et al., 2015, Monnot and Piliouras, 2017].

Further progress in the online learning and optimization literature has yielded more re-
fined statements regarding convergence; in particular, last-iterate rate guarantees have been
established for many no-regret learning algorithms. This leads to an analogous question for
the game-theoretic setting: If each agent employs a no-regret learning algorithm to minimize
its own regret, can the joint action converge to a Nash equilibrium at an optimal last-iterate
rate?

An affirmative answer to this question1 would establish a remarkable “double optimality”
for an online algorithm: while the algorithm itself is only designed for maximizing the
(transient) performance for a finite time horizon T , the resulting long-run performance would
also be optimal for all agents, in the sense that any agent, by unilaterally deviating from
the action suggested by the algorithm, could only incur higher cost (by the definition of a
Nash equilibrium). Without this double optimality, an agent could incur “regret” in the long
term, since it may do better by not following such an algorithm.

To address this question, it is necessary to study the last-iterate convergence of algorithms
(i.e., the convergence of the actual joint action), a problem that has been recognized to be
considerably more difficult than the characterization of convergence of time averages [Krich-
ene et al., 2015a, Balandat et al., 2016, Zhou et al., 2017, 2018, Mertikopoulos et al., 2019,
Mertikopoulos and Zhou, 2019]. For instance, as pointed out by Mertikopoulos et al. [2018],
there are situations where the time average of the iterate converges to a Nash equilibrium,
but the last iterate cycles around the equilibrium point. Progress has been made on this
problem during the past five years, but much of it only provides qualitative or asymptotic
results, with only a few quantitative (finite-time, last-iterate convergence guarantees) results
obtained, for games having special structures or using metrics other than the distance to
Nash equilibria. In particular, Zhou et al. [2021] established the last-iterate convergence of
multi-agent OGD to the unique Nash equilibrium in strongly monotone games2 at an opti-
mal rate of Θ( 1

T
). This optimal convergence rate continues to hold even when the gradient

feedback is corrupted by certain forms of noise, in which case we have E[‖xt−x?‖2
2] = Θ( 1

T
),

where xt is the (random) joint action of all agents and x? is the unique Nash equilibrium.3

Thus, OGD is doubly optimal when a strong convexity structure is available (i.e., the game is

1For instance, if each vehicle in a traffic network employs an optimal no-regret learning algorithm (such
as OGD) to choose their route adaptively over a certain horizon, would the system converge to a stable
traffic distribution or devolve to perpetual congestion as users ping-pong between different routes? If it does
converge to a stable distribution, is it Nash? Because if not, each agent is being irrational—by not following
the no-regret learning algorithm, agents can do individually do better.

2When the strongly monotone games have Lipschitz gradients—a condition that does not hold in many
games of interest—a classic result from the variational inequality literature implies that multi-agent OGD
converges to the unique Nash equilibrium at a geometric rate due to a contraction.

3This result is further generalized in Loizou et al. [2021], who obtain the same last-iterate convergence
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strongly monotone or the cost functions are strongly convex from a single-agent perspective),
giving a compelling argument for its adoption in single-agent and multi-agent settings.

However, this argument suffers from a key, subtle weakness: the theoretical guarantees
for OGD require choices of step size, in both single-agent [Hazan et al., 2007] and multi-
agent [Zhou et al., 2021] settings, and these choices require prior knowledge of problem
parameters. In particular, it is generally assumed that the strong convexity parameter of
the cost functions (single-agent) or the strong monotonicity parameter of the game (multi-
agent) are known. Thus, OGD’s appealing guarantees are not feasible in practice if the choice
of step sizes cannot be made fully adaptive to problem parameters. Further, the feasibility
issue is more acute in the multi-agent setting: in addition to requiring prior knowledge of
problem parameters for step-size designs, recent work on adaptive OGD has assumed that
each agent determines their step size using global information from all agents [Lin et al.,
2020e, Antonakopoulos et al., 2021, Hsieh et al., 2021]. This is a practical and theoretical
conundrum—if the agents can achieve this level of coordination, learning would be unnec-
essary in the first place. The same issue occurs for ONS in the single-agent setting, where
the exp-concave parameter is needed as an input to the algorithm.4 Consequently, the fea-
sibility considerations lead us to consider the following question: Can we design a feasible
and doubly optimal variant of OGD under strong convexity and strong monotonicity? What
about ONS?

Our answer is a “yes” in a strong sense. We present a single feasible OGD algorithm—and
hence a single parameter-adaptive scheme—that simultaneously (up to log factors) achieves
optimal regret in the single-agent setting and optimal last-iterate convergence rate to the
unique Nash equilibrium in the multi-agent setting. This analysis is different from and more
challenging than that involved in the design of feasible OGD algorithms separately for single-
agent and multi-agent settings. In particular, it could be that an effective adaptive scheme
for the strong convexity parameter in single-agent setting is different from that for the strong
monotonicity parameter in multi-agent setting, in which case one has at best either a feasible
algorithm with optimal regret or a feasible algorithm that has an optimal convergence-to-
Nash guarantee, but not both. Such results would still be of considerable value but our
results in this paper show that such intermediate results can be bypassed; indeed, the best
of both worlds can be achieved. We also develop a single feasible variant of ONS that (up to
log factors) achieves optimal regret in the single-agent setting with exp-concave loss functions
and optimal time-average convergence rate to the unique Nash equilibrium in the multi-agent
setting. For the latter result we introduce and analyze a new class of exp-concave games.

Our results can also be cast in the framework of variational inequalities (VIs). Indeed,
they can be viewed as contributing to the VI literature by presenting a decentralized, feasible
optimization algorithm for finding a solution of a strongly monotone VI. We prefer to empha-
size, however, the online learning perspective, and the design of no-regret algorithms, given

rate for strongly variationally stable games, under weaker noise assumptions.
4The multi-agent ONS has not yet been explored, and even the time-average convergence of ONS still

remains to be established.
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the direct connection of those algorithms to game-theoretic settings. In multi-agent games,
it is natural to focus on decentralized algorithms and on algorithms that make minimal as-
sumptions about their environment, allowing that environment to consist of other agents that
may be responding in complex ways to an agent’s actions. Our double optimality contribu-
tions are best understood as a further weakening of these assumptions, allowing interacting
agents to choose actions effectively in an unknown, possibly adversarial, environment.

Related works. In both single-agent online learning and offline optimization, consider-
able attention has been paid to the development of adaptive gradient-based schemes. In
particular, Duchi et al. [2011] presented an adaptive gradient algorithm (known as AdaGrad)
for online learning with convex cost functions that updates the step sizes without needing to
know the problem parameters. This algorithm is guaranteed to achieve a minimax-optimal
regret of O(

√
T ). Subsequently, Adam was proposed in the offline optimization setting to

further exploit geometric aspects of iterate trajectories, exhibiting better empirical conver-
gence performance [Kingma and Ba, 2015]. Theoretical guarantees have been obtained for
Adam and other related adaptive algorithms in both offline optimization and online learning
settings [Reddi et al., 2018b, Zou et al., 2019]. In parallel, the norm version of AdaGrad was
developed and theoretical guarantees were established for related convex and/or nonconvex
optimization problems [Levy, 2017, Levy et al., 2018, Ward et al., 2019, Li and Orabona,
2019].

This adaptive family of algorithms has also been studied in the online learning literature
under an assumption of strong convexity [Mukkamala and Hein, 2017, Wang et al., 2020].
The algorithms are guaranteed to achieve a minimax-optimal regret of O(log(T )). However,
unlike in the convex setting, these adaptive algorithms are not feasible in practice since
they often require knowledge of the strong convexity parameter. In the offline optimization
setting, the gradient-based methods can be made adaptive to the strong convexity parameter
by exploiting the Polyak stepsize [Polyak, 1987, Hazan and Kakade, 2019]. However, these
algorithms do not extend readily to online learning since the sub-optimality gap is not well-
defined. A recent line of research has shown that adaptive algorithms can be designed in the
finite-sum setting, where they exhibit adaptivity to the strong convexity parameter [Roux
et al., 2012, Defazio et al., 2014, Xu et al., 2017, Lei and Jordan, 2017, 2020, Vaswani et al.,
2019, Nguyen et al., 2022]. In particular, Lei and Jordan [2017, 2020] showed that the use of
random, geometrically-distributed epoch length yields full adaptivity in variance-controlled
stochastic optimization under an assumption of strong convexity. However, these algorithm
are not no-regret and thus their strategies do not extend readily to the online setting.

In terms of the last-iterate convergence to Nash equilibria, due to the difficulties men-
tioned earlier, much of the existing literature provides only qualitative convergence guar-
antees for non-adaptive (and hence infeasible) no-regret learning algorithms for various
games [Krichene et al., 2015a, Balandat et al., 2016, Zhou et al., 2017, 2018, Mertikopoulos
et al., 2019, Mertikopoulos and Zhou, 2019]. More recently, finite-time last-iterate con-
vergence rates have been obtained for specially structured games, such as strongly mono-



CHAPTER 10. ADAPTIVE AND DOUBLY OPTIMAL LEARNING IN GAMES 314

tone games [Zhou et al., 2021, Loizou et al., 2021], unconstrained cocoercive games [Lin
et al., 2020e], unconstrained smooth games [Golowich et al., 2020a] and constrained smooth
games [Cai et al., 2022]. Except for a class of strongly monotone games, the last-iterate
convergence rate is measured in metrics other than ‖xt−x?‖2

2. Further, among these results,
only Lin et al. [2020e] provides an adaptive online learning algorithm that does not require
knowing the cocoercivity parameter. However, their algorithm falls short in two respects: (i)
it may not be no-regret; (ii) each agent needs to know all other agents’ gradients, thus again
rendering it infeasible in practice. Recently, Antonakopoulos et al. [2021] has developed an
adaptive extragradient algorithm for strictly monotone games that converges asymptotically
in a last-iterate sense to the unique Nash equilibrium. However, their algorithm also requires
each agent to know all others’ gradients and the no-regret property cannot be guaranteed;
indeed, the original extragradient algorithm was shown to not be no-regret [Golowich et al.,
2020a]. Hsieh et al. [2021] has proposed a no-regret adaptive online learning algorithm based
on optimistic mirror descent and established a regret of O(

√
T ) for convex cost functions.

They also proved asymptotic last-iterate convergence to the unique Nash equilibrium for
strictly variationally stable games (a superset of strictly monotone games).

Another line of relevant literature focuses on stochastic approximation methods for solv-
ing strongly monotone VIs. An early proposal using such an approach was presented by Jiang
and Xu [2008], who proposed a stochastic projection method for solving strongly monotone
VIs with an almost-sure convergence guarantee. Koshal et al. [2012] and Yousefian et al.
[2013] proposed various regularized iterative stochastic approximation methods for solving
monotone VIs and also established almost-sure convergence. A survey of these methods, as
well as applications and the theory behind stochastic VI, can be found in Shanbhag [2013]. Ju-
ditsky et al. [2011] was among the first to establish an iteration complexity bound for stochas-
tic VI methods by extending the mirror-prox method [Nemirovski, 2004] to stochastic set-
ting. Yousefian et al. [2014] further extended the stochastic mirror-prox method with a more
general step size choice and proved the same iteration complexity. They also proved an
improved complexity bound for the stochastic extragradient method for solving strongly
monotone VIs. Chen et al. [2017] studied a specific class of VIs and proposed a method
that combines the stochastic mirror-prox method with Nesterov’s acceleration [Nesterov,
2018], resulting in an optimal iteration complexity for such problem class. Kannan and
Shanbhag [2019] analyzed a general variant of an extragradient method (which uses gen-
eral distance-generating functions) and proved an optimal iteration bound under a slightly
weaker assumption than strong monotonicity. Several other stochastic methods have also
been shown to yield an optimal iteration bound for solving strongly monotone VIs [Kotsalis
et al., 2022, Huang and Zhang, 2022b]. In recent years, there have been developments in
variance-reduction-based methods [Balamurugan and Bach, 2016, Iusem et al., 2017, 2019,
Jalilzadeh and Shanbhag, 2019, Yu et al., 2022, Alacaoglu and Malitsky, 2022, Jin et al.,
2022, Huang et al., 2022a]. In the line of research aiming to model multistage stochastic
VI (as compared to the single-stage VI considered in the aforementioned literature), the
dynamics between the actions and the arrival of future information plays a central role. For
further details regarding multistage stochastic VI, we refer to Rockafellar and Wets [2017]
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and Rockafellar and Sun [2019].
We also note that there is a line of work focusing on parameter-free online learning [Fos-

ter et al., 2015, 2017, Orabona and Pál, 2016, Cutkosky and Orabona, 2018, Jun and
Orabona, 2019, Cutkosky, 2020a,b]. This work considers an alternative form of regret:
RegretT (x) =

∑T
t=1 ft(x

t)−
∑T

t=1 ft(x), where x ∈ X is an unknown competitor. The goal is
to achieve expected regret bounds that have optimal dependency not only on T but also ‖x‖.
Notably, their framework provides a way to design algorithms that achieve minimax-optimal
regret with respect to any competitor, without imposing a bounded set for the competitor
nor any parameter to tune in online convex optimization. However, the strong convexity
parameter and the exp-concavity parameter both characterize the lower bound for curva-
ture information. Estimating these quantities will require new techniques. In summary, the
possibility of designing an online algorithm that is both doubly optimal and feasible under
strong convexity still remains open.

Contributions. We present a feasible variant of OGD that we refer to as AdaOGD that
does not require knowing any problem parameter. It is guaranteed to achieve a minimax
optimal (up to a log factor) regret bound of O(log2(T )) in the single-agent setting with
strongly convex cost functions. Further, in a strongly monotone game, if each agent em-
ploys AdaOGD, we show that the joint action converges to the unique Nash equilibrium in a

last-iterate sense at a rate of O( log3(T )
T

), again optimal up to log factors. In comparison, the
existing single-agent OGD [Hazan, 2016] and multi-agent OGD [Zhou et al., 2021] methods
require prior knowledge of the strong convexity/monotonicity parameter (respectively) to
perform the step-size design with theoretical guarantees. It is worth noting that if the game
has only a single agent, the strong monotonicity parameter degenerates to the strong convex-
ity parameter. However, when there are multiple agents, the strong monotonicity parameter
depends on all agents’ cost functions. As such, one would naturally think that these two
settings would require two different adaptive schemes. Surprisingly, our AdaOGD algorithm,
which is based on a single adaptive principle, works in both settings, achieving optimal regret
in the single-agent setting and optimal last-iterate convergence in the multi-agent setting (up
to log factors). A particularly important application of our results is the problem of learning
to order in the classical newsvendor problem, where due to lost sales, only (noisy) gradi-
ent feedback can be observed. Our results immediately yield the first feasible near-optimal
algorithm—both in the single-retailer setting [Huh and Rusmevichientong, 2009] and in the
multi-retailer setting [Netessine and Rudi, 2003]. This is in contrast to previous work that
requires problem parameters to be known. Indeed, the direct application of our results to
the VI setting yields a decentralized, feasible optimization algorithm for finding a solution
of a strongly monotone VI.

Additionally, we provide a feasible variant of ONS (that we refer to as AdaONS) that
again does not require prior knowledge of any problem parameter. It is also guaranteed
to achieve a minimax optimal regret bound of O(d log2(T )) (up to a log factor) in the
single-agent setting with exp-concave cost functions. Further, we propose a new class of
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exp-concave (EC) games and show that if each agents employs AdaONS, an optimal time-

average convergence rate of O(d log2(T )
T

) is obtained. Much like strongly monotone games that
provide a multi-agent generalization of strongly convex cost functions, the EC games that we
introduce are a natural generalization of exp-concave cost functions from the single-agent to
a multi-agent setting. Again, in this case, a single adaptive scheme works for both of these
two settings. One thing to note here is that we first establish an O(d log(T )

T
) time-average

convergence rate for the multi-agent version of classical ONS that is non-adaptive (and hence
not feasible). To the best of our knowledge, results of this kind have not appeared in the
game-theoretic literature and they yield a decentralized, feasible optimization algorithm for
finding a solution of a new class of VIs in that line of literature.

Perhaps the most surprising takeaway from our work is that both AdaOGD and AdaONS
are based on a simple and unifying randomized strategy that selects the step size based on
a set of independent and identically distributed geometric random variables.

10.2 Feasible Single-Agent Online Learning under

Strongly Convex Costs

We present adaptive OGD (AdaOGD), a feasible single-agent online learning algorithm, and
prove that AdaOGD achieves a near-optimal regret of O(log2(T )) for a class of strongly
convex cost functions. We also show that our algorithm can be used to solve the problem of
adaptive ordering in newsvendor problems with lost sales. To our knowledge, this is the first
feasible no-regret learning algorithm for the newsvendor-with-lost-sales problem with strong
regret guarantees.

Algorithmic scheme. We continue with the setup in the introduction, focusing on strongly
convex cost functions ft:

Definition 10.2.1 A function f : Rd 7→ R is β-strongly convex if f(·)−0.5β‖ · ‖2 is convex.

We work with a general (and relaxed) model of gradient feedback [Flaxman et al., 2005]:

1. At each round t, an unbiased and bounded gradient is observed. That is, the observed
noisy gradient ξt satisfies E[ξt | xt] = ∇ft(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1.

2. The action set X is bounded by a diameter D > 0, i.e., ‖x− x′‖ ≤ D for all x, x′ ∈ X .

A lower bound of Ω(log(T )) has been established in Hazan and Kale [2014, Theorem 18]
under an assumption of perfect gradient feedback. However, even with noisy gradient feed-
back, OGD with a particular step size can achieve the minimax-optimal regret bound of
Θ(log(T )) [Hazan et al., 2007]. In particular, we write OGD as xt+1 ← PX (xt− 1

β(t+1)
∇ft(xt)),

which is equivalent to

ηt+1 ← β(t+ 1), xt+1 ← argmin
x∈X

{(x− xt)>∇ft(xt) + ηt+1

2
‖x− xt‖2}.
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Algorithm 33 AdaOGD(x1, T )

1: Input: initial point x1 ∈ X and the total number of rounds T .
2: Initialization: p0 = 1

log(T+10)
.

3: for t = 1, 2, . . . , T do
4: sample M t ∼ Geometric(p0).
5: set ηt+1 ← t+1√

1+max{M1,...,Mt}
.

6: update xt+1 ← argminx∈X{(x− xt)>ξt + ηt+1

2
‖x− xt‖2}.

The value of β(t+ 1) comes from the key inequality for β-strongly convex functions:

f(x′) ≥ f(x) + (x′ − x)>∇f(x) + β
2
‖x′ − x‖2. (10.1)

Despite the elegance of OGD (and its optimal regret guarantee), however, it is inadequate
since it requires knowledge of the problem parameter β. We can address this issue by
a simple randomization strategy based on independent, identically distributed geometric
random variables, M t ∼ Geometric(p0), for p0 = 1

log(T+10)
; i.e., P(M t = k) = (1 − p0)k−1p0

for k ∈ {1, 2, . . .}. See Algorithm 33.

Remark 10.2.2 (Compared with doubling trick) In the context of online learning, the
doubling trick [Shalev-Shwartz, 2012] is commonly used to make OGD adaptive to specific
unknown parameters under convex costs. In particular, for any algorithm that enjoys a
regret bound of O(

√
T ) but requires the knowledge of T (such as OGD under convex costs),

the doubling trick converts such an algorithm into an algorithm that does not require the
knowledge of T . The idea is to divide the time into periods of increasing size and run the
original algorithm on each period: for m = 0, 1, 2, . . ., we run the original algorithm on the
2m rounds t = 2m, . . . , 2m+1 − 1. The resulting algorithm enjoys a regret bound of O(

√
T ).

However, it is nontrivial to apply the doubling trick to make OGD adaptive to the strongly
convex parameter β under strongly convex costs. In particular, a natural adaptation of
the doubling trick under strongly convex costs is as follows: for m = 0, 1, 2, . . ., we run OGD
with ηt = t

2m
on the rounds t = 2m, . . . , 2m+1 − 1. The analysis contains two parts: (i) for

0 ≤ m ≤ blog2(1/β)c, the regret for each round is O(2m). This leads to a total constant regret
of O(1/β); (ii) for dlog2(1/β)e ≤ m ≤ dlog2(T )e, the regret for each round is O(2m). This
unfortunately leads to a linear regret of O(T ). This argument of course does not eliminate
the possibility that some variant of doubling could lead to doubly optimal learning algorithms
for strongly monotone games. Our results do suggest that a fruitful way to search for such a
procedure would be via some form of randomization.

Remark 10.2.3 (Comparison with geometrization) In offline finite-sum optimization,
the geometrization trick [Lei and Jordan, 2017, 2020]—which sets the length of each epoch as
a geometric random variable—has been used to make the stochastic variance-reduced gradient
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(SVRG) algorithm of Johnson and Zhang [2013] adaptive to both strong convexity parameter
and target accuracy.

While similar in spirit, our approach is not a straightforward application of the ge-
ometrization trick. The key difference between OGD and SVRG is their dependence on the
strongly convexity parameter. The former needs that parameter to set the stepsize while the
latter algorithm needs it to set the length of each epoch. The intuition behind the geometriza-
tion trick is to randomly set the length of each epoch using geometric random variables, al-
lowing terms to telescope across the outer and inner loops; such telescoping does not happen
in SVRG, a fact which leads to the loss of adaptivity for SVRG (see Lei and Jordan [2020,
Section 3.1] for more details). In contrast, our technique is designed to randomly set the
stepsize using geometric random variables, implementing a trade-off for bounding the regret
and last-iterate convergence rate. The telescoping from [Lei and Jordan, 2020] occurs due to
the specific nature of SVRG (or more broadly, the setting of offline finite-sum optimization),
and does not appear in our analysis for AdaOGD and its multi-agent generalization.

Regret guarantees. We present our result on the regret minimization property in the
following theorem.

Theorem 10.2.4 For an arbitrary fixed sequence of β-strongly convex functions f1, . . . , fT ,
where each ft satisfies E[ξt | xt] = ∇ft(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1, and
‖x− x′‖ ≤ D for all x, x′ ∈ X . If the agent employs Algorithm 33, we have

E[Regret(T )] ≤ D2

2
(1 + e

1
β2 log(T+10) ) + G2 log(T+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10).

As a consequence, we have E[Regret(T )] = O(log2(T )).

Remark 10.2.5 Theorem 10.2.4 demonstrates that Algorithm 33 achieves a near-optimal
regret since the upper bound matches the lower bound up to a log factor; indeed, Hazan and
Kale [2014] proved the lower bound of Ω(log(T )) for this setting. Furthermore, Algorithm 33
dynamically adjusts ηt+1 without any prior knowledge of problem parameters, only utilizing
the noisy feedback {ξt}t≥1.

We provide a simple result on the maximum of independent identically distributed (i.i.d.)
geometric random variables.

Proposition 10.2.6 Let X1, . . . , Xn be n i.i.d. geometric random variables: Xi ∼ Geometric(p0)
for all i = 1, 2, . . . , n and with p0 ∈ (0, 1). Defining X̄n = max1≤i≤nXi, we have

+∞∑
n=1

P(X̄n ≤ x) ≤ exp0 ,

and
1 ≤ E[X̄n] ≤ 1+log(n)

p0
.
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To prove Theorem 10.2.4, we also require a descent inequality for the iterates generated by
Algorithm 33.

Lemma 10.2.7 For an arbitrary fixed sequence of β-strongly convex functions f1, . . . , fT ,
where each ft satisfies E[ξt | xt] = ∇ft(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1, and
‖x−x′‖ ≤ D for all x, x′ ∈ X . Letting the iterates {xt}t≥1 be generated by Algorithm 33, we
have
T∑
t=1

E[ft(x
t)−ft(x)] ≤ η1

2
‖x1−x‖2+

T∑
t=1

E
[(

ηt+1−ηt
2
− β

2

)
‖xt − x‖2

]
+G2

2

(
T∑
t=1

E
[

1
ηt+1

])
, for all x ∈ X .

Proof of Theorem 10.2.4. Recall that X is convex and bounded with a diameter D > 0
and we have ηt+1 = t+1√

1+max{M1,...,Mt}
in Algorithm 33, we have

η1

2
‖x1 − x‖2 ≤ D2

2
, ηt+1 − ηt ≤ 1√

1+max{M1,...,Mt}
.

By Lemma 10.2.7, we have

T∑
t=1

E[ft(x
t)−ft(x)] ≤ D2

2
+

T∑
t=1

E
[(

1

2
√

1+max{M1,...,Mt}
− β

2

)
‖xt − x‖2

]
+G2

2

(
T∑
t=1

E
[

1
ηt+1

])
.

(10.2)
Further, we have

T∑
t=1

1
ηt+1 ≤

√
1 + max{M1, . . . ,MT}

(
T∑
t=1

1
t+1

)
≤
√

1 + max{M1, . . . ,MT} log(T + 1).

(10.3)
Plugging Eq. (10.3) into Eq. (10.2) yields that

T∑
t=1

E[ft(x
t)− ft(x)] ≤ D2

2

+
T∑
t=1

E
[(

1

2
√

1+max{M1,...,Mt}
− β

2

)
‖xt − x‖2

]
+ G2 log(T+1)

2
E
[√

1 + max{M1, . . . ,MT}
]
.

Since X is convex and bounded with a diameter D > 0, we have

T∑
t=1

(
1

2
√

1+max{M1,...,Mt}
− β

2

)
‖xt − x‖2 ≤ D2

2

(
T∑
t=1

max

{
0, 1√

1+max{M1,...,Mt}
− β

})
.

This implies that

E[Regret(T )] ≤ D2

2

+D2

2
E

[
T∑
t=1

max

{
0, 1√

1+max{M1,...,Mt}
− β

}]
︸ ︷︷ ︸

I

+G2 log(T+1)
2

E
[√

1 + max{M1, . . . ,MT}
]

︸ ︷︷ ︸
II

.
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It remains to bound the terms I and II using Proposition 10.2.6. Indeed, we have

I =
T∑
t=1

E
[
max

{
0, 1√

1+max{M1,...,Mt}
− β

}]
≤

T∑
t=1

P
(

1√
1+max{M1,...,Mt}

− β ≥ 0

)

=
T∑
t=1

P
(√

1 + max{M1, . . . ,M t} ≤ 1
β

)
≤

T∑
t=1

P
(

max{M1, . . . ,M t} ≤ 1
β2

)
.

Since M1, . . . ,M t are i.i.d. geometric random variables with p0 = 1
log(T+10)

, Proposition 10.2.6
implies that

T∑
t=1

P
(

max{M1, . . . ,M t} ≤ 1
β2

)
≤ e

p0
β2 = e

1
β2 log(T+10) .

Putting these pieces together yields that I ≤ e
1

β2 log(T+10) .
By using Jensen’s inequality and the concavity of g(x) =

√
x, we have

II ≤
√

1 + E [max{M1, . . . ,MT}].

Using Proposition 10.2.6 and p0 = 1
log(T+10)

, we have

E
[
max{M1, . . . ,MT}

]
≤ 1+log(T )

p0
= log(T + 10) + log(T ) log(T + 10).

Putting these pieces together yields that II ≤
√

1 + log(T + 10) + log(T ) log(T + 10). There-
fore, we conclude that

E[Regret(T )] ≤ D2

2
(1 + e

1
β2 log(T+10) ) + G2 log(T+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10)

= D2

2
(1 + e

1
β2 log(T+10) ) + G2 log(T+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10).

This completes the proof.

Application: Feasible learning for Newsvendors with lost sales. The single-retailer
version of the newsvendor problem is a famous model for perishable inventory control [Huh
and Rusmevichientong, 2009]. The assumption in this model is that unsold inventory perishes
at the end of each period. A retailer sells a product over a time horizon T and then makes
inventory-ordering decisions xt ∈ [0, x̄] at the beginning of each period t to maximize the
profit. The unknown demand Dt is random and only realized with a value dt after the retailer
makes her decision. It is often assumed in the inventory control literature that the Dt are
independent, corresponding to a stationary environment. Here, we do not need to make this
assumption and we allow Dt to be arbitrary. Further, in the lost-sales setting, any unmet
demand is lost and hence the retailer does not observe dt; instead, she only observes the
sales quantity min{xt, dt}. The retailer’s cost functions are defined by

ft(x
t) = (p− c) · E[max{0, Dt − xt}] + c · E[max{0, xt −Dt}], (10.4)
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Algorithm 34 Newsvendor-AdaOGD(x1, T )

1: Input: initial point x1 ∈ X and the total number of rounds T .
2: Initialization: p0 = 1

log(T+10)
.

3: for t = 1, 2, . . . , T do
4: sample M t ∼ Geometric(p0).
5: set ηt+1 ← t+1√

1+max{M1,...,Mt}
.

6: observe the sales quantity of min{xt, dt}.

7: update xt+1 ←

 argminx∈[0,x̄]{(x− xt)c+ ηt+1

2
(x− xt)2}, if xt ≥ min{xt, dt},

argminx∈[0,x̄]{(x− xt)(c− p) + ηt+1

2
(x− xt)2}, otherwise.

where the unit purchase cost is c > 0 and the unit selling price is p ≥ c. It is known that
minimizing this cost is equivalent to maximizing the profit, E[p ·min{xt, Dt}− c ·xt], where:

E[p ·min{xt, Dt} − c · xt]
= E

[
p ·
(
Dt −max{0, Dt − xt}

)
− c ·

(
Dt −max{0, Dt − xt}+ max{0, xt −Dt}

)]
= (p− c) · E[Dt]− (p− c) · E[max{0, Dt − xt}]− c · E[max{0, xt −Dt}]
= (p− c) · E[Dt]− ft(xt).

Note that the first term (p− c) · E[Dt] is independent of xt. Thus, the maximization of the
profit E[p ·min{xt, Dt} − c · xt] is equivalent to minimizing the cost ft(·) in Eq. (10.4).

In this context, Huh and Rusmevichientong [2009] have shown that the cost function
ft(·) is convex in general and αp-strongly convex if the demand is a random variable with
a continuous density function q such that infd∈[0,x̄] q(d) ≥ α > 0. Moreover, the retailer
only observes the sales quantity min{xt, dt} where dt is a realization of Dt. Thus, the (noisy)
bandit feedback is not observable. However, a noisy gradient feedback signal can be obtained:

ξt =

{
c, if xt ≥ min{xt, dt},
c− p, otherwise,

which is an unbiased and bounded gradient estimator. In this setting, the parameter α > 0 is
unavailable since the distribution of the demand is unknown. However, the retailer can apply
our AdaOGD algorithm (cf. Algorithm 33) and obtain a near-optimal regret of O(log2(T )).

We specialize Algorithm 33 to the newsvendor problem in Algorithm 34 and we present
the corresponding result on the regret minimization property in the following corollary.

Corollary 10.2.8 In the single-retailer newsvendor problem, the retailer’s cost functions
are defined by Eq. (10.4) where the unit purchase cost is c > 0 and the unit selling price is
p ≥ c. Also, the demand is a random variable with a continuous density function q such that
infd∈[0,x̄] q(d) ≥ α > 0. If the agent employs Algorithm 34, we have

E[Regret(T )] ≤ x̄2

2
(1 + e

1
(αp)2 log(T+10) ) + p2 log(T+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10).
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As a consequence, we have E[Regret(T )] = O(log2(T )).

Proof. Recall that ft(x
t) = (p− c) ·E[max{0, Dt−xt}] + c ·E[max{0, xt−Dt}] and the noisy

gradient feedback is given by

ξt =

{
c, if xt ≥ min{xt, dt},
c− p, otherwise.

So we have E[ξt | xt] = ∇ft(xt) and E[‖ξt‖2 | xt] ≤ p2 for all t ≥ 1. Since the demand has a
continuous density function q such that infd∈[0,x̄] q(d) ≥ α > 0, we have ft(·) is αp-strongly
convex. In addition, X = [0, x̄] implies that D = x̄. Thus, Theorem 10.2.4 can be applied
and implies the desired result. �

10.3 Feasible Multi-Agent Online Learning in

Strongly Monotone Games

We consider feasible multi-agent learning in monotone games. Our main result is that if
each agent applies AdaOGD in a strongly monotone game (the multi-agent generalization of
strongly convex costs), the joint action of all agents converges in a last-iterate sense to the
unique Nash equilibrium at a near-optimal rate. In contrast to previous work, our results
provide the first feasible no-regret learning algorithm that is doubly optimal; in particular,
in addition to not requiring any prior knowledge of the problem parameters, one does not
need to adjust the step-size schedule based on whether an agent is in the single-agent setting
or the multi-agent setting. It is important to note that these are two different merits, and
our algorithm enjoys both of them.

Basic definitions and notations. We first review the definition of continuous games
and consider a class of monotone games. In particular, we focus on continuous games played
by a set of agents, N = {1, 2, . . . , N}. Each agent selects an action xi from a convex and
bounded Xi ⊆ Rdi . The incurred cost for each agent is determined by the joint action
x = (xi;x−i) = (x1, x2, . . . , xN). We let ‖ · ‖ denote the Euclidean norm (Other norms can
also be accommodated here and different Xi’s can have different norms).

Definition 10.3.1 A continuous game is a tuple G = {N ,X = ΠN
i=1Xi, {ui}Ni=1}, where N

is a set of N agents, Xi ⊆ Rdi is the ith agent’s action set that is both convex and bounded,
and ui : X → R is the ith agent’s cost function satisfying: (i) ui(xi;x−i) is continuous
in x and continuously differentiable in xi; (ii) vi(x) = ∇xiui(xi;x−i) is continuous in x.
For simplicity, we denote v(·) = (v1(·), v2(·), . . . , vN(·)) as the joint profile of all agents’
individual gradients.

We work with an analogous model of gradient feedback:
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1. At each round t, an unbiased and bounded gradient is observed as a feedback signal.
In particular, the observed noisy gradient ξt satisfies E[ξt | xt] = v(xt) and E[‖ξt‖2 |
xt] ≤ G2 for all t ≥ 1.

2. The action set X is bounded by a diameter D > 0, i.e., ‖x− x′‖ ≤ D for all x, x′ ∈ X .

The study of monotone games dates to Rosen [1965] who considered a class of games that sat-
isfy the diagonal strict concavity (DSC) condition.5 Further contributions appeared in Sand-
holm [2015] and Sorin and Wan [2016], where games that satisfy DSC are called “contractive”
and “dissipative.” In this context, a game G is monotone if (x′−x)>(v(x′)−v(x)) ≥ 0 for any
x, x′ ∈ X . Intuitively, the notion of monotonicity generalize the notion of convexity; indeed,
the gradient operator of a convex function f satisfies that (x′ − x)>(∇f(x′) − ∇f(x)) ≥ 0
for any x, x′ ∈ X .

We now define the class of strongly monotone games:

Definition 10.3.2 A continuous game G is said to be β-strongly monotone if we have 〈x′−
x, v(x′)− v(x)〉 ≥ β‖x′ − x‖2 for all x, x′ ∈ X .

A standard solution concept for non-cooperative games is the Nash equilibrium (NE), where
no agent has an incentive to deviate from her strategy [Osborne and Rubinstein, 1994].
For the continuous games considered in this paper, we are interested in pure-strategy Nash
equilibria since the randomness introduced by mixed strategies is unnecessary when each
action lives in a continuum.

Definition 10.3.3 An action profile x? ∈ X is called a Nash equilibrium of G if it is resilient
to unilateral deviations; that is, ui(x

?
i ;x

?
−i) ≤ ui(xi;x

?
−i) for all xi ∈ Xi and i ∈ N .

Debreu [1952] proved that any continuous game admits at least one Nash equilibrium if
all action sets are convex and bounded, and all cost functions are individually convex (i.e.,
ui(xi;x−i) is convex in xi for a fixed x−i). Moreover, there is a variational characteriza-
tion that forms the basis of equilibrium computation under an individual convexity con-
dition [Facchinei and Pang, 2007]. We summarize this characterization in the following
proposition.

Proposition 10.3.4 If all cost functions are in a continuous game G are individually con-
vex, the joint action x? ∈ X is a Nash equilibrium if and only if (x − x?)>v(x?) ≥ 0 for all
x ∈ X .

The notion of strong monotonicity arises in various application domains. Examples include
strongly-convex-strongly-concave zero-sum games, atomic splittable congestion games in net-
works with parallel links [Orda et al., 1993, Sorin and Wan, 2016, Mertikopoulos and Zhou,

5This condition is equivalent to the notion of strict monotonicity in convex analysis [Bauschke and
Combettes, 2011]; see Facchinei and Pang [2007] for further discussion.
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2019], wireless network optimization [Weeraddana et al., 2012, Tan, 2014, Zhou et al., 2021]
and classical online decision-making problems [Cesa-Bianchi and Lugosi, 2006].

Strongly monotone games satisfy the individual convexity condition and hence the ex-
istence of at least one Nash equilibrium is ensured. Moreover, every strongly monotone
game admits a unique Nash equilibrium [Zhou et al., 2021]. Thus, one appealing feature of
strongly monotone games is that finite-time convergence can be derived in terms of ‖x̂−x?‖2

where x? ∈ X is a unique Nash equilibrium. Despite some recent progress on last-iterate
convergence rates for non-strongly monotone games [Lin et al., 2020e, Golowich et al., 2020a,
Cai et al., 2022], last-iterate convergence rates in terms of ‖x̂ − x?‖2 are only available for
strongly monotone games [Bravo et al., 2018, Zhou et al., 2021, Lin et al., 2021b]. An im-
portant gap in the literature is that there currently do not exist doubly optimal and feasible
learning algorithms for strongly monotone games.

Algorithmic scheme. We review the multi-agent OGD method that is a generalization
of single-agent OGD. Letting x1

i ∈ Xi for all i ∈ N , the multi-agent version of OGD (cf.
Definition 10.3.2) performs the following step at each round:

ηt+1
i ← β(t+ 1), xt+1

i ← argmin
xi∈Xi

{(xi − xti)>ξti +
ηt+1
i

2
‖xi − xti‖2}. (10.5)

In the following theorem, we summarize the results from Zhou et al. [2021] on the optimal
last-iterate convergence rate of multi-agent OGD in Eq. (10.5) using a squared Euclidean
distance function.

Theorem 10.3.5 Suppose that a continuous game G is β-strongly monotone and let G,D >
0 be problem parameters satisfying E[ξt | xt] = v(xt) and let E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1,
and ‖x− x′‖ ≤ D for all x, x′ ∈ X . If all agents employ multi-agent OGD in Eq. (10.5), we
have

E[‖xT − x?‖2] ≤ 4G2

β2T
,

where x? ∈ X denotes the unique Nash equilibrium. As a consequence, we have E[‖xT −
x?‖2] = O( 1

T
).

Remark 10.3.6 Theorem 10.3.5 demonstrates that multi-agent OGD can achieve a near-
optimal convergence rate in strongly monotone games; indeed, the convergence rate of multi-
agent OGD matches the lower bound of Ω( 1

T
) proved in Nemirovski and Yudin [1983] for

strongly convex optimization.

A drawback of multi-agent OGD is that it requires knowledge of the strong monotonicity
parameters in order to update ηt+1 and is thus not feasible in practice. We are not aware
of any research that addresses this key issue. This is possibly because existing adaptive
techniques are specialized to upper curvature information, e.g., the Lipschitz constant of
function values or gradients [Duchi et al., 2011, Kingma and Ba, 2015, Mukkamala and
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Algorithm 35 MA-AdaOGD(x1
1, x

1
2, . . . , x

1
N , T )

1: Input: initial points x1
i ∈ Xi for all i ∈ N and the total number of rounds T .

2: Initialization: p0 = 1
log(T+10)

.
3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: sample M t

i ∼ Geometric(p0).
6: set ηt+1

i ← t+1√
1+max{M1

i ,...,M
t
i }

.

7: update xt+1
i ← argminxi∈Xi{(xi − x

t
i)
>ξti +

ηt+1
i

2
‖xi − xti‖2}.

Hein, 2017, Levy, 2017, Levy et al., 2018, Bach and Levy, 2019, Antonakopoulos et al., 2021,
Hsieh et al., 2021], and are not suitable for estimating lower curvature information such as
that encoded by the strong monotonicity parameter. The goal of this section is to extend
Algorithm 33 to multi-agent learning in games, showing that our adaptive variant of OGD
is both doubly optimal and feasible.

We again employ a randomization strategy such that the resulting algorithm is adaptive
to the strong monotonicity parameter and other problem parameters. We again choose
independently identical distributed geometric random variables, i.e., M t

i ∼ Geometric(p0),
for p0 = 1

log(T+10)
.6 Note that all the other updates are analogous to those of Algorithm 33

and the resulting algorithm is decentralized. This defines our adaptive multi-agent variant
of OGD, as detailed in Algorithm 35.

Finite-time last-iterate convergence. In the following theorem, we summarize our main
results on the last-iterate convergence rate of Algorithm 35 using a distance function based
on squared Euclidean norm.

Theorem 10.3.7 Suppose that a continuous game G is β-strongly monotone and let G,D >
0 be problem parameters satisfying E[ξt | xt] = v(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1,
and ‖x− x′‖ ≤ D for all x, x′ ∈ X . If all agents agree to employ Algorithm 35, we have

E[‖xT − x?‖2] ≤ D2

T
(1 + e

1
4β2 log(T+10) )

√
1 + log(T + 10) + log(NT ) log(T + 10)

+G2

T
log(T + 1)(1 + log(T + 10) + log(NT ) log(T + 10)),

where x? ∈ X is the unique Nash equilibrium. Thus, we have E[‖xT − x?‖2] = O( log3(T )
T

).

Remark 10.3.8 Theorem 10.3.7 demonstrates that Algorithm 35 achieves a near-optimal
convergence rate since the upper bound matches the lower bound [Nemirovski and Yudin,
1983] up to a log factor. This result together with Theorem 10.2.4 shows that our adaptive
variant of OGD is doubly optimal and feasible for strongly monotone games.

6We can define agent-specific probabilities pi0 ∈ (0, 1) and prove the same finite-time convergence guar-
antee. For simplicity, we use an agent-independent probability p0 = 1

log(T+10) .
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Remark 10.3.9 (Importance of doubly optimality) We add the remark to help better
position and appreciate the concept of double optimality. Our starting point is single-agent
online learning in an arbitrarily non-stationary and possibly adversarial environment. It is
well-known that the simple and computationally efficient online gradient descent achieves the
minimax optimal regret bounds (Θ(log)T for strongly convex cost functions and Θ(

√
T )). As

such, to an agent engaged in an online decision making process, it is natural to expect OGD to
be adopted to achieve optimal finite-horizon performance against such an environment where
statistical regularity is lacking. Now, the most common instantiation of such a non-stationary
environment consists of other agents who are simultaneously engaged in the online decision
making process and whose actions impact all others’ costs/rewards. In other words, each
agent is acting in an environment, whose cost/reward is determined by an opaque game:
the cost/reward is determined by – and hence realized from – an underlying game, where
that game – and even the number of agents that comprise of the game – may be unknown.
Consequently, the immediate next question is: if each agent adopts OGD –an optimal no-
regret online learning algorithm– to maximize its finite-horizon cumulative reward, would
the system jointly converge to a Nash equilibrium, a multi-agent optimal outcome where no
agent has any incentive to unilaterally deviate? If it does not converge to a Nash equilibrium,
then that means in the long run, an agent would be able to do better by deviating from what
is prescribed by the online learning algorithm, given what all the other agents are doing,
thereby producing “regret”. Consequently, an online learning algorithm that is doubly optimal
– that is, single agent adopting it leads to optimal finite-time no-regret guarantees and all
agents adopting it leads to convergence to a Nash equilibrium – effectively bridges optimal
transient performance (i.e. finite-horizon performance) with optimal long-run performance
(equilibrium outcome).

To prove Theorem 10.3.7, we provide another descent inequality for the iterates generated
by Algorithm 35.

Lemma 10.3.10 Suppose that a continuous game G is β-strongly monotone and let G,D >
0 be problem parameters satisfying E[ξt | xt] = v(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1, and
‖x−x′‖ ≤ D for all x, x′ ∈ X . Letting the iterates {xt}t≥1 be generated by Algorithm 35, we
have

N∑
i=1

ηTi E
[
‖xTi − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
≤

N∑
i=1

η1
i ‖x1

i − x?i ‖2

+D2

(
T−1∑
t=1

(
max

{
0, max

1≤i≤N

{
ηt+1
i − ηti

}
− 2β

}))
+G2

(
T−1∑
t=1

(
max

1≤i≤N

{
1

ηt+1
i

}))
,

where x? ∈ X is the unique Nash equilibrium.
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Proof of Theorem 10.3.7. Since D > 0 satisfies that ‖x− x′‖ ≤ D for all x, x′ ∈ X and
ηt+1
i = t+1√

1+max{M1
i ,...,M

t
i }

in Algorithm 35, we have

N∑
i=1

η1
i ‖x1

i − x?i ‖2 ≤ D2, ηt+1
i − ηti ≤ 1√

1+max{M1
i ,...,M

t
i }
.

By Lemma 10.3.10, we have

N∑
i=1

ηTi E
[
‖xTi − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
≤ D2 (10.6)

+D2

(
T−1∑
t=1

(
max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 2β

}))
+G2

(
T−1∑
t=1

(
max

1≤i≤N

{
1

ηt+1
i

}))
.

Further, we have

T−1∑
t=1

(
max

1≤i≤N

{
1

ηt+1
i

})
≤
√

1 + max
1≤i≤N,1≤t≤T

{M t
i }

(
T−1∑
t=1

1
t+1

)
≤ log(T+1)

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }.

(10.7)
Plugging Eq. (10.7) into Eq. (10.6) yields that

N∑
i=1

ηTi E
[
‖xTi − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
≤ D2

+D2

(
T−1∑
t=1

(
max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 2β

}))
+G2 log(T + 1)

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }.

By the definition of ηTi , we have

ηTi ≥ T√
1+max{M1

i ,...,M
T
i }
≥ T√

1+max1≤i≤N,1≤t≤T {Mt
i }
,

which implies that

N∑
i=1

ηTi E
[
‖xTi − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
≥ T√

1+max1≤i≤N,1≤t≤T {Mt
i }
·E
[
‖xT − x?‖2 | {ηti}1≤i≤N,1≤t≤T

]
.

Putting these pieces together yields that(
T√

1+max1≤i≤N,1≤t≤T {Mt
i }

)
E
[
‖xT − x?‖2 | {ηti}1≤i≤N,1≤t≤T

]
≤ D2

+D2

(
T−1∑
t=1

(
max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 2β

}))
+G2 log(T + 1)

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }.
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Rearranging and taking the expectation of both sides, we have

T · E[‖xT − x?‖2] ≤ D2 E
[√

1 + max
1≤i≤N,1≤t≤T

{M t
i }
]

︸ ︷︷ ︸
I

+G2 log(T + 1)E
[
1 + max

1≤i≤N,1≤t≤T
{M t

i }
]

︸ ︷︷ ︸
II

+D2 E

[
T−1∑
t=1

max

{
0, max

1≤i≤N

{√
1+max1≤i≤N,1≤t≤T {Mt

i }√
1+max{M1

i ,...,M
t
i }

}
− 2β

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }
}]

︸ ︷︷ ︸
III

(10.8)

By using the previous argument with Proposition 10.2.6 and p = 1
log(T+10)

, we have

I ≤
√

1 + 1+log(NT )
p

=
√

1 + log(T + 10) + log(NT ) log(T + 10). (10.9)

and
II ≤ 1 + 1+log(NT )

p
= 1 + log(T + 10) + log(NT ) log(T + 10). (10.10)

It remains to bound the term III using Proposition 10.2.6 and p = 1
log(T+10)

. Indeed, we
have

III = E

[
T−1∑
t=1

max

{
0, max

1≤i≤N

{√
1+max1≤i≤N,1≤t≤T {Mt

i }√
1+max{M1

i ,...,M
t
i }

}
− 2β

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }
}]

≤ E

[
T−1∑
t=1

max
1≤i≤N

{√
1+max1≤i≤N,1≤t≤T {Mt

i }√
1+max{M1

i ,...,M
t
i }

}
· I
(

max
1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 2β ≥ 0

)]
.

Defining it = argmax1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
as a random variable and recalling that

{max{M1
i , . . . ,M

t
i }}1≤i≤N are independent and identically distributed, we have that it ∈

{1, . . . , N} is uniformly distributed. This implies that

III ≤ 1
N

T−1∑
t=1

N∑
j=1

E
[

max
1≤i≤N

{√
1+max1≤i≤N,1≤t≤T {Mt

i }√
1+max{M1

i ,...,M
t
i }

}
· I
(

max
1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 2β ≥ 0

)
| it = j

]

= 1
N

T−1∑
t=1

N∑
j=1

E
[√

1+max1≤i≤N,1≤t≤T {Mt
i }√

1+max{M1
j ,...,M

t
j}

· I
(

1√
1+max{M1

j ,...,M
t
j}
− 2β ≥ 0

)]

≤ 1
N

T−1∑
t=1

N∑
j=1

E

[√
1 + max

1≤i≤N,1≤t≤T,i6=j
{M t

i } · I
(

1√
1+max{M1

j ,...,M
t
j}
− 2β ≥ 0

)]
.

Since max1≤i≤N,1≤t≤T,i6=j{M t
i } is independent of max{M1

j , . . . ,M
t
j}, we have

III ≤ 1
N

T−1∑
t=1

N∑
j=1

E

[√
1 + max

1≤i≤N,1≤t≤T,i6=j
{M t

i }

]
· P
(

1√
1+max{M1

j ,...,M
t
j}
− 2β ≥ 0

)
.
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Since {M t
i }1≤i≤N,1≤t≤T is a sequence of independent and identically distributed geometric

random variables with p = 1
log(T+10)

, Proposition 10.2.6 implies that

E
[

max
1≤i≤N,1≤t≤T,i6=j

{M t
i }
]
≤ 1+log(NT )

p
= log(T + 10) + log(NT ) log(T + 10).

and
T−1∑
t=1

P
(

1√
1+max{M1

j ,...,M
t
j}
− 2β ≥ 0

)
≤ e

p

4β2 = e
1

4β2 log(T+10) .

Putting these pieces together with Jensen’s inequality yields that

III ≤ e
1

4β2 log(T+10)

√
1 + log(T + 10) + log(NT ) log(T + 10). (10.11)

Plugging Eq. (10.9), Eq. (10.10) and Eq. (10.11) into Eq. (10.8) yields that

E[‖xT − x?‖2] ≤ D2

T
(1 + e

1
4β2 log(T+10) )

√
1 + log(T + 10) + log(NT ) log(T + 10)

+G2

T
log(T + 1)(1 + log(T + 10) + log(NT ) log(T + 10)).

This completes the proof.
It is worth remarking that our proof does not use the structure of v(·) (i.e., vi(x) =

∇xiui(xi;x−i)). Thus, Theorem 10.3.7, when extended to the VI setting, yields a decen-
tralized, feasible optimization algorithm for finding a solution of a strongly monotone VI,
contributing to that line of literature.

Corollary 10.3.11 Suppose that the variational inequality defined by v(·) (without the struc-
ture that vi(x) = ∇xiui(xi;x−i)) and X (any convex set) is β-strongly monotone and let
G,D > 0 be problem parameters satisfying E[ξt | xt] = v(xt) and E[‖ξt‖2 | xt] ≤ G2 for all
t ≥ 1, and ‖x− x′‖ ≤ D for all x, x′ ∈ X . Then, by employing Algorithm 35, we have

E[‖xT − x?‖2] ≤ D2

T
(1 + e

1
4β2 log(T+10) )

√
1 + log(T + 10) + log(NT ) log(T + 10)

+G2

T
log(T + 1)(1 + log(T + 10) + log(NT ) log(T + 10)),

where x? ∈ X is the unique solution of he VI. Thus, we have E[‖xT − x?‖2] = O( log3(T )
T

).

Applications: Feasible multi-agent learning for power management and Newsven-
dors with lost sales. We present two typical examples that satisfy the conditions in
Definition 10.3.2, where only (noisy) gradient feedback is available.

Example 10.3.1 (Power Management in Wireless Networks) Target-rate power man-
agement problems are well known in operations research and wireless communications [Rap-
paport, 2001, Goldsmith, 2005]. We consider a wireless network of N communication links,
each link consisting of a transmitter (e.g., phone, tablet and sensor) and an intended receiver
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(each transmitter consumes power to send signals to their intended receivers). Assume fur-
ther that the transmitter in the ith link transmits with power ai ≥ 0 and let a = (a1, . . . , aN) ∈
RN denote the joint power profile of all transmitters in the network. In this context, the
quality-of-service rate of the ith link depends not only on how much power its transmitter is
employing but also on how much power all the other transmitters are concurrently employing.
Formally, the ith link’s quality-of-service rate is given by ri(a) = Giiai∑

j 6=iGijaj+ηi
where ηi is the

thermal noise associated with the receiver of the ith link and Gij ≥ 0 is the unit power gain
between the transmitter in the jth link and the receiver in the ith link, which is determined
by the network topology but is unknown in practice. Note that

∑
j 6=iGijaj is the interference

caused by other links to link i—all else being equal, the larger the powers of transmitters
in other links, the lower the service rate the ith link. Intuitively, the transmitter in the ith

link aims to balance between two objectives: maintaining a target service rate r?i while con-
suming as little power as possible. This consideration leads to the following standard cost
function [Rappaport, 2001, Goldsmith, 2005]:

ui(a) =
a2
i

2

(
1− r?i

ri(a)

)2

= 1
2

(
ai −

r?i (
∑
j 6=iGijaj+ηi)

Gii

)2

.

Notably, ui(a) = 0 if the realized service rate ri(a) is equal to the target rate r?i . Otherwise,
there will be a cost either due to not meeting r?i or due to consuming unnecessary power.
Our prior work has shown that this is a β-strongly monotone game [Zhou et al., 2021] with

β = λmin(I − 1
2
(W +W>)) > 0, where Wii = 0 for all 1 ≤ i ≤ N and Wij =

r?iGij
Gii

for i 6= j.
Finally, gradient feedback is available for the aforementioned class of strongly monotone

games; indeed, the ith link’s quality-of-service rate ri(a) is available to the transmitter in the
ith link, who can use it to compute the gradient of ui(a) with respect to ai.

In this setting, the parameter β > 0 is not available in practice since finding the min-
imal eigenvalue is computationally prohibitive. However, the retailer can apply our MA-
AdaOGD algorithm (cf. Algorithm 35) and obtain a near-optimal last-iterate convergence

rate of O( log3(T )
T

).

Example 10.3.2 (Newsvendor with Lost Sales) We consider the multi-retailer gener-
alization of newsvendor problem [Netessine and Rudi, 2003]. For simplicity, we focus on a
single product with same per-unit price p > 0 and perishable inventory control. Given the
set of retailers N = {1, 2, . . . , N}, the ith retailer’s action xi is assumed to lie in the interval
[0, x̄i]. For the ith retailer, the demand is random and depends on the inventory levels of
other retailers, therefore we denote it as Di(x−i) and let di ≥ 0 denote a realization of this
random variable. The ith retailer only observes the sales quantity min{xi, di}. Using the
previous argument, the ith retailer’s cost function is defined by

ui(x) = (p− ci) · E[max{0, Di(x−i)− xi}] + ci · E[max{0, xi −Di(x−i)}], (10.12)

and the noisy gradient feedback signal is given by

ξi =

{
ci, if xi ≥ min{xi, di},
ci − p, otherwise.
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It remains to extend the analysis from Huh and Rusmevichientong [2009, Section 3.5] and
provide a condition on the distribution of Di(x−i) that can guarantee that the multi-retailer
newsvendor problem is β-strongly monotone for some constant β > 0. Indeed, after simple
calculations, we have

vi(x) = ∇xiui(x) = p · P(Di(x−i) ≤ xi)− p+ ci = p · Fi(x)− p+ ci.

Letting F = (F1, F2, . . . , FN) be an operator from
∏N

i=1[0, x̄i] to [0, 1]N , if F is α-strongly
monotone, we have

〈x′ − x, v(x′)− v(x)〉 = p · 〈x′ − x, F (x′)− F (x)〉 ≥ αp‖x′ − x‖2, for all x, x′ ∈
N∏
i=1

[0, x̄i].

As a concrete example, we can let the distribution of a demand Di(x−i) be given by

P(Di(x−i) ≤ z) = 1− 1+
∑
j 6=i xj

(1+z+
∑
j 6=i xj)

2 .

It is clear that limz→+∞ P(Di(x−i) ≤ z) = 1 for all x−i ∈
∏

j 6=i[0, x̄j]. Also, we have

P(Di(x−i) = 0) = 1− 1
1+

∑
j 6=i xj

,

which characterizes the dependence of the distribution of the demand for the ith retailer
on other retailers’ actions x−i. Indeed, the demand Di(x−i) is likely to be small if the total
inventory provided by other retailers

∑
j 6=i xj is large. Two extreme cases are (i) P(Di(x−i) =

0) → 1 as
∑

j 6=i xj → +∞ and (ii) P(Di(x−i) = 0) = 0 as
∑

j 6=i xj = 0. Finally, we can
prove that this is a β-strongly monotone game with β = p

(1+
∑N
k=1 x̄k)3

> 0.

Thus, if all the retailers agree to apply our MA-AdaOGD algorithm (cf. Algorithm 35),

we can obtain a near-optimal last-iterate convergence rate of O( log3(T )
T

).

We summarize Algorithm 35 specialized to the multi-retailer generalization of the newsven-
dor problem in Algorithm 36 and we present the corresponding result on the last-iterate
convergence rate guarantee in the following corollary.

Corollary 10.3.12 In the multi-retailer generalization of the newsvendor problem, each re-
tailer’s cost functions are defined by Eq. (10.12) where the unit purchase cost is ci > 0 and
the unit selling price is p ≥ c. Also, the demand is a random variable with a continuous
density function defined in Example 10.3.2. If the agent employs Algorithm 36, we have

E[‖xT − x?‖2] ≤
∑N
i=1 x̄

2
i

T
(1 + e

1
4β2 log(T+10) )

√
1 + log(T + 10) + log(NT ) log(T + 10)

+Np2

T
log(T + 1)(1 + log(T + 10) + log(NT ) log(T + 10)),

As a consequence, we have E[‖xT − x?‖2] = O( log3(T )
T

).
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Algorithm 36 Newsvendor-MA-AdaOGD(x1
1, x

1
2, . . . , x

1
N , T )

1: Input: initial point x1
i ∈ Xi for all i ∈ N and the total number of rounds T .

2: Initialization: p0 = 1
log(T+10)

.
3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: sample M t

i ∼ Geometric(p0).
6: set ηt+1

i ← t+1√
1+max{M1

i ,...,M
t
i }

.

7: observe the sales quantity of min{xt, dt}.

8: update xt+1
i ←

 argminxi∈[0,x̄i]
{(xi − xti)ci +

ηt+1
i

2
(xi − xti)2}, if xti ≥ min{xti, dti},

argminxi∈[0,x̄i]
{(xi − xti)(ci − p) +

ηt+1
i

2
(xi − xti)2}, otherwise.

Proof. Recall that ui(x
t) = (p− ci) · E[max{0, Di(x

t
−i)− xti}] + ci · E[max{0, xti −Di(x

t
−i)}]

and the noisy gradient feedback is given by

ξti =

{
ci, if xti ≥ min{xti, dti},
ci − p, otherwise.

So we have E[ξt | xt] = v(xt) and E[‖ξt‖2 | xt] ≤ Np2 for all t ≥ 1. We later show that this
is a β-strongly monotone game with β = p

(1+
∑N
k=1 x̄k)3

> 0. In addition, Xi = [0, x̄i] implies

that D2 =
∑N

i=1 x̄
2
i . Thus, Theorem 10.3.7 can be applied and implies the desired result. �

10.4 Extensions to Exp-Concave Cost Functions and

Games

We extend our results—for both single-agent and multi-agent learning—to a broader class
of cost functions and game structures defined in terms of exp-concavity. For exp-concave
cost functions, our adaptive variant of an online Newton step (AdaONS) can achieve a near-
optimal regret of O(d log2(T )). For exp-concave games, we propose a multi-agent online

Newton step with a near-optimal time-average convergence rate of O(d log(T )
T

). We also extend
it to a multi-agent adaptive online Newton step (MA-AdaONS) that achieves a near-optimal

rate of O(d log2(T )
T

).

Single-agent learning with exp-concave cost. We start by recalling the definition of
exp-concave functions.

Definition 10.4.1 A function f : Rd 7→ R is α-exp-concave if e−αf(·) is concave.

Exp-Concave (EC) functions, as a strict subclass of convex functions and as a strict superclass
of strongly convex functions, have found applications in many fields, including information
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theory [Cover, 1999], stochastic portfolio theory [Fernholz, 2002], optimal transport [Villani,
2009], optimization [Hazan et al., 2014, Mahdavi et al., 2015], probability theory [Pal et al.,
2018] and statistics [Juditsky et al., 2008, Koren and Levy, 2015, Yang et al., 2018].

We work with the following model of perfect gradient feedback:7:

1. At each round t, an exact gradient is observed. That is, we have ∇ft(xt) for all t ≥ 1.

2. The action set X is bounded by a diameter D > 0, i.e., ‖x− x′‖ ≤ D for all x, x′ ∈ X .

For this class of cost functions, a lower bound on regret of Ω(d log(T )) is known [see Section 3
in Abernethy et al., 2008]. Two typical examples which admit EC cost functions are online
linear regression [Kivinen and Warmuth, 1999] and universal portfolio management [Cover,
1991].

1. In universal portfolio management, we have ft(x) = − log(a>t x) where x ∈ ∆d is
a probability vector and at ∈ Rd

+ is the d-dimensional vector of all d assets’ relative
prices between period t and period t − 1. Here, ft is EC and Ordentlich and Cover
[1998] established a lower bound of Ω(d log(T )) for the cumulative regret.

2. In online linear regression, we have ft(x) = (a>t x − bt)2, which is in general not a
strongly convex function, but is indeed EC for any at, bt. Formally, Vovk [1997] proved
that there exists a randomized strategy of the adversary for choosing the vectors at, bt
such that the expected cumulative regret scales as Ω(d log(T )).

This lower bound was established without making the connectio to the general EC function
class. Note also that the Ω(d log(T )) lower bound is interesting given that d ≥ 1 does not
enter the lower bound for strongly convex functions [Hazan and Kale, 2014].

On the upper-bound side, there are many algorithms that achieve the minimax-optimal
regret, such as the online Newton step (ONS) of Hazan et al. [2007]. Formally, let {ft}t≥1 be
α-exp-concave cost functions and let G > 0 be problem parameters satisfying ‖∇ft(x)‖ ≤ G
for all t ≥ 1. Then, the ONS algorithm is given by

η ← 1
2

min
{

1
4GD

, α
}
, At+1 ← At +∇ft(xt)∇ft(xt)>,

xt+1 ← argminx∈X{(x− xt)>∇ft(xt) + η
2
(x− xt)>At+1(x− xt)}.

(10.13)

The choice 1
2

min{ 1
4GD

, α} comes from Hazan et al. [2007, Lemma 3]: if ‖∇f(x)‖ ≤ G and
‖x− x′‖ ≤ D for all x, x′ ∈ X , the α-exp-concave function f satisfies

f(x′) ≥ f(x) + (x′ − x)>∇f(x) + 1
4

min{ 1
4GD

, α}(x′ − x)>(∇f(x)∇f(x)>)(x′ − x). (10.14)

Intuitively, this equation implies that any α-exp-concave function can be approximated by a
local quadratic function with a matrix η∇f(x)∇f(x)> and moreover ONS can exploit such

7Can we generalize the aforementioned results to the setting with noisy gradient feedback? We leave the
answer to this question to future work.
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Algorithm 37 AdaONS(x1, T )

1: Input: initial point x1 ∈ X and the total number of rounds T .
2: Initialization: A1 = Id where Id ∈ Rd×d is an identity matrix and p0 = 1

log(T+10)
.

3: for t = 1, 2, . . . , T do
4: sample M t ∼ Geometric(p0).
5: set ηt+1 ← 1√

1+max{M1,...,Mt}
.

6: update At+1 ← At +∇ft(xt)∇ft(xt)>.

7: update xt+1 ← argminx∈X{(x− xt)>∇ft(xt) + ηt+1

2
(x− xt)>At+1(x− xt)}.

structure. Although ONS suffers from a quadratic dependence on the dimension in terms of
per-iteration cost, there has been progress in alleviating this complexity. For example, Luo
et al. [2016] proposed a variant of ONS that attains linear dependence on the dimension
using sketching techniques.

Feasible single-agent online learning under EC cost. The scheme of ONS in Eq. (10.13)
is infeasible in practice since it requires prior knowledge of the problem parameters α, G and
D. To address this issue, we invoke the same randomization strategy as described in Algo-
rithm 33. This results in the single-agent adaptive variant of ONS (cf. Algorithm 37).

We summarize our main results on the regret minimization properties of the algorithm
in the following theorem.

Theorem 10.4.2 Consider an arbitrary fixed sequence of α-exp-concave functions f1, . . . , fT ,
where each ft satisfies ‖∇ft(x)‖ ≤ G for all t ≥ 1 and ‖x− x′‖ ≤ D for all x, x′ ∈ X . If the
agent employs Algorithm 37, we have

E[Regret(T )] ≤ D2

2
(1+G2e

(max{8GD,2α−1})2
log(T+10) )+d log(TG2+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10).

Thus, we have E[Regret(T )] = O(d log2(T )).

Remark 10.4.3 Theorem 10.4.2 demonstrates that Algorithm 37 achieves a near-optimal
regret since the upper bound matches the lower bound up to a log factor; indeed, the lower
bound of Ω(d log(T )) has been established for online linear regression and universal portfolio
management. Further, Algorithm 37 dynamically adjusts ηt+1 without any prior knowledge
of problem parameters.

To prove Theorem 10.4.2, we again make use of a key descent inequality.

Lemma 10.4.4 Consider an arbitrary fixed sequence of α-exp-concave functions f1, . . . , fT ,
where each ft satisfies ‖∇ft(x)‖ ≤ G for all t ≥ 1 and ‖x − x′‖ ≤ D for all x, x′ ∈ X .
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Letting the iterates {xt}t≥1 be generated by Algorithm 37, we have

T∑
t=1

ft(x
t)−

T∑
t=1

ft(x) ≤ η1

2
(x1 − x)>A1(x1 − x) + 1

2

(
T∑
t=1

1
ηt+1∇ft(xt)>(At+1)−1∇ft(xt)

)

+
T∑
t=1

(xt − x)>
(
ηt+1

2
At+1 − ηt

2
At − 1

4
min{ 1

4GD
, α}∇ft(xt)∇ft(xt)>

)
(xt − x), for all x ∈ X .

Exp-concave games. We define a class of exp-concave (EC) games via a game-theoretic
generalization of the optimization framework in the previous section. Letting f be α-exp-
concave with ‖∇f(x)‖ ≤ G and ‖x−x′‖ ≤ D for all x, x′ ∈ X , Hazan et al. [2007, Lemma 3]
guarantees that

f(x′) ≥ f(x) + (x′ − x)>∇f(x) + 1
4

min{ 1
4GD

, α}(x′ − x)>(∇f(x)∇f(x)>)(x′ − x).

Equivalently, we have

(x′−x)>(∇f(x′)−∇f(x)) ≥ 1
4

min{ 1
4GD

, α}(x′−x)>(∇f(x′)∇f(x′)>+∇f(x)∇f(x)>)(x′−x).

This leads to the following formal definition in which v(·) replaces ∇f(·).

Definition 10.4.5 A continuous game G is said to be α-exp-concave if we have 〈x′ −
x, v(x′)− v(x)〉 ≥ 1

4
min{ 1

4GD
, α}(

∑N
i=1(x′i−xi)>(vi(x

′)vi(x
′)>+ vi(x)vi(x)>)(x′i−xi)) for all

x, x′ ∈ X .

Since EC games satisfy the individual convexity condition, we have the existence of at least
one Nash equilibrium. However, multiple Nash equilibria might exist for EC games. For
example, letting d ≥ 2, we consider a single-agent game with the cost function f(x) =
1
2
(a>x)2 and X = {x ∈ Rd : ‖x‖ ≤ 1}. It is easy to verify that this is a (2/‖a‖2)-exp-concave

game and any x ∈ X satisfying a>x = 0 will be a Nash equilibrium. It is thus natural to
ask how to measure the optimality of a point x̂ ∈ X . Proposition 10.3.4 inspires us to use a
gap function, gap(·) : X 7→ R+, given by

gap(x̂) = sup
x∈X

(x̂− x)>v(x). (10.15)

The above gap function is well defined and is nonnegative for all x̂ ∈ X , given that at least
one Nash equilibrium exists in EC games. Note that such a function has long been a standard
example in the literature [Facchinei and Pang, 2007, Mertikopoulos and Zhou, 2019].

All strongly monotone games are clearly EC games if ‖v(x)‖ ≤ G for all x ∈ X . Indeed,
we have

∑N
i=1(x′i − xi)>(vi(x

′)vi(x
′)> + vi(x)vi(x)>)(x′i − xi) ≤ 2G2‖x′ − x‖2 and

〈x′−x, v(x′)−v(x)〉 ≥ β‖x′−x‖2 ≥ β
2G2

(
N∑
i=1

(x′i − xi)>(vi(x
′)vi(x

′)> + vi(x)vi(x)>)(x′i − xi)

)
.
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This implies that a β-strongly monotone game is α-exp-concave if we have α ≤ 2β
G2 . More

generally, we remark that strongly monotone games are a rich class of games that arise in
many real-world application problems [Bravo et al., 2018, Mertikopoulos and Zhou, 2019,
Lin et al., 2021b]. Moreover, there are also applications that can be cast as EC games rather
than strongly monotone games, such as empirical risk minimization [Koren and Levy, 2015,
Yang et al., 2018] and universal portfolio management [Cover, 1991, Fernholz, 2002].

Multi-agent online learning in EC games. We start by extending the single-agent ONS
algorithm in Eq. (10.13) to the multi-agent online learning in EC games (cf. Definition 10.4.5).

We again work with a model of exact gradient feedback:

1. At each round t, an exact gradient is observed. That is, we have v(xt) for all t ≥ 1.

2. The action set X = ΠN
i=1Xi is bounded by a diameter D > 0, i.e., ‖x− x′‖ ≤ D for all

x, x′ ∈ X .

Letting x1
i ∈ Xi for all i ∈ N , the multi-agent version of ONS performs the following step at

each round (A1
i = Idi for all i ∈ N ):

ηi ← 1
2

min
{

1
4GD

, α
}
, At+1

i ← Ati + vi(x
t)vi(x

t)>,

xt+1
i ← argminxi∈Xi{(xi − x

t
i)
>vi(x

t) + ηi
2

(xi − xti)>At+1
i (xi − xti)}.

(10.16)

We see from Eq. (10.16) that our multi-agent learning algorithm is a generalization of single-
agent ONS in Eq. (10.13). Notably, it is a decentralized algorithm since each agent does not
need to know any other agents’ gradients. In the following theorem, we summarize our main
results on the time-average convergence rate using the gap function in Eq. (10.15).

Theorem 10.4.6 Suppose that a continuous game G is α-exp-concave and let G,D > 0 be
problem parameters satisfying ‖v(x)‖ ≤ G and ‖x− x′‖ ≤ D for all x, x′ ∈ X . If all agents
agree to employ multi-agent ONS in Eq. (10.16), we have

gap(x̄T ) ≤ αD2

4T
+ d log(TG2+1)

T
max

{
4GD, 1

α

}
,

where x̄T = 1
T

∑T
t=1 x

t denotes a time-average iterate. Thus, we have gap(x̄T ) = O(d log(T )
T

).

Remark 10.4.7 Theorem 10.4.6 shows that the multi-agent ONS algorithm can achieve
a near-optimal convergence rate in EC games; indeed, the convergence rate of multi-agent
ONS matches up to a log factor the lower bound of Ω( d

T
) proved in Mahdavi et al. [2015] for

exp-concave optimization.

The proof of Theorem 10.4.6 is again based on a descent inequality.
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Algorithm 38 MA-AdaONS(x1
1, x

1
2, . . . , x

1
N , T )

1: Input: initial points x1
i ∈ Xi for all i ∈ N and the total number of rounds T .

2: Initialization: A1
i = Idi where Idi ∈ Rdi×di is an identity matrix and p0 = 1

log(T+10)
.

3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: sample M t

i ∼ Geometric(p0).
6: set ηt+1

i ← 1√
1+max{M1

i ,...,M
t
i }

.

7: update At+1
i ← Ati + vi(x

t)vi(x
t)>.

8: update xt+1
i ← argminxi∈Xi{(xi − x

t
i)
>vi(x

t) +
ηt+1
i

2
(xi − xti)>At+1

i (xi − xti)}.

Lemma 10.4.8 Suppose that a continuous game G is α-exp-concave and let G,D > 0 be
problem parameters satisfying ‖v(x)‖ ≤ G and ‖x − x′‖ ≤ D for all x, x′ ∈ X . Letting the
iterates {xt}t≥1 be generated by the multi-agent ONS in Eq. (10.16), we have

T∑
t=1

(xt − x)>v(x) ≤
N∑
i=1

ηi
2

(x1
i − xi)>A1

i (x
1
i − xi) + 1

2

(
T∑
t=1

N∑
i=1

1
ηi
vi(x

t)>(At+1
i )−1vi(x

t)

)

+
T∑
t=1

N∑
i=1

(xti − xi)>
(
ηi
2
At+1
i − ηi

2
Ati − 1

4
min{ 1

4GD
, α}vi(xt)vi(xt)>

)
(xti − xi).

Feasible multi-agent online learning in EC games. We extend Algorithm 37 to multi-
agent learning in EC games, showing that our adaptive variant of ONS is not only feasible
but achieves a near-optimal convergence rate in terms of a gap function.

By employing a randomization strategy, we obtain an algorithm that is adaptive to exp-
concavity parameter and other problem parameters. All the other updates are analogous to
Algorithm 37 and the overall multi-agent framework, shown in Algorithm 38, is decentralized.
we summarize our main results on the time-average convergence rate of Algorithm 38 using
the gap function in Eq. (10.15).

Theorem 10.4.9 Suppose that a continuous game G is α-exp-concave and let G,D > 0 be
problem parameters satisfying ‖v(x)‖ ≤ G and ‖x− x′‖ ≤ D for all x, x′ ∈ X . If all agents
agree to employ Algorithm 38, we have

E[gap(x̄T )] ≤ D2

2T
(1+G2e

(max{8GD,2α−1})2
log(T+10) )+ d log(TG2+1)

2T

√
1 + log(T + 10) + log(T ) log(T + 10),

where x̄T = 1
T

∑T
t=1 x

t denotes a time-average iterate. Thus, we have E[gap(x̄T )] = O(d log2(T )
T

).
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Directly extending Lemma 10.4.8 to multi-agent learning in EC games, we prove that the
iterates {xt}t≥1 generated by Algorithm 38 satisfy

T∑
t=1

(xt − x)>v(x) ≤
N∑
i=1

η1
i

2
(x1

i − xi)>A1
i (x

1
i − xi) + 1

2

(
T∑
t=1

N∑
i=1

1
ηt+1
i

vi(x
t)>(At+1

i )−1vi(x
t)

)

+
T∑
t=1

N∑
i=1

(xti − xi)>
(
ηt+1
i

2
At+1
i − ηti

2
Ati − 1

4
min{ 1

4GD
, α}vi(xt)vi(xt)>

)
(xti − xi).

(10.17)

This inequality is crucial to the proof of Theorem 10.4.9 and its proof can be found later.

10.5 Discussion

Our results open up several directions for further research. First, we have assumed that
the gradient feedback is always received at the end of each period. In practice, there may
be delays. For instance, in the power-control example, the signal-to-noise ratio sent by the
receiver to the transmitter through the feedback channel, from which the gradient can be
recovered, is often received with a delay. As such, it is important to understand how delays
impact the performance as well as to design the delay-adaptive algorithms that can operate
robustly in such environments. Second, our paper has focused on (noisy) gradient feedback
while another important yet more challenging type of feedback is bandit feedback, where
we only observe (noisy) function values at the chosen action. This problem domain has
been less explored than that of learning with (noisy) gradient feedback. For instance, it
remains unknown what the minimax optimal regret bound for convex cost functions is; the
optimal dependence on T is

√
T [Bubeck et al., 2021] but the optimal dependence on the

dimension d is unknown (note that the OGD regret is dimension-independent if gradient
feedback can be observed). Thus, it is desirable to develop the feasible and optimal bandit
learning algorithms in both single-agent and multi-agent settings. Can our randomization
technique be applicable in that setting and improve the existing algorithms [Bravo et al.,
2018, Lin et al., 2021b]? This is a natural question for future work.

10.6 Missing Proofs for Single-Agent Setting

Proof of Proposition 10.2.6. Let q0 = 1− p0. Fixing a constant x ≥ 1, we have

P(X̄n ≤ x) = P(max{X1, X2, . . . , Xn} ≤ x) = P(X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x).

Since X1, X2, . . . , Xn are n independently distributed random variables, we have

P(X̄n ≤ x) = P(X1 ≤ x)P(X2 ≤ x) · · ·P(Xn ≤ x).
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Since Xi ∼ Geometric(p0) for all i = 1, 2, . . . , n, we have

P(Xi ≤ x) =

bxc∑
k=1

P(Xi = k) =

bxc∑
k=1

(1− p0)k−1p0 = p0 · 1−(1−p0)bxc

p0
= 1− qbxc0 ,

where bxc is the largest integer that is smaller than x. As such, we have P(X̄n ≤ x) =

(1− qbxc0 )n. Given that q0 ∈ (0, 1), we have

+∞∑
n=1

P(X̄n ≤ x) =
+∞∑
n=1

(1− qbxc0 )n = (1− qbxc0 ) · 1

q
bxc
0

=
1

q
bxc
0

− 1 ≤ 1

qx0
= (1− p0)−x.

Since 1 + x ≤ ex for all x ∈ R, we have 1 − p0 ≤ e−p0 . Putting these pieces together yields
the first inequality.

Moreover, it follows from the definition of X̄n that X̄n ≥ 1 and hence E[X̄n] ≥ 1. We
also have

E[X̄n] =
+∞∑
k=0

P(X̄n > k) =
+∞∑
k=0

(1− (1− qk0)n).

By viewing the infinite sum as an Riemann sum approximation of an integral, we obtain

+∞∑
k=0

(1− (1− qk0)n) ≤ 1 +

∫ +∞

0

(1− (1− qx0 )n) dx.

We perform the change of variables u = 1− qx0 and obtain∫ +∞

0

(1− (1− qx0 )n)dx = − 1
log(q0)

∫ 1

0

1−un
1−u du = − 1

log(q0)

∫ 1

0

(1 + u+ . . .+ un−1) du

= − 1
log(q0)

(1 + 1
2

+ . . .+ 1
n
) ≤ − 1

log(q0)

(
1 +

∫ n

1

1
x
dx

)
= − 1+log(n)

log(1−p0)
.

Recalling again that 1 + x ≤ ex for all x ∈ R, we have log(1 − p0) ≤ −p0, which implies
− 1

log(1−p0)
≤ 1

p0
. Putting these pieces together yields the second inequality.

Proof of Lemma 10.2.7. Recall that the update formula of xt+1 in Algorithm 33 is

xt+1 ← argmin
x∈X

{(x− xt)>ξt + ηt+1

2
‖x− xt‖2}.

The first-order optimality condition implies that

(x− xt+1)>ξt + ηt+1(x− xt+1)>(xt+1 − xt) ≥ 0, for all x ∈ X .
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Equivalently, we have

ηt+1

2
(‖xt+1 − x‖2 − ‖xt − x‖2) ≤ (x− xt+1)>ξt − ηt+1

2
‖xt+1 − xt‖2

= (x− xt)>ξt + (xt − xt+1)>ξt − ηt+1

2
‖xt+1 − xt‖2 ≤ (x− xt)>ξt + 1

2ηt+1‖ξt‖2.

Since E[ξt | xt] = ∇ft(xt) and E[‖ξt‖2 | xt] ≤ G2 for all t ≥ 1, we have

E
[
ηt+1

2

(
‖xt+1 − x‖2 − ‖xt − x‖2

)
| xt
]
≤ (x− xt)>∇ft(xt) + E

[
G2

2ηt+1

]
.

Since ft is β-strongly convex, we have

E
[
ηt+1

2

(
‖xt+1 − x‖2 − ‖xt − x‖2

)
| xt
]
≤ ft(x)− ft(xt)− β

2
‖xt − x‖2 + E

[
G2

2ηt+1

]
,

Taking the expectation of both sides and rearranging the resulting inequality yields

E
[
ft(x

t) + ηt+1

2
‖xt+1 − x‖2 − ηt

2
‖xt − x‖2

]
− ft(x) ≤ E

[(
ηt+1−ηt

2
− β

2

)
‖xt − x‖2 + G2

2ηt+1

]
.

Summing up the above inequality over t = 1, 2, . . . , T yields the desired inequality.

10.7 Missing Proofs for Multi-Agent Setting

Proofs for Example 10.3.1 and 10.3.2. We show that the games in Example 10.3.1
and 10.3.2 are β-strongly monotone (cf. Definition 10.3.2) for some β > 0.

Power management in wireless networks. Example 10.3.1 satisfies Definition 10.3.2
with β = λmin(I − 1

2
(W + W>)) > 0 where Wii = 0 for all 1 ≤ i ≤ N and Wij =

r?iGij
Gii

for
i 6= j. An analysis of this setting has been given in Zhou et al. [2021]; we provide the details
for completeness. The cost function is given by

ui(a) = 1
2

(
ai −

r?i (
∑
j 6=iGijaj+ηi)

Gii

)2

.

Taking the derivative of ui(a) with respect to ai yields that vi(a) = ai −
r?i (

∑
j 6=iGijaj+ηi)

Gii
.

Consequently, by the definition of Wij, we have

〈a′ − a, v(a′)− v(a)〉 = ‖a′ − a‖2 −
N∑
i=1

r?i
Gii

∑
j 6=i

Gij〈a′i − ai, a′j − aj〉

= ‖a′ − a‖2 −
N∑
i=1

N∑
j=1

Wij〈a′i − ai, a′j − aj〉

= ‖a′ − a‖2 − 〈a′ − a,W (a′ − a)〉
= 〈a′ − a, (I − 1

2
(W +W>))(a′ − a)〉

≥ λmin(I − 1
2
(W +W>))‖a′ − a‖2 = β‖a′ − a‖2.

This yields the desired result.
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Newsvendor with lost sales. Example 10.3.2 satisfies Definition 10.3.2 with β = αp.
Indeed, each players’ reward function is given by

ui(x) = (p− ci) · E[max{0, Di(x−i)− xi}] + ci · E[max{0, xi −Di(x−i)}],

Equivalently, we have

ui(x) = (p− ci) ·
∫ +∞

xi

(k − xi) · dP(Di(x−i) ≤ k) + ci ·
∫ xi

−∞
(xi − k) · dP(Di(x−i) ≤ k).

Using the Leibniz integral rule, we have

vi(x) = ∇xiui(x) = p · P(Di(x−i) ≤ xi)− p+ ci = p · Fi(x)− p+ ci.

Let F = (F1, F2, . . . , FN) be an operator from
∏N

i=1[0, x̄i] to [0, 1]N . Then, if F is α-strongly
monotone, we have

〈x′ − x, v(x′)− v(x)〉 = p · 〈x′ − x, F (x′)− F (x)〉 ≥ αp‖x′ − x‖2, for all x, x′ ∈
N∏
i=1

[0, x̄i].

Considering the example where the distribution of a demand Di(x−i) is given by

P(Di(x−i) ≤ z) = 1− 1+
∑
j 6=i xj

(1+z+
∑
j 6=i xj)

2 .

Then, we have

vi(x) = p ·
(

1− 1+
∑
j 6=i xj

(1+
∑N
i=1 xi)

2

)
− p+ ci.

The following proposition, a modification of Rosen [1965, Theorem 6], plays an important
role in the subsequent analysis.

Proposition 10.7.1 Given a continuous game G = (N ,X =
∏N

i=1Xi, {ui}Ni=1), where each
ui is twice continuously differentiable. For each x ∈ X , we define the Hessian matrix H(x)
as follows:

Hij(x) = 1
2
∇jvi(x) + 1

2
(∇ivj(x))>.

If H(x) is positive definite for every x ∈ X , we have 〈x′−x, v(x′)−v(x)〉 ≥ 0 for all x, x′ ∈ X
where the equality holds true if and only if x = x′.

As a consequence of Proposition 10.7.1, we have 〈x′ − x, v(x) − v(x)〉 ≥ β‖x′ − x‖2 for all
x, x′ ∈ X if H(x) � βIN for all x ∈ X . For our example, it suffices to show that

H(x) �
(

p

(1+
∑N
i=1 x̄i)

3

)
IN , for all x ∈

N∏
i=1

[0, x̄i]. (10.18)
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Indeed, after a straightforward calculation, we have

∇ivi(x) =
2p(1+

∑
k 6=i xk)

(1+
∑N
k=1 xk)3

, ∇jvi(x) =
p(1+

∑
k 6=i xk−xi)

(1+
∑N
k=1 xk)3

, ∇ivj(x) =
p(1+

∑
k 6=j xk−xj)

(1+
∑N
k=1 xk)3

.

This implies that

H(x) = p

(1+
∑N
i=1 xi)

3
·



2 + 2
∑

i 6=1 xi 1 +
∑

i 6=1,2 xi 1 +
∑

i 6=1,3 xi · · · 1 +
∑

i 6=1,N xi

1 +
∑

i 6=1,2 xi 2 + 2
∑

i 6=2 xi 1 +
∑

i 6=2,3 xi · · · 1 +
∑

i 6=2,N xi

1 +
∑

i 6=1,3 xi 1 +
∑

i 6=2,3 xi 2 + 2
∑

i 6=3 xi · · · 1 +
∑

i 6=3,N xi
...

...
...

. . .
...

1 +
∑

i 6=1,N xi 1 +
∑

i 6=2,N xi 1 +
∑

i 6=3,N xi · · · 2 + 2
∑

i 6=N xi


.

Equivalently, we have

H(x)

= p

(1+
∑N
i=1 xi)

3
·



(
1 +

N∑
i=1

xi

)
·



2 1 1 · · · 1

1 2 1 · · · 1

1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2


−



2x1 x1 + x2 x1 + x3 · · · x1 + xN

x1 + x2 2x2 x2 + x3 · · · x2 + xN

x1 + x3 x2 + x3 2x3 · · · x3 + xN
...

...
...

. . .
...

x1 + xN x2 + xN x3 + xN · · · 2xN




= p

(1+
∑N
i=1 xi)

3
·

{(
1 +

N∑
i=1

xi

)
· (IN + 1N1>N)− x1>N − 1Nx

>

}
.

Note that x ∈
∏N

i=1[0, x̄i]. If x = 0N , we have H(x) = p · (IN + 1N1>N) and thus satisfy
Eq. (10.18). Otherwise, we can let y = x∑N

i=1 xk
and obtain that ‖y‖ ≤ 1. It is clear that

(y − 1N)(y − 1N)> is positive semidefinite. Thus, we have

yy> + 1N1>N � y1>N + 1Ny
>.

Using the definition of y, we have yy> � IN . This together with the above inequality implies
that (

N∑
i=1

xi

)
· (IN + 1N1>N) � x1>N + 1Nx

>.

Putting these pieces together yields that

H(x) � p

(1+
∑N
i=1 xi)

3
· (IN + 1N1>N) �

(
p

(1+
∑N
i=1 x̄i)

3

)
IN , for all x ∈

N∏
i=1

[0, x̄i].

This completes the proof.
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Proof of Lemma 10.3.10. Recall that the update formula of xt+1
i in Algorithm 35 is

xt+1
i ← argmin

xi∈Xi
{(xi − xti)>ξti +

ηt+1
i

2
‖xi − xti‖2}.

The first-order optimality condition implies that

(xi − xt+1
i )>ξti + ηt+1

i (xi − xt+1
i )>(xt+1

i − xti) ≥ 0, for all xi ∈ Xi.

Equivalently, we have

ηt+1
i

2
(‖xt+1

i − xi‖2 − ‖xti − xi‖2) ≤ (xi − xt+1
i )>ξti −

ηt+1
i

2
‖xt+1

i − xti‖2

= (xi − xti)>ξti + (xti − xt+1
i )>ξti −

ηt+1
i

2
‖xt+1

i − xti‖2

≤ (xi − xti)>ξti + 1
2ηt+1
i

‖ξti‖2.

Letting x = x? be a unique Nash equilibrium and rearranging the above inequality, we have

ηt+1
i

2
‖xt+1

i − x?i ‖2 − ηti
2
‖xti − x?i ‖2 ≤ (x?i − xti)>ξti +

(
ηt+1
i

2
− ηti

2

)
‖xti − x?i ‖2 + 1

2ηt+1
i

‖ξti‖2.

Summing up the above inequality over i = 1, 2, . . . , N and rearranging, we have

N∑
i=1

(
ηt+1
i ‖xt+1

i − x?i ‖2 − ηti‖xti − x?i ‖2
)

≤ 2(x? − xt)>ξt +

(
N∑
i=1

(ηt+1
i − ηti)‖xti − x?i ‖2

)
+

(
max

1≤i≤N

{
1

ηt+1
i

})
‖ξt‖2.

Note that {ηti}1≤i≤N,1≤t≤T are generated independently of any noisy gradient feedback, we
have

E[(x? − xt)>ξt | xt, {ηti}1≤i≤N,1≤t≤T ] = E[(x? − xt)>v(xt) | {ηti}1≤i≤N,1≤t≤T ],

E[‖ξt‖2 | xt, {ηti}1≤i≤N,1≤t≤T ] ≤ G2.

Thus, we have

N∑
i=1

(
ηt+1
i E

[
‖xt+1

i − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T
]
− ηtiE

[
‖xti − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

])
≤ 2E

[
(x? − xt)>v(xt) | {ηti}1≤i≤N,1≤t≤T

]
+

N∑
i=1

(
ηt+1
i − ηti

)
E
[
‖xti − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
+G2

(
max

1≤i≤N

{
1

ηt+1
i

})
.
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Since a continuous game G is β-strongly monotone and x? ∈ X is a unique Nash equilibrium,
we have

(x? − xt)>v(xt) ≤ (x? − xt)>v(x?)− β‖x? − xt‖2 ≤ −β‖x? − xt‖2.

Putting these pieces together yields that

N∑
i=1

(
ηt+1
i E

[
‖xt+1

i − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T
]
− ηtiE

[
‖xti − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

])
≤

N∑
i=1

(
ηt+1
i − ηti − 2β

)
E
[
‖xti − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

]
+G2

(
max

1≤i≤N

{
1

ηt+1
i

})
.

Since D > 0 satisfies that ‖x− x′‖ ≤ D for all x, x′ ∈ X , we have

N∑
i=1

(
ηt+1
i E

[
‖xt+1

i − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T
]
− ηtiE

[
‖xti − x?i ‖2 | {ηti}1≤i≤N,1≤t≤T

])
≤

(
max

1≤i≤N

{
ηt+1
i − ηti

}
− 2β

)
E
[
‖xt − x?‖2 | {ηti}1≤i≤N,1≤t≤T

]
+G2

(
max

1≤i≤N

{
1

ηt+1
i

})
≤ D2

(
max

{
0, max

1≤i≤N

{
ηt+1
i − ηti

}
− 2β

})
+G2

(
max

1≤i≤N

{
1

ηt+1
i

})
.

Summing over t = 1, 2, . . . , T − 1 yields the desired inequality.

Proof of Lemma 10.4.4. Recall that the update formula of xt+1 in Algorithm 37 is

xt+1 ← argmin
x∈X

{(x− xt)>∇ft(xt) + ηt+1

2
(x− xt)>At+1(x− xt)}.

The first-order optimality condition implies that

(x− xt+1)>∇ft(xt) + ηt+1(x− xt+1)>At+1(xt+1 − xt) ≥ 0, for all x ∈ X .

Equivalently, we have

ηt+1

2
((xt+1 − x)>At+1(xt+1 − x)− (xt − x)>At+1(xt − x))

≤ (x− xt+1)>∇ft(xt)− ηt+1

2
(xt+1 − xt)>At+1(xt+1 − xt)

= (x− xt)>∇ft(xt) + (xt − xt+1)>∇ft(xt)− ηt+1

2
(xt+1 − xt)>At+1(xt+1 − xt)

≤ (x− xt)>∇ft(xt) + 1
2ηt+1∇ft(xt)>(At+1)−1∇ft(xt).

Since ft is α-exp-concave and satisfies that ‖∇ft(x)‖ ≤ G and ‖x−x′‖ ≤ D for all x, x′ ∈ X ,
we derive from Hazan et al. [2007, Lemma 3] that

ft(x) ≥ ft(x
t) + (x− xt)>∇ft(xt) + 1

4
min{ 1

4GD
, α}(x− xt)>(∇ft(xt)∇ft(xt)>)(x− xt).
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For simplicity, we let γ = 1
4

min{ 1
4GD

, α}. Putting these pieces together yields that

ηt+1

2
((xt+1 − x)>At+1(xt+1 − x)− (xt − x)>At+1(xt − x)) ≤ ft(x)− ft(xt)
−γ(x− xt)>(∇ft(xt)∇ft(xt)>)(x− xt) + 1

2ηt+1∇ft(xt)>(At+1)−1∇ft(xt).

Rearranging the above inequality yields that

ft(x
t)− ft(x) + ηt+1

2
(xt+1 − x)>At+1(xt+1 − x)− ηt

2
(xt − x)>At(xt − x)

≤ (x− xt)>
(
ηt+1

2
At+1 − ηt

2
At − γ∇ft(xt)∇ft(xt)>

)
(x− xt) + 1

2ηt+1∇ft(xt)>(At+1)−1∇ft(xt).

Summing over t = 1, 2, . . . , T yields the desired inequality.

Proof of Theorem 10.4.2. By the update formula of ηt+1 in Algorithm 37, we have
ηt+1 = 1√

1+max{M1,...,Mt}
. By the update formula of At+1 in Algorithm 37, we have A1 = Id

where Id ∈ Rd×d is an identity matrix and At+1 = At +∇ft(xt)∇ft(xt)>. Since X is convex
and bounded with a diameter D > 0, we have

η1

2
(x1 − x)>A1(x1 − x) ≤ D2

2
, ηt+1At+1 − ηtAt � 1√

1+max{M1,...,Mt}
∇ft(xt)∇ft(xt)>.

By Lemma 10.4.4, we have

T∑
t=1

ft(x
t)−

T∑
t=1

ft(x) ≤ D2

2
+ 1

2

(
T∑
t=1

1
ηt+1∇ft(xt)>(At+1)−1∇ft(xt)

)
(10.19)

+
T∑
t=1

(
1

2
√

1+max{M1,...,Mt}
− 1

4
min{ 1

4GD
, α}
)

(xt − x)>∇ft(xt)∇ft(xt)>(xt − x).

Since ‖∇ft(x)‖ ≤ G, A1 = Id where Id ∈ Rd×d is an identity matrix and At+1 = At +
∇ft(xt)∇ft(xt)>, we derive from Hazan et al. [2007, Lemma 11] that

T∑
t=1

1
ηt+1∇ft(xt)>(At+1)−1∇ft(xt) ≤

√
1 + max{M1, . . . ,MT}

(
T∑
t=1

∇ft(xt)>(At+1)−1∇ft(xt)

)
≤

√
1 + max{M1, . . . ,MT}(d log(TG2 + 1)). (10.20)

Plugging Eq. (10.20) into Eq. (10.19) yields that

T∑
t=1

ft(x
t)−

T∑
t=1

ft(x) ≤ D2

2
+

d
√

1+max{M1,...,MT }
2

log(TG2 + 1)

+
T∑
t=1

(
1

2
√

1+max{M1,...,Mt}
− 1

4
min{ 1

4GD
, α}
)

(xt − x)>∇ft(xt)∇ft(xt)>(xt − x).
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Since ‖∇ft(x)‖ ≤ G and X is convex and bounded with a diameter D > 0, we have

T∑
t=1

(
1

2
√

1+max{M1,...,Mt}
− 1

4
min{ 1

4GD
, α}
)

(xt − x)>∇ft(xt)∇ft(xt)>(xt − x)

≤ G2D2

2

(
T∑
t=1

max

{
0, 1√

1+max{M1,...,Mt}
− 1

2
min{ 1

4GD
, α}
})

.

Putting these pieces together yields that

Regret(T )

≤ D2

2
+ G2D2

2

(
T∑
t=1

max

{
0, 1√

1+max{M1,...,Mt}
− 1

2
min{ 1

4GD
, α}
})

+
d
√

1+max{M1,...,MT }
2

log(TG2 + 1).

For simplicity, we let γ = 1
2

min{ 1
4GD

, α}. Taking the expectation of both sides, we have

E[Regret(T )]

≤ D2

2
+ G2D2

2
E

[
T∑
t=1

max

{
0, 1√

1+max{M1,...,Mt}
− γ
}]

︸ ︷︷ ︸
I

+d log(TG2+1)
2

E
[√

1 + max{M1, . . . ,MT}
]

︸ ︷︷ ︸
II

.

It remains to bound the terms I and II using Proposition 10.2.6. By using the same argument
as applied in the proof of Theorem 10.2.4, we have

I ≤ e
1

γ2 log(T+10) ,

and
II ≤

√
1 + log(T + 10) + log(T ) log(T + 10).

Therefore, we conclude that

E[Regret(T )] ≤ D2

2
(1 + e

1
γ2 log(T+10) ) + d log(TG2+1)

2

√
1 + log(T + 10) + log(T ) log(T + 10).

This completes the proof.

Proof of Lemma 10.4.8. Recall that the update formula of xt+1
i in either the multi-agent

ONS is
xt+1
i ← argmin

xi∈Xi
{(xi − xti)>vi(xt) + ηi

2
(xi − xti)>At+1

i (xi − xti)}.

The first-order optimality condition implies that

(xi − xt+1
i )>vi(x

t) + ηi(xi − xt+1
i )>At+1

i (xt+1
i − xti) ≥ 0, for all xi ∈ Xi.
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Equivalently, we have

ηi
2

((xt+1
i − xi)>At+1

i (xt+1
i − xi)− (xti − xi)>At+1

i (xti − xi))
≤ (xi − xt+1

i )>vi(x
t)− ηi

2
(xt+1

i − xti)>At+1
i (xt+1

i − xti)
= (xi − xti)>vi(xt) + (xti − xt+1

i )>vi(x
t)− ηi

2
(xt+1

i − xti)>At+1
i (xt+1

i − xti)
≤ (xi − xti)>vi(xt) + 1

2ηi
vi(x

t)>(At+1
i )−1vi(x

t).

Rearranging this inequality, we have

ηi
2

(xt+1
i − xi)>At+1

i (xt+1
i − xi)− ηi

2
(xti − xi)>Ati(xti − xi)

≤ (xi − xti)>vi(xt) + (xti − xi)>
(
ηi
2
At+1
i − ηi

2
Ati
)

(xti − xi) + 1
2ηi
vi(x

t)>(At+1
i )−1vi(x

t).

Summing over i = 1, 2, . . . , N , we have

N∑
i=1

(
ηi
2

(xt+1
i − xi)>At+1

i (xt+1
i − xi)− ηi

2
(xti − xi)>Ati(xti − xi)

)
≤ (x− xt)>v(xt) + 1

2

(
N∑
i=1

(xti − xi)>
(
ηiA

t+1
i − ηiAti

)
(xti − xi)

)
+ 1

2

(
N∑
i=1

1
ηi
vi(x

t)>(At+1
i )−1vi(x

t)

)
.

Since G is α-exp-concave and satisfies that ‖v(x)‖ ≤ Gi and ‖x−x′‖ ≤ Di for all xi, x
′
i ∈ Xi,

we have

〈x−xt, v(x)−v(xt)〉 ≥ 1
4

(
N∑
i=1

min{ 1
4GiDi

, α}(xti − xi)>(vi(x)vi(x)> + vi(x
t)vi(x

t)>)(xti − xi)

)
.

Putting these pieces together yields that

N∑
i=1

(
ηi
2

(xt+1
i − xi)>At+1

i (xt+1
i − xi)− ηi

2
(xti − xi)>Ati(xti − xi)

)
≤ (x− xt)>v(x) +

N∑
i=1

(xti − xi)>(ηi
2
At+1
i − ηi

2
Ati − 1

4
min{ 1

4GD
, α}vi(xt)vi(xt)>)(xti − xi)

+1
2

(
N∑
i=1

1
ηi
vi(x

t)>(At+1
i )−1vi(x

t)

)
.

Summing over t = 1, 2, . . . , T yields the desired inequality.

Proof of Theorem 10.4.6. We can see from the multi-agent ONS algorithm that ηi =
1
2

min{ 1
4GD

, α}, A1
i = Idi where Idi ∈ Rdi×di is an identity matrix, and At+1

i = Ati +
vi(x

t)vi(x
t)>. Since X is convex and bounded with a diameter D > 0, we have

N∑
i=1

ηi
2

(x1
i − xi)>A1

i (x
1
i − xi) ≤ αD2

4
, ηiA

t+1
i − ηiAi = 1

2
min{ 1

4GD
, α}vi(xt)vi(xt)>.
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By Lemma 10.4.8, we have

T∑
t=1

(xt − x)>v(x) ≤ αD2

4
+ 1

2

(
T∑
t=1

N∑
i=1

1
ηi
vi(x

t)>(At+1
i )−1vi(x

t)

)
. (10.21)

Since ‖v(x)‖ ≤ G, A1
i = Idi and At+1

i = Ati + vi(x
t)vi(x

t)>, Hazan et al. [2007, Lemma 11]
guarantees that

T∑
t=1

vi(x
t)>(At+1

i )−1vi(x
t) ≤ di log(TG2 + 1),

which implies that

T∑
t=1

N∑
i=1

1
ηi
vi(x

t)>(At+1
i )−1vi(x

t) ≤ max
{

8GD, 2
α

}
(d log(TG2 + 1)). (10.22)

Plugging Eq. (10.22) into Eq. (10.21) yields that

T∑
t=1

(xt − x)>v(x) ≤ αD2

4
+ max

{
4GD, 1

α

}
(d log(TG2 + 1)).

By the definition of gap(·) and x̄T (i.e., x̄T = 1
T

∑T
t=1 x

t), we have

gap(x̄T ) ≤ αD2

4T
+ d log(TG2+1)

T
max

{
4GD, 1

α

}
.

This completes the proof.

Proof of Theorem 10.4.9. We can see from Algorithm 38 that ηt+1
i = 1√

1+max{M1
i ,...,M

t
i }

,

A1
i = Idi where Idi ∈ Rdi×di is an identity matrix, and At+1

i = Ati + vi(x
t)vi(x

t)>. Since X is
convex and bounded with a diameter D > 0, we have

N∑
i=1

η1
i

2
(x1

i − xi)>A1
i (x

1
i − xi) ≤ D2

2
, ηt+1

i At+1
i − ηtiAi � 1√

1+max{M1
i ,...,M

t
i }
vi(x

t)vi(x
t)>.

We can see from Eq. (10.17) that

T∑
t=1

(xt − x)>v(x) ≤ D2

2
+ 1

2

(
T∑
t=1

N∑
i=1

1
ηt+1
i

vi(x
t)>(At+1

i )−1vi(x
t)

)
(10.23)

+
T∑
t=1

N∑
i=1

(
1

2
√

1+max{M1
i ,...,M

t
i }
− 1

4
min{ 1

4GD
, α}
)

(xti − xi)>vi(xt)vi(xt)>(xti − xi).
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Since ‖v(x)‖ ≤ G, A1
i = Idi and At+1

i = Ati + vi(x
t)vi(x

t)>, Hazan et al. [2007, Lemma 11]
guarantees that

T∑
t=1

1
ηt+1
i

vi(x
t)>(At+1

i )−1vi(x
t) ≤

√
1 + max{M1

i , . . . ,M
T
i }

(
T∑
t=1

vi(x
t)>(At+1

i )−1vi(x
t)

)
≤

√
1 + max{M1

i , . . . ,M
T
i }(di log(TG2 + 1)),

which implies that

T∑
t=1

N∑
i=1

1
ηt+1
i

vi(x
t)>(At+1

i )−1vi(x
t) ≤

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }(d log(TG2 + 1)). (10.24)

Plugging Eq. (10.24) into Eq. (10.23) yields that

T∑
t=1

(xt − x)>v(x) ≤ D2

2
+ d log(TG2+1)

2

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }

+
T∑
t=1

N∑
i=1

(
1

2
√

1+max{M1
i ,...,M

t
i }
− 1

4
min{ 1

4GD
, α}
)

(xti − xi)>vi(xt)vi(xt)>(xti − xi).

Since ‖v(x)‖ ≤ G and X is convex and bounded with a diameter D > 0, we have

T∑
t=1

N∑
i=1

(
1

2
√

1+max{M1
i ,...,M

t
i }
− 1

4
min{ 1

4GD
, α}
)

(xti − xi)>vi(xt)vi(xt)>(xti − xi)

≤ G2D2

2

(
T∑
t=1

max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 1

2
min{ 1

4GD
, α}
})

.

Putting these pieces together yields that

T∑
t=1

(xt − x)>v(x) ≤ D2

2
+ d log(TG2+1)

2

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }

+G2D2

2

(
T∑
t=1

max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− 1

2
min{ 1

4GD
, α}
})

.

For simplicity, we let γ = 1
2

min{ 1
4GD

, α}. By the definition of x̄T (i.e., x̄T = 1
T

∑T
t=1 x

t), we
have

gap(x̄T )

≤ D2

2T
+ G2D2

2T

(
T∑
t=1

max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− γ
})

+ d log(TG2+1)
2T

√
1 + max

1≤i≤N,1≤t≤T
{M t

i }.
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Taking the expectation of both sides, we have

E[gap(x̄T )] ≤ D2

2T
+ G2D2

2T
E

[
T∑
t=1

max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− γ
}]

︸ ︷︷ ︸
I

(10.25)

+d log(TG2+1)
2T

E
[√

1 + max
1≤i≤N,1≤t≤T

{M t
i }
]

︸ ︷︷ ︸
II

.

It remains to bound the terms I and II using Proposition 10.2.6. Indeed, we have

I =
T∑
t=1

E
[
max

{
0, max

1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− γ
}]
≤

T∑
t=1

P
(

max
1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− γ ≥ 0

)
.

Considering it = argmax1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
that is a random variable and then re-

calling that {max{M1
i , . . . ,M

t
i }}1≤i≤N are i.i.d., we have it ∈ {1, . . . , N} is uniformly dis-

tributed. This implies that

I ≤ 1
N

T∑
t=1

N∑
j=1

P
(

max
1≤i≤N

{
1√

1+max{M1
i ,...,M

t
i }

}
− γ ≥ 0 | it = j

)
= 1

N

T∑
t=1

N∑
j=1

P
(

1√
1+max{M1

j ,...,M
t
j}
− γ ≥ 0

)
.

Since {M t
i }1≤i≤N,1≤t≤T are i.i.d. geometric random variables with p0 = 1

log(T+10)
, Proposi-

tion 10.2.6 implies that

T∑
t=1

P
(

1√
1+max{M1

j ,...,M
t
j}
− γ ≥ 0

)
≤ e

p

γ2 = e
1

γ2 log(T+10) .

Putting these pieces together yields that

I ≤ e
1

γ2 log(T+10) = e
(max{8GD,2α−1})2

log(T+10) . (10.26)

By using the similar argument with Proposition 10.2.6 and p0 = 1
log(T+10)

, we have

II ≤
√

1 + 1+log(NT )
p0

=
√

1 + log(T + 10) + log(NT ) log(T + 10). (10.27)

Plugging Eq. (10.26) and Eq. (10.27) into Eq. (10.25) yields that

E[gap(x̄T )] ≤ D2

2T
(1+G2e

(max{8GD,2α−1})2
log(T+10) )+ d log(TG2+1)

2T

√
1 + log(T + 10) + log(T ) log(T + 10).

This completes the proof.
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