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Abstract

We consider the problem of learning maximally informative representations for data in a high-dimensional
space with distribution supported on or around a single or multiple low-dimensional geometric structures,
with or without labels. That is, we wish to compute a linear injective map (i.e., an “encoder”) such that
the image of the data (i.e., the “representations”) have maximum “information gain”; we also want to
compute a a suitable notion of inverse for the encoder (i.e., a “decoder”). We formulate this family of
learning problems as a class of two-player games. For a broad notion of game-theoretic equilibria which is
learnable via standard gradient-based optimization techniques, we show that the equilibrium solutions to
games within the class indeed result in maximally informative representations and a consistent autoencoding.
We then apply this framework to several instances of the closed-loop transcription (CTRL) framework, which
has been recently proposed for learning discriminative and generative representations for data lying on low-
dimensional submanifolds, obtaining desirable representations which provably emulate and extend ones given
by classical theory. Finally, we present a novel optimization algorithm to obtain the particular equilibria
which our theory desires, and prove its correctness in a restricted case.



Acknowledgments

First, I would like to thank my advisor, Professor Yi Ma. Since I started working with him as a third-year
undergraduate, Professor Ma has always pushed me to improve as a researcher and spurred my growth. In
addition, he has been a fount of good ideas and excellent problems. For this, and many other reasons, I am
very grateful.

I would also like to thank Professor Shankar Sastry for his continual support, both on the technical level
and on a big-picture level, as well as for being the second reader for this report.

The ideas in this work were contained in a couple of publications. I would like to thank all of my
collaborators on those publications, including (but not limited to) Professors Edgar Dobriban and Manxi
Wu; and fellow students Michael Psenka and Chih-Yuan Chiu. I also worked with several other collaborators
on various other projects; in particular, I am grateful to have collaborated with Dr. Sam Buchanan, Xili Dai,
Peter Tong, Vishal Raman, Brent Yi, and Chinmay Maheshwari.

This thesis is dedicated to my friends and family, whose support is invaluable.



Contents

1 Motivation and Context 2
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Closed-Loop Transcription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Rate Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Game Theory and Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Proximal Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 CTRL-PG: A Framework for Training Games 8
3.1 Formulating the Training Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Characterizing the Proximal Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Learning to Represent Structured Data 10
4.1 Unsupervised Learning for Data on a Low-Dimensional Subspace . . . . . . . . . . . . . . . . 10
4.2 Supervised Learning for Data on Multiple Low-Dimensional Subspaces . . . . . . . . . . . . . 13

5 Learning Proximal Equilibria 18
5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Three-Timescale Proximal Gradient Descent-Ascent . . . . . . . . . . . . . . . . . . . . . . . 19

6 Conclusion 23

Notice

This work is based primarily on the paper (Pai et al., 2022) as well as a final project for CS 294-182 in Spring
2023, but contains additional material not submitted to either venue.

1



1 Motivation and Context

Learning representations of complex high-dimensional data with low underlying complexity is a central goal
in machine learning, with applications to compression, sampling, out-of-distribution detection, classification,
etc. For example, in the context of image data, one may perform clustering (Prasad et al., 2020), and generate
or detect fake images (Huang et al., 2018). There are a number of recently popular methods for representation
learning, several proposed in the context of image generation; one such example is generative adversarial
networks (GANs) (Goodfellow et al., 2014), giving promising results (Karras et al., 2021; Mino and Spanakis,
2018). Despite empirical successes, theoretical understanding of representation learning of high-dimensional
data with underlying low complexity is still rather primitive. Classical methods with theoretical guarantees
(Jolliffe, 2002), such as principal component analysis (PCA), are divorced from modern methods such as
GANs whose justifications are mostly empirical and whose theoretical properties remain poorly understood
(Feizi et al., 2020; Farnia and Ozdaglar, 2020).

A challenge for our theoretical understanding is that high-dimensional data often has low-dimensional
structure, such as belonging to multiple subspaces and even nonlinear manifolds (Wright and Ma, 2022; Li
and Bresler, 2018; Zhang et al., 2019; Shen et al., 2020; Zhai et al., 2020, 2019; Qu et al., 2019; Lau et al.,
2020; Fefferman et al., 2016). This hypothesis can be difficult to account for theoretically.1 In fact, our
understanding of this setting, and knowledge of principled and generalizable solutions, is still incomplete,
even in the case when the data lies on multiple linear subspaces (Vidal et al., 2016), and the representation
map is linear. In this work, we aim to bridge this gap.

1.1 Our Contributions

Our contributions are four-fold:

1. We propose a new game-theoretic framework, called CTRL-PG, for learning injective and discriminative
representations for geometrically structured high-dimensional data.

2. We mathematically characterize the equilibrium representations of CTRL-PG games and show they
fulfill a set of commonly-desired properties of representations, proving that our framework is well-posed
and theoretically principled.

3. We apply our framework to classical but complex subspace learning problems, and show that our
framework recovers the optimal results constructed by classical theory in this setting.

4. We propose an algorithm to learn such equilibria, with a proof of correctness under benign assumptions.

Our results demonstrate an instance of classical machine learning problems being solved optimally using
modern deep learning tools, thus unifying the classical and modern perspectives on machine learning. Our
analysis is tailored to fit the assumption of high-dimensional data with low-dimensional structure.

1.2 Related Works

PCA, Subspace Clustering, and Autoencoding Principal component analysis (PCA) and its proba-
bilistic versions (Hotelling, 1933; Tipping and Bishop, 1999) are a classical tool for learning low-dimensional
representations. One finds the best ℓ2-approximating subspace of a given dimension for the data. Thus,
PCA can be viewed as seeking to learn the linear subspace structure of the data. Several generalizations of
PCA exist. Generalized PCA (GPCA) (Vidal et al., 2003) seeks to learn multiple linear subspace structure
by clustering. Unlike PCA and this work, GPCA does not learn transformed representations of the data.
PCA has also been adapted to recover nonlinear structures in many ways (Van Der Maaten et al., 2009),
e.g., via principal curves (Hastie and Stuetzle, 1989) or autoencoders (Kramer, 1991).

1One assumption which violates this hypothesis implicitly is the existence of a probability density for the data. For instance,
the analysis in several prominent works on representation learning, such as Kingma and Welling (2014) and Feizi et al. (2020)
critically requires this assumption to hold. Probability densities with respect to the Lebesgue measure on Rn do not exist if the
underlying probability measure has a Lebesgue measure zero support, e.g., for lower-dimensional structures such as subspaces
(Kallenberg, 2021). Thus, this assumption excludes a lower dimensionality of the data.
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GAN Generative Adversarial Networks (GANs) are a recently popular representation learning method
(Goodfellow et al., 2014; Arjovsky et al., 2017). GANs simultaneously learn a generator function, which
maps low-dimensional noise to the data distribution, and a discriminator function, which maps the data to
discriminative representations from which one can classify the data as authentic or synthetic with a simple
predictor. The generator and discriminator are trained adversarially; the generator is trained to generate
data which is distributionally close to real data, in order to fool the discriminator, while the discriminator
is simultaneously trained to identify discrepancies between the generator output and empirical data.

While GANs enjoy certain empirical success (see e.g. Karras et al. (2021); Mino and Spanakis (2018)),
their theoretical properties are less well developed, especially in the context of high-dimensional data with
intrinsic structure. More specifically, the most prominent works of GAN analysis use the simplifying as-
sumption of full-rank data (Feizi et al., 2020), require explicit computation of objective functions which are
intractable to even estimate using a finite sample (Arjovsky et al., 2017; Zhu et al., 2020), or show that GANs
have poor theoretical behavior, such as their training game not having Nash equilibria (Farnia and Ozdaglar,
2020). In this work, we adopt the more realistic assumption of low-dimensional data in a high-dimensional
space, use explicit, closed-form objective functions which are more convenient to optimize, and demonstrate
the existence of global equilibria of the training game corresponding to our method.

1.3 Notation

In this section we give an accounting of common notations which we use.

• We denote by R≥0 the set of all non-negative real numbers.

• For n ≥ 1 a positive integer, we denote by [n] the set {1, . . . , n}.

• For two sets U, V , a map h : U → V , and a subset W ⊆ U , we denote by h(W )
.
= {h(u) | u ∈ W} the

image of W under h.

• For a vector space U and subspaces V,W ⊆ U , we denote by V +W
.
= {v +w | v ∈ V,w ∈ W} the

Minkowski sum of V and W .

• For a set U , we denote by idU : U → U the identity map on U .

• For a matrix A ∈ Rm×n, we denote by Col(A)
.
= {y ∈ Rm | ∃x : Ax = y} the image of A.

• For a matrix A ∈ Rm×n, we denote by Null(A)
.
= {x ∈ Rn | Ax = 0} the kernel of A.

• For a matrix A ∈ Rm×n, we denote ∥A∥F
.
=

√∑m
i=1

∑n
j=1 A

2
ij to be the Frobenius norm of A.

• For a matrix A ∈ Rm×n, we denote A+ to be the Moore-Penrose psuedoinverse of A.

• For a matrix A ∈ Rm×n and a positive integer i ≤ min{m,n}, we denote by σi(A) the ith largest
singular value of A.

• For a symmetric matrix A ∈ Sn, we denote by λmax(A) and λmin(A) the minimum and maximum
singular values of A respectively.

• For a symmetric matrix A ∈ Sn×n and a positive integer i ≤ n, we denote by λi(A) as the ith largest
eigenvalue of A.

• For vector spaces U, V , we denote L(U, V ) to be the set of linear maps U → V .

• For a vector space U and a positive integer d ≤ dim(U), we denote by Gr(V, d) the vector space of
d-dimensional subspaces of V .

• For a normed vector space U and subspace V ⊆ U , we denote the projection onto V as PV : U → V .

• For inner product spaces U, V and a linear map h : U → V , we denote the adjoint of h by h∗ : V → U .

• For inner product spaces U, V , we denote O(U, V ) to be the set of orthogonal linear maps U → V :

O(U, V )
.
=

{
h ∈ L(U, V )

∣∣∣∣ h∗ ◦ h = idU , if dim(U) ≤ dim(V )
h ◦ h∗ = idV , if dim(U) ≥ dim(V )

}
. (1)
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2 Preliminaries

2.1 Representation Learning

Let x be a random variable taking values in RD. Let X =
[
x1, . . . ,xN

]
∈ RD×N be a sample matrix whose

columns are N ≥ 1 samples x1, . . . ,xN ∈ RD which are i.i.d. realizations of x.
Our goal is to learn an encoder mapping fθ : RD → Rd from some parametric function family {fθ : RD →

Rd | θ ∈ Θ}, given X and any auxiliary data (such as labels, as we will see later). Normally, we want
d ≤ D and fθ(x) to have better geometric and statistical properties than x itself. Moreover, we want to
learn an approximate inverse or decoder mapping gξ : Rd → RD from another parametric function family
{gξ : Rd → RD | ξ ∈ Ξ}, such that the distributions of x and (gξ ◦ fθ)(x) are close.

2.2 Closed-Loop Transcription

To learn the encoder/decoder mappings fθ and gξ, we use the Closed-Loop Transcription (CTRL) framework,
a recent method which was proposed for representation learning of low-dimensional submanifolds in high-
dimensional space and has had good empirical results (Dai et al., 2022). This framework generalizes both
autoencoders and GANs; fθ has dual roles as an encoder and discriminator, and gξ has dual roles as a
decoder and a generator.

For the sample matrix X, we define fθ(X)
.
=

[
fθ(x

1), . . . , fθ(x
N )

]
∈ Rd×N . The training process follows

a closed loop: starting with the data X and the autoencoded data (gξ ◦ fθ)(X), the data representations
fθ(X) and the autoencoded data representations (fθ ◦ gξ ◦ fθ)(X) are used to train θ and ξ. This approach
has a crucial advantage over the GAN formulation: contrary to GANs (Arjovsky et al., 2017; Zhu et al.,
2020), since fθ(X) and (fθ ◦ gξ ◦ fθ)(X) both live in the structured representation space Rd, interpretable
quantifications of representation quality and of the difference between fθ(X) and (fθ ◦ gξ ◦ fθ)(X) exist and
may be computed efficiently in closed form.

For convenience, hereafter we use the following notations to denote encoder-decoder compositions:

z(θ)
.
= fθ(x), x̂(θ, ξ)

.
= (gξ ◦ fθ)(x), ẑ(θ, ξ)

.
= (fθ ◦ gξ ◦ fθ)(x)

zi(θ)
.
= fθ(x

i), x̂i(θ, ξ)
.
= (gξ ◦ fθ)(xi), ẑi(θ, ξ)

.
= (fθ ◦ gξ ◦ fθ)(xi), ∀i ∈ [N ]

Z(θ)
.
= fθ(X), X̂(θ, ξ)

.
= (gξ ◦ fθ)(X), Ẑ(θ, ξ)

.
= (fθ ◦ gξ ◦ fθ)(X).

(2)

2.3 Rate Reduction

These tractable quantities are based on the information-theoretic and statistical paradigm of rate reduction
discussed in the CTRL literature (Dai et al., 2022; Yu et al., 2020) as well as previous works (Ma et al.,
2007). Here we review the main principles, as they are central to an information-theoretic interpretation of
our objective functions.

Let z be a random variable taking values in Rd. Let RD(· | z) be the rate distortion function of z with
respect to the Euclidean squared distance distortion (Cover and Thomas, 2006). Information-theoretically,
this is the coding rate of the data; that is, the average number of bits required to encode z, such that
the expected Euclidean squared distance between z and its encoding is at most the first argument of the
function.

If u ∼ N (0d,Γ) is a multivariate Gaussian random vector with mean 0d and covariance Γ, then

RD(ε | u) = 1

2
log2 det

(
d

ε2
Γ

)
∀ε ∈

[
0,
√

d · λmin(Γ)
]
. (3)

For larger ε, the rate distortion function becomes more complicated and can be found by the water-filling
algorithm on the eigenvalues of Γ. However, Ma et al. (2007) proposes the following approximation of the

rate distortion. For wε ∼ N
(
0d,

ε2

d Id

)
independent of z, let

Rε(z)
.
= RD(ε | z +wε) . (4)
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If z ∼ N (0d,Σ), then we may derive a closed form expression for Rε(z) for all ε > 0. Since z and wε are
normally distributed and independent, so is z +wε, and

z +wε ∼ N
(
0d,

ε2

d
Id +Σ

)
. (5)

Thus, √
d · λmin

(
ε2

d
Id +Σ

)
=

√
d ·

(
ε2

d
+ λmin(Σ)

)
=

√
ε2 + dλmin(Σ) ≥ ε. (6)

Therefore, we have the following closed form expression for Rε(z) for all ε > 0.

Rε(z) = RD(ε | z +wε) =
1

2
log2 det

(
d

ε2

(
Σ+

ε2

d
Id

))
(7)

=
1

2
log2 det

(
Id +

d

ε2
Σ

)
. (8)

In information-theoretic terms, Rε(z) is a regularized rate distortion function. Heuristically, it counts the
average number of bits required to encode z up to ε precision, and thus it quantifies the expansiveness of
the distribution of z, or in other words how “spread out” the distribution is.

From this quantity we can also define a difference function2 between distributions of two possibly-
correlated random vectors z1, z2 ∈ Rd. This function approximately computes the average number of
bits saved by encoding z1 and z2 separately and independently compared to encoding them together, say
by encoding a mixture random variable z which is z1 with probability 1

2 and z2 with probability 1
2 , up to

precision ε. In this notation, we have

∆Rε(z1, z2)
.
= Rε(z)−

1

2
Rε(z1)−

1

2
Rε(z2). (9)

This difference function has several advantages over Wasserstein or Jensen-Shannon distances. It is a prin-
cipled quantification of difference which is computable in closed-form for the widely representative class of
Gaussian distributions. In particular, due to the existence of the closed-form representation, it is much
simpler to do analysis on the solutions of optimization problems involving this function.

We may generalize the difference function to several random vectors. Specifically, define probabilities
π1, . . . , πK ∈ [0, 1] such that

∑K
j=1 πj = 1, arranged in a vector π ∈ [0, 1]K , and let z1, . . . ,zK be random

variables taking values in Rd. Define z to be the mixture random vector which equals zj with probability
πj . Then the coding rate reduction of z given π is given by

∆Rε(z | π)
.
= Rε(z)−

K∑
j=1

πjRε(zj). (10)

Heuristically, this again approximates the average number of bits saved by encoding each zj separately as
opposed to encoding z as a whole, and thus it quantifies how compact the distribution of each zj is and how
expansive, or “spread out” the distribution of z as a whole is. More precisely, it was shown by Yu et al.
(2020) that, subject to rank and Frobenius norm constraints on the zj , this expression is maximized when
the zj are distributed on pairwise orthogonal subspaces, and also each zj has isotropic (or nearly isotropic)
covariance on its subspace.

In practice, we do not know the distribution of the data, and the features are not perfectly a mixture
of Gaussians. Still, the mixture of Gaussians is often a reasonable model for lower-dimensional feature
distributions (Ma et al., 2007; Yu et al., 2020; Dai et al., 2022), so we use the Gaussian form for the
approximate coding rate.

Also, in practice we may not have access to the full distribution of data, and so we need to estimate all
relevant quantities via a finite sample. For Gaussians, Rε is only a function of z through its covariance Σ;

2Unfortunately, it is not a true distance function; for starters, it can be zero for random variables with non-identical
distributions.
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in practice, this covariance is estimated via a finite sample Z ∈ Rd×N , assumed to be centered, as ZZ∗/N .
This also allows us to estimate ∆Rε(·, ·) from a finite sample. To estimate ∆Rε(· | ·), we also need to
estimate π. For this, we require finite sample label information y telling us which samples correspond to
which random vector zj . Denote by Nj ≥ 1 the number of samples in Z which correspond to zj . Then π

may be estimated via plug-in as π̂j =
Nj

N .
This set of approximations yields estimates Rε(Z), ∆Rε(Z1,Z2), and ∆Rε(Z | y). Henceforth, we

drop the ε subscript and use the natural logarithm instead of the base-2 logarithm. In this notation, the
expressions for Gaussian z and zj , which we use in practice, are:

R(Z) =
1

2
logdet

(
Id +

d

Nε2
ZZ∗

)
, (11)

∆R(Z1,Z2) = R(
[
Z1,Z2

]
)− 1

2
R(Z1)−

1

2
R(Z2), (12)

∆R(Z | y) = R(
[
Z1, . . . ,ZK

]
)−

K∑
j=1

Nj

N
R(Zj). (13)

We note here that although the assumption that z and zj are Gaussian provides an information-theoretic
interpretation of the coding rate and rate reduction, our results in this work do not rely on anything being
exactly distributed according to a mixture of Gaussians. This is because the proofs use purely the algebraic
properties of the coding rate approximations.

We finish this section with two key deterministic results which provide intuition to the behavior of
optimizing with respect to rate reduction functions.

Proposition 2.1. Let Z1,Z2 ∈ Rd×N . Then ∆R(Z1,Z2) ≥ 0. Furthermore, if ∆R(Z1,Z2) = 0, then
Col(Z1) = Col(Z2).

Proof. By (Yu et al., 2020, Lemma A.4), we have ∆R(Z1,Z2) ≥ 0, with equality if and only if Z1Z
∗
1 = Z2Z

∗
2 ,

implying that Col(Z1) = Col(Z2).

This result says that minimizing ∆R(Z1,Z2) matches the underlying span of the two inputs’ columns.

Proposition 2.2 (Theorem A.6 of Yu et al. (2020)). Let y ∈ [K]N be finite sample label information, and
let N1, . . . , NK be positive integers such that

Nj
.
=

N∑
i=1

1[yi = j], ∀j ∈ [K]. (14)

Let d1, . . . , dK be positive integers. Consider the following optimization problem:

Z⋆
1 , . . . ,Z

⋆
K ∈ argmin

Zj∈Rd×Nj

∀j∈[K]

∆R(
[
Z1, . . . ,Zj

]
| y) (15)

s.t. ∥Zj∥2F = Nj , ∀j ∈ [K] (16)

rank(Zj) ≤ dj , ∀j ∈ [K]. (17)

Suppose that the following conditions hold:

(i) (Large ambient dimension.) d ≥
∑K

j=1 dj.

(ii) (High coding precision.) ε4 < minj∈[K]

{
Nj

N ·
d2

d2
j

}
.

Then the optimal solutions Z⋆
1 , . . . ,Z

⋆
K satisfy:

(i) Between-class discriminative: Col(Z⋆
j ) and Col(Z⋆

k) are orthogonal subspaces for all j ̸= k.

(ii) Within-class diverse: For each j ∈ [K], we have σ1(Zj) = · · · = σdj−1(Zj) ≥ σdj
(Zj) > 0.

This result says that maximizing ∆R(Z | y) subject to norm and dimension constraints means that each
Zj is distributed nearly isotropically on a subspace of the largest possible dimension.
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2.4 Game Theory and Equilibria

We now discuss how to train the encoder parameters θ and decoder parameters ξ. Let the parameter spaces
of the encoder and decoder be Θ and Ξ respectively. For simplicity we assume that they are metric subspaces
of Euclidean space, with ρΘ and ρΞ denoting their respective (Euclidean) metrics.

Several methods, e.g., PCA, GANs (Goodfellow et al., 2014), and the original CTRL formulation (Dai
et al., 2022), can be viewed as learning the encoder (or discriminator) parameters θ and decoder (or generator)
parameters ξ via finding the Nash equilibria of an appropriate two-player zero-sum game between the encoder
and decoder. In this work, we approach this problem from a more general perspective; we learn the encoder
parameters θ and decoder parameters ξ via finding the so-called proximal equilibria of the training game.
We now cover the basics of two-player zero-sum game theory in the context of our representation learning
problem; a more complete treatment is found in Başar and Olsder (1998).

In a two-player zero-sum game between the encoder — whose move corresponds to picking θ ∈ Θ — and
decoder — whose move corresponds to picking ξ ∈ Ξ — the encoder attempts to maximize a value function
V : Θ×Ξ→ R, while the decoder attempts to minimize it. In a simultaneous game, both players make their
moves at the same time, with no information about the others’ play. In a sequential game, the players make
their moves one at a time; in our formulation, the encoder would move first, since conceptually the decoder
solely wishes to invert the encoder and can only do effectively so with knowledge of the encoder’s play.

We now introduce the traditional solution concepts — that is, the equilibria which may be learned by
an algorithm — for simultaneous and sequential games. The solution concept for simultaneous games is the
celebrated Nash equilibrium (Başar and Olsder, 1998), defined below.

Definition 2.3 (Nash Equilibrium). The pair (θ⋆, ξ⋆) ∈ Θ× Ξ is a Nash equilibrium if

θ⋆ ∈ argmax
θ∈Θ

V(θ, ξ⋆) and ξ⋆ ∈ argmin
ξ∈Ξ

V(θ⋆, ξ). (18)

We denote by NE the set of Nash equilibria.

In words, neither the encoder nor the decoder wish to unilaterally deviate from (θ⋆, ξ⋆). This reflects the
simultaneous notion of the game in that neither player in the game knows the other player’s actions.

The solution concept for sequential games is the Stackelberg equilibrium (Başar and Olsder, 1998; Fiez
et al., 2019; Jin et al., 2020), defined below in the case that the encoder moves first.

Definition 2.4 (Stackelberg Equilibrium). The pair (θ⋆, ξ⋆) ∈ Θ× Ξ is a Stackelberg equilibrium if

θ⋆ ∈ argmax
θ∈Θ

inf
ξ∈Ξ
V(θ, ξ) and ξ⋆ ∈ argmin

ξ∈Ξ
V(θ⋆, ξ). (19)

We denote by SE the set of Stackelberg equilibria.

The sequential notion of the game is reflected in the definition of the equilibrium; the decoder, going
second, may play ξ to minimize V(θ, ·) with full knowledge of the encoder’s play θ (assuming the encoder
plays rationally), while the encoder plays θ to maximize V(·, ·) with only the knowledge that the decoder
will play optimally in response.

2.5 Proximal Equilibria

To accommodate the wide variety of optimization strategies which are used in practice to learn (θ, ξ) pairs, we
instead study a generalization of both Nash and Stackelberg equilibria — the so-called proximal equilibrium,
first defined in Farnia and Ozdaglar (2020).

Definition 2.5 (Proximal Equilibrium). Let λ > 0. We define the proximal value function Vλ : Θ× Ξ→ R
by

Vλ(θ, ξ)
.
= inf

ζ∈Ξ

{
V(θ, ζ) + λ

2
ρΞ(ξ, ζ)

2

}
. (20)

The pair (θ⋆, ξ⋆) ∈ Θ× Ξ is a λ-proximal equilibrium if

θ⋆ ∈ argmax
θ∈Θ

Vλ(θ, ξ⋆) and ξ⋆ ∈ argmin
ξ∈Ξ

V(θ⋆, ξ). (21)

We denote by PE(λ) the set of λ-proximal equilibria.
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Remark 2.6. The original definition of the proximal equilibrium by Farnia and Ozdaglar (2020) replaces
the condition ξ⋆ ∈ argminξ∈Ξ V(θ⋆, ξ) with the condition ξ⋆ ∈ argminξ∈Ξ Vλ(θ⋆, ξ), but these are equivalent
since it is easy to see that for any λ > 0 and θ ∈ Θ we have

argmin
ξ∈Ξ

Vλ(θ, ξ) = argmin
ξ∈Ξ

V(θ, ξ). (22)

We present the proximal equilibrium definition as in Definition 2.5 in order to make clear the connections
between proximal equilibria, Nash equilibria, and Stackelberg equilibria.

Proximal equilibria encourage some optimization around the Nash equilibrium solution, which is con-
sistent with the convergence of alternating gradient descent-ascent to stable points in minimax training, so
there is reason to believe that such equilibria are obtained in practice using standard minimax optimization
algorithms. In the remainder of the work, we analyze the proximal equilibrium.

The key way to think about proximal equilibria is that proximal equilibria interpolate between Nash
equilibria and Stackelberg equilibria. This is formalized in the following result.

Proposition 2.7 (Adaptation of Proposition 3 of Farnia and Ozdaglar (2020)).

(i) If λ1 ≤ λ2 then PE(λ1) ⊇ PE(λ2).

(ii)
⋂

λ>0 PE(λ) = NE.

(iii)
⋃

λ>0 PE(λ) = SE.

Proof. Item (i) is proved directly in Proposition 3 of Farnia and Ozdaglar (2020). For items (ii) and (iii),
we have

lim
λ↗∞

Vλ(θ, ξ) = V(θ, ξ), (23)

lim
λ↘0
Vλ(θ, ξ) = inf

ζ∈Ξ
V(θ, ζ), (24)

which, in conjunction with (i), prove (ii) and (iii) respectively.

3 CTRL-PG: A Framework for Training Games

3.1 Formulating the Training Game

In this section, we introduce a new conceptual framework for training games within the Closed-Loop Tran-
scription (CTRL) framework (Dai et al., 2022), which we call CTRL-PG (for “proximal games”)3. Recall that
we seek to learn encoder parameters θ⋆ ∈ Θ and decoder parameters ξ⋆ ∈ Ξ with the following desiderata:

• (High-quality representations.) The representation z(θ⋆) has good geometric and statistical properties.

• (Consistent autoencoding.) The autoencoding x̂(θ⋆, ξ⋆) is close to x itself.

The exact qualities that we wish for our representations z(θ) and the exact notion of closeness of x̂(θ, ξ) to x
will change depending on the exact application or task which we want to learn. Thus, let us suppose for now
that we generically quantify the representation quality by a function Q : Θ → R≥0, such that higher values
of Q indicate higher quality representations z(θ). Also, let us quantify the consistency of the autoencoding
as C : Θ × Ξ → R≥0, such that lower values of C indicate a more self-consistent autoencoding (i.e., x̂(θ, ξ)
and x are close).

As discussed in Section 2.4, we seek to learn f⋆ and g⋆ as proximal equilibria for a two-player zero-sum
game. Here we develop the value function V : Θ×Ξ of this game, which enables us to completely define the
game. Recall that the encoder attempts to maximize V, while the decoder attempts to minimize V.

3In (Pai et al., 2022), a very similar formulation was labeled CTRL-SG (for “sequential games”, and results were shown only
for Stackelberg equilibria.
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To ensure high-quality representations, the encoder should want to maximize Q(θ) over θ ∈ Θ. On the
other hand, to encourage a self-consistent autoencoding, the decoder should wish to minimize C(θ, ξ) over
ξ ∈ Ξ. In line with the CTRL framework, to encourage the decoder to be maximally powerful, the encoder
should play a dual role as a GAN-type discriminator and thus should seek to distinguish the true data x
from the autoencoding x̂(θ, ξ), say by maximizing C(θ, ξ) over θ ∈ Θ. Thus, the encoder should seek to
maximize Q(θ) + C(θ, ξ) while the decoder should seek to minimize C(θ, ξ). This yields the following game.

Definition 3.1 (CTRL-PG Game). The CTRL-PG game is a two-player zero-sum game between:

• the encoder, playing θ ∈ Θ to maximize the value function V;

• the decoder, playing ξ ∈ Ξ to minimize the value function V;

where the value function V : Θ× Ξ→ R has the form

V(θ, ξ) .
= Q(θ) + C(θ, ξ) (25)

for a given quality function Q : Θ→ R≥0 and consistency function C : Θ× Ξ→ R≥0.

Thus in the CTRL-PG formulation, the encoder wishes to maximize Q(θ) + C(θ, ξ), while the decoder
wishes to minimize Q(θ)+C(θ, ξ) or equivalently (since Q is not a function of ξ) just minimize C(θ, ξ), which
is perfectly in line with the above discussion.

This system generalizes the proposed setting of learning from a fixed finite dataset that we first discussed
in Section 2.1. Since it is a purely game-theoretic formulation, in principle, one may adapt it to many
learning contexts. In Section 4 we learn from a fixed finite (possibly labelled) dataset, but one could adapt
this framework to e.g., semi-supervised learning and online/incremental learning.

3.2 Characterizing the Proximal Equilibria

In the following theorem, we compute the properties of the proximal equilibria of CTRL-PG games.

Theorem 3.2. Suppose that the following assumptions hold:

(i) (Quality can be maximized.) The set argmaxθ∈ΘQ(θ) is nonempty.

(ii) (Consistency can be achieved.) For every θ ∈ Θ, the set argminξ∈Ξ C(θ, ξ) is nonempty.

(iii) (The decoder can do equally well for any encoder play.) The function θ 7→ minξ∈Ξ C(θ, ξ) is constant.

Let λ > 0, let PE(λ) be the set of λ-proximal equilibria for the CTRL-PG game, and let (θ⋆, ξ⋆) ∈ PE(λ).
Then:

(a) (Quality is maximized.) We have θ⋆ ∈ argmaxθ∈ΘQ(θ).

(b) (Consistency is achieved.) We have ξ⋆ ∈ argminξ∈Ξ C(θ⋆, ξ).

Proof. We use property (iii) from Proposition 2.7, i.e., PE(λ) ⊆ SE. Then we have

argmax
θ∈Θ

inf
ξ∈Ξ
V(θ, ξ) = argmax

θ∈Θ
inf
ξ∈Ξ
{Q(θ) + C(θ, ξ)} (26)

= argmax
θ∈Θ

{
Q(θ) + inf

ξ∈Ξ
C(θ, ξ)

}
(27)

= argmax
θ∈Θ

Q(θ). (28)

argmin
ξ∈Ξ

V(θ⋆, ξ) = argmin
ξ∈Ξ

{Q(θ⋆) + C(θ⋆, ξ)} (29)

= argmin
ξ∈Ξ

C(θ⋆, ξ). (30)

Thus we have that (θ⋆, ξ⋆) ∈ PE(λ) implies (θ⋆, ξ⋆) ∈ SE, which in turn implies

θ⋆ ∈ argmax
θ∈Θ

Q(θ) and ξ⋆ ∈ argmin
ξ∈Ξ

C(θ⋆, ξ) (31)

as desired.
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In the above result, the only condition which is conceptually interesting is condition (iii), which says
that the function θ 7→ minξ∈Ξ C(θ, ξ) is constant. This says that for each choice of fθ, there exists a gξ
which inverts it on the support of the data distribution, at least in the sense of ensuring self-consistency
as measured by C. We argue that this property holds (at least approximately) for function classes used
for autoencoders in practice (Kingma and Welling, 2014), especially within the closed-loop transcription
framework (Dai et al., 2022, 2023), and so it is a reasonable assumption to make for our theory.

The key (albeit slightly technical) innovation of Theorem 3.2 is to show that the game-theoretic optimiza-
tion procedure in multiple variables can be connected to a set of (possibly sequentially-solved) optimization
problems in each variable. Thus CTRL-PG games are completely mathematically interpretable in the lan-
guage of (conventional) optimization. This decomposition also opens the door to alternative implementations
of the game, i.e., pretraining first an encoder (to maximize Q(θ)) then a decoder (to minimize C(θ, ξ)) before
training them jointly, though we leave further exploration of this issue for future work in favor of developing
an end-to-end optimization scheme in Section 5.

Thus, the general CTRL-PG game system allows us to use the CTRL framework for representation
learning, choose principled objective functions to encourage the desired representation and autoencoding
properties, and then explicitly characterize the optimal learned encoder and decoder for that algorithm. It
also suggests principled optimization strategies and algorithms, such as the one we propose in Section 5, for
obtaining these optimal functions.

4 Learning to Represent Structured Data

In this section, we discuss two applications of the CTRL-PG framework to concrete unsupervised and
supervised representation learning problems. Our analysis of these problems may be viewed as verifications
that the closed-loop transcription framework produces information-theoretically and geometrically desirable
representations, in that the optimal solutions for simple cases agree with those found by classical theory.
Thus, a large part of what we do in this section is to verify a connection and unification between classical
and modern representation learning via the closed-loop transcription framework.

4.1 Unsupervised Learning for Data on a Low-Dimensional Subspace

Our first application of the CTRL-PG framework is to learn informative representations for data on a single
subspace. Our framework is called CTRL-SSP (single subspace pursuit).

Our setting is that we have samples x1, . . . ,xN ∈ RD which are N ≥ 1 i.i.d. samples of some data random
variable x. To model that the data has statistical and geometric structure, suppose x is supported on a
subspace S of dimension dS ≪ D. We collect the samples into a sample matrix X =

[
x1, . . . ,xN

]
∈ RD×N .

We have the following desiderata for CTRL-SSP, which result in useful representations and a self-
consistent autoencoding.

1. The map fθ⋆ is injective on the support of the data distribution S.

2. The maps fθ⋆ and gξ⋆ form an internally self-consistent closed-loop autoencoding on the support of
the data distribution S.

We now discuss how to quantify these desiderata. We look towards PCA, which has long been held as
the de-facto standard for subspace learning. A common formulation of PCA is to find the best approxi-
mating subspace SPCA of dimension d for the data. Suppose fPCA : RD → Rd projects its input x onto the
coordinates of this subspace, and gPCA : Rd → SPCA ⊆ RD reconstructs its input z from its coordinates on
the subspace. Now if d ≥ dS , we have SPCA ⊇ S, so by the earlier descriptions of fPCA and gPCA, we have
(gPCA ◦fPCA) |S= idS . Thus the maps fPCA and gPCA are ℓ2-isometries on S and fPCA(S) respectively, and
(gPCA ◦fPCA)(S) = S. Thus, we choose to preserve in CTRL-SSP exactly these essential properties of PCA:

1. fPCA is an ℓ2-isometry on S.

2. (fPCA ◦ gPCA ◦ fPCA)(S) = fPCA(S).
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In particular, we desire that our encoder, more than just being injective on S, must preserve all distances and
thus all the structure of the data distribution on S. We also desire our decoder to learn the linear structure
of the representation space imposed by the encoder, so we desire subspace-level autoencoding consistency in
the representation space.

As per the CTRL-PG formulation, we want to encode each of the desiderata in our choices of Θ, Ξ, Q
and C. Because the maps in PCA are orthogonal, we choose Θ and Ξ to represent full sets of orthogonal
maps, i.e., we choose fθ : x 7→ θx and gξ : z 7→ ξz where θ ∈ Θ = O(RD,Rd) and ξ ∈ Ξ = O(Rd,RD).

Before we continue with more intuition-building, let us make a few sensible assumptions that reduce the
complexity of the problem. These assumptions will be re-used, so we store them for shorthand reference
later.

Assumption 4.1.

(i) (Informative data.) Col(X) = S.

(ii) (Large enough representation space.) d ≥ dS .

To choose Q, we are motivated by the following lemma.

Lemma 4.2. Suppose that Assumption 4.1 holds, and that

f⋆ ∈ argmax
f∈O(RD,Rd)

R(f(X)). (32)

Then f⋆(S) is a subspace of dimension dS , and f⋆ is an ℓ2-isometry on S.

Proof. Since f⋆ is a linear map and S is a linear subspace, f⋆(S) is a linear subspace, and furthermore
dim(f⋆(S)) ≤ dS . We now claim that f⋆ is an ℓ2-isometry on S. We show this by calculating an upper
bound for R(f(X)) and show that it is achieved if and only if f is an ℓ2-isometry on S.

Indeed, for any f ∈ O(RD,Rd), we have that f has operator norm and Lipschitz constant equal to unity,
so ∥f(x)∥ℓ2 ≤ ∥x∥ℓ2 for any x ∈ RD. By the Courant-Fischer min-max theorem for singular values, we have,
for each 1 ≤ p ≤ dS , that

σp(f(X)) = sup
S∈Gr(p,RD)

inf
u∈S

∥u∥ℓ2=1

∥f(X) · u∥ℓ2 (33)

≤ sup
S∈Gr(p,RD)

inf
u∈S

∥u∥ℓ2=1

∥X · u∥ℓ2 = σp(X). (34)

Thus

R(f(X)) =
1

2
logdet

(
Id +

d

Nε2
f(X)f(X)∗

)
(35)

=
1

2

dS∑
p=1

log

(
1 +

d

Nε2
σp(f(X))2

)
≤ 1

2

dS∑
p=1

log

(
1 +

d

Nε2
σp(X)2

)
. (36)

As such, f is an ℓ2 isometry on S if and only if σp(f(X)) = σp(X) for all 1 ≤ p ≤ dS .
Thus, any f⋆ ∈ O(RD,Rd) which fulfills the upper bound for R(f(X)), i.e., any maximizer for R(f(X)),

is an ℓ2 isometry on S. Therefore, dim(f⋆(S)) = dS .

This lemma suggests that maximizing R(Z(θ)) will achieve the desired encoder property, i.e., fθ⋆ |S is
an ℓ2-isometry. To choose C, we are motivated by another lemma.

Lemma 4.3. Suppose that Assumption 4.1 holds. Let f ∈ O(RD,Rd), and suppose that

g̃ ∈ argmin
g∈O(Rd,RD)

∆R(f(X), (f ◦ g ◦ f)(X)). (37)

Then f(S) = (f ◦ g ◦ f)(S).
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Proof. First, note that by taking g = f∗, we obtain that f(X) = (f ◦ g ◦ f)(X), and so

min
g∈O(Rd,RD)

∆R(f(X), (f ◦ g ◦ f)(X)) = 0. (38)

Thus if
g̃ ∈ argmin

g∈O(Rd,RD)

∆R(f(X), (f ◦ g ◦ f)(X)) (39)

then we have
∆R(f(X), (f ◦ g̃ ◦ f)(X)) = 0 (40)

so that, by Proposition 2.1, we have

f(S) = Col(f(X)) = Col((f ◦ g̃ ◦ f)(X)) = (f ◦ g̃ ◦ f)(S) (41)

as desired.

This lemma suggests that minimizing ∆R(Z(θ), Ẑ(θ, ξ)) will achieve the desired decoder property, i.e.,
fθ⋆(S) = (fθ⋆ ◦ gξ⋆ ◦ fθ⋆)(S). With these motivations in mind, we apply the CTRL-PG formula to construct
an appropriate value function, thus establishing the CTRL-SSP game.

Definition 4.4 (CTRL-SSP Game). The CTRL-SSP game is a two-player zero-sum game between:

• the encoder, playing θ ∈ Θ = O(RD,Rd) to maximize the value function V;

• the decoder, playing ξ ∈ Ξ = O(Rd,RD) to minimize the value function V;

where the value function V : Θ× Ξ→ R has the form

V(θ, ξ) .
= R(Z(θ)) + ∆R(Z(θ), Ẑ(θ, ξ)) (42)

for the linear function parameterizations fθ : x 7→ θx and gξ : z 7→ ξz.

We now explicitly characterize the proximal equilibria of CTRL-SSP games.

Theorem 4.5 (Proximal Equilibria of CTRL-SSP Game). Suppose that Assumption 4.1 holds. Let λ > 0
and suppose that (θ⋆, ξ⋆) is a λ-proximal equilibrium of the CTRL-SSP game. Then:

(a) (Injective encoder.) fθ⋆(S) is a linear subspace of dimension dS , and fθ⋆ is an ℓ2-isometry on S.

(b) (Consistent autoencoding.) fθ⋆(S) = (fθ⋆ ◦ gξ⋆ ◦ fθ⋆)(S).

Proof. We attempt to invoke Theorem 3.2. Since θ 7→ Z(θ) is a continuous mapping, and the mapping
Z 7→ R(Z) is a continuous mapping, the composition θ 7→ R(Z(θ)) is a continuous mapping over the
compact domain Θ. By the extreme value theorem, argmaxθ∈Θ R(Z(θ)) = argmaxθ∈ΘQ(θ) is nonempty.
Now for any θ one can take ξ = θ∗, so that

∆R(Z(θ), Ẑ(θ, ξ)) = ∆R(Z(θ), Ẑ(θ, θ∗)) = ∆R(Z(θ),Z(θ)) = 0. (43)

Since by Proposition 2.1 we have ∆R(·, ·) ≥ 0, we have that argminξ∈Ξ ∆R(Z(θ), Ẑ(θ, ξ)) = argminξ∈Ξ C(θ, ξ)
is nonempty (since it contains ξ = θ∗) and for every θ we have minξ∈Ξ ∆R(Z(θ), Ẑ(θ, ξ)) = minξ∈Ξ C(θ, ξ) =
0. Thus, all assumptions of Theorem 3.2 hold. Applying the theorem, we have

θ⋆ ∈ argmax
θ∈Θ

Q(θ) ∈ argmax
θ∈Θ

R(Z(θ)) (44)

ξ⋆ ∈ argmin
ξ∈Ξ

C(θ⋆, ξ) = argmin
ξ∈Ξ

∆R(Z(θ⋆), Ẑ(θ⋆, ξ)). (45)

Then the theorem is proved using the characterizations of the optimizers in Lemmas 4.2 and 4.3.

CTRL-SSP replicates the essential isometry aspect of the PCA solution, but it learns all principal com-
ponents simultaneously, unlike the common greedy algorithms. Thus, it does not require any model selection
beyond a choice of d, which can be set to any integer greater than dS without loss of efficacy. This is one
concrete benefit of the “deep learning inspired” continuous optimization framework that we use here.
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4.2 Supervised Learning for Data on Multiple Low-Dimensional Subspaces

Our second application of the CTRL-PG framework is to learn informative representations for data on
multiple non-intersecting subspaces. Our framework is called CTRL-MSP (multi subspace pursuit).

Our setting is as follows. We have samples x1, . . . ,xN ∈ RD which are N ≥ 1 i.i.d. samples of some data
random variable x. Here x obeys a mixture distribution π ∈ [0, 1]K such that x = xj with probability πj ,
where each xj is a random variable taking values in RD, and the xj are independent. To model the statistical
and geometric structure of the data, we assume that each xj is supported on a subspace Sj of dimension
dj ≪ D. We collect the samples associated with each xj into a matrix Xj ∈ RD×Nj . Let y ∈ [K]N be a
vector encoding the label of each sample xi, which is really an assignment of each sample xi to a random
variable xj . Finally, we collect all N

.
=

∑K
j=1 Nj samples into a sample matrix X

.
=

[
x1, . . . ,xN

]
∈ RD×N .

We have the following desiderata for CTRL-MSP, which result in useful representations and a self-
consistent autoencoding.

1. The map fθ⋆ is injective on the support of the data distribution
⋃K

j=1 Sj .

2. The map fθ⋆ is discriminative between the supports of each data distribution Sj .

3. The maps fθ⋆ and gξ⋆ form an internally self-consistent closed-loop autoencoding on the support of

the data distribution
⋃K

j=1 Sj .

Unlike with CTRL-SSP, there is no classical theory which purports to exactly solve this problem — the
closest probably being GPCA (Vidal et al., 2003) — so we cannot lift quantifications for our desiderata from
there. Instead, we present a new set of ways to quantify our desiderata.

• To enforce the injectivity of the encoder, we aim to ensure that each fθ⋆(Sj) is a linear subspace of
dimension equal to that of Sj , and furthermore, we aim to enforce that the covariance matrix of each
Zj(θ

⋆) should have no small nonzero singular values. The first property means that the encoder is
mathematically injective, i.e., fθ⋆ does not map two points to the same representation. The second
property means that the representations Zj(θ

⋆) are spread out across all directions of the subspace,
thus ensuring that fθ⋆ does not map two distant points in the same subspace to close representations,
ensuring well-behaved (i.e., not pathological) injectivity.

• To enforce the discriminativeness of the encoder, we aim to ensure that the fθ⋆(Sj) are pairwise
orthogonal subspaces. This property means that the fθ⋆(Sj) are statistically incoherent, ensuring that
a given sample xi can be cleanly assigned to one of the subspaces Sj based on the statistical correlations
between its representation zi(θ⋆) and vectors from each representation subspace fθ⋆(Sj).

• To enforce internal self-consistency of the closed-loop autoencoding, we aim to have f⋆(Sj) = (f⋆ ◦ g⋆ ◦
f⋆)(Sj) for each j ∈ [K]. This property means that the decoder has accurately learned the linear
structure of the representation space induced by the encoder.

As per the CTRL-PG formulation, we want to encode each of the desiderata in our choices of Θ, Ξ, Q,
and C. Because we wish to provide discriminative representations for multiple subspaces, orthogonal maps
no longer suffice, though we are fine with linear maps, i.e., we choose fθ : x 7→ θx and gξ : z 7→ ξz where
Θ ⊆ L(RD,Rd) and Ξ ⊆ L(Rd,RD).

Similar to the case of CTRL-SSP, let us first lay out a few simplifying assumptions.

Assumption 4.6.

(i) (Multiple classes.) K ≥ 2.

(ii) (Informative data.) For each j ∈ [K], we have Col(Xj) = Sj.

(iii) (Large enough representation space.)
∑K

j=1 dj ≤ d.

(iv) (Incoherent class data.)
∑K

j=1 dj = dim(
∑K

j=1 Sj).4

4An intuitive understanding of this condition is that if we take a linearly independent set from each Sj , the union of all
these sets is still linearly independent.

13



(v) (High coding precision.) ε4 ≤ minKj=1(Nj/N · d2/d2j ).

To find the precise desired set of Θ, recall that Proposition 2.2 shows that maximizing ∆R(Z | y) over Z
subject to normalization on the Zj provides the first two desiderata: in particular we have that, at optimum,
rank(Zj) = dj , each Zj has dj large singular values where at least dj − 1 of them are equal, and the spans
of the columns of the Zj form orthogonal subspaces. This motivates that our encoder should maximize
∆R(Z(θ) | y) over θ ∈ Θ, where Θ denotes an appropriate set of functions with normalization constraints.
Indeed, the following lemma provides one choice of Θ and characterizes the optima obtained by maximizing
∆R(Z(θ) | y) over θ ∈ Θ.

Lemma 4.7. Suppose that Assumption 4.6 holds, and let

θ⋆ ∈ argmax
θ∈L(RD,Rd)

∥Zj(θ)∥2
F≤Nj

∀j∈[K]

∆R(Z(θ) | y). (46)

Then:

(a) (Injective encoder.) For each j ∈ [K], we have that fθ⋆(Sj) is a linear subspace of dimension dj.
Further, for each j ∈ [K], exactly one of the following holds:

i. σ1(Zj(θ
⋆)) = σ2(Zj(θ

⋆)) = · · · = σdj (Zj(θ
⋆)) =

Nj

dj
; or

ii. σ1(Zj(θ
⋆)) = σ2(Zj(θ

⋆)) = · · · = σdj−1(Zj(θ
⋆)) ∈ (

Nj

dj
,

Nj

dj−1 ) and σdj
(Zj(θ

⋆)) > 0, where if

dj = 1 then
Nj

dj−1 is interpreted as +∞.

(b) (Discriminative encoder.) The subspaces {fθ⋆(Sj)}Kj=1 are orthogonal.

Proof. First, since fθ⋆ is linear, fθ⋆(Sj) is a linear subspace; further, dim(fθ⋆(Sj)) ≤ dj . We now claim that
the subspaces {fθ⋆(Sj)}Kj=1 are orthogonal. Since fθ⋆(Sj) = Col(Zj(θ

⋆)), this is equivalent to the columns
of Zj(θ

⋆) being orthogonal to the columns of Zℓ(θ
⋆) for all ℓ ̸= j, i.e., Zj(θ

⋆)∗Zℓ(θ
⋆) = 0.

The essential tool we use to show that the Zj(θ
⋆) have orthogonal columns is (Yu et al., 2020, Lemma

A.5), which states that, for matrices Zj ∈ Rd×Nj which are collected in a matrix Z ∈ Rd×N , we have

∆R(Z | y) ≤ 1

2N

K∑
j=1

dj∑
p=1

log

 (
1 + d

Nε2σp(Zj)
2
)N(

1 + d
Njε2

σp(Zj)2
)Nj

 (47)

with equality if and only if Z∗
jZℓ = 0 for all 1 ≤ j < ℓ ≤ K.

Suppose for the sake of contradiction that Zj(θ
⋆)∗Zℓ(θ

⋆) ̸= 0 for some 1 ≤ j < ℓ ≤ K. Since d ≥
∑K

j=1 dj
and the subspaces Sj for j = 1, . . . ,K have linearly independent bases, one can construct via the SVD another

θ̃ ∈ L(RD,Rd) such that

• σp(Zj(θ
⋆)) = σp(Zj(θ̃)), for 1 ≤ p ≤ dj and 1 ≤ j ≤ K.

• Zj(θ̃)
∗Zℓ(θ̃) = 0 for all for 1 ≤ j < ℓ ≤ K.

Then for each j ∈ [K] we have

∥∥∥Zj(θ̃)
∥∥∥2
F
=

dj∑
p=1

σ2
p(Zj(θ̃)) =

dj∑
p=1

σ2
p(Zj(θ

⋆)) = ∥Zj(θ
⋆)∥2F ≤ Nj (48)
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so we have that θ̃ is feasible for the problem. Further, since equality holds in the inequality (47) of (Yu

et al., 2020, Lemma A.5) for θ̃ but not for θ⋆, we have

∆R(Z(θ̃) | y) = 1

2N

K∑
j=1

dj∑
p=1

log


(
1 + d

Nε2σp(Zj(θ̃))
2
)N

(
1 + d

Njε2
σp(Zj(θ̃))2

)Nj

 (49)

=
1

2N

K∑
j=1

dj∑
p=1

log

 (
1 + d

Nε2σp(Zj(θ
⋆))2

)N(
1 + d

Njε2
σp(Zj(θ⋆))2

)Nj

 (50)

> ∆R(Z(θ⋆) | y). (51)

Thus θ⋆ does not maximize θ 7→ ∆R(Z(θ) | y) over feasible θ, a contradiction. Thus, we must have that
Zj(θ

⋆)∗Zℓ(θ
⋆) = 0 for all 1 ≤ j < ℓ ≤ K, and so the {fθ⋆(Sj)}Kj=1 are orthogonal subspaces.

Now, we claim that either σ1(Zj(θ
⋆)) = · · · = σdj (Zj(θ

⋆)) =
Nj

dj
, or σ1(Zj(θ

⋆)) = · · · = σdj−1(Zj(θ
⋆)) ∈

(
Nj

dj
,

Nj

dj−1 ) and σdj
(Zj(θ

⋆)) > 0. To show this, the general approach is to isolate the effect of fθ⋆ on each

Xj . In particular, fix t ∈ [K]. We claim that

θ⋆ ∈ argmax
θ∈L(RD,Rd)

dt∑
p=1

log

 (
1 + d

Nε2σp(Zt(θ))
2
)N(

1 + d
Ntε2

σp(Zt(θ))2
)Nt

 . (52)

Indeed, suppose that this does not hold, and there exists a feasible θ̂ such that

dt∑
p=1

log

 (
1 + d

Nε2σp(Zt(θ
⋆))2

)N(
1 + d

Ntε2
σp(Zt(θ⋆))2

)Nt

 <

dt∑
p=1

log


(
1 + d

Nε2σp(Zt(θ̂))
2
)N

(
1 + d

Ntε2
σp(Zt(θ̂))2

)Nt

 . (53)

Then, again since d ≥
∑K

j=1 dj and the subspaces Sj have linearly independent bases, one can construct

another θ̃ such that

• σp(Zt(θ̃)) = σp(Zt(θ̂)), for 1 ≤ p ≤ dt.

• σp(Zj(θ̃)) = σp(Zj(θ
⋆)), for 1 ≤ p ≤ dj , 1 ≤ j ≤ K with j ̸= t.

• Zj(θ̃)
∗Zℓ(θ̃) = 0 for 1 ≤ j < ℓ ≤ K.

For the same reason as in the previous claim, θ̃ is feasible. Moreover, ∆R(Z(θ̃)) | Π) > ∆R(Z(θ⋆) | Π),
because

2n ·∆R(Z(θ̃)) | Π) (54)

=

dt∑
p=1

log


(
1 + d

Nε2σp(Zt(θ̃)
2
)N

(
1 + d

Ntε2
σp(Zt(θ̃)2

)Nt

+

K∑
j=1
j ̸=t

dj∑
p=1

log


(
1 + d

Nε2σp(Zj(θ̃))
2
)N

(
1 + d

Njε2
σp(Zj(θ̃))2

)Nj

 (55)

=

dt∑
p=1

log


(
1 + d

Nε2σp(Zt(θ̂))
2
)N

(
1 + d

Ntε2
σp(Zt(θ̂))2

)Nt

+

K∑
j=1
j ̸=t

dj∑
p=1

log

 (
1 + d

Nε2σp(Zj(θ
⋆))2

)N(
1 + d

Njε2
σp(Zj(θ⋆))2

)Nj

 . (56)

This is strictly lower bounded by

dt∑
p=1

log

 (
1 + d

Nε2σp(Zt(θ
⋆))2

)N(
1 + d

Ntε2
σp(Zt(θ⋆))2

)Nt

+

K∑
j=1
j ̸=t

dj∑
p=1

log

 (
1 + d

Nε2σp(Zj(θ
⋆))2

)N(
1 + d

Njε2
σp(Zj(θ⋆))2

)Nj

 (57)

= 2n ·∆R(Z(θ⋆) | Π). (58)
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Thus θ⋆ is not a maximizer of θ 7→ ∆R(Z(θ) | Π), which is a contradiction. Hence, (52) follows.
To finish, we may now solve the problem in terms of the singular values of Zt(θ). Indeed, from the above

optimization problem and the definition of the feasible set, the singular values σp(Zt(θ
⋆)) are the solutions

of the scalar optimization problem

max
σ1,...,σdt∈R

dt∑
p=1

log

 (
1 + d

Nε2σ
2
p

)N(
1 + d

Ntε2
σ2
p

)Nt

 (59)

s.t. σ1 ≥ · · · ≥ σdt ≥ 0, (60)

dt∑
p=1

σ2
p = Nj . (61)

Given the assumption that ε is small enough, (Yu et al., 2020, Lemma A.7) says that the solutions to

this optimization problem either fulfill σ1 = · · · = σdt =
Nj

dt
or σ1 = · · · = σdt−1 ∈ (Nt

dt
, Nt

dt−1 ) and

σdt > 0 as desired, where if dt = 1 then Nt

dt−1 is interpreted as +∞. This also confirms that dim(f⋆(St)) =
rank(Zt(θ

⋆)) = dt, so the proof is complete.

Thus, we should take Θ = {θ ∈ L(RD,Rd) : ∥Zj(θ)∥2F ≤ Nj ,∀j ∈ [K]} and Q(θ) = ∆R(Z(θ) | y). Notice
how none of this argument fundamentally relies on θ being a matrix. With some adjustments it could be
considered as the parameter set for a sufficiently expressive deep neural network.

Regarding the third desideratum, the following lemma motivates choosing C(θ, ξ) = ∆R(Z(θ), Ẑ(θ, ξ)).

Lemma 4.8. Suppose that Assumption 4.6 holds. Let f ∈ L(RD,Rd) be such that ∥f(Xj)∥2F ≤ Nj for each
j, and suppose that

g̃ ∈ argmin
g∈L(Rd,RD)

K∑
j=1

∆R(f(Xj), (f ◦ g ◦ f)(Xj)). (62)

Then f(Sj) = (f ◦ g ◦ f)(Sj) for each j ∈ [K].

Proof. First, note that by taking g = f†, we obtain that f(X) = (f ◦ g ◦ f)(X), and so

min
g∈L(Rd,RD)

∆R(f(Xj), (f ◦ g ◦ f)(Xj)) = 0. (63)

Thus if

g̃ ∈ argmin
g∈L(Rd,RD)

K∑
j=1

∆R(f(Xj), (f ◦ g ◦ f)(Xj)) (64)

then we have
∆R(f(Xj), (f ◦ g̃ ◦ f)(Xj)) = 0, ∀j ∈ [K] (65)

so that, by Proposition 2.1, we have

f(Sj) = Col(f(Xj)) = Col((f ◦ g̃ ◦ f)(Xj)) = (f ◦ g̃ ◦ f)(Sj), ∀j ∈ [K] (66)

as desired.

This lemma suggests that minimizing
∑K

j=1 ∆R(Z(θ), Ẑ(θ, ξ)) over all ξ ∈ L(Rd,RD) will achieve the
desired decoder property, i.e., f(Sj) = (f ◦ g̃ ◦ f)(Sj) for each j ∈ [K]. With these motivations in mind, we
apply the CTRL-PG formula to construct an appropriate value function, establishing the CTRL-MSP game.

Definition 4.9 (CTRL-MSP Game). The CTRL-MSP game is a two-player zero-sum game between:

• the encoder, playing θ ∈ Θ = {θ ∈ L(RD,Rd) | ∥Zj(θ)∥2F ≤ Nj ∀j ∈ [K]} to maximize the value
function V;
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• the decoder, playing ξ ∈ Ξ = L(Rd,RD) to minimize the value function V;

where the value function V : Θ× Ξ→ R has the form

V(θ, ξ) .
= ∆R(Z(θ) | y) +

K∑
j=1

∆R(Zj(θ), Ẑj(θ, ξ)) (67)

for the linear function parameterizations fθ : x 7→ θx and gξ : z 7→ ξz.

We now characterize the proximal equilibria of the CTRL-MSP game.

Theorem 4.10 (Proximal Equilibria of CTRL-MSP Game). Suppose that Assumption 4.6 holds. Let λ > 0
and suppose that (θ⋆, ξ⋆) is a λ-proximal equilibrium of the CTRL-MSP game. Then:

(a) (Injective encoder.) For each j ∈ [K], we have that fθ⋆(Sj) is a linear subspace of dimension dj.
Further, for each j ∈ [K], exactly one of the following holds:

i. σ1(Zj(θ
⋆)) = σ2(Zj(θ

⋆)) = · · · = σdj
(Zj(θ

⋆)) =
Nj

dj
; or

ii. σ1(Zj(θ
⋆)) = σ2(Zj(θ

⋆)) = · · · = σdj−1(Zj(θ
⋆)) ∈ (

Nj

dj
,

Nj

dj−1 ) and σdj (Zj(θ
⋆)) > 0, where if

dj = 1 then
Nj

dj−1 is interpreted as +∞.

(b) (Discriminative encoder.) The subspaces {fθ⋆(Sj)}Kj=1 are orthogonal.

(c) (Consistent autoencoding.) fθ⋆(Sj) = (fθ⋆ ◦ gθ⋆ ◦ fθ⋆)(Sj) for each j ∈ [K].

Proof. We attempt to invoke Theorem 3.2. First, we claim that argmaxθ∈ΘQ(θ) = argmaxθ∈Θ ∆R(Z(

theta) | y) is nonempty. Let S .
= Span(

⋃k
j=1 Sj). While Q is continuous in θ, compactness (required for the

usual argument showing the existence of maxima) is not immediate from the definition: linear maps in Θ are
controlled only on S and may have arbitrarily large operator norms on S⊥, thus making Θ an unbounded
set and not compact. To remedy this, consider the related problem of optimization over the set

Θ′ .
= Θ ∩

{
θ ∈ L(RD,Rd)

∣∣ fθ(S⊥) = {0}} .

Now we have
max
θ∈Θ
Q(θ) = max

θ∈Θ′
Q(θ) and argmax

θ∈Θ′
Q(θ) ⊆ argmax

θ∈Θ
Q(θ).

Thus, it suffices to show that argmaxθ∈Θ′ Q(θ) is nonempty. Clearly Θ′ is compact. The extreme value
theorem holds for optimizing Q over Θ′, and the claim is proved.

Now we claim that argminξ∈Ξ C(θ, ξ) = argminξ∈Ξ

∑K
j=1 ∆R(Zj(θ), Ẑj(θ, ξ)) exists for every θ. Indeed,

Proposition 2.1 shows that ∆R(Z1,Z2) ≥ 0 with equality if and only if Z1Z
∗
1 = Z2Z

∗
2 , so C(θ, ξ) ≤ 0 for all

(θ, ξ) ∈ Θ× Ξ. If θ+ is taken to be the Moore-Penrose pseudoinverse of θ, then Z(θ) = Ẑ(θ, θ+) = Ẑ(θ, ξ)
so C(θ, ξ) = 0, which implies θ+ ∈ argminξ∈Ξ C(θ, ξ). This implies that the set of maximizers is nonempty,
proving the claim.

Finally, we claim that the function θ 7→ minξ∈Ξ C(θ, ξ) is constant. Indeed, by the choice of ξ = θ+ which
is well-defined for all linear maps θ, this function is constantly zero, as desired. Thus, all assumptions of
Theorem 3.2 hold. Applying the theorem, we have

θ⋆ ∈ argmax
θ∈Θ

Q(θ) = argmax
θ∈Θ

∆R(Z(θ) | y) (68)

ξ⋆ ∈ argmin
ξ∈Ξ

C(θ⋆, ξ) = argmin
ξ∈Ξ

K∑
j=1

∆R(Zj(θ
⋆), Ẑj(θ

⋆, ξ)). (69)

Then the theorem is proved using the characterizations of the optimizers in Lemmas 4.7 and 4.8.
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x

z = ẑfθ

gξ

Figure 1: Visualization of the geometry of CTRL-MSP.

A diagram of the idealized operation of CTRL-MSP is visualized in Figure 1.
As the theorem indicates, the earlier check-list of desired quantitative properties can be achieved by

CTRL-MSP. That is, CTRL-MSP provably learns injective and discriminative representations of multiple-
subspace structure.

We now discuss an implication of the CTRL-MSP method. The original problem statement of learning
discriminative representations for multiple subspace structure may be solved directly via orthogonalizing
the representations produced by using PCA on each data subspace. This solution is a discrete and ad-hoc
procedure that is far divorced from modern representation learning. However, CTRL-MSP provides an
alternative approach: simultaneously learning and representing the subspaces via the modern representation
learning toolkit within a continuous optimization framework. This gives a unifying perspective on classical
and modern representation learning, by showing that classical methods can be viewed as special cases of
modern methods, and that they may be formulated to learn the same types of representations. A major
benefit is that the new formulation computationally can be generalized to much broader families of structures,
beyond subspaces to submanifolds, as compelling empirical evidence from Dai et al. (2022) demonstrates.

5 Learning Proximal Equilibria

In this section we propose an algorithm for learning proximal equilibria using stochastic gradient descent.
We use the toolkit of multiple-timescale stochastic approximation (Borkar, 2009), which has been used to
show convergence to Nash equilibria in other instances of game-theoretic optimization (Heusel et al., 2017;
Fiez et al., 2019, 2021; Sayin et al., 2021; Maheshwari et al., 2022).

5.1 Problem Formulation

We know that λ-proximal equilibria are Nash equilibria corresponding to the nonzero-sum game where the
encoder utility is Vλ(θ, ξ) and the decoder loss is V(θ, ξ). We know how to characterize and compute (local)
Nash equilibria of two-player games in computationally efficient ways (Ratliff et al., 2016; Heusel et al.,
2017), provided that we have oracle access to ∇θVλ and ∇ξV. While it is reasonable to assume that the
original value function V is differentiable with known derivatives in both coordinates, the proximal value
function Vλ is defined variationally, and thus it is not clear whether Vλ is even differentiable, much less what
its derivative is. Happily, under broad assumptions which we outline below, we are able to compute the
gradient using Danskin’s theorem (Danskin, 1966).

Assumption 5.1.

(i) Ξ is a compact set.

(ii) For each ξ ∈ Ξ, the function V(·, ξ) is continuous.

(iii) For each (θ, ξ) ∈ Θ× Ξ, the function ζ 7→ V(θ, ζ) + λ
2 ρΞ(ξ, ζ)

2 is strictly convex.
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Theorem 5.2 (Danskin’s Theorem, Restated). Suppose Assumption 5.1 holds. Then Vλ(·, ξ) is differentiable
in its first argument, and moreover,

∇θVλ(θ, ξ) = ∇θV(θ, ζ⋆(θ, ξ)) (70)

where ζ⋆(θ, ξ) ∈ Ξ is the unique solution to the problem minζ∈Ξ{V(θ, ζ) + λ
2 ρΞ(ξ, ζ)

2}.

Danskin’s theorem motivates that we optimize θ, ξ, ζ jointly and ensure that ζ is roughly equilibrated
with respect to θ and ξ at each update of θ and ξ. This motivates that we use the framework of multiple-
timescale stochastic approximation (Borkar, 2009), which updates θ, ξ, and ζ at different timescales such
that ζ heuristically appears equilibrated with respect to (θ, ξ) and ξ heuristically appears equilibrated with
respect to θ.

5.2 Three-Timescale Proximal Gradient Descent-Ascent

Most previous works in this area (Heusel et al., 2017; Sayin et al., 2021; Maheshwari et al., 2022) use
two timescales as they are only solving problems in two variables. In contrast, we propose the following
three-timescale algorithm for learning proximal equilibria:

Algorithm 1 Three-Timescale Proximal Gradient Descent-Ascent

Require: Value function V : Θ× Ξ→ R, learning rates (αn)n∈N, (βn)n∈N, (γn)n∈N, initializations
(θ0, ξ0, ζ0) ∈ Θ× Ξ× Ξ.

for m ≥ 0 do
θn+1 ← θn + αn∇θV(θn, ζn)
ξn+1 ← ξn − βn∇ξV(θn, ξn)
ζn+1 ← ζn − γn∇ζV(θn, ζn)− γnλ(ζn − ξn)

return θn, ξn

This algorithm only requires oracle access to ∇V, which is easy compared to oracle access to ∇Vλ. Note
that because ρΞ is the Euclidean metric, we have ∇ζρΞ(ξ, ζ)

2 = 2(ζ − ξ).
We are able to prove the correctness of this algorithm under restricted conditions, going along with Borkar

(2009). To our knowledge, this is the first generalization of two-timescale stochastic approximation to three
or more timescales, and so our analysis may be of independent interest.5 For the sake of clarity we study
a simplified dynamics i.e., not adding stochasticity to the updates, which would unfortunately make our
analysis not directly applicable to stochastic gradient descent. However, we believe that the full-generality
analysis is also possible in a straightforward manner with more work.

For brevity, let us make the following definitions:6

f(θ, ξ, ζ) = ∇θV(θ, ζ) (71)

g(θ, ξ, ζ) = −∇ξV(θ, ξ) (72)

h(θ, ξ, ζ) = −[∇ζV(θ, ζ) + λ(ζ − ξ)]. (73)

In this notation, the update becomes

θn+1 = θn + αnf(θn, ξn, ζn) (74)

ξn+1 = ξn + βng(θn, ξn, ζn)

ζn+1 = ζn + γnh(θn, ξn, ζn).

Going along with Borkar (2009), we make the following strong assumptions about the underlying contin-
uous dynamics. Note that assumptions of this form can be drastically weakened (Karmakar and Bhatnagar,
2018), but we choose these assumptions for simplicity and clarity of the underlying analysis.

5Borkar (2009) alludes to this possibility but does not study it.
6Note that we add some extraneous parameters; this is to make our analysis broadly generalizable to three-timescale dynamics

instead of the restricted special case of proximal gradient descent-ascent dynamics. Essentially we do not need the extra structure
that proximal gradient descent-ascent gives us over the generic three-timescale dynamics because our assumptions are strong.
Refining this analysis is left to future work.
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Assumption 5.3.

(i) The step sizes are strictly positive and such that

∞∑
n=0

αn =

∞∑
n=0

βn =

∞∑
n=0

γn =∞,

∞∑
n=0

(α2
n + β2

n + γ2
n) <∞, lim

n→∞

αn

βn
= 0, lim

n→∞

βn

γn
= 0. (75)

(ii) The mappings f , g, and h are Lipschitz.

(iii) For each (θ, ξ) ∈ Θ × Ξ, the ODE d
dtζ(t) = h(θ, ξ, ζ(t)) has a unique globally asymptotically stable

equilibrium ζ⋆(θ, ξ), where ζ⋆ : Θ× Ξ→ Ξ is Lipschitz.

(iv) For each θ ∈ Θ, the ODE d
dtξ(t) = g(θ, ξ(t), ζ⋆(θ, ξ(t))) has a unique globally asymptotically stable

equilibrium ξ⋆(θ), where ξ⋆ : Θ→ Ξ is Lipschitz.

(v) The ODE d
dtθ(t) = f(θ(t), ξ⋆(θ(t)), ζ⋆(θ(t), ξ⋆(θ(t)))) has a unique globally asymptotically stable equi-

librium θ⋆ ∈ Θ.

(vi) (θn)n∈N, (ξn)n∈N, and (ζn)n∈N are uniformly bounded sequences.

Assumption 5.3 (i) says that θ updates slowly compared to ξ and ζ, and that ξ updates slowly compared
to ζ, hence the “multiple timescale” analysis. Thus, in discussion we informally call ζ the “fast timescale”
variable, ξ the “medium timescale” variable, and θ the “slow timescale” variable. Assumption 5.3 (ii)—
(v) say that the variables running at the faster timescales can equilibrate when compared to the slower
timescales. Note that Assumption 5.3 (ii) can be replaced with Lipschitz guarantees on the gradients of the
value function V. Assumption 5.3 (vi) says that the discrete-time dynamics do not blow up as m→∞.

Theorem 5.4. Under Assumption 5.3, Algorithm 1 learns a λ-proximal equilibrium (θ⋆, ξ⋆) associated with
the proximal value function Vλ as m→∞.

The proof of this theorem is long and complex, and so we break it up into a few parts. We adapt and
generalize the strategy from Borkar (2009) to more than 2 timescales. The main workhorse we use combines
a few theorems from Borkar (2009), which we present here.

Proposition 5.5. Consider a Euclidean space E with associated Euclidean metric ρE. Let ϕ : E → E be
a function. Let (αn)n∈N be a sequence of positive real numbers, and (εn)n∈N a sequence of vectors in E.
Consider the following discrete dynamical system:

µn+1 = µn + αn(ϕ(µn) + εn), (76)

and the analogous continuous dynamical system:

d

dt
µ(t) = ϕ(µ(t)). (77)

Assume that:

(i) The step sizes (αn)n∈N are strictly positive and such that
∑∞

n=0 αn =∞ and
∑∞

n=0 α
2
n <∞.

(ii) The mapping ϕ : E→ E is Lipschitz.

(iii) The errors εn have limn→∞ εn = 0.

(iv) The ODE (77) has a globally asymptotically stable equilibrium.

(v) The iterates (µn)n∈N are uniformly bounded.

Define a continuous mapping µ̄ : R≥0 → E by

µ̄(tn) = µn, ∀n ≥ 0, and linearly interpolated elsewhere. (78)

Finally, for s ≥ t, define µs : s+R≥0 → E as the solution to (77) with initial condition µs(s) = µ̄(s). Then:
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Result 1. (Borkar, 2009, Lemma 2.1). For any T > 0, we have lims→∞ supt∈[s,s+T ] ρE(µ̄(t), µ
s(t)) = 0.

Result 2. (Borkar, 2009, Theorem 2.2). limn→∞ µn converges to a global asymptotically stable equilibrium
of (77).

The careful reader may note that the stated results in Borkar (2009) are weaker and more general than
Proposition 5.5; this is because we have added the assumption of a globally asymptotically stable equilibrium
and obtained correspondingly significantly stronger results. This extended version of the results in Borkar
(2009), which is presented in Proposition 5.5, is alluded to several times within Borkar (2009), but never
formally stated. Collecting all the results in the most relevant setting for us into one lemma will allow our
proofs to clearly demonstrate the technique of reducing multiple-timescale systems into a single-timescale
system, which is useful from a technical and pedagogical perspective.

Now we continue with the proof of Theorem 5.4.

Lemma 5.6. Under Assumption 5.3, we have limn→∞ ρΞ(ζn, ζ
⋆(θn, ξn)) = 0.

Proof. We rewrite the update in Equation (74) as:

θn+1 = θn + γn

[
αn

γn
f(θn, ξn, ζn)

]
(79)

ξn+1 = ξn + γn

[
βn

γn
g(θn, ξn, ζn)

]
ζn+1 = ζn + γnh(θn, ξn, ζn).

This is a discretization with step size γn of the coupled differential equation

d

dt
θ(t) = 0 (80)

d

dt
ξ(t) = 0

d

dt
ζ(t) = h(θ(t), ξ(t), ζ(t))

in which case we have

εn
.
=

αn/γn · f(θn, ξn, ζn)
βn/γn · g(θn, ξn, ζn)

0

 . (81)

Because α = o(γ), β = o(γ), the sequences (θn)n∈N, (ξn)n∈N, (ζn)n∈N are uniformly bounded, and f , g, and
h are Lipschitz, we have that ε = o(1). Applying Proposition 5.5, we obtain convergence to the globally
asymptotically stable equilibria of the ODE (80), which are of the form (θ, ξ, ζ⋆(θ, ξ)) for (θ, ξ) ∈ Θ×Ξ. The
claim follows.

Lemma 5.7. Under Assumption 5.3, we have limn→∞ ρΞ(ξn, ξ
⋆(θn)) = 0.

Proof. We rewrite the update in (76) as

θn+1 = θn + βn

[
αn

βn
f(θn, ξn, ζn)

]
(82)

ξn+1 = ξn + βng(θn, ξn, ζn)

and can rewrite the ξ update further as

ξn+1 = ξn + βng(θn, ξn, ζn) (83)

= ξn + βng(θn, ξn, ζ
⋆(θn, ξn)) (84)

+ βn [g(θn, ξn, ζn)− g(θn, ξn, ζ
⋆(θn, ξn))] .
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Thus we may again rewrite Equation (82) using this breakdown to get

θn+1 = θn + βn

[
αn

βn
f(θn, ξn, ζn)

]
(85)

ξn+1 = ξn + βng(θn, ξn, ζ
⋆(θn, ξn))

+ βn [g(θn, ξn, ζn)− g(θn, ξn, ζ
⋆(θn, ξn))] .

This is a discretization with step size βn of the coupled differential equation

d

dt
θ(t) = 0 (86)

d

dt
ξ(t) = g(θ(t), ξ(t), ζ⋆(θ(t), ξ(t)))

in which case we have

εn
.
=

[
αn/βn · f(θn, ξn, ζn)

βn[g(θn, ξn, ζn)− g(θn, ξn, ζ
⋆(θn, ξn))]

]
. (87)

Because α = o(β), β = o(1), the sequences (θn)n∈N, (ξn)n∈N, (ζ
⋆(θn, ξn))n∈N are uniformly bounded, and f ,

g, and ζ⋆ are Lipschitz, we have that ε = o(1). Applying Proposition 5.5, we obtain convergence to the
globally asymptotically stable equilibria of the ODE (86), which are of the form (θ, ξ⋆(θ)) for θ ∈ Θ. The
claim follows.

Lemma 5.8. Under Assumption 5.3, we have limn→∞ ρΘ(θn, θ
⋆) = 0.

Proof. We rewrite the θ update in (74) as

θn+1 = θn + αng(θn, ξn, ζn) (88)

= θn + αng(θn, ξ
⋆(θn), ζ

⋆(θn, ξ
⋆(θn))) (89)

+ αn[g(θn, ξn, ζn)− g(θn, ξ
⋆(θn), ζ

⋆(θn, ξ
⋆(θn)))].

Thus the update in Equation (74) may be written as

θn+1 = θn + αng(θn, ξ
⋆(θn), ζ

⋆(θn, ξ
⋆(θn))) (90)

+ αn[g(θn, ξn, ζn)− g(θn, ξ
⋆(θn), ζ

⋆(θn, ξ
⋆(θn)))].

This is a discretization with step size αn of the differential equation

d

dt
θ(t) = g(θ(t), ξ⋆(θ(t)), ζ⋆(θ(t), ξ⋆(θ(t)))) (91)

in which case we have
εn

.
= αn[g(θn, ξn, ζn)− g(θn, ξ

⋆(θn), ζ
⋆(θn, ξ

⋆(θn)))]. (92)

Because α = o(1), the sequences (θn)n∈N, (ξ
⋆(θn))n∈N, (ζ

⋆(θn, ξ
⋆(θn)))n∈N are uniformly bounded, and f , ξ⋆,

and ζ⋆ are Lipschitz, we have that ε = o(1). Applying Proposition 5.5, we obtain convergence to the globally
asymptotically stable equilibria of the ODE (86), which by uniqueness is just θ⋆. The claim follows.

Proof of Theorem 5.4. First, we use triangle inequality, continuity of ξ⋆, and convergence of θn → θ⋆ to see
that

ρΞ(ξn, ξ
⋆(θ⋆)) ≤ ρΞ(ξn, ξ

⋆(θn)) + ρΞ(ξ
⋆(θn), ξ

⋆(θ⋆)) (93)

=⇒ lim
n→∞

ρΞ(ξn, ξ
⋆(θ⋆)) ≤ lim

n→∞
{ρΞ(ξn, ξ⋆(θn)) + ρΞ(ξ

⋆(θn), ξ
⋆(θ⋆))} = 0. (94)

Similarly ρΞ(ζn, ζ
⋆(θ⋆, ξ⋆(θ⋆))) = 0. Thus (θn, ξn, ζn)→ (θ⋆, ξ⋆(θ⋆), ζ⋆(θ⋆, ξ⋆(θ⋆))).

Thus our three-timescale algorithm learns proximal equilibria, at least under restrictive settings.
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6 Conclusion

In this work, we introduced the closed-loop proximal-games (CTRL-PG) framework for learning injective and
discriminative representations for data. We explicitly characterized the proximal equilibria of the associated
CTRL-PG game. We applied the CTRL-PG problems to two problems in learning theory and showed
that it recovered and generalized classical optimal solutions, crystallizing a connection between modern deep
representation learning frameworks and classical signal processing and statistics theory. Finally, we presented
a novel algorithm to learn proximal equilibria.
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