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Abstract

Test-Time Training

By

Yu Sun

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexei A. Efros, Co-chair

Professor Moritz Hardt, Co-chair

Most models in machine learning today are fixed during deployment. As a consequence, a
trained model must prepare to be robust to all possible futures, even though only one of
them is actually going to happen. The basic idea of test-time training is to train on this
future once it arrives in the form of a test instance. Since each test instance arrives without
a ground truth label, training is performed with self-supervision. This thesis explores the
first steps in realizing this idea, for images, videos and robotics.
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Chapter 1

Introduction

Generalization is the central theme of machine learning. Research in artificial intelligence is
very much motivated by our intuitive idea of human-like generalization, as well as our attempts
to make it rigorous and reproducible in machines. The traditional setting of generalization
uses the notion of a statistical distribution: samples in the training and test set are drawn
from the same distribution, and generalization for a parametric model is measured as its
performance on the test set, after being optimized on the training set. However, this setting
fails to capture the ”human-like” intuition - our world rarely gives us “test samples” drawn
independently from the same distribution as our past history.

This thesis explores a paradigm of algorithms – test-time training (TTT) – that shows
promising results for generalization in two alternative, perhaps more realistic settings. The
first, called generalization under distribution shifts, measures performance on test sets drawn
from unknown distributions that are different from the training set. Results in this setting are
presented in Chapter 2 and 3, and focus on computer vision applications. The second setting
has no established name – we call it generalization on streams. Results on video streams are
presented in Chapter 4. Results in robotics without vision are presented in Chapter 5.

The basic algorithm of TTT is simple: for each test input, first train the model on this
input before making a prediction. Training can be performed in any way that does not require
the ground truth label, e.g. through self-supervision. In the streaming setting, training can
be extended beyond the current input, to past inputs. Of course, many technical details –
the specific form of self-supervision, how optimization is performed, and whether or not to
retain the model trained for each test input – are discussed in the subsequent chapters.

However, at the time of writing, our understanding of even the basic algorithm is only
intuitive at best. There are two seemingly competing, yet deeply connected intuitions for
how TTT might help: 1) Under distribution shifts, the test input serves as a high variance
approximation to the entire test distribution, which is otherwise not available for training. 2)
Allowing a different model for each test input prevents each model from wasting capacity on
the rest of the input space, thus making the effective capacity of the entire system larger.

The two intuitions are seemingly competing for many reasons. The first intuition says
that TTT only helps with distribution shifts, while the second says that it helps even without.
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The first intuition says that the more inputs from the same test distribution we are able to
obtain at a time, the more TTT helps; while the second says that the best case scenario is
when TTT only uses one test input at a time and does not waste capacity on the others.
These arguments about how the two intuitions disagree are concrete: they correspond to
experiments in different setting, whose results can only support one intuition or the other.

Most of the results in this thesis, especially in Chapter 2 and 3, support the first intuition,
that TTT helps by “knowing the unknown distribution”. The author, however, believes
in the second, that “locality increase capacity”. Priding himself as someone who respects
scientific evidence, why does the author still presume the contradicting intuition? A small
reason is that results in Chapter 4 and 5, especially on the “benefits of forgetting”, seem to
hint at the validity of the “locality” intuition. Another reason is that the basic algorithm is
more like a paradigm, whose space of numerous algorithms is barely explored; we might as
well not have landed on the right algorithm for TTT that supports the second.

The biggest reason is that both the first intuition and the evidence supporting it are based
on the concept of “distribution shifts”, as a caricature of the phenomenon of generalization we
want to study in artificial intelligence. The author believes this incomplete, if not inaccurate.
Statistical concepts such as distributions are meaningful when we talk about populations; the
best biological analogy of learning at the level of populations is perhaps evolution. However,
learning also happens at the level of individuals; the obvious analogy here being us humans
learning during our daily experience, which often serves as the inspiration for research in
machine learning. The trajectory of each one of us is not very statistical, and the kind of
unknown changes encountered cannot be described as distribution shifts. If TTT is only
suitable for learning at the individual level, then the first intuition is irrelevant.

With some liberties taken on the concept of “distributions”, one can find the two intuitions
deeply connected. For example, if samples in a test set are drawn from the same distribution
as training, most people would agree that there is no distribution shift. However, a test set of,
say, size 50,000, can either be regarded as one test set, or 50,000 test sets, each containing only
one sample. In the latter case, each of these 50,000 singleton test sets presents a tremendous
“distribution shift”, representing only a local part of the entire distribution. The reader can
take this example as illustrating the connection between “distribution shifts” (Intuition 1)
and “locality” (Intuition 2). The author prefers it as illustrating the limitation of the concept
of “distributions” when thinking about generalization.

The rest of the thesis does not indulge in philosophical debates of this kind. The narrative
in each chapter simply follows what best fits its empirical results – usually some version of
the first intuition. In the future, the author hopes to produce enough results such that the
narrative can be rewritten according to the second, making the rest of the thesis an obsolete
artifact of history.
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Chapter 2

Test-Time Training on Images

Supervised learning remains notoriously weak at generalization under distribution shifts.
Unless training and test data are drawn from the same distribution, even seemingly minor
differences turn out to defeat state-of-the-art models [146]. Adversarial robustness and
domain adaptation are but a few existing paradigms that try to anticipate differences between
the training and test distribution with either topological structure or data from the test
distribution available during training. We explore a new take on generalization that does not
anticipate the distribution shifts, but instead learns from them at test time.

We start from a simple observation. The unlabeled test sample x presented at test time
gives us a hint about the distribution from which it was drawn. We propose to take advantage
of this hint on the test distribution by allowing the model parameters θ to depend on the
test sample x, but not its unknown label y. The concept of a variable decision boundary θ(x)
is powerful in theory since it breaks away from the limitation of fixed model capacity, but
the design of a feedback mechanism from x to θ(x) raises new challenges in practice that we
only begin to address here.

Our proposed test-time training method creates a self-supervised learning problem based
on this single test sample x, updating θ at test time before making a prediction. Self-
supervised learning uses an auxiliary task that automatically creates labels from unlabeled
inputs. In our experiments, we use the task of rotating each input image by a multiple of 90
degrees and predicting its angle [58].

This approach can also be easily modified to work outside the standard supervised learning
setting. If several test samples arrive in a batch, we can use the entire batch for test-time
training. If samples arrive in an online stream, we obtain further improvements by keeping
the state of the parameters. After all, prediction is rarely a single event. The online version
can be the natural mode of deployment under the additional assumption that test samples
are produced by the same or smoothly changing distribution shifts.

We experimentally validate our method in the context of object recognition on several
standard benchmarks. These include images with diverse types of corruption at various levels
[73], video frames of moving objects [155], and a new test set of unknown shifts collected
by [146]. Our algorithm makes substantial improvements under distribution shifts, while



CHAPTER 2. TEST-TIME TRAINING ON IMAGES 4

maintaining the same performance on the original distribution.
In our experiments, we compare with a strong baseline (labeled joint training) that uses

both supervised and self-supervised learning at training-time, but keeps the model fixed at
test time. Recent work shows that training-time self-supervision improves robustness [76];
our joint training baseline corresponds to an improved implementation of this work.

2.1 Method

This section describes the algorithmic details of our method. To set up notation, consider a
standard K-layer neural network with parameters θk for layer k. The stacked parameter vector
θ = (θ1, . . . , θK) specifies the entire model for a classification task with loss function lm(x, y;θ)
on the test sample (x, y). We call this the main task, as indicated by the subscript of the loss
function.

We assume to have training data (x1, y1), . . . , (xn, yn) drawn i.i.d. from a distribution P .
Standard empirical risk minimization solves the optimization problem:

min
θ

1

n

n∑
i=1

lm(xi, yi;θ). (2.1)

Our method requires a self-supervised auxiliary task with loss function ls(x). In this chapter,
we choose the rotation prediction task [58], which has been demonstrated to be simple and
effective at feature learning for convolutional neural networks. The task simply rotates x in
the image plane by one of 0, 90, 180 and 270 degrees and have the model predict the angle of
rotation as a four-way classification problem.

The auxiliary task shares some of the model parameters θe = (θ1, . . . , θκ) up to a
certain κ ∈ {1, . . . , K}. We designate those κ layers as a shared feature extractor. The
auxiliary task uses its own task-specific parameters θs = (θ′κ+1, . . . , θ

′
K). We call the unshared

parameters θs the self-supervised task branch, and θm = (θκ+1, . . . , θK) the main task branch.
Pictorially, the joint architecture is a Y -structure with a shared bottom and two branches.
For our experiments, the self-supervised task branch has the same architecture as the main
branch, except for the output dimensionality of the last layer due to the different number of
classes in the two tasks.

Training is done in the fashion of multi-task learning [26]; the model is trained on both
tasks on the same data drawn from P . Losses for both tasks are added together, and gradients
are taken for the collection of all parameters. The joint training problem is therefore

min
θe,θm,θs

1

n

n∑
i=1

lm(xi, yi;θm,θe) + ls(xi;θs,θe). (2.2)

Now we describe the standard version of Test-Time Training on a single test sample x.
Simply put, Test-Time Training fine-tunes the shared feature extractor θe by minimizing the
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auxiliary task loss on x. This can be formulated as

min
θe

ls(x;θs,θe). (2.3)

Denote θ∗
e the (approximate) minimizer of Equation 3.2. The model then makes a prediction

using the updated parameters θ(x) = (θ∗
e ,θm). Empirically, the difference is negligible

between minimizing Equation 3.2 over θe versus over both θe and θs. Theoretically, the
difference exists only when optimization is done with more than one gradient step.

Test-Time Training naturally benefits from standard data augmentation techniques. On
each test sample x, we perform the exact same set of random transformations as for data
augmentation during training, to form a batch only containing these augmented copies of x
for Test-Time Training.

Online Test-Time Training. In the standard version of our method, the optimization
problem in Equation 3.2 is always initialized with parameters θ = (θe,θs) obtained by
minimizing Equation 3.1. After making a prediction on x, θ∗

e is discarded. Outside of the
standard supervised learning setting, when the test samples arrive online sequentially, the
online version solves the same optimization problem as in Equation 3.2 to update the shared
feature extractor θe. However, on test sample xt, θ is instead initialized with θ(xt−1) updated
on the previous sample xt−1. This allows θ(xt) to take advantage of the distributional
information available in x1, . . . , xt−1 as well as xt.

2.2 Empirical Results

We experiment with both versions of our method (standard and online) on three kinds of
benchmarks for distribution shifts, presented here in the order of visually low to high-level.
Our code is available at the project website.

Network details. Our architecture and hyper-parameters are consistent across all experi-
ments. We use ResNets [71], which are constructed differently for CIFAR-10 [98] (26-layer)
and ImageNet [148] (18-layer). The CIFAR-10 dataset contains 50K images for training,
and 10K images for testing. The ImageNet contains 1.2M images for training and the 50K
validation images are used as the test set. ResNets on CIFAR-10 have three groups, each
containing convolutional layers with the same number of channels and size of feature maps;
our splitting point is the end of the second group. ResNets on ImageNet have four groups;
our splitting point is the end of the third group.

We use Group Normalization (GN) instead of Batch Normalization (BN) in our archi-
tecture, since BN has been shown to be ineffective when training with small batches, for
which the estimated batch statistics are not accurate [87]. This technicality hurts Test-Time
Training since each batch only contains (augmented) copies of a single image. Different from
BN, GN is not dependent on batch size and achieves similar results on our baselines.
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Figure 2.1: Test error (%) on CIFAR-10-C with level 5 corruptions. We compare
our approaches, Test-Time Training (TTT) and its online version (TTT-Online), with two
baselines: object recognition without self-supervision, and joint training with self-supervision
but keeping the model fixed at test time. TTT improves over the baselines and TTT-Online
improves even further.

Optimization details. For joint training (Equation 3.1), we use stochastic gradient descent
with standard hyper-parameters as [86, 70]. For Test-Time Training (Equation 3.2), we use
stochastic gradient descent with the learning rate set to that of the last epoch during training,
which is 0.001 in all our experiments. We set weight decay and momentum to zero during
Test-Time Training, inspired by practice in [69, 114]. For the standard version of Test-Time
Training, we take ten gradient steps, using batches independently generated by the same
image. For online version of Test-Time Training, we take only one gradient step given each
new image. We use random crop and random horizontal flip for data augmentation. In all the
tables and figures, object recognition task only refers to the plain ResNet model (using GN,
unless otherwise specified); joint training refers to the model jointly trained on both the main
task and the self-supervised task, fixed at test time; this has been proposed as the method
in [76]; Test-Time Training (TTT) refers to the standard version described section 4.2; and
online Test-Time Training (TTT-Online) refers to the online version that does not discard
θ(xt) for xt arriving sequentially from the same distribution. Performance for TTT-Online
is calculated as the average over the entire test set; we always shuffle the test set before
TTT-Online to avoid ordering artifacts.

Object Recognition on Corrupted Images

[73] propose to benchmark robustness of object recognition with 15 types of corruptions from
four broad categories: noise, blur, weather and digital. Each corruption type comes in five
levels of severity, with level 5 the most severe (details and sample images in the appendix).
The corruptions are simulated to mimic real-world corruptions as much as possible on copies
of the test set for both CIFAR-10 and ImageNet. The new test sets are named as CIFAR-10-C
and ImageNet-C, respectively. In the proposed benchmark, training should be done on the
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Figure 2.2: Test accuracy (%) on ImageNet-C with level 5 corruptions. Upper panel:
Our approaches, TTT and TTT-Online, show significant improvements in all corruption
types over the two baselines. Lower panel: We show the accuracy of TTT-Online as the
average over a sliding window of 100 samples; TTT-Online generalizes better as more samples
are evaluated (x-axis), without hurting on the original distribution. We use accuracy instead
of error here because the baseline performance is very low for most corruptions.

original training set, and the diversity of corruption types should make it difficult for any
methods to work well across the board if it relies too much on corruption specific knowledge.
For online Test-Time Training, we take the entire test set as a stream of incoming images,
and update and test on each image in an online manner as it arrives.

CIFAR-10-C. Our results on the level 5 corruptions (most severe) are shown in Figure 2.1.
Across all five levels and 15 corruption types, both standard and online versions of Test-Time
Training improve over the object recognition task only baseline by a large margin. The
standard version always improves over joint training, and the online version often improves
significantly (>10%) over joint training and never hurts by more than 0.2%. Specifically,
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TTT-Online contributes >24% on the three noise types and 38% on pixelation. For a learning
problem with the seemingly unstable setup that abuses a single image, this kind of consistency
is rather surprising.

The baseline ResNet-26 with object recognition task only has error 8.9% on the original
test set of CIFAR-10. The joint training baseline actually improves performance on the
original to 8.1%. More surprisingly, unlike many other methods that trade off original
performance for robustness, Test-Time Training further improves on the original test set by
0.2% consistently over multiple independent trials. This suggests that our method does not
choose between specificity and generality.

Separate from our method, it is interesting to note that joint training consistently improves
over the single-task baseline, as discovered by [76]. [73] have also experimented with various
other training methods on this benchmark, and point to Adversarial Logit Pairing (ALP) [94]
as the most effective approach. Results of this additional baseline on all levels of CIFAR-10-C
are shown in the appendix, along with its implementation details. While surprisingly robust
under some of the most severe corruptions (especially the three noise types), ALP incurs a
much larger error (by a factor of two) on the original distribution and some corruptions (e.g.
all levels of contrast and fog), and hurts performance significantly when the corruptions are
not as severe (especially on levels 1-3); this kind of tradeoff is to be expected for methods
based on adversarial training.

orig gauss shot impul defoc glass motn zoom snow frost fog brit contr elast pixel jpeg

TTT-Online 8.2 25.8 22.6 30.6 14.6 34.4 18.3 17.1 20.0 18.0 16.9 11.2 15.6 21.6 18.1 21.2

UDA-SS 9.0 28.2 26.5 20.8 15.6 43.7 24.5 23.8 25.0 24.9 17.2 12.7 11.6 22.1 20.3 22.6

Table 2.1: Test error (%) on CIFAR-10-C with level 5 corruption. Comparison
between online Test-Time Training (TTT-Online) and unsupervised domain adaptation by
self-supervision (UDA-SS) [172] with access to the entire (unlabeled) test set during training.
We highlight the lower error in bold. We have abbreviated the names of the corruptions,
in order: original test set, Gaussian noise, shot noise, impulse noise, defocus blur, glass
blue, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transformation,
pixelation, and JPEG compression. The reported numbers for TTT-Online are the same as
in Figure 2.1.

ImageNet-C. Our results on the level 5 corruptions (most severe) are shown in Figure 2.2.
We use accuracy instead of error for this dataset because the baseline performance is very
low for most corruptions. The general trend is roughly the same as on CIFAR-10-C. The
standard version of TTT always improves over the baseline and joint training, while the
online version only hurts on the original by 0.1% over the baseline, but significantly improves
(by a factor of more than three) on many of the corruption types.
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Figure 2.3: Test error (%) on CIFAR-10-C, for the three noise types, with gradually
changing distribution. The distribution shifts are created by increasing the standard
deviation of each noise type from small to large, the further we go on the x-axis. As the
samples get noisier, all methods suffer greater errors the more we evaluate into the test set,
but online Test-Time Training (TTT-Online) achieves gentler slopes than joint training. For
the first two noise types, TTT-Online also achieves better results over unsupervised domain
adaptation by self-supervision (UDA-SS) [172].

In the lower panel of Figure 2.2, we visualize how the accuracy (averaged over a sliding
window) of the online version changes as more images are tested. Due to space constraints,
we show this plot on the original test set, as well as every third corruption type, following
the same order as in the original paper. On the original test set, there is no visible trend
in performance change after updating on the 50,000 samples. With corruptions, accuracy
has already risen significantly after 10,000 samples, but is still rising towards the end of the
50,000 samples, indicating room for additional improvements if more samples were available.
Without seeing a single label, TTT-Online behaves as if we were training on the test set from
the appearance of the plots.

Comparison with unsupervised domain adaptation. Table 2.1 empirically compares
online Test-Time Training (TTT-Online) with unsupervised domain adaptation through
self-supervision (UDA-SS) [172], which is similar to our method in spirit but is designed
for the setting of unsupervised domain adaptation. Given labeled data from the training
distribution and unlabeled data from the test distribution, UDA-SS hopes to find an invariant
representation that extracts useful features for both distributions by learning to perform a
self-supervised task, specifically rotation prediction, simultaneously on data from both. It
then learns a labeling function on top of the invariant representation using the labeled data.
In our experiments, the unlabeled data given to UDA-SS is the entire test set itself without
the labels.

Because TTT-Online can only learn from the unlabeled test samples that have already
been evaluated on, it is given less information than UDA-SS at all times. In this sense,
UDA-SS should be regarded as an oracle rather than a baseline. Surprisingly, TTT-Online
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Accuracy (%) Airplane Bird Car Dog Cat Horse Ship Average

Object recognition task only 67.9 35.8 42.6 14.7 52.0 42.0 66.7 41.4

Joint training [76] 70.2 36.7 42.6 15.5 52.0 44.0 66.7 42.4

TTT (standard version) 70.2 39.2 42.6 21.6 54.7 46.0 77.8 45.2

TTT-Online 70.2 39.2 42.6 22.4 54.7 46.0 77.8 45.4

Table 2.2: Class-wise and average classification accuracy (%) on CIFAR classes in VID-Robust,
adapted from [155]. Test-Time Training (TTT) and online Test-Time Training (TTT-Online)
improve over the two baselines on average, and by a large margin on “ship” and “dog” classes
where the rotation task is more meaningful than in classes like “airplane”.

outperforms UDA-SS on 13 out of the 15 corruptions as well as the original distribution. Our
explanation is that UDA-SS has to find an invariant representation for both distributions,
while TTT-Online only adapts the representation to be good for the current test distribution.
That is, TTT-Online has the flexibility to forget the training distribution representation,
which is no longer relevant. This suggests that in our setting, forgetting is not harmful and
perhaps should even be taken advantage of.

Gradually changing distribution shifts. In our previous experiments, we have been
evaluating the online version under the assumption that the test inputs xt for t = 1...n are
all sampled from the same test distribution Q, which can be different from the training
distribution P . This assumption is indeed satisfied for i.i.d. samples from a shuffled test set.
But here we show that this assumption can in fact be relaxed to allow xt ∼ Qt, where Qt is
close to Qt+1 (in the sense of distributional distance). We call this the assumption of gradually
changing distribution shifts. We perform experiments by simulating such distribution shifts
on the three noise types of CIFAR-10-C. For each noise type, xt is corrupted with standard
deviation σt, and σ1, ..., σn interpolate between the standard deviation of level 1 and level 5.
So xt is more severely corrupted as we evaluate further into the test set and t grows larger.
As shown in Figure 2.3, TTT-Online still improves upon joint training (and our standard
version) with this relaxed assumption, and even upon UDA-SS for the first two noise types.

Object Recognition on Video Frames

The Robust ImageNet Video Classification (VID-Robust) dataset was developed by [155]
from the ImageNet Video detection dataset [148], to demonstrate how deep models for
object recognition trained on ImageNet (still images) fail to adapt well to video frames. The
VID-Robust dataset contains 1109 sets of video frames in 30 classes; each set is a short
video clip of frames that are similar to an anchor frame. Our results are reported on the
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Method Accuracy (%)

Object recognition task only 62.7

Joint training [76] 63.5

TTT (standard version) 63.8

TTT-Online 64.3

Table 2.3: Test accuracy (%) on VID-Robust dataset [155]. TTT and TTT-Online improve
over the baselines.

anchor frames. To map the 1000 ImageNet classes to the 30 VID-Robust classes, we use
the max-conversion function in [155]. Without any modifications for videos, we apply our
method to VID-Robust on top of the same ImageNet model as in the previous subsection.
Our classification accuracy is reported in Table 2.3.

In addition, we take the seven classes in VID-Robust that overlap with CIFAR-10, and
re-scale those video frames to the size of CIFAR-10 images, as a new test set for the model
trained on CIFAR-10 in the previous subsection. Again, we apply our method to this dataset
without any modifications. Our results are shown in Table 2.2, with a breakdown for each
class. Noticing that Test-Time Training does not improve on the airplane class, we inspect
some airplane samples, and observe black margins on two sides of most images, which provide
a trivial hint for rotation prediction. In addition, given an image of airplanes in the sky, it is
often impossible even for humans to tell if it is rotated. This shows that our method requires
the self-supervised task to be both well defined and non-trivial.

CIFAR-10.1: Unknown Distribution Shifts

CIFAR-10.1 [146] is a new test set of size 2000 modeled after CIFAR-10, with the exact
same classes and image dimensionality, following the dataset creation process documented
by the original CIFAR-10 paper as closely as possible. The purpose is to investigate the
distribution shifts present between the two test sets, and the effect on object recognition. All
models tested by the authors suffer a large performance drop on CIFAR-10.1 comparing to
CIFAR-10, even though there is no human noticeable difference, and both have the same
human accuracy. This demonstrates how insidious and ubiquitous distribution shifts are,
even when researchers strive to minimize them.

The distribution shifts from CIFAR-10 to CIFAR-10.1 pose an extremely difficult problem,
and no prior work has been able to improve the performance of an existing model on this
new test set, probably because: 1) researchers cannot even identify the distribution shifts, let
alone describe them mathematically; 2) the samples in CIFAR-10.1 are only revealed at test
time; and even if they were revealed during training, the distribution shifts are too subtle,
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Method Error (%)

Object recognition task only 17.4

Joint training [76] 16.7

TTT (standard version) 15.9

Table 2.4: Test error (%) on CIFAR-10.1 [146]. TTT is the first method to improve the
performance of an existing model on this new test set.
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Figure 2.4: Scatter plot of the inner product between the gradients (on the shared feature
extractor θe) of the main task lm and the self-supervised task le, and the improvement in
test error (%) from Test-Time Training, for the standard (left) and online (right) version.
Each point is the average over a test set, and each scatter plot has 75 test sets, from all 15
types of corruptions over five levels as described in section 2.2. The blue lines and bands are
the best linear fits and the 99% confidence intervals. The linear correlation coefficients are
0.93 and 0.89 respectively, indicating strong positive correlation between the two quantities,
as suggested by Theorem 1.

and the sample size is too small, for domain adaptation [146].
On the original CIFAR-10 test set, the baseline with only object recognition has error

8.9%, and with joint training has 8.1%; comparing to the first two rows of Table 2.4, both
suffer the typical performance drop (by a factor of two). TTT yields an improvement of 0.8%
(relative improvement of 4.8%) over joint training. We recognize that this improvement is
small relative to the performance drop, but see it as an encouraging first step for this very
difficult problem.
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2.3 Theoretical Results

This section contains our preliminary study of when and why Test-Time Training is expected
to work. For convex models, we prove that positive gradient correlation between the loss
functions leads to better performance on the main task after Test-Time Training. Equipped
with this insight, we then empirically demonstrate that gradient correlation governs the
success of Test-Time Training on the deep learning model discussed in Section 2.2.

Before stating our main theoretical result, we first illustrate the general intuition with a
toy model. Consider a regression problem where x ∈ Rd denotes the input, y1 ∈ R denotes
the label, and the objective is the square loss (ŷ − y1)

2/2 for a prediction ŷ. Consider a two
layer linear network parametrized by A ∈ Rh×d and v ∈ Rh (where h stands for the hidden
dimension). The prediction according to this model is ŷ = v⊤Ax, and the main task loss is

lm(x, y1;A,v) =
1

2

(
y1 − v⊤Ax

)2
. (2.4)

In addition, consider a self-supervised regression task that also uses the square loss and
automatically generates a label ys for x. Let the self-supervised head be parametrized by
w ∈ Rh. Then the self-supervised task loss is

ls(x, y2;A,w) =
1

2

(
y2 −w⊤Ax

)2
. (2.5)

Now we apply Test-Time Training to update the shared feature extractor A by one step of
gradient descent on ls, which we can compute with y2 known. This gives us

A′ ← A− η
(
y2 −w⊤Ax

) (
−wx⊤) , (2.6)

where A′ is the updated matrix and η is the learning rate. If we set η = η∗ where

η∗ =
y1 − v⊤Ax

(y2 −w⊤Ax)v⊤wx⊤x
, (2.7)

then with some simple algebra, it is easy to see that the main task loss lm(x, y1;A
′,v) = 0.

Concretely, Test-Time Training drives the main task loss down to zero with a single gradient
step for a carefully chosen learning rate. In practice, this learning rate is unknown since it
depends on the unknown y1. However, since our model is convex, as long as η∗ is positive, it
suffices to set η to be a small positive constant (see details in the appendix). If x ̸= 0, one
sufficient condition for η∗ to be positive (when neither loss is zero) is to have

sign
(
y1 − v⊤Ax

)
= sign

(
y2 −w⊤Ax

)
(2.8)

and v⊤w > 0 . (2.9)

For our toy model, both parts of the condition above have an intuition interpretation. The
first part says that the mistakes should be correlated, in the sense that predictions from
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both tasks are mistaken in the same direction. The second part, v⊤w > 0, says that the
decision boundaries on the feature space should be correlated. In fact, these two parts hold
iff. ⟨∇lm(A),∇ls(A)⟩ > 0 (see a simple proof of this fact in the appendix). To summarize,
if the gradients have positive correlation, Test-Time Training is guaranteed to reduce the
main task loss. Our main theoretical result extends this to general smooth and convex loss
functions.

Theorem 1. Let lm(x, y;θ) denote the main task loss on test instance x, y with parameters
θ, and ls(x;θ) the self-supervised task loss that only depends on x. Assume that for all x, y,
lm(x, y;θ) is differentiable, convex and β-smooth in θ, and both ∥∇lm(x, y;θ)∥ , ∥∇ls(x,θ)∥ ≤
G for all θ. With a fixed learning rate η = ϵ

βG2 , for every x, y such that

⟨∇lm(x, y;θ),∇ls(x;θ)⟩ > ϵ, (2.10)

we have

lm(x, y;θ) > lm(x, y;θ(x)), (2.11)

where θ(x) = θ − η∇ls(x;θ) i.e. Test-Time Training with one step of gradient descent.
The proof uses standard techniques in optimization, and is left for the appendix. Theorem

1 reveals gradient correlation as a determining factor of the success of Test-Time Training
in the smooth and convex case. In Figure 2.4, we empirically show that our insight also
holds for non-convex loss functions, on the deep learning model and across the diverse set of
corruptions considered in Section 2.2; stronger gradient correlation clearly indicates more
performance improvement over the baseline.

2.4 Related Work

Learning on test instances. [158] provide a key inspiration for our work by showing
that image super-resolution could be learned at test time simply by trying to upsample a
downsampled version of the input image. More recently, [19] improve photo manipulation by
adapting a pre-trained GAN to the statistics of the input image. One of the earlier examples
of this idea comes from [88], who improve Viola-Jones face detection [188] by bootstrapping
the more difficult faces in an image from the more easily detected faces in that same image.
The online version of our algorithm is inspired by the work of [126], which makes video
segmentation more efficient by using a student model that learns online from a teacher model.
The idea of online updates has also been used in [92] for tracking and detection. A recent
work in echocardiography [206] improves the deep learning model that tracks myocardial
motion and cardiac blood flow with sequential updates. Lastly, we share the philosophy of
transductive learning [183, 51], but have little in common with their classical algorithms;
recent work by [178] theoretically explores this for linear prediction, in the context of debiasing
the LASSO estimator.
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Self-supervised learning studies how to create labels from the data, by designing various
pretext tasks that can learn semantic information without human annotations, such as context
prediction [44], solving jigsaw puzzles [132], colorization [101, 201], noise prediction [21],
feature clustering [25]. Our paper uses rotation prediction [58]. [8] show that self-supervised
learning on only a single image, surprisingly, can produce low-level features that generalize
well. Closely related to our work, [76] propose that jointly training a main task and a
self-supervised task (our joint training baseline in Section 2.2) can improve robustness on the
main task. The same idea is used in few-shot learning [167], domain generalization [24], and
unsupervised domain adaptation [172].

Adversarial robustness studies the robust risk RP,∆(θ) = Ex,y∼P maxδ∈∆ l(x+ δ, y; θ),
where l is some loss function, and ∆ is the set of perturbations; ∆ is often chosen as the
Lp ball, for p ∈ {1, 2,∞}. Many popular algorithms formulate and solve this as a robust
optimization problem [61, 120, 160, 144, 193, 36], and the most well known technique is
adversarial training. Another line of work is based on randomized smoothing [32, 149], while
some other approaches, such as input transformations [63, 165], are shown to be less effective
[12]. There are two main problems with the approaches above. First, all of them can be
seen as smoothing the decision boundary. This establishes a theoretical tradeoff between
accuracy and robustness [179, 200], which we also observe empirically with our adversarial
training baseline in Section 2.2. Intuitively, the more diverse ∆ is, the less effective this
one-boundary-fits-all approach can be for a particular element of ∆. Second, adversarial
methods rely heavily on the mathematical structure of ∆, which might not accurately model
perturbations in the real world. Therefore, generalization remains hard outside of the ∆ we
know in advance or can mathematically model, especially for non-adversarial distribution
shifts. Empirically, [93] shows that robustness for one ∆ might not transfer to another, and
training on the L∞ ball actually hurts robustness on the L1 ball.

Non-adversarial robustness studies the effect of corruptions, perturbations, out-of-
distribution examples, and real-world distribution shifts [77, 76, 80, 75]. [55] show that
training on images corrupted by Gaussian noise makes deep learning models robust to this
particular noise type, but does not improve performance on images corrupted by another
noise type e.g. salt-and-pepper noise.

Unsupervised domain adaptation (a.k.a. transfer learning) studies the problem of
distribution shifts, when an unlabeled dataset from the test distribution (target domain) is
available at training time, in addition to a labeled dataset from the training distribution
(source domain) [28, 60, 115, 54, 116, 180, 83, 37, 29]. The limitation of the problem setting,
however, is that generalization might only be improved for this specific test distribution, which
can be difficult to anticipate in advance. Prior work try to anticipate broader distributions
by using multiple and evolving domains [82, 84, 81]. Test-Time Training does not anticipate
any test distribution, by changing the setting of unsupervised domain adaptation, while
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taking inspiration from its algorithms. Our paper is a follow-up to [172], which we explain
and empirically compare with in Section 2.2. Our update rule can be viewed as performing
one-sample unsupervised domain adaptation on the fly, with the caveat that standard domain
adaptation techniques might become ill-defined when there is only one sample from the target
domain.

Domain generalization studies the setting where a meta distribution generates multiple
environment distributions, some of which are available during training (source), while others
are used for testing (target) [106, 154, 125, 15, 56, 124, 104, 52]. With only a few environments,
information on the meta distribution is often too scarce to be helpful, and with many
environments, we are back to the i.i.d. setting where each environment can be seen as a
sample, and a strong baseline is to simply train on all the environments [105]. The setting of
domain generalization is limited by the inherent tradeoff between specificity and generality
of a fixed decision boundary, and the fact that generalization is again elusive outside of the
meta distribution i.e. the actual P learned by the algorithm.

One (few)-shot learning studies how to learn a new task or a new classification category
using only one (or a few) sample(s), on top of a general representation that has been learned
on diverse samples [163, 187, 46, 145, 108, 48, 57]. Our update rule can be viewed as
performing one-shot self-supervised learning and can potentially be improved by progress in
one-shot learning.

Continual learning (a.k.a. learning without forgetting) studies the setting where a model
is made to learn a sequence of tasks, and not forget about the earlier ones while training for
the later [109, 117, 97, 150]. In contrast, with Test-Time Training, we are not concerned
about forgetting the past test samples since they have already been evaluated on; and if a
past sample comes up by any chance, it would go through Test-Time Training again. In
addition, the impact of forgetting the training set is minimal, because both tasks have already
been jointly trained.

Online learning (a.k.a. online optimization) is a well-studied area of learning theory [153,
67]. The basic setting repeats the following: receive xt, predict ŷt, receive yt from a worst-
case oracle, and learn. Final performance is evaluated using the regret, which colloquially
translates to how much worse the online learning algorithm performs in comparison to the
best fixed model in hindsight. In contrast, our setting never reveals any yt during testing
even for the online version, so we do not need to invoke the concept of the worst-case oracle
or the regret. Also, due to the lack of feedback from the environment after predicting, our
algorithm is motivated to learn (with self-supervision) before predicting ŷt instead of after.
Note that some of the previously covered papers [81, 88, 126] use the term “online learning”
outside of the learning theory setting, so the term can be overloaded.
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Chapter 3

Test-Time Training with Masked
Autoencoders

Generalization is the central theme of supervised learning, and a hallmark of intelligence.
While most of the research focuses on generalization when the training and test data are
drawn from the same distribution, this is rarely the case for real world deployment [176], and
is certainly not true for environments where natural intelligence has emerged.

Most models today are fixed during deployment, even when the test distribution changes.
As a consequence, a trained model needs to be robust to all possible distribution shifts that
could happen in the future [74, 55, 185, 121]. This turns out to be quite difficult because
being ready for all possible futures limits the model’s capacity to be good at any particular
one. But only one of these futures is actually going to happen.

This motivates an alternative perspective on generalization: instead of being ready for
everything, one simply adapts to the future once it arrives. Test-time training (TTT) is one
line of work that takes this perspective [171, 119, 66, 16]. The key insight is that each test
input gives a hint about the test distribution. We modify the model at test time to take
advantage of this hint by setting up a one-sample learning problem.

The only issue is that the test input comes without a ground truth label. But we can
generate labels from the input itself thanks to self-supervised learning. At training time,
TTT optimizes both the main task (e.g. object recognition) and the self-supervised task.
Then at test time, it adapts the model with the self-supervised task alone for each test input,
before making a prediction on the main task.

The choice of the self-supervised task is critical: it must be general enough to produce useful
features for the main task on a wide range of potential test distributions. The self-supervised
task cannot be too easy or too hard, otherwise the test input will not provide useful signal.
What is a general task at the right level of difficulty? We turn to a fundamental property
shared by natural images – spatial smoothness, i.e. the local redundancy of information in
the xy space. Spatial autoencoding – removing parts of the data, then predicting the removed
content – forms the basis of some of the most successful self-supervised tasks [186, 136, 72,
17, 196].
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In this chapter, we show that masked autoencoders (MAE) [72] is well-suited for test-time
training. Our simple method leads to substantial improvements on four datasets for object
recognition. We also provide a theoretical analysis of our method with linear models.

3.1 Related Work

This chapter addresses the problem of generalization under distribution shifts. We first
cover work in this problem setting, as well as the related setting of unsupervised domain
adaptation. We then discuss test-time training and spatial autocending, the two components
of our algorithm.

Problem Settings

Generalization under distribution shifts. When training and test distributions are
different, generalization is intrinsically hard without access to training data from the test
distribution. The robustness obtained by training or fine-tuning on one distribution shift
(e.g. Gaussian noise) often does not transfer to another (e.g. salt-and-pepper noise), even for
visually similar ones [55, 185]. Currently, the common practice is to avoid distribution shifts
altogether by using a wider training distribution that hopefully contains the test distribution
– with more training data or data augmentation [74, 204, 43].

Unsupervised domain adaptation. An easier but more restrictive setting is to use some
unlabeled training data from the test distribution (target), in addition to those from the
training distribution (source) [115, 116, 37, 28, 172, 83, 29, 60]. It is easier because, intuitively,
most of the distribution shift happens on the inputs instead of the labels, so most of the test
distribution is already known at training time through data. It is more restrictive because the
trained model is only effective on the particular test distribution for which data is prepared
in advance.

Test-Time Training

The idea of training on unlabeled test data has a long history. Its earliest realization is
transductive learning, beginning in the 1990s [50]. Vladimir Vapnik [184] states the principle
of transduction as: ”Try to get the answer that you really need but not a more general one.”
This principle has been most commonly applied on SVMs [183, 33, 91] by using the test
data to specify additional constraints on the margin of the decision boundary. Another early
line of work is local learning [23, 199]: for each test input, a “local” model is trained on the
nearest neighbors before a prediction is made.

In the computer vision community, [88] improves face detection by using the easier faces
in a test image to bootstrap the more difficult faces in the same image. [131] creates a
personalized generative model, by fine-tuning it on a few images of an individual person’s
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face. [158] trains neural networks for super-resolution on each test image from scratch. [159]
improves image retrieval by using a one-against-all classifier on the query image. [126] makes
video segmentation more efficient by using a student model that learns online from a teacher
model on the test videos. These are but a few examples where vision researchers find it
natural to continue training during deployment.

Test-time training (TTT) [171] proposes this idea as a solution to the generalization
problem in supervised learning under distribution shifts. It produces a different model for
every single test input through self-supervision. This method has also been applied to several
fields with domain-specific self-supervised tasks: vision-based reinforcement learning [66],
legged locomotion [168], tracking objects in videos [49], natural language question answering
[16], and even medical imaging [95].

The self-supervised pretext task employed by [171] is rotation prediction [58]: rotate each
input in the image plane by a multiple of 90 degrees, and predict the angle as a four-way
classification problem. This task is limited in generality, because it can often be too easy
or too hard. For natural outdoor scenes, rotation prediction can be too easy by detecting
the horizon’s orientation alone without further scene understanding. On the other hand, for
top-down views, it is too hard for many classes (e.g. frogs and lizards), since every orientation
looks equally plausible.

TTT [171] can be viewed alternatively as one-sample unsupervised domain adaptation
(UDA) – discussed in Subsection 3.1. UDA uses many unlabeled samples from the test
distribution (target); TTT uses only one target sample and creates a special case – this
sample can be the test input itself. We find this idea powerful in two ways: 1) We no
longer need to prepare any target data in advance. 2) The learned model no longer needs
to generalize to other target data – it only needs to “overfit” to the single training sample
because it is the test sample.

Other papers following [171] have worked on related but different problem settings,
assuming access to an entire dataset (e.g. TTT++ [112]) or batch (e.g. TENT [190]) of
test inputs from the same distribution. Our paper does not make such assumptions, and
evaluates on each single test sample independently.

Self-Supervision by Spatial Autoencoding

Using autoencoders for representation learning goes back to [186]. In computer vision, one of
the earliest works is context encoders [136], which predicts a random image region given its
context. Recent works [72, 17, 196] combine spatial autoencoding with Vision Transformers
(ViT) [45] to achieve state-of-the-art performance. The most successful work is masked
autoencoders (MAE) [72]: it splits each image into many (e.g. 196) patches, randomly masks
out majority of them (e.g. 75%), and trains a model to reconstruct the missing patches by
optimizing the mean squared error between the original and reconstructed pixels.

MAE pre-trains a large encoder and a small decoder, both ViTs [45]. Only the encoder is
used for a downstream task, e.g. object recognition. The encoder features become inputs to a
task-specific linear projection head. There are two common ways to combine the pre-trained
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Original Image Masked Image Step 0 Step 50 Step 500

Reconstruction: 0.63
Classi�cation: 4.81

Reconstruction: 0.60
Classi�cation: 2.88

Reconstruction: 0.58
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Figure 3.1: We train an MAE to reconstruct each test image at test time, masking 75% of
the input patches. The three reconstructed images on the right visualize the progress of this
one-sample learning problem. Loss of the main task (green) – object recognition – keeps
dropping even after 500 steps of gradient descent, while the network continues to optimize
for reconstruction (red). The unmasked patches are not shown on the right since they are
not part of the reconstruction loss.

encoder and untrained head. 1) Fine-tuning: both the encoder and head are trained together,
end-to-end, for the downstream task. 2) Linear probing: the encoder is frozen as a fixed
feature extractor, only the head is trained. We refer back to these training options in the
next section.

3.2 Method

At a high level, our method simply substitutes MAE [72] for the self-supervised part of TTT
[171]. In practice, making this work involves many design choices.

Architecture. Our architecture is Y-shaped (like in [171]): a feature extractor f simulta-
neously followed by a self-supervised head g and a main task head h. Here, f is exactly the
encoder of MAE, and g the decoder, both ViTs. We intentionally avoid modifying them to
make clean comparison with [72]. For the main task (e.g. object recognition) head h, [72]
uses a linear projection from the dimension of the encoder features to the number of classes.
The authors discuss h being a linear layer as mostly a historic artifact. We also experiment
with a more expressive main task head – an entire ViT-Base – to strengthen our baseline.

Training setup. Following standard practice, we start from the MAE model provided by
the authors of [72], with a ViT-Large encoder, pre-trained for reconstruction on ImageNet-1k
[40]. There are three ways to combine the encoder with the untrained main task head:
fine-tuning, probing, and joint training. We experiment with all three, and choose probing
with h being a ViT-Base, a.k.a. ViT probing, as our default setup, based on the following
considerations:
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1) Fine-tuning: train h◦f end-to-end. This works poorly with TTT because it does not
encourage feature sharing between the two tasks. Fine-tuning makes the encoder specialize
to recognition at training time, but subsequently, TTT makes the encoder specialize to
reconstruction at test time, and lose the recognition-only features that h had learned to rely
on. Fine-tuning is not used by [171] for the same reason.

2) ViT probing: train h only, with f frozen. Here, h is a ViT-Base, instead of a
linear layer as used for linear probing. ViT probing is much more lightweight than both
fine-tuning and joint-training. It trains 3.5 times fewer parameters than even linear fine-tuning
(86M vs. 306M). It also obtains higher accuracy than linear fine-tuning without aggressive
augmentations on the ImageNet validation set.

3) Joint training: train both h ◦ f and g ◦ f , by summing their losses together. This is
used by [171] with rotation prediction. But with MAE, it performs worse on the ImageNet
validation set, to the best of our ability, than linear / ViT probing. If future work finds a
reliable recipe for a joint training baseline, our method can easily be modified to work with
that.

Training-time training. Denote the encoder produced by MAE pre-training as f0 (and
the decoder, used later for TTT, as g0). Our default setup, ViT probing, produces a trained
main task head h0:

h0 = argmin
h

1

n

n∑
i=1

lm(h ◦ f0(xi), yi). (3.1)

The summation is over the training set with n samples, each consisting of input xi and label
yi. The main task loss lm in our case is the cross entropy loss for classification. Note that we
are only optimizing the main task head, while the pre-trained encoder f0 is frozen.

Augmentations. Our default setup, during training-time training, only uses image cropping
and horizontal flips for augmentations, following the protocol in [72] for pre-training and
linear probing. Fine-tuning in [72] (and [17, 196]), however, adds aggressive augmentations on
top of the two above, including random changes in brightness, contrast, color and sharpness1.
Many of them are in fact distribution shifts in our evaluation benchmarks. Training with
them is analogous to training on the test set, for the purpose of studying generalization to
new test distributions. Therefore, we choose not to use these augmentations, even though
they would improve our results at face value.

Test-time training. At test time, we start from the main task head h0 produced by ViT
probing, as well as the MAE pre-trained encoder f0 and decoder g0. Once each test input x
arrives, we optimize the following loss for TTT:

fx, gx = argmin
f,g

ls(g ◦ f(mask(x)), x). (3.2)

1Other augmentations used by fine-tuning in [72] are: interpolation, equalization, inversion, posterization,
solarization, rotation, shearing, random erasing, and translation. These are taken from RandAugment [38].
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Figure 3.2: We experiment with two optimizers for TTT. MAE [72] uses AdamW for pre-
training. But our results (left) show that AdamW for TTT requires early stopping, which is
unrealistic for generalization to unknown distributions without a validation set. We instead
use SGD, which keeps improving performance even after 20 steps (right).

The self-supervised reconstruction loss ls computes the pixel-wise mean squared error of the
decoded patches relative to the ground truth. After TTT, we make a prediction on x as
h ◦ fx(x). Note that gradient-based optimization for Equation 3.2 always starts from f0 and
g0. When evaluating on a test set, we always discard fx and gx after making a prediction on
each test input x, and reset the weights to f0 and g0 for the next test input. By test-time
training on the test inputs independently, we do not assume that they come from the same
distribution.

Optimizer for TTT. In [171], the choice of optimizer for TTT is straightforward: it
simply takes the same optimizer setting as during the last epoch of training-time training of
the self-supervised task. This choice, however, is not available for us, because the learning
rate schedule of MAE reaches zero by the end of pre-training. We experiment with various
learning rates for AdamW [118] and stochastic gradient descent (SGD) with momentum.
Performance of both, using the best learning rate respectively, is shown in Figure 3.2.

AdamW is used in [72], but for TTT it hurts performance with too many iterations. On
the other hand, more iterations with SGD consistently improve performance on all distribution
shifts. Test accuracy keeps improving even after 20 iterations. This is very desirable for TTT:
the single test image is all we know about the test distribution, so there is no validation set
to tune hyper-parameters or monitor performance for early stopping. With SGD, we can
simply keep training.
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Figure 3.3: Accuracy (%) on ImageNet-C, level 5. Our method, TTT-MAE, significantly
improves on top of our baseline, which already outperforms the method of [171]. See
Subsection 3.3 for details. Numbers for our baseline and TTT-MAE can be found in the last
two rows of Table 3.2. Numbers for Sun et al. are taken from [171].

3.3 Empirical Results

Implementation Details

In all experiments, we use MAE based on the ViT-Large encoder in [72], pre-trained for 800
epochs on ImageNet-1k [40]. Our ViT-Base head h takes as input the image features from
the pre-trained MAE encoder. There is a linear layer in between that resizes those features
to fit as inputs to the head, just like between the encoder and the decoder in [72]. A linear
layer is also appended to the final class token of the head to produce the classification logits.

TTT is performed with SGD, as discussed, for 20 steps, using a momentum of 0.9, weight
decay of 0.2, batch size of 128, and fixed learning rate of 5e-3. The choice of 20 steps is
purely computational; more steps will likely improve performance marginally, judging from
the trend observed in Figure 3.2. Most experiments are performed on four NVIDIA A100
GPUs; hyper-parameter sweeps are ran on an industrial cluster with V100 GPUs.

Like in pre-training, only tokens for non-masked patches are given to the encoder during
TTT, whereas the decoder takes all tokens. Each image in a TTT batch has a different
random mask. We use the same masking ratio as in MAE [72]: 75%. We do not use any
augmentation on top of random masking for TTT. Specifically, every iteration of TTT is
performed on the same 224×224 center crop of the image as we later use to make a prediction;
the only difference being that predictions are made on images without masking.

We optimize both the encoder and decoder weights during TTT, together with the class
token and the mask token. We have experimented with freezing the decoder and found that
the difference, even for multiple iterations of SGD, is negligible. This is consistent with the
observations in [171]. We also tried reconstruction loss both with and without normalized
pixels, as done in [72]. Our method works well for both, but slightly better for normalized
pixels because the baseline is slightly better. We also include these results in the appendix.
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Holster Chiton Spaghetti squashFire salamanderJelly�sh

Frost JPEG Brightness Elastic
[171] Ours [171] Ours [171] Ours [171] Ours

Jellyfish -3 0 -6 5 2 -1 -2 3
Holster -1 4 -2 6 1 0 -1 14
Chiton -1 3 -3 8 -1 2 -3 8
Fire salamander 1 3 -1 3 2 5 2 2
Spaghetti squash -3 4 -2 5 2 3 1 6

Table 3.1: Changes after TTT (-Rot and -MAE) in number of correctly classified images,
out of 50 total for each category. On these rotation invariant classes, TTT-Rot [171] hurts
performance, while TTT-MAE still helps, thanks to the generality of MAE as a self-supervised
task. The four corruptions are selected for being the most accurate categories of the TTT-Rot
baseline.

ImageNet-C

ImageNet-C [74] is a benchmark for object recognition under distribution shifts. It contains
copies of the ImageNet [40] validation set with 15 types of corruptions, each with 5 levels of
severity. Due to space constraints, results in the main text are on level 5, the most severe,
unless stated otherwise. Results on the other four levels are in the appendix.

In the spirit of treating these distribution shifts as truly unknown, we do not use training
data, prior knowledge, or data augmentations derived from these corruptions. This complies
with the stated rule of the benchmark, that the corruptions should be used only for evaluation,
and the algorithm being evaluated should not be corruption-specific [74]. This rule, in our
opinion, helps community progress: the numerous distribution shifts outside of research
evaluation cannot be anticipated, and an algorithm cannot scale if it relies on information
that is specific to a few test distributions.

Main results. Our main results on ImageNet-C appear in Figure 3.3. Following the
convention in [171], we plot accuracy only on the level-5 corruptions. Results on the other
levels are in the appendix. All results here use the default training setup discussed in Section
4.2: take a pre-trained MAE encoder, then perform ViT probing for object recognition on the
original ImageNet training set. Our baseline (green) applies the fixed model to the corrupted
test sets. TTT-MAE (red) on top of our baseline significantly improves performance.

Comparing reconstruction vs. rotation prediction. The baseline for TTT-Rot,
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taken from [171], is called Joint Train in Figure 3.3. This is a ResNet [70] with 16-layers,
after joint training for rotation prediction and object recognition. Because our baseline is
much more advanced than the ResNet baseline, the former already outperforms the reported
results of TTT-Rot, for all corruptions except contrast. 2 So comparison to [171] is more
meaningful in relative terms: TTT-MAE has higher performance gains in all corruptions
than TTT-Rot, on top of their respective baselines.

Rotation invariant classes. As discussed in Section 4.1, rotation prediction [58] is often
too hard to be helpful, in contrast to a more general task like spatial autoencoding. In fact,
we find entire classes that are rotation invariant, and show random examples from them in
Table 3.1. 3 Not surprisingly, these images are usually taken from top-down views; rotation
prediction on them can only memorize the auxiliary labels, without forming semantic features
as intended. This causes TTT-Rot of [171] to hurt performance on these classes, as seen in
Table 3.1. Also not surprisingly, TTT-MAE is agnostic to rotation invariance and still helps
on these classes.

Training-time training. In Section 4.2, we discussed our choice of ViT probing instead
of fine-tuning or joint training. The first three rows of Table 3.2 compare accuracy of these
three designs. As discussed, joint training does not achieve satisfactory performance on most
corruptions. While fine-tuning initially performs better than ViT probing, it is not amenable
to TTT. The first three rows are only for training-time training, after which a fixed model is
applied during testing. The last row is TTT-MAE after ViT probing, which performs the
best across all corruption types. Numbers in the last two rows are the same as, respectively,
for Baseline (ViT Probing) and TTT-MAE in Figure 3.3.

Other ImageNet Variants

We evaluate TTT-MAE on two other popular benchmarks for distribution shifts. ImageNet-
A [78] contains real-world, unmodified, and naturally occurring examples where popular
ImageNet models perform poorly. ImageNet-R [79] contains renditions of ImageNet classes,
e.g. art, cartoons and origami. Both TTT-MAE and the baseline use the same models and
algorithms, with exactly the same hyper-parameters as for ImageNet-C (Subsection 3.3). Our
method continues to outperform the baseline by large margins: see Table 3.3.

2It turns out that for the contrast corruption type, the ResNet baseline of TTT-Rot is much better
than our ViT baseline, even though the latter is much larger; TTT-MAE improves on the ViT baseline
nevertheless.

3We find 5 of these classes through the following: 1) Take the ImageNet pre-trained ResNet-18 from
the official PyTorch website [135]. 2) Run it on the original validation set, and a copy rotated 90-degree.
3) Eliminate classes for which the original accuracy is lower than 60%. 4) For each class still left, compare
accuracy on the original vs. rotate images, and choose the 5 classes for which the normalized difference is the
smallest.
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brigh cont defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom

Joint Train 62.3 4.5 26.7 39.9 25.7 30.0 5.8 16.3 5.8 45.3 30.9 45.9 7.1 25.1 31.8
Fine-Tune 67.5 7.8 33.9 32.4 36.4 38.2 22.0 15.7 23.9 51.2 37.4 51.9 23.7 37.6 37.1
ViT Probe 68.3 6.4 24.2 31.6 38.6 38.4 17.4 18.4 18.2 51.2 32.2 49.7 18.2 35.9 32.2

TTT-MAE 69.1 9.8 34.4 50.7 44.7 50.7 30.5 36.9 32.4 63.0 41.9 63.0 33.0 42.8 45.9

Table 3.2: Accuracy (%) on ImageNet-C, level 5. The first three rows are fixed models
without test-time training, comparing the three design choices discussed in Section 4.2. The
third row, ViT probing, is our default baseline throughout the paper; it has the same numbers
as the baseline in Figure 3.3. The last row is our method: TTT-MAE after ViT probing.
This achieves the best performance across all corruption types; it has the same numbers as
TTT-MAE in Figure 3.3.

ImageNet-A ImageNet-R
Baseline TTT-MAE Baseline TTT-MAE

15.3 21.3 31.3 38.9

Table 3.3: Accuracy (%) on ImageNet-A [78] and ImageNet-R [79]; see Subsection 3.3 for
details. Baseline is ViT Probing – the default – trained on the original ImageNet training
set; it is in fact the same model as for ImageNet-C. Our method improves on the baseline for
both datasets, using the same hyper-parameters as the rest of the paper.

Portraits Dataset

The Portraits dataset [59] contains American high school yearbook photos labeled by gender,
taken over more than a century. It contains real-world distribution shifts in visual appearance
over the years. We sort the entire dataset by year and split it into four equal parts, with 5062
images each. Between the four splits, there are visible low-level differences such as blurriness
and contrast, as well as high-level change like hair-style and smile. 4

We create three experiments: for each, we train on one of the first three splits and test on
the fourth. Performance is measured by accuracy in binary gender classification. As expected,
baseline performance increases slightly as the training split gets closer to test split in time.

Our model is the same ImageNet pre-trained MAE + ViT-Base (with sigmoid for binary
classification), and probing is performed on the training split. We use exactly the same
hyper-parameters for TTT. Our results are shown in Table 3.4. Our method improves on the
baseline for all three experiments.

4The Portraits dataset was only accessed by the UC Berkeley authors.
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Train Split 1 2 3

Baseline 76.1 76.5 78.2
TTT-MAE 76.4 76.7 79.4

Table 3.4: Accuracy (%) for binary classification on the Portraits dataset; see Subsection 3.3
for details. For each column, we train on the indicated split, and test on the fourth. Baseline
is still ViT Probing (except with a sigmoid in the end). Our method improves on the baseline
for all three training splits. We perform both regular training and TTT using the same
hyper-parameters as the rest of the paper.

3.4 Theoretical Results

Why does TTT help? The theory of [171] gives an intuitive but shallow explanation: when
the self-supervised task happens to propagate gradients that correlate with those of the main
task. But this evasive theory only delegates one unknown – the test distribution, to another
– the magical self-supervised task with correlated gradients, without really answering the
question, or showing any concrete example of such a self-supervised task.

In this chapter, we show that autoencoding, i.e. reconstruction, is a self-supervised task
that makes TTT help. To do so with minimal mathematical overhead, we restrict ourselves
to the linear world, where our models are linear and the distribution shifts are produced by
linear transformations. We analyze autoencoding with dimensionality reduction instead of
masking, as we believe the two are closely related in essence.

The most illustrative insight, in our opinion, is that under distribution shifts, TTT finds
a better bias-variance trade-off than applying a fixed model. The fixed model is biased
because it is completely based on biased training data that do not represent the new test
distribution. The other extreme is to completely forget the training data, and train a new
model from scratch on each test input; this is also undesirable because the single test input
is high variance, although unbiased by definition.

A sweet spot of the bias-variance trade-off is to perform TTT while remembering the
training data in some way. In deep learning, this is usually done by initializing with a trained
model for SGD, like for our paper and [171]. In this section, we retain memory by using part
of the covariance matrix derived from training data.

It is well known that linear autoencoding is equivalent to principle component analysis
(PCA). This equivalence simplifies the mathematics by giving us closed form solutions to
the optimization problems both during training and test-time training. For the rest of the
section, we use the term PCA instead of linear autoencoding, following convention of the
theory community.
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Problem setup. Let x, y ∼ P , the training distribution, and assume that the population
covariance matrix Σ = Cov(x) is known. PCA performs spectral decomposition on Σ =
UDU⊤, and takes the top k eigenvectors u1, . . . , uk to project x ∈ Rd to Rk. Throughout
this section, we denote ui as the ith column of the matrix U , and likewise for other matrices.

Assume that for each x, the ground truth y is a linear function of the PCA projection
with k = 1:

y = wu⊤
1 x, (3.3)

for some known weight w ∈ R. For mathematical convenience, we also assume the following
about the eigenvalues, i.e. the diagonal entries of D:

σ1 > σ2 = σ3 = . . . = σd = σ. (3.4)

At test time, nature draws a new x, y ∼ P , but we can only see x̃, a corrupted version of
x. We model a corruption as an unknown orthogonal transformation R, and x̃ = Rx.

Algorithms. The baseline is to blithely apply a fixed model and predict

ŷ = wu⊤
1 x̃, (3.5)

as an estimate of y. Intuitively, this will be inaccurate if corruption is severe i.e. R is far
from I. Now we derive the PCA version of TTT. We first construct a new (and rather trivial)
covariance matrix with x̃, the only piece of information we have about the corruption. Let
α ∈ [0, 1] be a hyper-parameter. We then form a linear combination of Σ with our new
covariance matrix:

M(α) = (1− α) · Σ + α · x̃x̃⊤. (3.6)

Denote its spectral decomposition as M(α) = V (α) · S(α) · V ⊤(α). We then predict

ŷ = wv⊤1 x̃. (3.7)

Bias-variance trade-off. α = 0 is equivalent to the baseline, and α = 1 means that
we exclusively use the single test input and completely forget about the training data. In
statistical terms, α presents a bias-variance trade-off: α ↓ 0 means more bias, α ↑ 1 means
more variance.

Theorem. Define the prediction risk as E[|ŷ − y|], where the expectation is taken over the
corrupted test distribution. This risk is strictly dominated when α = 0. That is, TTT with
some hyper-parameter choice α > 0 is, on average, strictly better than the baseline.

The proof is given in the appendix.
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Remark on the assumptions. The assumption in Equation 3.3 is mild; it basically just
says that PCA is at least helpful on the training distribution. It is also mild to assume
that Σ and w are known in this context, since the estimated covariance matrix and weight
asymptotically approach the population ground truth as the training set grows larger. The
assumption on the eigenvalues in Equation 3.6 greatly simplifies the math, but a more
complicated version of our analysis should exist without it. Lastly, we believe that our
general statement should still hold for invertible linear transformation instead of orthogonal
transformations, since they share the same intuition.
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Chapter 4

Test-Time Training on Video Streams

Computer vision models deployed in the real world often take input data in the form of
continuous video streams. However, most such models are trained with large collections
of still images, e.g. the COCO dataset [110], causing a mismatch between training and
testing. At test time, such models are applied to each video frame-by-frame, as if it was a
collection of independent images. Thus, model predictions across visually similar frames can
be very inconsistent. Simple averaging or temporal smoothing across predictions offer little
improvement.

For a trained model that stays fixed at test time, a video is indeed no different from a
collection of unordered frames. To take advantage of the temporal nature of our problem,
we keep updating the model as it sees more of the video. At each timestep, before the
model makes a prediction on the current frame, we first fine-tune it on this frame and recent
frames in the past. After prediction, the model repeats the same process for the next frame,
initializing with parameters from the current timestep.

Since there is no ground truth label on the test video, the fine-tuning technique inside
this outer loop must not rely on explicit supervision. We experiment with a wide variety of
baseline techniques for fine-tuning with self-supervision [171, 53], batch statistics [190, 151],
and self-training using pseudo-labels [164]. While the techniques above have been introduced
in the past, we make many design innovations to make them work effectively on video streams,
inside our outer loop.

In terms of results, we make two contributions. First, we significantly improve prediction
quality and visual consistency on three real-world datasets, for four tasks: instance, panoptic
and semantic segmentation, and colorization. Prior work have considered the paradigm of
updating a model on test videos for either short clips of synthetic data [171, 189], or depth
estimation [174, 175, 203, 205, 119]. Our paper is the first to demonstrate the potential of
this paradigm on real data, for general tasks that do not rely on stereo-specific knowledge. To
facilitate future research in this under-explored direction, we collect a new dataset – COCO
Videos – with dense annotations on very long videos of daily-life scenes. Figure 4.1 visualizes
our results on COCO Videos for panoptic segmentation.

Our second contribution is more thought-provoking. Conventional wisdom in the continual
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Figure 4.1: Panoptic segmentation predictions for adjacent frames from a video in our new
COCO Videos dataset. Top: Baseline results produced by a fixed model. Predictions are
inconsistent between the two frames. Bottom: Results after test-time training (TTT), by
the same model, on the same frames as top. Predictions are now consistent and correct.
Please zoom in to see the instance labels.

learning community believes that forgetting is harmful. Specifically, the best accuracy is
achieved by remembering everything with an infinite replay buffer, given unlimited time and
memory. In our experiments, however, forgetting can in fact be beneficial for accuracy. This
is intuitive in hindsight, since frames from the distant past are less relevant for making a
prediction in the present, and training on these frames creates bias. To make our intuition
rigorous, we theoretically analyze the prediction error after test-time training, and characterize
forgetting as finding a sweet spot in a bias-variance trade-off.

Our analysis suggests that the observed benefit of forgetting is not particular to our
algorithm or technique, but a general property of our streaming setting. To the best of our
knowledge, we are the first to discover the benefit of forgetting in a setting that can be
instantiated with large-scale, real-world data. This discovery is consistent with studies in
neuroscience [62], and the ubiquity of real-world data in our setting suggests that it might be
more representative of how natural agents, e.g. humans, operate.

4.1 Related Work

Continual Learning

In the field of continual a.k.a. lifelong learning, a model learns a sequence of tasks in temporal
order, and is asked to perform well on all of them [182, 64]. Here is the basic problem setting.
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Each task is defined by a data distribution Pt, which produces a training set Dtr
t and a test

set Dte
t . At each time t, the model is evaluated on all the test sets Dte

1 , . . . , D
te
t of the past

and present, and average performance is reported.
One solution is to train the model on all of Dtr

1 , . . . , D
tr
t , which collectively have the same

distribution as the test sets. This is often referred to as the oracle with an infinite replay
buffer that remembers everything. However, due to constraints in computation and memory,
the model at time t is only allowed to train on Dtr

t , or a limited piece of memory (a.k.a. replay
buffer) that contains a small fraction of the past training sets. Most solutions, therefore,
focus on how to avoid forgetting, since majority of the past data can only be retained by the
model parameters [150, 109, 117, 157, 97, 57].

Among the vast literature on continual learning, many papers extend beyond the basic
setting above. Due to space constraints, we point to a few of the most relevant ones. [3]
use continuous instead of discrete tasks across time. [141] and [47] perform self-supervised
learning on unlabeled training sets, and evaluate the learned features on the test sets. [81],
[103] and [134] use not only unlabeled training sets Dtr

1 , . . . , D
tr
t (target), but also a labeled

training set Dtr
0 (source), thus sharing some terminology and techniques with the field of

unsupervised domain adaptation. [117] and [42] use alternative metrics, e.g. forward transfer,
to justify forgetting for reasons other than computational; they evaluate on synthetic datasets,
e.g. rotated MNIST.

Online Learning on Videos at Test Time

The idea of training on test data has been explored in many papers over the past decade [88,
158, 131, 66, 137, 168, 49, 16, 95, 107, 112]. Here we discuss the ones working with videos.

The most relevant paper is [189]. They keep updating the model on each video without
ground truth label, for the task of semantic segmentation. Inspired by their work, we use
the same outer loop, but make design innovations that significantly improve performance,
and expand the scope of results to four tasks on three datasets. All of our experiments and
improvements are on real-world data. In comparison, only one experiment in [189] uses data
without synthetic corruptions (CityScapes), where the videos are orders of magnitude shorter
than ours (see Table 4.2), and their best method only makes 1.4% relative improvement.
By controlling memory explicitly through a sliding window, we are also able to make novel
investigations into the benefits of forgetting.

Another recent work on videos is [14]. They treat each video as a dataset of unordered
frames instead of a stream, and use the same model on each video. In particular, they always
have access to the entire video, including future frames. In contrast, we have access to only
the current and past frames, and our model keeps learning over time. In addition, all of
our results are on real world videos, while [14] experiment only on videos with artificial
corruptions. From what we understand, their corruptions are also i.i.d. across frames of even
the same video.
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4.2 Approach

At a high level, most of the components of our algorithm have been introduced in the past.
In practice, it requires many design innovations to combine them effectively.

Outer Loop

We consider a test video as a smoothly changing sequence of frames x1, . . . , xT . We want to
evaluate an algorithm on the test video following its temporal order, as if it was consumed
by a human. Ground truth labels should never used by the algorithm. For each time t, the
algorithm makes a prediction on xt after receiving it from the environment, before seeing
any future frame. Naturally, the past frames x1, . . . , xt−1 are also available at the time of
prediction, in addition to xt. This is a key difference between the setting of [189] and ours.

Given a trained model F that takes a single image as input, the most naive baseline is to
blithely run F frame-by-frame, predicting F (xt) at each timestep. Currently, this is indeed
the most common mode of deploying a single-image model on videos. How to do better? We
improve F by updating it on the test video. For each timestep t, we repeat the following:
1) Receive xt. 2) Produce Ft through training on xt and, if helpful, some of x1, . . . , xt−1. 3)
Predict Ft(xt). The second step is the key of this outer loop.

Baseline Techniques for Model Update

In principle, any technique that does not use ground truth labels can be used to update F
inside the loop. We next discuss the most promising ones according to prior work.

Masked Autoencoders

[53] shows that masked autoencoders (MAE) [72] work well for test-time training (TTT) on
still images. The self-supervised task – in this case, reconstruction from an input image with
masked patches – needs its own prediction head. This requires us to modify the network
architecture. We first split F into two parts as F = h ◦ f , where f is the feature extractor,
and h is the prediction head for the main task – in our case, segmentation or colorization.
For F composed of a sequence of layers, this split is realized by making f the first few layers,
and h the rest. Next we add a prediction head g, for the self-supervised task, after f . For
symmetry, g has the same architecture as h, except the last layer mapping to a different
output space.

Initializing g from scratch is undesirable for TTT since performance of the self-supervised
task would then start from chance level. We prepare our model for TTT by training it jointly
on both tasks, using the training set of images with labels. This design is different from that
in [53], which first trains g ◦ f , then trains h and keeps g frozen. We find their design to
perform much worse in our setting. Denote the main task loss as ℓm, and the self-supervised
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loss as ℓs. We optimize those two losses together to produce:

g0, h0, f0 = argmin
g,h,f

1

n

n∑
i=1

[ℓm(h ◦ f(xi), yi)

+ ℓs(g ◦ f(x̃i), xi)].

The summation is over the training set with n samples, each consisting of input xi and label
yi. x̃i is xi transformed as input for the self-supervised task, in our case, by masking 80% of
the patches.

Given a single test image x (and x̃ transformed for the self-supervised task), [53] formulates
a one-sample learning problem that solves for

g′, f ′ = argmin
g,f

ℓs(g ◦ f(x̃), x), (4.1)

initializing from g0 and f0. A prediction for the main task is then made as h0 ◦ f ′(x).
However, naively applying the above does not help performance in our experiments. In the
next subsection, we are able to use many more frames for this learning problem, thanks to
our streaming setting.

Self-Training

Self-training is a popular technique in semi-supervised learning [143, 147, 207, 9, 7] and
domain adaptation [100, 208, 122, 111, 166]. It is also evaluated in [189], but is shown to
produce inferior performance. Here we incorporate novel design choices that make it suitable
for TTT.

We assume that for each test image x, the prediction ŷ is also of the same shape in 2D,
which is true in semantic segmentation and colorization. We also assume that F outputs a
estimated confidence map ĉ of the same shape as ŷ. Specifically, for pixel x[i, j], ŷ[i, j] is the
predicted class of this pixel, and ĉ[i, j] is the estimated confidence of ŷ[i, j].

Self-training repeats many iterations of the following:
1) Start with an empty set of labels D for this iteration.
2) Loop over every [i, j] location, add pseudo-label ŷ[i, j] to D if ĉ[i, j] > λ, for a fixed
threshold λ. 3) Train F to fit this iteration’s set D, as if the selected pseudo-labels are
ground truth labels. Our first design improvement is incorporating the confidence threshold
λ. In [189], all predictions are pseudo-labels, regardless of confidence. Experiments show that
for low λ, or with λ = 0 in [189], self-training is noisy and unstable, as expected.

However, for high λ, there is limited learning signal, e.g. little gradient, since f is already
very confident about the pseudo-label. Our second design improvement, inspired by [164], is
to make learning more challenging with an already confident prediction, by masking image
patches in x. In [164], masking is applied sparingly on 2.5% of the pixels in average. We
mask 80% or even 90% of the pixels, inspired by [72].



CHAPTER 4. TEST-TIME TRAINING ON VIDEO STREAMS 35

Adapting the Normalization Layers

Prior work [151] shows that simply recalculating the batch normalization (BN) statistics
works well for unsupervised domain adaptation. [189] applies this technique to video streams
by accumulating the statistics with a forward pass on each frame once it is revealed. Since
modern transformers use layer normalization (LN) instead, we apply the same technique to
LN. This is labeled as LN Adapt [151] in the tables.

The normalization layers (BN and LN) also contain parameters that modify the statistics.
Tent [190] is an objective for learning only those parameters at test time, by minimizing the
softmax entropy of the predicted distribution over classes. We update the LN statistics and
parameters with Tent, in the same loop as our method.

Test-Time Training with Memory

We can naively apply any of the baseline techniques to a video by making the input xt instead
of x. However, this misses point of using a video. Like the single-image baseline using a
fixed model, single-image TTT treats a video as a collection of unordered frames. Neither of
the two can improve over time, which is only possible through memory, by retaining some
information from the past frames x1, . . . , xt−1 to help prediction on xt.

Because evaluation is performed at each timestep only on the current frame, memory
design should favor past data that are most relevant to the present. Fortunately, with the
help of nature, the most relevant frames usually happen to be the most recent due to temporal
smoothness – observations close in time tend to be similar. We design memory that favors
recent frames in the following two ways.

Implicit memory. To initialize TTT on xt, we have two choices. The first is g0 and f0.
For each timestep, this resets the model parameters before TTT to those at the beginning of
the video. Once a prediction is made, the new parameters after TTT are discarded. The
second is gt−1 and ft−1. Algorithmically, this simply keeps the models parameters. Results
show that the second is usually better under temporal smoothness. It creates an implicit
memory, since information carries over from the previous model, optimized on previous frames.
It also happens to be more biologically plausible: we humans rarely reset our minds. In [53],
only the first is discussed, because it does not assume smoothness between different inputs.

Explicit memory. While implicit memory is easy to implement, it is hard to control.
One can certainly manipulate, for example, the learning rate, number of iterations, and
regularization coefficients to influence the effect of initialization, but these delicate hyper-
parameters also affect the optimization solver. To isolate the amount of memory for reliable
analysis, we have to decouple the optimization problem from its solver.

While [189] uses the implicit memory discussed above, it still performs TTT one image at
a time like in [171] and [53]. We add explicit control to memory by remembering past frames
in a sliding window, also known as a replay buffer in continual learning. For each iteration of
stochastic gradient decent, we uniformly sample a batch with replacement from the window,
and calculate the total loss as the sum over all losses for elements in the batch.



CHAPTER 4. TEST-TIME TRAINING ON VIDEO STREAMS 36

Let k denote the window size. As an example, for TTT with MAE, we solve the following
optimization problem at each timestep t:

gt, ft = argmin
g,f

1

k

t∑
t′=t−k+1

ℓs(g ◦ f(x̃t′), xt′), (4.2)

before predicting h0 ◦ ft(xt). Masking is applied independently within and across batches.

4.3 Results

We experiment with four applications on three real-world datasets: 1) semantic segmentation
on a public dataset of urban driving videos; 2) instance and panoptic segmentation on a
new dataset we collected and annotated, of videos with COCO objects in daily scenes; 3)
colorization on our new dataset and a collection of black and white films.

Architecture. Our default is Mask2Former [30], which has recently achieved state-of-the-
art performance on many semantic, instance and panoptic segmentation benchmarks. Our
method is generally applicable to modern network architectures, and does not rely on any
particular property of Mask2Former. Our Mask2Former uses a Swin-S [113] backbone. For
MAE, this is also the shared feature extractor (a.k.a. encoder) f . Everything following the
backbone in the original architecture is taken as the main task head h, and our self-supervised
head (a.k.a. decoder) g copies the architecture of h except the last layer.

Class balancing. [189] proposes a heuristic that is applicable when implicit memory
is used: record the number of predicted classes, for the initial model F0 and the current
model Ft. They reset the model parameters when the difference is large enough, since the
predictions of Ft have likely collapsed. To compare with [189], we also evaluate this heuristic
on self-training and Tent, appended with the -Class label.

Semantic Segmentation on KITTI-STEP

Dataset. KITTI-STEP [191] contains 12 training videos and 9 validation videos of urban
driving scenes. At the rate of 10 frames-per-second, these videos are the longest – up to 106
seconds – among public datasets with dense pixel-wise annotations. Since we do not perform
regular training on KITTI-STEP, we select hyper-parameters on the validation set, and use
the larger training set as the test set. We report results both.

Training. KITTI-STEP has exactly the same 19 categories as CityScapes [34], another
driving dataset of individual images instead of videos. We take the publicly available
Mask2Former model pre-trained on CityScapes images. For TTT-MAE, this is also the
initialization for joint training, labeled Joint MAE.

Main results. Quantitative results with ablations, measured by mean intersection over
union (IoU), are in Table 4.1. We make a few observations:

1. Using both forms of memory, TTT-MAE performs the best. For semantic segmentation,
such improvements on a state-of-the-art baseline are considered highly significant. Joint
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Method Validation Test Time

Fixed models.

DeepLab 42.0 41.6 -
SegFormer 53.1 50.8 -
Mask2Former 53.8 52.5 -
Joint MAE 53.5 (-0.6%) 52.5 (0.0%) 1.0

No memory.

TTT-MAE 53.6 (+0.2%) 52.5 (0.0%) 5.2
Self-Train 54.3 (+0.9%) 53.1 (+1.1%) 115.6
ST Improve 53.8 (0.0%) 52.8 (+0.6%) 121.4
LN Adapt 53.6 (-0.4%) 52.5 (0.0%) 2.8
Tent 53.7 (-0.2%) 52.6 (+0.2%) 3.4

Implicit memory only: no reset.

TTT-MAE 55.4 (+3.6%) 53.8 (+2.5%) 5.0
Self-Train 12.5 (-76.8%) 10.5 (-80.0%) 108.8
ST-Class 55.2 (+2.6%) 53.7 (+2.3%) 111.0
ST Improve 53.9 (+0.2%) 53.0 (+1.0%) 114.6
LN Adapt 53.8 (0.0%) 52.5 (0.0%) 2.6
Tent 53.8 (0.0%) 52.4 (-0.2%) 3.0
Tent-Class 53.8 (0.0%) 52.5 (0.0%) 5.2

Explicit memory only: window size 16.

TTT-MAE 53.7 (+0.4%) 52.8 (+0.6%) 5.6
Self-Train 54.0 (+0.4%) 52.9 (+0.8%) 133.6
ST Improve 54.7 (+1.7%) 53.4 (+1.7%) 137.4
LN Adapt 53.8 (0.0%) 52.5 (0.0%) 3.0
Tent 53.9 (+0.2%) 52.7 (+0.4%) 3.0

Both memory (ours): no reset, window size 16.

TTT-MAE 57.2 (+6.9%) 55.4 (+5.5%) 5.2
Self-Train 11.4 (-78.8%) 9.2 (-82.5%) 126.2
ST-Class 56.1 (+4.3%) 54.4 (+3.6%) 127.8
ST Improve 57.0 (+5.9%) 55.4 (+5.5%) 129.4
LN Adapt 53.8 (0.0%) 52.5 (0.0%) 2.6
Tent 53.8 (0.0%) 52.6 (+0.2%) 2.8
Tent-Class 53.9 (+0.2%) 52.7 (+0.4%) 4.6

Table 4.1: Results for semantic segmentation in mean IoU (%) on KITTI-STEP. For imple-
mentations based on Mask2Former, the numbers in parenthesis indicate relative improvements.
Average inference time is in seconds per frame. In all experiments, timing is performed on a
single A100 GPU with 80G memory.
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Dataset Length Frames Rate

CityScapes-VPS [96] 1.8 3000 17

DAVIS [139] 3.5 3455 30

YouTube-VOS [197] 4.5 123,467 30

KITTI-STEP [191] 40 8,008 10

COCO Videos (Ours) 309 23,925 10

Table 4.2: Comparison of video datasets with annotations for segmentation. The columns
are: average length per video in seconds, total number of frames in the entire dataset, and
the rate in frames per second. The videos in our new dataset – COCO Videos – are orders of
magnitude longer than other publicly available ones.

training alone does not improve on baseline, indicating that the improvements of TTT-MAE
come from updating the model at test time.

2. Our TTT-MAE optimizes for only 1 iteration per frame, and is only 5x slower than
the baseline. Comparing with [53], which optimizes for 20 iterations per image, we take
advantage of temporal smoothness and implicit memory to get a better initialization for every
frame.

3. When implicit memory is used, performance of self-training [189] is very bad without
class balancing. This is consistent with the observations in [189]. Our two design improvements,
labeled ST Improve in Table 4.1, make self-training almost competitive with TTT-MAE.

4. Baseline techniques that adapt the normalization layers alone help little in these
evaluations. In [189], they are also shown to barely improve results on the single real-world
dataset (CityScapes), even though they improve significantly on the other datasets with
synthetic corruptions.

Additional baselines. Mask2Former was not evaluated by the authors on KITTI-STEP.
To verify that the pre-trained model (69M) is already the state-of-the-art on KITTI-STEP,
we compare its performance with two other popular models of comparable size: SegFormer
B4 [195] (64.1M), and DeepLabV3+/RN101 [27] (62.7M), used by [189]. We also experiment
with test-time augmentation of the input, applying the default recipe in the codebase to the
baseline, budgeting 100 seconds per frame. This improves mean IoU on the validation set
modestly by 1.2%.

Temporal smoothing. As a sanity check, we also implement temporal smoothing on
the baseline, by averaging the predictions across a short window. The window size is selected
to optimize performance after smoothing on the validation set. This improves the baseline by
only 0.4% mean IoU on average.
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Method Instance (AP) Panoptic (PQ) Time

Fixed models.

Mask2Former 4.52 9.34 -
Joint MAE 4.53 (+0.2%) 9.21 (-1.4%) 1.3

No memory.

TTT-MAE 6.59 (+45.8%) 13.22 (+41.5%) 4.6

Implicit memory only: no reset.

TTT-MAE 6.90 (+52.7%) 14.11 (+57.2%) 3.6
LN Adapt 4.62 (+2.2%) 10.03 (+8.3%) 2.8
Tent 4.99 (+10.4%) 10.74 (+16.8%) 3.2

Explicit memory only: window size 16.

TTT-MAE 6.71 (+48.5%) 13.25 (+41.9%) 4.4
LN Adapt 4.76 (+5.3%) 9.48 (+1.5%) 3.6
Tent 5.88 (+30.1%) 11.38 (+21.8%) 3.4

Both memory (ours): no reset, window size 16.

TTT-MAE 8.12 (+79.6%) 15.43 (+65.2%) 3.8
LN Adapt 4.51 (-0.2%) 9.35 (+0.1%) 3.4
Tent 5.57 (+23.2%) 10.39 (+11.2%) 3.6
Tent-Class 5.88 (+30.1%) 11.63 (+24.5%) 5.0

Table 4.3: Results for instance and panoptic segmentation on COCO Videos. The metrics for
instance and panoptic segmentation are, respectively, average precision (AP) and panoptic
quality (PQ). Average inference time is in seconds per frame.

COCO Videos

While KITTI-STEP already contains the longest annotated videos among publicly available
datasets, they are still far too short for studying long-term phenomenon such as memory and
forgetting. KITTI-STEP videos are also limited to driving scenarios, a small subset of the
diverse scenarios in our daily lives. These limitations motivate us to annotate our own videos.

We collected 7 videos, each about 5 minutes, annotated by professionals, in the same
format as for COCO instance and panoptic segmentation [110]. To put things into perspective,
each of the 7 videos alone contains more frames, at the same rate, than all of the videos
combined in the KITTI-STEP validation set. We compare this new dataset with other public
datasets in Table 4.2.

All videos are egocentric, similar to the visual experience of a human walking around. In
particular, they do not follow any tracked object like in Oxford Long-Term Tracking [181] or
ImageNet-Vid [156]. Objects leave and enter the camera’s view all the time. Unlike KITTI-
STEP and CityScapes that focus on self-driving scenes, our videos are both indoors and
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Figure 4.2: Samples results for video colorization on the Lumiere Brothers films. Top:
Results using [201]. Middle: Results using our own baseline, which is already comparable, if
not superior to [201]. Bottom: Results after applying our best performing method on the
baseline. Our colors are more vibrant and consistent within regions.

Method FID ↓ IS ↑ LPIPS ↑ PSNR ↑ SSIM ↑

Zhang et al.[201] 62.39 5.00 ± 0.19 0.180 22.27 0.924
Mask2Former [30] 59.96 5.23 ± 0.12 0.216 20.42 0.881
Ours 56.47 5.31 ± 0.18 0.237 22.97 0.901

Table 4.4: Results for video colorization on COCO Videos. FID: Fréchet Inception Distance.
IS: Inception Score (standard deviation is naturally available). LPIPS: Learned Perceptual
Image Patch Similarity. PSNR: Peak Signal-to-Noise Ratio. SSIM: Structural Similarity.

outdoors, taken from diverse locations such as sidewalks, markets, schools, offices, restaurants,
parks and households. We plan to expand this dataset into 10 videos by rebuttal.

For context, our baseline is the state-of-the-art on the COCO validation set, with 44.9
AP for instance and 53.6 PQ for panoptic segmentation. The fact that baseline performance
drops to single digits in Table 4.3 speaks about the challenging nature of our videos, and the
fragility of single-image models when evaluated on videos in the wild.

Because COCO Videos is very large-scale, we only use TTT-MAE – the best-performing
baseline technique – for the ablated versions. Self-training is not applicable here because
for instance and panoptic segmentation, the model does not return a confidence per object
instance. This points to a limitation of self-training that makes it not as generally applicable
as TTT-MAE.
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Training. We take the publicly available Mask2Former model pre-trained on images
in the COCO training set, for instance and panoptic segmentation respectively. Analogous
to our procedure for KITTI-STEP, joint training for TTT-MAE is also on COCO images,
and our 7 videos are only used for evaluation. We use exactly the same hyper-parameters as
tuned on the KITTI-STEP validation set, for all algorithms considered. That is, all of our
results for COCO Videos were completed in a single run.

Main results. Quantitative results are in Table 4.3. Figure 4.1 provides a snapshot of our
qualitative results. Please see supplementary materials for more visualizations. Using both
forms of memory, TTT-MAE improves on the baseline by almost 80% relative performance
on instance segmentation, and 65% on panoptic. Improvements of this magnitude on a
state-of-the-art baseline is usually considered dramatic, especially given the hyper-parameters
are tuned on another dataset. Here TTT-MAE is only 3x slower than the baseline. Comparing
with KITTI-STEP where it is 5x slower, the augmentations for COCO are much simpler and
faster. Methods with reset are slower than without because of checkpoint loading.

Video Colorization

The goal of colorization is to add realistic RGB colors to a gray-scale image. Since many old
films were taken in black and white, single-image models are often applied to colorize videos
[102, 198]. For this application, we try to demonstrate the generality of our approach, not to
achieve the state-of-the-art in colorization. Because running on COCO Videos is expensive,
we only evaluate our best-performing method – TTT-MAE with both forms of memory.

Dataset. For quantitative results, we colorize COCO Videos, by processing the 7 videos
into black and white; this enables us to compare with the original videos in RGB. For
qualitative results, we also colorize the 10 original black-and-white Lumiere Brothers films
from 1895, roughly 40 seconds each, at the rate of 10 fps.

Training. Following [201], we simply treat colorization as a supervised learning problem.
We use the same architecture as for segmentation – Swin Transformer with two heads,
trained on ImageNet [40] to predict the colors given input images processed as gray-scale.
We only make the necessary changes to map to a different output space, and do not use
domain-specific techniques, e.g., perceptual losses, adversarial learning, and diffusion models.
Our bare-minimal baseline already achieves results comparable, if not superior, to those in
[201]. Our method uses exactly the same hyper-parameters as for segmentation. All of our
colorization experiments were completed in a single run.

Main results. Quantitative results are in Table 4.4. Figure 4.2 provides a snapshot of
our qualitative results. Our method outperforms the baseline and [201] on all metrics except
SSIM. It is a field consensus [201, 202] that PSNR and SSIM often misrepresent performance
because colorization is inherently multi-modal. but we still include them for completeness.
Please see supplementary materials for the complete set of the original and colorized videos.
Our method visually improves the quality in all of them comparing to the baseline, especially
in terms of consistency across frames.
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Setting. Let f : R → R be differentiable with L-Lipschitz derivatives (colloquially, f is
smooth). For mathematical convenience, assume that the inputs xt move by a constant
interval δ > 0, that is, xt = tδ. After prediction, we are given feedback in the form of a noisy
label

yt = f(xt) + ϵt,

where ϵt is any random variable with mean 0 and variance σ2 <∞; specifically, these noise
terms do not need to be identically distributed. The noisy labels model the potentially
inaccurate pseudo-labels we generate for self-training.

Algorithm. We perform test-time training on a linear model with those noisy pseudo-labels.
Consider a fixed sliding window of size k, and a local ordinary least squares estimator with
data {(xt−k, yt−k), . . . , (xt−1, yt−1)}. Its current prediction on xt is ŷt = αtxt + βt, where αt

and βt are the current weight and bias.

Theorem. The average prediction loss (a.k.a. risk) for estimating f can be decomposed as:

E [f(xt)− ŷt]
2 = B2 + V,

where B and V are called the bias and variance, and

B = (f(xt)− E[ŷt]))2 ≤ 6k2Lδ,

V = V(ŷt) ≤ 4σ2/k.

The proof is given in Section 1 of the appendix.

Discussion. Our theorem indicates that the phenomenon of forgetting emerges naturally
when optimizing for the prediction risk. With a smaller window, i.e. more forgetting, the bias
decreases while the variance increases. This matches our intuition derived from empirical
observations: a smaller window contains data more relevant for prediction at our current
time and place, i.e. less dataset bias, but we also pay a price of O(1/k) because the data is
noisy with σ > 0.
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Chapter 5

Test-Time Training in Robotics

Many popular frameworks for controller design are based on the robot’s model of dynamics.
In the real world, however, this model can often turn out to be inaccurate, due to, for
example, misspecification of the robot’s physical parameters, mechanical wear and tear, and
deployment-time interventions such as additional payload. While a well designed controller
is robust to small inaccuracies in the dynamics, large deviations may significantly degrade
its performance. Our goal is to make corrections to the model behind the controller during
deployment, through online learning using onboard sensors. Since the nature of a model is to
predict the future given the past, data for supervised learning of dynamics can be collected
automatically without human supervision, as time goes on and the future is revealed.

Because data are generated along the controller’s trajectory that we are trying to improve,
they might not contain enough information about the entire system. Nevertheless, we find it
sufficient to limit the scope of learning to a local neighborhood of the current point in the
current trajectory, instead of the entire system, if the learned model is updated in real time
as the trajectory evolves.

Fortunately, even globally complex systems, such as the highly nonlinear hybrid systems
for legged locomotion, can be locally simple. Therefore, we also find it sufficient to learn with
only a time-varying, locally linear model, which is computationally feasible to be updated in
real time.

We first develop the intuition of online learning into a method for controllers that drive
the outputs to the desired behavior based on control-affine models. We then analyze this
method’s theoretical properties, and evaluate it in two applications for legged locomotion.

Conventions

In this chapter, vectors (a,α) are bold and lowercase, matrices (A,Ω) are bold and uppercase,
scalars and functions (of all type signatures) are not bold. We assemble matrices and vectors
like in MATLAB: [A,B] concatenates A and B horizontally with a comma, and [A;B]
concatenates them vertically with a semicolon. 0n denotes the n× n matrix of zeros, and
1n denotes the n× n identity matrix. Also, ∥ · ∥ denotes the 2-norm for vectors (Euclidean
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Figure 5.1: The 12 kg A1 robot carrying 10 kg of payload with our method, tested for trotting
in place and walking forward.

norm) and matrices (spectral norm), unless stated otherwise. We express quantities in the
nominal dynamics ᾱ with a bar, in the residual dynamics α̃ with a tilde, and in the true
(plant) dynamics α without anything on top.

5.1 Related Work

System identification

Given a system with known form but unknown parameters, system identification (sysID)
estimates these parameters from signals given by the system ([11]). Recent papers have
applied sysID for inertial parameters of a humanoid ([13, 123]). The parameters are assumed
to be constant in time, and estimation is performed before the deployment of a controller.
Thinking of identification as training and deployment as testing, sysID trains a model before
deployment, and keeps the model fixed during testing. Since the goal is to model the system’s
behavior globally across the entire state space, sysID usually requires driving the system to
diverse enough states, using diverse enough inputs. This requirement is known as persistence
of excitation in control theory, and might be difficult to satisfy without many samples
from the plant. In contrast, we only model the system’s behavior locally, around the small
neighborhood of our current state, learning a linear model even for complex systems with
relatively few samples.

Learning dynamics

There is also a developing community in machine learning, modeling dynamics of the
environment from interactions and observations ([109, 2, 18, 194, 89, 5, 142, 129]). It has
roughly the same goal as sysID, but often uses powerful tools from deep learning, and does
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not assume any specific form of the system; here, learning often produces a general prediction
model. We diverge from this community in the global vs. local aspect (like from sysID),
but embrace its philosophy of learning a general model with parameters that might not be
interpretable.

Adaptive control

The intuition of adaptive control is to change the controller’s parameters during deployment
([10]). Online system identification ([161]) is the most relevant sub-field, since it directly
concerns the model behind the controller. It has been successfully applied in manipulation
([162, 133, 20, 90, 99]), and for the location and inertial parameters of the center of mass
of a quadruped ([177]). For online sysID, the parameters considered are very specific, and
estimation relies on the physics of the model and the particular controller for the application.
Our work considers parameters in a much more general sense closer to that of the machine
learning community. Our parameters are functions of the state, thus are inherently time-
varying and abstract. In fact, in the control-affine form, every term of our dynamics is
updated in real time as the state evolves. Furthermore, unlike sysID (online or not) whose
goal is to identify the parameters, our goal is simply to give accurate predictions for the next
timestep, again closer to the goal of learning. This allows our method to not rely on the
specific meanings of the parameters and instead work with general model-based controllers.
Another relevant sub-field is L1 adaptive control ([130, 85]), which, like our work, concerns
the residual dynamics, but does not use learning.

Online learning

Our work performs supervised learning online, which has long been a subject of research in
machine learning ([152, 22, 128]). The two central questions are: where does the label come
from, and how is learning evaluated. Traditionally ([68]), learning has been evaluated with
regret, and labels can come from a potentially adversarial oracle. Recently, the computer
vision community has been using self-supervised tasks to provide labels ([173, 169, 170, 65,
103]), and the continual learning community has been evaluating with forward and backward
predictions ([109]).

5.2 Method

Unknown Dynamics and Linear Residual Models

Given a robotic system that is characterized by rigid-body dynamics, we denote x ∈ Rn as
its state, u ∈ Rm its vector of control inputs, and y ∈ Rd its vector of outputs. The output
dynamics can almost always be written as a second-order system of the following form ([6]),



CHAPTER 5. TEST-TIME TRAINING IN ROBOTICS 46

model-based
controller plant

sliding window
dataset

nominal model +

residual model

baseline controller

proposed controller

Figure 5.2: Block diagram of our method. ᾱ and β̄ are time-varying parameters of
the nominal model for a system’s output dynamics, assumed to be control-affine. As the
model-based controller is running, data are collected into the sliding window dataset, and
supervised learning is performed to estimate residual parameters α̃ and β̃; they are then
used to improve the model behind the controller. See Section 4.2 for more details.

known as control-affine ([127]):

ÿ = ᾱ(x)u+ β̄(x). (5.1)

We consider model-based controllers whose goal is to drive the vector of tracking errors
η = [y; ẏ] to zero.

The bars on top of the variables imply that they come from our assumed nominal model,
which in reality can never be completely accurate. The unknown real-world dynamics are
called the true (plant) model, denoted without the bars as α, β. We often use an alternative
set of notations to write equation (5.1) simply as:

ÿ = ᾱu+ β̄, (5.2)

in order to emphasize the role of ᾱ and β̄ as time-varying parameters of the output dynamics.
To make corrections to the nominal model, we incorporate two residual parameters and

obtain the following form:

ÿ = (ᾱ+ α̃)u+
(
β̄ + β̃

)
, (5.3)
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where α̃ is called the weight and β̃ is called the bias. They are written as time-varying
parameters, and have the same dimensions as ᾱ and β̄ respectively. The tildes on top of
them emphasize that they are estimated from data.

To better understand these residual parameters, we manipulate equation (5.3) into:

ÿ −
(
ᾱu+ β̄

)
= α̃u+ β̃. (5.4)

Intuitively, the above equation says that the goal of learning is to make the residual model on
the right-hand side account for the prediction errors of the nominal model on the left-hand
side. It also reveals the role of labels vs. covariates, as we explain next in the context of
learning.

Data Collection and Online Learning

For real systems, sensor data can only be collected at discrete sampling intervals. We denote
each sampling timestep by an integer subscript, which converts equation (5.4) into:

ÿt −
(
ᾱtut + β̄t

)
= α̃tut + β̃t. (5.5)

Note that we are merely sampling a continuous system at discrete timesteps, so continuous-
time concepts such as acceleration are still well defined. We collect a dataset of the form
D := {labels, covariates}s=t−k,...,t−1, where s is the index of discrete timesteps, and k denotes
the fixed size of the sliding time window. From equation (5.5), we have

D =
{
ÿs −

(
ᾱsus + β̄s

)
,us

}
s=t−k,...,t−1

.

Given a dataset, our method solves regularized least squares a.k.a. ridge regression on
the labels and covariates. The weight of the solution is α̃t, and bias is β̃t. Note that in
textbook-style least squares, the weight is a vector, and the label and bias are scalars; for our
learning problem, the weight is a matrix in Rd×m, and the label and bias are vectors in Rd.
But we can simply reduce this to d independent vector-scalar least squares problems. The
same regularization is added independently to these d problems, since they share the same
covariates; thus inversion of the covariance matrix, the most computationally costly step, is
only performed once.

The solved parameters are then immediately used by the model-based controller to produce
ut. In both of our later examples, the baseline controller solves for ut in an application-specific
optimization problem with the assumed nominal parameters ᾱt and β̄t. We simply substitute
these with ᾱt + α̃t and β̄t + β̃t respectively, as shown in Figure 5.2.

Learning is performed online, as the controller is running with the learned parameters.
At the beginning, all residual parameters are initialized to zero, because there is not enough
data to learn them. Once we are k steps into the trajectory, we have enough data to form D
as above and solve for the residual parameters; informed by them, the controller generates an
improved trajectory, which in turn generates new data that are more relevant as time goes
on.
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The fact that D only keeps the k most recent data points implements a natural forgetting
mechanism. In reinforcement learning terms, D is called the replay buffer, which stores
the off-policy data that are not generated by the current controller; in our case, data in D
are generated by the old controllers using the residual parameters from previous timesteps.
Because we learn small, local models, we encourage forgetting so that our model capacity
can be used only for the neighborhood of our current state. This is in contrast to the vast
literature in reinforcement learning [192, 128, 140, 109], where the goal is to learn a large,
global model; there the replay buffer contains as much historical data as possible, and various
techniques are implemented to discourage forgetting.

Our method can also be viewed as bootstrapping from a “bad” controller based on an
inaccurate model to a better one. This might not be feasible, however, if the initial model
deviates too much from the plant. For example, if the nominal model is so far off that the
robot loses balance immediately, no useful information will be contained in the data collected.
Fortunately, when deviations happen gradually over time, there will more likely be enough
information for learning to maintain a controller that keeps generating useful data.

Theoretical Analysis

Suppose the true (plant) output dynamics is control-affine:

ÿt = αtut + βt. (5.6)

We prove that our method stabilizes the tracking errors under two assumptions. The main
theorem illustrates our intuition of learning in a local time window under smoothly varying
dynamics, and characterizes the role of k, our window size.

Denote errors in the nominal model’s prediction as

ˆ̈yt := ÿt −
(
ᾱtut + β̄t

)
= α̂tut + β̂t, (5.7)

with α̂t :=αt − α̃t, and β̂t :=βt − β̃t.
Denote the prediction of the residual model as

˜̈yt := α̃tut + β̃t. (5.8)

Assumption 1. The model-based controller can stabilize the tracking errors η = [y; ẏ] if for
some ϵ > 0, ∥∥∥ÿt −

(
(ᾱt + α̃t)ut +

(
β̄t + β̃t

))∥∥∥ < ϵ. (5.9)

Assumption 2. ∥α̂t+1 − α̂t∥ < δα, ∥β̂t+1 − β̂t∥ < δβ.

In words, Assumption 1 says that the proposed model-based controller works when the
proposed (nominal plus residual) model is relatively accurate; Assumption 2 says that the
deviations in dynamics are relatively smooth (in the space of parameters) over time.
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In addition, we denote the motor torque saturation as ∥u∥ < B. Denote u′
t = [ut; 1] ∈

Rm+1, and

U′ =

[
[u1; 1]

⊤; ...; [uk; 1]
⊤
]
∈ Rk×(m+1). (5.10)

We set k ≥ m+1, so σmin(U
′) > 0, i.e. the covariance matrix of ordinary least squares (OLS)

has rank m+ 1.

Theorem 2. Given the above assumptions, if

(B + 1)2
√
d

σmin(U′)
k
√
k(δα + δβ) < ϵ, (5.11)

then the model-based controller stabilizes η.
Note that any claim of stability in Theorem 1 is completely inherited from the baseline

controller, when Assumption 1 holds. Our method is agnostic to the exact type of stability
e.g. exponential / asymptotic, which depends on the underlying baseline, and is orthogonal
to the theory we develop.

In Theorem 1, B, d, δα and δβ are constants determined by the application. ϵ is the
model-based controller’s tolerance for model inaccuracy, also independent of our method. The
only quantity we tune is k, the window size, which strongly affects σmin(U

′). With a large k,
we pay a factor of k

√
k, intuitively due to the lag in our dataset. With a small k, we pay for

the decrease in σmin(U
′), as α̃ and β̃ become more sensitive to noise. The user should tune k

to find a sweet spot in the middle. In practice, we use regularized least squares instead of
OLS, so σmin(U

′) is always > 0 and more noise tolerant, making the balance less delicate
w.r.t. choice of k. We use k = 100 in both of our applications (100 and 200ms respectively).

Before proving Theorem 1, we state two lemmas.

Lemma 1. For A ∈ Rm×n and b ∈ Rm, if ∥A∥ ≤ δA and ∥b∥ ≤ δb, then ∥[A,b]∥ ≤ δA+δb.

Lemma 2. Let yt ∈ Rd, ut ∈ Rm and At ∈ Rd×m. Let yt = Atut for t = 1, ..., k, and Ã be the
OLS estimator of the dataset {(y1,u1), ..., (yk,uk)}. If for t = 1, ..., k + 1, ∥At+1 −At∥ < δA,
and ∥ut∥ < B, then ∥∥At − Ãt

∥∥ <
B
√
d

σmin(U)
k
√
kδA, (5.12)

where U = [uT
1 ; ...;u

T
k ] ∈ Rk×m.

Proof of Theorem 1

By triangle inequality, we have ∥u′
t∥ < B + 1. Also define Ât = [α̂t, β̂t] ∈ Rd×m+1, and

similarly Ãt = [α̃t, β̃t]. Combining Assumption 2 and Lemma 1, we have ∥Ât+1−Ât∥ < δα+δβ.
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Now ∥∥∥∥ÿt −
(
(ᾱt + α̃t)ut +

(
β̄t + β̃t

))∥∥∥∥ (5.13)

=
∥∥ˆ̈yt − ˜̈yt

∥∥ =

∥∥∥∥ (α̂t − α̃t)ut +
(
β̂t − β̃t

)∥∥∥∥ (5.14)

=

∥∥∥∥(Ât − Ãt

)
u′
t

∥∥∥∥ ≤ (B + 1)

∥∥∥∥Ât − Ãt

∥∥∥∥. (5.15)

By definition, Ãt is the least squares solution on D. We then apply Assumption 1 and Lemma
2 to finish the proof.

5.3 Results

Video of our experiments is available at https://youtu.be/Je 2Y-FQpKw ([1]). Simulations are
performed in the PyBullet ([35]) physics engine.

Simulation for Bipedal Walking

Our baseline controller is taken from [192], which introduces its own setting and method for
unknown dynamics. We perform simulation in their setting, and make comparison with their
method.

The problem setting is based on RABBIT ([31]), an under-actuated planar five-link
bipedal robot with seven degree-of-freedom; virtual constraints and controller design are
based on [4]. Model uncertainty is introduced in [192] by scaling the mass of each link by a
factor of two in the real environment. The baseline CLF-QP controller falls in a few steps
in this setting, due to the significant difference in dynamics between the nominal and true
model.

By querying the plant, [192] uses model-free reinforcement learning (RL) to train a policy
that directly adds on the original control inputs u, without reasoning about the unknown
dynamics in the model space. Specifically, the commanded control inputs take the form
u+ uθ(x), where u is a neural network policy with parameters θ. Their reward is designed
to encourage V̇ < −cV , where the value of V is obtained by simulating in the plant. After
20,000 samples from the plant simulated using the true dynamics, their method trains a
policy which walks in the true dynamics without falling.

Our method walks stably in the same setting, training completely online without querying
the plant at all before deployment. In fact, Fig. 5.3 shows that our method enjoys smaller
impulses of control inputs and better tracking performance than the RL-based method, even
though the latter had privileged access to the plant before deployment to optimize exactly
for these metrics.

Online learning enables us to treat the plant as truly unknown, in terms of both data
and mathematical representation, while only the latter is unknown for methods that train

https://youtu.be/Je_2Y-FQpKw
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Figure 5.3: Bipedal walking with mass of each link scaled by two. Both our method
and that of [192] walk stably. Their RL-based method trains on 20,000 samples from the
real environment before deployment. Our method trains completely online and does not
sample from or anticipate the real environment, treating it as truly unknown until the robot
is deployed, and results in smaller impulses of control inputs and better tracking performance.
The top panel visualizes the gait generated by our method.

offline like in [192]. This philosophical difference prevents our controller from overfitting on
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the training environment. In particular, our controller still walks stably under the original
dynamics without scaling, where the policy trained with the scaled links fails, because it
overfits to the scaled dynamics.

In addition, our controller walks stably in all environments below, where the baseline and
the RL-based method cannot:

1. scaling the control inputs by half, in order to simulate transmission inefficiencies and
motor wear and tear;

2. scaling the mass of the torso by four, in order to simulate payload on the back of the
humanoid;

3. scaling the mass of the right leg by four, as an example of asymmetric changes in
dynamics.

We keep the same hyper-parameters for all the experiments above, including a windows size
of 100ms (where k = 100 and each timestep is 1ms). The robot is still able to walk under
the scaled dynamics with a window size of 10 or 1000, but has higher norm of control inputs
and tracking errors.

Simulation for Quadrupedal Robot

Our baseline controller is based on [41] and used subsequently in [39] and [138]. Our
implementation is modified from the publicly available code of [138] on an Unitree A1
quadruped, and keeps their original parameters unless stated otherwise. The A1 weighs 12 kg
and has 12 motors, three for each leg, with the stated torque limit of 35.5Nm. We experiment
in PyBullet using Unitree’s URDF description, and also on a real robot. In both simulation
and real world, we use a window size of k = 100 (like for the biped); the controller runs at a
frequency of 500Hz, making the dataset window 200ms.

We command our robot to walk with linear velocity of 0.5m/ s in the x-direction, while
maintaining CoM height of 0.24m. Both the baseline and the proposed method can walk
stably without payload, while tracking the desired velocity and height. With 6 kg of payload,
however, the baseline can barely walk at 2 / 3 the desired velocity, and sags to 2 / 3 the desired
height; the robot falls with 7 kg.

The proposed method walks stably with 12 kg of payload (same as its body mass), while
tracking the desired velocity up to 0.05m/ s, and the desired height up to 0.01m; all motors
torques are less than 35.5Nm. With more than 12 kg, however, tracking becomes less
accurate, and with 15 kg the robot falls. Since the payload is carried from very the beginning
of simulation, the robot visibly sags for the first fifth of a second, as we collect data before
we can estimate the residual parameters. With 12 kg it soon recovers from the sag, but for
larger payloads it struggles to get back.

Next, we experiment with gradually changing dynamics. We start with an empty payload,
and increase its mass by 5 kg / s, that is, 0.001 kg per timestep, once simulation begins. The
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Figure 5.4: Quadruped walking with payload in simulation. We start with an empty
payload, and increase its mass by 5 kg / s once simulation begins. The baseline has completely
fallen in 2 s, but the proposed method still walks stably after 10 s (50 kg). The bottom
visualizations are captured when the payload reaches the specified mass. The torque limit is
reached at 25 kg.

tracking errors are shown in Figure 5.4. The baseline falls within 2 s. We have tried to
improve the baseline by tuning the PD gains for p̈d, but found it ineffective. This observation
is reasonable, since larger gains only make p̈d more aggressive, but cannot help if the model-
based controller fails to achieve it using the nominal dynamics. The proposed method walks
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Figure 5.5: Quadruped walking with payload in the real world.

stably even when the payload reaches 50 kg. Motor torques reach the specified limit at 25 kg
(5 s), but the URDF allows simulation to keep running.
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Hardware Experiments for Quadrupedal Robot

To facilitate hardware testing, we fit the Unitree A1 quadruped with a loading rig designed to
hold up three standard 1 inch weight plates. The rig allows for incremental, discrete changes
in load while the quadruped is in operation. The rig itself weighs 0.9 kg.

The experiments were designed to compare the performance of the baseline and proposed
controllers under varying load conditions during operation. Two tests for each controller were
performed: a step-in-place test and a 0.1 m/s forward motion test. The load conditions for
the tests are shown in Table 1. Due to the manual loading process, the duration of each load
varies by a small amount of transition time, typically less than 1 s. To protect the hardware
from possible damage, we do not load beyond 10 kg, and limit operation at this load to 5 s.

Table 5.1: Load Conditions for Hardware Experiments

Load (kg) 0.9 5.4 7.7 10 0.9
Duration (s) 5 10 10 5 5

In the transition from simulation to hardware, we had to address the problem of accel-
eration estimation from noisy measurements. [138] uses a Kalman filter to fuse IMU and
joint encoder measurements and produce a CoM velocity measurement. From this, first order
difference is then used to compute a CoM acceleration estimate for the learning algorithm.
Two parameters for the Kalman filter, namely the window size and IMU variance value, are
tuned to give a final acceleration estimate with suitable trade-off between lag and noise. The
window size is modified from 120 to 60 samples, and the IMU variance is modified from
equal to the encoder variance to 5 times the encoder variance. Ultimately, after tuning, the
estimator produces acceptable linear acceleration estimates, but the angular terms proved too
noisy to be useful. As such, we proceeded with hardware experiments with learning enabled
for only the linear terms.

The hardware experiments were performed on the A1 on flat, grassy terrain. Both the
baseline and proposed methods perform nominally with low load, but as the weight increases,
the baseline controller sags in body height and is unable to maintain forward velocity. The
proposed controller does not suffer this degradation and is able to maintain desired body
height and forward velocity for the range of load conditions. Results for the forward walking
test are summarized in Figure 5.5. Video comparison of both trot-in-place and forward
walking is available in [1].
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[22] Léon Bottou and Yann LeCun. “Large scale online learning”. In: Advances in neural
information processing systems 16 (2004), pp. 217–224.
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