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Abstract

Perceptive Hexapod Legged Locomotion for Climbing Joist Environments

by

Zixian Zang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Avideh Zakhor, Chair

Attics are one of the largest sources of energy loss in residential homes, but they are uncom-
fortable and dangerous for human workers to conduct air sealing and insulation. Hexapod
robots are potentially suitable for carrying out those tasks in tight attic spaces since they
are stable, compact, and lightweight. For hexapods to succeed in these tasks, they must be
able to navigate inside tight attic spaces of single-family residential homes in the U.S., which
typically contain rows of approximately 6 or 8-inch tall joists placed 16 inches apart from
each other. Climbing over such obstacles is challenging for autonomous robotics systems.
In this work, we develop a perceptive walking model for legged hexapods that can traverse
over terrain with random joist structures using egocentric vision. Our method can be used
on low-cost hardware not requiring real-time joint state feedback. We train our model in a
teacher-student fashion in 2 phases: In phase 1, we use reinforcement learning with access
to privileged information such as local elevation maps and joint feedback. In phase 2, we use
supervised learning to distill the model into one with access to only onboard observations,
consisting of egocentric depth images and robot orientation captured by a tracking camera.
We demonstrate zero-shot sim-to-real transfer on a Hiwonder[15] SpiderPi robot, equipped
with a depth camera onboard, climbing over joist courses we construct to simulate the envi-
ronment in the field. Our proposed method achieves nearly 100% success rate climbing over
the test courses, significantly outperforming the model without perception and the controller
provided by the manufacturer.

Moreover, we develop an interactive visualization tool to improve the measurement and
verification process of building retrofit. With drone-captured RGB and Infrared (IR) images
of facades, our tool lets the user compare IR images capturing a specified location on a
facade before and after the retrofit. We also design a pipeline to stitch IR images capturing
different parts of a facade into a panorama, making it easier to find the metric locations of
studs for envelop retrofit projects.
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Chapter 1

Introduction

Attics are one of the largest sources of energy loss in residential homes. A typical unfinished
attic is shown in Figure 1.1. A substantial reduction in home energy costs and its carbon
footprint can be achieved through attic air sealing and insulation. However, attics are tight
spaces and difficult, uncomfortable, and potentially dangerous for workers to carry out these
tasks. For example, since attics typically consist of multiple rows of joist structures, a human
worker could easily fall through the attic floor and get seriously injured if he or she steps
on the sheetrock between two joists by mistake. Workers may also need protective suits to
protect themselves from toxic substances during vacuuming and spray foaming, which are
common tasks for air sealing and insulation.

Lightweight legged robots are ideal platforms for navigating inside attics to carry out
various tasks such as air-sealing and vacuuming. To do so, we need to enable legged robots
to traverse in environments with dense and high joists. Since most single-family residential
home attics in the U.S. contain approximately 6 or 8-inch high joists that are 16 inches apart,

Figure 1.1: Photo of an unfurnished attic with joists.
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it is important for legged robots to be able to autonomously climb such joists inside attics.

(a) Physical Robot (b) URDF

Figure 1.2: (a): The SpiderPi hexapod robot used in our work, with Intel L515 and T265
mounted onboard. (b): URDF model of SpiderPi robot we create for training.

There has been a significant amount of recent work on quadrupeds and bipedal robot
locomotion. However, in this work, we focus on using hexapods for joist climbing for two main
reasons. First, hexapod robots are by design more stable and lightweight than quadrupeds
and humanoids of similar size. Secondly, bipedal or quadruped robots are significantly higher
than hexapods from the ground and are therefore less suitable for traversing within tight
spaces such as the corners of attics.

To facilitate the practical usage of robots in the retrofit business, it is important for legged
locomotion controllers to work with low-cost hardware. However, most existing legged loco-
motion systems require high-end robots capable of real-time sensing of joint states, which
could ultimately result in expensive hardware. For example, model predictive control meth-
ods such as [5] require powerful computation resources and real-time joint feedback from
expensive robot platforms and often compromise real-time performance when incorporating
more complex dynamics. Data-driven methods such as [1] can work with limited compu-
tation resources and are robust to a variety of perception failures but need fast joint state
feedback. Many low-cost robots are not equipped with powerful onboard computation or
real-time hardware feedback such as joint torque and angle that are accessible on more ex-
pensive platforms. At the same time, humans without leg sensing feedback, when equipped
with prosthetics, can walk and even participate in competitive sports with only egocentric
visual perception and a sense of body orientation [27].

In this thesis, we propose an end-to-end learning-based perceptive controller for low-cost,
sub-thousand-dollar hexapods to autonomously climb over joists and demonstrate zero-shot
sim-to-real transfer on joist terrain with configurations similar to the ones in typical attics.
Our robot is a $600 SpiderPi robot manufactured by Hiwonder, shown in Figure 1.2(a),
equipped with an Intel L515 depth camera and a T265 tracking camera with a customized
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Figure 1.3: Time-lapse photo capturing the SpiderPi robot climbing over 8 joists using the
method proposed in our work.

camera mount. The robot does not provide real-time joint feedback. The entire system
including the sensors costs less than $1500. We propose a two-stage teacher-student training
procedure to learn models that can work without real-time joint feedback: the first stage
involves Reinforcement Learning (RL) with access to privileged observations and the second
stage uses supervised learning to distill the model using only onboard observations including
body orientation and egocentric depth images. Since optimal joist climbing motions are
fundamentally different from walking, we train our controllers without human-defined prior
gait knowledge, guiding the models to explore task-appropriate motions. We compare our
method to a few baselines including end-to-end training of a blind model and a hand-designed
controller. Our proposed method significantly outperforms both by achieving a much higher
success rate climbing over joist courses and taking much less time to climb over each joist.
In addition, we study the design of the privileged information during phase 1 training and
find that it is critical to include information such as joint feedback even though it is not
available onboard. A time-lapse photo of using our proposed method to control the robot
climbing over 8 joists with 6-inch height and 16-inch spacing is presented in Figure 1.3.

1.1 Learning to Control Physical Systems

In recent years, the development of Artificial Neural Networks as complex function approx-
imators makes it the perfect choice for replacing previously hand-coded control methods
for physical robotics systems. However, training neural networks to handle robotics control
problems is not as trivial as other tasks. Typically, the training process of neural networks
consists of millions of steps for the models to successfully converge. In the case of legged
robotics, it is not practical to have the robot platform attempt to walk thousands or mil-
lions of times, which will not only take an excessive amount of time but also can potentially
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damage the robot hardware, especially when the model’s actions are not reasonable at the
beginning of the training process. Therefore, accurate simulation engines are developed to
enable parallel data gathering for hundreds or thousands of training environments, in which
realistic models of the robots are used to learn optimal motions for the given task.

At the same time, the task of controlling a physical system involves sequential decision-
making. Many other machine learning problems have clearly defined correct answers, such as
class labels in classification tasks. However, to learn a model that controls a physical system,
it is basically impossible for humans to come up with a sequence of actuator actions that yield
the best outcome. Take the task of legged locomotion of hexapods on challenging terrains
as an example; there are many possible gaits combinations to choose from, and it is hard to
judge whether one sequence of motions is better or worse than another sequence. Moreover,
only learning one reasonable sequence of action is far from sufficient for the physical systems
to handle various environment settings - the environment is modified in different ways as the
system uses different control actions. On the other hand, a classification network only needs
to consider the input it is given at the moment and does not need to worry about the next
input being changed according to its reaction to the current input.

Because of the limitations listed above and beyond, the problem of learning a controller for
physical systems is often approached as reinforcement learning tasks, a method for learning
from action sequences. In reinforcement learning, the objective is no longer trying to match
ground truth, but to maximize the reward, the signal that indicates the fitness of the chosen
action, accumulated across timesteps.

In the context of reinforcement learning, the environment makes up a Markov Decision
Process with state space S, action space A, transition operator T , and reward function r
where:

∀st+1, st ∈ S, at ∈ A, Ti,j,k = p (st+1 = i | st = j, at = k) (1.1)

r : S ×A → R (1.2)

The objective of reinforcement learning is to find a policy πθ (at | st) that maximizes the
cumulative reward:

J(θ) = Eπ

[∑
t

rt

]
(1.3)

1.2 Related Work

Hexapods Legged Locomotion on Challenging Terrain

Hexapod robots traversing challenging terrain have been studied for decades. In 1990, [21]
proposed a set of rules to control and navigate a hexapod robot. In [12], Frankhauser et al.
developed a ROS library for navigating a hexapod or quadruped using elevation map. Shortly
after that, Frankhauser et al. demonstrated solid results by deploying their method on a
quadruped in [10]. [5] proposes a method to control hexapods on unstructured terrain using
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combination of exteroceptive and proprioceptive terrain characterization. Faigl et al. [9] use
only position feedback to let a hexapod walk on uneven terrain. [23] proposes a teleoperator
for hexapods under environmental perturbations. [8] improves passability of gait selection
on sparse foothold environments using a Monte Carlo tree search algorithm. [32] proposes
an adaptive hexapod controller using a force sensing pipeline. However, these methods are
only capable of managing explicitly modeled uncertainties and therefore are not suitable
for tackling uncommon terrains. To overcome this, data-driven methods are proposed by
Li et al. in [24] and Qiu et al. in [28]. [3] enables hexapods to traverse rough terrain in
simulation using binary contact sensors on feet endpoints. [22] uses RL to train a central
pattern generator with spiking neural networks. However, there is no existing work showing
a hexapod robot traversing challenging terrains using a learned perceptive controller. As a
continuation of the blind controller that Kawawa-Beaudan proposed earlier in [19], our work
adopts end-to-end learning without any human-defined gait prior knowledge, allowing the
agent to be deployed on inexpensive hexapods and to perform reliably on joist structures.

Legged Locomotion with Perception

For a legged robot to efficiently climb high obstacles such as joists, it must be equipped with a
perception system to identify and step over the obstacles. To incorporate perception in legged
locomotion, most previous model-based methods first convert raw input from depth cameras
or LiDARs into other forms such as local elevation maps; they then use elevation maps to
evaluate local areas for foothold feasibility [29, 17, 26, 11, 2, 20, 18, 30] or traversability
[6, 13]. These methods assume perfect conversion from raw sensor data to a desired form
such as an elevation map. Conversion to elevation map is computation intensive, requiring
expensive and heavy compute engines that must be carried by the robot. Recent data-
driven approaches map from perception input directly to actions. Specifically, [31] proposes a
method for quadrupeds to walk on complex terrain by predicting actions directly from depth
captured onboard and executing actions with a model predictive controller. [16] trains an
end-to-end controller that maps from depth images to motor commands and demonstrates
the robot traversing various terrains in simulation. [25] proposes a method to produce high-
level commands for jumping over gaps. In [1], Agarwal et al. use egocentric depth to directly
predict joint angles. However, to work on actual robots, these methods need high-frequency
state feedback provided by costly hardware. In contrast, in this work, we incorporate visual
perception on low-cost hardware without access to real-time joint states.
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Chapter 2

Perceptive Hexapod Legged
Locomotion

2.1 Overall Approach

In this section, we present our overall approach, including the choice of hardware, training
strategy, and ways to retrieve the robot model used for training. We use a $600 SpiderPi
hexapod robot, shown in Figure 1.2(a), which has a standing height of approximately 15cm
without our custom-designed camera mount, 30cm with the mount, and weights around 2.4
kilograms. The onboard computer on our robot is a Raspberry Pi 4B with 4GB of RAM,
4 CPU cores, and 1.5 GHz clock rate. As shown in Figure 2.1, the robot has six legs with
three degrees of freedom per leg, each actuated by a LX-224HV three-port bus servo. Each
actuator can actuate to ± 120 degrees from its depicted position and provides a maximum
of 1.96 Nm of torque and 5.24 rad/s of angular velocity.

Even though we train fully in simulation, there are no models to simulate the motors
reliably since our robot uses actuators with unknown dynamics. Unlike actuators in high-end
robots that allow the reading and writing of Proportional Derivative (PD) controller gains,
PD control is performed at the circuit level on LX-224HV by modulating motor voltage with
unknown gains that cannot be modified. As a result, we follow the approach in [19] and use
position control, which is physically less accurate. As depicted in Figure 2.2, during training,
the model outputs desired joint angles at which are converted to joint torques τt and fed into
motors in the simulation engine. When deployed on hardware, the joint angles are directly
used as angle targets for servo motors on the actual robot with unknown dynamics.

We train our model using a teacher-student training scheme, similar to the one used
in [19], with two phases to target zero-shot sim-to-real transfer. The first phase is trained
with access to privileged observations using reinforcement learning and the second phase
is trained with only access to observations onboard. There are two reasons for having two
training phases: First, depth rendering with current simulation significantly slows down
simulation speed. Specifically, reinforcement learning takes a large number of samples to
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Figure 2.1: The robot has six legs with three degrees of freedom per leg, each actuated by
a LX-224HV three-port bus servo. Each actuator can actuate to ± 120 degrees from its
depicted position and provides a maximum of 1.96 Nm of torque and 5.24 rad/s of angular
velocity.

Figure 2.2: High-level overview of our method. The model directly predicts the joint target
positions qt. In simulation, the actions are used as position target for a tuned proportional-
derivative (PD) controller that outputs torques τt which are applied to simulated actuators
in the simulation. This figure is adapted from [19].



CHAPTER 2. PERCEPTIVE HEXAPOD LEGGED LOCOMOTION 8

converge, so it is impractical to directly train perceptive models with depth sensing using
reinforcement learning. Secondly, unlike actuators used in high-end robots with real-time
joint feedback including position, velocity, and even torque, our servo positions are written
to and read from joints through a shared serial port. This prohibits parallel access, so all
joints are read and written to in serial, with wait times in between to clear the bus. One
loop reading the position of all the joints can take multiple seconds, making it impossible
to use them as real-time inputs to a controller. Similar to the case in [19], training without
joint position feedback from scratch yields suboptimal performance, so we have to include
joint feedback in phase 1 and distill it in phase 2. As a result, the model trained in phase
1 has access to joint angle feedback, body orientation, and elevation maps sampled around
the robot. In phase 2, a student model with depth images as perception input learns from
the model trained with elevation maps in phase 1 and takes body orientation as the only
source of proprioception feedback. As we show later in Section 3.3, models trained with no
joint feedback in phase 1 achieve much lower reward than our proposed method.

Since there is no available 3D model of our robot, we measure the length and weight of
each leg segment and approximate the robot segments using boxes to build a URDF model
for training in simulation, as shown in Figure 1.2(b) and included in Appendix A.

2.2 Method

In this section, we describe our training method in more detail. We follow a teacher-student
training scheme with two phases, reinforcement and supervised learning. Since we directly
deploy models trained from phase 2 on actual hardware, we incorporate several techniques
to ensure the performance of zero-shot sim-to-real transfer.

Training Setup

We conduct training in IsaacGym simulator with the legged gym library. It is difficult to
train without motion priors on terrain with high and dense joist structures completely from
scratch. Therefore, we first train on an easier rough terrain with randomly generated low
joist courses, shown in Figure 2.3(a), arranged to give rise to a learning curriculum similar
to [4]. Then we fine-tune the model on a terrain that closely mimics the joists pattern in
the field, as shown in Figure 2.3(b).

We use the same basic setup as in [4] to realize parallelism for our training. Elements of
the state are listed in Table 2.1 with corresponding units. Uniform random noises with listed
ranges are added to the elements. As shown in Figure 2.4, at each time step, the perception
input pt, either an elevation map or a depth image, is first encoded by the perception head
Ep into perception feature ft:

ft = Ep(pt) (2.1)
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State Element Constituents Units Noise Range
Base attitude ot={roll, pitch, yaw} Radians [−0.1, 0.1]

Joint positions* qt ∈ R18 Radians [−0.01, 0.01]
Previous actions at−1 ∈ R18 Radians [0, 0]
Elevation Map* ht ∈ R221 Meters [0.1, 0.1]
Depth Image dt ∈ R320∗240 Meters [0.1, 0.1]

Table 2.1: Constituent elements of the state. Uniform random noises with ranges indicated
above are added to each state element before being used as model input. * denotes privileged
observations that are only available during phase 1 training.

(a) Rough terrain (b) Joist terrain

Figure 2.3: Simulated terrains for training. (a): easy rough terrain. (b): difficult joist
terrain. The first half of phase 1 training is conducted on the easy rough terrain shown in
(a), and the second half is conducted on the difficult joist terrain shown in (b).

Figure 2.4: Structure of our model. The state st is the concatenation of proprioception
information xt and perception feature ft. st is encoded by observation encoder Eo into
latent vector zt, then passed to the policy π to predict the joint angles at.
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Then the state st, resulting from the concatenation of proprioception information xt and
perception feature ft, is fed into the observation encoder Eo to produce a latent vector zt:

st = [xt, ft] (2.2)

zt = Eo(st) (2.3)

Then the encoded feature zt is passed to the policy π that predicts the joint angles at:

at = π(zt) (2.4)

Our observation encoder Eo is a 1-layer LSTM with hidden size 64 and a CNN or MLP as
perception head to extract features from perception input. The recurrent nature of the ob-
servation encoder enables the model to remember past observations and incorporate salient
information into zt, making it possible to traverse challenging terrain using proprioception
and learn to overcome obstacles captured by egocentric vision. Our policy is an actor-critic
with both actor and critic as a 3-layer MLP with hidden layers of size 128, 64, and 32. Expo-
nential linear unit activation is used between the layers. In the simulation, our model makes
predictions at 25Hz frequency. A simulation step refers to each time IsaacGym renders a
new view, and each simulation time step is set to 0.005 second. Therefore, the simulation
steps 8 times every time the model makes a prediction. Even though the lightweight nature
of our robot is useful in our application, its low inertial links require small time steps in
simulation and hence long training times. A physics engine step refers to each time Isaac-
Gym’s physics engine simulates physics and updates the state of each simulated body. By
default, the physics simulation engine has the same frequency as the simulation rendering
update frequency. However, we have found it necessary to increase the number of steps of
the physics engine per simulation rendering step from 1 to 4 to simulate physics accurately,
even though it increases training time linearly.

Phase 1: Reinforcement Learning

In phase 1, we train the model using the open-source implementation of Proximal Policy
Optimization from [4]. The elevation map sampled around the robot is used as perception
input in phase 1. As mentioned in [1], a critical step is to find the optimal elevation map
configuration such that the elevation map does not contain information that cannot be in-
ferred from the depth images used in phase 2 training. To achieve this, we start with a rough
estimation of the ground area that the depth images on the actual robot capture. With the
hardware configuration shown in Figure 1.2, we consider a scenario with the robot standing
still and the camera pointing at 30 degrees downward with FOV provided by L515 intrinsic
information, and compute the projection area of the camera’s view based on geometry. We
then search elevation map configurations close to the rough projection area and use the one
with the lowest phase 2 loss. This approach has been shown in [1] to result in optimal
performance. The final elevation map is sampled from a 0.6m × 0.8m grid that is 0.3m in
front of the robot with a sample spacing of 0.05m, resulting in a 13 × 17 elevation map.
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Our reward is the weighted sum of the elements in Table 2.2, adapted from [19]. Linear
velocity in the x direction of the global coordinate vx is first clipped to range [−0.4, 0.4]
meters to encourage the robot to traverse forward and overcome joist obstacles. Linear ve-
locity in the y direction of the local coordinate vy is penalized to avoid the robot’s sideway
movements. Magnitudes of the robot’s heading in the global coordinate θ and the robot’s
yaw angular velocity ωz are penalized to avoid the robot from turning away from the for-
ward direction. ∥ft − ft−1∥2 is penalized to avoid severe impact exerted on the robot’s end
effectors, where ft stands for the force applied to the end effectors at time t. Collision is
penalized and computed as a binary flag in the form 1{coxa, femur, or base contacting
terrain} to indicate contact between chosen parts on the robot and the terrain surface. To
avoid drastic and exaggerated actions, we penalize action rate ∥at − at−1∥2 and action mag-
nitude ∥at∥2, where at stands for the model’s action prediction at time t. ∥τ∥2 is penalized
to avoid damage to our hardware, where τ is the sum of torque at all the joints. We penalize

measured joint acceleration ˆ̈q2 = q̇t−q̇t−1

∆t

2
, where qt is the measured joint position at time t.

Furthermore, to avoid hardware damage caused by hitting joint limit, we penalize the term
clip (qmin − qt,max = 0) + clip (qt − qmax,min = 0), where qmin = -1rad and qmax = 1rad are
the lower and upper soft angle limits. We also penalize ∥zend effector∥ to prevent the robot
from raising its legs too high up in the air. A one-layer MLP is used in phase 1 as perception
head Ep of the observation encoder to encode elevation map ht. During phase 1, propriocep-
tion information xt consists of base orientation ot, joint angles qt, and the previous action
at−1. Therefore, the state st has the following form:

st = [ot, qt, at−1, Ep(ht)] (2.5)

Models are first trained with the easier terrain shown in Figure 2.3(a) and then tuned on
the terrain with high and dense joists shown in Figure 2.3(b), which is more difficult but more
closely mimics the environment in the field. On each terrain, we use 4,000 robots simulated
in parallel and train for 8,000 iterations, with 24 timesteps for all agents per iteration. 96,000
transition samples are created during each iteration and are split into 4 mini-batches with
sizes of 24,000 each. To ensure the robustness and stability of the learned gait, we randomize
the friction coefficient of each robot in the range [0.5, 1.25], and apply pushes in random
directions to each robot’s base mass every 8 seconds. Learning curves for each reward term
during phase 1 reinforcement learning are shown in Figure 2.5. Our reward formulation
successfully encourages the robot to walk forward in the global x direction, as reflected by
the curve of the main reward term clip (vx,−0.4, 0.4) shown in Figure 2.5(a). As seen from
the plots of the penalizing terms, such as Figure 2.5(c), Figure 2.5(d), and Figure 2.5(g),
almost all the terms that penalize drastic actions suffer a fall during the first few iterations
as the robot tries to find a way to maneuver forward. In the later iterations, almost all the
penalizing terms steadily rise, indicating that our reward formulation enables the robot to
find the most energy-efficient and safe motions. In Figure 2.6, we present the learning curves
for the mean total reward during the first and second half of phase 1 training. As seen from
the curves in Figure 2.6, the model fine-tuned on joist terrain can reach a similar reward as
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(a) clip (vx,−0.4, 0.4) (b) v2y (c) θ2

(d) ω2
z (e) ∥ft − ft−1∥2 (f) 1{coxa, femur, or base

contacting terrain}

(g) ∥at − at−1∥2 (h) ∥at∥2 (i) ∥τ∥2

(j) ˆ̈q2 = q̇t−q̇t−1

∆t

2 (k) clip (qmin − qt,max = 0)+
clip (qt − qmax,min = 0)

(l) ∥zend effector∥

Figure 2.5: Learning curves for each reward term during phase 1 reinforcement learning
training. The first 8,000 of phase 1 training are conducted on the easier rough terrain shown
in Figure 2.3(a) and the second 8,000 on the harder joist terrain shown in Figure 2.3(b).
(a): Linear velocity in global x. (b): Linear velocity in body y. (c): Global heading. (d):
Angular velocity: yaw. (e): Ground impact. (f): Collision penalty. (g): Action rate. (h):
Action magnitude. (i): Torques. (j): Joint acceleration. (k): Joint limit penalty. (l): End
effector height.
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Figure 2.6: Learning curves for reward achieved by the agent during phase 1 and phase 2
training. The first 8,000 of phase 1 training are conducted on the easier rough terrain shown
in Figure 2.3(a) and the second 8,000 on the harder joist terrain shown in Figure 2.3(b).
Phase 2 training is only conducted on the harder joist terrain shown in Figure 2.3(b) for
2,000 iterations.

the model trained on easier rough terrain. A simulation rollout video of the model trained
with the first half of phase 1 on terrain shown in Figure 2.3(a) is shown in Figure 2.7(a), and
a simulation rollout video of the model trained fully with phase 1 is shown in Figure 2.7(b).
As shown in the video, the model trained fully with phase 1 can traverse joist terrain with
similar configurations as typical home attics.

Phase 2: Supervised Learning for Sim-to-Real

In phase 2, we use supervised learning to train the model with access to only proprioception
and perception available onboard, supervised by a teacher model trained in phase 1. For
the student model during phase 2 training, proprioception information x̂t consists of base
attitude ot, previous action at−1, and egocentric depth image dt as perception input. The
state ŝt for the student model then has the following form:

ŝt = [ot, at−1, Ep(dt)] (2.6)

Only the observation encoder Ep and its perception head are trained from scratch, with the
policy being initialized with the trained policy weight from phase 1. Figure 2.8 shows the
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(a) (b)

(c)

Figure 2.7: Screenshots from simulation rollout videos. The yellow dots rendered in (a) and
(b) are the locations where elevation map values are sampled. (a): A simulated rollout of
the phase 1 model only trained for 8,000 iterations on rough terrain shown in Figure 2.3(a)
can be seen in this video. (b): A simulated rollout of phase 1 model trained both on rough
terrain shown in Figure 2.3(a) and joist terrain shown in Figure 2.3(b) can be seen in this
video. (c): A simulated rollout of phase 2 model trained on joist terrain shown in Figure
2.3(b) can be seen in this video.

https://youtu.be/Gfm4nsUPT5w
https://youtu.be/r__KespezZc
https://youtu.be/r__KespezZc
https://youtu.be/4oxvIsiyJ5Q
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Reward Term Expression Weight
Linear velocity in global x clip (vx,min = −0.4,max = 0.4) 1e2
Linear velocity in body y v2y -1e1

Global heading θ2 -3e1
Angular velocity: yaw ω2

z -1e0

Ground impact ∥ft − ft−1∥2 -1e-1
Collision penalty 1{coxa, femur, or base contacting terrain} -1e0

Action rate ∥at − at−1∥2 ·-5e-1
Action magnitude ∥at∥2 -1e-2

Torques ∥τ∥2 -1e-3

Joint acceleration ˆ̈q2 = q̇t−q̇t−1

∆t

2
-1e-5

Joint limit penalty clip (qmin − qt,max = 0) + clip (qt − qmax,min = 0) -1e0
End effector height ∥zend effector∥ -1e1

Table 2.2: Constituent elements of the multi-objective reward during phase 1 training, with
corresponding weights for each of the reward terms. This table is adapted from [19].

phase 2 training process. We supervise the student encoder’s ẑt with the teacher encoder’s
zt, and student policy’s ât with the teacher policy’s at. In other words, we train the student
encoder and policy to recover the same zt and at, using the more limited observation set, by
optimizing the following loss, as demonstrated in Figure 2.8:

Lencoding = MSE (zt, ẑt) (2.7)

Laction = MSE (at, ât) (2.8)

Lphase-ii = Lencoding + Laction (2.9)

We also need to consider the sim-to-real gap of depth perception in order to successfully
deploy the model trained in phase 2 on hardware. Depth images retrieved from IsaacGym
are nearly perfectly simulated, which is not the case for our actual depth sensor. Since our
robot is close to the ground and the distance between the depth camera and the ground is not
too large, in order to obtain the best depth quality for near objects, we operate the onboard
depth camera in low ambient light mode. By doing so however, far-away pixels often end up
with invalid measurements. Moreover, since we do not have an exact 3D model of the robot
and we approximate segments of the robot with boxes when the robot legs are within the
view of the depth camera, there is a domain gap between the simulation and actual depth
images.

To address the issue of front legs being inadvertently captured in the actual captured
depth images, we mask out all the areas that could possibly be occupied by the legs with
all physically possible joint angle combinations. The masked-out areas are presented as the
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Figure 2.8: Diagram for phase 2 training. We train the student encoder and policy to recover
the same zt and at as the teacher, using more limited observations. The student policy is
initialized with the weights from the trained teacher policy. This figure is adapted from [19].

white areas in Figure 2.9(a). An overlay image of the leg mask on an egocentric depth image
with the leg in view is shown in Figure 2.9(b), with part of the robot leg captured by the
depth camera is shown in the lower right corner and the highlighted area at the bottom
corners being masked out.

To deal with the pixels in actual depth images that are invalid due to range, we randomly
mask out pixels in simulated depth images as follows: the probability of each pixel with
simulated depth measurement d meters being masked out is:

pinvalid(d) =
exp(min(dbound, d))

exp(k)
(2.10)

In the above expression, k is set to be the approximate upper bound of depth values for
the majority of pixels on actual hardware. However, depth pixels in simulation can have
valid measurement even when being far away from the camera, so we first clip the depth
measurement d with an upper bound dbound, otherwise those pixels would all be masked out
since they all have pinvalid > 1. The value of dbound is tuned to yield the best zero-shot
sim-to-real performance. An example depth image captured in simulation is visualized in
Figure 2.9(c). The image with pixels being randomly masked out according to their depth
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values is shown in 2.9(d), with black pixels corresponding to the pixels that are masked out.
To determine an appropriate range for k, we walk the robot around with the depth camera
mounted using the built-in Hiwonder controller and plot the distribution of valid pixel values
in multiple randomly selected captured depth images, shown in Figure 2.9(e). As seen from
the distribution in Figure 2.9(e), most valid pixels are within 3 meters. Therefore, we choose
k = 3m and dbound = 2m to result in the best performance. A curve showing pinvalid as
function of d with k = 3m and dbound = 2m is shown in Figure 2.9(f).

Phase 2 training is only conducted on the more difficult joist terrain environment to
emphasize the trained model’s ability to adapt to the environment in the field. Due to the
compute intensity of depth retrieval in simulation, we only simulate 100 robots in parallel.
We train the model for 2,000 iterations using Adam optimizer and learning rate of 5e-4.
A simulation rollout of the model trained in phase 2 traversing joist terrain using depth
perception is shown in Figure 2.7(c).
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(a) Leg Mask (b) Overlay of leg mask

(c) Example depth image (d) Depth-based mask

(e) Depth Distribution on L515 (f) pinvalid as function of d

Figure 2.9: Techniques used in depth image processing. (a): Mask used to avoid the legs
being captured. (b): Overlay of the leg mask on an egocentric depth image with the leg in
view, with the highlighted area at the bottom corners masked out. Part of the robot leg
captured by depth camera is visible at the lower right corner. (c): An example depth image
captured in simulation. (d): Depth image in (c) with pixels randomly masked out according
to depth value. (e): Distribution of depth value captured by L515 mounted on the robot.
(f): pinvalid as function of d with k = 3m and dbound = 2m
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Chapter 3

Experiments and Results

To evaluate the performance of our method, we deploy our proposed method, a blind version
of our method, and the controller provided by the manufacturer, on a SpiderPi robot and
have it climb over joist courses we have constructed to mimic attic environments. We also
conduct ablation studies to justify the techniques we have introduced to ensure sim-to-real
transfer.

3.1 Test Setup

To evaluate the robot’s ability to traverse joists with a pattern similar to the ones in the field,
we construct a testing ground using wood joists with 2-inch thickness and 6-inch height. We
construct 4-joist and 8-joist courses to test the models. Joists are arranged in a pattern with
16-inch center-to-center gap. The 8-joist course is shown in Figure 1.1. We test the walking
controllers by having the robot traverse in the direction that is perpendicular to the joists
for multiple trials. The time limit to complete each trial is set to be 30 seconds for the 4-joist
course and 60 seconds for the 8-joist course. The performance of each method is evaluated
using two metrics: the average number of joists the robot successfully climbs over in each
trial, and the average time it takes for the robot to climb over each joist. Success is defined
as the entire body and all the legs of the robot passing over the joist. The time interval
between passing the previous joist to passing the current joist is taken as the time to climb
the current joist. We only interrupt a trial if the robot falls over and cannot recover on its
own.

3.2 Performance on Actual Hardware

For comparison, we also train a blind model and use it without the depth camera. The
training process of the blind model is exactly the same as the perceptive policy, except that
it does not have access to any perception information, without a perception head on the
observation encoder. The blind model also takes body orientation as proprioception, so only
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Method Average #Joists Average Time / Joist (s)
Perceptive 4 3.7

Blind 1.8 3.8
HiWonder Controller 0 N/A

Table 3.1: When deployed on the 4-joist course, the average number of joists that each
model successfully climbs over, and the average time for models to climb over each joist,
evaluated on the proposed perceptive model, the blind model, and the controller provided
by Hiwonder. The Hiwonder Controller cannot climb over any joist, therefore does not have
a valid measurement of time per joist.

Method Average #Joists Average Time / Joist (s)
Perceptive 7.8 3.4

Blind 1.9 4.1
HiWonder Controller 0 N/A

Table 3.2: When deployed on the 8-joist course, the average number of joists that each
model successfully climbs over, and the average time for models to climb over each joist,
evaluated on the proposed perceptive model, the blind model, and the controller provided
by Hiwonder. The Hiwonder Controller cannot climb over any joist, therefore does not have
a valid measurement of time per joist.

the T265 tracking camera is attached to the robot when using the blind model. We compare
the performance of our perceptive model to both the blind model and the walking controller
provided by HiWonder. All models are used on a low-cost Raspberry Pi 4B with 4GB of
RAM. Experimental results are presented in Tables 3.1 and 3.2. When tested on the 4-joist
course over 10 trails, the perceptive model deployed directly on hardware achieves a 100%
success rate climbing over all joists within the given time, and uses around 3.7 seconds to
climb over each joist. When tested on the 8-joist course, the perceptive model climbs over
7.8 joists per trail on average, and uses around 3.4 seconds to climb over each joist. In the
only failed trial, the robot makes it very close to the end. It loses balance as it pitches up
and falls over. Examples of the robot traversing over the 8-joist course is shown in Figure
3.1(a) and Figure 3.1(b) with video links attached in the figure caption.

The blind model manages to climb over 1.8 joists in each trial on average and uses slightly
more time than the perceptive model to climb over each joist. However, the blind model
learns gaits with high impact and with its front legs raised high in the air even when there
are no joists present in front of the robot. This is because it does not have access to any
source of perception to interpret the appropriate action magnitude. The controller from
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Method Average #Joists Average Time / Joist (s)
Perceptive 4 3.7

w/o leg mask 0 N/A
w/o random invalid 1.3 6

w/o both 0 N/A

Table 3.3: When deployed on the 4-joist course, the average number of joists that each model
successfully climbs over, and the average time for models to climb over each joist, evaluated
on the perceptive models trained with (a) both leg masking and random invalid depth pixels,
(b) without leg masking, (c) without random invalid depth pixels and (d) without both. The
models trained without leg masking do not successfully climb over any joists, therefore do
not have a valid measurement of time per joist.

Hiwonder is not capable of climbing over any joists over all the trials.
To further test the robustness of our proposed method, we test the robot approaching

and climbing over the 4-joist course at an angle. The robot is set to start with a 45-degree
angle and is tested for 10 trials. We find that it successfully climbs over the joist course in
9 of the 10 trials, as shown in Figure 3.1(c).

We also test the proposed perceptive model with a 12-inch high joist course to determine
its behavior when encountering obstacles that are physically too high to climb over. We find
that the robot stops moving once it gets close to the joists. This is expected since the depth
camera view is fully blocked by the high obstacle, and such a scenario is seldom encountered
during training.

3.3 Ablation Studies

Depth Processing Techniques

In previous sections, we presented two depth image preprocessing techniques to enable zero-
shot sim-to-real transfer. To justify the effects of these techniques, we conduct ablation
studies and evaluate the models with similar test settings as above. We compare the per-
formance of the perceptive model trained with depth images preprocessed using (a) both
leg masking and random invalid pixel, (b) without leg masking, (c) without random invalid
pixels, and (d) without both. When deploying a model trained without leg masking on
hardware, we do not apply leg masking to depth images to match the depth processing used
during training.

Experimental results are presented in Tables 3.3 and 3.4. We observe that models trained
and deployed without leg masking would behave abnormally as soon as legs are captured
by depth camera during climbing, and are not capable of climbing over any joists. This is
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(a) (b)

(c) (d)

(e)

Figure 3.1: Demonstrations of our perceptive model, the blind version of our model, and
the Hiwonder controller deployed in the real world on joist courses. (a),(b): Examples of
the Spiderpi hexapod climbing an 8-joist course using our perceptive model can be viewed
in this video and this video. (c): A video of the Spiderpi hexapod climbing the joist course
using our perceptive model at a 45-degree angle can be viewed in this video. (d): A video of
the Spiderpi hexapod climbing the joist course using a blind version of our method can be
viewed in this video. (e): A video of the Spiderpi hexapod climbing the joist course using
the manufacturer’s controller can be viewed in this video.

https://youtu.be/OBjRWEoQPww
https://youtu.be/2XtkrUPGhAI
https://youtu.be/AYu7XoObaYo
https://youtu.be/64sLMslJFYs
https://youtu.be/3Hq0I8W5fDs
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Method Average #Joists Average Time / Joist (s)
Perceptive 7.8 3.4

w/o leg mask 0 N/A
w/o random invalid 1.5 6.1

w/o both 0 N/A

Table 3.4: When deployed on the 8-joist course, the average number of joists that each model
successfully climbs over, and the average time for models to climb over each joist, evaluated
on the perceptive models trained with (a) both leg masking and random invalid depth pixels,
(b) without leg masking, (c) without random invalid depth pixels and (d) without both. The
models trained without leg masking do not successfully climb over any joists, therefore do
not have a valid measurement of time per joist.

likely due to the domain gap presented between the depth measurements of the actual robot
legs and the legs in the approximate robot URDF model. The model using only leg masking
but not random invalid pixels makes some progress and climbs over joists, but gets stuck or
falls over quite often. When tested on either the 4-joist or the 8-joist course, it is able to
climb around 1.3 joists before it fails and takes around 6 seconds on average to successfully
climb over each joist. Also, it never finishes a single trail. This proves the effectiveness of
our proposed depth-based pixel masking technique to reduce the domain gap between depth
images in simulation and captured by the actual L515 sensor.

Phase 1 without Joint Feedback

One of the main reasons we divide training into 2 phases is to learn an effective expert policy
with access to privileged state feedback in phase 1. To prove the necessity of having access
to joint state feedback in phase 1, we compare phases 1 and 2 training performances between
models with and without access to joint angle feedback, as shown in Figure 3.2. As seen in
Figure 3.2(a), the drop at the middle is due to curriculum change - the first 8000 iterations of
phase 1 training are conducted on lower joist terrain shown in Figure 2.3(a) and the second
8,000 iterations on higher joist terrain in Figure 2.3(b). During phase 1, the model with
access to joint angle feedback significantly outperforms the one without access to joint angle
feedback. During phase 2 training, the student model without access to the joint angle is
able to reach a similar reward as the teacher model with access to the joint angle. Student
model learning from the teacher model without access to joint angle yields relatively low
reward. This demonstrates the necessity to include critical privileged joint angle feedback
in phase 1 training in order to optimize the model’s zero-shot sim-to-real performance.
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(a) Phase 1 reward with vs without joint angle

(b) Phase 2 reward

Figure 3.2: (a): Phase 1 reward curves of models with and without access to joint angle
feedback. (b): Phase 2 reward curves, learning from phase 1 models with and without access
to joint angle feedback.
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Chapter 4

Building Retrofit Analysis and
Verification

This chapter presents an interactive visualization tool we developed to analyze and verify
building retrofit using drone-captured RGB and Infrared (IR) images. Infrared thermography
is typically used to detect the three main culprits in envelope retrofit: thermal bridging, air
infiltration, and insulation deficiencies. This is typically done by having a human operator
use a thermal camera to simultaneously capture IR images and visually detect anomalies
real time as s/he walks around the perimeter of the building. There are multiple problems
associated with the current practice: first for buildings with more than one story, the resulting
IR images cannot properly capture higher stories. Second, the approach is error prone in
that the human operator can potentially miss thermal anomalies due to real time cognitive
overload on the spot. Third, the process is laborious and takes a long time since each
time a defect is detected, the operator has to stop and mark the location of the defect in
construction drawings or use imprecise or excessive words to identify the exact location of
the defect. This is further complicated when comparing pictures of the same spot on the
building pre and post retrofit.

4.1 Associating RGB and IR Information

Interactive Visualization (IV) tool is useful for visualizing the difference between structures
before and after the retrofit. For larger buildings, ideally one would like to capture the
thermal pictures up close in order to capture the details of thermal anomalies. However,
the close-up pictures necessarily make it difficult to determine which part of the building
each picture came from, due to lack of context. We developed an IV user interface to solve
this problem, as shown in Figure 4.1. Our IV tool first uses open-source software, such
as [14], that finds homography matrix H between images automatically using RANSAC to
stitch multiple RGB pictures, in order to generate a “synthetic” panorama of the facade.
Every thermal image has attached metadata including global positioning system (GPS) data
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(a) (b)

Figure 4.1: Screenshot of our IV tool: (a): Panorama image of a façade of the trailer in the
DoE weatherization lab in Santa Fe, NM created by auto-stitching 10 RGB drone images;
the user clicks anywhere on the panorama, and the footprint of the two IR images captured
in two different flights, for that point are automatically displayed, for pre and post insulation
retrofit. (b): Same as (a) but for a multifamily building in central CA, which underwent air
sealing retrofit.

of the image capture device location and the pose of the image capture device. With this
information, we use projection geometry to find each thermal image’s corresponding facade
as well as the projected optical center on that facade, as illustrated in Figure 4.2. We assume
facades are all perpendicular to the ground plane, and therefore only need to use the two
endpoints location of the facade (x0, y0, 0) and (x1, y1, 0) with x and y in global coordinate
system retrieved from Google Earth to solve for the facade’s plane equation

Ax+By + Cz +D = 0 (4.1)

To find the projection of the optical center on the facade plane, we compute the optical axis
of the drone camera. With the drone’s position (xdrone, ydrone, zdrone) and roll, pitch and yaw
(0, vdrone, wdrone), since the drone does not roll when taking a photo, the equation of the
optical axis of the drone camera is

x = xdrone + t ∗ cos(vdrone) ∗ cos(wdrone)

y = ydrone + t ∗ cos(vdrone) ∗ sin(wdrone)

z = zdrone + t ∗ sin(vdrone)
(4.2)

where t is a parameter that represents any point on the line. After that, the intersection of
the facade plane and the optical axis of the drone camera, which by definition is the optical
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center of the captured image, can be computed by solving the value of t as the intersection
of the plane in Equation 4.1 and the line in Equation 4.2

(Axdrone +Bydrone + Czdrone +D)+

(cos(vdrone) ∗ cos(wdrone)A+ cos(vdrone) ∗ sin(wdrone)B + sin(vdrone)C)t = 0
(4.3)

Next, insert the t value back into the line in Equation 4.2 to obtain the position of the
projected optical center on the facade when the given image is captured. With the projected
optical centers of all the images computed, as the user clicks on any part of the facade
panorama, we display all the thermal images that have projected optical centers close to the
clicked point. Furthermore, if there were multiple drone captures, corresponding to before
and after insulation retrofit, they are displayed side by side as shown in Figure 4.1, allowing
for rapid, qualitative measurement and verification processes. As seen in Figure 4.1(b),
there is a pronounced difference between the thermal pictures before and after the insulation
process. Our tool allows all stakeholders including the contractor and the owner to view
the before and after pictures immediately after a retrofit to pinpoint and remedy flaws. On
the other hand, current building envelope retrofit measurement and verification process has
to first lumped with mechanical systems, then takes two years of reviewing utility bills and
does not pinpoint flaws such as missing insulation.

(a)

Figure 4.2: Illustration of projecting drone camera’s optical center on the facade by finding
the intersection of the optical axis of the drone camera with the facade plane.
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(a) (b)

(c) (d)

Figure 4.3: Distorted original captured thermal images.

4.2 Stitching IR Images

Another benefit of our IV tool is the ability to localize studs using drone-captured thermal
imagery. This is useful in envelop retrofit projects such as recladding buildings with insula-
tion panels. Currently, stud detection is done in the interior with a stud finder, which is then
translated to the exterior, using landmarks such as corners of windows. As such, existing
methods are tedious, laborious and error prone.

To improve the process of stud detection, our IV tool first stitches multiple thermal
images of a façade into a thermal panorama. An example of a set of thermal images prior
to stitching is shown in Figure 4.3.

Because of radial distortion, captured images initially do not guarantee that points lo-
cated on a straight line in the real world will also be in a straight line on the images, so
cannot be used directly to create a panorama. In the case of an IR thermography camera,
image magnification decreases with distance from the optical axis, resulting in barrel dis-
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(a) Forward mapping

(b) Backward mapping

Figure 4.4: Illustration of image distortion mapping. (a): Forward mapping maps from an
undistorted space to a distorted space. (b): backward mapping maps from a distorted space
to an undistorted space.

tortion. In general, to correct radial or perspective distortion, a model to map between the
distorted plane and the undistorted plane is required. Mapping from an undistorted space
to a distorted space is known as forward mapping as shown in Figure 4.4(a), and mapping
from a distorted space to an undistorted space is called backward mapping and is shown
in Figure 4.4(b). Parameters are calculated for determining a backward or inverse mapping
model in order to undistort on thermal images according to the Brown-Conrady distortion
model[7]:

xu =xd + (xd − xc)
(
K1r

2 +K2r
4 + · · ·

)
+
(
P1

(
r2 + 2 (xd − xc)

2)
+2P2 (xd − xc) (yd − yc))

(
1 + P3r

2 + P4r
4 · ··

) (4.4)

yu =yd + (yd − yc)
(
K1r

2 +K2r
4 + · · ·

)
+ (2P1 (xd − xc) (yd − yc)

+P2

(
r2 + 2 (yd − yc)

2)) (1 + P3r
2 + P4r

4 · ··
) (4.5)

where (xd, yd) is the distorted image point as projected on the image plane using the specified
lens. (xu, yu) is the undistorted image point as projected by an ideal pinhole camera. (xc, yc)
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is the distortion center, which is the center of the image since the distortion is symmetri-

cal. Kn is the nth q radial distortion coefficient, and r =
(
(xd + xc)

2 + (yd − yc)
2)1/2 is the

Euclidean distance between the distorted image point and the distortion center. Tangential
distortion is ignored since the lens and the image plane are parallel. The approach is to create
a line pattern for visual inspection and apply an estimated forward model to the line pattern
and overlay the result on top of the image in order to find the appropriate parameters for
the forward model. This is accomplished by adjusting the parameters of a forward model,
applying them to the line pattern, overlaying to the distorted image, and making sure the
warped lines are visually matching with the curve feature in the image. Values for K2, K3,
and K4 are tuned one by one to gain an approximation. We skip K1 since it mainly controls
the scaling and the shearing of the warped image. Examples of applying forward model to
line-pattern with different values of K2 are presented in Figure 4.5. One can compare lines
that are required to be straight in the distorted original thermal image with the distorted
line-pattern to see which coefficient value best match the distortion present in the thermal
image. For instance, within the distorted thermal image presented in Figure 4.5 the top
edge of the facade, which should be straight in the real world, aligns best with the curve
that has K2 = 1. With the estimated coefficients of the backward model, we map pixels
from distorted space to undistorted space to produce the calibrated image. When mapping a
pixel from distorted space to undistorted space, the computed undistorted pixel coordinates
xu and yu are not guaranteed to be integers. Therefore, we round the undistorted pixel
coordinates to their nearest integer values before copying pixel values from the distorted
image to the undistorted image. If any pixel on the undistorted image gets mapped from
more than one pixel from the distorted image, the final pixel value on the undistorted image
pixel is computed as the average of the pixel values mapped from the distorted image. For
all the pixels on the undistorted image that do not get mapped to from at least one pixel,
the final pixel value on the undistorted image pixel is computed as the average of all the
surrounding pixel values on the undistorted image in order to fill in the blank. Examples of
original thermal images in Figure 4.3 with distortion calibrated are provided in Figure 4.6.

(a) K2 = 1 (b) K2 = 6 (c) K2 = 11

Figure 4.5: Applying forward model to line-pattern with different values of K2
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(a) (b)

(c) (d)

Figure 4.6: Thermal images with calibrated distortion.

With all the thermal images calibrated, we use projective transformations to stitch pairs
of images together one at a time. To stitch two calibrated images together, we first find the
homography matrix that defines the projective transformation between the two images. The
homography matrix H is a 3 × 3 matrix with the form:

H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.6)

Any point (x, y) can be projected from one image to the corresponding point (x′, y′) on the
other image with the transformation defined by: x′/λ

y′/λ
λ

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 ·

 x
y
1

 (4.7)
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The transformation parameters in H can be solved using the following equation, where
(xn, yn) and (x′

n, y
′
n) are the nth pair of corresponding points on the pair of images.

−x1 −y1 −1 0 0 0 x1x
′
1 y1x

′
1 x′

1

0 0 0 −x1 −y1 −1 x1y
′
1 y1y

′
1 y′1

−x2 −y2 −1 0 0 0 x2x
′
2 y2x

′
2 x′

2

0 0 0 −x2 −y2 −1 x2y
′
2 y2y

′
2 y′2

−x3 −yy −1 0 0 0 x3x
′
3 y3x

′
3 x′

3

0 0 0 −x3 −y3 −1 x3y
′
3 y3y

′
3 y′3

−x4 −y4 −1 0 0 0 x4x
′
4 y4x

′
4 x′

4

0 0 0 −x4 −y4 −1 x4y
′
4 y4y

′
4 y′4

0 0 0 0 0 0 0 0 1


·



h1
h2
h3
h4
h5
h6
h7
h8
h9


=



0
0
0
0
0
0
0
0
1


(4.8)

In theory, only four pairs of points are needed to compute the homography matrix. That
said, in practice, we used six pairs to make the process more robust.

Unlike the process of stitching high resolution RGB images where key-point detection
can be applied and the transformation can be found automatically using algorithms such as
random sample consensus (RANSAC), thermal images have lower resolution compared to
RGB images, and colormap visualization makes it difficult to extract meaningful key-points.
Therefore, our IV tool utilizes a pipeline to let the user manually choose the correspondences
between pair of images to be stitched together. For instance, if a user desires to stitch
two images shown in Figures 4.7(a) and 4.7(b) together, pairs of corresponding points are
selected between images. Using the pixel coordinates of the corresponding selected points,
homography matrix H can be solved using least-square linear equation solver. Then we use
the computed homography matrix to map pixels from one image onto the other image. A
result of stitching using images in Figures 4.7(a) and 4.7(b) is shown in Figure 4.7(c). The
process may be iterated to produce a fully stitched panorama shown in Figure 4.7(d).

In the next step, the method corrects perspective distortion of the façade image. Perspec-
tive distortion arises because images cannot often be captured head-on. Thus, ground-level
photography may introduce low angle perspective distortion while aerial photography may
introduce high angle perspective distortion. An example of high angle perspective distor-
tion is illustrated by stitched IR thermography image shown in Figure 4.7(d). In addition
to removing perspective distortion, the resulting image should have the same aspect ra-
tio as the actual facade. Given a pre-built 3D model of the building, as shown in Figure
4.8(a), the exact aspect ratio R according to the dimensions of the facade can be extracted.
A user may select the pixel coordinates of facade corners, with the two upper corners of
the facade being (xl, yl) and (xr, yr) and the two lower corners of the facade being (x′

l, y
′
l)

and (x′
r, y

′
r). Using the aspect ratio R, the pixel coordinates of the two lower corners of

the facade after perspective distortion correction can be computed as (xl, yl +
xr−xl

R
) and

(xr, yr +
xr−xl

R
). The relationship between facade panorama before and after perspective

correction is again a perspective transformation. With the pairs of correspondences being
[(xl, yl), (xl, yl)], [(xr, yr), (xr, yr)], [(x

′
l, y

′
l), (xl, yl+

xr−xl

R
)] and [(x′

r, y
′
r), (xr, yr+

xr−xl

R
)]. Then
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the homography matrix can be computed in a similar way as the case for stitching thermal
images to produce the head-on thermal facade panorama, as shown in Figure 4.8(b).

In the final thermal panorama shown in Figure 4.8(b), the location of the studs is clearly
indicated. Next, we export this to an architecture tool such as Rhino or Revit for the user
to visually click on the studs as shown in Figure 4.9. Users can click on studs on the thermal
facade to find the metric locations of the studs with respect to the origin (0,0,0) which in
this case is the lower right corner of the facade.
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(a) (b)

(c)

(d)

Figure 4.7: To stitch two thermal images in (a) and (b) together, pairs of corresponding
points are selected between images, then homography matrix H can be solved. (c): Result
of stitching (a) and (b). (d): Fully stitched panorama produced by iterating the stitching
process.
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(a) Dimensions extracted from 3D model of the building.

(b) Final thermal panorama with correct aspect ratio.

Figure 4.8: (a): Given a pre-built 3D model of the building, the exact aspect ratio R
according to the dimensions can be extracted. (b): Final head-on thermal facade panorama.
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Figure 4.9: Screenshot of Rhino architecture tool. Users can click on studs on the thermal
facade to find the metric locations of the studs with respect to the origin (0,0,0) which in
this case is the lower right corner of the facade.
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Chapter 5

Conclusions and Future Work

In this work, we present an end-to-end approach to learning a perceptive walking model for
low-cost hexapods, to climb over high and dense joist structures. We also show zero-shot
sim-to-real deployment of models on hardware in a constructed test environment that closely
matches the proposed use case of our method in attics. Furthermore, we present an SIV tool
that improves the measurement and verification process of building retrofit.

Our perceptive hexapod controller significantly outperforms the baseline methods in
terms of both the number of joists it climbs over within given time and the average time it
takes to climb over each joist. As shown in our ablation studies, the success of our method’s
sim-to-real transfer is credited to the effectiveness of our proposed depth image preprocessing
techniques and including critical privileged information during phase 1 training.

Even though our robot’s compactness and low height allow it to traverse tight spaces,
the depth camera mounted above to obtain a view of the terrain elevates the center of mass
of the entire system. There are certain instances where the robot falls likely due to the
instability related to an elevated center of mass. In the future, we would like to further
improve the stability of our system by changing the design of our camera mount to lower
the center of mass. This might entail learning a visual legged locomotion controller with a
lower egocentric view.

Using a L515 LiDAR instead of a stereo camera as the perception sensor allows our robot
to operate in dark environments. However, the T265 tracking RGB camera often loses track
of the robot’s orientation in the dark. This can be improved by switching our choice of pose
sensor from a tracking camera to a lidar-based tracking method.

Although being out of the scope of this work, we wish to explore letting the robot climb
staircases or get around joists or other obstacles that are too large to climb. Eventually, we
would like to teach the hexapod to perform high-level path planning in cluttered environ-
ments such as attics.
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Appendix A

Custom URDF Robot Representation

<?xml version="1.0" ?>

<robot name="pexod" xmlns:xacro="http://www.ros.org/wiki/xacro">

<!-- <xacro:include filename="$(find pexod_description)/urdf/pexod_control.xacro" /> -->

<!-- MATERIALS -->

<material name="Blue">

<color rgba="0 0 1 1"/>

</material>

<material name="Red">

<color rgba="1 0 0 1"/>

</material>

<material name="Green">

<color rgba="0 1 0 1"/>

</material>

<material name="Yellow">

<color rgba="1 1 0 1"/>

</material>

<material name="LightGrey">

<color rgba="0.6 0.6 0.6 1.0"/>

</material>

<!-- END OF MATERIALS -->

<!-- XACRO MACROS FOR VISUALS AND COLLISIONS -->

<!-- END OF XACRO MACROS -->

<!-- TORSO -->

<link name="base_link">

<visual>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<box size="0.239 0.117 0.095"/>
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</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 0"/>

<geometry>

<!-- END OF LEG LINKS/JOINTS -->

<box size="0.239 0.117 0.095"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<!-- <mass value="0.01"/> -->

<mass value="1.396"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.003" ixy="0" ixz="0" iyy="0.008" iyz="0" izz="0.008"/>

</inertial>

</link>

<joint name="body_camera" type="fixed">

<parent link="base_link"/>

<child link="camera_mount"/>

<origin rpy="0 0 0" xyz="0.1 0 0.025"/>

</joint>

<link name="camera_mount">

<visual>

<origin rpy="0 0 0" xyz="0 0 0.11"/>

<geometry>

<box size=" 0.05 0.117 0.17"/>

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="0 0 0" xyz="0 0 0.11"/>

<geometry>

<!-- END OF LEG LINKS/JOINTS -->

<box size=" 0.05 0.117 0.17"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->
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<origin rpy="0 0 0" xyz="0 0 0.11"/>

<!-- <mass value="0.01"/> -->

<mass value="0.50"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.0017" ixy="0" ixz="0" iyy="0.0013" iyz="0" izz="0.00067"/>

</inertial>

</link>

<!-- XACRO MACRO FOR LEGS LINKS/JOINTS -->

<joint name="body_leg_2" type="revolute">

<parent link="base_link"/>

<child link="leg_2_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 -0.785" xyz="0.119 0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_2_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->
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<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_2_1_2" type="revolute">

<parent link="leg_2_1"/>

<child link="leg_2_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.045 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_2_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_2_2_3" type="revolute">

<parent link="leg_2_2"/>

<child link="leg_2_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.09 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>
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<link name="leg_2_3">

<visual>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_2_eef" type="fixed" dont_collapse="true">

<parent link="leg_2_3"/>

<child link="dummy_eef_2"/>

<origin rpy="0.785 0 0" xyz="0 0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_2">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>
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<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_3" type="revolute">

<parent link="base_link"/>

<child link="leg_3_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0.785" xyz="0.119 -0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 -1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_3_1_2" type="revolute">
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<parent link="leg_3_1"/>

<child link="leg_3_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.045 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 -0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_3_2_3" type="revolute">

<parent link="leg_3_2"/>

<child link="leg_3_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 -0.09 0"/>

<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_3_3">

<visual>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>
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<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="-0.785 0 0" xyz="0 -0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_3_eef" type="fixed" dont_collapse="true">

<parent link="leg_3_3"/>

<child link="dummy_eef_3"/>

<origin rpy="-0.785 0 0" xyz="0 -0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_3">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>
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<joint name="body_leg_0" type="revolute">

<parent link="base_link"/>

<child link="leg_0_1"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0.785" xyz="-0.119 0.0585 -0.025"/>

<!-- <xacro:if value="${index == 5 or index == 4 or index == 3}">

<axis xyz="0 0 1"/>

</xacro:if>

<xacro:if value="${index == 2 or index == 1 or index == 0}"> -->

<axis xyz="0 0 1"/>

<!-- </xacro:if> -->

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_1">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

<!-- <cylinder length="0.04" radius="0.02"/> -->

</geometry>

<material name="Red"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<geometry>

<box size="0.055 0.02 0.045"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.0225 0"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="2.021e-6" ixy="0" ixz="0" iyy="4.208e-6" iyz="0" izz="2.854e-6"/>

</inertial>

</link>

<joint name="leg_0_1_2" type="revolute">

<parent link="leg_0_1"/>

<child link="leg_0_2"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.045 0"/>
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<axis xyz="1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_2">

<visual>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

<!-- <cylinder length="0.09" radius="0.02"/> -->

</geometry>

<material name="Blue"/>

</visual>

<collision>

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<geometry>

<box size="0.044 0.02 0.09"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="1.57079632679 0 0" xyz="0 0.045 0"/>

<mass value="0.124"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="0.00008783" ixy="0" ixz="0" iyy="1.037e-4" iyz="0" izz="2.414e-5"/>

</inertial>

</link>

<joint name="leg_0_2_3" type="revolute">

<parent link="leg_0_2"/>

<child link="leg_0_3"/>

<limit effort="1.961" lower="-2.0944" upper="2.0944" velocity="5.236"/>

<origin rpy="0 0 0" xyz="0 0.09 0"/>

<axis xyz="-1 0 0"/>

<dynamics damping="0" friction="0"/>

</joint>

<link name="leg_0_3">

<visual>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

<!-- <cylinder length="0.125" radius="0.025"/> -->

</geometry>

<material name="Red"/>
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</visual>

<collision>

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<geometry>

<box size="0.055 0.04 0.125"/>

</geometry>

</collision>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0.785 0 0" xyz="0 0.0441941738 -0.0441941738"/>

<mass value="0.01"/>

<!-- box inertia: 1/12*m(y^2+z^2), ... -->

<inertia ixx="1.435e-5" ixy="0" ixz="0" iyy="1.554e-5" iyz="0" izz="0.00000385"/>

</inertial>

</link>

<joint name="joint_0_eef" type="fixed" dont_collapse="true">

<parent link="leg_0_3"/>

<child link="dummy_eef_0"/>

<origin rpy="0.785 0 0" xyz="0 0.0883883476 -0.0883883476"/>

</joint>

<link name="dummy_eef_0">

<visual>

<geometry>

<sphere radius="0.005"/>

</geometry>

<material name="Green"/>

</visual>

<inertial>

<!-- CENTER OF MASS -->

<origin rpy="0 0 0" xyz="0 0 0"/>

<mass value="0"/>

<inertia ixx="0" ixy="0" ixz="0" iyy="0" iyz="0" izz="0"/>

</inertial>

</link>

<joint name="body_leg_5" type="revolute">

<parent link="base_link"/>

<child link="leg_5_1"/>
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